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ABSTRACT 
 
 
 

PATENTS, KNOWLEDGE CREATION, AND SPILLOVERS IN GENETICS FOR 

AGRICULTURE AND NATURAL RESOURCES 

 
 
 

Increasing food, energy, and resource demand by growing global population is putting 

unprecedented pressure on agriculture and natural resource systems. Innovation in agriculture, 

energy, and other resource intensive industries contributes enormously to productivity and 

sustainability gains. Innovation in genetic resources and biological systems is a particularly 

promising yet controversial area of such innovation. Generally, it has been observed that regional 

clustering (economies of agglomeration) plays an important role in driving innovation. To what 

extent do we observe regional clustering to play a role in innovation in these industries? Especially 

given that production is highly diffused geographically, and research and technology are seen as 

highly globalized (global public goods vs. global monopolies by MNCs). The overarching 

questions address by this study are the following: (1) What do patents reveal about geographic 

patterns of knowledge creation and spillovers? (2) What economic and policy factors drive 

invention activity at the regional scale? And indirectly, (3) What is the role of regional clustering 

in driving innovations for food security and sustainability? To address these overarching objectives 

this study is mainly separated into three parts.  

The first part delves into three related questions: (1) How have biological inventions for 

use in primary resource-intensive industries been spatially distributed across the United States? 

And, in particular, to what degree have they been geographically concentrated? (2) What are the 

time-space dynamics of biological inventions for these industries? To what extent does the 
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concentration of previous inventions effect where new inventions arise? And, (3) based on these 

insights, can we identify primary innovation clusters in the U.S. for these industries? This study 

draws on detailed information on inventor address from about 34,000 patented inventions as 

indicators of innovation and entrepreneurship in three closely related industries: (1) agriculture, 

(2) bioenergy, and (3) environmental management. To address these questions three approaches 

are used mapping, Moran I and regression analysis. Results indicate these biological inventions 

are distributed across the U.S, but highly concentrated clusters are formed in urban regions. 

Moreover, a spatial clustering pattern clearly exists. In term of concentration of biological 

inventions for these industries, a rural-urban division exists. Inventions do not tend to concentrate 

near production activities but tend to concentrate in urban area. The number of inventions in an 

area in prior years has a significant impact on the number of current year inventions. This 

relationship represents the localized spillover phenomenon.  While we do see inventions in rural 

areas, rural areas do not appear to be the hotspots of innovation in agricultural, energy, or 

environmental biotechnologies.  

The second part of this dissertation explores the covariates of regional concentration of 

these biological inventions for agriculture, energy, and environment in the United States. First, the 

geographic patterns of these inventions are analyzed using negative binomial panel regression of 

patented inventions by region, to identify the density of inventions overall as well as the space-

time dynamics of invention cumulativeness. We find that inventions have been spatially 

concentrated in about 30 major metropolitan clusters, and that spatial distribution has remained 

remarkably stable over time. Factors of population, earnings, and farm income are correlated with 

their invention counts. As a first rule, these inventions are created in higher population urban 

regions. Although, among regions of similar population inventions are more likely closer to 
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agricultural production. Results clearly show the emergence of largely urban innovation clusters 

in agriculture and resource industries. 

The third part of this dissertation broadens the scope to explore the spatial distribution and 

covariates of regional invention activity across Organization for Economic Cooperation and 

Development (OECD) countries. Three approaches are used mapping, Moran I and regression 

analysis to analyse the spatial distribution and covariates across OECD. The results showed that 

while inventions are distributed across the OECD, there again appear to be concentrated clusters 

in larger urban regions (another broader set of top 30 clusters). Moreover, the number of inventions 

made in prior years has significant explanatory power on the number of current year inventions, 

by region. This represents the localized spillover phenomenon. In addition, region size (as 

measured by population) and level of economic activity (as measured by regional income) do not 

appear to be related to the count of inventions for these industries. R&D expenditures (regional) 

and an IP index (which is national in nature but is applied to regions for this study) are strongly 

related to biotech invention activity for these industries. A rural-urban division does appear to 

exist. Finally, these invention counts appear to be negatively correlated with gross value added of 

agriculture by region across OECD countries.  
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1. OVERALL INTRODUCTION 
 
 
 

Governments around the world have long invested directly in research and have created 

state and national policies to foster greater commercial R&D to improve productivity and 

sustainability of essential resource intensive industries such as agriculture, natural resources, 

energy, and environment. More recently, the rapid growth in genetics and molecular biology has 

led to a boom in biotechnologies with wide scope for application in these industries. These have 

been viewed by many as part of what has been collectively identified “agbiotech” from the 1980s 

and 1990s followed by “biofuels” and “clean tech” in the late 1990s and early 2000s. Inventions 

in genetics and molecular biology applied in resource intensive industries are considered an 

important factor for food security, economic development, and increasingly for environmental 

sustainability, including climate change adaptation and mitigation. Inventions in these fields help 

meet growing demand for food given increasing populations, demand that is putting unprecedented 

pressure on agriculture and natural resource systems. Physiological stressors—such as drought, 

degraded soils, and extreme temperatures—limit productivity, profitability, and sustainability. 

Increasing productivity and reducing waste are two of the core strategies recommended by Foley 

et al. (2011) that can be achieved directly by the application of genetics and molecular biology to 

improve farming practices and natural resource systems.  

Innovation in agriculture, energy, and other resource intensive industries contributes 

enormously to productivity and sustainability gains. Generally, it has been observed that regional 

clustering (economies of agglomeration) plays an important role in driving innovation. Then, to 

what extent do we observe regional clustering to play a role in innovation in these industries given 
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that the economic activity of production is highly diffused geographically, and research & 

technology are seen as highly globalized.  

Much of the economic analysis of research spending and technology policy in agriculture 

and natural resources has taken a decidedly neoclasical perspective. The presumption appears to 

be that, given the right mix of spending and policy incentives, new knowledge and technologies 

arise stochastically from R&D activities across national innovation systems and then disseminate 

quickly and broadly, often as global public goods, unless some form of intellectual property 

protection hinders their otherwise free path to widespread utilization. Where there is a regional 

aspect to innovation, it is assumed to play a role in capturing and adapting these globally available 

R&D outputs to local agroecological and market conditions. Agricultural and resource economists 

have given less regard to the internal, regional dynamics of the creation of innovations, having 

paid less attention to the burgeoning literature on the economies of agglomeration or “clustering” 

in driving commercial innovation. 

This study addresses three overarching questions. (1) What do patents reveal about 

geographic patterns of knowledge creation and spillovers in the biosciences for these industries 

(agriculture, energy, and environment) in which the human capital and production processes are 

necessarily geographically dispersed? (2) What economic and policy factors drive invention 

activity at the regional scale? And (3) What is the role of regional clustering in driving innovations 

for food security and sustainability?  

To the extent that co-location creates advantage and drives innovation, this has important 

policy implications. Policies need to take into account the structure and dynamic nature of 

clustering in order to support and encourage innovation. For agriculture, these policy implications 

have an additional twist. To the extent that the natural constituencies and political base for 
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agricultural industry tends to be rural, they may be less attuned or sympathetic to funding and 

supporting innovation activities that will tend to agglomerate, which generally means they will 

locate in urban rather than rural areas. 

This dissertation utilizes detailed information from inventor address data from patent 

publications that make up patent families, as an indicator of the location of invention. We draw 

upon the International Science and Technology Policy and Practice (InSTePP) Global Genetics 

Database, developed at the University of Minnesota from Thomson Innovation (TI) patent data, 

covering years 1970-2010. While the InSTePP database covers all fields of biotechnology, this 

present analysis is focused on biological inventions applied in the three closely related industries 

of (1) agriculture, (2) bioenergy and bioresources, and (3) environmental technologies, as based 

on Derwent World Patent Index (DWPI) Manual Code Classifications. Lead inventor zip code, 

city, state, and country are extracted from the InSTePP data and then analyzed at the level of 

Metropolitan Statistical Areas and the more rural Micropolitan Statistical Areas, to explore the 

degree and dynamics of spatial concentration, as well as the extent to which innovation is 

associated with the basic factors of population, level of economic activity, and level of agricultural 

production. 

This dissertation is organized as follows. The next section briefly reviews the background 

and literature on clusters and the utilization of inventor address data from patents. Section 3 

describes the global data set, presents the data cleaning process, and general descriptive statistics 

globally. Section 4 provides an overview the spatial distribution of these inventions in the United 

States and their evolution over time. Factors associated with cluster growth in the U.S. are analyzed 

in section 5. Section 6 expands the view and explores the spatial distribution and covariates of 
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clustering of invention across 17 countries of the Organization of Economic Cooperation and 

Development (OECD). Section 7 provides overall discussion and conclusions.  
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2. BACKGROUND AND LITERATURE REVIEW 
 
 
 
2.1 History of innovation for agriculture and natural resource industries 

Given what we know from the literature, what should we expect about the urban versus 

rural distribution of research and development (R&D) and innovation for agriculture? Agriculture 

was one of the earliest industries for which an innovation system was established in the United 

States. Amidst the chaos of the Civil War, the Morrill Act of 1862 funded the establishment of 

Land Grant colleges by each state, with a charter “to teach such branches of learning as are related 

to agriculture and the mechanic arts.” While the Land Grant colleges were initially focused on 

education, they were intentionally dispersed across what were largely rural and agricultural regions 

throughout the United States. The research component of the system was only added 25 years later, 

by the Hatch Act of 1887, which established funding to support an agricultural experiment station 

in each state. Most states chose to integrate their state agricultural experiment station with their 

Land Grant college, thereby creating a broad network of agricultural research institutions across 

largely rural regions of the country (Huffman and Evenson, 2006). These Land Grant colleges and 

other related technical institutions (the polytechnics and the  Schools of Mines) expanded their 

mission from agriculture and “the mechanical arts” to other natural resource industries, including 

energy, and, only much later, to resource management and conservation.  

Thus, at about the same time Alfred Marshall began his career as an economist (1865), but 

still several decades before he began to articulate his theories of industrial agglomeration, 

policymakers in the United States were already grappling with some of the basic principles that he 

would later bring to light: the need for local pools of skilled labor and mechanisms for knowledge 

spillovers (Marshall, 1890). Moreover, in the context of agriculture, they were grappling with how 
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to manage policies to encourage innovation and economic development in the face of what still 

appears to be a paradox: How to realize the advantages that arise from economies of agglomeration 

in an industry in which the human capital and production processes are necessarily geographically 

dispersed? The form of the Land Grant system appears to have adapted to the realities of the 

industry, providing a diffused research and development network for a diffused industry.  

Agricultural production has always been geographically diffuse, largely due to heavy 

dependence upon natural capital, including land and water resources. Even with agricultural 

production today in the United States at $396 billion, it is still very dispersed. It contributes to the 

economy of all 50 states, in 40 states it accounts for more than $1 billion, and in 13 states it 

accounts for more than $10 billion. The largest concentration by value is in California, which, at 

$48 billion, still only accounts for 12 percent of U.S. gross receipts (USDA Economic Research 

Service, 2018).  

Natural resource production is similarly diffused across largely rural areas. Rich diversity 

of natural resources are contributing into the U.S. economy. Similarly, abundance of natural 

resources also provides comparative advantage to the U.S. A unique economic value for all the 

natural resources in the U.S. is hard to figure out. However, their distribution and extraction are 

available across the U.S. Nonrenewable energy (coal, crude oil, and natural gas) is produced across 

the U.S. predominantly in rural areas of Texas, North Dakota, California, Wyoming, Nevada, 

Alaska, and Oklahoma. Similarly, renewable energy (geo-thermal, wind energy, and hydropower) 

are mostly produced in California, Washington, and Oregon. Forestry is one of the major economic 

activities in the U.S. Its cultivation and harvesting is spanned out across the U.S. Under-harvesting 

of the forest causing significant loses to the biodiversity and threaten the timber industry.  
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Thus, it may seem natural that, in Paul Krugman’s stylized two-sector model in his 

influential 1991 treatise on economic geography, one economic sector is characterized with 

constant returns to scale and workers evenly distributed in space, and he calls that sector 

“agriculture.” The other sector, called “manufacturing,” is characterized by increasing returns and 

what may be considered Marshallian externalities, with incentives thus leading to agglomeration. 

In the agricultural sector, there are no such incentives and thus no agglomeration (see Acs, Anselin, 

and Varga, 2002).  

An empirical line of work tracking patterns of innovation in patent data (Malerba and 

Orsenigo, 1990, 1996; Breschi, Malerba, and Orsenigo, 2000; Breschi, 2010) seeks to distinguish 

the spatial patterns of growth of innovative activities, building upon the classic distinction between 

Schumpeterian Mark 1 (widening and diffused growth in innovation) versus Schumpeterian Mark 

II (deepening and concentrated growth in innovation) initially dubbed by Nelson and Winter 

(1982). In these results, agriculture is consistently identified with the Schumpeterian Mark 1 camp, 

with low concentration of innovative activities, relatively small size of innovating firms, low 

stability in the hierarchy of innovating firms, and high rates of new innovators in the patent data 

(Malerba and Orsenigo, 1996). Agriculture is one of the sectors that does not show signs of spatial 

agglomeration and is assumed that spatial proximity does not play a role in innovation (Breschi, 

2010). 

Whether it is because the publicly-funded Land Grant university system has already 

effectively addressed the spatial aspects of innovation for the industry in the United States, or 

because the intrinsic capital structure of agricultural production resists agglomeration, agricultural 

economists that study innovation in the industry have typically looked at it from the perspective 

of neoclassical theory (Sunding and Zilberman, 2001; Alston et al, 2010). Fundamental to that 
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perspective is the assumption that the existing stock of knowledge is intrinsically a public good, 

that is (or at least should be) freely accessible for any other innovator or producer to apply to their 

particular problem. Related to this, it is generally assumed that transmission of knowledge is free 

and costless, virtually globally. Given the experiences of the Green Revolution in the 1960s and 

1970s, as genetically improved varieties of corn, wheat, and rice spread rapidly around the world, 

such assumptions appeared perfectly reasonable. That is not to say that geography is assumed not 

to matter. Rather, the primary economic question regarding regional agricultural innovation 

systems focused on their capacity to capture and adapt ideas to local conditions, mirroring the 

literature on the firm’s ability to absorb, internalize, and utilize existing stocks of knowledge 

(Cohen and Levinthal, 1989). In short, questions of economies of agglomeration, whether in 

production, or in innovation, have not taken serious hold in agricultural and resource economics.  

Yet, the burgeoning contemporary agricultural value chain—what may be thought of as the 

land-water-agricultural-food-beverage-bioenergy complex—consists of much more than simply 

the on-farm step of agricultural production. Innovation in inputs for on-farm production have, over 

the last century, gone through a series of technological revolutions, including mechanization, the 

advent of agricultural chemicals, scientific breeding, and more recently the concurrent revolutions 

in genomics and biotechnology and in data, information, and “precision” automation of on-farm 

production. At one time, virtually all of the inputs required for agricultural production could be 

sourced on the farm—including the land, the labor, the soil nutrients, the genetic inputs, the modes 

of traction and transport, the energy, and the mechanical implements. Over the last century, 

provision of agricultural inputs have successively been outsourced to industries specializing in 

their production, provision, and, in that vein, in the innovation necessary for their technological 
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improvement and productivity enhancement. The resulting complex vertical industry organization 

that has evolved thus defies simple categorization by industry sector codes. 

The empirical work on patterns of innovation provides a glimpse into this complexity. In 

addition to “agriculture” these studies also included, separately, some of the agricultural input 

sectors. Not surprisingly, they tend to exhibit more of the characteristics of manufacturing 

industries. Malerba and Orsenigo (1996) find mixed evidence for “agricultural chemicals,” but 

they squarely place “organic chemicals” and “bio- and genetic engineering” in the Schumpter 

Mark II camp exhibiting more concentrated innovation activity. In Breschi, Malerba, and 

Orsenigo’s (2000) update of the analysis “agricultural chemicals” had earned its placement in the 

Schumpter Mark II camp as well. In fact, an entire literature has recognized and analyzed the 

dynamics of clustering in biotechnology (Audretsch and Stephan, 1996; Zucker and Darby, 1996; 

and many others citing these). While such clustering has been explored for the subset of the 

biotechnology industry that applies to agriculture and natural resources (Ryan and Phillips, 2004); 

however, these trends have not been thoroughly documented and empirically analyzed.  

2.2 Marshallian clustering 

The burgeoning literature in economic geography, regional science, and urban economics 

mainly builds on Marshall (1890, 1920) and Krugman (1991). Marshal’s (1920) theories have 

provided the foundation to study geographic and spatial concentration of innovative activities.  

Ellison et al. (2010) explain Marshall’s theories of industrial agglomeration, identifying 

the following Marshallian forces: (a) proximity to customers and suppliers; (b) labor market 

pooling, and (c) intellectual or technology spillovers. Proximity to suppliers and customers helps 

firms have easy access to inputs or shipping good to downstream customers. Ellison et al argue 

that firms trade off the distance between customer and suppliers based on the cost of inputs and 
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finished goods. The risk sharing properties of the large skilled labor pool is emphasized. If, for 

some reason, some firms are more productive than others are, then workers can switch among 

them, reducing variance in wages. The point Ellison et al. emphasize is that clustering facilitates 

worker-firm matching. The agglomeration may also be formed due to natural advantages, and 

nature of industries. For example, agriculture and natural resources industries might be co-

agglomerated in rural or urban peripheries. Similarly, industries like oil refining, and ship building 

might opt for coastal locations. Highly dispersed and rural industries challenge the question of 

whether the Silicon Valley innovation model applies to these types of industries. 

