Engineering Sciences

MAR 1 8 1980

Branch Library

RANCHO SECO BUILDING WAKE EFFECTS ON ATMOSPHERIC DIFFUSION: SIMULATION IN A METEOROLOGICAL WIND TUNNEL

by

K. J. Allwine R. N. Meroney J. A. Peterka

Prepared for Site Safety Research Branch Office of Nuclear Regulatory Research U.S. Nuclear Regulatory Commission Washington, D.C. 20555

Fluid Dynamics and Diffusion Laboratory Department of Civil Engineering Colorado State University Fort Collins, Colorado 80523

Revised December 1979

March 1978

CER77-78KJA-RNM-JAP25

ABSTRACT

RANCHO SECO BUILDING WAKE EFFECTS ON ATMOSPHERIC DIFFUSION: SIMULATION IN A METEOROLOGICAL WIND TUNNEL

Wind tunnel diffusion tests were conducted on 1:500 scale models of the Rancho Seco Nuclear Power Station, California; surrounding buildings, hyperbolic cooling towers, and terrain were similarly modeled in the Meteorological Wind Tunnel at Colorado State University. The purpose was to quantify the effects on diffusion of buildings perturbing the mean flow. The test program consisted of three gaseous tracer releases of gases having no appreciable plume rise from ground, building, and containment vessel top heights. The program was repeated for eight wind directions and cases of unstable, neutral, and stable atmospheric stratification conditions.

Results show that the buildings significantly perturb the dispersion patterns from the flat terrain isolated source release case, hence buildings, hyperbolic towers, and terrain in the immediate vicinity of the release have a major effect. Maximum ground level normalized concentrations occurred during stable stratification. Upwind or downwind presence of the hyperbolic cooling towers was felt by the shift of ground level concentration values toward conditions approximately two categories more unstable than that suggested by the Pasquill-Gifford curves for the background flow stability.

i

Data from three of the eight wind directions have been examined in some detail. These included 135°, containment building upwind of cooling towers; 225°, cooling towers to the side of the containment vessel wake; and 315°, cooling towers upwind of the containment vessel. If it is assumed that wind tunnel measurements are equivalent to field averaging times of 10 minutes, then the model concentrations adjusted to equivalent one-hour field sampling times overpredict field measurements for these cases by at most a factor of 1.7.

ACKNOWLEDGMENTS

This study was performed under Contract No. AT(49-24)-0236 and NRC -04-76-236 with the Site Safety Research Branch, Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission. Financial assistance is gratefully acknowledged. The guidance of Dr. Robert Abbey, Jr., NRC, in co-ordinating this effort with the field measurements was essential to the completion of this program. Colorado State University Fluid Dynamics and Diffusion Laboratory staff acknowledged for their help in the experimental preparation are Jim Garrison, Jim Maxton, Thatcher Harvey, and the shop personnel. A special thanks goes to Bob Long for his writing of the software for the data reduction.

TABLE OF CONTENTS

Chapter	Page
	ABSTRACT
	ACKNOWLEDGMENTS iii
	LIST OF FIGURES
	LIST OF TABLES ix
	LIST OF SYMBOLS x
1.0	INTRODUCTION
2.0	SIMILARITY CRITERIA
	2.1 Approach Flow
	2.2 Flow Albund Bullulings
	2.5 Concentration Measurements
7 0	EVDEDTMENTAL
3.0	CAPERIMENTAL
	J.1 Willie Tulliet
	5.2 Velocity measurements
	3.5 Temperature measurements
	5.4 Approach Flows
	5.4.1 Similarity Parameters From Field Data 9
	3.4.2 Approach Flow for Neutral Case
	3.4.3 Approach Flow for Moderately Stable Case 11
	3.4.4 Approach Flow for Slightly Unstable Case 12
	3.5 Model
	3.6 Concentration Measurements
	3.6.1 Tracer Gas Release System
	3.6.2 Sample Collection Locations
	3.6.3 Sample Collection System
	3.6.4 Sample Analysis System
-	3.7 Flow Visualization
	3.8 Data Analysis
X.	3.9 Procedure
4.0	RESULTS AND DISCUSSION
	4.1 Concentration Measurements
	4.1.1 Maximum Ground Level Concentrations 20
	4.1.2 Ground Level Concentration Isopleths 21
	4.1.3 Comparison of Concentration Results With
	the Gaussian Diffusion Equation 21
	4.2 Horizontal and Vertical Dispersion
	Coefficients
	4.2.1 Comparison of Dispersion Coefficients With
	Pasquill-Gitford Predicted Values 25
	4.3 Flow Visualization

TABLE OF CONTENTS (continued)

Chapter																				300					Page
5.0	SUMMARY	·		•	•	•	•	•	•	•	٠	•	٠	•	•	•	٠	٠	٠	•	٠	٠	•	•	27
	REFEREN	CE	S	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	·	•	29
	FIGURES	•	•	•	•	•	•	•	•	٠	٠	•	•	٠	•	•	٠	٠	٠	•	•	٩	•	•	31
	TABLES				•		•				•	•	•				•	•	•	•				•	68

LIST OF FIGURES

Figure		Page
1	Meteorological Wind Tunnel	. 31
2	Velocity Profile, Neutral Conditions	32
3	Velocity Profile, Moderately Stable Stratification	. 33
4	Velocity Profile, Slightly Unstable Stratification	. 34
5	Temperature Profile, Moderately Stable Stratifica- tion	. 35
6	Temperature Profile, Slightly Unstable Stratifica- tion	. 36
7	Rancho Seco Topography	. 37
8a 8b	Picture of Model in Wind Tunnel Looking Northwest Source Locations	. 38 . 38
9	Prototype Sampler Locations	• 39
10	Concentration Coefficient Isopleth, Neutral, 135 ⁰ , Release Point C	• 40
11	Concentration Coefficient Isopleth, Moderately Stable, 135°, Release Point C	. 41
12	Concentration Coefficient Isopleth, Slightly Unstable, 135°, Release Point C	. 42
13	Concentration Coefficient Isopleth, Neutral, 135 ⁰ , Release Point G17	. 43
14	Concentration Coefficient Isopleth, Moderately Stable, 135°, Release Point G17	. 44
15	Concentration Coefficient Isopleth, Slightly Unstable, 135 ⁰ , Release Point G17	. 45
16	Concentration Coefficient Isopleth, Neutral, 225°, Release Point C	. 46
17	Concentration Coefficient Isopleth, Moderately Stable, 225°, Release Point C	• 46
18	Concentration Coefficient Isopleth, Slightly Unstable, 225°, Release Point C	• 47

LIST OF FIGURES (continued)

Figure	<u> </u>	age
19	Concentration Coefficient Isopleth, Neutral, 225°, Release Point G17	49
20	Concentration Coefficient Isopleth, Moderately Stable, 225 ⁰ , Release Point G17	50
21	Concentration Coefficient Isopleth, Slightly Unstable, 225°, Release Point G17	51
22	Concentration Coefficient Isopleth, Neutral, 315°, Release Point C	52
23	Concentration Coefficient Isopleth, Moderately Stable, 315°, Release Point C	53
24	Concentration Coefficient Isopleth, Slightly Unstable, 315 ⁰ , Release Point C	54
25	Concentration Coefficient Isopleth, Neutral, 315°, Release Point G17	55
26	Concentration Coefficient Isopleth,Moderately Stable, 315 ⁰ , Release Point G17	56
27	Concentration Coefficient Isopleth, Slightly Unstable, 315 ⁰ , Release Point G17	57
28	Plot of Maximum K versus x/h_b for Release Point C .	58
29	Plot of Maximum K versus x/h_b for Release Point G17.	59
30	Plot of Ratio of Ground Level Centerline K From	
	Gaussian Diffusion Equation to Maximum Observed Ground Level K Versus x/h_b for G17 Release	60
31	Plot of Ratio of Ground Level Centerline K From	
	Gaussian Diffusion Equation Modified by Gifford to Maximum Observed Ground Level K _c Versus x/h _b for	
	G17 Release	61

LIST OF FIGURES (continued)

Figure		Page
32	Plot of σ_y/h_b versus x/h_b for Release Point C	62
33	Plot of σ_y/h_b versus x/h_b for Release Point G17	63
34	Plot of Ratio of σ_y Observed to σ_y From Pasquill-Gifford Curves Versus x/h for G17 Release	64
35	Plot of σ_z/h_b versus x/h_b for Release Point C	65
36	Plot of $\sigma_{\rm Z}^{}/h_{\rm b}^{}$ versus x/h for Release Point G17	66
37	Plot of Ratio of σ_z Observed to σ_z From Pasquill-Gifford Curves Versus x/h, for G17 Release	67

LIST OF TABLES

Table		Page
1	Comparison of Modeling Parameters for Model and Prototype	68
2	Modeling Parameters Calculated From Rancho Seco Field Data	69
3	Neutral Boundary Layer Modeling Parameters Calculated From Rancho Seco Field Data	70
4	Maximum Ground Level Concentration Coefficient (K _c) for all Wind Tunnel Runs	71
5	Horizontal and Vertical Dispersion Coefficients From Wind Tunnel Data	72
6	Data, Wind Direction 0 ⁰	73
7	Data, Wind Direction 45 ⁰	86
8	Data, Wind Direction 90 ⁰	99
9	Data, Wind Direction 135 ⁰	112
10	Data, Wind Direction 180 ⁰	125
11	Data, Wind Direction 225 ⁰	138
12	Data, Wind Direction 270 ⁰	151
13	Data, Wind Direction 315 ⁰	164

LIST OF SYMBOLS

Symbo1	Definition
A	reference area = $1.5 h_b^2$
с	constant = 0.5
dy	differential length in the horizontal perpendicular to plume axis
g	acceleration due to gravity
h . b	height of building
h _s	height of release
К	von Karman's constant, $K = 0.4$
^K c	nondimensional concentration coefficient
L	Monin-Obukhov length
р	power law exponent
PG	Pasquill-Gifford stability category
q	pollutant mass per unit of plume area
Q	source flow rate
r^2	coefficient of determination
Re	Reynolds number Re = UD/v
Ri _b	bulk Richardson Number $Ri_{b} = g(\Delta T) (\Delta z) / [T(\Delta U)^{2}]$
t	time
Т	temperature
ΔT	temperature difference across some reference layer
U	velocity
U _b	velocity at building height
U _r	reference velocity
ປູ	velocity at release point height

x

LIST OF SYMBOLS (continued)

Symbol	Definition
U _w	freestream velocity
U*	friction velocity
x	distance downwind from source
у	horizontal perpendicular distance from plume center
У	center of pollutant mass
Z	vertical distance above ground
^z o	surface roughness
^z r	reference height

Greek Symbols

Х	local concentration
X _{source}	source strength
σy	horizontal dispersion coefficient
σ _z	vertical dispersion coefficient
ν	kinematic viscosity
г	adiabatic lapse rate, $\Gamma = 0.0098 {}^{\rm O}$ k/m

Release Points

A	auxiliary building top	<i>t</i>
С	containment vessel top center	
G5	ground release, southeast side containment	vesse1
G17	ground release, northwest side containment	vesse1

1.0 INTRODUCTION

Wind tunnel diffusion tests were conducted on a 1:500 scale model of the Rancho Seco Nuclear Power Station. The experiments were carried out in the low speed meteorological wind tunnel located in the Fluid Dynamics and Diffusion Laboratory (FDDL) at Colorado State University. Various atmospheric stabilities can be simulated in this wind tunnel.

This wind tunnel study is part of an overall research program developed by the Office of Nuclear Regulatory Research to determine emperically the effect of containment buildings on the atmospheric flow field during different stabilities and over a variety of terrains (Abbey, 1976). This program has consisted of two field studies and two wind tunnel studies. The first field study was carried out at the EOCR complex located at the Idaho National Engineering Laboratory. The corresponding wind tunnel study was conducted in the meteorological wind tunnel of the FDDL at Colorado State University (Hatcher, et al., 1977). The second field study was performed at Rancho Seco, California (Start, et al, 1977), with the corresponding wind tunnel study being the subject of this report.

Three atmospheric stabilities characteristic of the 1975 Rancho SEco feild study were simulated in the wind tunnel. These stabilities were neutral, slightly unstable, and moderately stable. Wind speed and temperature data collected from a 46 meter meteorological tower during the Rancho Seco field program were used to determine the atmospheric stabilities and the approach flows. On the tower, data were collected at the 4, 16, and 46 meter levels. From this a bulk Richardson number (Ri_b) was calculated by CSU staff over the layer 4 to 46 meters for each of the 23 field tests.

Representative bulk Richardson numbers were chosen from these field results and simulated over the corresponding layer in the wind tunnel experiments. Other appraoch flow modeling parameters such as surface roughness (Z_0) , friction velocity (U_*) , and power law exponent (p) were also determiened from the field tower data.

The wind tunnel test program consisted of the simultaneous release of four different tracer gases (methane, ethane, propane, and n-butane) from four points near the containment vessel with subsequent measurements of ground-level concentrations up to 800 meters (prototype) downwind (see Figure 8b). These tests were conducted under three different stabilities (neutral, slightly unstable, and moderately stable) for eight different wind directions, giving a total of 24 runs or 96 release conditions. The eight wind directions were at 45[°] increments starting at zero degrees (north).

Limited flow visualization was also carried out on four wind direction for four stability conditions--the three previously mentioned stabilities plus a very stable case (i.e. Ri_b = -.32, 0.0, 0.35, and ~ 1.0) Titanium tetrachloride with air as a carrier was used as a visible tracer. Color slides and black and white stills, exposed for one second, were taken to document the flow pattern.

This report will address: the experimental program, certain aspects of the experimental considerations, and a detailed presentation of the concentration results of three of the eight wind directions for two release points and two stability conditions. A complete data set of the results is provided for all the concentration experiments.

2.0 SIMILARITY CRITERIA

Physical modeling of the atmospheric surface layer can be accomplished in a meteorological wind tunnel by maintaining equality between certain prototype and model dimensionless quantities. The similarity parameters important to this study are discussed herein and in Hatcher, et al., (1977). A detailed presentation of modeling criteria for the atmospheric surface layer may be found in Cermak (1971) and Snyder (1972).

2.1 Approach Flow

Similarity of neutral flow conditions in the atmospheric surface layer may be accomplished through equality of the dimensionless parameters

$$\frac{U_{\star}}{U_{r}}$$
 and $\frac{L_{r}}{Z_{o}}$ (1)

where U_* is the friction velocity, U_r is some reference velocity, Z_o is the surface roughness and Z_r is a reference height. The equality of these dimensionless parameters between model and prototype insure identical logarithmic wind profiles for model and prototype. The logarithmic wind profile, which holds only for a neutral boundary layer and $Z > Z_o$ is

 $\frac{U}{U_{\star}} = \frac{1}{K} \quad \ln \frac{Z}{Z_{0}}$

where K is the constant of proportionality, von Karman's constant.

For similarity of stratified shear flows, the dimensionless parameters p and Ri_b maintained equal between model and prototype. Ri_b is the bulk Richardson number and p is the power law exponent.

The bulk Richardson is given as

$$\operatorname{Ri}_{\mathrm{b}} = \frac{g}{T} \frac{\Delta T \ \Delta Z}{\left(\Delta U\right)^2} \tag{2}$$

where g is the acceleration due to gravity, ΔT is the temperature difference over a region of interest, ΔZ is the height of the region of interest, ΔU is the velocity difference of the same layer and T is the average temperature through the layer. The bulk Richardson number is a measure of the stability of the atmosphere over a finite layer. A positive Ri_b indicates stable stratification, a negative Ri_b indicates unstable stratification and a Ri_b equal to zero indicates a neutral condition.

P is the exponent in the power law wind profile

$$\frac{U}{U_r} = \left(\frac{Z}{Z_r}\right)^p , \qquad (3)$$

and ranges from 0.1 to 0.6 as the stability varies from unstable through neutral to very stable as defined by Ri_b.

It should be noted that large scale atmospheric eddies and meandering associated with time scales of the order of one hour are not modeled in the wind tunnel. This limitation requires adjustment procedures discussed in Section 4.1.

2.2 Flow Around Buildings

Geometric similarity between model and prototype was accomplished by undistorted scaling in the three dimensions. Exact Reynolds number (Re = U \sqrt{A}/ν) similarity between model and prototype was not possible. Very high wind tunnel velocities would be required in order to attain Reynolds number equality. Reynolds number equality is not necessary when the flow is over sharp-edged geometries. Golden (1961) has shown that for Reynolds numbers exceed a diffusion critical Reynolds number of 11,000 the concentration patterns on the building change very little. Even when Reynolds numbers only exceed about 3,500, there is little detectable variation in the far field plume behavior. For this study the Reynolds number was maintained above 12,000.

The Rancho Seco Nuclear Power Facility is dominated by two large 130 m high hyperbolic coolings towers. Boundary layer tripping wires on the model cooling towers were used to establish separation with reattachment locations similar to those expected on the large prototype facilities. These wires were one-sixteenth inch in diameter running vertically from top to bottom spaced at 30[°] intervals around the cooling tower.

This prototype study released tracers from sources without significant initial momentum. Consequently, situations where jetting of the emitted tracers from the building cavity region occurs were not considered. It is generally accepted that for $h_s/h_b > 2^{l_2}$ and $U_s/U_{\infty} > 1$ the effluent momentum will result in the escape of effluents from the cavity region (Huber, et al., 1976, and Meroney, et al., 1971). U_s is the velocity at the release point and h_s is the height of the release point. For this study the h_s/h_b ratio for the four release points was 1.0 or less and the U_s/U_{∞} ratio was 0.7 or less.

2.3 Concentration Measurements

Concentration measurements from the wind tunnel study can be compared directly to the field measurements by assuming equality of a dimensionless concentration parameters, K_c , between model and prototype (Halitsky, 1968). K_c , the nondimensional concentration coefficient is defined as

$$K_{c} = \frac{\chi UA}{Q}$$
(4)

where χ is the local concentration, U is a characteristic velocity measured at some reference location related to the vertical projection of the complex buildings in a plane perpendicular to the mean wind, and Q if the source flow rate.

3.0 EXPERIMENTAL

3.1 Wind Tunnel

This study was conducted in the Meteorological Wind Tunnel (MWT) at the Fluid Dynamics and Diffusion Laboratory (FDDL) of Colorado State University. A complete description of this wind tunnel (Figure 1) is given by Plate and Cermak (1963). The tunnel has a test section 26.8 meters long and a nominal cross-sectional area of 1.8 x 1.8 meters. Air velocities can be maintained from 0.5 to 35 meters per second with an ambient turbulence level of less than 0.1 percent. The ceiling is adjustable to eliminate any longitudinal pressure gradient.

The MWT was specifically designed to simulate the atmospheric boundary layer. Air inside the tunnel can be maintained at temperatures from 0° C to 80° C. Plates cooled with an ethylene glycol solution were installed on the floor of the first twelve meter portion of the test section. This permitted the test section floor to be cooled to 0° C over its entire length. The final thirteen meters of the test section floor is equipped with heaters such that when the heaters are operational a temperature gradient of 122° C between the hot floor and cold air can be maintained.

3.2 Velocity Measurements

A Datametrics model 800LV linear flowmeter with a range of 0.0 to 30.5 m/s was used to measure the velocity. A motor driven traverse was used to position the probe for the vertical velocity profiles. Each velocity reading was taken using a Hewlett-Packard Integrating Digital Voltmeter interfaced to the Datametrics. The output signal was integrated for 1 minute and than an average determined. Once the desired velocity profile was established, the velocity was monitored throughout the experiment at the 0.38 meter level.

3.3 Temperature Measurements

Temperature measurements were made with a vertical array of 12 YSI model 44004, Fennal glass-coated bead thermistors. Manufacturer's specifications suggest an accuracy of \pm 0.2°C for this type thermistor. Calibrations confirm this reliability. The thermistors were connected to a YSI model 42 SC Tele-Thermometer with a range of -40°C to 150°C.

3.4 Approach Flow

Three different approach flow conditions were provided by the wind tunnel: one for neutral conditions (Ri_b = 0), one for moderately stable stratification (Ri_b = 0.35), and one for slightly unstable stratification (Ri_b = -0.32). The values for the similarity parameters U_*/U_r , Z_r/Z_o , p and Ri_b were determined from the field data (prototype) and are given in Table 1. The actual values (model) set in the wind tunnel are also given in Table 1. For the neutral case, the Reynolds number (Re = $U \sqrt{A}/v$) for prototype and model was 29,000,000 and 12,000, respectively. The bulk Richardson number was set in the wind tunnel over the layer 0.008 to 0.092 meters corresponding to 4 to 46 meters for the prototype.

3.4.1 Similarity Parameters From Field Data

In the 1975 Rancho Seco field study 23 tests were performed by Start, et al., (1977) During these field tests wind and temperature data was collected at 4, 16 and 46 meters on a meteorological tower. The Nuclear Regulatory Commission (1972) criteria based on temperature lapse rate within the first one hundred meters of the atmosphere were used to determine the stability class during each test.

Since the bulk Richardson number was the suitable stability modeling criteria for the wind tunnel, a method other than the NRC criteria was used to assign stability classes to the field data. First the bulk Richardson number was calculated over the 4 to 46 meter level:

$$\operatorname{Ri}_{b} = \frac{g}{T} \frac{(\Delta T/\Delta Z + \Gamma)}{(\Delta U/\Delta Z)^{2}} = \frac{[m/s^{2}] [^{0}k/m]}{[^{0}k] [(m^{2}/s^{2})/m^{2}]}$$
(5)

where Γ is the adiabatic lapse rate (0.0098 O K/m). Second, the Monin-Obukhov length (L) was determined from a curve, presented by Hatcher, et al., (1977), of Z_m/L versus Ri_b , given Ri_b and Z_m which is a matching distance over the layer of interest. Z_m is equal to $(Z_2 - Z_1)/(\ln Z_2/Z_1)$. For the layer 4 to 46 meters, Z_m is equal to 17.20 meters. Finally, the Pasquill-Gifford stability was assigned using Table 6 of Gifford (1975) and the determined L values.

The wind speed data at the 4, 16 and 46 meter levels was fit to a power law curve

$$\left(\frac{U}{U_{46}}\right) = \left(\frac{Z}{46}\right)^{P}$$
 (6)

The power law exponent p and coefficient of determination r^2 was determined for each of the 23 field tests. The coefficient of determination is a measure of how well the data fit the power law curve. An r^2 value equal to 1.00 is a perfect fit.

Table 2 lists the Ri_b , L, p and r^2 values, plus the stability class for the field tests. The wake from the hyperbolic cooling towers should have influenced the meteorological tower data for test numbers 6, 9, 13, 16, 19, 21, and 22, since in these cases the towers are directly up or downwind of the meteorological tower.

Based on low r^2 , anomolous appearing values of Ri_b and wake influence, certain tests were eliminated from having useful meteorological tower data for thepurpose of specifying the modeling parameters. The final tests utilized for specifying the modeling parameters were: 7, 11 and 22 for neutral; 12, 14, 15 and 21 for moderately stable; and 7 for slightly unstable. The p and Ri_b modeled for the moderately stable and slightly unstable cases were the average value of the chosen field tests.

The modeling parameters for the neutral case Z_0/Z_r and U_*U_r were determined by fitting the 4 and 16 meter wind speed readings for each of tests 7, 11 and 22 to the logarithmic wind profile and solving for U_* and Z_0 . The values from the three tests were then averaged. The results of this analysis are presented in Table 3.

3.4.2 Approach Flow for Neutral Case

With the introduction of spires at the test section entrance, the boundary layer developed naturally over the initial 13 meters of fetch upwind of the model to a depth of about 1.8 meters. The velocity profile over the model is given in Figure 2. A power law exponent of 0.15 was determined by a least square fit of the velocity profile to a power law curve. U_*/U_r and Z_o/Z_r values of 0.049 and 2.96 x 10^{-4} , respectively were determined using the velocity profile up to $Z/Z_r = 0.35$ (16 meters prototype).

3.4.3 Approach Flow for Moderately Stable Case

For the moderately stable case the floor of the meteorological wind tunnel was cooled to 0° C and the air entering the test section

was heated to approximately 55[°]C. The velocity was adjusted until a desired Ri_b was reached. The tunnel was allowed to equilibrate for 4 to 6 hours. Figures 3 and 5 give the velocity and temperature profiles, respectively. The bulk Richardson number of 0.35 was determined over the layer 0.008 to 0.092 meters. The p value was 0.44.

3.4.4 Appraoch Flow for Slightly Unstable Case

The wind tunnel floor was heated to approximately $120^{\circ}C$ and the air entering the test section was cooled to approximately $0^{\circ}C$. The velocity profile and temperature profiles are given in Figures 4 and 6, respectively. The bulk Richardson number arrived at was -0.32 and the power law exponent was 0.10.

3.5 Model

The 1:500 scale model of the Rancho Seco Nuclear Power Station consisted of 19 plastic buildings, including the two hyperbolic cooling towers, and a terrain fabricated using 3.2 mm masonite as the base with 6.4 mm styrofoam lifts to simulate the topography. Figure 7 illustrates the Rancho Seco topography. The complete terrain was constructed in pieces such that at any of the eight wind directions the appropriate pieces could be fitted together to form a 1.8 by 3.6 m terrain. The model then fit into the 1.8 m wide meteorological wind tunnel with ~ 2 m of terrain upwind and ~ 2 m of terrain downwind of the containment vessel. The topography was not used in the unstable case to permit surface heating near the containment vessel and towers.

The two, 260 mm high, cooling towers dominated the model topography. The next highest structure was the 104 mm high containment

vessel. All of the model buildings and topography were made to scale in the FDDL shop from plant drawings provided by NRC. The containment vessel model was made using an early set of preconstruction drawings. It should be noted that the model was made assuming a containment vessel height of 52 meters, whereas it seems the actual height is nearer 43 to 45 meters (Start, et al., 1977; Abbey, 1976). Figure 8 shows a view of the model in the wind tunnel looking toward the northwest.

3.6 Concentration Measurements

Four tracer gases were released from four 3.2 mm diameter ports on the containment vessel as noted on Figure 8b. Release point "C", 104 mm high, was located at the top center of the containment vessel. Release point "A" was 37 mm high on the south face (the top of the auxiliary building). Two ground level release points "G5" and "G17" were located on the southest face and on the northwest side of the containment vessel respectively.

The tracer gases used were methane (CH_4) , ethane (C_2H_6) , propane (C_3H_8) and n-butane (C_4H_{10}) . They were released at a concentration of 100% at flow rates varying from 100 to 500 cc/min. These flow rates correspond to exit velocities from the 3.2 mm diameter ports of from 0.13 to 0.63 meters/sec. With these low exit velocities, momuntum departure from the cavity region was not a problem.

After the release of the tracer gases began, the sample collection system was flushed several times. Then a final sample was drawn over a period of approximately 30 seconds and held for subsequent analysis. Once samples were isolated within the collection system the tracer gas flows were terminated to prevent background building in the wind tunnel.

3.6.1 Tracer Gases Release System

The four gases were fed to their respective release port via 3.2 mm tygon tubes. Methane was released from point C, ethane from point G17, propane from G5 and n-butane from A. Each gas came from a Matheson gas cylinder through a two-state regulator, a flow controller and then on to the release port on the containment vessel. The flow rates were measured using a 100 cc soap film flow meter. The flow rates were set so that enough material was present for detection, but the port exist velocity did not exceed the level for escaping the cavity region as previously discussed in Section 2.2.

3.6.2 Sample Collection Locations

A total of 40 samples were collected per run. These samples were taken on the 100, 200, 400, and 800 meter arcs (scaled) downwind of the containment vessel. The prototype sampler locations are shown in Figure 9. These same sampler locations were used in the model study, although a sample was not collected at every grid point. For each wind direction the sampler locations were chosen to best cover where the plume was anticipated to be as determined by smoke visualization. Elevated samples were collected on the centerline of the 200, 400, and 800 meter arcs (scaled).

3.6.3 Sample Collection System

Forty 3.2 mm tygon tubes approximately 8 m in length were fed through the wind tunnel wall and each fastened at a sample grid location. The other ends of the tubes were connected to a sample withdrawing and containing system designed and built by the FDDL staff. This system consisted of 4 modules with each module able to hold 8 samples. Each sample was isolated in a 60 cc plexiglass container with valves at the inlet and outlet sides. The air sample was drawn into or expelled from the plexiglass container using positive or negative pressure differentials across a flexible plastic diaphragm.

3.6.4 Sample Analysis System

A Hewlett-Packard 5700A gas chromatograph with a flame ionization detector (FID) was used to analyze the samples. The oven was maintained at 145° C, the detector at 250° C with a carrier flow rate through the column of approximately 55 cc/min. The column was a 3.2 mm x 2 m Porapak-R column and the carrier gas was nitrogen. Good separation was achieved for the 4 desired compounds with methane coming off the column first after approximately 15 seconds from injection, and n-butane coming off last after approximately 90 seconds. Consequently, each sample analysis took approximately one and one-half to two minutes.

The chromatograph principle of operation is that the compounds are separated by molecular size as they pass through the column. As each hydrocarbon compound elutes from the column and into the FID it is burned in a hydrogen flame and ionized. The potential set up across the detector is measured by an electrometer, amplified and outputted to a recorder or any other compatible data handling device.

For this study the analog output from the gas chromatograph was converted to a digital signal using a Preston A/D converter which was interfaced to a Hewlett-Packard 1000 computer system.

Therefore, for each sample analyzed the concentration of each tracer was determined and stored on a disc file in the computer system.

Prior to each sample collection a background air sample was taken in the wind tunnel; this amount for each compound was then subtracted from the sample values. The gas chromatograph was calibrated prior to each day's operation.

It should be noted that the electrometer output is proportional to the number of carbon atoms (or methane molecules) that are ionized in the detector. Consequently, only one hydrocarbon compound of known concentration is needed to calibrate the electrometer response. For instance, 30 ppm of propane gives the same total integrated response as 82.5 ppm of methane $[(44/16) \times 30]$. Therefore, the electrometer response can be calibrated based on one compound and all the other compounds can be expressed relative to the calibration gas. For this study the calibration was based on methane and the electrometer response factor was approximately 0.25 ppm CH_4/mV -sec.

The minimum resolution for the entire sample collection-analysis system was determined to be approximately 1 to 2 ppm as methane.

3.7 Flow Visualization

Titanium tetrachloride with air as a carrier was used as a visible tracer. The air, regulated by a flow controller, passed through a bottle of titanium tetrachloride, and was carried through a 3.2 mm Tygon tube to the release port. For four wind directions (135, 180, 225,315), for each release point, under each of the 3

stabilities, one-second exposure pictures were taken of the visible plume. These pictures were used for qualitative interpretation and to relate visual observations in field and model. Flow visualization was also carried out on an additional very stable case.

3.8 Data Analysis

The concentration data was normalized to a nondimensional concentration coefficient, K_c . The coefficient K_c is determined from

$$K_{c} = \frac{\chi U_{b}^{A}}{\chi_{source}^{Q}}$$

where χ is the local concentration (ppm) U_b is the velocity at the containment vessel top height of 0.104 m (m/s), A is the reference area which was chosen to be one and one-half times the square of the containment vessel height (0.0163m²), χ_{source} is the source strength (ppm) and Q is the source flow rate (m³/sec).

The data was reduced and formated uisng a Hewlett-Packard 1000 computer system.

3.9 Experimental Procedure

The procedure for the experiment was as follows: 1) the model, velocity and temperature probes and sampling grid were installed in the wind tunnel: 2) wind tunnel heating and cooling controls were adjusted to achieve the proper thermal stratification; 3) concentration measurements were taken; 4) flow visualization was performed; and 5) the data were processed.

4.0 RESULTS AND DISCUSSION

4.1 Concentration Measurements

The results of the concentration measurements for all the runs are presented in Tables 6 through 13. Each table is a set of 12 pages in which the results for a particular wind direction are summarized. Each page within a table gives the listing of the results of the forty samples collected for a particular stability for a particular release point. For each sample, the corresponding prototype grid point and arc is identified as labeled in Figure 9.

The concentration results are presented in the form of the dimensionless concentration coefficient, K_c , as described in Section 3.8. If the prototype concentration values are displayed in exactly this same form, the model and prototype values can be compared directly.

The Rancho Seco field samples were collected over a one-hour period. Hatcher (1977) suggests that one can reasonably assign a minimum effective full-scale averaging time of 10 minutes to mean laboratory data.

It is known that average maximum concentrations of gaseous dispersion in the atmosphere tend to decrease with increasing sampling time. Since the motion of air flow in lower atmosphere is limited in the vertical direction by the presence of the ground, the magnitude of eddy size in the transverse direction may be much greater than that in the vertical direction. Thus, the meandering behavior or gustiness effect because of the large scale of eddy in the atmosphere causes a greater transverse dispersion. Since the larger eddy motion cannot be produced in the wind tunnel, some adjustments must be made for field application.

