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ABSTRACT 

 

A NEW HURRICANE IMPACT LEVEL RANKING SYSTEM USING ARTIFICIAL 

NEURAL NETWORKS 

 

Tropical cyclones are intense storm systems that form over warm water but have the 

potential to bring multiple related hazards ashore. While significant advancements have been 

made for forecasting of such extreme weather, the estimation for the resulting damage and 

impact to society is significantly complex and requires substantial improvements. This is 

primarily due to the intricate interaction of multiple variables contributing to the socio-economic 

damage on multiple scales. Subsequently, this makes communicating the risk, location 

vulnerability, and the resulting impact of such an event inherently difficult.  

To date, the Saffir-Simpson Scale, based off of wind speed, is the main ranking system 

used in the United States to describe an oncoming tropical cyclone event. There are models 

currently in use to predict loss by using more parameters than just wind speed. However, they are 

not actively used as a means to concisely categorize these events. This is likely due to the 

scrutiny the model would be placed under for possibly outputting an incorrect damage total. 

These models use parameters such as; wind speed, wind driven rain, and building stock to 

determine losses.  

The relationships between meteorological and locational parameters (population, 

infrastructure, and geography) are well recognized, which is why many models attempt to 

account for so many variables. With the help of machine learning, in the form of artificial neural 

networks, these intuitive connections could be recreated. Neural networks form patterns for 
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nonlinear problems much as the human brain would, based off of historical data. By using 66 

historical hurricane events, this research will attempt to establish these connections through 

machine learning.  

In order to link these variables to a concise output, the proposed Impact Level Ranking 

System will be introduced. This categorization system will use levels, or thresholds, of economic 

damage to group historical events in order to provide a comparative level for a new tropical 

cyclone event within the United States. Discussed herein, are the effects of multiple parameters 

contributing to the impact of hurricane events, the use and application of artificial neural 

networks, the development of six possible neural network models for hurricane impact 

prediction, the importance of each parameter to the neural network process, the determination of 

the type of neural network problem, and finally the proposed Impact Level Ranking System 

Model and its potential applications.  
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CHAPTER 1 
 

INTRODUCTION 

1.1 Statement of the Problem 

There is a long history of attempts being made to create a concise forecasting system, 

which would encompass all the variables involved during a natural hazard event. The focus of 

the problem stems from the communication gap that exists between the atmospheric scientists, 

structural engineers, and the general public. Specifically for hurricanes, the general public often 

misuses the Saffir-Simpson Scale and the sole reliance on this category ranking system, which 

mainly serves to illustrate meteorological severity, has become problematic when 

communicating the possible overall effects of an oncoming storm. For example, hurricane 

Andrew, in the early 1990s was a Category 5 hurricane and while it does rank in the list of most 

costly hurricanes, both Hurricane Katrina and Sandy surpassed it as Category 3 and 1, 

respectively.  

The Saffir-Simpson Scale itself has previously been adjusted to incorporate more 

meteorological parameters in addition to just wind. At one point it also included storm surge due 

to the general concept that stronger winds and a lower central pressure would indicate higher 

storm surge. However, even this addition was eventually dropped as a result of categorization 

issues where a tropical cyclone would fall within the wind speed range for one category but the 

storm surge for another. Additionally, the meteorological parameters alone do not translate to the 

resulting risk without some assessment of the location of landfall. Noteworthy, the detailed 

explanations given by TV meteorologists, using various tools and models are not as popular as 

the category ranking by the Saffir-Simpson Scale, which is what individuals remember most. 
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Atmospheric scientists are aiming to perfect forecasting methods, while engineers are 

working towards more reliable and sustainable infrastructure an sociologists are examining the 

effects of varying locational demographics, yet there is very little overlap. Combining these 

fields, by using their relevant variables during a hurricane event, into one succinct system with 

familiar rankings could be a step towards addressing this problem. As a result of bridging the gap 

between multiple subject areas, the understanding of risk and vulnerability could improve 

through the development of a new ranking system as a mean to paint a more accurate picture of 

the possible impact to the general public.  

1.2 Objectives and Scope of Research 

This research serves to create a system that could be further used along with the Saffir-

Simpson scale as a means of communicating hurricane risk in a concise manner. Following a 

hurricane event, society tends to focus on the outcome in terms of economic damage and loss of 

life. Given this main assumption, this thesis will aim to link the multiple variables involved in a 

landfalling hurricane event to the resulting economic damage. Instead of determining a damage 

estimate, the proposed system will use more of a range of economic damage or grouping 

approach as a means of comparison for the general public as proposed in Table 1-1. This 

approach will account for the possible range of error that comes with financial forecasting as 

well as provide the public with a general sense of damage in reference to historical hurricane 

events. 
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Table 1-1 Proposed Impact Level Ranking System 

Impact Level Economic Damage Amount 
(based on 2012 USD) Example Event 

0 < $25 million 2012 Tropical Storm Beryl 
1 > $25 million, < $100 million 2007 Hurricane Humberto 
2 > $100 million, < $1 billion 2008 Tropical Storm Fay 
3 > $1 billion, < $10 billion 2008 Hurricane Gustav 
4 > $10 billion, < $50 billion 2011 Hurricane Irene 
5 > $50 billion 2005 Hurricane Katrina 

 

This proposed system divides storm events into damage Impact Levels 0 through 5, 

chosen to better mirror current ranking systems for ease of understanding, i.e. the Enhanced 

Fujita Scale of EF-0 to EF-5 and the Saffir-Simpson scale from a Tropical Storm to Category 5 

Hurricane ranking. An Impact Level of zero indicates minimal, or possibly zero, reportable 

damage. Minimal damage qualifies as below the $25,000,000 threshold established by the 

Property Claims Service. If a storm does not exceed this threshold, the damage amount is 

typically not reported by the National Hurricane Center. The highest Impact Level of 5 is an 

extremely damaging and expensive event costing more than $50 billion (2012 USD). Only two 

events in all the reference historical data qualify as Impact Level 5 events: Hurricane Katrina 

2005 and Hurricane Sandy 2012. The Impact Levels, following Level 0, were determined based 

on typically discussed threshold values that society would reference as well as “evenly” 

distributing the used events so that Impact Level 5 had the rarest occurring events followed by 

Level 4, leaving Levels 3, 2, and 1 as relatively more common rankings.  

Due to the high level of complexity and non-linearity associated with this problem, 

artificial neural networks (ANNs or simply “neural networks”) will be used for estimating an 

event’s impact level. The use of ANNs is beneficial since research has established that ANNs are 

useful in capturing significant nonlinear characteristics, if present. Neural networks will be able 

to establish connections by learning the historical data just as experts in this field have and 
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produce the results in a concise manner. In order to accomplish this objective, the following 

tasks and subtasks are to be accomplished: 

• Task 1: Conduct Comprehensive Literature Review  

• Task 2: Collect Historical Data  

!  Extract meteorological parameters, landfall location(s), reported economic 

damage, and deaths from Tropical Cyclone Reports published by the National 

Hurricane Center 

!  Download and use the most recent U.S. Census population data 

!  Extract tropical storm wind radii for time of landfall(s) from archived NHC Public 

Advisories (as far back as possible)   

!  Merge population data with wind radii to determine the population affected within 

the overlapped area 

!  Adjust data to a comparable standard 

• Task 3: Build Multiple Model Networks 

!  Determine options for data arrangement  

!  Position data into matrix form (varying for the input and a singular target matrix) 

!  Use neural network pattern recognition to build multiple initial networks 

• Task 4: Discuss the Developed Models Network and the Corresponding Results 

!  Evaluate each model’s network performance for comparison 

!  Conduct trial runs for specified hurricanes with known results 

!  Rebuild networks and extract resulting neuron weights and biases for evaluation 

of input variable importance  

!  Assess results for best model network 
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• Task 5: Enhance Selected Model Networks  

!  Adjust number of hidden neurons with data separation and training algorithm held 

constant  

!  Adjust data separation with the number of hidden neurons and training algorithm 

held constant  

!  Assess various training algorithms with the number of hidden neurons and data 

separation held constant 

• Task 6: Interpret the Results to Build Final Model 

!  Evaluate the effect of increasing the number of hidden neurons 

!  Evaluate the effect of changing the separation of data 

!  Compare the results produced by each training algorithm 

!  Attempt to combine all results to produce lowest possible error 

• Task 7: Conduct Evaluation of Final Model 

!  Assess implications of the lowest possible error reached 

!  Conduct additional trial runs with the same specified storms from Task 4 

• Task 8: Discuss Usability, Possible Applications, and Societal Benefits of the Resulting 

Final Model Network 

The proposed Impact Level Ranking System will be further discussed within the first half 

of this thesis, following the literature review. The evaluation of the use of neural networks will 

follow as well as the implications of the results. The neural network models will not only be 

evaluated for the best possible approach, but also for the implication of results. These results also 

include evaluation of the importance of the multiple variables used as they pertain to the 
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resulting economic damage. The thesis will conclude with proposing a final model network and 

its possible future applications to help communicate the risk of an oncoming hurricane event.  
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CHAPTER 2 
 

BACKGROUND AND LITERATURE REVIEW 

2.1 Natural Disasters’ Impact on Society 

Worldwide, natural hazards lead to destruction, economic damage, mass displacements of 

population, and in some cases, loss of life. These events can be both climatological, covering 

situations ranging from extreme temperatures to tropical cyclones, and geological, covering 

landslides to movement of tectonic plates. All of these events are highly location-dependent 

based on proximity to fault lines, coastal areas, and specific atmospheric conditions. Eastern Asia 

is an example of a location subject to tropical cyclone conditions and tectonic plate activity. This 

locale (including Japan and the Philippians) along with India have the most natural hazard events 

in the world (Bryant, 2005). Conversely, tornadoes are most prominent in Tornado Alley in the 

United States and rarely occur in other locations. In fact, according to Bryant (2005) tornadoes in 

the U.S. are the most commonly occurring event in the world as shown in Table 2-1. However, 

this does not make them the costliest (Table 2-2) or deadliest (Table 2-3) those titles belong to 

earthquakes and flooding, respectively. 
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Table 2-1 Frequency of Hazards in the 20th Century (Bryant, 2005) 

Hazard Type # of Events 
Tornadoes (US)* 9476 

Flood 2389 
Tropical Cyclone 1337 

Tsunami 986 
Earthquake 899 
Wind (other) 793 

Drought 782 
Landslide 448 
Wild Fire 269 

Extreme Temperature 259 
Temperate Winter Storm 240 

Volcano 168 
Tornadoes (non-US) 84 

Famine 77 
Storm Surge 18 

* Tornadoes in the US are for F2-F5 tornadoes 1950-1995 
 

Table 2-2 Cost of Natural Hazards from 1900 – 2001 (Bryant, 2005) 
Hazard Type Cost 

Earthquake $248,624,900,000.00 
Flood $206,639,800,000.00 

Tropical Storm $80,077,700,000.00 
Wind Storm $43,890,000,000.00 

Wild Fire $20,212,800,000.00 
Drought $16,800,000,000.00 

Cold Wave $9,555,000,000.00 
Heat Wave $5,450,000,000.00 

Total $631,250,200,000.00 
 

Table 2-3 Deaths Resulting from Natural Hazards in the 20th Century (Bryant, 2005) 
Hazard Type Associated Deaths 

Floods 6,851,740 
Earthquakes 1,816,119 

Tropical Cyclones 1,147,877 
Volcano 96,770 

Landslides, avalanches, mud flows 60,501 
Extra-Tropical Storms 36,681 

Heat Wave 14,732 
Tsunami 10,754 

Cold Wave 6,807 
Tornado 7,917 

Fires 2,503 
Total 10,052,401 
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Even though most media coverage encompasses hurricane and tornado deaths, the biggest 

killer in the U.S. is heat/drought followed by cold weather as shown in Figure 2-1 (Borden & 

Cutter, 2008). According to the U.S. Federal Emergency Management Agency (FEMA), most 

disaster declarations in the U.S. are categorized under severe weather, flooding, and fire (Figure 

2-2). Tropical Cyclones account for roughly 47% of all billion-dollar events, which account for 

80% of U.S. losses from combined severe weather and climate events (Smith & Katz, 2013). 

While severe weather and tornadoes may occur more often, these events are often small in size 

and happen in lower population areas of the country where communities are more spread out, 

putting fewer people and infrastructure in harms way.  

 

 Figure 2-1 Deaths by natural hazard type in the U.S; after: (Borden & Cutter, 2008) 
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Figure 2-2 Disaster declarations by type; data from (FEMA, n.d.) 
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2005 USD. Without any adjustment, the Galveston Hurricane is still the deadliest hurricane in 

U.S. history with 8,000 lives lost (National Hurricane Center, 2012).  

A study by Nirupama (2013) indicated that there is actually no unique manner to rank 

hurricanes (tropical cyclones) within the U.S.. This means that of the different criteria used for 

ranking, no one hurricane, from 1960 through 2012, appeared within the top in all of the 

categories. This is shown in Figure 2-3, which covers popular hurricane events and their 

respective ranking in 9 of the 10 categories (number of coastal counties affected is excluded). 

Hurricane Sandy (Category 1), which hit New York/New Jersey in 2012, has surpassed 

Hurricane Andrew (a Category 5) in economic damage, and is now second to Hurricane Katrina 

(Category 3 at landfall). In this same ranking system, Sandy also came in second to Katrina with 

respect to deaths with 253 and 1,833, respectively. Hurricane Charley (2004) was a Category 4 

with a storm surge of 2 meters and Hurricane Katrina was a Category 3 with a storm surge of 8.7 

meters (National Oceanic and Atmospheric Administration, 2009). Katrina currently ranks as the 

costliest hurricane in U.S. History, while Charley does not reach the top ten.  

Figure 2-3 demonstrates the discrepancies between the various meteorological parameters 

and the resulting impact, suggesting a more complex relationship between the two. In using the 

Saffir-Simpson Scale, there is no direct way to link the severity of an oncoming storm to the 

resulting impact. The high level of exposure and economic damage along with the insufficient 

connection between parameters is what makes tropical cyclones an ideal natural hazard for this 

research.  
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Figure 2-3 Ranking of various infamous hurricanes extrapolated from Nirupama (2013)  
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the storm. The light winds in the tropics produce very low wind shear, which allows the 

hurricane to maintain its structure. The ocean temperature must typically be around 27oC or 

higher and extend for a depth of approximately 50 meters from the ocean surface. The warm 

water provides the energy needed to feed the hurricane. As the system builds, the strong winds 

and lowering pressure cause the ocean water to mix, which is why the ocean must maintain the 

high temperature at greater depths. These conditions typically occur in the North Atlantic and 

North Pacific from June through November, resulting in the standard hurricane season (Ahrens, 

2008). 

Once these systems form, there are various stages of classification starting with a tropical 

depression (maximum sustained winds of 33 knots or less), with the system then becoming a 

tropical storm (maximum sustained winds of 34 to 63 knots), and lastly reaching hurricane status 

(maximum sustained winds of 64 knots or higher). Hurricanes are then named and given a 

category ranking based on the Saffir-Simpson Scale as summarized in Table 2-4:  

Table 2-4 Saffir-Simpson Hurricane Wind Scale as used by the National Hurricane 
Center (updated to only incorporate sustained wind speed). 

Category Sustained Winds Types of Damage 
1 64- 82 kt Some Damage: Possible roof and shingle damage. 

Snapped tree branches and shallow rooted trees 
could be uproots, likely leading to power outages. 

2 83- 95 kt Extensive Damage: Possible major roof damage to 
well-constructed homes. Uprooted trees leading to 
blocked roads and near total power loss is to be 
expected. 

3 96- 112 kt  Devastating Damage: Major roof damage or 
possible removal of roof decking could occur on 
even well-built framed homes. Electricity and 
water unavailable for several days. 

4 113- 136 kt Catastrophic Damage: Well-built homes could 
lose most of the roof structure with damage to 
exterior walls. Possibly power outages for weeks to 
months leading to an uninhabitable area. 

5 > 137 kt Catastrophic Damage: Large amount of well-
constructed homes will be destroyed (roof failure 
and wall collapse). Power outages will last weeks 
to months leading to an uninhabitable area. 
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On average, hurricanes are approximately 500 km in diameter (Ahrens, 2008) with and 

eye approximately ten kilometers in diameter (Willoughby, Rappaport, & Marks, 2007). The eye 

is the clear area at the center of the hurricane with an adjacent eyewall consisting of intense 

thunderstorms. The whole storm system essentially rotates around the eye center in a counter-

clockwise or cyclonic motion in the northern hemisphere. The center of the storm is also where 

the lowest pressure is, with the eyewall consisting of the heaviest precipitation and strongest 

winds. A hurricane is essentially an organized system of thunderstorms. In the below cross-

section, Figure 2-4, it can be seen that the hurricane consists of rings of rain bands circling 

around the low-pressure center.  
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Figure 2-4 Cross-sectional depiction of a hurricane along with the location of significant 
meteorological attributes; after: (Rauber, Walsh, & Charlevoix, 2008) 
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2.2.1.2 Wind, Storm Surge, and Precipitation 

As can be seen in Figure 2-4, the meteorological parameters of a hurricane vary in 

relation to location within the storm itself. The strongest winds are typically on the right side of 

the eyewall as the storm approaches. These stronger winds are a resultant of the incorporation of 

the wind associated with the storm movement (translational winds). Due to the way the storm 

rotates in the northern hemisphere, the translation speed is added to the wind speed on the right 

and subtracted on the left as shown in Figure 2-5 (Rauber et al., 2008). On the left hand side, the 

translational winds (VT) are subtracted from the rotational winds (VR) resulting in 75 knots (or 

86.25 mph) wind speed. On the right hand side, VT is added to VR resulting in 125 knots (or 

143.75 mph) wind speed.  

 
Figure 2-5 Illustration of how hurricane motion, or translational speed, affects the overall winds 

associated with the hurricane rotation; after: (Rauber et al., 2008) 
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discussed above, the strongest storm surge occurs on the right side of the hurricane relative to its 

approach. The stronger winds on the right side result in ocean water being pushed in the 

direction of motion and consequently piling on the right side, whereas the water on the left is 

being removed. Storm surge can also be enhanced by other factors such as high tide, which 

occurred when Hurricane Sandy made landfall in New Jersey. As Rauber et al. (2008) indicated, 

the shoreline at the landfall location as well as waves can also create a more dangerous situation 

with concern to storm surge and will be further discussed later in more detail.  

Along with flooding due to storm surge, heavy precipitation is also associated with 

hurricanes. Precipitation falls within the rainbands and thunderstorms of a hurricane with the 

heaviest precipitation within the eyewall. The amount of rain that falls in one location is also tied 

to the storm’s translation speed. A slow moving hurricane can linger over an area and produces 

76 to 102 cm of rain in two days resulting in severe inland flooding (Rauber et al., 2008). Inland 

flooding due to Hurricane Mitch in 1998 was tied to over 18,000 deaths (Rauber et al., 2008).  

The combination of storm surge and inland flooding can cause more extensive and widespread 

damage than wind.  

2.2.2 Infrastructure 

2.2.2.1 Buildings 

During a hurricane event, infrastructures (mainly structures) are subjected to extreme 

loading demands and are expected to withstand the combined assault of severe winds and intense 

flooding. The vulnerability of structures in a hurricane event encompasses both the exterior 

components as well as the interior assets. The exterior is mainly affected by wind, whereas the 

interior is mainly affected by flooding due to storm surge and heavy rains (including wind-driven 

rain).  
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Wind interacts with a standard low-rise building as shown in Figure 2-6 below. The 

windward side feels a positive pressure exerted on it, while the leeward side experiences a 

negative pressure force. In other words, there is a “suction-like” force being exerted on the 

leeward wall. The roof and sidewalls have a similar negative pressure on most, possibly all, of 

the respective surface areas. This is how it appears that houses are leaning in certain diagrams 

and pictures relating hurricane winds. If windborne debris puncture the building the wind 

interaction with the building will change to what is shown in Figure 2-7. This results in the 

development of internal pressure that will combine with the external pressure to increase damage 

to a structure (Yau, Lin, & Vanmarcke, 2011). Hurricane preparedness measures therefore 

include boarding up the windows of a house, since these are one of the weakest points when it 

comes to wind-borne debris susceptibly.  

 
Figure 2-6 Instantaneous and simplified external pressure distribution on a low-rise building 

along with the static load distribution for a bending moment in association with the applied wind 
load (top corner C); after: (Holmes & Syme, 1994)  
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Figure 2-7 Internal pressure of building with a large/dominant opening and how this differs with 
location of the opening relative to wind direction 
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temporary gap can form creating a change in the internal pressure as previously discussed and 

could lead to the roof taking flight. It was also mentioned how the combination and change in 

wind direction should also be taken into account. Failure of any part of a building is not as 

simple as a direct correlation to a sustained wind speed; many factors can go into the destruction 

of a building even just on the windward side.  

In a study done by Christian Unanwa (2000) the relative resistivity indices (RRIs) used in 

determining building damage would decrease in higher story building. This would seem logical 

since wind speed increases with height and are not impeded as much by friction in higher heights 

(Unanwa & McDonald, 2000). Unanwa used these RRIs to determine the degree of damage to a 

specific building by using damage bands which would bound the extreme degrees of damage that 

a certain building class would sustain in a severe wind event. Building classes are commonly 

used in wind damage prediction, but can be broad in spectrum, the goal of these damage bands 

was to provide a more accurate damage estimation to a building or groups of buildings (Unanwa 

& McDonald, 2000). The use of RRIs also touches of the effects other buildings have on each 

other. The RRI for a building is determined using many factors, one of which being the 

building’s surrounding infrastructure (Unanwa & McDonald, 2000). Also, for a group or cluster 

of buildings the RRI would be averaged over the group (Unanwa & McDonald, 2000). The 

factors used in creating these damage bands illustrate the importance other features, such as the 

surrounding environment, in addition to construction type and height.  

In another study Yau (2011) evaluated the integration of similar various factors in wind 

damage to residential structures. This integrated model approach accounts for both the change in 

wind direction and speed as a storm passes as well as the effects of damage from buildings 

clustered together, similar to a residential neighborhood. As a hurricane moves along its track, 
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the wind direction will change at a given location. It is theorized that the more wind directional 

shift involved, the more susceptible the structure is to wind-induced damage due to increasing 

the windward exposure areas. These areas are also more exposed to windborne debris, similarly 

increasing the potential for structural damage (Yau et al., 2011). 

The other component of Yau’s research theorized that residential structures clustered 

together affect each other. This was supported by an example run of a 65 m/s and 45o  angle wind 

field over a cluster of homes (4x4) identical in structure (Figure 2-8 illustrates this layout). The 

result showed that the homes at the corner where the winds first hit are less damaged than the 

homes downwind in the cluster. The increased damage in the homes downwind is more obvious 

in the increased percent of window and door damage. This could likely indicate that the debris 

from the first structures impacted the houses down wind. Once one home was damaged it created 

a chain like event of continuing damage downwind (Yau et al., 2011). What this discretely 

touches on is how population density directly correlates to an infrastructure density issue. A 

denser infrastructure can lead to an increase in overall damage likely because of the obvious: 

there is more to be damaged. The other possibility of an increase in damage is what Yau (2011) 

highlighted that a building’s surroundings affect how it responds to extreme wind circumstances, 

correlating that high infrastructure density leads to higher damage for identical storms. 
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Figure 2-8 Neighborhood layout for; after: Yau et. al. (2011)  
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typically more vulnerable to extreme weather events. Essentially, more populated, older 

locations will experience more damage for a set wind speed than smaller towns with new 

construction. 

The FEMA MATs also evaluated damage due to storm surge and flooding since these 

factors are commonly known to be the more damaging and deadly factors of a hurricane. Storm 

surge is arguably the larger contributor to overall economic damage associated with a hurricane. 

An analysis of combined loss from wind and storm surge for a hurricane, highlighted that storm 

surge has a more significant impact on homes nearer to the coast than wind, in fact their resulting 

cost ratios show that storm surge serves as the main factor in damage with approximately 85 – 97% 

of the total damage (Dao, Li, van de Lindt, & Bjarnadottir, 2013). While the effects of storm 

surge can reach as far inland as 1 km, simply raising the house by 1.5 to 2 meters can result in 

the storm surge damage dropping off almost completely (Li, van de Lindt, Dao, Bjarnadottir, & 

Ahuja, 2012). Either raising the house or moving the house back from the shoreline to a higher 

ground level elevation can result in lowering the damage due to storm surge.  

The rise of ocean water can result in inundation (exacerbated by rainfall, scour, and 

erosion) and provide transport for waterborne debris, which are a main contributor to structural 

damage. However, flooding in general, including storm surge, causes mainly nonstructural 

damage. Damage to the floor and interior items such as electronics and furniture are also 

assessed for damage in terms of cost to repair or replace (Li et al., 2012). Once storm surge 

(flooding), passes over the floor, most of the contents are considered ruined. Some components 

are considered fine after drying out (mainly the floor), but others (mainly electronics) are not 

repairable. Interior items can be costly to replace and are typically insured, and therefore 

accounted for in resulting damage estimates.  
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2.2.2.2 Utilities 

The effects hurricanes have on public utilities are more common and widespread than the 

effects to structures. Power outages and interruption of water treatment and distribution are the 

main issues. Power outages are affected on “grid levels” and water treatment and storm water 

management are handled at city and county level, so instead of affecting one family, a disruption 

to these services can impact hundreds to millions of people at once.  

Possibly the most common occurrence and most costly result of a hurricane is power 

disruption. On average, major storms cost electric utilities $270 million per year (2003 USD) in 

damages (Peters, DiGioia, A M, Hendrickson, & Apt, 2007).  This can cost consumers 

approximately $2.5 billion a year (Peters et al., 2007).  Power outages can be caused by down 

power lines from wind and heavy rain, flooded underground conduits, and structural failures. 

