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ABSTRACT

PERFORMANCE BOUNDS FOR GREEDY STRATEGIES IN SUBMODULAR

OPTIMIZATION PROBLEMS

The greedy strategy is an approximate optimization algorithm which makes a locally optimal

decision at each step. In many problems, the greedy strategy does not yield a globally optimal so-

lution. How good is the greedy solution compared to the optimal solution? When the problem over

matroid constraints has a property called submodularity, the greedy strategy is proved to produce

a solution with value at least a constant scalar times the optimum value. In this thesis, we mainly

investigate the performance of the greedy strategy in two classes of submodular optimization prob-

lems over matroid constraints. The first is set submodular optimization, which is to choose a set

of actions to optimize a submodular objective function, and the second is string submodular opti-

mization, which is to choose an ordered set of actions to optimize a string submodular objective

function.

For set submodular optimization problems, we first provide performance bounds in terms of the

total curvature for the batched greedy strategy under matroid constraints, where the greedy strategy

is a special case with batch size equal to 1. Then we provide improved bounds for the greedy

strategy by defining a partial curvature. Moreover, we use similar techniques for bounding the

batched greedy strategy to provide performance bounds for social-aware Nash equilibria and group

Nash equilibria in utility systems with user groups. For string submodular optimization problems,

we first provide weakened sufficient conditions for the greedy strategy to be bounded by a scalar

factor. Then based on the theory of string submodular functions, we develop a framework to

bound the performance of approximate dynamic programming (ADP) schemes in path-dependent

action optimization (PDAO) problems, where every control decision is treated as the solution to an

optimization problem with a path-dependent objective function.
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Consider the problem of choosing a set of actions to optimize an objective function that is

set submodular. The batched greedy strategy is an approximation algorithm, which starts with

the empty set, then iteratively adds to the current solution set a batch of elements that results in

the largest gain in the objective function. We first investigate performance of the batched greedy

strategy over the matroid constraints. To be specific, we develop bounds on the performance of

the batched greedy strategy relative to the optimal strategy in terms of a parameter called the

total batched curvature. We show that when the objective function is a polymatroid set function,

the batched greedy strategy satisfies a harmonic bound for a general matroid constraint and an

exponential bound for a uniform matroid constraint, both in terms of the total batched curvature.

We also study the behavior of the bounds as functions of the batch size. Specifically, we prove that

the harmonic bound for a general matroid is nondecreasing in the batch size and the exponential

bound for a uniform matroid is nondecreasing in the batch size under the condition that the batch

size divides the rank of the uniform matroid. Finally, we illustrate our results by considering a task

scheduling problem and an adaptive sensing problem.

The greedy strategy is a special case of the batched greedy strategy with batch size equal

to 1. The greedy strategy is known to satisfy some performance bounds in terms of the total

curvature. The total curvature depends on function values on sets outside the constraint matroid.

If the function is defined only on the matroid, the problem still makes sense, but the existing

bounds involving the total curvature do not apply, which is puzzling. This motivates an alternative

formulation of such bounds. The first question we address is whether it is possible to extend a

polymatroid function defined on a matroid to one on the entire power set. This was recently shown

to be negative in general. Here, we provide necessary and sufficient conditions for the existence

of an incremental extension of a polymatroid function defined on the uniform matroid of rank k

to one with rank k + 1, together with an algorithm for constructing the extension. Whenever a

polymatroid function defined on a matroid can be extended to the entire power set, the bounds

involving the total curvature of the extension apply. However, these bounds still depend on sets

outside the constraint matroid. Motivated by this, we define a new notion of curvature called
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partial curvature, involving only sets in the matroid. We derive necessary and sufficient conditions

for an extension to have a total curvature equal to the partial curvature. Moreover, we prove that

the bounds in terms of the partial curvature are in general improved over the previous ones. We

illustrate our results with two contrasting examples motivated by practical problems.

We use the similar techniques for bounding the batched greedy strategy to bound the perfor-

mance of Nash equilibria when there exists “grouping" in utility systems. We consider variations

of the utility system considered by Vetta [1], in which users are grouped together. Our aim is to

establish how grouping and cooperation among users affect performance bounds. We consider two

types of grouping. The first type is from [2], where each user belongs to a group of users having

social ties with it. For this type of utility system, each user’s strategy maximizes its social group

utility function, giving rise to the notion of social-aware Nash equilibrium. We prove that this

social utility system yields to the bounding results of Vetta for non-cooperative system, thus estab-

lishing provable performance guarantees for the social-aware Nash equilibria. For the second type

of grouping we consider, the set of users is partitioned into disjoint groups, where the users within

a group cooperate to maximize their group utility function, giving rise to the notion of group Nash

equilibrium. In this case, each group can be viewed as a new user with vector-valued actions, and

a 1/2 bound for the performance of group Nash equilibria follows from the result of Vetta. But we

derive tighter bounds involving curvature by defining the group curvature. Finally, we present an

example of a utility system for database assisted spectrum access to illustrate our results.

Consider the problem of choosing a string of actions to optimize an objective function that

is string submodular. Streeter and Golovin [3] show that if the objective function is prefix and

postfix monotone and string submodular, then the greedy strategy achieves at least a (1 − 1/e)-

approximation of the optimal strategy. Zhang et al. [4] consider a weaker notion of the postfix

monotoneity and provide sufficient conditions for the greedy strategy to achieve a factor of at least

1 − 1/e. We introduce the notions of K-submodularity and K-GO-concavity, which together are

sufficient for this bound to hold, where K is the optimization horizon length. By introducing a

notion of curvature η, we prove an even tighter bound with the factor (1 − e−η)/η. Finally, we
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illustrate the strength of our results by considering two example applications. We show that our

results provide weaker conditions on parameter values in these applications than in [4].

Based on the theory of string submodularity, we develop a framework to bound the performance

of approximate dynamic programming (ADP). We consider a broad family of control strategies

called path-dependent action optimization (PDAO), where every control decision is treated as the

solution to an optimization problem with a path-dependent objective function. How well such a

scheme works depends on the chosen objective function to be optimized and, in general, it might

be difficult to tell, without doing extensive simulation and testing, if a given PDAO design gives

good performance or not. We develop a framework to bound the performance of PDAO schemes,

based on the theory of submodular functions. We show that every PDAO scheme is a greedy

scheme for some optimization problem, and if that optimization problem is equivalent to our prob-

lem of interest and is provably submodular, then we can say that our PDAO scheme is no worse

than something like (1 − 1/e) of optimal. We show how to apply our framework to stochastic

optimal control problems to bound the performance of ADP schemes. Such schemes are based on

approximating the expected value-to-go term in Bellman’s principle by computationally tractable

means. Our framework provides the first systematic approach to bounding the performance of

general ADP methods in the stochastic setting.
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Chapter 1

Introduction

We are often faced with choosing a small set of actions from a ground set of actions to optimize

an objective function in real applications. A specific example is the task assignment problem, one

of the fundamental combinatorial optimization problems in the branch of optimization or opera-

tions research. This problem has a number of agents and a number of tasks. Each agent can be

assigned to perform any task with a given probability to accomplish the task. The aim is to choose

a given number of agents to maximize the probability of accomplishing the tasks.

When the number of agents is not that large, we can use brute force method to enumerate all

possible solutions and find the optimal solution. However, when the number of agents is large, it

is impractical to enumerate all the possible solutions. At this point, we have to resort to approxi-

mation methods and one of the most popular approximation methods is the greedy strategy, which

starts with the empty set, and iteratively adds to the current solution set an element that results in

the largest gain in the objective function while satisfying the constraints. The greedy strategy yields

a local optimal solution that approximates a globally optimal solution in a reasonable amount of

time. The downside is that there is often no theoretical guarantee for the greedy strategy. But when

the problem has a special property called submodularity, the greedy strategy is proved to produce

a solution with value at least a constant scalar times the optimum value over matroid constraints.

Celebrated results by Nemhauser et al. [5, 6] prove that when the objective function f is a mono-

tone submodular set function with f(∅) = 0, the greedy strategy yields a 1/2-approximation1 for

a general matroid and a (1− e−1)-approximation for a uniform matroid.

Submodularity is a property of set functions, whose value has the property that the difference

in the incremental value of the function that a single element makes when added to an input set

decreases as the size of the input set increases. It is also called diminishing return property in eco-

1The term β-approximation means that f(G)/f(O) ≥ β, where G and O denote a greedy solution and an optimal
solution, respectively.
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nomics, and has connectivity with both convexity and concavity [7]. It appears in a wide variety of

applications such as viral marketing [8], information gathering [9], image segmentation [10], doc-

ument summarization [11], feature selection [12], active learning [13], and sensor placement [14].

Therefore, the performance of approximation algorithms such as greedy schemes in submodular

optimization problems has gained more attention in recent years [15].

In this thesis, we are interested in the performance of the greedy type schemes in submodular

maximization problems and the specific topics are: the performance of the batched greedy strategy

and more applicable performance bounds for the greedy strategy in submodular set optimization

problems, the performance of the social-aware Nash equilibria and the group Nash equilibria in

submodular utility systems, the performance of the greedy strategy in string submodular optimiza-

tion problems, and the performance of approximate dynamic programming schemes in stochastic

submodular control problems. We will introduce these topics specifically in the following section.

1.1 Background and Motivation

1.1.1 Batched Greedy Strategy in Set Optimization

A variety of combinatorial optimization problems such as generalized assignment (see, e.g.,

[3, 16–19]), welfare maximization (see, e.g., [20–22]), maximum coverage (see, e.g., [23–25]),

maximal covering location (see, e.g., [26–29]), and sensor placement (see, e.g., [9, 30–32]) can

be formulated as a problem of maximizing a set function subject to a matroid constraint. More

precisely, the objective function maps the power set of a ground set to real numbers, and the

constraint is that any feasible set is from a non-empty collection of subsets of the ground set

satisfying matroid constraints.

Finding the optimal solution to the problem above in general is NP-hard. The greedy strategy

provides a computationally feasible approach, which starts with the empty set, and then iteratively

adds to the current solution set one element that results in the largest gain in the objective function,

while satisfying the matroid constraints. This scheme is a special case of the batched greedy

strategy with batch size equal to 1. For general batch size (greater than 1), the batched greedy
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strategy starts with the empty set but iteratively adds, to the current solution set, a batch of elements

with the largest gain in the objective function under the constraints.

The performance of the batched greedy strategy with batch size equal to 1 has been extensively

investigated in [5,6,33–36]. The performance of the batched greedy strategy for general batch size,

however, has received little attention, notable exceptions being Nemhauser et al. [6] and Hausmann

et al. [33]. Although Nemhauser et al. [6] and Hausmann et al. [33] investigated the performance of

the batched greedy strategy, they only considered uniform matroid constraints and independence

system constraints, respectively. This prompts us to investigate the performance of the batched

strategy more comprehensively.

1.1.2 More Applicable Bounds for Greedy Strategy in Set Optimization

Conforti and Cornuéjols [34] define the total curvature to characterize the submodular property

of the objective function, and they prove that the greedy strategy in set maximization problems

satisfies some performance bounds in terms of the total curvature under matroid constraints when

the objective function is a polymatroid set function. However, the total curvature depends on the

function values on sets outside the matroid. This gives rise to the following issue when applying

the existing bounding results involving the total curvature: If we are given an objective function

defined only on the matroid, then the problem still makes sense, but the total curvature is no longer

well defined. This means that the existing results involving the total curvature do not apply. But this

surely is puzzling: if the optimization problem is perfectly well defined, why should the bounds no

longer apply? This motivates us to investigate more applicable bounds involving only sets in the

matroid.

1.1.3 Nash Equilibria in Utility Systems

A variety of interesting practical problems can be posed as utility maximization problems:

these include facility location [37], traffic routing and congestion management [38] , sensor selec-

tion [39], and network resource allocation [2]. In a utility maximization problem, a set of users

make decisions according to their own set of feasible strategies, resulting in an overall social utility
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value, such as profit, coverage, achieved data rate, and quality of service. The goal is to maximize

the social utility function. Often, the users do not cooperate in selecting their strategies.

In general, it is impractical to find the globally optimal sequence (finite, ordered collection)

of strategies maximizing the social utility function. Typically, it is more useful to consider sce-

narios where individual users or groups of users separately maximize their own private objective

functions, and then ask how this compares with the globally optimal case. The usual framework

for studying such scenarios is game theory together with its celebrated notion of Nash equilibria.

A Nash equilibrium is a sequence of strategies (deterministic or randomized) for which no user

can improve its own private utility by changing its strategy unilaterally. The question of how the

Nash solution compares with the globally optimal solution is one of the most challenging prob-

lems in game theory. For a general utility maximization problem, [1] develops lower bounds on

the worst-case social utility value in non-cooperative games.

With the advent of social networks, there is increasing interest in understanding the role of

cooperation and social ties in games [40]. Motivated by the idea of bounding the batched greedy

strategy, we are interested in exploring bounds for Nash equilibria when there exists “grouping”

among users.

1.1.4 Greedy Strategy in String Optimization

In a variety of problems in engineering and applied science such as sequential decision making

( [41–43]), adaptive sensing ( [9,44]), and adaptive control ( [45,46]), we are faced with optimally

choosing a string (ordered set) of actions over a finite horizon to maximize an objective function

under some constraints. We call this class of optimization string optimization.

The solution to the string optimization problems can be characterized using backward dynamic

programming via Bellman’s principle ( [47, 48]). However, dynamic programming is hard to im-

plement because that the computational complexity of this approach grows exponentially with the

size of action set and the horizon length. Hence, we often turn to approximation techniques. One

approximation technique is the greedy strategy, which is to find an action at each stage to maxi-
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mize the step-wise gain in the objective function. The performance for the greedy strategy in string

optimization problems has been extensively investigated by [3] and [4]. Streeter and Golovin [3]

proves that the greedy strategy satisfies a constant performance bound when the problem satisfies

some properties. Zhang et al. [4] consider weaker conditions and provide a stronger bound by

introducing curvature. But all the sufficient conditions obtained so far involve strings of length

greater than K, even though the optimization problem involves only strings up to length K. This

motivates a weakening of these sufficient conditions to involve only strings of length at most K,

but still preserving the bounds here.

1.1.5 Approximate Dynamic Programming Schemes in Stochastic Control

We consider a broad family of control strategies that we call path-dependent action optimiza-

tion (PDAO). To use a PDAO scheme is to treat every control decision as the solution to an op-

timization problem with a path-dependent objective function. How well such a scheme works

depends on the chosen objective function to be optimized. A key result in optimal control theory is

that, under quite general conditions, there exists an optimal solution (policy) that is also a PDAO

scheme. This result, not usually stated this way and more commonly known as Bellman’s principle,

makes PDAO schemes of interest in a wide range of computational-intelligence applications and

is the basis for self-driving vehicles and AlphaGo, the master-beating Go playing machine. Bell-

man’s principle tells us that the path-dependent objective function to be optimized at each decision

epoch must capture both the immediate reward as well as the (expected) long-term net reward

associated with each candidate action. This embodies a rigorous notion of delayed gratification,

common to all nontrivial optimal dynamic decision-making policies.

The key to the performance of a PDAO scheme is the design of good objective functions. The

future-rewards part of the objective function prescribed by Bellman’s principle, unfortunately, of-

ten cannot be computed exactly. Therefore, approximation methods are needed. These include a

variety of approaches, ranging from reinforcement learning with deep neural networks to model-

based Monte Carlo sampling (for an overview in the context of adaptive sensing, refer to [49]).
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The family of PDAO schemes of interest here is often called approximate dynamic program-

ming (ADP). Such schemes are based on approximating the second term on the right-hand side

of Bellman’s optimality principle (the expected value-to-go) by computationally tractable means.

Although a wide range of approximate dynamic programming (ADP) methods have been devel-

oped [47–49], a general systematic technique to provide performance guarantees for them has

remained elusive. This motivates us to derive performance bounds for general ADP methods in the

stochastic setting.

1.2 Our Contributions
In Chapter 2, first we define the total k-batch curvature ck and prove that when the objec-

tive function f is a polymatroid set function, the k-batch greedy strategy achieves a 1/(1 + ck)-

approximation for a general matroid and a (1 − (1 − ck
l+1

m
k

)(1 − ck
l+1

)l)/ck-approximation for a

uniform matroid, where K = kl + m is the rank of the uniform matroid, l and m are non-

negative integers, and 0 < m ≤ k. When ck = 1, the bound for a uniform matroid becomes

(1 − (1 − m
k(l+1)

)(1 − 1
l+1

)l), which is the bound in [6]. When k = 1, the bound for a general

matroid becomes 1/(1 + c), which is the bound in [34], and the bound for a uniform matroid be-

comes (1 − (1 − c/K)K)/c, which is the bound in [34]. When m = k, the bound for a uniform

matroid becomes (1− (1− ck/(l + 1))l+1)/ck, which is the bound in [50]. Then we prove that ck

is nonincreasing in k when f is a polymatroid set function. This implies that the larger the k, the

better the harmonic bound for a general matroid and when k divides K, the larger the k, the better

the exponential bound for a uniform matroid. Finally, we present a task scheduling problem and

an adaptive sensing problem to demonstrate our results.

In Chapter 3, we first provide necessary and sufficient conditions for the existence of an ex-

tension of a polymatroid function f defined on the matroid to a polymatroid function g defined

on the whole power set. Then, it follows that for problems satisfying the necessary and sufficient

conditions, the greedy strategy satisfies the bounds 1/(1 + d) and (1− (1− d/K)K)/d for a gen-

eral matroid and a uniform matroid, respectively, where d = infg∈Ωf
c(g) and Ωf is the set of all
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polymatroid functions g on 2X that agree with f on I, i.e., g(A) = f(A) for any A ∈ I. These

bounds apply to problems where the objective function is defined only on the matroid and satisfies

the necessary and sufficient conditions. When the objective function is defined on the entire power

set, it is clear that d ≤ c(f), which implies that the bounds are improved.

Next, we define a curvature b involving only sets in the matroid, and we prove that b(f) ≤ c(f)

when f is defined on the entire power set. We derive necessary and sufficient conditions for the

existence of an extended polymatroid function g such that c(g) = b(f). This gives rise to improved

bounds 1/(1 + b(f)) and (1− (1− b(f)/K)K)/b(f) for a general matroid and a uniform matroid,

respectively. Moreover, these bounds are not influenced by sets outside the matroid.

Finally, we present two examples. We first provide a task scheduling problem to show that

a polymatroid function f defined on the matroid can be extended to a polymatroid function g

defined on the entire power set while satisfying the condition that c(g) = b(f), which results in a

stronger bound. Then, we provide an adaptive sensing problem to show that there does not exist

any extended polymatroid function g such that c(g) = b(f) holds. However, for our extended

polymatroid function g, it turns out that c(g) is very close to b(f) and much smaller than c(f),

which also results in a stronger bound.

In Chapter 4, we first describe the framework of [2] and show that a social-aware utility sys-

tem yields to the bounding results of Vetta for non-cooperative system, thus establishing provable

performance guarantees for the social-aware Nash equilibrium. Next, we describe our second type

of grouping involving l disjoint groups with in-group cooperation. In this case, each group can be

viewed as a new user with vector-valued actions, and a 1/2 bound for the performance of group

Nash equilibrium follows from the result of [1]. We then define the group curvature cki associated

with group i with ki users, and we show that if the social utility function is nondecreasing and

submodular, then any group Nash equilibrium achieves at least 1/(1+max1≤i≤l cki) of the optimal

social utility, which is tighter than that for the case without grouping. Especially, if each user has

the same action space, then we have that any group Nash equilibrium achieves at least 1/(1 + ck∗)

of the optimal social utility, where k∗ is the least number of users among all the groups. In Sec-
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tion 5, we present an example of a utility system for database assisted spectrum access, adopted

from [2]. We show that the utility system for this example is valid and the social utility function is

submodular, illustrating an application of our results.

In Chapter 5, we introduce the notions of K-submodularity and K-GO-concavity, which to-

gether are sufficient for the (1− (1− 1/K)K) bound to hold. By introducing a notion of curvature

η ∈ (0, 1], we prove an even tighter bound with the factor (1 − e−η)/η. Finally, we illustrate the

strength of our results by considering two example applications. We show that our results provide

weaker conditions on parameter values in these applications than in previous results reported in [4].

In Chapter 6, we develop a framework to bound the performance of ADP schemes. Our bound-

ing method is based on the theory of submodular optimization [4]. The basic result from string

submodular optimization is that every greedy scheme achieves at least (1 − 1/e) of the optimum

value. We first prove that every PDAO scheme is a greedy scheme for some optimization problem.

If that optimization problem is equivalent to our problem of interest and is provably submodular

(in a certain sense to be made precise later), then we can say with certainty that our PDAO scheme

is no worse than (1 − 1/e) of optimal. We then show how to apply our framework to bound

ADP schemes in stochastic optimal control problems Markov decision processes (MDPs). ADP

schemes are based on approximating the second term on the right-hand side of Bellman’s opti-

mality principle (the expected value-to-go) by computationally tractable means. Although a wide

range of approximate dynamic programming (ADP) methods have been developed by [47–49], a

general systematic technique to provide performance guarantees for them has remained elusive.

Ours is the first systematic approach to deriving performance bounds for general ADP methods in

the stochastic setting.

In Chapter 7, we conclude this thesis and discuss some future research questions.
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Chapter 2

Performance of Batched Greedy Strategy

In this chapter, we study the performance bounds in terms of the total batched curvature for the

batched greedy strategy under general matroid and uniform matroid constraints. We also study the

behavior of the bounds as functions of the batch size, by comparing the values of the total batched

curvature for different batch sizes and investigating the monotoneity of the bounds. It is not our

claim that we are proposing a new algorithm (the batched greedy strategy) or even that we are

advocating the use of such an algorithm. Our contribution is to provide bounds on the performance

of the batched greedy strategy, which we consider to be a rather natural extension of the greedy

strategy. As we argue below, going from the case of batch size equal to 1 to the general case (batch

size greater than 1) is highly nontrivial.

In [34], Conforti and Cornuéjols provided performance bounds for the greedy strategy in terms

of the total curvature under general matroid constraints and uniform matroid constraints. It might

be tempting to think that bounds for the batched case can be derived in a straightforward way from

the results of batch size equal to 1 by lifting, which is to treat each batch-sized set of elements

chosen by the batched greedy strategy as a single action, and then appeal to the results for the

case of batch size equal to 1. However, it turns out that lifting does not work for a general batched

greedy strategy (batch size greater than 1) for the following two reasons. First, the collection of sets

created by satisfying the batched greedy strategy is not a matroid in general; we will demonstrate

this by an example in Section 2.4. Second, the last step of the batched greedy strategy may select

elements with a number less than the batch size, because the cardinality of the maximal set in the

matroid may not be divisible by the batch size.

The batched greedy strategy requires an exponential number of evaluations of the objective

function if using exhaustive search. When the batch size is equal to the cardinality of the maximal

set in the matroid, the batched greedy strategy coincides with the optimal strategy. It might be

tempting to expect that the batched strategy with batch size greater than 1 outperforms the usual
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greedy strategy, albeit at the expense of increasing computational complexity. Indeed, the Monte

Carlo simulations performed in [51] for the maximum coverage problem show that the batched

greedy strategy with batch size greater than 1 provides better approximation than the usual greedy

strategy in many cases. However, it is also evident from their simulation that this is not always the

case. In Section 2.5, we provide two examples of the maximum coverage problem where the usual

greedy strategy performs better than the batched greedy strategy with batch size 2.

In Section 2.1, we first introduce some definitions and review the previous results. Then, we

review Lemmas 1.1 and 1.2 from [52], which we will use to derive performance bounds for the

batched greedy strategy under a uniform matroid constraint. In Section 2.2, we define the to-

tal batched curvature and then we provide a harmonic bound and an exponential bound for the

batched greedy strategy under a general matroid constraint and a uniform matroid constraint, re-

spectively, both in terms of the total batched curvature. We also prove that the batched curvature

is nonincreasing in the batch size when the objective function is a polymatroid set function. This

implies that the larger the batch size, the better the harmonic bound for a general matroid and when

the batch size divides the rank of the uniform matroid, the larger the batch size, the better the ex-

ponential bound for a uniform matroid. In Section 2.3, we present a task scheduling problem and

an adaptive sensing problem to demonstrate our results.

The results in this chapter were published in [50, 53].

2.1 Preliminaries

2.1.1 Polymatroid Set Functions and Curvature

The definitions and terminology in this paragraph are standard (see, e.g., [54–56]), but are

included for completeness. Let X be a finite set, and I be a non-empty collection of subsets of X .

Given a pair (X, I), the collection I is said to be hereditary iff it satisfies property i below and has

the augmentation property iff it satisfies property ii below:

i. For all B ∈ I, any set A ⊆ B is also in I.
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ii. For any A,B ∈ I, if |B| > |A|, then there exists j ∈ B \ A such that A ∪ {j} ∈ I.

The pair (X, I) is called a matroid iff it satisfies both properties i and ii. The pair (X, I) is called

a uniform matroid iff I = {S ⊆ X : |S| ≤ K} for a given K, called the rank of (X, I).

Remark 2.1.1. Three collections given as follows satisfy property i, property ii, and both, respec-

tively.

LetX = {a, b, c}, I1 = {{a}, {b}, {a, c}, {c}, ∅}, I2 = {{a}, {a, b}}, I3 = {∅, {a}, {b}, {a, b}}.

It is easy to check that I1 satisfies hereditary property but not augmentation, I2 satisfies augmen-

tation but not hereditary property, and I3 satisfies both hereditary property and augmentation.

Hence, (X, I1) is an independence system and (X, I3) is a matroid.

Before we introduce the properties of function defined on sets, we would like to introduce some

similar properties for functions defined on real numbers. Define a real function f : R → R. The

function f is said to monotone and submodular if it satisfies properties 1 and 2 below, respectively:

1. Monotone: ∀x ≤ y ∈ R, f(x) ≤ f(y).

2. Submodular: ∀x ≤ y ∈ R, ∀z ∈ R, f(x+ z)− f(x) ≥ f(y + z)− f(y)

Figure 2.1: Characterization of submodularity

Remark 2.1.2. We say that a function is monotone if it is nondecreasing.
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Remark 2.1.3. From Figure 2.1, we can see that the function is a concave function and adding z

to x gains more than adding z to y, which tells us that the additional value accruing by adding a

number to a smaller number is larger than adding it to a bigger number. This is consistent with the

inequality f(x+ z)− f(x) ≥ f(y + z)− f(y) for x ≤ y, so we say that submodularity is similar

to concavity in some sense.

