DISSERTATION

PERFORMANCE BOUNDS FOR GREEDY STRATEGIES IN SUBMODULAR
OPTIMIZATION PROBLEMS

Submitted by
Yajing Liu

Department of Electrical and Computer Engineering

In partial fulfillment of the requirements
For the Degree of Doctor of Philosophy
Colorado State University
Fort Collins, Colorado

Summer 2018

Doctoral Committee:

Advisor: Edwin K. P. Chong
Co-Advisor: Ali Pezeshki

J. Rockey Luo
Dan Bates

Copyright by Yajing Liu 2018
All Rights Reserved

ABSTRACT

PERFORMANCE BOUNDS FOR GREEDY STRATEGIES IN SUBMODULAR
OPTIMIZATION PROBLEMS

The greedy strategy is an approximate optimization algorithm which makes a locally optimal
decision at each step. In many problems, the greedy strategy does not yield a globally optimal so-
lution. How good is the greedy solution compared to the optimal solution? When the problem over
matroid constraints has a property called submodularity, the greedy strategy is proved to produce
a solution with value at least a constant scalar times the optimum value. In this thesis, we mainly
investigate the performance of the greedy strategy in two classes of submodular optimization prob-
lems over matroid constraints. The first is set submodular optimization, which is to choose a set
of actions to optimize a submodular objective function, and the second is string submodular opti-
mization, which is to choose an ordered set of actions to optimize a string submodular objective
function.

For set submodular optimization problems, we first provide performance bounds in terms of the
total curvature for the batched greedy strategy under matroid constraints, where the greedy strategy
is a special case with batch size equal to 1. Then we provide improved bounds for the greedy
strategy by defining a partial curvature. Moreover, we use similar techniques for bounding the
batched greedy strategy to provide performance bounds for social-aware Nash equilibria and group
Nash equilibria in utility systems with user groups. For string submodular optimization problems,
we first provide weakened sufficient conditions for the greedy strategy to be bounded by a scalar
factor. Then based on the theory of string submodular functions, we develop a framework to
bound the performance of approximate dynamic programming (ADP) schemes in path-dependent
action optimization (PDAO) problems, where every control decision is treated as the solution to an

optimization problem with a path-dependent objective function.

il

Consider the problem of choosing a set of actions to optimize an objective function that is
set submodular. The batched greedy strategy is an approximation algorithm, which starts with
the empty set, then iteratively adds to the current solution set a batch of elements that results in
the largest gain in the objective function. We first investigate performance of the batched greedy
strategy over the matroid constraints. To be specific, we develop bounds on the performance of
the batched greedy strategy relative to the optimal strategy in terms of a parameter called the
total batched curvature. We show that when the objective function is a polymatroid set function,
the batched greedy strategy satisfies a harmonic bound for a general matroid constraint and an
exponential bound for a uniform matroid constraint, both in terms of the total batched curvature.
We also study the behavior of the bounds as functions of the batch size. Specifically, we prove that
the harmonic bound for a general matroid is nondecreasing in the batch size and the exponential
bound for a uniform matroid is nondecreasing in the batch size under the condition that the batch
size divides the rank of the uniform matroid. Finally, we illustrate our results by considering a task
scheduling problem and an adaptive sensing problem.

The greedy strategy is a special case of the batched greedy strategy with batch size equal
to 1. The greedy strategy is known to satisfy some performance bounds in terms of the total
curvature. The total curvature depends on function values on sets outside the constraint matroid.
If the function is defined only on the matroid, the problem still makes sense, but the existing
bounds involving the total curvature do not apply, which is puzzling. This motivates an alternative
formulation of such bounds. The first question we address is whether it is possible to extend a
polymatroid function defined on a matroid to one on the entire power set. This was recently shown
to be negative in general. Here, we provide necessary and sufficient conditions for the existence
of an incremental extension of a polymatroid function defined on the uniform matroid of rank &
to one with rank k£ + 1, together with an algorithm for constructing the extension. Whenever a
polymatroid function defined on a matroid can be extended to the entire power set, the bounds
involving the total curvature of the extension apply. However, these bounds still depend on sets

outside the constraint matroid. Motivated by this, we define a new notion of curvature called

il

partial curvature, involving only sets in the matroid. We derive necessary and sufficient conditions
for an extension to have a total curvature equal to the partial curvature. Moreover, we prove that
the bounds in terms of the partial curvature are in general improved over the previous ones. We
illustrate our results with two contrasting examples motivated by practical problems.

We use the similar techniques for bounding the batched greedy strategy to bound the perfor-
mance of Nash equilibria when there exists “grouping" in utility systems. We consider variations
of the utility system considered by Vetta [1], in which users are grouped together. Our aim is to
establish how grouping and cooperation among users affect performance bounds. We consider two
types of grouping. The first type is from [2], where each user belongs to a group of users having
social ties with it. For this type of utility system, each user’s strategy maximizes its social group
utility function, giving rise to the notion of social-aware Nash equilibrium. We prove that this
social utility system yields to the bounding results of Vetta for non-cooperative system, thus estab-
lishing provable performance guarantees for the social-aware Nash equilibria. For the second type
of grouping we consider, the set of users is partitioned into disjoint groups, where the users within
a group cooperate to maximize their group utility function, giving rise to the notion of group Nash
equilibrium. In this case, each group can be viewed as a new user with vector-valued actions, and
a 1/2 bound for the performance of group Nash equilibria follows from the result of Vetta. But we
derive tighter bounds involving curvature by defining the group curvature. Finally, we present an
example of a utility system for database assisted spectrum access to illustrate our results.

Consider the problem of choosing a string of actions to optimize an objective function that
is string submodular. Streeter and Golovin [3] show that if the objective function is prefix and
postfix monotone and string submodular, then the greedy strategy achieves at least a (1 — 1/e)-
approximation of the optimal strategy. Zhang et al. [4] consider a weaker notion of the postfix
monotoneity and provide sufficient conditions for the greedy strategy to achieve a factor of at least
1 — 1/e. We introduce the notions of K -submodularity and K-GO-concavity, which together are
sufficient for this bound to hold, where K is the optimization horizon length. By introducing a

notion of curvature 7, we prove an even tighter bound with the factor (1 — e~")/n. Finally, we

v

illustrate the strength of our results by considering two example applications. We show that our
results provide weaker conditions on parameter values in these applications than in [4].

Based on the theory of string submodularity, we develop a framework to bound the performance
of approximate dynamic programming (ADP). We consider a broad family of control strategies
called path-dependent action optimization (PDAO), where every control decision is treated as the
solution to an optimization problem with a path-dependent objective function. How well such a
scheme works depends on the chosen objective function to be optimized and, in general, it might
be difficult to tell, without doing extensive simulation and testing, if a given PDAO design gives
good performance or not. We develop a framework to bound the performance of PDAO schemes,
based on the theory of submodular functions. We show that every PDAO scheme is a greedy
scheme for some optimization problem, and if that optimization problem is equivalent to our prob-
lem of interest and is provably submodular, then we can say that our PDAO scheme is no worse
than something like (1 — 1/¢) of optimal. We show how to apply our framework to stochastic
optimal control problems to bound the performance of ADP schemes. Such schemes are based on
approximating the expected value-to-go term in Bellman’s principle by computationally tractable
means. Our framework provides the first systematic approach to bounding the performance of

general ADP methods in the stochastic setting.

ACKNOWLEDGEMENTS

First and foremost, I would like to express my deep appreciation to my advisors, Prof. Ed-
win K. P. Chong and Prof. Ali Pezeshki for accepting me as a Ph. D student, for training me in
doing research, writing papers, and doing presentations, for encouraging me to broaden my hori-
zons by attending conferences, summer schools, workshops, and doing internships, and for all the
financial and spiritual support during my graduate studies at Colorado State University. It has been
a great honor and pleasure to study and conduct research under the supervision of Profs Chong and
Pezeshki. They are not only my mentors in research, but also in life! I would also like to express
my sincere thanks to my committee members, Prof. J. Rockey Luo and Prof. Dan Bates for their
important suggestions and remarks in my research and for their time and efforts in serving as my
committee.

I would especially like to thank Dr. Zhenliang Zhang, Dr. Yang Zhang, Dr. Wenbing Dang,
Dr. Shankarachary Ragi, Dr. Ramin Zahedi, and Dr. Pooria Pakrooh for sharing their research
experiences and encouraging me to carry on through these years. Thanks go to the former and cur-
rent members in our group, in particular, Yugandhar Sarkale, Fateh El Sherif, Somayeh Hosseini,
Mahsa Ghorbani, Apichart Vasutapituks, Tushar Ganguli, Chris Robbiano, and Pranav Damale for
their friendship and assistance on my research work. Thanks also go to my great friends Wenjing
Liu, Xuemin Wang, Minda Le, Huan Wang, Zheng Wang, Xinran Xu, Yanru Tang, and Savini
Samarasinghe for their encouragement in both research and life.

I acknowledge the people who mean a lot to me, my parents, Xinsheng Liu and Li Zhang, for
working hard to support me to go to college and giving me liberty to choose what I desired; my
twin-brother, Yabin Liu, and my sister in law, Pan Zhai for their selfless love and care to my parents
which creates me an opportunity to concentrate on my research during my Ph.D study.

I owe many thanks to a very special person, my husband, Dr. Haonan Chen for his contin-
ued and unfailing love, support, understanding during my pursuit of Ph.D degree that made the

completion of thesis possible.

Vi

DEDICATION

I would like to dedicate this dissertation to my family.

vii

TABLE OF CONTENTS

ABSTRACT e
ACKNOWLEDGEMENTS e e
DEDICATION e e e
LISTOF FIGURES e e e
Chapter 1 Introduction
1.1 Background and Motivation L.
1.1.1 Batched Greedy Strategy in Set Optimization

1.1.2 More Applicable Bounds for Greedy Strategy in Set Optimization
1.1.3 Nash Equilibria in Utility Systems
1.1.4 Greedy Strategy in String Optimization
1.1.5 Approximate Dynamic Programming Schemes in Stochastic Control . .
1.2 Our Contributions e
Chapter 2 Performance of Batched Greedy Strategy
2.1 Preliminaries
2.1.1 Polymatroid Set Functions and Curvature
2.1.2 Review of Previous Work oL
2.1.3 Performance Bounds in Terms of Total Curvature
2.14 Properties of Submodular Functions
22 MainResults
2.2.1 k-Batch Greedy Strategy
222 Performance Bounds in Terms of Total k-Batch Curvature
2.3 Examples L
2.3.1 Task Scheduling
2.3.2 Adaptive Sensing L.
2.4 Discussion on Matroid Preservation
2.5 Comparing Different k-Batch Greedy Strategies
Chapter 3 Improved Bounds for Greedy Strategy in Set Optimization
3.1 Preliminaries L
3.1.1 Polymatroid Functions and Curvature
3.1.2 Performance Bounds in Terms of Total Curvature
32 Function Extension L
3.2.1 Monotone Extension oL
322 Polymatroid Extension: From Uniform Matroid to Power Set
323 Majorizing Extension Lo Lo
324 Polymatroid Extension: From General Matroid to Power Set
3.3 Improved Bounds
34 Examples
34.1 Task Scheduling oo

viii

34.2

Chapter 4
4.1
4.1.1
4.1.2
4.1.3
4.1.4
4.2
4.3
4.3.1
4.3.2
4.4
4.4.1
4.4.2
443

Chapter 5
5.1
5.2
5.2.1
522
53
54
5.4.1
542

Chapter 6

6.1
6.1.1
6.1.2
6.1.3
6.1.4

6.2
6.2.1
6.2.2

6.3
6.3.1
6.3.2
6.3.3
6.3.4

Chapter 7

Adaptive Sensing L. 66

Performance of Nash Equilibria in Utility Systems 69
Preliminaries 70
ACHIONS e e e e e 70
Strategies 71
Utility Functions o 72
Curvature, Monotoneity, and Submodularity 72
Performance Bounds for Nash Equilibria 73
Nash Equilibria Based on User Groups 74
Social-Aware Nash Equilibria 74
Group Nash Equilibria 76
Example e 82
Nash Equilibria 83
Social-Aware Nash Equilibria 85
Group Nash Equilibria 87
Performance of Greedy Strategy in String Optimization 89
Problem Formulation 89
Review of Related Work 91
Strings and Curvature 91
Bounds for the Greedy Strategy 92
MainResults 93
Applications 97
Task Assignment Problem 98
Adaptive Measurement Problem 100

A General Framework for Bounding Approximate Dynamic Programming
Schemes 106
Preliminarieso 107
Review of Previous Work, 107
Problem Formulation 108
Suboptimal Schemes o oL 110
Terminology and Definitions 111
MainResults L 112
Performance BoundsforGPS 112
Performance Bounds for PDAO 114
Application to Stochastic Optimal Control 116
Problem Statement Lo 116
Dynamic Programming 117
Approximate Dynamic Programming 118
Bounding ADP schemes 120
Conclusion Summary 122

X

Bibliography

2.1
2.2
2.3
24

LIST OF FIGURES

Characterization of submodularity, 11
Task scheduling example 35
Adaptive sensing example L L 37

Adaptive sensing example

X1

Chapter 1

Introduction

We are often faced with choosing a small set of actions from a ground set of actions to optimize
an objective function in real applications. A specific example is the task assignment problem, one
of the fundamental combinatorial optimization problems in the branch of optimization or opera-
tions research. This problem has a number of agents and a number of tasks. Each agent can be
assigned to perform any task with a given probability to accomplish the task. The aim is to choose
a given number of agents to maximize the probability of accomplishing the tasks.

When the number of agents is not that large, we can use brute force method to enumerate all
possible solutions and find the optimal solution. However, when the number of agents is large, it
is impractical to enumerate all the possible solutions. At this point, we have to resort to approxi-
mation methods and one of the most popular approximation methods is the greedy strategy, which
starts with the empty set, and iteratively adds to the current solution set an element that results in
the largest gain in the objective function while satisfying the constraints. The greedy strategy yields
a local optimal solution that approximates a globally optimal solution in a reasonable amount of
time. The downside is that there is often no theoretical guarantee for the greedy strategy. But when
the problem has a special property called submodularity, the greedy strategy is proved to produce
a solution with value at least a constant scalar times the optimum value over matroid constraints.
Celebrated results by Nemhauser et al. [5, 6] prove that when the objective function f is a mono-
tone submodular set function with f()) = 0, the greedy strategy yields a 1/2-approximation' for
a general matroid and a (1 — e~!)-approximation for a uniform matroid.

Submodularity is a property of set functions, whose value has the property that the difference
in the incremental value of the function that a single element makes when added to an input set

decreases as the size of the input set increases. It is also called diminishing return property in eco-

I'The term 3-approximation means that f(G)/f(O) > 3, where G and O denote a greedy solution and an optimal
solution, respectively.

nomics, and has connectivity with both convexity and concavity [7]. It appears in a wide variety of
applications such as viral marketing [8], information gathering [9], image segmentation [10], doc-
ument summarization [11], feature selection [12], active learning [13], and sensor placement [14].
Therefore, the performance of approximation algorithms such as greedy schemes in submodular
optimization problems has gained more attention in recent years [15].

In this thesis, we are interested in the performance of the greedy type schemes in submodular
maximization problems and the specific topics are: the performance of the batched greedy strategy
and more applicable performance bounds for the greedy strategy in submodular set optimization
problems, the performance of the social-aware Nash equilibria and the group Nash equilibria in
submodular utility systems, the performance of the greedy strategy in string submodular optimiza-
tion problems, and the performance of approximate dynamic programming schemes in stochastic

submodular control problems. We will introduce these topics specifically in the following section.

1.1 Background and Motivation

1.1.1 Batched Greedy Strategy in Set Optimization

A variety of combinatorial optimization problems such as generalized assignment (see, e.g.,
[3, 16-19]), welfare maximization (see, e.g., [20-22]), maximum coverage (see, e.g., [23-25]),
maximal covering location (see, e.g., [26-29]), and sensor placement (see, e.g., [9,30-32]) can
be formulated as a problem of maximizing a set function subject to a matroid constraint. More
precisely, the objective function maps the power set of a ground set to real numbers, and the
constraint is that any feasible set is from a non-empty collection of subsets of the ground set
satisfying matroid constraints.

Finding the optimal solution to the problem above in general is NP-hard. The greedy strategy
provides a computationally feasible approach, which starts with the empty set, and then iteratively
adds to the current solution set one element that results in the largest gain in the objective function,
while satisfying the matroid constraints. This scheme is a special case of the batched greedy

strategy with batch size equal to 1. For general batch size (greater than 1), the batched greedy

strategy starts with the empty set but iteratively adds, to the current solution set, a batch of elements
with the largest gain in the objective function under the constraints.

The performance of the batched greedy strategy with batch size equal to 1 has been extensively
investigated in [5,6,33-36]. The performance of the batched greedy strategy for general batch size,
however, has received little attention, notable exceptions being Nemhauser et al. [6] and Hausmann
et al. [33]. Although Nemhauser et al. [6] and Hausmann et al. [33] investigated the performance of
the batched greedy strategy, they only considered uniform matroid constraints and independence
system constraints, respectively. This prompts us to investigate the performance of the batched

strategy more comprehensively.

1.1.2 More Applicable Bounds for Greedy Strategy in Set Optimization

Conforti and Cornuéjols [34] define the total curvature to characterize the submodular property
of the objective function, and they prove that the greedy strategy in set maximization problems
satisfies some performance bounds in terms of the total curvature under matroid constraints when
the objective function is a polymatroid set function. However, the total curvature depends on the
function values on sets outside the matroid. This gives rise to the following issue when applying
the existing bounding results involving the total curvature: If we are given an objective function
defined only on the matroid, then the problem still makes sense, but the total curvature is no longer
well defined. This means that the existing results involving the total curvature do not apply. But this
surely is puzzling: if the optimization problem is perfectly well defined, why should the bounds no
longer apply? This motivates us to investigate more applicable bounds involving only sets in the

matroid.

1.1.3 Nash Equilibria in Utility Systems

A variety of interesting practical problems can be posed as utility maximization problems:
these include facility location [37], traffic routing and congestion management [38] , sensor selec-
tion [39], and network resource allocation [2]. In a utility maximization problem, a set of users

make decisions according to their own set of feasible strategies, resulting in an overall social utility

value, such as profit, coverage, achieved data rate, and quality of service. The goal is to maximize
the social utility function. Often, the users do not cooperate in selecting their strategies.

In general, it is impractical to find the globally optimal sequence (finite, ordered collection)
of strategies maximizing the social utility function. Typically, it is more useful to consider sce-
narios where individual users or groups of users separately maximize their own private objective
functions, and then ask how this compares with the globally optimal case. The usual framework
for studying such scenarios is game theory together with its celebrated notion of Nash equilibria.
A Nash equilibrium is a sequence of strategies (deterministic or randomized) for which no user
can improve its own private utility by changing its strategy unilaterally. The question of how the
Nash solution compares with the globally optimal solution is one of the most challenging prob-
lems in game theory. For a general utility maximization problem, [1] develops lower bounds on
the worst-case social utility value in non-cooperative games.

With the advent of social networks, there is increasing interest in understanding the role of
cooperation and social ties in games [40]. Motivated by the idea of bounding the batched greedy
strategy, we are interested in exploring bounds for Nash equilibria when there exists “grouping”

among users.

1.1.4 Greedy Strategy in String Optimization

In a variety of problems in engineering and applied science such as sequential decision making
([41-43]), adaptive sensing ([9,44]), and adaptive control ([45,46]), we are faced with optimally
choosing a string (ordered set) of actions over a finite horizon to maximize an objective function
under some constraints. We call this class of optimization string optimization.