The final reason firms cluster is to speed the flow of ideas. As workers learn new skills, 

and researchers make new discoveries, by co-locating researchers and managers of a firm are able 

to gain access to less formal or localized information exchanges gaining at least a temporal 

advantage. Ellison et al cite one additional reason that does not follow from the original 

Marshallian theories. Some industries see natural cost advantages in some regions, perhaps due to 

quality of capital endowments or strategic location near a port, and as they flourish, other firms 

then follow.  

2.3 Knowledge as a factor in clustering 

Audretsch and Feldman (1996) examine the geography of innovation in its own right. They 

start by arguing that knowledge externalities are more prevalent in industries where new economic 

knowledge (industry R&D, university R&D, and skilled labor) play a greater role. In their analysis, 

it is the spatial limitation of spillovers of new economic knowledge that drives the concentration 

of innovation activities.  

Glaeser and Resseger (2010) examine the relationship between cities and skills. They 

consider agglomeration a result of the spread of knowledge within cities. They do not view 
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agglomeration to be due to good governance, easy access to ports or harbors, or easy access to 

capital. They find a strong connection between worker productivity and metropolitan area 

population. The result is that economies of agglomeration are strong for cities with higher skill 

levels and almost non-existent in less skilled areas. Urban population density is important because 

proximity spreads knowledge and skills, making workers more productive and entrepreneurs more 

successful. Their results suggest a strong complementarity between city size, learning, and skills, 

with agglomeration effects stronger for cities with more skills. 

Scholars have shown that the geographic and spatial concentration of knowledge 

production processes are driven by several key factors, including level of opportunity 1 , 

appropriability2, cumulativeness3, and knowledge base4, all of which vary across sectors (Breschi, 

2000). Sun (2000) shows that in China the relatively high levels of economic development of 

coastal provinces and large centers of population in inland provinces are the most significant 

factors explaining the spatial clustering of innovations within China where state-owned and 

collectivized industries still dominate in measures of innovation. Usai (2011) finds that innovative 

activities in OECD countries are also clustered, with spatial concentration increasing with the 

passage of time.  

Boschma and Fornahl (2011) recognize the dynamic nature of innovation clusters, and to 

understand clusters’ emergence consider them as a product of path dependence process. An 

appropriate analytical framework is still not available to evaluate cluster evolution. Considering 

                                                 
1 Ease of innovating for any given amount of money invested in search 

2 Effectiveness of various means of protecting innovations from imitations 

3 Degree of persistence or serial correlation among subsequent innovations 

4 Tacit vs. codified, complex vs. simple  
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and exploring co-evolutionary process and network dynamics in clusters are important future 

research challenges described by Boschma and Fornahl (2011). Ter Wal (2013) posits that due to 

the inclusive nature of clusters, networks of local collective learning (co-inventorship) is not 

exhibited. Geographic orientation, connectivity, average path length, and clustering coefficients 

are the important network properties to detect the emergence of the local collective learning.  

2.4 Inventor address data from patents to study clustering and knowledge spillovers 

Scholars have specifically used inventor address information in patent data to study the 

geography of knowledge clustering and spillovers (Jaffe, Trajtenberg, and Henderson, 1993; Acs, 

Anselin, and Varga, 2002; Thompson and Fox-Kean, 2005; Known, Lee, Lee, and Oh, 2017). 

Patent data may contain some or all of the following inventor address information: country, 

city/town, state, postal or zip code, and street address. The usage of this information is complicated 

by the fact that patents often have multiple inventors and these inventors lives in different areas. 

Jaffe, Trajtenberg, and Henderson used two procedures to resolve multiple inventors’ addresses in 

patent data. First, U.S. cities were assigned to counties based on an available city directory, and 

inventors were thereby allocated to a Metropolitan Statistical Area (MSA) based on state and 

county. Second, those patents with more dispersed inventor locations were assigned to a state and 

MSA based on a plurality of inventors. For example, for a patent with one inventor in Bethesda 

Maryland, one in Alexandria, Virginia, and one in rural Virginia the patent will be assigned to 

Virginia for its state and to Washington DC for its MSA.  

Thompson and Fox-Kean (2005) converted the towns or cities and states to counties and 

then to 17 Consolidated Metropolitan Statistical Areas (CMSA) based on Office of Social and 

Economic Data Analysis (OSEDA) of the University of Missouri in order to assign geographic 

locations to patents. To assign a unique geographic location to each patent, a single inventor was 
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randomly selected from the list of domestic inventors. Known, Lee, Lee, and Oh, (2017), mapped 

each patent to one of 17 CMSAs following the same methodology.  

Researchers have considered different units of analyses within the national (e.g. U.S, 

China), and regional levels (e.g. Europe, OECD) to study the space-time dynamics of biological 

inventions. For the U.S. spatial units of analyses that have been explored include state, county, and 

metropolitan areas. These geographic demarcations of state and county creates biases in the 

analyses and cannot measure accurately the space-time nature of knowledge creation and 

spillovers. Lim (2003) considers limiting the number of metropolitan areas not helping to improve 

the significance of the results of the study. 

Similarly, scholars have considered questions of the aggregate level of technological 

categories to measure the geography of innovative activities. Aggregating patents across all 

technological categories cannot measure the spillovers phenomenon meaningfully (Known, Lee, 

Lee, and Oh, 2017).  

2.5 Lessons for spatial analysis from the ecological literature on species distribution  

An important field in the ecology literature provides a potential interface to the economics 

of innovation. Insights on patent distribution can be drawn from species distribution theories. For 

example, Ideal Free Distribution (IFD) theory (animals distribute themselves among several 

patches of resources) is not different from inventor cluster emergence and evolution. Ecological 

fallacy (ecological inference fallacy) is a logical fallacy in the interpretation of statistical data 

where inferences about the nature of individuals are deduced from inference for the group to which 

those individuals belong.  

Hefley et al. (2016) posit that location error (when true location is different than reported 

location) causes unreliable inferences concerning species habitat relationships. For the whooping 
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crane resource selection, they find that location error can cause up to five-fold change in coefficient 

estimates. If the related internal and external forces or processes are not determined accurately, 

then the ecological models will give bias or statistically insignificant results. It is very challenging 

to detect general forces or processes in ecology. However, deep understanding of these ecological 

forces or process requires knowing “what laws of nature are and what roles they are supposed to 

play in scientific theory.” 

This overlap presents a fascinating area to be explored for spatial analysis of patent data. 

We are not aware of studies that have discussed the importance of patent location error and how it 

might influence our understanding of knowledge creation and spillovers. We believe that location 

error in patent data should affect results about knowledge spillovers. For example, if a patent is 

registered in the periphery instead of a hub/cluster then this patent has a minimal level of 

knowledge creation and spillover instead of a patent close to the cluster. If we consider such patents 

in our model with location errors, then we obtain biased coefficients. To minimize location error, 

we need to consider patent data at zip code and city levels.  
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3. GLOBAL PATENT DATA DESCRIPTION 
 
 
 

Patents have long been considered as useful indicators of innovation activity (Schmookler, 

1954; Griliches, 1990; Hall, Jaffe, and Trajtenberg, 2001; Acs, Anselin, and Varga, 2002). Yet, 

there are well established limitations to the use of patent data as well. Patents typically represent 

early stage technologies, before they are translated into commercial applications, and thus they can 

be difficult to attribute to specific industries. Moreover, patents are highly variable in value or 

importance. Still, among the available alternatives, patents provide a uniquely comprehensive view 

across multiple parts of the innovation system—including academic, entrepreneurial, and 

corporate R&D—across industries, and across geographies.  

3.1 The InSTePP Global Genetics Patent Database 

This study utilizes detailed information about patent families as an indicator of invention. 

We use the International Science and Technology Policy and Practice (InSTePP) Global Genetics 

Patent Database developed at the University of Minnesota from Thomson Innovation (TI) patent 

data (covering years 1970-2010), which is broadly classified into industries and technologies. The 

detailed classification, rationale of the data, and its structure have been defined by Graff et al. 

(2014). This analysis is focused on biological inventions applied in three closely related industries 

(1) agriculture, (2) bioenergy and bioresources, and (3) environmental remediation are extracted 

based on Derwent World Patent Index (DWPI) Manual Code Classifications. To the extent that 

inventor address data are available in the patent records, lead inventor zip code, city, state, and 

country have been extracted from the InSTePP data base. To study the dynamic nature of 

knowledge creation and its agglomeration, we explore analysis at the level of zip codes (4,979) 

and cities (29,217) to improve the significance of the findings. 
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The InSTePP Global Genetics Patent Database is a comprehensive compilation of all patent 

documents that contain biological sequence information—including nucleotide sequences and 

protein or amino acid sequences—and related filings in biological subject matters, thus targeting 

with a high degree of accuracy inventions across the full range of biotechnology and genetics. The 

collection identifies 1,093,038 inventions, from 1970-2010, represented by patent families with 

filings in 94 countries (Graff, Philips, and Pardey, 2015). For this study, we select those 

biotechnology and genetics inventions identified by Derwent World Patent Index (DWPI) Manual 

Code designations to be associated with industrial applications in agriculture, energy, and 

environmental management.5 

Five steps were performed to develop and clean the InSTePP Global Genetics database 

(Graff, Philips, and Pardey, 2015). A number of core queries were run over the full text collections 

of Thomson Innovation (TI)—including United States patent documents, European Patent Office 

patent documents; WIPO patent application documents—as well as the Chinese Intellectual 

Property Office from 1970-2010 to identify patents associated with or containing biological 

sequences, associated biomolecules, genetic traits, biological resources, and living modified 

organisms. Additional queries were run to expand the dataset to include all associated patent 

records worldwide.  

Step 1: Three different highly targeted queries were conducted on full text patent 

collections in order to identify all patent documents that contain reference to biological sequences:  

                                                 
5 The InSTePP Global Genetics Patent Database utilizes Thomson Innovation’s proprietary Derwent World Patent 
Index (DWPI) Manual Code classifications to assign each patent to one or more of eight high level industries: (1) 
pharmaceuticals, (2) chemicals, (3) veterinary, (4) agriculture, (5) energy, (6) environment and natural resources, (7) 
food and beverage, and (8) pulp and paper. 
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i. First, the full text collections of Thomson Innovation (TI) for the US, EP, WO, and CN 

from 1970 to 2010 were searched for the text string “SEQ ID”, which is a standard term 

used ubiquitously in the text of patent documents to make reference to tables that 

diagrammatically illustrate exact nucleotide or peptide (amino acid) sequences claimed or 

involved in the invention.  

ii. The second query strategy involved identifying all US, EP, JP, and KR patent publications 

documented as the source of one of the nucleotide or peptide sequence accessions listed in 

one of the major biological sequence databases, including GenBank, hosted by the National 

Center for Biotechnology Information (NCBI) in the U.S., the DNA Database of Japan 

(DDBJ), and the European Molecular Biology Laboratory (EMBL).  

iii. The heximer queries were a set of queries which systematically queried for text strings 

which represent nucleotide sequences in the text of the patents. They are called heximers 

because the search employed six letter strings of nucleotide sequences, such as 

“GCTGCA”. The search utilized all possible combinations of the five possible nucleotide 

characters.  

Step 2: A broader query was conducted using 1,315 International Patent Classifications 

(IPC) codes found to be the most common IPCs among the results of the sequence based queries 

in step 1 above, and judged by our team of investigators to be relevant and sufficiently specific to 

biological subject matters, based on the IPC description.  

Step 3: “Patent family expansion” queries were run to expand the dataset to include all 

patent family members of the records identified by the IPC queries in Step 2 above.  

Step 4: After combining the results of steps 1, 2, and 3 above, cleaning and structuring, the 

main dataset consisted of a total 8,511,345 patent application and issued patent records. 
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Step 5: Often all the records were identified and the relevant data were downloaded, the 

patent documents were assembled into two more highly aggregated levels. First, records were 

aggregated into unique attempted patents (combining records at a given patent office level with 

the same patent application number). Second, records were aggregated into patent families (at the 

national and/or international level, as approproate). 

As explained above, the InSTePP Global Genetics Patent Database provides a 

comprehensive collection of inventions involving biological subject matter. At the core of the 

collection are patents involving molecular biology, as indicated by the presence in the patents of 

biological sequences—whether nucleic acids or peptides. But these constitute only about 20% of 

the inventions in the database. Most of the inventions cover microbial cell lines, as well as modified 

plant and animal cells, tissues, and whole organisms, biological extracts and other biomaterials, as 

well as biological research tools, breeding methods, diagnostic methods, and bioinformatics 

inventions (Graff, Philips, and Pardey, 2015). Therefore, we prefer to use broader terms, such as 

“biological inventions” to refer to the technical scope of these patent data, rather than 

“biotechnology” and “genetics.” These latter terms are often interpreted, at least in industry and 

the press, to refer only to applications of molecular biology or genetic engineering. If the term 

“biotechnology” is interpreted broadly, as its etymology suggests, to mean “technology” related 

to or using “biology” then that is an accurate representation of these patent data. 

3.2. The patent family and its advantages for analysis 

Our patent data are organized into patent families. A patent “family” is a set of one or 

more records, from one or more patent offices around the world, that all “relate to” (or “descend 

from”) the same initial invention (Martínez, 2012). When an invention is made, a first (or 

“priority”) patent application is filed at an initial patent office. This creates the initial or “priority” 
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record in the patent data for that invention. However, that initial or priority record may then be 

followed by related records in the patent data, such as the grant or publication of a patent based on 

the priority application, as well as new applications (and, potentially, subsequently issued patents) 

in other (foreign) patent offices.  

 
 Figure 1. Example of a patent family 

 
Unfortunately, the definition of a patent family is established by patent data providers for 

the ease of searching patents, not by law. Therefore, there are variations in patent family definitions 

that result in different patent data aggregations (Martinez, 2011). Generally, patent families fall 

into one of a few main types.  

• Domestic Patent Family: A domestic patent family includes only patent documents 

filed in one country or patent office. 

• International Patent Family: International patent families are have patent documents 

published in more than one jurisdiction.  

Invention
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Patent Document A

date
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address
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address
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address
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• Singleton Patent Family: A family which contains only one patent publication of 

record. Necessarily it is filed in only one jurisdiction and it is the only member of that 

patent family.  

There are several benefits of working with patent families. Martinez mentions five uses of 

patent family data: (i) It helps to present the double counting of single inventions when adding 

information from different patent offices (ii) It also helps to neutralize home advantage. When 

patent data are taken from single patent office, countries prefer home country first than the 

international jurisdiction. This will overestimate the patent propensity. Patent family data resolve 

overestimation of patent propensity (iii) Patent families are useful to forecast the patent 

applications counts (iv) To analyze and understand internationalization of technologies, and (v) to 

estimate the patent value.  

Table 1. Distribution of patent family sizes in term of publication records, for the main set of 
127,410 inventions for which location of lead inventor was identified 

Number of 
patent families 

Number of publication records 
per patent family 

Percent of patent 
families of this size 

Cumulative 
percent 

43,850 1 34.41% 34.41% 
20,420 2 16.00% 50.43% 
19,087 3 14.98% 65.41% 
16,077 4 12.61% 78.41% 
10,194 5 8.00% 86.02% 
5,734 6 4.50% 90.52% 
3,090 7 2.42% 92.94% 
1,978 8 1.55% 94.49% 
1,315 9 1.03% 95.52% 

910 10 0.71% 96.23% 
 >10 3.77% 100% 

Sum: 127,410 Minimum = 1   
 

Table 1 reports the distribution of patent family size for the main set of inventions for which 

location of lead inventor was identified and which were therefore used in this analysis. Patent 

family size is somewhat skewed: patent families in the data are made up of an average of 5.9 patent 
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records each; yet, over half of the patent families consist of just a single patent record (mean size 

is 5.9; median size is 1). 

3.3 DWPI Manual Code classifications: Determining industry of application for inventions 

The InSTePP Global Genetics Patent Database utilizes Thomson Innovation’s proprietary 

Derwent World Patent Index (DWPI) Manual Code classifications to assign each invention’s 

patent family to one or more of eight high level industries: (1) pharmaceuticals, (2) chemicals, (3) 

veterinary, (4) agriculture, (5) energy, (6) environment, (7) food and beverage, and (8) pulp and 

paper. Close to 10,000 DWPI Manual Code numbers were assigned by the analysts at InSTePP to 

one or more of these eight high-level industries, according to the scheme in Table 2. 

Table 2. DWPI Manual Code Classifications and definitions 

DWPI Manual Codes  Industry of application,  
assigned by InSTePP 

Section A Chemistry 
Section B Pharmaceuticals 
Section C Agriculture 
Sections D01-D03, D05-06, D10 Food & Beverage 
Section D04 plus selections from B12-K04  
(Environmental testing) 

Environment 

Section D05 (Waste fermentation) Environment 
E11-Q (waste recovery, purification, treatment) Environment 
Section F Pulp & Paper 
Section H, plus selections from D04-D05 (Fermentation) Energy 
Section D10 (Animal and vegetable oils) Food & Beverage 
E10-E11 (alcohols, hydrocarbons), L03, and X16 Energy 
Selections from A12-V, B04-P, B11-C, C04, C12-K, C14, 
D03-G, D05-H16 (transgenic animals) 

Veterinary 

 

Based on DWPI manual code classification associated with the industry applications in 

Section C (agriculture), Sections D04, D05, E11-Q (environment), Section D04-D05, E10-E11, 

H, L03, and X16 (energy), those patents associated with agriculture, energy, and environment were 

selected. These industries have a vast scope of utilization in production. Innovation in agriculture, 
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energy, and other resource intensive industries contributes enormously to productivity and 

sustainability gains.  

