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FOREWORD

This report is No. L of a series written for the Diffusion
Froject presently being conducted by the Colorado Agricultural
and Mechanical College for the Ofi'ice of Naval Research. The
experimental phase of this project is being carried out in a wind-
tunnel at the Fluid Mechanics Laboratory of the College. The
project is under the general supervision of Dr, M. L. Albertson,
Head of Fluid Mechanics Research of the Civil Engineering Department .

To Dre M. L. Albertson, and to Dr, D. F, Peterson, Head of
the Civil Engineering Department and Chief of the Civil Engineering
Section of the Experiment Station, as well as to Professor T. H.
Evans, Dean of the Engineering School and Chairman of the Engineering
Division of the Experiment Station, the writer wants to express
his appreciation for their kind interest in the present worke.

The writer also wishes to thank the Multigraph Office of the

College for the able service it has rendered.
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ATMOSPHERIC DIFFUSION FROM A POINT SOURCE

Abstract
The differential equation of diffusion when the wind
velocity and the vertical and lateral diffusivities are
power functions of height is

na(. ?{
jm o¢C o If\«)(J .C‘-'] D (j 221.

where x, ¥y, and z are measured respectively in the down

wind, vertical and cross-wind directions and Dy and D2

are physical constants to be defined in the text. Exact

solution of this equation for the case of a point source

is presented in this paper. In the systematic search

for this solution, dimensional analysis has been utilized

to the optimum advantage.

1. Introduction
Two-dimensional diffusion, when the wind-velocity and the
vertical diffusivities are power furictions of height, has been exten=
sively treated by 0. G. Sutton (5,1934), W. G. L. Sutton (7,193L) Frost
(L, 1946),Calder (1, 19L9), and Yih (8, 1951). Three-dimensional
diffusion where lateral diffusivity must be considered has been treat-
ed by Davis (2, 1947; 3, 1950), and by 0. G. Sutton (6, 1947) in the
case of a point source, on the assumption that the variation of the
wind-velocity with height may be neglected, Thus in comparison with
the two-dimensional phenomenon, the three-dimensional one has
apparently received only insufficient attention.
This paper is concerned with the atmospheric diffusion from a

point source when the wind-velocity and the vertical and lateral
diffusivities are power functions of height, the exponents of which

(my ny k in the following) being at first left completely free.



A mathematical solution is found possible for the speclal case

ma=k

2. The Differential System
With the origin at the point source, and the directions of
X, ¥, and = defined as in the abstract, if the variation of wind-
velocity u with y 1is expressed by

) ( ¥

o e (1)
where u, is the wind-velocity at vy, and if the vertical and
f !

lateral diffusivities are respectively

A, = A=) (2)

& = (3
where again A‘ and B, correspond to the height ¥ys the equation

of diffusion

ok bc,
A " V'} ) \ ““j‘z: (L)
can be written as ﬁ
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where ¢ 1is the concentration of the quantity under diffusion
and <
n=-n V““'h
ALY A: Y
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The differential equation (5) is to be solved with the following

boundary conditions:

c
(a) 'g‘;; =0 at yYy=0¢
(b) g‘% =0 at IT-=0
(e) ¢ —Co as M- 00
{d). C —=»c, as 2y 2o
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(f) ¢ —=¢, as p B 1= %v | 2] Do



.and the integral continuity equation
{3) j—m So Ulc-Ce) djd 2 = Q = Constand
where c, is the ambient concentration, and A is the strength
of the point source, (a) stipulates that the ground is impervious
to the quantity under diffusion, and (b) follow from symmetry and «-
can be replaced by t he more general condition that ¢ should be an
even function ‘with respect to 2z
5» The Solution
To facilitate the systematic search for a similarity solution
(Ahnlichkeitslosung), a dimensional analysis will be performed first,
which, in conjunction with considerations of the powers of X, A, ,
Ay. Uy, Gué O will afford the most adequate transformation
to be made in order that the solution will be the simplest. The
pertinent variables are
Cy C s Qs Al, Aoy, 13, Y12 X9 Vs %

A dimensional analysis yields the relationship
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To obtain a similarity - solution, one makes the following
substitution:
C-C, & U, % ;\(5 4 & o (8)
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and where the exponents of (3., X b % ¥ owi s 8re to be

determined. Before proceeding further with the solution, it may be

noticed here that the power of AA,COI is 1 in circumspection



of (g), and that a pair of fixed values for Y] and 5’ defines
a space curve which is the intersection of two parabolic cylinders:

y=k, 'TEF (11)

| #5 -1
zZ = K-,_ (12)

The set of all the curves defined by (11) and (12) for various
values of |£  oud Kz will be dense in the three~dimensional
space under consideration. On any two such curves, the values of
LF will always bear the same ratio for any value of x. This is
the reason why the solution having the form of (8) is called a
similarity-solution.