The solution to the string optimization problems can be characterized using backward dynamic
programming via Bellman’s principle ([47,48]). However, dynamic programming is hard to im-
plement because that the computational complexity of this approach grows exponentially with the
size of action set and the horizon length. Hence, we often turn to approximation techniques. One

approximation technique is the greedy strategy, which is to find an action at each stage to maxi-

mize the step-wise gain in the objective function. The performance for the greedy strategy in string
optimization problems has been extensively investigated by [3] and [4]. Streeter and Golovin [3]
proves that the greedy strategy satisfies a constant performance bound when the problem satisfies
some properties. Zhang et al. [4] consider weaker conditions and provide a stronger bound by
introducing curvature. But all the sufficient conditions obtained so far involve strings of length
greater than K, even though the optimization problem involves only strings up to length K. This
motivates a weakening of these sufficient conditions to involve only strings of length at most K&,

but still preserving the bounds here.

1.1.5 Approximate Dynamic Programming Schemes in Stochastic Control

We consider a broad family of control strategies that we call path-dependent action optimiza-
tion (PDAO). To use a PDAO scheme is to treat every control decision as the solution to an op-
timization problem with a path-dependent objective function. How well such a scheme works
depends on the chosen objective function to be optimized. A key result in optimal control theory is
that, under quite general conditions, there exists an optimal solution (policy) that is also a PDAO
scheme. This result, not usually stated this way and more commonly known as Bellman’s principle,
makes PDAO schemes of interest in a wide range of computational-intelligence applications and
is the basis for self-driving vehicles and AlphaGo, the master-beating Go playing machine. Bell-
man’s principle tells us that the path-dependent objective function to be optimized at each decision
epoch must capture both the immediate reward as well as the (expected) long-term net reward
associated with each candidate action. This embodies a rigorous notion of delayed gratification,
common to all nontrivial optimal dynamic decision-making policies.

The key to the performance of a PDAO scheme is the design of good objective functions. The
future-rewards part of the objective function prescribed by Bellman’s principle, unfortunately, of-
ten cannot be computed exactly. Therefore, approximation methods are needed. These include a
variety of approaches, ranging from reinforcement learning with deep neural networks to model-

based Monte Carlo sampling (for an overview in the context of adaptive sensing, refer to [49]).

The family of PDAO schemes of interest here is often called approximate dynamic program-
ming (ADP). Such schemes are based on approximating the second term on the right-hand side
of Bellman’s optimality principle (the expected value-to-go) by computationally tractable means.
Although a wide range of approximate dynamic programming (ADP) methods have been devel-
oped [47-49], a general systematic technique to provide performance guarantees for them has
remained elusive. This motivates us to derive performance bounds for general ADP methods in the

stochastic setting.

1.2 Owur Contributions

In Chapter 2, first we define the total k-batch curvature c; and prove that when the objec-

tive function f is a polymatroid set function, the k-batch greedy strategy achieves a 1/(1 + ¢y)-

approximation for a general matroid and a (1 — (1 — /% %)(1 — ;%)")/cr-approximation for a
uniform matroid, where K = kl + m is the rank of the uniform matroid, [and m are non-

negative integers, and 0 < m < k. When ¢, = 1, the bound for a uniform matroid becomes
(1—(1- %)(1 - Hil)l), which is the bound in [6]. When k& = 1, the bound for a general
matroid becomes 1/(1 + ¢), which is the bound in [34], and the bound for a uniform matroid be-
comes (1 — (1 — ¢/K)X)/c, which is the bound in [34]. When m = k, the bound for a uniform
matroid becomes (1 — (1 — ¢ /(I + 1))"*1) /e, which is the bound in [50]. Then we prove that c;,
is nonincreasing in £ when f is a polymatroid set function. This implies that the larger the k, the
better the harmonic bound for a general matroid and when k divides K, the larger the k, the better
the exponential bound for a uniform matroid. Finally, we present a task scheduling problem and
an adaptive sensing problem to demonstrate our results.

In Chapter 3, we first provide necessary and sufficient conditions for the existence of an ex-
tension of a polymatroid function f defined on the matroid to a polymatroid function g defined
on the whole power set. Then, it follows that for problems satisfying the necessary and sufficient

conditions, the greedy strategy satisfies the bounds 1/(1 + d) and (1 — (1 — d/K)¥)/d for a gen-

eral matroid and a uniform matroid, respectively, where d = infycq, c(g) and €2 is the set of all

polymatroid functions g on 2% that agree with f on Z, i.e., g(A) = f(A) for any A € Z. These
bounds apply to problems where the objective function is defined only on the matroid and satisfies
the necessary and sufficient conditions. When the objective function is defined on the entire power
set, it is clear that d < ¢(f), which implies that the bounds are improved.

Next, we define a curvature b involving only sets in the matroid, and we prove that b(f) < ¢(f)
when f is defined on the entire power set. We derive necessary and sufficient conditions for the
existence of an extended polymatroid function g such that ¢(g) = b(f). This gives rise to improved
bounds 1/(1+b(f)) and (1 — (1 —b(f)/K)X)/b(f) for a general matroid and a uniform matroid,
respectively. Moreover, these bounds are not influenced by sets outside the matroid.

Finally, we present two examples. We first provide a task scheduling problem to show that
a polymatroid function f defined on the matroid can be extended to a polymatroid function g
defined on the entire power set while satisfying the condition that ¢(g) = b(f), which results in a
stronger bound. Then, we provide an adaptive sensing problem to show that there does not exist
any extended polymatroid function g such that ¢(g) = b(f) holds. However, for our extended
polymatroid function g, it turns out that ¢(g) is very close to b(f) and much smaller than c(f),
which also results in a stronger bound.

In Chapter 4, we first describe the framework of [2] and show that a social-aware utility sys-
tem yields to the bounding results of Vetta for non-cooperative system, thus establishing provable
performance guarantees for the social-aware Nash equilibrium. Next, we describe our second type
of grouping involving [disjoint groups with in-group cooperation. In this case, each group can be
viewed as a new user with vector-valued actions, and a 1/2 bound for the performance of group
Nash equilibrium follows from the result of [1]. We then define the group curvature ¢, associated
with group ¢ with k; users, and we show that if the social utility function is nondecreasing and
submodular, then any group Nash equilibrium achieves at least 1 /(1 +max;<;<; ¢,) of the optimal
social utility, which is tighter than that for the case without grouping. Especially, if each user has
the same action space, then we have that any group Nash equilibrium achieves at least 1/(1 + ¢y«)

of the optimal social utility, where £* is the least number of users among all the groups. In Sec-

tion 5, we present an example of a utility system for database assisted spectrum access, adopted
from [2]. We show that the utility system for this example is valid and the social utility function is
submodular, illustrating an application of our results.

In Chapter 5, we introduce the notions of K -submodularity and /K-GO-concavity, which to-
gether are sufficient for the (1 — (1 — 1/K)%) bound to hold. By introducing a notion of curvature
n € (0, 1], we prove an even tighter bound with the factor (1 — e~")/n. Finally, we illustrate the
strength of our results by considering two example applications. We show that our results provide
weaker conditions on parameter values in these applications than in previous results reported in [4].

In Chapter 6, we develop a framework to bound the performance of ADP schemes. Our bound-
ing method is based on the theory of submodular optimization [4]. The basic result from string
submodular optimization is that every greedy scheme achieves at least (1 — 1/e) of the optimum
value. We first prove that every PDAO scheme is a greedy scheme for some optimization problem.
If that optimization problem is equivalent to our problem of interest and is provably submodular
(in a certain sense to be made precise later), then we can say with certainty that our PDAO scheme
is no worse than (1 — 1/e) of optimal. We then show how to apply our framework to bound
ADP schemes in stochastic optimal control problems Markov decision processes (MDPs). ADP
schemes are based on approximating the second term on the right-hand side of Bellman’s opti-
mality principle (the expected value-to-go) by computationally tractable means. Although a wide
range of approximate dynamic programming (ADP) methods have been developed by [47-49], a
general systematic technique to provide performance guarantees for them has remained elusive.
Ours is the first systematic approach to deriving performance bounds for general ADP methods in
the stochastic setting.

In Chapter 7, we conclude this thesis and discuss some future research questions.

Chapter 2

Performance of Batched Greedy Strategy

In this chapter, we study the performance bounds in terms of the total batched curvature for the
batched greedy strategy under general matroid and uniform matroid constraints. We also study the
behavior of the bounds as functions of the batch size, by comparing the values of the total batched
curvature for different batch sizes and investigating the monotoneity of the bounds. It is not our
claim that we are proposing a new algorithm (the batched greedy strategy) or even that we are
advocating the use of such an algorithm. Our contribution is to provide bounds on the performance
of the batched greedy strategy, which we consider to be a rather natural extension of the greedy
strategy. As we argue below, going from the case of batch size equal to 1 to the general case (batch
size greater than 1) is highly nontrivial.

In [34], Conforti and Cornuéjols provided performance bounds for the greedy strategy in terms
of the total curvature under general matroid constraints and uniform matroid constraints. It might
be tempting to think that bounds for the batched case can be derived in a straightforward way from
the results of batch size equal to 1 by lifting, which is to treat each batch-sized set of elements
chosen by the batched greedy strategy as a single action, and then appeal to the results for the
case of batch size equal to 1. However, it turns out that lifting does not work for a general batched
greedy strategy (batch size greater than 1) for the following two reasons. First, the collection of sets
created by satisfying the batched greedy strategy is not a matroid in general; we will demonstrate
this by an example in Section 2.4. Second, the last step of the batched greedy strategy may select
elements with a number less than the batch size, because the cardinality of the maximal set in the
matroid may not be divisible by the batch size.

The batched greedy strategy requires an exponential number of evaluations of the objective
function if using exhaustive search. When the batch size is equal to the cardinality of the maximal
set in the matroid, the batched greedy strategy coincides with the optimal strategy. It might be

tempting to expect that the batched strategy with batch size greater than 1 outperforms the usual

greedy strategy, albeit at the expense of increasing computational complexity. Indeed, the Monte
Carlo simulations performed in [51] for the maximum coverage problem show that the batched
greedy strategy with batch size greater than 1 provides better approximation than the usual greedy
strategy in many cases. However, it is also evident from their simulation that this is not always the
case. In Section 2.5, we provide two examples of the maximum coverage problem where the usual
greedy strategy performs better than the batched greedy strategy with batch size 2.

In Section 2.1, we first introduce some definitions and review the previous results. Then, we
review Lemmas 1.1 and 1.2 from [52], which we will use to derive performance bounds for the
batched greedy strategy under a uniform matroid constraint. In Section 2.2, we define the to-
tal batched curvature and then we provide a harmonic bound and an exponential bound for the
batched greedy strategy under a general matroid constraint and a uniform matroid constraint, re-
spectively, both in terms of the total batched curvature. We also prove that the batched curvature
is nonincreasing in the batch size when the objective function is a polymatroid set function. This
implies that the larger the batch size, the better the harmonic bound for a general matroid and when
the batch size divides the rank of the uniform matroid, the larger the batch size, the better the ex-
ponential bound for a uniform matroid. In Section 2.3, we present a task scheduling problem and
an adaptive sensing problem to demonstrate our results.

The results in this chapter were published in [50, 53].

2.1 Preliminaries

2.1.1 Polymatroid Set Functions and Curvature

The definitions and terminology in this paragraph are standard (see, e.g., [54-56]), but are
included for completeness. Let X be a finite set, and Z be a non-empty collection of subsets of X.
Given a pair (X, 7Z), the collection Z is said to be hereditary iff it satisfies property i below and has

the augmentation property iff it satisfies property ii below:

i. Forall B € Z,anyset A C BisalsoinZ.

10

ii. Forany A, B € Z, if | B| > |A|, then there exists j € B \ A suchthat AU {j} € Z.

The pair (X, Z) is called a matroid iff it satisfies both properties i and ii. The pair (X, Z) is called
a uniform matroid iff 7 = {S C X : |S| < K} for a given K, called the rank of (X, 7).

Remark 2.1.1. Three collections given as follows satisfy property i, property ii, and both, respec-
tively.

Let X = {a,b,c}, Ty = {{a}, {b}. {a, ¢}, {c}, 0}, T = {{a},{a, b}}, T5 = {0, {a}, {0} {a, b} }.
It is easy to check that I, satisfies hereditary property but not augmentation, Ly satisfies augmen-
tation but not hereditary property, and L3 satisfies both hereditary property and augmentation.

Hence, (X,7,) is an independence system and (X, Z3) is a matroid.

Before we introduce the properties of function defined on sets, we would like to introduce some
similar properties for functions defined on real numbers. Define a real function f : R — R. The

function f is said to monotone and submodular if it satisfies properties 1 and 2 below, respectively:
1. Monotone: Vz <y € R, f(z) < f(y).

2. Submodular: Vz <y e R,Vz € R, f(x +2) — f(z) > f(y + 2) — f(y)

Figure 2.1: Characterization of submodularity

Remark 2.1.2. We say that a function is monotone if it is nondecreasing.

11

Remark 2.1.3. From Figure 2.1, we can see that the function is a concave function and adding z
to x gains more than adding z to y, which tells us that the additional value accruing by adding a
number to a smaller number is larger than adding it to a bigger number. This is consistent with the
inequality f(z + 2) — f(x) > f(y + 2) — f(y) for x <y, so we say that submodularity is similar

fo concavity in some sense.

Now look at some properties for functions defined on sets. Let 2% denote the power set of X, and
define a set function f: 2% — IR The set function f is said to be monotone and submodular iff it

satisfies properties (1) and (2) below, respectively:
(1) Forany A C B C X, f(A) < f(B).
(2) Forany AC BC Xandj € X\ B, f(AU{j}) — f(4) = f(BU{j}) — [(B).

A set function f: 2¥ — IR is called a polymatroid set function iff it is monotone, submodular,
and f(0)) = 0, where () denotes the empty set. The submodularity in property (2) means that the
additional value accruing from an extra action decreases as the size of the input set increases, and
is also called the diminishing-return property in economics. Submodularity implies that for any

ACBC XandT C X\ B,
fLAUT) = f(A) > f(BUT) — f(B). 2.1)

For convenience, we denote the incremental value of adding a set 7" to the set A C X as o7(A) =
f(AUT) — f(A) (following the notation of [34]).

The total curvature of a set function f is defined as [34]

S ARIC SKY

jex 0;(0)

where X* = {j € X : p;(D) # 0}. Note that 0 < ¢ < 1 when f is a polymatroid set function, and

c = 0 if and only if f is additive, i.e., for any set A C X, f(A) = > .., f({z}). When c = 0, it

12

is easy to check that the greedy strategy coincides with the optimal strategy. So in the rest of the

paper, when we assume that f is a polymatroid set function, we only consider ¢ € (0, 1].

2.1.2 Review of Previous Work

Before we review the previous work, we formulate the optimization problem formally as fol-

lows:

maximize f(M), subjectto M € Z, (2.2)

where 7 is a non-empty collection of subsets of a finite set X, and f is a real-valued set function
defined on the power set 2% of X.

For convenience, in the rest of the paper we will use k-batch greedy strategy to denote the
batched greedy strategy with batch size k. So, the 1-batch greedy strategy denotes the usual greedy
strategy.

Nembhauser et al. [5, 6] proved that, when f is a polymatroid set function, the 1-batch greedy
strategy yields a 1/2-approximation® for a general matroid and a (1 — e~!)-approximation for
a uniform matroid. By introducing the total curvature ¢, Conforti and Cornuéjols [34] showed
that, when f is a polymatroid set function, the 1-batch greedy strategy achieves a 1/(1 + ¢)-
approximation for a general matroid and a (1 — e~°)/c-approximation for a uniform matroid. For
a polymatroid set function f, the total curvature c takes values on the interval |0, 1]. In this case,
we have 1/(1 +¢) > 1/2and (1 — e ¢)/c > (1 — e~!), which implies that the bounds 1/(1 + c)
and (1 — e~¢)/c are stronger than the bounds 1/2 and (1 — e™!) in [5] and [6], respectively.
Vondrdk [35] proved that, when f is a polymatroid set function, the continuous greedy strategy
gives a (1 — e~¢)/c-approximation for any matroid. Sviridenko et al. [36] proved that, when f is a

polymatroid set function, a modified continuous greedy strategy gives a (1 — ce™!)-approximation

2The term 3-approximation means that f(G)/f(O) > 3, where G and O denote a greedy solution and an optimal
solution, respectively.

13

for any matroid, the first improvement over the greedy (1 — e~¢)/c-approximation of Conforti and
Cornuéjols from [34].

Nemhauser et al. [6] proved that, when f is a polymatroid set function and (X, Z) is a uniform
matroid of rank K = kl + m (I and m are nonnegative integers and 0 < m < k), the k-batch
greedy strategy achieves a y-approximation, where v = (1 — (1 —m/(k(l +1)))(1 —1/(1 + 1))}).
Hausmann et al. [33] showed that, when f is a polymatroid set function and (X, Z) is an indepen-
dence system, the k-batch greedy strategy achieves a ¢(X, Z)-approximation, where q(.X,Z) is the

rank quotient defined in [33].

2.1.3 Performance Bounds in Terms of Total Curvature

In this section, we review two theorems from [34], which bound the performance of the 1-batch
greedy strategy using the total curvature ¢ for general matroid constraints and uniform matroid
constraints. These bounds are special cases of the bounds we derive in Section 3.2 for k = 1.

We first define optimal and greedy solutions for problem (2.2) as follows:

Optimal solution: Consider problem (2.2) of finding a set that maximizes f under the constraint

M € Z. We call a solution of this problem an optimal solution and denote it by O, i.e.,
O € argmax f(M),

MeT

where argmax denotes the set of actions that maximize f(-).

1-batch greedy solution: A set G = {g1, go, - . ., gx } is called a 1-batch greedy solution if

g1 € argmax fg}),

and for:z = 2,...,k,

[& argmaX f({gh g2,...,38i-1, g})
geX

14

Theorem 2.1.1. [34] Let (X,Z) be a matroid and f: 2X — TR be a polymatroid set function

with total curvature c. Then, any 1-batch greedy solution G satisfies

F(G) 1
FO) = T1e

~~

where O is any optimal solution to problem (2.2).

When f is a polymatroid set function, we have ¢ € (0, 1], and therefore 1/(1 + ¢) € [1/2,1).
Theorem 2.1.1 applies to any matroid. This means that the bound 1/(1 + ¢) holds for a uniform

matroid too. Theorem 2.1.2 below provides a tighter bound when (X, Z) is a uniform matroid.

Theorem 2.1.2. [34] Let (X,) be a uniform matroid of rank K. Further, let f : 2% — R be a

polymatroid set function with total curvature c. Then, any 1-batch greedy solution G satisfies
— = f— —_— —_—— f— —_— 6 s
fO) ~ ¢ K

where O is any optimal solution to problem (2.2).

The function (1—e~¢)/cis a nonincreasing function of ¢, and therefore (1—e~¢)/c € [1—e™!, 1]
when f is a polymatroid set function. Also it is easy to check that (1 — e ¢)/c > 1/(1 + ¢) for
¢ € (0, 1], which implies that the bound (1—e~°) /c is stronger than the bound 1/(1+-¢) in Theorem

2.1.1.

2.1.4 Properties of Submodular Functions

The following two lemmas from [52], stating some technical properties of submodular func-
tions, will be useful to derive performance bounds for the k-batch greedy strategy under a uniform

matroid constraint.

Lemma 2.1.3. [52] Let f: 2¥ — 1R be a submodular set function. Given A,B C X, let

{M,..., M.} be a collection of subsets of B \ A such that each element of B \ A appears in

15

exactly p of these subsets. Then,

Z on;(A) > pop(A).