This selection by industry of application resulted in an initial set of 210,057 patent families 

(inventions), consisting of 1,241,911 patent publications across 94 different patent offices, and 

representing just over 20 percent of the total inventions in the InSTePP Global Genetics Patent 

Database. A given invention may be categorized in one, two, or even all three of the selected 

industries of application. Table 3 shows individual and overlapping shares of inventions in the 

final main dataset across the three selected industries of application. 

Table 3. Cross table of counts of inventions categorized by industry of application based on 
DWPI Manual Codes, for the main set of 127,410 inventions for which location of lead inventor 
was identified, including inventions assigned to multiple categories 

Agriculture 60,468 (47.5%)   

Energy 3,476 (2.7%) 20,426 (16.0%)  

Environment 5,226 (4.1%) 6,296 (5.0%) 30,007 (23.6%) 

 Agriculture Energy Environment 

* 1,511 (1.2%) patent families are categorized in all three industries N= 127,410 
 

3.4 Cleaning and characterization of inventor address data 

Next, we seek to identify the geographic location where each invention was made by 

exploiting the inventor address information from the patent data. Much of the literature uses the 

address listed for the patent applicant or “assignee,” which typically is the address of the head 

office of the company that employs the inventors. In contrast, the address listed for an inventor is 

typically their home residence. Since, we are analyzing the geographic distribution of actual 

innovation activities, it is more helpful to know the physical location of the individual inventors, 

which may be employed at a branch office, R&D facility, or field station different than the location 

of their employer’s headquarters, which is most likely urban. The locations of inventors’ 
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residences are expected to provide a better measure of this distribution than the locations of the 

applicants’ head offices.  

Furthermore, to resolve the question of how to allocate those inventions that were made by 

multiple inventors with different addresses, we utilize just the address of the lead inventor on the 

priority patent record for that patent family. This choice, in essence, designates a single primary 

geographic location for each invention, corresponding to that of the lead inventor. The main 

justification lies in the tendency that a first-listed inventor often has made the largest contribution 

to the invention, and/or to has led the team of inventors. Therefore, that individual’s physical 

location may be shared by other inventors on the patent, or if not, may merely be considered more 

important to the creation of the invention. Other researchers have employed plurality (Jaffe, 

Trajterberg and Henderson 1993) and random selection (Thompson and Fox-Kean, 2005) criteria 

to avoid multi-counting of locations associated with multiple inventors. The choice of criteria 

involves tradeoffs between complexity of the measure and missing out on important contributor(s), 

and thus introducing different selection biases or location errors.  

For those records that did report information on inventor address, extensive cleaning was 

required. Address formats varied significantly and can consist of any combination of inventor 

name, city, zip code, state, and country. Typically, the inventor address data consist of a text string 

that starts off with the name of the inventor, followed by city, zip code, state, and country. 

Unfortunately, the string format is not uniform, for example: 

• Nielsen Flemming Skovgaard,3000 Helsingør,DK 

• CHEIKY Michael C.,Thousand Oaks,CA,US 

• Tao Bernard Y.,Lafayette,IN,US 

• Lee Joung Phil,Incheon,KR 
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• Yin Hongmei,Dalian,CN 

• OSTERHOUT ROBIN E.,US 

However, some older records, mostly among U.S. filings, only included domestic address 

information, such as: 

• Venkataraman Mahesh,Houston,TX 

• Behrouzian Behnaz,Sunnyvale,CA 

In the vast majority of inventor-address data strings, the city was listed just before the two-

letter country or state code. Thus, the data string was split at separating commas, converted to 

lower case, punctuation and spaces were removed, and special characters were converted to 

corresponding plain roman characters (i.e. ñ to n, ä to a, etc).  

Address data generally contain two-letter country and state codes. In many cases their 

meaning is not obvious from context, requiring strategies to resolve ambiguities, and thereby 

correctly allocate inventions. Due to an inversion between the state and the country code fields, 

confusions arose from several hundred records for “Buenos Aires, AR” as well as a number of 

other very Spanish sounding names of cities purportedly in Arkansas (like Bahia Blanca, AR). It 

is therefore important in this data to check for known code matches for locations, including the 

following: 

• AR: Arkansas vs Argentina 

• CA: California vs Canada 

• CO: Colorado vs Colombia 

• DE: Delaware vs Germany 

• ID: Idaho vs Indonesia 

• IL: Illinois vs Israel 
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• IN: Indiana vs India 

• KY: Kentucky vs Cayman Islands 

• MT: Montana vs Malta (not a big one) 

• PA: Pennsylvania vs Panama 

• WA: Washington vs Samoa.  

For those inventors where the last two characters of the inventor address field was an 

ambiguous code, attempt was made to resolve by identifying the inventor’s city. To do so, we 

undertook a review of all potentially ambiguous state/country codes (AR, CA, DE, IL, IN, etc) 

against detailed lists of city names for the corresponding state and/or country. If the inventor 

address string ended in the two-character code “CA,” and if the preceding data segment matched 

any of the listed California cities, then INVENTOR COUNTRY was designated as “US”, 

otherwise, INVENTOR COUNTRY was designated as “CA” (Canada). In a few cases, it was 

necessary to resolve ambiguous cities. There are number of cities that have similar names, located 

inside and outside the U.S. respectively. For example, Georgetown exists in California (CA) and 

in Canada (CA).  

Potential problems were identified and weighed. If it seemed to be an important ambiguity, 

it would be resolved. Disambiguation exercises were first carried out for California and Canada. 

Similar exercises were extended for IL, IN, and others.  and For those that were minor, we tried to 

minimize spending time. Overlooking small cities was not going to be an issue in terms of 

significance of results. For major cities, lack of uniformity of spelling or standardization of names 

was another issue that we resolved. for example, “New York” and “N.Y.” needed to become, 

“NY.” Similarly, standardization of zip codes, when available, was conducted. For U.S. inventors 

occasionally the data have a 4-digit suffix to US zip codes. We applied different algorithms to fix 
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such discrepancies. Finally, we observed large number of inventor data consisted of just inventor 

names. 

3.5 Issues in assigning geographical coordinates  

Unfortunately, in the data set the names of the cities are often misspelled in which case 

geocoding software does not recognize a city to assign coordinates. In such cases it was necessary 

to clean the names of cities or assign coordinates manually. The additional state information for 

U.S. inventors helps to assign coordinates to a city when it is recognized to be in a state. 

Furthermore, there were major discontinuities in available zip codes, and harmonization of zip 

code data involved significant manual data cleaning.  

3.6 Summary of the patent dataset 

The resulting “Main Collection” file contains 1,657,651 patent observations across the 

three industry categories of agriculture, energy, and environment, that collapse into 210,057 patent 

families. Of these 210,057 patent families in our main collection, only 127,410 contain some form 

of information on inventor address. Out of the total 127,410 patent families (inventions) almost 

half, or 62,378, only indicate the country of the lead inventor. Another, 43,697 indicate the city 

(and, if relevant, state) of the lead inventor. Just, 21,332 contain city and the additional detail of a 

postal or zip code. Table 4 summarizes the lead inventor address information for U.S. inventors 

on priority filing by patent family.  

Table 4. Characterizing availability of lead inventor address data types on priority filings, by 
patent family, globally 

Geographic Level: Globally  

Lead inventor address data based on priority filing 
Patent family 

(invention) counts 
Country only 62,378 

Country + city/state 43,697 

Country + city/state + zip 21,332 

Total 127,407 



 
 

27 

Figure 2 maps the global pattern of these inventions. We can see the inventions are distributed 

across most of the United States, Europe, Japan, and major emerging economies like China, Brazil, 

South Africa, India. This image represents all countries with lead inventors in the global dataset.  
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Figure 2. Geographic pattern of where biological inventions, for use in agriculture, energy, and environment, are made, globally 
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Figure 3 represents the proportion of inventions by country for which data of a lead 

inventor is available at the city or postal code level. The United States has 58.6% of the global 

inventions. The other countries with relatively large shares are Japan 6.7 %, France 4.6%, Germany 

4.4%, and Great Britain 4.2%. Those countries whose share are less than 0.5 % are categorized in 

“Others.” The combined share of all those countries that are part of “Others” are 8.4%.  

 
 

Figure 3. Share of inventions in the dataset, measured by patent families from 1970-2010, for 
which city or regional level inventor address is available 
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N= 127,282 

Figure 4. Growth in global biological inventions with applications in agriculture, energy, and 
environmental management 

The annual growth of the 127,282 biological inventions for which at least the country of 

the lead inventor is known is shown in Figure 4. For the mentioned countries we can clearly see 

the increase in biological inventions from 1980 onwards. The Green Revolution of the 1970s, the 

Diamond v. Chakrabarty decision on patenting of living organisms in 1980 (particularly in the 

U.S), the Bayh-Dole Act of 1980 (particularly in the U.S) are some of the primary reasons for this 

increase. Introduction of the Trade Related Aspects of Intellectual Property Rights (TRIPS) 

agreement also contributed in the rise in inventions.  The bursting of the tech bubble in 2001 

negatively affected the trend, and inventions gradually decreased. After the economic recovery in 

2004, inventions again began to increase. The financial crisis of 2007-08 affected the rate, however 

the steep decline after 2008 is largely due to data truncation. The patent application filing and its 
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examiner’s first substitutive review take about 21 months. In some cases substantive examination 

takes 3-4 years. Grant or refusal takes place after this examination. The InSTePP data set was 

compiled in 2011 and 2012, therefore, inventions that had been filed in 2008-2010 but were still 

not published or otherwise not included in the electronic patent records by 2011 are not part of this 

data set.  
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4. THE REGIONAL CLUSTERING OF BIOLOGICAL INVENTION FOR AGRICULTURE, 

ENERGY, AND ENVIRONMENT IN THE UNITED STATES 

 
 
 

4.1 Introduction 

 
The United States is one of the largest agricultural and energy producers in the world. Key 

factors that contributed to this success story are investment in agricultural research and stimulatory 

agricultural policies (Alston et al 2010). The United States has invested significantly in overall 

science spending. In 1980, United States accounted for 31% of the world’s science spending, and 

33% in 2006 (Alston et al 2010). The United States has also invested extensively in agricultural 

R&D, and devised policies to encourage public and private agriculture R&D results to increase 

agricultural productivity and sustainability. In the United States, the Land Grant university system 

was developed in the 19th century to address the needs for innovation in geographically diffused 

and relatively rural industries. Successive waves of mechanical, chemical, biological, and 

information technology innovations have transformed U.S. agricultural and resource sectors into 

the high technology industries that they are today.  

Most of the economic analysis of research spending and technology policy in agriculture 

and related resource and environmental fields has taken a decidedly national and even 

internationalist perspective. The presumption appears to be that, given the right mix of spending 

and policy incentives, new knowledge and technologies will arise from national innovation 

systems and disseminate to industry broadly, often even as global public goods. Analysis has given 

less regard to the internal, regional dynamics of invention and commercial innovation. Yet, a 

burgeoning literature on innovation and entrepreneurship has pointed to the crucial role of 

economies of agglomeration or “clustering” in driving commercial innovation.  
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If clustering of innovation activities are crucial for driving commercial innovation and if 

such clustering tends to follow from agglomeration of other factors such as production and 

transportation infrastructure, it stands to reason that such clustering may be less prevalent for 

industries such as agriculture and natural resources, for which production activities tend to be 

widely-dispersed geographically and are predominantly rural. To what extent do innovation 

activities for these industries tend to cluster? And where? This section addresses three interrelated 

research questions. (1) How have biological inventions for use in primary resource-intensive 

industries—such as agriculture, energy, and natural resources—been spatially distributed across 

the United States, and, in particular, to what degree have they been geographically concentrated. 

And, if so, do they tend to occur in rural regions where the main production activities are located? 

Or, are they in urban areas associated with upstream input manufacturing or downstream output-

processing industries? (2) What are the time-space dynamics of biological inventions for these 

industries? To what extent does the concentration of previous inventions effect where new 

inventions arise? And, (3) based on these insights, can we identify primary innovation clusters in 

the U.S. for these industries? What implications can be drawn for U.S. R&D policies? 

This chapter is organized as follows. The next section briefly reviews the data and 

methodology, presents descriptive summary statistics and analyses to describe geographic 

distribution of biological inventions across the U.S. Section 4 brings in discussion and conclusions.  

4.2 Data on biological inventions in the United States 

Of the 127,401 inventions for which we have inventor address data, the lead inventor on 

48,693 was in the United States. For these 48,693 U.S. inventions, available inventor address data 

was mixed, especially for inventions prior to the 1990s. For 14,497 of these, inventor address data 

simply indicates the inventor’s country of residence as the United States, with no other 
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information. For another 29,217, the inventor’s city and state are provided. Another 4,979 also 

contain inventor zip codes. Table 5 summarizes the available address data types for U.S. lead 

inventions. 

Table 5. Characterizing availability of lead inventor address data types on priority filings, by 
patent family, for U.S. inventions 

Geographic Level: US  

Lead inventor address data based on priority filing 
Patent family 

(invention) counts 
Country only 14,497 

Country + city/state 29,217 

Country + city/state + zip 4,979 

Total 48,693 

 

Geographic coordinates were assigned to each invention by batch algorithm, using 

information on city, state, and/or zip code of the lead inventor. For those that were not recognized, 

further cleaning, correction of misspellings, and assignment of geographic coordinates was 

undertaken by hand, as needed, in an effort to ensure that minor cities and towns (more typically 

in rural areas) were not underrepresented the final dataset. Complete city names and geographic 

coordinates were thus assigned for 34,196 inventions.  

Table 6. Cross table of counts of U.S. biotech inventions categorized by industry of application 
based on DWPI Manual Codes, for the 34,196 inventions with a U.S. lead inventor, including 
inventions assigned to multiple categories 

Agriculture 17,145  (50.7%)   

Energy 840  (2.5%) 5,174  (15.3%)  

Environment 1,434  (4.2%) 1,547    (4.6%) 7,658  (22.7%) 

 Agriculture Energy Environment 

* 398 (1.2%) patent families are categorized in all three industries  N=34,196 
 

These 34,196 patent families (inventions), with geocoded location of a U.S. lead inventor, 

identified at the city or the zip-code level, makes up our sample of inventions. Table 6 shows how 
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many belong to one (or more) of the three industries for which we selected, as based on DWPI 

Manual Code assignments. 

 
N=34,196 patent families with a lead inventor address in United States and identified at the city or 
zip-code level 
 
Figure 5. Growth in U.S. biological inventions with applications in agriculture, energy, and 
environmental management 

The annual count of inventions grew at an increasing rate from 1970 through 2000. After 

peaking in 2001, the annual number of inventions stabilized at between 1,500 and 2,000 per year. 

After 2006, truncation begins to affect these data (Figure 5). Factors which drive the exponential 

growth phase of biotech inventions in the United States include the emergence of strong 

intellectual property (IP) rights in biological inventions following the Supreme Court decision in 

Diamond v. Chakrabarty in 1980, the Bayh-Dole Act of 1980s, and the role of public-private 

partnership (Graff et al, 2013). These trends are consistent with earlier studies of patenting trends 

in agbiotechnology (Graff et al, 2003). They are also consistent with studies of invention in 
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biofuels, which in the U.S. grew most rapidly between 2005 and 2009, but never amounted to more 

than about 300 patented inventions per year (Albers et al, 2016).  

4.3 Analyzing spatial distribution of inventions: Three approaches 

The literature has no consensus on an appropriate analytical framework to study the 

dynamic nature of clusters. Most contributions to the literature discuss the contemporary (mature) 

functioning of clusters, but not the cumulative/developmental stages of clusters. Finding an 

appropriate analytical technique to study the dynamic nature of clusters remains a challenge. Yet 

it is important, as policies need to consider the structure as well as the dynamic nature of clusters 

in order to support and encourage innovation.  

While scholars have long discussed the spatial concentration of innovative activities, fewer 

provide mechanical details of the analysis of such clusters. The literature (Lim, 2003; Usai, 2011; 

Wang et al, 2006; Tan et al, 2017) has described Gini Coefficient and Local Indicators of Spatial 

Association (LISA) techniques to determine the spatial concentration of a variable. These 

techniques have limitations. For example, the Gini Coefficient can estimate the degree of 

geographic concentration but is unable to provide information about spatial structure between local 

and neighboring regions (Lim, 2003). LISA depends on conceptualization of spatial regions. 

Optimized hotspot analysis has been a preferred solution to take care of these limitations. 

Lim (2003) uses Moran I and Moran scatter plot to determine spatial concentration at the 

metropolitan level. Unfortunately, that study does not disclose the technical details that support 

the autocorrelation analysis for such a expanse as the entire the U.S. Seeing that the Midwest is 

almost empty, using a global autocorrelation does not make sense unless utilizing a join and relates 

command, but even that is still not necessarily a viable solution. Tan et al (2017) provide similar 

analysis for regions of China, and Moreno et al (2005), for European regions.  
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Following from the suggestive analyses in these studies, three approaches—mapping, 

Moran I, and regression analysis—are used in this chapter to explore the spatial distribution of 

inventions across the U.S. and its emergence over time. 