Now look at some properties for functions defined on sets. Let 2X denote the power set of X , and

define a set function f : 2X −→ IR The set function f is said to be monotone and submodular iff it

satisfies properties (1) and (2) below, respectively:

(1) For any A ⊆ B ⊆ X , f(A) ≤ f(B).

(2) For any A ⊆ B ⊆ X and j ∈ X \B, f(A ∪ {j})− f(A) ≥ f(B ∪ {j})− f(B).

A set function f : 2X −→ IR is called a polymatroid set function iff it is monotone, submodular,

and f(∅) = 0, where ∅ denotes the empty set. The submodularity in property (2) means that the

additional value accruing from an extra action decreases as the size of the input set increases, and

is also called the diminishing-return property in economics. Submodularity implies that for any

A ⊆ B ⊆ X and T ⊆ X \B,

f(A ∪ T )− f(A) ≥ f(B ∪ T )− f(B). (2.1)

For convenience, we denote the incremental value of adding a set T to the set A ⊆ X as %T (A) =

f(A ∪ T )− f(A) (following the notation of [34]).

The total curvature of a set function f is defined as [34]

c := max
j∈X∗

{
1− %j(X \ {j})

%j(∅)

}
,

where X∗ = {j ∈ X : %j(∅) 6= 0}. Note that 0 ≤ c ≤ 1 when f is a polymatroid set function, and

c = 0 if and only if f is additive, i.e., for any set A ⊆ X , f(A) =
∑

i∈A f({i}). When c = 0, it
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is easy to check that the greedy strategy coincides with the optimal strategy. So in the rest of the

paper, when we assume that f is a polymatroid set function, we only consider c ∈ (0, 1].

2.1.2 Review of Previous Work

Before we review the previous work, we formulate the optimization problem formally as fol-

lows:

maximize f(M), subject to M ∈ I, (2.2)

where I is a non-empty collection of subsets of a finite set X , and f is a real-valued set function

defined on the power set 2X of X .

For convenience, in the rest of the paper we will use k-batch greedy strategy to denote the

batched greedy strategy with batch size k. So, the 1-batch greedy strategy denotes the usual greedy

strategy.

Nemhauser et al. [5, 6] proved that, when f is a polymatroid set function, the 1-batch greedy

strategy yields a 1/2-approximation2 for a general matroid and a (1 − e−1)-approximation for

a uniform matroid. By introducing the total curvature c, Conforti and Cornuéjols [34] showed

that, when f is a polymatroid set function, the 1-batch greedy strategy achieves a 1/(1 + c)-

approximation for a general matroid and a (1− e−c)/c-approximation for a uniform matroid. For

a polymatroid set function f , the total curvature c takes values on the interval ]0, 1]. In this case,

we have 1/(1 + c) ≥ 1/2 and (1 − e−c)/c ≥ (1 − e−1), which implies that the bounds 1/(1 + c)

and (1 − e−c)/c are stronger than the bounds 1/2 and (1 − e−1) in [5] and [6], respectively.

Vondrák [35] proved that, when f is a polymatroid set function, the continuous greedy strategy

gives a (1− e−c)/c-approximation for any matroid. Sviridenko et al. [36] proved that, when f is a

polymatroid set function, a modified continuous greedy strategy gives a (1− ce−1)-approximation

2The term β-approximation means that f(G)/f(O) ≥ β, where G and O denote a greedy solution and an optimal
solution, respectively.
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for any matroid, the first improvement over the greedy (1− e−c)/c-approximation of Conforti and

Cornuéjols from [34].

Nemhauser et al. [6] proved that, when f is a polymatroid set function and (X, I) is a uniform

matroid of rank K = kl + m (l and m are nonnegative integers and 0 < m ≤ k), the k-batch

greedy strategy achieves a γ-approximation, where γ = (1− (1−m/(k(l + 1)))(1− 1/(l + 1))l).

Hausmann et al. [33] showed that, when f is a polymatroid set function and (X, I) is an indepen-

dence system, the k-batch greedy strategy achieves a q(X, I)-approximation, where q(X, I) is the

rank quotient defined in [33].

2.1.3 Performance Bounds in Terms of Total Curvature

In this section, we review two theorems from [34], which bound the performance of the 1-batch

greedy strategy using the total curvature c for general matroid constraints and uniform matroid

constraints. These bounds are special cases of the bounds we derive in Section 3.2 for k = 1.

We first define optimal and greedy solutions for problem (2.2) as follows:

Optimal solution: Consider problem (2.2) of finding a set that maximizes f under the constraint

M ∈ I. We call a solution of this problem an optimal solution and denote it by O, i.e.,

O ∈ argmax
M∈I

f(M),

where argmax denotes the set of actions that maximize f(·).

1-batch greedy solution: A set G = {g1, g2, . . . , gk} is called a 1-batch greedy solution if

g1 ∈ argmax
g∈X

f({g}),

and for i = 2, . . . , k,

gi ∈ argmax
g∈X

f({g1, g2, . . . , gi−1, g}).
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Theorem 2.1.1. [34] Let (X, I) be a matroid and f : 2X −→ IR be a polymatroid set function

with total curvature c. Then, any 1-batch greedy solution G satisfies

f(G)

f(O)
≥ 1

1 + c
,

where O is any optimal solution to problem (2.2).

When f is a polymatroid set function, we have c ∈ (0, 1], and therefore 1/(1 + c) ∈ [1/2, 1).

Theorem 2.1.1 applies to any matroid. This means that the bound 1/(1 + c) holds for a uniform

matroid too. Theorem 2.1.2 below provides a tighter bound when (X, I) is a uniform matroid.

Theorem 2.1.2. [34] Let (X, I) be a uniform matroid of rank K. Further, let f : 2X −→ IR be a

polymatroid set function with total curvature c. Then, any 1-batch greedy solution G satisfies

f(G)

f(O)
≥ 1

c

(
1−

(
1− c

K

)K)
>

1

c

(
1− e−c

)
,

where O is any optimal solution to problem (2.2).

The function (1−e−c)/c is a nonincreasing function of c, and therefore (1−e−c)/c ∈ [1−e−1, 1[

when f is a polymatroid set function. Also it is easy to check that (1 − e−c)/c ≥ 1/(1 + c) for

c ∈ (0, 1], which implies that the bound (1−e−c)/c is stronger than the bound 1/(1+c) in Theorem

2.1.1.

2.1.4 Properties of Submodular Functions

The following two lemmas from [52], stating some technical properties of submodular func-

tions, will be useful to derive performance bounds for the k-batch greedy strategy under a uniform

matroid constraint.

Lemma 2.1.3. [52] Let f : 2X −→ IR be a submodular set function. Given A,B ⊆ X , let

{M1, . . . ,Mr} be a collection of subsets of B \ A such that each element of B \ A appears in
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exactly p of these subsets. Then,
r∑
i=1

%Mi
(A) ≥ p%B(A).

Lemma 2.1.4. [52] Let f : 2X −→ IR be a submodular set function. Given A′ ⊆ A ⊆ X , let

{T1, . . . , Ts} be a collection of subsets ofA\A′ such that each element ofA\A′ appears in exactly

q of these subsets. Then,
s∑
i=1

%Ti(A \ Ti) ≤ q%A\A′(A
′).

2.2 Main Results
In this section, first we define the k-batch greedy strategy and the total k-batch curvature ck that

will be used for deriving harmonic and exponential bounds. Then we derive performance bounds

for the k-batch greedy strategy in terms of ck under general matroid constraints and under uniform

matroid constraints. Moreover, we study the behavior of the bounds as functions of the batch size

k.

2.2.1 k-Batch Greedy Strategy

We write the cardinality of the maximal set in I as K = kl + m, where l,m are nonnegative

integers and 0 < m ≤ k. Note that m is not necessarily the remainder of K/k, because m could

be equal to k. This happens when k divides K. The k-batch greedy strategy is as follows:

Step 1: Let S0 = ∅ and t = 0.

Step 2: Select Jt+1 ⊆ X \ St for which |Jt+1| = k, St ∪ Jt+1 ∈ I, and

f(St ∪ Jt+1) = max
J⊆X\St and |J |=k

f(St ∪ J);

then set St+1 = St ∪ Jt+1.

Step 3: If t+ 1 < l, set t = t+ 1, and repeat Step 2.

Step 4: If t+ 1 = l, select Jl+1 ⊆ X \ Sl such that |Jl+1| = m, Sl ∪ Jl+1 ∈ I, and
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f(Sl ∪ Jl+1) = max
J⊆X\Sl and |J |=m

f(Sl ∪ J).

Step 5: Return the set S = Sl ∪ Jl+1 and terminate.

Any set generated by the above procedure is called a k-batch greedy solution.

The difference between a k-batch greedy strategy for a general matroid and that for a uniform

matroid is that at each step t (0 ≤ t ≤ l), we have to check whether Jt+1 ⊆ X \ St satisfies

St ∪ Jt+1 ∈ I for a general matroid while St ∪ Jt+1 ∈ I always holds for a uniform matroid.

2.2.2 Performance Bounds in Terms of Total k-Batch Curvature

Similar to the definition of the total curvature c in [34], we define the total k-batch curvature ck

for a given k as

ck := max
I∈X̂

{
1− %I(X \ I)

%I(∅)

}
, (2.3)

where X̂ = {I ⊆ X : %I(∅) 6= 0 and |I| = k}.

The following proposition will be applied to derive our bounds in terms of ck for both general

matroid constraints and uniform matroid constraints.

Proposition 2.2.1. If f : 2X −→ IR is a submodular set function, A,B ⊆ X , and {M1, . . . ,Mr}

is a partition of B \ A, then

f(A ∪B) ≤ f(A) +
∑

i:Mi⊆B\A

%Mi
(A). (2.4)

Proof. By the assumption that {M1, . . . ,Mr} is a partition of B \ A and by submodularity (see

inequality (2.1)), we have
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f(A ∪B)− f(A) = f(A ∪
r⋃
j=1

Mj)− f(A)

=
r∑
i=1

%Mi
(A ∪

i−1⋃
j=1

Mj)

≤
∑

i:Mi⊆B\A

%Mi
(A),

which implies inequality (2.4).

The following proposition in terms of the total k-batch curvature ck will be applied to derive

our bounds under general matroid constraints.

Proposition 2.2.2. Let f : 2X −→ IR be a polymatroid set function. Given a set B ⊆ X , a

sequence of t (t > 0) sets Ai =
⋃i
j=1 Ij with Ij ⊆ X and |Ij| = k for 1 ≤ j ≤ t, and a partition

{M1, . . . ,Mr} of B \ At, we have

f(B) ≤ ck
∑

i:Ii⊆At\B

%Ii(A
i−1) +

∑
i:Ii⊆B∩At

%Ii(A
i−1) +

∑
i:Mi⊆B\At

%Mi
(At). (2.5)

Proof. By the definition of At, we write

f(At ∪B)− f(B) =
t∑
i=1

%Ii(B ∪ Ai−1) =
∑

i:Ii⊆At\B

%Ii(B ∪ Ai−1).

By submodularity (see inequality (2.1)), we have

%Ii(B ∪ Ai−1) ≥ %Ii(X \ Ii) (2.6)

and

%Ii(∅) ≥ %Ii(A
i−1) (2.7)

for 1 ≤ i ≤ t. By the definition of the total k-batch curvature ck, we have
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1− %Ii(X \ Ii)
%Ii(∅)

≤ ck

for 1 ≤ i ≤ t, which implies that

%Ii(X \ Ii) ≥ (1− ck)%Ii(∅).

Combining the above inequality with (2.6) and (2.7), we have

%Ii(B ∪ Ai−1) ≥ %Ii(X \ Ii) ≥ (1− ck)%Ii(∅) ≥ (1− ck)%Ii(Ai−1)

for 1 ≤ i ≤ t. Using the above inequality, we have

f(At ∪B)− f(B) =
∑

i:Ii⊆At\B

%Ii(B ∪ Ai−1)

≥ (1− ck)
∑

i:Ii⊆At\B

%Ii(A
i−1). (2.8)

By Proposition 2.2.1, we have

f(At ∪B) ≤ f(At) +
∑

i:Mi⊆B\At

%Mi
(At). (2.9)

Combining inequalities (2.8) and (2.9) results in

f(B) ≤ f(At) +
∑

i:Mi⊆B\At

%Mi
(At)− (1− ck)

∑
i:Ii⊆At\B

%Ii(A
i−1).

Substituting f(At) into the above inequality by the identity

f(At) =
∑

i:Ii⊆At\B

%Ii(A
i−1) +

∑
i:Ii⊆B∩At

%Ii(A
i−1),

we get inequality (2.5).
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Recall that in Section 2.2.1, we defined Ji as the set selected by the k-batch greedy strategy at

stage i and Si =
⋃i
j=1 Jj as the set selected by the k-batch greedy strategy for the first i stages,

where 1 ≤ i ≤ l + 1, |Ji| = k for 1 ≤ i ≤ l, |Jl+1| = m, and K = kl + m with l ≥ 0 and

0 < m ≤ k being integers. When the pair (X, I) is a matroid, by the augmentation property of

a matroid and the previous assumption that the maximal cardinality of I is K, we have that any

optimal solution can be augmented to a set of length K. Assume that O = {o1, . . . , oK} is an

optimal solution to problem (2.2). Let S = Sl+1 be a k-batch greedy solution. We now state and

prove the following lemma, which will be used to derive the harmonic bound for general matroid

constraints in Theorem 2.2.4.

Lemma 2.2.3. Let S be a k-batch greedy solution and O = {o1, . . . , oK} be an optimal solution.

Then the following statements hold:

a. There exists a partition {J ′i}l+1
i=1 of O with |J ′i | = k for 1 ≤ i ≤ l and |J ′l+1| = m such that

%J ′i(S
i−1) ≤ %Ji(S

i−1). Furthermore, if J ′i ⊆ O ∩ S, then J ′i = Ji.

b. If J ′i ⊆ O \ Sl for 1 ≤ i ≤ l, then Ji ⊆ Sl \O.

Proof. We begin by proving a. First, we prove that there exists J ′l+1 ⊆ O\Sl such that Sl∪J ′l+1 ∈ I

and %J ′l+1
(Sl) ≤ %Jl+1

(Sl). By definition, |O| = K and Sl = kl = K−m. Using the augmentation

property, there exists one element oi1 ∈ O \ Sl such that Sl ∪ {oi1} ∈ I. Consider Sl ∪ {oi1} and

O. Using the augmentation property again, there exists one element oi2 ∈ O \ Sl \ {oi1} such that

Sl∪{oi1 , oi2} ∈ I. Using the augmentation property (m−2) more times, we have that there exists

J ′l+1 = {oi1 , . . . , oim} ⊆ O \ Sl such that Sl ∪ J ′l+1 ∈ I. By the k-batch greedy strategy, we have

%J ′l+1
(Sl) ≤ %Jl+1

(Sl). If Jl+1 ⊆ O, we can set J ′l+1 = Jl+1.

Then similar to the proof in [6], we will prove statement a by backward induction on i for

i = l, l − 1, . . . , 1. Assume that J ′i satisfies the inequality %J ′i(S
i−1) ≤ %Ji(S

i−1) for i > j, and let

Oj = O \
⋃
i>j J

′
i . Consider the sets Sj−1 and Oj . By definition, |Sj−1| = (j−1)k and |Oj| = jk.

Using the augmentation property, we have that there exists one element oj1 ∈ Oj \ Sj−1 such

that Sj−1 ∪ {oj1} ∈ I. Next consider Sj−1 ∪ {oj1} and Oj . Using the augmentation property
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again, there exists one element oj2 ∈ Oj \ Sj−1 \ {oj1} such that Sj−1 ∪ {oj1 , oj2} ∈ I. Similar to

the process above, using the augmentation property (k − 2) more times, finally we have that there

exists J ′j = {oj1 , . . . , ojk} ⊆ Oj \Sj−1 such that Sj−1∪J ′j ∈ I. By the k-batch greedy strategy, we

have that %J ′j(S
j−1) ≤ %Jj(S

j−1). Furthermore, if Jj ⊆ Oj , we can set J ′j = Jj . This completes

the proof of statement a.

Now we prove statement b by contradiction. Consider the negation of statement b, i.e., if

J ′i ⊆ O \ Sl for 1 ≤ i ≤ l, then Ji ⊆ O. By the argument in the second paragraph of the proof of

statement a, we have that if Ji ⊆ O for 1 ≤ i ≤ l, then Ji = J ′i . By the assumption that J ′i ⊆ O\Sl

for 1 ≤ i ≤ l, we have Ji ⊆ O \ Sl for 1 ≤ i ≤ l, which contradicts the fact that Ji ⊆ Sl for

1 ≤ i ≤ l. This completes the proof of statement b.

The following theorem presents our performance bound in terms of the total k-batch curvature

ck for the k-batch greedy strategy under a general matroid.

Theorem 2.2.4. Let (X, I) be a general matroid and f : 2X −→ IR be a polymatroid set function.

Then, any k-batch greedy solution S satisfies

f(S)

f(O)
≥ 1

1 + ck
. (2.10)

Proof. Let {Pi1 , . . . , Pir} be a partition of O \Sl satisfying that Pij ⊆ J ′ij for 1 ≤ j ≤ r. The way

to find {Pi1 , . . . , Pir} is as follows: first list all of the actions in O \ Sl, then let Pi be its subset

consisting of actions belonging to J ′i , i.e., Pi = (O \ Sl) ∩ J ′i . Finally, extract the nonempty sets

from {Pi}l+1
i=1 as {Pi1 , . . . , Pir}.

Recall that Si = ∪ij=1Jj for 1 ≤ i ≤ l as defined in Section 2.2.1. Then using Proposition 2.2.2,

with At = Sl and S = O results in
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f(O) ≤ ck
∑

i:Ji⊆Sl\O

%Ji(S
i−1) +

∑
i:Ji⊆O∩Sl

%Ji(S
i−1) +

∑
i:Pi⊆O\Sl

%Pi
(Sl)

= ck
∑

i:Ji⊆Sl\O

%Ji(S
i−1) +

∑
i:Ji⊆O∩Sl

%Ji(S
i−1) +

∑
i:Pi⊆O\Sl

i 6=l+1

%Pi
(Sl) + %Pl+1

(Sl). (2.11)

By the monotoneity of the set function f and because Pij ⊆ J ′ij for 1 ≤ j ≤ r, we have

%Pij
(Sl) ≤ %J ′ij

(Sl) (2.12)

for 1 ≤ j ≤ r. Based on the fact that J ′i ⊆ O for 1 ≤ i ≤ l + 1, and because Pij ⊆ J ′ij and

Pij ⊆ O \ Sl, we have

J ′ij ⊆ O \ Sl. (2.13)

Combining (2.11)-(2.13) results in

f(O) ≤ ck
∑

i:Ji⊆Sl\O

%Ji(S
i−1) +

∑
i:Ji⊆O∩Sl

%Ji(S
i−1) +

∑
i:J ′i⊆O\Sl

i 6=l+1

%J ′i(S
l) + %J ′l+1

(Sl). (2.14)

By submodularity (see inequality (2.1)), we have

%J ′i(S
l) ≤ %J ′i(S

i−1) (2.15)

for 1 ≤ i ≤ l + 1. By statement a in Lemma 2.2.3, we have

%J ′i(S
i−1) ≤ %Ji(S

i−1) (2.16)

for 1 ≤ i ≤ l + 1. By combining inequalities (2.15) and (2.16), we have

%J ′i(S
l) ≤ %Ji(S

i−1), (2.17)

for 1 ≤ i ≤ l + 1. Combining inequalities (2.14) and (2.17) results in
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f(O) ≤ ck
∑

i:Ji⊆Sl\O

%Ji(S
i−1) +

∑
i:Ji⊆O∩Sl

%Ji(S
i−1) +

∑
i:J ′i⊆O\Sl

i 6=l+1

%Ji(S
i−1) + %Jl+1

(Sl). (2.18)

By statement b in Lemma 2.2.3, and inequality (2.18), we have

f(O) ≤ ck
∑

i:Ji⊆Sl\O

%Ji(S
i−1) +

∑
i:Ji⊆O∩Sl

%Ji(S
i−1) +

∑
i:Ji⊆Sl\O

%Ji(S
i−1) + %Jl+1

(Sl). (2.19)

Because ∑
i:Ji⊆Sl\O

%Ji(S
i−1) ≤ f(Sl),

∑
i:Ji⊆O∩Sl

%Ji(S
i−1) +

∑
i:Ji⊆Sl\O

%Ji(S
i−1) = f(Sl),

and

%Jl+1
(Sl) = f(S)− f(Sl),

we can use inequality (2.19) to write

f(O) ≤ ckf(Sl) + f(Sl) + f(S)− f(Sl) ≤ (ck + 1)f(S),

which implies that f(S)/f(O) ≥ 1
1+ck

.

Remark 2.2.1. For k = 1, the harmonic bound for a general matroid becomes the bound in

Theorem 2.1.1.

Remark 2.2.2. The function g(x) = 1/(1 + x) is nonincreasing in x on the interval (0, 1].

Remark 2.2.3. The harmonic bound 1/(1 + ck) for the k-batch greedy strategy holds for any

matroid. For the special case of a uniform matroid, we will give a different (exponential) bound in

Theorem 2.2.6 below. We will also show that this exponential bound is better than the harmonic

bound when k divides the rank of the uniform matroid K.

23



In Theorem 2.2.6 below, we provide an exponential bound for the k-batch greedy strategy in

the case of uniform matroids. The special case when ck = 1 was derived in [6]. Our result here is

more general, and the method used in our proof is different from that of [6]. The new proof here

is of particular interest because the technique here is not akin to that used in the case of general

matroids in Theorem 2.2.4 and also was not considered in [6]. Before stating the theorem, we first

present a proposition that will be used in proving Theorem 2.2.6.

Choose a set J∗ ⊆ X \ Sl with |J∗| = k so as to maximize f(Sl ∪ J∗) − f(Sl). Write

%Jl+1
(Sl) = f(Sl+1)−f(Sl) and %J∗(Sl) = f(Sl∪J∗)−f(Sl).We have the following proposition.

Proposition 2.2.5. Let f : 2X −→ IR be a submodular set function. Then when (X, I) is a uniform

matroid, we have %Jl+1
(Sl) ≥ m

k
%J∗(S

l).

Proof. Let {M1, . . . ,Mr}, where

r =

(
k

m

)
,

be the collection of all the subsets of J∗ with cardinality m. Then, each element of J∗ appears in

exactly p of these subsets, where

p =

(
k − 1

m− 1

)
.

Using Lemma 2.1.3 with A = Sl, B = J∗ and B \ A = J∗, we have

r∑
i=1

%Mi
(Sl) ≥ p%J∗(S

l). (2.20)

Because |Sl ∪ Mi| = kl + m = K, by the definition of the uniform matroid (X, I), we have

Sl ∪ Mi ∈ I. By the definition of the k-batch greedy strategy and the monotoneity of the set

function f , we have

%Jl+1
(Sl) ≥ %Mi

(Sl), (2.21)

which implies that

r%Jl+1
(Sl) ≥

r∑
i=1

%Mi
(Sl). (2.22)
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Combining (2.22) and (2.20), we have

%Jl+1
(Sl) ≥ 1

r

r∑
i=1

%Mi
(Sl) ≥ p

r
%J∗(S

l) ≥ m

k
%J∗(S

l),

which implies that %Jl+1
(Sl) ≥ m

k
%J∗(S

l).

Remark 2.2.4. The reason we require (X, I) to be a uniform matroid is that this result does not

necessarily hold for a general matroid, because Sl ∪ Mi ∈ I is not guaranteed for a general

matroid, and in consequence inequality (2.21) does not necessarily hold.

Theorem 2.2.6. Let (X, I) be a uniform matroid and f : 2X −→ IR be a polymatroid set function.

Then, any k-batch greedy solution S satisfies

f(S)

f(O)
≥ 1

ck

(
1−

(
1− ck

l + 1

m

k

)(
1− ck

l + 1

)l)
. (2.23)

Proof. Recall again that Ji is the set selected at stage i by the k-batch greedy strategy, Si = ∪ij=1Jj

for 1 ≤ i ≤ l, and S0 = ∅ as defined in Section 3.1. Also recall that we defined J∗ as the set that

maximizes f(Sl ∪ J∗)− f(Sl) with J∗ ⊆ X \ Sl and |J∗| = k.

Let {Pi,1, . . . , Pi,ri} be a partition of O \ Si satisfying Pi,j ⊆ J ′i,j for 1 ≤ j ≤ ri. Finding

{Pi,1, . . . , Pi,ri} for each i is similar to finding {Pi1 , . . . , Pir} which was given in the proof of

Theorem 2.2.4. Letting B = O and A = Si (0 ≤ i ≤ l) in Proposition 2.2.1, we have

f(O ∪ Si) ≤ f(Si) +
∑

j:Pi,j⊆O\Si

%Pi,j
(Si). (2.24)

By the monotoneity of the set function f and because Pi,j ⊆ J ′i,j for 1 ≤ j ≤ ri, we have

%Pi,j
(Si) ≤ %J ′i,j(S

i). (2.25)

Based on the fact that J ′i,j ⊆ O and because Pi,j ⊆ O \ Si and Pi,j ⊆ J ′i,j , we have
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J ′i,j ⊆ O \ Si. (2.26)

Combining (2.24)-(2.26) results in

f(O ∪ Si) ≤ f(Si) +
∑

j:J ′i,j⊆O\Si

%J ′i,j(S
i). (2.27)

For 0 ≤ i ≤ l − 1, we have |Si ∪ J ′i,j| ≤ K, which implies that Si ∪ J ′i,j ∈ I always holds. So for

any given i (0 ≤ i ≤ l − 1), by the definition of the k-batch greedy strategy, we have

%J ′i,j(S
i) ≤ %Ji+1

(Si) (2.28)

for any J ′i,j ⊆ O \ Si. Now consider i = l. For any J ′l,j ⊆ O \ Sl with |J ′l,j| = k, by the definition

of J∗ before Proposition 2.2.5, we have

%J ′l,j(S
l) ≤ %J∗(S

l).

By the definition of J∗ and the monotoneity of the set function f , we have

%J ′l+1
(Sl) ≤ %J∗(S

l).

Combining the two inequalities above, we have for any J ′l,j ⊆ O \ Sl,

%J ′l,j(S
l) ≤ %J∗(S

l). (2.29)

By inequalities (2.28) and (2.29), for any given i (0 ≤ i ≤ l), we have

%J ′i,j(S
i) ≤ %Li+1

(Si) (2.30)

for any J ′i,j ⊆ O \ Si, where
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Li+1 =


Ji+1, 0 ≤ i ≤ l − 1,

J∗, i = l.

