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ABSTRACT

FAST AND ACCURATE DOUBLE-HIGHER-ORDER METHOD OF MOMENTS
ACCELERATED BY DIAKOPTIC DOMAIN DECOMPOSITION AND MEMORY

EFFICIENT PARALLELIZATION FOR HIGH PERFORMANCE COMPUTING SYSTEMS

The principal objective of this dissertation is to develop and test a robust method based on the
method of moments (MoM) surface integral equation (SIE) formulation for electromagnetic
analysis of dielectric and magnetic scatterers and antennas in the frequency domain using double
higher order (DHO)mesh discretization. It is well known that by using higher order basis
functions for current/field modeling in computational electromagnetics (CEM), significant
reductions in the number of unknowns, as well as faster system matrix computation/solution, can
be achieved when compared to the traditional low order modeling. Tightly coupled with using
higher order basis functions is higher order geometry modeling and together they lay foundation
to double higher order (DHO) modeling. Double (geometrical and current) higher order
modeling enables using large curved patches, which can greatly reduce the number of unknowns
for a given problem and enhance the accuracy and efficiency of the computation. Element orders
in the model can also be low both in terms of basis function order or geometrical order, so the
low-order modeling approach is actually included in EH¢O modeling. So, a whole range of
element sizes and shapes, geometrical orders, and current approximation orders can be used at
the same time in a single simulation model of a complex structure using the high order (more

precisely, lowto-high order) CEM technique.



The two major issues arising in the application of the MoM-SIE numerical methods when
solving large and computationally expensive electromagnetic problems are: 1) fast and accurate
calculation of the system matrix entrances arising in the MoM-SIE formulation and 2) overall
computational and memory storage complexity of the method. The goal of this dissertation is to
propose and validate a solution for both of thgommethod’s bottlenecks.

The accurate and fast computation of the system matrix includes advanced methods for
numerical computation of singular and near-singular integrals defined on the surface mesh
elements. When the method is aimed at analysis of both metallic and dielectric/magnetic
structures, the singularity of the integral kernel increases, and requires special treatment of
highly singular integrals. Finally, this problem is even more pronounced when higher order basis
functions are used for the approximation of electric and magnetic equivalent surface currents
defined on curved patches. This dissertation presents a novel method for numerical computation
of near-singular (potential) and near-hypersingular (field) integrals defined on Lagyaege-t
generalized curved parametric quadrilateral surface elements of arbitrary geometeiczairath
polynomial basis functions of arbitrary current-approximation orders. The integrals areexValuat
using a method based on the singularity extraction, which consists of analytical integration of a
principal singular part of the integrand over a (generally not rectangular) parallelogram whose
surface is close to the surface of the generalized quadrilateral near the singular point and
numerical integration of the rest. The majority of the existing extraction techniques have been
developed for planar triangular patches involving low-order basis functions. Few of those have
been extended to curved patches but without really taking into account the curvature of the

surface. The presented integration technique considers the curvature of the patch by extracting



multiple terms in the evaluation of the principal singular part. Further, the theory behind the
extraction technique has been extended to consider integrals with higher order basis functions.
Overall computational complexity and memory requirements of the traditional MoM-SIE
method are of th@©(N®) and O(N?), respectively, wher&l is the number of unknowns. Even
though DHO modelling can reduce number of unknowns by the order of 20, the order of
computational complexity remains the same. As the part of this dissertation, a novel fast scalable
DHO parallel algorithm on the DHO MoM-SIE in conjunction with a direct solver for dense
linear systems with hierarchically semiseparable structures (HSS) is proposed. We are
developing asymptotically fast higher order direct algorithms for MoM-SIE solutions which, in a
nutshell, are an algebraic generalization to fast multipole methods. In addition to being fast, they
offer a promise of being memory- and communication-efficient and amenable to extreme-scale
parallel computing. The main advantage of the HSS algorithm is in the linear-complexity ULV-
type factorizations (compared to the conventional LU decomposition that has cubic complexity).
Our work uses the recently developed new, state-of-the-art, algorithms for solving dense and
sparse linear systems of equations based on the HSS method. In addition, rank revealing QR
(RRQR) decomposition for the matrix (memory) compression. Its adaptive nature comes from
the ability to use the stopping criteria, i.e., relative tolerance value/minimal rank, which allows
for the method to store only the low-rank approximation of the original matrix that satisfies
predefined accuracy. The standard and most accurate technique for constructing the HSS
representation of a denseatrix implies explicit calculation of all matrix elements, and then
compression of appropriate blocks using the RRQR decomposition, wiliriif) asymptotic
cost. Once the HSS construction is done, the other steps are cheapef)(MiMh time