4.3.1 Mapping 

Arc-GIS is used to display the distribution and concentration of these inventions across the 

U.S. Arc-GIS requires data coordinates, shape files of cities and state to show the distribution and 

concentration of inventions. The regional economics, economic geography, and urban studies 

literatures largely use Arc-GIS to exhibit the distribution of data because of its nested commands 

instead of programming an algorithm. Figure 6 shows inventions from 1970 to 2010 by decade, 

and figure 7 shows cumulative inventions for 1970-2010. The geographic distribution of 

inventions during each of the four decades separately from 1970 to 2010 (Figure 6, panels a, b, c, 

and d) visually suggests spatial cumulativeness (Breschi, 2010), with an increasing number of new 

inventions in later decades where there was a concentration of previous inventions in earlier 

decades. The spatial distribution of all inventions over the entire period of 1970-2010 (Figure 7) 

suggests that invention activity was largely concentrated in more populated areas. We also observe, 

in contrast, we observe less intense or barren areas with few inventions, corresponding to less 

populated areas. This is the first time through mapping we observe of a rural-urban division of 

inventions.  
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Figure 6. The spatial distribution of inventions, by decade, of the 34,196 patent families (inventions) by address of lead  
inventor identified at the city or the zip-code level 
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   Figure 7. Spatial distribution of all 34,196 inventions, 1970-2010, by address of lead inventor identified at the city or  
   the zip-code level, with the thirty largest clusters outlined 
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To preserve the integrity of the primary clusters of inventions as our units of analysis, we 

traced polygons in Arc-GIS around the highest density regions of mapped inventions (outlined in 

Figure 7). The 30 largest (and largely urban) clusters account for 58 percent of total inventions in 

the dataset (see Table 7). Moreover, this share has remained remarkably stable since the early 

1980s, varying within just a few percentage points of this average for 30 years.  The five largest 

clusters are the San Francisco Bay Area (incl. Silicon Valley, San Francisco, and Oakland), New 

York-Newark, Washington-Baltimore, San Diego, and Boston. This largely aligns with other lists 

of the major biotechnology clusters identified in the literature (Audretsch and Stephan, 1996; 

Zucker and Darby, 1996) and in industry analyses (DeVol et al, 2004). The San Francisco Bay 

Area is an outlier, with more than twice as many inventions as the second largest cluster, the New 

York city metro area. 

However, there are clusters high on the list that consist of significantly smaller cities, such 

as Des Moines, Iowa, which ranks between Houston and Philadelphia, and Madison, Wisconsin, 

which ranks between Chicago and Seattle. Within our customized MSA for Des Moines is Ames, 

Iowa—the location of Iowa State University, the Land Grant institution for the state of Iowa—and 

Johnstown, Iowa—with the headquarters and an R&D center for Pioneer-DuPont, the largest 

hybrid corn seed company in the world and one of the most prolific applicants for gene patents 

overall (Graff et al, 2013). Madison, Wisconsin, is the location of University of Wisconsin, the 

Land Grant institution for the state of Wisconsin and one of the largest agricultural research 

universities in the United States. In fact, of the 30 clusters on the list, half of the regions host a 

Land Grant university with significant agricultural research capacities.  
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Table 7. The 30 largest clusters of biological inventions in agriculture, energy, and environment 
in the U.S., based on cumulative count of inventions 1970-2010 

 
Cluster name State(s) Count of 

inventions 
% of total 
inventions 

Cumulative 
% of 

inventions 

Moran I 
Optimized 
Hot Spot 

1 San Francisco Bay Area (incl. Silicon Valley) CA 3,020 9.62 9.67 * 

2 New York-Newark NY, NJ 1,211 3.86 13.53 * 

3 Washington-Baltimore DC, MD, 
VA 

1,187 3.78 17.31 * 

4 San Diego CA 1,135 3.62 20.92 * 

5 Boston MA 1,017 3.24 24.16 * 

6 Los Angeles CA 939 2.99 27.15 * 

7 Houston TX 924 2.94 30.10 * 

8 Des Moines-Ames IA 882 2.81 32.91 * 

9 Philadelphia-Camden-Wilmington-Trenton PA, NJ, DE 811 2.58 35.49 * 

10 Chicago IL 713 2.27 37.76 * 

11 Madison WI 544 1.73 39.50 * 

12 Seattle WA 516 1.64 41.14 * 

13 Raleigh-Durham-Chapel Hill NC 449 1.43 42.57 * 

14 Cleveland-Akron-Canton OH 420 1.34 43.91 
 

15 Detroit-Ann Arbor-Lansing MI 420 1.34 45.24 
 

16 St Louis-Columbia MO, IL 415 1.32 46.57 
 

17 Minneapolis-St Paul MN 409 1.30 47.87 * 

18 Denver-Boulder-Ft Collins CO 376 1.20 49.07 
 

19 Sacramento-Davis-Woodland CA 344 1.10 50.16 
 

20 Atlanta-Athens GA 296 0.94 51.11 
 

21 Cincinnati OH 270 0.86 51.97 
 

22 Indianapolis IN 255 0.81 52.78 * 

23 Dallas TX 233 0.74 53.52 
 

24 Salt Lake City UT 227 0.72 54.24 
 

25 Portland region-Corvallis-Eugene OR, WA 183 0.58 55.51 
 

26 Rochester NY 172 0.55 56.06 
 

27 Princeton-New Brunswick NJ 170 0.54 56.60 
 

28 Kalamazoo MI 167 0.53 57.13 
 

29 Omaha-Lincoln NE 149 0.47 57.61 
 

30 New Orleans-Baton Rouge LA 145 0.45 58.06  
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4.3.2 Moran I and optimized hotspots 

The Moran I measures spatial autocorrelation between the observed values in a specific 

location and spatially weighted average values of another location (Lim 2003). To understand the 

spatial patterns in the data, the Moran I index evaluates whether the data are clustered, dispersed, 

or random (ArcGIs Pro). The Moran I index ranges from +1 which indicates positive 

autocorrelation to -1 which indicates negative autocorrelation. The P values is used to accept or 

reject the hypotheses.  

Moran I =
N∑ ∑ Wijji ∑ ∑ Wij�Xi − X��Xi − X�ji ∑i�Xi − X�2  

where N is the total number of observations, wij represents elements of spatial weight matrix 

between the two regions “i” and “j.” Similarly, [Xj – Mean(Xj)] and [Xj – Mean(Xj)] represent 

deviation from the mean at “i” & “j” and time “t” respectively. When a row standardization is 

applied, the first part of the equation becomes equal to 1.  

Moran I values (see table 8) accept the presence of a spatial trend in the inventions. The P-

values show the probability of a spatial pattern, and Z-values represent the standard deviations. 

For high significance, positive Z-values are associated with low P-values. We calculate Moran I 

for each ten years following a similar sequence with that in the four panels of Figure 6. We also 

calculate Moran I over the entire period 1970-2010 corresponding to Figure 7. Moran I of 1981-

1990 is not significant even though its Moran I value is positive. The rest of the data show 

significantly positive Moran I values. Positive Moran I values represent positive autocorrelation, 

meaning areas (i.e. cities) with high levels of inventions cluster together.  

Optimized clusters analysis uses the Moran I statistics which has been widely used to 

measure spatial autocorrelation (Fischer, 2006; Wang et al, 2016; Tan et al, 2017). The concept of 

“optimized” clusters refers to regions that have a higher observed concentration of inventions 
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compared to a random distribution of inventions. In other words, optimized clusters compare 

invention density in a specific region with a complete spatial randomness. We analyze optimized 

clusters in this dataset in order to validate the previous identification of clusters. 

Table 8. Moran I of inventions across U.S. regions 

Years Moran I P-Value Z-Value 

1970-1980 0.1979 0.0000* 8.3377 
1981-1990 0.0207 0.2305 1.1880 
1991-2000 0.0423 0.0014* 3.1832 
2001-2010 0.0599 0.0000* 5.5758 
1970-2010 0.0574 0.0000* 5.5758 

*P values significant at < 1%.  
 

The main advantage of optimized cluster/hotspot analysis is to choose the scale of analysis, 

appropriate distance band, standardization based on questioning the data to yield optimal 

clusters/hotspots. Optimized clusters analysis help to understand whether the spatial patterns are 

significant or not. It not only shows a more concentrated region, less concentrated, and no 

significance among the polygons. Similarly, optimized cluster analysis adjusts automatically for 

multiple testing, spatial dependence running False Discovery Rate (FDR) correction method6.  

 

                                                 
6 http://pro.arcgis.com/en/pro-app/tool-reference/spatial-statistics/how-optimized-hot-spot-analysis-works.htm 
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    Figure 8. Optimized Clusters or Hotspots 
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Figure 8 shows the optimized clusters identified in this analysis. We see spatial 

concentration of inventions in major metropolitan areas. Hotspots are represented with a 

significance level of 99%, which identify highly innovative areas that are contiguous with other 

relatively innovative neighboring areas. Cold spots are defined as lone highly innovative areas not 

surrounded by other highly innovative areas. In figure 8 we do not observe cold spots. This 

indicates that most of the highly innovative regions are surrounded by other relatively innovative 

regions. Similarly, many regions are labelled as “not significant” which indicates neighboring 

areas with similar innovation levels, including some of the emerging areas for these industries, as 

described in Table 6 of the 30 largest clusters. In Table 6 the “*” in the last column marks those 

regions in the U.S. that are determined to be optimized hotspots in this analysis. Not surprisingly 

the regions identified as Moran I optimized hotspots congregate high on the list of largest clusters 

as identified by the mapping.  

One important distinction is that it is not necessary that hotspots are those areas with the 

highest values. It is possible that an individual polygon (city/metro area) may have a high level of 

innovation but may not be calculated as a hotspot if it does not have relatively high levels of 

innovation surrounding it. In this case the neighborhood (city/metro area) is not different from the 

study area (city/metro area). It also possible to have low value e.g. “0” and the neighborhood has 

sufficiently high values to bring the index value up enough to get a hotspot in a polygon where 

there is a low level of innovation. Generally, hotspot analysis helps to understand whether spatial 

patterns are significant or not. The basic purpose of hotspot analysis is to determine patterns, to 

identify causes, and to predict future trends (ESRI, 2014).  

Optimized clusters/hotspot analysis constructs contiguity (neighbor) and weights matrices 

to identify and assign weights to the neighborhoods of the regions. First the contiguity matrix is 
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developed, and then the weight matrix is constructed based on the contiguity matrix. Construction 

of these two matrices is necessary to choose an appropriate distance band and conceptualization 

of spatial relationships. The following three considerations are important while running optimized 

hotspot routines.  

Conceptualization of spatial relationships: The features (polygons) have shared 

commonalities, and the interactions among the features are important to understand. Therefore, the 

analysis must choose among different conceptualizations of spatial relationships: inverse distance, 

inverse distance squared, fixed distance band, zone of indifference, polygon contiguity, or 

assignment of spatial weights. Each of these conceptualizations has pros and cons. The selection 

can become problematic especially when there is a high degree of heterogeneity of polygon sizes. 

How to choose an appropriate distance band: The appropriate distance band is based on the 

study area and scale of analysis (country, state, Metropolitan Statistical Area, Metropolitan 

Statistical Area, Combined Statistical Area). There is no right or wrong distance band, but selection 

depends on the several processes. Different distance bands match different scales of analysis. The 

literature has proposed rules to choose an appropriate distance band. For example, the “Z” score 

is derived from spatial autocorrelation to select an appropriate distance band. Ultimately, the 

underlying research question and the scale of analysis inform the decision. 

Standardization: It is also important to consider whether to assign equal weights to 

neighbors, or not. If not standardized, the analysis assigns different weights to the neighbors. This 

means that neighbors with larger values will affect those with smaller values. The literature 

generally prefers row standardization in order to assign equal weights.  
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4.3.3: Regression analysis 

4.3.3.1 Identification of regions for statistical analysis 

Acs, Anselin, and Varga (2002) raise the question regarding the proper unit of analysis for 

innovation systems. To explore the urban-versus-rural nature of biological innovation for 

agricultural and natural resource industries, ideally we wish to identify each relevant geographic 

region that serves as a contiguous home to such innovations, or what many describe more loosely 

as a “cluster.” We then want to compare those regions with clusters with similarly sized geographic 

regions that exhibit variation in degrees of innovation, including regions even that have no 

evidence of having produced patented inventions.  

All the regions included in the analysis must have available data on associated explanatory 

factors or “covariates” to the observed innovation. While, our patent family data are consistently 

denominated at the geographical level of the city, we find that availability of data for associated 

explanatory factors or “covariates” is available for the entire period of 1970 to 2010 for the 929 

metropolitan and micropolitan statistical areas (MSAs and µSAs) in the United States, as 

delineated by the United States Office of Management and Budget (OMB). MSAs primarily 

represent urban areas, and µSAs, relatively rural areas. MSAs consist of a core county or set of 

adjacent counties in which lies an urban area having a population of at least 50,000. MicroSAs 

consist of a core county, having a population of 10,000 to 50,000, with possible adjacent counties. 

The adjacent counties and core counties have a high degree of social and economic integration 

through economic flows and commuting ties (United States Bureau of Economic Analysis, 2018).  

To preserve the integrity of the primary clusters of inventions as our units of analysis, we 

traced polygons in Arc-GIS around the highest density regions of mapped inventions (outlined in 

Figure 7). We then compared these traced polygons to the boundaries of MSAs and found that 20 
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of these invention clusters spanned more than one MSA. For each of these, we combined the two 

or more MSAs that encompassed, as closely as possible, the high-density portions of the observed 

invention clusters to create a custom statistical area. These combinations reduced the 929 official 

MSA and µSAs to 897 statistical areas, consisting of our 20 custom statistical areas together with 

877 remaining unmodified MSAs and µSAs. 

 
Source: United States Census Bureau 

Figure 9. The geographic coverage of Metropolitan Statistical Areas (MSAs) and Micropolitan 
Statistical Areas (µSAs)  

Two general approaches are taken to analyze the patterns of invention as well as factors 

associated those patterns. First, we seek to test hypotheses of cumulativeness in inventions within 

our identified regions. We have visually noted an apparent tendency for inventions to accumulate 

in specific regions based upon our preliminary mapping. We now seek stronger systemic evidence 

that inventions are indeed concentrated in those areas. Second, we seek systematic evidence of 

regional urban characteristics versus rural or agricultural characteristics being associated with 

higher levels of invention in these technologies.   
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We can analyze the cumulative nature of inventions by region with equations 

Inventionsit =  βi +  β1Invenitonlag1it +  β2Invenitonlag2it + ⋯  +   β6Inventionlag6it
+ μit 

 
where the Invenitonlag variables represent the counts of inventions at different respective lags, 
and 
 

Inventionsit =  βi + β1CumulativeInvit 
 

where CumulativeInv is the cumulative sum of prior inventions at time t in statistical region i. 

4.3.3.2 Cluster growth 

To analyze spatial cumulativeness of biotechnology inventions for agriculture and resource 

applications, we test how the presence (or absence) of inventions within a given region affect the 

probability of subsequent inventions arising in that region. We regress invention counts on lags of 

previous invention counts for each region in each year (Table 9). The time series optimal lag length 

criteria (AIC/BIC) is not appropriate for these panel estimation techniques, but an optimal lag 

length in panel data can be determined manually by starting from a lag of 1 year, then 2 years, and 

so on, stopping when the coefficient of the lagged explanatory variable becomes negative.  

Table 9. Fixed effects regression of lagged invention counts 

Variables Coef. St. Err t p>|t| 
Inventions 1st lag 0.7218 0.0053 135.82 0.0000 
Inventions 2nd lag 0.1946 0.0064 29.98 0.0000 
Inventions 3rd lag 0.0508 0.0065 7.74 0.0000 

Inventions 4th lag 0.0942 0.0065 14.37 0.0000 
Inventions 5th lag -0.0807 0.0064 -19.77 0.0000 
Inventions 6th lag -0.0807 0.0052 -15.46 0.0000 
Constant 0.1079 0.0106 10.09 0.0000 
F(896,35868) = 1.62 
Prob > F     =  0.0000 

    

In addition, to validate the overall significance of a region’s previous invention activity on 

current inventions, we construct a cumulative prior invention count variable, defined as the sum 



 50 

of inventions from year 0 to year t-1. We regress current year invention counts on the cumulative 

sum of prior inventions for each region for each year (Table 10).  

Table 10. Fixed effects regression of cumulative invention counts 

Variables Coef. St. Err t p>|t| 

Cumulative Inventions 0.5232 0.0002 178.71 0.0000 
Constant -848.2288 4.7504 -178.56 0.0000 
F(896,35879) = 103.74 
Prob > F     =  0.0000 

    

 

We find that lagged invention counts and the cumulative sum of prior inventions show 

positive and significant effects on current invention counts. Lagged invention counts have a 

significant relationship for up to four years (i.e., inventions in year t are positively related to 

inventions in years t-1, t-2, t-3, and t-4). More recent past activity has greater ability to explain 

current rate of inventions: as the lag increases beyond four years, the effect disappears. Yet, the 

relationship between the cumulative sum of past inventions and current inventions is also positive 

and significant, confirming that these biological inventions for agriculture and natural resource 

applications exhibit spatial cumulativeness and therefore remain relatively concentrated spatially. 