Lemma 2.1.4. [52] Let f: 2¥ — IR be a submodular set function. Given A’ C A C X, let
{T1,...,Ts} be a collection of subsets of A\ A’ such that each element of A\ A’ appears in exactly

q of these subsets. Then,

Z or,(A\T;) < qoaar(A').

i=1

2.2 Main Results

In this section, first we define the k-batch greedy strategy and the total k-batch curvature ¢, that
will be used for deriving harmonic and exponential bounds. Then we derive performance bounds
for the k-batch greedy strategy in terms of ¢, under general matroid constraints and under uniform
matroid constraints. Moreover, we study the behavior of the bounds as functions of the batch size

k.

2.2.1 k-Batch Greedy Strategy

We write the cardinality of the maximal set in Z as K = kl + m, where [, m are nonnegative
integers and 0 < m < k. Note that m is not necessarily the remainder of K/k, because m could
be equal to k. This happens when k divides K. The k-batch greedy strategy is as follows:

Step 1: Let S° = P and t = 0.

Step 2: Select J; 11 € X \ S* for which |J; 1| =k, S*U J;,1 € Z, and

F(S"U Jry) = f(S" U J);

max
JCX\S* and |J|=k

then set S*™! = St U J,4.
Step3: Ift + 1 < [, sett =t + 1, and repeat Step 2.
Step 4: If t + 1 = [, select J;;; € X \ S'such that | J;1| = m, S'U Ji;1 € Z, and

16

f(S'U Jy) = max f(Stu).

JCX\S! and |J|=m

Step 5: Return the set S = S' U J;,; and terminate.

Any set generated by the above procedure is called a k-batch greedy solution.

The difference between a k-batch greedy strategy for a general matroid and that for a uniform
matroid is that at each step ¢ (0 < ¢ < [), we have to check whether J,.; C X \ S’ satisfies

St U J;11 € T for a general matroid while S* U J,,; € T always holds for a uniform matroid.

2.2.2 Performance Bounds in Terms of Total £-Batch Curvature

Similar to the definition of the total curvature c in [34], we define the total k-batch curvature ¢y,

for a given £ as

L B QI(X \ I)}
Cp = Ilng? {1 —91(@) , 2.3)

where X = {I C X : 0;(0) # 0 and |I| = k}.
The following proposition will be applied to derive our bounds in terms of ¢;, for both general

matroid constraints and uniform matroid constraints.

Proposition 2.2.1. If f : 2% — TR is a submodular set function, A, B C X, and {M,, ..., M,}

is a partition of B \ A, then

FLAAUB) < f(A) + Y om(A). (2.4)

i:M;CB\A

Proof. By the assumption that {My,..., M,} is a partition of B \ A and by submodularity (see

inequality (2.1)), we have

17

fAUB) = f(4) = f(AU My) = f(4)

j=1
T i—1
=Y o (AUl M)
i=1 j=1

< Z om, (A),

i:M;CB\A
which implies inequality (2.4).]

The following proposition in terms of the total k-batch curvature c¢; will be applied to derive

our bounds under general matroid constraints.

Proposition 2.2.2. Let f : 2¥ — IR be a polymatroid set function. Given a set B C X, a
sequence of t (t > 0) sets A* = U;‘:l I; with I; C X and |1;| = k for 1 < j <'t, and a partition

{M,...,M,} of B\ A, we have

i:I;CA'\B i:I; CBNA! i:M;C B\ At

Proof. By the definition of A?, we write

FA'UB) = f(B) =Y en(BUAT) = 3 an(BUAT.

:I;CA*\B

By submodularity (see inequality (2.1)), we have
or,(BUA™Y) = or,(X\ 1) (2.6)

and

0r,(0) > or, (A1) 2.7)

for 1 <4 < t. By the definition of the total k-batch curvature c;, we have

18

for 1 <1 < t, which implies that
or,(X\ 1;) = (1 = cx)or, (D).
Combining the above inequality with (2.6) and (2.7), we have
0r,(BUA™) > 0, (X \ ;) > (1 — ci)or,(0) > (1 — e)or, (A

for 1 <4 < t. Using the above inequality, we have

f(AUB) = f(B)=) o (BUATY

>(1—c) Y. on(A™. (2.8)
i:I;CAY\B
By Proposition 2.2.1, we have
FAA'UB) < f(AY+ Y ou(A). (2.9)
i:M;CB\At

Combining inequalities (2.8) and (2.9) results in

JB) < fAY+ S oA —(1—c) 3 o (A7),

i:M; CB\ At :I;CAt\B

Substituting f(A?) into the above inequality by the identity

A= Y e+ Y e

i ; CAN\B i:; CBNA!

we get inequality (2.5). [

19

Recall that in Section 2.2.1, we defined J; as the set selected by the k-batch greedy strategy at
stage i and S* = U;:l J; as the set selected by the k-batch greedy strategy for the first 7 stages,

where 1 < ¢ <[4+ 1,

Ji| = kforl <i <,

Jip1| = m, and K = kl + m with [> 0 and
0 < m < k being integers. When the pair (X,Z) is a matroid, by the augmentation property of
a matroid and the previous assumption that the maximal cardinality of Z is K, we have that any
optimal solution can be augmented to a set of length K. Assume that O = {oy,...,0xk} is an
optimal solution to problem (2.2). Let S = S'*! be a k-batch greedy solution. We now state and
prove the following lemma, which will be used to derive the harmonic bound for general matroid

constraints in Theorem 2.2.4.

Lemma 2.2.3. Let S be a k-batch greedy solution and O = {01, ..., 0k} be an optimal solution.

Then the following statements hold:

a. There exists a partition {J/}*} of O with |J!| = k for 1 < i < land |J},,| = m such that

05:(8"1) < 04,(57"). Furthermore, if J; € O N S, then J; = J;.
b. If J] C O\ S for1 <i <, then J; C S'\ O.

Proof. We begin by proving a. First, we prove that there exists .J/,; € O\ S’ such that S'UJ] ; € T

and QJ;H(SI) < 04,,,(S"). By definition,

O| = K and S' = kl = K —m. Using the augmentation
property, there exists one element o;, € O \ S’ such that S' U {o;,} € Z. Consider S' U {o;, } and
O. Using the augmentation property again, there exists one element 0;, € O \ S'\ {0;, } such that
S'U{o;,,04,} € Z. Using the augmentation property (m — 2) more times, we have that there exists
Jl1 ={0i,...,0i,} €O\ S"such that S' U J/,, € T. By the k-batch greedy strategy, we have

or. (8" < 04,,(SY). If Jiy1 € O, wecanset J) | = Ji41.

I+1

Then similar to the proof in [6], we will prove statement a by backward induction on i for
i=1,1—1,...,1. Assume that .J; satisfies the inequality ¢, (S"") < ¢,(S"~") fori > j, and let
07 = O\U,, Ji- Consider the sets S~ and O/. By definition, [S~!| = (j — 1)k and |O7| = jk.

Using the augmentation property, we have that there exists one element 0;,, € O’ \ 577! such

that S7~' U {0;,} € Z. Next consider S’~* U {o0;,} and O7. Using the augmentation property

20

again, there exists one element 0;, € 07\ S7~1\ {0;, } such that S"~' U {0;,,0;,} € Z. Similar to
the process above, using the augmentation property (k — 2) more times, finally we have that there
exists J; = {0j,,...,0;} € 07\ S such that S7~'U.J] € Z. By the k-batch greedy strategy, we
have that 0,5/(57™!) < 04,(S'™"). Furthermore, if J; C 07, we can set .J; = J;. This completes
the proof of statement a.

Now we prove statement b by contradiction. Consider the negation of statement b, i.e., if
J/ C O\ S'forl <i <1, then J; C O. By the argument in the second paragraph of the proof of
statement a, we have that if J; C O for 1 < ¢ <[, then J; = J|. By the assumption that .J; C O\Sl
for 1 <i <[, wehave J; C O\ S'for1 < i < [, which contradicts the fact that .J; C S’ for

1 < < [. This completes the proof of statement b. O]

The following theorem presents our performance bound in terms of the total k-batch curvature

ci for the k-batch greedy strategy under a general matroid.

Theorem 2.2.4. Let (X, T) be a general matroid and f : 2° — TR be a polymatroid set function.
Then, any k-batch greedy solution S satisfies

f(5) 1

F0) > & o (2.10)

Proof. Let{P,,..., P, } be apartition of O\ S satisfying that P;, C Ji, for1 < j <r. The way
to find {P;,,..., P, } is as follows: first list all of the actions in O \ S, then let P; be its subset
consisting of actions belonging to J/, i.e., P; = (O \ S') N J!. Finally, extract the nonempty sets
from { P}t as {P,,,..., P, }.

Recall that S* = Uézle for 1 < < [asdefined in Section 2.2.1. Then using Proposition 2.2.2,

with A* = S and S = O results in

21

FO) < DY oS+ D en(STH+ D> on(sh

i:J;CSN\O i:J;CONS! i:P,CO\S!
= Ck Z jS(si—1> + Z QJi(*gi_l) + Z QP@'(SI> + 0P, (Sl) (211)
i:J;CSN\O i:J;CONS! i:P,CO\S!
i#l+1

By the monotoneity of the set function f and because Pij C JZ-’J_ for 1 < 5 <r, we have
or, (8') < o1 (5") (2.12)

for 1 < j < r. Based on the fact that J; € O for 1 < i < [+ 1, and because P;; C JZ-’J_ and
P, CO\ S!, we have
Ji, SO\ St (2.13)

Combining (2.11)-(2.13) results in

FO)Y<ew Y en(S™H+ D an(STH+ D en(SH+es, (8). @14
i:J;CSN\O i:J;CONS! i:JICO\S!
i#£l+1

By submodularity (see inequality (2.1)), we have
07(S") < 0y(S7) (2.15)
for 1 < <[+ 1. By statement a in Lemma 2.2.3, we have
0s(S71) < 04,(S7) (2.16)
for 1 <¢ <[+ 1. By combining inequalities (2.15) and (2.16), we have
07(S") < 0s,(S"7Y), 2.17)
for 1 <1¢ <[+ 1. Combining inequalities (2.14) and (2.17) results in

22

FO) e Y on(S™+ Y anSH+ Do enlSTH Hena(s). @18)
i:.J;CSN\O i:.J;CONS! i:JICO\S!
i#14+1
By statement b in Lemma 2.2.3, and inequality (2.18), we have
fO)<e Y en(S™+ Y eS8+ D en(STHHen, (S (@19)
i:J;CSNO i:J;CONS! i:J;CSN\O
Because
Z Qli(Si_l) < f(Sl)v
i:J;CSNO
Z QJi(Si_l) + Z QJz’(Si_l) = f(Sl)a
i:J;CONS! i:J;CSNO
and
05, (8') = f(S) = f(5),
we can use inequality (2.19) to write
F(O) < e f(S") + f(S) + f(S) = f(S") < (cx +1)f(9),
which implies that f(S)/f(O) > 1+10k. O
Remark 2.2.1. For k = 1, the harmonic bound for a general matroid becomes the bound in

Theorem 2.1.1.

Remark 2.2.2. The function g(z) = 1/(1 + x) is nonincreasing in x on the interval (0, 1].

Remark 2.2.3. The harmonic bound 1/(1 + cx) for the k-batch greedy strategy holds for any

matroid. For the special case of a uniform matroid, we will give a different (exponential) bound in

Theorem 2.2.6 below. We will also show that this exponential bound is better than the harmonic

bound when k divides the rank of the uniform matroid K.

23

In Theorem 2.2.6 below, we provide an exponential bound for the k-batch greedy strategy in
the case of uniform matroids. The special case when ¢, = 1 was derived in [6]. Our result here is
more general, and the method used in our proof is different from that of [6]. The new proof here
is of particular interest because the technique here is not akin to that used in the case of general
matroids in Theorem 2.2.4 and also was not considered in [6]. Before stating the theorem, we first
present a proposition that will be used in proving Theorem 2.2.6.

Choose a set J* C X \ S’ with |J*| = k so as to maximize f(S'U J*) — f(S'). Write
0, (SY) = f(S™) = f(S") and o+ (S") = f(S'UJ*)— f(S"). We have the following proposition.

Proposition 2.2.5. Let f : 2X — IR be a submodular set function. Then when (X, T) is a uniform

matroid, we have 05, ,(S') > %0,(S").

Proof. Let {M;, ..., M.}, where

()

be the collection of all the subsets of J* with cardinality m. Then, each element of J* appears in

=(n20)

Using Lemma 2.1.3 with A = S', B = J* and B\ A = J*, we have

exactly p of these subsets, where

> ou, (") > pos(S"). (2.20)

=1

Because |S' U M;| = kl + m = K, by the definition of the uniform matroid (X,Z), we have
S''U M; € I. By the definition of the k-batch greedy strategy and the monotoneity of the set

function f, we have

0 (S) = 0 (SY), 2.21)
which implies that

r0s,,(S") > o, (SY). (2.22)

i=1

24

Combining (2.22) and (2.20), we have

m
0 (S1) > ZQM (S) > Q (8 > kQJ*(Sl),

=1
which implies that g, (S") > 2 0,+(S"). O

Remark 2.2.4. The reason we require (X,T) to be a uniform matroid is that this result does not
necessarily hold for a general matroid, because S' U M; € T is not guaranteed for a general

matroid, and in consequence inequality (2.21) does not necessarily hold.

Theorem 2.2.6. Let (X, T) be a uniform matroid and f : 2X — R be a polymatroid set function.

Then, any k-batch greedy solution S satisfies
f(S) 1 C, m Ck !
—>—[(1-(1- — 1= . 2.23
£0) = o W -1 2.23)

Proof. Recall again that J; is the set selected at stage 7 by the k-batch greedy strategy, S* = Ug-:l J;

for 1 < i <[, and S° = () as defined in Section 3.1. Also recall that we defined .J* as the set that
maximizes f(S'U J*) — f(S") with J* C X \ S' and | J*| = k.

Let {P;1,...,P,,,} be a partition of O \ S satisfying P, ; C Jijfor1 < j < r;. Finding
{P;1,...,P,,,} for each ¢ is similar to finding {P;,,..., P, } which was given in the proof of

Theorem 2.2.4. Letting B = O and A = S* (0 < i < [) in Proposition 2.2.1, we have

FOUS) < F(SY+ D on,(5). (2.24)

J:P; jCO\S?
By the monotoneity of the set function f and because F; ; C J; ; ! for1 < j <r;, wehave
or,,(8") < 0, (). (2.25)
Based on the fact that J; ; ! C Oandbecause P,; C O\ S"and P,; C J! ., we have

Zj’

25

J CO\S". (2.26)

v) —

Combining (2.24)-(2.26) results in

FOUS)<fS)+ D en (S (2.27)

j:JZ{J-gO\Si

For 0 <i <1 —1,wehave [S*U J;| < K, which implies that S* U J; ; € T always holds. So for

any given i (0 < ¢ <[— 1), by the definition of the k-batch greedy strategy, we have

o5, (8") < 07,4, (5") (2.28)

forany J;; € O\ S*. Now consider i = . For any .J/; C O\ S' with |.J] ;| = k, by the definition

of J* before Proposition 2.2.5, we have

QJ;J(SZ) < 0s:(5").

By the definition of J* and the monotoneity of the set function f, we have

o5 (5" < 0s:(9").

I+1

Combining the two inequalities above, we have for any Jl’7 ; C O\ St

0 (") < 04+ (5" (2.29)
By inequalities (2.28) and (2.29), for any given i (0 < ¢ < [), we have

07,(8%) < or.y, (") (2.30)

forany J;; C O\ S*, where

26

By inequalities (2.27) and (2.30), we have

FOUS)SFSY+ Y onn(S),

jiJl ;CO\Si

which implies that

f(OUS) < f(S)+ (I +1V)or,,, (5.

(2.31)

Setting ¢ = 0 in inequality (2.31), recalling that S° = (), and because S' = .J; by definition, we

have

1

f(sh) > Ff(o)'

For 1 <4 <, we write

flous’) - f(0) _;)f(OUSjUJjH)—f(OUSj)

f(59) S HSTUT) — 1(S9)

J=0

By submodularity (see (2.1)), we have

FOUS U Jj) = FOUS) > f(X) = F(X\ Jj1)

and

J(S7 U Ji) = f(S7) < f(Jjn) — f(D)

for 0 < 57 <17 — 1. By the definition of the total k-batch curvature, we have

f(X) = f(X\ Jj1)
f(Jjz1) — £(0)

>1—c

27

(2.32)

(2.33)

(2.34)

(2.35)

(2.36)

for 0 < 57 <17 — 1. Combining inequalities (2.33)-(2.35) results in

f(OuUsH — f(0) J;Of(X) — f(X\ Jj1)

sy

Zl—Ck.

i—1
2 [(Ji1) = 1(0)
]:
This in turn implies that

FO)+ (1 =) f(S") < f(OUS).
Combining the above inequality and (2.31), we have

1

f(S"U L) > ﬁf(O) + (1 -

Ck
[+1

)ﬂ9> (2.37)

for 1 <1 < [. By inequality (2.32) and successive application of inequality (2.37) for: =1,...,1,

we have
1 Ck 1
78 2 00+ (1= 125) st
Loy (o)
—r—ﬁ‘>§;<‘w+1>
1 Ck :
= <1 — (1 - 1)) f(0), (2.38)
and
% 1 Ck
18100 2 e f0)+ (1= 725) 468

Y
g
=
S
L0~
VR
—_
|
+|2
—_
N——

Vv

1
+1
é("@‘sz)f@) (2.39)

Using Proposition 2.2.5 and combining inequalities (2.38) and (2.39), we have

28

Fst o)+ (1= 2) £(sh

f(8) > p

Vv
>3 >3
S|~
VR
—_

|
/N
—_

|
+|2
—_
N~

¥
N~
=

S}
+
/N
[E—

|
> 3
N——
2
VR
[—

|
N

—_

|
+|#
—
"
~_—
=
S

which implies (2.23). L]

Remark 2.2.5. For k = 1, the exponential bound for a uniform matroid becomes the bound in

Theorem 2.1.2.

Remark 2.2.6. The exponential bound for a uniform matroid becomes

1 m 1\
1— (11— +—-— 1——
(%) ()
for ¢, = 1, which is the bound in [6].

Remark 2.2.7. When m = k, i.e., when k divides the cardinality K, the exponential bound for a

uniform matroid becomes

which is the bound in [50].

Remark 2.2.8. Let g(z,y) = (1 — (1 — x/y)Y) /x. The function g(x,y) is nonincreasing in x on
the interval (0, 1] for any positive integer y. Also, g(x,y) is nonincreasing in y when x is a constant

on the interval (0, 1].

Remark 2.2.9. Even if the total curvature cy, is monotone in k, the exponential bound for a uniform
matroid is not necessarily monotone. But under the condition that k divides K, it is monotone. To
be specific, if k divides K, then K = k(l+ 1) for some positive integer . Thus, as k increases, [+ 1
decreases, and if c;, decreases, then, we have that (1 — (1 — ¢ /(I + 1))'1) /¢y is nondecreasing in

k based on the previous remark.

29

Remark 2.2.10. When m = k, the exponential bound is tight, as shown in [6]. Moreover, for this
case, the exponential bound (1 — (1 — ¢,/(1 +1) - m/k)(1 — /(L + 1))") /ey is better than the

harmonic bound 1/(1 + ¢,) because

I+1 R
Lo (1o Jlzev s, 1
Ch [+1 Ck 1+ ¢

However, if k does not divide K, the exponential bound might be worse than the harmonic bound.