complexity for ULV factorization an@(rN) for solution, respectively, whei¢ was previously



defined and is the maximum numerical rank. In order to enhance the HSS compression and
parallelization i.e. scalability of the method, an algorithm for geometrical preprocessing of the
geometrical mesh based on the cobblestone distance sorting tecisniguzed. Hence, the

MoM unknowns having spatial locality, also exhibit the data locality in the matrix system of
equations. To sum up, method is validated and great performance is achieved. Even more, the
simulation results show great scalability of the method on more than 1000 processes.

Besides developing a fast, parallel and robust method based on the MoM-SIE, in order to
extend applicability of the method to the analysis that involves inhomogeneous anisotropic
dielectric and magnetic materials, new symmetric hybridization of the finite element method
(FEM) and the MoM was developed. The FEM is one of the general numerical tools for solving
closed-region (e.g., waveguide/cavity) problems in electromagnetics. It has been especially
effectively used in three-dimensional (3-D) frequency-domain modeling and analysis of
electromagnetic structures that contain geometrical and material complexities. In addition, as the
part of the work included in this dissertation DEHO FEM method was implemented primarily
to support analysis of both inhomogeneous and anisotropic materials.

Further, numerical computation is accelerated by applying Diakoptic Domain Decomposition
approach to divide the original problem of interest into smaller subsystems, analyze subsystems
independently, and then connect them back together through the surface equivalence theorem.

Finally, all numerical methods described above are validated on a variety of numerical

examples and tested across several high performance supercomputing platforms.
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1. LARGE ANISOTROPIC INHOMOGENEOUSHIGHER ORDER
HIERARCHICAL GENERALIZED HEXAHEDRAL FINITE
ELEMENTSFOR 3-D ELECTROMAGNETIC MODELING OF

SCATTERING AND WAVEGUIDE STRUCTURES'

1.1. Introduction

The finite element method (FEM) is one of the most powerful and versatile general numerical
tools for solving both open-region (e.g., antenna/scattering) and closed-region (e.g.,
waveguide/cavity) problems in electromagnetics4|11t has been especially effectively used in
three-dimensional (3-D) frequency-domain modeling and analysis of electromagnetic structures
that contain geometrical and material complexities. In terms of the particulars of the numerical
discretization, on the other hand, traditional FEM tools are low-order (also referred to as small-
domain or subdomain) techniques the electromagnetic structure is modeled by volume
geometrical elements that are electrically very small and with planar sides, and the fields within
the elements are approximated by low-order basis functions, which results in very large
requirements in computational resources. An alternative which can greatly reduce the number of
unknowns for a given problem and enhance the accuracy and efficiency of the FEM analysis is
the higher order (also known as the large-domain or entire-domain) computational approach,
which utilizes higher order basis functions defined in large curved geometrical elements [5].

However, although higher order FEM modeling has, since relatively recently, been constantly

! Reprinted, with permission, from “A. B. Manic, S. B. Manic, M. M. llic, and B. M. Notaros, “Large
Anisotropic Inhomogeneous Higher Order Hierarchical Generalized Hexahedral Finite &lefoen3D
Electromagnetic Modeling of Scattering and Waveguide Stresst Microwave and Optical Technology Letters,
vol. 54, No. 7, July 2012, pp. 164449. ” with copyright © 2012 of Wiley Periodicals, Inc.
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gaining popularity among FEM developers and practitioners and is definitely becoming a
mainstream activity in FEM research and practice, there seems to be a lack of investigations and
reported results on the actual higher order and large-domain modeling of material complexities
and a full exploitation of modeling flexibility and efficiency of large curved finite elements with
p-refined high-order field approximations when applied in the presence of arbitrary material

anisotropy and inhomogeneity.