By inequalities (2.27) and (2.30), we have

f(O ∪ Si) ≤ f(Si) +
∑

j:J ′i,j⊆O\Si

%Li+1
(Si),

which implies that

f(O ∪ Si) ≤ f(Si) + (l + 1)%Li+1
(Si). (2.31)

Setting i = 0 in inequality (2.31), recalling that S0 = ∅, and because S1 = J1 by definition, we

have

f(S1) ≥ 1

l + 1
f(O). (2.32)

For 1 ≤ i ≤ l, we write

f(O ∪ Si)− f(O)

f(Si)
=

i−1∑
j=0

f(O ∪ Sj ∪ Jj+1)− f(O ∪ Sj)

i−1∑
j=0

f(Sj ∪ Jj+1)− f(Sj)

. (2.33)

By submodularity (see (2.1)), we have

f(O ∪ Sj ∪ Jj+1)− f(O ∪ Sj) ≥ f(X)− f(X \ Jj+1) (2.34)

and

f(Sj ∪ Jj+1)− f(Sj) ≤ f(Jj+1)− f(∅) (2.35)

for 0 ≤ j ≤ i− 1. By the definition of the total k-batch curvature, we have

f(X)− f(X \ Jj+1)

f(Jj+1)− f(∅)
≥ 1− ck (2.36)
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for 0 ≤ j ≤ i− 1. Combining inequalities (2.33)-(2.35) results in

f(O ∪ Si)− f(O)

f(Si)
≥

i−1∑
j=0

f(X)− f(X \ Jj+1)

i−1∑
j=0

f(Jj+1)− f(∅)
≥ 1− ck.

This in turn implies that

f(O) + (1− ck)f(Si) ≤ f(O ∪ Si).

Combining the above inequality and (2.31), we have

f(Si ∪ Li+1) ≥ 1

l + 1
f(O) +

(
1− ck

l + 1

)
f(Si) (2.37)

for 1 ≤ i ≤ l. By inequality (2.32) and successive application of inequality (2.37) for i = 1, . . . , l,

we have

f(Sl) ≥ 1

l + 1
f(O) +

(
1− ck

l + 1

)
f(Sl−1)

≥ 1

l + 1
f(O)

l−1∑
i=0

(
1− ck

l + 1

)i
=

1

ck

(
1−

(
1− ck

l + 1

)l)
f(O), (2.38)

and

f(Sl ∪ J∗) ≥ 1

l + 1
f(O) +

(
1− ck

l + 1

)
f(Sl)

≥ 1

l + 1
f(O)

l∑
i=0

(
1− ck

l + 1

)i
≥ 1

ck

(
1−

(
1− ck

l + 1

)l+1
)
f(O). (2.39)

Using Proposition 2.2.5 and combining inequalities (2.38) and (2.39), we have
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f(S) ≥ m

k
f(Sl ∪ J∗) +

(
1− m

k

)
f(Sl)

≥ m

k

1

ck

(
1−

(
1− ck

l + 1

)l+1
)
f(O) +

(
1− m

k

) 1

ck

(
1−

(
1− ck

l + 1

)l)
f(O)

=
1

ck

(
1−

(
1− ck

l + 1

m

k

)(
1− ck

l + 1

)l)
f(O),

which implies (2.23).

Remark 2.2.5. For k = 1, the exponential bound for a uniform matroid becomes the bound in

Theorem 2.1.2.

Remark 2.2.6. The exponential bound for a uniform matroid becomes

1−
(

1− 1

l + 1

m

k

)(
1− 1

l + 1

)l

for ck = 1, which is the bound in [6].

Remark 2.2.7. When m = k, i.e., when k divides the cardinality K, the exponential bound for a

uniform matroid becomes
1

ck

(
1−

(
1− ck

l + 1

)l+1
)
,

which is the bound in [50].

Remark 2.2.8. Let g(x, y) = (1− (1− x/y)y) /x. The function g(x, y) is nonincreasing in x on

the interval (0, 1] for any positive integer y. Also, g(x, y) is nonincreasing in y when x is a constant

on the interval (0, 1].

Remark 2.2.9. Even if the total curvature ck is monotone in k, the exponential bound for a uniform

matroid is not necessarily monotone. But under the condition that k divides K, it is monotone. To

be specific, if k dividesK, thenK = k(l+1) for some positive integer l. Thus, as k increases, l+1

decreases, and if ck decreases, then, we have that (1− (1− ck/(l + 1))l+1)/ck is nondecreasing in

k based on the previous remark.
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Remark 2.2.10. When m = k, the exponential bound is tight, as shown in [6]. Moreover, for this

case, the exponential bound (1 − (1 − ck/(l + 1) · m/k)(1 − ck/(l + 1))l)/ck is better than the

harmonic bound 1/(1 + ck) because

1

ck

(
1−

(
1− ck

l + 1

)l+1
)
>

1− e−ck
ck

≥ 1

1 + ck
.

However, if k does not divide K, the exponential bound might be worse than the harmonic bound.

For example, when K = 100, k = 80, and ck = 0.6, the exponential bound is 0.5875, which is

worse than the harmonic bound 0.6250.

Remark 2.2.11. The monotoneity of 1/(1 + ck) implies that the k-batch greedy strategy has a

better harmonic bound than the 1-batch greedy strategy if ck ≤ c. The monotoneity of (1 − (1 −

ck/(l + 1))l+1)/ck implies that the k-batch (k divides K) greedy strategy has a better exponential

bound than the 1-batch greedy strategy if ck ≤ c.

The following theorem establishes that indeed ck ≤ c.

Theorem 2.2.7. Let f : 2X −→ IR be a polymatroid set function with total curvature c and total

k-batch curvatures {ck}Kk=1. Then, ck ≤ c for 1 ≤ k ≤ K.

Proof. By the definition of the total k-batch curvature ck, we have

ck = max
I∈X̂

{
1− %J(X \ I)

%I(∅)

}
= 1−min

I∈X̂


k∑
j=1

%ij(X \ Ij)

k∑
j=1

%ij(Ij−1)

 ,

where I = {i1, . . . , ik} and Ij = {i1, . . . , ij} for 1 ≤ j ≤ k.

By submodularity (see (2.1)), we have

%ij(X \ Ij) ≥ %ij(X \ {ij}) and %ij(Ij−1) ≤ %ij(∅)

for 1 ≤ j ≤ k, which imply that
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k∑
j=1

%ij(X \ Ij)

k∑
j=1

%ij(Ij−1)

≥

k∑
j=1

%ij(X \ {ij})

k∑
j=1

%ij(∅)
.

Therefore, we have

ck ≤ 1− min
Ik∈X̂


k∑
j=1

%ij(X \ {ij})

k∑
j=1

%ij(∅)

 . (2.40)

By the definition of c and the fact that f is a polymatroid set function, we have %ij(X \ {ij}) ≥

(1−c)%ij(∅) for 1 ≤ i ≤ k. Combining this inequality and (2.40), we have ck ≤ 1−(1−c) = c.

One would expect the following generalization of Theorem 2.2.7 to hold: if k2 ≥ k1, then

ck2 ≤ ck1 . In the case of general matroid constraints, this conclusion implies that the bound is

nondecreasing in k. In the case of uniform matroid constraints, monotoneity of the bound holds

under the condition that k divides K. We now state and prove the following theorem on the

monotoneity of ck, using Lemmas 2.1.3 and 2.1.4 (Lemmas 1.1 and 1.2 in [52]).

Theorem 2.2.8. Let f : 2X −→ IR be a polymatroid set function with k-batch curvatures {ck}Kk=1.

Then, ck2 ≤ ck1 whenever k2 ≥ k1.

Proof. Let J ⊆ X be a set with cardinality k2 satisfying f(J) > 0. Let {M1, . . . ,Ms} be the

collection of all the subsets of J with cardinality k1 (k1 ≤ k2), where

s =

(
k2

k1

)
.

Then, each element of J appears in exactly q of the subsets {M1, . . . ,Ms}, where

q =

(
k2 − 1

k1 − 1

)
.

Using Lemma 2.1.4 with A = X , A′ = X \ J , and A \ A′ = J , we have

31



s∑
i=1

%Mi
(X \Mi) ≤ q%J(X \ J),

which implies that

%J(X \ J) ≥ 1

q

s∑
i=1

%Mi
(X \Mi). (2.41)

Based on the fact that {M1, . . . ,Ms} is the collection of all the subsets of J with cardinality k1 and

that each element of J appears in exactly q of these subsets, using Lemma 2.1.3 with B = J and

A = ∅, we have
s∑
i=1

%Mi
(∅) ≥ q%J(∅),

which implies that

%J(∅) ≤ 1

q

s∑
i=1

%Mi
(∅). (2.42)

Combining inequalities (2.41) and (2.42) results in

%J(X \ J)

%J(∅)
≥

1
q

s∑
i=1

%Mi
(X \Mi)

1
q

s∑
i=1

%Mi
(∅)

=

s∑
i=1

%Mi
(X \Mi)

s∑
i=1

%Mi
(∅)

. (2.43)

Recall the definition of the total k-batch curvature ck in (2.3). Because |Mi| = k1 for 1 ≤ i ≤ s

and f is a polymatroid set function, we have

%Mi
(X \Mi) ≥ (1− ck1)%Mi

(∅) (2.44)

for 1 ≤ i ≤ s. Combining inequalities (2.43) and (2.44) results in

%J(X \ J)

%J(∅)
≥

(1− ck1)
s∑
i=1

%Mi
(∅)

s∑
i=1

%Mi
(∅)

= 1− ck1 . (2.45)

By (2.3), ck2 can be written as
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ck2 = 1−min
J∈X̂

{
%J(X \ J)

%J(∅)

}
. (2.46)

By (2.45) and (2.46), we have ck2 ≤ 1− (1− ck1) = ck1 .

Remark 2.2.12. When k1 = 1 and k2 = k, Theorem 2.2.8 reduces to Theorem 2.2.7. However, the

proof of Theorem 2.2.7 can be used only to prove the case when k1 divides k2 in Theorem 2.2.8.

This is why we have chosen to separate the two theorems.

2.3 Examples
In this section, we consider a task scheduling problem and an adaptive sensing problem to

illustrate our results. Specially, we demonstrate that the total curvature ck decreases in k and the

performance bound for a uniform matroid increases in k under the condition that k divides K.

2.3.1 Task Scheduling

As a canonical example for problem (2.2), we consider the task scheduling problem posed

in [3], which was also analyzed in [4] and [57]. In this problem, there are n subtasks and a set

X of N agents. At each stage, a subtask i is assigned to an agent a, who accomplishes the task

with probability pi(a). LetXi({a1, a2, . . . , ak}) denote the Bernoulli random variable that signifies

whether or not subtask i has been accomplished after performing the set of agents {a1, a2, . . . , ak}

over k stages. Then 1
n

∑n
i=1Xi({a1, a2, . . . , ak}) is the fraction of subtasks accomplished after

k stages by employing agents {a1, a2, . . . , ak}. The objective function f for this problem is the

expected value of this fraction, which can be written as

f({a1, . . . , ak}) =
1

n

n∑
i=1

(
1−

k∏
j=1

(1− pi(aj))

)
.

Assume that pi(a) > 0 for any a ∈ X . Then it is easy to check that f is nondecreasing. Therefore,

when I = {S ⊆ X : |S| ≤ K}, this problem has an optimal solution of length K. Also, it is easy
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to check that f has the diminishing-return property and f(∅) = 0. Thus, f is a polymatroid set

function.

For convenience, we only consider the special case n = 1; our analysis can be generalized to

any n ≥ 2. For n = 1, we have

f({a1, . . . , ak}) = 1−
k∏
j=1

(1− p(aj)) ,

where p(·) = p1(·).

Let us order the elements of X as a[1], a[2], . . . , a[N ] such that

0 < p(a[1]) ≤ p(a[2]) ≤ . . . ≤ p(a[N ]) ≤ 1.

Then by the definition of the total curvature ck, we have

ck = max
i1,...,ik∈X

{
1− f(X)− f(X \ {i1, . . . , ik})

f({i1, . . . , ik})− f(∅)

}
= 1−

N∏
l=k+1

(1− p(a[l])).

To numerically evaluate the relevant quantities here, we randomly generate a set of {p(ai)}30
i=1.

In Figure 2.2, we consider K = 20, and batch sizes k = 1, 2, . . . , 10. From the expression of

ck, we can see that ck is nonincreasing in k, but when N is large, ck is close to 1 for each k.

Figure 2.2 shows that the exponential bound for k = 3, 6, 8, 9 is worse than that for k = 1, 2,

which illustrates our earlier remark that the exponential bound for the uniform matroid case is not

necessarily e in k even though ck is monotone in k. Figure 2.2 also shows that the exponential

bound 1
ck

(1− (1− ck
l+1

m
k

)(1− ck
l+1

)l coincides with 1
ck

(1− (1− ck
l+1

)l+1) for k = 1, 2, 4, 5, 10 and

it is nondecreasing in k, which illustrates our remark that the exponential bound is nondecreasing

in k under the condition that k divides K.

Owing to the nature of the total curvature for this example, it is not easy to see that ck is

nonincreasing in k (all ck values here are very close to 1). The next example will illustrate that

the total curvature does decrease in k and again demonstrate our claim that the exponential bound
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Figure 2.2: Task scheduling example

for the uniform matroid case is not necessarily monotone in k but it is monotone in k under the

condition that k divides K.

2.3.2 Adaptive Sensing

As our second example application, we consider the adaptive sensing design problem posed

in [30] and [4]. Consider a signal of interest x ∈ IR2 with normal prior distributionN (0, I), where

I is the 2 × 2 identity matrix; our analysis easily generalizes to dimensions larger than 2. Let

B = {Diag(
√
b,
√

1− b) : b ∈ {b1, . . . , bN}}, where bi ∈ [0.5, 1] for 1 ≤ i ≤ N . At each stage i,

we make a measurement yi of the form
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yi = Bix+ wi,

where Bi ∈ B and wi represents i.i.d. Gaussian measurement noise with mean zero and covariance

σ2I , independent of x.

The objective function f for this problem is the information gain, which can be written as

f({B1, . . . , Bk}) = H0 −Hk.

Here, H0 = N
2

log(2πe) is the entropy of the prior distribution of x and Hk is the entropy of the

posterior distribution of x given {yi}ki=1; that is,

Hk =
1

2
log det(Pk) +

N

2
log(2πe),

where

Pk =

(
P−1
k−1 +

1

σ2
BT
k Bk

)−1

is the posterior covariance of x given {yi}ki=1 [30].

The objective is to choose a set of measurement matrices {B∗i }Ki=1, B∗i ∈ B, to maximize the

information gain f({B1, . . . , BK}) = H0 − HK . It is easy to check that f is nondecreasing,

submodular, and f(∅) = 0; i.e., f is a polymatroid set function.

For convenience, let σ = 1. Then, we have

ck = max
Jk⊆X,|Jk|=k

{
1− f(X)− f(X \ Jk)

f(Jk)

}

= max
Jk⊆X,|Jk|=k

1−
log(st)− log

(
s−

∑
i:ei∈Jk

ei

)(
t−

∑
i:ei∈Jk

(1− ei)

)

log

(
1 +

∑
i:ei∈Jk

ei

)(
1 +

∑
i:ei∈Jk

(1− ei)

)
 ,

where X = {B1, . . . , BN}, s = 1 +
∑N

i=1 ei, and t = 1 +
∑N

i=1(1− ei).
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Figure 2.3: Adaptive sensing example

To numerically evaluate the relevant quantities here, we randomly generate a set of {ei}30
i=1.

We first still consider K = 20 for k = 1, . . . , 10 in Figure 2.3. Figure 2.3 shows that the total

curvature decreases in k, while the exponential bound for the uniform matroid case only increases

for k = 1, 2, 4, 5, 7, 10 and the bound for k = 3, 6, 8, 9 is worse than that for k = 1, 2. This

illustrates that the exponential bound for the uniform matroid case is not necessarily monotone in

k.

Next, we consider K = 24 for k = 1, 2, 3, 4, 6, 8 in Figure 2.4. Figure 2.4 shows that the

curvature decreases in k and the exponential bound increases in k since k divides K for k =

1, 2, 3, 4, 6, 8, which again demonstrates our claim that ck decreases in k and the exponential bound

increases in k under the condition that k divides K.

37



1 2 3 4 5 6 7 8k
0.65

0.7

0.75

0.8

0.85

0.9

0.95

P
er

fo
rm

an
ce

 B
o

u
n

d
 o

r 
T

o
ta

l C
u

rv
at

u
re

Total curvature ck

Exponential bound

Figure 2.4: Adaptive sensing example

2.4 Discussion on Matroid Preservation
Suppose that (X, I) is a uniform matroid. In this appendix, we will provide an example to

prove that the collection of subsets of X of size k satisfying the constraint I (i.e., actions in the

k-batch greedy strategy) is not in general a matroid. This shows that lifting does not work; i.e., it

is not in general possible to appeal to bounds for the 1-batch greedy strategy to derive bounds for

the k-batch greedy strategy. For convenience, we assume that k divides the uniform matroid rank

K.

Recall that for a matroid (X, I), we have the following two properties:

i. For all B ∈ I, any set A ⊆ B is also in I.
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ii. For any A,B ∈ I, if |B| > |A|, then there exists j ∈ B \ A such that A ∪ {j} ∈ I.

To apply lifting, first fix k. We will define a pair (Y,J ) such that Y is the “ground set” of all

k-element subsets of X: Y = {y : y = {a1, . . . , ak}, k is given, and ai ∈ X}. Next, J is the set

of all subsets of Y such that their elements are disjoint and the union of their elements lies in I.

The following example shows that (Y,J ) constructed this way is not in general a matroid.

Example 2.4.1. Fix k = 2. Let X = {a, b, c, d}, and I be the power set of X (a special case of

a uniform matroid, with rank K = 4). We have Y = {{a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}}.

Let J be as defined above.

We will now prove that (Y,J ) does not satisfy property ii above. To see this, consider A =

{{a, b}} ∈ J and B = {{a, c}, {b, d}} ∈ J . We have |A| = 1 and |B| = 2. Notice that

{a, b} ∩ {a, c} 6= ∅ and {a, b} ∩ {b, d} 6= ∅. So, in this case clearly there does not exist j ∈ B \A

such that A ∪ {j} ∈ J . Hence, property ii fails and (Y,J ) is not a matroid.

2.5 Comparing Different k-Batch Greedy Strategies
It is tempting to think that the k-batch (k ≥ 2) greedy strategy always outperforms the 1-batch

greedy strategy. In fact, this is false. To show this, we will provide two examples based on the

maximum K-coverage problem, which was considered in [51] to demonstrate via Monte Carlo

simulations that the 1-batch greedy strategy can perform better than the 2-batch greedy strategy.

The maximum K-coverage problem is to select at most K sets from a collection of sets such that

the union of the selected sets has the maximum number of elements. Example 2.5.1 below is to

choose at most 3 sets from a collection of 5 sets, and Example 2.5.2 is to choose at most 4 sets

from a collection of 6 sets. In contrast to [51], our examples are not based on simulation, but are

analytical counterexamples.

Example 2.5.1. FixK = 3 and let the sets to be selected be S1 = {a, f}, S2 = {f}, S3 = {a, b, g},

S4 = {c, f, g}, and S5 = {e, g, h}.
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For the 1-batch greedy strategy, one solution is {S3, S4, S5}, and the union of the selected sets is

S3∪S4∪S5 = {a, b, c, e, f, g, h}. For the 2-batch greedy strategy, one solution is {S1, S5, S3}, and

the union of the selected sets is S1∪S5∪S3 = {a, b, e, f, g, h}. It is easy to see that |S3∪S4∪S5| =

7 > |S1 ∪ S5 ∪ S3| = 6.

Example 2.5.2. Fix K = 4 and let the sets to be selected be S1 = {h, i, j}, S2 = {b, e, i, j},

S3 = {c, d, e, h}, S4 = {b, d, f, h, i}, S5 = {a, h, i, j}, and S6 = {c, g, i}.

For the 1-batch greedy strategy, one solution is {S4, S2, S6, S5}, and the union of the selected

sets is S4∪S2∪S6∪S5 = {a, b, c, d, e, f, g, h, i, j}. For the 2-batch greedy strategy, one solution is

{S2∪S3∪S4∪S5}, and the union of the selected sets is S2∪S3∪S4∪S5 = {a, b, c, d, e, f, h, i, j}.

It is easy to see that |S4 ∪ S2 ∪ S6 ∪ S5| = 10 > |S2 ∪ S3 ∪ S4 ∪ S5| = 9.

For the two examples above, it is easy to check that their 1-batch and 2-batch greedy solutions

are not unique. For Example 2.5.1, the 1-batch greedy solution {S3, S4, S5} is also one solution of

the 2-batch greedy strategy. If we choose {S3, S4, S5} instead of {S1, S5, S3} as the solution of the

2-batch greedy strategy, then the 1-batch greedy strategy has the same performance as the 2-batch

greedy strategy in this case. For Example 2.5.2, the 1-batch greedy solution {S4, S2, S6, S5} is

also one solution of the 2-batch greedy strategy. So we can say that for the k-batch greedy strategy,

its solution is not unique. However, our harmonic bound under general matroid constraints and

exponential bound under uniform matroid constraints are both universal, which means that the

harmonic bound holds for any k-batch greedy solution under general matroid constraints and the

exponential bound holds for any k-batch greedy solution under uniform matroid constraints.
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Chapter 3

Improved Bounds for Greedy Strategy in Set

Optimization

In this chapter, we still consider problem (2.2) in Chapter 2. For convenience of reference, we

rewrite the problem which is to find a set in I to maximize the objective function f as follows:

maximize f(M)

subject to M ∈ I.
(3.1)

Suppose that the objective function f in problem (3.1) is a polymatroid function and the rank

of the matroid (X, I) is K. By the augmentation property of a matroid and the monotoneity

of f , any optimal solution can be extended to a set of size K. By the definition of the greedy

strategy (see Section 2.1.3), any greedy solution is of size K. For the greedy strategy, under a

general matroid constraint and a uniform matroid constraint, the performance bounds 1/(1 + c)

and (1− (1− c/K)K)/c from [34] are the best so far, respectively, in terms of the total curvature

c. However, the total curvature c, by definition, depends on the function values on sets outside

the matroid (X, I). This gives rise to two possible issues when applying existing bounding results

involving the total curvature c:

1. If we are given a function f defined only on I, then problem (1) still makes sense, but the

total curvature is no longer well defined. This means that the existing results involving the

total curvature do not apply. But this surely is puzzling: if the optimization problem (1) is

perfectly well defined, why should the bounds no longer apply?

2. Even if the function f is defined on the entire 2X , the fact that the total curvature c involves

sets outside the matroid is puzzling. Specifically, if the optimization problem (1) involves
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only sets in the matroid, why should the bounding results rely on a quantity c that depends

on sets outside the matroid?

The two reasons above motivate us to investigate more applicable bounds involving only sets in

the matroid.

In Section 3.1, we first introduce definitions of polymatroid functions, matroids, and curvature,

and then we review performance bounds in terms of the total curvature from [34]. In Section 3.2.1,

we prove that any monotone set function defined on the matroid can be extended to one defined on

the entire power set and the extended function can be expressed in a certain form. In Section 3.2.2,

we provide necessary and sufficient conditions for the existence of an incremental extension of

a polymatroid function defined on the uniform matroid of rank k to one defined on the uniform

matroid of rank k + 1. In Section 3.2.3, we introduce a particular extension we call the majorizing

extension and explore what kinds of polymatroid functions can be majorizingly extended to ones

defined on the whole power set. In Section 3.2.4, we provide an algorithm for constructing the

extension of a polymatroid function defined on a matroid to the entire power set. In Section 3.3,

we define the partial curvature involving only sets in the matroid and obtain improved bounds in

terms of the partial curvature subject to certain necessary and sufficient conditions. In Section 3.4,

we illustrate our results by considering a task scheduling problem and an adaptive sensing problem.

The results in this chapter were published in [58, 59].

3.1 Preliminaries

3.1.1 Polymatroid Functions and Curvature

The definitions and terminology in this section were introduced in Chapter 2, but are reviewed

again here for convenience of reference. Let X be a finite ground set of actions, and I be a non-

empty collection of subsets of X . Given a pair (X, I), the collection I is said to be hereditary if it

satisfies property i below and has the augmentation property if it satisfies property ii below:

i. (Hereditary) For all B ∈ I, any set A ⊆ B is also in I.
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ii. (Augmentation) For any A,B ∈ I, if |B| > |A|, then there exists j ∈ B \ A such that

A ∪ {j} ∈ I.

The pair (X, I) is called a matroid if it satisfies both properties i and ii. The pair (X, I) is called

a uniform matroid when I = {S ⊆ X : |S| ≤ K} for a given K, called the rank of (X, I). In

general, the rank of a matroid (X, I) is the cardinality of its maximal set.

Let 2X denote the power set of X , and define a set function f : 2X → R. The set function f is

said to be monotone and submodular if it satisfies properties 1 and 2 below, respectively:

1. (Monotone) For any A ⊆ B ⊆ X , f(A) ≤ f(B).

2. (Submodular) For anyA ⊆ B ⊆ X and j ∈ X\B, f(A∪{j})−f(A) ≥ f(B∪{j})−f(B).

A set function f : 2X → R is called a polymatroid function [55] if it is monotone, submodular,

and f(∅) = 0, where ∅ denotes the empty set. The submodularity in property 2 means that the

additional value accruing from an extra action decreases as the size of the input set increases. This

property is also called the diminishing-return property in economics.

The total curvature [34] of a set function f is defined as

c(f) = max
j∈X

f({j})6=f(∅)

{
1− f(X)− f(X \ {j})

f({j})− f(∅)

}
. (3.2)

For convenience, we use c to denote c(f) when there is no ambiguity. Note that 0 ≤ c ≤ 1

when f is a polymatroid function, and c = 0 if and only if f is additive, i.e., for any set A ⊆ X ,

f(A) =
∑

i∈A f({i}). When c = 0, it is easy to check that the greedy strategy coincides with the

optimal strategy. So in the rest of the paper, when we assume that f is a polymatroid function, we

only consider c ∈ (0, 1].

3.1.2 Performance Bounds in Terms of Total Curvature

In this section, we review two theorems from [34], which bound the performance of the greedy

strategy using the total curvature c for general matroid constraints and uniform matroid constraints.

We will use these two theorems to derive bounds in Section 3.3.
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We first define optimal and greedy solutions for (3.1) as follows:

Optimal solution: A set O is called an optimal solution of (3.1) if

O ∈ argmax
M∈I

f(M),

where the right-hand side denotes the collection of arguments that maximize f(·) on I. Note that

there may exist more than one optimal solution for problem (3.1). When (X, I) is a matroid of

rank K, then any optimal solution can be extended to a set of size K because of the augmentation

property of the matroid and the monotoneity of the set function f .