Electric transmission lines are currently designed to account for climatic loads, security loads, 

construction and maintenance loads, and code loads. However, when the load exerted on 

transmission lines exceeds what is designated in these standards, such as extreme wind and 

heavy rain, a structural failure will result (Peters et al., 2007). Approximately 27% of reported 

significant disturbances in power were due to structural failure from 1984-2000 (Peters et al., 

2007).  

In an assessment of power failures in Louisiana and Mississippi after Hurricane Katrina, 

the causes were: flooding-related power outage, destroyed central offices (CO), engine fuel 

starvation, and partial switch damage (Kwasinski, Weaver, Chapman, & Krein, 2009). It appears 

that the most common cause for power outages was fuel starvation. Once a blackout occurs, 

batteries usually support the load until a generator set kicks on to provide power (Kwasinski et 

al., 2009). The generators run on diesel fuel and require replenishment while being used until the 
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problem that caused the outage is fixed. After a hurricane event, complications occur due to 

difficulty reaching these generators as a result of damaged roadways, debris, and possible public 

unrest; therefore the generators continue to operate until the fuel runs out. The next most 

common contributor to power outages was the destruction of central offices mainly due to storm 

surge (Kwasinski et al., 2009). For wireless communication systems, many indoor base stations 

were situated on the ground, below sea level, when these systems should have been raised to an 

above sea level elevation for protection (Kwasinski et al., 2009).  Katrina was an extreme event, 

however, it highlighted the vulnerability of power systems during hurricane events.  

Power loss can precede complications with water utilities (an arguably more critical 

infrastructure system). Power loss of a water/wastewater treatment plant can subsequently impact 

the surrounding population with a water shortage. Since the World Health Organization (WHO) 

recommends a total of 20 liters a day per person for drinking and sanitary purposes, the loss of 

access to water can become a critical issue immediately following a hurricane (Blake, Walker, & 

Walker, 2011). In addition to power loss, disruption in water treatment can also be tied to 

damage to the treatment facility due to wind or floodwater, shifting and fracturing of water 

pipelines, infrastructure becoming submerged by floodwater, flooding and corrosion of electrical 

components, and debris. This impact can become worse for weak and old infrastructure (Blake et 

al., 2011). After the storm has passed, supplying clean water to residents can also emerge as 

difficult due to the resulting chaos, debris, and floodwater obstructed infrastructure (Blake et al., 

2011; Chisolm & Matthews, 2012). Similarly, chaos and obstruction prompt difficulty reaching 

treatment facilities in order to perform repairs.  

Hurricane Katrina is a popular case study for how a hurricane can affect water utilities 

due to the negative effects induced on 1,220 drinking water systems and 200 sewage treatment 
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plants in Louisiana, Mississippi, and Alabama (Chan & Revkin, 2005).  The state of these water 

systems left 2.4 million people without safe drinking water in Louisiana and Mississippi 

(National Resources Defense Council (NRDC), 2005). Similar to the damage causes discussed 

above, most of the damage to water systems from Hurricane Katrina was a result of floodwaters. 

Many treatment plants were essentially submerged due to flooding and therefore unable to 

operate; this included the largest drinking water plant in New Orleans (Copeland, 2005). These 

same extreme floodwaters led to fractures, breaks, and separation of various underground water 

pipes due to soil subsidence (Chisolm & Matthews, 2012). Another cause of pipe separation is a 

result of floodwaters moving structures, which severs the connection to associated service 

pipelines (Chisolm & Matthews, 2012). These systems were also subjected to clogging from 

waterborne debris while the mechanical and electrical systems (pump stations) were flooded and 

corroded by saltwater (Chisolm & Matthews, 2012). In order to recover and rebuild these 

systems the floodwaters must first be removed (dewatering) then the repairs and rebuilding can 

begin. For Hurricane Katrina, it took more than a year to fully restore the water/wastewater 

infrastructure while still finding ways to supply residents and workers with potable water (Blake 

et al., 2011).  

2.2.2.3 Transportation 

As can be inferred from the overlap in utility use, many of these infrastructure systems 

are interconnected. Transportation is another critical system previously mentioned in relation to 

blocking recovery efforts for other forms of infrastructure. The main risk for a transportation 

system, be it roads, bridges, or subway systems, is flooding. Even in non-hurricane events, 

floodwaters can manage to undercut a road and create a river in a matter of minutes. In New 

York City (NYC), Hurricane Sandy produced enough storm surge and heavy rain to flood 
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subway stations and bring public transit, which most people utilize in NYC, to a complete halt. 

These effects can leave people stranded and prevent relief efforts from making it to locations that 

are in need of supplies, power, and water.  

Bridges spanning over waterways are especially vulnerable to the impacts of hurricanes 

due to their obvious exposure to flood waters, storm surge, and debris. One of the most common 

causes of bridge damage is scour. Scour occurs due to floodwaters, storm surge, and waves 

attacking the riprap at the bridges approach and ultimately shifting the soils below it, 

undermining the structural integrity (Lwin, Yen, & Shen, 2014; Stearns & Padgett, 2012). Waves 

and rising floodwaters can also cause damage to bridge decks. The waves and rising water create 

uplift force acting on the underside of the deck and when this force exceeds the weight of the 

deck itself, the decks can move laterally or “hop” in the direction of the wave propagations 

(Lwin et al., 2014). Hurricane Ike made landfall in Texas in 2008 bringing a peak storm surge 

exceeding 4 meters causing damage or destruction to 26 bridge structures along the coast 

(Stearns & Padgett, 2012). Hurricane Katrina brought a storm surge in excess of 8.5 meters 

resulting in the damage of 44 bridges, the most distinguished being the US-90 bridge that crosses 

the St. Louis Bay (Stearns & Padgett, 2012).  

Another impact to transportation that would be more prevalent in the “95-cooridor”, and 

brought to attention by Hurricane Sandy in 2012, is the lack of usability of public transportation 

services. Hurricane Sandy caused extreme flooding (4 meter storm surge in Battery Park 

(Kaufman, Qing, Levenson, & Hanson, 2012)) damage in New York City and New Jersey 

resulting in the flooding of New York City’s traffic tunnels and subways. The Metropolitan 

Transportation Authority (MTA) states that approximately 10 million people rely on the regions 

subways, busses, commuter rails (to surrounding boroughs, New Jersey, etc.), tunnels, and 
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bridges. Floodwaters entered the Battery and East River (connecting Manhattan with Brooklyn 

and Queens) subway tunnels as well as the PATH stations in Hoboken, Jersey City, and World 

Trade Center tunnel. MTA chairman, Joe Lhota, stated that the damage sustained during Sandy 

was the worst the MTA has ever experienced (Kaufman et al., 2012). Most of these floodwaters 

had to be pumped out by MTA workers with special equipment due to power outages. In 

addition, the areas flooded with saltwater had special consideration since the salt water corrodes 

as well as conducts electricity and could short out the equipment (potential fire hazard) 

(Kaufman et al., 2012). This coupled with flooded tunnels and compromised bridges that 

surround the island of Manhattan, caused an incredibly dismal traffic situation leaving many 

forced to find alternate routes only to be unable to move and left stranded.  

The vulnerability and destruction of a community’s transportation system is another 

parameter that attributes to economic damage associated with a hurricane event. Aside from 

down trees and indirect causes, transportation damage is generally a result of floodwaters 

(mainly storm surge) and can drive up the economic damage total as well as impact of 

infrastructure areas requiring extensive recovery efforts. Transportation, along with utilities and 

built structures, are the main parameters affected by the meteorological components of a 

hurricane and therefore directly linked to the resulting economic damage total. 

2.2.3 Geographical and Societal 

2.2.3.1 Location Specific Geography 

Similar to infrastructure, the effects of geography are highly dependent on location. 

While, infrastructure is the focus for damage, geographical parameters can contribute to how the 

meteorological parameters affect infrastructure. The geography of the U.S. coastline varies in 

both natural and man-made features. Nature has an interesting way of having systems that restore 
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balance and provide protection. Many natural features along the coast, for the most part, protect 

the main shore and inland. These features are primarily south of the Mason-Dixon line and 

consist of wetlands and barrier islands. Man-made features can actually worsen the impacts by 

disrupting the natural processes (i.e. urbanization). The highly populated 95-corridor is an 

example where concrete overtakes soil. Other features, such as bay areas, also have a unique 

interaction with hurricanes depending on certain characteristics. Essentially, landfall location 

characteristics can become a factor in the resulting outcome of a hurricane event.  

It is a generally accepted concept that wetlands can reduce the effects of storm surge and 

waves due to friction (Ferreira, 2011; Wamsley, Cialone, Smith, Atkinson, & Rosati, 2010). 

There are, of course, additional factors that contribute to this including storm intensity, track, and 

the surrounding topographic and bathymetric features (Wamsley et al., 2010). Larger and more 

intense hurricanes, with substantial storm surges, can overcome wetlands and still devastate main 

inland areas. Slower and more persistent hurricanes have also been found to overcome these 

natural barriers, since wetlands generally slow the surge propagation and wind due to friction 

(Ferreira, 2011; Wamsley et al., 2010). In 1985, Farber estimated that the loss of a one mile strip 

wetlands along the Louisiana coast could result in a discounted loss from hurricane damage of 

$1.1-$3.7 million in 1980 dollars (Farber, 1987).  

Louisiana and Mississippi showcase geography of multiple natural protection features, i.e. 

wetlands and barrier islands (see Figure 2-9(a) for reference). Barrier islands (also found as the 

Outer Banks, North Carolina) serve as a means of “absorbing” storm impact and protecting the 

mainland where most of the population and infrastructure resides. However, Hurricanes Camille 

and Katrina showed that high storm surges can overtop the islands and impact the mainland 

(Morton, 2007). Another common landfall location, Corpus Christi, TX, has not only wetlands 
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and barrier islands, but a bay area as well (see Figure 2-9(b) for reference). In a study by Ferreira 

(2011), “values showed that, for areas inside Nueces Bay, the storm surge could vary up to four 

times depending on the parameter selection, for areas inside Corpus Christi Bay, the storm surge 

varied around three times and behind the barrier island the storm surge high variation was less 

than three times” (Ferreira, 2011). This indicates that further in, behind the barrier island, and 

inside the bay is more protected from storm surge. However, bays can be a blessing or a curse to 

the inland population depending on the hurricane intensity, track, spatial and temporal scales, as 

well as the bay geometry and depth. The hurricane track is a large component in determining 

how a bay area or channel will be affected. As was the concern with Manhattan for Hurricane 

Sandy, if the storm track is just right, then the winds can act as a driving force to move the storm 

surge into the bay, or in this case the Hudson into Manhattan (see Figure 2-9(c) for reference). In 

a study of the Chesapeake Bay after Hurricane Isabel in 2003 (Zhong, Li, & Zhang, 2010), it was 

found that strong winds moving into the Bay area resulted in larger storm surges with winds 

moving outward causing a depression within the bay (see Figure 2-9(d) for reference). However, 

due to the size and geometry of the Chesapeake Bay the upper, middle, and mouth of the bay 

could all experience a different affect (i.e. a depression in the upper Bay could align with a surge 

in the lower/mouth Bay). It was also determined, that slow moving storms could allow the surge 

to build up within the Bay. A shallow bay can also cause amplification of the storm surge (Chen, 

Wang, & Tawes, 2008). Most storm surge models in use account for these features as well as the 

friction characteristics of wetlands and other vegetation. 
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(a)      (b) 

 
(c)      (d) 

Figure 2-9 Satellite views of  (a) Louisiana coastline near New Orleans, (b) Corpus Christi Bay, 
TX, (c) New York City, and (d) Chesapeake Bay near Maryland and Virginia (Google Map Data, 

2015) 
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eventually aided in the sinking of New Orleans to below sea level. The prevention of sediment 

deposits along with subsurface mining can result in accelerated soil compaction (Syvitski et al., 

2009). Lack of sediment deposits coupled with hurricane impacts can also deteriorate the same 

barrier islands that protect the coast (Morton, 2007).  

In general, urbanization can increase flooding within the area. In areas where the ground 

(soil) is able to naturally absorb rainfall faster than the average rainfall rate for that area, most 

water will reach the stream channels in its basin – instead the water either absorbs into the soil, is 

evaporated off of vegetation, or percolates into the groundwater system (Booth, 1991). Soil and 

areas with lush vegetation can absorb precipitation into the ground and reduce flooding. There 

are situations where the rainfall rate exceeds absorption rate, and in these cases water moves 

toward open channels (Booth, 1991). In highly urbanized areas, there are more impervious 

surfaces where water cannot penetrate through the surface and instigates faster flow due to 

reduced friction and absorption. Urbanized areas have stormwater systems consisting of pipes 

and drainage basins to help manage the extra runoff created by roads, parking, lots, and other 

construction. In a heavy precipitation event, the water will rush to these systems and potentially 

overwhelm it, resulting in enhanced flooding. Along the coastline, heavily populated and highly 

urbanized areas are more vulnerable to inland flooding from a hurricane than its more rural 

counter parts.  

Where a hurricane makes landfall is vital in understanding its potential for damaging 

effects. From the above discussion, it could be inferred that a much less intense hurricane would 

impact a highly urbanized area more than a rural coastal area. While nature appears to have some 

built in defenses, man has also managed to weaken those defenses and impact the locality’s 

vulnerability. Most of the negative factors in relation to geography and hurricanes seem to be a 
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direct result of man-made structures and urbanization and seem to worsen in older, heavily 

populated locale.  

2.2.3.2 Demographics 

In 1990, 28% of the United States’ population lived in coastal counties. In 2003, to the 

coastal population was at 53% with more than 150 million Americans living near the coast 

(Crossett, Culliton, Wiley, & Goodspeed, 2004). Since most of the US coastlines are vulnerable 

to hurricanes, this in turn puts the majority of the population at risk. Population is one of the 

most vital factors in determining the potential impact a hurricane can inflict. The demographics 

of coastal population can have a direct effect on the resulting damage as well as those who are 

able to evacuate. In addition, highly populated areas bring a mess of problems including 

increased infrastructure and socio-economic discrepancies. While hurricane damage is becoming 

more expensive and more media attention is showing the true hazards of coastal living, more 

people are still moving to coastal areas.  

Generally, the increase in population indicates an increase in homes and other 

infrastructure, leading to an inflation of damage. The converse of this has also been looked into, 

while increase in population is linked to increased hurricane impacts, the activeness of a 

hurricane season can also affect an area’s population and building quality. The years 1970-1989 

consisted of relatively low hurricane activity for South Florida; as a result the population 

increased significantly. However, the homes built to accommodate that increase were found to 

experience more intense damage from later hurricanes than homes constructed from 1930-1934 

and 1946-1955 (Tansel & Sizirici, 2011). The periods of 1930-1934 and 1946-1955 follow 

significant hurricane events; the 1926 Great Miami Hurricane and the Southeast Florida 

Hurricane in 1945 and Hurricane King in 1950, respectively. Consequently, more attention was 
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given to the quality of the construction to mitigate the impact of such events. A population 

decrease also occurred in 1993, immediately following Hurricane Andrew (1992) (Tansel & 

Sizirici, 2011). In recent years, Florida has obtained more year-round residents instead of 

seasonal ones, many of which are retired or work in tourism (Cutter & Emrich, 2006). Overall, 

Florida is similar to the rest of the US coastline in experiencing an overall increase in population, 

resulting adverse impact changes, through the years. 

It is not just the quantity of people that live in a hurricane vulnerable zone that 

contributes to its outcome; it is also a characteristic of population demographics. A large 

percentage of the world’s population lives near the coast, but the U.S. possesses a lower death 

toll and higher economic damage from coastal hazards due to being a more developed country 

(Nicholls & Small, 2002). This implies that higher income areas are more likely to afford safer 

housing as well as being more capable to react in a hazardous situation (Cutter, Boruff, & Shirley, 

2003; Simmons & Sutter, 2005). Higher income areas are also linked to increase in damage costs 

by the increase in median home values (Hall & Ashley, 2008). In coastal cities, the higher 

income areas are right on the shore as it is “prime real estate” and the income brackets decrease 

out from the shoreline (Cutter & Emrich, 2006). According to the 2010 U.S. Census, New York 

City has the highest population and eight of the top ten highest income states are coastal 

locations (plus one for District of Columbia) (U.S. Department of Commerce, 2013). Therefore, 

the coast not only boasts the highest population, but the highest incomes as well, attributing to 

higher economic damage. 

The combination of socioeconomic status and demographics data were used at the 

University of South Carolina (Cutter et al., 2003) in order to create the Social Vulnerability 

Index (SoVI). The SoVI relates the two main components of location vulnerability: physical 
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vulnerability (i.e. hurricane prone area), and the various characteristics of a population that 

determine how people are able to cope and recover from natural hazards (Cutter & Emrich, 

2006). The SoVI was designed based off of the (modified) Hazards of Place Model shown in 

Figure 2-10 (Cutter, 1996). The main factors of social vulnerability that are widely accepted 

include age, race, gender, and socioeconomic status. The SoVI uses 11 factors (variables), in an 

additive model in order to produce a SoVI score for each U.S. county. These 11 factors account 

for 76.4 percent of the variance among U.S. counties. The SoVI county scores range from -9.6 

(lowest) to 49.51 (highest) with a mean score of 1.54 and a standard deviation of 3.38. 

Corresponding to the demographics discussed, Manhattan Borough (New York City) was found 

to be the most vulnerable county in the U.S. Excluding that, the most vulnerable areas of the 

country appear to be in the southern half where there are more ethnic inequalities and higher 

population growth. The low vulnerability areas are less populated and generally homogeneous in 

nature (i.e. mainly white, suburban, and well-educated). These areas are New England, eastern 

side of the Appalachian Mountains from Virginia to North Carolina, and the Great Lakes Region 

with Yellowstone National Park County topping the list. The results of the SoVI make it clear 

that variables such as unemployment, access to resources, homelessness, non-English speaking 

immigrants, wealth, race, built environment, etc. play a key role in how prepared and susceptible 

a location is to a natural hazard. 
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Figure 2-10 Hazards-of-Place Model of Vulnerability; after: (Cutter, 1996) 
 

Cutter, Boruff, and Shirley (2003) did not find any statistically significant results when 

comparing the SoVI to presidential declared natural disasters, however incorporating SoVI into 

disaster modeling has gained attention in recent years. In a study done by Burton (Burton, 2010), 

the SoVI was used with FEMA hurricane damage assessments in specific areas where the factors 

had an impact. Damage that was less extensive was mainly focused on hurricane winds and 

storm surge and societal aspects did not make a significant contribution until “extensive” damage 

was reached. However, overall the meteorological impacts (storm surge) played a larger role 

than the societal factors did. That being said, the social vulnerability factors that appeared to 

stand out more had to do with urban population, race, agriculture, and poverty level. Urban 

populations have more “housing stock” contributing to higher damage numbers. Simply put: 

more houses, more damage.  
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2.2.3.3 Societal Perception 

The main basis behind this thesis relies on the lack of understanding of risk during a 

hurricane or even a severe weather event. This is a continuing struggle in the field of natural 

disasters both on the engineering and meteorology side. How can engineers and scientists 

correctly communicate the apparent risks for a natural hazard so that the general population 

understands the risk? If there is a misinterpretation or a misperception of risk by the public, the 

responsibility to correct this problem should fall on those trying to communicate the message. 

On the other side of the argument, if citizens are accounting for different factors when deciding 

to evacuate, why aren’t engineers, scientists, and emergency managers, when evaluating 

evacuation orders, considering those same factors? 

Many studies are done within various disciplines to help determine how people decide to 

evacuate during a hurricane, mainly based on perceived risk. Individuals must recognize the risk 

at hand as being imminent or they will not act (evacuate) (Sorensen, 2000). If the risk is 

underestimated, this could put more lives at risk. The level of risk perceived, therefore, directly 

correlates to the level of precautions taken by the individual (Stein, Dueñas-Osorio, & 

Subramanian, 2010). However, the risk perceived does not necessarily correlate to the 

evacuation orders given (Stein et al., 2010). Evacuation orders are mainly determined based on 

storm surge since this poses the greatest risk to lives (Henk et al., 2007). A study done for Harris 

County, Texas following Hurricane Ike in 2008 found that 62% of shadow evacuees (those who 

were not under evacuation order but evacuated anyways) had accurate perceptions of the 

potential hazards and were therefore correct in evacuating (Stein et al., 2010). The areas not 

likely to suffer from storm surge flooding can still experience extreme winds and inland flooding 

due to rain. These shadow evacuees seem to have intuitively grasped this concept. Dow and 
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Cutter (2000) determined that those who are well aware of hurricane hazards no longer wait for 

the official government warning when deciding to evacuate (Dow & Cutter, 2000). 

The other possibility with individuals determining risk independently could result in 

those in evacuation zones deciding not to evacuate. In a study done by Stein (2010), it was 

determined that the awareness of an evacuation order only had a modest effect on how people 

determined to evacuate (Stein et al., 2010). Dow and Cutter (1998) did another study on the 

“crying wolf” phenomenon for South Carolina for Hurricane Bertha, which was followed by 

Hurricane Fran two months later. Hurricane Bertha actually had minimal effects but evacuation 

orders were issued anyways. It was found that only 3% evacuated for Hurricane Bertha, but not 

for Hurricane Fran (Dow & Cutter, 1998). “Crying wolf” is not an unusual perspective people 

have when listening to the news and government officials. In an article by Nicole Dash  (2007), 

she states, “if warnings were heard and ultimately believed, then evacuation would be the end 

result” (Dash & Gladwin, 2007). The emphasis on this would be “believing” the warnings. 

Unfortunately, there are more instances where people choose not to evacuate when they should 

(Dash & Gladwin, 2007). Renn et. al. (1992) argued that a “social amplification of risk” could be 

used by integrating both the social and technical concepts of an event in order to create a broad 

spectrum approach to risk (Renn, Burns, Kasperson, Kasperson, & Slovic, 1992).  

The information message given to the public should comprise of various characteristics 

including; track, intensity, landfall location, and infrastructure vulnerability (Baker, 1991). It 

appears, in various studies, that some people already account for this when determining to 

evacuate, while others choose to not evacuate possibly from experience, disbelief in officials, 

and a misconception of risk. People need information to be given in a more solid conception in 

order to understand the very real possible dangers (Dash & Gladwin, 2007). The warnings given 
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should be clear, concise, and specific in order for people to appreciate the risks involved and 

evacuate (Mileti & Beck, 1975). The National Hurricane Center and The Weather Channel both 

attempt to cover the hazards associated with a storm event. The advisories issued should be a 

straightforward and simple assessment of the storm risk, specific to all the conditions and 

hazards incorporated in it; geography, wind, storm surge, rain, and infrastructure. These are 

items considered by the emergency managers, scientists, engineers, and (although they might not 

be aware) some of the public.  

2.3 Existing Approaches for Hurricane Impact Prediction 

2.3.1 FEMA HAZUS 

Among the few models used for various natural hazard damage predictions, the HAZUS-

MH (HAZardous U.S. MultiHazard) model is arguably the most popular tool as well as the only 

damage prediction model widely used for the entire United States. However, its level of accuracy 

in terms of predicting losses has been a subject of debate among researchers. Released in 2004 

by FEMA, HAZUS-MH is government funded loss estimation software. The original HAZUS, 

was first released in 1997 as a loss estimation tool for earthquake scenarios. Since then, FEMA, 

along with a selected group of experts and contractors, have developed a flood and hurricane 

model. The multi-hazard version was created in order to integrate data sets and classification 

systems common in all three models. Federal agencies, academic institutions, and private 

companies use HAZUS-MH in order to illustrate various scenarios and to estimate damage and 

loss corresponding to certain natural hazard events (Schneider & Schauer, 2006).  
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The Earthquake Model was the first model released in 1997 and was revised three times 

thereafter. This model is possibly the trademark of FEMA HAZUS and includes the use of a 

structural building classification system, potable water network analysis capability, analysis of 

multiple fault segments, USGS probabilistic ground shaking maps, user specified damage and 

loss functions, and more. The last of the 3 revisions, HAZUS99-SR2, incorporated an “advanced 

engineering building module (AEBM)” in order to estimate specific building damage and loss. 

This allows more advanced users to model building specific response to an earthquake event and 

evaluate mitigation strategies (Schneider & Schauer, 2006). 

The Flood Model began development in 1997 in a similar method to the Earthquake 

Model and was the next to be released. This model includes the use of floodplain data and 

building classes while accounting for debris, shelters, agriculture, and utilities. The classes of 

buildings and essential facilities were determined using FEMA and US Army Corps of Engineers 

(USACE) damage data. Since flooding is a somewhat a predictable event, the model also took 

into account flood warnings and effects due to certain flow velocities. Released before the Flood 

Model, the Flood Information Tool (FIT) users could enter certain data in order to estimate the 

extent and depth of a flood so that the Flood Model could then be used to estimate the resulting 

damage and loss. The data used for this model is entered and sorted by the users in order to 

create a network of all the data for the U.S. (Schneider & Schauer, 2006).  

The Hurricane Model was subsequently developed similarly to the Flood Model.  The 

main variation from the Flood Model was taking into account the wind field and track of a 

hurricane or tropical storm system. Also, in deference from the other models, the Hurricane 

Model loss estimates are based on historical data of financial losses and storm intensity 

(Schneider & Schauer, 2006). There are five main components, discussed by Vickery (2006), of 



41 

the Hurricane Model: the hurricane hazard model, wind load model, terrain model, physical 

damage model, and loss model. The first three models, which can be thought of as the 

environmental components or the causes, are run first and then used in the last two models (the 

effects of the first three) in order to determine a damage and loss estimate for a given hurricane 

event (Vickery, Lin, Skerlj, Twisdale, Lawrence A, & Huang, 2006; Vickery, Skerlj, et al., 2006).  

The first of these model components, the hurricane hazard model, assesses 

meteorological hazards that contribute to the overall impact of a hurricane or tropical storm event. 