This phenomenon, often known as the gustiness effect, was first considered by Inoue (Hino, 1968). He reported that a smoke cloud width increases at a rate proportional to the 1/2 power of the observation time. Ogura (1959) developed a mathematical model which suggested a -1/2 power variation of the maximum concentration with time. Hino (1967) performed a large scale study for a time range from ten minutes to five hours. The study which involved releasing tracer materials from high stacks of thermal electric power stations also gives support to the -1/2 power law. Hino also found that atmospheric instability has only small effect on the exponent of the power law, i.e., $\chi \sim \tau^{-1/2}$. The applicable range of the -1/2 law is greater for unstable than for neutral stratification.

An alternative -1/5 power law was proposed by Nonhebel. Hino (1968) suggested, however, that the applicable time range for this law is less than ten minutes. Other exponents for the peak to mean concentration ratio from -0.65 to -0.35 depending on meteorological condition, have been recommended by the ASMC Committee on Air Pollution Control. Hinds (1967) measured the peak to mean concentration ratios in a building wake region. Data indicated the -1/2 law can also be used satisfactorily to predict the dispersion in the wake flow.

More recently, Brun, et al. (1973) reviewed all prior experiments for peak to mean variations with averaging time. Although they report values of the power law coefficient which vary from 0.12 to 0.86 depending upon stratification and averaging time they conclude a value of 0.5 is most appropriate when transposing from 0.25 to one hour averaging times.

Applying Hino's (1968) minus one half power law,

$$\chi_{p} = \chi_{m}(\frac{t_{p}}{t_{m}})$$

where χ_p is prototype concentration, χ_m is model concentration, t is prototype sampling time, and t is model equivalent field sampling time, we have for this study,

$$x_{\rm p} = x_{\rm m} \left(\frac{60}{10}\right)^{-1/2} = 0.4 x_{\rm m}$$

This means that the wind tunnel measurements overpredict prototype concentrations by a factor of two and one-half for typical near neutral flow conditions.

4.1.1 Maximum Ground Level Concentrations

In Table 4 is provided a list of the maximum ground level dimensionless concentration coefficients for each of the four sampling arcs for all wind tunnel runs. It should be noted that when the wind is from 135°, the cooling towers are directly downwind of the containment vessel, and when the wind is from 315°, the cooling towers are directly upwind of the containment vessel.

The maximum ground-level concentration for each sampling arc occurred during the moderately stable stratification. On the 100 meter arc the highest level was from release point C when the winds were out of the 45° and 90° directions. For the 200 meter arc the maximum concentrations occurred under the same conditions as on the 100 meter arc. The peak level for the 400 meter arc was measured during a release from C at 90° winds and during a release from G5 at 225° winds. For the 800 meter arc the peak concentration occurred from A at 90° and from G5 at 225° .

4.1.2 Ground Level Concentration Isopleths

In Figures 10 through 27 are presented concentration coefficient isopleths at ground level for wind directions 135°, 225° and 315°. For each wind direction plots are provided for the three stability conditions, for two release points, C and G17. Of the three wind directions, the one not directly influenced by the wake of the cooling towers is the 225° direction. From all the figures it is apparent that the cooling towers significantly alter the concentration pattern under any of the stability conditions. The initial impact of the cooling towers is to increase the plume spread and decrease the downwind concentrations from that of when the towers are not of direct influence.

4.1.3 <u>Comparison of Concentration Results With the Gaussian Diffusion</u> Equation

The maximum observed ground level concentration coefficient versus distance downwind is plotted with the Gaussian diffusion equation evaluated at the centerline with $h_s = 0$ and Z = 0 using Pasquill-Gifford values for the horizontal and vertical dispersion coefficients. The results of wind directions 135° , 225° and 315° are presented in Figures 28 and 29. In Figure 28 is displayed the results of release point C for moderately stable and neutral conditions, and release point G17 for the same two stabilities is presented in Figure 29. The Gaussian diffusion equation eveluated at the centerline with $h_s = 0$ and Z = 0 is

$$\frac{\chi UA}{Q} = \frac{A}{\pi \sigma_y \sigma_z}$$

where σ_y and σ_z are the dispersion coefficients from Figures 3-2 and 3-3 in Turner (1969).

For the elevated release, it is apparent that the plume remains aloft to at least 200 m downwind for the 225[°] wind direction. For the 315[°] and 135[°] directions the plume is brought to the ground sooner as a result of the increased mechanical mixing behind the cooling towers.

At approximately 15 building heights downwind (800 m) the results of the neutral case for the 225[°] wind direction is indicative of a Pasquill-Gifford "C" stability. For the moderately stable stratification the results indicate a Pasquill-Gifford "D" class. This is probably a result of the building wake enhancing the atmospheric dispersion capabilities.

For the 135[°] direction under moderately stable stratification, the results at 800 meters show a Pasquill-Gifford "C" stability. For neutral, the results indicate a Pasquill-Gifford stability of "B". This shows the additional dispersion due to the presence of the cooling towers.

At 100 meters the Gaussian predicted concentration over estimates the observed concentration by a factor of approximately 17, and at 800 meters the formula overpredicts the observed by a factor of approximately 5 (see Figure 30). Using the argument presented in Section 4.1, that the wind tunnel measurements overpredict prototype concentrations by a factor of two and one-half for near neutral conditions, implies that based on wind tunnel results, the Gaussian diffusion equations over estimates prototype concentrations by a factor of 43 at 100 meters for a ground level release. Start, et al., (1977) says, based on actual field measurements at Rancho Seco, that the measured ground-level axial concentrations were about 75 times smaller than predicted by the Gaussian diffusion equation. This then implies that for a ground release the wind tunnel over predicts the actual centerline ground level concentration by a factor of approximately 1.7. Part of this could probably be attributed to excessive plume meandering during the low wind speed inversion conditions. An additional improvement would be made if an averaging time power law coefficient was selected by stratification condition.

In Figure 31 is given a comparison of the wind tunnel measured ground level axial concentration coefficient and the concentration coefficient determined from a modified Gaussian diffusion equation (Gifford, 1960, 1968). The comparison is in the form of a ratio versus the distance downwind. Wind directions 135°, 225° and 315° for a G17 release point are considered. The Gaussian diffusion equation modified by Gifford to account for dispersion in building wakes is

$$\frac{\chi UA}{Q} = \frac{A}{\pi \sigma_y \sigma_z + CA}$$

where C was chosen to be 1/2 (Gifford, 1975). The results show that at 100 meters the Modified Gaussian under predicts the measured concentration by a factor of 0.7 and at 800 meters the Modified Gaussian over estimated by a factor of 2.7.

4.2 Horizontal and Vertical Dispersion Coefficients

The horizontal dispersion coefficient, σ_y , was determined using the method descirbed by Whaley (1974). Only the ground level concentration data was used. First, the mass of pollutant per unit area of plume, q, was determined, where:

$$q = \int K dy$$
.

Second, the center of pollutant mass, \overline{y} , which is the first moment was calculated:

$$\overline{y} = \frac{1}{q} f_{c} y dy.$$

Then the second moment, σ_v^2 , was determined:

$$\sigma_y^2 = \frac{1}{q} \int K_c (y - \overline{y})^2 dy$$
.

 σ_y then is the square root of the variance σ_y^2 . All of the integrals were evaluated using Simpson's Rule. σ_y was converted from degrees to meters simply by multiplying the arc radius by the tangent of the angle. This, of course, gives just an approximate measure of the linear plume spread.

The vertical dispersion coefficient was determined by solving the crosswind integrated concentration equation (see Eq. 4, p. 404, Slade, 1968) for $\sigma_{_{7}}$ for a ground release, giving;

$$\sigma_{z} = \frac{(2/\pi)^{1/2} A}{\int K_{c} dy}$$

In Table 5 are listed the σ_y and σ_z values for the 135^o, 225^o and 315^o wind directions for release points C and G17 under neutral and moderately stable cases. The low σ_y values on the 800 meter arc of
the 315° wind direction moderately stable stratification appear to be a result of topographic influences. Inspection of the Rancho Seco topography (Figure 7) shows that a portion of the 800 meter samplers are located behind a hill. Apparently, the plume was channeled partly around the hill and also remained aloft after ascending over the top of the hill. Thus the plume passed over a portion of the 800 meter samplers. Inspection of the vertical profile in the data tables for the 315° moderately stable case supports this argument.

The calculation of σ_z from the cross wind integrated concentration equation evaluated at ground level gave some incorrect results because the plume was still mostly aloft at 100 meters downwind for some releases. Hence the extremely high σ_z values on the 100 meter arc for the 225⁰ wind direction, neutral and moderately stable cases for release point C are not significant.

4.2.1 <u>Comparison of Dispersion Coefficients with Pasquill-Gifford</u> Predicted Values

Plots of σ_y/h_b versus x/h_b for wind directions 135° , 225° and 315° for release point C and G17 are shown in Figures 32 and 33 respectively. Also the Pasquill-Gifford values of σ_y for different stabilities are displayed. In Figures 35 and 36 is presented the same information for σ_z/h_b . These plots support the conclusions discussed in the third and fourth paragraphs of section 4.1.3 concerning the effective Pasquill-Gifford stability for each run. In general, the Pasquill-Gifford stability category indicated at 800 meters is one category more unstable than the approach flow stability for the moderately stable and neutral cases when the cooling towers are not affecting the plume (225°). For the cooling towers directly affecting the plume (135° , 315°), the Pasquill-Gifford category is approximately two categories more unstable than the background flow stability.

Figure 34 is a plot of the ratio of σ_y observed to σ_y from Pasquill-Gifford curves versus x/h_b for a G17 release. Also, in this figure is presented the results of the Rancho Seco field data (Start, et al., 1977). For the wind tunnel data the σ_y is approximately a factor of 3.5 times larger than the Pasquill-Gifford σ_y . For the Rancho Seco field data the σ_y is approximately a factor of 5.6 times larger than the Pasquill-Gifford value. This implies that the σ_y from the field data is 1.6 times larger than the σ_y from the wind tunnel data. (Refer again to the discussion in Section 4.1.)

A plot of the ratio of σ_z observed (wind tunnel) to σ_z from Pasquill-Gifford curves versus x/h_b for a G17 release is given in Figure 37. The σ_z for the wind tunnel for wind directions 135° , 225° , and 315° is approximately 2.2 times larger than the σ_z from the Pasquill-Gifford curves.

4.3 Flow Visualization

Black and white stills and color slides exposed for one second provided satisfactory visual documentation of the plume drift. Titanium tetrachloride was used to make the plume visible. Wind directions 135°, 180°, 225°, and 315° were investigated. The pictures and slides are included in a separate text. 5.0 SUMMARY

Twenty-four wind tunnel tests were run on a 1:500 scale model of the Rancho Seco Nuclear Power Station. The atmospheric stabilities investigated were neutral, moderately stable and slightly unstable. Different tracer gases were released from four different release points on the containment vessel and the concentration field downwind was determined. Eight wind directions were investigated.

The bulk Richardson numbers set in the wind tunnel were 0.0, 0.35 and -0.32 corresponding to the three stabilities, with power law exponents of 0.15, 0.44 and 0.10, respectively. The roughness length modeled was that of short grass ($Z_0 = 0.014$ m).

The maximum ground-level dimensionless concentration coefficient for each of the four sampling arcs occurred during the moderately stable stratification. The highest ground-level concentration on all four arcs was measured during the 90[°] wind direction from release point C.

A fairly thorough investigation of the dispersion characteristics was carried out on three out of the eight wind directions. The wind directions were 135°, 225° and 315°. For the 135° and 315° directions two large hyperbolic cooling towers were directly influencing the plume behavior. The following conclusions will be based only on the above mentioned three wind directions.

Plots of σ_y/h_b versus x/h_b , σ_z/h_b versus x/h_b and K_c versus x/h_b compared with Pasquill-Gifford predicted values for different stability categories provides the following general conclusion: For the case of the cooling towers not affecting the plume (225°), the Pasquill-Gifford stability indicated at 800 meters is one category more unstable than the approach flow conditions. For the cooling towers directly affecting the plume (135°, 315°), the Pasquill-Gifford category

indicated is approximately two categories more unstable than the background flow stability.

On the 100 meter arc, the Gaussian diffusion equation predicted K_c over-estimates the wind tunnel K_c by a factor of approximately 17. It is believed that the wind tunnel over-predicts a one-hour sampling time prototype K_c by a factor of 2.5 for a near neutral stability. From actual field measurements at the Rancho Seco Facility, the measured ground level axial concentrations were about 75 times smaller than predicted by the Gaussian diffusion equation. This implies that for a ground level release the wind tunnel over predicts the actual field concentrations by a factor of approximately 1.7.

On the 100 meter arc, the Gaussian diffusion equation modified by Gifford under predicts the wind tunnel concentration by a factor of 0.7 and at 800 meters the modified Gaussian over-estimates by a factor of 2.7.

The horizontal dispersion coefficient, σ_y , was determined using a moment method and the vertical dispersion coefficient, σ_z , was determined from the crosswind integrated average concentration equation. The average σ_y from the Rancho Seco field study is approximately 1.6 times larger than the σ_y from the wind tunnel data. This can probably be attributed to plume meandering. The σ_z for the wind tunnel data is approximately 2.2 times larger than the σ_z predicted from Pasquill-Gifford curves.

REFERENCES

- Abbey, R. F., 1976, "Concentration Measurements Downwind of Buildings: Previous and Current Experiments," Third Symposium on Atmospheric Turbulence and Diffusion and Air Quality, October 19-22, 1976, Raleigh, North Carolina, pp. 247-254.
- Brun, J., Hugon, J., and Le Quino, R., 1973, "Influence of Exposure Duration on the Evaluation of Coefficients of Atmospheric Diffusion," Proceedings of Symposium on the Physical Behavior or Radioactive Contaminants, Vienna, Austria, November 12-14, 24 pp.
- Cermak, J. E., 1971, "Laboratory Simulation of the Atmospheric Boundary Layer," AIAA Journal, Vol. 9, No. 9, pp. 1746-1754.
- Gifford, F. A., Jr., 1960, "Atmospheric Dispersion Calculations Using the Generalized Guassian Plume Model," <u>Nuc. Safety</u>, Vol. 2, pp. 56-59, pp. 67-68.
- Gifford, F. A., Jr., 1968, "An Outline of the Theories of Diffusion in the Lower Layers of the Atmosphere," in <u>Meteorology and Atomic</u> <u>Energy - 1968</u>, edited by D. H. Slade, USAEC Report No. TID 24190, pp. 65-116.
- Gifford, F. A., 1975, "Turbulent Diffusion Typing Schemes: A Review," Environmental Research Laboratories, ATDL Report No. 75/2, or, 1976, Nuclear Safety, 17, No. 1, pp. 68-86.
- Golden, J., 1961, "Scale Model Techniques," M.S. Thesis, New York University, Department of Meteorology and Oceanography.
- Hatcher, R. V., Meroney, R. N., Peterka, J. A., and Kothari, K., 1977, "Dispersion in the Wake of a Model Industrial Complex," U.S. Nuclear Regulatory Commission Report NUREG-0378, FDDL Report CER76-77RVH-RNM-JAP-KK35, Colorado State University, Fort Collins, June, 231 pp.
- Hinds, W. T., 1967, "On the Variation of Concentration in Plumes and Building Wakes," USAEC Meteor. Information Meeting, September 11-14, 1967, pp. 105-131.
- Hino, M., 1968, "Maximum Ground Level Concentration and Sampling Time," Atmospheric Environment, Vol. 2, pp. 149-165.
- Hino, M., 1968, "Computer Experiment on Smoke Diffusion Over a Complicated Topography," Atmospheric Environment, Vol. 2, pp. 543-558.
- Huber, A. H., and Snyder, W. H., 1976, "Building Wake Effects on Short Stack Effluents," Preprint Volume, Third Symposium on Atmospheric Turbulence, Diffusion and Air Quality.

- Meroney, R. N., and Yang, B. T., 1971, "Wind Tunnel Study on Gaseous Mixing Due to Various Stack Heights and Injection Rates Above an Isolated Structure," FDDL Report CER71-72RNM-BTY16, Colorado State University, Fort Collins.
- Nuclear Regulatory Commission, 1972, "Onsite Meteorological Programs," NRC Regulatory Guide 1.23, Washington, D. C.
- Ogura, Y., 1959, "Diffusion From a Continuous Source in Relation to a Finite Observation Interval," <u>Adv. Geophysics</u>, Vol. 6, pp. 149-159.
- Plate, E. J., and Cermak, J. E., 1963, "Micro-Meteorological Wind Tunnel Facility: Description and Characteristics," FDDL Report CER63EJP-JEC9, Colorado State University, Fort Collins.
- Slade, D., ed. 1968, Meteorology and Atomic Energy 1968, U.S. Atmomic Energy Commission, Division of Technical Information, 455 pp.
- Snyder, W. H., 1972, "Similarity Criteria for the Application of Fluid Models to the Study of Air Pollution Meteorology" Boundary Layer Meteorology, 3(2), pp. 113-134.
- Start, G. E., Cate, J. H., Dickson, C. R., Ricks, N. R., Ackerman, G. R., and Sagendorf, J. F., 1977, "Rancho Seco Building Wake Effects on Atmospheric Diffusion," Joint Conference on Applications of Air Pollution Meteorology, November 29-December 2, 1977, Salt Lake City, Utah, pp. 357-363.
- Start, G. E., Cate, J. H., Dickson, C. R., Ricks, N. R., Ackerman, G. R., and Sagendorf, J. F., 1977, "Rancho Seco Building Wake Effects on Atmospheric Diffusion," NOAA Technical Memorandum ERL-ARL-69, 185 pp. November.
- Turner, D. B., 1969, "Workbook of Atmospheric Dispersion Estimates," U.S. Department of Health, Education and Welfare, Public Health Service, Cincinnati, Ohio.
- Whaley, H., 1974, "The Derivation of Plume Dispersion, Parameters From Measured Three-Dimensional Data," <u>Atmosheric Environment</u>, Vol. 8, pp. 281-290.

Figure 1. METEOROLOGICAL WIND TUNNEL (Completed in 1963) FLUID DYNAMICS & DIFFUSION LABORATORY COLORADO STATE UNIVERSITY

Figure 2. Velocity Profile, Neutral Condition

Figure 3. Velocity Profile, Moderately Stable Stratification

Figure 4. Velocity Profile, Slightly Unstable Stratification

Figure 5. Temperature Profile, Moderately Stable Stratification

Figure 6. Temperature Profile, Slightly Unstable Stratification.

Figure 8a. Picture of Model in Wind Tunnel Looking Northwest

Figure 8b. Source Locations

Figure 9. Prototype Sampler Locations

Figure 12.

Figure 23.

Figure 24.

Concentration Coeff. Isopleths Stability — Moderately Stable Wind Dir. — 315° Release Pt. — G17

. 800 m

. 400m

57

Figure 27.

Figure 28. Plot of Maximum K_c Versus x/h_b for Release Point C

Figure 29. Plot of Maximum K_c Versus x/h_b for Release Point G17.

** Observations for each Wind Direction are Average of Moderately Stable and Neutral Cases.

Figure 30. Plot of Ratio of Ground Level Centerline K_c from the Gaussian Diffusion Equation to Maximum Observed Ground Level K_c Versus x/h_b for G17 Release.

** Observations for each Wind Direction are Average of Moderately Stable and Neutral Cases.

Figure 31. Plot of Ratio of Ground Level Centerline K_c From the Gaussian Diffusion Equation Modified by Gifford to Maximum Observed Ground Level K_c Versus x/h_b for G17 Release

Figure 32. Plot of σ_y/h_b versus x/h_b for Release Point C

Figure 33. Plot of σ_y/h_b Versus x/h_b for Release Point G17

* Observations for each Wind Direction are Average of Moderately Stable and Neutral Cases.

** Observations are Average of All Field Data.

Figure 34. Plot of Ratio of σ_y Observed to σ_y From Pasquill-Gifford Curves Versus x/h_b for G17 Release.

Figure 35. Plot of σ_z/h_b versus x/h_b for Release Point C.

Figure 36. Plot of σ_z/h_b Versus x/h_b for Release Point G17.

*Observations for each Wind Direction are Average of Moderately Stable and Neutral Cases.

Figure 37. Plot of Ratio of σ_z Observed to σ_z from Pasquill-Gifford Curves Versus x/h_b for G17 Release

67

Property in the second s								10-10-10-10-10-10-10-10-10-10-10-10-10-1	
PARAMETER		MC	DEL			PROTC	TYPE		
Cont. Vessel height (hb)	0.104m				52m				
Cooling Tower height	0.26m					1 30m			
Release Point height:									
Cont. Vessel Top (C)		0.1	104m			52m			
Aux. Building Top (A)		0.0)37m			18.	,4m		
Gnd. Cont. Vessel (G5)		0.	, Om			0.0	m		
Gnd. Cont. Vessel (G17)		0.	, Om		O.Om				
Release Port diameters		0.0)032m		'				
Met. Tower height (Z _r)		0.0)92m	1	46m				
Reference Velocity (U_r)		1.45	jm/sec		4.9m/sec				
z _o /z _r		2.96	5x10-4			3.02x	10-4		
U _* /U _r		0.	,049			0.0	45		
Atmospheric Stability	PG*					Ri.	z /1.	D**	
		<u>p</u>	- <u>r</u> /-	P		D	- <u>r</u> /-	. P	
Slightly Unstable	C-D -0.32 -0.67 0.10				C-D	-0.62	-1.18	0.10	
Neutral	D	0.0	0.0	0.15	D	0.0	0.0	0.16	
Moderately Stable	E-F	0.35	1.44	0.44	F	0.57	2.30	0.35	

Table 1. Comparison of Modeling Parameters for Model and Prototype

*Pasquill-Gifford stability category. **Power law exponent.

FIELD TEST NUMBER	*р	*r ²	*Ri _b	*P-G Stability	*NRC Assigned Stability
1	0 002	0.01	17 08	Λ	
2	0.002	0.01	-13.08	A	A C
3	0 1 38	1 00	7 /1	G	G
4	0.147	0.40	23 73	G	G
5	- 143	0.40	126 06	G	G
6	0.077	1.00	-0.65	A-B	
7	0.102	1.00	-1.35	A	A
8				-	G
9	0.110	0.98	-6.37	А	D D
10				-	F
11	0.201	0.99		-	E
12	0.374	0.94	0	D	Ē
13	0.037	0.16	44.77	G	F
14	0.590	0.99	0.64	F	G
15	0.191	0.96	-0.66	A-B	D
16	0.148	0.98	17.70	G	Е
17	0.173	0.81	8.23	G	G
18	012	0.01	∞	G	F
19	0.224	1.00	1.92	G	Е
20					G
21	0.243	0.99	1.99	G	G
22	0.120	0.96	/	-	D
23			0.40	F	F
			£ 1		

Table 2. Modeling Parameters Calculated from Rancho Seco Field Data

*p is the power law exponent.

 r^2 is the coef. of determination for the power law curve fit. ${\rm Ri}_{\rm b}$ is the bulk Richardson number.

L is the Monin-Obukhov length

P-G is the Pasquill-Gifford stability category.

NRC is the stability assigned by the lapse rate criteria.

Table 3. Neutral Boundary Layer Modeling Parameters Calculated From Rancho Seco Field Data

FIELD TEST NUMBER	Z _r (m)	Ur (m/s)	$\frac{\mathtt{U}_{*}}{\mathtt{U}_{r}}$	$rac{\mathrm{Z_o}}{\mathrm{Z_r}}$,
7	46	5.9	0.034	0.10x10 ⁻⁴	2
11	46	6.4	0.050	6.38x10 ⁻⁴	
22	46	2.8	0.052	2.57×10-4	
			0.045	3.02x10 ⁻⁴	Average

 $\rm U_{*}$ is the friction velocity. $\rm Z_{O}$ is the surface roughness.

DISTANCE	STABILITY	RELEASE			W	IND DI	RECTIO	N		
DOWNWIND	CLASS	POINT	000	045	090	135	180	225	270	315
	NEUTRAL	C A G5 G17	1.95 2.09 1.37 1.77	3.91 1.68 2.24 2.39	3.58 2.11 2.39 2.58	2.29 1.15 2.60 2.31	.06 1.87 2.79 2.36	•37 2.78 2.47 2.06	1.16 2.05 2.94 2.58	1.20 1.83 1.58 2.49
100m	MOD. STABLE	C A G5 G17	1.90 1.69 3.11 1.73	6.45 3.07 3.59 4.08	6.60 3.04 2.96 4.50	1.30 2.58 3.56 3.56	.10 3.32 3.23 2.88	•75 3•28 3•11 3•88	1.16 3.12 2.81 4.32	2.33 2.62 2.37 2.71
	SLT. UNSTABLE	C A G5 G17	1.10 1.40 1.61 1.42	4.47 2.32 3.17 3.09	3.82 2.51 2.74 2.30	2.49 1.16 2.23 2.12	2.18 5.06 1.55	4.75 4.26 2.08	1.54 3.00 3.18 2.54	1.23 1.86 1.76 1.17
	NEUTRAL	C A G5 G17	1.32 1.23 .71 .98	1.90 1.02 1.21 1.34	2.00 .99 1.05 1.58	1.33 .85 .86 1.08	•58 •79 •91 •67	•73 1,52 1.11 1.02	1.17 1.54 1.13 1.73	.94 .92 .78 1.02
200m	MOD. STABLE	C A G5 G17	1.77 1.73 2.23 1.62	3.47 2.19 2.25 2.68	3.66 2.26 1.89 3.27	1.37 1.81 1.72 1.36	1.39 2.62 2.44 .87	1.40 2.14 2.31 1.91	1.42 2.24 1.76 1.94	1.63 1.18 1.45 1.25
	SLT. UNSTABLE	C A G5 G17	1.21 .89 .73 1.03	1.72 1.22 1.74 1.52	1.82 1.04 1.18 1.25	.84 .86 .97	•50 •75 1.55 •52	.94 1.46 1.54 .97	1.05 1.24 1.55 1.33	•74 •76 •75 •59
	NEUTRAL	C A G5 G17	.62 .62 .51 .47	•51 •35 •42 •56	.91 .49 .42 .89	•51 •44 •35 •51	•51 •57 •63 •48	.62 .79 .62 .52	.66 .69 .58 .99	.47 .53 .40 .56
400m	MOD. STABLE	C A G5 G17	1.27 1.12 1.32 1.02	1.36 1.08 1.04 1.29	1.71 1.34 .62 1.26	•75 •69 •78 •58	1.25 .95 1.01 .89	1.47 1.30 1.71 1.14	.94 1.22 1.04 .89	.93 1.09 .85 .68
	SLT. UNSTABLE	G17	.54 .42 .53 .50	.60 .50 .77 .64	.60 .82 .75	•45 •37 •34 •38	.40 .31 .44 .31	•45 •58 •61 •49	.90 .46 .62 .43	•30 •35 •37 •22
	NEUTRAL	C A G5 G17	.23 .24 .20 .20	.25 .23 .24 .28	.41 .34 .29 .43	.19 .17 .16 .20	.27 .23 .20 .26	. 34 . 38 . 29 . 29	.34 .34 .28 .50	.21 .24 .19 .22
800m	MOD. STABLE	C A G5 G17	• 30 • 37 • 57 • 24	•74 •79 •69 •72	.80 .84 .50 .71	.21 .24 .35 .20	•75 •76 •83 •67	.81 .70 .89 .64	•55 •53 •56 •40	•39 •25 •32 •39
	SLT.	C A G5 G17	.22 .18 .26 .23	.23 .21 .31 .27	.28 .25 .38 .29	.16 .12 .12 .14	.17 .17 .20 .17	.14 .21 .24 .21	.13 .18 .26 .17	.13 .13 .15 .11

Table 4. Maximum Ground-Level Nondimensional Concentration Coefficient for all Wind Tunnel Runs

			SIGMA	-Y (m)	SIGMA	-Z (m)
STABILITY CLASS	WIND DIRECTION	DISTANCE DOWNWIND	REL. PT. C	REL. PT. G17	REL. PT. C	REL. PT. G17
5	135	100 200 400 800	35 45 89 120	46 56 93 131	11 17 24 51	7 16 23 45
NEUTRAL	225	100 200 400 800	29 43 60 83	21 39 59 78	136 39 31 51	18 27 34 58
	315	100 200 400 800	32 54 97 111	39 59 91 119	25 22 26 50	10 17 29 47
	135	100 200 400 800	31 35 89 108	36 44 97 123	23 18 20 48	6 17 22 46
MOD. STABLE	225	100 200 400 800	27 32 42 64	22 36 54 78	77 24 14 26	14 16 15 27
×	31.5	100 200 400 800	29 42 66 51	46 57 73 63	17 14 24 57	7 13 25 53

Table 5. Calculated Horizontal and Vertical Dispersion Coefficients From Wind Tunnel Data

Table 6. Data, Wind Direction 0°

CONCENTRATION DATA FOR RUN NO. 1 STABILITY: NEUTRAL WIND DIRECTION: 9 DEG. RELEASE POINT: C

	PROTOTY	'PE	MC	DDEL
SAMPLER	ARC	ELEY	DEGREES OFF*	CONCENTRATION
GRID POINT	(M)	(M)	CENTER LINE	COEFFICIENT
100	100	Ģ	60	. 0001
97	100	0	4 2	. 0001
94	100	Q	24	. 0481
91	100	¢	6	. 2333
89	100	Q	- 6	1.9490
86	100	¢	-24	. 5635
83	100	0	-42	. 1183
80	100	Q	-60	. 0028
143	200	Q	-42	.0058
145	200	0	-30	. 0093
147	200	0	-18	. 5464
150	200	¢	Q	1.3152
150	200	25	0	1.2237
150	200	76	0	. 1750
151	200	0	6	1.1113
153	200	0	18	. 1852
155	200	0	30	.0415
157	200	¢	42	. 0011
159	200	¢	54	. 0000
217	400	¢.	42	. 0091
215	400	0	30	. 0098
213	400	Q	18	. 0161
211	400	0	6	. 4706
210	400	0	0	. 6190
210	400	25	¢.	. 4890
210	400	76	0	. 1468
209	400	Q	- 6	. 6353
207	400	Ģ	-18	. 0000
205	400	Ŷ	-30	. 0518
267	800	¢	-18	.0335
268	800	¢	-12	. 1285
270	800	. Q	0	. 2269
270	800	25	0	. 1822
270	800	76	Q	. 1148
270	800	127	Q	.0521
271	800	¢	6	. 1035
272	800	¢	12	. 0622
273	800	. O	18	. 0168
274	800	Ŷ	24	. 0001

CONCENTRATION DATA FOR RUN NO. 10 STABILITY: MCDERATELY STABLE WIND DIRECTION: 0 DEG. RELEASE POINT: C

	PROTOTYPI	E		MC	DEL	
SAMPLER	ARC	ELEV		DEGREES OFF*		CONCENTRATION
GRID POINT	(M)	(M)		CENTER LINE		COEFFICIENT
100	100	¢		60		. 0000
97	100	Ò		42		. 0000
94	100	Ŷ		24		. 2035
91	100	¢		6		1.3025
89	100	Ģ		- 6		1.8952
86	100	Ģ		-24		. 2901
83	100	¢		-42		.0330
80	100	Ŷ		-60		. 0000
143	200	Q		-42		. 0000
145	200	¢		-30		. 0000
147	200	Ŷ		-18		. 1983
150	200	Q		Q		1.5752
150	200	25		¢		. 6992
150	200	76	.*	Ŷ		1.4152
151	(200	Ŷ		6		1.7667
153	200	¢		18		. 6809
155	200	Ŷ		30		.0278
157	200	¢		42		. 0000
159	200	Ŷ		54		. 0000
217	400	¢		42		. 0000
215	400	Ŷ		30		. 0000
213	400	Ŷ		18		. 0068
211	400	Ŷ		6		1.2710
210	400	0		¢.		. 6992
210	400	25		¢		. 6678
210	400	76		Ŷ		. 2770
209	400	Ŷ		- 6		. 1799
207	400	Ŷ		-18		. 0000
205	400	Ģ		-30		. 0000
267	800	Ŷ		-18		. 0000
268	800	0		-12		.0016
270	800	¢		Ŷ		. 3032
270	800	25		Ŷ		. 3425
270	800	76		Ŷ		. 1117
270	800	127		0		.0121
271	800	0		6		.0462
272	800	Ģ		12		. 0016
273	800	Ŷ		18		. 0000
274	800	Ŷ		24		. 0000

CONCENTRATION DATA FOR RUN NO. 17 STABILITY: SLIGHTLY UNSTABLE WIND DIRECTION: 0 DEG. RELEASE POINT: C

	PROTOTY	PE	MOD	EL
SAMPLER	ARC	ELEY	DEGREES OFF*	CONCENTRATION
GRID POINT	(M)	(M)	CENTER LINE	COEFFICIENT
100	100	¢	60	. 0348
97	100	¢	42	. 0348
94	100	¢	24	. 0929
91	100	¢	6	. 0000
89	100	¢	- 6	1.1606
86	100	Ŷ	-24	. 4004
83	100	Ŷ	-42	. 0638
80	100	¢	-60	. 0348
143	200	° O	-42	. 0406
145	200	¢	-30	. 0000
147	200	0	-18	. 4178
150	200	Ŷ	¢	. 51 07
150	200	25	¢	1.2071
150	200	76	¢	. 9749
151	200	0	6	1.1200
153	200	0	18	. 3250
155	200	0	30	. 0696
157	200	0	42	. 0406
159	200	0	54	. 0406
217	400	¢	42	. 0406
215	400	0	30	. 0348
213	400	0	18	. 1219
211	400	0	6	. 5397
210	400	0	O O	. 4933
210	400	25	0	. 4410
210	400	76	¢	. 2089
209	400	0	- 6	. 4526
207	400	0	-18	. 3656
205	400	0	-30	. 0406
267	800	0	-18	. 0522
268	800	Ŷ.	-12	. 0754
269	800	· 0	- 6	. 1973
270	800	Q	¢	. 2205
270	800	25	¢.	. 1857
270	800	76	¢	. 1161
270	800	127	¢.	. 0987
271	800	Q	6	. 1915
272	800	0	12	. 1161
273	800	0	18	. 0522
274	800	Q	24	. 0754

* POSITIVE ANGLES ARE CLOCKWISE DIRECTION.