Greedy solution: A set G = {g1, g2, . . . , gK} is called a greedy solution of (3.1) if

g1 ∈ argmax
{g}∈I

f({g}),

and for i = 2, . . . , K,

gi ∈ argmax
g∈X

{g1,...,gi−1,g}∈I

f({g1, g2, . . . , gi−1, g}).

Note that there may exist more than one greedy solution for problem (3.1).

Theorem 3.1.1. [34] Let (X, I) be a matroid and f : 2X → R be a polymatroid function with

total curvature c. Then, any greedy solution G satisfies

f(G)

f(O)
≥ 1

1 + c
.

When f is a polymatroid function, we have c ∈ (0, 1], and therefore 1/(1 + c) ∈ [1/2, 1).

Theorem 3.1.1 applies to any matroid. This means that the bound 1/(1 + c) holds for a uniform

matroid too. Theorem 3.1.2 below provides a tighter bound when (X, I) is a uniform matroid.

Theorem 3.1.2. [34] Let (X, I) be a uniform matroid of rankK and f : 2X → R be a polymatroid

function with total curvature c. Then, any greedy solution G satisfies
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f(G)

f(O)
≥ 1

c

(
1−

(
1− c

K

)K)
>

1

c

(
1− e−c

)
.

The function (1−(1−c/K)K)/c is nonincreasing inK for c ∈ (0, 1] and (1−(1−c/K)K)/c↘

(1− e−c)/c when K →∞; therefore, (1− (1− c/K)K)/c > (1− e−c)/c when f is a polymatroid

function. Also it is easy to check that (1 − e−c)/c > 1/(1 + c) for c ∈ (0, 1], which implies that

the bound (1− (1− c/K)K)/c is stronger than the bound 1/(1 + c) in Theorem 3.1.1.

The bounds in Theorems 3.1.1 and 3.1.2 involve sets not in the matroid, so as stated they do not

apply to optimization problems whose objective function is only defined for sets in the matroid.

In the following section, we will explore the extension of polymatroid functions that yield to the

bounds in Theorems 3.1.1 and 3.1.2.

3.2 Function Extension

3.2.1 Monotone Extension

The following proposition states that any monotone set function defined on the matroid (X, I)

can be extended to one defined on the entire power set 2X , and the extended function can be

expressed in a certain form.

Proposition 3.2.1. Let (X, I) be a matroid of rank K and f : I → R be a monotone set function.

Then there exists a monotone set function g : 2X → R satisfying the following conditions:

a. g(A) = f(A) for all A ∈ I.

b. g is monotone on 2X .

Moreover, any function g : 2X → R satisfying the above two conditions can be expressed as

g(A) =


f(A), A ∈ I,

g(B∗) + dA, A /∈ I,
(3.3)
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where

B∗ ∈ argmax
B:B⊂A
|B|=|A|−1

g(B) (3.4)

and dA is a nonnegative number.

Proof. Condition a can be satisfied by construction: first set

g(A) = f(A) (3.5)

for all A ∈ I. To prove that there exists a monotone set function g defined on the entire power set

2X satisfying both conditions a and b, we prove the following statement by induction: There exists

a set function g of the form

g(A) =


f(A), A ∈ I,

g(B∗) + dA, A /∈ I,
(3.6)

such that g is monotone for sets of size up to l (l ≤ K), where B∗ is given in (3.4) and dA is a

nonnegative number.

First, we prove that the above statement holds for l = 1. For g to be monotone for sets of size

up to 1, it suffices to have that g(A) ≥ 0 for any set A ∈ 2X with |A| = 1. For A ∈ I, by (3.5) we

have that g(A) = f(A) ≥ 0. ForA /∈ I, it suffices to set g(A) = dA, where dA is any nonnegaative

number. Therefore, the above statement holds for l = 1. Assume that the above statement holds

for l = k. We prove that it also holds for l = k + 1. For this, it suffices to prove that for any

A ∈ 2X with |A| = k + 1 and any B ⊂ A, we have that g(A) ≥ g(B).

Consider any set A ∈ I with |A| = k + 1. By (3.5) we have that g(A) = f(A). For any

set B ⊂ A, by the hereditary property of a matroid, we have that B ∈ I, which implies that

g(B) = f(B). So for any set A ∈ I with |A| = k + 1 and any set B ⊂ A, by the condition that f

is monotone on I, we have that g(A) ≥ g(B).

Consider any set A /∈ I with |A| = k + 1. By the induction hypothesis for l = k, we have that

for any set B ⊂ A with |B| = k, g(B) is well defined. Set dA ≥ 0 and
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B∗ ∈ argmax
B:B⊂A
|B|=|A|−1

g(B),

and then define

g(A) = g(B∗) + dA.

We have that

g(A) ≥ g(B) (3.7)

for any set B ⊂ A with |B| = k. For any set B ⊂ A with |B| < k, there must exist a set Ak with

|Ak| = k such that B ⊂ Ak ⊂ A. By the induction hypothesis l = k and (3.7), we have that

g(A) ≥ g(Ak) ≥ g(B). (3.8)

Combining (3.7) and (3.8), for any set A /∈ I with |A| = k + 1 and any set B ⊂ A, we have that

g(A) ≥ g(B). Therefore, (3.6)) holds for l = k + 1.

We have so far shown that there exists a monotone set function g : 2X → R satisfying condi-

tions a and b. Next we prove that any monotone set function g : 2X → R satisfying conditions a

and b can be expressed as in (3.3).

If g satisfies condition a, then we have that

g(A) = f(A), ∀A ∈ I. (3.9)

If g satisfies condition b, then for any set A /∈ I, we have that

g(A) ≥ g(B∗),

which implies that there exists a nonnegative number dA such that

g(A) = g(B∗) + dA, ∀A /∈ I. (3.10)
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Combining (3.9) and (3.10), we have that any monotone set function g : 2X → R satisfying

conditions a and b can be expressed by (3.3).

In Proposition 3.2.1, when A /∈ I, we define g(A) using B∗ as defined in (3.4). But we are not

restricted to using B∗ as the following lemma shows.

Lemma 3.2.2. Assume that g is a monotone set function defined on the uniform matroid of rank k.

Then, for any set A with |A| = k + 1, there exist nonnegative numbers d1, d2, . . . , dM such that

g(A) = g(A1) + d1 = g(A2) + d2 = · · · = g(AM) + dM ,

where M = 2k+1 − 2 and A1, A2, . . . , AM denote all nonempty strict subsets of A.

Proof. Without loss of generality, let

AM ∈ argmax
B:B⊂A,|B|=|A|−1

g(B).

By Proposition 3.2.1, we have that there exist dM ≥ 0 such that g(A) = g(AM) + dM . Then, for

any i = 1, . . . ,M − 1, setting di = dM + g(AM)− g(Ai) results in

g(A) = g(A1) + d1 = g(A2) + d2 = · · · = g(AM) + dM ,

where di ≥ 0, because dM ≥ 0 and g(AM) ≥ g(Ai) for i = 1, · · · ,M − 1.

3.2.2 Polymatroid Extension: From Uniform Matroid to Power Set

We now turn our attension to extending polymatroid functions. The authors of [60] pointed

out that there are cases where a polymatroid function defined on a matroid cannot be extended to

one that is defined on the entire power set. In the theorem below, we give necessary and sufficient

conditions for the existence of an extension of a polymatroid function defined on the uniform

matroid of rank k to the uniform matroid of rank k + 1.
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Theorem 3.2.3. Let f : I → R be a polymatroid function defined on the uniform matroid of rank

k. Then f can be extended to a polymatroid function g defined on the uniform matroid of rank k+1

if and only if for any A ⊆ X with |A| = k + 1, any B ⊂ A with |B| = k, and any a ∈ B,

f(B)− f(B \ {a}) ≥ f(B∗)− f(A \ {a}), (3.11)

where

B∗ ∈ argmax
B:B⊂A,|B|=k

f(B). (3.12)

Proof. →

In this direction, we need to prove that (3.11) holds if g is an extended polymatroid function

defined on the uniform matroid of rank k + 1. If g is a polymatroid function, we have that g is

monotone and submodular. If g is monotone, then for any set A /∈ I with |A| = k + 1, we have

g(A) ≥ g(B∗). (3.13)

If g is submodular, then for any set A , any set B ⊂ A with |B| = k, and any action a ∈ B, we

have

g(B)− g(B \ {a}) ≥ g(A)− g(A \ {a}). (3.14)

Combining (3.13) and (3.14), we have

g(B)− g(B \ {a}) ≥ g(B∗)− g(A \ {a}).

Because g is an extended function of f , we have that g(B) = f(B), g(B∗) = f(B∗), g(B \{a}) =

f(B \ {a}), and g(A \ {a}) = f(A \ {a}). Then the above inequality becomes

f(B)− f(B \ {a}) ≥ f(B∗)− f(A \ {a}).

which means that (3.11) holds.
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←

In this direction, we prove that if (3.11) holds, then there exists a polymatroid function g defined

on the uniform matroid of rank k + 1 that agrees with f on the uniform matroid of rank k.

By Proposition 3.2.1, we have that there exists an extended monotone set function g of the

following form defined on the uniform matroid of rank k + 1:

g(A) =


f(A), |A| ≤ k,

f(B∗) + dA, |A| = k + 1,

(3.15)

where B∗ is defined as in (3.12) and dA is nonnegative.

We will prove that there exists dA for any A ⊂ X with |A| = k+1 such that g defined in (3.15)

satisfies g(∅) = 0 and g is submodular on 2X .

Because f is a polymatroid function on the uniform matroid of k and g(A) = f(A) for any

A ⊆ X with |A| ≤ k, we have that g(∅) = f(∅) = 0. For g to be submodular on the uniform

matroid of rank k + 1, it suffices to have that for any A ⊆ X with |A| = k + 1, any B ⊂ A with

|B| = k, and any a ∈ B

g(B)− g(B \ {a}) ≥ g(A)− g(A \ {a}). (3.16)

For any A ⊆ X with |A| = k + 1, by (3.15), we have that g(A) = f(B∗) + dA, where dA ≥ 0.

The inequality (3.11) implies that f(B)− f(B∗) + f(A \ {a})− f(B \ {a}) ≥ 0. So only if we

set dA to satisfy

0 ≤ dA ≤ min
B:B⊂A,|B|=k and a:a∈B

{f(B)− f(B∗) + f(A \ {a})− f(B \ {a})}, (3.17)

we have that g(A) ≤ f(B)− f(B \ {a}) + f(A \ {a}), which implies that (3.16) holds.

This completes the proof.
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Remark 3.2.1. Theorem 3.2.3 provides necessary and sufficient conditions for the existence of

an extension of a polymatroid function defined on the uniform matroid of rank k to the uniform

matroid of rank k + 1. We will show that the function in the following example, taken from [60],

does not have an extension because (3.11) is not satisfied.

Example 1: Let X = {1, 2, 3} and I = {A : A ∈ X and |A| ≤ 2}. Define f : I → R as

follows:

f(∅) = 0,

f({1}) = f({2}) = f({3}) = 1,

f({1, 2}) = f({1, 3}) = 1, and f({2, 3}) = 2.

It is easy to show that the above function f is a polymatroid function on the uniform matroid

of rank 2. But as we now show, f cannot be extended to a polymatroid function g on the uniform

matroid of rank 3 which is also the power set.

Setting A = X , by (3.15), it is easy to see thatB∗ = {2, 3}. Then we have g(X) = f({2, 3})+

dX , where dX ≥ 0. If (3.11) holds for A = X , B = {1, 2}, and {a} = {2}, we have the following

inequality:

f({1, 2})− f({2, 3}) + f({1, 3})− f({1}) ≥ 0.

However,

f({1, 2})− f({2, 3}) + f({1, 3})− f({1}) = −1 < 0.

We conclude that (3.11) does not hold always. Then by Theorem 3.2.3, we have that the poly-

matroid function f defined above does not have an extended polymatroid function defined on the

whole power set.

3.2.3 Majorizing Extension

Theorem 3.2.3 and Proposition 3.2.1 together provide us an algorithm to extend a polymatroid

function f defined on the uniform matroid of rank k to a polymatroid function g defined on the

uniform matroid of rank k + 1. The procedure is to construct g as in (3.15) with dA satisfying
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(3.17). By (3.17), if for any A with |A| = k + 1,

min
B:B⊂A,|B|=k and a:a∈B

{f(B)− f(B∗) + f(A \ {a})− f(B \ {a})} ≥ 0,

then f can be extended to g. We say that f is chap3majorizingly extended to g if for any A with

|A| = k + 1, we set

dA = min
B:B⊂A,|B|=k and a:a∈B

{f(B)− f(B∗) + f(A \ {a})− f(B \ {a})}. (3.18)

Remark 3.2.2. The reason we are calling this particular construction of g a majorizing extension

is that the sequence {dA} (indexed by A) majorizes any other sequence {d′A} whose elements

satisfy (3.17), because dA ≥ d′A for any A ⊆ X .

We just introduced the definition of a majorizing extension. We wish to explore what kind of

polymatroid functions can be majorizingly extended to ones defined on the whole power set. The

following theorem states that a polymatroid function defined on the uniform matroid of rank 1 can

be majorizingly extended to one defined on the power set, and the extended function is additive.

Theorem 3.2.4. Let X be a ground set and f a polymatroid function defined on the uniform

matroid of rank 1. Then f can be majorizingly extended to a polymatroid function g defined on the

power set 2X with

g({x1, x2, . . . , xk}) =
k∑
j=1

f({xj})

for any set {x1, x2, . . . , xk} ⊆ X .

Proof. We will prove the theorem by induction on k. Without loss of generality, we assume for

convenience that X = {1, 2, . . . , N} and f({1}) ≤ f({2}) ≤ · · · ≤ f({N}).

First, we prove the claim for k = 2, i.e., g({x1, x2}) = f({x1}) + f({x2}) for any {x1, x2} ⊆

X (x1 < x2). By the assumption above and (3.15), we have that

g({x1, x2}) = f({x2}) + d{x1,x2}.
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By (3.18), we have that d{x1,x2} = f({x1}), which results in g({x1, x2}) = f({x1}) + f({x2}).

Now assume that the claim holds for k ≤ l (l > 2). Then we prove that it also holds for

k = l + 1 (l > 2). Without loss of generality, we assume that x1 < x2 < · · · < xl+1. Then by

(3.15) and the induction hypothesis for k ≤ l, we have that

g({x1, x2, . . . , xl+1}) = g({x2, . . . , xl+1}) + d =
l+1∑
j=2

f({xj}) + d.

For any B = {x1, x2, . . . , xl+1} \ {xm} and a = xn ∈ B, by (3.18), we have that

d = min
m,n

{
l+1∑
j=1

f({xj})− f({xm})−
l+1∑
j=2

f({xj}) +
l+1∑
j=1

f({xj})− f({xn})

−

(
l+1∑
j=1

f({xj})− f({xm})− f({xn})

)}

= f({x1}),

which results in

g({x1, x2, . . . , xl+1}) =
l+1∑
j=1

f({xj}).

This completes the proof.

Theorem 3.2.4 shows that any polymatroid function defined on the uniform matroid of rank 1

can be majorizingly extended to one defined on the whole power set. The following counterexam-

ple shows that the same is not the case for a uniform matroid of rank 2.

Example 2: Let X = {1, 2, 3, 4} and I = {A : A ∈ X and |A| ≤ 2}. Define f : I → R as

follows:

f(∅) = 0,

f({1}) = 1, f({2}) = 2, f({3}) = 3, f({4}) = 4,

f({1, 2}) = 2.0760, f({1, 3}) = 3.2399, f({2, 3}) = 3.3678,

f({1, 4}) = 4.1233, f({2, 4}) = 4.4799, f({3, 4}) = 5.2518.
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It is easy to check that f is a polymatroid function on the uniform matroid of rank 2. Now we

show that f can not be majorizingly extended to one on the whole power set. Let g denote the

function obtained by the majorizing extension.

By (3.15) and (3.18), we have that g({1, 2, 3}) = f({2, 3}) + d1, and

d1 = min{f({1, 2} − f({2}), f({1, 2})− f({2, 3}+ f({1, 3} − f({1}), f({1, 3})− f({3})}

= 0.0760,

which results in g({1, 2, 3}) = f({2, 3}) + d1 = 3.4438.

Similarly, we have that g({1, 2, 4}) = f({2, 4}) + d2, g({1, 3, 4}) = f({3, 4}) + d3, and

g({2, 3, 4}) = f({3, 4}) + d4, where

d2 = min{f({1, 2})− f({2}), f({1, 2})− f({2, 4}) + f({1, 4})− f({1}), f({1, 4})− f({4})}

= 0.0760,

d3 = min{f({1, 3} − f({3}), f({1, 3})− f({3, 4}) + f({1, 4})− f({1}), f({1, 4})− f({4})}

= 0.1233,

and

d4 = min{f({2, 3} − f({3}), f({2, 3})− f({3, 4}) + f({2, 4})− f({2}), f({2, 4})− f({4})}

= 0.3678.

Hence, we have g({1, 2, 4}) = f({2, 4}) + d2 = 4.5559, g({1, 3, 4}) = f({3, 4}) + d3 = 5.3751,

and g({2, 3, 4}) = f({3, 4}) + d4 = 5.6196.

Now majorizingly construct g({1, 2, 3, 4}). By (3.15) and (3.18), we have that g({1, 2, 3, 4}) =

g({2, 3, 4}) + d5, and
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d5 = min{g({1, 2, 3})− g({2, 3, 4}+ g({1, 3, 4})− f({1, 3}),

g({1, 2, 3})− g({2, 3, 4}) + g({1, 2, 4})− f({1, 2}),

g({1, 2, 4})− g({2, 3, 4}) + g({1, 3, 4})− f({1, 4}),

g({1, 2, 3} − f({2, 3}), g({1, 2, 4})− f({2, 4}), g({1, 3, 4})− f({3, 4})}

= −0.0406 < 0.

Therefore, g defined as above is not a polymatroid function. However, there are some polymatroid

functions defined on the uniform matroid of rank 2 that can be majorizingly extended to ones

defined on the entire power set. In Section 3.4, we present two canonical examples that frequently

arise in task scheduling and adaptive sensing and show that the objective functions in the two

examples can be both majorizingly extended to polymatroid functions defined on the entire power

set. Theorem 3.2.4 implies that any monotone additive function defined on the uniform matroid of

rank k (k > 1) can be majorizingly extended to one defined on the entire power set.

3.2.4 Polymatroid Extension: From General Matroid to Power Set

Theorem 3.2.3 and Proposition 3.2.1 together provide an iterative algorithm for us to extend

a polymatroid function f defined on the matroid (X, I) to a polymatroid function g defined on

the entire power set. We use gk to denote a polymatroid function defined on the uniform matroid

of rank k satisfying gk(A) = f(A) for A ∈ I with |A| ≤ k. The idea is that we first define

g1(A) = f(A) for A ∈ I with |A| ≤ 1 and g1(A) ≥ 0 for A /∈ I with |A| = 1. Then, iteratively

extend gk defined on the uniform matroid of rank k to gk+1 defined on the uniform matroid of rank

k + 1 using (3.15) and (3.17) for k = 1, 2, . . . , |X| − 1. Finally, set g = g|X|. This results in

gk+1(A) =


gk(A), |A| ≤ k

f(A), A ∈ I with |A| = k + 1

gk(B
∗) + dA, A /∈ I with |A| = k + 1.
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The specific process is given as follows:

1. First define

g1(A) =

 f(A), A ∈ I with |A| ≤ 1

dA, A /∈ I with |A| = 1

where dA ≥ 0.

2. Then iteratively define gk+1(A) for k = 1, . . . , |X| − 1 using the following method:

Assume that gk(A) is well defined for |A| ≤ k. For A ⊆ X with |A| ≤ k, set gk+1(A) =

gk(A). For A ∈ I with |A| = k + 1, set gk+1(A) = f(A). For A /∈ I with |A| = k + 1, let

B∗ ∈ argmax
B:B⊆A,|B|=k

gk(B).

If

d∗ = min
a∈B⊆A

{[gk(B)− gk(B \ {a})]− [gk(B
∗)− gk(A \ {a})]} ≥ 0,

then set gk+1(A) = gk(B
∗) + dA, where 0 ≤ dA ≤ d∗; else, extension fails.

3. If g|X| exists, set g = g|X|.

In the algorithm above, we do not specify the exact dA value. Of course, as before, we can

choose dA = d∗, leading to a majorizing extension. As we have seen before, the majorizing

extension might not be a polymatroid function even if a polymatroid extension exists. Nonetheless,

if indeed a polymatroid extension exists, then there always exist choices of dA that produce the

extension via the algorithm above. But the problem of finding an appropriate sequence of dA values

can be reduced to that of finding a feasible path in a shortest-path problem (where shortest here

could be defined in terms of the smallest total curvature of the extension). Solving this problem is

tantamount to solving a problem of the form (1); in general, we would need to resort to something

like dynamic programming. This implies that in general, finding a polymatroid function extension

is nontrivial.
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3.3 Improved Bounds
Let f : 2X → R be a polymatroid function. Note that f : 2X → R is itself an extension of f

from I to the entire 2X , and the extended f : 2X → R is a polymatroid function on the entire 2X .

Therefore, Theorem 3.2.3 gives rise in a straightforward way to the following result, stated without

proof.

Proposition 3.3.1. Let (X, I) be a matroid and f : 2X → R a polymatroid function on 2X . Then

c(f) ≥ infg∈Ωf
c(g), where Ωf is the set of all polymatroid functions g on 2X that agree with f on

I.

In this section, we will prove that for problem (3.1), if we set d = infg∈Ωf
c(g), then the greedy

strategy yields a 1/(1+d)-approximation and a (1−e−d)/d-approximation under a general matroid

and a uniform matroid constraint, respectively. Some proofs in this section are straightforward, but

are included for completeness.

Theorem 3.3.2. Let (X, I) be a matroid of rank K and f : I → R a polymatroid function. If

there exists an extension of f to the entire power set, then any greedy solution G to problem (3.1)

satisfies
f(G)

f(O)
≥ 1

1 + d
, (3.19)

where d = infg∈Ωf
c(g). In particular, when (X, I) is a uniform matroid, any greedy solution G to

problem (3.1) satisfies

f(G)

f(O)
≥ 1

d

(
1−

(
1− d

K

)K)
>

1

d

(
1− e−d

)
. (3.20)

Proof. By Theorems 3.1.1 and 3.1.2, for any extension g of f to the entire power set, we have the

following inequalities
g(G)

g(O)
≥ 1

1 + c(g)

and
g(G)

g(O)
≥ 1

c(g)

(
1−

(
1− c(g)

K

)K)
>

1

c(g)

(
1− e−c(g)

)
.
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Because f and g agree on I, we have that f(G) = g(G) and f(O) = g(O). Thus, (3.19) and (3.20)

hold for problem (3.1).

Remark 3.3.1. Because the functions 1/(1 + x), (1 − (1 − x/K)K)/x, and (1 − e−x)/x are all

nonincreasing in x for x ∈ (0, 1] and from Proposition 3.3.1 we have 0 < d ≤ c(f) ≤ 1 when f is

defined on the entire power set, we have that 1/(1 + d) ≥ 1/(1 + c(f)), ((1− (1− d/K)K)/d ≥

(1−(1−c(f)/K)K)/c(f), and (1−e−d)/d ≥ (1−e−c(f))/c(f). This implies that our new bounds

are, in general, stronger than the previous bounds.

Remark 3.3.2. The bounds 1/(1 + d) and (1 − e−d)/d apply to problems where the objective

function is a polymatroid function defined only for sets in the matroid and can be extended to one

defined on the entire power set. However, these bounds still depend on sets not in the matroid,

because of the way d is defined.

Now we define a notion of partial curvature that only involves sets in the matroid. Let h : I →

R be a set function. We define the partial curvature b(h) as follows:

b(h) = max
j,A:j∈A∈I
h({j})6=h(∅)

{
1− h(A)− h(A \ {j})

h({j})− h(∅)

}
. (3.21)

For convenience, we use b to denote b(h) when there is no ambiguity. Note that 0 ≤ b ≤ 1

when h is a polymatroid function on the matroid (X, I), and b = 0 if and only if h is additive for

sets in I. When b = 0, the greedy solution to problem (3.1) coincides with the optimal solution, so

we only consider b ∈ (0, 1] in the rest of the paper. For any extension of f : I → R to g : 2X → R,

we have that c(g) ≥ b(f), which will be proved in the following theorem.

Theorem 3.3.3. Let (X, I) be a matroid and f : I → R a polymatroid function. Assume that a

polymatroid extension g : 2X → R of f exists. Then b(f) ≤ c(g).

Proof. By submodularity of g and g(A) = f(A) for any j ∈ A ∈ I, we have that

f(A)− f(A \ {j}) ≥ g(X)− g(X \ {j}),
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which implies that for any j ∈ A ∈ I,

1− f(A)− f(A \ {j})
f({j})− f(∅)

≤ 1− g(X)− g(X \ {j})
g({j})− g(∅)

.

Hence, combining the above with (3.2) and (3.21) gives b(f) ≤ c(g).

Remark 3.3.3. As mentioned earlier, the improved bounds involving d in Theorem 3.3.2 still de-

pend on sets not in the matroid. In contrast, by definition, the partial curvature b(f) depends on

sets in the matroid. So if there exists an extension of f to g such that c(g) = b(f), then we can

derive bounds that are not influenced by sets outside the matroid. However, it turns out that there

does not always exist a g such that c(g) = b(f); we will give an example in Section 4.2 to show

this. In the following theorem, we provide necessary and sufficient conditions for c(g) = b(f).

Theorem 3.3.4. Let (X, I) be a matroid and f : I → R a polymatroid function. Let g : 2X → R

be a polymatroid function that agrees with f on I. Then c(g) = b(f) if and only if

g(X)− g(X \ {a}) ≥ (1− b(f))g({a}) (3.22)

for any a ∈ X , and equality holds for some a ∈ X .

Proof. →

In this direction, we assume that c(g) = b(f) and then to prove that g(X) − g(X \ {a}) ≥

(1− b(f))g({a}) for any a ∈ X and that equality holds for some a ∈ X . By the definition of the

total curvature c of g and c(g) = b(f), we have for any a ∈ X ,

g(X)− g(X \ {a}) ≥ (1− b(f))g({a}),

and equality holds for some a ∈ X . ←

Now we assume that g(X)− g(X \ {a}) ≥ (1− b(f))g({a}) for any a ∈ X and that equality

holds for some a ∈ X , and then prove that c(g) = b(f). By the assumptions, we have
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1− g(X)− g(X \ {a})
g({a})− g(∅)

≤ b(f)

for any a ∈ X , and equality holds for some a ∈ X . By the definition of the total curvature c of g,

we have

c(g) = max
a∈X

g({a})6=g(∅)

{
1− g(X)− g(X \ {a})

g({a})− g(∅)

}
= b(f).

