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ABSTRACT 

 
 

FAST AND ACCURATE DOUBLE-HIGHER-ORDER METHOD OF MOMENTS 

ACCELERATED BY DIAKOPTIC DOMAIN DECOMPOSITION AND MEMORY 

EFFICIENT PARALLELIZATION FOR HIGH PERFORMANCE COMPUTING SYSTEMS 

 

The principal objective of this dissertation is to develop and test a robust method based on the 

method of moments (MoM) surface integral equation (SIE) formulation for electromagnetic 

analysis of dielectric and magnetic scatterers and antennas in the frequency domain using double 

higher order (DHO) mesh discretization. It is well known that by using higher order basis 

functions for current/field modeling in computational electromagnetics (CEM), significant 

reductions in the number of unknowns, as well as faster system matrix computation/solution, can 

be achieved when compared to the traditional low order modeling. Tightly coupled with using 

higher order basis functions is higher order geometry modeling and together they lay foundation 

to double higher order (DHO) modeling. Double (geometrical and current) higher order 

modeling enables using large curved patches, which can greatly reduce the number of unknowns 

for a given problem and enhance the accuracy and efficiency of the computation. Element orders 

in the model can also be low both in terms of basis function order or geometrical order, so the 

low-order modeling approach is actually included in the DHO modeling. So, a whole range of 

element sizes and shapes, geometrical orders, and current approximation orders can be used at 

the same time in a single simulation model of a complex structure using the high order (more 

precisely, low-to-high order) CEM technique. 
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The two major issues arising in the application of the MoM-SIE numerical methods when 

solving large and computationally expensive electromagnetic problems are: 1) fast and accurate 

calculation of the system matrix entrances arising in the MoM-SIE formulation and 2) overall 

computational and memory storage complexity of the method. The goal of this dissertation is to 

propose and validate a solution for both of the major method’s bottlenecks.  

The accurate and fast computation of the system matrix includes advanced methods for 

numerical computation of singular and near-singular integrals defined on the surface mesh 

elements. When the method is aimed at analysis of both metallic and dielectric/magnetic 

structures, the singularity of the integral kernel increases, and requires special treatment of 

highly singular integrals. Finally, this problem is even more pronounced when higher order basis 

functions are used for the approximation of electric and magnetic equivalent surface currents 

defined on curved patches. This dissertation presents a novel method for numerical computation 

of near-singular (potential) and near-hypersingular (field) integrals defined on Lagrange-type 

generalized curved parametric quadrilateral surface elements of arbitrary geometrical orders with 

polynomial basis functions of arbitrary current-approximation orders. The integrals are evaluated 

using a method based on the singularity extraction, which consists of analytical integration of a 

principal singular part of the integrand over a (generally not rectangular) parallelogram whose 

surface is close to the surface of the generalized quadrilateral near the singular point and 

numerical integration of the rest. The majority of the existing extraction techniques have been 

developed for planar triangular patches involving low-order basis functions. Few of those have 

been extended to curved patches but without really taking into account the curvature of the 

surface. The presented integration technique considers the curvature of the patch by extracting 
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multiple terms in the evaluation of the principal singular part. Further, the theory behind the 

extraction technique has been extended to consider integrals with higher order basis functions.  

Overall computational complexity and memory requirements of the traditional MoM-SIE 

method are of the O(N3) and O(N2), respectively, where N is the number of unknowns. Even 

though DHO modelling can reduce number of unknowns by the order of 20, the order of 

computational complexity remains the same. As the part of this dissertation, a novel fast scalable 

DHO parallel algorithm on the DHO MoM-SIE in conjunction with a direct solver for dense 

linear systems with hierarchically semiseparable structures (HSS) is proposed. We are 

developing asymptotically fast higher order direct algorithms for MoM-SIE solutions which, in a 

nutshell, are an algebraic generalization to fast multipole methods. In addition to being fast, they 

offer a promise of being memory- and communication-efficient and amenable to extreme-scale 

parallel computing. The main advantage of the HSS algorithm is in the linear-complexity ULV-

type factorizations (compared to the conventional LU decomposition that has cubic complexity). 

Our work uses the recently developed new, state-of-the-art, algorithms for solving dense and 

sparse linear systems of equations based on the HSS method. In addition, rank revealing QR 

(RRQR) decomposition for the matrix (memory) compression. Its adaptive nature comes from 

the ability to use the stopping criteria, i.e., relative tolerance value/minimal rank, which allows 

for the method to store only the low-rank approximation of the original matrix that satisfies 

predefined accuracy. The standard and most accurate technique for constructing the HSS 

representation of a dense matrix implies explicit calculation of all matrix elements, and then 

compression of appropriate blocks using the RRQR decomposition, with an O(rN2) asymptotic 

cost. Once the HSS construction is done, the other steps are cheaper, with O(r2N) time 

complexity for ULV factorization and O(rN) for solution, respectively, where N was previously 
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defined and r is the maximum numerical rank. In order to enhance the HSS compression and 

parallelization i.e. scalability of the method, an algorithm for geometrical preprocessing of the 

geometrical mesh based on the cobblestone distance sorting technique is utilized. Hence, the 

MoM unknowns having spatial locality, also exhibit the data locality in the matrix system of 

equations. To sum up, method is validated and great performance is achieved. Even more, the 

simulation results show great scalability of the method on more than 1000 processes. 

Besides developing a fast, parallel and robust method based on the MoM-SIE, in order to 

extend applicability of the method to the analysis that involves inhomogeneous anisotropic 

dielectric and magnetic materials, new symmetric hybridization of the finite element method 

(FEM) and the MoM was developed. The FEM is one of the general numerical tools for solving 

closed-region (e.g., waveguide/cavity) problems in electromagnetics. It has been especially 

effectively used in three-dimensional (3-D) frequency-domain modeling and analysis of 

electromagnetic structures that contain geometrical and material complexities. In addition, as the 

part of the work included in this dissertation the DHO FEM method was implemented primarily 

to support analysis of both inhomogeneous and anisotropic materials. 

Further, numerical computation is accelerated by applying Diakoptic Domain Decomposition 

approach to divide the original problem of interest into smaller subsystems, analyze subsystems 

independently, and then connect them back together through the surface equivalence theorem. 

Finally, all numerical methods described above are validated on a variety of numerical 

examples and tested across several high performance supercomputing platforms. 
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1. LARGE ANISOTROPIC INHOMOGENEOUS HIGHER ORDER 

HIERARCHICAL GENERALIZED HEXAHEDRAL FINITE 

ELEMENTS FOR 3-D ELECTROMAGNETIC MODELING OF 

SCATTERING AND WAVEGUIDE STRUCTURES1 

 
 
1.1. Introduction 

 

The finite element method (FEM) is one of the most powerful and versatile general numerical 

tools for solving both open-region (e.g., antenna/scattering) and closed-region (e.g., 

waveguide/cavity) problems in electromagnetics [1–4]. It has been especially effectively used in 

three-dimensional (3-D) frequency-domain modeling and analysis of electromagnetic structures 

that contain geometrical and material complexities. In terms of the particulars of the numerical 

discretization, on the other hand, traditional FEM tools are low-order (also referred to as small-

domain or subdomain) techniques – the electromagnetic structure is modeled by volume 

geometrical elements that are electrically very small and with planar sides, and the fields within 

the elements are approximated by low-order basis functions, which results in very large 

requirements in computational resources. An alternative which can greatly reduce the number of 

unknowns for a given problem and enhance the accuracy and efficiency of the FEM analysis is 

the higher order (also known as the large-domain or entire-domain) computational approach, 

which utilizes higher order basis functions defined in large curved geometrical elements [5]. 

However, although higher order FEM modeling has, since relatively recently, been constantly 

                                                           
1 Reprinted, with permission, from “A. B. Manic, S. B. Manic, M. M. Ilic, and B. M. Notaros, “Large 

Anisotropic Inhomogeneous Higher Order Hierarchical Generalized Hexahedral Finite Elements for 3-D 
Electromagnetic Modeling of Scattering and Waveguide Structures,” Microwave and Optical Technology Letters, 
vol. 54, No. 7, July 2012, pp. 1644-164λ. ” with copyright © 2012 of Wiley Periodicals, Inc. 
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gaining popularity among FEM developers and practitioners and is definitely becoming a 

mainstream activity in FEM research and practice, there seems to be a lack of investigations and 

reported results on the actual higher order and large-domain modeling of material complexities 

and a full exploitation of modeling flexibility and efficiency of large curved finite elements with 

p-refined high-order field approximations when applied in the presence of arbitrary material 

anisotropy and inhomogeneity. 

This paper presents a novel higher order large-domain FEM technique for efficient and 

accurate 3-D analysis in the frequency domain of open- and closed-region electromagnetic 

structures involving general anisotropic inhomogeneous materials, as an extension and 

generalization of works in [6–9]. The technique implements Lagrange-type generalized curved 

parametric hexahedral finite elements of arbitrary geometrical-mapping orders, filled with 

anisotropic inhomogeneous materials with continuous spatial variations of complex relative 

permittivity and permeability tensors described by Lagrange interpolation polynomials of 

arbitrary material-representation orders, and curl-conforming hierarchical polynomial vector 

basis functions of arbitrary field-expansion orders for the approximation of the electric field 

vector within the elements. The technique is applied to the analysis of open-region scattering 

structures, with a truncation of the FEM domain by a hybridization with a higher order method 

of moments (MoM) within the surface integral equation (SIE) approach [10, 8], and to the 

analysis of closed-region microwave waveguide structures, with a simple single-mode boundary 

condition introduced across the waveguide ports and a large buffer finite element at each port to 

ensure relaxation of higher modes [7]. To the best of our knowledge, this is the first 

demonstration of large (extending a couple of wavelengths in each dimension) anisotropic 

inhomogeneous curved finite elements with p-refined field distributions of high (e.g., seventh) 
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approximation orders in high-frequency electromagnetics. Our current and future related work 

includes applications of these new elements in analysis and design of anisotropic inhomogeneous 

dielectric and magnetic material structures aimed for (i) electromagnetic cloaking [13], (ii) 

perfectly matched layers (PMLs) [2], and (iii) waveguide components.  

 
1.2. Theory and Implementation 

 
Consider an electromagnetic structure that contains some anisotropic continuously 

inhomogeneous material regions. In our analysis method, the computational domain is first 

tessellated using higher order geometrical elements, and the electric field intensity vector within 

the e-th element is approximated by the following sum:  

e
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where e
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and similarly for )(vL
e
vK

j  and )(wL
e
wK

k . Equations (1.2) and (1.3) define a mapping from a 

cubical parent domain to the generalized hexahedron, as illustrated in Fig. 1.1.  

 

Figure 1.1. Generalized curved parametric hexahedron defined by (1.2), with continuous spatial 
variations of complex relative permittivity and permeability tensors of the material given by 
(1.4); cubical parent domain is also shown. 
 

The same polynomials in (1.3) are used to describe the continuous spatial variations of both 

the complex relative permittivity and permeability tensors, rε  and rȝ , of an anisotropic 

inhomogeneous material filling  the generalized hexahedral element in Fig. 1.1 (e-th element in 

the model) as follows: 

  















e
u

e
v

e
w e

w
e
v

e
u

M

m

M

n

M

p

M
p

M
n

M
m

e
mnp

e
zz

e
zy

e
zx

e
yz

e
yy

e
yx

e
xz

e
xy

e
xx

e wLvLuL

wvuwvuwvu

wvuwvuwvu

wvuwvuwvu

wvu
0 0 0

r,

r,r,r,

r,r,r,

r,r,r,

r )()()(ε
),,(ε),,(ε),,(ε
),,(ε),,(ε),,(ε
),,(ε),,(ε),,(ε

),,(ε
, 1,,1  wvu   (1.4) 

where ),,(εε rr, pnm
ee

mnp wvu  are the relative permittivity values at the points defined by 

position vectors of spatial interpolation nodes, e
mnpr , and similarly for ),,(ȝr wvue , with e

uM , e
vM

, and e
wM  ( e

uM , e
vM , e

wM   1) standing for arbitrary material-representation polynomial orders 

within the element. 
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Basis functions are curl-conforming hierarchical polynomials of arbitrary field-approximation 

orders e
uN , e

vN , and e
wN  ( e

uN , e
vN , e

wN   1) in the e-th element, in Fig. 1.1, which, for the 

reciprocal u-component of the field vector, are given by [6] 
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where e  is the Jacobian of the covariant transformation, and e
ua , e

va , and e
wa  are the unitary 

vectors along the parametric coordinates of the element. Higher order hierarchical basis 

functions with improved orthogonality and conditioning properties constructed from Legendre 

and other standard orthogonal polynomials [11, 12] may also be implemented.  

Geometrical-mapping orders ),,( e
w

e
v

e
u KKK  in (1.2), material-representation orders 

),,( e
w

e
v

e
u MMM  in (1.4), and field-expansion orders ),,( e

w
e
v

e
u NNN  in (1.5) are entirely 

independent from each other, and the three sets of parameters of a higher order model can be 

combined independently for the best overall performance of the method. Furthermore, because 

the basis functions in (1.5) are hierarchical (each lower-order set of functions is a subset of all 

higher-order sets), all of the parameters can be adopted anisotropically in different directions 

within an element, and nonuniformly from element to element in a model.  

To solve for the field coefficients l , we substitute the field expansion (1.1) in the curl-curl 

electric-field vector wave equation [6], which for the e-th element reads 
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with 000 ȝεωk  being for the free-space wave number. A standard Galerkin weak-form 

discretization of (1.6) yields 

   
 






  

e

ee

S

ee

V

eee

V

eee

Swvuwvuk

VwvuwvuwvukVwvuwvuwvu

d ),,(),,(Șj                                                  

d ),,(),,(ε),,( d),,(),,(ȝ),,( 

t00

rt
2
0

1
rt

Hnf

EfEf

,(1.7) 

where eV  is the volume of the e-th element, bounded by the surface eS , n is the outward unit 

normal on eS , tf are testing functions [the same as basis functions in (1.1) and (1.5)], and 0Ș  is 

the free-space intrinsic impedance. Due to the continuity of the tangential component of the 

magnetic field intensity vector, eHn , in (1.7) across the interface between any two finite 

elements in the FEM model, the right-hand side term in (1.7) contains the surface integral over 

the overall boundary surface, S, of the entire FEM domain, and not over the internal boundary 

surfaces between the individual hexahedra in the model.  

For open-region scattering structures, the FEM domain is truncated at the surface S by means 

of unknown equivalent surface electric and magnetic currents, of densities JS and MS, 

respectively, defined on MoM curved quadrilateral patches representing external (on S) faces of 

the FEM hexahedra, and expanded using a divergence-conforming 2-D version of basis functions 

in (1.5) [10]. The electric field in the FEM domain, FEME , given by (1.1) in individual finite 

elements, is coupled to the scattered electric and magnetic fields due to JS and MS, MoME  and

MoMH , and the incident fields, incE  and incH , through boundary conditions for the tangential 

field components on S as follows: 

incSSMoMFEM ),( EnMJEnEn  ,     incSSMoMSFEM ),( HnMJHnJHn  ,(1.8) 
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thus providing the computational interface between the FEM and MoM regions, with FEME , JS 

and MS as unknowns, and giving rise to a hybrid higher order FEM-MoM solution [8].  

For closed-region microwave waveguide structures, the right-hand side term in (1.7) reduces 

to the surface integral across the artificially introduced planar surfaces (waveguide ports). If, 

moreover, the waveguide operates in the single-mode regime (which is a standard assumption for 

practical microwave applications) and the ports are moved away from all discontinuities (by 

placing a single large finite element with a high field-approximation order in the longitudinal 

direction as a buffer zone), the boundary condition at the ports is expressed as [1, 7] 

ports) (receiving

port)n (excitatio

0

)jexp(,j2
)(j)( 100incinc10

FEM10FEM 
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k zz
z

EEE
EnnEn ,  (1.9) 

where, for a rectangular waveguide, 22
010 )( akkz   is the wave number of the dominant 

mode (a is the larger dimension of the waveguide cross section).  