** MODEL SAMPLE LOCATION HALFWAY TO NEXT HIGHEST GRID POINT.

CONCENTRATION DATA FOR RUN NO. 1 STABILITY: NEUTRAL WIND DIRECTION: 0 DEG. RELEASE POINT: A

<i>R</i> :	PROTOTY	PE	MODE	L
SAMPLER	ARC	ELEV	DEGREES OFF*	CONCENTRATION
GRID POINT	(M)	(M)	CENTER LINE	COEFFICIENT
100	100	¢	60	. 0150
97	100	¢	42	. 0261
94	100	0	24	. 2108
91	100	0	6	. 2541
89	100	¢	- 6	2.0921
86	100	0	-24	. 9666
83	100	0	-42	. 1815
80	100	Ģ	-60	. 0044
143	200	0	-42	. 0014
145	200	0	-30	. 0205
147	200	Q	-18	. 6046
150	200	0	Q	1.2273
150	200	25	¢	1.0440
150	200	76	Q	.1530
151	200	0	6	. 9724
153	200	Ŷ	18	. 2254
155	200	¢	30	.0319
157	200	0	42	.0080
159	200	0	54	. 0000
217	400	¢	42	. 0080
215	400	0	30	.0100
213	400	¢	18	.0100
211	400	0	6	. 4588
210	400	0	Q	. 5924
210	400	25	¢	. 4368
210	400	76	0	. 1316
209	400	¢	- 6	. 6183
207	400	¢	-18	. 4927
205	400	¢	-30	. 0279
267	800	¢	-18	. 0239
268	800	¢	-12	. 1177
270	800	0	0	. 2473
270	800	25	¢.	. 1636
270	800	76	0	. 1037
270	800	127	0	. 0419
271	800	Ģ	6	. 1117
272	800	¢	12	. 0379
273	800	0	18	. 0140
274	800	0	24	. 0040

POSITIVE ANGLES ARE CLOCKWISE DIRECTION.
** MODEL SAMPLE LOCATION HALFWAY TO NEXT HIGHEST GRID POINT.

77

CONCENTRATION DATA FOR RUN NO. 10 STABILITY: MODERATELY STABLE WIND DIRECTION: 0 DEG. RELEASE POINT: A

PROTOTYPE			MODEL				
SAMPLER	ARC	ELEV	DEGREES OFF*	CONCENTRATION			
GRID POINT	(M)	(M)	CENTER LINE	COEFFICIENT			
100	100	¢	60	. 0117			
97	100	Ŷ	42	. 0750			
94	100	¢	. 24	. 8155			
91	100	¢	6	1.6880			
89	100	0	- 6	. 2164			
86	100	Ŷ	-24	1.5146			
83	100	0	-42	. 2183			
80	100	Ŷ	-60	. 0081			
143	200	0	-42	. 0048			
145	200	0	-30	. 0084			
147	200	0	-18	. 4019			
150	200	0	0	1.7257			
150	200	25	0	. 8838			
150	200	76	0	1.5395			
151	200	0	6	1.4994			
153	200	0	18	. 8752			
155	200	0	30	. 1698			
157	200	0	42	. 0146			
159	200	¢.	54	. 0081			
217	400	¢.	42	. 0048			
215	400	¢.	30	. 0074			
213	400	0	18	. 0454			
211	400	0	6	1.1214			
210	400	0	0	. 7980			
210	400	25	¢.	. 6469			
210	400	76	0	. 3085			
209	400	0	- 6	. 3436			
207	400	¢	-18	. 0167			
205	400	0	-30	. 0029			
267	800	0	-18	. 0046			
268	800	0	-12	. 0139			
270	8¢¢	Ô	0	. 3563			
270	800	25	¢	. 3501			
270	800	76	¢.	. 1170			
270	800	127	¢.	. 0144			
271	800	Ŷ	6	. 0454			
272	800	Q	12	. 0077			
273	800	Ŷ	18	. 0060			
274	800	¢	24	. 0000			

CONCENTRATION DATA FOR RUN NO. 17 STABILITY: SLIGHTLY UNSTABLE WIND DIRECTION: 0 DEG. RELEASE POINT: A

	PROTOTY	°Ε	MODEL	-
SAMPLER	ARC	ELEV	DEGREES OFF*	CONCENTRATION
GRID POINT	(M)	(M)	CENTER LINE	COEFFICIENT
100	100	0	60	. 0153
97	100	Ŷ	42	. 0171
94	100	٥.	24	. 1888
91	100	Ŷ	6	. 1074
89	100	Ŷ	- 6	1.4009
86	100	0	-24	. 6225
83	100	Q	-42	. 0212
80	100	¢	-60	. 0106
143	200	¢.	-42	. 0089
145	200	0	-30	. 0266
147	200	0	-18	. 3877
150	200	¢	0	. 4013
150	200	25	0	. 9258
150	200	76	0	. 7954
151	200	¢.	6	. 8786
153	200	¢	18	. 3570
155	200	0	30	. 0679
157	200	Q	42	. 0248
159	200	ò	54	.0165
217	400	0	4 2	. 0000
215	400	0	30	. 0106
213	400	0	18	. 1080
211	400	Q ·	6	. 4243
210	400	¢	0	. 4131
210	400	25	0	. 3358
210	400	76	0	. 1806
209	400	Q	- 6	. 3747
207	400	¢	-18	. 2962
205	400	Ģ	-30	. 0207
267	800	Q	-18	. 0000
268	800	¢	-12	. 0484
269	800	¢	- 6	. 1564
270	800	¢	0	. 1758
270	800	25	0	. 1428
270	800	76	0	. 0797
270	800	127	0	. 0596
271	800	¢	6	. 1334
272	800	¢	12	. 0791
273	800	¢	18	. 0248
274	800	¢	24	. 0000

CONCENTRATION DATA FOR RUN NO. 1 STABILITY: NEUTRAL WIND DIRECTION: 0 DEG. RELEASE POINT: G5

PROTOTYPE			MODEL					
SAMPLER	ARC	ELEV	DEGREES OFF*	CONCENTRATION				
GRID POINT	(M)	(M)	CENTER LINE	COEFFICIENT				
100	100	0	60	. 0032				
97	100	0	42	.0050				
94	100	0	24	. 0287				
91	100	0	6	. 0789				
89	100	0	- 6	. 9405				
86	100	0	-24	1.3692				
83	100	0	-42	. 2742				
80	100	¢.	-60	.0010				
143	200	¢	-42	. 0000				
145	200	0	-30	. 0141				
147	200	¢.	-18	. 5964				
150	200	¢	Q	. 7119				
150	200	25	0	. 9400				
150	200	76	0	. 1726				
151	200	0	6	. 3913				
153	200	0	18	. 0765				
155	200	' Q	30	. 0100				
157	200	0	42	.0013				
159	200	¢	54	. 0000				
217	400	0	42	. 0002				
215	400	¢	30	. 0013				
213	400	¢	18	.0013				
211	400	¢	6	. 2639				
210	400	Q	Q	. 4459				
210	400	25	0	. 3838				
210	400	76	0	. 1255				
209	400	¢	- 6	5048				
207	400	0	-18	. 4078				
205	400	0	-30	. 0187				
267	800	0	-18	. 0166				
268	800	¢	-12	. 1070				
270	800	Q.	9	. 1964				
270	800	25	¢	. 1397				
279	800	76	¢.	. 0939				
270	800	127	¢	.0340				
271	800	0	6	. 0776				
272	800	Q	12	. 0253				
273	800	0	18	. 0078				
274	800	0	24	. 0000				

* POSITIVE ANGLES ARE CLOCKWISE DIRECTION.

** MODEL SAMPLE LOCATION HALFWAY TO NEXT HIGHEST GRID POINT.

CONCENTRATION DATA FOR RUN NO. 10 STABILITY: MODERATELY STABLE WIND DIRECTION: 0 DEG. RELEASE POINT: G5

	PROTOTYPE			MODEL			
SAMPLER	ARC	ELEV		DEGREES	OFF*		CONCENTRATION
GRID POINT	(M)	(M)		CENTER L	INE		COEFFICIENT
100	100	Q		60			. 0015
97	100	Q		42			. 01 06
94	100	¢		24			. 0666
91	100	Ŷ		6			1.0946
89	100	¢		- 6			2.7306
86	100	0		-24			3.1103
83	100	Ŷ		-42			1.7416
80	100	Q		-60			. 0597
143	200	Ŷ		-42			. 0047
145	200	Ŷ		-30			. 0152
147	200	Ŷ		-18			1.7397
150	200	Q		· 0			2.2313
150	200	25		0			. 7557
150	200	76		Q.			1.7186
151	200	¢.		6			. 9121
153	200	Q		18			. 2018
155	200	¢		30			. 0152
157	200	¢		42			.0024
159	200	- Q		54			.0010
217	400	0	3	42			. 0000
215	400	Ŷ		30			. 0000
213	400	Ŷ		18			. 0079
211	400	Q		6			1.0212
210	400	¢		0			1.3206
210	400	25		0			. 7787
210	400	76		Q			. 2940
209	400	0		-6			. 7177
207	400	0		-18	к.		. 0432
205	400	Q .		-30			.0010
267	800	¢		-18			.0001
268	800	Ŷ		-12			.0258
270	800	Ŷ		Ŷ			. 5737
270	800	25		Ŷ			. 4247
270	800	76		Ŷ			. 0978
27.9	800	127		Ŷ			.0042
271	800	Q		6			. 0322
272	800	Ŷ		12			.0015
273	800	¢.	12	18		×	. 0000
274	800	0		24			. 0000

* POSITIVE ANGLES ARE CLOCKWISE DIRECTION.

** MODEL SAMPLE LOCATION HALFWAY TO NEXT HIGHEST GRID POINT.

81

CONCENTRATION DATA FOR RUN NO. 17 STABILITY: SLIGHTLY UNSTABLE WIND DIRECTION: 0 DEG. RELEASE POINT: G5

	PROTOTYPE			MODEL	
SAMPLER	ARC	ELEV	DEGREES	OFF*	CONCENTRATION
GRID POINT	(M)	(M)	CENTER L	INE	COEFFICIENT
100	100	Ó	60		.0113
97	100	Ó	42		. 0088
94	100	Ó	24		. 0428
91	100	Ô	6		. 0516
89	100	Ó	- 6		1.6117
86	100	Ó	-24		1.3360
83	100	Ó	-42		. 0290
80	100	Ó	-60		. 0139
143	200	Ó	-42		. 0088
145	200	Ó	-30		. 0214
147	200	Ó	-18		. 5452
150	200	Ó	Ó	2	. 7253
150	200	25	Ó	7	. 8789
150	200	76	Ó		1.3045
i5i	200	Ò	6		.6611
153	200	Ó	i 8	14	. 1763
i55	200	Ó	30		.0315
157	200	Ó	42		. 0164
159	200	Ó	54		.0113
217	400	Ó	. 42		. 0139
215	400	Ó	30		. 0088
213	400	¢	18		. 0781
211	400	Ô	6		. 4923
210	400	Ô	Ó		. 4948
210	400	25	Ó		. 5591
210	400	76	Ó		. 2921
209	400	Ô	- 6		. 5288
207	400	Ó	-18		. 3979
. 205	400	Ô.	-30		. 0227
267	800	Ô	-18		. 0201
268	800	Ó	-12		. 0642
269	800	Ô	- 6		. 2153
270	800	Ó	Ó		. 2556
270	800	25	Ó		. 2027
270	800	76	Ó		. 1549
270	800	127	0		. 0957
271	800	Ô	6		. 1599
272	800	0	12		. 0995
273	800	0	18		. 0290
274	800	Ó	24		. 0189

CONCENTRATION DATA FOR RUN NO. 1 STABILITY: NEUTRAL WIND DIRECTION: O DEG. RELEASE POINT: G17

PROTOTYPE			MODEL			
SAMPLER	ARC	ELEV	DEGREES OFF*	CONCENTRATION		
GRID POINT	(M)	(M)	CENTER LINE	COEFFICIENT		
100	100	0	60	. 0507		
97	100	0	42	.0682		
94	100	¢	24	. 2716		
91	100	· 0	6	. 2283		
89	100	¢	- 6	1.7731		
86	100	¢	-24	.6109		
83	100	0	-42	. 1128		
80	100	0	-60	.0012		
143	200	0	-42	. 0014		
145	200	0	-30	. 0086		
147	200	Q	-18	. 4622		
150	200	¢	0	. 9824		
150	200	25	¢.	. 7933		
150	200	76	0	. 1135		
151	200	¢	6	. 8821		
153	200	¢	18	. 2517		
155	200	¢	30	. 0572		
157	200	0	42	.0127		
159	200	Q	54	. 0000		
217	400	0	42	. 0023		
215	400	¢	30	.0040		
213	400	0	18	. 0111		
211	400	0	6	. 3907		
210	400	0	0	. 4770		
210	400	25	0	. 3473		
210	400	76	0	.1018		
209	400	¢	- 6	. 4721		
207	400	¢	-18	. 3880		
205	400	Ŷ	-30	. 0204		
267	800	¢	-18	. 0144		
268	800	0	-12	.0891		
270	800	Ŷ	0	. 1963		
270	800	25	¢	. 1331		
270	800	76	0	. 0798		
270	800	127	¢	.0309		
271	800	Q	· 6	. 0869		
272	800	¢	12	.0375		
273	800	¢	18	.0078		
274	800	Ô, I	24	. 0007		

* POSITIVE ANGLES ARE CLOCKWISE DIRECTION:

** MODEL SAMPLE LOCATION HALFWAY TO NEXT HIGHEST GRID POINT.

CONCENTRATION DATA FOR RUN NO. 10 STABILITY: MODERATELY STABLE WIND DIRECTION: 0 DEG. RELEASE POINT: G17

	PROTOTY	PE	M	DDEL
SAMPLER	ARC	ELEV	DEGREES OFF*	CONCENTRATION
GRID POINT	(M)	(M)	CENTER LINE	COEFFICIENT
100	100	0	60	. 0179
97	100	Ŷ	42	.0502
94	100	0	24	. 7489
91	100	Q	6	1.4553
89	100	Ŷ	- 6	1.7321
86	100	¢	-24	. 3873
83	100	Ŷ	-42	.0513
80	100	• Q	-60	. 0000
143	200	0	-42	. 0011
145	200	Q	-30	. 0000
147	200	Ŷ	-18	. 1551
150	200	¢	0	1.2556
150	200	25	0	. 5513
150	200	76	0	1.0870
151	200	Q -	6	1.6205
153	200	0	18	1.0491
155	200	0	30	. 1596
157	200	Ŷ	42	. 0033
159	200	0	54	. 0000
217	400	0	42	. 0000
215	400	0	30	. 0000
213	400	0	18	. 0357
211	400	Q.	6	1.0245
210	400	0	0	. 5569
210	400	25	0	. 5078
210	400	76	0	. 2109
209	400	¢	- 6	. 1685
207	400	0	-18	. 0022
205	400	Ŷ	-30	. 0000
267	800	¢	-18	. 0000
268	800	¢	-12	. 0045
270	800	0	0	. 2388
270	800	25	Ŷ	. 2723
270	800	76	0	. 0993
270	800	127	Q	. 0123
271	800	¢	6	. 0413
272	800	Ŷ	12	. 0078
273	800	0	18	. 0000
274	800	¢.	24	. 0000

* POSITIVE ANGLES ARE CLOCKWISE DIRECTION.

** MODEL SAMPLE LOCATION HALFWAY TO NEXT HIGHEST GRID POINT.

CONCENTRATION DATA FOR RUN ND. 17 STABILITY: SLIGHTLY UNSTABLE WIND DIRECTION: 0 DEG. RELEASE POINT: G17

PROTOTYPE		MODEL					
SAMPLER		ARC	ELEV		DEGREES OF	F*	CONCENTRATION
GRID POINT		(M)	(M)	i,	CENTER LIN	E	COEFFICIENT
100		100	0		60		.0312
97		100	0		42		. 0343
94		100	Ŷ		24		. 1589
91		100	Ŷ		6		. 0904
89	31	100	Ŷ		- 6		1.4239
86		100	Ģ		-24		. 5452
83		100	0		-42		. 0343
80		100	Ģ		-60		. 0280
143		200	¢		-42		. 0280
145		200	0		-30		.0343
147		200	Q		-18		. 4362
150		200	0		0		. 4611
150		200	25		0		1.0469
150		200	76		0		.8412
151		200	¢.		6		1.0250
153		200	¢.		18		.4019
155		200	Ģ		30		. 0748
157		200	Ģ		42		.0312
159		200	¢		54		.0312
217	9	400	Ŷ		42		.0343
215		400	¢		30		. 0280
213		400	Ŷ		18		. 1433
211		400	0		6		. 4954
210		400	Q		0		. 4673
210		400	25		¢.		. 3957
210		400	76		0		. 2368
209		400	Ģ		- 6		. 4237
207		400	Ŷ		-18		. 3863
205		400	Q		-30		. 0499
267		800	Ŷ		-18		. 0717
268		800	Ŷ		-12		. 0779
269		800	¢		- 6		. 2119
270		800	Ŷ		¢		. 2274
270		800	25		Ŷ		. 1932
270		800	76		Q		. 1122
270		800	127		0		. 1277
271		800	Ŷ		6		. 1901
272		800	Ŷ		12		. 1402
273		800	Ŷ		18		.0654
274		800	¢		24		.0810

* POSITIVE ANGLES ARE CLOCKWISE DIRECTION.

** MODEL SAMPLE LOCATION HALFWAY TO NEXT HIGHEST GRID POINT.

.85

Table 7. Data, Wind Direction 45°

CONCENTRATION DATA FOR RUN ND. 2 STABILITY: NEUTRAL WIND DIRECTION: 45 DEG. RELEASE POINT: C

PROTOTYPE			MODEL				
SAMPLER	ARC	ELEV	DEGREES OFF*	CONCENTRATION			
GRID POINT	(M)	(M)	CENTER LINE	COEFFICIENT			
107	100	0	 57	.0058			
104	100	¢.	39				
101	100	Ŷ	21	1.2506			
98	100	¢.	3	3.8187			
95	100	¢.	-15	3.9076			
92	100	Ŷ	-33	. 9407			
89	100	Ŷ	-51	. 1757			
86	100	0	-69	. 0071			
149	200	Ô	-51	. 0084			
151	200	0	-39	. 0437			
153	200	Ģ	-27	4778			
155	200	¢.	-15	1.9005			
157**	200	Ŷ	0	1.6586			
157**	200	25	0	. 5353			
157**	200	51	0	. 0711			
159	200	¢	9	1.0388			
161	200	.0	21	. 1653			
163	200	Ŷ	33	. 0058			
165	200	Ģ	45	. 0071			
225	400	0	45	. 0084			
223	400	¢	33	. 0097			
221	400	¢	21	. 0071			
219	400	¢	9	. 1888			
217**	400	Ŷ	0	. 5079			
217**	400	25	0	. 2594			
217**	400	51	¢.	. 0960			
216	400	Ŷ	- 9	. 3575			
214	400	0	-21	. 0214			
212	400	0	-33	. 0071			
274	800	Ŷ	-21	. 0123			
275	800	Ŷ	-15	. 0201			
276	800	0	-9.	. 2437			
277**	800	0	0	. 2516			
277**	800	25	0	. 1509			
277**	800	76	0	.0515			
277**	800	127	0	. 0175			
279	800	0	9	.0162			
280	800	¢	15	. 0097			
281	800	¢	21	. 0228			
282	800	¢	27	.0123			

CONCENTRATION DATA FOR RUN NO. 11 STABILITY: MODERATELY STABLE WIND DIRECTION: 45 DEG. RELEASE POINT: C

	PROTOTYPE			M	ODEL	
SAMPLER	ARC	ELEV		DEGREES OFF*		CONCENTRATION
GRID POINT	(M)	(M)		CENTER LINE		COEFFICIENT
107	100	¢		57		. 0277
104	100	Ŷ	2	39		. 2727
101	100	Ŷ		21	Δ.	2.7974
98	100	Ģ		3		6.4491
95	100	¢		-15		5.5124
92	100	0		-33		. 9817
89	100	¢.		-51		. 1545
86	100	0		-69		. 0248
149	200	0		-51		.0219
151	200	0		-39		.0161
153	200	0		-27		. 4139
155	200	0		-15		1.7310
157**	200	¢.		0		3.4747
157**	200	51		0		. 0738
159	200	Ŷ		9		1.7195
161	200	Q		21		. 3159
163	200	0		33		. 0306
165	200	Q		45		. 0219
225	400	0		45		. 0133
223	400	¢.		. 33		. 0190
221	400	¢.		21		. 0911
219	400	¢.		9		1.0854
217**	400	¢		¢.		1.3592
217**	400	25		Ŷ		. 8462
217**	400	51		0		. 1602
216	400	¢		-9		. 8693
214	400	¢		-21		. 0536
212	400	Q		-33		. 0277
274	800	Q		-21		. 0190
275	800	Ŷ		-15		. 0363
276	800	¢.		- 9		. 2179
277**	800	¢		0		.7424
277**	800	25		0		. 3274
277**	800	76		0		. 0421
277**	800	127		0		. 0277
279	800	0		9		. 7453
280	800	¢		15		. 3505
281	800	¢		21		. 0507
282	800	Ŷ		27		.0161

CONCENTRATION DATA FOR RUN NO. 18 STABILITY: SLIGHTLY UNSTABLE WIND DIRECTION: 45 DEG. RELEASE POINT: C

	PROTOTY	'PE	MOD	EL
SAMPLER	ARC	ELEV	DEGREES OFF*	CONCENTRATION
GRID POINT	(M)	(M)	CENTER LINE	COEFFICIENT
107	100	Q	57	. 0000
104	100	0	39	. 0000
101	100	o	21	2.1240
98	100	Ģ	3	3.8707
95	100	0	-15	4.4743
92	100	0	-33	. 8589
89	100	¢	-51	. 1451
86	100	Q	-69	. 0000
149	200	¢	-51	. 0000
151	200	¢	-39	0232
153	200	0	-27	. 1973
155	200	¢	-15	1.5262
157**	200	¢	0	1.7177
157**	200	25	0	. 4352
157**	200	51	0	. 1219
159	200	0	9	1.0794
161	200	¢	21	. 3888
163	200	0	33	. 0174
165	200	0	45	. 0000
224	400	¢	. 39	. 0000
222	400	0	27	. 0000
220	400	0	15	. 0929
219	400	¢	9	. 2437
217**	400	0	0	. 5977
217**	400	25	0	.3656
217**	400	51	0	. 0987
216	400	¢	-9	. 4991
214	400	¢	-21	. 4178
212	400	Q	-33	. 0174
274	800	Ŷ	-21	. 0000
275	800	¢	-15	. 0232
276	800	Ŷ	- 9	. 1625
277**	800	Q	0	. 2321
277**	800	25	Ģ	. 1451
277**	800	76	Q	. 0406
277**	800	127	¢	. 0290
278	800	Q	3	. 1683
279	800	¢.	9	. 0580
280	800	Ŷ	15	. 0000
281	800	0	21	. 0000

CONCENTRATION DATA FOR RUN NO. 2 STABILITY: NEUTRAL WIND DIRECTION: 45 DEG. RELEASE POINT: A

PROTOTYPE			MODEL			
SAMPLER	ARC	ELEV	DEGREES OFF*	CONCENTRATION		
GRID POINT	(M)	(M)	CENTER LINE	COEFFICIENT		
107	100	¢	57	. 0000		
104	100	¢.	39	.0320		
101	100	Ģ	21	. 2022		
98	100	¢	3	. 8269		
95	100	¢.	-15	1.6820		
92	100	¢	-33	1.1844		
89	100	Q	-51	. 1918		
86	100	Q	-69	. 0096		
149	200	¢	-51	. 0090		
151	200 .	¢	-39	. 0212		
153	200	Q	-27	. 5109		
155	200	Ŷ	-15	1.0152		
157**	200	Q	0	. 5747		
157**	200	25	0	. 2507		
157**	200	51	0	. 0713		
159	200	0	9	. 2264		
161	200	0	21	. 0387		
163	200	Q	33	.0029		
165	200	0	45	. 0098		
225	400	0	4 5	.0108		
223	400	0	33	0106		
221	400	0	21	. 0079		
219	400	¢	9	. 0766		
217**	400	0	0	. 3346		
217**	400	25	0	. 2346		
217**	400	51	0	. 1035		
216	400	0	- 9	. 3529		
214	400	0	-21	. 0224		
212	400	0	-33	. 0041		
274	800	0	-21	. 0000		
275	800	0	-15	.0159		
276	800	0	-9	. 2246		
277**	800	0	0	. 2303		
277**	800	25	0	. 1353		
277**	800	76	0	. 0049		
277**	800	127	¢	.0173		
279	800	Q	9	.0165		
280	800	Q	15	.0063		
281	800	0	21	.0143		
282	800	0	27	.0061		

CONCENTRATION DATA FOR RUN NO. 11 STABILITY: MODERATELY STABLE WIND DIRECTION: 45 DEG. RELEASE POINT: A

	PROTOTY	PE	MODEL	-
SAMPLER	ARC	ELEV	DEGREES OFF*	CONCENTRATION
GRID POINT	(M)	(M)	CENTER LINE	COEFFICIENT
107	100	Ó	57	. 0075
104	100	¢	39	. 1247
101	100	0	21	1.0442
98	100	Ó	3	2.3995
95	100	0	-15	3.0670
92	100	0	-33	2.3192
89	100	¢	-51	. 3011
86	100	Ó	-69	. 0140
149	200	Ó	-51	.0073
151	200	Ó	-39	.0119
153	200	Ô	-27	. 8379
155	200	Ó	-15	2.1860
157**	200	¢.	0	1.5866
157**	200	51	0	. 0320
159	200	Ó	9	. 6260
161	200	Ó	21	. 1128
163	200	Ó	33	. 0147
165	200	Ó	45	. 0059
225	400	Ó	45	. 0040
223	400	Ó	33	.0082
221	400	Ó	21	. 0404
219	400	Ó	9	. 5002
217**	4 Ó Ó	Ó	0	1.0760
217**	400	25	0	. 6220
217**	400	51	Ó	. 1396
216	400	Ó	-9	.8841
214	400	Ó	-21	. 0523
212	400	Ó	-33	. 0089
274	800	Ó	-21	. 0005
275	800	Ó	-i5	. 0194
276	800	ò	- 9	. 2598
277**	800	Ò	Ó .	. 7922
277**	800	25	Ó	. 3310
277**	800	76	0	. 0224
277**	860	127	0	. 0070
279	800	Ó	9	. 6729
280	800	Ó	15	. 1594
281	800	ô	21	. 0173
282	800	Ó	27	. 0005

CONCENTRATION DATA FOR RUN NO. 18 STABILITY: SLIGHTLY UNSTABLE WIND DIRECTION: 45 DEG. RELEASE POINT: A

PROTOTYPE			MODEL				
SANPLER	ARC	ELEY	DEGREES OFF*	CONCENTRATION			
GRID POINT	(M)	(M)	CENTER LINE	COEFFICIENT			
107	100	¢	57	. 0112			
104	1 0 Q	Q	39	. 0236			
101	1 Q Q	Ģ	21	. 4048			
98	100	Q.	3	. 9070			
95	100	¢ -	-15	2.3220			
92	100	¢	-33	1.2994			
89	100	¢	-51	. 1935			
86	100	¢	-69	. 0177			
149	200	0	-51	. 0201			
151	200	¢	-39	.0307			
153	200	0	-27	. 2809			
155	200	0	-15	1.2221			
157**	200	0	0	. 8125			
157** ,	200	25	0	. 4721			
157**	200	51	0	. 1900			
159	200	0	9	. 3777			
161	200	¢	21	. 0997			
163	200	¢	33	. 0242			
165	200	¢.	45	. 0248			
224	400	0	39	. 0207			
222	400	0	27	.0183			
220	400	0	15	. 0643			
219	4 ≎ ≎	¢	9	. 1157			
217**	400	¢.	0	. 4325			
217**	400	25	0	. 3033			
217**	400	51	0	. 1428			
216	400	0	- 9	. 5028			
214	400	¢.	-21	. 4260			
212	400	¢	-33	. 0130			
274	800	0	-21	. 0212			
275	800	0	-15	. 05 0 7			
276	800	0	- 9	. 1965			
277**	800	Q	0	. 2095			
277**	800	25	0	. 1493			
277**	800	76	0	. 07 08			
277**	800	127	0	. 0466			
278	800	0	3	. 1475			
279	800	¢	9	. 0572			
280	800	¢.	15	. 0236			
281	800	0	21	. 0000			

CONCENTRATION DATA FOR RUN NO. 2 STABILITY: NEUTRAL WIND DIRECTION: 45 DEG. RELEASE POINT: G5

	PROTOTY	PE	MODEL	
SAMPLER	ARC	ELEY	DEGREES OFF*	CONCENTRATION
GRID POINT	(M)	(M)	CENTER LINE	COEFFICIENT
107	100	0	57	.0052
104	100	0	39	.0410
101	100	0	21	. 2440
98	100	¢	3	. 9361
95	100	0	-15	1.6108
92	100	0	-33	2.2352
89	100	0	-51	. 7611
86	100	¢.	-69	. 1918
149	200	¢	-51	.0110
151	200	¢	-39	. 0768
153	200	0	-27	. 6886
155	200	0	-15	1.2145
157**	200	0	0	. 7389
157**	200	25	0	. 3319
157**	200	51	0	. 1048
159	200	Q	9	. 2971
161	200	0	21	. 0429
163	200	0	33	.0062
165	200	0	45	.0072
225	400	¢	4 5	. 0091
223	400	Ŷ	33	. 0081
221	400	Ŷ	21	. 0091
219	400	0	9	.0903
217**	400	¢	0	. 4170
217**	400	25	¢ ·	2633
217**	400	51	0	. 1057
216	400	¢	- 9	. 3184
214	400	0	-21	. 0313
212	400	¢	-33	. 0081
274	800	0	-21	. 0120
275	800	0	-15	. 0168
276	800	¢	- 9	. 2382
277**	800	0	Q	. 2353
277**	800	25	Ô	. 1444
277**	800	76	¢	. 0478
277**	800	127	¢	. 0159
279	800	0	9	.0120
280	800	Ŷ	15	.0081
281	800	¢	21	. 0159
282	800	0	27	. 0120

CONCENTRATION DATA FOR RUN NO. 11 STABILITY: MODERATELY STABLE WIND DIRECTION: 45 DEG. RELEASE POINT: G5

PROTOTYPE			MODEL				
SAMPLER	ARC	ELEV	DEGREES OFF*	CONCENTRATION			
GRID POINT	(M)	(M)	CENTER LINE	COEFFICIENT			
107	100	· 0	57	.0040			
104	100	Ŷ	39	. 0921			
101	100	0	21	. 9045			
98	100	0	3	2.2913			
95	100	0	-15	2.7771			
92	100	0	-33	3.5878			
89	100	0	-51	2.2021			
86	100	0	-69	1.6327			
149	200	0	-51	. 0332			
151	200	0	-39	. 37 37			
153	200	0	-27	2.2453			
155	200	0	-15	2.1656			
157**	200	0	0	1.5676			
157**	200	51	0	. 0203			
159	200	Ŷ	9	. 5578			
161	200	Ŷ	21	. 0820			
163	200	0	33	.0040			
165	200	0	45	. 0000			
225	400	0	45	. 0000			
223	400	0	33	. 0001			
221	400	Ģ	21	.0175			
219	400	0	9	. 4450			
217**	400	0	0	. 8837			
217**	400	25	0	. 5129			
217**	400	51	0	. 1000			
216	400	0	- 9	1.0436			
214	400	Ŷ	-21	. 2711			
212	400	÷ 0	-33	. 0130			
274	800	· 0	-21	. 0000			
275	800	0	-15	. 0641			
276	800	0	- 9	. 4686			
277**	800	Q	0	. 6924			
277**	800	25	0	. 2666			
277**	800	76	0	. 0136			
277**	800	127	Q	. 0001			
279	800	0	9	. 5522			
280	800	0	15	. 1224			
281	800	¢	21	. 0074			
282	800	¢.	27	. 0000			

* POSITIVE ANGLES ARE CLOCKWISE DIRECTION.