This paper presents a novel higher order large-domain FEM technique for efficient and
accurate 3-D analysis in the frequency domain of open- and closed-region electramagneti
structures involving general anisotropic inhomogeneous materials, as an extension and
generalization of works in {®]. The technique implements Lagrange-type generalized curved
parametric hexahedral finite elements of arbitrary geometrical-mapping orders, filled with
anisotropic inhomogeneous materials with continuous spatial variations of complex relative
permittivity and permeability tensors described by Lagrange interpolation polynomials of
arbitrary material-representation orders, and curl-conforming hierarchical polynomial vector
basis functions of arbitrary field-expansion orders for the approximation of the electric field
vector within the elements. The technique is applied to the analysis of open-region scattering
structures, with a truncation of the FEM domain by a hybridization with a higher order method
of moments (MoM) within the surface integral equation (SIE) approach [10, 8], and to the
analysis of closed-region microwave waveguide structures, with a simple single-mode boundary
condition introduced across the waveguide ports and a large buffer finite element at each port to
ensure relaxation of higher modes [7]. To the best of our knowledge, this is the first
demonstration of large (extending a couple of wavelengths in each dimension) anisotropic

inhomogeneous curved finite elements withefined field distributions of high (e.g., seventh)



approximation orders in high-frequency electromagnetics. Our current and future related work
includes applications of these new elements in analysis and design of anisotropic inhomogeneous
dielectric and magnetic material structures aimed for (i) electromagnetic cloaking [13], (ii)

perfectly matched layers (PMLSs) [2], and (iii) waveguide components.

1.2. Theory and Implementation

Consider an electromagnetic structure that contains some anisotropic continuously
inhomogeneous material regions. In our analysis method, the computational domain is first
tessellated using higher order geometrical elements, and the electric field intensity vector within

thee-th element is approximated by the following sum:

Ne
Ee = Z }/|ef|e, (11)

1=1
where f® are higher order vector basis functions with a totaN&f unknown field-distribution

coefficients y; in the element. Elements are adopted in the form of Lagrange-type generalized

curved parametric hexahedra of arbitrary geometrical ord€rsK;, and Ki, (K$, K¢, K >

1), analytically described as [6]

K§ Ky Ky
reuvw) =3 3 3 ety WU W), —1<uvwsl, (1.2)
i=0 j=0k=0

e
whererijek =r(u;,vj, W) are position vectors of interpolation nodes aﬁd represent Lagrange

interpolation polynomials

Ky

K& u—u

Liw=]——. (1.3)
h=0 Uy — Uy
h=i



and similarly for L*j(ve(v) and LE‘?V(W). Equations (1.2) and (1.3) define a mapping from a

cubical parent domain to the generalized hexahedron, as illustrated in Fig. 1.1.

eV, W) &, WVW) &, (VW)
@, W)=| 6,5,V W) £, (LY, W) £y (4, W)

80,7, W) 8,V W) 85 (u,7,W)
.

By (@, v, W) wy, (u,v,w) oy (u,v,w)

B, W) Ry v,w) R (,v,w) VA

z W X

\ ~ '
Bax (v, W) oy (v, W) g (0,0, W)
B,v,w)=

Figure 1.1. Generalized curved parametric hexahedron defined by (1.2), with continuous spatial
variations of complex relative permittivity and permeability tensors of the material given by
(1.4); cubical parent domain is also shown.

The same polynomials in (1.3) are used to describe the continuous spatial variations of both

the complex relative permittivity and permeability tensogs, and , , of an anisotropic
inhomogeneous material filling the generalized hexahedral element in Fig-th.&lément in

the model) as follows:

) Erso UV, W) EF 5 (U VW) &7 (U,V, W) MEMEME . . . —l<uv,w<1 (1.4)
B UV, W) =[ er (U, VW) g7y UV, W) g, (U VW) | = EfmmeU(u)L'r‘f'V(v)L'\gW(w)

erp UV, W) &f 5 UV W) &F 5 (Uv,w) | M0N=0P=0

where &fmp = & (U, Vn,W,) are the relative permittivity values at the points defined by
position vectors of spatial interpolation nodg§,, , and similarly forfiF (u,v,w) , with M, Mg

, and Mg, (MS,M$,M¢ > 1) standing for arbitrary material-representation polynomial orders

within the element.