 
1.3. Numerical Results and Discussion 

 
As the first example of the application of the novel higher order large-domain general FEM 

technique, aimed at demonstrating the accuracy and efficiency of the technique when curved 

large anisotropic finite elements with p-refined field distributions are used, consider an 

anisotropic dielectric (nonmagnetic and lossless) spherical scatterer, of radius m 1a  and 

relative permittivity given by the tensor  
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illuminated by an incident time-harmonic plane wave of frequency MHz 150f . Shown in the 

inset of Fig. 1.2 is the higher order FEM-MoM model of the scatterer, which consists of a single 

curved hexahedral FEM element and six MoM curved quadrilaterals, all of geometrical-mapping  

 

Figure 1.2. Bistatic RCS in the x-y plane of an anisotropic dielectric spherical scatterer with the 

relative permittivity tensor given by (1.10), normalized to 2
0Ȝ , 0Ȝ  being the free-space 

wavelength, for the plane wave incidence from the direction defined by o90θ   and o90φ   or  
o0φ  ; higher order FEM-MoM model of the scatterer, with a single finite element, is shown in 

the figure inset. 
 
orders K = 2. The orders of the polynomial expansion are 7FEM N  and 6MOM N  for the 

fields in the FEM domain and for the surface currents in the MoM domain, respectively. In Fig. 

1.2, the bistatic radar cross section (RCS) of the scatterer computed using the higher order FEM-

MoM is compared with the results obtained by HFSS, and an excellent agreement of the two sets 

of results is observed. The described FEM-MoM model results in 1344 FEM and 864 MoM 

unknowns, while he HFSS simulation, which converges to 0.1 delta energy after 6 adaptive 
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passes, employs 412,592 first-order tetrahedral finite elements (the number of unknowns is of the 

same order of magnitude).  

As an example of an accurate and efficient higher order large-domain FEM-MoM scattering 

analysis of continuously inhomogeneous anisotropic structures, we next consider a dielectric 

cubical scatterer, of side length m 1a , with relative permittivity described by the tensor  










 


100

010

0089

)(ε

2

r

u

u ,      11  u ,          (1.11) 

as shown in Fig. 1.3(a). The scatterer is excited by an incident  -polarized plane wave from 

different directions in the x-y plane ( o90θ  ) at a frequency of MHz 300f . The FEM-MoM 

model, in Fig. 1.3(a), consists of a single FEM element of the geometrical order K = 1, with the 

permittivity xxrε  represented as a Lagrange polynomial function of material-representation order 

M = 2, and six MoM quadrilaterals. The orders of the FEM and MoM field/current polynomial 

expansions are the same as in the first example. The reference HFSS solutions for validation and 

comparison are obtained using piecewise homogeneous anisotropic layered approximations of 

the dielectric profile, with the original structure subdivided into several equally thick anisotropic 

layers with individual permittivities calculated as the average of the corresponding permittivity 

functions for the layer, as depicted in Fig. 1.3(b)  for the model with seven layers. From the 

results for the monostatic RCS of the scatterer shown in Fig. 1.4, we see that models with three 

and five layers provide an inadequate approximation of the continuous permittivity profile of the 

cube, yielding rather inaccurate RCS values, and that seven (and more) layers are necessary to 

obtain a satisfactory approximation of the profile resulting in a quite accurate RCS 
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characterization and a very good agreement of the higher order continuously inhomogeneous 

anisotropic FEM model and the approximate layered HFSS model.  

 

           

                  (a)                                                                       (b) 

Figure 1.3. Analysis of a continuously inhomogeneous anisotropic dielectric cubical scatterer 
with the relative permittivity tensor given by (1.11): (a) exact higher order FEM-MoM model 
with a single finite element and (b) approximate piecewise homogeneous anisotropic model, with 
averaged permittivities of layers, for HFSS simulation.  
 

 

Figure 1.4. Normalized monostatic RCS (RCS/ ) in the x-y plane of the scatterer in Fig. 1.3.  2
0Ȝ



11 
 

Finally, to demonstrate an accurate and efficient higher order large-domain FEM analysis of 

waveguide structures with anisotropic continuously inhomogeneous materials, that also include 

curvature, the last example is an H-plane waveguide T-junction with a “partial-height” 

cylindrical dielectric post, shown in Fig. 1.5(a), with the relative permittivity tensor defined as  










 
100

0
4

)1(
710

001

)(ε
2

r
v

v ,      11  v ,       (1.12) 

and the yyrε component being represented as the second-order (M = 2) Lagrange polynomial. For 

the reference HFSS simulation, the post is modeled using six layers as depicted in Fig. 1.5(b).  A 

higher order FEM model of the junction and discontinuity consists of three trilinear (K = 1) and 

six triquadratic (K = 2) hexahedral finite elements, as portrayed in Fig. 1.5(a), with polynomial 

field-expansion orders ( e
uN , e

vN , and e
wN ) in the FEM simulation ranging from 2 to 7 in different 

elements and different directions. In Fig. 1.6, we observe an excellent agreement of higher order 

continuous isotropic FEM and layered anisotropic HFSS results for the S-parameters of the 

structure.  

 

1.4. Conclusion 

 
This paper has presented a novel higher order large-domain FEM technique for 3-D analysis 

of open- and closed-region electromagnetic structures involving general anisotropic 

inhomogeneous materials. The technique features Lagrange generalized curved parametric 

hexahedral finite elements with anisotropic continuously inhomogeneous materials in 

conjunction with curl-conforming hierarchical polynomial vector basis functions for field 
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expansions. The examples have demonstrated efficient and accurate simulations of anisotropic 

continuously inhomogeneous scattering and waveguide structures. In the analysis of scatterers,  

        

                           (a)                                                              (b) 

Figure 1.5. H-plane WR-75 waveguide T-junction with a “partial-height” continuously 
inhomogeneous anisotropic cylindrical dielectric post whose relative permittivity tensor is given 
by (1.12): (a) structure geometry ( mm 5r , mm 6h , mm 05.19a , mm 525.9b , and 

mm 30c ) and higher order large-domain FEM mesh and (b) approximate 6-layer model of the 
post used in HFSS simulations. 

 

 

Figure. 1.6. Magnitudes of S-parameters of the waveguide structure in Fig. 1.5. 
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the FEM domain is truncated by a hybridization with a higher order MoM-SIE technique. For 

multiport waveguide discontinuities, a simple single-mode boundary condition is introduced 

across the waveguide ports. This appears to be the first demonstration of large (up to a couple of 

wavelengths across) anisotropic inhomogeneous curved finite elements with p-refined high-order  

 (e.g., seventh-order) field distributions for electromagnetic modeling. Our current and future 

work includes applications of the new elements in electromagnetic cloaking, PMLs, and 

waveguide component designs.  
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2. HIGHER ORDER FEM-MOM-DIAKOPTIC METHOD FOR ANALYSIS 

OF INHOMOGENEOUS ANISOTROPIC DIELECTRIC AND 

MAGNETIC SCATTERERS2 

 
 
2.1. Introduction  

 
The finite element method (FEM) is, by its inherent features, especially suitable for modeling 

and analysis of structures that contain inhomogeneous, complex electromagnetic materials and 

geometrical irregularities. The FEM is well established as a method of choice for such 

applications, with the analysis of open-region scattering structures being performed truncating 

the FEM domain by a hybridization with the method of moments (MoM) or by some sort of a 

boundary condition. On the other hand, one possible general strategy aimed at extending the 

practical applicability of the FEM over its inherent numerical limit and considerably enhancing 

its efficiency in real-world simulations is the diakoptic approach [14][20], according to which, 

the solution of a large and complex electromagnetic system is found as a linear combination of 

solutions of diakoptic subsystems, using explicit linear relations between coefficients in 

expansions of equivalent electric and magnetic surface currents on boundary surfaces of 

subsystems.  

The diakoptic analysis of electromagnetic systems is formally similar to the diakoptic 

approach in circuit theory [21]. However, our diakoptic analysis is based on the surface 

equivalence principle and operates with coefficients in expansions of surface electric and 

magnetic currents and volume electromagnetic fields. The diakoptic analysis also belongs to the 

                                                           
2 This is an Accepted Manuscript of an article published by Taylor & Francis in Electromagnetics on 14 Apr. 

2014, available online: http://wwww.tandfonline.com/10.1080/02726343.2014.877755. 
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class of domain decomposition methods [22][25]. However, diakoptics takes explicitly into 

account linear relations between coefficients of the equivalent surface current expansions, with 

each electromagnetic subsystem being represented by linear relations written in the form of 

matrices. In addition, the diakoptic approach uses a direct solution of the diakoptic linear system 

of equations.  

This paper presents a new FEM-MoM-diakoptic method for analysis of inhomogeneous 

anisotropic dielectric and magnetic scatterers in the frequency domain, as a continuation of the 

previous work in [14][20]. The method splits the original electromagnetic system into a number 

of closed-region subsystems containing material complexities, which are analyzed by a FEM 

technique (FEM diakoptic subsystems), and an open-region subsystem enclosing the FEM 

subsystems, analyzed by a MoM technique (MoM diakoptic subsystem). Each of the subsystems 

is analyzed completely independently applying FEM or MoM solvers to obtain linear relations 

between coefficients in the expansions of equivalent electric and magnetic surface currents on 

the boundary surface of each subsystem (diakoptic surfaces). In the final system of equations, the 

only unknowns are the expansion coefficients on diakoptic surfaces.  

The method implements Lagrange-type generalized curved parametric hexahedral finite 

elements of arbitrary geometrical-mapping orders, filled with inhomogeneous anisotropic 

materials with continuous spatial variations of complex relative permittivity and permeability 

tensors described by Lagrange interpolation polynomials of arbitrary material-representation 

orders. Curl-conforming hierarchical polynomial vector basis functions of arbitrary field-

expansion orders are used for the approximation of the electric field vector within the finite 

elements, while divergence-conforming higher order vector bases on generalized curved 

parametric quadrilaterals are implemented for diakoptic surfaces. Furthermore, the connection 
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between the diakoptic electric sources and the magnetic field in the FEM subsystems is enforced 

using dual sets of higher order basis functions satisfying explicitly the natural relation between 

curl-conforming and divergence-conforming quantities, when closing the FEM domain by a 

boundary surface with fictitious equivalent surface currents. Finally, this diakoptic method 

inherently allows touching of the subsystems, i.e., the subsystems can share a common diakoptic 

boundary – without requirements for introduction of additional basis functions. Note that, 

theoretically, the diakoptic surfaces can be anywhere: away from the scatterers, at the boundary 

of a scatterer, or even crossing the volume of a scatterer. 

The rest of this paper is organized as follows. Section 2.2 presents the theory of the FEM-

MoM-diakoptic method for analysis of inhomogeneous anisotropic dielectric and magnetic 

scatterers, starting with the surface equivalence principle, and deriving linear relations between 

diakoptic coefficients and representing electromagnetic subsystems by diakoptic matrices. It also 

presents the implementation of the method based on a magnetic-field FEM diakoptic formulation 

and double-higher-order numerical discretization. In Section 2.3, the proposed diakoptic method 

is validated in several characteristic scattering examples. 

 
2.2. FEM-MoM-Diakoptic Method for Inhomogeneous Anisotropic Scatterers 

 
2.2.1. Theory of FEM-MoM-Diakoptics for Scattering Analysis 

 
The diakoptic method is based on the surface equivalence principle [26], [27]. For instance, 

consider an arbitrary closed surface S, as shown in Fig. 2.1a, which divides the original 

electromagnetic system into two regions, with sources of electromagnetic fields (e.g., lumped 

generators or incident fields in the system) assumed to exist in both regions. Employing the 

surface equivalence principle, equivalent sources are placed at each side of the boundary S (in 
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each of the regions) and are chosen so that the electric and magnetic fields, generated by the 

sources, inside each individual region remain the same as in the original system, while the fields 

in the other region are annulled, as illustrated in Figs. 2.1b and 2.1c. For the inner region (reg 1), 

the densities of equivalent electric and magnetic surface currents are given by S1
1 reg

e HnJ   

and S1
1 reg

e EnM  , where n denotes the inward looking unit normal on S, and S1E  and S1H  

stand for the electric and magnetic field vectors, respectively, on the inner side of S in the 

original system in Fig. 2.1a. The equivalent sources for the outer region (reg 2) are obtained in an 

analogous fashion. Applying the tangential continuity conditions for the fields in the original 

system, we obtain the following relations between equivalent sources for the two regions: 

2 reg
e

1 reg
e JJ     and   2 reg

e
1 reg

e MM  ,           (2.1) 

which will later be used explicitly to connect unknown variables in the diakoptic method. 

 

 
Figure 2.1.  Illustration of the surface equivalence principle, as the theoretical foundation of the 
FEM-MoM-diakoptic method: (a) original electromagnetic system, (b) equivalent problem for 
the interior region, and (c) equivalent problem for the exterior region. 
 

Next, we use an example depicted in Fig. 2.2 to describe the implementation of the diakoptic 

analysis combining FEM and MoM solvers. The diakoptic approach starts with subdividing the 

original electromagnetic system into a number of arbitrary non-overlapping subsystems, as 

shown in Fig. 2.2a, where the so-called diakoptic boundary is the surface enclosing different 



18 
 

subsystems and, in general, containing a number of disconnected closed surfaces. In the present 

method, a FEM technique is used for the analysis of each of the closed-region subsystems (

FEMN  FEM subsystems), as indicated in Fig. 2.2b, while the open-region subsystem, that in Fig. 

2.2c, is analyzed invoking a MoM technique (MoM subsystem). Secondly, the diakoptic 

boundary is used as an interface between the FEM and MoM domains (subsystems) employing 

the surface equivalence principle (Fig. 2.1) and allowing each of the subsystems to be 

independently analyzed and then connected back together through relations in (2.1). 

Consequently, when implementing the diakoptic approach using FEM and MoM solvers, the 

unknowns, in general, are: (i) distributions of electric and magnetic fields of intensities E  and 

H  in the FEM regions and (ii) distributions of equivalent surface electric and magnetic currents 

of densities eJ  and eM  at the diakoptic boundary. 

 

 
Figure 2.2. Application of the FEM-MoM-diakoptic technique for scattering analysis: 
(a) original electromagnetic system split into 1FEM N  parts (subsystems), (b) FEMN  closed-
region subsystems containing material complexities, analyzed by a FEM technique (FEM 
diakoptic subsystems), and (c) an open-region subsystem, analyzed by a MoM technique (MoM 
diakoptic subsystem).  
 

Let the total number of unknown coefficients for the approximation of E  and H , placed in 

column-matrices ][e  and ][h , respectively, for all FEM subsystems be he NNN tottot
FEM
tot  , 
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where  FEM

1
tot

N

i

e
i

e NN  and  FEM

1
tot

N

i

h
i

h NN  are the total numbers of coefficients in ][e  and ][h , 

and e
iN  and h

iN  are the respective numbers of coefficients for the i-th FEM subsystem. In 

addition, there are D2  unknowns for the approximation of eJ  and eM  at the diakoptic boundary 

(the union of FEMN  disconnected boundary surfaces in Fig. 2.2b), namely, D coefficients for eJ

, in the column-matrix ][ ej , and the same number of coefficients for eM , in ][ em , where 

 FEM

1

N

i
iDD , with iD  being the number of diakoptic coefficients associated with the i-th FEM 

subsystem ( FEM,,2,1 Ni  ). It is essential that the column-matrices ][ ej  and ][ em  are of the 

same dimensions. 

Based on the linearity of the electromagnetic system in Fig. 2.2a, the objective of the 

diakoptic analysis of each of the subsystems in Figs. 2.2b and 2.2c is to define linear relations 

between electric and magnetic diakoptic sources belonging to the diakoptic boundary of the 

subsystem, in the following form:  

      0 eee  kkkk jmYj  ,    2,1k ,            (2.2)
 

where 1k  denotes the inner side (FEM side) of the union of all disconnected diakoptic 

subdomains and 2k  denotes the outer side (MoM side) of the same union, and where ][ kY  is 

the DD  diakoptic matrix of the subsystem and 0 e ][ kj  is the 1D  column-matrix containing 

coefficients of eJ  that represent the excitation in the subsystem. In order to numerically 

calculate the matrix ][ kY , we assume that all the excitations in the subsystem are turned off and 

the subsystem is excited with one, the j -th, unit-valued coefficient in ][ ekm , while all other 

coefficients in ][ ekm  are equal to zero. By using the FEM solver, we calculate coefficients of E , 
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H , and eJ  in the FEM subsystems, with the obtained coefficients of eJ  representing, 

numerically, the j -th column of the matrix ][ kY . While MoM matrices are dense, FEM matrices 

are sparse, and are stored and computed as such.  

In the same analysis, we obtain the linear relations between coefficients in ][ 1em  and those in 

][e  and ][h . These relations can be written as  

  
0 

e1 






h

e
mC

h

e
,              (2.3) 

with  ][C being of dimensions DN FEM
tot . The matrix  ][C  is evaluated during the calculation of 

matrices ][ kY  in the same way, column by column, exciting the respective subsystem by a single 

coefficient in ][ 1em  at the time, with the computed coefficients of E  and H  thus filling the 

respective column of the matrix  ][C , and stored to be used for subsequent calculation of the 

final solution.   