** MODEL SAMPLE LOCATION HALFWAY TO NEXT HIGHEST GRID POINT.

CONCENTRATION DATA FOR RUN NO. 18 STABILITY: SLIGHTLY UNSTABLE WIND DIRECTION: 45 DEG. RELEASE FOINT: 65

	PROIOTYPE			MODEL			
SAMPLER	ARC	ELEV		DEGREES OFF*	CONCENTRATION		
GRID POINT	(M)	(M)		CENTER LINE	COEFFICIENT		
107	100	¢		57	. 0164		
104	100	0		39	. 0252		
101	100	¢.		21	. 6938		
98	100	Q		3	1.5437		
95	100	¢		-15	3.1756		
92	100	Q		-33	1.5337		
89	100	¢.		-51	. 3941		
86	100	¢		-69	. 0642		
149	200	¢		-51	. 0151		
151	200	¢		-39	. 0453		
153	200	¢		-27	. 3375		
155	200	0		-15	1.7389		
157**	200	¢		0	1.4619		
157**	200	25		0	. 8386		
157**	200	51		0	. 3223		
159	200	¢		9	. 7013		
161	200	¢		21	. 1637		
163	200	0		33	. 0290		
165	200	0		45	. 0151		
224	400	¢	8	39	. 0176		
222	400	¢		27	. 0126		
220	4 Q Q	0		15	.0693		
219	400	¢		9	. 1989		
217**	400	¢		0	. 7215		
217**	400	25		0	. 4659		
217**	400	51		0	. 1826		
216	400	¢		- 9			
214	400	¢		-21	. 6044		
212	400	0		-33	. 0227		
274	800	0		-21	. 0239		
275	800	0		-15	. 07 05		
276	800	0		-9	. 2909		
277**	800	¢		¢	. 3148		
277**	800	25		0	. 2178		
277**	800	76		¢.	. 0894		
277**	800	127		0	.0630		
278	800	¢		3	. 2166		
279	800	0		9	. 1221		
280	800	¢		15	. 0164		
281	800	0		21	. 0252		

* POSITIVE ANGLES ARE CLOCKWISE DIRECTION.

** MODEL SAMPLE LOCATION HALFWAY TO NEXT HIGHEST GRID POINT.

CONCENTRATION DATA FOR RUN NO. 2 STABILITY: NEUTRAL WIND DIRECTION: 45 DEG. RELEASE POINT: G17

	PROTOTY	PROTOTYPE			<u> </u>	
SAMPLER	ARC	ELEV		DEGREES O	FF*	CONCENTRATION
GRID POINT	(M)	(M)		CENTER LI	NE	COEFFICIENT
107	100	¢		57		. 0399
104	100	¢		39		. 2392
101	100	Ŷ		21		. 9534
98	100	¢		3		2.2296
95	100	¢		-15		2.3870
92	100	¢		-33		.6823
89	100	¢		-51		. 1369
86	100	¢		-69		. 0081
149	200	¢.		-51		. 0090
151	200	¢		-39		. 0390
153	200	¢		-27		. 3414
155	200	¢		-15		1.3157
157**	200	Ò		0		1.3409
157**'	200	25		0		. 6395
157**	200	51		0		. 1498
159	200	0		9		. 7960
161	200	ò		21		. 1778
163	200	Q		33		. 0100
165	200	¢.		45		. 0090
225	400	¢.		4 5		. 0124
223	400	¢		33		.0086
221	400	¢		21	ė.	. 0090
219	400	¢		9		. 1911
217**	400	¢		¢		. 5587
217**	400	25		¢		. 3072
217**	400	51		¢		. 1241
216	400	¢		- 9		. 3528
214	400	¢.		-21		. 0176
212	400	0		-33		. 0086
274	800	¢		-21		. 01 00
275	800	¢		-15		. 0195
276	800	. Q		- 9		. 2197
277**	800	Q		Q	6.4	. 2772
277**	800	25		Q		. 1664
277**	800	76		¢		. 0575
277**	800	127		¢		.0185
279	800	¢		9		0195
280	800	¢		15		. 0095
281	800	¢		21		. 0200
282	800	¢		27		. 0109

* POSITIVE ANGLES ARE CLOCKWISE DIRECTION. ** Model sample location halfway to next highest grid point.
CONCENTRATION DATA FOR RUN NO. 11 STABILITY: MODERATELY STABLE WIND DIRECTION: 45 DEG. RELEASE POINT: G17

	PROTOTY	PE		MODEL	
SAMPLER	ARC	ELEV	DEGREES OFF	*	CONCENTRATION
GRID POINT	(M)	(M)	CENTER LINE		COEFFICIENT
107	100	Ó	57		. 04 04
104	100	Ó	39		. 2803
101	100	Ó	21		2.3808
98	100	Ó	3		4.0770
95	100	Ó	-i5		3.9779
92	100	Ó	-33		. 9805
89	100	Ó	-5 i		. 1239
86	100	Ó	-69		.0013
149	200	Ó	-51		. 0000
151	200	Ó	-39		.0013
153	200	Ò	-27		. 3612
155	200	Ó	-15		1.4707
157**	200	Ó	0		2.6832
157**	200	5i	0		. 0495
159	200	Ó	9		1.5646
161	200	- Ó	21		. 2503
163	200	Ô	33		.0183
165	200	Ó	45		. 0000
225	400	Ó	45		. 0000
223	400	Ó	. 33		. 0039
221	400	Ó	21		.0691
219	400	Ó	9		. 9479
217**	400	Ó	0		1.2934
217**	400	25	Ó		.8279
217**	400	51	Ó		. 1382
216	400	0	-9		. 6962
214	400	Ó	-21		. 0261
212	400	Ó	-33		.0013
274	800	Ó	-21		.0013
275	800	Ó	-15		.0130
276	800	Ô	- 9		. 1734
277**	800	Ó	Ó		.7093
277**	800	25	Ó		.3025
277**	800	76	Ó		.0169
277**	800	127	0		.0039
279	800	0	9		. 7236
280	800	0	15		. 3077
281	800	0	21		. 0248
282	800	0	27		. 0000

CONCENTRATION DATA FOR RUN NO. 18 STABILITY: SLIGHTLY UNSTABLE WIND DIRECTION: 45 DEG. RELEASE POINT: G17

	PROTOTY	PE	MODEL	-
SAMPLER	ARC	ELEV	DEGREES OFF*	CONCENTRATION
GRID POINT	(M)	(M)	CENTER LINE	COEFFICIENT
107	100	¢	57	. 0280
104	100	Ŷ	39	. 0530
101	100	Ŷ	21	1.3865
98	100	0	3	2.4925
95	100	¢	-15	3.0876
92	100	0	-33	. 6948
89	100	0	-51	. 1433
86	100	0	-69	. 0280
149	200	0	-51	. 0343
151	200	Q	-39	. 0561
153	200	• • •	-27	. 1869
155	200	0	-15	1.2587
157**	200	0	0	1.5204
157**	200	25	0	. 6449
157**	200	51	0	. 2461
159	200	0	9	. 9690
161	200	Q	21	. 3147
163	200	0	33	. 0499
165	200	0	45	. 0312
224	400	0	. 39	. 0374
222	400	0	27	. 0343
220	400	0	15	. 1184
219	400	0	9	. 2586
217**	- 400	0	0	. 6387
217**	400	25	0	. 4082
217**	400	51	0	. 1807
216	400	¢	- 9	. 5608
214	400	Q	-21	. 4144
212	400	0	-33	. 0405
274	800	0	-21	. 0561
275	800	0	-15	. 0654
276	800	•	-9	. 2119
277**	800	0	0	. 27 42
277**	800	25	0	. 1994
277**	800	76	0	. 0872
277**	800	127	0	. 0748
278	800	0	3	. 2337
279	800	0	9	. 1059
280	800	0	15	. 0343
281	800	Q	21	. 0499

* POSITIVE ANGLES ARE CLOCKWISE DIRECTION.

** MODEL SAMPLE LOCATION HALFWAY TO NEXT HIGHEST GRID POINT.

98

Table 8. Data, Wind Direction 90⁰

CONCENTRATION DATA FOR RUN NO. 3 STABILITY: NEUTRAL WIND DIRECTION: 90 DEG. RELEASE POINT: C

	PROTOTYPE			MODEL
SAMPLER	ARC	ELEV	DEGREES OF	F* CONCENTRATION
GRID POINT	(M)	(M)	CENTER LIN	E COEFFICIENT
115	100	Ģ	60	. 0175
112	100	¢	42	. 0175
109	100	Ó	24	. 0254
106	100	Ŷ	6	. 2934
104	100	¢	- 6	3.5846
101	100	Q	-24	2.8642
98	100	Ŷ	-42	. 0254
95	100	Q	-60	. 0201
157	200	Ŷ	-48	.0188
159	200	Q	-36	. 1378
161	200	0	-24	. 0489
163	200	Ŷ	-12	1.6912
165	200	Q	0	1.9972
165	200	25	0	.6125
165	200	51	0	. 1875
167	200	Ŷ	12	. 0855
169	200	¢ .	24	. 0188
171	200	¢.	36	. 0175
173	200	Ŷ	48	. 0175
233	400	¢	48	. 0188
231	400	0	36	. 0214
229	400	¢	24	. 0175
227	400	Q	12	. 0254
225	400	¢	0	. 9145
225	400	25	0	. 4791
225	400	51	0	. 1640
223	400	¢	-12	. 2019
221	400	¢	-24	. 0201
219	400	Q	-36	. 0188
281	800	¢	-24	. 0188
283	800	¢	-12	. 0398
284	800	Q	- 6	. 37 32
285	800	¢.	0	. 4111
285	800	25	¢	. 2568
285	800	76	Q	. 1038
285	800	127	0	. 0228
286	800	¢	6	. 0476
287	800	¢	12	. 0214
288	800	¢	18	. 0280
289	800	¢	24	. 0175

* POSITIVE ANGLES ARE CLOCKWISE DIRECTION.

** MODEL SAMPLE LOCATION HALFWAY TO NEXT HIGHEST GRID POINT.

100

CONCENTRATION DATA FOR RUN NO. 12 STABILITY: MODERATELY STABLE WIND DIRECTION: 90 DEG. RELEASE POINT: C

		PROTOTY	PE	MODE	L
SAMPLER		ARC	ELEY	DEGREES OFF*	CONCENTRATION
GRID POINT		(M)	(M)	CENTER LINE	COEFFICIENT
115		100	0	60	. 0023
112		100	Ŷ	42	. 0000
109		100	Ŷ	24	. 0542
106		100	¢	6	6.5967
104	5.1	100	0	- 6	3.9768
101		100	¢	-24	3.6655
98		100	Ô	-42	. 0225
95		100	0	-60	. 0081
157		200	Ŷ	-48	. 0081
159		200	Ŷ	-36	. 0081
161		200	0	-24	. 2819
163		200	Ŷ	-12	2.8326
165		200	¢	¢	3.6597
165		200	25	Q	1.6509
165		200	51	Q	. 1061
167		200	0	12	2.5847
169		200	0	24	. 0974
171		200	¢	36	. 0081
173		200	¢	48	. 0023
233		400	¢	48	. 0023
231		400	0	36	. 0052
229		400	¢	24	.0369
227		400	¢	12	. 6104
225		400	Q	Q	1.7143
225		400	25	Ŷ	1.1552
225		400	51	0	. 1118
223		400	0	-12	. 2271
221		400	¢	-24	. 0196
219		400	0	-36	. 0110
281		800	¢	-24	. 0138
283		800	Ŷ	-12	. 0167
284		800	Q	- 6	. 1925
285		800	¢	0	.6306
285		800	25	0	. 3683
285		800	76	٥	.0311
285		800	127	Q	. 0196
286		800	¢	6	. 8035
287		800	¢	12	. 3626
288		800	¢	18	. 0455
289		800	Ŷ	24	. 0196

CONCENTRATION DATA FOR RUN NO. 19 STABILITY: SLIGHTLY UNSTABLE WIND DIRECTION: 90 DEG. RELEASE POINT: C

	PROTOTY	PE	MODE	L
SAMPLER	ARC	ELEV	DEGREES OFF*	CONCENTRATION
GRID POINT	(M)	(M)	CENTER LINE	COEFFICIENT
i i 5	100	Ó	60	. 0000
112	100	Ó	42	. 0000
109	100	Ó	24	.0116
106	100	Ó	Ĝ	1.7294
104	100	Ó	- 6	3.8185
10 i	100	Ò	-24	2.4606
98	100	Ò	-42	. 0116
95	100	Ó	-60	. 0000
157	200	Ò	-48	. 0000
159	200	Ò	-36	. 0000
161	200	Ó	-24	. 0580
163	200	¢	-12	1.7526
165	200	Ó	Ó	1.8164
165	200	25	Ó	. 6558
165	200	51	¢	. 2263
167	200	Ó.	12	.4410
169	200	Ó	24	.0116
171	200	¢	36	. 0000
173	200	¢	48	. 0000
232	400	0	42	. 0000
230	400	¢	30	. 0000
228	400	¢	18	. 0406
226	400	Ó	6	. 6558
225	400	Ó	0	.8415
225	400	25	Ó	. 4468
225	400	51	0	. 0929
224	400	٥	-6	. 7196
222	400	0	-18	. 4004
220	400	¢	-30	. 0000
282	800	0	-18	. 0000
283	800	Ŷ	-12	. 0232
284	800	· 0	- 6	. 2379
285	800	Ó	0	. 2786
285	800	25	Ó	. 1509
285	800	76	Ò	. 04 06
285	800	127	Ô	. 0116
286	800	Ó	6	. 1509
287	800	Ó	12	. 0232
288	800	Ó	18	. 0000
289	800	Ŷ	24	. 0000

* POSITIVE ANGLES ARE CLOCKWISE DIRECTION.

** MODEL SAMPLE LOCATION HALFWAY TO NEXT HIGHEST GRID POINT.

CONCENTRATION DATA FOR RUN NO. 3 STABILITY: NEUTRAL WIND DIRECTION: 90 DEG. RELEASE POINT: A

PROTOTYPE		MODEL			
SAMPLER	ARC	ELEV		DEGREES OFF*	CONCENTRATION
GRID POINT	(M)	(M)		CENTER LINE	COEFFICIENT
115	100	0		60	. 0094
112	100	0		42	. 01 02
109	100	0		24	. 0126
106	100	0		6	. 0970
104	100	0		- 6	. 8062
101	100	0		-24	2.1073
98	100	¢		-42	. 2682
95	100	Q		-60	. 0181
157	200	0		-48	. 0151
159	200	¢		-36	0797
161	200	¢		-24	. 2667
163	200	0		-12	. 9869
165	200	¢		¢	. 5480
165	200	25		0	. 1761
165	200	51		¢	. 0583
167	200	0		12	. 0234
169	200	Q		24	. 0151
171	200	¢		36	. 0147
173	200	0		48	.0173
233	400	0		48	. 0183
231	400	¢		36	. 0181
229	400	¢		24	.0161
227	400	¢		12	. 0171
225	400	0		0	. 4781
225	400	25		Q	. 2674
225	400	51		¢.	. 1612
223	400	Q		-12	. 2490
221	400	¢		-24	. 0263
219	400	Q		-36	. 0157
281	800	. O		-24	. 0149
283	800	¢		-12	.0316
284	800	0		- 6	. 3403
285	800	¢		¢	. 3238
285	800	25		Q .	. 2117
285	800	76		Q	. 1043
285	800	127		¢	. 0242
286	800	0		6	. 0324
287	800	¢		12	. 0159
288	800	0		18	. 0002
289	800	0		24	. 0147

CONCENTRATION DATA FOR RUN NO. 12 STABILITY: MODERATELY STABLE WIND DIRECTION: 90 DEG. RELEASE POINT: A

	PROTOTYP	ΥE	MODEI	
SAMPLER	ARC	ELEY	DEGREES OFF*	CONCENTRATION
GRID POINT	(M)	(M)	CENTER LINE	COEFFICIENT
115	100	0	60	. 0117
112	100	¢	42	. 0079
109	100	¢	24	. 2026
106	100	0	6	2.5533
104	100	¢.	- 6	1.5875
101	100	¢	-24	3.0357
98	100	¢	-42	. 0791
95	100	¢	-60	. 0217
157	200	¢	-48	. 0126
159	200	0	-36	. 0278
161	200	¢	-24	. 4871
163	200	0	-12	2.2550
165	200	Q	0	1.9288
165	200	25	¢	. 6537
165	200	51	0	. 0672
167	200	¢	12	1.1411
169	200	0	24	. 0901
171	200	Ŷ	36	. 0159
173	200	¢	48	. 0128
233	400	¢	48	. 0082
231	400	¢	36	. 0112
229	400	¢ .	24	. 0299
227	400	0	12	. 2857
225	400	0	0	1.3383
225	400	25	0	1.1114
225	400	51	Q	. 1186
223	400	Q	-12	. 3907
221	400	¢	-24	. 0173
219	400	¢	-36	. 0098
281	800	0	-24	. 0000
283	800	¢	-12	. 0112
284	800	Q	- 6	. 2817
285	800	¢	¢	. 8383
285	800	25	Q	. 4761
285	800	76	Q	. 0383
285	800	127	¢	. 0154
286	800	¢	6	. 5879
287	800	¢	12	. 2012
288	800	0	18	. 0259
289	800	¢	24	. 0000

CONCENTRATION DATA FOR RUN NO. 19 STABILITY: SLIGHTLY UNSTABLE WIND DIRECTION: 90 DEG. RELEASE POINT: A

	PROTOTY	PE		MODEL	
SAMPLER	ARC	ELEV	DEGREES OF	F*	CONCENTRATION
GRID POINT	(M)	(M)	CENTER LIN	E	COEFFICIENT
115	100	0	60		. 0094
112	100	0	42		. 0112
109	100	¢	24		. 0177
106	100	¢.	6		. 3989
104	100	Ŷ	- 6		1.2179
101	100	0	-24		2.5108
98	100	¢	-42		. 1027
95	100	Q	-60		. 0148
157	200	¢	-48		. 0124
159	200	Q	-36		. 0266
161	200	¢	-24		. 2107
163	200	¢	-12		1.0350
165	200	¢	¢		. 7860
165	200	25	0		. 5972
165	200	51	0		. 2455
167	200	¢	12		. 1157
169	200	¢	24		. 0201
171	200	¢	36		. 0177
173	200	¢.	48		. 0195
232	400	¢	42		. 0207
230	400	¢	30		. 0106
228	400	٥	18		. 0319
226	400	0	6		. 3529
225	400	٥	0		. 6048
225	400	25	0		. 3883
225	400	51	0		. 1334
224	400	Ŷ	-6		. 6031
222	400	¢	-18		. 3924
220	400	0	-30		. 0201
282	800	¢	-18		.0159
283	800	¢	-12		. 0543
284	800	¢	- 6		. 2478
285	800	¢	0		. 2526
285	800	25	0		. 1664
285	800	76	0		.0602
285	800	127	Q		. 0342
286	800	Ŷ	6		. 1145
287	800	¢	12		. 0437
288	800	0	18		. 0153
289	800	¢	24		.0195

* POSITIVE ANGLES ARE CLOCKWISE DIRECTION.

** MODEL SAMPLE LOCATION HALFWAY TO NEXT HIGHEST GRID POINT.

CONCENTRATION DATA FOR RUN NO. 3 STABILITY: NEUTRAL WIND DIRECTION: 90 DEG. RELEASE POINT: G5

	PROTOTYF	ΡE	MOD	EL
SAMPLER	ARC	ELEV	DEGREES OFF*	CONCENTRATION
GRID POINT	(M)	(M)	CENTER LINE	COEFFICIENT
i i 5	100	Ó	60	. 0255
112	100	Ó	42	. 0449
109	100	Ó	24	. 1444
106	100	Ó	6	. 1560
104	100	Ó	- 6	.6761
101	100	Ó	-24	2.3947
98	100	Ó	-42	1.8747
95	100	Ó	-60	1.3508
157	200	Ó	-48	. 0410
159	200	Ó	-36	. 1589
161	200	Ó	-24	. 6674
163	200	Ó	-12	1.0501
165	200	Ó	0	. 4334
165	200	25	0	. 1869
165	200	51	0	.0661
167	200	Ó	12	. 0787
169	200	Ó	24	. 0226
171	200	Ô	36	.0178
173	200	Ó	48	. 0217
233	400	Ó	48	. 0197
231	400	Ó	36	. 0207
229	400	Ó	24	. 0197
227	400	Ó	12	. 0236
225	400	Ó	Ó	. 4218
225	400	25	0	. 2546
225	400	51	Ó	. 1212
223	400	¢	-i2	. 3029
221	400	Ó	-24	. 0526
219	400	Ó	-36	. 0217
281	800	Ô	-24	. 0284
283	800	Ó	-12	. 0478
284	800	· 0	- 6	. 3696
285	800	Ó	Ó	. 2855
285	800	25	Ó	. 1956
285	800	76	0	. 0922
285	800	127	0	. 0275
286	800	0	6	. 0323
287	800	0	12	. 0226
288	800	0	18	. 0294
289	800	0	24	. 0236

CONCENTRATION DATA FOR RUN NO. 12 STABILITY: MODERATELY STABLE WIND DIRECTION: 90 DEG. RELEASE POINT: G5

PROTOTYPE		MODEL				
SAMPLER	ARC	ELEV	DE	GREES OFF*	CONCENTRA	TION
GRID POINT	(M)	(M)	CE	NTER LINE	COEFFICI	ENT
115	100	0		60	. 051	1
112	100	0		42	. 281	6
109	100	Ŷ		24	1.082	2
106	100	0		6	. 990:	2
104	100	¢		- 6	1.142	8
101	100	¢		-24	1.875	5
98	100	0		-42	2.557	7
95	100	0		-60	2.957	7
157	200	0		-48	. 386	5
159	200	0		-36	1.619	7
161	200	0		-24	1.887	8
163	200	0		-12	. 923	4
165	200	0		0	. 706	3
165	200	25		0	. 295	1
165	200	51		¢	. 019	6
167	200	0		12	. 775	3
169	200	0		24	. 355	7
171	200	0		36	. 120	1
173	200	0	8	48	. 020	2
233	400	Q		48	. 000	0
231	400	0		36	. 000	Ģ
229	400	0		24	. 057	8
227	400	0		12	. 341	1
225	400	0		¢	. 537	5
225	400	25		0	. 388	8
225	400	51		¢.	. 032	5
223	400	¢		-12	. 621	6
221	400	¢		-24	. 292	9
219	400	0		-36	. 018	5
281	800	¢		-24	. 003	4
283	800	0		-12	. 030	3
284	800	¢		- 6	. 380-	4
285	800	0		0	. 501	5
285	800	25		0	. 251	9
285	800	76		0	. 011:	2
285	800	127		0	. 003	4
286	800	0		6	. 273	8
287	800	0		12	. 174	5
288	800	Ŷ		18	. 022	4
289	800	0		24	. 000	0

CONCENTRATION DATA FOR RUN NO. 19 STABILITY: SLIGHTLY UNSTABLE WIND DIRECTION: 90 DEG. RELEASE POINT: G5

	PROTOTYP	E	MOD	DEL
SAMPLER	ARC	ELEV	DEGREES OFF*	CONCENTRATION
GRID POINT	(M)	(M)	CENTER LINE	COEFFICIENT
i i 5	100	Ó	60	. 0101
112	100	Ó	42	. 0201
109	100	٥	24	. 1335
106	100	Ó	6	. 5641
104	100	Ó	- 6	1.3171
101	100	Ô	-24	2.7424
98	100	Ô	-42	1.8812
95	100	Ó	-60	1.6495
i57	200	Ó	-48	. 0516
159	· 200	Ó	-36	. 4961
161	200	Ó	-24	. 8235
163	200	¢	-12	1.1773
165	200	Ó	Ó	. 8373
165	200	25	Ó	. 5767
i65	200	5 i	Ó	. 2367
167	200	Ó	i 2	. 2128
i69	200	Ó	24	. 0290
171	200	¢	36	.0151
173	200	Ó	48	. 0139
232	400	Ó	42	. 0176
230	400	Ó	30	. 0201
228	400	0	18	.0516
226	400	Ó	6	. 4407
225	400	Ó	0	. 7467
225	400	25	Ó -	. 4596
225	400	5 i	0	. 1473
224	400	Ó	-6	. 8273
222	400	Ó	-18	. 7630
220	400	Ó	-30	. 0730
282	800	Ó	-18	. 0290
283	800	Ó	-12	. 1108
284	800	· 0	- 6	. 3815
285	800	Ó	0	. 3198
285	800	25	Ó	. 2027
285	800	76	Ó	. 0793
285	800.	127	Ó	. 0441
286	800	0	6	. 1322
287	800	0	12	. 0390
288	800	0	18	. 0214
289	800	Ó	24	. 0227

CONCENTRATION DATA FOR RUN NO. 3 STABILITY: NEUTRAL WIND DIRECTION: 90 DEG. RELEASE POINT: G17

	PROTOTY	PE	HODEL	
SAMPLER	ARC	ELEV	DEGREES OFF*	CONCENTRATION
GRID POINT	(M)	(M)	CENTER LINE	COEFFICIENT
115	100	9	60	. 01 32
112	100	0	42	.0311
109	100	Q	24	. 3430
106	100	¢	6	. 4057
104	100	¢	- 6	2.5845
101	100	¢	-24	2.3942
98	100	¢	-42	. 0615
95	100	¢	-60	. 0185
157	200	0	-48	. 0178
159	200	Q	-36	. 1375
161	200	¢	-24	. 0747
163	200	Q	-12	1.2767
165	200	Q	0	1.5800
165	200	25	0	. 8062
165	200	51	0	. 2524
167	200	Q	12	. 1705
169	200	¢.	24	. 0192
171	200	0	36	. 0172
173	200	, Q	48	. 0185
233	400	0	48	. 0185
231	400	¢	36	. 0178
229	400	0	24	. 0178
227	400	0	12	. 0330
225	400	0	0	. 8941
225	400	25	0	. 5280
225	400	51	0	. 21 21
223	400	Q	-12	. 1989
221	400	9	-24	. 0192
219	400	¢.	-36	. 0185
281	800	Q	-24	.0165
283	800	¢.	-12	. 0383
284	800	Ģ	- 6	. 3635
285	800	¢	0	. 4322
285	800	25	0	
285	800	76	0	. 1156
285	800	127	0	. 0231
286	800	¢	6	. 0542
287	800	¢	12	. 0218
288	800	¢	18	. 0278
289	800	¢	24	. 0172

* POSITIVE ANGLES ARE CLOCKWISE DIRECTION.