Basis functions are curl-conforming hierarchical polynomials of arbitrary field-approximation
orders NS, N, and N, (NS,NJ,N$ >1) in the e-th element, in Fig. 1.1, which, for the

reciprocal u-component of the field vector, are given by [6]

1-v, n=0
o ~UIRMRMW 2 p IV ML ge geigeyag, ag- O,
o sU R S vS—-1 s>2even au
v®-v, s>3odd
e_or® o or® e e e
aV:E,aW:%,—lgu,v,wgl,q:O,l...,Nu—l, s=01...,N,, t=01...,N, (1.5)

where 3¢ is the Jacobian of the covariant transformation, apdaZ, and a5, are the unitary

vectors along the parametric coordinates of the element. Higher order hierarchical basis
functions with improved orthogonality and conditioning properties constructed from Legendre

and other standard orthogonal polynomials [11, 12] may also be implemented.

Geometrical-mapping orders(KS,KS,K) in  (1.2), material-representation orders

(MS,MS,M$) in (1.4), and field-expansion orderéNS,NS,N) in (1.5) are entirely
independent from each other, and the three sets of parameters of a higher order model can be
combined independently for the best overall performance of the method. Furthermore, because
the basis functions in (1.5) are hierarchical (each lower-order set of functions is a subset of all
higher-order sets), all of the parameters can be adopted anisotropically in different directions
within an element, and nonuniformly from element to element in a model.

To solve for the field coefficientg, , we substitute the field expansion (1.1) in the curl-curl

electric-field vector wave equation [6], which for #xéh element reads

V x [ﬁre_l(u,v,w) VxE®(u,v, W)} — k3% (u,v,W)E®(u,v,w) =0, (1.6)



with kg =wo,/eqlg being for the free-space wave number. A standard Galerkin weak-form

discretization of (1.6) yields

j [V xf(u,v, W)]~ [ﬁre_l(u,v, W)V x E€ (u ,v,w)}dv - kg I feu,v,w)- [E,.e(u,v, W)E® u,v,w)|dV
Ve

ve (1.7)

— fiegno fTE W) HE @ v w)as
Se

where V¢ is the volume of the-th element, bounded by the surfagg, n is the outward unit
normal onS°®, f, are testing functions [the same as basis functions in (1.1) and (1.5)},&8d
the free-space intrinsic impedance. Due to the continuity of the tangential component of the
magnetic field intensity vectomxH?®, in (1.7) across the interface between any two finite
elements in the FEM model, the right-hand side term in (1.7) contains the surface integral over
the overall boundary surfac8, of the entire FEM domain, and not over the internal boundary
surfaces between the individual hexahedra in the model.

For open-region scattering structures, the FEM domain is truncated at the Slbfaoeeans
of unknown equivalent surface electric and magnetic currents, of dendifiesd Ms,
respectively, defined on MoM curved quadrilateral patches representing exter@affgoas of
the FEM hexahedra, and expanded using a divergence-conforming 2-D version of basis functions

in (1.5) [10]. The electric field in the FEM domaiBggy, , given by (1.1) in individual finite
elements, is coupled to the scattered electric and magnetic fields dgartdMs, Eyoy and
Hwuom » @nd the incident fieldsk;,. and H,,., through boundary conditions for the tangential

field components o® as follows:

NxEpgy=NxEyom(Js,Mg) +NxEje,  NxHegy=Js=NxHyouJs,Mg) +nxHj.,(1.8)



thus providing the computational interface between the FEM and MoM regionsEwdth, Js

andM s as unknowns, and giving rise to a hybrid higher order FEM-MoM solution [8].