This includes the wind field and storm track/motion, as well as the rainfall rate for an event. For 

land falling hurricanes the wind speed and central pressure (lowest pressure) is assessed at 

landfall (Vickery, Lin, et al., 2006). The wind speed is typically highest near the center of the 

storm, but not exactly within the eye where the pressure is lowest. The rainfall within a hurricane 

is also highest near the eye wall where the strongest rain bands are within the system. The 

rainfall rates for each event are used mainly to determine the amount of water that could infiltrate 

a building through cracks and cause damage or possibly weaken the structure. Both the wind and 

rainfall rates are therefore tied to the storm motion, as discussed in Section 2.2.1. 

The wind load model component to the HAZUS-MH Hurricane model accounts for both 

the wind load acting on a building and the effects of windborne debris, which are dependent on 

the wind field and velocity modeled in the hurricane hazards model. Windborne debris can play a 

significant role in the resulting damage due to wind as was illustrated in Section 2.2.2.1. Within 

the wind load model, the wind loads are determined based on pressure differences and account 

for the change in wind speed and duration as the hurricane moves (Vickery, Lin, et al., 2006). In 

addition, as outlined by Vickery (2006), the windborne debris impact speed, angle, and 

orientation when the object strikes the building is computed by modeling the different building 
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components and the predicted trajectory of the object. Roof gravel is a debris that is specifically 

modeled here due to the ease in which it can be lifted off a building making it a common 

projectile debris, but before it can be modeled the flow field is required in order to lift and 

transport the gravel (Vickery, Lin, et al., 2006). The model then uses the probability of window 

damage (most vulnerable part of a structure for debris puncture) from the wind load 

characteristics calculated in order to determine the physical damage component (Vickery, Lin, et 

al., 2006; Vickery, Skerlj, et al., 2006).  

The next model component of the HAZUS-MH Hurricane Model is the terrain model. 

The main relevance of the terrain model is to account for how the surface affects the wind speed. 

The driving factor behind this deals with the fact that in smooth terrain, such as coastal areas, the 

wind speed is greater because nothing is obstructing it or slowing it down due to friction as it 

would in a forest or metropolitan city. In the event of a hurricane, the winds will be much 

stronger right at the coast, over sand, which has a very low roughness, than as the wind field 

crosses into the city, which has a high roughness. Therefore this is a revision to the hurricane 

hazard model in terms of wind, which correlates to the wind load model. The terrain model, wind 

load model, and hurricane hazard model all take into account how the atmospheric variables 

relate to the surrounding environmental as a hurricane makes landfall. The results of these 

modeled components tie into the physical damage model and loss model by assessing how it 

relates to building damage and other losses.  

The physical damage model assesses building failure in response to hurricane variables. 

“Physical damage” in this model mainly referrers to only exterior building damage. Mainly 

cladding and components, roofs, windows, walls, and joints are analyzed, which is consistent 

with the structural features discussed in damage assessment reports. The model uses standard 
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geometric representation of buildings with various use and stories. The wind field for a modeled 

hurricane is then used to model load and resistance. If a door, window, or wall fails due to wind 

loads or debris, the model then adjusts for the effect on the internal pressure. This could result in 

additional failures causing the internal pressure to approach peak external pressure. Multiple 

simulations are done for a given storm event, and rainfall infiltration is accounted for in order to 

determine a damage state for the structure. Within HAZUS a damage state for each structure 

class has been developed and used within the model (Vickery, Skerlj, et al., 2006). 

From the determined damage state, the economic loss due to a hurricane or tropical storm 

is estimated. The economic loss for a given modeled event accounts for the building itself, the 

contents/inventory, and the costs resulting from the inability to use the building (Vickery, Skerlj, 

et al., 2006). The costs of the building and its major components are computed first, then, based 

off of the damage to those components, the ability to repair or replace such components is 

computed. These are the explicit and implicit costs, respectively. The implicit costs also serve as 

a way to relate the exterior damage to the interior damage where rainwater infiltration becomes a 

factor, leading directly into assessing the contents/inventory losses. Based on the determined 

damage to the exterior and interior of the building, the model can estimate the time needed to 

repair and/or replace the building and its components, which leads to the cost associated with the 

inability to use the building while work is being done (Vickery, Skerlj, et al., 2006). This can be 

more significant for a business and/or rental communities due to loss of revenue and rental 

income. Using a similar method that was established early on with the Earthquake Model in 

HAZUS-MH, the damage and loss estimate is finally calculated for the modeled storm (Vickery, 

Skerlj, et al., 2006). 
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2.3.2 Florida Public Hurricane Loss Model 

To help budget and prepare for hurricane events specifically in Florida, a commonly 

hurricane-prone state, the Florida Office of Insurance Regulation (OIR) assembled a team of 

experts to create another loss prediction model: the Florida Public Hurricane Loss Model 

(FPHLM) (Pinelli et al., 2011). The FPHLM is used to compute the average annual losses (AALs) 

and the probable maximum losses (PMLs) for a given region of Florida. The model also has the 

capability to run hypothetical storm events or compute the outcome of a currently occurring 

storm event (Pinelli et al., 2011).  A detailed description of the model and its components can be 

found online at http://www.cis.fiu.edu/hurricaneloss/. 

The FPHLM uses detailed analyses in meteorology, engineering, and insurance to create 

the wind hazard, vulnerability, and insured lost cost components. The model is mainly used for 

residential structures, since those are more prominent, but it can also be used for commercial and 

high-rise buildings. The meteorological hazards stem directly from the hurricane’s characteristics 

to include; track, wind field, and terrain for effects of terrain roughness on the hurricane’s wind 

speed. The relation of hurricane force winds to different structure types is used to estimate 

damage and associated costs in order to then determine specific hurricane vulnerable parts of 

Florida. This leads into the actuarial component, which will generate a probabilistic loss for 

certain zip codes, counties, or the entire state. This is also what gives the expected loss for a 

specific event (hypothetical or occurring).   

The meteorological component is mainly used to relate to the resulting damage to the 

actuarial component. The damage determination is what links the hurricane characteristics to the 

resulting cost, similar to the FEMA HAZUS-MH Model. According to the Saffir-Simpson scale, 
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the wind speed is directly related to the storm intensity. In this model, wind is the main 

meteorological factor used in determining structural damage.   

To begin analyzing wind induced damage on structures; the building type must first be 

determined. By using infrastructure databases for the state of Florida, the FPHLM team 

determined the building stock for Florida by county. The most common structural systems in 

Florida turned out to be one to two stories, composed of timber or masonry, a shingle or tile roof, 

and a roof of gable or hip shape (Pinelli et al., 2011). This covers 77% to 89% of the structures in 

Florida and the remaining building types are analyzed by a generic model (Pinelli et al., 2011). 

Each building type is analyzed by its components; walls, roof, connections, windows, and doors 

(including garage). Roofs tend to be a main damage indicator and are an assessment tool in 

determining wind strength. As with the FEMA HAZUS model, the FPHLM analyzes both wind 

induced pressure, wind debris, and wind driven rain. By using a “probabilistic component-based 

Monte-Carlo simulation”, the FPHLM calculates the modeled exterior damage to the structure 

(Pinelli et al., 2011). The other component deals with any resultant interior damage, which could 

be tied to wind driven rain infiltration and/or wind induced pressure due to a puncture in the 

structure such that it is no longer enclosed. The resultant interior damage also includes utility 

damage and is modeled similar to the exterior damage using a Monte Carlo simulation (Pinelli et 

al., 2011).  

The actuarial model component ties the resulting damage to cost. This damage cost 

includes the exterior damage, interior damage, and additional living expenses. The additional 

living expenses include the cost associated with being unable to occupy the damaged building, 

similar to the FEMA HAZUS-MH Model. The “ground-up” loss is computed by using the 

median result of a damage interval modeled for a specified wind speed (Hamid, Pinelli, Chen, & 
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Gurley, 2011).  Deductible limits are then applied in order to calculate the net deductible loss, 

which is multiplied by the damage ratio for a given event in order to get the expect loss (Hamid 

et al., 2011).  The AAL is calculated by using a probability weight of the expected loss, which 

was averaged over all possible damages for a given wind speed, and adjusted for inflation 

(Hamid et al., 2011).  This is just for one building or property and can be used for a whole zip 

code simply by adding the AAL for all structures (and their respective type characteristics) in the 

desired area and so on for multiple counties. The AAL is then used to determine policy 

information. This approach can be used for hypothetical events in order to determine a resultant 

net loss.   

Hamid et. al. (2011) ran 30 hypothetical hurricane events in order to determine which 

would be the most destructive and costly. A variation in category, landfall location, and track 

were used in order to produce a range of results. As would be expected, the highest damage 

occurred in highly populated and typically vulnerable cities. The intriguing discovery made in 

this study is the effect of the track on damage. As Hamid et. al. (2011) discusses, a hurricane 

moving over heavily populated central Florida is more destructive and costly than one that would 

make landfall at the southern tip and move westward. Even though Miami is heavily populated, a 

westward bound hurricane would go over the everglades after Miami, which is less populated 

and are naturally able to absorb heavy rain. An example hurricane that made landfall in Tampa 

and moved eastward into the Orlando area would cause more damage, emphasizing the 

importance of storm track and its geographic location within Florida, and similarly, anywhere 

else (Hamid et al., 2011).  

The components used for this model are typical of various studies and similar to the 

FEMA HAZUS-MH Model discussed previously. As with HAZUS-MH, the typically modeled 
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hurricane characteristic is wind and its related conditions such as debris and driving rain. 

However, storm surge does not seem to be included in this model. There also does not appear to 

be much in relation to rainfall rate or amounts associated with a tropical system. This indicates 

the majority of damage due to flooding is not accounted for except for rain that is driven into a 

building through cracks and connections by rain.  

The Florida Public Hurricane Loss model works as a mechanism for the state of Florida 

to retrieve annual averages and probable maximums of the loss (cost) due to hurricane events for 

different counties and zip codes. The FPHLM is mainly used for budgetary purposes by the state 

to verify claims as well as by insurance companies. The FPHLM also has the beneficial use for 

determining the effectiveness of various mitigation strategies, including how to allocate 

resources.  

2.4 Artificial Neural Networks 

2.4.1 General Overview 

An Artificial Neural Network (hereon referred to as ANN or “neural network”) is a 

numerical model originally created to replicate how the human brain learns. In other words, an 

ANN is a form of artificial intelligence (AI). A human being learns from experience by 

recognizing patterns. The brain makes connections based on “inputs” and what the consequences 

to those inputs are. With enough data, the brain determines the result to be a related outcome to 

that input/action. As an example, it is commonly known that students learn the most from “doing” 

or from failure. This is because by actually doing something the brain is strengthening 

connections and creating pathways to retain correlating information. Similarly, by failing, the 
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brain will retrace its original path in order to strengthen the correct one. These so-called “paths” 

are the connections between brain cells, or “neurons”, of the action (input) and the consequence 

(output). The ANN attempts to mirror this structure of the human nervous system. The brain has 

approximately one billions neurons, while some of the most complex ANNs only have thousands 

of neurons (Sarle, 1994). In simpler computing programs, the amount of neurons is much less 

(usually tens). Even with far less neurons than the human brain, the computed results can still 

reach significant statistical correlation indicating that the ANN has formed an effective “path” 

just as the human brain would have if the data is properly trained.  

In an ANN the computer can run through data over and over again, learning from 

mistakes, and establishing a pattern between the input neurons and output neurons (Hecht-

Nielsen, 1988). Handwriting and speech recognition are just a couple examples of common uses 

of neurocomputing. In general, the main three ANN applications are: AI models, adaptive signal 

processors (i.e. for robots), and data analysis (Sarle, 1994). For data analysis, which is what will 

be discussed herein, the application of ANNs appear to “learn” in a similar fashion to statistical 

models (Sarle, 1994; White, 1989). The ANN will essentially find statistical correlations 

between the provided input and output data so that, in use, it can interpolate the closest 

corresponding output for the given input. Since statistical models are notoriously accurate, this 

implies that ANNs could be as well.  

The use of ANNs for analysis and pattern recognition is what drives the various 

applications of ANNs. These network models provide the ability to establish forecasts and 

predictions using historical data (similar to a person using experience). Like many other subject 

areas, this is the appeal for using ANNs to predict the impact from a hurricane event. There are 

varied, independent, factors that are instinctively taken into account by forecasters when a 
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hurricane is about to make landfall but there is no way to quantify them. Forecasters, and others 

in this field of study, are able to assess these threats (outcomes) based on experience (i.e. 

historical data). The review of how ANNs operate and the various applications, discussed herein, 

will reveal the possibility of applying this type of computing algorithms to the field of hurricane 

impact prediction. 

2.4.2 Using Artificial Neural Networks 

2.4.2.1 Theory and Structure 

The ANN is centered on the concept of neurological connections. A typical ANN is 

structured with the idea of “layers”: the input layer, hidden layer, and output layer. When used, 

the data flows from the input layer through to the output layer via neuron connections. A simple 

linear regression model links the input to the output directly, with no hidden layers. One network 

could have multiple hidden layers depending on the complexity of the problem. As can be seen 

in  Figure 2-11 below, each layer can subsequently contain multiple neurons. The input layer 

contains the independent variables (input neurons) and the output layer contains the predicted 

values (output neurons) value (Sarle, 1994). The input, hidden, and output neurons typically all 

connect between layers, i.e. each input will connect with each hidden neuron, which connects 

with each output. It is possible to structure a network where not all the neurons connect, i.e. one 

input neuron might only connect with a percentage of the hidden neurons, etc. How the neurons 

relate is classically either linear (“linear transfer” in MATLAB) or logistic (“log-sigmoid” in 

MATLAB), instituting not only where the neurons connect but in what respect as well. The 

connections and relationships are established during training so that, when in use, inputs 

provided will generate a relevant output. 
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 Figure 2-11 Basic neural network structure and neuron relationship 

 

There are two main ways to train a network; supervised and unsupervised training. A 

supervised training approach provides known inputs and outputs (“targets”) and will run multiple 

iterations in pursuance of a pattern between the given data. Unsupervised training involves the 

network learning as it goes, in other words the outputs are not initially known and the pattern 

develops as inputs are given and the network runs (Svozil, Kvasnieka, & Pospichal, 1997). 

Supervised training, commonly used for multilayer feedforward networks, is what will be used in 

this study and therefore discussed herein. The term “feedforward” implies that the data strictly 

moves from the input to hidden to output layer, instead of the possibility of backtracking through 

various segments of the system before producing a final output. During training, these systems 

use backpropagation as a learning tool, which propagates the error backwards so the data can 

successfully flow forwards. Multilayer feedforward networks trained with backpropagation are 

the most popular ANNs.  
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In building this type of ANN, the network must first be trained with a set of known input 

and output data. This can be data from past events/experiences, where the outcome is known. 

This will be the basis to predict the outcome for future similar events. The data should then be 

divided into training data, testing data, and validation data (as a starting point, this division is 

typically 70%, 15%, and 15%, respectively). When training, the ANN attempts to make 

connections between the input layer and the hidden layer(s), and then the hidden layer(s) and 

output layer using weights and biases on the connections between each of the neurons. The 

training data first establishes a pattern then the testing and validation data serves as data used to 

minimize the error. Each input, xi, can range from one to any number of user determined 

amounts, m. This is the same for each output, Yj, however, most of the time there are less outputs 

than inputs (n < m). The notation Yj can be considered the known or desired target value, while 

yj indicates the approximated value by the network. The learning tool (here backpropagation) 

adjusts the weights, Wij, in order to resolve the approximated yj closer to the provided target 

value, Yj.  This Wij factor is described as the connection from the ith to the jith neuron (see  

Figure 2-11). For a simple feedforward network with basic backpropagation logic, the following 

is assumed:  

                         (2.1)  

where; si can be thought of as the “potential of the ith neuron” or the “voltage to exciting a 

neuron” (Svozil et al., 1997; Werbos, 1990) and m < i < N+n   

                           (2.2) 

where; f(si) is the “transfer function” and  m < i < N+n   

                           (2.3) 
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where; 1 < i < n and N is a constant that is no less than m and the value of N + n determines the 

total number of neurons in the network. The relationship between neurons, i.e. the transfer 

function or sigmoidal function, f(s), can be thought of as:  

                           (2.4) 

For more complex networks (with hidden layers), the threshold (possibly the bias) value 

for the ith neuron, vi, is added into Equation (2.1).  

!! = !! + !!"!!
!!!

!!!
 

                      (2.5) 
 

In order to increase the accuracy of the network, backpropagation alters the threshold, vi, 

and weights, Wij, to minimize the mean square error between the approximated/computed output 

value, yj, and the target output, Yj. This is done by minimizing the objective function, E: 

!! = ! 1
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                             (2.6) 
 

In backpropagation, the derivatives of the objective function are calculated for the output 

layer then the hidden layer(s) and finally the input layer. Hence, the output error propagates 

backwards towards the input layer in furtherance of correcting the correlations between neurons. 

Multilayer feedforward networks with backpropagation are commonly used for pattern 

recognition problems. In training these networks, the program builds and strengthens 

connections between neurons by establishing statistical patterns between input and output. The 

allocated testing (and possibly validation) data are used to “test” the pattern it has created by the 

above procedure. Some programming tools, such as MATLAB, have simplified this process of 

creating an ANN. The learning tools are inherent and the user simply has to provide the data and 
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construct the network form (determine the number of hidden neurons, etc.) based off of the 

problem constraints. The program then progresses through the learning process and produces a 

usable network for prediction, forecasting, and pattern recognition.  

2.4.2.2 Application 

Once an ANN is trained and constructed, it can then be used to illustrate statistical 

relationships for practical purposes in pattern recognition, prediction modeling, and forecasting. 

As was previously stated, common uses consist of handwriting recognition and speech 

recognition. This is also one way a computer or website could “know” to suggest certain items or 

other sites, etc., to the user. ANNs have been developed for use in various fields, from business 

and finance to water resources to medicine. These have used the above concepts and applied 

them to serve as prediction and forecasting tools.  

In the business and finance industry, forecasting the finance and stock market is a vital 

trade for a company. The ability to forecast future stock prices lends a financial company the 

capability to increase profit earnings, which is essentially vital to sustain and subsequently grow 

a company. Most stock market models consist of a linear relationship when the factors are not 

necessarily linear and can be arbitrary (Lu Dang Khoa, Sakakibara, & Nishikawa, 2006). Since 

profit gain is the major goal for stock market forecasting, one network model integrated a 

Directional Profit (DP) adjustment factor, fDP(p) and a Discounted Least Squared (DLS) function, 

w(p),  to the object function denoted as fTDP(p) (Yao & Tan, 2000) as  shown in Equation (2.7). 

Once the object function is found, it can be used to determine the error, ETDP, as shown in 

Equation (2.8) as a function of the approximated/computed output value, yj, and the target output, 

Yj and the to the object function, fTDP(p) 

!!"# ! = !!" ! ×!(!)                         (2.7)  
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                                    (2.8) 
 

The DP adjustment factor, fDP(p), is a function of changes and directions of network price 

target values for a user specified threshold. The DLS adjustment factor, w(p), adjusts for the 

contribution of the overall error, p (Lu Dang Khoa et al., 2006). This puts the focus on profit and 

time allowing for periodic adjustments conforming to the complexity of stock price forecasting.  

The inputs for this model included somewhat obvious factors such as, inflation, gas 

prices, and the Gross Domestic Product (GDP). More technical inputs were also used including 

the strength index, daily high, and daily low, etc (Lu Dang Khoa et al., 2006). The feedforward 

network used for this model resulted in a low mean square error (MSE) and a supporting 

statistically significant precision (Lu Dang Khoa et al., 2006). Even for a problem as complex as 

stock price forecasting, adjustments to the basic ANN structure resulted in a usable forecasting 

tool. 

In a field more relevant to civil engineering, hydrologic and rainfall runoff modeling are 

other popular applications of ANNs. Most of these networks are multilayer with backpropagation 

training (Dawson & Wilby, 2001). Typically ANNs designed to model hydrologic flow compute 

either the discharge or model stage from a rainfall event. The variance occurs in the inputs and 

the method of approach, which depend on the hydrologic model classification. In general, ANNs 

for hydrologic modeling are considered parametric functions that relate meteorological variables 

to runoff using transfer functions (Dawson & Wilby, 2001). The models can be either lumped, 

where the catchment basin is treated as a single unit, or distributed with the use of a catchment 

system containing subsystems (Dawson & Wilby, 2001). The inputs can be as simple as past 

rainfall records to more complex. More complex and incorporative models could account for 
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seasonal variations, which incorporates the relative rainfall and discharge perturbations, and time 

step segments (Shamseldin, 1997). The designer defined input data and method can have an 

effect on the outputs and accuracy of the model for certain event characteristics, which results in 

some models becoming more useful than others in specific situations (Shamseldin, 1997). Even 

with that, the ANNs for hydrologic modeling seem to produce relevant enough results in 

comparison with other types of hydrologic modeling.  

The use of neural networks in medicine appears to be the most widely used application of 

ANNs, so much so that MATLAB even has an example batch of patient data in order to 

hypothetically diagnose cancer. The prominent medical fields using these models seem to be 

clinical and diagnostic medicine. This application dates back to 1989 with the first use of ANNs 

to diagnose the risk level of chest pains (Baxt, 1995). Another study was later conducted at a 

cardiac ward with 365 patients where 120 of the 365 had a myocardial infarction. In using this 

data to train a network, the model produced the highest sensitivity and specificity for this field at 

the time (Baxt, 1995). This was then tested in real time with 320 patients and resulted in higher 

sensitivity and specificity than the physician diagnosis. Other medical applications involve using 

data from images, such as chest radiographs and mammograms, and waveform analysis from 

ECGs. The ECG data also relates anterior chest pains with myocardial infarctions, where as 

image data can analyze mammographic data, lung nodules, and malignant lesions for cancer. 

These models were also highly reliable with the image analysis determination out performing the 

radiologist’s diagnosis (Baxt, 1995). The use of ANNs in the medical field serves as evidence to 

the possible accuracy of learning programs and has promoted the use and expansion into other 

fields. 
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ANNs are applicable to many more problems including credit card fraud protection, 

airline seating allocation, loan approval, real estate analysis, missile guidance and detonation, 

and continuous-casting control during steel production (Widrow, Rumelhart, & Lehr, 1994). 

Those applications are only the multilayer nonlinear problems, as are the above examples. Most 

applications of ANNs use a nonlinear system, since the priority benefit of using ANNs is to 

relate complicated data. Linear ANNs would be similar to best-fit analysis. The ANN type is 

dependent on the type of problem the designer is trying to solve and leads to a versatile 

application of ANNs while still proving an accurate modeling tool. The use of such a modeling 

tool has yet to be applied to the area of natural hazards impact prediction. 

2.5 Summary 

Hurricanes are one of the costliest natural disasters to occur in the U.S. with the ability to 

affect over half of the current population. These events are large atmospheric systems formed in 

warm, humid, climates, which create intense winds, heavy rainfall, and a rise in ocean level that 

can impact society by resulting in economic damage and loss of life. These results can vary in 

severity based on numerous factors from wind speed to storm surge to infrastructure to 

geography. These factors can then have differing values and scales of intensity, which would 

produce differing results. Wind speed becomes more of a hazard at higher values and in areas of 

dense infrastructure that result in increased debris, which puncture holes in structures, increasing 

internal pressures, and therefore increasing damage. Even though wind carries a destructive 

power, storm surge actually contributes more to the overall cost of damage due to its even more 

powerful nature along with the increased value of properties along the coast. Flooding, in general, 

is more likely to cause significant damage than wind; this includes heavy precipitation, which 
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can linger over a long period of time. Flooding and storm surge effects are also the main cause 

for destruction and disruption of utilities and transportation services. All of these factors are 

subsequently affected by the geography of the landfall location in which they strike. Urbanized 

areas are prone to worsened flooding conditions while areas with wetlands and barrier islands are 

more protected from harmful floodwaters. In addition, urbanized areas also have more people, 

and therefore more infrastructure, in harms way along with poorer communities, which tend to 

be less resilient to such disasters. All of these factors, and the related variations, have a 

contribution to the overall resulting impact of a hurricane event. 

There are current models in use that combine some of these parameter in order to 

determine the resulting damage. The most commonly used loss estimation model is HAZUS-MH. 

This model serves well to estimate the resulting loss (cost) of a specific hurricane, earthquake, or 

flood event by using multiple hazard factors to subsequently incorporate into a damage model, 

which then translates to a loss model. Florida has its own similar model, which is mainly used 

for insurance and mitigation purposes. HAZUS-MH uses more meteorological variables than the 

FPHLM does; however, the FPHLM uses a more comprehensive building inventory. While these 

models are well served as loss estimation tools for insurance, budgetary, and mitigation purposes, 

neither of these are used as a means to communicate risk and vulnerability to the general public, 

which is still mainly reliant on the Saffir-Simpson Scale (based solely on wind speed). 

Most experts working in the field of natural hazards understand these parameter variances 

that previous and current models have tried to capture. Neural networks are a form of artificial 

intelligence that can attempt to recreate these connections by learning from the same historical 

events that experts are basing their knowledge on. Within this research, neural networks will be 

fed historical data based on these varying parameters and subsequently attempt to match them 
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with the corresponding results provided. The neural network will accomplish this through 

multiple iterations of the data where the predicted result will be compared to the actual result in 

order to determine the error of the prediction. Backpropagation will then be used to adjust the 

contribution of each parameter, as it pertains to the result, until that error, is minimized. This 

approach will serve as another possible predictive model with the purpose of providing the 

predictive results in a clear and concise manner to communicate the risk of a hurricane event to 

the public in a way that more accurately describes the situation at hand by using multiple 

parameters, as most individuals do anyways. The use of such a system could also reduce 

instances where shadow evacuees should have actually been told to evacuate and “crying wolf” 

instances. This will be accomplished by using a ranking system that provides levels of expected 

damage, as compared to historical hurricane events, based on the various parameters previously 

discussed in this chapter. The product will be the proposed Impact Level Ranking System.  
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CHAPTER 3 
 

PUBLICATIONS 

3.1 Hurricane Impact Prediction: A Multivariable Approach Using Neural 

Networks  

Hurricanes are complex meteorological events that impact society in different ways based 

on variations of multiple contributing factors. The resulting economic damage from one of these 

storms is a product of variations in the landfall location and population affected as well as wind 

speed, pressure, storm surge, and precipitation. However, the category ranking, Saffir-Simpson 

Scale, solely by wind speed is what the general public focuses on, but the correlation between 

this one parameter and the resulting damage is weak. Within this study, a new Impact Level 

Ranking System based on economic damage will be introduced and used as the outcome 

attributed to variations in these multiple hurricane parameters. Since the link between multiple 

parameters and one such outcome of a hurricane is a complex and non-linear problem, six neural 

network variations will be assessed for the best way to present such data to an artificial 

intelligence program.  The resulting percent errors are low enough to consider each model viable, 

but those, which perform better through training and trial simulations, have a lower number of 

inputs. The ability to establish such complex connections, paves the way for a new method of 

forecasting hurricane events using the most applicable, and easily available, variables. 