** MODEL SAMPLE LOCATION HALFWAY TO NEXT HIGHEST GRID POINT.

109

CONCENTRATION DATA FOR RUN NO. 12 STABILITY: MCDERATELY STABLE WIND DIRECTION: 90 DEG. RELEASE POINT: G17

	PROTOTY	PE	HOD	EL
SAMPLER	ARC	ELEV	DEGREES OFF*	CONCENTRATION
GRID POINT	(M)	(M)	CENTER LINE	COEFFICIENT
115	100	0	60	. 0000
112	100	0	42	. 0022
109	100	¢	24	2.0753
106	100	Ŷ	6	4.2813
104	100	¢.	- 6	4.4965
101	100	0	-24	2.7454
98	100	0	-42	. 0113
95	100	¢.	-60	. 0009
157	200	0	-48	. 0000
159	200	¢	-36	. 0000
161	200	¢	-24	. 2043
163	200	0	-12	2.3139
165	200	0	0	3.2696
165	200	25	0	1.3621
165	200	51	0	. 0922
167	200	0	12	3.1627
169	200	0	24	. 4638
171	200	0	36	. 0074
173	200	0	48	. 0000
233	400	Q	48	. 0000
231	400	¢.	36	. 0000
229	40 û	0	24	. 0752
227	400	Q	12	. 9501
225	400	¢	0	1.2578
225	400	25	• •	. 8706
225	400	51	0	. 0791
223	400	¢	-12	. 2017
221	400	¢.	-24	. 0048
219	400	0	-36	.0035
281	800	Ŷ	-24	. 0257
283	800	¢	-12	. 0205
284	800	¢	- 6	. 1495
285	800	Ŷ	¢	. 4781
285	800	25	0	. 2721
285	800	76	Q	. 0166
285	800	127	¢	:0035
286	800	¢	6	. 7141
287	800	Ŷ	12	. 4403
288	800	Ŷ	18	. 0426
289	800	¢	24	. 0035

CONCENTRATION DATA FOR RUN NO. 19 STABILITY: SLIGHTLY UNSTABLE WIND DIRECTION: 90 DEG. RELEASE POINT: G17

	PROTOTYPE		1	10 D E L	1
SAMPLER	ARC	ELEV	DEGREES OFF;	ŧ	CONCENTRATION
GRID POINT	(M)	(M)	CENTER LINE		COEFFICIENT
115	100	¢	60		. 0249
112	100	Ŷ	42		. 0249
109	100	Q	24		. 1433
106	100	Ģ	6		1.3242
104	100	Q	- 6		2.2962
101	100	0	-24		1.9660
98	100	0	-42		. 04 05
. 95	100	Ŷ	-60		. 0249
157	200	0	-48		. 0280
159	200	Q	-36		.0405
161	200	0	-24		. 1059
163	200	0	-12		1.2463
165	200	0	0		1.2494
165	200	25	0		.7166
165	200	51	Ŷ		. 2991
167	200	Q	12		. 3552
169	200	¢	24		.0405
171	200	Ŷ	36		.0343
173	200	Q	48		.0280
232	400	Ŷ	42		.0405
230	400	Ŷ	30		.0312
228	400	Q	18		.0654
226	400	Q	6		. 5920
225	400	Q	0		.7509
225	400	25	0		. 4487
225	400	51	0		. 1651
224	400	Ŷ	-6		. 6948
222	400	¢	-18		. 3863
220	400	¢.	-30		.0374
282	800	Ŷ	-18		.0343
283	800	Ŷ	-12		.0654
284	800.	0	- 6		. 2648
285	800	0	0		. 2929
285	800	25	¢		. 1994
285	800	76	Ŷ		.0872
285	800	127	Ŷ		.0592
286	800	¢	6		. 1682
287	800	0	12		.0623
288	800	¢.	18		. 0436
289	800	0	24		. 0530

Table 9. Data, Wind Direction 1350

CONCENTRATION DATA FOR RUN NO. 4 STABILITY: NEUTRAL WIND DIRECTION: 135 DEG. RELEASE POINT: C

PROTOTYPE		MODEL		
SAMPLER	ARC	ELEY	DEGREES OFF*	CONCENTRATION
GRID POINT	(M)	(M)	CENTER LINE	COEFFICIENT
120	100	¢	45	.0022
117	100	¢	27	. 0212
114	100	Ŷ	9	. 3441
112	100	Q	-3	1.5550
109	100	¢	-21	2.2918
106	100	0	-39	1.1736
103	100	0	-57	. 7350
100	100	¢	-75	. 0000
164	200	¢	-51	. 0144
166	200	Ŷ	-39	. 1847
168	200	Q	-27	1.0646
170	200	Ģ	-15	1.3357
172**	200	0	¢ .	. 9665
172**	200	25	¢.	. 7677
172**	200	51	¢	. 2242
174	200	Ģ	9	. 1752
176	200	Ģ	21	. 0000
178	200	0	33	. 0000
121	200	Ŷ	51	. 1302
238	400	Ŷ	. 33	. 0000
236	400	Ŷ	21	. 0049
235	400	Ŷ	15	. 1370
234	400	Ŷ	9	. 3468
232**	400	¢	• Q	. 4639
232**	400	25	0	. 2760
232**	40 Ç	51	¢	. 1275
231	400	0	-9	. 3509
229	400	¢	-21	. 51 02
227	400	¢.	-33	. 0240
289	800	0	-21	. 0008
290	800	Ŷ	-15	. 0825
291	800	0	- 9	. 1888
292**	800	0	0	. 1561
292**	800	25	, O	. 1016
292**	800	76	0	.0512
292**	800	127	0	. 0117
294	800	0	9	. 1111
295	800	0	15	.0131
296	800	0	21	.0063
297	800	¢	27	. 0000

CONCENTRATION DATA FOR RUN NO. 13 STABILITY: MODERATELY STABLE WIND DIRECTION: 135 DEG. RELEASE POINT: C

PROTOTYPE			MODEL		
SAMPLER	ARC	ELEV		DEGREES OFF*	CONCENTRATION
GRID POINT	(M)	(M)		CENTER LINE	COEFFICIENT
120	100	0		45	. 0115
117	100	Q		27	. 0000
114	100	Ŷ		9	. 0432
112	100	0		-3	. 4813
109	100	0		-21	1.3027
106	100	0		-39	. 6370
103	100	¢		-57	. 3977
100	100	0		-75	.0058
164	200	Q.		-51	. 0346
166	200	0		-39	. 0576
168	200	0		-27	. 9165
170	200	¢		-15	1.3690
172**	200	¢		Q	1.3200
172**	200	25		0	1.8936
172**	200	51		0	. 9770
174	200	¢		9	. 0317
176	200	0		21	. 0519
178	200	0		33	. 0000
121	200	0		51	. 0000
238	400	0		33	. 0000
236	400	Q		21	. 0000
235	400	0		15	. 2104
234	400	0		9	. 7465
232**	400	0		Q	. 6571
232**	400	25		O	. 3459
232**	400	51		¢.	. 1326
231	400	0		-9	. 2767
229	400	¢		-21	. 4093
227	400	0		-33	. 0461
289	800	0		-21	. 0000
290	800	0		-15	. 0548
291	800	0		- 9	. 1441
292**	800	Ŷ	8	¢	. 2104
292**	800	25		Q	. 1441
292**	800	76		¢	. 0346
292**	800	127		¢	. 0029
294	800	0		9	. 1614
295	800	¢		15	.0058
296	800	0		21	. 0000
297	800	0		27	. 0000

CONCENTRATION DATA FOR RUN NO. 20 STABILITY: SLIGHTLY UNSTABLE WIND DIRECTION: 135 DEG. RELEASE POINT: C

	PROTOTY	PE .	MODE	L
SAMPLER	ARC	ELEV	DEGREES OFF*	CONCENTRATION
GRID POINT	(M)	(M)	CENTER LINE	COEFFICIENT
120	100	Ò	45	. 0000
117	100	0	27	. 0859
114	100	0	9	. 5269
112**	100	0	0	1.3626
109	100	Ó	-21	2.4884
106	100	¢	-39	1.4090
103	100	0	-57	1.0202
100	100	0	-75	. 0801
164	200	Ó	-5 i	. 0975
166	200	Ô	-39	. 3064
168	200	Ó	-27	. 9854
170	200	Ó	-i5	i.3394
172**	200	Ó	Ó	. 9041
172**	200	25	Ó	. 6430
172**	200	51	Ó	. 2716 .
174	200	Ô	9	. 3877
176	200	Ó	21	. 1903
178	200	¢	33	. 0569
izi	200	Ó	5 i	. 0395
239	400	Ô	. 39	.0511
237	400	Ó	27	. 0395
235	400	0	15	. 1729
234	400	0	9	. 3528
232**	400	Ó	0	. 4225
232**	400	25	0	. 3122
232**	400	5i	Ó	. 1555
231	400	Ó	- 9	. 3470
229	400	Ó	-21	. 4457
227	4 Ó Ó	Ô	-33	.3180
289	800	Ô	-21	. 0743
290	800	Ó	-15	. 1439
291	800	Ó	- 9	. 1613
292**	800	Ó	Ò	. 1323
292**	800	25	Ò	. 1265
292**	800	76	Ò	. 1091
292**	800	127	- O	. 0569
293	800	Ó	3	. 1381
294	800	¢	9	. 1091
295	800	Ó	15	. 0917
296	800	Ô	21	.0221

CONCENTRATION DATA FOR RUN NO. 4 STABILITY: NEUTRAL WIND DIRECTION: 135 DEG. RELEASE POINT: A

	PROTOTYPE		MODEL	
SAMPLER	ARC	ELEV	DEGREES OFF*	CONCENTRATION
GRID POINT	(M)	(M)	CENTER LINE	COEFFICIENT
120	100	0	4 5	.0058
117	100	Ŷ	27	.0620
114	100	Ŷ	9	. 2615
112	100	Q	- 3	. 7262
109	100	¢	-21	1.1524
106	100	Q	-39	. 8631
103	100	Ģ	-57	. 6409
100	100	¢.	-75	. 0068
164	200	0	-51	. 0253
166	200	0	-39	. 1422
168	200	¢	-27	. 6545
170	200	¢.	-15	.8510
172**	200	¢.	0	. 6606
172**	200	25	0	. 7258
172**	200	51	0	. 4002
174	200	Q	9	. 1382
176	200	Q	21	.0075
178	200	¢	33	. 0128
121	200	¢	51	. 1236
238	400	0	33	. 0142
236	400	0	21	. 0172
235	400	Q	15	. 1350
234	400	Q	9	. 3371
232**	400	0	` 0	. 4396
232**	400	25	0	. 3210
232**	400	51	Q	. 1698
231	400	0	- 9	. 3051
229	400	0	-21	. 37 0 4
227	400	¢.	-33	. 0336
289	800	Q	-21	. 0117
290	800	0	-15	. 07 0 3
291	800	Q	-9	. 1592
292**	800	Q	¢	.1728
292**	800	25	¢	. 1170
292**	800	76	¢	. 0669
292**	800	127	0	. 0278
294	800	¢.	9	. 1276
295	800	¢	15	. 0274
296	800	Ŷ	21	. 0176
297	800	0	27	. 0111

CONCENTRATION DATA FOR RUN NO. 13 STABILITY: MODERATELY STABLE WIND DIRECTION: 135 DEG. RELEASE POINT: A

PROTOTYPE		MODEL		
SAMPLER	ARC	ELEV	DEGREES OFF*	CONCENTRATION
GRID POINT	(M)	(M)	CENTER LINE	COEFFICIENT
120	100	0	4 5	.0175
117	100	Q	27	. 0602
114	100	0	9	. 1925
112	100	Q	- 3	. 4967
109	100	0	-21	2.0333
106	100	Q	-39	2.5832
103	100	0	-57	2.4455
100	100	¢	-75	.0583
164	200	¢	-51	.0350
166	200	¢	-39	. 2997
168	200	¢.	-27	1.8079
170	200	¢	-15	. 9863
172**	200	0	¢	.7415
172**	200	25	Q	. 6990
172**	200	51	Q	. 6192
174	200	Q	9	. 0485
176	200	Q	21	. 0490
178	200	Q	33	. 01 05
121	200	0	51	. 0070
238	400	0	33	. 0000
236	400	¢	21	.0105
235	400	¢	15	. 1349
234	400	¢.	9	. 3447
232**	400	¢	0	. 4220
232**	400	25	0	. 2516
232**	400	51	0	. 1188
231	400	0	- 9	. 4014
229	400	¢	-21	. 6864
227	400	¢.	-33	. 2283
289	800	¢	-21	. 0469
290	800	¢	-15	. 1505
291	800	0	-9	. 2385
292**	800	0	0	. 1743
292**	800	25	0	. 1211
292**	800	76	0	. 0432
292**	800	127	0	. 0203
294	800	Ģ	9	. 1132
295	800	Q	15	. 0189
296	800	¢	21	. 0047
297	800	¢.	27	. 0000

* POSITIVE ANGLES ARE CLOCKWISE DIRECTION. ** MODEL SAMPLE LOCATION HALFWAY TO NEXT HIGHEST GRID POINT.

117

CONCENTRATION DATA FOR RUN NO. 20 STABILITY: SLIGHTLY UNSTABLE WIND DIRECTION: 135 DEG. RELEASE POINT: A

	PROTOTYPE		MODEL		
SAMPLER	ARC	ELEV	DEGREES OFF*	CONCENTRATION	
GRID POINT	(M)	(M)	CENTER LINE	COEFFICIENT	
120	100	¢.	4 5	. 0047	
117	100	Q	27	. 1115	
114	100	Q	9	. 3977	
112**	100	¢	Q	. 6615	
109	100	¢.	-21	1.1619	
106	100	Q	-39	. 7860	
103	100	0	-57	. 5771	
100	100	¢	-75	. 0307	
164	200	Q	-51	. 0407	
166	200	¢	-39	. 1635	
168	200	¢	-27	. 5169	
170	200	¢	-15	. 8362	
172**	200	¢	0	. 6721	
172**	200	25	Q	. 6692	
172**	200	51	0	. 3405	
174	200	Q	9	. 2832	
176	200	¢.	21	. 1410	
178	200	0	33	. 0330	
121	200	¢.	51	. 0118	
239	400	¢.	39	. 0130	
237	400	0	27	. 0230	
235	400	¢.	15	. 1280	
234	400	0	9	. 3346	
232**	400	¢.	0	. 3700	
232**	4 O O	25	0	. 3210	
232**	400	51	0	. 1611	
231	400	¢	- 9	. 2726	
229	400	¢.	-21	. 3245	
227	400	¢	-33	. 2089	
289	800	¢.	-21	. 0372	
290	800	¢	-15	. 1033	
291	800	¢.	- 9	. 1216	
292**	800	¢	0	. 1186	
292**	800	25	0	. 0938	
292**	800	76	0	. 0667	
292**	800	127	0	. 0372	
293	800	¢	3	. 1145	
294	800	¢	9	. 0909	
295	800	¢	15	. 0384	
296	800	Q	21	. 0195	

* POSITIVE ANGLES ARE CLOCKWISE DIRECTION.

** MODEL SAMPLE LOCATION HALFWAY TO NEXT HIGHEST GRID POINT.

CONCENTRATION DATA FOR RUN NO. 4 STABILITY: NEUTRAL WIND DIRECTION: 135 DEG. RELEASE POINT: G5

PROTOTYPE			MODEL			
SAMPLER	ARC	ELEY		DEGREES OFF*		CONCENTRATION
GRID POINT	(M)	(M)		CENTER LINE		COEFFICIENT
120	100	¢		45		2.5959
117	100	Q		27		2.2314
114	100	¢.		9		1.6494
112	100	Ŷ		-3		1.2829
109	100	Q		-21		1.4007
106	100	Ŷ		-39		1.1117
103	100	¢.		-57		. 8711
100	100	0		-75		.0021
164	200	¢		-51		. 0223
166	200	¢.		-39		. 2055
168	200	¢		-27		. 5106
170	200	0	8.0	-15		.7311
172**	200	0		0		. 8580
172**	200	25		¢		. 4210
172**	200	51		0		. 1612
174	200	Q		9		. 8318
176	200	0		21		. 4804
178	200	٥		33		. 6566
121	200	0	8	51		. 5539
238	400	0		33		0152
236	400	¢		21		. 3203
235	400	¢		15		. 2992
234	400	0		9		. 3545
232**	400	¢		Ŷ		. 3203
232**	400	25		0		. 1964
232**	400	51		¢		. 0948
231	400	¢		-9		. 2035
229	400	¢		-21		. 3022
227	400	¢		-33		.0253
289	800	¢		-21		.0051
290	800	¢		-15		.0615
291	800	Ŷ		- 9		. 1129
292**	800	¢		¢		. 1119
292**	800	25		¢		. 0847
292**	800	76		¢		. 0444
292**	800	127		¢		.0112
294	800	¢		9		. 1562
295	800	¢		15		. 1018
296	800	0		21		.0162
297	800	Ŷ		27		. 0001

CONCENTRATION DATA FOR RUN NO. 13 STABILITY: MODERATELY STABLE WIND DIRECTION: 135 DEG. RELEASE POINT: G5

	PROTOTY	PE	MO	DEL
SAMPLER	ARC	ELEV	DEGREES OFF*	CONCENTRATION
GRID POINT	(M)	(M)	CENTER LINE	COEFFICIENT
120	100	¢	4 5	3.5574
117	100	¢	27	2.6149
114	100	¢ (9	2.2923
112	100	¢	- 3	2.0258
109	100	¢	-21	1.9366
106	100	¢	-39	1.3975
103	100	¢	-57	1.0025
100	100	0	-75	. 7181
164	200	¢	-51	. 1868
166	200	¢	-39	. 1274
168	200	¢	-27	. 8539
179	200	¢	-15	. 7753
172**	200	¢	0	. 9678
172**	200	25	0	. 3349
172**	200	51	Ŷ	. 1554
174	200	·0	9	. 4236
176	200	¢.	21	. 31 98
178	200	0	33	. 5470
121	200	0	51	1.7240
238	400	Q	33	. 2648
236	400	¢.	21	. 7832
235	400	Q	15	. 3433
234	400	0	9	. 3310
232**	400	0	0	. 1992
232**	400	25	0	. 0920
232**	400	51	Q	. 0550
231	400	¢	- 9	. 1459
229	400	¢	-21	. 3063
227	400	¢	-33	. 1010
289	800	¢	-21	. 0236
290	800	¢	-15	. 0684
291	800	¢	- 9	. 1004
292**	800	¢	0	. 0898
292**	800	25	0	. 0673
292**	800	76	0	. 0264
292**	800	127	0	. 0090
294	800	0	9	. 2362
295	800	¢	15	. 3490
296	800	¢	21	.0135
297	800	¢	27	. 0000

* POSITIVE ANGLES ARE CLOCKWISE DIRECTION.

** MODEL SAMPLE LOCATION HALFWAY TO NEXT HIGHEST GRID POINT.

120

CONCENTRATION DATA FOR RUN ND. 20 STABILITY: SLIGHTLY UNSTABLE WIND DIRECTION: 135 DEG. RELEASE POINT: G5

	PROTOTY	PE	MODEL	
SAMPLER	ARC	ELEV	DEGREES OFF*	CONCENTRATION
GRID POINT	(M)	(M)	CENTER LINE	COEFFICIENT
120	100	Q	4 5	2.2325
117	100	0	27	1.9227
114	100	0	à	1.5299
112**	100	0	0	1.2755
109	100	¢	-21	1.3209
106	100	¢	-39	. 9922
103	100	0	-57	. 7857
100	100	0	-75	. 1599
164	200	0	-51	. 0541
166	200	0 -	-39	. 1989
168	200	Ô	-27	. 4218
170	200	0	-15	.6548
172**	200	Ô	¢	. 7920
172**	200	25	0	. 3715
172**	200	51	0	. 1184
174	200	0	9	. 8625
176	200	0	21	. 5427
178	200	0	33	. 7920
121	200	Q	51	.0567
239	400	¢.	39	. 0164
237	400	Q	27	. 1801
235	400	Ŷ	15	. 3324
234	400	Ŷ	ġ.	. 3412
232**	400	Q	¢	. 3437
232**	400	25	Ŷ	. 1801
232**	400	51	0	. 0995
231	.400	Q	- 9	. 1763
229	400	0	-21	. 1989
227	400	0	-33	. 1549
289	800	Q	-21	.0290
290	800	Q	-15	.0667
291	800	Q	- 9	. 0869
292**	800	Q	¢	. 0970
292**	800	25	Q	.0856
292**	800	76	Ŷ	.0604
292**	800	127	0	.0302
293	800	0	3	. 1033
294	800	0	9	. 1196
295	800	0	15	. 0869
296	800	0	21	. 0491

CONCENTRATION DATA FOR RUN NO. 4 STABILITY: NEUTRAL WIND DIRECTION: 135 DEG. RELEASE POINT: G17

PROTOTYPE			MODEL		
SAMPLER	ARC	ELEV	DEGREES OFF*	CONCENTRATION	
GRID POINT	(M)	(M)	CENTER LINE	COEFFICIENT	
120	100	0	45	. 0205	
117	100	0	27	. 3530	
114	100	¢	9	. 8982	
112	100	0	- 3	1.5500	
109	100	0	-21	2.2673	
106	100	Q	-39	2.3141	
103	100	0	-57	2.0594	
100	100	0	-75	. 0054	
164	200	0	-51	.0515	
166	200	0	-39	. 2718	
168	200	¢.	-27	1.0290	
170	200	0	-15	1.0758	
172**	200	¢	0	. 8603	
172**	200	25	o	. 6731	
172**	200	51	0	. 2952	
174	200	¢	9	. 2580	
176	200	0	21	0088	
178	200	0	33	. 0233	
121	200	¢	51	. 2057	
238	400	0	33	. 0074	
236	400	0	21	. 0191	
235	400	Q	15	. 1602	
234	400	0	9	. 3847	
232**	400	Q	0	. 4562	
232**	400	25	¢	. 2965	
232**	400	51	0	. 1472	
231	400	¢	-9	. 3564	
229	400	¢	-21	. 5134	
227	400	¢.	-33	. 0487	
289	800	¢	-21	. 0074	
290	800	Q	-15	. 0955	
291	800	¢.	-9	. 2002	
292**	800	¢	0	. 1692	
292**	800	25	0	. 1176	
292**	800	76	¢	. 0618	
292**	800	127	¢		
294	800	Q	9	. 1293	
295	800	¢	15	. 0240	
296	800	Q	21	. 0184	
297	800	0	27	.0054	

CONCENTRATION DATA FOR RUN NO. 13 STABILITY: MODERATELY STABLE WIND DIRECTION: 135 DEG. RELEASE POINT: G17

PROTOTYPE			MODEL				
SAMPLER	ARC	ELEV		DEGREES OFF*		CONCENTRATION	
GRID POINT	(M)	(M)		CENTER LINE		COEFFICIENT	
120	100	Ģ		4 5		. 0222	
117	100	Ģ		27		. 1030.	
114	100	\$		9		. 3781	
112	100	¢		- 3	975	. 9739	
109	100	¢.		-21	1	3.4642	
106	100	Ò		-39		3.5620	
103	100	0		-57		2.7680	
100	100	¢		-75		. 0482	
164	200	Ŷ		-51		. 2764	
166	200	¢		-39		. 1969	
168	200	¢.		-27		1.3560	
170	200	0		-15		1.2438	
172**	200	0		¢		1.0196	
172**	200	25		Q		.8657	
172**	200	51		¢		. 5567	
174	200	¢		9		. 0639	
176	200	Q		21		. 0548	
178	200	¢		33		. 0000	
121	200	0	(B)	51		. 0000	
238	400	¢	2.0	33		. 0000	
236	400	0	10	21		.0065	
235	400	Ģ		15		. 1617	
234	400	0		9		. 4446	
232**	400	¢		Q		. 3924	
232**	400	25		Ŷ		. 2125	
232**	400	51		Ŷ		. 1043	
231	400	0		- 9		. 3207	
229	400	¢		-21		. 5763	
227	400	¢		-33		. 1891	
289	800	0		-21		. 0339	
290	800	Q		-15		. 1356	
291	800	Ŷ		-9		. 1956	
292**	800	Q		Q		. 1565	
292**	800	25		Q		. 1043	
292**	800	76		Q		.0326	
292**	800	127		0		. 0222	
294	800	o		9		. 1095	
295	800	0		15		. 0143	
296	800	¢		21		. 0000	
297	800	0		27		. 0000	

CONCENTRATION DATA FOR RUN NO. 20 STABILITY: SLIGHTLY UNSTABLE WIND DIRECTION: 135 DEG. RELEASE POINT: G17

PROTOTYPE		M	DDEL	
SAMPLER	ARC	ELEV	DEGREES OFF*	CONCENTRATION
GRID POINT	(M)	(M)	CENTER LINE	COEFFICIENT
120	100	¢	45	. 0031
117	100	¢	27	. 7384
114	100	¢	9	1.2525
112**	100	¢	¢	1.4581
109	100	Ó	-21	2.1249
106	100	0	-39	1.9535
103	100	0	-57	1.7136
100	100	0	-75	.0810
164	200	Q	-51	. 1059
166	200	¢.	-39	. 4237
168	200	Q	-27	. 8599
170	200	Ŷ	-15	. 9721
172**	200	Ŷ	¢	. 8256
172**	200	25	Q	. 5515
172**	200	51	¢	. 2337
174	200	0	9	. 47 05
176	200	¢	2.1	. 2212
178	200	Ò	33	. 1122
121	200	Q	51	. 0249
239	400	¢	39	. 0280
237	400	Ŷ	27	. 0280
235	400	¢	15	. 1589
234	400	0	9	. 3303
232**	400	0	Q	. 3770
232**	400	25	0	. 2617
232**	400	51	0	. 1464
231	400	¢	-9	. 2898
229	400	Q.	-21	. 3739
227	400	0	-33	. 2679
289	800	0	-21	. 0654
290	800	0	-15	. 1215
291	800	¢	- 9	. 1402
292**	800	0	0	. 1153
292**	800	25	0	. 1090
292**	800	76	0	. 0872
292**	800	127	0	. 0436
293	800	¢.	3	. 1215
294	800	¢	9	. 0935
295	800	¢.	15	. 0841
296	800	0	21	. 0218

* POSITIVE ANGLES ARE CLOCKWISE DIRECTION.

** MODEL SAMPLE LOCATION HALFWAY TO NEXT HIGHEST GRID POINT.

Table 10. Data, Wind Direction 180⁰

CONCENTRATION DATA FOR RUN NO. 5 STABILITY: NEUTRAL WIND DIRECTION: 180 DEG. RELEASE POINT: C

	PROTOTYPE		HODE	L
SAMPLER	ARC	ELEV	DEGREES OFF*	CONCENTRATION
GRID POINT	(M)	(M)	CENTER LINE	COEFFICIENT
68	100	¢	48	. 0167
64	100	0	24	. 0641
120	100	0	0	. 0463
118	100	Q	-12	. 0274
116	100	0	-24	. 0132
114	100	0	-36	. 0120
112 .	100	0	-48	. 0120
108	100	0	-72	. 0120
173	200	0	-42	. 0120
175	200	Q.	-30	.0321
177	200	0	-18	. 0179
179	200	0	- 6	. 0203
180	200	¢	0	. 1091
180	200	25	0	. 4161
180	200	51	0	. 2952
121	200	¢	6	. 4113
123	200	Q	18	. 5843
125	200	0	30	. 0226
127	200	0	42	. 0120
186	400	0	36	. 0132
184	400	Q	24	. 0132
182	400	¢.	12	. 4682
181	400	0	6	. 5073
240	400	25	9	. 3935
240	4 O Q	51	0	. 2146
238	400	¢	-12	. 0641
236	400	0	-24	. 0155
234	400	0	-36	. 0132
296	800	¢	-24	. 0143
298	800	0	-12	. 0191
299	800	0	- 6	.0878
300	800	0	0	. 1909
300	800	25	0	. 1577
300	800	76	0	. 0831
300	800	127	0	. 0321
241	800	0	6	. 2679
242	800	0	12	. 0688
243	800	¢	18	. 0132
244	800	0	24	. 0143

CONCENTRATION DATA FOR RUN NO. 14 STABILITY: MODERATELY STABLE WIND DIRECTION: 180 DEG. RELEASE POINT: C

PROTOTYPE			MODEL			
SAMPLER	ARC	ELEV	DEGREES OFF*	CONCENTRATION		
GRID POINT	(M)	(M)	CENTER LINE	COEFFICIENT		
68	100	¢	48	. 0000		
64	100	Ģ	24	. 0965		
120	100	Ŷ	0	. 0240		
118	100	¢	-12	. 0073		
116	100	¢	-24	. 0000		
114	100	¢	-36	. 0000		
112	100	¢	-48	. 0000		
108	100	¢	-72	. 0000		
173	200	Ŷ	-42	. 0000		
175	200	Q	-30	. 0000		
177	200	o	-18	. 0000		
179	200	¢	- 6	. 0000		
180	200	¢	¢.	. 0379		
180	200	25	0	. 0547		
180	200	51	0	. 0000		
121	200	¢	6	. 2388		
123	200	Q .	18	1.3940		
125	200	¢	30	. 0379		
127	200	Ģ	42	. 0000		
186	400	Q	36	. 0000		
184	400	¢	24	. 0073		
182	400	0	12	1.2461		
181	400	¢	6	1.0424		
240	400	0	0	.7327		
240	400	25	0	. 4286		
240	400	51	0	. 0128		
238	400	0	-12	. 0017		
236	400	¢	-24	. 0000		
234	400	¢	-36	. 0000		
296	800	٥	-24	. 0000		
298	800	¢.	-12	. 0017		
299	800	¢	- 6	. 0379		
300	800	0	0	. 3700		
300	800	25	0	. 2333		
300	800	76	0	. 0463		
300	800	127	Q	.0045		
241	800	0	6	. 7522		
242	800	¢	12	. 2277		
243	800	¢	18	. 01 00		
244	800	¢	24	. 0000		

CONCENTRATION DATA FOR RUN NO. 21 STABILITY: SLIGHTLY UNSTABLE WIND DIRECTION: 180 DEG. RELEASE POINT: C

PROTOTYPE			MODEL				
SAMPLER	ARC	ELEV		DEGREES	OFF*	CONC	ENTRATION
GRID POINT	(M)	(M)		CENTER L	INE	COE	FFICIENT
68	100	¢		48			. 0104
64	100	Q	×	24			. 0801
120	100	Q		Ŷ			. 0801
118	100	¢.		-12			.0162
116	100	¢		-24			. 0000
114	100	¢		-36			. 0000
112	100	¢		-48			. 0000
108	100	¢		-72			. 0000
173	200	¢		-42			. 0000
175	200	Q		-30			. 0000
177	200	Ŷ		-18	Υ		. 0000
179	200	¢		- 6			.0395
180	200	¢		0			.0917
180	200	25		0			. 6256
180	200	51		Ŷ			. 3586
121	200	¢		6	A.		.4515
123	200	¢		18			. 5792
125	200	¢		30			. 0046
127	200	0		42			. 0000
187	400	¢		42			. 0000
185	400	¢.		30			.0000
183	400	0		18			. 1149
181	400	0		6			.4631
240	400	0		0			. 3354
240	400	25		• 0			. 3354
240	400	51		0			. 1439
239	400	Q		-6			. 2426
237	400	0		-18			. 0569
235	400	¢		-30			.0046
297	800	0		-18			. 0046
298	800	0		-12			.0104
299	800	. Q		- 6			.0569
300	800	, Ó		Ŷ			. 1265
300	800	25		¢.			.0975
300	800	76		¢.			. 0743
300	800.	127		0			.0337
241	800	0		6			. 1671
242	800	0		12			. 0975
243	800	Ŷ		18			. 0395
244	800	Ô		24			0000

* POSITIVE ANGLES ARE CLOCKWISE DIRECTION.

** MODEL SAMPLE LOCATION HALFWAY TO NEXT HIGHEST GRID POINT.

CONCENTRATION DATA FOR RUN NO. 5 STABILITY: NEUTRAL WIND DIRECTION: 180 DEG. RELEASE POINT: A

PROTOTYPE		MODE	L	
SAMPLER	ARC	ELEV	DEGREES OFF*	CONCENTRATION
GRID POINT	(M)	(M)	CENTER LINE	COEFFICIENT
68	100	Ģ	48	. 3475
64	100	Q	24	1.8691
120	100	¢	0	.6810
118	100	. Q	-12	. 1068
116	100	¢.	-24	. 1299
114	100	¢	-36	. 04 5 4
112	100	Q	-48	.0151
108	100	¢	-72	. 0104
173	200	0	-42	. 0125
175	200	0	-30	.0509
177	200	0	-18	.0633
179	200	¢	- 6	. 1363
180	200	•	0	. 3369
180	200	25	0	. 2660
180	200	51	0	. 1223
121	200	0	6	. 4797
123	200	0	18	. 7854
125	200	0	30	. 1830
127	200	0	42	. 0221
186	400	¢	. 36	. 0185
184	400	¢.	24	. 04 52
182	400	¢.	12	. 5710
181	400	0	6	. 3379
240	400	25	\$. 2785
240	400	51	0	. 1885
238	400	0	-12	. 0821
236	400	0	-24	. 0142
234	400	0	-36	. 0142
296	800	¢	-24	. 0140
298	800	٥	-12	. 0204
299	800	0	- 6	.0696
300	800	0	0	. 1469
300	800	25	Q	. 1280
300	800	76	0	. 0832
300	800	127	0	.0340
241	800	Q	6	. 2254
242	800	¢	12	. 1204
243	800	¢	18	. 0202
244	800	Q	24	. 0161

CONCENTRATION DATA FOR RUN NO. 14 STABILITY: MODERATELY STABLE WIND DIRECTION: 180 DEG. RELEASE POINT: A

PROTOTYPE				MODEL			
SAMPLER	ARC	ELEV		DEGREES O	FF*	CONCENTRATION	
GRID POINT	(M)	(M)		CENTER LI	NE	COEFFICIENT	
68	100	¢		48		3.3193	
64	100	¢		24		. 3.3103	
120	100	0	14. 14.	0		. 1365	
118	100	0		-12		.0335	
116	100	0		-24		. 0268	
114	100	Ŷ		-36		. 0584	
112	100	0		-48		. 0222	
108	100	0		-72		. 0089	
173	200	0		-42		.0055	
175	200	0		-30		.0118	
177	200	¢.		-18		. 0178	
179	200	0		- 6		. 0164	
180	200	0		0		. 0306	
180	200	25		0		. 0171	
180	200	51		0		.0058	
123	200	0		18		. 6808	
125	200	0		30		2.6153	
127	200	0		42		. 2142	
186	400	0		36		. 0239	
184	400	Q		24		. 9452	
182	400	¢		12		. 8099	
181	400	¢		6		. 2964	
240	400	¢		0		. 1958	
240	400	25	1	0		. 0866	
240	400	51		Q		. 0123	
238	400	Ŷ		-12		. 0140	
236	400	0		-24		. 0000	
234	400	0		-36		. 0000	
296	800	0		-24		. 0000	
298	800	0	1	-12		. 0116	
299	800	0		- 6		.0169	
300	800	0		Ŷ		. 1117	
300	800	25		Q		.0822	
300	800	76		0		.0203	
300	800	127		, Ó		.0048	
241	800	¢		6		. 5559	
242	800	¢		12		. 7631	
243	800	¢		18		. 3651	
244	800	Q		24		.0463	

* POSITIVE ANGLES ARE CLOCKWISE DIRECTION.