The excitations 0 e ][ kj  and 
0 





h

e
 in (2.2) and (2.3) are found as the responses of a given 

subsystem stipulating that all coefficients in ][ ekm  are set to zero, while the original excitation is 

turned on. By the standard FEM and MoM analysis, we calculate the coefficients of eJ , E , and 

H , which constitute, in the numerical sense, the respective column-matrices 0 e ][ kj  and 
0 





h

e
. 

Relations in (2.2) and (2.3) will be discussed in the following sections with specifics given for 

both FEM and MoM solvers. 

In order to obtain the solution of the original electromagnetic problem, in Fig. 2.2a, using 

matrices that represent different subsystems in (2.2) and (2.3), we relate the diakoptic 
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coefficients of eJ  and eM  on the diakoptic boundary between FEM and MoM subsystems as 

follows:  

][][][ e2e1e jjj  ,   ][][][ e2e1e mmm  ,          (2.4) 

where we utilized the facts that the equivalent sources in (2.1) have opposite signs and that the 

directions of vectors n in Figs. 2.1b and 2.1c are opposite. Note that the mutual relations 

connecting the diakoptic coefficients obtained for the interior side of the diakoptic surface for 

any subsystem must also be satisfied on the surface outside that subsystem. This property is 

further used when combining (2.2) and (2.4) to arrive to the following diakoptic matrix system of 

equations:  

         0 2e0 1ee21    jjmYY  ,            (2.5) 

whose solution is ][ em . This system of equations is solved with a direct solver (i.e., the system 

is LU factorized, using partial pivoting with row interchanges, and then forward and backward 

substitutions are performed), since it is dense in the general case. The diakoptic coefficients in 

][ ekj , 2,1k , are then computed from ][ em  using (2.2), and the coefficients in ][e  and ][h , for 

subsystems in Figs. 2.2b and 2.2c, are obtained from (2.3). Once we have these latter 

coefficients, we can calculate the electromagnetic field at any point in space, as well as any other 

quantity of interest for the original electromagnetic structure, in Fig. 2.2a. 

 
2.2.2. Double-Higher-Order Magnetic-Field FEM Diakoptic Implementation 

 
The diakoptic method described in the previous sections is now applied in conjunction with 

double-higher-order FEM and MoM solvers based on higher order geometrical modeling and 

higher order field/current modeling. In specific, the building block for volumetric modeling in 

FEM subsystems (Fig. 2.2b) is a Lagrange-type interpolation generalized hexahedron of arbitrary 
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geometrical orders Ku, Kv, and Kw (Ku, Kv, Kw  1), shown in Fig. 2.3a and analytically described 

as [6] 

    
 u v w

wvu

K

i

K

j

K

k

K
k

K
j

K
iijk wLvLuLwvu

0 0 0

)()()(  ),,( rr ,  



 u

u

K

il
l il

lK
i uu

uu
uL

0

)( ,  1,,1  wvu ,    (2.6) 

where ),,( kjiijk wvurr   are position vectors of interpolation nodes and )(uL uK
i  represent 

Lagrange interpolation polynomials in the u coordinate, with 
i

u  being defined as 

uu KKiu
i

/)2(  , uKi ,...,1,0 , and similarly for )(vL vK
j  and )(wL wK

k . 

 

Figure 2.3. Lagrange-type curved parametric elements for higher order FEM-MoM-diakoptic 
analysis (Fig. 2.2) of inhomogeneous anisotropic dielectric and magnetic scatterers: (a) 
generalized FEM hexahedron, defined by (2.6), and (b) generalized MoM quadrilateral patch.  

 
The same polynomials in (2.6) are used to describe the continuous spatial variations of both 

the complex permittivity and permeability tensors, ),,(ε wvu  and ),,(ȝ wvu , of an 

inhomogeneous anisotropic material filling  the generalized hexahedral element in Fig. 2.3a, as 

proposed in [28]. In specific, the xx-component of ε  is incorporated in the FEM model as 
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  
 u v w

wvu

M

m

M

n

M

p
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M
n

M
m

mnp
xxxx wLvLuLwvu

0 0 0

)()()(ε ),,(ε ,      (2.7) 

where uM , vM , and wM  ( uM , vM , wM   1) are arbitrary material-representation polynomial 

orders (independent from Ku, Kv, and Kw), )(εε mnpxx
mnp
xx r  are the respective permittivity 

values at interpolation nodes mnpr  corresponding to orders uM , vM , and wM , and similarly for 

all remaining components of ε  and for all components of ȝ .  

The diakoptic surface enclosing each of the FEM domains is modeled using Lagrange-type 

generalized curved parametric quadrilaterals, in Fig. 2.3b [10], which are surface two-

dimensional (2-D) versions of the hexahedron in Fig. 2.3a, and are conformal with the sides of 

hexahedra belonging to the diakoptic surface [8]. 

In this work, we utilize the H-field FEM formulation (except in the last example, where the E-

field FEM formulation is used) and expand the magnetic field by means of curl-conforming 

hierarchical polynomial vector basis functions of arbitrary field-expansion orders uN , vN , and 

wN  ( uN , vN , wN   1) introduced in [6]. Furthermore, in the field expansion, basis functions that 

possess tangential components at the boundary (marked by “boundary”) are distinguished from 

those that do not (“interior”), as described in [2]: 

i

N

i
ii

N

i
ii

N

i
i

h

B
1

BI
1

I
1

BOUNDARYINTERIORtot

fhfhfhH  
 .       (2.8) 

Boundary volume basis functions are further used to generate divergence-conforming surface 

basis functions as |B Sifn , for expanding the diakoptic surface currents in the following form 

[19]: 
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||
S

N

i
iiS
)(

BOUNDARY

1
Bee   fnjHnJ ,       (2.9) 

|| )(
BOUNDARY

1
Bee S

N

i
iiS   fnmEnM ,     (2.10) 

where n is adopted to be the outward looking unit normal to the enclosed diakoptic surface S. 

In order to numerically establish the matrix relationships in (2.2), the FEM solver discretizes a 

Galerkin-type weak form of the curl-curl magnetic-field vector wave equation,  

      


  
S

i

V

i

V

i SkVkV d jd ȝ dε 0r
2
0

1
r EnfHfHf ,    (2.11) 

with 000 k  being the free-space wave number (  is the angular frequency of the time-

harmonic excitation in the system). This discretization leads to a matrix equation with the 

unknowns coefficients being only those describing boundary variables, 

  ][ ,j][ ])([ eBB0BIB
1

IIBIBB mfnfh   kFFFF ,    (2.12) 

and in which the connection in (2.10) is employed on the right-hand side of the equation such 

that magnetic diakoptic sources can numerically be considered as excitation of the system. In 

(2.12), FBB, FBI, FIB, and FII are the submatrices of a well-known FEM matrix [6], with FIB, for 

instance, standing for the submatrix corresponding to testing functions belonging to a set of the 

interior FEM functions and basis functions being the boundary functions, and the operator ba,  

is a standard surface integral of a dot product of vector variables a  and b . Note that while the 

matrix  BB, fnf   in (2.12) is ill -conditioned, this does not deteriorate the overall accuracy of 

the method, as shown in examples presented in this paper (and evaluated in other cases that are 

not shown). 

Next, boundary coefficients in the expansion of the magnetic field are equated to the 

appropriate electric-current coefficients, using (2.9), so that a diakoptic linear relation in (2.2) 
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can be established by inverting the system matrix in (2.12). Denoting the local diakoptic matrix 

of the i -th FEM subsystem in Fig. 2.2b by ][ 1
iY , and the corresponding source column-matrices 

by ][ e
im  and ][ e

ij , we have  

 ][][ ][ ee1
iii jmY  ,     BB

1
IB

1
IIBIBB01 , )]([j][ fnfY   FFFFki ,   FEM,,2,1 Ni  ,     (2.13) 

and the global diakoptic matrix ][ 1Y  given in (2.5) is then assembled using the local matrices as 

follows: 

 



















FEM
FEM

FEM

1

2
1

1
1

2

1

21

1

   

          

          

                

N
N

N

D

D

D

DDD

Y

Y

Y
Y













.      (2.14) 

Once the diakoptic excitations ][ em  are found from (2.5), the magnetic field inside each of the 

FEM domains can be calculated based on (2.3), using  ][C , which in turn, can easily be obtained 

from (2.11) in terms of appropriate local matrices in the same fashion as in (2.14). 

In cases where the original electromagnetic system, in Fig. 2.2a, is subdivided into a number 

of touching FEM subsystems, the adjacent subsystems touch each other through parts of the 

diakoptic surface, which is meshed in a way that a generalized quadrilateral patch belonging to 

one side of the common area has its match on the opposite side, i.e., the meshes on opposite sides 

of the diakoptic surface are conformal. Even though spatial positions of touching quadrilaterals 

are the same, independent subsystems are pre-processed separately. In this setup, the touching 

quadrilaterals need to have opposite orientations, that is, the directions of normal vectors n 

should be opposite to one another, which is ensured by a simple adjustment of the two local 

parametric coordinate systems for the two coinciding patches. Next, touching subsystems are 
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assumed to be immersed in the air-filled open-region subsystem, and hence an infinitesimally 

thin layer of air is considered to exist between the touching quadrilaterals. Consequently, 

touching FEM domains influence each other through a MoM domain, where a numerical solver 

is applied to a structure consisting of touching and other surfaces. The only issue with applying 

the MoM solver relates to the calculation of singular and hyper-singular Galerkin impedance 

matrix elements [10], due to the mutual contributions of surface currents belonging to two 

touching surfaces. Since touching surfaces (faces of the adjacent diakoptic domains), although 

belonging to two distinct diakoptic domains, actually share a unique surface in space, the 

corresponding Galerkin impedances are computed by applying a self-integration procedure, with 

testing and basis functions belonging to the two distinct surfaces coinciding in space. Namely, 

the singularity extraction method for calculation of singular and hyper-singular MoM operators 

[10], [29], [5] is utilized. Note also that in the case of touching domains, matrix   is not diagonal-

dominant, and it influences the final matrix obtained by the diakoptic method. Note, finally, that 

any other FEM and/or MoM numerical discretization is possible within the framework of the 

diakoptics, including low-order elements and bases. 

 
2.3. Numerical Results 

 
A special parallel version of the FEM-MoM-diakoptic solver based on the message passing 

interface (MPI) basic linear algebra communication subprograms (BLACS) is developed, and 

run on a CrayXT6m platform. The Cray supercomputer used for simulations contains 52 

compute nodes, with a total of 104 AMD Magny Cours 64-bit 1.9-GHz processors (two per 

node), where each processor has 12 cores. A 32-GB RAM memory is available on each node, 

while the interconnection between the nodes is SeaStar2+ with 2D torus topology. 
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2.3.1. 2-D Array of Dielectrically Coated PEC Spherical Scatterers 

 
As the first example of the application and validation of the new diakoptic method, consider a 

2-D array of 4×4 dielectrically coated spherical perfect-electric-conductor (PEC) scatterers, 

depicted in Fig. 2.4. For each scatterer, the PEC sphere radius is r = 100 mm and the thickness 

and relative permittivity of the coating are d = 35 mm and 4εr  , respectively, while the center-

to-center distances between adjacent scatterers are s = 400 mm. The original system is divided 

into 17 diakoptic subsystems, with 16 FEM subsystems modeling individual spherical scatterers 

and one open-region MoM subsystem. The geometrical model of each spherical scatterer is 

comprised of six FEM curvilinear hexahedra of the second geometrical orders (Ku = Kv = Kw = 2) 

modeling the dielectric coating, with PEC boundary conditions on the inner surfaces and six 

curvilinear quadrilateral patches on the outer surfaces, coinciding with the adopted diakoptic 

boundary. The adopted field approximation orders in all FEM hexahedra are 2wN  in the 

radial direction and 4 vu NN  in other two (transversal) directions, and these latter orders are 

used for current expansions on the MoM patches (on the diakoptic boundaries) as well. This 

results in a total of D = 3,072 diakoptic unknowns. 

 

 

 
Figure 2.4. 2-D array of dielectrically coated spherical PEC scatterers. 
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Fig. 2.5 presents the normalized bistatic radar cross section (RCS), 203D Ȝσ  ( 0Ȝ  henceforth 

being the free-space wavelength), of the array at a frequency GHz5.0f  as a function of the 

scattered angle in two characteristic plane cuts. The excitation wave is incident from the 

direction defined by 90θinc  and 0φinc  , where θ  and φ  are angular coordinates in the 

spherical coordinate system shown in Fig. 2.4. The same (φθ, ) notation will be used in all 

examples in this section. We observe an excellent agreement of diakoptic results with the 

solution obtained by WIPL-D (pure-MoM commercial software), which serves as a reference. 

The total number of unknowns used for modeling in WIPL-D is 9,216. The approximately three 

times reduction in the number of the diakoptic unknowns, when compared with the commercial 

higher order MoM software, comes from the implemented geometrically higher order modeling 

and the diakoptic compression. Note also that the analysis of this problem using a low-order 

variant of the proposed diakoptic method, with first-order (rooftop) basis functions on patches 

that are not larger than Ȝ/10 in each dimension (with Ȝ being the wavelength in the dielectric 

medium), would require D = 19,200 diakoptic unknowns, and about 244 times longer time to 

solve the matrix system of equations and about 39 times larger RAM memory for the simulation 

than the presented higher order diakoptic solution. 

In addition, shown in Fig. 2.5 are the RCS results for the same geometry and frequency but 

with the dielectric coating being made from a continuously inhomogeneous dielectric material 

whose relative permittivity undergoes a linear radial variation from 4ε r   at the PEC boundary 

to 10ε r   at the outer surface of the scatterer. The higher order geometrical and numerical 

model is the same as in the previous case but with 1M  in (2.7) for the local radial direction to 

model the dielectric inhomogeneity. The solution using the continuously inhomogeneous FEM-

MoM-diakoptic model is compared with a WIPL-D solution for a three-layer piecewise 
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homogeneous approximate model of the dielectric coating (with equivalent permittivities 

calculated as the mean value of the inhomogeneous profile for each of the equally thick layers), 

which takes 51,712 unknowns, and a good agreement of the two sets of results is observed.  

  

(a)         (b) 

Figure 2.5. Normalized bistatic radar cross section of the array of scatterers in Fig. 2.4, for 
homogeneous and continuously inhomogeneous dielectric coatings, respectively, computed by 
the FEM-MoM-diakoptic method and by the pure-MoM commercial software WIPL-D: (a) 

0φ   cut and (b)  09θ  cut. 
 

The total computation time for the FEM-MoM-diakoptic analysis of scatterers with both the 

homogeneous and continuously inhomogeneous dielectrics (in Fig. 2.5) is 2 min 27 sec and the 

RAM memory used for the storage of the diakoptic matrices is 288 MB, running the parallel 

code on a 2×2-process grid, all processes are on a single compute node 

 
2.3.2. Dielectric Scatterer Modeled by Multiple Touching FEM Domains 

 
As the next example, we consider a dielectric (εr=2.25) brick-shaped scatterer, shown in Fig. 

2.6, illuminated by a uniform plane wave incident from the direction defined by 90θinc  and 
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0φinc  , with electric and magnetic field vectors given by V/m  1inc
ziE   and 

A/m Ș 1
0

inc
yiH   at the global coordinate origin, where 000 ε/ȝȘ   stands for the free-

space intrinsic impedance. The operating frequency is f=250MHz. We model the brick by four 

adjacent cubical FEM elements, each with edge length a = 1 m and each being enclosed by the 

diakoptic surface with air as the outer medium. All elements in the model are of the first 

geometrical order (Ku = Kv = Kw = 1), whereas the orders of the field expansions (in all FEM 

elements in all directions) and current expansions (on all square MoM patches surrounding each 

of the FEM subdomains) are all the same and equal to 5. The total number of unknowns in the 

final system of equations is D = 1,200, while the total number of unknown coefficients used for 

magnetic field expansion is 160,2tot hN .  

 

Figure 2.6. Brick-shaped dielectric scatterer modeled by four touching cubical FEM diakoptic 
subsystems. 