3.1.1 Introduction 

Tropical Cyclones account for roughly 47% of all billion-dollar events, which amounts 

for 80% of The United States (U.S.) losses from combined severe weather and climate events 
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(Smith & Katz, 2013). With most of the U.S. population living near the coastline, tropical 

cyclones (hurricanes) are high-risk events. Hurricanes bring multiple meteorological factors, 

such as extreme winds, storm surge, and heavy precipitation, ashore, which can cause extensive 

damage. However, these meteorological factors are not the only contributors to the resulting 

damage since possible landfall locations vary in population (urbanization), infrastructure, and 

geography. These additional factors can either enhance or minimize the resulting impacts but are 

not typically well communicated or understood by the general public. Increased infrastructure 

can exacerbate damage by increasing debris and minimizing precipitation absorption leading to 

further damage downwind and increased flooding hazards, respectively. Additionally, areas with 

channels or bays can either direct storm surge into a populated area or serve as a protection 

mechanism depending on where the storm makes landfall relative to geographical features. 

These factors along with the range of intensity of meteorological factors can affect the actual risk 

of on oncoming event.  

Experts have observed the above-mentioned factors and their effects over time. Existing 

damage models account for most of the contributing factors but usually focus on the possible 

damage to residential structure, likely due to the insurance focus in most models. Both states and 

insurance companies are interested in the degree of anticipated damage for certain hurricane 

events. These various models are designed for the benefit of state offices by providing damage 

estimates in order to process claims correctly and for insurers to provide representative insurance 

quotes (Hamid et al., 2011; Pinelli et al., 2011; Vickery, Lin, et al., 2006). Due to the specific 

focus of these models and their use, some damage contributors are neglected such as 

precipitation or storm surge. The use of all meteorological, population, and infrastructure factors 
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leads to a more encompassing impact assessment for a tropical cyclone making landfall along the 

U.S. coastline.  

By using neural networks, a machine learning process, these connections could be 

recreated to produce a simplified and concise evaluation of risk. Neural networks learn based off 

of provided historical data in order to later match new events to a resulting outcome. The use of 

backpropagation by evaluating the error between the network’s predicted outcome and the actual 

target outcome until the result is minimized is how these neural networks learn. This is similar to 

how the human brain learns by establishing connections between inputs and other neurons until 

finally a result or outcome is determined. Since experience is the biggest teacher in this field, this 

approach will be initially evaluated herein for the collaboration of all these variables to produce a 

simplified level of economic damage.  

3.1.2 Data Collection 

In order to create a comprehensive neural network pattern recognition model for 

hurricane impact prediction, the data must cover meteorological factors as well as location 

characteristics. For the models created herein, the variables assessed and used for neural network 

training are wind speed, tropical storm force wind radii, pressure, storm surge, rainfall 

accumulation, population, and landfall location(s). These variables were assimilated from 

historical reports and complied with corresponding storm impacts (economic damage). Multiple 

models were created from this data in order to explore possible ways of presenting the data to be 

trained. 

The data used to train the networks were mainly referenced from the Tropical Cyclone 

Reports (TCRs) put together by the National Hurricane Center (NHC) for public reference 

(National Oceanic and Atmospheric Administration (NOAA) & National Hurricane Center 
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(NHC), 2014a). The TCRs not only contain the wind speed, maximum rainfall, maximum storm 

surge, and minimum pressure at the landfall location, these also report the estimated (and some 

later corrected) damage and death toll (both direct and indirect) from each storm. Since remnants 

of a storm are not considered in the TCR damage tally, the models inherently account for events 

of tropical storm ranking or higher that make landfall along the United States coastline. These 

TCRs trace back to the 1995 Hurricane Season, resulting in 77 events dating back from the 2012 

Hurricane Season.  

Typically, in one of the first tables incorporated in each TCR for the “best track”, the 

landfall latitudes and longitudes will be given along with the maximum wind speed and 

minimum pressure at those locations. Sustained wind speeds were given in knots and converted 

to miles per hour for model use. Minimum pressure at landfall was kept in milibars. Since it is 

possible for a storm to make landfall at one or more position along the U.S. coast, most of the 

created models allow for the possibility of having four distinct landfall locations. A landfall 

location is determined by where the center of the storm, or eye, crosses the coastline and is 

entered as latitude and longitude degrees (all positive numbers since the locations are all within 

the same small quadrant). Some of these positions are directly next to each other, noted by the 

minuscule changes in these latitude-longitude coordinates. An example of this would be a 

hurricane that makes landfall on the small islands directly off shore of Louisiana and then the 

storm continuing on track to the continental shoreline of Louisiana. Due to the extremely close 

proximity of these locations, only one was used as a landfall position within the model. Typically, 

the meteorological statistics do not change between the two locations (i.e. wind speed and 

pressure).  
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The storm surge and precipitation data were extracted from a subsequent table for 

“surface observations” in the TCRs. In these tables “storm surge” is defined as the “water height 

above normal astronomical tide” and is reported in feet and entered into the models as such. The 

precipitation was reported as the total rainfall in inches, so those units were also used for the 

models. This data was less obvious to correlate. For a storm with a single landfall location, the 

maximum storm surge and precipitation were simply used. However, if there was more than one 

landfall location, an educated deduction was made for the maximum amounts relative to each 

landfall location, i.e. the use of precipitation maps and the knowledge that the storm surge is 

largest to the right of center, was applied. Also, precipitation does not vary as consistently as 

storm surge does and can occur further away from landfall. Since the actual storm advisories 

indicate that “some locations” could receive a maximum of X amount of rain, the precipitation 

used was the maximum independent of location. In some cases, the storm surge and precipitation 

data listed in the TCR were indicated to be incomplete or estimated; these values were not used 

for the most part, unless it was the only applicable data point. However, “unofficial” data was 

still used as the NHC does some quality control prior to publishing these reports. There are some 

storms or just landfall locations that do not have any corresponding data for storm surge or 

precipitation either due to no reported data or lack of significant U.S. landfall.  

The population affected by a tropical cyclone event is not directly stated in any historical 

files; therefore, it had to be extrapolated using data shapefiles from the U.S. Census and NHC in 

QGIS mapping software. The U.S. Census currently has the 2010 population shapefiles available, 

which contain county population data (U.S. Census Bureau, 2014).  The NHC keeps historical 

shapefiles of wind radii for past storm events tracking back to 2008 (National Oceanic and 

Atmospheric Administration (NOAA) & National Hurricane Center (NHC), 2014b). The wind 
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radii shapefiles for storms that occurred previous to 2008 had to be manually created based off of 

the known wind radius upon landfall from the NHC historical data (advisories) dating back to the 

1998 Hurricane Season (National Oceanic and Atmospheric Administration (NOAA) & National 

Hurricane Center (NHC), 2012). Therefore, the wind radius, in miles, is known for each tropical 

cyclone event. According to the NHC, a wind radius would be larger on the right side of the 

storm, and were represented as such in the shapefiles. The limited availability of this data 

determined the cut off point for the total number of historical hurricane events for this study.  

The radius of maximum winds is defined as “the distance in miles from the storm’s 

center to the circle of maximum winds around the center” (National Hurricane Center (NHC), 

2014). The wind radii shapefiles for tropical storm strength winds were used and overlapped 

with the U.S. Census data in QGIS in order to extract the population data from the counties that 

fell within the tropical storm force wind radius. Tropical storm force winds were used as a 

measure for outlining areas that could be subsequently connected to the resulting impact along 

with the possibility for damage caused by the system as it becomes post tropical. An example of 

this is shown in Figure 3-1(b), where the shaded area represents the overlap in the tropical storm 

force wind radii and U.S. counties. This created a new shapefile where the total population 

within the shaded area could be determined. It is worth noting that since tropical storm force 

winds were used, any areas that might have been affected by post tropical remnants are unlikely 

to be represented in this data. 
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        (a)              (b) 

Figure 3-1 Areal extent of Hurricane Katrina 2005;  
(a) NOAA Satellite image (National Oceanic and Atmospheric Administration (NOAA), 2005) 
and (b) Radius of tropical storm force winds for both landfall location and the resulting affected 

counties. 
 

This retrieved population was then scaled based on U.S. Census population in 2010 for 

the state of landfall and the population for the relevant year (RY) of landfall, by Equation (3.1). 

This number was then rounded to the nearest 100,000 in order to provide a more general number 

for model training and account for possible errors in using QGIS and population conversion.  

                           (3.1) 

The wind radii and extrapolated population are not as exact as the meteorological and 

location parameters that were simply read out of the TCRs. However, given the forecasting 

nature of tropical cyclones, this data would typically be reported as an educated estimate. In 

addition, when the media reports a population estimate of those to be affected by a major storm, 

the number would likely be inflated. These parameters are intended to mainly communicate a 

comparative amount of people and infrastructure in the path of the storm and being off by a few 

tens of thousands would unlikely make a large contribution to the overall amount. 

miles from the storm’s center to the circle of maximum winds around the center” 
(National Hurricane Center (NHC), 2014). The wind radii shapefiles for tropical storm 
strength winds were used and overlapped with the U.S. Census data in QGIS in order to 
extract the population data from the counties that fell within the tropical storm force wind 
radius. An example of this is shown in Figure 1(b), where the hatched area that represents 
the overlap in the tropical storm force wind radii and U.S. counties. This created a new 
shapefile where the total population within the hatched area could be determined.  

 
        (a)              (b) 

Figure 1. Areal extent of Hurricane Katrina 2005; (a) NOAA Satellite image (National Oceanic and 
Atmospheric Administration (NOAA), 2005) and (b) Radius of tropical storm force winds for both landfall 

location and the resulting affected counties. 

This retrieved population was then scaled based on U.S. Census population in 
2010 for the state of landfall and the population for the relevant year of landfall, by 
Equation 1. This number was then rounded to the nearest 100,000 in order to provide a 
more general number for model training and account for possible errors in using the GIS 
software and converting to the relevant year (RY) population.  
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 The resulting deaths, both direct and indirect, and economic damage estimates 
were given in the TCRs under “Causality and Damage Statistics”. The economic damage 
given is mainly an estimate determined by doubling the insurance claims to account for 
both insured claims and uninsured damage and then adding the National Flood Insurance 
Program data. These estimates appear to remain substantially close to the actual resulting 
damage and in some cases NHC has gone back and altered the total. The damage totals 
were reported in current year (CY) dollars in the TCRs, therefore the TCR economic 
damage was then converted to 2012 dollars, for consistency within the model, by 
Equation 2. This conversion referenced construction price indices (PI) from U.S. Census 
(U.S. Census Bureau, 2010).  
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The resulting deaths, both direct and indirect, and economic damage estimates were given 

in the TCRs under “Casualty and Damage Statistics”. Doubling the insurance claims, in order to 

account for both insured and uninsured damage, and then adding the National Flood Insurance 

Program data is how the NHC determines and reports an estimate for economic damage. These 

estimates appear to remain substantially close to the actual resulting damage and in some cases 

NHC has gone back and altered the total. The damage totals were reported in current year (CY) 

dollars in the TCRs, therefore the TCR economic damage was converted to 2012 dollars, for 

consistency within the model, using Equation (3.2). This conversion referenced construction 

price indices (PI) provided by the U.S. Census (U.S. Census Bureau, 2010).  

                                    (3.2) 

This consistency of historical data being in 2012 dollars indicates that the Impact Level 

Ranking System and output from the model will be in consideration of 2012 dollars as well. In 

order to check how this would affect certain historical events and where they fall within a 

respective Impact Level, the storm events from 2012 back to 1998 were ranked by both TCR 

estimates and the resulting 2012 adjustment. The Impact Levels for the events mainly remained 

the same even though some events switched rank in the overall order of most economic damage. 

This indicates that, while the ranking list might shift with relative economic adjustment, storm 

economic damage will still fall within the correct Impact Level ranking. These conversions are 

vital in ensuring cohesion among the historical data and are conducive to more suitable neural 

networks.    

miles from the storm’s center to the circle of maximum winds around the center” 
(National Hurricane Center (NHC), 2014). The wind radii shapefiles for tropical storm 
strength winds were used and overlapped with the U.S. Census data in QGIS in order to 
extract the population data from the counties that fell within the tropical storm force wind 
radius. An example of this is shown in Figure 1(b), where the hatched area that represents 
the overlap in the tropical storm force wind radii and U.S. counties. This created a new 
shapefile where the total population within the hatched area could be determined.  

 
        (a)              (b) 

Figure 1. Areal extent of Hurricane Katrina 2005; (a) NOAA Satellite image (National Oceanic and 
Atmospheric Administration (NOAA), 2005) and (b) Radius of tropical storm force winds for both landfall 

location and the resulting affected counties. 

This retrieved population was then scaled based on U.S. Census population in 
2010 for the state of landfall and the population for the relevant year of landfall, by 
Equation 1. This number was then rounded to the nearest 100,000 in order to provide a 
more general number for model training and account for possible errors in using the GIS 
software and converting to the relevant year (RY) population.  
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 The resulting deaths, both direct and indirect, and economic damage estimates 
were given in the TCRs under “Causality and Damage Statistics”. The economic damage 
given is mainly an estimate determined by doubling the insurance claims to account for 
both insured claims and uninsured damage and then adding the National Flood Insurance 
Program data. These estimates appear to remain substantially close to the actual resulting 
damage and in some cases NHC has gone back and altered the total. The damage totals 
were reported in current year (CY) dollars in the TCRs, therefore the TCR economic 
damage was then converted to 2012 dollars, for consistency within the model, by 
Equation 2. This conversion referenced construction price indices (PI) from U.S. Census 
(U.S. Census Bureau, 2010).  
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3.1.3 Data Communication  

All the details discussed within Section 2.2 illustrate the importance of considering all the 

meteorological and location characteristics involved in a landfalling hurricane event. The public 

relies heavily on the use of the Saffir-Simpson Scale during an impending hurricane event; 

however while the Saffir-Simpson Scale has its uses and is informative in relaying the severity of 

a hurricane, specifically in relation to wind speed, the actual ability of a storm to cause damage is 

tied to much more. The public’s reliance on only this ranking system can become misleading as a 

Category 1 hurricane could cause just as much damage as a Category 3+ hurricane. The Impact 

Level Ranking System was created not only as a means to address these misconceptions but also 

as a general way to output a forecasted storm impact. Outputting a dollar amount for economic 

damage or number of deaths could have higher errors as well as be subject to greater criticism if 

the actual results differ.  In general, this ranking system was designed as a form of thresholds, or 

levels, for ease of use.  

The proposed system divides storm events into damage Impact Levels 0 through 5, 

chosen to better mirror current ranking systems for ease of understanding, i.e. the Enhanced 

Fujita Scale of EF-0 to EF-5 and the Saffir-Simpson scale from a Tropical Storm to Category 5 

Hurricane ranking. An Impact Level of zero indicates minimal, or possibly zero, reportable 

damage. Minimal damage qualifies as below the $25,000,000 threshold established by the 

Property Claims Service. If a storm does not exceed this threshold, the damage amount is 

typically not reported in the TCRs. The highest Impact Level of 5 is an extremely damaging and 

expensive event costing more the $50 billion (2012 USD). Only two events in all the reference 

historical data qualify as Impact Level 5 events: Hurricane Katrina 2005 and Hurricane Sandy 

2012. All the Impact Levels and thresholds are shown in Table 3-1. The Impact Levels, 
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following Level 0, were determined based on typically discussed threshold values that society 

would reference as well as “evenly” distributing the used events so that Impact Level 5 had the 

rarest occurring events followed by Level 4, leaving Levels 3, 2, and 1 as relatively more 

common rankings.  

Table 3-1 Proposed Impact Level Ranking System 
Impact Level Economic Damage Amount (based 

on 2012 USD) Example Event 

0 < $25 million 2012 Tropical Storm Beryl 
1 > $25 million, < $100 million 2007 Hurricane Humberto 
2 > $100 million, < $1 billion 2008 Tropical Storm Fay 
3 > $1 billion, < $10 billion 2008 Hurricane Gustav 
4 > $10 billion, < $50 billion 2011 Hurricane Irene 
5 > $50 billion 2005 Hurricane Katrina 

 

The models were then built and designed around these levels in order to output a 

forecasted Impact Level for the storm characteristics provided. Based on the historical data used 

to train the model with a corresponding known level of damage, the model will then attempt to 

match the inputs as best it can with the inputs of known events, or interpolate the inputs between 

a range of known inputs, in order to best match a resulting Impact Level. For ease of creating the 

Impact Levels, it was determined that only economic damage would be used instead of both 

economic damage and related deaths. The targets used to train the model can only be a series of 

1’s and 0’s, therefore only one storm resultant could be used, and in this case that resultant was 

decided to be economic damage. This was confirmed by ranking the historical tropical cyclone 

events by just resulting economic damage and comparing it to ranking economic damage and 

deaths combined. Using a statistical value of life of $4,000,000 (Blomquist, 2004) multiplied to 

the number of deaths and then added to the economic damage, the storm events were ranked by 

the resulting total. The events remained in the same impact levels, as without the deaths added, 

indicating that simply using the economic damage would be sufficient. The model will 

essentially output a range of economic damage in the form of these levels. 



69 

3.1.4 Model Description and Performance Evaluation 

The first step in creating a neural network model is the ability to comprehend the problem, 

which includes the correct assimilation of data. Since neural networks are learning algorithms 

that can establish patterns, the programmer must ensure that the data is arranged in such a way 

that patterns can be significantly established. For predicting hurricane impacts in the U.S., six 

networks (models) were created to confirm the best way to present hurricane data to a neural 

network. The data presentation variances here were assigned in order to resolve the differences 

and factors of landfall locations. For instance, it could be possible for population to be a 

redundant variable if the landfall and wind radii are known since it would be a characteristic of 

the location and the training algorithm could hypothetically draw that conclusion. These 

variations will not only allude to a better way to present data, but could also help indicate which 

variables are more vital. The six models vary how many times meteorological parameters are 

entered for four possible landfall locations as well as alternate between the use of the population 

affected and wind radii. These variations also, in turn, result in a range of input matrix sizes to 

evaluate how much data is absolutely necessary. Table 3-2 shows the difference between all six 

models. 
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Table 3-2 Variations Between the Six Models used in the Simulations 
Model 

No. Variables Input Matrix 
Size Description 

1 Population Affected 
At each landfall: 

Latitude 
Longitude 

Pressure (mbar) 
Wind Speed (mph) 
Storm Surge (feet) 

Precipitation (inches) 
 

25x66 Population affect is entered first followed by the 
landfall locations and the relevant meteorological 

parameters at that location. 

2 Substitute in wind 
radius at each landfall 

(LF) for population 

28x66 Instead of using the population affected, use the wind 
radii. The wind radius will be entered at each 

landfall, as opposed to the max, so this will add rows 
(population was only the event total). 

3 Population Affected 13x66 The meteorological parameters will be reported as the 
max between all landfalls. But the various landfalls 
will be noted by their location. Overall population 

affected will be used. 

Pressure (mbar) 
Wind Speed (mph) 
Storm Surge (feet) 

Precipitation (inches) 
1st LF: Lat, Lon, 
2nd LF: Lat, Lon 
3rd LF: Lat, Lon 
4th LF Lat, Lon 

4 Pressure (mbar) 16x66 The meteorological parameters will be reported as the 
max between all landfalls. But the various landfalls 
will be noted by their location. The wind radius will 

be used here with each landfall location. 

Wind Speed (mph) 
Storm Surge (feet) 

Precipitation (inches) 
1st LF: Lat, Lon, wind 

radius 
2nd LF: Lat, Lon, wind 

radius 
3rd LF: Lat, Lon, wind 

radius 
4th LF Lat, Lon, wind 

radius 

5 Pressure (mbar) 12x66 The meteorological parameters will be reported as the 
max between all landfalls. But the various landfalls 

will be noted by their location. No wind radii or 
population were used. 

Wind Speed (mph) 
Storm Surge (feet) 

Precipitation (inches) 
1st LF: Lat, Lon 
2nd LF: Lat, Lon 
3rd LF: Lat, Lon 
4th LF Lat, Lon 

6 Population Affected 5x66 The meteorological parameters will be reported as the 
max between all landfalls. Total population affected 

will be used, but no landfall coordinates. 
Pressure (mbar) 

Wind Speed (mph) 
Storm Surge (feet) 

Precipitation (inches) 
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The training inputs for pattern recognition are in matrix form of numerical values and 

target (desired output) values in a matrix of 1’s and 0’s. The target matrix form serves to confirm 

or deny a certain output, in this case, Impact Levels. The trained target matrix in this research 

results in a 6x66 matrix. In other words each of the 66 storm events have a corresponding 6x1 

matrix to indicate its Impact Level. The six rows represent Impact Levels 0 – 5. If a matrix row 

contains a 1, this signals a confirmation for that respective row’s Impact Level. For example, if 

an event’s target matrix contains a 1 in row 4 then the tropical cyclone is an Impact Level 3 

event, if the 1 is in row 1 then the tropical cyclone is an Impact Level 0, etc. After training the 

network for use, the outputs for a possible event will be produced in a similar form except the 

numbers will not be exactly 1’s or 0’s, instead the decimals serve as the level of confidence the 

network has in placing the given event in that Impact Level. Therefore, the predicted impact 

level would be determined by referencing the highest value in the output matrix. Matrix Equation 

(3.3), from left to right, shows the impact level matrix setup, the training target matrix used for 

an Impact Level 3 event, and a possible output matrix for another Impact Level 3 event (once in 

use).  

Matrix'Setup:
!"#$%&!!"#"$!0
!"#$%&!!"#"$!1
!"!"#$!!"#"$!2
!"#$%&!!"#"$!3
!"#$%&!!"#"$!4
!"#$%&!!"#"$!5

!!!!!!!!!!!!!=

Impact'Level'3'Target'Matrix
0
0
0
1
0
0

≈ !

Possible(ANN(Output(Matrix
0.0012
0.2305
0.4451
0.9872
0.4397
0.0003

             (3.3) 

 

For comparison sake, each of the subsequent models has the same network structure 

shown in Figure 3-2. The “w” and “b” symbolize the weights and biases, respectively. The 

curved function line in each layer indicates a nonlinear relationship between layer/neurons. The 

only change is the number of inputs, here 25 for the 25x66 input matrix of Model 1 (discussed 
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later on). This structure may vary by the number of inputs, but the number of outputs and hidden 

neurons remain the same for this study. Additionally, the training data, validation data, and 

testing data was randomly allocated as 70%, 15%, and 15%, respectively as another means of 

maintaining consistency.  

 

Figure 3-2 General ANN structure for all developed models  
 

Model 1  

Model 1 serves as the model basis as it contains all the originally considered elements; 

that is population affected, latitude, longitude, pressure, wind speed, storm surge, and 

precipitation at possible landfalls one through four. If there is only one landfall location the 

remaining landfall location inputs will default to zero. This results in an input matrix of 25x66, 

which could be thought of as a large input matrix possibly affecting the abilities of the neurons to 

make substantial connections. The data matrices for the input and output variables were 

simulated multiple times in order to determine the best possible resulting network. Figure 3-3 

shows the training performance for the network that produced that lowest overall percent error to 

be used as Model 1. The performance shows when the lowest MSE was reached, resulting in 

terminating the training process and producing a usable ANN. The resulting network has 

corresponding errors for training, validation, and testing that describe how many times the 

pattern recognition tool correctly identified the Impact Level for the corresponding event inputs. 

Figure 3-4 shows the overall network error, combining that of training, validation, and testing. 
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For Model 1, the best performance was achieved after 48 iterations, or epochs, (number of times 

the data was cycled through and altered with backpropagation then checked with six additional 

iterations) reaching an MSE of 0.07462 and resulting in an ANN with approximately 18% error. 

As can be seen in Figure 3-4, Impact Levels 0 and 3 were predicted best, however Impact Level 

1 had a 100% error. This turned out to be a continuing trend with each model. Each retrain 

within the simulations was done until the lowest overall percent error was reached and this did 

not always correlate with all Impact Levels having an equally low prediction error.  

 
Figure 3-3 Performance for the network used as Model 1  
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Figure 3-4 Confusion Matrix representing overall error for the network used as Model 1 
 

Model 2 

The second model built substitutes out population for the radius of tropical storm force 

winds upon landfall. While in Model 1 the population affected is entered once for the whole 

event, the wind radius can change and is therefore entered each time the storm makes landfall 

resulting in a larger input matrix of 28x66. The motive behind this alteration is the possibility 

that if the location is given and the area encompassed is also known, one could interpolate the 

same relevant characteristics as it would by the location and population and it might be simpler 

to input the wind radius directly from the tropical cyclone advisory than the extra step of 

extrapolating population data. Using the wind radii could potentially describe the number of 

people affected, infrastructure quality, and infrastructure density. Figure 3-5 shows the training 

performance for the network that produced that lowest overall network percent error to be used 

as Model 2. Figure 3-6 shows the overall network error, combining that of training, validation, 
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and testing. For Model 2, the best performance was achieved after 55 iterations reaching an MSE 

of 0.0582 and resulting in an ANN with approximately 18% error. As can be seen in Figure 3-6, 

all Impact Levels had less than (or equal to) 50% error, including Level 1. While the overall 

network percent error is similar to Model 1, Model 2 yielded better results in terms of placing 

each event in the correct Impact Level. The similar MSEs between Model 1 and 2 indicate that 

the neural network was equally able to establish a pattern between the varying inputs for the 

same output matrix.  