** MODEL SAMPLE LOCATION HALFWAY TO NEXT HIGHEST GRID POINT.

CONCENTRATION DATA FOR RUN NO. 21 STABILITY: SLIGHTLY UNSTABLE WIND DIRECTION: 160 DEG. RELEASE POINT: A

PROTOTYPE			MODEL			
SAMPLER	ARC	ELEY	DEGREES OFF*	CONCENTRATION		
GRID POINT	(M)	(M)	CENTER LINE	COEFFICIENT		
68	100	Q	48	. 4266		
64	100	Ŷ	24	2.1792		
120	100	¢	0	. 3464		
118	100	¢	-12	. 1357		
116	100	¢	-24	. 1363		
114	100	¢	-36	. 0820		
112	100	Ŷ	-48	. 0307		
108	100	Q	-72	. 0130		
173	200	Q	-42	. 0077		
175	200	¢	-30	. 0212		
177	200	Ŷ	-18	. 0407		
179	200	Q	- 6	. 1204		
180	200	Q	0	. 1782		
180	200	25	0	. 27 97		
180	200	51	Q	. 2467		
121	200	¢	6	. 3293		
123	200	0	18	. 7541		
125	200	0	30	. 3369		
127	200	0	42	.0165		
187	400	¢.	42	. 0077		
185	400	0	30	. 0083		
183	400	0	18	. 2685		
181	400	0	6	. 3080		
240	400	0	0	. 2166		
240	400	25	0	. 2490		
240	400	51	Ģ	. 1511		
239	400	0	-6	. 1505		
237	400	0	-18	. 0549		
235	400	¢	-30	. 0195		
297	800	¢	-18	. 0124		
298	800	0	-12	. 0283		
299	800	0	- 6	.0655		
300	800	¢	0	. 1174		
300	800	25	0	. 0944		
300	800	76	0	. 0838		
300	800	127	0	.0425		
241	800	0	6	. 1699		
242	800	¢	12	. 1056		
243	800	0	18	. 0207		
244	800	Q	24	. 0083		

CONCENTRATION DATA FOR RUN NO. 5 STABILITY: NEUTRAL WIND DIRECTION: 180 DEG. RELEASE POINT: G5

PROTOTYPE		MODEL			
SAMPLER	ARC	ELEV	DEGREES OFF*	CONCENTRATION	
GRID POINT	(M)	(M)	CENTER LINE	COEFFICIENT	
68	ÍÓÓ	Ó	48	. 4389	
64	100	Ó	. 24	2.7891	
120	100	Ô	Ó	. 0524	
i i 8	100	Ó	-12	. 0565	
116	100	0	-24	. 0073	
ii 4	100	Ó	-36	. 0060	
i i 2	100	¢	-48	. 0066	
108	100	Ô	-72	. 0053	
173	200	Ó	-42	. 0053	
175	200	Ó	-30	. 0496	
177	200	Ô	-18	. 0087	
179	200	Ô	- 6	. 0129	
180	200	Ô	Ô	. 0489	
180	200	25	Ó	. 1105	
180	200	51	Ó	. 0898	
121	200	Ó	6	. 1611	
123	200	Ó	18	. 9092	
125	200	Ó	30	. 2068	
127	200	Ô	42	. 0094	
186	400	Ó	36	. 0080	
184	400	Ó	24	. 0323	
182	400	Ó	12	.6300	
181	400	Ó	6	. 2290	
240	400	25	Ó	. 2588	
240	400	51	Ó	. 1805	
238	400	Ó	-i2	. 0399	
236	400	Ó	-24	. 0080	
234	400	Ó	-36	. 0073	
296	800	Ó	-24	. 0094	
298	800	Ó	-i2	. 0094	
299	800	Ó	- 6	. 0447	
300	800	Ó	0	. 1196	
300	800	25	Ó	. 1071	
300	800	76	Ô	.0655	
300	800	127	0	. 0240	
241	800.	Ó	6	. 2006	
242	800	0	12	. 1168	
243	800	Ó	18	. 01 08	
244	800	0	24	. 0087	

* POSITIVE ANGLES ARE CLOCKWISE DIRECTION.
** MODEL SAMPLE LOCATION HALFWAY TO NEXT HIGHEST GRID POINT.

132
CONCENTRATION DATA FOR RUN NO. 14 STABILITY: MODERATELY STABLE WIND DIRECTION: 180 DEG. RELEASE POINT: G5

PROTOTYPE			MODEL				
SAMPLER	ARC	ELEV	DEGREES OFF*	CONCENTRATION			
GRID POINT	(M)	(M)	CENTER LINE	COEFFICIENT			
68	100	¢	48	3.1900			
64	100	0	24	3.2310			
120	100	Ŷ	0	. 1564			
118	100	¢	-12	. 0211			
116	100	¢	-24	. 0094			
114	100	¢	-36	. 0200			
112	100	¢	-48	. 0089			
108	100	0	-72	. 0061			
173	200	0	-42	. 0022			
175	200	0	-30	. 0050			
177	200	Q	-18	. 0089			
179	200	Q	- 6	. 0055			
180	200	¢	0	. 0405			
180	200	25	¢.	. 0172			
180	200	51	0	. 0022			
123	200	¢	18	1.0125			
125	200	¢	30	2.4376			
127	200	Ŷ	42	. 3305			
186	400	¢	36	. 0238			
184	400	¢	24	. 9487			
182	400	¢	12	1.0131			
181	400	¢	6	. 4458			
240	400	¢	0	. 2800			
240	400	25	¢	. 1153			
240	400	51	0	. 0072			
238	400	0	-12	. 0067			
236	400	Q	-24	. 0022			
234	400	¢	-36	. 0017			
296	800	0	-24	. 0022			
298	800	0	-12	. 0050			
299	800	0	- 6	. 0183			
300	800.	0	0	. 1597			
300	800	25	0	. 1148			
300	800	76	0	. 0250			
300	800	127	0	. 0100			
241	800	0	6	. 7253			
242	800	¢	12	. 8290			
243	800	0	18	. 3726			
244	800	Q	24	. 0455			

CONCENTRATION DATA FOR RUN NO. 21 STABILITY: SLIGHTLY UNSTABLE WIND DIRECTION: 180 DEG. RELEASE POINT: G5

PROTOTYPE			MODEL			
SAMPLER	ARC	ELEV	DEGREES OFF*	CONCENTRATION		
GRID POINT	(M)	(M)	CENTER LINE	COEFFICIENT		
68	100	0	48	. 6346		
64	100	0	24	5.0618		
120	100	0	0	. 0768		
118	100	0	-12	. 0189		
116	100	¢	-24	. 0403		
114	100	¢	-36	. 01 01		
112	100	0	-48	. 0088		
108	100	0	-72	.0063		
173	200	0	-42	. 0063		
175	200	0	-30	.0050		
177	200	0	-18	. 0139		
179	200	0	- 6	. 0164		
180	200	0	0	. 0302		
180	200	25	0	. 2481		
180	200	51	0	. 1725		
121	200	0	6	. 1763		
123	200	0	18	1.5500		
125	200	· 0	30	. 5276		
127	200	. 0	42	. 0189		
187	400	¢.	42	.0063		
185	400	0	30	. 0088		
183	400	0	18	. 4407		
181	400	0	6	. 3526		
240	400	0	0	. 2115		
240	400	25	0	. 2821		
240	400	51	0	. 1977		
239	400	0	-6	. 1184		
237	400	0	-18	. 0327		
235	400	0	-30	. 0164		
297	800	0	-18	. 0101		
298	800	0	-12	. 0239		
299	800	. 0	- 6	.0667		
300	800	0	0	. 1310		
300	800	25	Ф	. 1146		
300	800	76	0	. 0944		
300	800.	127	0	. 0491		
241	800	、 O	6	. 1952		
242	800	0	12	. 1448		
.243	800	0	18	. 0302		
244	800	o	24	.0025		

* POSITIVE ANGLES ARE CLOCKWISE DIRECTION.

CONCENTRATION DATA FOR RUN NO. 5 STABILITY: NEUTRAL WIND DIRECTION: 180 DEG. RELEASE POINT: G17

PROTOTYPE			MODEL				
SAMPLER	ARC	ELEV		DEGREES OFF*		CONCENTRATION	ł
GRID POINT	(M)	(M)		CENTER LINE		COEFFICIENT	
68	100	¢		48		.0440	
64	100	¢		24		2.3553	
120	100	¢		¢		. 1235	
118	100	¢		-12		. 0368	
116	100	¢		-24		. 0060	
114	100	¢		-36		.0043	
112	100	0		-48		.0032	
108	100	0		-72		.0015	
173	200	0		-42		. 0026	
175	200	¢.		-30		.0329	
177	200	¢		-18		. 0099	
179	200	0		- 6		. 0200	
180	200	Q		Ŷ		. 1022	
180	200	25		Q		. 1912	
180	200	51		¢		.1403	
121	200	Q		6		. 2511	
123	200	¢.		18		. 6708	
125	200	0		30		.0737	
127	200	¢		42		.0043	
186	400	0		36		. 0037	
184	400	0		24		.0121	
182	400	0		12		. 4783	
181	400	0		6		. 3339	
240	400	25		0		. 3502	
240	400	51		́ Ф		. 2589	
238	400	¢		-12		.0536	
236	400	¢		-24		.0032	
234	400	¢		-36		.0054	
296	800	0		-24		.0037	
298	800	0		-12		.0082	
299	800	¢		- 6		.0659	
300	800	0		¢		. 1733	
300	800	25		¢.		. 1487	
300	800	76		0		0899	
300	800	127		¢		. 0289	
241	800	0		6		. 2623	
242	800	Q		12		. 0860	
243	800	0		18		.0043	
244	800	¢		24		.0054	

CONCENTRATION DATA FOR RUN NO. 14 STABILITY: MODERATELY STABLE WIND DIRECTION: 180 DEG. RELEASE POINT: G17

PROTOTYPE			MODEL		
SAMPLER	ARC	ELEV		DEGREES OFF*	CONCENTRATION
GRID POINT	(M)	(M)		CENTER LINE	COEFFICIENT
68	100	¢		48	. 1233
64	100	¢		24	2.8786
120	100	¢		0	. 1383
118	100	¢.		-12	. 0249
116	100	¢.		-24	. 0075
114	100	¢		-36	. 0224
112	100	¢		-48	. 0062
108	100	¢		-72	. 0000
173	200	¢		-42	. 0000
175	200	¢		-30	. 0037
177	200	¢		-18	.0062
179	200	¢		- 6	.0050
180	200	ò		0	. 0573
180	200	25		0	. 0274
180	200	51		0	. 0012
121	200	Q		6	.0187
123	200	¢		18	. 8732
125	200	0		30	. 7038
127	200	0		42	. 0162
186	400	0		36	. 0000
184	400	¢.		24	. 1644
182	400	¢		12	. 8919
181	400	¢		6	. 5294
240	400	0		0	. 3600
240	400	25		0	. 1731
240	400	51		0	. 0087
238	400	¢		-12	. 0062
236	400	Q		-24	. 0037
234	400	¢		-36	. 0000
296	800	¢		-24	. 0087
298	800	¢		-12	. 0037
299	800	• •		- 6	. 0237
300	800	¢		Ŷ	. 2005
300	800	25		0	. 1383
300	800	76		¢.	.0336
300	800	127		Ŷ	. 0062
241	800	¢		6	. 6714
242	800	0		12	. 4210
243	800	¢		18	. 0735
244	800	0		24	. 0062

CONCENTRATION DATA FOR RUN NO. 21 STABILITY: SLIGHTLY UNSTABLE WIND DIRECTION: 180 DEG. RELEASE POINT: G17

PROTOTYPE		MODEL			
SAMPLER	ARC	ELEV	DEGREES O	FF*	CONCENTRATION
GRID POINT	(M)	(M)	CENTER LI	NE	COEFFICIENT
68	100	¢	48		. 0499
64	100	0	24		1.5547
120	100	0	Ô		. 1122
118	100	Ô	-12		. 0218
116	100	¢	-24		. 0280
114	100	Ô	-36		.0062
112	100	0	-48		. 0093
108	100	Ŷ	-72	1. T. M.	. 0000
173	200	0	-42		.0125
175	200	0	-30		.0125
177	200	Ŷ .	-18		. 0249
179	200	0	- 6		. 0249
180	200	0	¢		. 0499
180	200	25	¢.		. 3053
180	200	51	0		. 3147
121	200	0	6		. 1932
123	200	0	18		. 5203
125	200	0	30		. 1215
127	200	0	42		. 0093
187	400	0	. 42		.0093
185	400	0	30		. 0093
183	400	Q	18		. 1496
181	400	¢	6		. 3053
240	400	Ŷ	Ŷ		. 2150
240	400	25	Q		. 2804
240	400	51	Ŷ		. 1901
239	400	Q	-6		. 1527
237	400	¢	-18		. 0436
235	400	0	-30		. 0218
297	800	¢	-18		.0218
298	800	Ŷ	-12		. 0280
299	800	Ŷ	- 6		.0654
300	800	Ŷ	¢		. 1277
300	800	25	¢.		. 1153
300	800	76	Q		. 0997
300	800	127	Q	11	.0499
241	800	0	6		. 1714
242	800	0	12		.0966
243	800	0	18		.0623
244	800	Q	24		.0031

* POSITIVE ANGLES ARE CLOCKWISE DIRECTION. ** MODEL SAMPLE LOCATION HALFWAY TO NEXT HIGHEST GRID POINT.

5

Table 11. Data, Wind Direction 2250

CONCENTRATION DATA FOR RUN NO. 6 STABILITY: NEUTRAL WIND DIRECTION: 225 DEG. RELEASE POINT: C

PROTOTYPE			MODEL			
SAMPLER	ARC	ELEV	DEGREES OFF*	CONCENTRATION		
GRID POINT	(M)	(M)	CENTER LINE	COEFFICIENT		
73	100	Ŷ	33	.0345		
71	100	0	21	. 1435		
69	100	Ŷ	9	. 3710		
67**	100	¢	0	. 1968		
65	100	Ô	-15	. 0594		
63	100	Q	-27	. 0108		
120	100	¢	-45	. 0060		
117	100	¢	-63	. 0072		
179	200	0	-51	. 0060		
122	200	0	-33	. 0250		
124	200	¢	-21	.0369		
126	200	Q	- 9	. 3118		
127**	200	¢	¢	. 7253		
127**	200	25	O	1.3072		
127**	200	51	0	. 6922		
129	200	¢	9	. 5511		
131	200	¢.	21	. 1364		
133	200	0	. 33	. 0072		
135	200	¢.	45	. 0072		
193	400	Q	33	. 0084		
191	400	Q	21	. 0096		
189	400	0	9	. 1992		
188	400	Ģ	3	. 5725		
187**	400	Ŷ	0	. 6211		
187**	400	25	¢	. 5511		
187**	400	51	¢.	. 1068		
185	400	Q	-15	. 0890		
182	400	Ŷ	-33	. 0084		
244	800	¢	-21	. 0072		
246	800	¢	- 9	. 0795		
247	800	0	- 3	. 3378		
247**	800	Ģ	¢.	. 3438		
247**	800	25	0	. 2478		
247**	800	76	• • •	. 0973		
247**	800	127	0	. 0262		
248	. 800	¢	3	. 2454		
249	800	¢	9	. 0226		
250	800	¢	15	. 0108		
251	800	0	21	. 0037		

CONCENTRATION DATA FOR RUN NO. 15 STABILITY: MODERATELY STABLE WIND DIRECTION: 225 DEG. RELEASE POINT: C

	PROTOTYPE			MODEL		
SAMPLER	ARC	ELEY		DEGREES OFF*	CONCENTRATION	
GRID POINT	(M)	(M)		CENTER LINE	COEFFICIENT	
73	100	0		33	. 0128	
61	100	Ŷ		21	. 3002	
69	100	Ŷ		9	. 7522	
67**	100	Ŷ		0	. 4035	
65	100	0		-15	. 0128	
63	100	0		-27	. 0000	
120	100	0		-45	. 0000	
117	100	Q		-63	. 0463	
179	200	0		-51	. 0000	
122	200	0		-33	. 0000	
124	200	0		-21	. 0073	
126	200	0		-9	. 4425	
127**	200	0		0	1.3968	
127**	200	25		0	1,9018	
127**	200	51		0	3449	
129	200	0		9	1,1122	
131	200	Ó		21	. 1496	
133	200	Ó		33	.0017	
135	200	Ó		45	0000	
193	400	ò		33	.0000	
191	400	0		21	.0000	
189	400	Ó		9	7160	
188	400	ò		3	1.4358	
187**	400	0		0	1.4665	
187**	400	25		0	. 8387	
187**	400	51		0	. 2444	
185	400	0		-15	. 0073	
184	400	0		-21	. 0000	
182	400	0		-33	. 0000	
244	800	0		-21	. 0000	
246	800	0		-9	. 0854	
247	800	0		- 3	. 4062	
247**	800	0		0	. 8052	
247**	800	25		0	4676	
247**	800	76		0	.0073	
247**	800	127		0	. 0296	
248	800	0		3	. 7299	
249	800	¢		9	. 0686	
250	800	0		15	. 0017	
251	800	0		21	. 0000	
				The second se		

CONCENTRATION DATA FOR RUN NO. 22 STABILITY: SLIGHTLY UNSTABLE WIND DIRECTION: 225 DEG. RELEASE POINT: C

	PROTOTY	'PE	MO	DEL	
SAMPLER	ARC	ELEV	DEGREES OFF*		CONCENTRATION
GRID POINT	(M)	(M)	CENTER LINE		COEFFICIENT
73	100	Ó	33		. 0000
71	100	Ó	21		. 1091
69	100	Ó	9		. 4225
67**	100	Ó	0		. 6256
65	100	Ó	-15		. 0453
63	100	Ó	-27		. 0000
120	100	¢	-45		. 0000
117	100	Ó	-63		. 0000
179	200	Ô	-5i		. 0000
122	200	Ô	-33		. 0000
124	200	Ô	-2i		. 0000
126	200	0	- 9		. 3993
127**	200	¢	0		. 9390
i27**	200	25	Ó		. 8809
127**	200	51	0		. 4225
129	200	Ó	9		. 7242
133	200	Ó	33		. 0000
135	200	Ó	45		. 0000
194	400	Ó	39		. 0000
192	400	Ó	. 27		. 0000
190	400	Ó	i 5		.0511
189	400	Ô	. 9		. 2774
187**	400	Ó	Ó		. 4457
187**	400	25	0		. 3819
187**	400	5 i	Ò		. 1903
18 5	400	Ó	-9		. 3296
184	400	Ó	-21		. 0395
182	400	Ó	-33		. 0000
244	800	Ó	-21		. 0000
245	800	Ó	-15		. 0279
246	800	0	- 9		. 1091
247**	800	Ó	Ó		. 1439
247**	800	25	Ó		. 1033
247**	800	76	Ó		. 0743
247**	800	127	Ó		. 0000
248	800	Ó	3		. 1439
249	800	0	. 9		. 1207
250	800	Ó	i 5		. 0569
251	800	Ó	21		. 0000

* POSITIVE ANGLES ARE CLOCKWISE DIRECTION.

CONCENTRATION DATA FOR RUN NO. 6 STABILITY: NEUTRAL WIND DIRECTION: 225 DEG. RELEASE POINT: A

	PROTOTYPE			MODEL		
SAMPLER	ARC	ELEV		DEGREES OFF*	CONCENTRATION	
GRID POINT	(M)	(M)		CENTER LINE	COEFFICIENT	
73	100	Ģ		33	2.3008	
71	100	Q		21	2.7778	
69	100	Q		9	2.3547	
67**	100	Ŷ		0	. 6481	
65	100	Q		-15	. 1713	
63	100	Q		-27	,0335	
120	100	¢		-45	. 0104	
117	100	¢.		-63	. 0921	
179	200	¢		-51	. 0089	
122	200	Ŷ		-33	. 0673	
124	200	0		-21	. 0384	
126	200	Q		-9	. 3031	
127**	200	Q		Q	1.3564	
127**	200	25		¢	. 8771	
127**	200	51		Q	. 31 0 1	
129	200	Q		9	1.5209	
131	200	Q		21	1.4122	
133	200	Ŷ		33	. 0270	
135	200	¢		45	. 0166	
193	400	Q		. 33	. 0206	
191	400	0		21	. 0469	
189	400	Ģ		9	. 6054	
188	400	0		. 3	. 7920	
187**	400	0		0	. 7028	
187**	400	25		0	. 4466	
187**	400	51		0	. 1199	
185	400	٥.		-15	. 1127	
182	400	Q		-33	. 0163	
244	800	0		-21	. 0151	
246	800	0		-9	. 0645	
247	800	0		- 3	. 2891	
247**	800	Q		0	. 3798	
247**	800	25		¢	. 2505	
247**	800	76		Q	. 1000	
247**	800	127		¢	. 0280	
248	800.	¢.		3	. 3539	
249	800	¢		9	. 0643	
250	800	¢		15	. 0136	
251	800	¢		21	. 0093	

* POSITIVE ANGLES ARE CLOCKWISE DIRECTION.
** MODEL SAMPLE LOCATION HALFWAY TO NEXT HIGHEST GRID POINT.

142

CONCENTRATION DATA FOR RUN NO. 15 STABILITY: MODERATELY STABLE WIND DIRECTION: 225 DEG. RELEASE POINT: A

PROTOTYPE		MODEL			
SAMPLER	ARC	ELEV	DEGREES OFF*	CONCENTRATION	
GRID POINT	(M)	(M)	CENTER LINE	COEFFICIENT	
73	100	0	33	2.6165	
71	100	Ŷ	21	3.2768	
69	100	0	9	3.0291	
67**	100	0	0	1.9776	
65	100	Ŷ	-15	. 2192	
63	100	0	-27	. 0473	
120	100	0	-45	. 0236	
117	100	¢	-63	. 0152	
179	200	¢	-51	0154	
122	200	0	-33	. 0171	
124	200	¢	-21	. 0695	
126	200	Q	- 9	. 8914	
127**	200	Q	Ŷ	1.6149	
127**	200	25	0	1.1048	
129	200	0	9	2.1440	
131	200	0	21	1.5628	
133	200	0	33	. 1206	
135	200	0	45	. 0253	
193	400	0	33	. 0193	
191	400	0	21	. 0921	
189	400	¢	9	1.1485	
188	400	0	3	1.2977	
187**	400	0	¢	1.2534	
187**	400	25	0	. 5014	
187**	400	51	0	. 1751	
185	400	¢.	-15	. 0417	
184	4 O O	0	-21	. 0147	
182	400	0	-33	. 0130	
244	800	0	-21	. 0154	
246	800	0	-9	. 1194	
247	800	Q	- 3	. 3437	
247**	800	0	0	. 6408	
247**	800	25	0	. 3791	
247**	800	76	0	. 0241	
247**	800	127	0	. 0400	
248	800	0	3	. 7004	
249	800	¢	9	. 1968	
250	800	Q	15	. 0359	
251	800	0	21	. 0176	

CONCENTRATION DATA FOR RUN NO. 22 STABILITY: SLIGHTLY UNSTABLE WIND DIRECTION: 225 DEG. RELEASE POINT: A

PROTOTYPE			MODEL			
SAMPLER	ARC	ELEY	DEGREES OFF*	CONCENTRATION		
GRID POINT	(M)	(M)	CENTER LINE	COEFFICIENT		
73	100	0	33	1.8417		
71	100	Q	21	3.8615		
69	100	0	9	4.7508		
67**	100	0	0	1.5602		
65	100	0	-15	. 1133		
63	100	0	-27	. 0378		
120	100	0	-45	. 0159		
117	100	0	-63	. 0153		
179	200	0	-51	. 0124		
122	200	0	-33	. 0159		
124	200	¢	-21	. 0443		
126	200	¢	-9	. 2077		
127**	200	0	0	. 5877		
127**	200	25	0	. 4856		
127**	200	51	Q	. 2213		
129	200	0	9	1.4628		
133	200	0	33	. 0732		
135	200	0	45	. 0207		
194	400	0	39	. 01 30		
192	400	0	27	. 0248		
190	400	0	15	. 2762		
189	400	0	9	. 5824		
187**	400	0	0	. 4815		
187**	400	25	0	. 3257		
187**	400	51	0	. 1823		
186	400	0	-9	. 2089		
184	400	0	-21	. 0460		
182	400	0	-33	. 0148		
244	800	0	-21	. 01 30		
245	800	0	-15	. 0189		
246	800	0	-9	. 1009		
247**	800	. O	0	. 1823		
247**	800	25	Q	. 1310		
247**	800	76	0	. 0944		
247**	800	127	Q	. 0437		
248	800	0	3	. 2077		
249	800	Ŷ	9	. 1794		
250	800	0	15	. 0643		
251	800	0	21	. 0136		

CONCENTRATION DATA FOR RUN NO. 6 STABILITY: NEUTRAL WIND DIRECTION: 225 DEG. RELEASE POINT: G5

PROTOTYPE			MODEL				
SAMPLER	ARC	ELEY	DEGREES OFF*	CONCENTRATION			
GRID POINT	(M)	(M)	CENTER LINE	COEFFICIENT			
73	100	¢	33	2.1207			
71	100	¢	21	2.4656			
69	100	Ŷ	9	2.0833			
67**	100	¢	0	. 4465			
65	100	Ŷ	-15	. 1175			
63	100	¢	-27	. 0163			
120	100	¢	-45	.0025			
117	100	Ŷ	-63	.0025			
179	200	¢.	-51	.0018			
122	200	0	-33	. 0447			
124	200	Q	-21	. 0233			
126	200	Q	- 9	. 2255			
127**	200	0	0	1.0221			
127**	200	25	Q	. 6765			
127**	200	51	0	. 2463			
129	200	0	9	1.1094			
131	200	Q	21	1.0789			
133	200	Ŷ	33	. 0087			
135	200	¢	4 5	.0025			
193	400	¢	. 33	. 0046			
191	400	¢	21	. 0233			
189	400	¢	9	. 4624			
188	400	¢	3	.6210			
187**	400	0	¢	. 5476			
187**	400	25	٥ -	. 3447			
187**	400	51	0	. 0704			
185	400	¢	-15	. 0690			
182	400	¢	-33	. 0046			
244	800	Ŷ	-21	.0053			
246	800	¢	- 9	. 0420			
247	800	¢	- 3	. 2221			
247**	800	Q	0	. 2865			
247**	800	25	0	. 1923			
247**	800	76	0	.0676			
247**	800	127	0	. 0129			
248	800	¢	3	. 2685			
249	800	Ģ	9	.0420			
250	800	¢	15	. 0094			
251	800	¢	21	. 0136			

* POSITIVE ANGLES ARE CLOCKWISE DIRECTION.

CONCENTRATION DATA FOR RUN NO. 15 STABILITY: MODERATELY STABLE WIND DIRECTION: 225 DEG. RELEASE POINT: G5

	PROTOT	YPE	MOD	EL
SAMPLER	ARC	ELEY	DEGREES OFF*	CONCENTRATION
GRID POINT	(M)	(M)	CENTER LINE	COEFFICIENT
73	100	0	33	2.1836
71	100	0	21	3.1090
69	100	0	9	2.9959
67**	100	Ŷ	0	2.3045
65	100	0	-15	. 2756
63	100	0	-27	. 0233
120	100	0	-45	. 0139
117	100	0	-65	. 0072
179	200	Q	-51	.0067
122	200	0	-33	. 0333
124	200	¢.	-21	.0843
126	200	Ŷ	-9	1.3535
127**	200	0	0	2.1337
127**	200	25	Q	1.6541
127**	200	51	Ó	
129	200	0	9	2.3089
131	200	Ó	21	1.2293
133	200	0	33	.0665
135	200	0	45	.0116
193	400	0	33	.0061
191	400	0	21	.0510
189	400	0	9	1.2798
188	400	0	3	1.7017
187**	400	0	0	1.6258
187**	400	25	0	. 7497
187**	400	51	Ŷ	. 2307
185	400	0	-15	.0316
184	400	Ŷ	-21	.0072
182	400	0	-33	. 0033
244	800	0	-21	.0061
246	800	Ó	-9	. 1553
247	800	. ¢	- 3	. 4680
247**	800	0	0	. 8672
247**	800	25	0	. 5063
247**	800	76	0	. 0161
247**	800	127	0	.0366
248	800	0	3	. 8944
249	800	¢	9	. 1741
250	800	¢	15	.0172
251	800	0	21	.0061

* POSITIVE ANGLES ARE CLOCKWISE DIRECTION.

CONCENTRATION DATA FOR RUN NO. 22 STABILITY: SLIGHTLY UNSTABLE WIND DIRECTION: 225 DEG. RELEASE POINT: G5

	PROTOTYF	ε	MODEL	
SAMPLER	ARC	ELEV	DEGREES OFF*	CONCENTRATION
GRID POINT	(M)	(M)	CENTER LINE	COEFFICIENT
73	100	Ò	33	2.3521
71	100	Ó	21	3.8581
69	İÓÓ	Ó	9	4.2635
67**	100	Ó	0	1.5185
65	100	Ó	-15	. 1524
65	100	Ó	-27	. 0290
120	100	Ó	-45	. 0126
117	100	Ó	-63	.0176
179	200	Ô	-51	.0113
122	200	0	-33	. 0113
124	200	¢	-2 i	.0516
126	200	Ó	- 9	. 3160
127**	200	Ó	Ó	. 7353
127**	200	25	0	. 6384
i27**	200	5 i	Ó	. 2896
i29	200	Ó	9	1.5437
133	200	Ó	33	. 1033
135	200	Ó	4 5	.0189
194	400	Ô	39	.0113
i92	400	Ó	27	. 0239
190	400	¢	15	. 3236
189	400	Ó	9	. 6132
187**	400	Ó	Ó	. 5754
i87**	400	25	Ó	. 3954
187**	400	51	Ó	. 2115
i8 6	400	Ó	- 9	. 2619
184	400	Ô	-2 i	. 0642
182	400	Ó	-33	. 0101
244	800	Ó	-2i	.0139
245	800	Ó	-i5	. 0214
246	800	ċ.	- 9	. 1247
247**	800	Ó	Ó	. 2229
247**	800	25	Ó	
247**	800	76	Ó	. 1033
247**	800	127	Ó	. 0579
248	800	0	3	. 2392
249	800	Ó	9	. 2166
250	800	0	15	. 0730
251	800	0	21	. 0151

CONCENTRATION DATA FOR RUN NO. 6 STABILITY: NEUTRAL WIND DIRECTION: 225 DEG. RELEASE POINT: G17

PROTOTYPE			MODEL		
SAMPLER	ARC	ELEY	DEGREES OFF*	CONCENTRATION	
GRID POINT	(M)	(M)	CENTER LINE	COEFFICIENT	
73	100	٥	33	. 1358	
71	100	¢	21	. 4084	
69	100	0	9	2.0598	
67**	100	¢	0	1.6625	
65	100	0	-15	1.3944	
63	100	0	-27	. 1890	
120	100	0	-45	. 0010	
117	100	Q	-63	. 0000	
179	200	0	-51	. 0000	
122	200	0	-33	.0368	
124	200	0	-21	. 1548	
126	200	0	- 9	. 8242	
127**	200	0	0	1.0195	
127**	200	25	0	. 8723	
127**	200	51	0	. 4151	
129	200	¢ .	9	. 4654	
131	200	0	21	. 2259	
. 133	200	¢	33	. 0000	
135	200	0	45	. 0000	
193	400	¢.	33	. 0000	
191	400	¢	21	. 0043	
189	400	¢	9	. 1851	
188	400	¢	3	. 4917	
187**	400	0	0	. 5169	
187**	400	25	0	. 4324	
187**	400	51`	0	. 0905	
185	400	0	-15	. 1386	
182	400	¢	-33	. 0037	
244	800	¢	-21	. 0000	
246	800	Ŷ	- 9	. 0894	
247	800	¢	- 3	. 2948	
247**	800	¢	0	. 2880	
247**	800	25	0	. 2075	
247**	800	76	0	. 0771	
247**	800	127	0	.0138	
248	800	0	3	. 2086	
249	800	¢	.9	. 0144	
250	800	¢	15		
251	800	0	21	. 0000	

CONCENTRATION DATA FOR RUN NO. 15 STABILITY: MODERATELY STABLE WIND DIRECTION: 225 DEG. RELEASE POINT: G17

	PROTOTY	PE	MODEL	
SAMPLER	ARC	ELEV	DEGREES OFF*	CONCENTRATION
GRID POINT	(M)	(M)	CENTER LINE	COEFFICIENT
73	100	0	33	. 2043
71	100	¢	21	.8894
69	100	¢	9	2.1487
67**	100	¢	0	3.8763
65	100	¢	-15	.7798
63	100	¢	-27	. 0224
120	100	¢	-45	.0062
117	100	Ŷ	-63	.0037
179	200	¢	-51	.0037
122	200	¢	-33	.0075
124	200	¢	-21	. 1034
126	200	¢	- 9	1.4013
127**	200	¢	0	1.9095
127**	200	25	0	1.4897
127**	200	51	0	. 2753
129	200	0	9	1.1671
131	200	¢.	21	. 3513
133	200	¢.	33	.0149
135	200	¢	4 5	.0037
193	400	Ŷ	33	.0037
191	400	¢	21	.0112
189	400	Ŷ	9	.6365
188	400	Ŷ	3	1.0202
187**	400	¢	0	1.1360
187**	400	25	¢	. 6228
187**	400	51	0	. 2142
185	40 û	¢	-15	. 0349
184	400	¢	-21	.0075
182	400	0	-33	.0037
244	800	¢	-21	.0361
246	800	¢	- 9	.1607
247	800	Ô	- 3	. 4260
247**	800	¢	Q	. 6415
247**	800	25	0	. 3986
247**	800	76	0	.0125
247**	. 800	127	0	.0336
248	800	0	3	. 5618
249	800	0	9	.0735
250	800	0	15	. 01 00
251	800	0	21	. 0037

CONCENTRATION DATA FOR RUN NO. 22 STABILITY: SLIGHTLY UNSTABLE WIND DIRECTION: 225 DEG. RELEASE POINT: G17

PROTOTYPE			MODEL		
SAMPLER	ARC	ELEV		DEGREES OFF*	CONCENTRATION
GRID POINT	(M)	(M)		CENTER LINE	COEFFICIENT
73	100	0		33	. 1464
71	100	0		21	. 4580
69	100	Q		9	1.1590
67**:	100	0		0	2.0750
65	100	0		-15	. 6294
63	100	0		-27	. 1028
120	100	0		-45	. 0093
117	100	0		-63	. 0156
179	200	0		-51	.0156
122	200	0		-33	. 0093
124	200	0		-21	. 1371
126	200	0		- 9	. 5608
127**	200	0		0	. 9721
127**	200	25		0	. 7633
127**	200	51		0	. 3676
129	200	¢		9	. 8412
133	200	¢.		33	. 0093
135	200	Ģ		45	. 0093
194	400	Q		39	. 0125
192	400	0		27	. 0125
190	400	Q		15	. 1184
189	400	0		9	. 3209
187**	400	¢.		¢	. 4860
187**	400	25		0	. 4050
187**	400	51		0	. 2150
186	400	¢		-9	. 3365
184	400	Q		-21	. 1090
182	400	¢		-33	. 0218
244	800	0		-21	. 0249
245	800	¢		-15	.0405
246	800	¢	120	-9	. 1433
247**	800	Ç Q		¢	. 1932
247**	800	25		0	. 1433
247**	800	76		0	. 1059
247**	800	127		0	. 0467
248	800	¢.		3	. 2056
249	800	¢		9	. 1620
250	800	¢		15	. 0966
251	800	0		21	.0125

* POSITIVE ANGLES ARE CLOCKWISE DIRECTION.