 
Shown in Fig. 2.7a is the computed real part of yH  in the FEM domains, in the vertical plane 

defined by x = 0, placed in the middle of the scatterer. For comparison, the same solution 

obtained by WIPL-D is shown in Fig. 2.7b as a reference. We can conclude from the figure that 

the agreement of the diakoptic results with the reference results is very good. Running the code 

in a single process, the FEM-MoM-diakoptic solution takes 56 sec of simulation time and uses 

43.9 MB of RAM memory to store the diakoptic matrices. 
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Figure 2.7. Real part of the internal magnetic field component yH  in the vertical plane (x = 0) in 

the middle of the scatterer in Fig. 2.6 obtained by (a) the FEM-MoM-diakoptic method and (b) 
the WIPL-D; The color-bar units aremA/m . 
 
2.3.3. 3-D Array of Cubical Dielectric Scatterers 

 
Next, consider a three-dimensional (3-D) array of cubical dielectric scatterers shown in Fig. 

2.8. The cube edges and side-to-side distances between neighboring cubes amount to a = s = 10, 

and the relative permittivity of the dielectric is εr=2.25. The structure is modeled by 513 

diakoptic subsystems (512 FEM domains and one open-region MoM domain). The volume and 

surface elements in the model are of the first geometrical orders, Ku = Kv = Kw = 1, while the 

field and current expansion orders are all the same and equal to 3. The size of the system of 

diakoptic equations is D = 55,296. 

 
Fig. 2.9 displays two characteristic normalized bistatic RCS plane cuts for uniform plane 

wave excitation of the system shown in Fig. 2.8, with the results obtained by the diakoptic 

method being compared with the reference WIPL-D solution. We observe from the figure an 

excellent agreement of the two sets of results. The total number of unknowns used for modeling 
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in WIPL-D is 24,576. Similarly to the first example, when comparing the diakoptic approach to 

the pure MoM solution (by commercial software), the reduction in the number of unknowns in 

the final system of equations is by 3.55 times. 

 

 
 

Figure 2.8. 3-D array of cubical dielectric scatterers. 
 

 
 

Figure 2.9. Normalized bistatic RCS of the array of scatterers in Fig. 2.8 obtained by the FEM-
MoM-diakoptic method and by WIPL-D: (a) 0φ   cut and (b)  09θ  cut. 

 

The total number of unknowns used for modeling in WIPL-D if no symmetries were exploited 

is 110,592. Similarly to the first example, when comparing the diakoptic approach to the pure 
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MoM higher order solution (WIPL-D), the reduction in the number of unknowns in the final 

system of equations is by two times. However, note that the higher order FEM-MoM-diakoptic 

method would allow modeling of inhomogeneous and/or anisotropic scatterers in the array in 

Fig. 2.8 at essentially the same computational cost. Running the FEM-MoM-diakoptic parallel 

code on a 16×16-process grid, on 16 compute nodes (16 processes per node), the simulation time 

is 30 min 12 sec and the RAM memory consumption for the storage of the diakoptic matrices is 

91.1 GB. Note also that, when compared to the higher order diakoptic solution, the low-order 

diakoptic model specified in Section 2.3.i would require 7.11 times more diakoptic unknowns, 

about 358 times longer direct-solver solution time, and about 50 times larger RAM memory.  

 
2.3.4. 2-D Array of PEC Spheres with Cloaking Dielectric/Magnetic Metamaterial Covers   

 
The final example is a 2-D array of cloaked spherical PEC scatterers, depicted in Fig. 2.10. 

The radii of the PEC spheres are R1 = 1 m, thicknesses of the cloaks are d = 0.1 m (outer radii of 

the cloaks are dRR  12 ), and distances between the scatterer centres are L = 5 m. Each 

transformation-based metamaterial spherical cloak relies on the theory derived in [13], whereas 

its detailed analysis by the higher order FEM-MoM can be found in [30]. The scatterer geometry 

and incident plane wave direction are shown in Fig. 2.10. In the FEM-MoM-diakoptic analysis, 

each of the cloaked regions is modeled by six curvilinear hexahedra of fourth geometrical orders, 

Ku = Kv = Kw = 4, enclosed by six quadrilaterals conformal to the outer cloak surface. The 

adopted field approximation orders are 5 wvu NNN  for all FEM hexahedra, while the 

current approximation orders are 4 vu NN  for all MoM patches. The total number of 

diakoptic unknowns amounts to D = 768. Continuous spatial variations of the medium tensors ε  

and ȝ  in the cloaked regions, obtained from the linear cloak transformation in the spherical (
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φθ,,r ) coordinate system are given by [30] 
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where R1 and R2 are the inner and outer radii, respectively, of the spherical cloak. The Cartesian 

equivalents of ε  and ȝ  are implemented using (2.7) with 6 wvu MMM . 

 

 
Figure 2.10. 2-D array of PEC spheres with cloaking metamaterial covers whose permittivity and 
permeability tensors are given in (2.15).  
 

Shown in Fig. 2.11 is the normalized backscattering RCS of the array of cloaked spheres at 

f = 55 MHz obtained by the FEM-MoM-diakoptic method, in the 0φ   plane. For the purpose 

of validation of the numerical solution, the computed RCS of the array of uncloaked PEC 

spheres, with the continuously inhomogeneous anisotropic FEM elements constituting the 

cloaking layer being replaced by homogeneous air-filled elements having all field and current 

expansions and other parameters in the FEM-MoM-diakoptic analysis the same as in the cloak 

model, is also shown in Fig. 2.11, where it is compared with the WIPL-D solution, and an 



35 
 

excellent agreement of the two sets of results is observed. In addition, while having in mind that 

the cloak is theoretically ideal (RCS theoretically vanishes), a WIPL-D solution for a 

homogeneous air-filled sphere is shown as a reference, giving a clear insight into what a typical 

numerical solution for the given geometry and an ideal invisibility material (scattering from free-

space) would be. We observe from the figure, a very significant reduction in the numerically 

obtained scattering cross section of the array of cloaked spheres with respect to the array of PEC 

spheres; namely, the RCS is so low that it is on par with the best numerical approximation of the 

zero backscatter from an empty spherical region of the same size as the original scatterer, as 

verified by WIPL-D. The total number of FEM unknowns is 260,2tot eN , (computation time: 

24 min 5 sec, RAM memory: 18 MB, single process), while the total numbers of unknowns in 

WIPL-D simulations are 3,456 for the array of air-filled spheres and 1,728 for the array of PEC 

spheres. 

 
Figure 2.11.  Normalized bistatic RCS in the 0φ   plane of (i) the cloaked array in Fig. 2.10 
computed using the FEM-MoM-diakoptics, (ii) the array of PEC spheres obtained by WIPL-D, 
(iii) the array of uncloaked spheres with the cloaks replaced by homogeneous air layers 
calculated by the FEM-MoM-diakoptics, and (iv) the array of homogeneous air-filled spheres 
obtained using WIPL-D. 
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2.4. Conclusions 

 
This paper has presented a new FEM-MoM-diakoptic method for analysis of inhomogeneous 

anisotropic dielectric and magnetic scatterers in the frequency domain. The method splits 

the original electromagnetic system into a number of closed-region FEM diakoptic subsystems 

containing material complexities and an open-region MoM diakoptic subsystem. Each of the 

subsystems is analyzed completely independently applying FEM or MoM solvers, and the 

solution to the original problem is obtained from linear relations between coefficients in 

expansions of equivalent electric and magnetic surface currents on diakoptic boundary surfaces. 

The method implements large curved hexahedral finite elements, filled with inhomogeneous 

anisotropic materials. Diakoptic electric sources and the magnetic field in FEM subsystems are 

connected using dual sets of hierarchical polynomial vector basis functions explicitly satisfying 

the natural relation between curl-conforming and divergence-conforming quantities. A technique 

enabling touching of the subsystems, i.e., that the subsystems share a common diakoptic 

boundary, has been introduced in the diakoptic method. 

The proposed higher order FEM-MoM-diakoptic method and its versatility, accuracy, and 

efficiency have been validated and demonstrated in several characteristic examples of finite 

arrays of dielectric, dielectric/magnetic, and dielectrically coated PEC scatterers. Numerical 

results include analysis of scatterers with straight edges and pronounced curvature, a scatterer 

modeled by multiple touching FEM diakoptic domains, and a transformation-based metamaterial 

cloaking structure, with the continuously inhomogeneous anisotropic cloaking region modeled 

using large curved finite elements that allow continuous spatial variations of complex 

permittivity and permeability tensors and high-order FEM field approximations.  
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3. EFFICIENT SCALABLE PARALLEL HIGHER ORDER DIRECT 

MOM-SIE METHOD WITH HIERARCHICALLY SEMISEARABLE 

STRUCTURES FOR 3D SCATTERING3 

 
 
3.1. Introduction 

 
Recent trends in computational electromagnetics (CEM), in applications that involve 

calculating, storing, and solving large and dense matrices, include applying fast, parallel (direct 

or iterative) solvers for the system of equations in conjunction with compressed storage of large 

matrices and their parts. Two general approaches emerge among fast methods attempting to 

reduce numerical and storage complexity: (i) the fast multipole method (FMM) [31] and (ii) H-

matrices [32]–[34]. The idea behind both of them is to approximate the integral kernel by a 

degenerate kernel using so-called functional skeletons. In the case of multipole methods, these 

functions have to be known explicitly for each kernel, which means that the method and its 

behavior depend heavily on the physics behind the exact problem to be solved. On the other 

hand, in the case of algebraic methods, such as H-matrices, matrix blocks are approximated by 

low-rank matrices. 

H-matrix algorithms were first introduced by Hackbusch [32]–[34], with their H2-matrix 

version being introduced in [35], and have been used efficiently with fast LU based direct solvers 

or as preconditioners to fast iterative solvers. The H-matrix methods are kernel independent so 

they are suitable for application to any type of integral equation (IE) based formulation. In the 

                                                           
3 Material included in this chapter is submitted to IEEE Transactions on Antennas and Propagation: © 2015 

IEEE, A. B. Manić, François-Henry Rouet, Xiaoye Sherry Li, and Branislav M. Notaroš, “Efficient Scalable Parallel 
Higher Order Direct MoM-SIE Method with Hierarchically Semiseparable Structures for 3D Scattering, ” submitted 
to IEEE Transactions on Antennas and Propagation. 
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CEM community, several applications of H-type direct solvers to tackle surface integral equation 

(SIE) problems are presented in [36]–[40]. 

Matrix compression solvers rely heavily on a type of the low-rank matrix approximation 

method such as singular value decomposition (SVD) [38], [41], rank-revealing QR (RRQR) 

decomposition [42], [43] or adaptive cross approximation (ACA), where ACA can be considered 

as rank-revealing LU (RRLU). ACA is well known and established method for fast matrix 

computation in CEM, introduced first to solve the low-frequency (quasistatic) IE problems [44], 

and then combined with different matrix compression methods to solve system of equations 

arising in high-frequency SIE methods [45]–[48].  

In addition, semiseparable matrices, the ones that can easily be compressed and accurately 

approximated by their low-rank counterpart, and its application to Green’s function integral 

kernel are discussed in [49]. In order to combine beneficial features of semiseparable matrices 

and H-matrix representation, the hierarchically semiseparable matrices are most recently 

introduced [50]. Solution of the two-dimensional (2D) SIE method of moments (MoM) using 

hierarchically semiseparable compression is discussed in [51], where the authors comment on the 

possible extension of their work to the 3D case. 

On the other hand, it is well known that by using higher order basis functions for current/field 

modeling in CEM, significant reductions in the number of unknowns, as well as faster system 

matrix computation/solution, can be achieved [10] when compared to the traditional low order 

modeling [52]. Tightly coupled with using higher order basis functions is higher order geometry 

modeling [10], [26] and together they lay foundation to double higher order (DHO) modeling. 

The DHO approach has been effectively used in both direct and iterative MoM-SIE solvers [53]–

[57]. 
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Besides developing fast algorithms to solve MoM-SIE equations, the CEM researchers have 

intensely investigated parallelization of the fast algorithms coupled with direct solvers in order to 

speed up the simulations of electrically large electromagnetic structures. DHO MoM-SIE system 

matrix filling followed by the computationally expensive LU decomposition on a full matrix was 

implemented into parallel out-of-core hybrid GPU/CPU algorithm [56], while the performance of 

a similar method using higher order basis functions was investigated on more than 4,000 CPU 

cores on a distributed memory system [57]. Similarly, a parallel H-LU direct solver using hybrid 

MPI-OpenMP that builds on the ability to combine both shared and distributed memory 

programming was used to analyze 3D scattering problems with nearly 4 million unknowns [58]. 

Further, a parallel hierarchical ACA algorithm demonstrating an acceleration factor larger than 

200 was presented in [59]. 

This paper proposes a novel fast scalable higher order parallel algorithm for large and 

complex scattering, radiation, and propagation problems in CEM based on the DHO MoM-SIE 

modeling in the frequency domain [10], [26], [12], [60] in conjunction with a direct solver for 

dense linear systems with hierarchically semiseparable structures (HSS) [61]. We are developing 

asymptotically fast higher order direct algorithms for MoM-SIE solutions which, in a nutshell, 

are an algebraic generalization to fast multipole methods. In addition to being fast, they offer a 

promise of being memory- and communication-efficient and amenable to extreme-scale parallel 

computing. The main advantage of the HSS algorithm is in the linear-complexity ULV-type 

factorizations (whereas the conventional LU decomposition has cubic complexity). Our work 

uses the recently developed new, state-of-the-art, algorithms for solving dense and sparse linear 

systems of equations based on the HSS method [61]. The new HSS algorithms have been 

demonstrated to have a dramatic advantage in terms of time and space complexity (e.g., ~70 



40 
 

times less memory for seismic imaging examples with matrix size 2.5·105 × 2.5·105) than the LU 

factorization algorithm, and to be extremely scalable. In addition, this paper employs a RRQR 

decomposition for the matrix (memory) compression. Its adaptive nature comes from the ability 

to use the stopping criteria, i.e., relative tolerance value/minimal rank, which allows for the 

method to store only the low-rank approximation of the original matrix that satisfies predefined 

accuracy. In order to enhance the HSS compression and parallelization, a method for geometrical 

preprocessing of the scatterers based on the cobblestone distance sorting technique [45] is 

utilized. Hence, the MoM unknowns having spatial locality (belonging to the same mesh group) 

also exhibit the data locality in the matrix system of equations. The basic theory and preliminary 

results of the DHO HSS-MoM-SIE analysis are presented in a summary form in [62]. 

HSS compression is implemented in a multilevel fashion as described in [61] and, essentially, 

its multilevel compression can be considered comparable to the one used in the MLACA 

algorithm [47]. Furthermore, so-called multilevel “butterfly” algorithms [63]–[64], as well as the 

fast solver presented in [65], have a similar basis to the multilevel compression coupled with 

low-rank matrix representation. 

This paper is organized as follows. Section 3.2 gives an overview of the MoM-SIE 

methodology and the associated discretization using DHO modeling. In addition, geometrical 

preprocessing used to group surface quadrilaterals into mesh groups that achieves spatial-data 

locality in the system matrix is described. In Section 3.3, the HSS compression and the ULV 

factorization followed by the solution of the compressed matrix is discussed. The parallelization 

and communication between the processes in matrix filling and HSS compression/factorization is 

outlined in Section 3.4. Section 3.5 provides numerical results and discussion, followed by the 

conclusions in Section 3.6. 
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3.2. DHO MoM-SIE Modeling of Metallic Scatterers 

 
One of the most general and best established approaches to solving scattering CEM problems 

is the one based on the method of moments in the surface integral equation formulation and the 

frequency domain (FD) [26]. Inherently, the MoM results in dense linear systems, so the HSS 

compression and solver are applied to allow for fast and memory efficient execution. 

 
3.2.1. Surface Integral Equation Formulation 

 
The MoM-SIE methodology is applicable to the analysis of metallic and dielectric structures, 

where both electric and magnetic surface currents are introduced over boundary surfaces 

between homogeneous parts of the structure, and surface integral equations based on boundary 

conditions for both electric and magnetic field intensity vectors are solved with current densities 

as unknowns. This paper focuses on metallic structures only. However, extending this work to 

include problems involving dielectrics is straightforward based on [10].  

If the structure made of a perfect electric conductor (PEC) is excited by a time-harmonic 

electromagnetic field of electric field intensity Einc at the angular frequency ω, then the scattered 

field Escat can be expressed in terms of the surface electric currents of density Js using the 

boundary condition for the tangential fields at the surface S of the structure as follows: 

   0  tang
inc

s
scat EJE ,    AJE jω s

scat          (3.1) 

, ȝ s
S

gdSJA  
S

s gdS 
ωε
j

sJ            (3.2) 

where A and Ф are magnetic vector and electric scalar potential, respectively, 

,π4e εȝjω Rg R-  is the Green’s function for the unbounded homogeneous medium with 
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parameters ε and ȝ, and R is the distance of the field point from the source point. Hence, (3.1) 

and (3.2) constitute an electric field integral equation (EFIE) for Js as unknown quantity, which 

is discretized using the MoM. 