 

Figure 3-5 Performance for the network used as Model 2  
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Figure 3-6 Confusion Matrix representing overall error for the network used as Model 2 
 

Model 3 

The previous two models had large input matrices and could call into question the 

practicality of using networks due to the large extent of the data required.  In order to explore 

this possibility, Model 3 was created with the intention of designing a smaller input matrix. 

Instead of inputting the meteorology factors (wind, pressure, precipitation, storm surge) with 

each corresponding landfall, the overall maximum wind speed, storm surge, and precipitation 

along with the minimum pressure out of all the landfall locations is entered once. Along with 

these factors, the population affected and the latitude and longitude for four possible landfall 

locations were also used. This results in a smaller matrix of 13x66. Figure 3-7 and Figure 3-8 

show the performance of the established Model 3 and the overall network percent error, 

respectively. For Model 3, the best performance was achieved after 44 iterations reaching an 

MSE of 0.03656 and resulting in an ANN with approximately 17% error. Compared to Models 1 

and 2, the network used for Model 3 has a slightly smaller percent error. As can be seen in 
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Figure 3-8, Model 3 also has a large percent error for Impact Level 1 events, however Levels 0, 4, 

and 5 were all correctly placed when creating this network.  

 

Figure 3-7 Performance for the network used as Model 3 
 

 

Figure 3-8 Confusion Matrix representing overall error for the network used as Model 3 
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Model 4 

In the best interest of completeness, Model 4 is a mix of Model 2 and Model 3. The 

meteorological factors are inputted once as in Model 3, but instead of using the population 

affected, wind radii were used similarly to Model 2 by adding it in with each landfall location 

resulting in an input matrix of 16x66. In other words, all the pertinent meteorological factors are 

entered once followed by each landfall location with its associated wind radius. Figure 3-9 and 

Figure 3-10 show the performance of the established Model 4 and overall networks percent error, 

respectively. For Model 4, the best performance was achieved after 83 iterations, the most of all 

the models, reaching an MSE of 0.04629. Model 4 also resulted in the lowest overall network 

error of all six models discussed herein, with 6% error and logically corresponding to high 

accuracy for prediction of the training data in each Impact Level, with the least accurate being 

Impact Levels 3 & 4 with 17% error. The fact that the produced Model 4 network cycled through 

the training data the most times could attribute to the lowest resulting percent error.  

 

Figure 3-9 Performance for the network used as Model 4 
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Figure 3-10 Confusion Matrix representing overall error for the network used as Model 4 
 

Models 5 & 6  

Models 5 and 6 are arguably the most unique ways to present this data. Model 5 operates 

under the assumption that each location maintains its population and infrastructure 

characteristics. This assumption led to the removal of the use of population affected or wind radii. 

The meteorological parameters are entered the same as in Models 3 and 4 with the four possible 

landfall latitudes and longitudes added leading to an input matrix of 12x66. Model 6 has the 

smallest input of this set of models with a 5x66 matrix. Model 6 removes the latitude and 

longitudes entirely by assuming that the more landfalls a storm makes, the more population there 

is to be affected and therefore, a likely higher amount of infrastructure. However, by leaving the 

landfall location out for Model 6, this theatrically negates infrastructure quality and solely 

focuses on quantity (density). Figure 3-11 and Figure 3-12 show the performance of the 

established Model 5 and overall networks percent error, respectively. Figure 3-13 and Figure 
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3-14 show the performance of the established Model 5 and overall networks percent error, 

respectively. Both of these models’ networks had a resulting percent error in the teens similar to 

Models 1-3. Model 5 did have the second lowest percent error, however notice that both Model 5 

and 6 also did not accurately place most of Impact Level 1 events used for training.  

 

 

Figure 3-11 Performance for the network used as Model 5 
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Figure 3-12 Confusion Matrix representing overall error for the network used as Model 5 
 

 

 

Figure 3-13 Performance for the network used as Model 6 
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Figure 3-14 Confusion Matrix representing overall error for the network used as Model 6 
 

Overall, these six network models preformed relatively well with MSEs below 0.1 

(predictions are better when the MSEs are closer to zero) and network errors of less than 20% 

during this initial building/training process. The results from building each model’s network 

translate to applicability for actual use. The performance MSE indicates how well the pattern 

recognition algorithm was able to establish connections between the inputs and outputs and the 

effectiveness of training with this data. Meanwhile, the confusion matrix demonstrates how 

accurately the network (corresponding to the best MSE) placed each event leading to a more 

accurate knowledge base for the network to reference in real-time use. In order to meet these 

lowest values, the networks had to be retrained multiple times until the lowest possible MSE and 

percent error were reached. The averages for all these simulations (count: 20) are shown in Table 

3-3 and Figure 3-15. Since there were only 66 events used to build these networks the 

predetermined data division for each simulation resulted in only 10 data events for validation and 
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testing. One simulation’s possible data division could have resulted in the only two Impact Level 

5 events distributed to the testing stage, leaving the resulting network error to likely increase 

since there was no previous basis for that level in training and validation. This is why the average 

MSEs and errors are significantly higher than the model networks used. The corresponding 

standard deviations for the overall MSE and percent errors are provided in Table 3-3. Overall, 

Models 3 and 4 produced the best/lowest averages. 

Table 3-3 Overall statistics for Model Networks 1-6 over 20 Simulations 

 
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

Avg. MSE 0.1068 0.1157 0.0888 0.1020 0.1005 0.0918 
MSE SD 0.0364 0.0673 0.0283 0.0362 0.0425 0.0447 

Avg. Percent Error 42.65% 45.45% 36.06% 41.44% 42.65% 36.36% 
Percent Error SD 18.63 20.10 15.20 17.12 22.90 17.32 

 

  
(a)      (b) 

Figure 3-15 Average (a) MSEs and (b) percent errors over multiple (20) retraining simulations 
 

3.1.5 Model Tests 

The next step in determining model usability and functionality for the purposes of this 

study is to conduct each model using a trial event where the outcome is known. The respective 

inputs are entered into each model, which then provides an output in matrix form that indicates 

the most likely Impact Level. The events chosen for the model trials were the 2012 Hurricane 
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Isaac and 2013 Tropical Storm Andrea. For each trial event, all models were conducted and 

compared to the actual Impact Level of the storm.  

Isaac was specifically chosen because it made landfall in Louisiana, which is a common 

landfall location among the training data, along with Texas and Florida, and its resulting damage 

places it in the middle ranking levels, indicating it is significant enough to evaluate without being 

a major event such as Katrina or Sandy. Since Isaac occurred in 2012, it is also a more recent 

event leading to less complications and easier evaluation. Hurricane Isaac made landfall in 

southeastern Louisiana in late August 2012. With a wind radius of 185 miles, it affected 5.6 

million people. All possible input variables are shown in Figure 3-16. Isaac was a Category 1 

Hurricane resulting in $2.35 billion (2012 USD) of economic damage, making it an Impact Level 

3 storm.  

  
 (a)      (b) 

Figure 3-16 Hurricane Isaac: (a) QGIS track, landfall location, and affected counties, and (b) 
corresponding possible relevant variables  

 

 The 2013 Hurricane Season was uneventful, resulting in only one storm to make landfall: 

Tropical Storm Andrea, which was used as another trial event. Andrea made landfall along the 

northwestern coast of Florida with a wind radius of 140 miles and affected 9 million people by 

crossing over central FL. All possible input variables are shown in Figure 3-17. Andrea was only 

Inputs for ANN Models 
Variable Isaac 

No. Landfalls 1 
Population 5.6 million 

TS Wind Radius 185 miles 
Min. Pressure 966 mbar 
Wind Speed 70 knots (80.5 mph) 
Storm Surge 3.4 meters (11-feet) 
Precipitation 70 cm (26.71 inches) 



85 

an Impact Level 0 tropical storm at landfall, indicating that the resulting economic damage did 

not cross the $25 million threshold.  

 

 
(a)      (b) 

Figure 3-17 Tropical Storm Andrea: (a) QGIS track, landfall location, and affected counties, and 
(b) corresponding possible relevant variables  

 

 After gathering all relevant data, the required variables were entered into each model for 

simulation. Figure 3-18 compares the output matrices for the models results of Isaac and Andrea. 

The value in each output matrix row is plotted as it pertains to its relevant Impact Level, such 

that the actual result has a value of zero for all levels except Impact Level 3 for Isaac and Impact 

Level 0 for Andrea. The peak value for each model represents the Impact Level it is forecasting 

as most likely to correspond with the input data given. A convergence of the models indicates 

agreement on the probability of the corresponding Impact Level being achieved.  

Inputs for ANN Models 
Variable Andrea 

No. Landfalls 1 
Population 9 million 

TS Wind Radius 140 miles 
Min. Pressure 992 mbar 
Wind Speed 50 knots (57.5 mph) 
Storm Surge 1.4 meters (4.55-feet) 
Precipitation 38.9 cm (15.28 inches) 
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(a)       (b) 

Figure 3-18 Model comparison for (a) 2012 Hurricane Isaac and (b) 2013 Tropical Storm 
Andrea 

 

As can be seen, most of the models did very well with predicting the Impact Level 3 

event, Hurricane Isaac, with the exception of Model 4, which predicted an Impact Level 2 event. 

However, the Impact Level 0 event, Andrea, has two distinct peaks at Levels 0 and 2. It is 

interesting to note that Model 5 (network error of 14%) was the only model to assign the highest 

likelihood to the correct Impact Level for both trial events, while Model 4 (lowest network error 

at 6%) performed the best for the Impact Level 0, where is correctly placed 96% of the training 

events, but was the only one to assign the highest likelihood to the incorrect Impact Level for the 

Impact Level 3 event, where is correctly placed 92% of the training events. Also, the models that 

appear to be the most confident (highest peaks) correspond to a smaller input matrix, while the 

two models with the largest input matrices (Models 1 & 2) are consistently less confident. What 
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appears to be equally true for all models is that the confidence for Impact Levels further from the 

actual is extremely low, i.e. the confidence for an Impact Level 5 event is nearly zero for every 

model result of Tropical Storm Andrea and the confidence for an Impact Level 0 event for 

Hurricane Isaac is also nearly zero for every model. This implies that these models are unlikely 

to significantly under- or over-forecast a real time hurricane event. This can also be seen in the 

model confusion matrices; most of the time if an event was incorrectly placed, it was one level 

off in either direction.  

Simply based off of the training error and the trial event results, Models 3-6 are proving 

to be the best options for use. This signals that the use of maximum meteorological parameters 

(entered once) and smaller matrices produce more usable models. The use of population versus 

wind radii did not seem to make much of a difference, which implies that both effectively relate 

the amount of population and infrastructure at risk. The success of Model 5 also hints at the 

importance of the landfall location over population or wind radii since it does not include either 

of those and solely focuses on the location. Assuming this holds true, this study would support 

the argument for the importance of infrastructure quality/condition when determining risk and 

vulnerability. Of course, as time goes on and more events become available to test real time and 

later add to the training data set, the validity of these models and this forecasting approach will 

become clearer.  

3.1.6 Conclusion 

Hurricane impact prediction requires a multivariable approach to most accurately 

determine risk, vulnerability, and the resulting outcome. Researchers, engineers, and scientists 

who work with hurricanes intuitively understand the intricacies of each tropical cyclone event 

and how those intricacies will contribute to the resulting outcome. Artificial neural networks 
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allow for the possibility of recreating this understanding that was developed, essentially, through 

experience and pattern recognition. Due to the complexity of using a multivariable approach for 

hurricane impact prediction, the data must be presented in such a way that the network could 

create strong connections between the input data and eventually the resulting output data. For a 

multivariable hurricane problem this means defining a way to best present meteorological data 

(pressure, wind speed, storm surge, and precipitation) and population and infrastructure 

information through landfall location, population affected, and/or the radius of tropical storm 

force winds. 

 After creating six models with various ways to present this data, it was found that the 

neural network created the most usable and confident model networks when the maximum of 

each meteorological parameter (of all possible landfalls) was entered leading to smaller matrix 

sizes. Models that contained either population or wind radii performed equally well within this 

study. This indicates that the networks could draw conclusions on the amount of people and 

infrastructure affected simply from either population or wind radii. The location latitude and 

longitude designates where the storm will hit and some locations are more vulnerable than others 

due to old and dense infrastructure and natural features that would better protect some locations. 

Population also indicates how many people are affected and correspondingly how much 

infrastructure is potentially vulnerable. Since entering the overall maximum meteorological 

parameters was determined best for smaller matrices, this suggests that the location/population 

characteristics are more sensitive data than the meteorological factor when forecasting tropical 

cyclone impacts. Further investigation into neural network weights along with the eventual 

increase in available hurricane data, could lead to confirming these results and producing the 

most applicable Hurricane Impact Level Prediction Model.  
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3.2 Hurricane Impact Prediction: An Assessment of Variable Importance by 

Neural Network Weights 

The economic damage resulting from a hurricane event is the product of multiple 

parameters including the locational characteristics, the population affected, wind speed, storm 

surge, pressure, and precipitation. While it is well understood how each factor may affect a 

building on an individual level, an evaluation over a wide area for a whole event would better 

illustrate how these factors each contribute to the total damage outcome. In order to address such 

a complex and nonlinear problem, this study will utilize the weights allotted to each factor by an 

artificial neural network. Since this is a more obscure approach, six models of varying ways to 

present these parameters will each be evaluated for the weights associated with a one hidden 

neuron and ten hidden neuron model. The combined results will show the significance of some 

factors, such as population and storm surge, and the insignificance of other factors, such as 

pressure and precipitation, to the total resulting economic damage communicated by the Impact 

Level Ranking System. This study provides a better understanding of how landfall location, 

population, wind speed, pressure, storm surge, and precipitation contribute to the level of 

economic damage that could be expected for a hurricane event. 

3.2.1 Overview 

Neural networks, as used in this research, utilize pattern recognition techniques and are 

often employed as predictive methods in various fields. A neural network establishes patterns 

between input matrices and target matrices, provided by the user, by treating the data as inter 

connecting neurons, similar to the anatomy of the human brain. Between these two matrices, or 

“layers”, is another layer of hidden neurons. These hidden neurons serve as a method to increase 
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the number of connections, which are essential for nonlinear problems in which most neural 

network problems are. A neural network is taught by progressing through the presented data 

multiple times (referred to as iterations or epochs) until a lowest mean square error (MSE) is 

reached by using backpropagation.  

The previous study reviewed the best way to present multiple variables in a hurricane 

impact prediction problem to a neural network. Six initial models were created that presented 

meteorological and locational factors differently as input matrices used to build the resulting 

neural network. However, each model has the same target matrix that represents the previously 

introduced Impact Level Ranking System. In this previous study, statistically significant results 

proved the existence of a pattern connection between the input and target matrices built off of 

historical data. These models were also conducted for two trial events, in which the models 

overall well-predicted Impact Level 3 event but were less certain on the Impact Level 0 event.  

This study demonstrated the importance of variables such as population and location in 

determining and communicating risk and vulnerability. To further confirm this as well as 

consider the viability of each individual input factor, the study done herein assesses the 

individual weights between the input and hidden neurons (see neural network structure  Figure 

2-11). Therefore, the hidden neurons will be altered but the same defaults as in the previous 

study will remain, i.e. the training algorithm and the 70% training, 15% validation, and 15% 

testing data separation. The study discussed herein serves more as an analysis of the relevant 

variables when determining economic damage than a contribution to building an overall better 

model for hurricane impact prediction.  
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3.2.2 Model Variables 

Models 1 through 6 vary mainly in ways to communicate the extra factor of population 

and infrastructure, while still containing all relevant meteorological data either at each landfall or 

just the maximum/minimum. This approach allows the neural network to make similar 

connections that an expert in the field would make by combining the severity of the 

meteorological factors with the vulnerability of the landfall location. For example, New York 

City is much more vulnerable to storm surge than the Carolina coastline due to its built out 

shoreline and high urbanization that does not provide any means of excess water absorption, 

unlike the Carolinas’ with barrier islands and wetlands acting as buffers and sponges against 

oncoming waves and flooding. The meteorological factors used for these models are wind, 

pressure, storm surge, and precipitation amount. Since the neural networks only uses numerical 

inputs, the location was communicated by latitude and longitude while the amount of people, and 

therefore infrastructure, was communicated by the population falling within the tropical storm 

wind radius. Table 3-4 shows how these inputs are arranged for the matrix form of Model 1 and 

Table 3-5 outlines how the six models vary these inputs. The wind speed and storm surge used 

are the maximum upon landfall and the pressure is the minimum upon landfall. The precipitation 

is the maximum 24-hour accumulation. When these variables are only entered once, instead of 

each landfall, the maximum (minimum in the case of pressure) value out of all the landfalls is 

used.  
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Table 3-4 Model 1 Input Matrix 
Input Parameters 
Population Affected 

Latitude of Landfall Location 1 
Longitude of Landfall Location 1 

Pressure 1 (mbar) 
Wind Speed 1 (mph) 

Storm Surge 1(ft) 
Precipitation 1 (inches) 

Latitude of Landfall Location 2 
Longitude of Landfall Location 2 

Pressure 2 (mbar) 
Wind Speed 2 (mph) 

Storm Surge 2 (ft) 
Precipitation 2 (inches) 

Latitude of Landfall Location 3 
Longitude of Landfall Location 3 

Pressure 3 (mbar) 
Wind Speed 3 (mph) 

Storm Surge 3 (ft) 
Precipitation 3 (inches) 

Latitude of Landfall Location 4 
Longitude of Landfall Location 4 

Pressure 4 (mbar) 
Wind Speed 4 (mph) 

Storm Surge 4 (ft) 
Precipitation 4 (inches) 
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Table 3-5 Model Input Variances 
Model 

No. Variables Input Matrix 
Size Description 

1 All 25x66 Shown in Table 3-4 

2 Substitute in wind 
radius at each landfall 

(LF) for population 

28x66 Instead of using the population affected, use the wind 
radii. The wind radius will be entered at each 

landfall, as opposed to the max, so this will add rows 
(population was only the event total). 

3 Population Affected 13x66 The meteorological parameters will be reported as the 
max between all landfalls. But the various landfalls 
will be noted by their location. Overall population 

affected will be used. 

Pressure 
Wind Speed 
Storm Surge 
Precipitation 

1st LF: Lat, Lon, 
2nd LF: Lat, Lon 
3rd LF: Lat, Lon 
4th LF Lat, Lon 

4 Pressure 16x66 The meteorological parameters will be reported as the 
max between all landfalls. But the various landfalls 
will be noted by their location. The wind radius will 

be used with each landfall location. 

Wind Speed 
Storm Surge 
Precipitation 

1st LF: Lat, Lon, wind 
radius 

2nd LF: Lat, Lon, wind 
radius 

3rd LF: Lat, Lon, wind 
radius 

4th LF Lat, Lon, wind 
radius 

5 Pressure 12x66 The meteorological parameters will be reported as the 
max between all landfalls. But the various landfalls 

will be noted by their location. No wind radii or 
population were used. 

Wind speed 
Storm Surge 
Precipitation 

1st LF: Lat, Lon 
2nd LF: Lat, Lon 
3rd LF: Lat, Lon 
4th LF Lat, Lon 

6 Population Affected 5x66 The meteorological parameters will be reported as the 
max between all landfalls. Total population affected 

will be used, but no landfall coordinates. 
Pressure 

Wind Speed 
Storm Surge 
Precipitation 
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3.2.3 Methodology 

The purpose of using backpropagation for neural network training is to propagate the 

error back, after each iteration, through the function in order to adjust the weights and biases on 

the neurons for each layer. The weights are placed on the neuron connections between layers, i.e. 

from an input neuron to each hidden neuron and from a hidden neuron to each output neuron. If 

the weight is positive then the connection is an excitatory one, whereas a negative weight 

correlates to an inhibitory connection. This means that a negative weight actually imposes a 

restraint on the connection, and therefore the result at the next connection. These weights can 

roughly show the importance of each input, however with more hidden neurons and more 

connections, it becomes harder to determine how these weights dictate the importance of each 

variable. The biases act directly on the hidden and output neurons and serve more so as a way to 

move a function over so that it is bound by the outputs 0 and 1 and do not directly impact the 

importance of any specific neuron.  

As a starting point, weights are typically adjusted until the lowest mean square error is 

reached resulting in the creation of the best possible network. It is possible, when creating the 

network, to also produce the resulting weights an biases using the MATLAB command [b, IW, 

LW] = seperatewb(net,wb). The “b” represents the biases on the hidden neurons and the output 

layer neurons. The “IW” is termed the “inner weights” and represents the weights on the 

connections between the inputs and the hidden neurons, while the “LW” is termed the “layer 

weights” and represents the weights between the hidden neurons and the outputs. These inner 

weights are in a matrix with the size of number of hidden neurons by number of inputs and the 

layer weights, for these models, are in a matrix with the size of the number of outputs by number 

of hidden neurons.  
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In order to draw a rough sense of how the variables for each of the six models contributed 

to the overall outcome, these weights and biases were extracted for a one hidden neuron model, 

as demonstrated in Figure 3-19. This does over-simplify the networks and could lead to higher 

network percent errors, but it is the best way to approximate the inputs’ individual contribution. 

This structure results in a smaller web of interconnecting neurons, which can be easier to trace 

reactions through the network. For this approach, each model was simulated ten times and an 

average for each weight was taken along with the percent error and MSE for reference. The 

averages are assessed herein as they would account for times the network resulted in excitatory 

(positive) and inhibitory (negative) weight connections. There is, however, still significant 

speculation over whether or not these weights can correctly communicate how exactly the inputs 

contribute to the outputs since there are also weights between the hidden neuron and the outputs 

(Impact Levels 0 – 5). This is because the weights from the input neurons mostly describe how 

those variables connect to that one hidden neuron, from here the information travels in six 

different possible directions for the Impact Levels. Even more specifically, these weights cannot 

directly say which input variable is most important for each Impact Level, or amount of damage. 

 
Figure 3-19 Basic neural network structure with one hidden neuron 
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However, for comparison sake, the models were also built and simulated with ten hidden 

neurons until a resulting overall percent error of under 20% was achieved. The weights and 

biases were also taken from this lowest percent error network. This lowest percent error for ten 

hidden neurons was incorporated  for the overall analysis when it was realized that the results for 

one hidden neuron had significantly larger percent errors that always exceeded 20%. Again, 

since this many neurons indicate a more complex web of data transference, the importance of 

each variable is hard to track. Therefore, the average weight of each input variable to each 

hidden neuron was taken, i.e. each variable has ten weights, one to each hidden neuron. In this 

case, only the weights between the input neurons and the hidden neurons will be shown as a 

means of comparison.  

Overall, this approach would give an idea of which variables are more important and 

those that could possibly be reconsidered. It will also provide another way to assess the accuracy 

of each model in how it makes connections from the given variables. The weights on the 

connections between the hidden neuron and the output Impact Levels could also help assess the 

likelihood of an event being placed in each level. 

3.2.4 Model Analysis  

Model 1 

 In originally building and testing Model 1, it was found that the large amount of input 

variables, due to entering the meteorological factors at each landfall, actually exacerbates the 

overall resulting error and performance in comparison with the other models. The original 

simulations from the first study (Section 3.1), with the default of ten hidden neurons, produced a 

lowest and average percent error of approximately 18% and 46%, respectively. When this model 

data was evaluated with one hidden neuron it produced a lowest and average percent error over 
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10 simulations of approximately 44% and 69%, respectively. Table 3-6 summarizes the average 

overall weight connections and average biases for the one hidden neuron versions of Model 1, 

the maximum and minimum average weights are shown in bold for reference.  

Table 3-6 Model 1 Average Weights and Biases over 10 Simulations for 1 Hidden Neuron 
Structure 

Input 
Variable 

Input 
Weights Hidden Neuron Layer 

Weights Output Layer 

Population 0.1829 

1 
(Bias = -0.1269) 

 

-1.7585 Impact Level 0 
(Bias = 1.5958) 

Landfall 1 
Latitude  -0.0354 
Longitude -0.0152 
Pressure  -0.3404 
Wind Speed 0.1310 
Storm Surge 0.1470 

3.3258 Impact Level 1 
(Bias = -2.0703) 

Precipitation -0.0943 
Landfall 2 

Latitude  0.2179 
Longitude 0.2137 
Pressure  0.0520 

-1.6832 Impact Level 2 
(Bias = 0.3209) 

Wind Speed 0.1344 
Storm Surge 0.1162 
Precipitation 0.0932 

Landfall 3   
Latitude  0.0478 

3.3703 Impact Level 3 
(Bias = 0.6071) 

Longitude -0.0140 
Pressure  -0.0483 
Wind Speed 0.0551 
Storm Surge 0.0709 

3.3971 Impact Level 4 
(Bias = 1.9526) 

Precipitation 0.0750 
Landfall 4 

Latitude  -0.1256 
Longitude -0.0120 
Pressure  0.0466 

-1.4491 Impact Level 5 
(Bias = -1.9080) 

Wind Speed -0.0158 
Storm Surge N/A 
Precipitation  -0.0090 

 

One of the first things to note for the Model 1 results is that there were no weights 

between the fourth landfall storm surge and the hidden neuron. This is because there was only 
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one training event that actually had four landfall locations and there wasn’t a corresponding 

storm surge for the fourth location. This resulted in zeros for this whole row of the input matrix 

and it was therefore disregarded. On the landfalls where storm surge did occur, it can be seen 

that it positively contributes to the resulting outcome. If this holds throughout the connections, 

then this supports what would be expected, since it has been widely noted that storm surge is 

likely the most significant factor in resulting economic damage from a hurricane, as was covered 

in Section 2.2.2. Population is also positive as would be expected, while pressure is typically 

negative. Pressure was originally included due to its meteorological correlation to wind speed, 

however, it does not directly interact with infrastructure to cause damage. Precipitation and wind 

speed seem to vary more among landfalls in concerns to their positive or negative contribution, 

this could signal that these are more neutral factors overall. The tricky factors, that will be a 

common complication in each model, are the landfall locations. There are instances when both 

the latitude and longitude are negative and instances where both are positive, however, there are 

also situations where one is negative and one is positive. For further comparison, Figure 3-20 

below shows the averaged input weights between ten hidden neurons for a model network 

resulting in 15% error.  
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Figure 3-20 Model 1 average weights between 10 hidden neurons for different landfalls. 