4.4 Discussion and Conclusion 

The analysis in this chapter has used a unique dataset of biological inventions, identified 

by inventor addresses in patent data, to answer questions regarding how biological inventions for 

use in primary resource-intensive industries—such as agriculture, energy, and natural resources—

have been spatially distributed across the United States. Our preliminary mapping indicates 

relative concentration as well as spatial cumulativeness of innovation for these industries in urban 

areas, with new inventions in later decades occurring where there was already a concentration of 

inventions in previous decades. And the visible concentrations align with both major and minor 

metropolitan areas across the map of the United States. 
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By tracing polygons around the geographic footprint in ArcGIS of inventions in the 30 

largest clusters and then ascertaining the counts of inventions contained within each, we confirm 

that 56 percent of the inventions in the dataset were made in just these 30 largely urban regions, 

which correspond to the primary biotech clusters identified in other studies, including most of the 

very largest cities in the United States, including San Francisco Bay Area, New York, Boston, and 

San Diego, along with Los Angeles, Chicago, and Houston. However, we also secondary urban 

areas located near areas of high agricultural production, and we note that half of the 30 largest 

clusters include a Land Grant university with significant agricultural research capacity. 

We also explore the space-time dynamics of biological inventions for these industries, such 

as cumulativeness, the extent to which previous inventions in a given region increase the 

probability of new inventions arising in that region. From negative binomial panel regressions of 

lagged invention counts and the cumulative sum of prior inventions, we find positive and 

significant relationship between past numbers of inventions and the numbers of new inventions by 

region. These biological inventions for agriculture and natural resource applications exhibit spatial 

cumulativeness, remaining relatively concentrated spatially over time. 

Based on these insights, this study contributes to the literature by showing how biological 

inventions intended for predominately rural industries are distributed for the period 1970-2010. It 

finds them spatially clustered largely within metropolitan areas. This study shows how the 

concentration of innovative activities within regions is spatially correlated with the concentration 

of innovative activities of neighboring regions, using an appropriate regional cluster analysis 

technique called optimized hotspots. It also examines how these clusters develop over of time.  
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To summarize, the main results are: 

1. The spatial distribution of biological inventions spans much of the U.S, but a spatial 

clustering pattern clearly exists.  

2. In terms of concentration of biological inventions, a rural-urban division exists. However, 

the inventions are not concentrated in rural areas near agricultural or natural resource 

production but rather in urban regions.  

3. The number of inventions in an area in prior years has significant explanatory power for 

the number of inventions in any current year. This relationship represents a localized 

spillover phenomenon.  

4. The neighborhood innovation potential over time affects a given region’s innovation. This 

means we can see an increasingly clustered space-time relationship.  

5. The non-significant areas e.g. the areas not surrounded by highly innovative neighbors also 

are found to persist across the U.S.  

6. While we do see some inventions in rural areas, rural areas do not appear to be the hotspots 

of innovation in agricultural, energy, or environmental biotechnologies.  

These findings identify and quantify the most significant regional clusters of biological 

invention in the United States. Yet, this chapter is mainly exploratory and does not address several 

important empirical questions. The following chapter further develops the empirical analysis to 

better understand what drives the distribution of agricultural and resource industry inventions 

within metropolitan regions. 
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5. EXPLORING THE COVARIATES OF REGIONAL CONCENTRATION OF BIOLOGICAL 

INVENTIONS FOR AGRICULTURE, ENERGY, AND ENVIRONMENT IN THE UNITED 

STATES 

 
 
 
5.1 Introduction 

Extensive theoretical and empirical work has explained the general mechanisms of 

agglomeration in production, innovation, and entrepreneurial processes. While some significant 

differences in views persist and major issues remain, what emerges is that several related factors 

are important in driving the clustering of innovative activity: exchange of ideas, availability of a 

skilled labor pool, input-output linkages, population density, and a decentralized and cooperative 

culture. Moreover, these factors seem to complement each other. The cluster is the socio-

economic/geographic unit within which these factors interact and have a conducive impact on 

economic growth. Input-output linkages facilitate the discovery of and interaction among suppliers 

and customers. These interactions help exchange of ideas or technology spillovers. Population 

density encourages knowledge spillovers. If population is more educated and skillful then the flow 

of information and ideas is more fruitful. What results is a virtuous cycling, circumscribed in space. 

To the extent that the causes and virtues of agglomeration hold true, agriculture and other 

geographically diffused industries are stuck in something of a dilemma. Innovation activities that 

arise from production activities, whether described as learning-by-doing (Arrow, 1971) or user-

led innovation (Von Hippel, 1988), are necessarily linked to a resource base and thereby a skilled 

labor pool which, for these industries, is geographically diffused. Innovators in the field, as it were, 

cannot easily benefit from the virtuous cycling of knowledge spillovers that occurs within a cluster, 

which naturally gravitates to the high population density of urban centers. Conversely, when 
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innovations that are potentially useful for agriculture do arise within the vortex of an urban 

innovation cluster, they are handicapped by virtue of being distant from the community of 

producer-practitioners of skilled labor that otherwise would contribute to development, iteration, 

and refinement. The urban-based innovators for agriculture are also less connected through input-

output linkages and thus less routinely engaged with suppliers and buyers in idea exchange, in the 

fortuitous recombination of existing ideas, and discovery though experimentation. 

While we cannot resolve this dilemma in a single analysis, we can begin to shed some light 

on it through empirical analysis of innovation patterns in one key area of technology, one that 

seems, in fact, to accentuate the features of this apparent dilemma. Innovations in biotechnology 

and genetic resources for agriculture, biotechnology and biorefining for energy, and biological 

methods for environmental monitoring and remediation all have vast geographic scope of potential 

utilization. Yet, the innovation clusters of the biotechnology industry in general have, historically, 

been highly concentrated. In the previous chapter we establish that spatial proximity does appear 

to play a role in such inventions and that prior inventions in a region increase the probability of 

new inventions. What other factors appear to be associated with the growth of such innovation 

clusters? 

This study departs from most of the literature on innovation systems which quantify 

innovation and its factors at the national or even the state level. In this analysis, distribution and 

concentration of innovation is measured at the more granular zip code and city level. In other 

studies, when authors compare the spatial distribution of inventions between states, such as 

California and Colorado, the result may be displayed as a dark color for the whole state of 

California to show a high number of inventions, and light color for the whole state of Colorado to 

show a lower number of inventions. In contrast, this study considers the heterogeneity of actual 
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inventions within and across the regions of California and Colorado. Thus, it becomes evident that 

while the metro region around Denver, Colorado, has fewer inventions than the regions around 

San Francisco, San Diego, or Los Angeles, it has more inventions than the metro region around 

Sacramento as well as all other regions in California.  

This chapter uses the inventor address data from patent filings in the InSTePP Global 

Genetics Patent Database to count inventions annually for 1970-2010 in each the 897 custom 

statistical areas in the United States created in the previous chapter. We draw upon data for 

associated explanatory factors or “covariates” for the entire period of 1970 to 2010 for the 929 

metropolitan and micropolitan statistical areas (MSAs and µSAs) from the U.S. Bureau of 

Economic Analysis, such as population, earnings by place of work, and farm proprietor income, 

after checking for multi-collinearity to assure their relative independence. 

This chapter is organized as follows. The next section reviews the literature on factors that 

explain the clustering of innovation activity. Section 3 describes the data we compile, and section 

4 outlines the empirical methodology for analysis of covariates of invention counts for the set of 

897 clusters identified in the preceding chapter. Section 5 presents results of a panel estimation, 

and section 6 extends this to a spatial panel estimation. Discussion and conclusions are offered in 

section 7. 

5.2 Literature: What causes the clustering of innovation? 

Clusters arise as firms decide to locate within proximity of one another. In a comparative 

analysis of high technology clusters, Saxenian (1996) seeks to figure out what factors are 

responsible to form a flourishing cluster. She analyses why is it that high technology business in 

California’s Silicon Valley flourished while along Route 128 in Massachusetts they declined in 

the 1990s. Saxenian explains that, despite similar histories and technologies, Silicon Valley 
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developed a decentralized but cooperative industrial system while Route 128 came to be dominated 

by hierarchical, self-sufficient corporations.  

Empirical studies of firm location behavior have considered a complex mix of factors, 

including transport cost, local factor prices, production and substitution possibilities, market 

structure, and competition (McCann, 2013). Scholars have investigated which of these factors is 

the dominant influencer under certain situations. Yet, without being able to control for industry 

and technology, systematic conclusions cannot be drawn about optimal firm location behavior 

resulting in industrial clustering or, conversely, industrial dispersion (McCann 2013). Beyond 

these typical cost and industrial organizational factors, other less tangible factors may be at least 

as important in determining firm behavior, including knowledge or information spillovers, local 

non-traded inputs, and the local skilled labor pool.  

When firms of the same industry get close to each other, the employees of one particular 

firm have easy access to the employees of another firm. This easy access can be through face-to-

face meetings, sharing lunch time, and other social activities. In these meeting, the employees 

share the tacit information, discuss new technology development and market trends. Information 

sharing among the employees give them an edge to compete in the market. McCann elaborates 

with the financial industry examples of Wall Street, New York, The City of London, and the 

Marunouchi district of Tokyo. These are financial hubs, where the flow of information can change 

in a minute. To keep track of changing information within minutes and take decisions on that basis, 

immediate access to the other market participants is essential.  

Another important factor that encourages firms to cluster together is sharing non-traded 

inputs including access to specialized local infrastructure. The City of London and Wall Street 

have many specialist legal and software firms that provide services only to financial institutions. 
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These services are very expensive, but when there are many firms in the same locality, the average 

cost decreases. Similarly, in the City of London, there is a dedicated broadband fiber optic cable 

system. The firms who want to access this facility must be in the designated locality, otherwise, 

the firms cannot avail this opportunity. As the number of the firms that do avail this opportunity 

increases, the average cost decreases (McCann 2013).  

The other source of attraction is the availability of a skilled labor pool. The easy availability 

of a skilled labor pool reduces the firm’s acquisition cost. Glaeser and Resseger (2010) examined 

the complementarity between cities and skills. To prove their hypotheses, first they divide 

agglomeration theories into two groups: Those that consider the spread of knowledge in cities, and 

those do not. Those that do not support the importance of knowledge flow are of the view that 

good governance in cities, easy access to ports or harbors, and the possibility of easy capital access 

are the main drivers of agglomeration. Glaeser and Resseger show a strong connection between 

per worker productivity and metropolitan area population. The result is stronger for cities with 

higher levels of skill and almost non-existent in less-skilled smaller metropolitan areas. This 

suggests that urban density is important because proximity spreads knowledge, that makes a 

worker more productive or an entrepreneur more successful. Their results suggest a strong 

complementarity between skills, city size, and learning. Agglomeration effects are stronger for 

cities with more skills.  

Delgado et al. (2010) analyze the role of regional clusters in entrepreneurship. The presence 

of complementary economic activity creates externalities that enhance incentives and reduce 

barriers for new business creation. Clusters are identified as the best mechanism through which 

location-based complementarities are realized and entrepreneurship as the best channel through 

which cluster-driven agglomeration operates. The authors consider entrepreneurship an important 
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factor for innovation. The paper concludes that clusters have a significantly positive impact on 

entrepreneurship.  

Audretsch et al (1996) explore the mechanisms through which clusters influence 

entrepreneurship, and entrepreneurship influences economic growth. They develop what they call 

the Knowledge Spillover Theory of Entrepreneurship (KSTE) in which knowledge spillovers serve 

as a source of entrepreneurial opportunities, generating additional innovative outputs from any 

given amount of investment in knowledge-generating inputs, such as R&D expenditures. Their   

KSTE theory seeks to explain endogenous entrepreneurship, growth, localization, entrepreneurial 

performance, and entrepreneurial access. The theory draws upon economic growth models, namely 

Solow and Romer. The Solow model considers capital and labor as the main factors of production 

and assumes technical change accounts for the unexplained residual in growth accounting 

regressions. The Romer model considers knowledge as an important input in the basic neoclassical 

production function. The entrepreneurial growth model focuses on knowledge spillovers and their 

commercialization. As such, the entrepreneurial economy exemplifies creative construction rather 

than “creative destruction” (Schumpeter, 1942).  

Entrepreneurship works as a conduit for knowledge spillovers. It links the investment in 

knowledge and economic growth. Commercialization of new ideas provides an international 

comparative advantage to the developed countries. The localization hypothesis posits that when 

knowledge spillovers involve tacit knowledge or less codified knowledge, geographic proximity 

matters and that shapes the location of entrepreneurial firms. Geographic proximity provides 

comparative advantage.   

Still, knowledge spillovers need to be effectively accessed and absorbed. The authors 

highlight two important factors by which entrepreneurs access and absorb external knowledge: a 
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spillover conduit (such as members of a board of directors, managers) and close geographic 

proximity. Finally, for the better entrepreneurial performance the KSTE concludes in favor of 

venture capital rather traditional bank-based financing.  

To make the complementary factors productive in terms of entrepreneurship, policy makers 

should understand the role of the regional innovation system within the context of the national 

innovation system. Regional and national innovation systems should be in line with federal trade 

policies and the nation patent system. The cooperative and decentralized culture that exists in 

places like Silicon Valley can lead to increasing returns and economic growth.  

To outline a complete mechanism that explains how these complementarities exhibit path 

dependency and the growth of a cluster is complex. We can start by examining just a handful of 

leading factors to have a deeper understanding of that path dependency (Figure 10). For example, 

Rauch (2014) studies only cities as spatial clusters. Glaeser and Resseger only study measures of 

skill within cities. Bauernschuster et al. (2010) study social capital access. Out of six fundamental 

factors (see Figure 10), we can discuss pairwise, for example, population density and skilled labor 

force, skilled labor force and exchanges of ideas, and so on. The order of these relationships does 

not matter.  

The simplest mechanism would involve skilled labor that meet at a particular place and 

exchanging ideas. If the skilled labor pool were not present, then exchanges of the ideas would not 

take place. We should not ignore the significance of population density, which is an important 

facilitator of those meetings. Once the exchange of ideas starts within the skilled labor pool, input-

out linkages become more important. Input-output linkages explain the interconnectedness of 

industries and technologies, as customers and suppliers. Finally, exchange of ideas, skilled labor 

pool, input-output linkages, and population density come to characterize a decentralized and 
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cooperative system. Figure 10 illustrates such path dependence, but while the events in the path 

matter, their order may not. 

 

Figure 10. Path dependency in the growth of an innovation cluster 

Urban and regional economists have mostly discussed the positive side of these 

complementarities. Rarely we can investigate how these complementarities affect labor 

productivity, the wage structure, and increase in the prices of the amenities, which causes increase 

in spatial inequality. Labor markets are less flexible and have limited mobility. Acs (2001) 

discusses how the skilled labor of Route 128 was affected by the flourishing of Silicon Valley. 

The effect of labor migration was not only felt in the computer and IT industries, but even more 
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so in other related industries. Those local firms that were dependent on serving the large computer 

and IT firms on Route 128 were severely affected. On one hand the complementary factors 

developed Silicon Valley, but, on the other hand, they created spatial inequality vis-à-vis Route 

128. The influx of the large corporation to Silicon Valley also affected those industries that were 

following the Route 128 model of centralized hierarchies and non-cooperativeness. We can see 

the industrial clusters in the east and west coast of the USA. The Midwest has fewer clusters and 

the spatial inequality of the Midwest in the USA is apparent. Industrial clusters in Germany are in 

the northwest and southwest. The spatial inequality compared to eastern Germany is obvious. In 

China, the industrial clusters are dominated in the east, and the spatial inequality with the west of 

China is discernible.  

In summary, this literature builds upon the key theories of Marshall (1920) and Krugman 

(1991). These theories and the literature consider the following factors are most important in 

deriving the clustering of economic activity: Exchange of ideas, availability of the skilled labor 

pool, input output linkages, population density, R&D expenditure decentralize and cooperative 

system.  These factors complement each other. If the labor pool is less skilled or is unskilled, then 

exchanges of ideas may not complement the labor pool, as is the case of a more skilled labor pool. 

Input-output linkages facilitate the suppliers understanding and meeting consumer demand. 

Exchanges of ideas or spillovers of information help input-output linkages to flourish. Population 

density and knowledge spillovers have a positive relationship. If population is more education and 

skilled then the flow of information is fruitful, otherwise, the dense population might not benefit. 

These complementarities on one hand can lead to increasing returns and economic growth, but on 

the other hand can lead to spatial inequality.   
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5.3 Data 

To address the questions of what factors are most important in the formation of the 

observed innovation clusters in the life sciences being applied in agricultural and natural resource 

industries, we assemble two types of data—data on inventions and data that provide at least proxies 

for factors associated with clustering—organized into relevant geographic units for analysis of 

regional innovation. Table 11 provides summary statistics of inventions, population, earnings, and 

farm income for 897 statistical areas7 across the United States for the entire time period of 1970-

2010, for a total of 36,777 observations for each measure. For this empirical analysis, we draw 

upon data from the Bureau of Economic Analysis on MSAs and µSAs. After reviewing a range of 

possible measures, we select the variables of population, earnings by place of work, and farm 

proprietor income. Evaluation of multi-collinearity assures their relative independence, and each 

is available for all statistical areas for the entire time span. The geographic coverage of the 897 

statistical areas included in the analysis is illustrated in Figure 9. The remaining rural areas are not 

included in this analysis, as the data did not extend to the remote regions outside of the MSAs and 

µSAs. 