 
3.2.2. Double Higher Order Modeling 

 
Double higher order modeling consists of meshing the geometry of the electromagnetic 

structure using DHO surface elements, which means that both geometry as well as the unknown 

variable (surface current) are discretized using higher order functions. In specific, surface of the 

structure is modeled using generalized curved quadrilaterals of arbitrary geometrical orders Ku 

and Kv, shown in Fig. 3.1(a), and the current density Js  over quadrilaterals is approximated by 

means of hierarchical vector basis functions of arbitrarily high current-expansion orders Nu and 

Nv [10],  
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arranged in a maximally orthogonalized fashion [66], [67] as illustrated in Fig. 3.1(b). Here, L 

represent Lagrange interpolation polynomials, rkl are position vectors of interpolation nodes, P 

are divergence-conforming polynomial bases,  = |au × av| is the Jacobian of the covariant 

transformation, and au = ∂r/∂u and av = ∂r/∂v are unitary vectors along the parametric 

coordinates. The unknown current-distribution coefficients {} in (3.4) are determined by 

solving the SIE in (3.1), employing Galerkin method. Double (geometrical and current) higher 

order modeling enables the use of large curved patches, which can greatly reduce the number of 
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unknowns for a given problem and enhance the accuracy and efficiency of the computation. 

Element orders in the model, however, can also be low, so the low-order modeling approach is 

actually included in the higher order modeling. Moreover, because our basis functions are 

hierarchical, a whole range of element sizes and shapes, geometrical orders, and current 

approximation orders can be used at the same time in a single simulation model of a complex 

structure using the high order (more precisely, low-to-high order) CEM technique.  

 

   
(a)     (b) 

 
Figure 3.1. a) Generalized curved parametric quadrilateral patch for DHO MoM-SIE modeling 
[10]. (b) Sketch of the orthogonality factor for maximally orthogonalized hierarchical basis 
functions of the eight order [66].  
 
 
3.2.3. Geometrical Preprocessing Based on Cobblestone Distance Sorting Technique 

 
The geometrical grouping of the quadrilaterals in the object mesh based on their spatial 

locality, as shown in Fig. 3.2, is done by applying the distance sorting technique [45] as outlined 

by the steps described in Fig. 3.3. The grouping technique ensures data locality in the dense 

system matrix, which is greatly beneficial for achieving the properties needed for the HSS 

compression. Specifically, the cobblestone distance sorting technique divides the mesh into Ng 

mesh groups. Each matrix sub-block determined by the coordinates (i,j) stores the interactions 

between MoM unknowns belonging to the ith and jth mesh groups.  The mesh size of each mesh  
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Figure 3.2 Illustration of geometrical preprocessing of objects based on the cobblestone distance 
sorting technique [45]. 
 
group (i.e., the number of unknowns) is predetermined by the number of processes, geometry, 

and other simulation specifics and is given as an input to the geometrical preprocessor. The 

outcome of the preprocessor is that MoM unknowns belonging to the same mesh group, besides 

its spatial locality, exhibit the data locality in the matrix system of equations: self-interaction 

blocks are on the diagonal, while near interactions tend to be closer to the diagonal and far 

interactions further away from the diagonal of the system matrix. It is well known that the 

numerical rank of the matrix block describing the interactions between two groups decreases 

with the increase of the distance between the groups [45], [68]. This matrix property plays a 

significant role in the HSS matrix compression. 

Distance Sorting Technique: 

for k = 1 : Ng 

1. List all remaining (ungrouped) unknowns corresponding to basis functions on the quadrilateral mesh; 

2. Create a box enclosing ungrouped mesh; 

3. Find all projections of the remaining unknowns onto the vector defined by the diagonal of the box; 

4. Define the group’s “zero” point as the first unknown along the vector; 

5. Sort all remaining unknowns based on the distance from the “zero” point; 

6. Group the first Nk unknowns, where Nk is the predetermined number of unknowns in the kth subgroup. 

End 

Figure. 3.3.  The algorithm behind the cobblestone distance sorting technique [45], illustrated in 
Fig. 3.2. 
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3.3. HSS Theory 

 
This section contains an overview of the HSS structures, their compression, factorization and 

solution, defined and explained in more detail in [61].  

 
3.3.1. HSS Structures 

 
HSS representations rely on a cluster tree   that defines a hierarchical clustering (or 

partitioning) of the index set [1; N], where N is the number of rows and columns of the matrix. A 

cluster tree is such that every node i is associated with an interval ti . For each node i  T there is 

an index subset ti  [1;N], such that tc1  tc2 = 0, tc1  tc2 = ti. At the root, t2k 1 =   = [1:N]. 

Consequently, 
ji tt

A   is the submatrix of A with ti and tj being its row and column index subsets, 

respectively.  

The HSS matrix form is defined (exists) on a corresponding cluster tree T (a.k.a. HSS tree. 

For simplicity we only consider binary trees). An L-level postordered T consists of 2k−1 

numbered nodes (k = 2L-1), where the root (the only Lth level node) is labeled by 2k−1, while k 

nodes are leaves (first level nodes). Further, each nonleaf node i  T has exactly two children 

nodes that satisfy relation c1 < c2 < i, with c1 and c2 being its left and right child, respectively. 

An example of the four-level HSS tree is given in Fig. 3.4.  

 
 

Figure. 3.4.  Four-level postordered binary tree used in the HSS representation. 
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The maximum rank r (or numerical rank r for a given tolerance ) of all HSS blocks is called 

the HSS rank of matrix A. Matrix A has a low-rank property and can be efficiently compressed 

and solved using the HSS algorithm if r is small comparing to the matrix size. 

Compressed HSS representation is defined by using the so-called HSS generators Di, Ui, Ri, 

Bi, Wi, and Vi, belonging to each node i of the tree, such that D2k 1 = A , while nonleaf node 

generators are constructed by using its children’s generators as followsμ 

,
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where the superscript “H” denotes Hermitian transpose. Fig. 3.5 depicts a block example of the 

8 × 8 HSS representation of a matrix defined on the corresponding HSS tree, given in the Fig. 

3.4. Leaf level D matrices are calculated and stored as fully dense, while other matrices are 

calculated and saved in the compressed form obtained by the rank-revealing QR (RRQR) 

decomposition. 

 
 
Figure 3.5. Illustration of a corresponding HSS form. 
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3.3.2. HSS Compression 

 
HSS compression is done in two stages: row and column compression steps, where the latter 

one is applied to an already row-compressed matrix. RRQR decomposition is applied for 

compression of all the matrices [43]. The steps in the algorithm behind the RRQR decomposition 

are given in Fig. 3.6.  

Rank-revealing QR decomposition: 

Compression of a M  N matrix A  QT with rank r and tolerance  is given by following steps: 

for i =1 : min(M, N); 

1. Find the column fj = A(:, j) with the maximum norm 

2. Interchange fi and fj; 

3. Set tii = ‖fi‖2, if tii /t11 ≤  then r = i, exit; 

4. Calculate the ith column of Q: qi = fi ∕ tii; 

5. Calculate the ith row of T: ],...,,[ 21 Nii
H
i

H
i fffqt  ; 

6. Update the rest of the matrix    H
iiNiiNii tqffffff   ],...,,[,...,, 2121 . 

End 

Figure 3.6.  Rank-revealing QR algorithm. 
 

Row compression step is applied in an upward sweep along the HSS tree, where at each leaf 

level node i, a local block row of the system matrix Iti
A   is calculated as explained in Section 

3.2. Afterwards, initial RRQR decomposition is done and column block Ui HSS generators are 

defined at leaf level nodes. In the next step along the HSS tree, a local matrix is defined using 

children’s matrices and compressed as given in (3.7) and (3.8) and outlined in the row 

compression algorithm in Fig. 3.7. The algorithm is applied in a recursive fashion along the HSS 

tree, and the row compression stage is accomplished once the root node is reached. 

In a similar fashion, column compression is applied in an upward sweep as given in the 

column compression algorithm in Fig. 3.8. A block column matrix 
ii ttA   that was already 
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compressed at the row compression stage is associated with  each node i and column compressed 

as given in (3.10) and (3.11). Construction of the matrix A HSS form and all its generators is 

obtained after the column compression stage. Note that the compression of the right-hand side is 

done in the same fashion as the compression of the system matrix. 

Row compression algorithm: 

1. At the leaf level, row compression of the local matrix is calculated on each node i: 

   iiii tItitIt AUA \ˆ\   ; 

2. At each non-leaf level, matrices of interest are defined by children’s matrices and compressed ((3.7) 
and (3.8)). Children’s local matrices R are stored, while the matrix block forwarded to the parent node 
is  ii tItA \ˆ  , 

,
2121 ˆ1 cccc ttctt AUA   ,

1212 ˆ2 cccc ttctt AUA              (3.7) 
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Figure 3.7. Row compression algorithm. 
 
Column compression algorithm: 

1. At the leaf level, let us define it  on each node i as: 

,ˆ
1

1
)),((




 L

l
liancessibi tt              (3.9) 

where sib(i) stands for a sibling node while ances(i,l) is the ancestor of the node i at the level l. The 
column compression of the local matrix is calculated:  

;~
H

itttt VAA
iiii              (3.10) 

2. At each non-leaf level matrices of interest are defined by children’s matrices and compressed further,    ,
2

1
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tttttti W
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          (3.11) 

,
21

~ˆ1 cc ttc AB  .
12

~ˆ2 cc ttc AB           (3.12) 

Figure 3.8. Column compression algorithm. 
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3.3.3. ULV HSS Factorization and Solution 

 
The ULV factorization is applied to the HSS compressed form of the matrix A in (3.5) in order 

to find orthogonal (U,V) and triangular (L) matrices. The factorization is done by multiplying the 

local matrix given in (3.5) at the node i by specially constructed Q and P matrices, 
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Q matrices are formed by the QL factorization of column blocks U matrices in order to 

introduce zero off-diagonal row blocks:  

,~
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1
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where 2,1,
~ kUck  are lower triangular matricies of size rck, rck being the rank of the Uck 

matrix. Q matrices are used further to define ,2,1,ˆ  kDQD ck
H
ckck  which are conveniently 

partitioned as: 

.,2,1,ˆˆ
ˆˆ

ˆ
2,2:1,2;

2,1;1,1; 



 k

DD

DD
D

ckck

ckck
ck           (3.15) 

so that 2,2:
ˆ

ckD  is a square matrix of size equal to rck. Finally, P matrices are defined by the 

following LQ factorization: 

    .0
~ˆˆ

1,1;2,1;1,1; ckckckck PDDD            (3.16) 

Applying (3.14)-(3.16) and using orthogonality properties of involved P and Q matrices, 

(3.13) may be expressed in a new form: 
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Note that all non-zero off-diagonal blocks in (3.17) are of small dimensions relative to the full 

matrix dimension. At this stage, it is easy to redefine parent generators using only a small part of 

children’s generators,  
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Note also that, for example, a square matrix Di is still saved in the compressed fashion as 

before but its new dimension is only rc1 + rc2, while after the HSS compression stage it was 

sizeof(tc1  tc2). 

Algorithm described in (3.13)-(3.18) is then performed in an upward sweep. When the root 

node is reached, an LU factorization with partial pivoting is performed on a square dense matrix 

of a dimension far smaller than the starting matrix. Once (3.18) is solved on the parent node, it is 

straightforward to use (3.17) and calculate children’s solutions. Solving the matrix is done in a 

downward sweep and the final solution is obtained when the leaf level is reached.  

 
3.4. Parallelization Strategy 

 
The parallelization strategy of the HSS-MoM-SIE method is adopted from [61] for HSS 

compression and solution and from [69] for MoM-SIE matrix filling. Communication method 

between the processes is adopted to be the same as the communication layer of state-of-the-art 

dense linear algebra library ScaLAPACK [70]: BLACS (Basic Linear Algebra Communication 

Subprograms) library [71]. Further, both libraries are used for execution of all linear algebra 

computations applied to full storage dense matrices. 
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MoM-SIE matrix filling is done as given in Section II, where the parallel matrix filing builds 

on top of the cobblestone geometrical processing as introduced in [69]. If the total number of 

processes running the simulation is Nprocs, then number of mesh groups used in the preprocessing 

is procs
g NN  . Further, each process can be described by its 2D coordinates (p, q) where p, 

q = 1..Ng and the local matrix calculated by the (p, q) process corresponds to the SIE interactions 

between the p-th and q-th mesh group. 

Matrix calculation and initial RRQR compression are done at the leaf level, where the 2D 

process grid is divided into k subgrids, with each subgrid belonging to one leaf level node and 

defining the node’s process context. Each of the k subgrids is of size gg NkN  , as shown in 

Fig. 3.9. 

Processes belonging to one leaf-level node i context are used to calculate Iti
A  , where A is 

the MoM-SIE system matrix, and its corresponding excitation vector set. All matrices are stored 

using the so-called distributed 2D block cyclic storage on a 2D process grid on a distributed 

memory systems [70]. Further, when two of the nodes at the same level have overlapping 

calculations, the calculations are non-redundantly done only on one node’s context and 

efficiently forwarded to the other node using BLACS communication routines. Following this, 

all the calculations done at children’s nodes needed at any of the parent’s nodes are forwarded in 

the upward sweep along the HSS tree. 

After the calculation of the local matrices at the leaf-level nodes, generators Di are stored, 

while the initial parallel RRQR compression is done to obtain Ui and Ri matrices, as given in the 

first step of the HSS compression (Fig. 3.7). All HSS operations (HSS compression, ULV 

factorization and solution) are performed in parallel, either in upward or downward sweep along 

the HSS tree [61]. At upper levels in the HSS tree, each node uses all children’s processes to 
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define its own context. For example, as shown in Fig. 3.4, at the third HSS level, nodes 7 and 14 

are children to the fourth level node 15 and their corresponding 2×2 2D process grids: {0,1; 2,3} 

and {4, 5; 6,7} are combined together into 2×4 2D process grid: {0, 1, 4, 5; 2, 3, 6, 7}. The 

parent context is obtained by combining the two children’s contexts either side by side or one on 

top of the other, because the size of both children’s contexts is the same. At each node, matrices 

are stored using the 2D block cyclic storage defined for the current node context [69]. 

Computations done on each of the HSS generators are performed in parallel where each process 

is running computations on its local matrix “chunk.” Throughout the computation phases, 

intracontext sequences of communication are done to ensure that the data needed for accurate 

computation is available to each process. After computation at the current node, preparation for 

the following step is done: both intracontext and intercontext data exchange and matrix 

redistribution for the new context needed on the next level of the traversal along the HSS tree. 

 
Figure 3.9. Illustration of a process context change throughout matrix filling phase and HSS 

solver on a level 3 HSS tree and using 16 processes. 
 
Details behind the communication at each step in the parallel HSS solver can be found in [61]. 

Some of the examples of intracontext communication throughout the computation phase are the 

following: In the RRQR algorithm, when finding the norm of each column, norm of each local 

column is found and then BLACS function for summing the norms in a column-wise fashion on 

a 2D process grid is used. Afterwards, a similar row-wise communication function finds the 
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maximal norm and communicates it to all context processes. Such communication subroutines 

are the standard “combine operation” BLACS subroutines. Each participating process 

contributes data that is combined with data of other processes to produce a final result.  

Similarly, the example of matrix redistribution is given in preparation of the next step moving 

up the HSS tree from level 3 to level 4. Two children’s matrices are merging, as well as their 

contexts to define parent’s matrix and a corresponding context. Due to the 2D block cyclic 

distribution of matrices, the data exchange when contexts {0, 1; 2, 3} and {4, 5; 6, 7} are 

switched to {0, 1, 4, 5; 2, 3, 6, 7} is achieved by the following pairwise data exchangesμ 0 ↔ 4, 1 

↔ 5, 2 ↔ 6, and 3 ↔ 7. 

 
3.5. Numerical results and Discussion 

 
This section provides numerical results obtained by the DHO HSS-MoM-SIE analysis. All 

simulations were run on the TACC Stampede supercomputer that was accessed through The 

Extreme Science and Engineering Discovery Environment (XSEDE) [72]. Stampede has 6400 

compute nodes where each node contains two Xeon Intel 8-Core 64-bit E5-processors (16 cores 

on each node). The core frequency is 2.7 GHz and supports 8 floating-point operations per clock 

period with a peak performance of 21.6 GFLOPS/core or 346 GFLOPS/node. Each node 

contains 32 GB of memory (2 GB/core). Nodes are interconnected with Mellanox FDR 

InfiniBand technology in a 2-level fat-tree topology [73]. 