 

The results of the ten hidden neuron simulations roughly correlate to the results achieved 

with one hidden neuron except that now storm surge seems to become an inhibitory connection 

for some landfalls. Precipitation, specifically, becomes more complex in that for the first landfall 

it is the most inhibitory, yet the most excitatory of all 25 inputs for the next landfall. The overall 

results for Model 1 show that the values of all the input weights are each relatively closer to zero 

and correlates to the issue of having excessive number of inputs resulting in weaker established 

connections between neurons.  

Model 2 

As with Model 1, Model 2 also has a large number of inputs that increased the overall 

resulting error and lowered the performance in comparison with the other models. The original 
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simulations from the first study (Section 3.1),, with the default of ten hidden neurons, produced a 

lowest and average percent error of approximately 18% and 45%, respectively. When this model 

data was evaluated with one hidden neuron it produced a lowest and average percent error over 

ten simulations of approximately 61% and 79%, respectively. Table 3-7 summarizes the average 

overall weight connections and average biases for the one hidden neuron versions of Model 2, 

the maximum and minimum average weights are shown in bold for reference.  

Model 2 serves to replace the population used in Model 1 with the wind radius at each 

location based on the theory that since the tropical storm strength wind radii were used to 

extrapolate the population, the neural network could make that same deduction if it also had the 

landfall location (storm center). As with the population from Model 1, the wind radii have a 

positive correlation between neurons and at a generally higher value than the other variables. The 

wind speed and precipitation also have a similar relation as in Model 1, along with latitude and 

longitude varying in sign. However, the pressure and storm surge seemed to have switched signs 

from the Model 1 results. Also, the pressure at landfall two seems to be the most contributing 

factor while the storm surge for the first landfall inhibits the network function the most, which is 

essentially the opposite of what would be expected throughout the network connections. 

Similarly to Model 1, due to the large number of inputs, the weight values for Model 2 are rather 

close to zero. For further comparison, Figure 3-21 below shows the averaged input weights 

between ten hidden neurons for a model network resulting in 18% error.  
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Table 3-7 Model 2 Average Weights and Biases over 10 Simulations for 1 Hidden 
Neuron Structure 

Input Layer Input 
Weights Hidden Neuron Layer 

Weights Output Layer 

Landfall 1    
Latitude  -0.0417 

1 
(Bias = -0.2235) 

2.9656 Impact Level 0 
(Bias = -3.7642) 

Longitude -0.0762 
Pressure  0.1810 
Wind Speed 0.0064 
Wind Radius 0.1086 
Storm Surge -0.2476 

1.6407 Impact Level 1 
(Bias = -1.0652) 

Precipitation -0.1367 
Landfall 2 

Latitude  0.2379 
Longitude 0.1041 
Pressure  0.3639 
Wind Speed 0.2381 

3.3459 Impact Level 2 
(Bias = -0.7395) 

Wind Radius 0.2842 
Storm Surge 0.3222 
Precipitation 0.0359 

Landfall 3 
Latitude  0.2188 
Longitude 0.2105 

-1.64711 Impact Level 3 
(Bias = -0.4576) 

Pressure  0.3136 
Wind Speed 0.0825 
Wind Radius 0.0953 
Storm Surge -0.0413 
Precipitation 0.2399 

-1.15642 Impact Level 4 
(Bias = -1.5953) 

Landfall 4 
Latitude  0.1480 
Longitude 0.1723 
Pressure  0.2547 
Wind Speed 0.2468 

2.47846 
Impact Level 5 

(Bias = 
0.88242) 

Wind Radius 0.2929 
Storm Surge N/A 
Precipitation 0.3006 
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Figure 3-21 Model 2 average weights between 10 hidden neurons 

 

If these averaged weights for the ten hidden neurons were absolute in the contribution of 

each variable, there would be more issues with this model as the pressure not only contributes 

most positively, and negatively, to the network function, but the storm surge is mostly inhibitory 

throughout the landfalls. The landfall locations are also all inhibitory, while the wind radii seem 

to vary with landfall. While these weight values, for both the single hidden neuron and ten 

hidden neurons, do not demonstrate the expected importance of each variable, this does 

correspond with the previously determination of Model 2 being the least accurate, or reliable, of 

the built model networks. 
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Model 3 

Model 3 is the first model to reduce the number of inputs by nearly half of the first model. 

The original simulations from the first study (Section 3.1), with the default of ten hidden neurons, 

produced a lowest and average percent error of approximately 17% and 36%, respectively. When 

this model data was simulated with one hidden neuron it produced a lowest and average percent 

error over ten simulations of approximately 59% and 76%, respectively. Table 3-8 lines up the 

average overall weight connections and average biases for the one hidden neuron versions of 

Model 3, the maximum and minimum average weights are shown in bold for reference.  

Table 3-8 Model 3 Average Weights and Biases over 10 Simulations for 1 Hidden Neuron 
Structure 

Input Layer Input 
Weights Hidden Neuron Layer 

Weights Output Layer 

Population 0.2033 

1 
(Bias = -0.2999) 

1.4645 Impact Level 0 
(Bias = -1.9011) Pressure -0.1863 

Wind Speed  0.1486 
Storm Surge  0.6270 1.1427 Impact Level 1 

(Bias = -1.7324) Precipitation -0.1022 
Latitude 1 0.1422 -0.0315 Impact Level 2 

(Bias = -0.1126) Longitude 1 -0.5038 
Latitude 2 0.5301 0.0115 Impact Level 3 

(Bias = -0.0749) Longitude 2 0.6942 
Latitude 3 0.2052 3.2306 Impact Level 4 

(Bias = 2.0995) Longitude 3 0.3997 
Latitude 4 0.2662 -0.9601 Impact Level 5 

(Bias = -2.4218) Longitude 4 0.1296 
 

By reducing the number of neurons, it can be seen that the range of weight values has 

increased and exceeded an absolute value of 0.5 (from zero), unlike the previous two models. 

The meteorological parameters have also reverted back to the positive/negative values that would 

be expected. Storm surge and population are two large exhibitory connections, while pressure is 

still an inhibitory connection. Precipitation, however, still seems to be a week inhibitor within 

the network functions, bringing into question its actual relevance to damage. The landfall 
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locations still exhibit unusual behavior in alternating signs, however, only one longitude has a 

negative sign, while the rest remain positive. Figure 3-22 below shows the averaged input 

weights between ten hidden neurons for a model network resulting in 19% error.  

 

 
Figure 3-22 Model 3 average weights between 10 hidden neurons 

 

The ten hidden neuron simulation of Model 3 kept the same overall level of importance 

among the inputs. Population and flooding contributors maintained an average excitatory 

connection. Latitude and longitude still go back and forth between inhibitory and excitatory, 

however a negative weight on the fourth landfall would make sense given that only one event 

had four landfall locations. Overall, the factors considered for Model 3 are weighted as expected, 

if these weights were considered directly linked to the outputs.  

Model 4 

Model 4 is similar to Model 3, but brings wind radii back in and disregards the 

determined population. The original simulations from the first study (Section 3.1), with the 

default of ten hidden neurons, produced a lowest and average percent error of approximately 6% 

(the lowest of all models) and 41%, respectively. When this model data was simulated with one 
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hidden neuron it produced a lowest and average percent error over ten simulations of 

approximately 58% and 74%, respectively. Table 3-9 lines up the average overall weight 

connections and average biases for the one hidden neuron versions of Model 4, the maximum 

and minimum weights are shown in bold for reference.  

Table 3-9 Model 4 Average Weights and Biases over 10 Simulations for 1 Hidden Neuron 
Structure 

Input Layer Input 
Weights Hidden Neuron Layer 

Weights Output Layer 

  

1  
(Bias = 0.1184) 

-8.4901 Impact Level 0  
(Bias = 8.2982) Pressure 0.0180 

Wind Speed  -0.0647 
Storm Surge  -0.1472 

0.0008 Impact Level 1  
(Bias = -0.0064) 

Precipitation  0.0487 
  
Latitude 1 0.1461 
Longitude 1 -0.0398 

3.3617 Impact Level 2  
(Bias = -0.6636) 

Wind Radius 1 0.1719 
  
Latitude 2 -0.2172 
Longitude 2 -0.1822 

3.3665 Impact Level 3  
(Bias = 0.6372) 

Wind Radius 2 -0.1549 
  
Latitude 3 -0.2873 
Longitude 3 -0.2568 

-1.6731 Impact Level 4  
(Bias = -1.0358) 

Wind Radius 3 -0.1373 
  
Latitude 4 -0.3137 
Longitude 4 0.0005 

-2.7339 Impact Level 5  
(Bias = -3.9934) Wind Radius 4 -0.2606 

  
 

Model 4 produced the lowest percent error of all the models; however, it was the only 

model to not correctly forecast the impact of Hurricane Isaac for the trial simulations. The results 

for this model produce unusual results where the majority of the inputs inhibit the network 

connection to the hidden neurons and those that are positive are not ones that would be expected, 
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such as pressure. Figure 3-23 below shows the averaged input weights between ten hidden 

neurons for a model network resulting in 19% error.  

 

 
 

Figure 3-23 Model 4 average weights between 10 hidden neurons 
 

Even in the ten hidden neuron simulation, there are still many variables that correspond 

to an average inhibitory connection to the hidden neuron layer. However, the meteorological 

parameters seem to correlate more to the weights that would be expected for direct relation to the 

resulting impacts; storm surge and precipitation are excitatory while pressure is inhibitory. 

Generally, though, this model proves to be the most difficult in tracing the importance of 

variables since most seem to hinder the network.  

Model 5 

Model 5 assumes population density can be extrapolated simply from the location of 

landfall. The original simulations from the first study (Section 3.1), with the default of ten hidden 

neurons, produced a lowest and average percent error of approximately 14% and 43%, 

respectively. When this model data was simulated with one hidden neuron it produced a lowest 
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and average percent error over ten simulations of approximately 58% and 79%, respectively. 

Table 3-10. lines up the average overall weight connections and average biases for the one 

hidden neuron versions of Model 5, the maximum and minimum weights are shown in bold for 

reference. 

Table 3-10 Model 5 Average Weights and Biases over 10 Simulation for 1 Hidden Neuron 
Structure 

Input Layer Input 
Weights Hidden Neuron Layer 

Weights Output Layer 

Pressure -0.2803 

1 
(Bias = -0.1476) 

1.6367 Impact Level 0 
(Bias = -1.7163) Wind Speed  0.0591 

Storm Surge -0.2127 1.4156 Impact Level 1 
(Bias = -1.4099) Precipitation  -0.2397 

Latitude 1 0.3795 -1.7482 Impact Level 2 
(Bias = 0.1670) Longitude 1 -0.1139 

Latitude 2 0.3164 1.4839 Impact Level 3 
(Bias = -1.7539) Longitude 2 0.5310 

Latitude 3 -0.1016 1.3759 Impact Level 4 
(Bias = -1.9008) Longitude 3 -0.1401 

Latitude 4 -0.0375 0.9755 Impact Level 5 
(Bias = -0.9434) Longitude 4 0.2135 

 

 Unfortunately, in using one hidden neuron, Model 5 produced input weights similar to 

that of Model 4. The Model 5 weights between the inputs and the single hidden neuron are 

mainly inhibitory, with flooding hazards being mostly inhibitory, while it seems to focus the 

positive correlations to the second landfall location. Figure 3-24 below shows the averaged input 

weights between ten hidden neurons for a model network resulting in 18% error. 
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Figure 3-24 Model 5 average weights between 10 hidden neurons 

 

The ten hidden neuron simulation produced slightly different results, in that there are 

slightly less inhibitory reactions occurring. As with Model 4, the meteorological parameters’ 

weights correlate more to what is expected to contribute more to resulting economic damage 

with a high positive weight on storm surge and high negative weight on pressure. For Model 5 

though, the most excitatory and inhibitory factors remained as the longitude for landfall two and 

the pressure, respectively. In addition, the landfall locations seem to have kept their relative level 

of contribution to the overall network while still seeming to vary randomly.  

Model 6 

Model 6 consists of the least amount of inputs and utilizes the assumption that the 

population will correlate to the amount of infrastructure in harms way, but likely not 

communicate the quality to the network. The original simulations, with the default of ten hidden 

neurons, produced a lowest and average percent error of approximately 15% and 36%, 

respectively. When this model data was simulated with one hidden neuron it produced a lowest 

and average percent error of approximately 58% and 73%, respectively. Table 3-11 lines up the 
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average overall weight connections and biases for the one hidden neuron versions of Model 6, 

the maximum and minimum weights are shown in bold for reference. Figure 3-25 shows this 

same data but in a more visualized way.  

Table 3-11 Model 6 Average Weights and Biases over 10 Simulations for 1 Hidden Neuron 
Structure 

Input Layer Input 
Weights Hidden Neuron Layer 

Weights Output Layer 

Population 0.7153 

1 
(Bias = -0.7521) 

-0.2954 Impact Level 0 
(Bias = -0.3565) 

Pressure -1.0585 1.3034 Impact Level 1 
(Bias = -1.5020) 

Wind  0.0034 1.6799 Impact Level 2 
(Bias = -0.6923) 

Storm Surge 1.0416 0.5254 Impact Level 3 
(Bias = -0.8408) 

Precipitation -0.3739 0.5637 Impact Level 4 
(Bias = -0.8332) 

  4.3868 Impact Level 5 
(Bias = 2.0988) 

 

 
Figure 3-25 Model 6 average weights and biases for 1 hidden neuron 
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Model 6 produced network weights that were expected, with pressure being the most 

inhibitory neuron connection and storm surge being the most excitatory followed by population. 

Precipitation, as with the other models is still coming up as inhibitory. Figure 3-26 below shows 

the averaged input weights between ten hidden neurons for a model network resulting in 17% 

error.  

 
Figure 3-26 Model 6 average weights between 10 hidden neurons 

 

The Model 6 with ten hidden neurons is the only example resulting in less optimal input 

weights than those from the one hidden neuron network. This can specifically be seen in pressure 

and storm surge switching positions between most excitatory and most inhibitory. Following that, 

wind and population, while both still positive, switch which contributes a more excitatory 

connection to the hidden neurons. If the neurons definitively connected to the resulting outputs, 

the one hidden neuron case for Model 6 would actually show a preferable weight allocation to 

that of the ten hidden neuron case.  

3.2.5 Discussion 

These six models were designed in various ways to present the basic same variables to 

the neural network. It was previously determined that, when creating a neural network, it is a 

-0.8!
-0.6!
-0.4!
-0.2!

0!
0.2!
0.4!
0.6!
0.8!

1!

W
ei

gh
t!

Variable!

Model 6 Variable Weights! Input Variable Average Weight 
Population 0.0266 

Pressure 0.8310 
Wind  0.2218 
Storm Surge -0.6268 
Precipitation -0.4806 



111 

balance between making sure all the relevant data is there without creating too big of an input 

matrix. Herein, these six models are used to assess the importance of the various hurricane 

factors that would theoretically contribute to the resulting economic damage (Impact Levels).  

The weights between neurons represent an excitatory or inhibitory connection. Within a 

feedforward network with a hidden neuron layer, the input related weights represent the 

connection between the inputs (hurricane related factors) and hidden neurons. Due to the 

complex web created with a hidden layer of multiple neurons, the best way to extrapolate an idea 

of the importance hurricane impact prediction factors is to analyze all the model data from the 

above section together, as seen in Table 3-12.   

Table 3-12 Overall Input Variable Weights 

 
 

The overall analysis looks at each variable and the number of times it plays a excitatory 

(positive) or inhibitory (negative) role. Since only two of the models distribute the 

Overall
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Population Population
Latitude 1 Latitude 1

Longitude 1 Longitude 1
Pressure 1 Pressure 1

Wind Speed 1 Wind Speed 1
Wind Radius 1 Wind Radius 1
Storm Surge 1 Storm Surge 1
Precipitation 1 Precipitation 1

Latitude 2 Latitude 2
Longitude 2 Longitude 2

Pressure 2 Pressure 2
Wind Speed 2 Wind Speed 2
Wind Radius2 Wind Radius2
Storm Surge 2 Storm Surge 2
Precipitation 2 Precipitation 2

Latitude 3 Latitude 3
Longitude 3 Longitude 3

Pressure 3 Pressure 3
Wind Speed 3 Wind Speed 3

Wind Radius 3 Wind Radius 3
Storm Surge 3 Storm Surge 3
Precipitation 3 Precipitation 3

Latitude 4 Latitude 4
Longitude 4 Longitude 4

Pressure 4 Pressure 4
Wind Speed 4 Wind Speed 4

Wind Radius 4 Wind Radius 4
Storm Surge 4 Storm Surge 4
Precipitation 4 Precipitation 4

1 Hidden Neuron Average over 10 Hidden Neurons
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meteorological factors to each landfall, these factors for the remaining models were lined up with 

the first landfall set. Population comes up consistently as an excitatory factor, followed by the 

tropical storm wind radius at three of the four landfalls. Storm surge is also largely excitatory 

along with wind speed. Therefore, these factors have a strong connection to the subsequent 

economic damage. For the reverse, pressure is mostly inhibitory across the board, followed by 

precipitation. Pressure doesn’t directly interact with the built environment, so the fact that this 

variable inhibits the pattern building process indicates it would likely not contribute to any 

damage. However, the precipitation is more varied. When more hidden neurons are used, 

precipitation is more excitatory overall. Also, among multiple landfalls the total contribution is 

mostly a wash. Therefore, precipitation is more of a neutral factor in predicting hurricane 

impacts.   

Landfall locations are trickier, as the latitude and longitude weights are not consistent 

throughout the models and the overall summation. In considering all the models, landfall 

location one is mainly inhibitory but following that the second and fourth landfalls are excitatory 

with the third latitude excitatory as well. The only model that does not use multiple landfalls, 

Model 6, has population as an excitatory connection. Overall, this indicates a stronger 

importance of multiple landfalls, over a single landfall location, relevant to the resulting total 

damage. It is worth noting that most storms to hit north of the Mason-Dixon line have to make 

more than one landfall due to the geography of the coastline. This might be the neural network’s 

way of assessing infrastructure quality, since infrastructure further north is generally older and in 

poorer condition.  
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3.2.6 Conclusion 

The resulting impacts of hurricanes on society are due to more than wind speed (the 

category ranking by the Saffir-Simpson Scale). Within this study, the importance of many 

possible factors are examine for their contribution to the overall resulting economic damage 

(Impact Level) of a tropical cyclone, or hurricane, event along the U.S. coastline. Six models are 

used as a way to present the relative data, including wind speed, storm surge, precipitation, 

population, and location latitude and longitude, to the neural network in order to establish a 

general level of importance for each factor. A consistently excitatory factor was the population, 

with storm surge and wind speed being other contributing factors. Landfall location would 

sometimes contribute positively to outcome. While the numbers of connections in a neural 

network make it difficult to interoperate with high confidence how each factor contributed to the 

determination of economic damage, these results are mostly consistent with the current research 

and expert knowledge in this area.  
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3.3 Hurricane Impact Prediction: Evaluation of Neural Network Training 

Algorithms as a Means of Problem Identification 

Forecasting the resulting damage from a tropical cyclone (hurricane) is a complex 

multifaceted problem that has proven difficult to establish concrete connections for. Accurately 

forecasting resulting economic damage from a hurricane event can provide an improved way of 

communicating storm severity. However, to reach this point, the connections between multiple 

variables, such as landfall location, wind speed, storm surge, and precipitation, and the economic 

damage must first be accurately established. Neural networks provide a way to build complex 

connections based off of various learning algorithms that attempt to replicate how the human 

brain learns from similar data. These algorithms vary in strategy and may provide different 

results for varying problem type. Within this study, variations in training algorithms, which 

assess patterns based on optimization or probability, will be explored. Most training algorithms 

utilize optimization, however, some current models suggest that forecasting hurricane damage is 

more probabilistic. This study will use these multiple input variables along with the Impact Level 

Ranking System in order to establish the type of problem at hand and further reduce the error for 

predicting the range of economic damage expected from a hurricane event.    

3.3.1 Overview 

The research studies covered so far have analyzed six possible models for the best way to 

present historical hurricane data to a neural network and for evaluating the importance of each 

data variable. These models utilize meteorological parameters (wind speed, pressure, storm surge, 

and precipitation) along with societal factors, which include population and landfall location, in 

order to build the best possible model to communicate the risk and potential damage from a 
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landfalling tropical cyclone (or hurricane, to use the term loosely) by the Impact Level Ranking 

System previously discussed.  

These six models were built using the MATLAB neural network pattern recognition 

toolbox. The data used for this study consists of 66 hurricane events and their respective 

meteorological parameters, landfall locations, and QGIS extrapolated population affected by 

tropical storm force wind radii. The six models varied these parameters in their respective input 

matrix, while the corresponding target matrices were the same for each model and served to 

indicate each event’s Impact Level (zero through five) by using binary methods. For evaluation 

of these six models, the program defaults were used for consistency and produced low percent 

errors for the resulting networks. These defaults include the maximum number of epochs (1000), 

the performance goal (as close as possible to 0 for MSE), and the time to train (infinite). Some of 

these algorithms may have additional defaults that are specific to the variables used, such as the 

starting designation for lambda (5e-7) for scaled conjugate gradient (discussed in further detail 

below). These neural network models have been shown to successfully determine a correlation 

between the various input factors (meteorological and societal) and the respective Impact Levels. 

Neural networks are structures of neurons and the connections between those neurons, 

which are strengthened by using backpropagation in order to reach the lowest possible error. 

There are several variations of backpropagation available, some of which are explored herein to 

further lower the percent error of this model and evaluate the resulting implications for the 

hurricane impact prediction problem using the Impact Level Ranking System.  

3.3.2 Base Model Description  

Based on the past two studies, Model 3 was chosen as the best model for neural network 

programming alterations. Per the study of the performance of each of the six models, Model 3 
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was determined to be one of the best performing models since it had a lower overall percent error 

and did relatively well during the trial phase. During the performance assessment of all six 

models, Model 3 had the lowest averaged percent error of 36% with a lowest reached error of 17% 

and standard deviation of 15. Model 3 also correctly predicted the Impact Level of Hurricane 

Isaac and did comparatively well with Tropical Storm Andrea by predicting either an Impact 

Level 0 (actual level) or 2. This study also indicated that smaller input matrices are best for 

producing lower percent errors. Requiring less input variables also allows for a better ease of use 

for future and real time applications.  

In the evaluation of model weights in relation of the input variables, Model 3 produced 

excitatory, or positive, weights on the connections to population and storm surge, which would 

be expected for estimating economic damage. It also produced an inhibitory, or negative, weight 

on pressure, which is also expected since pressure doesn’t directly interact with the built 

environment to cause damage. Wind speed, which was excitatory, covers pressure’s secondary 

relation to economic damage.  

Model 3, herein referred to as “the model”, is set up to include population, pressure, wind 

speed, storm surge, precipitation, and four possible landfall locations as its input variables as 

shown in the matrix Equation (3.4) below. Therefore, the model still accounts for all the 

originally determined variables with an input layer of 13 neurons. The original network structure 

for this model involved ten neurons within the hidden layer and a data separation of 70/15/15 

percentages for training, validation, and testing, respectively. The simulation utilizes training, 

validation, and testing phases in order to achieve the best possible network by using iterations to 

proceed through the provided data through these phases until it establishes a significant pattern 

that results in the lowest possible error checked by six subsequent iterations. Additionally, for the 
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previous studies, the default backpropagation algorithm used by the pattern recognition toolbox 

was kept, but will be altered herein. 
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                                 (3.4) 

3.3.3 Methods  

Backpropagation is the more general term for how the mean square error is minimized in 

a neural network, but there are multiple methods, and subsequent algorithms, to accomplish this. 

In backpropagation the data is trained and validated by the neural network, which produces a 

predicted value. This predicted value is compared to the provided target value and the difference, 

or error, between the two is propagated backward to adjust the neuron weights and biases. The 

network retrains, revalidates, and retests the data and this continues until the error between the 

approximated output and the provided target output in minimized.  

The two methods that are the basis for multiple training algorithms are gradient descent 

and Gauss-Newton. Most training algorithms either directly use these methods while slightly 

altering one aspect or they utilize both methods together. The exploration of the use of these 

algorithms in relation to historical hurricane data will aid in determining the best way to utilize 

neural network predictive methods for future hurricane events.  



118 

Gradient descent reaches the minimum square errors by taking a step back from an initial 

guessed value proportional to the negative gradient of the fitting function to update the variable 

values (Constantinescu, Lazarescu, & Tahboub, 2008; Gavin, 2013). This continues until the 

minimum error between the approximated output value, yj, and the target value, Yj, is reached. 

The gradient of a two variable problem would be equivalent to the Laplace of that function. For a 

multivariable problem, such as the one discussed herein, this is represented with the Jacobian 

matrix, J, of size outputs, n, by variables, m, for a connection from the ith to the jth neuron. The 

gradient of the error function, Eij, Equation (2.6), with respect to each variables, s, becomes:  

!
!!!

!!" = !− !! − !! !!"!!"                         (3.5) 

where Wij is the weight between the ith and jth neuron, which is adjusted.  Generally this is done 

in equal steps, γ, and moves in the direction of the steepest decent. The resulting propagation, g, 

between each ith and jth neuron directs the variables into the steepest descent pattern, is 

represented by  

!!" = !!!!"!!" !! − !!                          (3.6) 

The gradient descent method is typically used for a large number of variables, but for 

moderate problems, the Gauss-Newton method performs faster and is therefore more likely used 

(Gavin, 2013). The Gauss-Newton method instead assumes that the error function is quadratic 

and the guesses are near the optimal solutions. The iterations start with an initial guess of the 

minimum and continue until the difference between the guess and actual reaches the minimum of 

the quadratic function. The steps taken to minimize this difference introduces the Hessian matrix, 

JjiWijJij, instead of just the gradient of the function such that the propagation is now 

!!" = ! !!"!!"!!"