• Population is fundamentally a size variable. The number of people relates to both the overall 

level of economic activity (and is thus highly correlated with regional gross product) as well 

as the size of the labor pool, including the skilled. We have seen from the literature that the 

size of highly skilled human capital pool is highly correlated with population size. Because the 

geographic size of the regions is, if anything smaller in urban areas (see Figure 9) higher 

population also indicates higher population density, another factor implicated in theories on 

                                                 
7 There are 929 official MSA and µSAs for the United States. In the previous chapter, we found that 20 of the 
observed invention clusters spanned more than one MSA. In these cases, we combined two or more MSAs to create 
a custom statistical area. These combinations reduced our number to 897 statistical areas, consisting of our 20 
custom statistical areas together with 877 remaining unmodified MSAs and µSAs. 
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innovation clustering (Glaeser and Resseger, 2010). Our hypothesis is that inventions are 

positively related to population.  

• Earning by place of work includes wages and salaries together with supplements to wages and 

salaries. We include it as our measure of relative level of economic development or economic 

activity as well as the quality of the workforce, as highly trained scientists and engineers will 

be expected to earn more than low skilled labor. We expect rates of invention to be positively 

related to regional earnings.  

• Farm proprietor income counts the net income (receipts net of expenses) for sole proprietor 

and partnership farms, which make up over 90 percent of agricultural operations in the United 

States. We observe that farm income is, not surprisingly, very small in major metropolitan 

areas. The MSAs surrounding smaller urban centers as well as many of the more rural µSAs 

have significant farm incomes. On the one hand, we expect that, as a measure of relative rural 

regions, farm income is likely to be negatively related to the number of inventions. However, 

among similarly sized regions that do have some inventive activity, we expect that those with 

higher farm income will have more linkages and spillovers within the industry and therefore 

more opportunity for inventions.  

Table 11. Summary statistics of inventions and selected clustering covariates, 1970-2010 

Variables Obs. Groups Mean Std. Dev Min Max 

Inventions (count) 36,777 897 0.7316 5.8479 0 279 

Population (million) 36,777 897 0.2618 1.0162 0 20.52 

Earnings by Place of Work 
(million) 

36,777 897 4.4463 24.4164 0 851.03 

Farm Proprietor Income 
(million) 

36,777 897 0.0206 0.0472 -0.12 0.98 
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Table 12 shows correlation coefficients for the underlying variables. The correlation values 

show positive relationship of inventions and explanatory variables (earning by place of work, farm 

proprietary income, and population). Earning by place of work is relatively much more related to 

invention followed by population, and farm proprietary income.  

Table 12. Correlation matrix 

  Inventions Earnings by 
Place of Work 

Farm Proprietary 
Income 

Population 

Inventions 1.00    

Earnings by Place of Work 0.52 1.00   

Farm Proprietary Income 0.20 0.30 1.00  

Population 0.43 0.88 0.36 1.00 

 

Correlations of the explanatory variables are relatively low related to the dependent 

variable (invention), and they are low relative to each other, except between population and 

earnings by place of work (0.88). Increase in population size is related to earnings by place of 

work. The correlation analysis helps to understand the regression coefficients’ magnitudes 

(values). For example, a large coefficient value may be due to its high correlation. Similarly, the 

correlation values show us the relationships among the explanatory variables. If two explanatory 

variables are highly correlated (multicollinear), then one should be dropped from the analysis, if it 

is not justified intuitively. We cannot drop population, which is highly correlated with earnings by 

place of work, because of its importance in measuring size and how it shows the urban 

concentration mechanism. 
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5.4 Methods 

The dependent variable (inventions) is count data, consisting of non-negative integers 

values like {0,1,2,3,…279}. The literature has widely discussed the use of Poisson and negative 

binomial maximum likelihood regression models for this type of data (Hausman, Hall, and 

Griliches, 1984). The difference between the two is in their distribution functions, where the 

Poisson distribution assumes the mean and variance for the data are equal (equal dispersion 

property), and the negative binomial distribution allows for over-dispersion in the data. The 

negative binomial distribution has one more parameter than the Poison distribution, a dispersion 

parameter to adjust variance to mean. The Poisson distribution a special case of the negative 

binomial distribution, where the mean and variance of is constrained to be equal. Intuitively the 

nature of invention data support Poisson model.  We have many instances of the number “0” in 

the invention data, and it is because of its nature: for many of the Metropolitan and Micropolitan 

Statistical Areas there are no inventions in a given year. We can see in the descriptive statistics 

(Figure 5) that until 1990 there were very low numbers of inventions overall. In later years we can 

see the rise in inventions.  

The Poisson probability function is given as 
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The Poisson equal dispersion property means ( )iE Y θ=  and var (Yi) = θ. The mean and the 

variance of the data must remain equal. If this is the case, then the Poisson model can be used.  

If the mean and standard deviation of the data are not equal, then the negative bionomial 

model can be used to allow for the over-dispersion of the data. The general form of the negative 

bionomial probability distribution is  
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For the negative bionomial probability function ( )iE Y θ=  and var (Yi) =  θ + 
θ2r  , where r is the 

dispersion parameter.  

The log-likelihood equation based on the Poisson distribution for probability of invention 

(Yi) at a particular point in space and time is 

l(⋋; U) = � log ⋋ (siti) −n
i=1 �⋋ (s, t)dtds

    T
A 0 − log(n!) 

 

Where U is a 987 x 41 matrix with rows containing regions si and years ti (1970, 1971, … ,2010). 

A is the two-dimensional study area, and 0-T is the time period for these observations. The above 

equation becomes 

l(⋋; U) = � log ⋋ (SAi, 1970) −34196
i=1 � ⋋ (SA)dtds

    2010
U.S.1970 − log(34196!) 

The integrated intensity function ⋋ (s, t) indicates we are only interested in areas in the USA from 

1970 to 2010: 

⋋  = � ⋋ (s, t)dtds

    2010
USA 1970  

 
This equation describes points that occur at a particular area at a particular time. We can 

derive the integrated intensity function from equation 3. In this model SA is the two-dimensional 

statistical area. This sub-sampling is represented by β in equation 2, where si and ti represent the 

space and time dimensions. The si shows the invention distribution at a given SA, and ti shows the 
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invention distribution at a specific time. The total number of statistical areas are 897 and total 

inventions are 34,196.  

We also assume ⋋ (s, t) =  x (s, t)′β 
 

where x (s, t)′ is a P x 1 vector having covariates at a specific location at a specific time within the 

study area, and β is P x 1 vector of regression coefficients.  

The right-hand side of this equation is x (s, t)′β is given at equation (5). Before estimating, 

the general form of fixed and random effect equations are:  

The general form of fixed effect model is given as 

Yit =  β1i + β2X2it +  ……….+ 𝒶𝒶i + δt + μ it 

Where αi = fixed or individual effect δt = time specific intercept μit = error term                       

And the general form of a random effect model is given as 

Yit =  β1i + β2X2it + ………. + μit β1i =  β1+ 𝜖𝜖it 

Yit =  β1 + β2X2it + ………. + μit + 𝜖𝜖it 

The specific fixed effect model that we are going to estimate is 

Inventionsit =  Populationit +  FarmPIncomeit + EarningPlceit + αi + δt +  μit                            
where αi = fixed or individual effect 

              δt = time specific intercept 

              μit = error term. 
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5.5 Factors associated with cluster growth 

While we are not trying to explore all of cluster formation theory, we are seeking to test 

indications of whether greater invention is observed in urban areas relative to rural and 

agriculturally intensive areas. As such, we regress only a handful of independent variables on our 

counts of inventions, by region. 

The most common panel estimation techniques are fixed and random effect models. Results 

of these two models are shown in Table 13. In the fixed effect model any unobservable factors left 

out of the set of explanatory variables are considered time invariant, and, thereby, the fixed effects 

model help to remove bias in the estimator created by omitted variables. They are captured in αi 
(e.g., the individual effect). In contrast, the random effects model assumes that unobservable 

variables are correlated with the variables in the model; while there may be smaller standard errors, 

coefficients may be biased due to the omitted unobservable variables. There is no straightforward 

answer to selecting between the fixed effects or random effect model. Although, theory suggests 

the Hausman test to choose between these two techniques. Selection between these two techniques 

depends on choice of variables in the model, the nature of omitted variables, whether those omitted 

variables are correlated with variables included in the model, and their variation across time.  

There are indeed several factors—such as R&D expenditures, or invention and trade 

policy—which the literature has established are important for formation and growth of innovation 

clusters. However, without R&D expenditure data available at the regional level and without 

appropriate indicators of innovation and trade policy that would be meaningful at the regional 

level, these and other such factors are inevitably excluded from the equation. Therefore, it is 

important to control for unobservable factors to have unbiased estimators. 
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Table 13. Combined panel regression on counts of inventions by U.S. region and year, 1970-
2010 

Variables Fixed Effects Random Effects 

Population 3.5768* 0.3346* 

Farm Proprietor Income 2.2132* 4.0914* 

Earnings by Place of Work 0.1103* 0.1348* 

Constant -0.7414 -0.7414 

F -Statistic F(896,35877)  =  29.56 
Prob > F  =  0.0000 

Wald chi2 (3)  =  9819.59 
Prob > chi2  =  0.0000 

R2 within  =  0.2120 
between  =  0.3349 

overall  =  0.2340 

within  =  0.2073 
between  =  0.3519 

overall  =  0.2707 
* significant at 1% 

The Hausman test in Table 14 also suggests the fixed effects model. The significant P-

value recommends rejecting the null that the unobservable variables affecting the inventions are 

uncorrelated with the observable variables and to accept the alternative hypothesis that such 

unobservable variables affecting the inventions are correlated with the observable variables. 

Together, this suggests that the fixed effects model is the more appropriate for interpretation of 

results.  

All the parameter estimates of covariates are positive and significant in the fixed effects 

model in Table 13. Highly significant coefficient value of population indicates that inventions in 

a particular region are highly dependent on the size of its population. Therefore, we confirm our 

expectations that the preponderance of biological inventions for agricultural and natural resource 

industries have been made in more urban areas. The significant positive coefficient on earnings, 

while not as large as the coefficient on population, shows that it is also correlated with number of 

inventions indicating that the level of economic activity as well as the quality of human capital are 

related to invention activity. Interestingly, the strongly positive coefficient on farm proprietor 
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earnings indicates that, all else being equal, those regions with more agricultural production also 

have greater rates of innovation for the industry.   

Table 14. Hausman test of null hypothesis that unobservable variables affecting the inventions 
are uncorrelated with the observable variables 

 

5.6 Spatial models  

The significance of spatial analysis (i.e., introducing weights) through different techniques 

is debated in the scholarly literature. For this reason, we give both sets of results, with and without 

introducing spatial weights. Scholars give their justification both for and against using spatial 

weights. We are of the view that use of spatial weights in the analysis should be based on intuition. 

If it makes sense intuitively, then a researcher can use it; if not, then it should not be considered.  

Four spatial models are discussed in the literature, namely, the spatial lagged model, the 

spatial autoregressive model, the spatial Durbin model, and the spatial error model. The spatial 

lagged model is also called local spatial model, where the weight matrix “W” is multiplied by the 

explanatory variables. It captures the spatial effect across all explanatory variables. The spatial 

auto regressive model introduces the weight matrix “W” in the dependent variables only. This 

model is also called global spatial model. When the weight matrix “W” is introduced to the 

Variables Coef. St. Err Sqrt (diag(V_b-V_B) 
 

 Fixed(b) Random(B) Difference 
(b-B) 

S.E. 

Population 3.5768 0.3346 0.1134 0.0030 0.0030 

Farm proprietor income 2.2132 4.0914 0.7490 0.0000 0.0000 

Earning by place of work 0.1103 0.1348 0.0019 0.0000 0.1310 

 

Chi(2)  =  (b-B)’ [V_b-V_B)^(-1)](b-B)  =  278.29 

Prob > chi2  =  0.0000 
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residuals, it is called a spatial error model. Intuitively, in our case, it is important to introduce the 

weight matrix “W” to both the dependent and explanatory variables, therefore, we are using the 

spatial Durbin model.  

The general form of the spatial Durbin model is: 

Yit = δ ∑ WitYjt +Nj=1 𝛽𝛽Xi,t+ ∑ ∑ WitNj=1Ni=1 Xi,j,t+ 𝒶𝒶i + δt+ ϵit, 
where Wit is an 896 x 896 spatial weight matrix and 

Yit = count of inventions  

Xit = explanatory variables  αi = fixed or individual effect δt = time specific intercept μit = error term. 

5.6.1 Construction of the weight matrix “W” 

GeoDa software is utilized to construct 896 x 896 contiguity weight matrix. We have seen 

that around 210 polygons (Metropolitan and Micropolitan Statistical areas) have 3 neighbors each, 

and 205 have 4 neighbors each. The maxim neighbors of a polygon are 15.  It seems important to 

consider the neighborhood spillover phenomenon because almost 46% of our data have 3 or 4 

neighbors. After constructing the weight matrix, we export it to STATA for the econometric 

analysis.  

5.6.2 Spatial panel estimation 

By replacing “Y” with dependent variable (count of inventions), and “X” with explanatory 

variables (population, farm proprietor income, earnings by place of work) in the general form of 

the spatial panel equation. We estimated spatial panel equation as discussed above. The results 

(Table 15) on farm proprietor income are surprising. We got a substantially high value of farm 
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proprietor income by introducing the spatial weights. This may be called the “Des Moines effect”. 

This shows that agriculturally dominated regions like Des Moines have a substantial effect on 

inventions. Conversely, the coefficient value of population is decreased by introducing the 

weights.   

Table 15. Spatial panel regression on counts of inventions by U.S. region and year, 1970-2010 

Variables Fixed Effects Random Effects 

Population 1.9200* 1.9600* 

Farm Proprietor Income 7.6000* 8.0200* 

Earning by place of work 2.2100* 2.5100* 

Spatial (rho) 0.0535 0.0528 

R2 within  =  0.2008 
between  =  0.3387 

overall  =  0.2391 

within  =  0.1973 
between  =  0.4136 

overall  =  0.2977 
 

5.7 Discussion and conclusion 

We investigate the relationship of invention counts with other broad characteristics of 

metropolitan or rural regions in the United States. We show that numbers of inventions are 

positively related with population, and thus that these inventions tend to be made in more urban 

areas. Inventions are also positively related to workplace earnings, an indicator of the level of 

economic activity as well as the quality of human capital. Finally, all else being equal, those 

regions with more agricultural production also have greater rates of invention.  
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7. SPATIAL DISTRIBUTION AND COVARIATES OF REGIONAL CLUSTERING OF 

BIOLOGICAL INVENTIONS ACROSS OECD COUNTRIES 

 
 
 
6.1 Introduction 

Geographic concentration and clustering of invention activities, even across a single 

country, is a complex and dynamic process. In the context of the larger global economy, it is even 

more so. To extend our investigation of how biological inventions for use in primary resource-

intensive industries—such as agriculture, energy, and natural resources—have been spatially 

distributed, we explore invention patterns observed across multiple member countries of the 

Organization of Economic Cooperation and Development (OECD), an international organization 

consisting of 37 mostly high-income countries around the world, including the United States which 

was the focus of analysis in the preceding two chapters. By looking more broadly at innovation 

across multiple countries, this chapter will seek more general answers to the same kinds of 

questions posed in earlier chapters: How have biological inventions been spatially distributed 

across the OECD member countries? And, to what degree have they been geographically 

concentrated at the sub-national level? (2) What are the space-time dynamics of biological 

inventions across the OECD? Where and when have they occurred? To what extent does the 

concentration of previous inventions effect where new inventions arise? (3) What are the 

determinants of inventiveness at the level of regions across OECD member countries?  

The literature has documented trends in overall inventive activities at the national level 

across the OECD. Prior research also highlights the dynamic nature of clustering of inventive 

activities. But, the specification, classification, and categorization of inventions are important 

before discussing their spatial distribution, and underlying cluster growth factors. Breschi (2000) 
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stresses understanding the technological regime and the nature of technologies that introduce 

empirical regularities before analyzing the dynamic nature of invention clustering. Greunz (2003) 

emphasizes that the order of the geographical proximity matters: A region having closer proximity 

will have a larger role in the spatial pattern. Moreno et al (2005) confirms regional 

interdependencies matter in spatial distribution and concentration. Usai (2011) posits the inventive 

activities might be negatively affected if the technology is rural or service oriented.  

To explore the dynamic nature of clustering across the OECD, this study considers only 

biological inventions having application in agriculture, energy, and the environment—variously 

framed as agbiotech, green biotechnology, or the bioeconomy. While this focus provides important 

technology and industry controls, it also allows an investigation of an important theoretical 

dilemma specific to these industries. Because they are highly dependent on land and other natural 

capital, production activities are necessarily geographically dispersed. Yet, economies of 

agglomeration and the driver of innovation based upon knowledge spillovers are dependent on co-

location. Thus, it is not obvious whether innovation activities for these industries should be more 

dispersed, approximating the geography of production and the skilled labor pools of the industries, 

or if they should arise in dense clusters, as has been observed for biotechnology and other high 

technology industries.  First, this study characterizes the spatial distribution of such biotech 

inventions in OECD countries to identify the degree of clustering. It then analyzes the emergence 

of those distribution patterns or clusters. Finally, it explores what factors or covariates are 

associated with biological inventions made a the level of sub-national regions across the OECD.  