This completes the proof.

Remark 3.3.4. In Section 3.4, we will provide a task scheduling example to show that there exists

a polymatroid function g : 2X → R that agrees with f : I → R such that c(g) = b(f). We also

provide a contrasting example from an adaptive sensing problem where such an extension does not

exist.

Combining Theorems 3.3.2 and 3.3.4, we have the following corollary.

Corollary 3.3.5. Let (X, I) be a matroid of rank K. Let g : 2X → R be a polymatroid function

that agrees with f on I and g(X)− g(X \ {a}) ≥ (1− b(f))g({a}) for any a ∈ X with equality

holding for some a ∈ X . Then, any greedy solution G to problem (3.1) satisfies

f(G)

f(O)
≥ 1

1 + b(f)
. (3.23)

In particular, when (X, I) is a uniform matroid, any greedy solution G to problem (3.1) satisfies

f(G)

f(O)
≥ 1

b(f)

(
1−

(
1− b(f)

K

)K)
>

1

b(f)

(
1− e−b(f)

)
. (3.24)

The bounds 1/(1 + b(f)) and (1 − (1− b(f)/K)K)/b(f) do not depend on sets outside the

matroid, so they apply to problems where the objective function is only defined on the matroid,

provided that an extension that satisfies the assumptions in Theorem 3.3.4 exists. When f is defined

on the entire power set, from Theorem 3.3.3, we have b(f) ≤ c(f), which implies that the bounds

are stronger than those from [34].
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3.4 Examples
We first provide a task scheduling example where we majorizingly extend f : I → R to a

polymatroid function g1 : 2X → R with c(g1) > b(f). We also extend f : I → R to another

polymatroid function g2 : 2X → R with c(g2) = b(f). The two extensions both result in stronger

bounds than the previous bound from [34]. Then we provide an adaptive sensing example to

majorizingly extend f : I → R to a polymatroid function g1 : 2X → R and show that there does

not exist any extension of f to g such that c(g) = b(f) holds. However, in this example, it turns

out that for our majorizing extension g1, c(g1) is very close to b(f) and is much smaller than c(f).

3.4.1 Task Scheduling

As a canonical example of problem (3.1), we will consider the task assignment problem that

was posed in [3], and was further analyzed in [4, 53]. In this problem, there are n subtasks and

a set X of N agents aj (j = 1, . . . , N). At each stage, a subtask i is assigned to an agent aj ,

who successfully accomplishes the task with probability pi(aj). Let Xi(a1, a2, . . . , ak) denote the

Bernoulli random variable that describes whether or not subtask i has been accomplished after

performing the sequence of actions a1, a2, . . . , ak over k stages. Then 1
n

∑n
i=1 Xi(a1, a2, . . . , ak)

is the fraction of subtasks accomplished after k stages by employing agents a1, a2, . . . , ak. The

objective function f for this problem is the expected value of this fraction, which can be written as

f({a1, . . . , ak}) =
1

n

n∑
i=1

(
1−

k∏
j=1

(1− pi(aj))

)
.

Assume that pi(a) > 0 for any a ∈ X; then it is easy to check that f is non-decreasing.

Therefore, when I = {S ⊆ X : |S| ≤ K}, the solution to this problem should be of size K. Also,

it is easy to check that the function f has the submodular property.

For convenience, we only consider the special case n = 1; our analysis can be generalized to

any n ≥ 2. In this case, we have
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f({a1, . . . , ak}) = 1−
k∏
j=1

(1− p(aj)), (3.25)

where p(·) = p1(·).

Let X = {a1, a2, a3, a4}, p(a1) = 0.4, p(a2) = 0.6, p(a3) = 0.8, and p(a4) = 0.9. Then,

f(A) is defined as in (3.25) for any A = {ai, . . . , ak} ⊆ X . Consider K = 2, then I = {S ⊆

X : |S| ≤ 2}. It is easy to show that f : I → R is a polymatroid function. We first majorizingly

extend f : I → R to a polymatroid function g1 : 2X → R using (3.15) and (3.18). By (3.15), we

have that g1({a1, a2, a3}) = f({a2, a3}) + d{a1,a2,a3}, g1({a1, a2, a4}) = f({a2, a4}) + d{a1,a2,a4},

g1({a1, a3, a4}) = f({a3, a4}) + d{a1,a3,a4}, and g1({a2, a3, a4}) = f({a3, a4}) + d{a2,a3,a4}. By

(3.18), we have that

d{a1,a2,a3} = min{f({1, 2} − f({2}), f({1, 2})− f({2, 3}+ f({1, 3} − f({1}),

f({1, 3})− f({3})}

= 0.08,

d{a1,a2,a4} = min{f({1, 2})− f({2}), f({1, 2})− f({2, 4}) + f({1, 4})− f({1}),

f({1, 4})− f({4})}

= 0.04,

d{a1,a3,a4} = min{f({1, 3} − f({3}), f({1, 3})− f({3, 4}) + f({1, 4})− f({1}),

f({1, 4})− f({4})}

= 0.04,
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d{a2,a3,a4} = min{f({2, 3} − f({3}), f({2, 3})− f({3, 4}) + f({2, 4})− f({2}),

f({2, 4})− f({4})}

= 0.06.

Hence, g1({a1, a2, a3}) = 1, g1({a1, a2, a4}) = 1, g1({a1, a3, a4}) = 1.02, and g1({a2, a3, a4}) =

1.04.

We now construct g1(X). By (3.15), we have that g1(X) = g1({a2, a3, a4}) + dX . By (3.18),

we have that

dX = min{g1({1, 2, 3})− g1({2, 3, 4}+ g1({1, 3, 4})− f({1, 3}),

g1({1, 2, 3})− g1({2, 3, 4}) + g1({1, 2, 4})− f({1, 2}),

g1({1, 2, 4})− g1({2, 3, 4}) + g1({1, 3, 4})− f({1, 4})

g1({1, 2, 3} − f({2, 3}), g1({1, 2, 4})− f({2, 4}), g1({1, 3, 4})− f({3, 4})}

= 0.04,

Hence, g1(X) = g1({a2, a3, a4}) + dX = 1.08. Therefore, g1 defined as above is a majorizing

extension of f from I to the whole power set.

The total curvature c of g1 : 2X → R is

c(g1) = max
ai∈X

{
1− g(X)− g(X \ {ai})

g({ai})− g(∅)

}
= 0.911.

In contrast, the total curvature c of f is
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c(f) = max
ai∈X

{
1− f(X)− f(X \ {ai})

f({ai})− f(∅)

}
= max

ai,aj ,ak∈X
{1− (1− p({ai})) (1− p({aj}))(1− p({ak}))}

= 0.992.

By the definition of the partial curvature b of f , we have

b(f) = max
j∈A⊆X,|A|=2,
f({j})6=0

{
1− f(A)− f(A \ {j})

f({j})− f(∅)

}

= max
{ai,aj}⊆X

{
1− f({ai, aj})− f({ai})

f({aj})

}
= max

ai∈X
{p({ai})}

= 0.9.

We can see that c(g1) is close to b(f) and smaller than c(f) though c(g1) 6= b(f).

Next, we give another extension g2 which satisfies that c(g2) = b(f). By (3.15), we have

that g2({a1, a2, a3}) = f({a2, a3}) + d{a1,a2,a3}, g2({a1, a2, a4}) = f({a2, a4}) + d{a1,a2,a4},

g2({a1, a3, a4}) = f({a3, a4}) + d{a1,a3,a4}, and g2({a2, a3, a4}) = f({a3, a4}) + d{a2,a3,a4}. First,

we will define d{a1,a2,a3}. By (3.17), we have that

d{a1,a2,a3} ≤ min{f({a1, a2})− f({a2}), f({a1, a3})− f({a3}),

f({a1, a2})− f({a2, a3}) + f({a1, a3})− f({a1})}

= 0.08.

By (3.22), it suffices to have that
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d{a1,a2,a3} ≥ max{(1− b)f({a1}), f({a1, a3})− f({a2, a3}) + (1− b)f({a2}),

f({a1, a2})− f({a2, a3}) + (1− b)f({a3})}

= 0.04.

Setting d{a1,a2,a3} = 0.04 to satisfy the above two inequalities gives that g2({a1, a2, a3}) =

f({a2, a3}) + d{a1,a2,a3} = 0.96. Similarly, we set

g2({a1, a2, a4}) = f({a2, a4}) + d{a1,a2,a4} = 1,

g2({a1, a3, a4}) = f({a3, a4}) + d{a1,a3,a4} = 1.02,

g2({a2, a3, a4}) = f({a3, a4}) + d{a2,a3,a4} = 1.04.

We now define g2(X). By (3.15), we have that g2(X) = g2({a2, a3, a4}) + dX . By (3.17), it

suffices to have that

dX ≤ min{g2({a1, a2, a4})− f({a2, a4}),

g2({a1, a3, a4})− f({a3, a4}), g2({a1, a2, a3})− f({a2, a3}),

g2({a1, a2, a3})− g2({a2, a3, a4}) + g2({a1, a2, a4})− f({a1, a2}),

g2({a1, a3, a4})− g2({a2, a3, a4}) + g2({a1, a2, a4})− f({a1, a4}),

g2({a1, a3, a4})− g2({a2, a3, a4}) + g2({a1, a2, a3})− f({a1, a3})}

= 0.04.

By (3.22), it suffices to have that

dX ≥ max{(1− b)f({a1}),

g2({a1, a3, a4})− g2({a2, a3, a4}) + (1− b)f({a2}),

g2({a1, a2, a4})− g2({a2, a3, a4}) + (1− b)f({a3}),

g2({a1, a2, a3})− g2({a2, a3, a4}) + (1− b)f({a4})}

= 0.04.
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Setting dX = 0.04 to satisfy the above two inequalities gives us g2(X) = g2({a2, a3, a4}) + dX =

1.08.

The total curvature c of g2 : 2X → R is

c(g2) = max
ai∈X

{
1− g(X)− g(X \ {ai})

g({ai})− g(∅)

}
= 0.9 = b(f) < c(f) = 0.992.

By Corollary 3.3.5, we have that the greedy strategy for the task scheduling problem satisfies

the bound (1 − (1 − b(f)/2)2)/b(f) = 0.775, which is better than the previous bound (1 − (1 −

c(f)/2)2)/c(f) = 0.752.

3.4.2 Adaptive Sensing

For our second example, we consider the adaptive sensing design problem posed in [4, 53].

Consider a signal of interest x ∈ IR2 with normal prior distribution N (0, I), where I is the

2 × 2 identity matrix; our analysis easily generalizes to dimensions larger than 2. Let A =

{Diag(
√
α,
√

1− α) : α ∈ {α1, . . . , αN}}, where α ∈ [0.5, 1] for 1 ≤ i ≤ N . At each stage

i, we make a measurement yi of the form

yi = aix+ wi,

where ai ∈ A and wi represents i.i.d. Gaussian measurement noise with mean zero and covariance

I , independent of x.

The objective function f for this problem is the information gain [30], which can be written as

f({a1, . . . , ak}) = H0 −Hk. (3.26)

Here, H0 = N
2

log(2πe) is the entropy of the prior distribution of x and Hk is the entropy of the

posterior distribution of x given {yi}ki=1; that is,

Hk =
1

2
log det(Pk) +

N

2
log(2πe),
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where Pk =
(
P−1
k−1 + aTk ak

)−1 is the posterior covariance of x given {yi}ki=1.

The objective is to choose a set of measurement matrices {a∗i }Ki=1, a∗i ∈ A, to maximize the

information gain f({a1, . . . , aK}) = H0−HK . It is easy to check that f is monotone, submodular,

and f(∅) = 0; i.e., f is a polymatroid function.

Let X = {a1, a2, a3}, α1 = 0.5, α2 = 0.6, and α3 = 0.8. Then, f(A) is defined as in (3.26) for

any A = {ai, . . . , ak} ⊆ X . Consider K = 2, where I = {S ⊆ X : |S| ≤ 2}.

The total curvature of f is

c(f) = max
ai∈X

{
1− f(X)− f(X \ {ai})

f({ai})− f(∅)

}
= 0.4509.

We first majorizingly extend f : I → R to a polymatroid function g1 defined on the whole

power set. Then we show that there does not exist a polymatroid extension g2 such that c(g2) =

b(f). However, for the majorizing extension g1, it turns out that c(g1) is very close to b(f) and is

much smaller than c(f).

We start by majorizingly extending f to g1. By (3.15) and (3.18), we have g1(X) = f({a1, a2})+

dX , where

dX = min{f({a1, a3})− f({a1}), f({a2, a3})− f({a2}),

f({a1, a3})− f({a1, a2}) + f({a2, a3})− f({a3})}

= log
√

1.6799.

Hence, g1(X) = log
√

6.7028.

The total curvature of g1 is

c(g1) = max
ai∈X

{
1− g1(X)− g1(X \ {ai})

g1({ai})− g1(∅)

}
= 0.3317.
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By the definition of the partial curvature b of f , we have

b(f) = max
j∈A⊆X,|A|=2,
f({j})6=0

{
1− f(A)− f(A \ {j})

f({j})− f(∅)

}

= max
{ai,aj}⊆X

{
1− f({ai, aj})− f({ai})

f({aj})

}
= 0.3001.

Comparing the values of c(g1), c(f), and b(f), we have that c(g1) is much smaller than c(f)

and very close to b(f). By Theorem 3.3.2, we have that the greedy strategy for the adaptive

sensing problem satisfies the bound (1 − (1 − c(g1)/2)2)/c(g1) = 0.9172, which is stronger than

the previous bound (1− (1− c(f)/2)2)/c(f) = 0.8873. Now we try to extend f to a polymatroid

function g2 such that c(g2) = b(f). By (3.15), g2(X) = f({a1, a2}) + dX . By (3.17), it suffices to

have that

dX ≤ min{f({a1, a3})− f({a1}), f({a2, a3})− f({a2}),

f({a1, a3})− f({a1, a2}) + f({a2, a3})− f({a3})}

= log
√

1.6799.

By (3.22), it suffices to have that

dX ≥ max{(1− b(f))f({a3}),

f({a2, a3})− f({a1, a2}) + (1− b(f))f({a1}),

f({a1, a3})− f({a1, a2}) + (1− b(f))f({a2})},

= log
√

1.7232.

Comparing the above two inequalities, we see that there does not exist dX such that g2 is a poly-

matroid function satisfying c(g2) = b(f).
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Chapter 4

Performance of Nash Equilibria in Utility Systems

In this chapter, we use similar techniques for bounding the batched greedy strategy in Chapter 2

to bound the performance of Nash equilibria when there is some notion of “grouping” among users

in noncooperative games. The connection to the game setting is associating our objective function

with a social utility function, greedy strategies with Nash equilibria, and batching with cooperation

of subgroups in games.

We consider two notions of grouping that yield to provable performance bounds. The first

type of grouping we consider is the recent framework of [2], where associated with each user is a

private objective function and a fixed group of users having some social ties with it. Each user’s

strategy maximizes an objective function called the social group utility, which is the sum of its

private objective function and a linear combination of the private objective functions of users in

its group. Within this setting, [2] define what they call a social-aware Nash equilibrium, where no

user can improve its social group utility by unilaterally changing its strategy. We will show that

this framework yields to the bounding results of [1] for noncooperative games, thus establishing

provable performance guarantees for the framework of [2].

In the second type of grouping we consider, the set of users is partitioned into disjoint groups.

Associated with each group is a group utility function. Users within a group cooperate in the

sense that their strategy is to (jointly) maximize the group utility function, giving rise to a natu-

ral definition of group Nash equilibrium. Although we can view each group as a new user with

vector-valued actions so that a similar 1/2 bound to the result of [1] holds, we would like to inves-

tigate the performance bound for the group Nash equilibrium in terms of curvature and compare it

with the case where there is no grouping. We define a measure of group curvature and derive an

associated lower bound involving this curvature. We prove that this bound is tighter than that for

the case without grouping among users, accounting for the cooperation within the groups. We also
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prove that, under the condition that each user has the same action space, the higher the degree of

cooperation, the tighter the lower bound.

This chapter is organized as follows. In Section 4.1, we introduce our notation and some defini-

tions that will be used throughout the paper. In Section 4.2, we review the bounding results of [1].

In Section 4.3, we first describe the framework of [2] and show that a social-aware utility system

yields to the bounding results of Vetta for non-cooperative system, thus establishing provable per-

formance guarantees for the social-aware Nash equilibrium. Next, we describe our second type of

grouping involving l disjoint groups with in-group cooperation. In this case, each group can be

viewed as a new user with vector-valued actions, and a 1/2 bound for the performance of group

Nash equilibrium follows from the result of [1]. We then define the group curvature cki associated

with group i with ki users, and we show that if the social utility function is nondecreasing and

submodular, then any group Nash equilibrium achieves at least 1/(1+max1≤i≤l cki) of the optimal

social utility, which is tighter than that for the case without grouping. Especially, if each user has

the same action space, then we have that any group Nash equilibrium achieves at least 1/(1 + ck∗)

of the optimal social utility, where k∗ is the least number of users among all the groups. In Sec-

tion 4.4, we present an example of a utility system for database assisted spectrum access, adopted

from [2]. We show that the utility system for this example is valid and the social utility function is

submodular, illustrating an application of our results.

The results in this chapter were published in [61].

4.1 Preliminaries
In this section, we first introduce notation and a number of definitions used throughout the

paper.

4.1.1 Actions

Suppose we have a set N = {1, 2, . . . , N} of N users and ground sets V1, V2, . . . , VN , where

each element in Vi denotes an act that user i can take. We call a set of acts an action, and if an action
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xi ⊆ Vi is available to user i we call it a feasible action. We denote by Xi the set of all feasible

actions for user i, i.e., Xi = {xi ⊆ Vi : xi is a feasible action}, with ni = |Xi| the cardinality of

Xi.

Let X =
∏N

i=1Xi and X = (xi1 , . . . , xik), where xj ∈ Xj , with i1 ≤ j ≤ ik. We call X

an action sequence of length k in X . This sequence includes the actions taken by users i1, . . . , ik

in order. Given an action sequence X , suppose Y is formed by removing some of the elements

of X without changing the order of the remaining elements. Then, we call the derived action

sequence Y a subsequence of X and denote this relation by Y ⊆ X . This follows the definition of

a subsequence in [62].

Consider an action sequenceX = (x1, . . . , xN) ∈ X . Then,X−i = (x1, . . . , xi−1, xi+1, . . . , xN)

is the subsequence of X that includes actions taken by all users except user i. We use (X−i, x
′
i)

to denote the action sequence (x1, . . . , xi−1, x
′
i, xi+1, . . . , xN) that results from X when user i

changes its action from xi to x′i.

Given action sequences Y = (yi1 , . . . , yik) and Z = (zj1 , . . . , zjl), we define Y ⊕ Z =

(yi1 , . . . , yik , zj1 , . . . , zjl) as the concatenation of Y and Z when ip 6= jq for 1 ≤ p ≤ k and

1 ≤ q ≤ l (following the notation in [4]).

4.1.2 Strategies

Let si = (s1
i , . . . , s

ni
i ), where sji ≥ 0 is the probability with which user i takes action j and∑ni

j=1 s
j
i = 1. Following the terminology of [1], we call si a strategy taken by user i. When sji = 1

and sli = 0 for 1 ≤ j ≤ ni and l 6= j, we say that user i takes a pure strategy. Otherwise, we say

that user i takes a mixed strategy.

Let Si = {si ∈ Rni
i :

∑ni

j=1 s
j
i = 1, sji ≥ 0} be the strategy space for user i and S =

∏N
i=1 Si.

Similar to the definition of an action sequence, we call S = (si1 , . . . , sik), with sj ∈ Sj and

i1 ≤ j ≤ ik, a strategy sequence of length k in S. Then a subsequence T of S is a sequence

derived from S by deleting some elements without changing the order of the remaining elements.

We define Si = (s1, . . . , si), for 1 ≤ i ≤ N , as a sequence of strategies taken by users 1, . . . , i.
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Given a strategy sequence S = (s1, . . . , sN) ∈ S, the sequence S−i = (s1, . . . , si−1, si+1, . . . , sN)

is the subsequence of S that contains strategies taken by all users except user i, and (S−i, s
′
i) =

(s1, . . . , si−1, s
′
i, si+1, . . . , sN) is the strategy sequence that results from S when user i changes its

strategy from si to s′i.

Given strategy sequences T = (ti1 , . . . , tik) and W = (wj1 , . . . , wjl), we write T ⊕ W =

(ti1 , . . . , tik , wj1 , . . . , wjl) for the concatenation of T and W when ip 6= jq for 1 ≤ p ≤ k and

1 ≤ q ≤ l.

4.1.3 Utility Functions

We define the social utility function as a mapping γ from sequences in X to real numbers, and

the private utility function for user i (1 ≤ i ≤ N) as a mapping αi from sequences in X to real

numbers. Correspondingly, we define γ̄ and ᾱi as mappings, from sequences in S to real numbers,

that correspond to the expectations of γ and αi, respectively. We call γ̄ the expected social utility

function and ᾱi the expected private utility function for user i. We also define γZ(Y ) = γ(Y ⊕

Z) − γ(Y ) for any Y, Z in X such that Y ⊕ Z is well defined, and γ̄W (T ) = γ̄(T ⊕W ) − γ̄(T )

for any T,W in S such that T ⊕W is defined.

We denote by Ω the optimal sequence of strategies in maximizing an expected utility function

γ̄, and assume that Ω = (σ1, . . . , σN) is composed of pure strategies σi ∈ Si, i = 1, . . . , N . For

convenience, we also use σi to denote the optimal action that user i takes. Then, we have that the

optimal value of γ̄, denoted by OPT, is OPT = γ̄(Ω) = γ(Ω).

4.1.4 Curvature, Monotoneity, and Submodularity

Given a strategy sequence Si = (s1, . . . , si) for 1 ≤ i ≤ N , we use the notation Ω ∪ Si to

represent the sequence in which user j (1 ≤ j ≤ i) implements the actions σj ∪ x1
j , . . . , σj ∪ x

nj

j

with probabilities s1
j , . . . , s

nj

j , and user j (j > i) plays the action σj , so γ̄(Ω ∪ Si) is well defined.

Then the curvature c of the expected social utility function γ̄ is defined as
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c = max
i:γ̄si (∅)6=0

{
1− γ̄si(Ω ∪ S−i)

γ̄si(∅)

}
.

The social utility function γ is called nondecreasing if for all subsequences Y of a sequence X

in X , i.e., Y ⊆ X in X , f(Y ) ≤ f(X). It is called submodular if for all Y ⊆ X and Z in X such

that X ⊕ Z is defined, we have γZ(Y ) ≥ γZ(X). Our terminology here is consistent with that

of [62]. Because γ̄ is the expected value of γ, we have that if γ is nondecreasing and submodular,

then γ̄ is also nondecreasing and submodular, respectively. So in the following sections, when we

say that γ is nondecreasing and submodular, it implies that γ̄ is nondecreasing and submodular,

respectively.

4.2 Performance Bounds for Nash Equilibria
In this section, we first review the definitions of a Nash equilibrium and a valid utility system

from [1]. We then review the bounds derived in [1] for the performance of any Nash equilibrium.

Definition 4.2.1. A strategy sequence S ∈ S is a Nash equilibrium if no user has an incentive to

unilaterally change its strategy, i.e., for any user i,

ᾱi(S) ≥ ᾱi((S−i, s
′
i)), ∀s′i ∈ Si. (4.1)

Assumption 4.2.1. [1] The private utility of user i (1 ≤ i ≤ N ) is at least as large as the loss in

the social utility resulting from user i dropping out of the game. That is, the system (γ̄, {ᾱi}Ni=1)

has the property that for any strategy sequence S = (s1, . . . , sN) ∈ S,

ᾱi(S) ≥ γ̄si(S−i), ∀1 ≤ i ≤ N. (4.2)

Assumption 4.2.2. [1] The sum of the private utilities of the system is not larger than the social

utility, i.e., for any strategy sequence S = (s1, . . . , sN) ∈ S,
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N∑
i=1

ᾱi(S) ≤ γ̄(S). (4.3)

A utility system (γ, {αi}Ni=1) satisfying Assumptions 4.2.1 and 4.2.2 is called a valid system.

Given X ∈ X , if for any 1 ≤ i ≤ N , the inequalities αi(X) ≥ γxi(X−i) and
∑N

i=1 αi(X) ≤ γ(X)

hold, then the inequalities (4.2) and (4.3) hold.

Theorem 4.2.1. [1] For a valid utility system (γ, {αi}Ni=1), if the social utility function γ is sub-

modular, then for any Nash equilibrium S ∈ S we have

γ̄(S) ≥ 1

2

(
γ̄(Ω) +

N∑
i=1

γ̄si(S−i ∪ Ω)

)
. (4.4)

If γ is non-decreasing, then γ̄si(S−i ∪ Ω) ≥ 0 and the above inequality shows that any Nash

equilibrium achieves at least 1/2 of the optimal social utility function value.

Theorem 4.2.2. [1] For a valid utility system (γ, {αi}Ni=1), if the social utility function γ is non-

decreasing and submodular, then for any Nash equilibrium S ∈ S we have

γ̄(S) ≥ 1

1 + c
γ̄(Ω). (4.5)

When the social utility function γ is nondecreasing and submodular, we have c ∈ [0, 1], which

implies that γ̄(S) ≥ γ̄(Ω)/2.

4.3 Nash Equilibria Based on User Groups

4.3.1 Social-Aware Nash Equilibria

In this section, we first introduce the social group utility maximization system and the social-

aware Nash equilibrium defined in [2]. Then, we show that the results of [1] are directly applicable

to bounding the performance of any social-aware Nash equilibrium.

In [2], each user belongs to a group and aims to maximize its social group utility instead of its

private utility. Each group is formed based on social ties between users and may reflect friendship,
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kinship, college relationship, etc. The social group utility for user i (a mapping from X to real

numbers) is defined as

ηi = αi +
∑
m∈N s

i

ωimαm

where αi’s are private utilities,N s
i is the set of all users having a social tie with user i, andwim’s are

weight parameters that reflect the strengths of social ties between user i and the users in N s
i , and

wim ∈ [0, 1]. Correspondingly, the expected group utility η̄i for user i, mapping from sequences in

S to real numbers, is the expected value of ηi.