!!
!!"!!" !! − !!                                                          (3.7) 
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where gij is still the propagation between neurons, Wij is the weight, and Yj and yj are still the 

target and approximated output value, respectively. The Levenberg-Marquardt algorithm is a 

combination of the gradient method and the Gauss-Newton method for non-linear problems. 

When the parameters of the approximate function, Y, are close to their optimal value, the 

Levenberg-Marquardt algorithms acts like the Gauss-Newton function, but when they are far off, 

it acts more like the gradient descent method (Gavin, 2013). It does this by inserting a parameter, 

λ, associated with the identity matrix, I, within the propagation equation from the Gauss-Newton 

method to give the relationship  

! !!"!!"!!" + !!!" !!" = !!"!!" !! − !!                        (3.8) 

This algorithm is the standard within MATLAB and is referred to as the fastest. However, 

the pattern recognition toolbox uses the scaled conjugate gradient (SCG) training algorithm. 

SCG mainly uses the gradient descent method to determine the direction of descent then 

determines the size of the steps the algorithm takes in that direction in order to reach the desired 

minimum by using the line-search technique instead of having to compute the Hessian matrix. 

This approach is combined with the Levenberg-Marquardt approach to account for possible 

situations where the Hessian matrix is not positive and definite (Møller, 1993). The SCG method 

is one of the more complicated and detailed algorithms but can save time by reducing the number 

of calculations done per iteration.  

Another alteration of the gradient descent method is to account for an adaptive learning 

rate. The learning rate for a neural network refers to the scale (or amount) by which the weights 

and biases are adjusted. The gradient descent algorithm uses a default rate that remains constant 

through all iterations and can end up negatively affecting the outcome. By setting the learning 

rate to a default number and then allowing it to oscillate with the iterations in the training process, 
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it can improve the performance. This adjusts the weights and biases as well as the errors, but if 

the error is more than the previous error by a predefined ratio (default is 1.04), then those 

weights and biases are discarded while decreasing the learning rate in an attempt to produce 

better results during the next iteration (MathWorks, 2015). 

The One-Step-Secant (OSS) algorithm is one that intertwines conjugate gradient method 

and Quasi-Newton (secant) method. The Quasi-Newton method, which is partially the Gauss-

Newton method, is used for optimization when there is not enough space, time, or resources to 

store the Hessian or Jacobian matrix for each iteration. It instead aims to find a point when the 

gradient is zero. For the OSS algorithm, during each iteration, it assumes the previous Hessian 

matrix is the identity matrix. Therefore, an approximate Hessian matrix is updated after each 

iteration. This makes the OSS algorithm better for moderate or simpler networks. 

(Constantinescu et al., 2008) 

A feedforward network using backpropagation can also utilize a training algorithm that is 

more based on statistical methods, such as the Bayesian Regulation algorithm. This indicates that 

Bayesian problems are less of optimization problems than the previously discussed algorithms. 

Instead, the Bayesian approach determines the maximum probability for the weights during 

training to then be utilized for testing (Neal, 1992). The framework for this approach consists of 

a utility, network “likelihood” model, and priors components. The utilities component consists of 

the learning goal, in this case the lowest mean-square error. The “likelihood” model gives an 

idea of how the data should be produced, in this study the Levenberg-Marquardt algorithm is 

used. The priors consist of prior distribution and probability that can change with each iteration 

(Buntine & Weigend, Andreas, 1991). After multiple iterations, the Bayesian algorithm applies 
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probabilities to each variable based on learning from the Levenberg-Marquart results and the 

corresponding prior distribution.  

These five training algorithms were chosen for this study as part of a whole exercise to 

build the most accurate hurricane impact prediction model using the Impact Level Ranking 

System by establishing the type of problem at-hand. All of these algorithms use the lowest mean 

square error as the stopping mechanism, i.e. the mechanism being minimized by the above 

equations and methods. Ten hidden neurons and a data split of 70% training, 15% validation, and 

15% testing were used for each version as a means of reliable and comparable consistency. As 

with previous studies for this research, each variation was simulated twenty times, collecting the 

average and lowest percent error reached. Since these methods distinctly vary, another item 

tracked was the number of iterations for each training algorithm.  

3.3.4 Analysis  

The goal of training algorithms is generally to reach a minimum error, however not all 

algorithms reach a minimum in the same way or pattern. Figure 3-27 demonstrates how these 

minimums were reached for the best-produced networks (lowest percent error) of this model 

problem. All of these algorithms have been designated to stop at the lowest reached MSE, which 

is determined by evaluating whether or not the MSE continues to decrease or starts to increase 

again (over train) within six iterations (or epochs). If the MSE begins to increase, the network 

then stops and produces a usable network associated with the respective lowest MSE. Most 

algorithms determine this lowest value during the validation phase. However, due to the fact that 

the Bayesian algorithm is a probabilistic model, not optimization, it does not have a validation 

phase. The Bayesian algorithm splits the data that was originally allocated to the validation 

section to the training phase, which is the phase used to determine the lowest error.   
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Most of the algorithms have the same descent pattern to the minimum MSE. The gradient 

descent with adaptive learning has a steeper descent drop-off than most of the others and shows 

the oscillation in learning rates towards the end. Bayesian Regulation has a very steep drop off in 

training to reach the lowest MSE of all the algorithms used herein. These lowest MSEs are 

reached when the most accurate weights and biases (probabilities for the Bayesian algorithm) for 

the model network are achieved, hence a low error between the desired output and the actual 

output.  

While simulating each of these model variations, it was observed that the number of 

iterations changed drastically between some of the training algorithms. Figure 3-28 shows the 

average number of iterations to reach the lowest MSE for each training algorithm in comparison 

with the number of iterations each respective algorithm took to reach the best resulting network 

with the lowest percent error. Bayesian Regulation uses the most iterations in order to best 

determine the correct probabilities and the lowest MSE. This algorithm took the longest time to 

terminate and produce the resulting network and would sometimes reach the max number of 

iterations allowable at 1000. If this occurred, it usually produced a higher MSE and overall 

percent error, indicating an inability to establish the best pattern and probabilities. The better 

simulations using this algorithm had a lower number of iterations, which was contrary to the 

other algorithms. The Levenberg-Marquardt (LM) had the lowest number of iterations and took 

about the same amount of time as the other remaining algorithms. With the exception of the 

Bayesian network, a higher number of iterations was indicative of a more accurate resulting 

network model. 
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Figure 3-27 Model network performances for varying training algorithms 
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Figure 3-28 Average number of iterations to reach the lowest mean square error for varying 

training algorithms 
 

The more accurate models, as with the previous studies for this research, were 

determined based on the lowest overall percent error achieved for each alteration. Figure 3-29 

represents the comparison of the percent errors for the best possible model network achieved 

with each training algorithm. It is common for a lower MSE to be indicative of a low network 

percent error. The Bayesian Regulation algorithm, therefore, produced a correspondingly low 

percent error, which turned out to be the lowest error ever reached with this data. This algorithm 

also appears to have resolved the issue from previous studies where Impact Level 1 events were 

typically incorrectly forecasted. As can be seen with the other four algorithms, the percent error 

for Impact Level 1 events is still typically either 100% or 83%.  

These confusion matrices aid in showing how the network predicts certain events once it 

has reached the lowest MSE as discussed above and can imply how the model used will perform 

when used real time. While the Levenberg-Marquardt algorithm performs quickly and is capable 

of producing a low percent error, it also demonstrates a tendency for the model to predict an 
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event far off from its actual Impact Level. For example, one Impact Level 5 events (Hurricane 

Sandy or Katrina) was forecasted (output) as an Impact Level 2 event. Also, over-forecasting can 

be equally dangerous and one Impact Level 1 event, which is a seemingly mundane event, was 

forecasted as an Impact Level 4 event, which is the same level as 2011 Hurricane Irene.  

Corresponding to these confusion matrices, Figure 3-30 provides an overall picture of 

how the training algorithms performed on average as well as the best results reached. Not only 

did Bayesian Regulation produce the lowest percent error, the average was also significantly 

lower than even any pervious attempts made to lower the percent error for this research problem 

with a corresponding standard deviation of 3.1. In addition to showing Bayesian Regulations as 

the best performing network, the gradient descent with adaptive learning and one-step-secant 

emerged as the least applicable algorithms for this problem with the highest percent errors and 

standard deviations of approximately 17 and 19, respectively.  

Four of these five algorithms involve either gradient descent or Gauss-Newton methods 

for optimization. The Levenberg-Marquardt and SCG performance both utilize the option of 

alternating between gradient descent and Gauss-Newton, which resulted in under 20% error, as 

opposed to the other two methods focused on optimization. Bayesian Regulation is the only 

probabilistic method used in this study and its exemplary performance in building a neural 

network suggests that hurricane impact prediction is more of a probabilistic and statistical 

problem.  
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Figure 3-29 Confusion matrices representing lowest resulting network percent error for varying 
training algorithms 
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Figure 3-30 Comparison of model network percent errors for varying training algorithms 
 

3.3.5 Conclusion  

This study examined how varying training algorithms, while all other neural network 

parameters were held constant, affected the network performance for a hurricane impact 

prediction model using the Hurricane Impact Level Ranking System. As this model only has 66 

historical events available to use for training, validation, and testing, determining the alternate 

approaches is vital in finding the best way to make use of the limited data available. 

Backpropagation is the general approach for pattern recognition by neural networks, but the 

algorithms used to achieve this can vary. Of the algorithms used herein: Levenberg-Marquardt, 

scaled conjugate gradient, gradient descent with adaptive learning, one-step-secant, and Bayesian 

Regulation, the Bayesian algorithm produced the best performing neural network for hurricane 

impact prediction using probabilistic, instead of optimization, methods. 
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CHAPTER 4 
 

DISCUSSION: PROPOSED HURRICANE IMPACT LEVEL RANKING SYSTEM 
MODEL 

4.1 Synopsis    

The research conducted herein was initiated with the intent to create a more 

comprehensive predictive ranking system for tropical cyclones making landfall in the U.S. The 

Saffir-Simpson Scale is the current system in use to describe the severity of a tropical cyclone 

based solely on wind speed. However, when these storms make landfall, the wind speed is not 

enough to communicate the associated risk and resulting impact. Since the impact, i.e. economic 

damage, is also associated with storm surge, precipitation, population affected, and the 

infrastructure characteristics of the affected location, these factors should also be incorporated.  

Wind, the main parameter used to categorize hurricanes, can change with infrastructure 

type and density. Urban areas have the potential to reduce the wind speed overall due to friction, 

however, wind tunnel effects could also take place. Additionally, once the wind speed picks up 

enough to cause damage a domino effect can begin to occur as debris move downwind, 

enhancing damage in that direction. Similarly, urban areas have a negative effect on the impacts 

of storm surge and precipitation as areas with impervious surfaces cannot adequately absorb or 

channel the excess water, causing the water level to rise. Conversely, locations with barrier 

islands and wetlands can absorb some of the brunt of storm surge. These meteorological factors 

become more imperative when more of society is affected indicating an increased number of 

residential structures as well as utilities and businesses within harms way.  The high volume and 

quality of infrastructure affects the resulting damage arguably as much as the meteorological 

factors do.  
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The Impact Level Ranking System, as reshown in Table 4-1, is based off of the economic 

damage (2012 USD) of a tropical cyclone, which is mainly what the general public associates 

with a severe event. In order to predict the economic damage, or Impact Level, a model was 

created utilizing all of the relevant factors mentioned. This is an artificial neural network model 

that establishes patterns between these factors and the range of economic damage communicated 

through the created Impact Level Ranking System. These patterns, or connections, are 

established off of 66 historical hurricane events tracing back to the 1998 hurricane season. 

Table 4-1 The Impact Level Ranking System 

Impact Level Economic Damage Amount 
(based on 2012 USD) Example Event 

0 < $25 million 2012 Tropical Storm Beryl 
1 > $25 million, < $100 million 2007 Hurricane Humberto 
2 > $100 million, < $1 billion 2008 Tropical Storm Fay 
3 > $1 billion, < $10 billion 2008 Hurricane Gustav 
4 > $10 billion, < $50 billion 2011 Hurricane Irene 
5 > $50 billion 2005 Hurricane Katrina 

 

Initially, six different models were assessed for the best way to communicate the data, 

specifically location and infrastructure, to the neural network. The use of latitude and longitude 

for four different locations, population, and wind radii were specifically altered. Along with the 

performance of these models, the neural network weights on the inputs were also evaluated in 

order to determine a best usable network model. A single model was then selected and evaluated 

for varying training algorithms.  

Of the six initial models, Model 3 was chosen for its low percent error, accuracy and 

confidence with the trial events (Hurricane Isaac and Tropical Storm Andrea), and weights that 

resembled what would typically be expected with excitatory connections from population and 

storm surge and inhibitory connection on storm center pressure. Model 3 also had a lower 

number of inputs, allowing the network to establish stronger connections and ease of use for the 
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operator. During the initial performance assessment of all six models, Model 3 had the lowest 

averaged percent error of 36% with a lowest reached error of 17% and standard deviation of 

approximately 15. Once the training algorithm was altered in the third study, Model 3’s average 

percent error dropped to 8% with a lowest reached error of 1.5% and standard deviation of 3 for 

the Bayesian Regulation algorithm.  

The propose of all these studies was to not only explore how a neural network would 

establish a pattern specifically for hurricane impact prediction, but also to build a model with the 

lowest possible percent error for real time use based on what was learned from these studies. 

These two goals tie together in that the methods that produce the lowest percent errors also say 

something about the hurricane impact prediction problem. The studies previously discussed 

indicate that while multiple variables are best for determining the level of impact for a single 

storm event, these variables need to be kept as concise as possible. Some variables are also more 

vital than others, which is why certain existing models only utilize particular parameters, such as 

storm surge and infrastructure type/quality, and might negate other parameters such as pressure 

or precipitation. The connections between these variables and the resulting economic damage 

was shown to be a statistical problem based on the success of the Bayesian Regulation training 

algorithm. Neural networks are highly capable of adjusting for all of these parameters and serve 

as a reliable predictive model.     

4.2 Decision for Proposed Final ANN Model 

The results of mainly the first study led to the selection of Model 3 for further evaluation 

using programming alterations. Prior to the assessment of training algorithms, this model was 

adjusted for 1, 5, 10, 20, 50, 100, 500, and 1000 hidden neurons as well as for various data 
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separations between the training, validation, and testing phases. Of the total 66 storm events, 70% 

are allotted to training while 15% goes to validation and testing, each. In determining the best 

way to divide this data, the amount allocated to each phase was altered slightly and to the point 

where the data was split almost evenly (35/35/30 percent separation). The data was also 

manually split so that the programmer determined what events went to each phase. This is done 

by rearranging the input events so that they are split up sequentially (instead of randomly) such 

that the first 70% to training and the following 15% to validation and 15% to testing. 

Rearranging the events allows the programmer to dictate what they would consider the best way 

to experience or learn these events and the associated patterns to establish for forecasting. Figure 

4-1 and Figure 4-2 show how these changes affected the model’s percent error (averaged of 

twenty data simulations).  

 
Figure 4-1 Comparison of Model 3 network percent errors with varying number of hidden 

neurons 
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Figure 4-2 Comparison of Model 3 network percent errors with varying data separation methods 
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algorithm, with a 85% (57 events) training and 15% (9 events) testing data separation, would 
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enhanced results, Bayesian Regulation also has the longest performance time, indicating that 
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unless the amount used during the training phase was significantly lowered. Therefore, Model 3 

with 10 hidden neurons, a data allocation of 85% (57 event) used for training and 15% (9 events) 
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final Hurricane Impact Level Prediction Model.  
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low MSEs once the probabilities were correctly determined. The low MSE for the final network 

corresponds to a low percent error of 1.5% as shown by the confusion matrices in Figure 4-4. 

The training error was reduced to 0% with only a single misplaced event during testing. This 

misplaced event was determined to be 2006 Hurricane Ernesto, which was an Impact Level 2 

event with approximately $466,000,000 (2012 USD) in damage. Incorrectly forecasted as an 

Impact Level 3 event (threshold to cross $1 billion), Ernesto was one of the top three costliest 

storms of its level. Considering the 66 possible events, incorrectly placing one event during the 

whole process in considered a successful model network. The placement accuracy is also show 

by Figure 4-5 in the form of an error histogram. The error histogram serves to show how each 

component of an events output matrix compared to the corresponding target matrix, i.e. how far 

off the network outputs were from 1 or 0. The vast majority of the output instances varied from 

the target by nearly zero, with the exception of the incorrectly places Hurricane Ernesto and 2004 

Hurricane Gaston, which was correctly placed but not as confidently. Gaston was an Impact 

Level 2 event with approximately $137,000,000 (2012 USD) in economic damage. The network 

placed it as an Impact Level 2 with the highest value of 0.90 in the Impact Level 2 row, however, 

it also had a high confidence level of 0.71 for the Impact Level 1 output row; both of these 

values are shown in the histogram as differing by 0.09 and -0.71, respectively. Given these 

overall results, this final model is considered both accurate and usable.  

One of the most popular uses for a pattern recognition neural network is for making 

medical diagnoses, for example breast cancer. MATLAB has a pre-established breast cancer data 

set for determining benign or malignant masses from biopsy results. For comparison of accuracy, 

this example was executed through the MATLAB pattern recognition toolbox (with 10 hidden 

neurons, 70/15/15 data separation, and scaled conjugate gradient training algorithm). The cancer 



134 

example has percent errors consistently less than 5% and MSEs in the hundredths place. By these 

defaults, the original six models had over double the percent errors, but the MSEs were similar. 

This is likely due to the fact that the cancer example has greater than 600 data scenarios. The 

output/target matrix also only has 2 rows: benign and malignant. Once the algorithm was 

changed to Bayesian Regulation for Model 3, the percent errors dropped to a similar range 

(standard deviation of 2.8 for the percent error of the final model) to that of the cancer example, 

while the MSE dropped drastically lower. Given that the cancer data set serves as a successful 

training example and the final adjusted model for hurricane impact prediction reached similarly 

low percent errors, considering the difference in available data, it is fair to conclude that the final 

hurricane impact prediction model has successfully established patterns between the multiple 

variables and a resulting economic damage level. 

 

Figure 4-3 Performance of the final Hurricane Impact Level Ranking System Model 
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Figure 4-4 Confusion matrices for the final Hurricane Impact Level Ranking System Model 
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Figure 4-5 Error histogram for the final Hurricane Impact Level Ranking System Model 

 

Once a viable network was established, the final model was conducted for 2012 

Hurricane Isaac and 2013 Tropical Storm Andrea. Hurricane Isaac was an Impact Level 3 event 

and Tropical Storm Andrea was an Impact Level 0 event. Originally, Model 3 did produce 

definitive results for Hurricane Isaac (Impact Level 3 event), but borderline results for Tropical 

Storm Andrea (Impact Level 0 event). Once adjusted, the final model not only produced accurate 

results for both events but with more confidence as well. Figure 4-6 shows the initial Model 3 

results in comparison with the final model results and the actual Impact Level as reference for 

Hurricane Isaac and Tropical Storm Andrea. Coupling these results with the network 

performance, the model is now considered both precise and accurate. 

 



137 

 
Figure 4-6 Evaluation of the final model from the initial Model 3 for Hurricane Isaac and 

Tropical Storm Andrea 
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4.3 Sources of Uncertainty  

As with most research, there are limitations and possible error associated with this model. 

The main concern stems from the lack of data available. Most neural networks are built with 

hundreds of cases/events, but this network was trained with only 66 events. Once rebuilt for real 

time use, after this research, to include Hurricane Isaac and Tropical Storm Andrea, this model 

network would be based off of 68 events with the possibility to increase each season. Also, since 

the historical data used to train the network is only for the continental United States (CONUS), 

the model will only be suitable for CONUS events. Storms to hit the Caribbean or Hawaii would 

not be applicable in this case. The Caribbean Islands have a very different infrastructure than the 

U.S. and it is also very rare for a tropical cyclone to actually make landfall on the Hawaiian 

Islands. The amount and type of data used when building the network essentially dictates 

prediction capability.  

Additionally, the sources of possible error within this research are mostly linked to 

human error. The historical and extrapolated population data were all gathered by hand. Some of 

this data, such as the economic damage and population, were also altered and used in the form of 

an estimate. The population that was extracted from makeshift tropical storm force wind radii 

due to lack of shapefile data at that time is also subject to additional possible human error during 

the process. Following the data collection, there is smaller possibility for error due to 

misuse/misinterpretation of the MATLAB neural network pattern recognition toolbox. This is all 

standard error that has a chance of occurring in any research. Due to the results produced by 

building and conducting trials of the final model, these errors had minimal impact on the 

accuracy of the final model.   
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CHAPTER 5 
 

CONCLUSION AND FUTURE APPLICATIONS 

5.1 Prospective Applications 

The final Hurricane Impact Level Prediction Model demonstrated statistically significant 

results for both network performance and trial use. Given these results, this model now has the 

possibility to be applied for real time use. The main focus, and prospective application for this 

work, is to create a viable model to simulate with real time tropical cyclone events approaching 

the U.S. coastline. Tropical cyclones are typically well forecasted by the NWS days in advance, 

making them an excellent extreme weather event for this research. Tropical storm and hurricane 

watches are typically issued 48 hours before the onset of the anticipated conditions, while 

warnings are subsequently issued 36 hours in advance. However, the advisories, with the 

relevant data, are usually updated every six hours in the form of Public Advisories issued by the 

National Hurricane Center (NHC). These public advisories standardly contain the wind speed, 

pressure, whether or not the storm system is anticipated to strengthen, the forecasted rainfall 

accumulation, and forecasted storm surge in select locations. The storm surge, generated by the 

Sea, Lake, and Overland Surges from Hurricanes (SLOSH) model, is typically the last factor to 

be added to these advisories. The NHC also has a corresponding map for the storm’s anticipated 

track and strength.  

For real time use, these public advisories with the data provided by the NHC are the main 

source of data to enter into this model. Most of these numbers can be directly read from the 

advisories and applied to the model. However, for population, the given radius of tropical storm 

winds (also provided in the advisories and watches/warnings) and an extrapolated landfall 
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location from the forecast track will have to be used within a GIS system, as was previously done 

to gather the historical data, in order to determine an estimate for the number of people within 

the path. For extreme events, this step may be circumvented if the media has already advertised 

an estimated number of people affected. Once all this data is acquired for the forecasted landfall 

location, the model can be simulated almost immediately following a watch or warning, 

producing a corresponding forecasted Impact Level. This Impact Level can also be updated as 

the forecast updates.  

Another possible application of the model could be analyzing worse case scenario events 

and possibly budgeting for an upcoming season. The model created does not need to necessarily 

use for an actual event, instead it could be fed parameters to illustrate the result of a hypothetical 

storm making landfall in New York versus Florida. While the Impact Levels consist of ranges of 

economic damage, this could still give an idea of the magnitude of an event. Additionally, by 

comparing certain hypothetical events (changing storm surge or location), emergency managers 

could better understand the risks at hand and establish thresholds prior to an actual event. 

SLOSH is already a well and rightfully used model to help emergency managers determine 

evacuation zones. However, with the addition of this model, managers could build upon that for 

the addition of parameters, such as high precipitation, not only for evacuation purposes but also 

for anticipated recovery efforts to include, but not limited to, supplies and response workers. 

Society works off of what they know, and having a comparative system using previous events 

could assist in understanding and communicating the anticipated overall risks.  
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5.2 Societal Uses and Benefits 

This model and ranking system is proposed as a solution to the societal perception 

problems surrounding natural hazards. The Impact Level Ranking System, specifically, was 

simply designed to allocate storms in terms the everyday individual would understand quickly 

and easily. Ideally, this system would be used with the Saffir-Simpson scale in communicating a 

tropical cyclone event to the public. For example, 2012 Hurricane Sandy could have been 

designated a Category 1 Hurricane, Impact Level 5.  

The use of this system in such a way could help get the message across in extremely 

severe events, while potentially reducing crying wolf scenarios produced by over dramatization. 

Impact Level 0 – 2 events are relatively minor and barely register as anything significant in 

society’s mind. However, most storms people remember fall into the Impact Level 3 – 5 range 

due to their cost of damage exceeding $1 billion. These associations are how people personally 

weigh risks and make decisions. The one thing that would need to be kept in mind, however, is 

location. This system is for the event as a whole. While Hurricane Irene in 2011 caused immense 

damage in New England, Virginia and Maryland, which were also in its path, mainly only had 

down tree limbs causing some power outages. This is also why this model is best used along with 

the Saffir-Simpson Scale and other models used by emergency managers, such as SLOSH. In 

this application, the Impact Level Ranking System can provide an overall picture of the resulting 

outcome of a storm, while other tools can show where the focus of that impact will be, further 

providing society with a clear picture of the developing situation.  
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5.3 Future Research 

The work done in this thesis is the first step in assuring the viability of this model. Before 

actual exposure to the public further work should be conducted as a safety precaution to cover all 

bases and ensure that this model is capable of accomplishing the proposed applications. Real 

time use, hypothetical scenarios, and a sociological study are just some possible ways to further 

this project.  

The use of hypothetical scenarios would actually serve more as a study to assess the 

vulnerability of certain locations. For example, a possible hypothetical storm with the same 

meteorological parameters could be simulated for a landfall in the northeast versus a landfall in 

Florida. A scenario similar to this would help determine area vulnerability and assess the 

differences between two distinct locations. Additionally, a highly urbanized location could be 

kept constant as certain meteorological parameters are altered in order to investigate the 

thresholds for each Impact Level at the specified location. This same work would then be done 

for another location with possibly less people and some protective geographical features, such as 

wetlands, for evaluation of how these thresholds may change with location. There are assuredly 

other possible scenarios for evaluation in this sense, and the combination of these multiple 

assessments would aid in describing location vulnerability specifically for tropical cyclones. 