 
3.5.1. Example 1: Spherical Scatterer 

 
As the first example of the application as well as the validation of the HSS-MoM-SIE method, 

consider the analysis of scattering from a PEC sphere of diameter d = 4.666Ȝ0, with Ȝ0 being the 
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free-space wavelength. First, consider a higher-order mesh of the scatterer, maximal specified 

size of which is to be less than or equal to a wavelength. After the meshing procedure, the patch 

size s is approximately 0.λȜ0 ≤ s ≤ 0.λ5Ȝ0 for all 96 geometrically second-order (Ku = Kv = 2) 

curvilinear quadrilateral patches modeling the sphere. The adopted current approximation orders 

are Nu = Nv = 4, which results in a total of N = 3,072 MoM-SIE unknowns. Fig. 3.10 shows the 

normalized bistatic radar cross section (RCS), 2
03D Ȝσ  , as a function of the scattered angle, in 

two characteristic plane cuts. The excitation plane wave is incident from the direction defined by 

(θinc,inc) = (λ0°,0), where θ and  are angular coordinates in the spherical coordinate system. For 

the set of results given in Fig. 3.10, number of levels in the full postordered HSS tree is chosen to 

be 5, which contains 16 leaves, while the number of processes used in the parallel simulation is 

64. In the same figure, we observe the convergence of the results to the analytical Mie solution 

with the decrease of , the RRQR relative tolerance (used in the HSS compression). 

In addition, Table 3.1 provides the information on the average error, maximal rank, memory 

consumption, and total simulation time (including matrix filling, compression, factorization, and 

solution times) for different simulations given in Fig. 3.10. The average error is obtained as the 

average of the absolute error between the normalized bistatic RCS calculated by the numerical 

method and by the analytical Mie’s series, respectively. The averaging is done by taking into 

account the error in a number (Ndir) of directions describing the bistatic RCS plane,  

.Ȝσσ1ȗ
dir

0

2
0

MIEnum
dir   N

i
ii

N
          (3.19) 

Based on the convergence of different graphs given in Fig. 3.10, as well as the average errors 

given in Table 3.1, it can be concluded that the accuracy of the results is easy to control by the 

relative tolerance or maximal rank used in the RRQR. In addition, by inspecting the results given 
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in Fig. 3.10 and Table 3.1, as well as the results of the wide range of performed simulations 

(different tree levels and RRQR relative tolerance) using the same higher order model, scattering 

results for the PEC sphere that can readily be considered as accurate are obtained in simulations 

with the maximal rank r  490. Maximal rank in the HSS compression corresponds to the 

maximal number of independent degrees of freedom (DoFs) needed for an accurate numerical 

simulation [74]. The number of DoFs needed to accurately model a scatterer should depend 

solely on the scatterer properties and not on the used discretization [63, 68, 74]. 
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Figure 3.10. Normalized bistatic radar cross section of a spherical PEC scatterer computed by 
the HSS-MoM-SIE method using preprocessed mesh given in the Fig. 2 and by the Mie’s seriesμ 
(a)  = 0 cut and (b) θ = 90° cut. 

 

TABLE 3.1 
SIMULATION PARAMETERS FOR THE RESULTS GIVEN IN FIG. 3.10 

RRQR rel. 
tolerance 

Maximal 
rank 

Time [s] 
Storage 
[GB] 

 [dB] 
( = 0 cut) 

 [dB] 
(θ = 90° cut) 

 = 110-2 385 7.76 0.04 1.4964 2.2911 
 = 510-3 433 8.00 0.05 1.3417 1.5164 
 = 310-3 464 8.21 0.06 0.7309 0.9651 
 = 210-3 493 8.27 0.06 0.0875 0.1567 
 = 110-3 531 8.79 0.07 0.0319 0.0518 
 = 510-4 575 8.92 0.08 0.0170 0.0403 

 

Further analysis that compares low- and high-order modeling results shows the advantage of 

higher order modeling when capturing the real rank of the scattering problem. In particular, the 
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adopted low-order model of the same PEC scatterer consists of 7,776 geometrically first-order 

(Ku = Kv = 1) quadrilaterals with the maximal size of 0.12Ȝ0. The adopted current approximation 

orders are Nu = Nv = 1, resulting in a total of N = 15,552 unknowns. After the initial 

discretization, when compared to the higher order model, the number of unknowns in the low-

order model is more than 5 times larger. However, due to the physical properties of the scatterer, 

the maximal numerical rank of the compressed HSS matrix should be approximately the same 

for both models.  

On the other hand, Fig. 3.11, shows the error, MIEnum σσ ii  , in the RCS for three choices of 

low-order simulations and one higher-order simulation, confirming that in order to achieve 

similar accuracy, a low-order simulation needs almost twice as large numerical rank. This is 

confirmed by the information in Table 3.2 that contains the average error for the four simulations 

given in Fig. 3.11. 

 

 
(a)      (b) 

 
Figure 3.11. Error of the normalized bistatic RCS of the PEC scatterer computed by the HSS-
MoM-SIE method with respect to the exact Mie solution: (a)  = 0 cut and (b) θ = λ0° cut. 
 

Further, note that the true low-order modelling based on RWG functions [31] defined over flat 

triangular patches uses from 500 to 600 unknowns per square wavelength [47, 48, 75], which 
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leads to a truly low order model of a PEC sphere with around 35,000 to 40,000 unknowns, 

making the number of unknowns more than 10 times larger than in the adopted HO model.  

Next, we test the scalability performance of the HSS-MoM-SIE method – in the same 

example. Because the higher order model with only 96 quadrilaterals is not well fitted for 

simulations on hundreds of processes, the scalability testing of the method is done on a low-order 

model of the sphere. All simulations used in the test are set up for the tolerance  = 5104 and 

level 5 full postordered HSS tree. Note that the number of leaves in the tree is 16, which, for the 

particular example, corresponds to the minimal number of processes that can be used in a parallel 

run of the HSS-MoM-SIE code.  The runtime of the parallel code on 16 processes is thus adopted 

to be the baseline computational time used in the speed-up calculations. To measure scalability, 

we run the same model on 64, 256, and 1,024 processes, and observe an excellent scalability 

performance in Fig. 3.12.  

TABLE 3.2 
SIMULATION PARAMETERS FOR THE RESULTS GIVEN IN FIG. 3.11 

Model type 
Maximal 

rank 
 [dB] 

( = 0 cut) 
 [dB] 

(θ = 90° cut) 

High Order 493 0.0875 0.1567 

Low Order 
825 0.2353 0.6521 
854 0.3541 0.5108 
913 0.0845 0.1947 

 
3.5.2. Example 2: NASA Almond 

 
In the second example, the HSS-SIE-MoM code is applied to analyze scattering from a NASA 

almond [76], an established benchmarking structure for monostatic RCS computations. In 

specific, we consider a PEC almond of the maximal size 42 0 at a frequency of 50 GHz, with 

the overall surface of the scatterer being equal to 1,1112
0Ȝ . The constructed higher order model 

of the almond uses a total of 16,384 curvilinear quadrilateral elements with Ku = Kv = 2 and the 
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current approximation in different directions on different patches ranging from Nu/v = 1 to 

Nu/v = 3 depending on the electrical dimensions of the quadrilateral element. The final number of 

unknowns (that would be even smaller if larger patches and even higher Nu/v were used) is 

149,756. A similar scatterer is analyzed in [75] using the model with around 450,000 unknowns. 

In addition, applying, for comparison, the true lower order quadrilateral modeling to the almond 

scatterer requires 524,288 unknowns defined over 262,144 patches with Ku = Kv = 1 and Nu/v = 1 

on all the patches.  

 
Figure 3.12. Performance and scalability of the HSS-MoM-SIE method applied to the simulation 
of a low-order PEC sphere model with the number of levels in the HSS tree equal to 5.  
 

Fig. 3.13 shows the monostatic scattering computations of the DHO model of the PEC 

almond obtained by the HSS-MoM-SIE method and validated by the full-storage direct solver 

using ScaLAPACK LU decomposition [69] simulation of the same model, as well as against the 

low-order modeling results [75]. The normalized monostatic RCS is calculated for 361 different 

directions, in the z = 0 plane, with the polarization of the incident electric field along the z-axis. 

The HSS compression is done using the relative tolerance  = 310-4 on the 5th level HSS tree. 

The maximal rank of the compressed matrix comes out to be 3,926. The simulation is run in 
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parallel on 256 processes, with matrix calculation and HSS compression times being 846 s and 

2,596 s, respectively.  Further, the HSS factorization time is 41.95 s, while the total 

backsubstitution time for all 361 excitation vectors is 5.36 s. ScaLAPACK LU decomposition 

time on the same number of processes is 8,565 s, which, in terms of the performance can be 

compared to total time of the HSS compression and factorization: 2,638 s. The compressed 

matrix storage in the DHO HSS-MoM-SIE simulation amounts to 20.78 GB, while the full 

matrix storage for the same model would require 180 GB of memory. In addition, the LO 

quadrilateral model described above would require 2.2 TB. Hence, we observe great advantages 

of the DHO modeling coupled with the direct solver and HSS compression of the MoM-SIE 

matrix in the analysis of electrically large objects with multiple excitations (right-hand side 

values).  

 
 

Figure. 3.13. Normalized monostatic RCS of a PEC NASA almond computed at 50 GHz by the 
full-storage direct ScaLAPACK LU-MoM-SIE and HSS-MoM-SIE methods. 

 
 
3.6. Conclusions 

 
This paper has proposed a novel fast scalable parallel algorithm and solver for large scattering 

problems based on double (geometrical and current-approximation) higher order MoM in the SIE 
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formulation and the frequency domain in conjunction with a direct solver for dense linear 

systems with hierarchically semiseparable structures, namely, with a HSS matrix representation 

for compression, factorization, and solution of the system matrix. In addition, a RRQR 

decomposition for memory compression has been used, with a stopping criterion in terms of the 

relative tolerance value/minimal rank, allowing for the method to store only the low-rank 

approximation of the original matrix that satisfies predefined accuracy. In order to enhance the 

HSS compression and parallelization, a method for geometrical preprocessing of the scatterers 

based on the cobblestone distance sorting technique has been employed, such that the MoM 

unknowns belonging to the same mesh group and thus having spatial locality also exhibit the 

data locality in the matrix system of equations. 

Numerical examples have shown how the accuracy of the DHO HSS-MoM-SIE method is 

easily controllable by using the relative tolerance for the matrix compression. Moreover, the 

examples have demonstrated low memory consumption, as well as much faster simulation time, 

when compared to the direct LU decomposition. Finally, great scalability of the algorithm has 

been demonstrated on more than thousand processes.  

Overall, the DHO HSS-MoM-SIE method and its future extensions and advancements are 

asymptotically faster direct algorithms for IE solutions that are memory and communication-

efficient and amenable to extreme-scale parallel computing. They also are purely algebraic and 

kernel-independent and enable dramatically faster monostatic scattering computations than 

iterative solvers and reduced number of unknowns when compared to low-order discretizations. 

This paper has focused on metallic scatterers. Nonetheless, due to the truly algebraic nature of 

the method, its extension to any electromagnetic system solved by the MoM-SIE analysis is 

straightforward. 
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4. DUFFY METHOD FOR EVALUATION OF SINGULAR POTENTIAL 

INTEGRALS OVER CURVED QUADRILATERALS WITH HIGHER 

ORDER BASIS FUNCTIONS IN SIE ANALYSIS OF ANTENNAS AND 

SCATTERERS4 

 
 
4.1. Introduction  

 
In analysis of antennas and scatterers based on the method of moments (MoM) in conjunction 

with the surface integral equation (SIE) approach [10], one of the most important problems in the 

development of a MoM-SIE technique and its implementation and optimization aimed to result 

in an accurate and efficient modeling and computational tool is the treatment of singular 

potential two-dimensional (2-D) integrals involved in the self-terms of the Galerkin impedance 

matrix, with the testing patch coinciding with the source patch, namely, when an observation 

(testing) point belongs to the source patch (with basis functions). This problem is even more 

pronounced and challenging when higher order basis functions are used for the approximation of 

surface currents of the antenna/scatterer, and especially when such functions are defined on 

curved surface (boundary) elements (patches) employed for geometrical modeling of the 

structure [5].  

Most of the previous research in overcoming the problem of singular integrals in MoM-SIE 

modeling has been devoted to handling the singularities on planar triangular patches with low-

order current approximations, typically in the form of Rao-Wilton-Glisson (RWG) basis 

functions [77]–[83]. Several works, on the other hand, deal with the problem of evaluation of 
                                                           

4 © 2014 IEEE. Reprinted, with permission, from A. B. Manic, M. Djordjevic, and B. M. Notaros, “Duffy 
Method for Evaluation of Weakly Singular SIE Potential Integrals over Curved Quadrilaterals with Higher Order 
Basis Functions,” IEEE Transactions on Antennas and Propagation, Vol. 62, No. 6,  June 2014. 
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singular potential integrals for curved quadrilateral patches with higher order basis functions 

[10], [5], [84]–[88]. In particular, singularity extraction (subtraction) consisting of analytical 

integration of a principal singular part of the integrand and numerical integration of the residual 

using quadrature formulas [77] and it is implemented for RWG triangles in [78],[79], and for 

curved quadrilateral elements with higher order hierarchical polynomial vector basis functions in 

[10], [5]. 

Singularity cancellation methods for evaluation of singular integrals are based on coordinate 

transformations, i.e., on mapping of the integration domain to a new parametric domain such that 

the Jacobian of the transformation cancels out the singular term in the integrand. As a typical 

representative of this approach, the Duffy method [89], originally proposed for a volumetric 

integration domain [90], is applied to evaluation of singular integrals over planar [80] and 

curvilinear triangles [87], [88]. A polar transformation method for singularity cancellation is 

proposed for planar triangles with RWG functions [81]. Its implementation for singular potential 

integrals over curved quadrilateral elements with higher order hierarchical polynomial bases is 

given in [84], where a comparison of this technique and the singularity extraction method [10], 

[5] is presented as well. Rectangular transformation methods for singularity cancellation, first 

proposed for curved volume MoM elements [91], are applied to solve potential integrals over 

curved quadrilateral elements with higher order hierarchical polynomial bases in [85] and [86]. 

The arcsinh transformation method is applied for evaluating singular and near-singular potential 

integrals over flat triangular and quadrilateral MoM-SIE patches [82]. Singularity cancellation 

methods for computation of singular and near-singular potential integrals for flat triangles and 

linear basis functions using four different transformations are compared in [83]. 
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Overall, there seems to be a lack of investigations and reported results on the treatment of 

singular potential integrals involved in the self Galerkin MoM-SIE impedance matrix entries for 

curved surface elements with higher order basis functions, as well as results for the accuracy and 

convergence properties of different methods for different locations of singular points in 

parametric domains, different basis functions on flat or curved surface elements, and overall.  

In response to the above lacks of more adequate methods and more comprehensive studies of 

various methods, this paper proposes a Duffy method for singularity cancellation to evaluate 

singular potential integrals involved in the self Galerkin MoM-SIE impedances defined on 

Lagrange-type generalized curved parametric quadrilateral surface elements of arbitrary 

geometrical orders with polynomial basis functions of arbitrary current-approximation orders.  

This paper also presents a comparison of the integration accuracy when using five different 

methods for evaluation of singular potential integrals, namely, (i) the singularity extraction 

method [5], (ii) the Duffy method for singularity cancellation (proposed in this paper), (iii) the 

polar transformation method for singularity cancellation [84], (iv) the quadratic rectangular 

transformation method for singularity cancellation [85], and (v) the cubic rectangular 

transformation method [86]. The study is performed for the integrals defined on a flat and a 

curved patch, both elements being electrically large, namely, two wavelengths in each 

dimension, for constant basis functions and for a choice of high-order polynomial bases, and all 

for five different characteristic locations of the singular point on the patch. In addition, example 

of full 2-D/2-D singular integral defined over highly-curved and badly-shaped patch is given. 

We show that overall, of the five integration methods considered, the proposed Duffy method 

for singularity cancellation comes out to be the most accurate, the most rapidly converging with 

the increase of the order of integration formulas, and the fastest to execute. 
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4.2. Theory 

 
We consider a MoM-SIE model of an antenna or scatterer built using generalized curved 

parametric quadrilaterals of arbitrary geometrical orders Ku and Kv (Ku, Kv  1), shown in Fig. 