Definition 4.3.1. [2] A strategy sequence S = (s1, . . . , sN) ∈ S is a social-aware Nash equi-

librium if no user can improve its group utility by unilaterally changing its strategy, i.e., for any

group i,

η̄i(S) ≥ η̄i((S−i, s
′
i)), ∀s′i ∈ Si. (4.6)

By comparing the definition of a Nash equilibrium and a social-aware Nash equilibrium, we

see that the only difference between them is that one is defined based on expected private utility

functions and the other based on expected group utility functions. But because in [2], each user

has its own group utility function, and therefore its own expected group utility function, then the

results of [1] (in particular Theorem 1 and Theorem 2) directly apply to bound the performance

of the social-aware Nash equilibrium of [2]. We prove in Theorem 3 and Theorem 4 that this

is in fact the case, if the social group utility system (γ, {ηi}Ni=1) is valid. A social group utility

system (γ, {ηi}Ni=1) is valid if it satisfies the following assumptions, which are counterparts of

Assumption 4.2.1 and Assumption 4.2.2 with expected group utilities standing in for expected

private utilities.

Assumption 4.3.1. The group utility of user i (1 ≤ i ≤ N) is at least as large as the loss in the

social utility resulting from user i dropping out of the game. That is, the system (γ, {ηi}Ni=1) has

the property that for any strategy sequence S = (s1, . . . , sN) ∈ S,

η̄i(S) ≥ γ̄si(S−i), ∀1 ≤ i ≤ N. (4.7)
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Assumption 4.3.2. The sum of the group utilities of the system is not larger than the social utility,

i.e., for any strategy sequence S = (s1, . . . , sN) ∈ S,

N∑
i=1

η̄i(S) ≤ γ̄(S). (4.8)

Given X ∈ X , if for any 1 ≤ i ≤ N , the inequalities ηi(X) ≥ γxi(X−i) and
∑N

i=1 ηi(X) ≤

γ(X) hold, then the inequalities (4.7) and (4.8) hold.

Remark 4.3.1. Comparing Definitions 4.2.1 and 4.3.1, we have that the only difference between

a Nash equilibrium and a social-aware Nash equilibrium is that the former is defined in terms of

ᾱi, and the latter is defined in terms of η̄i. So if we take η̄i to play the role of ᾱi, then satisfying

Assumptions 4.3.1 and 4.3.2 means that the utility system satisfies Assumptions 4.2.1 and 4.2.2.

Based on the results of Theorems 4.2.1 and 4.2.2, we have the following Theorems 4.3.1 and 4.3.2.

Theorem 4.3.1. For a valid utility system (γ, {ηi}Ni=1), if the social utility function γ is submodular,

then for any social-aware Nash equilibrium S ∈ S we have

γ̄(S) ≥ 1

2

(
γ̄(Ω) +

N∑
i=1

γ̄si(S−i ∪ Ω)

)
. (4.9)

Theorem 4.3.2. For a valid utility system (γ, {ηi}Ni=1), if the social utility function γ is nonde-

creasing and submodular, then for any Nash equilibrium S ∈ S we have

γ̄(S) ≥ 1

1 + c
γ̄(Ω). (4.10)

4.3.2 Group Nash Equilibria

In this section we consider a different type of social group utility maximization system in which

the set of all users are divided into disjoint groups, and the users in the same group choose their

strategies by maximizing their group utility function jointly.
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Assume that the set of users N = {1, . . . , N} is divided into l disjoint groups, in which group

i (1 ≤ i ≤ l) has users {mi + 1, . . . ,mi + ki}, where mi =
∑i−1

j=1 kj , kj is the number of users in

group j, and
∑l

j=1 kj = N . Let si = (smi+1, . . . , smi+ki), where si ∈ Si is the strategy for user i.

We call si the group strategy for group i. It includes the strategies taken by all the users in group

i (1 ≤ i ≤ l). We use S−i to denote the sequence of group strategies taken by all groups except

for group i. Given S−i, we denote by (S−i, ti) the group strategy sequence obtained when group

i changes its group strategy from si to ti. Similarly, for X ∈ X , we use xi and X−i to denote the

sequence of actions taken by the users in group i, and the sequence of actions taken by all groups

except for group i, respectively. For convenience, we still use ηi and η̄i to denote the group utility

function and the expected group utility function for group i.

We define a group Nash equilibrium as follows.

Definition 4.3.2. A strategy set S = (s1, . . . , sN) is a group Nash equilibrium of a utility system

if no group can improve its group utility by unilaterally changing its group strategy, i.e., for any

1 ≤ i ≤ l,

η̄i(S) ≥ η̄i((S
−i, ti)), ∀ti = (tmi+1, . . . , tmi+ki),

where tj ∈ Sj for mi + 1 ≤ j ≤ mi + ki.

We say that the utility system (γ, {ηi}li=1) is valid if it satisfies the following two assumptions.

Assumption 4.3.3. The group utility of group i is at least as large as the loss in the social utility

resulting from all the users in group i dropping out of the game. That is, the system (γ, {ηi}li=1)

has the property that for any strategy sequence S = (s1, . . . , sl) ∈ S,

η̄i(S) ≥ γ̄si(S
−i), ∀1 ≤ i ≤ l. (4.11)

Assumption 4.3.4. The sum of the group utilities of the system is not larger than the social utility,

i.e., for any strategy sequence S = (s1, . . . , sl) ∈ S,
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l∑
i=1

η̄i(S) ≤ γ̄(S). (4.12)

Given X ∈ X , if for any 1 ≤ i ≤ l, the inequalities ηi(X) ≥ γxi(X
−i) and

∑l
i=1 ηi(X) ≤

γ(X) hold, then the inequalities (4.11) and (4.12) hold. We now present our results on the perfor-

mance of a group Nash equilibrium relative to the optimal social strategy Ω. Although the overall

flow of the proof for deriving performance bound (without curvature) for the group Nash equilib-

ria is similar to that of the proof from [1], we still include it here because it will help us derive

performance bounds involving curvature later on.

Lemma 4.3.3. Assume that the social utility function γ is a submodular set function. Then for any

strategy set S ∈ S,

γ̄(Ω) ≤ γ̄(S) +
∑

i:σi⊆Ω\S

γ̄σi(S−i)−
∑

i:si⊆S\Ω

γ̄si(S
(i−1) ∪ Ω), (4.13)

where S(i) = s1 ⊕ s2 ⊕ · · · ⊕ si is the sequence of the group strategies taken by the first i groups.

Proof. Write Ω = σ1 ⊕ · · · ⊕ σl and S = s1 ⊕ · · · ⊕ sl, where σi = (σmi+1, . . . , σmi+ki), si =

(smi+1, . . . , smi+ki), and σj, sj ∈ Sj for mi + 1 ≤ j ≤ mi + ki.

By Propositions 1 and 2 in [50], we have that

γ̄(Ω ∪ S) ≤ γ̄(S) +
∑

i:σi⊆Ω\S

γ̄σi(S)

≤ γ̄(S) +
∑

i:σi⊆Ω\S

γ̄σi(S−i)

and

γ̄(Ω ∪ S) = γ̄(Ω) +
∑

i:si⊆S\Ω

γ̄si(S
(i−1) ∪ Ω).

Combining the two inequalities above, we have (4.13).
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Theorem 4.3.4. For a valid utility system (γ, {ηi}Ni=1), if the social utility function γ is submodular,

then any group Nash equilibrium S = (s1, . . . , sN) ∈ S satisfies

γ̄(S) ≥ 1

2

(
γ̄(Ω) +

l∑
i=1

γ̄si(Ω ∪ S−i)

)
. (4.14)

Proof. By Lemma 4.3.3, we have

γ̄(Ω) ≤ γ̄(S) +
∑

i:σi⊆Ω\S

γ̄σi(S−i)−
∑

i:si⊆S\Ω

γ̄si(S
(i−1) ∪ Ω).

By the definition of a group Nash equilibrium, we have

∑
i:σi⊆Ω\S

γ̄σi(S−i) ≤
∑

i:σi⊆Ω\S

γ̄si(S
−i) ≤

∑
i:si⊆S\Ω

γ̄si(S
−i).

By Assumptions 4.3.3 and 4.3.4, we have

∑
i:si⊆S\Ω

γ̄si(S
−i) ≤

∑
i:si⊆S\Ω

η̄i(S)

≤ γ̄(S)−
∑

i:si⊆S∩Ω

η̄i(S)

≤ γ̄(S)−
∑

i:si⊆S∩Ω

γ̄si(S
−i).

Combining the inequalities above and using submodularity results in

γ̄(Ω) ≤ 2γ̄(S)−
∑

i:si⊆S∩Ω

γ̄si(S
−i)−

∑
i:si⊆S\Ω

γ̄si(Ω ∪ S(i−1))

≤ 2γ̄(S)−
∑

i:si⊆S∩Ω

γ̄si(Ω ∪ S−i)−
∑

i:si⊆S\Ω

γ̄si(Ω ∪ S−i)

≤ 2γ̄(S)−
l∑

i=1

γ̄si(Ω ∪ S−i),

which implies that the inequality (4.14) holds.
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Remark 4.3.2. If the utility function γ is nondecreasing, then the term
∑l

i=1 γ̄si(Ω ∪ S−i) is non-

negative, so γ̄(S) ≥ 1
2
γ̄(Ω), which means that the social value of any group Nash equilibrium is at

least half of the optimal social utility value.

To better characterize the relation of the social utility value of any group Nash equilibrium and

that of the optimal solution Ω, we define the group curvature cki of the social utility function for

group i as

cki = max
S∈S,γ̄si (∅)6=0

{
1− γ̄si(Ω ∪ S−i)

γ̄si(∅)

}
.

Lemma 4.3.5. Assume tha the utility function γ is submodular and nondecreasing. Then we have

cki ≤ c for 1 ≤ i ≤ l. Especially, if X1 = X2 = · · · = XN , then we have cki ≤ ckj for ki ≥ kj .

The proof of cki ≤ c is similar to that of Theorem 3.3 from [53] and the proof of cki ≤ ckj for

ki ≥ kj is similar to that of Theorem 3.4 from [53], so we skip it here.

Lemma 4.3.6. Assume that γ is a submodular set function. Then for any strategy set S =

(s1, . . . , sN) ∈ S, we have

γ̄(S) ≤
l∑

i=1

γ̄si(∅)

where si = (smi+1, . . . , smi+ki) for 1 ≤ i ≤ l.

Proof. By the submodularity of γ̄, we have

γ̄(S) = γ̄s1(∅) + γ̄s2(s
1) + · · ·+ γ̄si(s

1 ⊕ · · · ⊕ si−1) + γ̄sl(s
1 ⊕ · · · ⊕ sl−1)

≤ γ̄s1(∅) + γ̄s2(∅) + · · ·+ γ̄si(∅) + · · ·+ γ̄sl(∅)

=
l∑

i=1

γ̄si(∅).

Theorem 4.3.7. For a valid utility system (γ, {ηi}li=1), if the social utility function γ is nonde-

creasing and submodular, then any group Nash equilibrium S = (s1, . . . , sN) ∈ S satisfies
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γ̄(S) ≥ 1

1 + max
1≤i≤l

cki
γ̄(Ω).

Especially, if X1 = X2 = · · · = XN , we have

γ̄(S) ≥ 1

1 + ck∗
γ̄(Ω),

where k∗ = min1≤i≤l ki.

Proof. For any group Nash equilibrium S ∈ S, write S = s1⊕· · ·⊕sl, where si = (smi+1, . . . , smi+ki)

for 1 ≤ i ≤ l.

By the definition of the curvature cki for group i, we have

γ̄si(Ω ∪ S−i) ≥ (1− cki) γ̄si(∅).

Using the inequality above, Lemma 4.3.6, and Theorem 4.3.4, we have

γ̄(S) ≥ 1

2

(
γ̄(Ω) +

l∑
i=1

γ̄si(Ω ∪ S−i)

)

≥ 1

2

(
γ̄(Ω) +

l∑
i=1

(1− cki) γ̄si(∅)

)

≥ 1

2

(
γ̄(Ω) + (1− max

1≤i≤l
cki)

l∑
i=1

γ̄si(∅)

)

≥ 1

2
(γ̄(Ω) + (1− max

1≤i≤l
cki)),

which implies that

γ̄(S) ≥ 1

1 + max
1≤i≤l

cki
γ̄(Ω).

When X1 = X2 = · · · = XN , by Lemma 4.3.5, we have that cki ≤ ckj for ki ≥ kj . Therefore, we

have

γ̄(S) ≥ 1

1 + ck∗
γ̄(Ω),
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where k∗ = min1≤i≤l ki.

Remark 4.3.3. When the group utility function γ is non-decreasing and submodular, it is easy to

check that cki ∈ [0, 1], which implies that 1/(1 + max1≤i≤l cki) ≥ 1/2.

Remark 4.3.4. When the group utility function γ is non-decreasing and submodular, we have

γ̄(S) ≥ γ̄(Ω)/(1 + max1≤i≤l cki) ≥ γ̄(Ω)/(1 + c). This shows that the bound for the case with

grouping is tighter than that for the case without grouping. Of course, this is unsurprising, because

grouping entails cooperation. Moreover, under the condition that each user has the same action

space, the larger the value of ki, the higher the degree of cooperation, and the tighter the lower

bound.

Remark 4.3.5. We point out that each group can be viewed as a new user with vector-valued

actions, and a 1/2 bound for the performance of group Nash equilibrium follows from the result

of Vetta. But our analysis goes further by defining the group curvature cki associated with group i

with ki users; in doing so, we obtain a tighter bound, namely 1/(1 + max1≤i≤l cki). In the special

case where each user has the same action space, then we have that any group Nash equilibrium

achieves at least 1/(1 + ck∗) of the optimal social utility, where k∗ is the least number of users

among the l groups, and the larger the value of k∗, the tighter the lower bound.

4.4 Example
In this section, we consider the application of utility-based maximization in database assisted

spectrum access, adopted from [2]. We will show that the utility system is valid and the social

utility function is submodular. We then apply the performance bounds for Nash, social-aware

Nash, and group Nash equilibria.

Consider a set of users N = {1, . . . , N} and a set of TV channels M = {1, . . . ,M}. The

users in N wish to access the TV channels in M, for purposes other than TV transmissions, in

a way that does not unnecessarily disrupt the primary use of these channels, which is for TV

transmission. Specifically, to protect the primary TV users, each user i sends a spectrum access
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request message containing its geo-location information to a geo-location database. In response,

the database sends back the set of vacant channelsMi ∈M and the allowable transmission power

level Pi. Then each user i chooses a feasible channel ai from the vacant channel setMi for data

transmission. When multiple users choose to access the same vacant channel, they might interfere

with each other, depending on their relative distance: If the distance between users m and i is dmi,

interference occurs only if dmi ≤ δ, where δ is a given threshold. The aim is to minimize the total

interference which is the sum of interference received by each user.

For a collection of selected channels A = (a1, . . . , aN) ∈
∏N

i=1Mi, the interference experi-

enced by user i is defined as

Ii(A) =
∑
m∈N p

i

Pmd
−λ
mi I{ai=am} + ωiai ,

whereN p
i is the set of users that can interfere with user i, λ is a path-loss factor, I{·} is the indicator

function, and ωiai is the noise including the interchannel interference in channel ai resulting from

primary TV users using other channels. The private utility function αi of user i is then defined as

αi(A) = −Ii(A) = −
∑
m∈N p

i

Pmd
−λ
mi I{ai=am} − ωiai .

This private utility reflects the fact that each user desires to minimize its experienced interference.

The social group utility of each user i is defined as

ηi(A) = αi(A) +
∑
m∈N s

i

wimαm(A).

Finally, the social utility function is γ(A) =
∑N

i=1 αi(A).

4.4.1 Nash Equilibria

First we will prove that the utility system (γ, {αi}Ni=1) satisfies Assumptions 4.2.1 and 4.2.2,

and the social utility function γ(A) =
∑N

i=1 αi(A) is submodular.
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To prove that the system (γ, {αi}Ni=1) satisfies Assumption 4.2.1, it suffices to prove that for

1 ≤ i ≤ N ,

αi(A) ≥ γ(A)− γ(A−i).

By the definition of αi(A), we have that

γ(A) = −
N∑
i=1

∑
m∈N p

i

Pmd
−λ
mi I{ai=am} −

N∑
i=1

ωiai .

Thus,

γ(A)− γ(A−i) = −
∑
m∈N p

i

Pmd
−λ
mi I{ai=am} −

∑
n:i∈N p

n

Pid
−λ
in I{an=ai} − ωiai

= αi(A)−
∑

n:i∈N p
n

Pid
−λ
in I{an=ai}

≤ αi(A),

which shows that the utility system (γ, {αi}Ni=1) satisfies Assumption 4.2.1. Because γ(A) =∑N
i=1 αi(A), the utility system (γ, {αi}Ni=1) also satisfies Assumption 4.2.2.

Let Ak = (a1, . . . , ak) and Al = Ak ⊕ (ak+1, . . . , al) (l < N). To prove that γ(A) =∑N
i=1 αi(A) is submodular, it suffices to prove that for any aj ∈Mj (l + 1 ≤ j ≤ N ),

γaj(Ak) ≥ γaj(Al).

By definition, we have

γaj(Ak) = γ(Ak ⊕ aj)− γ(Ak)

= −
∑

m∈N p
j ,1≤m≤k

Pmd
−λ
mjI{aj=am} −

∑
n:j∈N p

n ,1≤n≤k

Pjd
−λ
jn I{an=aj} − ωjaj

and
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γaj(Al) = γ(Al ⊕ aj)− γ(Al)

= −
∑

m∈N p
j ,1≤m≤l

Pmd
−λ
mjI{aj=am} −

∑
n:j∈N p

n ,1≤n≤l

Pjd
−λ
jn I{an=aj} − ωjaj ,

which implies that

γaj(Ak) ≥ γaj(Al).

We have now established that the utility system (γ, {αi}Ni=1) is valid, and the social utility func-

tion γ(A) =
∑N

i=1 αi(A) is submodular. This implies that the performance bound in Theorem 4.2.1

holds.

4.4.2 Social-Aware Nash Equilibria

Let

p = min
1≤j≤N

{1 +
∑
i:j∈N s

i

wij}

Because maximizing
∑N

i=1 αi(A) (with respect toA ∈M) is equivalent to maximizing p
∑N

i=1 αi(A),

for convenience, we set γ(A) = p
∑N

i=1 αi(A) when considering the utility system (γ, {ηi}Ni=1).

Now prove that the system satisfies Assumption 4.3.2.

N∑
i=1

ηi(A) =
N∑
i=1

αi(A) +
N∑
i=1

∑
n:n∈N s

i

ωinαn(A)

=
N∑
j=1

(1 +
∑
i:j∈N s

i

wij)αj(A)

≤ p
N∑
i=1

αi(A).

This implies that the utility system (γ, {ηi}Ni=1) satisfies Assumption 4.3.2.

We now prove that the utility system (γ, {ηi}Ni=1) satisfies Assumption 4.3.1. By the definition

of γ(A) and ηi(A), we have
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γ(A)− γ(A−i) = p

− ∑
m∈N p

i

Pmd
−λ
mi I{ai=am} −

∑
n:i∈N p

n

Pid
−λ
in I{an=ai} − ωiai


= p

αi(A)−
∑

n:i∈N p
n

Pid
−λ
in I{an=ai}


= αi(A) + min

1≤j≤N
{
∑
i:j∈N s

i

wij}αi(A)− p
∑

n:i∈N p
n

Pid
−λ
in I{an=ai}.

and

ηi(A) = αi(A) +
∑

n:n∈N s
i

winαn(A).

For convenience, we consider the case when the transmission power of all the users are the same

(i.e., Pm = Pn = P for any users m and n). By Theorem 1 from [2], we have that the social tie

between any two users is symmetric (i.e., wnm = wmn). Then we can write p and p(γ(A)−γ(A−i))

as follows.

p = min
1≤i≤N

{1 +
∑
m∈N s

i

wim}

and

p(γ(A)− γ(A−i)) = p(αi(A)−
∑
m∈N p

i

Pd−λmi I{ai=am})

= αi(A) + ( min
1≤i≤N

∑
m∈N s

i

wim)αi(A) + (−p
∑
m∈N p

i

Pd−λmi I{ai=am}).

So only if

∑
n:n∈N s

i

winαn(A) ≥ ( min
1≤i≤N

∑
m∈N s

i

wim)αi(A)− p
∑
m∈N p

i

Pd−λmi I{ai=am} (4.15)

holds, we have that Assumption 4.3.1 holds.
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Finally, we have that γ(A) = p
∑N

i=1 αi(A) is submodular because we proved that
∑N

i=1 αi(A)

is submodular in Subsection A. So we have now established that if the inequality (4.15) holds,

then the utility system (γ, {ηi}Ni=1) is valid and the social utility function γ(A) = p
∑N

i=1 αi(A)

is submodular. This implies that the performance bound for a social-aware Nash equilibrium in

Theorem 4.3.1 holds.

4.4.3 Group Nash Equilibria

We now partition the set of users N = {1, . . . , N} into l disjoint groups and write, as before,∑l
i=1 ki = N and mi =

∑i−1
j=1 kj . Group i comprises the users {mi + 1, . . . ,mi + ki}, and the

group utility function is ηi(A) =
∑ki

j=1 αmi+j(A). Finally, the social utility is given by γ(A) =∑N
i=1 αi(A).

We now show that the utility system (γ, {ηi}Ni=1) satisfies Assumption 4.3.3. Let A = a1 ⊕

· · · ⊕ al ∈M. Then for 1 ≤ i ≤ l,

γ(A)− γ(A−i) = −
mi+ki∑
j=mi+1

∑
n∈N p

j

Pnd
−λ
nj I{aj=an} −

mi+ki∑
j=mi+1

∑
n:j∈N p

n

Pjd
−λ
jn I{an=aj} −

mi+ki∑
j=mi+1

ωjaj

= ηi(A)−
mi+ki∑
j=mi+1

∑
n:j∈N p

n

Pjd
−λ
jn I{an=aj}

≤ ηi(A),

which implies that the utility system (γ, {ηi}Ni=1) satisfies Assumption 4.3.3.

Because
∑l

i=1 ηi(A) =
∑N

i=1 αi(A) = γ(A), we have that the utility system (γ, {ηi}Ni=1) also

satisfies Assumption 4.3.4. Moreover, we have proved that the social utility γ(A) =
∑N

i=1 αi(A)

is submodular in Subsection A.

We have thus established that the utility system (γ, {ηi}Ni=1) is valid and the social utility func-

tion γ(A) =
∑N

i=1 αi(A) is submodular. This shows that the performance bound for a group Nash

equilibrium in Theorem 4.3.4 holds.
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Remark 4.4.1. The performance bounds we derive here for Nash equilibria, social-aware Nash

equilibria, and group Nash equilibria are worst-case performance bounds. The fact that the social-

aware group Nash equilibrium derived by [2] achieves 85% of the optimal social utility is consis-

tent with our bound.
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Chapter 5

Performance of Greedy Strategy in String

Optimization

In this chapter, we consider an optimization problem where the decision variable is a string

of bounded length. For some time there has been an interest in bounding the performance of the

greedy strategy for this problem. Here, we provide weakened sufficient conditions for the greedy

strategy to be bounded by a factor of (1 − (1 − 1/K)K), where K is the optimization horizon

length. Specifically, in Section 5.1, we introduce the string optimization problem and our motiva-

tion. In Section 5.2, we introduce some definitions and review some previous results on perfor-

mance bounds for the greedy strategy in the string optimization problem. In Section 5.3, we first

introduce the notions of K-submodularity and K-GO-concavity, which are sufficient conditions

for the bound (1− (1− 1/K)K) to hold. Then we introduce a new notion of curvature η ∈ (0, 1]

and prove an even tighter bound with the factor (1/η)(1 − e−η). In Section 5.4, we illustrate the

strength of our results by considering two example applications. We show that our results provide

weaker conditions on parameter values in these applications than in previous results. The results

in this chapter were published in [57].

5.1 Problem Formulation
In a great number of problems in engineering and applied science, we are faced with optimally

choosing a string (finite sequence) of actions over a finite horizon to maximize an objective func-

tion. The problem arises in sequential decision making in engineering, economics, management

science, and medicine. To formulate the problem precisely, let A be a set of possible actions. At

each stage i, we choose an action ai from A. Let A = (a1, a2, . . . , ak) denote a string of actions

taken over k consecutive stages, where ai ∈ A for i = 1, 2, . . . , k. Let A∗ denote the set of all pos-

sible strings of actions (of arbitrary length, including the empty string ∅). Finally, let f : A∗ → R
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be an objective function, where R denotes the real numbers. Our goal is to find a string M ∈ A∗,

with a length |M | not larger than K (prespecified), to maximize the objective function:

maximize f(M)

subject to M ∈ A∗, |M | ≤ K. (5.1)

The solution to (5.1), which we call the optimal strategy, is hard to compute in general. One

approach is to use dynamic programming via Bellman’s principle (see, e.g., [47] and [48]). How-

ever, the computational complexity of this approach grows exponentially with the size of A and

the horizon lengthK. On the other hand, the greedy strategy, though suboptimal in general, is easy

to compute because at each stage, we only have to find an action to maximize the step-wise gain

in the objective function. But how does the greedy strategy compare with the optimal strategy in

terms of the objective function?

The above question has attracted widespread interest, with some key results in the context of

string-submodularity (see, e.g., [3,4,63]). These papers extend the celebrated results of Nemhauser

et al. [5,6], and some further extensions of them (see, e.g., [34,35,64,65]), on bounding the perfor-

mance of greedy strategies in maximizing submodular functions over sets, to problem (5.1) that in-

volves maximizing an objective function over strings. In particular, Streeter and Golovin [3] show

that if, in (5.1), the objective function f is prefix and postfix monotone and has the diminishing-

return property, then the greedy strategy achieves at least a (1− e−1)-approximation of the optimal

strategy. Zhang et al. [4] consider a weaker notion of the postfix monotoneity and provide suffi-

cient conditions for the greedy strategy to achieve a factor of at least (1 − (1 − 1/K)K), where

K is the optimization horizon length, of the optimal objective value. They also introduce several

notions of curvature, with which the performance bound for the greedy strategy can be further

sharpened.
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But all the sufficient conditions obtained so far involve strings of length greater than K, even

though (5.1) involves only strings up to length K. This motivates a weakening of these sufficient

conditions to involve only strings of length at most K, but still preserving the bounds here.

5.2 Review of Related Work
In this section, we first introduce some definitions related to strings and curvature. We then

review the main results from [4]. Specifically, the results there provide sufficient conditions on the

objective function f in (5.1) such that the greedy strategy achieves a (1− (1− 1/K)K)-bound.