It would seem most logical to simulate real time event with oncoming storms privately 

before using the model for communicating such events to the public. For a few hurricane seasons, 

this model could be simulated alongside public advisories as issued. The change in the possible 

outcome (Impact Level) with each advisory would be tracked for assessment of accuracy over 

time and in relation to the forecast accuracy. In order to accomplish this, the results will be 

verified with the produced TCRs published by the NHC at the end of each season, likely in 
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January of the following year. This work will not only help determine the viability of using this 

model, but how its accuracy changes with each updated forecast. 

The usability of this model is mostly dependent on its accuracy in forecasting, however it 

also has to be determined interpretable by the general populace. The concept of a general 

sociological assessment, or poll, of how people within hurricane prone areas understand and 

react to hurricanes could imply a realistic applicability of the model. This study could introduce 

the model in order to gauge how the public would interpret and react to such a system. Overall, 

this may not be entirely necessary for use but more so for further evaluating the public’s 

perception of such events. With the proper formatting and marketing, the Impact Level Ranking 

System has the potential for countrywide understanding and use.  

The communication of the scientific and engineering aspects of a natural hazard event to 

the general public has consistently been problematic. During such events, complex interactions 

occur simultaneously making it difficult to communicate the overall impact to society. Using 

neural networks to mimic how scientists and engineers assess these interactions, the final 

Hurricane Impact Level Ranking System Prediction Model is capable of bridging this gap in 

communication by using comparative techniques to communicate the risk of an oncoming event. 

The potential future use of this model could affect how the weather community approaches 

public outreach and risk and vulnerability, leading to a more robust and inclusive categorization 

system.  
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APPENDIX A 

TABLE OF HISTORICAL HURRICANE DATA 
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2013
TS. Andrea H. Sandy H. Issac TS. Debby TS. Beryl

Population Affected 9,000,000$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 17,000,000$$$$$$$$$$$$$$$$$$$$$$$$$$$ 5,600,000$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 9,000,000$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 5,200,000$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

Latitude (deg. North) 29.5 39.4 29.2 29.3 30.2
Longitude (deg. West) 83.4 74.4 90.2 83.2 81.4
Pressure (mbar) 992 945 966 995 994
Wind Speed (mph) 57.5 80.5 80.5 40.25 63.25
TS Force Wind Radius (miles) 140 485 185 175 115
Storm Surge (feet) 4.55 12.65 11.03 4.5 2.93
Precipitation (inches) 15.28 12.83 26.71 28.78 15
Latitude (deg. North)
Longitude (deg. West)
Pressure (mbar)
Wind Speed (mph)
TS Force Wind Radius (miles)
Storm Surge (feet)
Precipitation (inches)
Latitude (deg. North)
Longitude (deg. West)
Pressure (mbar)
Wind Speed (mph)
TS Force Wind Radius (miles)
Storm Surge (feet)
Precipitation (inches)
Latitude (deg. North)
Longitude (deg. West)
Pressure (mbar)
Wind Speed (mph)
TS Force Wind Radius (miles)
Storm Surge (feet)
Precipitation (inches)

$50,000,000,000.00 $2,350,000,000.00 $250,000,000.00 $25,000,000.00
0 5 3 2 0

TS = Tropical Storm
H = Hurricane

Blank = Not Reported (default to 0)

Impact Level

2012

First 
Landfall 
Location

Second 
Landfall 
Location

Third 
Landfall 
Location

Fourth 
Landfall 
Location

Economic Damage (2012 USD)
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Population Affected
Latitude (deg. North)
Longitude (deg. West)
Pressure (mbar)
Wind Speed (mph)
TS Force Wind Radius (miles)
Storm Surge (feet)
Precipitation (inches)
Latitude (deg. North)
Longitude (deg. West)
Pressure (mbar)
Wind Speed (mph)
TS Force Wind Radius (miles)
Storm Surge (feet)
Precipitation (inches)
Latitude (deg. North)
Longitude (deg. West)
Pressure (mbar)
Wind Speed (mph)
TS Force Wind Radius (miles)
Storm Surge (feet)
Precipitation (inches)
Latitude (deg. North)
Longitude (deg. West)
Pressure (mbar)
Wind Speed (mph)
TS Force Wind Radius (miles)
Storm Surge (feet)
Precipitation (inches)

TS = Tropical Storm
H = Hurricane

Blank = Not Reported (default to 0)

Impact Level

First 
Landfall 
Location

Second 
Landfall 
Location

Third 
Landfall 
Location

Fourth 
Landfall 
Location

Economic Damage (2012 USD)

TS. Lee H. Irene TS. Don TS. Bonnie TS. Hermine

7,000,000$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 60,000,000$$$$$$$$$$$$$$$$$$$$$$$$$$$ 24,000$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 5,600,000$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 1,600,000$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

29.6 34.7 27.3 25.4 25.3
92.1 76.6 97.4 80.2 97.4
986 952 1007 1007 989
46 86.25 34.5 40.25 69

275 260 105 85 105
4.67 7.09 1.89 0.92 3.4

15.48 15.74 2.56 3.25 16.37
39.4
74.4
959
69

320
4.63

11.68
40.6

74
965

63.25
320

4.65
11.48

$326,023,329.80 $16,352,916,224.81 0 $246,568,421.05
2 4 0 0 2

20102011
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Population Affected
Latitude (deg. North)
Longitude (deg. West)
Pressure (mbar)
Wind Speed (mph)
TS Force Wind Radius (miles)
Storm Surge (feet)
Precipitation (inches)
Latitude (deg. North)
Longitude (deg. West)
Pressure (mbar)
Wind Speed (mph)
TS Force Wind Radius (miles)
Storm Surge (feet)
Precipitation (inches)
Latitude (deg. North)
Longitude (deg. West)
Pressure (mbar)
Wind Speed (mph)
TS Force Wind Radius (miles)
Storm Surge (feet)
Precipitation (inches)
Latitude (deg. North)
Longitude (deg. West)
Pressure (mbar)
Wind Speed (mph)
TS Force Wind Radius (miles)
Storm Surge (feet)
Precipitation (inches)

TS = Tropical Storm
H = Hurricane

Blank = Not Reported (default to 0)

Impact Level

First 
Landfall 
Location

Second 
Landfall 
Location

Third 
Landfall 
Location

Fourth 
Landfall 
Location

Economic Damage (2012 USD)

TS. Claudette H. Ida H. Dolly TS. Edouard TS. Fay

521,000$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 3,400,000$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 2,000,000$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 5,000,000$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 15,000,000$$$$$$$$$$$$$$$$$$$$$$$$$$$

30.4 30.3 26.4 29.6 24.5
86.5 88 97.2 94.2 81.8
1005 999 967 996 998

46 40.25 86.25 63.25 57.5
70 175 140 70 115
3 6.53 4 3.92 1.13

4.66 15 6.48 7.02
25.9
81.6
991

63.25
125

1.29
13.82
29.3
81.1
993

63.25
150

3.96
27.65
29.8
84.7
997

51.75
90

27.5
$1,029,949,748.74 $549,306,532.66

0 0 3 0 2

20082009
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Population Affected
Latitude (deg. North)
Longitude (deg. West)
Pressure (mbar)
Wind Speed (mph)
TS Force Wind Radius (miles)
Storm Surge (feet)
Precipitation (inches)
Latitude (deg. North)
Longitude (deg. West)
Pressure (mbar)
Wind Speed (mph)
TS Force Wind Radius (miles)
Storm Surge (feet)
Precipitation (inches)
Latitude (deg. North)
Longitude (deg. West)
Pressure (mbar)
Wind Speed (mph)
TS Force Wind Radius (miles)
Storm Surge (feet)
Precipitation (inches)
Latitude (deg. North)
Longitude (deg. West)
Pressure (mbar)
Wind Speed (mph)
TS Force Wind Radius (miles)
Storm Surge (feet)
Precipitation (inches)

TS = Tropical Storm
H = Hurricane

Blank = Not Reported (default to 0)

Impact Level

First 
Landfall 
Location

Second 
Landfall 
Location

Third 
Landfall 
Location

Fourth 
Landfall 
Location

Economic Damage (2012 USD)

H. Gustav H. Hanna H. Ike TS. Barry TS. Erin

5,400,000$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 7,600,000$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 11,200,000$$$$$$$$$$$$$$$$$$$$$$$$$$$ 4,000,000$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 743,000$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

29.2 33.8 29.3 27.5 28
90.7 78.7 94.7 82.7 96.9
954 981 950 1000 1006

103.5 69 109.25 34.5 34.5
200 260 275 90 85

12.5 5 12.79 3.1
21 9.65 14.46 8 12.81

$4,217,889,447.24 $156,944,723.62 $28,956,301,507.54
3 2 4 0 0

2008 2007



 156

Population Affected
Latitude (deg. North)
Longitude (deg. West)
Pressure (mbar)
Wind Speed (mph)
TS Force Wind Radius (miles)
Storm Surge (feet)
Precipitation (inches)
Latitude (deg. North)
Longitude (deg. West)
Pressure (mbar)
Wind Speed (mph)
TS Force Wind Radius (miles)
Storm Surge (feet)
Precipitation (inches)
Latitude (deg. North)
Longitude (deg. West)
Pressure (mbar)
Wind Speed (mph)
TS Force Wind Radius (miles)
Storm Surge (feet)
Precipitation (inches)
Latitude (deg. North)
Longitude (deg. West)
Pressure (mbar)
Wind Speed (mph)
TS Force Wind Radius (miles)
Storm Surge (feet)
Precipitation (inches)

TS = Tropical Storm
H = Hurricane

Blank = Not Reported (default to 0)

Impact Level

First 
Landfall 
Location

Second 
Landfall 
Location

Third 
Landfall 
Location

Fourth 
Landfall 
Location

Economic Damage (2012 USD)

TS. Gabrielle H. Humberto TS. Alberto TS. Beryl H. Ernesto

6,000$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 982,000$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 3,400,000$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 1,300,000$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 8,600,000$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

34.8 29.6 29.9 41.3 24.9
76.4 94.3 83.7 70.1 80.6
1005 985 998 1000 1003
57.5 92 46 51.75 46

45 60 115 105 105
2.82 4.09 0.9

9.03 14.13 7.08 0.33 8.72
33.9
78.1
985
69

105
3

14.61

145

$46,520,495.71 $466,093,600.76
0 1 0 0 2

2007 2006
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Population Affected
Latitude (deg. North)
Longitude (deg. West)
Pressure (mbar)
Wind Speed (mph)
TS Force Wind Radius (miles)
Storm Surge (feet)
Precipitation (inches)
Latitude (deg. North)
Longitude (deg. West)
Pressure (mbar)
Wind Speed (mph)
TS Force Wind Radius (miles)
Storm Surge (feet)
Precipitation (inches)
Latitude (deg. North)
Longitude (deg. West)
Pressure (mbar)
Wind Speed (mph)
TS Force Wind Radius (miles)
Storm Surge (feet)
Precipitation (inches)
Latitude (deg. North)
Longitude (deg. West)
Pressure (mbar)
Wind Speed (mph)
TS Force Wind Radius (miles)
Storm Surge (feet)
Precipitation (inches)

TS = Tropical Storm
H = Hurricane

Blank = Not Reported (default to 0)

Impact Level

First 
Landfall 
Location

Second 
Landfall 
Location

Third 
Landfall 
Location

Fourth 
Landfall 
Location

Economic Damage (2012 USD)

TS. Arlene H. Cindy H. Dennis H. Katrina H. Rita

3,000,000$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 2,200,000$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 7,400,000$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 15,000,000$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 9,600,000$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

30.3 29.2 30.4 26 29.7
87.5 90.1 87.1 80.1 93.7
991 991 946 984 937

57.5 74.75 120.75 80.5 115
150 105 230 80 205

5 5.5 6.94 5 11.95
6.77 7.56 7.67 14.04 16

30.2 30.2
89.5 89.6
995 920

51.75 126.5
105 230
6.2 27.8

9.06 14.92

230

$312,320,000.00 $2,176,480,000.00 $105,408,000,000.00 $11,748,112,000.00
0 2 3 5 4

2005
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Population Affected
Latitude (deg. North)
Longitude (deg. West)
Pressure (mbar)
Wind Speed (mph)
TS Force Wind Radius (miles)
Storm Surge (feet)
Precipitation (inches)
Latitude (deg. North)
Longitude (deg. West)
Pressure (mbar)
Wind Speed (mph)
TS Force Wind Radius (miles)
Storm Surge (feet)
Precipitation (inches)
Latitude (deg. North)
Longitude (deg. West)
Pressure (mbar)
Wind Speed (mph)
TS Force Wind Radius (miles)
Storm Surge (feet)
Precipitation (inches)
Latitude (deg. North)
Longitude (deg. West)
Pressure (mbar)
Wind Speed (mph)
TS Force Wind Radius (miles)
Storm Surge (feet)
Precipitation (inches)

TS = Tropical Storm
H = Hurricane

Blank = Not Reported (default to 0)

Impact Level

First 
Landfall 
Location

Second 
Landfall 
Location

Third 
Landfall 
Location

Fourth 
Landfall 
Location

Economic Damage (2012 USD)

TS. Tammy H. Wilma TS. Bonnie H. Charley H. Frances

9,600,000$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 14,200,000$$$$$$$$$$$$$$$$$$$$$$$$$$$ 529,000$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 12,400,000$$$$$$$$$$$$$$$$$$$$$$$$$$$ 15,800,000$$$$$$$$$$$$$$$$$$$$$$$$$$$

30.4 25.9 29.6 26.6 27.2
81.4 81.7 85.1 82.2 80.2
1002 950 1001 941 960

51.75 120.75 63.25 149.5 103.5
260 230 70 105 200
4.2 7 1.9 1.61 5.89

9.93 10.78 3.22 5.2 15.84
33 30.1

79.4 84
992 982

80.5 57.5
115 85

0.68 2.06
5.05 18.07

115

$20,105,600,000.00 $15,894,706,896.55 $9,465,517,241.38
0 4 0 4 3

20042005
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Population Affected
Latitude (deg. North)
Longitude (deg. West)
Pressure (mbar)
Wind Speed (mph)
TS Force Wind Radius (miles)
Storm Surge (feet)
Precipitation (inches)
Latitude (deg. North)
Longitude (deg. West)
Pressure (mbar)
Wind Speed (mph)
TS Force Wind Radius (miles)
Storm Surge (feet)
Precipitation (inches)
Latitude (deg. North)
Longitude (deg. West)
Pressure (mbar)
Wind Speed (mph)
TS Force Wind Radius (miles)
Storm Surge (feet)
Precipitation (inches)
Latitude (deg. North)
Longitude (deg. West)
Pressure (mbar)
Wind Speed (mph)
TS Force Wind Radius (miles)
Storm Surge (feet)
Precipitation (inches)

TS = Tropical Storm
H = Hurricane

Blank = Not Reported (default to 0)

Impact Level

First 
Landfall 
Location

Second 
Landfall 
Location

Third 
Landfall 
Location

Fourth 
Landfall 
Location

Economic Damage (2012 USD)

H. Gaston TS. Hermine H. Ivan H. Jeanne TS. Matthew

1,100,000$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 773,000$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 11,300,000$$$$$$$$$$$$$$$$$$$$$$$$$$$ 14,800,000$$$$$$$$$$$$$$$$$$$$$$$$$$$ 2,900,000$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

33 41.5 30.2 27.2 29.2
79.6 70.9 87.9 80.2 91
985 1011 946 950 999

74.75 40.25 120.75 120.75 40.25
60 45 290 205 115

4.5 12.5 3.8 5.85
12.6 0.5 15.79 11.97 16.23

29.8
93.6
1004
34.5

60
3.4
17

$136,724,137.93 $14,934,482,758.62 $7,256,896,551.72
2 0 4 3 0

2004
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Population Affected
Latitude (deg. North)
Longitude (deg. West)
Pressure (mbar)
Wind Speed (mph)
TS Force Wind Radius (miles)
Storm Surge (feet)
Precipitation (inches)
Latitude (deg. North)
Longitude (deg. West)
Pressure (mbar)
Wind Speed (mph)
TS Force Wind Radius (miles)
Storm Surge (feet)
Precipitation (inches)
Latitude (deg. North)
Longitude (deg. West)
Pressure (mbar)
Wind Speed (mph)
TS Force Wind Radius (miles)
Storm Surge (feet)
Precipitation (inches)
Latitude (deg. North)
Longitude (deg. West)
Pressure (mbar)
Wind Speed (mph)
TS Force Wind Radius (miles)
Storm Surge (feet)
Precipitation (inches)

TS = Tropical Storm
H = Hurricane

Blank = Not Reported (default to 0)

Impact Level

First 
Landfall 
Location

Second 
Landfall 
Location

Third 
Landfall 
Location

Fourth 
Landfall 
Location

Economic Damage (2012 USD)

2002
TS. Bill H. Claudette TS. Grace H. Isabel TS. Bertha

2,900,000$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 5,000,000$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 7,100,000$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 21,300,000$$$$$$$$$$$$$$$$$$$$$$$$$$$ 58,000$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

29.3 28.3 29 34.9 29.4
91 96.2 95.1 76.2 89.3

997 979 1007 957 1008
57.5 92 40.25 103.5 40.25
145 140 205 345 60

5.54 5.28 10.6
6.26 4.67 7.94 20.2 2.12

N/A

$56,744,186.05 $204,279,069.77 $3,824,558,139.53
1 2 0 3 0

2003
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Population Affected
Latitude (deg. North)
Longitude (deg. West)
Pressure (mbar)
Wind Speed (mph)
TS Force Wind Radius (miles)
Storm Surge (feet)
Precipitation (inches)
Latitude (deg. North)
Longitude (deg. West)
Pressure (mbar)
Wind Speed (mph)
TS Force Wind Radius (miles)
Storm Surge (feet)
Precipitation (inches)
Latitude (deg. North)
Longitude (deg. West)
Pressure (mbar)
Wind Speed (mph)
TS Force Wind Radius (miles)
Storm Surge (feet)
Precipitation (inches)
Latitude (deg. North)
Longitude (deg. West)
Pressure (mbar)
Wind Speed (mph)
TS Force Wind Radius (miles)
Storm Surge (feet)
Precipitation (inches)

TS = Tropical Storm
H = Hurricane

Blank = Not Reported (default to 0)

Impact Level

First 
Landfall 
Location

Second 
Landfall 
Location

Third 
Landfall 
Location

Fourth 
Landfall 
Location

Economic Damage (2012 USD)

TS. Edouard TS. Fay TS. Hanna H. Isidore H. Kyle

4,800,000$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 8,900,000$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 2,400,000$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 10,300,000$$$$$$$$$$$$$$$$$$$$$$$$$$$ 1,300,000$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

29.4 28.5 29.1 29.1 33
81.1 96.3 89.1 90.3 79.5
1009 999 1003 984 1011

40.25 57.5 57.5 63.25 40.25
85 140 145 345 45

8.3 2.1
5 17.29 15.56 11.9 6.35

33.9
78.4
1011

40.25
45

0.5
5.6

$23,980,343.98 $395,675,675.68 $5,995,086.00
0 0 0 2 0

2002
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Population Affected
Latitude (deg. North)
Longitude (deg. West)
Pressure (mbar)
Wind Speed (mph)
TS Force Wind Radius (miles)
Storm Surge (feet)
Precipitation (inches)
Latitude (deg. North)
Longitude (deg. West)
Pressure (mbar)
Wind Speed (mph)
TS Force Wind Radius (miles)
Storm Surge (feet)
Precipitation (inches)
Latitude (deg. North)
Longitude (deg. West)
Pressure (mbar)
Wind Speed (mph)
TS Force Wind Radius (miles)
Storm Surge (feet)
Precipitation (inches)
Latitude (deg. North)
Longitude (deg. West)
Pressure (mbar)
Wind Speed (mph)
TS Force Wind Radius (miles)
Storm Surge (feet)
Precipitation (inches)

TS = Tropical Storm
H = Hurricane

Blank = Not Reported (default to 0)

Impact Level

First 
Landfall 
Location

Second 
Landfall 
Location

Third 
Landfall 
Location

Fourth 
Landfall 
Location

Economic Damage (2012 USD)

2002 2000
H. Lili TS. Allison TS. Barry H. Gabrielle H. Gordon

4,300,000$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 8,700,000$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 2,300,000$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 9,300,000$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 4,200,000$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

29.5 28.9 30.4 27.1 29.3
92.2 95.3 86.3 82.6 83.2
963 1003 990 983 991
92 51.75 69 69 63.25

195 200 140 145 105
2.5 5.1

8.57 36.99 8.91 13.6 4.83
29.6
91.6
1004
34.5

N/A
2.5

29.86

$1,031,154,791.15 $6,264,441,591.78 $37,586,649.55 $288,164,313.22 $13,942,857.14
3 3 1 2 0

2001



 163

Population Affected
Latitude (deg. North)
Longitude (deg. West)
Pressure (mbar)
Wind Speed (mph)
TS Force Wind Radius (miles)
Storm Surge (feet)
Precipitation (inches)
Latitude (deg. North)
Longitude (deg. West)
Pressure (mbar)
Wind Speed (mph)
TS Force Wind Radius (miles)
Storm Surge (feet)
Precipitation (inches)
Latitude (deg. North)
Longitude (deg. West)
Pressure (mbar)
Wind Speed (mph)
TS Force Wind Radius (miles)
Storm Surge (feet)
Precipitation (inches)
Latitude (deg. North)
Longitude (deg. West)
Pressure (mbar)
Wind Speed (mph)
TS Force Wind Radius (miles)
Storm Surge (feet)
Precipitation (inches)

TS = Tropical Storm
H = Hurricane

Blank = Not Reported (default to 0)

Impact Level

First 
Landfall 
Location

Second 
Landfall 
Location

Third 
Landfall 
Location

Fourth 
Landfall 
Location

Economic Damage (2012 USD)

2000
TS. Helene H. Bret H. Dennis H. Floyd TS. Harvey

1,400,000$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 1,500,000$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 2,300,000$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 6,000,000$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 6,800,000$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

30.5 26.9 34.8 33.8 25.9
86.6 97.4 76.5 78 81.7
1006 951 984 956 999

40.25 115 69 103.5 57.5
105 125 140 200 115

1 1.1 4.2 1
7.86 13.18 19.13 19.06 10.03

$80,439,560.44 $210,483,516.48 $8,043,956,043.96 $20,109,890.11
0 1 2 3 0

1999
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Population Affected
Latitude (deg. North)
Longitude (deg. West)
Pressure (mbar)
Wind Speed (mph)
TS Force Wind Radius (miles)
Storm Surge (feet)
Precipitation (inches)
Latitude (deg. North)
Longitude (deg. West)
Pressure (mbar)
Wind Speed (mph)
TS Force Wind Radius (miles)
Storm Surge (feet)
Precipitation (inches)
Latitude (deg. North)
Longitude (deg. West)
Pressure (mbar)
Wind Speed (mph)
TS Force Wind Radius (miles)
Storm Surge (feet)
Precipitation (inches)
Latitude (deg. North)
Longitude (deg. West)
Pressure (mbar)
Wind Speed (mph)
TS Force Wind Radius (miles)
Storm Surge (feet)
Precipitation (inches)

TS = Tropical Storm
H = Hurricane

Blank = Not Reported (default to 0)

Impact Level

First 
Landfall 
Location

Second 
Landfall 
Location

Third 
Landfall 
Location

Fourth 
Landfall 
Location

Economic Damage (2012 USD)

1999
H. Irene H. Bonnie TS. Charley H. Earl TS. Frances

5,900,000$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 11,100,000$$$$$$$$$$$$$$$$$$$$$$$$$$$ 10,400,000$$$$$$$$$$$$$$$$$$$$$$$$$$$ 1,600,000$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 17,000,000$$$$$$$$$$$$$$$$$$$$$$$$$$$

24.6 34.4 27.8 30.1 28.2
81.6 77.7 97.1 85.7 96.9
987 964 1000 987 990

80.5 109.25 46 80.5 51.75
140 230 200 200 345
2.9 6 5.3 5.1

15.43 11 7.230678 16.38 11.38

$1,072,527,472.53 $1,015,491,329.48 $70,520,231.21 $111,421,965.32 $705,202,312.14
3 3 1 2 2

1998
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Population Affected
Latitude (deg. North)
Longitude (deg. West)
Pressure (mbar)
Wind Speed (mph)
TS Force Wind Radius (miles)
Storm Surge (feet)
Precipitation (inches)
Latitude (deg. North)
Longitude (deg. West)
Pressure (mbar)
Wind Speed (mph)
TS Force Wind Radius (miles)
Storm Surge (feet)
Precipitation (inches)
Latitude (deg. North)
Longitude (deg. West)
Pressure (mbar)
Wind Speed (mph)
TS Force Wind Radius (miles)
Storm Surge (feet)
Precipitation (inches)
Latitude (deg. North)
Longitude (deg. West)
Pressure (mbar)
Wind Speed (mph)
TS Force Wind Radius (miles)
Storm Surge (feet)
Precipitation (inches)

TS = Tropical Storm
H = Hurricane

Blank = Not Reported (default to 0)

Impact Level

First 
Landfall 
Location

Second 
Landfall 
Location

Third 
Landfall 
Location

Fourth 
Landfall 
Location

Economic Damage (2012 USD)

H. Georges TS. Hermine H. Mitch

11,200,000$$$$$$$$$$$$$$$$$$$$$$$$$$$ 2,200,000$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 7,400,000$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

24.5 29.1 26.2
81.8 90.9 81.9
981 1000 989

103.5 40.25 63.25
175 85 200

6 3
28.36 1 7
30.4
88.9
964

103.5
175

9
38.46

$8,321,387,283.24 0 $56,416,184.97
3 0 1

1998