For example, when K = 100,k = 80, and ¢, = 0.6, the exponential bound is 0.5875, which is

worse than the harmonic bound 0.6250.

Remark 2.2.11. The monotoneity of 1/(1 + c¢;) implies that the k-batch greedy strategy has a
better harmonic bound than the 1-batch greedy strategy if ¢y, < c. The monotoneity of (1 — (1 —
cr/ (L + 1)) /ey, implies that the k-batch (k divides K) greedy strategy has a better exponential

bound than the 1-batch greedy strategy if ¢, < c.
The following theorem establishes that indeed ¢, < c.

Theorem 2.2.7. Let f : 2 — IR be a polymatroid set function with total curvature c and total

k-batch curvatures {cy }5_|. Then, ¢, < cfor1 <k < K.

Proof. By the definition of the total k-batch curvature c;, we have

o= mae {1 20Tk 1 i w
" {1 } 1 é

g
IeX 0 1) IeX
IS 1() € Qij(ijl>

where I = {iy,... i} and I[; = {iy,...,4;} for 1 < j <kF.

By submodularity (see (2.1)), we have

01, (X \ I;) > 0i;(X \ {4;}) and 0;;(;-1) < 0;,(0)

for 1 < j5 < k, which imply that

30

Therefore, we have

(2.40)

By the definition of ¢ and the fact that f is a polymatroid set function, we have o; (X \ {i;}) >

(1—c)o;; (V) for 1 < i < k. Combining this inequality and (2.40), we have ¢;, < 1—(1—c) =c. [

One would expect the following generalization of Theorem 2.2.7 to hold: if ky > ki, then
¢k, < ci,. In the case of general matroid constraints, this conclusion implies that the bound is
nondecreasing in k. In the case of uniform matroid constraints, monotoneity of the bound holds
under the condition that k£ divides K. We now state and prove the following theorem on the

monotoneity of ¢, using Lemmas 2.1.3 and 2.1.4 (Lemmas 1.1 and 1.2 in [52]).

Theorem 2.2.8. Let f : 2X — IR be a polymatroid set function with k-batch curvatures {cy }5_,.

Then, ci, < ci, whenever ko > k.

Proof. Let J C X be a set with cardinality ko satisfying f(J) > 0. Let {Mi,..., M} be the

collection of all the subsets of J with cardinality k; (k; < k2), where

Then, each element of .J appears in exactly g of the subsets { M, ..., M}, where

(k-1
=\ -1)

Using Lemma 2.1.4 with A = X, A= X \ J,and A\ A" = J, we have

31

s

i=1
which implies that

1 S
05(X\ J) > aZQN,Z.()(\J\4Z<). (2.41)
=1

Based on the fact that { M, ..., M} is the collection of all the subsets of .J with cardinality k; and

that each element of J appears in exactly g of these subsets, using Lemma 2.1.3 with B = J and

A = (), we have
> on,(0) > qos(0),
=1
which implies that
1 S
o) <~ > o, (0). (2.42)
=1

Combining inequalities (2.41) and (2.42) results in

07(X\ J) > QEQMZ(X\MD — ﬁzl@Mi(X\Mi). (2.43)
0s(0) é Z:Z1 on, (D) 1221 o, (0)

Recall the definition of the total k-batch curvature ¢ in (2.3). Because |M;| = ky for 1 < i < s

and f is a polymatroid set function, we have

for 1 <1 < s. Combining inequalities (2.43) and (2.44) results in

07(X\J) y (1- Ch);QMi(@)

> _ =1—cp. (2.45)
0s() 3 oun (0)
=1

By (2.3), cx, can be written as

32

¢k, = 1 — min {M} . (2.46)
: JeX QJ(@

By (2.45) and (2.46), we have ¢, < 1 — (1 — ¢g,) = ¢x,- O

Remark 2.2.12. When k; = 1 and ko = k, Theorem 2.2.8 reduces to Theorem 2.2.7. However, the
proof of Theorem 2.2.7 can be used only to prove the case when ki divides ky in Theorem 2.2.8.

This is why we have chosen to separate the two theorems.

2.3 Examples
In this section, we consider a task scheduling problem and an adaptive sensing problem to
illustrate our results. Specially, we demonstrate that the total curvature c; decreases in k and the

performance bound for a uniform matroid increases in k£ under the condition that k divides K.

2.3.1 Task Scheduling

As a canonical example for problem (2.2), we consider the task scheduling problem posed
in [3], which was also analyzed in [4] and [57]. In this problem, there are n subtasks and a set
X of N agents. At each stage, a subtask ¢ is assigned to an agent a, who accomplishes the task

with probability p;(a). Let X;({a1, as, . .., a;}) denote the Bernoulli random variable that signifies

whether or not subtask i has been accomplished after performing the set of agents {ay, as, ..., ax}
over k stages. Then £ Y% X;({a1,as,...,a,}) is the fraction of subtasks accomplished after
k stages by employing agents {aq, as, ..., a;}. The objective function f for this problem is the

expected value of this fraction, which can be written as
k

=1 1

fansvad) = > (1 -Tla —pi<aj>>) .

J

Assume that p;(a) > 0 for any a € X. Then it is easy to check that f is nondecreasing. Therefore,

whenZ = {S C X : |S| < K}, this problem has an optimal solution of length K. Also, it is easy

33

to check that f has the diminishing-return property and f(()) = 0. Thus, f is a polymatroid set
function.
For convenience, we only consider the special case n = 1; our analysis can be generalized to

any n > 2. For n = 1, we have
k
f({ah"'aak}) = 1_H(1 _p(a]))7

i=1

where p(-) = p1(-).

Let us order the elements of X as apyj, afg, . . ., ajny such that
0 <plap) < plag) < ... <plany) < 1.

Then by the definition of the total curvature ¢, we have

R R (0. o (0. SR CIRER/3)R N oo .
Ck_il,“.,ikex{l f({ll,,zk})—f((l)) } 1 12111(1 p([l]))-

30
=1

To numerically evaluate the relevant quantities here, we randomly generate a set of {p(a;)
In Figure 2.2, we consider K = 20, and batch sizes £ = 1,2,...,10. From the expression of
¢k, we can see that ¢, is nonincreasing in &, but when N is large, c; is close to 1 for each k.
Figure 2.2 shows that the exponential bound for £ = 3,6,8,9 is worse than that for £ = 1,2,
which illustrates our earlier remark that the exponential bound for the uniform matroid case is not
necessarily e in k£ even though c; is monotone in k. Figure 2.2 also shows that the exponential
bound (1 — (1 — ;%5 7)(1 — 1%)" coincides with _-(1 — (1 — 1%)"*") for k = 1,2,4,5,10 and
it is nondecreasing in k, which illustrates our remark that the exponential bound is nondecreasing
in £ under the condition that £ divides K.

Owing to the nature of the total curvature for this example, it is not easy to see that ¢ is

nonincreasing in k (all ¢, values here are very close to 1). The next example will illustrate that

the total curvature does decrease in k and again demonstrate our claim that the exponential bound

34

1

= - p - - Y
b ol ol b ol b ol

=0 =Total curvature ¢y,

—& - Exponential bound
Ck

1 I+1
-0 Valueoka(l (1 l+1))

Performance Bound or Total Curvature

0.75 B
_ e - -9
a——‘\’" A /
- = / N 1/
065 . @ — - \ \ i
o w
\ /7 = /
w N /
Nd
1 2 3 4 5 6 7 8 9 10

Figure 2.2: Task scheduling example

for the uniform matroid case is not necessarily monotone in % but it is monotone in k£ under the

condition that k divides K.

2.3.2 Adaptive Sensing

As our second example application, we consider the adaptive sensing design problem posed

in [30] and [4]. Consider a signal of interest z € IR? with normal prior distribution A/ (0, I'), where

I is the 2 x 2 identity matrix; our analysis easily generalizes to dimensions larger than 2. Let

B = {Diag(vb,v/1—10) : b € {by,...,bx}}, where b; € [0.5,1] for 1 < i < N. At each stage 1,

we make a measurement y; of the form

35

Yi = Bix + w,

where B; € B and w; represents i.i.d. Gaussian measurement noise with mean zero and covariance
0?1, independent of z.

The objective function f for this problem is the information gain, which can be written as
f({By,...,Bx}) = Hy — Hy,.

Here, Hy = %log(%re) is the entropy of the prior distribution of x and Hj, is the entropy of the

posterior distribution of = given {y;}%_,; that is,
1 N
Hy = §log det(Py) + 510g(27re),

where
1 -1
- T
P = (Pk_ll + =B Bk>

is the posterior covariance of = given {y; }*_, [30].

The objective is to choose a set of measurement matrices { B} }X |, B} € B, to maximize the
information gain f({Bi,...,Bx}) = Hy — Hk. It is easy to check that f is nondecreasing,
submodular, and f(()) = 0; i.e., f is a polymatroid set function.

For convenience, let 0 = 1. Then, we have

C = max

e

log(st) — log (s - X 6i) <t - > (- 6¢)>
= (1 ,
2) (o m)

ice; €Jg ice; €EJ

1o S0

where X = {By,..., By}, s =1+ 31 eandt =14 S0 (1 —e)).

36

0.95

[=¢ Total curvature ¢y
~ ~ -e Exponential bound
1
R o Value of —(1— (1 — —%_i+1)
0.9 ~ Ck, l+1
S -
o ~ ~
S -~
g 0.85 ~~ - J
3 ~
T -~
2 08 ~
o
2
=}
2075¢)___,__-o-—"f
3 -’ 1
S o7f e~ T 7\ /-
5 _ . ;/ \ / \ /
a _~_ \ / \ /
0 \ /7 LN
0.65 y N !
\ !
¥
1 2 3 4 5 k 6 7 8 9 10

Figure 2.3: Adaptive sensing example

To numerically evaluate the relevant quantities here, we randomly generate a set of {e;}3°.
We first still consider X' = 20 for £k = 1,...,10 in Figure 2.3. Figure 2.3 shows that the total
curvature decreases in k, while the exponential bound for the uniform matroid case only increases
for Kk = 1,2,4,5,7,10 and the bound for £ = 3,6,8,9 is worse than that for £ = 1,2. This
illustrates that the exponential bound for the uniform matroid case is not necessarily monotone in
k.

Next, we consider K = 24 for k = 1,2,3,4,6,8 in Figure 2.4. Figure 2.4 shows that the
curvature decreases in k£ and the exponential bound increases in & since k divides K for k =
1,2,3,4,6, 8, which again demonstrates our claim that ¢, decreases in k and the exponential bound

increases in k under the condition that & divides K.

37

().95;~
~
S e =-e Total curvature c;
S S ~ =0 Exponential bound

0.9 S o - .
® T~
2 S
©
: e
= 0.85 ~ 7
Q ~
> ~
[e
[S)
'—
<]
- 08 il
ey
=}
o
m
©
(&)
& 0.75 i
£
g - - ’“
g - = -

- -
0.7 - - - 7
- - r
- - o
- - r
O-Gsr | | | | | |
1 2 3 4 k 5 6 7 8

Figure 2.4: Adaptive sensing example

2.4 Discussion on Matroid Preservation

Suppose that (X, 7) is a uniform matroid. In this appendix, we will provide an example to
prove that the collection of subsets of X of size k satisfying the constraint Z (i.e., actions in the
k-batch greedy strategy) is not in general a matroid. This shows that lifting does not work; i.e., it
is not in general possible to appeal to bounds for the 1-batch greedy strategy to derive bounds for
the k-batch greedy strategy. For convenience, we assume that k& divides the uniform matroid rank
K.

Recall that for a matroid (X, Z), we have the following two properties:

i. Forall B € Z,anyset A C BisalsoinZ.

38

ii. Forany A, B € Z, if | B| > |A|, then there exists j € B \ A suchthat AU {j} € Z.

To apply lifting, first fix k. We will define a pair (Y, 7) such that Y is the “ground set” of all
k-element subsets of X: Y = {y : y = {ay,...,ar}, k is given, and a; € X }. Next, J is the set
of all subsets of Y such that their elements are disjoint and the union of their elements lies in Z.

The following example shows that (Y, 7) constructed this way is not in general a matroid.

Example 2.4.1. Fix k = 2. Let X = {a,b,c,d}, and T be the power set of X (a special case of
a uniform matroid, with rank K = 4). We have Y = {{a, b},{a, c},{a,d}, {b,c},{b,d},{c,d}}.
Let J be as defined above.

We will now prove that (Y, 7) does not satisfy property ii above. To see this, consider A =
{{a,b}} € J and B = {{a,c},{b,d}} € J. We have |[A| = 1 and |B| = 2. Notice that
{a,b} N{a,c} # 0 and {a,b} N {b,d} # . So, in this case clearly there does not exist j € B\ A

such that AU {j} € J. Hence, property ii fails and (Y, 7) is not a matroid.

2.5 Comparing Different £-Batch Greedy Strategies

It is tempting to think that the k-batch (k > 2) greedy strategy always outperforms the 1-batch
greedy strategy. In fact, this is false. To show this, we will provide two examples based on the
maximum [-coverage problem, which was considered in [51] to demonstrate via Monte Carlo
simulations that the 1-batch greedy strategy can perform better than the 2-batch greedy strategy.
The maximum K -coverage problem is to select at most K sets from a collection of sets such that
the union of the selected sets has the maximum number of elements. Example 2.5.1 below is to
choose at most 3 sets from a collection of 5 sets, and Example 2.5.2 is to choose at most 4 sets
from a collection of 6 sets. In contrast to [51], our examples are not based on simulation, but are

analytical counterexamples.

Example 2.5.1. Fix K = 3 and let the sets to be selected be S, = {a, f}, So = {f}, S5 = {a,b, g},
Sy = {C> f7 g}’ and S5 = {eaga h}

39

For the 1-batch greedy strategy, one solution is {.S3, Sy, S5 }, and the union of the selected sets is
S3US,USs = {a,b,c,e, f, g, h}. For the 2-batch greedy strategy, one solution is {5, S5, S5}, and
the union of the selected sets is S1US;USs = {a, b, e, f, g, h}. Itis easy to see that | S3US,;US;5| =

7>’51US5U53’:6

Example 2.5.2. Fix K = 4 and let the sets to be selected be Sy = {h,i,j},So = {b,e,i,j},
Ss ={c,d,e,h}, Sy ={b,d, f,h,i},Ss = {a,h,i,j}, and Sg = {c, g,i}.

For the 1-batch greedy strategy, one solution is {5y, S2, Se, S5}, and the union of the selected
sets is S, US,USsUSs = {a,b,c,d, e, f, g, h,i,j}. Forthe 2-batch greedy strategy, one solution is
{S2US3US,US;5}, and the union of the selected sets is SoU.S3US,USs = {a,b,c,d,e, f, h,i,j}.
It is easy to see that |S; U Sy U Sg U S5| = 10 > [Sy U S3 U Sy U S5 = 9.

For the two examples above, it is easy to check that their 1-batch and 2-batch greedy solutions
are not unique. For Example 2.5.1, the 1-batch greedy solution {S3, Sy, S5} is also one solution of
the 2-batch greedy strategy. If we choose {.S3, Sy, S5} instead of {51, S5, S5} as the solution of the
2-batch greedy strategy, then the 1-batch greedy strategy has the same performance as the 2-batch
greedy strategy in this case. For Example 2.5.2, the 1-batch greedy solution {5y, So, Sg, S5} is
also one solution of the 2-batch greedy strategy. So we can say that for the k-batch greedy strategy,
its solution is not unique. However, our harmonic bound under general matroid constraints and
exponential bound under uniform matroid constraints are both universal, which means that the
harmonic bound holds for any k-batch greedy solution under general matroid constraints and the

exponential bound holds for any k-batch greedy solution under uniform matroid constraints.

40

Chapter 3
Improved Bounds for Greedy Strategy in Set

Optimization
In this chapter, we still consider problem (2.2) in Chapter 2. For convenience of reference, we
rewrite the problem which is to find a set in Z to maximize the objective function f as follows:

maximize f(M) 3.0)

subjectto M € 7.
Suppose that the objective function f in problem (3.1) is a polymatroid function and the rank
of the matroid (X,7Z) is K. By the augmentation property of a matroid and the monotoneity
of f, any optimal solution can be extended to a set of size K. By the definition of the greedy
strategy (see Section 2.1.3), any greedy solution is of size K. For the greedy strategy, under a
general matroid constraint and a uniform matroid constraint, the performance bounds 1/(1 + ¢)
and (1 — (1 — ¢/K)¥)/c from [34] are the best so far, respectively, in terms of the total curvature
c. However, the total curvature ¢, by definition, depends on the function values on sets outside
the matroid (X, Z). This gives rise to two possible issues when applying existing bounding results

involving the total curvature c:

1. If we are given a function f defined only on Z, then problem (1) still makes sense, but the
total curvature is no longer well defined. This means that the existing results involving the
total curvature do not apply. But this surely is puzzling: if the optimization problem (1) is

perfectly well defined, why should the bounds no longer apply?

2. Even if the function f is defined on the entire 2%, the fact that the total curvature c involves

sets outside the matroid is puzzling. Specifically, if the optimization problem (1) involves

41

only sets in the matroid, why should the bounding results rely on a quantity ¢ that depends

on sets outside the matroid?

The two reasons above motivate us to investigate more applicable bounds involving only sets in
the matroid.

In Section 3.1, we first introduce definitions of polymatroid functions, matroids, and curvature,
and then we review performance bounds in terms of the total curvature from [34]. In Section 3.2.1,
we prove that any monotone set function defined on the matroid can be extended to one defined on
the entire power set and the extended function can be expressed in a certain form. In Section 3.2.2,
we provide necessary and sufficient conditions for the existence of an incremental extension of
a polymatroid function defined on the uniform matroid of rank % to one defined on the uniform
matroid of rank &k + 1. In Section 3.2.3, we introduce a particular extension we call the majorizing
extension and explore what kinds of polymatroid functions can be majorizingly extended to ones
defined on the whole power set. In Section 3.2.4, we provide an algorithm for constructing the
extension of a polymatroid function defined on a matroid to the entire power set. In Section 3.3,
we define the partial curvature involving only sets in the matroid and obtain improved bounds in
terms of the partial curvature subject to certain necessary and sufficient conditions. In Section 3.4,
we illustrate our results by considering a task scheduling problem and an adaptive sensing problem.

The results in this chapter were published in [58,59].

3.1 Preliminaries

3.1.1 Polymatroid Functions and Curvature

The definitions and terminology in this section were introduced in Chapter 2, but are reviewed
again here for convenience of reference. Let X be a finite ground set of actions, and Z be a non-
empty collection of subsets of X. Given a pair (X, Z), the collection Z is said to be hereditary if it

satisfies property i below and has the augmentation property if it satisfies property ii below:

i. (Hereditary) For all B € 7, any set A C Bis alsoin 7.

42

ii. (Augmentation) For any A, B € Z, if |B| > |A|, then there exists j € B\ A such that
Au{j} e

The pair (X, 7) is called a matroid if it satisfies both properties i and ii. The pair (X,Z) is called
a uniform matroid when Z = {S C X : |S| < K} for a given K, called the rank of (X,Z). In
general, the rank of a matroid (X, Z) is the cardinality of its maximal set.

Let 2% denote the power set of X, and define a set function f: 2% — R. The set function f is

said to be monotone and submodular if it satisfies properties 1 and 2 below, respectively:

1. (Monotone) Forany A C B C X, f(A) < f(B).
2. (Submodular) Forany A C B C X andj € X\B, f(AU{j})—f(A) > f(BU{j})— f(B).