4.1 and analytically described in the parametric vu   domain as [10] 

 
 u vK

i

K

j

ji
ij vuvu

0 0

),( rr ,    1,1  vu  ,            (4.1) 

where ijr  are constant vector coefficients related to position vectors of interpolation nodes 

defining the quadrilateral. When these elements are used in conjunction with higher order 

polynomial basis functions, all entries of the Galerkin impedance matrix can be found as linear 

combinations of 2-D/2-D Galerkin integrals [10], which, for the case of testing and basis 

functions being defined on the same patch (self Galerkin integrals), contain the following 

singular inner 2-D basic potential integrals computed at an observation (testing) point ),( 00 vu  

belonging to the source quadrilateral patch:  
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with g being the free-space Green’s function, f the operating frequency of the antenna/scatterer, 

and R the distance of the source point ),( vu  from the point ),( 00 vu , referred to as the singular 

point. When the two points coincide, R is zero, and a special treatment of the singularity is 

needed. In what follows, we outline singularity cancellation Duffy method and overview four 

different methods for solving integrals in (4.2).  
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Figure 4.1. Generalized curved parametric quadrilateral defined by (4.1). 
 

4.2.1. Duffy Method for Singularity Cancellation 

 

Here, we propose a Duffy method to solve integrals in (4.2) defined over curvilinear, 

electrically large patches with higher order bases, which is based on subdividing the parametric 

vu   square domain into four parametric triangles defined by the singular point and the vertices 

of the square, as shown in Fig. 4.2. Note that this is a modification in the spirit of the original 

Duffy method initially proposed for a 3-D domain of integration [90], which would imply a 

subdivision of the parametric square into eight right-angled triangles (much like in Fig. 4.4). 

Each triangle in Fig. 4.2, having the singular point as one of its vertices, is then independently 

mapped into a new sp  domain as illustrated on example of first region. In [87] Duffy method is 

implemented for triangle local coordinates while in [88] it is further developed using mapping of 

curvilinear triangle to isosceles right triangle. 

Mapping to the sp   domain differs for different triangles in Fig. 4.2 but can be expressed in 

a unified way as follows:  

pcaa  0 , psbb  0 , 10  p , 21 sss  , constc ,     (4.3) 

with coordinates a  and b  standing for either u  or v . With this notation, Table 4.1 provides 

mapping parameters for each region (triangle). 
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Based on (4.3), the Jacobian of the mapping can be defined and computed, for every triangle, as  

cp

s

b

s

a
p

b

p

a






 





 .              (4.4) 

 
 

Figure 4.2. Duffy method for singularity cancellation: subdivision of the parametric u−v square 
domain into four parametric triangles with local constant p and constant s parametric lines in 
triangular region 1. 
 

TABLE 4.1 

PARAMETERS OF THE DUFFY MAPPING IN (4.3) FOR  

THE FOUR TRIANGULAR REGIONS IN FIG. 4.2. 

Region 1 Region 2 Region 3 Region 4 

au  , bv   av  , bu   au  , bv   av  , bu   

0
1
1 1 vs   0

2
1 1 us   0

3
1 1 vs   0

4
1 1 us   

0
1
2 1 vs   0

2
2 1 us   0

3
2 1 vs   0

4
2 1 us   

 

Combining (4.3) and (4.1), the radial distance from the singular point in triangular region l 

in Fig. 4.2 can be expressed as a polynomial in p  with coefficients d being functions of s , as 

follows [note that the only term in the binomial expansion of jivu  using (4.3) that does not 

contain p  is ji vu 00 ]: 
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Hence, the singular integral over region l can be expressed using (4.2), (4.5), and (4.4) in a 

way that removes (cancels) the singularity,  
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namely, the singular dependence on the p  coordinate in (4.5) is canceled by p  in the expression 

for the Jacobian in (4.4), so the integral in the final form in (4.6) can be evaluated in a 

straightforward fashion numerically, using quadrature (e.g., Gauss-Legendre) formulas. Finally, 

the contributions of individual triangles are added up for the total potential integral, 

4321
mnmnmnmnmn IIIII  . 

 
4.2.2. Four Integration Methods used for Comparison 

 

Singularity extraction method: The method of extracting the singularity consists of 

analytical integration of a principal singular part of the integrand over a (generally not 

rectangular) parallelogram whose surface is tangential to the surface of the generalized 

quadrilateral at the singular point, and numerical integration of the rest using Gauss-Legendre 

quadrature formulas [10], [5]. The parallelogram is defined by the unitary vectors [10] of the 

generalized quadrilateral at the singular point. The singular integral is evaluated analytically as in 

[77] while the other integral is well behaved in the vicinity of the point ),( 00 vu  and can be 

accurately integrated numerically. 
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Polar Transformation Method for Singularity Cancellation: Polar transformation [84] 

uses the same triangulation as in the Duffy method in Fig. 4.3(a) while mapping the parametric 

vu   domain into a new θρ  domain, with a standard meaning of the radial coordinate, ρ , and 

angular coordinate, θ , in the polar coordinate system centered at the singular point, ),( 00 vu , in 

the vu   domain. 

Quadratic and Cubic Rectangular Transformation Methods for Singularity 

Cancellation [85], [86], subdivides the parametric vu   square domain into four rectangular 

regions whose common vertex is the singular point. Note that the rectangular transformation for 

singularity cancellation in SIE integrals is applied with 2t  (quadratic transformation) in [85], 

while [86] implements the same transformation with 3t  (cubic transformation). 

 
4.3. Numerical Results and Discussion 

 
In this section, we compare the integration accuracy when using five different methods for 

evaluation of singular potential integrals, (i) the singularity extraction method, and four 

singularity cancellation methods, namely, (ii) the Duffy method, (iii) the polar transformation 

method, (iv) the quadratic ( 2t ) rectangular transformation method, and (v) the cubic (3t ) 

rectangular transformation method, described in the previous section. All methods are 

implemented for solving integrals in (4.2) defined on curved quadrilaterals described by (4.1), 

for several choices of the singular point. 

In examples, the integrals are defined on a square plate and on a spherical patch, respectively, 

for two choices of basis functions, that for m=n=0 and that for m=2 and n=6 in (4.2), and for 

five different locations of the singular point defined in the vu   parametric domain as shown in 
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Fig. 4.3 and specified in Table 4.3. Example of convergence results for 2-D/2-D integral defined 

on highly-curved and badly-shaped geometry is also considered. 

 

 
Figure. 4.3.  Five different choices of the singular point (u0, v0), with parametric coordinates 
given in Table 4.3, in the u – v parametric domain, over curved quadrilaterals in Fig. 4.1.  

 

All results are given in terms of the relative integration error computed as  

mnmnmn III
~~į   ,             (4.7) 

where mnI
~

 is the reference “exact” value of the integral. All computations are performed in 

double machine precision. 

 
4.3.1. Integral with Constant Basis Functions over a Square Plate 

 
As the first example, we consider the integral in (4.2) for m=n=0, namely, with constant 

basis functions, over a square flat plate of side length a=2m, at a frequency f=300MHz, so 

that a=2Ȝ, with Ȝ standing for the free-space wavelength. With reference to Fig. 4.4, the “exact” 

value 00
~
I  in this special case (flat plate) can be obtained by first analytically transforming the 2-

D integral in u and v as 
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and then numerically solving the final non-singular 1-D integrals in θ . This example’s 00
~
I  

integral values are given in Table 4.2. Fig. 4.5 shows the error in (4.7) against the orders of 

Gauss-Legendre integration formulas, i.e., numbers of integration points, in each of the region’s 

local directions, NGL (the same in both directions), for five different singular points in Fig. 4.3 

and five different integration methods.    

 
Figure 4.4. For integration in (4.8) over one of the eight right-angled triangles constituting a 
square flat plate, to compute the reference “exact” value of the integral I00 
 

TABLE 4.2 

EXACT INTEGRAL VALUE 00
~
I  OVER FLAT PLATE OF SIZE 2 FOR SINGULAR POINTS GIVEN IN FIG. 4.3. 

Point A 0.0390728194148081 - 0.0338074127356726i
 

Point B - 0.0104077559218362 - 0.0873743257011760i 

Point C - 0.019482990210943  - 0.117888060820110i 

 

Based on Figs. 4.5(a)-(c), we conclude that, for singular points A, B, and C, the Duffy method 

and the polar transformation method for singularity cancellation perform the best, with the Duffy 

method converging even faster in some cases than the latter method. We also observe that, 

accuracy and convergence properties of the singularity extraction method noticeably outperform 

the cubic rectangular transformation method, and especially the quadratic rectangular 

transformation method. From Figs. 4.5(d)-(f), we realize that the Duffy method is considerably 

more accurate and faster converging than the polar transformation method for some specific 
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choices of singular points, i.e., points D and E, and that the singularity extraction method 

features the highest convergence rate of all the methods for smaller values of NGL.  

 
Figure 4.5. Evaluation of the integral I00 (for m=n=0) in (4.2) over a square flat plate using the 
singularity extraction method, the Duffy method for singularity cancellation, the polar 
transformation method for singularity cancellation, the quadratic rectangular transformation 
method for singularity cancellation, and the cubic rectangular transformation method: integration 
error in (4.7) against the order of Gauss-Legendre integration formulas, NGL, for five different 
singular points in Fig. 4.3 [Ĩ00 is computed as given in (4.8) and Fig. 4.4]. 

 

Note, however, that this is electrically a rather large patch, namely, the 2×2 plate 

considered as a single MoM element, and that smaller patches, e.g., those on the order of × 

and 0.5×0.5, also used in higher order MoM-SIE techniques, and especially electrically small 

patches measuring 0.1×0.1 and less, characteristic for low-order MoM-SIE techniques, require 

far lower values of NGL for a given accuracy of integration and a given machine precision 

(double precision).  

Overall, when NGL is not limited, as shown in Figs. 4.5(e)-(f), the best convergence behavior 

is achieved by the Duffy method. While for some singular points and lower values of NGL, the 



72 
 

singularity extraction method reaches certain accuracy levels the fastest, further improvement of 

its accuracy at the expense of adopting higher NGL values is rather slow. On the other hand, both 

the Duffy method and the polar transformation method exhibit a logarithmic-type of convergence 

with increasing NGL.  

Among the results for all singular points, the worst accuracies and convergence behaviors for 

all integration methods are those in Fig. 4.5(f). The singular point E in  

Fig. 4.3 thus comes out to be the worst-case scenario for the evaluation of the integral 00I  using 

any of the methods, and the error graphs in Figs. 4.5(e) and (f) may be considered as defining 

and limiting the accuracy and convergence properties of the individual methods as long as the 

integration performance at specific singular points is concerned. 

Table 4.4 provides information on computation times for the five integration methods, for 

singular point A and NGL=20. We see that, out of all the methods, the Duffy method is the 

fastest to execute. 

TABLE 4.3 

PARAMETRIC COORDINATES OF SINGULAR POINTS IN FIG. 4.3. 

Point A Point B Point C Point D Point E 

00 u
 

5.00 u  6.00 u  8.00 u
 

9.00 u  

00 v
 

1.00 v  4.00 v  8.00 v
 

9.0 0 v  

 
 
4.3.2. Integral with High-Order Basis Functions and Geometry  

 
In the second example, we evaluate the integral in (4.2) for a selection of high-order basis 

functions given by m=2 and n=6 over a curved quadrilateral patch (in Fig. 4.1) of the fourth 

geometrical order, namely, with Ku=Kv= 4 in (4.1), modeling one-sixth of a sphere of radius 
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a=1.2732m, at a frequency f=300MHz, with the patch being about 2 across. Shown in Fig. 

4.6 is the geometry of the patch and the error in (4.7) against the order of Gauss-Legendre 

integration formulas, NGL, for singular points A, B, C, D, and E in Fig. 4.3 and the five different 

integration methods. Based on the results in the previous example, as well as on extensive 

numerical investigations of the five methods in this (second) example, it is established that both 

the Duffy method and the polar transformation method for singularity cancellation with the order 

of Gauss-Legendre integration formulas adopted to be as high as 200NGL  can reliably be 

considered as the fully converged and highly accurate, with negligible differences between 

results of the two method (for all five singular points analyzed, the relative difference between 

results obtained using Duffy and polar transformation methods with 200NGL  is less than 

1.5×10-14). Therefore, we choose the solution by the Duffy method with 200NGL  as the 

reference (“exact”) result for 26
~
I  in (4.7) in this example. 

Conclusions about the accuracy and convergence properties of different integration methods, 

and their relative advantages and shortcomings, for different singular points and overall, are 

similar to those drawn in the previous example. In addition, we realize that all the methods 

perform well in Fig. 4.6(a) since singular point location A yield non-singular integral in (4.2), 

due to the polynomial part of the integrand having higher-order zeros. Figs. 4.6(b)-(f) 

demonstrate that the polar transformation method offers substantially slower convergence for 

singular integrals defined over curved patch when compared to ones defined on the flat 

geometry. 

Further, for low orders of integration formulas, five methods result in a comparable precision; 

however, with the increase in number of integration points, Duffy and polar transformation 

methods yield a convergence superior to other methods.  
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Figure 4.6. Evaluation of the integral I26 (for m=2 and n=6) in (4.2) over a spherical patch 
using five different integration methods: integration error in (4.7) against the order of integration 
formulas, NGL, for five different singular points (Ĩ26 is computed by the Duffy method with NGL 
= 200). 
 
4.3.3. Example of 2-D/2-D Integral  

 
In addition, in similar fashion as in previous example, we evaluate full 2-D/2-D integral, used 

to assembly Galerkin impedance matrix element, defined on the highly-curved and badly-shaped 

patch (Ku=Kv= 4) modeling half of the oblate spheroid of maximal dimension 2 with order of 

testing and basis polynomials being mt= nt = 4 and mb= nb = 6, respectively. Based on 

conclusions given in [92] we adopted NGL = 6 for calculation of outer, well-behaved integral 

while NGL for inner 2-D integration was ranged as depicted in Fig. 4.7. Patch geometry and 

convergence results of integral 4466I  are given in the Fig. 4.7 while conclusions drawn stay the 

same as in previous examples. Note that accuracy of 10-3 and 10-4 that can be considered as 

optimal in higher-order SIE modeling is first reached by the Duffy method. 
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TABLE 4.4 

COMPUTATION TIMES FOR FIVE INTEGRATION METHODS (INTEGRAL I00 
OVER  

A SQUARE FLAT PLATE, SINGULAR POINT A, AND NGL=20). 

Singularity 
extraction 

Duffy 
method 

Polar 
transform. 

Quadratic 
transform. 

Cubic 
transform. 

3λ0 ȝs
 

328 ȝs 35λ ȝs 3λ0 ȝs
 

374 ȝs 

 

 
4.4. Conclusions 

 
This paper has proposed a Duffy method for singularity cancellation to evaluate singular 

potential integrals involved in the self Galerkin impedances defined on Lagrange-type 

generalized curved parametric quadrilateral surface elements of arbitrary geometrical orders with 

polynomial basis functions of arbitrary current-approximation orders in MoM-SIE analysis of 

antennas and scatterers. In addition to providing a new singularity cancellation method for the 

considered MoM-SIE elements and basis functions, the paper is considered as a step forward in 

overcoming the current lack of evaluations of various possible singularity treatment and 

integration methods, and assessments of the accuracy and convergence properties of different 

methods, and their relative advantages and shortcomings, for different locations of singular 

points in parametric domains, different basis functions on flat or curved surface elements, and 

overall.  

A final overall conclusion based on evaluations of singular potential integrals in several 

examples, is that, of the five integration methods considered, the Duffy method for singularity 

cancellation comes out to be the most accurate, the most rapidly converging with the increase of 

the orders of Gauss-Legendre integration formulas, and the fastest to execute.  
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Figure 4.7. 2-D/2-D I4466 integral over badly–shaped and highly–curved patch. 
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5. NUMERICAL COMPUTATION OF NEAR-SINGULAR AND NEAR-

HYPERSINGULAR INTEGRALS IN HIGHER ORDER METHOD OF 

MOMENTS USING CURVED QUADRILATERAL PATCHES 

 
 
5.1. Introduction  

 
In numerical techniques based on the method of moments (MoM) in the surface integral 

equation (SIE) formulation in the frequency domain, special attention must be paid to achieving 

high accuracy, which includes advanced methods for numerical computation of singular and 

near-singular integrals defined on MoM-SIE patches. The techniques for dealing with such 

integrals, which arise for zero or small source-to-field distances in computing the MoM matrix 

entries, can broadly be classified into singularity extraction or subtraction methods and 

singularity cancellation or coordinate transformation methods. Also, when a MoM-SIE method is 

aimed at analysis of both metallic and dielectric/magnetic structures, such generality in 

electromagnetic MoM-SIE simulations increases the singularity of the integral kernel, and 

requires special treatment of highly singular integrals. Finally, this problem is even more 

pronounced when higher order basis functions are used for the approximation of electric and 

magnetic equivalent surface currents in the MoM-SIE method and when such functions are 

defined on curved patches.  