One now proceeds to determine the exponents in (8), (9), and
(10). Substituting (8) in (5) and demanding equal powers in

Uy 4,,and X and equal joint powers in A‘ ond A, one has

\92 | %___‘ n - (13)

m - +2 m-n + 2
‘%{ -n+2 fo - (1L)

= S=
r 2(vr=-1 +2 ] - +2
so that

ZP‘Cb"'\:L‘) (15)
Ay =-5-\=0 (16)

The exponents o, {’5, G ‘a) are left undetermined by this
i
procedure, and will be determined by (q) which gives, after (8)

has been substituted into (g):

A 4B+l -plmel) -r =0

-n) ;%fm+\\ - +‘3’ =0

-1 —-d.u +g‘>gwx+\ ) 20

A +r=0

(me) (=p+]+1) +(-r 3+ +A /=Y - =¢



and
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m
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The five equations given by (g) involving the unknown exponents

d./(}} jg are not independent, and are satisfied by

p:r (18)

A = P(\\\+\)" (19)

-Y:W‘*S’“U"‘“) (20)
so that ;

di—ifi*y-l =-—fp(m+u+r-] (21)

With the exponents given in (13), (1L), (18), (19), and
(20) in terms of m, n, and k, substitution of (8) in (5)

results in the following equation:

Gea=Y -0 +p-{-0nF +ir-s-y 5 5,

L TR -m-) o ‘&- Y e
’~q _&\'T}_’_n'\n .&’)_"blZl"q W%

where

s (22)

G": AZ/A\
and where subscripts denote partial differentiations. In virtue

of (15), (16), and (21), (22) can be written

h-n

- n-m n-m=l =S f-m
“[pmar o} f -PRE TS =0 '"s,,}w i) 1 (23)

This is the diiferential equation that has to be solved in

general., For the case m = k, make the transformation

E=G"r (2L)
(23) can now be written.
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(25) being in a form suitable for separation of variables, one

assumes
£ =X nZiT) (26)

Substitution into (25) gives

S0 n-m_ ¢ n-w-1 g
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which can beZV}ritten %1130 the two separate equations
: : A P w-m- !
(pim+) el Y +Fr}\(’+(:]" "1 Yif=p (27)
"+r3Z'-2Z=0 (28)
where the primes denote ordinary differentation: with respect to
q for Y/ and with respect to L for 7 . The boundary
conditions for (27) are
() Y=o
Y- Y] =0
and those for (28) are
(3) 2(0) =¢
(k)  Z (9)z0
One first considers the system (28), (j) and (k). A first
integration gives
: (3 =
2 +r3z - (rr)), 243 =0 (28)
the lower limit being chosen equal to zero since Z (0) =0 .

As T o000, one has Z 0. Z' e, and

(o]
g Z2JLY %0 (29)
since otherwiss the intezral in (17) would vanish. on

the other hand, g‘p ng should be finite on account of (17).
N
Consequently, if X behaves as §'L’ for large - § y L

must be larger than 1 so that §Z—90 as Y -2 .



If 7 vanish exponentially as § —5c¢o , then also $7-50 as I ¢0.
These seem to be the only cases in which Z can vanish at
infinity, and for each of these cases the first two terms of (28)
vanish while the third one does not unless ) = - on account of
(29). The satisfaction of (28) and (k) therefore requires

M Bwlr (30)
Thus there is only one single eigenvalue for the parameter )\ .
With (30), integration of (28) gives

Z=Kexp(-r5/2) (31)

wiere K is an arbitrary constant to be determined by (17).

Substituting (30) into (27) and multiplying throughout by f) =
one has ™ :
wi “"'l ﬂ v + m+| / A /u ; h_\ ) e
= ey 1 a0 B e e g ] B0 $la e Bl G

a first integration of which gives

oL & W o
iy Y + Y N 28

the constant of integration being zero since \" '( O)=0 ani \{(0\,

| wa +!

f
l

is finite. A second integration gives
v W=\ -2 (
’ 2
Y = ex t) ( - ] ~ ) 32)
\ ( m = + 2)

the constant factor being absorbed in K of (31).

The constant X ' can be determined by (17) which can be written as

M 27 rga .

& v e 5 g
ke 2§ S 1" e (- ! ALl e

Ev-luation of (33) gives

L (W-n ¥ )2

]

or

- =

(71" eop - by Jo1 =
i (55) Play=4



which gives

9 Doay 2
K= TFGF)* (mons2)

G-

r’(0~)
where :
o ot T}
e VWA -y =0
and o
Moo = & w o™ dw

¥}
is the gamma function.

Equations (31), (32), (3l), and (35) give the function f by
means of (24), which in conjunction with (2L) and (8), yields the

solution. The exponents ™, @,’g, P,'Q,  and s being giﬁéﬁ in
terms of m, n, and k by (13), (L), (18), (19), and (20),
and G having been defined to be AZ/AI' As has been stated, the
exponents n and m = k (and in fact also the parameter 6’ ) are
left free to be determined by measurements.
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