Table 12. Data, Wind Direction 2700

CONCENTRATION DATA FOR RUN NO. 7 STABILITY: NEUTRAL WIND DIRECTION: 270 DEG. RELEASE POINT: C

	PROTOTY	PE	MODEL				
SAMPLER	ARC	ELEV	DEGREES OFF*	CONCENTRATION			
GRID POINT	(M)	(M)	CENTER LINE	COEFFICIENT			
84	100	¢	54	. 0048			
81	100	¢	36	. 0242			
79	100	0	24	.0616			
77	100	¢.	12	. 0653			
75	100	Ŷ	0	1.1616			
73	100	0	-12	. 5874			
71	100	0	-24	. 1668			
69	100	Q	-36	. 0423			
66	100	0	-54	. 0073			
128	200	0	-42	. 0411			
130	200	0	-30	. 0060			
132	200	0	-18	. 1680			
134	200	0	- 6	1.1664			
135	200	0	Q	1.0794			
135	200	25	Q	1.0540			
135	200	51	0	. 6539			
136	200	0	6	. 4992			
138 .	200	0	18	. 0508			
140	200	¢	30	. 0073			
200	400	Ŷ	30	. 0073			
198	400	0	18	. 0097			
196	400	¢	6	. 34 57			
195	400	¢	¢.	. 6612			
195	400	25	Q	. 4883			
195	400	51	0	. 3300			
194	400	¢ ·	- 6	. 5258			
193	400	0	-12	. 06 04			
192	400	. Q	-18	. 0242			
190	400	Ŷ	-30	. 0133			
252	800	Q ·	-18	. 0181			
253	800	Ģ	-12	. 0169			
254	800	¢	- 6	. 1934			
255	800	¢	¢	. 3409			
255	800	25	¢	. 2321			
255	800	76	Ŷ	. 0967			
255	800	127	Ŷ	. 0338			
256	800	¢	6	. 1076			
257	800	¢	12	. 0169			
258	800	Q	18	. 0121			
259	800	Ó	24	6073			

CONCENTRATION DATA FOR RUN NO. 16 STABILITY: MODERATELY STABLE WIND DIRECTION: 270 DEG. RELEASE POINT: C

	PROTOTY	PE	MODE	L
SAMPLER	ARC	ELEV	DEGREES OFF*	CONCENTRATION
GRID POlHT	(M)	(M)	CENTER LINE	COEFFICIENT
S 4	100	¢	54	. 0009
81	100	Ŷ	36	. 0124
79	100	¢	24	. 1447
77	100	¢	12	. 0958
75	1 Q Q	0	0	1.1606
73	100	¢.	-12	. 7174
71	100	¢	-24	. 1994
69	100	¢.	-36	.0354
66	100	¢.	- 5 4	. 0066
128	200	<u> </u>	-42	.0037
130	200	¢	-30	. 0066
132	200	¢	-18	. 0757
134	200	¢.	-6	. 9505
135	200	¢	0	1.4023
135	200	25	¢.	1.7706
135	200	51	¢.	1.0253
136	200	0	6	1.4224
138	200	¢.	18	. 1390
140	200	Ŷ	30	. 0066
200	400	0	30	. 0009
198	400	Q	18	. 0066
196	400	Ŷ	6	.9419
195	400	Ŷ	0	. 9188
195	400	25	0	.7145
195	400	51	0	. 3807
194	400	Ô	~ 8	. 4095
193	4 0 Q	0	-12	. 0239
192	400	¢.	-18	0066
190	400 ·	¢.	-30	. 0181
252	800	Q	-18	. 0009
253	800	¢	-12	. 0009
254	800.	Q	- 6	. 2426
255	800	0	0	5476
255	800	25	0	. 2570
255	800	76	0	.0325
255	800	127	9	. 0066
256	800	0	6	. 4210
257	800	¢	12	. 0095
258	800	Ŷ	18	. 0000
259	800	0	24	0037

* POSITIVE ANGLES ARE CLOCKWISE DIRECTION.

ył.

CONCENTRATION DATA FOR RUN NO. 23 STABILITY: SLIGHTLY UNSTABLE WIND DIRECTION: 270 DEG. RELEASE POINT: C

PROTOTYPE			MODEL			
SAMPLER	ARC	ELEV		DEGREES OFF*	CONCENTRATION	
GRID POINT	(M)	(M)		CENTER LINE	COEFFICIENT	
84	100	0		54	. 0000	
81	100	Ģ		36	. 0000	
77	100	¢.		12	. 5966	
75	100	¢.		Q	1.5425	
73	100	¢		-12	. 5501	
71	100	0		-24	. 0453	
69	100	0		-36	. 0000	
66	100	¢		-54	. 0000	
129	200	0		- 36	. 0000	
131	200	0		-24	. 0000	
133	200	0		-12	. 5908	
135	200	0		Q	1.0492	
135	200	25		Q	1.0260	
135	200	51		Q	. 5327	
136	200	¢		6	. 8809	
138	200	¢		18	. 2136	
140	200	0		30	. 0000	
142	200	Q		42	. 0000	
144	200	0		54	. 0000	
200	400	0		30	. 0000	
198	400	¢		18	. 0221	
197	400	Q		12	. 2948	
195	400	0		¢.	. 3819	
195	400	25		¢	. 3528	
195	400	51		Q .	. 1091	
194	400	0		- 6	. 3122	
192	400	0		-18	. 1033	
190	400	0		-30	. 0000	
252	800	¢		-18	. 0000	
253	800	Ò		-12	. 0000	
254	800	0		- 6	. 0453	
255	800	¢.		0	. 1265	
255	800	25		0	. 0801	
255	800	76		0	. 0162	
255	800	127		0	. 0000	
256	800	¢		6	. 1149	
257	800	Q		12	. 0453	
258	800	Q		18	. 0000	
259	800	0		24	. 0000	

* POSITIVE ANGLES ARE CLOCKWISE DIRECTION.

CONCENTRATION DATA FOR RUN NO. 7 STABILITY: NEUTRAL WIND DIRECTION: 270 DEG. RELEASE POINT: A

	PROTOTYPE			MO	DEL
SAMPLER	ARC	ELEV		DEGREES OFF*	CONCENTRATION
GRID POINT	(M)	(M)		CENTER LINE	COEFFICIENT
84	100	Ģ		54	. 0100
81	100	¢ –		36	. 0792
79	100	Ŷ	v	24	1.0252
77	100	0		12	. 2810
75	100	Q		Q	2.0574
73	100	Q		-12	. 6775
71	100	¢		-24	. 0002
69	100	¢		-36	. 1187
66	100	Q		-54	. 0130
128	200	¢		-42	. 0747
130	200	¢		-30	. 0169
132	200	¢		-18	. 1455
134	200	Q		6	1.1363
135	200	¢.		Ŷ	1.2638
135	200	25		Q	. 7433
135	200	51		0	. 3492
136	200	¢		6	1.5353
138	200	¢		18	. 3837
140	200	¢		30	. 0758
200	400	¢.	14	30	. 0210
198	400	Ŷ		18	.0303
196	400	Q.		6	. 6288
195	400	Q		Ŷ	. 6937
195	400	25		¢	. 4333
195	400	51		¢.	. 2678
194	400	Ģ		- 6	. 3915
193	400	Ģ		-12	. 0786
192	400	0		-18	.0325
190	400	¢.		-30	. 0223
252	800	Ŷ		-18	. 0225
253	800	¢		-12	. 0227
254	800	Ŷ		- 6	. 1399
255	800	¢.		Q	. 3412
255	800	25		¢	. 2241
255	800	76		0	. 1070
255	. 800	127		Q	. 0394
256	800	Ŷ		6	. 1814
257	800	Ŷ		12	. 0230
258	800	Ò		18	. 0191
259	800	Q		24	. 0145

CONCENTRATION DATA FOR RUN NO. 16 STABILITY: MCDERATELY STABLE WIND DIRECTION: 270 DEG. RELEASE POINT: A

	PROTOTYPE			MO	DEL
SAMPLER	ARC	ELEV		DEGREES OFF*	CONCENTRATION
GRID POINT	(M)	(M)		CENTER LINE	COEFFICIENT
84	100	Ó		54	. 0935
81	100	Ó		36	. 5626
79	100	Ó		24	3.1244
77	100	Ó		12	1.1825
75	100	ò		Ò	2.5829
73	100	Ô		-12	1.0895
71	100	Ó		-24	. 5664
69	100	¢		-36	. 1122
66	100	Ó		-54	.0107
128	200	Ó		-42	. 0149
130	200	Ó		-30	. 0239
132	200	Ò	3	-18	. 1597
134	200	¢		- 6	1.1499
135	200	Ó		Ó	1.7322
135	200	25		Ô	1.1126
135	200	51		0	. 4159
136	200	Ó		6	2.2444
138	200	Ó		i 8	1.8747
140	200	Ó		30	. 5430
200	400	Ó		30	. 0027
198 ·	400	Ó		18	. 27 93
196	400	Ó		6	1.2230
195	400	Ó		Ó	.7206
195	400	25		Ó	. 4373
195	400	51		0	. 2209
194	400	Ó		- 6	. 4102
193	400	Ô		-12	. 0567
192	400	0		-18	. 0142
190	400	Ô		-30	. 0000
252	800	0		-18	. 0000
253	800	0		-12	. 0075
254	800	Ó		-6	. 2343
255 .	800	Ó		Ó	. 4313
255	800	25		Û	. 2025
255	800	76		Ò	. 0313
255	800	127		Ó	. 0000
256	800	Ô		6	. 5313
257	800	¢		i 2	. 0510
258	800	Ó		18	. 0037
259	800	ò		24	. 0000

CONCENTRATION DATA FOR RUN NO. 23 STABILITY: SLIGHTLY UNSTABLE WIND DIRECTION: 270 DEG. RELEASE POINT: A

	PROTOTYPE			MO	DEL	
SAMPLER	ARC	ELEV		DEGREES OFF*		CONCENTRATION
GRID POINT	(M)	(M)		CENTER LINE		COEFFICIENT
84	100	Ò		54		. 0159
8 1	100	Ŷ		36		. 4331
. 77	100	¢.		12		3.0047
75	100	¢		0		2.5197
73	100	¢		-12		.6585
71	100	¢		-24		. 2726
69	100	¢		-36		. 0679
66	100	0		-54		. 0177
129	200	¢		-36		.0153
131	200	0		-24		. 0454
133	200	Ģ		-12		. 5529
135	200	¢		Q		1.0468
135	200	25		Ŷ		. 7293
135	200	51		¢		. 3824
136	200	¢.		6		1.2439
138	200	0		18		. 8137
140	200	¢		30		. 0738
142	200	¢		42		.0165
144	200	¢		54		.0106
200	400	Ŷ	2	30		. 0089
198	400	¢		18		. 1699
197	400	Ŷ		12		. 4585
195	400	Ŷ		• • •		. 4378
195	400	25		Ŷ		. 3830
195	400	51		Ŷ		. 1670
194	400	¢		- 6		. 2927
192	400	Q		-18		. 1357
190	400	¢		-30		. 0118
252	800	¢		-18		. 0100
253	800	¢		-12		.0212
254	800	¢		- 6		.0938
255	800	Q		0		. 1758
255	800	25		Q		. 1310
255	800	76		0		. 0679
255	800	127		Ŷ		. 0484
256	800	Ŷ		6		. 1841
257	800	Ŷ		12		. 1416
258	800	¢		18		. 0189
259	800	Ŷ		24		. 01 00

CONCENTRATION DATA FOR RUN NO. 7 STABILITY: NEUTRAL WIND DIRECTION: 270 DEG. RELEASE POINT: G5

	PROTOTYPE		MO	DEL
SAMPLER	ARC	ELEV	DEGREES OFF*	CONCENTRATION
GRID POINT	(M)	(M)	CENTER LINE	COEFFICIENT
84	100	Ģ	54	. 0093
81	100	0	36	. 0894
79	100	0	24	. 1072
77	100	¢.	12	. 1704
75	100	`Q	¢	2.3366
73	100	Ŷ	-12	2.9448
71	100	0	-24	2.8500
69	100	Q	-36	2.5810
66	100	Ŷ	-54	. 7077
128	200	0	-42	. 1087
130	200	Ŷ	-30	. 1418
132	200	Q	-18	1.0045
134	200	¢	- 6	1.1301
135	200	¢	¢	. 9559
135	200	25	¢	. 7092
135	200	51	¢	. 3662
136	200	¢.	6	. 3616
138	200	Ŷ	18	. 0439
140	200	¢	30	. 0139
200	400	Q	30	. 0139
198	400	Q	18	. 0146
196	400	0	6	. 21 4 3
195	400	Q	¢	. 5381
195	4.0 0	25	Q	. 3608
195	400	51	¢	. 2297
194	400	0	- 6	. 5836
193	400	Q	-12	. 1449
192	400	¢	-18	. 1072
190	400	0	-30	. 0200
252	800	¢.	-18	. 0216
253	800	Q	-12	. 0347
254	800	. Q	- 6	. 2536
255	800	¢	¢	. 2775
255	800	25	Q	. 2027
255	800	76	0	. 0933
255	800.	127	· 0	. 0416
256	800	Q	6	. 0817
257	800	0	12	. 0231
258	800	Q	18	. 0170
259	800	0	24	. 0108
	×			

CONCENTRATION DATA FOR RUN NO. 16 STABILITY: MODERATELY STABLE WIND DIRECTION: 270 DEG. RELEASE POINT: G5

PROTOTYPE		MODEL		
SAMPLER	ARC	ELEV	DEGREES OFF*	CONCENTRATION
GRID POINT	(M)	(M)	CENTER LINE	COEFFICIENT
84	100	Ô	54	. 0201
81	100	0	36	. 2237
79	100	Ŷ	24	1.4350
77	100	¢	12	. 5869
75	100	Ŷ	0	2.4815
73	100	0	-12	2.8127
71	100	¢	-24	2.4804
69	100	Q	-36	. 6755
66	100	Ŷ	-54	. 0201
128	200	Ŷ	-42	. 0081
130	200	Ŷ	-30	. 0527
132	200	Ŷ	-18	. 5383
134	200	¢	- 6	1.7152
135	200	Ŷ	0	1.6163
135	200	25	0	1.4247
135	200	51	0	.7567
136	200	Ŷ	6	1.7558
138	200	¢	18	6321
140	200	¢	30	. 0773
200	400	¢		. 0024
198	400	Ŷ	18	. 0579
196	400	Q	6	1.0364
195	400	0	Q	. 9803
195	400	25	0	. 6972
195	400	51	Q	. 3701
194	400	¢.	- 6	. 6772
193	400	Q	-12	. 0922
192	400	Ŷ	-18	.0270
190	400	Ŷ	-30	. 0000
252	800	¢	-18	. 0000
253	800	Ŷ	-12	.0024
254	800	Ŷ	- 6	. 3553
255	800	Ŷ	0	. 5588
255	800	25	Q	. 2895
255	800	76	0	. 0379
255	800	127	0	. 0041
256	800	¢	6	. 4754
257	800	¢	12	. 0127
258	800	0	18	. 0000
259	800	0	24	0000

CONCENTRATION DATA FOR RUN NO. 23 STABILITY: SLIGHTLY UNSTABLE WIND DIRECTION: 270 DEG. RELEASE POINT: G5

PROTOTYPE			MODEL		
SAMPLER	ARC	ELEY	DEGREES OFF*	CONCENTRATION	
GRID POINT	(M)	(M)	CENTER LINE	COEFFICIENT	
84	100	¢.	54	. 0189	
81	100	Q	36	. 4143	
77	100	Q	12	2.9477	
75	100	¢	0	3.1844	
73	100	¢.	-12	1.8648	
71	100	¢	-24	. 8273	
69	100	0	-36	. 1826	
66	100	0	-54	. 0126	
129	200	0	-36	. 0076	
131	200	¢	-24	. 0831	
133	200	0	-12	1.0590	
135	200	0	0	1.5500	
135	200	25	0	1.1144	
135	200	51	0	. 5956	
136	200	Q	6	1.5387	
138	200	Q	18	. 8373	
140	200	0	30	. 0579	
142	200	0	42	. 01 01	
144	200	¢	54	. 0113	
200	400	¢	. 30	. 0076	
198	400	¢	18	. 1700	
197	400	¢	12	. 5654	
195	400	¢	¢.	. 6220	
195	400	25	0	. 5830	
195	400	51	0	. 2027	
194	400	¢	- 6	. 4659	
192	400	0	-18	. 2304	
190	400	¢	-30	. 0164	
252	800	¢	-18	. 0126	
253	800	Ŷ	-12	. 0315	
254	800	¢	- 6	. 1335	
255	800	. Ç	• •	. 2606	
255	800	25	0	. 1864	
255	800	76	¢	. 1247	
255	800	127	0	. 0592	
256	800	¢	6	. 2543	
257	800	¢	12	. 1712	
258	800	¢	18	. 0227	
259	800	Q	24	. 0126	

* POSITIVE ANGLES ARE CLOCKWISE DIRECTION.

CONCENTRATION DATA FOR RUN NO. 7 STABILITY: NEUTRAL WIND DIRECTION: 270 DEG. RELEASE POINT: G17

PROTOTYPE		MODEL			
SAMPLER	ARC	ELEV	DEGREES	OFF*	CONCENTRATION
GRID POINT	(M)	(M)	CENTER L	INE	COEFFICIENT
84	100	0	54		.0040
81	100	¢	36		.0653
79	100	0	24		. 9886
77	100	Q	12		. 2495
75	100	¢	0		2.5771
73	100	0	-12		1.6189
71	100	o	-24		. 8183
69	100	¢ .	-36		. 3531
66	100	0	-54		. 0119
128	200	0	-42		.0851
130	200	Ŷ	-30		.0172
132	200	0	-18		. 3234
134	200	0	- 6		1.5364
135	200	Ŷ	0		1.7291
135	200	25	0		1.1140
135	200	51	0		. 5973
136	200	¢	6		1.7053
138	200	0	18		. 3419
140	200	Q	30		.0422
200	400	Q	. 30		.0125
198	400	Q	18		. 01 98
196	400	0	6		. 7596
195	400	Q	0		. 9873
195	400	25	0		.6501
195	400	51	0		. 4065
194	400	¢	- 6		.6322
193	400	ŷ	-12		. 1016
192	400	Ŷ	-18		.0350
190	400	Q	-30		.0092
252	800	Ŷ	-18		. 0198
253	800	Ŷ	-12		.0205
254	800	¢	- 6		. 2323
255	800	0	Ŷ		. 4969
255	800	25	Ŷ		. 3300
255	800	76	0		. 1373
255	. 800	127	¢		. 0449
256	800	¢	6		.2033
257	800	¢	12		. 0224
258	800	¢	18		.0145
259	800	0	24		. 0112

CONCENTRATION DATA FOR RUN NO. 16 STABILITY: MODERATELY STABLE WIND DIRECTION: 270 DEG. RELEASE POINT: G17

	PROTOTYPE		MODEL	
SAMPLER	ARC	ELEV	DEGREES OFF*	CONCENTRATION
GRID POINT	(M)	(M)	CENTER LINE	COEFFICIENT
84	100	Ŷ	54	. 0005
81	100	0	36	. 0442
79	100	Ŷ	24	. 0853
77	100	¢	12	. 1572
75	100	0	¢	2.0573
73	100	0	-12	4.3248
71	100	0	-24	4.1269
69	100	¢	-36	2.9424
66	100	Ŷ	-54	. 9306
128	200	Ŷ	-42	. 0352
130	200	0	-30	. 2536
132	200	0	-18	1.2582
134	200	0	- 6	1.9404
135	200	Q	0	1.0796
135	200	25	. 0	. 8600
135	200	51	0	. 5067
136	200	0	6	. 5568
138	200	Ŷ	18	. 0699
140	200	0	30	. 0018
200	400	0	. 30	. 0000
198	400	¢.	18	.0005
196	400	Ŷ	6	. 4142
195	400	¢	0	. 8869
195	400	25	0	. 6416
195	400	51	0	. 2819
194	400	Q	- 6	. 7264
193	400	¢	-12	. 1855
192	400	¢.	-18	. 0969
190	400	0	-30	. 0000
252	800	Q	-18	. 0069
253	800	Q	-12	. 0095
254	800	Ŷ	- 6	. 4039
255	800	Ŷ	0	. 3705
255	800	25	0	. 2240
255	800	76	0	. 0391
255	800	127	0	. 0031
256	800	Ŷ	6	. 1714
257	800	¢	12	. 01 08
258	800	¢	18	. 0000
259	800	Ô.	24	. 0000

* POSITIVE ANGLES ARE CLOCKWISE DIRECTION.
** MODEL SAMPLE LOCATION HALFWAY TO NEXT HIGHEST GRID POINT.

162

CONCENTRATION DATA FOR RUN NO. 23 STABILITY: SLIGHTLY UNSTABLE WIND DIRECTION: 270 DEG. RELEASE POINT: G17

PROTOTYPE		MODEL		
SAMPLER	ARC	ELEY	DEGREES OFF*	CONCENTRATION
GRID POINT	(M)	(M)	CENTER LINE	COEFFICIENT
84	100	¢	54	. 0125
81	100	¢	36	. 0872
77	100	¢.	12	. 8132
75	100	¢	¢.	2.5361
73	100	¢ .	-12	3.2527
71	100	Q	-24	2.1685
69	100	Ŷ	-36	1.1528
66	100	Ŷ	-54	. 1433
129	200	Q	-36	. 0187
131	200	Q	-24	. 2866
133	200	Q	-12	1.3335
135	200	Q	0	1.0780
135	200	25	0	. 8007
135	200	51	0	. 4518
136	200	¢.	6	. 6979
138	200	¢	18	. 1963
140	200	¢	30	. 0187
142	200	¢	42	. 0062
144	200	0	54	. 0093
200	400	¢	30	. 0031
198	400	Ò	18	. 0530
197	400	¢	12	. 2430
195	400	¢	¢	. 3832
195	400	25	0	. 3708
195	400	51	0	. 1433
194	400	Ò	- 6	. 4300
192	400	¢	-18	. 3084
190	400	¢	-30	. 0249
252	800	¢.	-18	. 0187
253	800	¢	-12	. 0343
254	800	Q	- 6	. 1122
255	800	Q	0	. 1682
255	800	25	0	. 1246
255	800	76	0	. 0717
255	800	127	٥	. 0436
256	800	¢	6	. 1464
257	800	0	12	. 0779
258	800	¢.	18	. 0187
259	800	¢	24	. 0125

POSITIVE ANGLES ARE CLOCKWISE DIRECTION. MODEL SAMPLE LOCATION HALFWAY TO NEXT HIGHEST GRID POINT.

C.)