A set function f: 2%X — R is called a polymatroid function [55] if it is monotone, submodular,
and f(()) = 0, where () denotes the empty set. The submodularity in property 2 means that the
additional value accruing from an extra action decreases as the size of the input set increases. This
property is also called the diminishing-return property in economics.

The total curvature [34] of a set function f is defined as

= 1—
o(f) = max {
FUDAF®)

F(X) — F(X\ ()
FG — 70) } G2

For convenience, we use ¢ to denote ¢(f) when there is no ambiguity. Note that 0 < ¢ < 1
when f is a polymatroid function, and ¢ = 0 if and only if f is additive, i.e., for any set A C X,
f(A) =>".c4 f({i}). When ¢ = 0, it is easy to check that the greedy strategy coincides with the
optimal strategy. So in the rest of the paper, when we assume that f is a polymatroid function, we

only consider ¢ € (0, 1].

3.1.2 Performance Bounds in Terms of Total Curvature

In this section, we review two theorems from [34], which bound the performance of the greedy
strategy using the total curvature c for general matroid constraints and uniform matroid constraints.

We will use these two theorems to derive bounds in Section 3.3.

43

We first define optimal and greedy solutions for (3.1) as follows:

Optimal solution: A set O is called an optimal solution of (3.1) if

O € argmax f(M),
Mez

where the right-hand side denotes the collection of arguments that maximize f(-) on Z. Note that
there may exist more than one optimal solution for problem (3.1). When (X, 7) is a matroid of
rank K, then any optimal solution can be extended to a set of size K because of the augmentation
property of the matroid and the monotoneity of the set function f.

Greedy solution: A set G = {g1, 92, - .., gk } is called a greedy solution of (3.1) if

g1 € argmax f({g}),
{g9}ez

and for:=2,... K,

g€ argmax f({g1,92,---,9i-1,9})-
geX
{91,-.9i—1,9}€L

Note that there may exist more than one greedy solution for problem (3.1).

Theorem 3.1.1. [34] Let (X, 1) be a matroid and f: 2% — R be a polymatroid function with

total curvature c. Then, any greedy solution G satisfies

/(@) 1

70) = T4e

~

When f is a polymatroid function, we have ¢ € (0, 1], and therefore 1/(1 + ¢) € [1/2,1).
Theorem 3.1.1 applies to any matroid. This means that the bound 1/(1 + ¢) holds for a uniform

matroid too. Theorem 3.1.2 below provides a tighter bound when (X, Z) is a uniform matroid.

Theorem 3.1.2. [34] Let (X, T) be a uniform matroid of rank K and f: 2% — R be a polymatroid

function with total curvature c. Then, any greedy solution G satisfies

44

The function (1—(1—c¢/K)%)/cis nonincreasing in K forc € (0,1] and (1—(1—c¢/K)¥)/c\,
(1—e¢)/c when K — oc; therefore, (1 — (1 —¢/K)¥)/c > (1 —e™¢)/c when f is a polymatroid
function. Also it is easy to check that (1 — e~ ¢)/c > 1/(1 + ¢) for ¢ € (0, 1], which implies that
the bound (1 — (1 — ¢/K)*) /c is stronger than the bound 1/(1 + ¢) in Theorem 3.1.1.

The bounds in Theorems 3.1.1 and 3.1.2 involve sets not in the matroid, so as stated they do not
apply to optimization problems whose objective function is only defined for sets in the matroid.
In the following section, we will explore the extension of polymatroid functions that yield to the

bounds in Theorems 3.1.1 and 3.1.2.

3.2 Function Extension

3.2.1 Monotone Extension

The following proposition states that any monotone set function defined on the matroid (X, 7)
can be extended to one defined on the entire power set 2% and the extended function can be

expressed in a certain form.

Proposition 3.2.1. Let (X, Z) be a matroid of rank K and f : T — R be a monotone set function.

Then there exists a monotone set function g : 2% — R satisfying the following conditions:
a. g(A) = f(A) forall A € T.
b. ¢ is monotone on 2.

Moreover, any function g : 2X — R satisfying the above two conditions can be expressed as

f(A), A€,
9(A) = (3.3)
g(B) +dy, AT,

45

where

B* € argmax g(B) (3.4)
B:BCA
|Bl=|A]-1

and d 5 is a nonnegative number.

Proof. Condition a can be satisfied by construction: first set

9(A) = f(4) (3.5)

for all A € Z. To prove that there exists a monotone set function g defined on the entire power set
2% satisfying both conditions a and b, we prove the following statement by induction: There exists

a set function g of the form

f(A), A€,
g(A) = (3.6)
g(B) +dy, AT,

such that g is monotone for sets of size up to [(I < K), where B* is given in (3.4) and d4 is a
nonnegative number.

First, we prove that the above statement holds for [= 1. For g to be monotone for sets of size
up to 1, it suffices to have that g(A) > 0 for any set A € 2% with |A| = 1. For A € Z, by (3.5) we
have that g(A) = f(A) > 0. For A ¢ Z, it suffices to set g(A) = d4, where d4 is any nonnegaative
number. Therefore, the above statement holds for [= 1. Assume that the above statement holds
for [= k. We prove that it also holds for [= k£ + 1. For this, it suffices to prove that for any
A € 2% with |A] = k + 1 and any B C A, we have that g(A) > g(B).

Consider any set A € Z with |A| = k + 1. By (3.5) we have that g(A) = f(A). For any
set B C A, by the hereditary property of a matroid, we have that B € Z, which implies that
g(B) = f(B). So for any set A € Z with |A| = k + 1 and any set B C A, by the condition that f
is monotone on Z, we have that g(A) > g(B).

Consider any set A ¢ Z with |A| = k + 1. By the induction hypothesis for [= k, we have that
for any set B C A with |B| = k, g(B) is well defined. Set d4 > 0 and

46

B* € argmax g(B),
B:BCA
|B|=|A|-1

and then define

‘We have that

g(A) > g(B) (3.7)

for any set B C A with |B| = k. For any set B C A with |B| < k, there must exist a set A with

|Ax| = k such that B C A;, C A. By the induction hypothesis [= k and (3.7), we have that

9(A) > g(Ar) = g(B). (3.8)

Combining (3.7) and (3.8), for any set A ¢ Z with |A| = k + 1 and any set B C A, we have that
g(A) > g(B). Therefore, (3.6)) holds for | = k + 1.

We have so far shown that there exists a monotone set function ¢ : 2% — R satisfying condi-
tions a and b. Next we prove that any monotone set function g : 2¥ — R satisfying conditions a
and b can be expressed as in (3.3).

If g satisfies condition a, then we have that

g(A) = f(A), VA € T. (3.9)

If g satisfies condition b, then for any set A ¢ Z, we have that

g(A) > g(B*),

which implies that there exists a nonnegative number d4 such that

g(A) = g(B*) +da, VA ¢ T. (3.10)

47

Combining (3.9) and (3.10), we have that any monotone set function g : 2¥ — R satisfying

conditions a and b can be expressed by (3.3). [

In Proposition 3.2.1, when A ¢ Z, we define g(A) using B* as defined in (3.4). But we are not

restricted to using B* as the following lemma shows.

Lemma 3.2.2. Assume that g is a monotone set function defined on the uniform matroid of rank k.

Then, for any set A with |A| = k + 1, there exist nonnegative numbers dy,ds, . .., dy; such that
9(A) = g(A1) +di = g(Az) + dp = - -+ = g(An) + dus,
where M = 281 — 2. and Ay, As, ..., Ay denote all nonempty strict subsets of A.

Proof. Without loss of generality, let

Ay € argmax g(B).
B:BCA,|B|=|A|-1

By Proposition 3.2.1, we have that there exist dy; > 0 such that g(A) = g(Axs) + dps. Then, for

anyi=1,...,M — 1, setting d; = dps + g(An) — g(A;) results in

g(A) = g(A1) +di = g(A2) +do = --- = g(An) + du,

where d; > 0, because dy; > 0 and g(Ay) > g(A;) fori=1,--- M — 1. O

3.2.2 Polymatroid Extension: From Uniform Matroid to Power Set

We now turn our attension to extending polymatroid functions. The authors of [60] pointed
out that there are cases where a polymatroid function defined on a matroid cannot be extended to
one that is defined on the entire power set. In the theorem below, we give necessary and sufficient
conditions for the existence of an extension of a polymatroid function defined on the uniform

matroid of rank £ to the uniform matroid of rank k + 1.

48

Theorem 3.2.3. Let f : T — R be a polymatroid function defined on the uniform matroid of rank
k. Then f can be extended to a polymatroid function g defined on the uniform matroid of rank k+ 1

if and only if for any A C X with |A| =k + 1, any B C Awith |B| =k, and any a € B,

f(B) = f(B\A{a}) = f(B") = f(A\{a}), (3.11)
where
B* € argmax f(B). (3.12)
B:BCA,|B|=k
Proof. —

In this direction, we need to prove that (3.11) holds if g is an extended polymatroid function
defined on the uniform matroid of rank k£ + 1. If g is a polymatroid function, we have that g is

monotone and submodular. If g is monotone, then for any set A ¢ 7 with |A| = k + 1, we have

g(A) > g(B%). (3.13)

If g is submodular, then for any set A , any set B C A with |B| = k, and any action a € B, we

have

9(B) — g(B\ {a}) = g(A) — g(A\ {a}). (3.14)

Combining (3.13) and (3.14), we have

9(B) — g(B\{a}) = 9(B") — g(A\ {a}).

Because g is an extended function of f, we have that g(B) = f(B), g(B*) = f(B*), g¢(B\{a}) =
f(B\{a}),and g(A\ {a}) = f(A\ {a}). Then the above inequality becomes

f(B) = f(B\{a}) = f(B") — f(A\ {a}).

which means that (3.11) holds.

49

«
In this direction, we prove that if (3.11) holds, then there exists a polymatroid function g defined
on the uniform matroid of rank £ + 1 that agrees with f on the uniform matroid of rank k.
By Proposition 3.2.1, we have that there exists an extended monotone set function g of the

following form defined on the uniform matroid of rank %k + 1:

f(A), Al <k,
g(A) = (3.15)

f(BY) +da, |Al=k+1,

where B* is defined as in (3.12) and d 4 is nonnegative.

We will prove that there exists d4 for any A C X with |A| = k+ 1 such that g defined in (3.15)
satisfies g(()) = 0 and g is submodular on 2.

Because f is a polymatroid function on the uniform matroid of k and g(A) = f(A) for any
A C X with |A| < k, we have that g(()) = f(0) = 0. For g to be submodular on the uniform
matroid of rank k& + 1, it suffices to have that for any A C X with |A| = k£ + 1, any B C A with

|B| = k,and any a € B

9(B) — g(B\ {a}) = g(A) — g(A\ {a}). (3.16)

For any A C X with |A| = k + 1, by (3.15), we have that g(A) = f(B*) + da, where d4 > 0.
The inequality (3.11) implies that f(B) — f(B*) + f(A\ {a}) — f(B\ {a}) > 0. So only if we

set d 4 to satisty

0<da< min {f(B) = f(B") + f(A\{a}) = F(B\{a})}, (3.17)

" B:BCA,|B|=k and a:a€B

we have that g(A) < f(B) — f(B\ {a}) + f(A\ {a}), which implies that (3.16) holds.

This completes the proof.]

50

Remark 3.2.1. Theorem 3.2.3 provides necessary and sufficient conditions for the existence of
an extension of a polymatroid function defined on the uniform matroid of rank k to the uniform
matroid of rank k + 1. We will show that the function in the following example, taken from [60],
does not have an extension because (3.11) is not satisfied.

Example 1: Let X = {1,2,3} and T = {A: A € X and |A| < 2}. Define f : T — Ras
follows:

f() =0,

FE1}) = F{2}) = F({3}) = 1,

FH{12}) = f({1,3}) = 1, and f({2,3}) = 2.

It is easy to show that the above function f is a polymatroid function on the uniform matroid
of rank 2. But as we now show, f cannot be extended to a polymatroid function g on the uniform
matroid of rank 3 which is also the power set.

Setting A = X, by (3.15), it is easy to see that B* = {2,3}. Then we have g(X) = f({2,3}) +
dx, where dx > 0. If (3.11) holds for A = X, B = {1,2}, and {a} = {2}, we have the following
inequality:

FEL2Y) = F({2,30) + F({1,3}) — f({1}) = 0.

However,

FHL2}) = f({2,3) + F({1,3) — fF({1}) = -1 <0.

We conclude that (3.11) does not hold always. Then by Theorem 3.2.3, we have that the poly-
matroid function f defined above does not have an extended polymatroid function defined on the

whole power set.

3.2.3 Majorizing Extension

Theorem 3.2.3 and Proposition 3.2.1 together provide us an algorithm to extend a polymatroid
function f defined on the uniform matroid of rank % to a polymatroid function g defined on the

uniform matroid of rank k£ + 1. The procedure is to construct g as in (3.15) with d 4 satisfying

51

(3.17). By (3.17), if for any A with |[A| = k + 1,

min {f(B) = f(B") + f(A\{a}) = f(B\{a})} = 0,

B:BCA,|B|=k and a:a€B
then f can be extended to g. We say that f is chap3majorizingly extended to g if for any A with
|A| = k + 1, we set

min {f(B) = f(B") + f(A\{a}) = F(B\{a})}. (3.18)

A =
B:BCA,|B|=k and a:a€B

Remark 3.2.2. The reason we are calling this particular construction of g a majorizing extension

is that the sequence {d} (indexed by A) majorizes any other sequence {d',} whose elements

satisfy (3.17), because dy > d', for any A C X.

We just introduced the definition of a majorizing extension. We wish to explore what kind of
polymatroid functions can be majorizingly extended to ones defined on the whole power set. The
following theorem states that a polymatroid function defined on the uniform matroid of rank 1 can

be majorizingly extended to one defined on the power set, and the extended function is additive.

Theorem 3.2.4. Let X be a ground set and f a polymatroid function defined on the uniform
matroid of rank 1. Then f can be majorizingly extended to a polymatroid function g defined on the

power set 2% with
k
g({zr e, w}) =D f({x})
j=1
for any set {x1,xs,..., 11} C X.

Proof. We will prove the theorem by induction on k. Without loss of generality, we assume for
convenience that X = {1,2,..., N} and f({1}) < f({2}) <--- < f({N}).
First, we prove the claim for k = 2, i.e., g({x1,z2}) = f({z1}) + f({x2}) for any {z1, 22} C

X (21 < x2). By the assumption above and (3.15), we have that

g{z1,22}) = f({r2}) + diey 2oy

52

By (3.18), we have that dy,, ,,3 = f({z1}), which results in g({z1,22}) = f({z1}) + f({z2}).
Now assume that the claim holds for £ < [(I > 2). Then we prove that it also holds for
k =141 (> 2). Without loss of generality, we assume that z; < x5 < --- < x;41. Then by

(3.15) and the induction hypothesis for £ < [, we have that

I+1

g({xhx% cee ’xl+1}) = g({‘TQ: cee ’xl+1}) +d= Zf({x]}) +d

Forany B = {z1,%2,..., 2141} \ {zm} and a = x,, € B, by (3.18), we have that

4= min {Z Flah) = Fand) = 2 1)) + 3 Fah) = fdand)

j=2 j=1

<Zf {z;}) = F({zm}) = ({xn})>}
= [({z}),

which results in
1+1

g({z1, 22, .10 }) = Zf({%‘})-

This completes the proof.]

Theorem 3.2.4 shows that any polymatroid function defined on the uniform matroid of rank 1
can be majorizingly extended to one defined on the whole power set. The following counterexam-
ple shows that the same is not the case for a uniform matroid of rank 2.

Example 2: Let X = {1,2,3,4}andZ = {A: A € X and |A| < 2}. Define f : Z — R as
follows:

f0) =
FH1Y) =1, 7({2}) = 2, F({3}) = 3, F({4}) = 4,

f({1,2}) = 2.0760, f({1,3}) = 3.2399, f({2,3}) = 3.3678,
f({1,4}) =4.1233, f({2,4}) = 4.4799, f({3,4}) = 5.2518.

53

It is easy to check that f is a polymatroid function on the uniform matroid of rank 2. Now we
show that f can not be majorizingly extended to one on the whole power set. Let g denote the
function obtained by the majorizing extension.

By (3.15) and (3.18), we have that ¢({1,2,3}) = f({2,3}) + dy, and

di = min{f({1,2} — f({2}), F({L. 2}) — fF({2,3} + f({L. 3} — fF({1}), F({L,3}) — F({31)}
= 0.0760,

which results in g({1,2,3}) = f({2,3}) + d; = 3.4438.
Similarly, we have that g({1,2,4}) = f({2,4}) + da, 9({1,3,4}) = f({3,4}) + d3, and
9({2,3,4}) = f({3,4}) + du, where

dy = min{f({1,2}) — fF({2}), F({1,2}) — fF({2,4}) + F({1,4}) = F({1}), F({1, 4}) — F({4})}
= 0.0760,

dy = min{f({1,3} — f({3}), F({1,3}) — f({3,4}) + fF({1,4}) — fF({1}), F({L1,4}) — F({4})}
= 0.1233,

and

dy = min{f({2,3} — F({3}), F({2,3}) — F({3,4}) + F({2,4}) — F({2}), F({2,4}) — F({4})}
= 0.3678.

Hence, we have g({1,2,4}) = f({2,4}) + dy = 4.5559, ¢g({1,3,4}) = f({3,4}) + d3 = 5.3751,
and ¢({2,3,4}) = f({3,4}) + dy = 5.6196.
Now majorizingly construct g({1,2, 3,4}). By (3.15) and (3.18), we have that g({1,2,3,4}) =

9({2,3,4}) + ds, and

54

ds = min{g({1,2,3}) — g({2,3,4} + 9({1,3,4}) — f({1,3}),
9({1,2,3}) —9({2,3,4}) + 9({1,2,4}) — f({1,2}),
9({1,2,4}) —9({2,3,4}) + 9({1,3,4}) — f({1,4}),
9({1,2,3} = f({2,3}),9({1,2,4}) — fF({2,4}), 9({1,3,4}) — f({3,4})}
= —0.0406 < 0.

Therefore, g defined as above is not a polymatroid function. However, there are some polymatroid
functions defined on the uniform matroid of rank 2 that can be majorizingly extended to ones
defined on the entire power set. In Section 3.4, we present two canonical examples that frequently
arise in task scheduling and adaptive sensing and show that the objective functions in the two
examples can be both majorizingly extended to polymatroid functions defined on the entire power
set. Theorem 3.2.4 implies that any monotone additive function defined on the uniform matroid of

rank £ (k > 1) can be majorizingly extended to one defined on the entire power set.

3.2.4 Polymatroid Extension: From General Matroid to Power Set

Theorem 3.2.3 and Proposition 3.2.1 together provide an iterative algorithm for us to extend
a polymatroid function f defined on the matroid (X,Z) to a polymatroid function g defined on
the entire power set. We use g, to denote a polymatroid function defined on the uniform matroid
of rank k satisfying gi(A) = f(A) for A € T with |A| < k. The idea is that we first define
g1(A) = f(A) for A € T with |A] < 1 and g1(A) > 0 for A ¢ Z with |A| = 1. Then, iteratively
extend g;, defined on the uniform matroid of rank % to g, defined on the uniform matroid of rank

k + 1 using (3.15) and (3.17) for k = 1,2, ...,|X| — 1. Finally, set g = g|x|. This results in

gei1(A) = ¢ F(A), AeZwith|Al=k+1
ge(B*) +da, A¢TIwith|Al=k+ 1.