5.2.1 Strings and Curvature

For a given string A = (a1, a2, . . . , ak), we define its length as k, denoted |A| = k. If M =

(am1 , a
m
2 , . . . , a

m
k1

) and N = (an1 , a
n
2 , . . . , a

n
k2

) are two strings in A∗, we write M = N if |M | = |N |

and ami = ani for each i = 1, 2, . . . , |M |. Moreover, we define string concatenation as M ⊕ N =

(am1 , a
m
2 , . . . , a

m
k1
, an1 , a

n
2 , . . . , a

n
k2

). If M and N are two strings in A∗, we write M � N if we have

N = M ⊕ L for some L ∈ A∗. In this case, we also say that M is a prefix of N .

A function from strings to real numbers, f : A∗ → R, is string submodular if

i. f has the prefix-monotone property: ∀M,N ∈ A∗, f(M ⊕N) ≥ f(M).

ii. f has the diminishing-return property: ∀M � N ∈ A∗, ∀a ∈ A, f(M ⊕ (a)) − f(M) ≥

f(N ⊕ (a))− f(N).

A function from strings to real numbers, f : A∗ → R, is postfix monotone if

∀M,N ∈ A∗, f(M ⊕N) ≥ f(N).

The total backward curvature of f is defined as

σ = max
a∈A,M∈A∗

{
(f((a))− f(∅))− (f((a)⊕M)− f(M)))

f((a))− f(∅)

}
.
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5.2.2 Bounds for the Greedy Strategy

We now define optimal and greedy strategies for problem (5.1) and some related notation.

(1) Optimal strategy: Any solution to (5.1) is called an optimal strategy. If f is prefix monotone,

then there exists an optimal strategy with length K, denoted OK = (o1, . . . , oK). Let Oi =

(o1, . . . , oi) for i = 1, . . . , K.

(2) Greedy strategy: A stringGk = (g1, g2, . . . , gk) is called a greedy strategy if ∀i = 1, 2, . . . , k,

gi ∈ argmax
g∈A

f((g1, g2, . . . , gi−1, g)).

Let Gi = (g1, . . . , gi) for i = 1, . . . , K.

The following two theorems summarize the performance bounds in [4].

Theorem 5.2.1. If f is string submodular and f(Gi⊕OK) ≥ f(OK) holds for all i = 1, . . . , K−1,

then any greedy strategy GK satisfies

f(GK) ≥

(
1−

(
1− 1

K

)K)
f(OK) > (1− e−1)f(OK).

Theorem 5.2.2. If f is string submodular and postfix monotone, then any greedy strategy GK

satisfies

f(GK) ≥ 1

σ

(
1−

(
1− σ

K

)K)
f(OK)

>
1

σ
(1− e−σ)f(OK)

> (1− e−1)f(OK).

Under additional assumptions on the curvature σ of f , [4] provide even tighter bounds. No-

tice that the sufficient conditions above involve strings of length greater than K, even though the

problem (5.1) involves only strings up to length K. This motivates a weakening of these sufficient
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conditions to involve only strings of length at most K, but still preserving the bounds here. In

the next section, we present our main results along these lines. In Section 5.4, we show that these

weakened sufficient conditions also lead to weaker requirements than in [4] for two application

examples.

5.3 Main Results
Before stating our main results, we first introduce some definitions on f : A∗ → R.

i f is K-monotone if ∀M,N ∈ A∗, and |M |+ |N | ≤ K, f(M ⊕N) ≥ f(M).

ii. f is K-diminishing if ∀M � N ∈ A∗ and |N | ≤ K − 1, ∀a ∈ A, f(M ⊕ (a)) − f(M) ≥

f(N ⊕ (a))− f(N).

iii. f is K-submodular if it is both K-monotone and K-diminishing.

iv. Let Gi = (g1, . . . , gi) (as before) and ŌK−i = (oi+1, . . . , oK) for i = 1, . . . , K. Then, f is

K-GO-concave if for 1 ≤ i ≤ K − 1,

f(Gi ⊕ ŌK−i) ≥
i

K
f(Gi) +

(
1− i

K

)
f(OK).

Notice that these definitions involve only strings of length at most K. Moreover, it is clear

that if f is string submodular, prefix monotone, and has the diminishing-return property, then f is

string K-submodular, K-monotone, and K-diminishing. Under these weaker conditions, we show

that the previous bounds on the greedy strategy still hold.

Theorem 5.3.1. If f is K-submodular and K-GO-concave, then

f(GK) ≥

(
1−

(
1− 1

K

)K)
f(OK) > (1− e−1)f(OK).
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Proof. Because f is K-diminishing, we have that for 1 ≤ i ≤ K,

f(oi) ≥ f(Oi)− f(Oi−1).

By definition of the greedy strategy, for 1 ≤ i ≤ K,

f(G1) ≥ f(oi) ≥ f(Oi)− f(Oi−1).

Summing the inequality above over i from 1 to K produces

K∑
i=1

f(G1) ≥
K∑
i=1

(f(Oi)− f(Oi−1))

⇒ Kf(G1) ≥ f(OK)

⇒ f(G1) ≥ 1

K
f(OK).

For 1 ≤ i ≤ K − 1, because f is K-diminishing, we have

f(Gi ⊕ oK)− f(Gi) ≥ f(Gi ⊕ ŌK−j)− f(Gi ⊕ ŌK−(j+1))

for i ≤ j ≤ K − 1. Summing the inequality above over j, we have

(K − i)(f(Gi ⊕ oK)− f(Gi))

≥
K−1∑
j=i

f(Gi ⊕ ŌK−j)− f(Gi ⊕ ŌK−(j+1))

= f(Gi ⊕ ŌK−i)− f(Gi),

which implies that

f(Gi ⊕ oK)− f(Gi) ≥
1

K − i
(f(Gi ⊕ ŌK−i)− f(Gi)). (5.2)
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By K-GO-concavity, for 1 ≤ i ≤ K − 1 we have

f(Gi ⊕ oK)− f(Gi) ≥
1

K − i
(f(Gi ⊕ ŌK−i)− f(Gi))

≥ 1

K − i

(
K − i
K

f(OK) +
i

K
f(Gi)− f(Gi)

)
=

1

K
(f(OK)− f(Gi)).

Again by definition of the greedy strategy, we have for 1 ≤ i ≤ K − 1,

f(Gi+1)− f(Gi) ≥ f(Gi ⊕ oK)− f(Gi)

≥ 1

K
(f(OK)− f(Gi))

from which we get

f(Gi+1) ≥ 1

K
f(OK) +

(
1− 1

K

)
f(Gi).

Therefore,

f(GK) ≥ 1

K
f(OK) +

(
1− 1

K

)
f(GK−1)

...

≥ 1

K
f(OK)

K−1∑
i=0

(
1− 1

K

)i
=

(
1−

(
1− 1

K

)K)
f(OK).

Because 1−
(
1− 1

K

)K ↘ 1− e−1 as K →∞, we also have

f(GK) ≥

(
1−

(
1− 1

K

)K)
f(OK) > (1− e−1)f(OK).
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Next, we introduce a new notion of curvature η as follows:

η = max
1≤i≤K−1

{
Kf(Gi)− (Kf(Gi ⊕ ŌK−i)− (K − i)f(OK))

(K − i)f(Gi)

}
.

If f is K-GO-concave, then for 1 ≤ i ≤ K − 1 we have

Kf(Gi)−(Kf(Gi ⊕ ŌK−i)− (K − i)f(OK))

≤ Kf(Gi)− if(Gi)

= (K − i)f(Gi),

which implies that η ≤ 1. The following theorem gives a bound related to the curvature η.

Theorem 5.3.2. If f is K-submodular and K-GO-concave, then

f(GK) ≥ 1

η

(
1−

(
1− η

K

)K)
f(OK)

>
1

η
(1− e−η)f(OK).

Proof. By definition of the curvature η, we have

f(Gi ⊕ ŌK−i)− f(Gi) ≥
K − i
K

(f(OK)− ηf(Gi)).

By definition of the greedy strategy and inequality (5.2), we have

f(Gi+1)− f(Gi) ≥ f(Gi ⊕ oK)− f(Gi)

≥ 1

K − i
· K − i

K
(f(OK)− ηf(Gi))

=
1

K
(f(OK)− ηf(Gi))

from which we get

f(Gi+1) ≥ 1

K
f(OK) +

(
1− η

K

)
f(Gi).
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Therefore,

f(GK) ≥ 1

K
f(OK) +

(
1− η

K

)
f(GK−1)

...

≥ 1

K
f(OK)

K−1∑
i=0

(
1− η

K

)i
=

1

η

(
1−

(
1− η

K

)K)
f(OK).

Because 1
η

(
1−

(
1− η

K

)K)↘ 1
η
(1− e−η) as K →∞, we also have

f(GK) ≥ 1

η

(
1−

(
1− η

K

)K)
f(OK)

>
1

η
(1− e−η)f(OK).

Remark 5.3.1. The term 1
η
(1− e−η) is decreasing in η ∈ (0, 1].

Remark 5.3.2. When η = 1, 1
η
(1−e−η) = 1−e−1, which is the bound in Theorem 5.3.1. Moreover,

for 0 < η < 1, 1
η
(1− e−η) > 1− e−1. Hence, Theorem 5.3.2 is a generalization of Theorem 5.3.1

and gives a tighter bound.

Remark 5.3.3. When η → 0, we have 1
η
(1− e−η)→ 1, making the greedy strategy asymptotically

optimal.

5.4 Applications
In this section, we consider two example applications, namely task assignment and adaptive

measurement design, to illustrate the strength of our results. In each case, we derive sufficient

conditions, on the parameter values of the problem, for the greedy strategy to achieve the (1− (1−

1/K)K) bound. These sufficient conditions are weaker than those we previously reported in [4].
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5.4.1 Task Assignment Problem

As our first example application, we consider the task assignment problem that was posed

in [3] and was further analyzed in [4]. In this problem, we have n subtasks and a set A of K

agents. At each stage, we get to assign a subtask to an agent, who accomplishes the task with

some probability. Let pji (a) denote the probability of accomplishing subtask i at stage j when

it is assigned to agent a ∈ A. Assume that pji (a) ∈ [Li(a), Ui(a)], 0 < Li(a) < Ui(a) < 1,

and that the limits of the interval are independent of the stage in which subtask i is assigned to

agent a. Let Xi(a1, a2, . . . , ak) denote the random variable that describes whether or not subtask

i has been accomplished after the sequence of assignments (a1, a2, . . . , ak) over k steps. Then,

1
n

∑n
i=1 Xi(a1, a2, . . . , ak) is the fraction of subtasks accomplished after k steps by employing

agents (a1, a2, . . . , ak) over k steps. The objective function f for this problem is the expected

value of this fraction, which can be written as

f((a1, . . . , ak)) =
1

n

n∑
i=1

(
1−

k∏
j=1

(
1− pji (aj)

))
.

We wish to derive sufficient conditions on the set of parameters {(L(a), U(a)) |a ∈ A} so that f

is K-monotone, K-diminishing, and K-GO-concave.

For simplicity, we consider the case of n = 1. But our results can easily be generalized to the

case where n > 1. For n = 1, the objective function f reduces to

f((a1, . . . , ak)) = 1−
k∏
j=1

(1− pj1(aj)), (5.3)

and from here on we simply use pj(aj) in place of pj1(aj).

It is easy to check that f is K-monotone. For f to be K-diminishing, it suffices to have

f(M ⊕ a)− f(M) ≥ f(M ⊕ b⊕ a)− f(M ⊕ b),

for any a, b ∈ A and for any M ∈ A∗ with |M | ≤ K − 2. Let M = (a1, . . . , am), then we have
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pm+1(a) ≥ (1− pm+1(b))pm+2(a).

Suppose that L(a) ≤ pj(a) ≤ U(a) for all a ∈ A, j = 1, 2, . . . , K. Let

Û = max
a∈A

U(a)

and

L̂ = min
a∈A

L(a).

Then, we can write

pm+1(a) ≥ L(a) ≥ L̂

and

(1− pm+1(b))pm+2(a) ≤ (1− L(b))U(a) ≤ (1− L̂)Û .

Thus, a sufficient condition for f to be K-diminishing is

L̂ ≥ (1− L̂)Û . (5.4)

Now, let us rearrange the K-GO-concavity condition as

(K − i)(f(OK)− f(Gi ⊕ ŌK−i)) ≤ i(f(Gi ⊕ ŌK−i)− f(Gi)).

Replacing for f from (5.3) gives (after simplifying)

(K − i)
K∏

j=i+1

(1− pj(oi))

[
1−

∏i
j=1(1− pj(oi))∏i
j=1(1− pj(gj))

]
≤ i

[
1−

K∏
j=i+1

(1− pj(oi))

]
.

Because f(OK) ≥ f(Gi ⊕ ŌK−i), we have

∏i
j=1(1− pj(oi))∏i
j=1(1− pj(gj))

≤ 1.
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Therefore, to have K-GO-concavity it suffices to have

(K − i)
K∏

j=i+1

(1− pj(oi)) ≤ i

[
1−

K∏
j=i+1

(1− pj(oi))

]
,

or equivalently
K∏

j=i+1

(1− pj(oi)) ≤
i

K
, (5.5)

for 1 ≤ i ≤ K − 1. If we assume that pi(oi) ≥ 1
i

for 2 ≤ i ≤ K, then it is easy to see that (5.5)

holds for 1 ≤ i ≤ K − 1. Thus, a sufficient condition for K-GO-concavity is

L̂ ≥ 1

2
. (5.6)

If (5.6) holds then (5.4) also holds. Thus, (5.6) is sufficient for the greedy strategy to achieve the

(1− (1− 1
K

)K) bound.

Remark 5.4.1. The sufficient condition in [4] requires (5.4) and

p1(g1) ≥ 1− cK , (5.7)

where

c = min
a∈A

1− U(a)

1− L(a)
.

When all pj(aj) ≥ 1/2, then (5.6) and (5.4) automatically hold, but (5.7) is not necessarily satis-

fied. In that sense, the K-monotone, K-diminishing, and K-Go concavity conditions are weaker

sufficient conditions for achieving the (1−(1− 1
K

)K) bound than the prefix monotone, diminishing-

return, and postfix monotone conditions of [4].

5.4.2 Adaptive Measurement Problem

As our second example application, we consider the adaptive measurement design problem

posed in [30] and [4]. Consider a signal of interest x ∈ R2 with normal prior distribution N (0, I),
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where I is the 2 × 2 identity matrix; our analysis easily generalizes to dimensions larger than 2.

Let A = {Diag
(√

e,
√

1− e
)

: e ∈ [0.5, 1]}. At each stage i, we make a measurement yi of the

form

yi = Aix+ wi,

where Ai ∈ A and wi is a Gaussian measurement noise vector with mean zero and covariance σ2
i I .

The objective is to choose a string of measurement matrices {Ai}ki=1 with k ≤ K to maximize

the information gain:

f((a1, . . . , ak)) = H0 −Hk.

Here H0 = N
2

log(2πe) is the entropy of the prior distribution of x and Hk is the entropy of the

posterior distribution of x given {yi}ki=1; that is,

Hk =
1

2
log det(Pk) +

N

2
log(2πe),

where

Pk =

(
P−1
k−1 +

1

σ2
k

ATkAk

)−1

is the posterior covariance of x given {yi}ki=1 [30].

We wish to derive sufficient conditions on the set of parameters {σ2
i }Ki=1 so that f is K-

monotone, K-diminishing, and K-GO-concave. It is easy to see that f is K-monotone by form,

and it is K-diminishing if {σ2
i }Ki=1 is a non-decreasing sequence, that is,

σ2
i+1 ≥ σ2

i , for i = 1, 2, . . . , K − 1. (5.8)

Let Agi = Diag(
√
ei,
√

1− ei) and A∗i = Diag(
√
e∗i ,
√

1− e∗i ) be the greedy and optimal

actions at stage i, respectively; that is, gi = Agi and oi = A∗i . Then, the K-GO-concavity condition

for this problem is that for 1 ≤ i ≤ K − 1, we must have
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(S∗i + S̄∗K−i)
K−i(cK − (S∗i + S̄∗K−i))

K−iSii(ai − Si)i ≤ (Si + S̄∗K−i)
K(cK − (Si + S̄∗K−i))

K ,

(5.9)

where

S∗i =1 +
i∑

j=1

1

σ2
j

e∗j ,

S̄∗K−i =
K∑

j=i+1

1

σ2
j

e∗j ,

Si =1 +
i∑

j=1

1

σ2
j

ej,

ai =2 +
i∑

j=1

1

σ2
j

,

cK =2 +
K∑
j=1

1

σ2
j

.

Because f(OK) ≥ f(Gi ⊕ ŌK−i), we have

(S∗i + S̄∗K−i)(cK − (S∗i + S̄∗K−i)) ≥ (Si + S̄∗K−i)(cK − (Si + S̄∗K−i)).

It is easy to check that

Si(ai − Si) ≤ (Si + S̄∗K−i)(cK − (Si + S̄∗K−i)).

Therefore, we have

Si(ai − Si) ≤ (S∗i + S̄∗K−i)(cK − (S∗i + S̄∗K−i)). (5.10)

Let

g(i) = (S∗i + S̄∗K−i)
K−i(cK − (S∗i + S̄∗K−i))

K−iSii(ai − Si)i.

Then,
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g(i+ 1)

g(i)
=

Si(ai − Si)
(S∗i + S̄∗K−i)(cK − (S∗i + S̄∗K−i))

.

By (5.10), g(i) is non-increasing. Hence, it suffices to have

(S∗1 + S̄∗K−1)K−1(cK − (S∗1 + S̄∗K−1))K−1S1(a1 − S1) ≤

(S1 + S̄∗K−1)K(cK − (S1 + S̄∗K−1))K (5.11)

in order to get K-GO-concavity.

Let T1 = a1 − S1, T ∗1 = a1 − S∗1 , and T̄ ∗K−1 =
K∑
j=2

1−e∗j
σ2
j

. Then, we can rewrite (5.11) as

(S∗1 + S̄∗K−1)K−1(T ∗1 + T̄ ∗K−1))K−1S1T1 ≤ (S1 + S̄∗K−1)K(T1 + T̄ ∗K−1)K . (5.12)

If

(S∗1 + S̄∗K−1)(T ∗1 + T̄ ∗K−1)) = (S1 + S̄∗K−1)(T1 + T̄ ∗K−1)), (5.13)

that is, to have f(O1) = f(G1), then (5.12) always holds, because S1T1 ≤ (S1 + S̄∗K−1)(T1 +

T̄ ∗K−1)).

We now show that (5.13) always holds, given the action set A considered in this example. In

other words, the K-GO-concavity condition is satisfied and this means that (5.8) is a sufficient

condition for achieving the (1− (1− 1
K

)K) bound.

By definition of the greedy strategy, we have f(G1) ≥ f(O1), which means

(
1 +

1

σ2
1

e1

)(
1 +

1

σ2
1

(1− e1)

)
≥
(

1 +
1

σ2
1

e∗1

)(
1 +

1

σ2
1

(1− e∗1)

)
.

Simplifying the above inequality gives

(e1 − e∗1)(1− (e1 + e∗1)) ≥ 0. (5.14)
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Because f(OK) ≥ f(G1 ⊕ Ōk−1), we have

(
1 +

e∗1
σ2

1

+
K∑
j=2

e∗j
σ2
j

)(
1 +

(1− e∗1)

σ2
1

+
K∑
j=2

(1− e∗j)
σ2
j

)

≥(
1 +

e1

σ2
1

+
K∑
j=2

e∗j
σ2
j

)(
1 +

(1− e1)

σ2
1

+
K∑
j=2

(1− e∗j)
σ2
j

)
,

which implies that

(e1 − e∗1)

[
K∑
j=2

1

σ2
j

(2e∗j − 1)

]
≥ 1

σ2
1

(e1 − e∗1)(1− (e1 + e∗1)). (5.15)

The inequality (5.14) implies that e1 ≤ e∗1. From (5.15) and (5.14), we have that

(e1 − e∗1)

[
K∑
j=2

1

σ2
j

(2e∗j − 1)

]
≥ 0,

which implies that e1 = e∗1. Since if e1 6= e∗1, then e1 < e∗1, which implies that

(e1 − e∗1)

[
K∑
j=2

1

σ2
j

(2e∗j − 1)

]
< 0,

while
1

σ2
1

(e1 − e∗1) (1− (e1 + e∗1)) > 0,

which contradicts (5.15). Hence, we have e1 = e∗1, which means G1 = O1, and the inequality

(5.13) holds.

Remark 5.4.2. The sufficient condition in [4] for achieving the (1 − (1 − 1
K

)K) bound in this

problem requires both (5.8) and

b−2

a−2 − b−2
≥ (2K − 2)2

4
(a−2 + b−2) + 1, (5.16)
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where [a, b] is the interval that contains all the σis. Therefore, the condition derived in this paper

is a weaker sufficient condition than that obtained in [4].
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Chapter 6

A General Framework for Bounding Approximate

Dynamic Programming Schemes

In this chapter, we consider a broad family of control strategies called path-dependent action

optimization (PDAO), where every control decision is treated as the solution to an optimization

problem with a path-dependent objective function. We develop a framework to bound the perfor-

mance of PDAO schemes. By a bound we mean a guarantee of the form that the performance

of a given PDAO scheme relative to the optimal is at least some known factor (typically at least

63%, as we will see soon). The ability to obtain a bound of this kind has enormous implica-

tions for artificial-intelligence systems based on PDAO. For example, for the celebrated program

AlphaGo [66], we can answer questions such as, “How far from optimal is AlphaGo?”, “How

much better can AlphaGo get?”, and “Is it worth spending much more time and effort to improve

AlphaGo?”.

Our bounding method is based on the theory of submodular optimization [4]. The basic result

from submodular optimization is that in such problems, every greedy scheme can be bounded in the

sense outlined above (namely, that it is at least a known factor relative to optimal, typically at least

63%). It turns out that every PDAO scheme is a greedy scheme for some optimization problem. If

that optimization problem is equivalent to our problem of interest and is provably submodular (in

a certain sense to be made precise later), then we can say with certainty that our PDAO scheme is

no worse than something like 63% of optimal.

Our bounding result can be used as a way to check that a PDAO scheme is good—to wit, a

PDAO scheme is good if it has the submodular property described above, and hence is guaranteed

to be at least a known factor of optimal. Importantly, we can do this check even before we proceed

with extensive simulation or testing of the scheme.
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Finally, we show how to apply our framework to stochastic optimal control problems (Markov

decision processes (MDPs). The family of PDAO schemes of interest here is often called approx-

imate dynamic programming (ADP). Such schemes are based on approximating the second term

on the right-hand side of Bellman’s optimality principle (the expected value-to-go) by computa-

tionally tractable means. Although a wide range of approximate dynamic programming (ADP)

methods have been developed [47–49], a general systematic technique to provide performance

guarantees for them has remained elusive. Ours is the first systematic approach to deriving perfor-

mance bounds for general ADP methods in the stochastic setting.

This chapter is organized as follows. In Section 6.1, we review some related previous work and

formulate stochastic optimization problems, optimal scheme, PDAO scheme, and greedy policy

selection scheme for the stochastic model. We also introduce some terminology and corresponding

definitions that will be used in this chapter. In Section 6.2, we provide the framework to derive

performance bounds for any greedy policy selection scheme, and prove that any PDAO scheme is

also a greedy policy selection scheme, thus performance bounds for any PDAO scheme is obtained.

In Section 6.3, we apply our framework to bounding ADP schemes in stochastic optimal control

problems.

A portion of results in this chapter were published in [67].

6.1 Preliminaries
In this section, we first review some related previous results, then we formulate a general

class of stochastic optimization problems, then define the optimal scheme, PDAO scheme, and the

greedy policy-selection scheme for the stochastic model. We also introduce some definitions that

will be used in this paper.

6.1.1 Review of Previous Work

Submodularity theory plays an important role in discrete optimization (see, e.g., [3,5,16,22,34,

35,52,68–73]). Under submodularity, the greedy strategy for solving a combinatorial optimization
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problem provides at least a constant-factor approximation to the optimal strategy. For example,

the celebrated result of Nemhauser et al. [6] states that for maximizing a monotone submodular

function over a uniform matroid, the objective value of the greedy strategy is no less than a factor

(1− e−1) of that of the optimal strategy. The concept of submodularity was extended to functions

defined over strings [3, 4, 74], leading to similar bounds on the performance of greedy strategies

relative to the optimal strategy in sequential optimization problems, where the objective function

depends on the order of actions. In [74], the notion of submodularity for solving stochastic op-

timization problems was introduced, where the problem is to select a set of actions to maximize

an expected reward. Our model generalizes this recent development to path-dependent problems,

where the objective function depends on the state trajectory and the order of actions taken.

6.1.2 Problem Formulation

Our aim is to analyze the performance of PDAO schemes as approximately optimal solutions

of stochastic optimization problems. But before we formulate the stochastic model, we start with

a deterministic model to help motivate our stochastic formulation.

To begin, letX denote a set of states andA a set of control actions. Given x1 ∈ X and functions

h : X ×A → X and g : XK ×AK → R+, consider the optimization problem

maximize
a1,...,aK∈A

g(x1, . . . , xK ; a1, . . . , aK)

s. t. xk+1 = h(xk, ak), k = 1, . . . , K − 1.

(6.1)

Think of ak as the control action applied at time k and xk the state visited at time k. The real

number g(x1, . . . , xK ; a1, . . . , aK) is the total reward by applying the string of actions ak at state

xk for k = 1, . . . , K. The function h represents the state-transition law. This model covers a wide

variety of optimization problems found in many areas, ranging from engineering to economics. In

particular, many adaptive sensing problems have this form (see, e.g., [44]).

We now turn our attention to a stochastic version of problem (6.1), building on the above

deterministic case. The key difference is that the state evolves randomly over time in response
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to actions, whose distribution is specified by the state transition law xk+1 = h(xk, ak, ξk), k =

1, . . . , K − 1, where x1 is a given initial state and {ξk}K−1
k=1 is an i.i.d. random sequence. With

this modification, we need to change the objective function to E[g(x1, . . . , xK ; a1, . . . , aK)|x1],

involving expectation, where E[·|x1] represents conditional expectation given the initial state x1.

With the specification above, the sequence of states {xk}Kk=1 has a “Markovian” property in the

usual sense. Note that at each time k, the distribution of xk+1 depends not only on xk but also on

the control action ak. Similarly, the total reward function also depends on states and actions. We

allow the action at time k to depend on the state xk. This reduces the optimization problem to one

of finding, for each time k, an optimal mapping π∗k : X → A, so that the optimal action is given by

ak = π∗k(xk), corresponding to a state-feedback control law. This mapping is often called a policy

(or, sometimes, a Markovian policy).