Table 13. Data, Wind Direction 3150

CONCENTRATION DATA FOR RUN NO. 8 STABILITY: NEUTRAL WIND DIRECTION: 315 DEG. RELEASE POINT: C

SAMPLER ARC ELEV DEGREES OFF* CONCENT GRID POINT (M) (M) CENTER LINE CDEFF* 90 100 0 45 .0 87 100 0 27 .4 84 100 0 -9 .1.2 82** 100 0 -9 .9 78 100 0 -27 .1 75 100 0 -45 .0 72 100 0 -57 .0 133 200 0 -157 .0 136 200 0 -15 .5 142** 200 25 0 .7 142** 200 27 .0 .4 145 200 0 .7 .0 142** 200 0 .7 .0 142** 200 0 .0 .7	
GRID FOINT (M) (M) CENTER LINE COEFFI 90 100 0 45 .00 87 100 0 27 .4 84 100 0 9 1.2 82** 100 0 -9 .9 78 100 0 -27 .1 75 100 0 -45 .00 72 100 0 -39 .0 133 200 0 -39 .0 138 200 0 -15 .5 142** 200 0 .7 .1 142** 200 25 0 .7 142** 200 0 39 .0 151 200 0 37 .0 206 400 0 .33 .0 206 400 0 .33 .0 206 400 0	RATION
90100045087100027.484100091.282**1000-9.97810009.978100027.1751000-63.0721000-63.01332000-57.01362000-27.01382000-27.014020000.9142**200250.7142**200250.7142**200039.0151200033.0206400021.02064000.33.02064000.1.120710.4202**400.9.4202**400.1.0197400.15.0259800.25.0.1260800.0.15.0259800.0.15.0261800.0.15.0262**800.0.1.0262**800.0.1.0262**800.25.0.1262**800.25.0.1262**800<	CIENT
87 100 0 27 .4 84 100 0 9 1.2 $82**$ 100 0 -9 .9 78 100 0 -27 .1 75 100 0 -45 .0 72 100 0 -63 .0 133 200 0 -57 .0 136 200 0 -15 .5 140 200 0 -15 .5 142** 200 25 0 .7 142** 200 25 0 .7 142** 200 25 0 .7 142** 200 0 15 .6 147 200 0 15 .6 147 200 0 33 .0 208 400 0 .33 .0 208 400 0 .9 .4 202** 400 0 .79 .2 149	822
84 100 0 9 1.2 $82**$ 100 0 -9 9 81 100 0 -27 11 75 100 0 -45 00 72 100 0 -63 00 133 200 0 -57 00 136 200 0 -27 00 138 200 0 -27 00 140 200 0 -15 55 $142**$ 200 0 -15 55 $142**$ 200 51 0 44 145 200 0 15 66 147 200 0 33 00 206 400 0 33 00 206 400 0 21 00 206 400 0 21 00 206 400 0 -21 00 $202**$ 400 0 -21 00 $202**$ 400 0 -21 00 197 400 0 -21 00 197 400 0 -21 00 195 400 0 -21 00 259 800 0 -21 00 261 800 0 -9 11 $262**$ 800 0 -9 11 $262**$ 800 25 0 -11 $262**$ 800 76 0	436
82** 100 0 -9 .9 78 100 0 -27 .1 75 100 0 -45 .0 72 100 0 -63 .0 133 200 0 -57 .0 136 200 0 -27 .0 138 200 0 -27 .0 140 206 0 -15 .5 142** 200 25 0 .7 142** 200 51 0 .4 145 200 0 15 .6 147 200 0 27 .1 149 200 0 33 .0 208 400 0 33 .0 204 400 0 .21 .0 204 400 0 .21 .0 197 400 0 .21 .0 197 400 0 .21 .0 202** <t< td=""><td>002</td></t<>	002
81 100 0 -9 9 78 100 0 -27 11 75 100 0 -45 00 72 100 0 -63 00 133 200 0 -57 00 136 200 0 -39 00 138 200 0 -27 00 140 200 0 -15 55 $142**$ 200 25 0 7 $142**$ 200 25 0 7 $142**$ 200 0 15 66 147 200 0 27 11 149 200 0 33 00 208 400 0 21 00 206 400 0 21 00 204 400 0 -9 $.2$ 204 400 0 -9 $.2$ 199 400 0 -21 00 197 400 0 -21 00 197 400 0 -21 00 195 400 0 -21 00 195 400 0 -21 00 195 400 0 -21 00 261 800 0 -15 00 261 800 0 -15 00 261 800 25 0 11 $262**$ 800 25 0 11 <	207
78 100 0 -27 1 75 100 0 -45 0 72 100 0 -63 0 133 200 0 -57 0 136 200 0 -39 0 138 200 0 -27 0 140 200 0 -15 $.5$ $142**$ 200 0 0 9 $142**$ 200 25 0 $.7$ $142**$ 200 0 15 $.6$ 147 200 0 27 $.1$ 149 200 0 33 $.0$ 208 400 0 21 $.0$ 206 400 0 21 $.0$ 204 400 0 -9 $.2$ $202**$ 400 0 -9 $.2$ 197 400 0 -21 $.0$ 197 400 0 -21 $.0$ 197 400 0 -21 $.0$ $202**$ 400 0 -21 $.0$ 197 400 0 -21 $.0$ 259 800 0 -15 $.0$ 261 800 0 -15 $.0$ $261**$ 800 0 $.0$ $.1$ $262**$ 800 25 0 $.1$ $262**$ 800 25 0 $.1$ $262**$ 800 $.25$ 0 $.1$	029
75 100 0 -45 0 72 100 0 -63 0 133 200 0 -57 0 136 200 0 -27 0 140 200 0 -15 55 $142**$ 200 0 0 9 $142**$ 200 0 0 9 $142**$ 200 25 0 7 $142**$ 200 51 0 4 145 200 0 15 6 147 200 0 27 11 149 200 0 39 0 206 400 0 33 0 206 400 0 21 0 204 400 0 -9 $.4$ $202**$ 400 0 -9 $.4$ $202**$ 400 0 -9 $.2$ 197 400 0 -21 0 197 400 0 -21 0 197 400 0 -21 0 259 800 0 -15 0 261 800 0 -9 11 $262**$ 800 25 0 $.11$ $262**$ 800 76 0 0	789
721000 -63 01332000 -57 01362000 -39 01382000 -27 0140200009142**2002507142**2002507142**20001561472000271149200033020840003302064000210204400094202**4002503202**4000-921994000-2101974000-2102608000-1502618000-91262**8002501262**8002501262**8007601262**8007601	326
133 200 0 -57 0 136 200 0 -39 0 138 200 0 -27 0 140 200 0 -15 5 $142**$ 200 0 0 9 $142**$ 200 25 0 7 $142**$ 200 51 0 4 145 200 0 15 6 147 200 0 27 11 149 200 0 33 0 206 400 0 333 0 206 400 0 21 0 206 400 0 21 0 204 400 0 -9 $.4$ $202**$ 400 25 0 $.3$ $202**$ 400 0 -21 0 197 400 0 -21 0 197 400 0 -21 0 197 400 0 -21 0 260 800 0 -15 0 261 800 0 0 -15 $262**$ 800 25 0 $.1$ $262**$ 800 76 0 0	145
136 200 0 -39 0 138 200 0 -27 0 140 200 0 -15 5 $142**$ 200 0 0 9 $142**$ 200 25 0 7 $142**$ 200 25 0 7 $142**$ 200 0 15 6 147 200 0 27 11 149 200 0 39 0 151 200 0 333 0 208 400 0 21 0 206 400 0 21 0 204 400 0 -9 $.4$ $202**$ 400 25 0 $.33$ $202**$ 400 0 -9 $.2$ 199 400 0 -21 0 197 400 0 -21 0 259 800 0 -21 0 259 800 0 -15 0 260 800 0 -15 0 261 800 0 -9 $.1$ $262**$ 800 25 0 $.1$ $262**$ 800 76 0 0	133
138 200 0 -27 0 140 200 0 -15 5 $142**$ 200 0 0 9 $142**$ 200 25 0 7 $142**$ 200 51 0 4 145 200 0 15 6 147 200 0 27 11 149 200 0 39 0 151 200 0 313 0 208 400 0 21 0 206 400 0 9 $.4$ $202**$ 400 0 -9 $.4$ $202**$ 400 0 -9 $.1$ 201 400 0 -9 $.2$ 199 400 0 -21 0 197 400 0 -21 0 259 800 0 -21 0 259 800 0 -21 0 260 800 0 -15 0 261 800 0 -15 0 $262**$ 800 0 0 11 $262**$ 800 76 0 0	520
140 200 0 -15 $.5$ $142**$ 200 0 0 9 $142**$ 200 25 0 $.7$ $142**$ 200 51 0 $.4$ 145 200 0 15 $.6$ 147 200 0 27 $.1$ 149 200 0 39 $.0$ 151 200 0 33 $.0$ 208 400 0 21 $.0$ 206 400 0 21 $.0$ 206 400 0 9 $.4$ $202**$ 400 0 -9 $.2$ 204 400 0 -9 $.2$ $202**$ 400 0 -9 $.2$ 199 400 0 -21 $.0$ 197 400 0 -21 $.0$ 195 400 0 -21 $.0$ 259 800 0 -21 $.0$ 260 800 0 -15 $.0$ 261 800 0 -9 $.1$ $262**$ 800 25 0 $.1$ $262**$ 800 25 0 $.1$ $262**$ 800 76 0 $.0$	810
142** 200 0 0 $.9$ $142**$ 200 25 0 $.7$ $142**$ 200 51 0 $.4$ 145 200 0 15 $.6$ 147 200 0 27 $.1$ 149 200 0 39 $.0$ 151 200 0 31 $.0$ 208 400 0 33 $.0$ 206 400 0 21 $.0$ 206 400 0 9 $.4$ $202**$ 400 0 9 $.4$ $202**$ 400 0 -9 $.1$ $202**$ 400 0 -9 $.1$ 201 400 0 -21 $.0$ 197 400 0 -21 $.0$ 195 400 0 -21 $.0$ 259 800 0 -21 $.0$ 260 800 0 -15 $.0$ 261 800 0 -9 $.1$ $262**$ 800 0 -9 $.1$ $262**$ 800 25 0 $.1$ $262**$ 800 25 0 $.1$ $262**$ 800 25 0 $.1$ $262**$ 800 25 0 $.1$ $262**$ 800 76 0 $.0$ $261+1$ 800 25 0 $.1$ $262**$ 800 25 0	149
142** 200 25 0 $.7$ $142**$ 200 51 0 $.4$ 145 200 0 15 $.6$ 147 200 0 27 $.1$ 149 200 0 39 $.0$ 151 200 0 51 $.0$ 208 400 0 33 $.0$ 206 400 0 21 $.0$ 206 400 0 9 $.4$ $202**$ 400 0 9 $.4$ $202**$ 400 0 9 $.4$ $202**$ 400 0 -9 $.1$ $202**$ 400 0 -9 $.1$ $202**$ 400 0 -9 $.1$ $202**$ 400 0 -21 $.0$ 197 400 0 -21 $.0$ 197 400 0 -21 $.0$ 197 400 0 -15 $.0$ 259 800 0 -21 $.0$ 260 800 0 -9 $.1$ $262**$ 800 0 -9 $.1$ $262**$ 800 25 0 $.1$ $262**$ 800 25 0 $.1$ $262**$ 800 25 0 $.1$ $262**$ 800 25 0 $.0$ $262**$ 800 25 0 $.0$ $262**$ 800 25 0 <td>380</td>	380
142** 200 51 0 $.4$ 145 200 0 15 $.6$ 147 200 0 27 $.1$ 149 200 0 39 $.0$ 151 200 0 51 $.0$ 208 400 0 33 $.0$ 206 400 0 21 $.0$ 206 400 0 9 $.4$ $202**$ 400 0 9 $.4$ $202**$ 400 0 $.9$ $202**$ 400 0 $.1$ 201 400 0 -9 2199 400 0 -21 197 400 0 -21 195 400 0 -21 259 800 0 -21 260 800 0 -15 261 800 0 -15 261 800 0 -15 $262**$ 800 25 0 $262**$ 800 25 0 $262**$ 800 76 0 $262**$ 800 76 0	240
145 200 0 15 $.6$ 147 200 0 27 $.1$ 149 200 0 39 $.0$ 151 200 0 51 $.0$ 208 400 0 33 $.0$ 206 400 0 21 $.0$ 204 400 0 9 $.4$ $202**$ 400 0 0 $.4$ $202**$ 400 0 -9 $.3$ $202**$ 400 0 -9 $.2$ 199 400 0 -21 $.0$ 197 400 0 -21 $.0$ 195 400 0 -21 $.0$ 259 800 0 -21 $.0$ 259 800 0 -21 $.0$ 260 800 0 -15 $.0$ 261 800 0 -9 $.1$ $262**$ 800 25 0 $.1$ $262**$ 800 25 0 $.1$ $262**$ 800 76 0 $.0$	279
147 200 0 27 $.1$ 149 200 0 39 $.0$ 151 200 0 51 $.0$ 208 400 0 33 $.0$ 206 400 0 21 $.0$ 206 400 0 9 $.4$ 204 400 0 9 $.4$ $202**$ 400 0 0 $.4$ $202**$ 400 25 0 $.3$ $202**$ 400 0 -9 $.2$ 199 400 0 -9 $.2$ 199 400 0 -21 $.0$ 197 400 0 -21 $.0$ 195 400 0 -21 $.0$ 259 800 0 -21 $.0$ 260 800 0 -15 $.0$ 261 800 0 -15 $.0$ $262**$ 800 25 0 $.1$ $262**$ 800 25 0 $.1$ $262**$ 800 76 0 $.0$	986
149 200 0 39 $.0$ 151 200 0 51 $.0$ 208 400 0 33 $.0$ 206 400 0 21 $.0$ 204 400 0 9 $.4$ $202**$ 400 0 0 $.4$ $202**$ 400 25 0 $.3$ $202**$ 400 51 0 $.1$ 201 400 0 -9 $.2$ 199 400 0 -21 $.0$ 197 400 0 -45 $.0$ 259 800 0 -15 $.0$ 260 800 0 -15 $.0$ 261 800 0 -9 $.1$ $262**$ 800 25 0 $.1$ $262**$ 800 25 0 $.1$ $262**$ 800 76 0 $.0$	039
151 200 0 51 $.0$ 208 400 0 33 $.0$ 206 400 0 21 $.0$ 204 400 0 9 $.4$ $202**$ 400 0 0 $.4$ $202**$ 400 25 0 $.3$ $202**$ 400 51 0 $.1$ 201 400 0 -9 $.2$ 199 400 0 -21 $.0$ 197 400 0 -33 $.0$ 195 400 0 -45 $.0$ 259 800 0 -21 $.0$ 260 800 0 -15 $.0$ 261 800 0 -15 $.0$ $262**$ 800 25 0 $.1$ $262**$ 800 25 0 $.1$ $262**$ 800 76 0 $.0$	218
208 400 0 33 $.0$ 206 400 0 21 $.0$ 204 400 0 9 $.4$ $202**$ 400 0 0 $.4$ $202**$ 400 25 0 $.3$ $202**$ 400 51 0 $.1$ 201 400 0 -9 $.2$ 199 400 0 -21 $.0$ 197 400 0 -45 $.0$ 195 400 0 -45 $.0$ 259 800 0 -15 $.0$ 260 800 0 -15 $.0$ 261 800 0 -9 $.1$ $262**$ 800 25 0 $.1$ $262**$ 800 25 0 $.1$ $262**$ 800 76 0 $.0$	145
206 400 0 21 0 204 400 0 9 $.4$ $202**$ 400 0 0 $.4$ $202**$ 400 25 0 $.3$ $202**$ 400 51 0 $.1$ 201 400 0 -9 $.2$ 199 400 0 -21 $.0$ 197 400 0 -21 $.0$ 195 400 0 -45 $.0$ 259 800 0 -21 $.0$ 260 800 0 -15 $.0$ 261 800 0 -9 $.1$ $262**$ 800 25 0 $.1$ $262**$ 800 76 0 $.0$ $262**$ 800 76 0 $.0$	157
204 400 0 9 $.4$ $202**$ 400 0 0 $.4$ $202**$ 400 25 0 $.3$ $202**$ 400 51 0 $.1$ 201 400 0 -9 $.2$ 199 400 0 -21 $.0$ 197 400 0 -33 $.0$ 195 400 0 -45 $.0$ 259 800 0 -21 $.0$ 260 800 0 -15 $.0$ 261 800 0 -9 $.1$ $262**$ 800 0 0 $.1$ $262**$ 800 76 0 $.0$	568
202** 400 0 0 $.4$ $202**$ 400 25 0 $.3$ $202**$ 400 51 0 $.1$ 201 400 0 -9 $.2$ 199 400 0 -21 $.0$ 197 400 0 -33 $.0$ 197 400 0 -45 $.0$ 195 400 0 -45 $.0$ 259 800 0 -21 $.0$ 260 800 0 -15 $.0$ 261 800 0 -9 $.1$ $262**$ 800 25 0 $.1$ $262**$ 800 76 0 $.0$	629
202** 400 25 0 $.3$ $202**$ 400 51 0 $.1$ 201 400 0 -9 $.2$ 199 400 0 -21 $.0$ 197 400 0 -33 $.0$ 195 400 0 -45 $.0$ 259 800 0 -21 $.0$ 260 800 0 -15 $.0$ 261 800 0 -9 $.1$ $262**$ 800 0 0 $.1$ $262**$ 800 25 0 $.1$ $262**$ 800 76 0 $.0$	738
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	191
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	394
199 400 0 -21 $.0$ 197 400 0 -33 $.0$ 195 400 0 -45 $.0$ 259 800 0 -21 $.0$ 260 800 0 -15 $.0$ 261 800 0 -9 $.1$ $262**$ 800 0 0 $.1$ $262**$ 800 25 0 $.1$ $262**$ 800 76 0 $.0$	744
197 400 0 -33 0 195 400 0 -45 0 259 800 0 -21 0 260 800 0 -15 0 261 800 0 -9 1 $262**$ 800 0 0 1 $262**$ 800 25 0 1 $262**$ 800 76 0 0	556
195 400 0 -45 $.0$ 259 800 0 -21 $.0$ 260 800 0 -15 $.0$ 261 800 0 -9 $.1$ $262**$ 800 0 0 $.1$ $262**$ 800 25 0 $.1$ $262**$ 800 76 0 $262**$ 800 76 0	205
259 800 0 -21 .0 260 800 0 -15 .0 261 800 0 -9 .1 262** 800 0 0 .1 262** 800 25 0 .1 262** 800 76 0 .0	145
260 800 0 -15 .0 261 800 0 -9 .1 262** 800 0 0 .1 262** 800 25 0 .1 262** 800 76 0 .0	193
261 800 0 -9 .1 262** 800 0 0 .1 262** 800 25 0 .1 262** 800 76 0 .0	363
262** 800 0 .1 262** 800 25 0 .1 262** 800 76 0 .0 262** 800 76 0 .0	136
262** 800 25 0 .1 262** 800 76 0 .0 262** 800 76 0 .0	934
262** 800 76 0 .0	475
	616
262** 800 12r V .V	351
263 800 0 3 · .2	127
264 800 0 9	716
265 800 0 15 .0	326
266 800 0 21 .0	157

* POSITIVE ANGLES ARE CLOCKWISE DIRECTION.
** MODEL SAMPLE LOCATION HALFWAY TO NEXT HIGHEST GRID POINT.

165

CONCENTRATION DATA FOR RUN NO. 9 STABILITY: MODERATELY STABLE WIND DIRECTION: 315 DEG. RELEASE POINT: C

PROTOTYPE		MODEL			
SAMPLER	ARC	ELEY	DEGREES OFF*	CONCENTRATION	
GRID POINT	(M)	(M)	CENTER LINE	COEFFICIENT	
90	100	¢	4 5	. 1655	
87	100	¢	27	. 7740	
84	100	¢.	9	2.3345	
82**	100	¢ .	• • • • • •	1.2828	
81	100	¢	- 9	. 9917	
78	100	0	-27	. 1498	
75	100	0	-45	. 01 34	
72	100	0	-63	. 0000	
133	200	0	-57	. 0108	
136	200	0	-39	. 0000	
138	200	0	-27	. 0396	
140	200	0	-15	. 2940	
142**	200	0	0	1.3772	
142**	200	25	0	. 9785	
142**	200	51	0	. 5589	
145	200	0	15	1.6342	
147	200	0	27	. 1943	
149	200	0	39	. 0055	
151	200	0	51	. 0003	
208	400	¢.	33	. 0160	
206	400	0	21	. 0344	
204	4 Q Q	0	9	. 9261	
202**	400	0	Q	. 7714	
202**	400	25	Ô	. 5904	
202**	400	51	¢	. 3360	
201	400	0	-9	. 1655	
199	400	¢	-21	. 0029	
197	400	¢	-33	. 0029	
195	400	¢	-45	. 0000	
259	800	¢	-21	. 0003	
260	800	¢	-15	. 0029	
261	80 Ú	Q	- 9	. 0029	
262**	800	¢.	0	. 1366	
262**	800	25	0	. 2075	
262**	800	76	¢	. 0894	
262**	800	127	0	. 0160	
263	800	¢	3	. 3937	
264	800	Ô	9	. 0737	
265	800	Ô.	15	.0055	
266	800	Ó	21	. 0003	

* POSITIVE ANGLES ARE CLOCKWISE DIRECTION.

CONCENTRATION DATA FOR RUN NO. 24 STABILITY: SLIGHTLY UNSTABLE WIND DIRECTION: 315 DEG. RELEASE POINT: C

PROTOTYPE		MODEL			
SAMPLER	ARC	ELEV	DEGREES OFF*	CONCENTRATION	
GRID POINT	(M)	(M)	CENTER LINE	COEFFICIENT	
9 Ó	100	Ó	45	.0870	
87	100	Ó	27	. 4526	
84	100	Ó	9	1.2303	
82**	100	Ó	Ó	1.0678	
81	100	Ó	- 9	.9517	
78	100	Ó	-27	. 0987	
75	100	Ó	-45	. 0870	
72	100	Ó	-63	.0174	
133	200	Ó	, -57	. 0174	
136	200	¢	-39	.0116	
138	200	Ó	-27	. 2031	
14¢	200	Ó	-15	. 6442	
i42**	200	Ó	Ó	. 7428	
i42**	200	25	Ó	. 5803	
142**	200	51	Ó	. 6035	
145	200	Ó	15	. 5281	
147	200	Ó	27	. 2205	
149	200	Ó	39	. 0406	
151	200	¢	5 i	.0116	
209	400	Ó	. 39	.0116	
207	400	Ó	27	. 0290	
205	400	Ó	15	. 2147	
204	400	Ó	9	. 2844	
202**	400	Ó	0	. 3018	
202**	400	25	Ó	. 2321	
202**	400	51	0	. 1683	
201	400	0	- 9	. 2611	
199	400	0	-21	. 2379	
197	400	0	-33	. 0638	
259	800	Ô	-21	. 0348	
260	800	0	-15	. 0638	
261	800	Ó	-9	. 1045	
262**	800	· Ò	Ó	. 1335	
262**	800	25	Ó	. 1103	
262**	800	76	0	. 0696	
262**	800	127	¢	. 0464	
263	800	• •	3	. 1277	
264	800	¢	9	. 1277	
265	800	Ó	15	.0580	
266	800	Ô	21	. 0232	

CONCENTRATION DATA FOR RUN NO. 8 STABILITY: NEUTRAL WIND DIPECTION: 315 DEG. RELEASE POINT: 0

	PROTOTYPE MODEL				L. Andrew Contract
SAMPLER	ARC	ELEV		DEGREES OFF*	CONCENTRATION
GRID POINT	(M)	(M)		CENTER LINE	COEFFICIENT
90	100	۰ ¢		45	1.0856
87	100	0		27	1.8315
84	100	Q		9	1.4097
82**	100	o		Q	. 3492
81	100	0		-9	. 2382
78	100	Ô		-27	. 0740
75	100	Q		-45	. 0193
72	100	Q		-63	. 0100
133	200	0		-57	. 0145
136	200	0		-39	. 0678
138	200	0		-27	. 0338
140	200	0		-15	. 1234
142**	200	0		0	. 4473
142**	200	25		0	. 4623
142**	200	51		9	. 3421
145	200	0		15	. 9213
147	200	0		27	. 5409
149	200	Ô.		39	. 0634
151	200	0		51	. 0199
208	400	0		33	. 0208
206	400	0		21	. 1674
204	400	0		9	. 5264
202**	400	0		0	. 3393
202**	400	25		0	. 2522
202**	400	51		0	. 1905
201	400	¢.		- 9	. 1410
199	400	0		-21	. 0474
197	400	0		-33	. 0160
195	400	0		-45	. 0158
259	800	0		-21	. 0152
260	800	0		-15	. 0277
261	800	. 0		-9	. 0580
262**	800	0		O	. 1535
262**	800	25		¢	. 1269
262**	800	76		Ŷ	. 0561
262**	800	127		¢	. 0323
263	800	0		3	. 1856
264	800	¢		9	. 2380
265	800	0		15	. 0699
266	800	0		21	. 0162
CONCENTRATION DATA FOR RUN NO. 9 STABILITY: MODERATELY STABLE WIND DIRECTION: 315 DEG. RELEASE POINT: A

PROTUTYPE		MODEL		
SAMPLER	ÁRC	ELEV	DEGREES OFF*	CONCENTRATION
GRID POINT	(M)	(M)	CENTER LINE	COEFFICIENT
90	100	¢	45	1.9943
87	100	ò ·	27	2.6242
84	100	0	9	1.6319
82**	100	Ó	0	. 3878
81	100	0	- 9	. 4864
78	100	Ó	-27	. 1946
75	100	¢	-45	. 0189
72	100	Ó	-63	. 0007
133	200	Ô	-57	. 0000
136	200	Ó	-39	. 0029
138	200	¢	-27	.0162
i40	200	Ô	-15	. 1103
142**	200	¢	0	. 4737
142**	200	25	0	. 5155
i42**	200	5 i	٥	. 3859
i45	200	Ô	15	1.1837
i47	200	¢	27	1.0745
149	200	¢	39	. 1017
15 i	200	Ó	51	. 0093
208	400	Ŷ	. 33	. 0019
206	400	¢	21	. 1347
204	400	¢	9	1.0908
202**	400	Ó	0	. 3608
202**	400	25	Ó	. 3508
202**	4 Ó Ó	5i	Ô	. 3054
20i	400	Ó	- 9	. 0714
199	400	¢	-2i	. 0053
197	4 Ó Ó	Ó	-33	. 0000
195	400	Ó	-45	. 0000
259	800	¢	-21	. 0000
260	800	Ô	-15	. 0000
261	800 -	¢	- 9	. 0000
262**	800	Ó	Ó	. 0654
262**	860	25	Ò	. 1132
262**	800	76	Ó	. 0621
262**	800	127	Ó	. 0122
263	800	Ó	3	. 2538
264	800	Ô.	9	. 1218
265	800	¢	15	. 0000
266	8¢ 0	Ó	21	. 0000

* POSITIVE ANGLES ARE CLOCKWISE DIRECTION.
** MODEL SAMPLE LOCATION HALFWAY TO NEXT HIGHEST GRID POINT.

CONCENTRATION DATA FOR RUN ND. 24 STABILITY: SLIGHTLY UNSTABLE WIND DIRECTION: 315 DEG. RELEASE POINT: A

	PROTOTY	PE	MODEL		
SAMPLER	ARC	ELEY	DEGREES OFF*	CONCENTRATION	
GRID POINT	(M)	(M)	CENTER LINE	COEFFICIENT	
90	100	Ŷ	45	. 9140	
87	100	Q	27	1.8629	
84	100	¢	9	1.2598	
82**	100	¢	0	. 3145	
81	100	0	-9	. 2384	
78	100	Q	-27	. 0266	
75	100	0	-45	. 0195	
72	100	0	-63	. 0106	
133	200	0	-57	. 0106	
136	200	¢.	-39	. 0118	
138	200	0	-27	. 0472	
140	200	0	-15	. 1334	
142**	200	¢	0	. 3564	
142**	200	25	0	. 4443	
142**	200	51	0	. 4095	
145	200	0	15	. 7636	
147	200	0	27	. 6833	
149	200	• • • •	39	. 1800	
151	200	¢	51	. 0242	
209	400	0	. 39	. 0142	
207	400	0	27	.0856	
205	400	0	15	. 3476	
204	400	0	9	. 3181	
202**	400	0	0	. 2213	
202**	400	25	Q	. 1965	
202**	400	51	¢	. 1404	
201	400	0	- 9	. 1239	
199	400	0	-21	. 0950	
197	400	¢	-33	. 0165	
259	800	¢	-21	. 0153	
260	800	¢	-15	. 0277	
261	800	. O	-9	. 0690	
262**	800	0	0	. 1080	
262**	800	25	0	. 0879	
262**	800	76	0	. 0525	
262**	800	127	0	. 0354	
263	800	0	3	. 1098	
264	800	0	9	. 1298	
265	800	0	15	. 0820	
266	800	0	21	. 0348	

* POSITIVE ANGLES ARE CLOCKWISE DIRECTION.
** MODEL SAMPLE LOCATION HALFWAY TO NEXT HIGHEST GRID POINT.

CONCENTRATION DATA FOR RUN NO. 8 STABILITY: NEUTRAL WIND DIRECTION: 315 DEG. RELEASE POINT: G5

PROTOTYPE		PE	MODEL			
SAMPLER	ARC	ELEV	DEGREES OFF*	CONCENTRATION		
GRID POINT	(M)	(M)	CENTER LINE	COEFFICIENT		
90	100	0	45	. 3531		
87	100	¢	27	. 8788		
84	100	Q	9	1.4424		
82**	100	0	0	1.3691		
81	100	0	- 9	1.5819		
78	100	¢	-27	1.5418		
75	100	¢	-45	1.2250		
72	100	0	-63	. 2621		
133	200	0	-57	. 0177		
136	200	0	-39	. 1041		
138	200	¢	-27	. 3847		
140	200	0	-15	. 6082		
142**	200	0	0	. 7817		
142**	200	25	0	. 5180		
142**	200	51	0	. 2829		
145	200	0	15	. 6892		
147	200	0	27	. 2320		
149	200	0	39	. 0378		
151	200	0	51	. 0146		
208	400	0	33	. 0185		
206	400	0	21	. 0863		
204	400	0	9	. 4032		
202**	400	0	0	. 4040		
202**	400	25	0	. 2744		
202**	400	51	0	. 1735		
201	400	0	-9	2436		
199	400	0	-21	. 0933		
197	400	0	-33	. 0270		
195	400	0	-45	. 0146		
259	800	0	-21	. 0239		
260	800	0	-15	. 04 93		
261	800	Ŷ	- 9	. 1233		
262**	800	Ŷ	0	. 1765		
262**	800	25	0	. 1380		
262**	800	76	¢	. 0609		
262**	800	127	Q	. 0324		
263	800	Ŷ	3	. 1896		
264	800	Q	9	. 1719		
265	800	Q	15	. 0447		
266	800	Q	21	. 0154		

* POSITIVE ANGLES ARE CLOCKWISE DIRECTION.

** MODEL SAMPLE LOCATION HALFWAY TO NEXT HIGHEST GRID POINT.

171

CONCENTRATION DATA FOR RUN NO. 9 STABILITY: MODERATELY STABLE WIND DIRECTION: 315 DEG. RELEASE POINT: G5

	PROTOTYPE		MODEL		
SAMPLER	ARC	ELEV	DEGREES OFF*	CONCENTRATION	
GRID POINT	(M)	(M)	CENTER LINE	COEFFICIENT	
90	100	0	4 5	. 6415	
87	100	0	27	1.8167	
84	100	0	9	2.3710	
82**	100	0	٥	1.9185	
81	100	0	-9	1.6736	
78	100	¢	-27	1.4512	
75	100	0	-45	. 0550	
72	100	0	-63	. 0138	
133	200	0	-57	. 0133	
136	200	0	-39	. 0009	
138	200	0	-27	. 0917	
140	200	0	-15	. 3709	
142**	200	¢	0	1.1027	
142**	200	25	0	. 6254	
142**	200	51	0	. 3558	
145	200	¢	15	1.4466	
147	200	¢	27	. 4961	
149	200	¢	39	. 0981	
151	200	Ģ	51	. 0156	
208	400	Q	. 33	. 0037	
206	400	Q	21	. 07 06	
204	400	¢	9	.8506	
202**	400	Q	0	. 5883	
202**	400	25	0	. 4246	
202**	400	51	0	. 2646	
201	400	0	- 9	. 1752	
199	400	0	-21	. 0142	
197	400	Ŷ	-33	. 0078	
195	400	Q	-45	.0050	
259	800	¢	-21	. 0078	
260	800	¢	-15	. 0069	
261	800	. O	- 9	.0115	
262**	800	¢	0	. 1215 ,	
262**	800	25	0	. 1642	
262**	800	76	0	. 0711	
262**	800.	127	0	. 0183	
263	800	¢	3	. 3233	
264	800	Ŷ	9	. 0940	
265	800	¢	15	. 0037	
266	800	0	21	0023	

POSITIVE ANGLES ARE CLOCKWISE DIRECTION.
** MODEL SAMPLE LOCATION HALFWAY TO NEXT HIGHEST GRID POINT.

CONCENTRATION DATA FOR RUN NO. 24 STABILITY: SLIGHTLY UNSTABLE WIND DIRECTION: 315 DEG. RELEASE POINT: G5

	PROTOTYP	E		1	10 D E L	
SAMPLER	ARC	ELEV		DEGREES OFF*	k	CONCENTRATION
GRID POINT	(M)	(M)		CENTER LINE		COEFFICIENT
9 Ó	100	Ó		45		. 4659
87	100	Ó		27		1.4946
84	100	Ó		9		1.7628
82**	100	Ó		Ó		1.0514
81	100	Ó		- 9		. 9016
78	100	Ó		-27		. 2166
75	100	Ó		-45.		. 1964
72	100	Ó		-63		.0365
i33	200	Ô		-57		.0151
136	200	Ó		-39		.0176 .
138	200	Ó		-27		. 1637
140	200	¢		-i5		. 4747
142**	200	Ó		Ó		.7505
142**	200	25		Ó		. 6736
142**	200	5 i		Ó	55	. 5893
145	200	Ó		i 5		. 7442
147	200	Ó		27		.4621
149	200	Ó		39		. 1133
151	200	Ó		51		.0164
209	400	Ó	-	39		.0101
207	400	Ó		27		. 0541
205	400	Ó		i 5		. 3286
204	400	Ó		9		. 3702
202**	400	Ó		0		. 3135
202**	400	25		Ó		. 2644
202**	400	5i		Ó		. 1675
20 i	400	Ó		- 9		. 2380
199	400	Ó		-2 i		. 2229
197	400	0		-33		.0516
259	800	Ó		-21		.0252
260	800	Ó		-15		.0957
261	800	Ó		- 9		.0982
262**	800	Ó		Ó		. 1410
262**	800	25		Ó		. 1511
262**	800	76		Ó		. 0693
262**	800	127		Ó		. 0453
263	800	¢		3		. 1398
264	800	Ŷ		9		. 1461
265	800	0		15		.0718
266	800	0		21		.0302

POSITIVE ANGLES ARE CLOCKWISE DIRECTION.
** MODEL SAMPLE LOCATION HALFWAY TO NEXT HIGHEST GRID POINT.

CONCENTRATION DATA FOR RUN NO. 8 STABILITY: NEUTRAL WIND DIRECTION: 315 DEG. RELEASE POINT: G17

PROTOTYPE			MODEL		
SAMPLER	ARC	ELEV	DEGREES OFF*	CONCENTRATION	
GRID POINT	(M)	(M)	CENTER LINE	COEFFICIENT	
90	100	0	4 5	. 31 9,4	
87	100	0	27	1.2948	
84	100	0	9	2.4861	
82**	100	0	0	1.8426	
81	100	0	- 9	2.0571	
78	100	0	-27	1.0685	
75	100	0	-45	. 2231	
72	100	Ŷ	-63	. 0172	
133	200	0	-57	. 0092	
136	200	0	-39	.0865	
138	20 V	0	-27	. 1927	
140	200	<u>ه</u>	-15	. 5761	
142**	200	Ŷ	0	1.0190	
142**	200	25	0	. 6963	
142**	200	51	0	. 3808	
145	200	0	15	1.0170	
147	200	. Q	27	. 2673	
149	200	Ŷ	39	. 0337	
151	200	0	51	. 0145	
208	400	0	33	. 0145	
206	400	0	21	. 0983	
204	400	0	9	. 5623	
202**	400	Ŷ	0	. 4692	
202**	400	25	0	. 3174	
202**	400	51	0	. 2118	
201	400	0	-9	. 2521	
199	400	Q	-21	. 0739	
197	400	0	-33	. 0165	
195	400	0	-45	. 0106	
259	800	0	-21	. 0139	
260	800	¢	-15	. 0376	
261	800	. Q	-9	. 1030	
262**	800	0	Q	. 1868	
262**	800	25	0	. 1485	
262**	800	76	0	. 0568	
262**	800.	127	¢	. 0337	
263	800	¢	3	. 2151	
264	800	0	9	. 21 38	
265	800	0	15	. 0449	
266	800	0	21	0106	

* POSITIVE ANGLES ARE CLOCKWISE DIRECTION.

** MODEL SAMPLE LOCATION HALFWAY TO NEXT HIGHEST GRID POINT.

CONCENTRATION DATA FOR RUN NO. 9 STABILITY: MODERATELY STABLE WIND DIRECTION: 315 DEG. RELEASE POINT: G17

PROTOTYFF		MODEL		
SAMPLER	ARC	ELEV	DEGREES OFF*	CONCENTRATION
GRID POINT	(M)	(M)	CENTER LINE	COEFFICIENT
9 ¢	100	Ŷ	4 5	. 4478
87.	100	Ŷ	27	1.0493
84	100	0	9	2.3138
82**	100	¢	Ŷ	2.0158
81	100	Q	- 9	2.7067
78	100	0	-27	2.6520
75	100	Ŷ	-45	. 9232
72	100	Q	-63	2525
133	200	, Q	-57	. 0680
136	200	¢	-39	. 0069
138	200	0	-27	. 4165
140	200	Ô	-15	. 9165
142**	200	¢.	0	1.2502
142**	200	25	0	. 5426
142**	200	51	0	. 2759
145	200	¢	15	1.2301
147	200	¢	27	. 3752
149	200	¢	39	. 0214
151	200	٥	51	. 0000
208	400	0	. 33	. 0000
206	400	Ô	21	. 0571
204	400	Ô	9	. 6844
202**	400	Ô	0	. 6777
202**	400	25	0	. 3775
202**	400	51	0	. 2089
201	400	¢.	- 9	. 2993
199	400	0	-21	.0270
197	400	Q	-33	. 0000
195	4 O O	Q	-45	. 0000
259	800	¢	-21	. 0013
260	800	¢	-15	. 0047
261	800	¢	- 9	. 0170
262**	800	¢	0	. 1955
262**	800	25	0 .	. 2123
262**	800	76	0	.0605
262**	800	127	0	. 0080
263	800	0	3	. 3920
264	800	Q	9	.0828
265	800	0	15	. 0000
266	800	Ô.	21	0000

* POSITIVE ANGLES ARE CLOCKWISE DIRECTION.

** MODEL SAMPLE LOCATION HALFWAY TO NEXT HIGHEST GRID POINT.

CONCENTRATION DATA FOR RUN NO. 24 STABILITY: SLIGHTLY UNSTABLE WIND DIRECTION: 315 DEG. RELEASE POINT: G17

: 1

PROTOTYPE			IA	MODEL		
SAMPLER	ARC	ELEY	DEGREES OFF*	CONCENTRATION		
GRID POINT	(M)	(M)	CENTER LINE	COEFFICIENT		
90	100	Ŷ	45	. 2493		
87	100	¢	27	. 7384		
84	100	¢ .	9	1.0936		
82**	100	¢	0	1.1746		
81	100	¢	-9	1.0967		
78	100	¢	-27	. 8973		
75	100	¢	-45	. 8724		
72	100	0	-63	. 4611		
133	200	0	-57	. 0561		
136	200	¢	-39	. 0530		
138	200	0	-27	. 3739		
140	200	Q	-15	. 4362		
142**	200	0	0	. 5889		
142**	200	25	0	. 4268		
142**	200	51	0	. 3396		
145	200	¢.	15	. 4611		
147	200	¢	27	. 2742		
149	200	0	39	. 0810		
151	200	Q	51	. 0093		
209	400	Ŷ	. 39	.0062		
207	400	Q	27	. 0374		
205	400	Q	15	. 1901		
204	400	Q	. 9	. 2243		
202**	400	Q	0	. 2150		
202**	400	25	0	. 1745		
202**	400	51	0	. 1153		
201	400	0	-9	. 1932		
199	400	¢	-21	. 2025		
197	400	¢	-33	. 0997		
259	800	¢	-21	. 0374		
260	800	¢	-15	. 0748		
261	800	. Q	- 9	. 0841		
262**	800	Q	0	. 1059		
262**	800	25	0	. 0841		
262**	800	76	0	. 0467		
262**	800.	127	¢	.0312		
263	800	0	- 3	. 0966		
264	800	0	9	. 0997		
265	800	0	15	. 0467		
266	800	0	21	0187		

* POSITIVE ANGLES ARE CLOCKWISE DIRECTION.
** MODEL SAMPLE LOCATION HALFWAY TO NEXT HIGHEST GRID POINT.