55

The specific process is given as follows:

1. First define

f(A), AeZwith|Al<1
gl(A) =
dy, A¢Twith|A|=1

where d4 > 0.

2. Then iteratively define gy 1(A) for k = 1,...,|X| — 1 using the following method:

Assume that g (A) is well defined for |A| < k. For A C X with |A| < k, set gx11(A) =
gr(A). For A e Zwith [A| =k +1,set gx11(A) = f(A). For A ¢ T with |A| =k + 1, let

B* € argmax g(B).
B:BCA,|B|=k

If

d* = min {[g(B) — gx(B\ {a})] = [9:(B") — gx(A\ {a})]} = 0,

aeBCA

then set gx11(A) = gr(B*) + da, where 0 < d4 < d*; else, extension fails.
3. If gx exists, set g = g|x.

In the algorithm above, we do not specify the exact d4 value. Of course, as before, we can
choose d4 = d*, leading to a majorizing extension. As we have seen before, the majorizing
extension might not be a polymatroid function even if a polymatroid extension exists. Nonetheless,
if indeed a polymatroid extension exists, then there always exist choices of d4 that produce the
extension via the algorithm above. But the problem of finding an appropriate sequence of d 4 values
can be reduced to that of finding a feasible path in a shortest-path problem (where shortest here
could be defined in terms of the smallest total curvature of the extension). Solving this problem is
tantamount to solving a problem of the form (1); in general, we would need to resort to something
like dynamic programming. This implies that in general, finding a polymatroid function extension

1s nontrivial.

56

3.3 Improved Bounds

Let f : 2% — R be a polymatroid function. Note that f : 2¥ — R is itself an extension of f
from Z to the entire 2, and the extended f : 2% — R is a polymatroid function on the entire 2.
Therefore, Theorem 3.2.3 gives rise in a straightforward way to the following result, stated without

proof.

Proposition 3.3.1. Let (X, Z) be a matroid and f : 2% — R a polymatroid function on 2*. Then

o(f) > infyeq, c(g), where QU is the set of all polymatroid functions g on 2 that agree with f on

7.

In this section, we will prove that for problem (3.1), if we set d = infycq, c(g), then the greedy
strategy yields a 1/(1+d)-approximation and a (1—e~%) /d-approximation under a general matroid
and a uniform matroid constraint, respectively. Some proofs in this section are straightforward, but

are included for completeness.

Theorem 3.3.2. Let (X,Z) be a matroid of rank K and f : T — R a polymatroid function. If
there exists an extension of f to the entire power set, then any greedy solution G to problem (3.1)

satisfies

—

EG) > L (3.19)

) T 14d
where d = infycq, c(g). In particular, when (X, L) is a uniform matroid, any greedy solution G to

(g
&)

problem (3.1) satisfies

(SN N (U SR N W I
mza<1 (1 K))>d(1). (3.20)

Proof. By Theorems 3.1.1 and 3.1.2, for any extension g of f to the entire power set, we have the

following inequalities

and

Because f and g agree on Z, we have that f(G) = ¢(G) and f(O) = g(O). Thus, (3.19) and (3.20)
hold for problem (3.1). O

Remark 3.3.1. Because the functions 1/(1 +z), (1 — (1 — 2/K)¥)/x, and (1 — e™®)/z are all
nonincreasing in x for x € (0, 1] and from Proposition 3.3.1 we have 0 < d < ¢(f) < 1 when f is
defined on the entire power set, we have that 1/(1+d) > 1/(1+¢(f)), (1 — (1 —d/K)¥)/d >
(1—(1—c(f)/K)E) [e(f), and (1 —e~%) Jd > (1—e=D) [e(f). This implies that our new bounds

are, in general, stronger than the previous bounds.

Remark 3.3.2. The bounds 1/(1 + d) and (1 — e~%)/d apply to problems where the objective
function is a polymatroid function defined only for sets in the matroid and can be extended to one
defined on the entire power set. However, these bounds still depend on sets not in the matroid,

because of the way d is defined.

Now we define a notion of partial curvature that only involves sets in the matroid. Let h : Z —

R be a set function. We define the partial curvature b(h) as follows:

b(h) = max {1 _ WA = MAN Y } : (3.21)

,Aije AT h({7}) — h((
R #h(0) (L} =0

For convenience, we use b to denote b(h) when there is no ambiguity. Note that 0 < b < 1
when h is a polymatroid function on the matroid (X, Z), and b = 0 if and only if A is additive for
sets in Z. When b = 0, the greedy solution to problem (3.1) coincides with the optimal solution, so
we only consider b € (0, 1] in the rest of the paper. For any extensionof f : Z — Rto g : 2% — R,

we have that ¢(g) > b(f), which will be proved in the following theorem.

Theorem 3.3.3. Let (X,7) be a matroid and f : T — R a polymatroid function. Assume that a

polymatroid extension g : 2° — R of f exists. Then b(f) < c(g).

Proof. By submodularity of g and g(A) = f(A) forany j € A € Z, we have that

F(A) = FIAN{G}) = 9(X) — (X \ {j}),

58

which implies that forany j € A € Z,

1_f() FANGY o 9(X) —9(X\{})
S =1 - g({i}) — 9(0)

Hence, combining the above with (3.2) and (3.21) gives b(f) < ¢(g). O

Remark 3.3.3. As mentioned earlier, the improved bounds involving d in Theorem 3.3.2 still de-
pend on sets not in the matroid. In contrast, by definition, the partial curvature b(f) depends on
sets in the matroid. So if there exists an extension of f to g such that c(g) = b(f), then we can
derive bounds that are not influenced by sets outside the matroid. However, it turns out that there
does not always exist a g such that c(g) = b(f),; we will give an example in Section 4.2 to show

this. In the following theorem, we provide necessary and sufficient conditions for c¢(g) = b(f).

Theorem 3.3.4. Let (X,T) be a matroid and f : T — R a polymatroid function. Let g : 2% — R

be a polymatroid function that agrees with f on . Then c(g) = b(f) if and only if

9(X) —g(X\{a}) = (1 =0(f))9({a}) (3.22)

for any a € X, and equality holds for some a € X.

Proof. —
In this direction, we assume that ¢(g) = b(f) and then to prove that g(X) — g(X \ {a}) >
(1 =0(f))g({a}) for any a € X and that equality holds for some a € X. By the definition of the

total curvature ¢ of g and ¢(g) = b(f), we have for any a € X,

9(X) = g(X \{a}) = (1 =0(f))g({a}),

and equality holds for some a € X. <
Now we assume that g(X) — g(X \ {a}) > (1 — b(f))g({a}) for any a € X and that equality

holds for some a € X, and then prove that ¢(g) = b(f). By the assumptions, we have

59

L 9 —g(X \ {a}) _

o) o ="V
for any a € X, and equality holds for some a € X. By the definition of the total curvature c of g,
we have
o) = m {1 S0
9({a})#9(0)
This completes the proof. 0

Remark 3.3.4. In Section 3.4, we will provide a task scheduling example to show that there exists
a polymatroid function g : 2% — R that agrees with f : T — R such that c(g) = b(f). We also
provide a contrasting example from an adaptive sensing problem where such an extension does not

exist.
Combining Theorems 3.3.2 and 3.3.4, we have the following corollary.

Corollary 3.3.5. Let (X,T) be a matroid of rank K. Let g : 2X — R be a polymatroid function
that agrees with f on T and g(X) — g(X \ {a}) > (1 = b(f))g({a}) for any a € X with equality
holding for some a € X. Then, any greedy solution G to problem (3.1) satisfies

[G) . 1
7(0) = T+b(f)

(3.23)

In particular, when (X, T) is a uniform matroid, any greedy solution G to problem (3.1) satisfies

@ L — —w " L _ o)
f(0) = b(f) (1 <1 K))) (1) (3.24)

The bounds 1/(1 + b(f)) and (1 — (1 — b(f)/K)™)/b(f) do not depend on sets outside the
matroid, so they apply to problems where the objective function is only defined on the matroid,
provided that an extension that satisfies the assumptions in Theorem 3.3.4 exists. When f is defined
on the entire power set, from Theorem 3.3.3, we have b(f) < ¢(f), which implies that the bounds

are stronger than those from [34].

60

3.4 Examples

We first provide a task scheduling example where we majorizingly extend f : Z — R to a
polymatroid function g; : 2%¥ — R with ¢(g;) > b(f). We also extend f : Z — R to another
polymatroid function g, : 2% — R with ¢(g2) = b(f). The two extensions both result in stronger
bounds than the previous bound from [34]. Then we provide an adaptive sensing example to
majorizingly extend f : Z — R to a polymatroid function g; : 2¥ — R and show that there does
not exist any extension of f to g such that ¢(g) = b(f) holds. However, in this example, it turns

out that for our majorizing extension g;, ¢(g;) is very close to b(f) and is much smaller than c(f).

3.4.1 Task Scheduling

As a canonical example of problem (3.1), we will consider the task assignment problem that
was posed in [3], and was further analyzed in [4, 53]. In this problem, there are n subtasks and
aset X of N agents a; (j = 1,...,N). At each stage, a subtask i is assigned to an agent aj,
who successfully accomplishes the task with probability p;(a;). Let X;(aq, as, . .., a;) denote the
Bernoulli random variable that describes whether or not subtask 7 has been accomplished after
performing the sequence of actions ay,as, . .., a; over k stages. Then = " | X;(a1,as, ..., ay)
is the fraction of subtasks accomplished after £ stages by employing agents aq, as,...,ar. The

objective function f for this problem is the expected value of this fraction, which can be written as

n k

Fonah) == (1 - 1o —m(aj))) .

i=1 j=1
Assume that p;(a) > 0 for any a € X; then it is easy to check that f is non-decreasing.
Therefore, when Z = {S C X : |S| < K}, the solution to this problem should be of size K. Also,
it is easy to check that the function f has the submodular property.
For convenience, we only consider the special case n = 1; our analysis can be generalized to

any n > 2. In this case, we have

61

k

flar, . ae}) = 1=] = p(ay)), (3.25)

Jj=1

where p(-) = p1(-).

Let X = {ai1,a9,a3,a4}, p(a;) = 0.4, p(ag) = 0.6, p(az) = 0.8, and p(ay) = 0.9. Then,
f(A) is defined as in (3.25) for any A = {a;,...,ax} € X. Consider K = 2, then Z = {S C
X :|S| < 2}. Itis easy to show that f : Z — R is a polymatroid function. We first majorizingly

extend f : Z — R to a polymatroid function g; : 2% — R using (3.15) and (3.18). By (3.15), we
have that gl({a17 as, a3}) - f({CLQ, a3}) + d{al,ag,ag}a gl({a17 as, CL4}) = f({a’27 a4}) + d{a1,a2,a4}7

g1({a1,a3,a4}) = f({as,as}) + dia; 05,003, and g1({az, a3, a4}) = f({as, as}) + diay.a5.0.3- BY
(3.18), we have that

Ay az05y = min{ f({1,2} — f({2}), F({1,2}) = F({2,3} + f({1, 3} — F({1}),
FH1L3)) = f{31)}
= 0.08,

Afar,a0,00y = min{ f({1,2}) — F({2}), F({1,2}) — fF({2,4}) + F({1,4}) — fF({1}),
fHL4}) — f({41)}
= 0.04,

dfayaz,ap = min{ f({1,3} — f({3}), F({1,3}) — F({3,4}) + F({1.4}) — fF({1}),
f{1.4}) — f({4})}
= 0.04,

62

Maz.a5.0iy = min{f({2,3} = F({3}), F({2,3}) — F({3,4}) + F({2,4}) — F({2}),
f({2,4}) = f({4})}
= 0.06.

Hence, g1({a1,a2,a3}) = 1, 91({a1, as, a4}) = 1, 91({a1, as, as}) = 1.02, and g;({ag, a3, as}) =
1.04.
We now construct ¢;(X). By (3.15), we have that ¢;(X) = ¢1({az, as,as}) + dx. By (3.18),

we have that

dx = min{g1({1,2,3}) — 1({2,3,4} + 1 ({1,3,4}) — fF({1,3}),
71({1,2,3}) = 91({2,3,4}) + 91 ({1, 2,4}) — F({1,2}),
91({1,2,4}) = 91({12,3,4}) + 021({1,3,4}) — f({1,4})
g({1,2,3} = F({2,3}), 1 ({1, 2,4}) — F({2,4}), 1({1,3,4}) — F({3,4})}
= 0.04,

Hence, ¢;(X) = ¢1({a2,as,a4}) + dx = 1.08. Therefore, g, defined as above is a majorizing
extension of f from Z to the whole power set.

The total curvature c of g; : 2% — R is

c(g1) = max {1 -

a; €X

9(X) —g9(X \ {a:}) }
9({ai}) —g(0)

= 0.911.

In contrast, the total curvature c of f is

63

f(X) —f(X\{ai})}
f{ai}) — f(0)

= max {1—(1-p({a;})) (1 —p({a;}))(1 - p{a}))}

a;,a;,a€X

c(f):r?ax{1_

= 0.992.

By the definition of the partial curvature b of f, we have

b(f) = max {1 _ A —f(A\{j})}

jeACK|Aj=2 f{g}) — £(0)

. {1) f({ai,?(}{L;)f<{ai}>}

{aivaj}gx

= max {p({ai})}

=0.9.

We can see that ¢(g;) is close to b(f) and smaller than ¢(f) though ¢(g;) # b(f).

Next, we give another extension g, which satisfies that ¢(g2) = b(f). By (3.15), we have
that g5({a1, a2, a3}) = f({az,a3}) + diay.ara), 92({0n, 02,04}) = [({az,a4}) + diay 05,04,
g2({a1,a3,a4}) = f({as, as}) + dia, as,as}, and ga({az, as, as}) = f({as, as}) + diay,az,a4)- First,

we will define dy,, a,,q53- By (3.17), we have that

d{ay 2,053 < min{ f({a1, a2}) — f({az}), f({ar, as}) — f({as}),
fHar, a2}) — f({az, as}) + f({ar, a3}) — f({ar})}

= 0.08.

By (3.22), it suffices to have that

64

dfay azasy > max{(1 = b)f({ar}), f({a1, as}) — f({as, az}) + (1 = b) f({az}),

f({ar,a2}) — f({az,as}) + (L = b) f({as})}
= (0.04.

Setting dyq, 4,053 = 0.04 to satisfy the above two inequalities gives that go({a1, az,as}) =

f({az, as}) + dia, 02,053 = 0.96. Similarly, we set

g2({a1, a3, as}) = f({as, as}) + diay 03,00y = 1.02,
g2 {CLQ, as, CL4}) = f({a/?n CL4}) + d{az,ag,tM} = 1.04.
We now define go(X). By (3.15), we have that go(X) = ga2({a, as,as}) + dx. By (3.17), it

)

92({a1> az, a4}) = f<{a2’ a4}) + d{a1,a2,a4} =1,
(
(

suffices to have that

dx < min{gs({ar, az, as}) — f({az, as}),
g2({a1, as, as}) — f({as, as}), g2({a1, az, as}) — f({az, as}),
92({ar, az, as}) — ga({az, as, as}) + g2({ar, a2, as}) — f({ar, az}),
g2({a1, as, as}) — g2({a2, a3, as}) + g2({a1, a2, aa}) — f({ar, aa}),

g2({ar, a3, as}) — g2({ag;, az, as}) + g2({a1, as, az}) — f({a1,a3})}

= 0.04.

By (3.22), it suffices to have that

dx =2 max{(1 —b)f({a1}),
92({a1, as, as}) — ga({as, az, as}) + (1 = b) f({az}),
g2({a1, az, as}) — ga({as, az, as}) + (1 = b) f({as}),

g2({a1, az, az}) — ga({as, az, as}) + (1 = b) f({as})}
= 0.04.

65

Setting dy = 0.04 to satisfy the above two inequalities gives us g2(X) = g2({ag, a3, as}) + dx =
1.08.

The total curvature c of g5 : 2% — Ris

9(X) — g(X \ {ai})
9({ai}) —g(0)

¢(g2) =max {1 - } =0.9=0b(f) < c(f)=0.992.

a;€X

By Corollary 3.3.5, we have that the greedy strategy for the task scheduling problem satisfies
the bound (1 — (1 — b(f)/2)?)/b(f) = 0.775, which is better than the previous bound (1 — (1 —

c(£)/2)?)/e(f) = 0.752.

3.4.2 Adaptive Sensing

For our second example, we consider the adaptive sensing design problem posed in [4, 53].
Consider a signal of interest z € IR® with normal prior distribution A/(0, 1), where I is the

2 x 2 identity matrix; our analysis easily generalizes to dimensions larger than 2. Let A =
{Diag(v/a,vV1—«a) : « € {ay,...,an}}, where a € [0.5,1] for 1 < ¢ < N. At each stage

1, we make a measurement y; of the form
Yi = ;T + wy,

where a; € A and w; represents i.i.d. Gaussian measurement noise with mean zero and covariance
1, independent of .

The objective function f for this problem is the information gain [30], which can be written as

f({a,... ax}) = Hy — H. (3.26)

Here, Hy = %log(%re) is the entropy of the prior distribution of x and H}, is the entropy of the

posterior distribution of = given {y;}%_; that is,

1 N
Hy = §log det(Py) + Elog(Qﬂe),

66

where P, = (Pk__ll + a;fak)_l is the posterior covariance of x given {y; }*_,.

The objective is to choose a set of measurement matrices {a;}X,, af € A, to maximize the
information gain f({as,...,ax}) = Ho— H. Itis easy to check that f is monotone, submodular,
and f(() = 0; i.e., f is a polymatroid function.

Let X = {ay,a9,a3}, a; = 0.5, as = 0.6, and a3 = 0.8. Then, f(A) is defined as in (3.26) for
any A = {a;,...,ax} C X. Consider K = 2, where Z = {5 C X : |S| < 2}.

The total curvature of f is

c(f):max{l—

a; €X

f(X) = FIX {ai})}
f{ai}) — f(0)

= 0.4509.

We first majorizingly extend f : Z — R to a polymatroid function g; defined on the whole
power set. Then we show that there does not exist a polymatroid extension g such that ¢(g,) =
b(f). However, for the majorizing extension g, it turns out that ¢(g;) is very close to b(f) and is
much smaller than c(f).

We start by majorizingly extending f to g;. By (3.15) and (3.18), we have g1 (X) = f({a1,a2})+

dx, where

dx = min{f({a1,a3}) — f({a1}), f({az, az}) — f({az}),
f{ar,a3}) = f({ar, a2}) + f({az, az}) — f({as})}
— log v/1.6799.

Hence, g1(X) = log v/6.7028.

The total curvature of g, is

c(g1) = max {1

a; €X

_01(X) =i (X\ {ai})}
g1({ai}) — g1(0)

= 0.3317.

67

By the definition of the partial curvature b of f, we have

b(f)= max {1_f<A>—f<A\{j}>}

jeACK =2 f{g}) — £(0)

s {1 (TN (o))

{aivaj}gx

= 0.3001.

Comparing the values of ¢(g1),c(f), and b(f), we have that ¢(g;) is much smaller than ¢(f)
and very close to b(f). By Theorem 3.3.2, we have that the greedy strategy for the adaptive
sensing problem satisfies the bound (1 — (1 — ¢(g1)/2)?)/c(g1) = 0.9172, which is stronger than
the previous bound (1 — (1 — ¢(f)/2)?)/c(f) = 0.8873. Now we try to extend f to a polymatroid
function g such that ¢(g2) = b(f). By (3.15), g2(X) = f({a1,a2}) + dx. By (3.17), it suffices to

have that

dx <min{f({a1,a3}) — f({a1}), f({az, az}) — f({az}),
f({ar, a3}) = f({ar, a2}) + f({az, az}) — f({as})}
= log v 1.6799.