This study contributes to the literature by exploiting inventor address data from patents to analyze 

the geography of invention and to explore covariates of the creation of knowledge.  
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The InSTePP Global Genetics Patent Database—which encompasses all patent filings 

made from 1970-2010 globally on biological subject matters—is used to map the spatial 

distribution of bioinventions based on lead inventor address, at the TL2 geographic region level 

for OECD member countries for which sufficient data is available. Leveraging the Derwent World 

Patent Index (DWPI) Manual Code classification scheme, biotechnologies with agricultural, 

energy, and environmental applications are selected. Analysis is done at the TL2 regional level—

and not smaller—because data for most of the covariates (explanatory variables) are consistently 

available from the OECD only at the TL2 level for most member states. A number of covariates, 

including population, R&D expenditure, gross value addition of agriculture, and an intellectual 

property (IP) strength index are explored for their relationship with biotech cluster growth across 

the OECD. Based upon availability of data, different scenarios are run for this analysis, varying 

time period and the scope of countries included.  

This chapter is organized as follows. Literature specific to clustering in the OECD is 

discussed in Section 2. Section 3 describes the data and methodology and presents descriptive 

summary statistics. Section 4 presents three different types of spatial analyses of biological 

inventions across the OECD. Section 5 closes with discussion and conclusions.  

6.2 Literature and background 

The literature that explores spatial distribution, and concentration of invention across 

OECD countries is more limited than the literature that focuses on spatial concentration within 

individual countries. North America and Europe are the two largest subsets of OECD an represent 

a large share of OECD economic activity. We already have discussed U.S specific literature in the 

preceding chapters. Therefore, to shift the focus to the OECD, we now explore in more detail some 

of the European literature and a few OECD-specific studies.   
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Breschi (2000) highlights empirical regularities in the spatial distribution of innovative 

activities across sectors in Europe. To understand the regularities he advances the importance of 

technological regime. “Technological regimes” are broadly defined by the level and type of 

opportunity and appropriability conditions and cumulativeness of technical knowledge and by the 

nature of knowledge and the means of knowledge transmission and communication. Breschi 

concludes that spatial distribution of inventive activities differs across technologies and the 

distribution pattern across technologies differs within and among countries.  

Moreno et al (2005) analyze the spatial distribution of innovative activity measured by 

patent application across 175 regions of 17 countries in Europe. The time period they consider is 

1978-2001. These authors use the Centro Ricerche Economiche Nord Sud (CRENoS: Centre for 

North-South Economic Research) database on regional patenting at yjr European Patent Office, 

classified by ISIC sectors. Two important findings are drawn from this study: (1) The mapping of 

innovation across Europe shows activities are concentrated in northern and central Europe, and 

only modest activities in southern Europe, and (2) with the passage of time the concentration of 

innovation is spreading to some Scandinavian and southern European regions. The authors also 

concluded that interregional interdependences exist. Internal regional factors, R&D expenditures, 

and agglomeration economies are found to influence innovative activity.  

Usai (2011) explores the geography of inventive activities across Organization for 

Economic Cooperation and Development (OECD) regions. Usai also utilizes the CRENoS 

database, for two periods (1998-2000) and (2002-2004). The results show that OECD inventions 

are concentrated in Europe, North America, and Japan. The results also show distinct patterns are 

found in which highly inventive regions cluster together. R&D expenditures, human capital, and 

local agglomerations are important covariates expected to influence innovation activities across 
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the OECD. Usai also concludes that if a region is rural or when a technology is service oriented, 

these conditions may negatively influence inventive activity.  

Greunz (2003) analyze inter regional knowledge spillovers of 153 European sub-national 

regions over the period of 1989-1996. Greunz concludes that geographical proximity of 1st, 2nd, 

and 3rd order matters. 1st order proximity means a region has a significant impact on patenting 

activity in another, and the effect slowly and gradually decreases. 4th order proximity means that 

a region does not matter to another. The author concludes that private sector R&D expenditures 

play an important role in national patenting activity.  

Guastella and Van Oort (2015) emphasize on the importance of spatial heterogeneity while 

studying innovation clustering. The authors analyze patent applications during 2007-08 for the 250 

NUTS-II regions of 25 E.U. countries. They argue that failing to consider spatial heterogeneity 

results in biased estimation. Based on Moran I values, the authors conclude that spatial association 

exists. The variables with substantially high explanatory value exhibit high spatial association. In 

this paper, market potential (the potential for activities, and enterprises in the region to reach 

markets and activities in other regions) and market size (gross value added per employee) display 

high spatial heterogeneity.  

Finally, Tappeiner et al (2008) investigate patent applications for 51 European NUTS-1 

regions and find the spatial distribution of inputs drive auto-correlation in patenting. They basically 

contradict the conventional empirical findings of spatial autocorrelation of inventive activities as 

evidence of knowledge spillovers. The main explanatory variables used in this analysis are R&D 

expenditures and human capital.  
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6.3 Data 

Out of the total 210,057 patent families for biotech in agriculture, energy, and the 

environment, only 127,410 contain information on inventor address. Of these 127,410 inventions, 

the lead inventors of 91,794 is in one of the OECD member countries (see Figure 4). Of these, 

48,693 were in the United States, as analyzed in Chapters 4 and 5. The remaining 43,101 were in 

all other OECD countries combined. Approximately, 10,000 European inventions are not 

considered because their address data were not readily able to be cleaned due to the wide variation 

in national standards of reporting European place names. The details of the geographic data 

cleaning process follow the steps discussed above regarding the global data set, in Chapter 3.  

Table 16. Characterizing availability of lead inventor address data in primary filing records, by 
patent family 

Lead inventor address data in priority filing Patent family counts 

Country only 41,618 

Country + city/state 45,197 

Country + city/state + zip  4,979 

Total 91,794 

 
Countries outside the OECD are not considered in this analysis. Of these, China is the 

largest inventor, with around 18,000 inventions. Out of the total 91,794 inventions from OECD 

countries, 41,618 indicate only the inventor’s country of residence, 45,197 indicate the inventor’s 

country and city, and 4,979 indicate country, city/state, and postal codes. Table 16 summarizes the 

availability of lead inventor address data in priority filling records, by patent family. Out of these 

91,794 OECD inventions, 50,176 yielded a geocoded location at the city or postal code level and 

make up our sample of inventions.  

For the 50,176 OECD inventions identified by the location of lead inventor, Table 17 

shows how these inventions are categorized by industry of application. Agriculture has accounts 
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for the largest share, of 51.9%, followed by Environment 19.0%, and Energy 15.9%. The rest of 

the share shows how these technologies overlap across industries.  

Table 17. Cross table of counts of inventions categorized by industry of application based on 
DWPI Manual Codes, for the 50,176 inventions with a lead inventor in an OECD country, 
including inventions assigned to multiple categories 

Agriculture 26,032 (51.9%)   

Energy 1,211 (2.4%) 7,960 (15.9%)  

Environment 1,754 (3.5%) 2,515 (5.0%) 9,544 (19.0%) 

 Agriculture Energy Environment 

* 1,130 (2.3%) patent families are categorized in all three industries N= 50,176 
 

Figure 10 represents the share of invention data of a lead inventor of a country available at 

the city and zip level for OECD region. The United States has the largest share, at 61.8% of the 

OECD inventions. The other countries with relatively large shares are Japan 7.1%, France 4.9%, 

Germany 4.7%, and Great Britain 4.4%. Figure 10 list the rest of the OECD countries’ shares but 

combines those whose share are less than 0.5% each together in “Others” make up only 2.6%.  
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N= 50,176 

Figure 11. Inventions measured by patent families from 1970-2010, for which lead inventor 
address with city level data is available 

 
The annual counts of biological inventions are shown in Figure 12 for the OECD countries. 

The count of inventions are increasing from 1970 through 2000. Due to the largest share of the 

U.S within the OECD data set, the U.S specific invention policies like the 1980 Diamond v. 

Chakrabarty decision of the U.S. Supreme Court and the Bayh-Dole Act 1980 are important 

reasons for this increase. Other global factors that affect these trends are the Trade Related Aspects 

of Intellectual Property Rights (TRIPS) agreement in 1995. The bursting of the tech bubble in 2001 

negatively affected the rise, and inventions gradually decreased thereafter. A slight increase can 

be seen after the economy started recovering in 2004. The financial crisis of 2007-08 is expected 

to negatively affect this pattern, but is confounded by the steep decline after 2007 due to data 
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truncation. Patent application filing and the patent examiner’s first substitutive review takes about 

21 months. In some cases, substantive examination takes 3-4 years. Grant or refusal takes place 

after this examination. The InSTePP data set was compiled in 2011, therefore, inventions that were 

in the examination process, and were not published or granted approval could not be observed at 

that time and are not part of this data set.  

 
N= 50,176 

Figure 12. Growth in inventions by country/region of lead inventor 

6.3.1 OECD territorial level classifications and regional data 

For the 37 OECD countries, geographic regions are classified on two territorial levels (TLs) 

for the purpose of reporting data, reflecting the administrative organization of countries: (1) the 

398 larger territorial level (TL2) regions are roughly equivalent to states or provinces; and (2) the 

2241 smaller territorial level (TL3) regions are roughly equivalent to metropolitan regions.  

The European Union maintain a similar system of classifications designated Nomenclature 

of territorial units for statistics, abbreviated NUTS (from the French Nomenclature des Unités 
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Territoriales Statistiques), levels 1,2 and 3. NUTS-1 are major socio-economic regions. NUTS-2 

are the basic regions for application of regional policies. NUTS-3 are small regions for specific 

diagnoses. Generally, TL2 is equivalent to NUTS2, and TL3 with NUTS3; however, this 

relationship is not consistent for some countries (OECD 2009). 

Analysis at the TL3 or NUTS-3 level would most closely correspond to our analysis  at the 

level of MSAs and microSAs in the United States in Chapters 4 and 5. Unfortunately, regional 

data for the TL3 regions of the OECD countries are not consistently reported. And, therefore, we 

must proceed in our exploration of factors explaining variation in inventions only at the higher 

level of aggregation of the TL2 regions, which in the United States corresponds to the state level.   

Table 18 provides summary statistics for several factors with potential for explaining 

variation in inventions for the 193 TL2 regions of 17 OECD member countries for which complete 

data are available for the time period of 2000-2010 in the OECD regional data catalogue, resulting 

in a total of 2123 observations for each variable. To capture the agglomeration effects within a 

state or province (TL2 region), we consider its “Population” as a size measure. Higher population 

also indicates higher population density. Our hypothesis is that inventions are positively related to 

population. To explore whether the rural-urban division exists across OECD countries, we 

consider Gross Value Added (GVA) from agriculture by TL2 region. We see negative values of 

GVA in the data summary, indicating economic shocks to the agricultural sector in some regions. 

Other important explanatory variables expected to positively affect the level of inventions are 

Human Capital (tertiary education), R&D expenditure, and total regional income.  
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Table 18. Summary statistics of inventions and selected covariates, for years 2000-2010, for 193 
TL2 regions of 17 OECD countries 

Variables,  
by TL2 region, by year 

Obs. Mean Std. Dev.  Min Max 

Invention counts 2123 9.04 29.53 0 514 

Population  
(1,000s) 

2123 3533.98 4281.71 25 37332 

Income  
(US$ per head) 

2123 19361.00 8693.88 4612 54339 

GVA from Agriculture  
(millions of US$) 

2123 1610.90 2287.05 -180 31485 

R&D Expenditures  
(% GDP) 

2123 1.61 1.32 0.06 10.24 

Human Capital Tertiary Ed (per 
1000) 

2123 27.14 11.60 6.9 63.6 

IP Index (national) 
(scale from 0 to 5) 

2123 4.51 0.33 2.96 4.88 

Data Sources: OECD Regional Data Catalogue, Ginarte and Park (2015) 
 

In addition to these economic variables, an intellectual property (IP) index developed by 

Ginarte and Park (2015) is used to measure the strength and enforcement of IP across countries 

and years, which may be expected to impact the creation and patenting of inventions. The IP index 

ranges from 0 to 5, with 5 as the highest possible level of IP legal strength and enforcement in a 

country. Most of the high-income countries of the OECD are in the range of 4.88, which means 

these countries generally have strict IP regimes. The middle-income countries of the OECD have 

values in the range below the mean of 4.51. 

6.3.2 Correlation analysis 

Correlation analysis reveals some of the relationships among the factors we expect to 

account for the TL2 regional (state/province) level of inventions (Table 19). In general, this 

analysis shows that two of the explanatory variables (GVA from agriculture and population) are 

highly correlated with the dependent variable (inventions). The rest of the other explanatory 



 84 

variables (human capita, R&D expenditures, and regional income) are low related with the 

dependent variables. We therefore expect a high regression coefficient of GVA and population, 

given the high correlation value of these two variables with invention. Interrelationships among 

the explanatory variables are low, except between these two population with GVA and income 

with the IP index. We cannot drop population or GVA based on intuition, because this relationship 

is important to see the rural urban dilemma. Similarly, the large value of IP index shows high 

enforcement of IP laws, which we also cannot drop, based on intuition. 

Table 19. Correlation matrix 

  
Inventions 

GVA 
of Ag. 

Human 
Capital IP Index Pop. 

R&D 
Expend. Income 

Inventions 
 

1.00       

GVA of Ag. 0.69 1.00      

Human 
Capital 
 

0.23 0.14 1.00     

IP Index 
 

0.27 0.23 0.49 1.00    

Pop. 
 

0.66 0.75 0.22 0.28 1.00   

R&D 
Expend. 

0.25 0.10 0.41 0.40 0.20 1.00  

Income 0.34 0.26 0.52 0.73 0.36 0.41 1.00 

 

The high correlation observed among population, ag GVA, and our counts of biological 

inventions likely results directly from what we might call the “California and Ontario” effect. Since 

we are constrained in the analysis to TL2 regions, due to data availability, this means we are 

measuring large states and provinces, such as California in the United States or Ontario in Canada, 

which as regions have some of the largest populations, very large and rich agricultural industries, 

as well as large high-technology sectors (such as Silicon Valley and the San Diego Biotech Beach 
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in California or the high technology industry around Toronto and Guelph in Ontario.) This 

underscores the rationale, argued in Chapter 4 above, for pursuing analysis at the smaller 

geographic level of individual innovation clusters, which we showed to be more closely aligned 

with metropolitan regions and would invariably be better reflected we were able to access 

explanatory variable data from OECD denominated at the TL3 level. 

6.4 Spatial analysis of inventions: Three techniques 

6.4.1 Mapping of inventions 

Arc GIS is used to map the spatial distribution and concentration of the 50,176 geocoded 

biological inventions across OECD countries (Figure 13). However, because of the small 

resolution of the global map, the spatial distribution and concentration is not readily visible at the 

regional level. We applied the same methodology discussed in Chapter 4 (for spatial distribution 

of inventions in the U.S.) to identify the 30 largest innovation clusters across all OECD member 

countries (Table 19). These 30 largest clusters account for 45% of the total inventions in the data 

set. The top four clusters are the same as those identified in Chapter 4 for the U.S., but the fifth 

cluster is Tokyo (Japan). The other top clusters outside the U.S are Paris (France), Osaka-Kyoto 

(Japan), London (Great Britain), Frankfurt-Heidelberg (Germany), Copenhagen (Denmark), 

Bonn-Koln (Germany), Toronto (Canada), Basel-Lorrach-Saint Louis (Switzerland), Delft-Leiden 

(Netherlands). 
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N= 50,176 

Figure 13. Geographic pattern of biological inventions for use in agriculture, energy, and environment in OECD member countries  
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Table 20. The 30 largest clusters of biological inventions for agriculture, energy, and 
environment across OECD member countries, based on cumulative count of inventions 1970-
2010 

 

# Top Identified Clusters State/Region Country Inventions % Cumulative 
% 

1 San Francisco CA US 3,020 6.37 6.37 

2 New York City NY US 1,211 2.56 8.93 

3 Washington-Baltimore DC, MD, VA US 1,187 2.51 11.43 

4 San Diego CA US 1,135 2.40 13.83 

5 Tokyo Southern-Kanto JP 1,067 2.25 16.08 

6 Boston MA US 1,017 2.15 18.23 

7 Los Angeles CA US 939 1.98 20.21 

8 Houston TX US 924 1.95 22.16 

9 Des Moines-Ames IA US 882 1.86 24.02 

10 Paris IIe-de-France FR 879 1.86 25.88 

11 Philadelphia region PA, NJ, DE US 811 1.71 27.59 
12 Chicago IL US 713 1.51 29.09 

13 Osaka-Kyoto Kansai Region JP 585 1.23 30.33 

14 London London-South East-East 
of England 

UK 558 1.18 31.51 

15 Madison WI US 544 1.15 32.66 

16 Seattle WA US 516 1.09 33.74 

17 Raleigh-Durham-
Chapel Hill 

NC US 449 0.95 34.69 

18 Frankfurt-Heidelberg  Hassen, Baden-
Wurttemberg, 
Rheinland-Pfalz 

DE 430 0.91 35.60 

19 Cleveland MI US 420 0.89 36.49 

20 Detroit-Ann Arbor-
Lansing 

MI US 420 0.89 37.37 

21 St Louis MO, IL US 415 0.88 38.25 

22 Minneapolis-St Paul MN US 409 0.86 39.11 

23 Denver-Boulder-Ft 
Collins 

CO US 376 0.79 39.91 

24 Davis-Sacramento CA US 344 0.73 40.63 

25 Copenhagen Hovedstaden DK 335 0.71 41.34 

26 Bonn-Koln Nordrhein-Westfalen DE 334 0.71 42.04 

27 Toronto Ontario CA 316 0.67 42.71 

28 Basel-Lorrach-Saint 
Louis 

Nordwestschweiz,Baden-
Wurttemberg 

CH 300 0.63 43.34 

29 Delft-Leiden Zuid-Holland, Noord-
Holland 

NL 297 0.63 43.97 

30 Atlanta-Athens GA US 296 0.62 44.60 
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6.4.2 Spatial distribution 

After analyzing visually, now we empirically measure the extent to which these biological 

inventions for agricultural, natural resource, and environmental applications exhibit spatial 

cumulativeness, and therefore remain relatively concentrated spatially. To see whether prior 

inventions affect current inventions, we regress invention counts on lags of invention counts for 

each TL2 region in each year (Table 21). For panel estimations, time series (AIC/BIC) lag length 

criteria are not appropriate. Optimal lag length for panel data can be determined manually by 

starting from a lag of 1 year, then 2 years, and so on, stopping when the coefficient of the lagged 

explanatory variable becomes negative. We find that lagged invention counts have a positive and 

significant effects on current inventions counts within the TL2 regions. The lagged invention 

counts are positively related to current invention counts for the previous two years: t-1 and t-2. 