This paper presents a novel method for numerical computation of near-singular (potential) 

and near-hypersingular (field) integrals defined on Lagrange-type generalized curved parametric 

quadrilateral MoM-SIE surface elements of arbitrary geometrical orders with polynomial basis 

functions of arbitrary current-approximation orders. The integrals are evaluated using a method 

based on the singularity extraction, which consists of analytical integration of a principal singular 
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part of the integrand over a (generally not rectangular) parallelogram whose surface is close to 

the surface of the generalized quadrilateral near the singular point and numerical integration of 

the rest using Gauss-Legendre quadrature formulas.  

The majority of the existing extraction techniques, used in MoM-SIE modeling so far, have 

been developed for planar triangular patches involving low-order basis functions. Few of those 

have been extended to curved patches but without really taking into account the curvature of the 

surface. The presented integration technique considers the curvature of the patch by extracting 

multiple terms in the evaluation of the principal singular part. Further, the theory behind the 

extraction technique has been extended to consider integrals with higher order basis functions.  

Numerical examples demonstrate fast convergence of the novel integration method with 

increasing the orders of Gauss-Legendre integration formulas, i.e., numbers of integration points, 

over quadrilateral patches, in a variety of cases. Integrals are calculated over curved patches with 

curvature ranging from flat or almost flat patches to those with very pronounced curvature, such 

as spherical patches. Examples show steady behavior of the integration method for arbitrary 

choice of the location as well as the distance of the near-singular point. Further, examples 

investigate the numerical behavior of integrals with different choices of basis functions varied 

from constant approximations to very-high-order polynomial bases, and for elements with sizes 

varied from electrically very small to electrically large quadrilaterals extending to a couple of 

wavelengths in each dimension. 

This paper is organized as follows. Section 5.2 gives an overview of the novel singularity 

extraction. In Section 5.3 numerical results and discussion are provided, followed by the 

conclusions in Section 5.4. 
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5.2. Double higher order singularity extraction  

 
5.2.1. Near-Singular and Near-Hyper-Singular Integrals 

 
We consider a MoM-SIE model of an antenna or scatterer built using generalized curved 

parametric quadrilaterals of arbitrary geometrical orders Ku and Kv (Ku, Kv  1), shown in Fig. 

5.1 and analytically described in the parametric vu   domain as [10]. 

 
 u vK

k

K

l

lk
kl vuvu

0 0

),( rr , 1,1  vu ,           (5.1) 

where klr  are constant vector coefficients related to position vectors of interpolation nodes 

defining the quadrilateral. When these elements are used in conjunction with higher order 

polynomial basis functions, all entries of the Galerkin impedance matrix can be found as linear 

combinations of 2-D/2-D Galerkin integrals [10]. In a general case, these contain the following 

singular inner 2-D basic potential integrals computed at an observation (testing) point , that is 

close to the source quadrilateral patch:  

  


1
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Rji
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,          


1

1

1

1
3

jβ
dd

π4

jβ1
2 vu

R

eR
vuI

R
ji

ij
, 

00ȝε2β f ,   nrr dvuvuR  ),(),( 00 ,          (5.2) 

with f being the operating frequency of the antenna/scatterer, and R the distance of the source 

point ),( vu  from the field point, referred to as the near-singular point. ),( 00 vur  is the position 

vector of the so called close point projection (cpp) from the field point onto the quadrilateral of 

interest, and d0 is the distance of the field point from its projection, while n is the unit normal to 

the quadrilateral surface. When the two points are close, R becomes small, and a special 

treatment of the near-singularity is needed.   
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   (a)      (b) 

Figure 5.1.  a) Generalized curved parametric quadrilateral patch for double-higher-order MoM-
SIE modeling. (b) Sketch of the orthogonality factor for maximally orthogonalized hierarchical 
basis functions of the eight order. 

 

The traditional singularity extraction method consists of extracting the singularity of 

analytical integration of a principal singular part of the integrand over a (generally not 

rectangular) parallelogram, whose surface is tangential to the surface of the generalized 

quadrilateral at the singular point, and numerical integration of the rest using Gauss-Legendre 

quadrature formulas [10], [5]. The parallelogram is defined by the unitary vectors [10] of the 

generalized quadrilateral at the cpp point. The near-singular integral is evaluated analytically as 

in [93] while the other integral is well behaved in the vicinity of the point and can be accurately 

integrated numerically. 

The vector R, which describes the distance between the source and test points, can be written 

as: 

.),(

                      1
0 0

000

 
lk

K

k

K

l

lk
kl

u v

dvduddvvduu anR           (5.3) 

The notation akl is used to represent the kth and lth derivative of r with respect to u and v, 

evaluated at the point (u0, v0), close point projection of the near-singular point onto the 

curvilinear surface. We consider that, by the definition of the cpp point, n = a10a01/| a10a01| at 

(u0, v0), then the expansion of R2 can be rewritten as: 
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,cos222222
0

2 tdudvbbdvbdubdR vuvu             (5.4) 

where bu, bv and cos are defined by : naaa  2001010
2 2dbu , naaa  0200101

2 2dbv  and 

  vubbd naaa  1100110 2cos , while d0 is the distance of near-singular point to its 

projection. Furthermore, it is worth noting that t is a polynomial of du and dv with all terms 

being of at least the third order. 

Novel higher order extraction introduces a new type of parallelogram tangential to the 

quadrilateral at (u0, v0), so that RP, the distance between any parallelogram point from the near-

singular is dudvbbdvbdubdR vuvuP cos222222
0

2  , i.e. tRR P  22 . Consequently, the 

parallelogram used for extraction of the integrand singularities is tangential to the quadrilateral at 

the cpp point and has sides of the length bu and bv with an  angle between them. 

 

  

Figure 5.2. Illustration of the singularity extraction method based on the analytical integration 
over parallelogram tangential to the quadrilateral at the close point projection. 

 

In order to account for the curvature of the quadrilateral, the discrepancy between distances 

from curvilinear patch and the flat parallelogram can be expanded as: 
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Following the same idea, the expansion of the integrands that considers higher order terms is 

done as follows, 
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with C and D being polynomials of du and dv. In the same fashion as in (5.5), it is easily shown 

that expansions in (5.6) consist exclusively of odd terms of RP. 

Finally, integrals given in (5.2) are calculated by applying the numerical integration to the 

smooth integrand obtained by subtracting the truncated expansions given in (5.6) from the 

original integrand. Integration of the higher-order integrals over the parallelogram is performed 

analytically. 

 
5.2.2. Analytical integrals over parallelogram 

 
Analytical closed form formulas for computing the integrals involving higher order basis 

functions and n
PR  (n  3) singularities, over flat surfaces are first developed in [93]. Here, these 

formulas are extended to consider integrals of this type for any odd n. For the simplicity of this 

formulation, close projection point (u0, v0) is assumed to be (0,0), without any loss of generality 

for the formulas developed here. 

First, a local orthogonal xy coordinate system is introduced as given in Fig. 5.3. Next, the 

local u and v coordinates, as well as their corresponding unit vectors, are represented as:  

 
,

ctgα
ub

yx
u

 ,
αsinvb

y
v  ,ˆˆ xu   .sinˆcosˆˆ  yxv           (5.7) 
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Furthermore, in the same fashion as in [93], polar coordinates are defined by vvbuubρ vu ˆˆ  , 

while local coordinates can be defined via the scalar product of vectors as: 

  yctgx
b

u
u

ˆˆ1   
, .

sin

ˆ



vb

y
v



           (5.8) 

 

 

Figure 5.3. Parallelogram in the local nonorthogonal uv coordinate system and its corresponding 
orthogonal local xy coordinate system. 

 

Finally, the surface gradient is defined as     n
P

n
Ps RnR 22    for any odd n. The last 

equation is used together with (5.8) to rewrite the integrals over the parallelogram: 

 
    
       


















s

qp
s

n
P

qpn
Ps

u

qp

s

n
Ps

u

qp

s

n
P

s u

qpn
P

dSvuRvuR
nb

yx

dSvuR
nb

yx

dSvuR
b

yx
dSvuR

.
2

ˆctgαˆ

 
2

ˆctgαˆ

ˆctgαˆ

1212

12

1

         (5.9) 

The last equation in (5.9) is obtained by applying the gradient product rule. In addition, the 

gradient of the simple polynomial functions in the local coordinate system can be expressed as: 

  .ˆ
sin

ˆctgαˆ
111

y
b

vqu
y

b

vpu
x

b

vpu
vu

v

qp

u

qp

u

qp
qp

s 
         (5.10) 
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So, if 
s

n
P

qpqpn
s dSRvuI ,,  a surface integral across the parallelogram and, 


iline

n
P

qpqpn
linei dlRvuI

 

,,
,  is a line integral along the ith parallelogram side (as labeled in Fig. 5.3), 

then formulas may be obtained via the divergence theorem from (5.9) as: 
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with the corresponding coefficients being  2sin
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Formulas given in (5.11) and (5.12) can be used in the recursive fashion to calculate analytical 

solution for any qpn
sI ,,  integral. The traversing through recursive formula is applied until 

1,1,1,0,0,1,0,0, ,,, n
s

n
s

n
s

n
s IIII  are reached. Note that recursion in n is done in steps of two, so all 

remaining terms have n odd. Once all terms can be described by (p, q) (0, 0), (0, 1), (1, 0), (1, 

1), special (p, q) independent recursive formulas are developed leading to the final solution, 

which depends only on integrals with known analytical solutions: 

1,0,30,1,30,0,31,0,10,1,10,0,1 ,,,,, 
ssssss IIIIII . By following the procedure described in [93], 

recursive formulas for line integrals are developed in the same fashion. 

The main difference between the work presented here and work done by Prof. Oijala in [93], 

is the extension of these formulas to any odd integer n. Originally, work in [93] was developed 
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for higher order basis functions over flat triangles with no need to calculate integrals with n < −3. 

However, the developed scheme was not applicable to curvilinear patches. Future development 

of this novel extraction scheme consists of its application to full 4D integrals arising in 

computation of the impedance matrix elements from the MoM solution of various integral 

equation formulations which are used in the electromagnetic analysis of metallic, dielectric and 

composite structures. 

 
5.3. Numerical Results 

 
 In this section, the integration accuracy using the new singularity extraction method is 

evaluated. All methods are implemented for solving integrals in (5.2) defined on curved 

quadrilaterals described by (5.1), for arbitrary choice of the near-singular point. 

All results are given in terms of the relative integration error computed as  

mnmnmn III
~~

logį 10   ,        (5.13) 

where mnI
~

 is the reference “exact” value of the integral. All computations are performed in 

double floating-point precision. Note that the novel extraction method performs numerical 

integration over the entire uv domain without subdividing it into four square or triangular 

subdomains, having close point projection point as the new vertex. The described subdivision is 

characteristic of the majority of extraction or cancellation schemes, which overall would 

introduce four times more integration points. The described subdivision is very inefficient, 

especially when projection is close to the domain edge, which, in the Galerkin type of testing, 

describes the majority of numerical cases of near-singular integrals. 

Furthermore, local coordinates of the close point projection used in numerical examples are 

chosen to show convergence of the method for cases where projection is very close to the edge 



86 
 

of the integration domain, i.e. cases where other integration methods exhibit very low accuracy 

and, in some cases, even divergence.  

 
5.3.1. Near-Singular and Near-Hypersingular Integrals over Curvilinear Spherical patch 

 
In the first set of numerical results, we evaluate the integrals in (5.2) for a selection of both 

low-order and high-order basis functions given by (p, q)=( 0, 0) and (p, q)=( 6, 6), 

respectively, over a curved quadrilateral patch (in Fig. 5.1a) of second geometrical order, i.e. 

Ku=Kv= 2 in (5.1), modeling one-sixth of a sphere of radius a=1m, at a frequency β = 2 rad/m 

and distance d0 = 0.001m, while close point projection is performed at local coordinates (u0, v0) = 

( 0.9, 0.9). The integrals are calculated using novel double higher order singularity extraction 

with the expansion in (5.6) truncated at i = 5 and full expansion of C and D coefficients (5.6).  

Figs. 5.4a and 5.4b show excellent convergence of near singular and near hypersingular 

integrals, respectively, for (p, q)=( 0, 0) with the increase of number of Gauss-Legendre points. 

In addition, Figs. 5.4c and 5.4d show the same type of results for (p, q)=( 6, 6) integrals. 

In order to show robustness of the method, for the same choice of the close point projection, 

distance d0 is ranged from 10-12 m to 10-2 m, covering the full range of near-

singular/hypersingular points (near-singular/hypersingular behavior). Figures 5.5a-5.5d 

correspond to the cases analyzed in the Figs 5.4a to 5.4d, respectively, and show great robustness 

and accuracy of the method for a number of Gauss-Legendre integration points being NGL=8. 
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a) b) 

c) d) 
Figure 5.4.  Convergence of the novel higher order singularity extraction with the increase of 
NGL points on the second order spherical patch, modeling one sixth of the sphere, with cpp local 
coordinates (u0, v0) = ( 0.9, 0.9) and d0 = 0.001m: a) (p, q)=( 0, 0), singular integrals, b) (p, 
q)=( 0, 0), hypersingular integrals, c) (p, q)=( 6, 6), singular integrals, d) (p, q)=( 6, 6), 
hypersingular integrals. 

 

 
5.4. Near-Singular and Near-Hypersingular Integrals calculated using optimized 

expansion of power series 

 
Further, on a new set of results, expansion used in higher order singularity extraction (5.6) is 

again truncated at i = 5 while optimal choice of C and D coefficients contains only the highest 

order term in the expansion.  
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a) b) 

c) d) 
Figure 5.5.  Accuracy of the novel higher order singularity extraction over the full range of 
nearsingular distances on the second order spherical patch, modeling one sixth of the sphere, 
with cpp local coordinates (u0, v0) = ( 0.9, 0.9) and NGL=8 a) (p, q)=( 0, 0), singular integrals, 
b) (p, q)=( 0, 0), hypersingular integrals, c) (p, q)=( 6, 6), singular integrals, d) (p, q)=( 6, 6), 
hypersingular integrals. 

 

Figs. 5.6a and 5.6b show convergence of singular and hypersingular integrals, respectively, 

for a higher order polynomial choice (p, q)=( 6, 6) on the spherical patch described in the 

previous example, at a frequency β = 2 rad/m and distance d0 = 0.0001m, while close point 

projection is at local coordinates (u0, v0) = ( 0.99, 0.99). In addition, Fig. 5.6c and 5.6d show 

excellent convergence of singular and hypersingular integrals, respectively, for the same choice 

of distances and close point projection coordinates on a non-planar, distorted bilinear patch.  
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a) b) 

c) d) 
Figure 5.6.  Convergence of the novel higher order singularity extraction calculated using 
optimized expansion of power series, with cpp local coordinates (u0, v0) = ( 0.99, 0.99), d0 = 
0.0001m and (p, q)=( 6, 6), over a) spherical patch, singular integrals, b) spherical patch, 
hypersingular integrals, c) bilinear patch, singular integrals, d) bilinear patch, hypersingular 
integrals. 

 

 
5.5. Conclusions 

 
A novel method for numerical computation of near-singular (potential) and near-

hypersingular (field) integrals defined on Lagrange-type generalized curved parametric 

quadrilateral MoM-SIE surface elements of arbitrary geometrical orders with polynomial basis 

functions of arbitrary current-approximation orders was presented. The integrals are evaluated 
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using a method based on the singularity extraction, which consists of analytical integration of a 

principal singular part of the integrand over a parallelogram whose surface is close to the surface 

of the generalized quadrilateral near the singular point and numerical integration of the rest using 

Gauss-Legendre quadrature formulas. The parallelogram used in the new technique is 

constructed in order to approximate geometry of the curved quadrilateral more accurately than 

the parallelogram used in the traditional singularity extraction. Further, curvature of the 

quadrilateral was approximated by introducing higher order terms in the integral expansion. In 

addition, special analytical formulas were developed to solve for higher order integrals over 

planar surfaces. Finally, the method was optimized and tested on a special set of numerical 

experiments chosen because they exhibited very low accuracy (and in some cases even diverged) 

when analysed by other integration methods. The overall conclusion is that the new integration 

method is very robust and performs extremely well in all tested examples.  
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