By (3.22), it suffices to have that

dx > max{(1 —b(f))f({as}),
f({az, a3}) = f({ar, az}) + (1 = b(f)) f({ar}),

f({ar,as}) — f({ar, a2}) + (1 = b(f)) f({a2})},
= log v 1.7232.

Comparing the above two inequalities, we see that there does not exist dx such that g, is a poly-

matroid function satisfying ¢(g2) = b(f).

68

Chapter 4

Performance of Nash Equilibria in Utility Systems

In this chapter, we use similar techniques for bounding the batched greedy strategy in Chapter 2
to bound the performance of Nash equilibria when there is some notion of “grouping” among users
in noncooperative games. The connection to the game setting is associating our objective function
with a social utility function, greedy strategies with Nash equilibria, and batching with cooperation
of subgroups in games.

We consider two notions of grouping that yield to provable performance bounds. The first
type of grouping we consider is the recent framework of [2], where associated with each user is a
private objective function and a fixed group of users having some social ties with it. Each user’s
strategy maximizes an objective function called the social group utility, which is the sum of its
private objective function and a linear combination of the private objective functions of users in
its group. Within this setting, [2] define what they call a social-aware Nash equilibrium, where no
user can improve its social group utility by unilaterally changing its strategy. We will show that
this framework yields to the bounding results of [1] for noncooperative games, thus establishing
provable performance guarantees for the framework of [2].

In the second type of grouping we consider, the set of users is partitioned into disjoint groups.
Associated with each group is a group utility function. Users within a group cooperate in the
sense that their strategy is to (jointly) maximize the group utility function, giving rise to a natu-
ral definition of group Nash equilibrium. Although we can view each group as a new user with
vector-valued actions so that a similar 1/2 bound to the result of [1] holds, we would like to inves-
tigate the performance bound for the group Nash equilibrium in terms of curvature and compare it
with the case where there is no grouping. We define a measure of group curvature and derive an
associated lower bound involving this curvature. We prove that this bound is tighter than that for

the case without grouping among users, accounting for the cooperation within the groups. We also

69

prove that, under the condition that each user has the same action space, the higher the degree of
cooperation, the tighter the lower bound.

This chapter is organized as follows. In Section 4.1, we introduce our notation and some defini-
tions that will be used throughout the paper. In Section 4.2, we review the bounding results of [1].
In Section 4.3, we first describe the framework of [2] and show that a social-aware utility system
yields to the bounding results of Vetta for non-cooperative system, thus establishing provable per-
formance guarantees for the social-aware Nash equilibrium. Next, we describe our second type of
grouping involving [disjoint groups with in-group cooperation. In this case, each group can be
viewed as a new user with vector-valued actions, and a 1/2 bound for the performance of group
Nash equilibrium follows from the result of [1]. We then define the group curvature ¢, associated
with group ¢ with k; users, and we show that if the social utility function is nondecreasing and
submodular, then any group Nash equilibrium achieves at least 1 /(1 +max;<;<; ¢,) of the optimal
social utility, which is tighter than that for the case without grouping. Especially, if each user has
the same action space, then we have that any group Nash equilibrium achieves at least 1/(1 + ¢+)
of the optimal social utility, where £* is the least number of users among all the groups. In Sec-
tion 4.4, we present an example of a utility system for database assisted spectrum access, adopted
from [2]. We show that the utility system for this example is valid and the social utility function is
submodular, illustrating an application of our results.

The results in this chapter were published in [61].

4.1 Preliminaries
In this section, we first introduce notation and a number of definitions used throughout the

paper.

4.1.1 Actions

Suppose we have a set N = {1,2,..., N} of N users and ground sets Vi, V5, ..., Vy, where

each element in V; denotes an act that user 7 can take. We call a set of acts an action, and if an action

70

x; C V; is available to user ¢ we call it a feasible action. We denote by & the set of all feasible
actions for user i, i.e., X; = {x; C V; : x; is a feasible action}, with n; = |X;| the cardinality of
X,

Let X = [V, X and X = (z,,...,2;,), where 7; € X, withi; < j < ir. We call X
an action sequence of length £ in X'. This sequence includes the actions taken by users i1, .. ., ik
in order. Given an action sequence X, suppose Y is formed by removing some of the elements
of X without changing the order of the remaining elements. Then, we call the derived action
sequence Y a subsequence of X and denote this relation by Y C X. This follows the definition of
a subsequence in [62].

Consider an action sequence X = (z1,...,zy) € X. Then, X _; = (z1,...,%i_1,Tiy1,---,TN)
is the subsequence of X that includes actions taken by all users except user i. We use (X_;, x})
to denote the action sequence (xi,...,%;_1,Z}, Tit1,...,2y) that results from X when user i
changes its action from z; to z.

Given action sequences Y = (v;,,...,¥;,) and Z = (zj,,..., %), we define Y & Z =
(Yiys -+ Yip> Zn» - - - » 2j,) as the concatenation of Y and Z when i, # j, for 1 < p < k and

1 < ¢ <[(following the notation in [4]).

4.1.2 Strategies

Let s; = (s] s™), where s/ > 0 is the probability with which user i takes action j and

Z?;l sg = 1. Following the terminology of [1], we call s; a strategy taken by user .. When sz =1
and st = 0 for 1 < j < n;and [# j, we say that user i takes a pure strategy. Otherwise, we say
that user ¢ takes a mixed strategy.

LetS; = {s; e R}" : >0, s = 1,57 > 0} be the strategy space for user i and S =[]\, S;.
Similar to the definition of an action sequence, we call S = (s;,,...,s;,), with s; € S, and
11 < j < i, a strategy sequence of length k£ in §. Then a subsequence 7" of S is a sequence

derived from S by deleting some elements without changing the order of the remaining elements.

We define S; = (s1,...,s;), for 1 <i < N, as a sequence of strategies taken by users 1,. .., 1.

71

Given a strategy sequence S = (s1,...,sy) € S, the sequence S_; = (S1,...,8i-1,Sit1,---,SN)
is the subsequence of S that contains strategies taken by all users except user ¢, and (S_;, s}) =
(S1,.-+,8i-1,8%, Sit1,--.,Sn) is the strategy sequence that results from S when user ¢ changes its
strategy from s; to s.

Given strategy sequences 7' = (¢;,,...,t;,) and W = (wj,,...,wj,), we write T & W =
(tiy,- - tip, wj,, ..., wj) for the concatenation of 7" and W when i, # j, for 1 < p < k and

1<qg<l

4.1.3 Utility Functions

We define the social utility function as a mapping v from sequences in X’ to real numbers, and
the private utility function for user 7 (1 < ¢ < N) as a mapping «; from sequences in X to real
numbers. Correspondingly, we define 7 and ¢&; as mappings, from sequences in S to real numbers,
that correspond to the expectations of v and «;, respectively. We call 7 the expected social utility
function and «; the expected private utility function for user i. We also define v(Y) = v(Y @
Z) —~(Y) forany Y, Z in X such that Y & Z is well defined, and yy (T') = (T @ W) — 3(T)
for any 7', W in & such that 7' @ W is defined.

We denote by () the optimal sequence of strategies in maximizing an expected utility function
7, and assume that Q = (o4,...,0y) is composed of pure strategies o; € S;, 7 = 1,..., N. For
convenience, we also use o; to denote the optimal action that user ¢ takes. Then, we have that the

optimal value of 7, denoted by OPT, is OPT = 7(2) = v(12).

4.1.4 Curvature, Monotoneity, and Submodularity

Given a strategy sequence S; = (S1,...,s;) for 1 < ¢ < N, we use the notation 2 U S; to

represent the sequence in which user j (1 < j < ¢) implements the actions ¢; U le-, o0 U x;”

with probabilities s}, . . ., s;-” ,and user j (j > i) plays the action g}, so ¥(£2 U 5;) is well defined.

Then the curvature c of the expected social utility function 7 is defined as

72

{ Vs (2US_5) }
c= max l———.
i, ()0 ¥s:(0)

The social utility function + is called nondecreasing if for all subsequences Y of a sequence X
inX,ie,Y C XinA&, f(Y) < f(X). Itis called submodular if for all Y C X and Z in X such
that X @ Z is defined, we have vz(Y) > «7(X). Our terminology here is consistent with that
of [62]. Because 7 is the expected value of v, we have that if ~ is nondecreasing and submodular,
then 7 is also nondecreasing and submodular, respectively. So in the following sections, when we
say that ~ is nondecreasing and submodular, it implies that 7 is nondecreasing and submodular,

respectively.

4.2 Performance Bounds for Nash Equilibria

In this section, we first review the definitions of a Nash equilibrium and a valid utility system

from [1]. We then review the bounds derived in [1] for the performance of any Nash equilibrium.

Definition 4.2.1. A strategy sequence S € S is a Nash equilibrium if no user has an incentive to

unilaterally change its strategy, i.e., for any user 1,

ai(S) = ai((S-i,57)), Vs; € Si. (4.1)

%

Assumption 4.2.1. [1] The private utility of user i (1 < 1 < N) is at least as large as the loss in
the social utility resulting from user i dropping out of the game. That is, the system (y,{a;}Y,)

has the property that for any strategy sequence S = (s1,...,sy) € S,

Assumption 4.2.2. [1] The sum of the private utilities of the system is not larger than the social

utility, i.e., for any strategy sequence S = (s1,...,sy) € S,

73

> ai(S) <A(9). (4.3)

i=1

A utility system (v, {c;},) satisfying Assumptions 4.2.1 and 4.2.2 is called a valid system.
Given X € X, if forany 1 < i < N, the inequalities c;(X) > ., (X_;) and Zf\il a;(X) < y(X)
hold, then the inequalities (4.2) and (4.3) hold.

Theorem 4.2.1. [1] For a valid utility system (v, {c; }I¥,), if the social utility function vy is sub-

modular, then for any Nash equilibrium S € S we have

3(S) > 1 (7(9) + Z e, (S_; U Q)) . (4.4)

If ~y is non-decreasing, then 7,,(S_; U 2) > 0 and the above inequality shows that any Nash

equilibrium achieves at least 1/2 of the optimal social utility function value.

Theorem 4.2.2. [1] For a valid utility system (v, {a; }}.,), if the social utility function vy is non-

decreasing and submodular, then for any Nash equilibrium S € S we have

¥(S) > 7(£2). 4.5)

1+c

When the social utility function ~ is nondecreasing and submodular, we have ¢ € [0, 1], which

implies that 7(.S) > 7(Q2)/2.

4.3 Nash Equilibria Based on User Groups

4.3.1 Social-Aware Nash Equilibria

In this section, we first introduce the social group utility maximization system and the social-
aware Nash equilibrium defined in [2]. Then, we show that the results of [1] are directly applicable
to bounding the performance of any social-aware Nash equilibrium.

In [2], each user belongs to a group and aims to maximize its social group utility instead of its

private utility. Each group is formed based on social ties between users and may reflect friendship,

74

kinship, college relationship, etc. The social group utility for user ¢ (a mapping from X to real

numbers) is defined as

N = Qq; + E Wim Qm
me./\/f

where «;’s are private utilities, N7 is the set of all users having a social tie with user ¢, and w;,,,’s are
weight parameters that reflect the strengths of social ties between user 7 and the users in N7, and
Wim € [0, 1]. Correspondingly, the expected group utility 7; for user 7, mapping from sequences in

S to real numbers, is the expected value of 7);.

Definition 4.3.1. [2] A strategy sequence S = (s1,...,sn) € S is a social-aware Nash equi-
librium if no user can improve its group utility by unilaterally changing its strategy, i.e., for any
group 1,

m:(S) = m((S-i, 7)), Vs; €. (4.6)

By comparing the definition of a Nash equilibrium and a social-aware Nash equilibrium, we
see that the only difference between them is that one is defined based on expected private utility
functions and the other based on expected group utility functions. But because in [2], each user
has its own group utility function, and therefore its own expected group utility function, then the
results of [1] (in particular Theorem 1 and Theorem 2) directly apply to bound the performance
of the social-aware Nash equilibrium of [2]. We prove in Theorem 3 and Theorem 4 that this
is in fact the case, if the social group utility system (v, {n;}¥,) is valid. A social group utility
system (7, {n;}Y,) is valid if it satisfies the following assumptions, which are counterparts of
Assumption 4.2.1 and Assumption 4.2.2 with expected group utilities standing in for expected

private utilities.

Assumption 4.3.1. The group utility of user i (1 < i < N) is at least as large as the loss in the
social utility resulting from user i dropping out of the game. That is, the system (y,{n;}.,) has

the property that for any strategy sequence S = (s1,...,sn) € S,

Assumption 4.3.2. The sum of the group utilities of the system is not larger than the social utility,

i.e., for any strategy sequence S = (s1,...,sy) € S,
> (S) <A(S). (4.8)
Given X € X, if forany 1 < ¢ < N, the inequalities 7;(X) > ~v,,(X_;) and Zf\il ni(X) <

~(X) hold, then the inequalities (4.7) and (4.8) hold.

Remark 4.3.1. Comparing Definitions 4.2.1 and 4.3.1, we have that the only difference between
a Nash equilibrium and a social-aware Nash equilibrium is that the former is defined in terms of
&, and the latter is defined in terms of ;. So if we take 7); to play the role of &, then satisfying
Assumptions 4.3.1 and 4.3.2 means that the utility system satisfies Assumptions 4.2.1 and 4.2.2.

Based on the results of Theorems 4.2.1 and 4.2.2, we have the following Theorems 4.3.1 and 4.3.2.

Theorem 4.3.1. For a valid utility system (v, {n;}\.,), if the social utility function vy is submodular,

then for any social-aware Nash equilibrium S € S we have

OEE (wm £ 7S m) . @9

Theorem 4.3.2. For a valid utility system (v, {n;}.,), if the social utility function -y is nonde-

creasing and submodular, then for any Nash equilibrium S € S we have

7(5) =

()] (4.10)

4.3.2 Group Nash Equilibria
In this section we consider a different type of social group utility maximization system in which
the set of all users are divided into disjoint groups, and the users in the same group choose their

strategies by maximizing their group utility function jointly.

Assume that the set of users N = {1, ..., N} is divided into [disjoint groups, in which group
i (1 <i<l)hasusers {m; + 1,...,m; + k;}, where m; = Z;;ll k;, k; is the number of users in
group 7, and 22:1 kj = N.Lets" = (Sy,41,-- -, Sm;+k)» Where s; € S; is the strategy for user i.
We call s’ the group strategy for group 7. It includes the strategies taken by all the users in group
i (1 <14 <1). Weuse S~ to denote the sequence of group strategies taken by all groups except
for group i. Given S, we denote by (S~) the group strategy sequence obtained when group
i changes its group strategy from s’ to ¢’. Similarly, for X € X, we use 2 and X ¢ to denote the
sequence of actions taken by the users in group ¢, and the sequence of actions taken by all groups
except for group 7, respectively. For convenience, we still use 7; and 7; to denote the group utility
function and the expected group utility function for group .

We define a group Nash equilibrium as follows.

Definition 4.3.2. A strategy set S = (si,...,Sn) is a group Nash equilibrium of a utility system
if no group can improve its group utility by unilaterally changing its group strategy, i.e., for any
1<i <,

7_72(5) > 77@'((‘971‘7#))7 Vti = (tm¢+17"'7tmi+kz‘>7
where t; € S form; +1 < j <m; + k;.
We say that the utility system (7, {n;}'_,) is valid if it satisfies the following two assumptions.

Assumption 4.3.3. The group utility of group 1 is at least as large as the loss in the social utility
resulting from all the users in group i dropping out of the game. That is, the system (v, {n;}_,)

has the property that for any strategy sequence S = (s,... s') € S,

7:(S) > 7s(S7"), VI<i<l (4.11)

Assumption 4.3.4. The sum of the group utilities of the system is not larger than the social utility,

i.e., for any strategy sequence S = (s*,...,s') € S,

77

Z (S) < 7(S). (4.12)

Given X € X, if for any 1 < i < [, the inequalities 7;(X) > 7,:(X %) and Zi:l n:(X) <
~(X) hold, then the inequalities (4.11) and (4.12) hold. We now present our results on the perfor-
mance of a group Nash equilibrium relative to the optimal social strategy 2. Although the overall
flow of the proof for deriving performance bound (without curvature) for the group Nash equilib-
ria is similar to that of the proof from [1], we still include it here because it will help us derive

performance bounds involving curvature later on.

Lemma 4.3.3. Assume that the social utility function vy is a submodular set function. Then for any

strategy set S € S,

FO) <AS) + D A (ST — D (ST u), (4.13)

1:0'CO\S 1:5tCS\Q

where SO = s @ s> @ --- @ s' is the sequence of the group strategies taken by the first i groups.

Proof. Write Q =o' @ --- @ oland S = s' @ --- @ s!, where 0% = (0,11, Ommyiky)s S° =
(Smi-i-lv R 7sz‘+kz‘)’ and 0j,85; € Sj for m; + 1<] <m;+ k’z

By Propositions 1 and 2 in [50], we have that

FQUS) <HS) + D Fei(S)

1:01CO\S
<AS)+ Y (ST
:00CO\S
and
FOQUS) =)+ > F(STVuQ).
:s'CS\Q
Combining the two inequalities above, we have (4.13). [

78

Theorem 4.3.4. For a valid utility system (7, {n;}\.,), if the social utility function vy is submodular,

then any group Nash equilibrium S = (s1,...,sy) € S satisfies
1 I
¥(S) > = [5(Q Y (QU ST . 4.14
7(5)_2<7()+;%(us)> (4.14)

Proof. By Lemma 4.3.3, we have

Q) <AS) + Y An(ST) = > ATV uQ).

20t CO\S :s'CS\Q

By the definition of a group Nash equilibrium, we have

S (s Y A< Y Aa(s).

1:0'CO\S i:0tCO\S i:s°CS\Q

By Assumptions 4.3.3 and 4.3.4, we have

Z Y5 (S7') < Z 7 (S)

1151 CS\Q 1:s1CS\Q
<3S - > m(S)
1:51CSNQ
<) - > Fa(ST).
i:5°CSNQ

Combining the inequalities above and using submodularity results in

Y <29(8) — D A8 - D) Au(QuSETY)

1:51CSNN 1:5'CS\Q
<7(8) - Y, (QUST)— > Aa(QUSTY)
i:51C.SNQ :5'CS\Q
l
<29(5) = > (U ST,
i=1
which implies that the inequality (4.14) holds. [

79

Remark 4.3.2. If the utility function +y is nondecreasing, then the term Zézl Y5 (2 U S7) is non-
negative, so 7(S) > %7(9), which means that the social value of any group Nash equilibrium is at

least half of the optimal social utility value.

To better characterize the relation of the social utility value of any group Nash equilibrium and
that of the optimal solution €2, we define the group curvature cj, of the social utility function for

group ¢ as
{ Vs (Q U Sil) }
Cr, = Inax 1—- =5
SES7,: (0)7#0 ¥ (0)

Lemma 4.3.5. Assume tha the utility function vy is submodular and nondecreasing. Then we have

ek, < cforl <i <[Especially, if X, = Xy = --- = Xy, then we have cj,, < Cr, for ki > k.

The proof of ¢, < cis similar to that of Theorem 3.3 from [53] and the proof of ¢, < ¢, for

k; > k; is similar to that of Theorem 3.4 from [53], so we skip it here.