This means that the recent past has more effect on current inventions. The lagged effect after two 

years disappears.  

To check the for the overall concentration of inventive activities, we constructed a 

cumulative prior invention count variable defined as the sum of inventions from year 0 to year t-

1. Table 22 shows the results of the cumulative sum of prior inventions on current year invention 

counts for each region for each year. Similarly, the cumulative sum of inventions has a positive 

and significant effect on current inventions. This means that biological innovation exhibits spatial 

cumulativeness and therefore remains relatively concentrated spatially.  

 

 

 

 



 89 

Table 21. Fixed effects regression of lagged invention counts, 2000-2010, for 193 TL2 regions of 
17 OECD countries 

Variables Coef.  St. Err t  p>|t| 

Inventions 1st lag 0.8771 0.0126 69.41 0.0000 

Inventions 2nd lag 0.1372 0.0163 8.40 0.0000 

Constant 0.4624 0.0671 6.89 0.0000 

 F(3,7212)  =  12180 
Prob > F  =  0.0000 

 

Table 22. Fixed effects regression of cumulative invention counts, 2000-2010, for 193 TL2 
regions of 17 OECD countries 

Variables Coef. St. Err t p>|t| 

Cumulative Inventions 0.0522 0.0005 88.68 0.0000 

Constant -461.3751 5.2526 -87.84 0.0000 

 F(1,7799)  =  7863.40 
Prob > F  =  0.0000 

 

6.4.3 Covariate analysis 

We also seek to explore covariates of invention counts, and thus potential general 

explanatory factors for cluster formation across OECD countries. To do so, we select as the 

dependent variable the count of bioinventions by TL2 region by year, and as explanatory variables 

the population, R&D expenditures (as % of regional GDP), income level (as regional GDP per 

capita), gross value added (GVA) of agriculture, human capital (as tertiary education level) by 

TL2 region by year (from OECD) and an intellectual property (IP) index by country and by year 

(from Ginarte and Park, 2015).  
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The panel estimation methods used are identical to that explained above in section 5.5 on 

factors associated with cluster growth in the U.S. However, in this case, two different scenarios 

are developed to overcome data availability limitations for TL2 regions of OECD member 

countries. Out of the current 37 OECD member countries, 27 countries have biological inventions 

counts over a sufficient number of years. We do have some countries with only one- or two-years’ 

of inventions data. Therefore, those countries are omitted. The OECD has data for member 

countries from 1990 onward, but it is not possible to obtained a balanced panel before 2000 for all 

27 countries.  

6.4.3.1 First Scenario: 17 countries, 2000-2010 

To obtain a balance panel, we initially select 17 countries for which we have data for all 

explanatory variables at the TL2 level for 2000-2010. We then run both a fixed effects and a 

random effects model for that panel. 

Fixed Effects: The results of the fixed effects model (Table 23) show negative coefficient 

values on the regional population, GVA of agriculture, and income variables. The other 

explanatory variables have significant positive coefficient values. A negative effect of population 

indicates that inventions are more likely to come from TL2 regions with smaller populations. This 

result seems to contradict the initial conclusion from the cluster mapping, which had indicated that 

the largest clusters of biological inventions were in urban areas. Similarly, all else being equal, 

these biological inventions are more likely to come from regions with lower per capita income. 

Together, these results seem to indicate that systematically higher counts of these biological 

inventions tend to come from smaller urban or rural areas that are not as high income. This would 

be consistent with the “Des Moines” effect described above in section 5.6. While even though 
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many capital cities populate the ranks of the top 30 innovation clusters (Table 20) at the TL2 level 

it may be the lower tier regions that invent in greater numbers across the OECD. 

Table 23. Preliminary results of panel regression on invention counts, for 193 TL2 regions from 
17 OECD countries for years 2000-2010 

Variables Fixed Effects Random Effects 

Population -0.1011* 0.0055* 

R&D Expenditure 0.8167* 5.0578* 

GVA of Ag -0.0346* 0.0046* 

IP Index 3.5880* 24.0186* 

Human Capital Tertiary Ed 1.8521* 0.0609* 

Regional Income -0.0034* -0.0010 

Cons 428.104 -0.109.1335 

F -Statistic F(6,1924)  =  4.84 
Prob > F  =  0.0000 

Wald chi2 (6)  =  285.16 
Prob > chi2  =  0.0000 

R2 within  =  0.1938 
between  =  0.5899 

overall  =  0.1679 

within  =  0.0114 
between  =  0.5981 

overall  =  0.1791 
 

 

The negative value of the coefficient on the GVA of ag indicates that inventions are more 

likely to arise in areas that are less dependent on agriculture, i.e. more urban areas. This negative 

coefficient on GVA of ag supports our hypothesis of an urban-rural divide affecting innovation 

clusters for these technologies. And, as expected per the literature, higher measures of human 

capital, R&D expenditures, and the IP index are positively related to the count of inventions.  

Random Effects: Justification for using a random effects model needs to assume that the 

unobservables are correlated with the variables in the model. Many unobservable factors, like 

innovation policies, biotech regulations, and trade policies, may be captured in the IP index.  

Therefore, random effects may be an appropriate model. If this is the case, we find positive 

coefficients for almost all explanatory variables, except regional income.  
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6.4.3.2 Second Scenario: 22 countries, 2000-2010 

Several OECD countries, including France, Japan, Switzerland, Netherlands, and Portugal, 

have data for R&D expenditures and human capital available only at the TL1 level. Therefore, a 

second scenario is developed to incorporate these additional countries into the analysis by using 

the average national (i.e. TL1) value for a given year for all the TL2 regions within that country. 

It is therefore not possible to see regional variations within country due to the use of these 

aggregate level data. This compromise brings the total number of countries to 22.  

Table 24. Preliminary results of panel regression on invention counts, for 198 TL2 regions from 
22 OECD countries for years 2000-2010 

Variables Fixed Effects Random Effects 

Population -0.0201* 0.0033* 

R&D Expenditure -2.1570** 0.0023 

GVA of Ag -0.0099* -0.0049* 

IP Index 0.6854 11.9824* 

Human Capital Tertiary Ed 0.2649*** 0.0514 

Regional Income -0.0002 -0.0007* 

Constant 428.104 -0.109.1335 

F -Statistic F(6,1723)  =  125.94 
Prob > F  =  0.0000 

Wald chi2 (6)  =  242.40 
Prob > chi2  =  0.0000 

R-Square within  =  0.3049 
between  =  0.4212 

overall  =  0.3436 

within  =  0.1453 
between  =  0.1106 

overall  =  0.0990 
 

The fixed effect model results for this second scenario (see Table 24) differs somewhat 

from those for the first scenario. In this second scenario we see a strong negative value of the 

estimated coefficient on R&D expenditures, which seems to contradict the established literature. 

The results of the random effects model for this second scenario are very similar to the results of 

the random effects model for the first scenario.  
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6.5 Discussion and Conclusion 

We have seen limited empirical research on regional innovation clusters in the OECD. The 

first of this kind of paper was published by Usai (2011). The data limitations that Usai mentions 

are relevant for this study as well. Usai’s selection of countries and time period is limited to data 

availability. Incomplete coverage of OECD countries for the empirical analysis limits the analysis 

that is possible. TL3 (metropolitan regional) level of analysis is not possible given the data 

availability. Therefore, we follow Usai in this study concentrate on the TL2 level.  

We included in the analysis only those TL2 regions with at least one invention. A number 

of regions were omitted because they did not show any inventions for the entire time period. For 

example, of 22 TL2 states in Mexico, we observe inventions in only 6. The remaining 16 states 

were dropped from the sample. We have also seen limited numbers of inventions in Eastern 

Europe. Similarly, most of the TL2 regions in countries like Turkey, Greece, and New Zealand no 

or only a have a limited number of inventions.  

Overall, the OECD has a very diversified economic structure. The OECD countries’ 

innovation and trade policies vary. It may be difficult to justify empirically clustering of these 

countries together in a single analysis. Having diverse economic and geographic structures it is not 

appropriate to use a spatial weight matrix. Moreover, a contiguity weight matrix is not useful if 

the unit of analysis (TL2) boundaries are disconnected.   

By the OECD definition, some of the TL2s, in fact, lie inside another TL2. Instead of 

combining/aggregating these two TL2s we treated them separately. This choice also slightly 

affects the regional invention variation. But, the total number of such “enclosed” TL2s are only 6 

across the OECD.  However, these TL2s are highly concentrated. For example, DE3-Berlin is 

embedded inside DE4-Brandenburg.  
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We did not customize by combining two or three TL2s if they have a single cluster of 

inventions that spans the TL2 boundaries, as we did in Chapter 4 for the U.S. statistical areas. We 

found that in most of highly concentrated TL2 regions, inventions tend to be spread across the 

whole TL2. Without TL3 level of data, it is not possible to select the more dense part of a TL2 

region and separate it from the remaining part of TL2 which was more sparsely populated.  

While these results are still preliminary, due to ongoing data limitations, several 

observations and comments can be offered in conclusion: 

1. While inventions are distributed across the OECD, there do appear to be concentrated 

clusters of invention occurring in larger urban regions (based on identification of the 

top 30 clusters across the OECD).  

2. Inventions made in prior years have a significant impact on a current year’s inventions. 

This represents the localized spillover phenomenon and the cumulative nature of cluster 

formation.  

3. Region size (as measured by population) and level of economic activity (as measured 

by income) do not appear to be related to regional count of invention activity for these 

industries. Likely the systematically higher numbers of inventions are coming not from 

the very largest and richest urban areas, but more likely from smaller urban areas with 

higher rates of R&D. 

4. R&D expenditures (regional) and the IP index (national) that characterize a region are 

strongly related to the observed invention activity.  

5. A rural-urban division does appear to exist. Invention counts appear to be negatively 

correlated with gross value added of agriculture by region.  
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6. CONCLUSIONS AND FUTURE DIRECTIONS 
 
 
 

This study analyzes the spatial distribution and concentration of biotechnologies developed 

for application in agriculture, energy, and the environment. The overall findings of this study may 

be useful to inform policy makers about geographic patterns of knowledge creation and spillovers, 

which economic and policy factors drive invention activity at the regional scale, and, indirectly, 

the role of regional clustering in driving innovations for food security and sustainability. This 

analysis explores the dual dilemma that seems to affect the formation of innovation clusters for 

these geographically diffused industries. If innovators tend to aggregate, yet producers are 

constrained to be located in rural areas, they are necessarily distant from one another leading to 

the “dual dilemma” of innovation in agricultural and resource industries:  

1. Urban cluster-born innovations are isolated from the rural community of skilled users 

2. Rural user-led innovations are necessarily diffused, not well connected to urban clusters. 

First, we analyze in the United States the clustering of invention of biotechnologies for 

applications in agriculture, energy, and environment. Using a novel patent data set and applying 

exploratory and empirical techniques, Chapter 4 concludes that, while biological inventions are 

distributed all across the U.S, highly concentrated clusters have emerged in largely urban regions. 

Clearly a spatial clustering pattern exists: inventions do not tend to be diffused as are the 

production activities in these industries but tend to concentrate in urban areas.  

Regressions are developed to show that the number of inventions made in prior years 

within a metropolitan statistical area has a significant impact on the probability of inventions made 

in subsequent years. This relationship represents the localized spillover phenomenon and the 

cumulative nature of innovation clusters. Finally, while we do see inventions in rural areas in the 
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U.S., the rural areas simply do not appear to be the hotspots of innovation in agricultural, energy, 

or environmental biotechnologies. 

Next, we look for covariates of the regional concentration of biological inventions for 

agriculture, energy, and the environment in the United States. Regression analysis finds that, 

indeed, inventions are positively related with population and economic activity. Moreover, regions 

with more agriculture production also have greater rates of innovation for the industry. Based on 

the results we can say these technologies belong to “Schumpter Mark II” camp of deepening and 

concentrated growth in innovation.  

 Finally, we expand the scope of analysis to examine the spatial distribution and covariates 

of biological inventive activity in regions across OECD countries. Summary statistics, mapping, 

and regression analysis are used to study the spatial distribution and covariates associated with 

regional invention activity across OECD countries. The exploratory analysis shows biological 

inventions are spread across OECD countries, but clusters are found in larger urban regions. 

Regression analysis shows, again, that previous inventions within a region seem to give rise to 

new inventions. Covariate regressions show that expected measures of human capital, R&D 

expenditures, and intellectual property strength are strongly related to invention activity at the 

regional level. However, region size (as measured by population) and level of economic activity 

(as measured by regional income) are inversely related to invention activity for these industries, 

but at the TL2 (state/province) level, this can have several interpretations. Across OECD countries, 

invention counts appear to be negatively correlated with gross value added of agriculture by region, 

implying a rural-urban division may in fact exist more universally: (urban) innovation is not co-

located with (rural) production.  

Based on these results we draw a few implications for agricultural innovation policies: 
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• First, policies that seek to encourage biotech innovation and its commercialization in 

agriculture and other resource-intensive rural industries need to recognize that the 

preponderance of inventions are being made in urban areas. This is consistent with 

economic theories on economies of agglomeration and innovation, and it appears to be a 

normal pattern.  

• Commonly held policy objectives for economic development in rural and agricultural 

communities is not likely to succeed by seeking to supplant or compete with urban-based 

innovation clusters. But, rural economic development efforts may find some opportunities 

by seeking to nudge, shift, or complement existing innovation clusters on the margin.  

• There is a dual market failure at play when spillovers are hindered due to geographic 

dispersion, or the lack of agglomeration. Not only is there private underinvestment in the 

underlying (R&D) activity that generates those positive externalities. But there is even 

failure of those positive externalities that are generated to have as much beneficial impact 

on third parties as they might have, due to high search costs, travel costs, and other 

transaction costs. 

• The relevance of the Land Grant system in the United States and concomitant public 

investments in applied R&D at such intuitions continues to play important roles in 

facilitating innovation for these industries by creating new human capital, networking 

existing human capital, and facilitating knowledge spillovers across the clusters and the 

peripheries of these geographically dispersed industries, both from urban to rural and from 

rural to urban. 
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• Technology transfer and commercialization strategies should recognize that potential 

partners for further development of new biotechnologies are likely to be found in one of a 

handful of major clusters around the country.  

• State and regional policymakers, economic development officials, agriculture officials, and 

strategic partners in industry need to consider collective action for fostering largely urban 

entrepreneurship for largely rural industries and creating linkages between them.  

• Recognize and seek ways to address the extent to which (urban) innovators and (rural) 

producers in these industries are not intimately co-located. 

The biotechnology industry has been a powerful force for innovation and economic 

development largely due to long-sighted R&D policies. Significant investments in basic research 

along with strong by transparent intellectual property and regulatory policies have been 

acknowledged as crucial elements in giving rise to the industry. What has not been acknowledged 

to the extent that it has likely make a difference is the strategic development of biotechnology 

clusters. The importance of co-location and economies of agglomeration has been significant for 

the growth of the industry. However, it is important to recognize that, outside of human 

therapeutics and manufacturing-based industrial applications, the virtues of these economies of 

agglomeration may begin to break down. The dual dilemma of agriculture appears to be the user 

led innovations are necessarily diffused, while cluster born innovations are isolated from the 

community of skilled users. Urban based innovators and rural users are distant from one another. 

One of the crucial and most promising interventions is the Land Grant system, holding the 

innovation system together and facilitation what spillovers do occur, even contributing to the 

formation and growth of many of the major innovation clusters that we observe today. 
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The importance of future innovations in these technologies are immense—in terms of 

assuring food security, economic development, and sustainability of agriculture, energy, and 

resources. An understanding of what are effectively the ecosystems that sustain and drive such 

innovation is essential to sustaining it for the challenges faced ahead. 
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