Define πk : X → A for k = 1, . . . , K, and then treat the string of policies π1, . . . , πK as the

decision variable. For convenience we will also refer to the entire string (π1, . . . , πK) as simply a

policy. The stochastic optimization problem can be formulated in the following form:

maximize
π1,...,πK

E[g(x1, . . . , xK ; π1(x1), . . . , πK(xK))|x1]

s. t. xk+1 = h(xk, πk(xk), ξk), k = 1, . . . , K − 1.

(6.2)

Optimal Scheme: The policy (π∗1, . . . , π
∗
K) is optimal if

(π∗1, . . . , π
∗
K) ∈ argmax

π1,...,πK

E[g(x1, . . . , xK ; π1(x1), . . . , πK(xK)|x1],

where xk+1 = h(xk, πk(xk), ξk) for 1 ≤ k ≤ K−1 and argmax is the set of policies that maximize

the objective function (there might be multiple possible such optimal policies, hence the notation

“∈ argmax”).
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6.1.3 Suboptimal Schemes

Finding optimal policies for (6.2) is notoriously intractable. Here, we are interested in the

family of PDAO schemes to approximate the optimal solution, as introduced in the last section and

formally defined below. First, let X ∗ = X ∪X 2 ∪ · · · denote the collection of all strings of states.

Similarly, defineA∗ = A∪A2∪ · · · . The basic idea is to introduce a function f : X ∗×A∗ → R+

such that at the horizon K, f is equivalent to g in the following sense: the string of policies

π∗k : X → A, k = 1, . . . , K, form an optimal solution to (6.2) if and only if it is also optimal for

the objective function E[f(x1, . . . , xK ; π1(x1), . . . , πK(xK))|x1]. Then, at each intermediate state

xk, we simply optimize the function f(x1, . . . , xk; π1(x1), . . . , πk−1(xk−1), ·) (with respect to its

last action argument). We formalize these and other related concepts precisely below.

Note that we have explicitly distinguished between the objective function in terms of g, which

is a function of K states and K actions, and the function f , which can take arguments with state

and action strings that are of arbitrary length. The function f is what we introduce as a way

to (approximately) solve problem (6.2) (i.e., g defines the given optimization problem while f

defines our solution scheme to approximately solve (6.2).

We are now ready to define PDAO schemes formally. We assume throughout that x1 ∈ X is

given.

PDAO Scheme: The policy (πp1, . . . , π
p
K) is called a path-dependent action optimization (PDAO)

solution if for i = 1, . . . , K,

πpi (x
p
i ) ∈ argmax

a
f(xp1, . . . , x

p
i ; π

p
1(xp1), . . . , πpi−1(xpi−1), a), (6.3)

where xp1 = x1 is given and xpk+1 = h(xpk, π
p
k(x

p
k), ξk) for 1 ≤ k ≤ i− 1.

Note that we could have made f and h explicitly time dependent. However, time can always

be incorporated into the state, and so our formulation is without loss of generality.
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Next, we define another suboptimal scheme we call the greedy policy-selection scheme.

Greedy Policy-Selection Scheme (GPS): The policy (πg1 , . . . , π
g
K) is called a greedy policy-

selection (GPS) solution if for i = 1, . . . , K,

πgi ∈ argmax
πi

E[f(xg1, . . . , x
g
i ; π

g
1(xg1), . . . , πgi−1(xgi−1), πi(x

g
i ))|x1], (6.4)

where xg1 = x1 is given and xgk+1 = h(xgk, π
g
k(x

g
k), ξk) for 1 ≤ k ≤ i− 1.

Note that a PDAO scheme chooses a string of actions based on a particular sample path. On the

other hand, a GPS scheme generates the policy mapping based on the expected reward. Nonethe-

less, a PDAO scheme still defines a particular policy.

6.1.4 Terminology and Definitions

In this section, we introduce some terminology and corresponding definitions that will be used

throughout the paper.

Whenever we are given a policy (π1, . . . , πk) and we use the notation for states x1, x2, x3, . . . ,

we mean that these states satisfy the usual state transition law xk+1 = h(xk, πk(xk), ξk).

Let Π be the set of all strings of policies (π1, . . . , πk) with k = 0, 1, 2, . . . ; the case k = 0

corresponds to the empty string. Given x1, define the function favg : Π→ R+ by

favg(π1, . . . , πk) = E[f(x1, . . . , xk; π1(x1), . . . , πk(xk))|x1].

It is clear that

favg(π1, . . . , πK) = E[f(x1, . . . , xK ; π1(x1), . . . , πK(xK))|x1]

is the objective function in (6.2). So we have converted our original problem to one where the

objective function favg is simply a function of policy strings. This allows us to bridge our original
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problem to one for which submodular optimization results apply. To complete this bridge, we will

define the notion of submodularity formally as follows.

String-Submodularity: The function favg : Π → R+ is string-submodular if the following

properties hold:

i). prefix-monotone property: ∀k = 1, . . . , K and (π1, π2, . . . , πk) ∈ Π,

favg(π1, . . . , πk) ≥ favg(π1, . . . , πk−1).

ii). diminishing-return property: ∀k = 1, . . . , K − 1 and (π1, . . . , πk, π̂) ∈ Π,

favg(π1, . . . , πk−1, π̂)− favg(π1, . . . , πk−1) ≥ favg(π1, . . . , πk, π̂)− favg(π1, . . . , πk).

For convenience, henceforth we will simply use the term submodular to mean string-submodular.

6.2 Main Results
In this section, we first provide performance bounds for the GPS scheme in problem (6.2).

Then we prove that any PDAO scheme is also a GPS scheme, so the results for GPS schemes can

be used to bound PDAO schemes.

6.2.1 Performance Bounds for GPS

The following theorem provides performance bounds for the GPS scheme. This is the first

step in our argument. Before we state the theorem, we review the notation from Section 6.1.3.

We use (π∗1, . . . , π
∗
K) to denote an optimal policy for problem (6.2), and (πg1 , . . . , π

g
K) to denote a

GPS policy. The corresponding state sequences will also have the superscript ∗ and g, respectively.

Recall that by virtue of the equivalence of f and g as defined earlier, (π∗1, . . . , π
∗
K) is also an optimal

policy for favg.

Theorem 6.2.1. Assume that favg : Π→ R+ is submodular and that for k = 1, . . . , K − 1,
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favg(π
g
1 , . . . , π

g
k, π

∗
1, . . . , π

∗
K) ≥ favg(π

∗
1, . . . , π

∗
K).

Then, any GPS scheme (πg1 , . . . , π
g
K) to problem (6.2) satisfies

favg(π
g
1 , . . . , π

g
K)

favg(π∗1, . . . , π
∗
K)
≥ 1−

(
1− 1

K

)K
> 1− 1

e
. (6.5)

The proof of the above theorem involves the following observations. First, we use the fact that

(π∗1, . . . , π
∗
K) is also an optimal policy for favg. Second, we apply Theorem 1 in [4] in view of the

assumptions on favg in the theorem.

The bound above can be improved by introducing the notion of curvature. We introduce below

two notions of curvature that yield improved bounds,.

Definition 6.2.1. The total backward curvature of favg : Π→ R+ is

σ = 1− min
(π1,...,πk)∈Π
favg(π1)6=favg(∅)

{
favg(π1, π2, . . . , πk)− favg(π2, . . . πk)

favg(π1)− favg(∅)

}
,

Definition 6.2.2. The total backward curvature of favg : Π → R+ with respect to the optimal

policy (π∗1, . . . , π
∗
K) by

σ∗ = 1− min
(π1,...,πk)∈Π

favg(π1,...,πk) 6=favg(∅)

{
favg(π1, . . . , πk, π

∗
1, . . . , π

∗
K)− favg(π

∗
1, . . . π

∗
K)

favg(π1, . . . , πk)− favg(∅)

}
,

We will need another definition, an alternative notion of monotoneity.

Definition 6.2.3. The function favg : Π → R+ is postfix-monotone if ∀k = 1, . . . , K and

(π1, . . . , πk) ∈ Π,

favg(π1, π2, . . . , πk) ≥ favg(π2, . . . , πk).

Notice the difference between the postfix-monotone and prefix-monotone properties.

Lemma 6.2.2. If favg : Π→ R+ is postfix-monotone, then σ∗ ≤ σ ≤ 1.

The proof is straightforward and is omitted.
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Theorem 6.2.3. Assume that favg : Π→ R+ is submodular and postfix-monotone. Then, any GPS

scheme (πg1 , . . . , π
g
K) to problem (6.2) satisfies

favg(π
g
1 , . . . , π

g
K)

favg(π∗1, . . . , π
∗
K)
≥ 1

σ∗

(
1−

(
1− σ∗

K

)K)
>

1

σ∗
(
1− e−σ∗

)
.

As in Theorem 6.2.1, the proof involves the fact that (π∗1, . . . , π
∗
K) is also an optimal policy for

favg and applying Theorem 1 in [4].

From Lemma 1 and Theorem 2, the following holds.

Corollary 6.2.4. Assume that favg : Π→ R+ is submodular and postfix-monotone. Then, any GPS

scheme (πg1 , . . . , π
g
K) to problem (6.2) satisfies

favg(π
g
1 , . . . , π

g
K)

favg(π∗1, . . . , π
∗
K)
≥ 1

σ

(
1−

(
1− σ

K

)K)
>

1

σ

(
1− e−σ

)
.

6.2.2 Performance Bounds for PDAO

In this section, we will apply the results in Section 6.2.1 to derive performance bound for PDAO

schemes. The key lies in the following theorem.

Theorem 6.2.5. Any PDAO policy is also a GPS policy.

Proof: Suppose that we are given a PDAO policy (πp1, . . . , π
p
K) (i.e., satisfying (6.3)). We will

show that there exists a GPS policy (πg1 , . . . , π
g
K) such that the two policies are equal. We will do

this by showing that πpj = πgj for 1 ≤ j ≤ k by induction on k = 1, . . . , K.

For k = 1, by (6.3), we have that for any π1,

f(xp1; πp1(xp1)) ≥ f(xp1; π1(xp1)), (6.6)

which implies that

E[f(xp1; πp1(xp1))|x1] ≥ E[f(xp1; π1(xp1))|x1]. (6.7)

Because xp1 = x1, this shows that πp1 is also a GPS policy.
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For the induction step, assume that there exists (πg1 , . . . , π
g
k) satisfying (6.4) such that πpj = πgj

for 1 ≤ j ≤ k. To complete the proof, it suffices to show that πpk+1 satisfies (6.4).

By definition, we have that xpj+1 = h(xpj , π
p
j (x

p
j), ξj) and xgj+1 = h(xgj , π

g
j (x

g
j ), ξj) for 1 ≤ j ≤

k. Based on the assumption that πpj = πgj for 1 ≤ j ≤ k and xp1 = xg1, we have that xpj+1 = xgj+1

for 1 ≤ j ≤ k. Then we have that xpk+1 = xgk+1.

For πpk+1, by (6.3), we have that for any πk+1,

f(xp1, . . . , x
p
k+1; πp1(xp1), . . . , πpk+1(xpk+1)) ≥

f(xp1, . . . , x
p
k+1; πp1(xp1), . . . , πk+1(xpk+1)), (6.8)

which implies that

E[f(xp1, . . . , x
p
k+1; πp1(xp1), . . . , πpk+1(xpk+1))|x1] ≥

E[f(xp1, . . . , x
p
k+1; πp1(xp1), . . . , πk+1(xpk+1))|x1]. (6.9)

Because xpk+1 = xgk+1, this means that πpk+1 satisfies (6.4). This completes our induction argument.

�

Based on Theorems 6.2.1, 6.2.3, and 6.2.5, we have the following theorem, which provides

performance bounds for PDAO schemes.

Theorem 6.2.6. Assume that favg : Π→ R+ is submodular and that for k = 1, . . . , K − 1,

favg(π
g
1 , . . . , π

g
k, π

∗
1, . . . , π

∗
K) ≥ favg(π

∗
1, . . . , π

∗
K).

then any PDAO scheme (πp1, . . . , π
p
K) to problem (6.2) satisfies

favg(π
p
1, . . . , π

p
K)

favg(π∗1, . . . , π
∗
K)
≥ 1−

(
1− 1

K

)K
> 1− 1

e
.

If favg is postfix-monotone, then any PDAO scheme (πp1, . . . , π
p
K) to problem (6.2) satisfies
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favg(π
p
1, . . . , π

p
K)

favg(π∗1, . . . , π
∗
K)
≥ 1

σ

(
1−

(
1− σ

K

)K)
>

1

σ
(1− e−σ).

Theorem 6.2.6 provides conditions for the objective function in problem (6.2) such that PDAO

schemes achieve some guaranteed performance bounds.

6.3 Application to Stochastic Optimal Control

6.3.1 Problem Statement

In this section, we consider the application of (6.2) to stochastic optimal control problems. In

stochastic optimal control, the objective function has the following additive form:

E[f(x1, . . . , xK ; π1(x1), . . . , πK(xK))|x1] =
K∑
k=1

E[r(xk, πk(xk))|x1],

where r : X ×A → R+ for k = 1, . . . , K is the immediate reward accrued at time k by applying

πk at state xk, and
∑K

k=1 E[r(xk, πk(xk))|x1] denotes the conditional expected cumulative reward

over a time horizon of length K given the initial state x1. The stochastic optimal control problem

can be written in the following form:

maximize
π1,...,πK

K∑
k=1

E[r(xk, πk(xk))|x1]

s. t. xk+1 = h(xk, πk(xk), ξk), k = 1, . . . , K − 1.

(6.10)

This problem also goes by the name Markov decision problem (MDP) (or Markov decision pro-

cess), and arises in a wide variety of areas, including sensor resource management [75], congestion

control [76], UAV guidance for multi-target tracking [14, 77, 78], and the game of Go [66].
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6.3.2 Dynamic Programming

The solution to the stochastic optimal control problem above is characterized by Bellman’s

principle of dynamic programming. To explain, for each k = 1, . . . , K, define functions Vk :

X × Πk → R by

Vk(xk, πk, . . . , πK) =
K∑
i=k

E[r(xi, πi(xi))|xk]

where Πk denotes the set of all strings (πk, . . . , πK) for k = 1, . . . , K and xi+1 = h(xi, πi(xi), ξi),

i = k, . . . , K − 1. The objective function of problem (6.10) can be written as

V1(x1, π1, . . . , πK)

where xk+1 = h(xk, πk(xk), ξk), k = 1, . . . , K − 1.

As before, let π∗1, . . . , π
∗
K be an optimal solution to problem (6.10), and given x1, define x∗1 =

x1 and x∗k+1 = h(x∗k, π
∗
k(x
∗
k), ξk), k = 1, . . . , K − 1. Then, Bellman’s principle states that for

k = 1, . . . , K,

Vk(x
∗
k, π

∗
k, . . . , π

∗
K)

= max
a∈A
{r(x∗k, a) + E[Vk+1(xak+1, π

∗
k+1, . . . , π

∗
K)|x∗k, a]},

π∗k(x
∗
k) ∈ argmax

a∈A
{r(x∗k, a) + E[Vk+1(xak+1, π

∗
k+1, . . . , π

∗
K)|x∗k, a]}

(6.11)

where xak+1 = h(x∗k, a, ξk) and xai+1 = h(xai , π
∗
i (x

a
i ), ξi) for i = k + 1, . . . , K − 1, with the

convention that VK+1(·) ≡ 0. Moreover, any policy satisfying (6.11) above is optimal. The term

E[Vk+1(xak+1, π
∗
k+1, . . . , π

∗
K)|x∗k, a] is called the expected value-to-go (EVTG).

Bellman’s principle provides a method to compute an optimal solution: We use (6.11) to iterate

backwards over the time indices k = K,K − 1, . . . , 1, keeping the states as variables, working all

the way back to k = 1. This is the familiar dynamic programming algorithm. However, the proce-

dure suffers from the curse of dimensionality [48] and is therefore impractical for many problems
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of interest. Therefore, designing computationally tractable approximation methods remains a topic

of active research.

6.3.3 Approximate Dynamic Programming

In this section, we will discuss a class of schemes to approximate the optimal solution based on

Bellman’s principle and show that these are all PDAO schemes. The class of approximate dynamic

programming (ADP) schemes rests on approximating the EVTG E[Vk+1(xak+1, π
∗
k+1, . . . , π

∗
K)|x∗k, a]

by some other term Wk+1(x̂k, a). In this method, we start at time k = 1, at state x̂1 = x1, and for

each k = 1, . . . , K, we compute the subsequent control actions and states using

π̂k(x̂k) ∈ argmax
a∈A

{r(x̂k, a) +Wk+1(x̂k, a)}

and x̂k+1 = h(x̂k, π̂k(x̂k), ξk). (6.12)

The EVTG approximation term Wk+1(x̂k, a) can be based on a number of methods, ranging from

heuristics to reinforcement learning [79] to rollout [47].

When

Wk+1(x̂k, a) = E[Vk+1(xak+1, π
∗
k+1, . . . , π

∗
K)|x̂k, a],

the ADP scheme is optimal. When Wk+1(x̂k, a) = 0, the ADP scheme is the myopic heuristic.

When

Wk+1(x̂k, a) = E

[
K∑

i=k+1

ri(x̂i, πb(x̂i))

∣∣∣∣∣ x̂k, a
]
,

where x̂1 = x1, x̂i+1 = h(x̂i, π̂i(x̂i), ξi) for i = 1 . . . , k, and x̂i+1 = h(x̂i, πb(x̂i), ξi) for i =

k + 1 . . . , K − 1, this ADP scheme is called rollout, and the policy πb is called the base policy.

What is the performance of an ADP scheme above relative to the optimal solution? The answer,

of course, depends on the specific EVTG approximation. If the EVTG approximation is equal to

the true EVTG, then the procedure above generates an optimal solution. In general, the procedure
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produces something suboptimal. But how suboptimal? This question has alluded general treatment

but has remained an issue of great interest to designers and users of ADP methods.

We address this issue using our framework of bounding PDAO schemes. More specifically,

our idea is to formulate a stochastic optimization problem such that the ADP procedure above

reduces to a PDAO scheme. Then, contingent on showing that submodularity and curvature condi-

tions hold, our framework for bounding ADP schemes provides a systematic means to bound the

performance of the ADP method.

To see how our approach works, define the function f : X ∗ ×A∗ → R+ by

f(x1, . . . , xk; π1(x1), . . . , πk(xk)) =
k∑
i=1

ri(xi, πi(xi)) +Wk+1(xk, πk(xk)),

where k = 1, . . . , K, xk+1 = h(xk, πk(xk), ξk) as before, and WK+1(·) ≡ 0 by convention. Using

this function f , we now have an associated PDAO scheme.

It is clear that at the terminal k = K, by the definition of favg in Section 6.1.4, we have that

favg(π1, . . . , πK) = E[f(x1, . . . , xK ; π1(x1), . . . , πK(xK))|x1] =
K∑
i=1

E[ri(xi, πi(xi))|x1],

which is equal to the objective function for the given problem (6.10), also the function to be

maximized at the final stage for GPS scheme. By Theorem 6.2.5, we have that any PDAO pol-

icy is a GPS policy, which implies that we have established the equivalence of our f with the

given problem. Next, notice that the PDAO scheme by definition has the following form, given

π1(x1), . . . , πk−1(xk−1):

πk(xk) ∈ argmax
a∈A

f(x1, . . . , xk; π1(x1), . . . , πk−1(xk−1), a)

= argmax
a∈A

{
k−1∑
i=1

r(xi, πi(xi)) + r(xk, a) +Wk+1(xk, a)}

= argmax
a∈A

{r(xk, a) +Wk+1(xk, a)}.
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But this is simply the ADP scheme in (6.12). Hence, we have the following result.

Proposition 6.3.1. The ADP scheme in (6.12) is a PDAO scheme for the optimization problem

defined above.

6.3.4 Bounding ADP schemes

Our results for bounding PDAO schemes provide the basis for designing good ADP methods,

namely by designing the approximate EVTG term to make the objective function satisfy the as-

sumptions of Theorem 6.2.1 (and possibly Theorem 6.2.3 too). We now discuss how to satisfy

these requirements.

From the last section, we have that for k = 1, . . . , K,

f(x1, . . . , xk; π1(x1), . . . , πk(xk)) =
k∑
i=1

r(xi, πi(xi)) +Wk+1(xk, πk(xk)), (6.13)

where xk+1 = h(xk, πk(xk), ξk) as before and WK+1(·) ≡ 0. Then we have that

favg(π1, . . . , πk) =
k∑
i=1

E[r(xi, πi(xi))|x1] + E[Wk+1(xk, πk(xk))|x1].

By the definition of the prefix-monotone property, we have the following sufficient conditions

for favg to be prefix-monotone: ∀xk, πk, π,

E[(r(xk+1, π(xk+1)) +Wk+2(xk+1, π(xk+1)))|xk] ≥ E[Wk+1(xk, πk(xk))|xk], (6.14)

where, as usual, xk+1 = h(xk, πk(xk), ξk).

By the definition of diminishing-return property, we have the following sufficient conditions

for favg to satisfy the diminishing-return property: ∀xk, πk, πk+1, π,

E[(r(xk+1, π(xk+1)) +Wk+2(xk+1, π(xk+1))−Wk+1(xk, πk(xk)))|xk] ≥

E[(r(xk+2, π(xk+2)) +Wk+3(xk+2, π(xk+2))−Wk+2(xk+1, πk+1(xk+1)))|xk]
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where xk+1 = h(xk, πk(xk), ξk) and xk+2 = h(xk+1, πk+1(xk+1), ξk+1).

By (6.13), we have that the objective function for ADP schemes is defined for strings of length

up to K, so in order to satisfy the conditions favg(π
g
1 , . . . , π

g
k, π

∗
1, . . . , π

∗
K) ≥ favg(π

∗
1, . . . , π

∗
K) for

k = 1, . . . , K − 1 in Theorem 6.2.1, we have to define f for strings of length greater than K. The

problem of extending a string-submodular function defined for strings of length up to K to one

defined for strings of length up to 2K − 1 is one of our future research directions. In Chapter 5,

we provided conditions involving strings of length up to K for the greedy strategy to achieve the

bound 1− (1−1/K)K , so we can consider similar conditions in order to avoid the above problem.
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Chapter 7

Conclusion Summary

In Chapter 2, we developed bounds on the performance of the batched greedy strategy relative

to the optimal strategy in terms of a parameter called the total batched curvature. We showed that

when the objective function is a polymatroid set function, the batched greedy strategy satisfies a

harmonic bound for a general matroid constraint and an exponential bound for a uniform matroid

constraint, both in terms of the total batched curvature. We also studied the behavior of the bounds

as functions of the batch size. Specifically, we proved that the harmonic bound for a general

matroid is nondecreasing in the batch size and the exponential bound for a uniform matroid is

nondecreasing in the batch size under the condition that the batch size divides the rank of the

uniform matroid. Finally, we illustrated our results by considering a task scheduling problem and

an adaptive sensing problem.

A related problem setting in one where the argument of the objective function is not a set

but an ordered tuple, called a string. The performance of the 1-batch greedy strategy for string

optimization problem has been investigated in [3, 4]; however, the performance of the general k-

batch greedy strategy for string optimization has not been investigated so far. As was the case in

Chapter 2, lifting does not work in the string setting. Moreover, batching in string submodular

functions does not preserve submodularity in general. This makes analyzing the k-batch greedy

strategy for string problems more challenging than for set problems, and remains open to date.

In Chapter 3, suppose that a function f defined on a matroid (X, I) is extendable to the entire

power set. We have shown that the majorizing extension algorithm does not always successfully

produce this extension. Next, we explored defining a notion of curvature b(f) depending only on

sets in the matroid (X, I), and we asked if it is always possible to extend f to g in such a way

that c(g) = b(f). Here, again, we have shown that the answer is in general negative; we gave

necessary and sufficient conditions for c(g) = b(f). This leaves us with the following ultimate

question: What extension g of f has the best (smallest) value of c(g)? Unfortunately, answering

122



this question boils down to solving an optimization problem that is in general as difficult as (3.1),

solvable using only something like dynamic programming. This, of course, does not point to a

practical algorithm for finding an extension with the best curvature.

In Chapter 4, we considered variations of the non-cooperative utility system considered by

Vetta, in which users are grouped together. We considered two types of grouping among users in

utility systems. The first type of grouping is from [2], where each user belongs to a group of users

having social ties with it. For this type of utility system, each user takes its strategy by maximizing

its social group utility function, giving rise to the notion of social-aware Nash equilibrium. We

proved that this social utility system yields to the bounding results of Vetta for non-cooperative

system, thus establishing provable performance guarantees for the social-aware Nash equilibria.

For the second type of grouping we considered, the set of users is partitioned into l disjoint groups,

where the users within a group takes their group strategy by maximizing their group utility, giving

rise to the notion of the group Nash equilibrium. In this case, each group can be viewed as a new

user with vector-valued actions, and a 1/2 bound for the performance of group Nash equilibria

follows from the result of [1]. By defining the group curvature cki associated with group i with ki

users, we showed that if the social utility function is nondecreasing and submodular, then any group

Nash equilibrium achieves at least 1/(1 + max1≤i≤l cki) of the optimal social utility. Especially,

if each user has the same action space, then we showed that any group Nash equilibrium achieves

at least 1/(1 + ck∗) of the optimal social utility, where k∗ is the least number of users among the l

groups.

In Chapter 5, we considered an optimization problem where the decision variable is a string of

length at most K. For this problem, we reviewed some previous results on bounding the greedy

strategy. In particular, the results of [4] provide sufficient conditions for the greedy strategy to be

bounded by a factor of (1−(1−1/K)K). We then presented weakened sufficient conditions for this

same bound to hold, by introducing the notions of K-submodularity and K-GO-concavity. Next,

we introduced a notion of curvature η ∈ (0, 1], which furnishes an even tighter bound with the

factor 1
η
(1− e−η). Finally, we illustrated our results by considering two example applications. We
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showed that our new results provide weaker conditions on parameter values in these applications

than in [4]. Finally, we presented an example of a utility system for database assisted spectrum

access to illustrate our results.

In Chapter 6, we developed a framework to bound the performance of path-dependent action

optimization (PDAO) schemes. We showed that every PDAO scheme is a greedy scheme for some

optimization problem, and if that optimization problem is equivalent to our problem of interest and

is provably submodular, then we can say that our PDAO scheme is no worse than something like

(1 − e−1) of optimal. We demonstrated how our framework can be applied in stochastic optimal

control problems to systematically bound the performance of general approximate dynamic pro-

gramming (ADP) schemes. The question how to design an ADP scheme such that it satisfies our

framework in real applications remains one of our future research directions.
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