Lemma 4.3.6. Assume that v is a submodular set function. Then for any strategy set S =

(s1,...,8Nn) €S, we have l
3(8) < 3" 4(0)
i=1
where s = (Sp, 115+ -+ Smyik;) for 1 < i <.
Proof. By the submodularity of 7, we have

Y(S) =4 (0) + 72 (s") + -+ (s’ @@ + (s’ @ @)

<

Y

2 (0) +72(0) + - +7:(0) + - +72(0)

-

s
I
—

+(0).

]

Theorem 4.3.7. For a valid utility system (v, {n;}._,), if the social utility function v is nonde-

creasing and submodular, then any group Nash equilibrium S = (s1,...,sn) € S satisfies

80

1

(S) > ———F(Q).
() 2 ()
1<i<l

Especially, if X, = Xy = --- = XN, we have

3(8) 2 (%)

Y 1+ Ck*'Y)
where k* = min;<;<; k;.
Proof. For any group Nash equilibrium S € S, write S = s'@- - -Ps’, where s' = (S, 41, - - Sy k:)

forl <¢ <.

By the definition of the curvature ¢y, for group ¢, we have

Y5 (QUS™) > (1 — cx,) 7 (D).

Using the inequality above, Lemma 4.3.6, and Theorem 4.3.4, we have

!
7(8) 2 5 | 1) + D7 (QU Sﬂ))
1 Z:ll
> 3@+ Y0 ckm(@))
1 - l
z 5 | 1) + (1 - maxey) ;ww)))
> S(() + (1 - max)
which implies that
WS) 2 {3,
1<l "
When X} = A; = --- = X, by Lemma 4.3.5, we have that ¢, < ¢, for k; > k;. Therefore, we
have
3(S) 2 7).

81

where k* = minlgigl kl O

Remark 4.3.3. When the group utility function vy is non-decreasing and submodular, it is easy to

check that cy, € [0, 1], which implies that 1/(1 + max;<;<; cx,) > 1/2.

Remark 4.3.4. When the group utility function vy is non-decreasing and submodular, we have
¥(S) > 3(Q)/(1 + maxy<i<i ck,) > Y(Q)/(1 + ¢). This shows that the bound for the case with
grouping is tighter than that for the case without grouping. Of course, this is unsurprising, because
grouping entails cooperation. Moreover, under the condition that each user has the same action
space, the larger the value of k;, the higher the degree of cooperation, and the tighter the lower

bound.

Remark 4.3.5. We point out that each group can be viewed as a new user with vector-valued
actions, and a 1/2 bound for the performance of group Nash equilibrium follows from the result
of Vetta. But our analysis goes further by defining the group curvature cy, associated with group i
with k; users; in doing so, we obtain a tighter bound, namely 1/(1 + max;<;<; ¢,). In the special
case where each user has the same action space, then we have that any group Nash equilibrium
achieves at least 1/(1 + c+) of the optimal social utility, where k* is the least number of users

among the | groups, and the larger the value of k*, the tighter the lower bound.

4.4 Example

In this section, we consider the application of utility-based maximization in database assisted
spectrum access, adopted from [2]. We will show that the utility system is valid and the social
utility function is submodular. We then apply the performance bounds for Nash, social-aware
Nash, and group Nash equilibria.

Consider a set of users N’ = {1,..., N} and a set of TV channels M = {1,..., M}. The
users in N wish to access the TV channels in M, for purposes other than TV transmissions, in
a way that does not unnecessarily disrupt the primary use of these channels, which is for TV

transmission. Specifically, to protect the primary TV users, each user ¢ sends a spectrum access

82

request message containing its geo-location information to a geo-location database. In response,
the database sends back the set of vacant channels M; € M and the allowable transmission power
level P;. Then each user ¢ chooses a feasible channel a; from the vacant channel set M, for data
transmission. When multiple users choose to access the same vacant channel, they might interfere
with each other, depending on their relative distance: If the distance between users m and i is d,;,
interference occurs only if d,,,; < §, where 0 is a given threshold. The aim is to minimize the total
interference which is the sum of interference received by each user.

For a collection of selected channels A = (ay,...,ay) € H?;l M;, the interference experi-

enced by user ¢ is defined as

L(A) = Y PudyMia—any + Wi,

mG/\/’ip

where ./\/'ip is the set of users that can interfere with user 7, A is a path-loss factor, / (-} 1s the indicator
function, and w; is the noise including the interchannel interference in channel a; resulting from

primary TV users using other channels. The private utility function «; of user 7 is then defined as

0i(A) = —L(A) = = Y Pudpi Taiman) — Wi

mE/\fip

This private utility reflects the fact that each user desires to minimize its experienced interference.

The social group utility of each user ¢ is defined as

Finally, the social utility function is y(A) = S°7, a;(A).

4.4.1 Nash Equilibria

First we will prove that the utility system (7, {;}Y,) satisfies Assumptions 4.2.1 and 4.2.2,

and the social utility function y(A) = S| a;(A) is submodular.

83

To prove that the system (7, {a;},) satisfies Assumption 4.2.1, it suffices to prove that for
1<i<N,

ai(A) = 7(A) = v(A).

By the definition of a;(A), we have that

N N
,-)/(A) = — Z Z Pmd;n;\[{aizam} - Zw;i.
=1

i=1 meN?

Thus,

7(‘4) - V(A*‘) = Z Pmd;l?[{ai:am} - Z Bd;LA[{a7L:ai} B wfu’

meN? nieNE
=ai(A) = Y Pd M-y
nAdeNE
S ai(A)a

which shows that the utility system (v, {c;}Y) satisfies Assumption 4.2.1. Because v(A) =
SV o, (A), the utility system (v, {a;}Y,) also satisfies Assumption 4.2.2.
Let A, = (ab. .. ,CLk) and A; = Ak D (CLk+1, .. ,al) (l < N) To prove that ’Y(A) =

Z?Ll a;(A) is submodular, it suffices to prove that for any a; € M; (I +1 < j < N),

7(1]' (Ak) Z '70,]' (Al)

By definition, we have

Ya; (Ar) = 7(Ax ® a;) — y(Ay)

== Y Pudlgmany— Y, PidiMia—ay — @i,

meN;’,lgmgk n:ij€ENE 1<n<k

and

84

Ya; (A1) = Y(A1 ® a;) — v(Ar)

- —A j
== Y Pud)Miany— Y, PidiM,—ay —wl

meNf,lgmgl n:j€ENE, 1<n<l

which implies that

Va; (Ak) = Va; (A1)

We have now established that the utility system (v, {; }¥,) is valid, and the social utility func-
tionv(A) = SV | o;(A) is submodular. This implies that the performance bound in Theorem 4.2.1

holds.

4.4.2 Social-Aware Nash Equilibria
Let

p= min {1+ Z w;; }

1<j<N -
z:]E/\/f

Because maximizing Zf\; 1 05 (A) (withrespectto A € M) is equivalent to maximizing p) | Z]i 105 (A),
for convenience, we set y(A) = p S~ | o;(A) when considering the utility system (v, {n;}}¥,).

Now prove that the system satisfies Assumption 4.3.2.

> mi(A) = Z ai(A)+) Y wman(A)
+

N
i— i=1 i=1 n:neN}
N

D1+ > wiay(A)

Jj=1 i:jEN?

< pzai(A)-

This implies that the utility system (v, {n;}Y,) satisfies Assumption 4.3.2.
We now prove that the utility system (7, {n;}Y.,) satisfies Assumption 4.3.1. By the definition

of 7(A) and 7;(A), we have

85

Y(A) —v(A) =p | - Z Pmd;l?[{tu:am} - Z Pidi_nA[{an=ai} —w

meN? nideNE
=p al Z szn]{an =a;}
nzGNn
. —A
o X o) 5 P
jeENS nieNE

and

For convenience, we consider the case when the transmission power of all the users are the same
(.e., P,, = P, = P for any users m and n). By Theorem 1 from [2], we have that the social tie
between any two users is symmetric (i.e., Wy, = Wi,,). Then we can write p and p(y(A)—~v(A-;))

as follows.

p= min {1+ Z Wim }

1<i<N
meN?

and

p(y(A) = Y(A)) = plas(A) = D Pd M (a—a,y)

me/\/P

— : —\
= ;(A) + (min, ZN Wi)i (A) + (—p ZN Pd, M (gi—an)-

So only if

: -\
Z Win 0y (A) > (121<HN Wim)i (A) — p Z Pd 0, —a,) (4.15)
nneNy T meN? meNT

holds, we have that Assumption 4.3.1 holds.

86

Finally, we have that y(A) = p Zf\il a;(A) is submodular because we proved that Zf\il a;(A)
is submodular in Subsection A. So we have now established that if the inequality (4.15) holds,
then the utility system (7, {n;})¥,) is valid and the social utility function y(A) = p >N a;(A)
is submodular. This implies that the performance bound for a social-aware Nash equilibrium in

Theorem 4.3.1 holds.

4.4.3 Group Nash Equilibria

We now partition the set of users AV = {1,..., N} into [disjoint groups and write, as before,

Zﬁzl ki = N and m; = Z;;ll k;. Group ¢ comprises the users {m; + 1,...,m; + k;}, and the
group utility function is 7;(A) = Zle O, +j(A). Finally, the social utility is given by y(A) =
Zﬁil a;(A).

We now show that the utility system (7, {n;}Y,) satisfies Assumption 4.3.3. Let A = a' @

- ®a e M. Thenforl1 <i<|,

—1i —A —A j
YA =AY == 3 3 Pl Mamay = D D PildiM iy — Y W,
Jj=m;+1 ne./\/';-O Jj=mi+1njeNt Jj=m;+1
mi+k;

=n(A) = D> D PdiMa—ay

Jj=mi+1n:jeNE

< ni(A),

which implies that the utility system (v, {n;}¥,) satisfies Assumption 4.3.3.

Because S0, 7;(A) = N, a;(A) = v(A), we have that the utility system (7, {n;}}¥,) also
satisfies Assumption 4.3.4. Moreover, we have proved that the social utility y(A) = ZZ]\LI a;(A)
is submodular in Subsection A.

We have thus established that the utility system (v, {n;})¥,) is valid and the social utility func-
tion y(A) = 3_N a;(A) is submodular. This shows that the performance bound for a group Nash

equilibrium in Theorem 4.3.4 holds.

87

Remark 4.4.1. The performance bounds we derive here for Nash equilibria, social-aware Nash
equilibria, and group Nash equilibria are worst-case performance bounds. The fact that the social-
aware group Nash equilibrium derived by [2] achieves 85% of the optimal social utility is consis-

tent with our bound.

88

Chapter 5
Performance of Greedy Strategy in String

Optimization

In this chapter, we consider an optimization problem where the decision variable is a string
of bounded length. For some time there has been an interest in bounding the performance of the
greedy strategy for this problem. Here, we provide weakened sufficient conditions for the greedy
strategy to be bounded by a factor of (1 — (1 — 1/K)%), where K is the optimization horizon
length. Specifically, in Section 5.1, we introduce the string optimization problem and our motiva-
tion. In Section 5.2, we introduce some definitions and review some previous results on perfor-
mance bounds for the greedy strategy in the string optimization problem. In Section 5.3, we first
introduce the notions of K -submodularity and K-GO-concavity, which are sufficient conditions
for the bound (1 — (1 — 1/K)¥) to hold. Then we introduce a new notion of curvature 1 € (0, 1]
and prove an even tighter bound with the factor (1/7)(1 — e "). In Section 5.4, we illustrate the
strength of our results by considering two example applications. We show that our results provide
weaker conditions on parameter values in these applications than in previous results. The results

in this chapter were published in [57].

5.1 Problem Formulation

In a great number of problems in engineering and applied science, we are faced with optimally
choosing a string (finite sequence) of actions over a finite horizon to maximize an objective func-
tion. The problem arises in sequential decision making in engineering, economics, management
science, and medicine. To formulate the problem precisely, let A be a set of possible actions. At
each stage i, we choose an action a; from A. Let A = (ay,as,...,a;) denote a string of actions
taken over k consecutive stages, where a; € A fori = 1,2, ..., k. Let A* denote the set of all pos-

sible strings of actions (of arbitrary length, including the empty string @). Finally, let f : A* - R

89

be an objective function, where R denotes the real numbers. Our goal is to find a string M € A*,

with a length | M| not larger than K (prespecified), to maximize the objective function:

maximize f (M)

subjectto M € A*, |M| < K. (5.1)

The solution to (5.1), which we call the optimal strategy, is hard to compute in general. One
approach is to use dynamic programming via Bellman’s principle (see, e.g., [47] and [48]). How-
ever, the computational complexity of this approach grows exponentially with the size of A and
the horizon length /K. On the other hand, the greedy strategy, though suboptimal in general, is easy
to compute because at each stage, we only have to find an action to maximize the step-wise gain
in the objective function. But how does the greedy strategy compare with the optimal strategy in
terms of the objective function?

The above question has attracted widespread interest, with some key results in the context of
string-submodularity (see, e.g., [3,4,63]). These papers extend the celebrated results of Nemhauser
etal. [5,6], and some further extensions of them (see, e.g., [34,35,64,65]), on bounding the perfor-
mance of greedy strategies in maximizing submodular functions over sets, to problem (5.1) that in-
volves maximizing an objective function over strings. In particular, Streeter and Golovin [3] show
that if, in (5.1), the objective function f is prefix and postfix monotone and has the diminishing-
return property, then the greedy strategy achieves at least a (1 — e~ !)-approximation of the optimal
strategy. Zhang et al. [4] consider a weaker notion of the postfix monotoneity and provide suffi-
cient conditions for the greedy strategy to achieve a factor of at least (1 — (1 — 1/K)*), where
K is the optimization horizon length, of the optimal objective value. They also introduce several
notions of curvature, with which the performance bound for the greedy strategy can be further

sharpened.

90

But all the sufficient conditions obtained so far involve strings of length greater than i, even
though (5.1) involves only strings up to length /. This motivates a weakening of these sufficient

conditions to involve only strings of length at most /&, but still preserving the bounds here.

5.2 Review of Related Work

In this section, we first introduce some definitions related to strings and curvature. We then
review the main results from [4]. Specifically, the results there provide sufficient conditions on the

objective function f in (5.1) such that the greedy strategy achieves a (1 — (1 — 1/K)¥)-bound.

5.2.1 Strings and Curvature

For a given string A = (a1, as,. .., ax), we define its length as k, denoted |A| = k. If M =

(ap’,ay',...,a))) and N = (af,a}, ..., a},) are two strings in A*, we write M = N if [M| = |N|
and a" = a} foreach i = 1,2,...,|M|. Moreover, we define string concatenation as M & N =
(af*,ay', ... a4, at,ay, ... ap,). If M and N are two strings in A*, we write M =< N if we have

N = M & L for some L € A*. In this case, we also say that M is a prefix of V.

A function from strings to real numbers, f : A* — R, is string submodular if
i. f has the prefix-monotone property: VM, N € A* f(M & N) > f(M).

ii. f has the diminishing-return property: VM < N € A* Va € A, f(M & (a)) — f(M) >
f(N @ (a)) = f(N).

A function from strings to real numbers, f : A* — R, is postfix monotone if

VM, N € A*, f(M & N) > f(N).

The total backward curvature of f is defined as

g = max
a€A,MeA*

{(f((a)) —f0) = ()& M) - f(M)))}_

91

5.2.2 Bounds for the Greedy Strategy

We now define optimal and greedy strategies for problem (5.1) and some related notation.

(1) Optimal strategy: Any solution to (5.1) is called an optimal strategy. If f is prefix monotone,
then there exists an optimal strategy with length K, denoted Oy = (o1, ...,0k). Let O; =

(01,...,0;) fori=1,... K.
(2) Greedy strategy: A string G = (g1, g2, - - - , g) is called a greedy strategy if Vi = 1,2, ... k,
gi € argmax f((g1, 92, -, 9i-1,9))-
geA

LetGi = (gl,...,gi) fori = 1,...,K.
The following two theorems summarize the performance bounds in [4].

Theorem 5.2.1. If f is string submodular and f(G;®Ok) > f(Ok) holds foralli =1, ..., K—1,

then any greedy strategy G i satisfies

f(Gg) > (1 — (1 — %)) f(Og) > (1 —e N f(Ok).

Theorem 5.2.2. If f is string submodular and postfix monotone, then any greedy strategy G

satisfies

> (1= ¢)f(0x)

Under additional assumptions on the curvature o of f, [4] provide even tighter bounds. No-
tice that the sufficient conditions above involve strings of length greater than K, even though the

problem (5.1) involves only strings up to length K. This motivates a weakening of these sufficient

92

conditions to involve only strings of length at most /K, but still preserving the bounds here. In
the next section, we present our main results along these lines. In Section 5.4, we show that these
weakened sufficient conditions also lead to weaker requirements than in [4] for two application

examples.

5.3 Main Results

Before stating our main results, we first introduce some definitions on f : A* — R.
i fis K-monotone if YA/, N € A* and |M|+ |N| < K, f(M & N) > f(M).

ii. fis K-diminishing if VM < N € A*and |[IN| < K —1,Ya € A, f(M & (a)) — f(M) >
f(N & (a)) — f(N).

iii. f is K-submodular if it is both K-monotone and K -diminishing.

iv. Let G; = (g1,...,q:) (as before) and Og_; = (0i41,...,0x) fori = 1,... K. Then, f is

K-GO-concave if for1 < < K — 1,

l

f(Gi @ Ok_y) > ?f(Gi) + (1 - %) f(Ok).

Notice that these definitions involve only strings of length at most K. Moreover, it is clear
that if f is string submodular, prefix monotone, and has the diminishing-return property, then f is
string K -submodular, K-monotone, and /K -diminishing. Under these weaker conditions, we show

that the previous bounds on the greedy strategy still hold.

Theorem 5.3.1. If f is K-submodular and K-GO-concave, then

f(Gg) > (1 — (1 — %)) f(Og) > (1 —e N f(Ok).

93

Proof. Because f is K-diminishing, we have that for 1 < i < K,

f(oi) = f(O;) = f(Oi1).

By definition of the greedy strategy, for 1 < i < K,

f(G1) = floi) > f(O;) = f(Os1).

Summing the inequality above over ¢ from 1 to K produces

K

D (G =) (f(0) = f(Oin))

=1 i=1

= Kf(G1) > f(Ok)

= f(G1) f(Ok).

>
K

For1 <i < K — 1, because f is K-diminishing, we have

H(Gi®ok) — [(Gi) > [(Gi & Ok—;) — [(Gi & Ok_(j11))

for: < 7 < K — 1. Summing the inequality above over j, we have

(K =) (f(Gi®ok) — f(Gi))
> Z_ f(Gi®Ok_;)— (G ® OK—U-H))

j=i

= f(G;® Ok_;) — f(G)),

which implies that

f(Gi®ok) — f(Gi) >

=
|

(f(G; ® Ok ;) — F(GY)).

(5.2)

By K-GO-concavity, for 1 < < K — 1 we have

1

—1

f(GiDok) — f(Gi) > (f(Gi ® Ok i) — f(Gy))

=

= (55000 + 216 - 1(6))

\Y
= =

= —=(f(Ok) = f(Gy)).

=

Again by definition of the greedy strategy, we have for 1 < < K — 1,
f(Ginr) = f(Gi) > f(Gi @ ok) — f(Gi)
from which we get

Therefore,

Because 1 — (1 — %)K N1 — e las K — oo, we also have

f(Gg) > (1 — (1 — %) > f(Og) > (1 —e N f(Ok).

95

Next, we introduce a new notion of curvature 7 as follows:

S {Kf(@-)—<Kf<GieaoK_i>—<K—z'>f<oK>>}
1<i<K-1 (K —1)f(Gy) '

If f is K-GO-concave, then for 1 < < K — 1 we have

Kf(G