For closed-region microwave waveguide structures, the right-hand side term in (1.7) reduces
to the surface integral across the artificially introduced planar surfaces (waveguide ports). If,
moreover, the waveguide operates in the single-mode regime (which is a standard assumption for
practical microwave applications) and the ports are moved away from all discontinuities (by
placing a single large finite element with a high field-approximation order in the longitudinal

direction as a buffer zone), the boundary condition at the ports is expressed as [1, 7]

N (VxEpgm) + jKzon x (N Epgm) =

(1.9)

—2JK10Eincs Einc = Eo €Xpjk,02) (excitation port)
0 (receivingports)’

where, for a rectangular waveguide,, = v k& — (z/a)* is the wave number of the dominant

mode (a is the larger dimension of the waveguide cross section).
1.3. Numerical Results and Discussion

As the first example of the application of the novel higher order large-domain general FEM
technique, aimed at demonstrating the accuracy and efficiency of the technique when curved
large anisotropic finite elements with p-refined field distributions are used, consider an
anisotropic dielectric (nonmagnetic and lossless) spherical scatterer, of mdilien and

relative permittivity given by the tensor

(1.10)

ol
I
o o b»
o b~ O
» O O



illuminated by an incident time-harmonic plane wave of frequehel50MHz . Shown in the

inset of Fig. 1.2 is the higher order FEM-MoM model of the scatterer, which consists of a single

curved hexahedral FEM element and six MoM curved quadrilaterals, all of geometrical-mapping

14

—_
o

Normalized bistatic ¢¢ RCS [dB]

1
—
o & & A b o v A O ®

——
M 1 M 1 M 1 M 1 M 1 1 M 1 M 1 M 1 M 1 M 1

15 30 45 60 75 90 105 120 135 150 165 180

o

¢[degrees]

Figure 1.2. Bistatic RCS in the x-y plane of an anisotropic dielectric spherical scatterer with the
relative permittivity tensor given by (1.10), normalized xé Ao being the free-space

wavelength, for the plane wave incidence from the direction definegi=§0° and ¢ = 90° or

¢ =0°; higher order FEM-MoM model of the scatterer, with a single finite element, is shown in
the figure inset.

ordersK = 2. The orders of the polynomial expansion &g, =7 and Nyoy =6 for the

fields in the FEM domain and for the surface currents in the MoM domain, respectively. In Fig.
1.2, the bistatic radar cross section (RCS) of the scatterer computed using the higher order FEM-
MoM is compared with the results obtained by HFSS, and an excellent agreement of the two sets
of results is observed. The described FEM-MoM model results in 1344 FEM and 864 MoM

unknowns, while he HFSS simulation, which converges to 0.1 delta energy after 6 adaptive



passes, employs 412,592 first-order tetrahedral finite elements (the number of unknowns is of the
same order of magnitude).

As an example of an accurate and efficient higher order large-domain FEM-MoM scattering
analysis of continuously inhomogeneous anisotropic structures, we next consider a dielectric
cubical scatterer, of side length=1m, with relative permittivity described by the tensor

9 2

—8u 0
guw=l 0 0|, -1<uc<i, (1.11)
0 1

o - O

as shown in Fig. 1.3(a). The scatterer is excited by an inciglgrdlarized plane wave from

different directions in the x-y plané® £ 9(°) at a frequency off =300MHz . The FEM-MoM
model, in Fig. 1.3(a), consists of a single FEM element of the geometricalkordér with the

permittivity ¢, represented as a Lagrange polynomial function of material-representation order

M = 2, and six MoM quadrilaterals. The orders of the FEM and MoM field/current polyhomia
expansions are the same as in the first example. The reference HFSS solutions for validation and
comparison are obtained using piecewise homogeneous anisotropic layered approximations of
the dielectric profile, with the original structure subdivided into several equally thick anisotropic
layers with individual permittivities calculated as the average of the corresponding permittivity
functions for the layer, as depicted in Fig. 1.3(b) for the model with seven layers. From the
results for the monostatic RCS of the scatterer shown in Fig. 1.4, we see that models with three
and five layers provide an inadequate approximation of the continuous permittivity profile of the
cube, yielding rather inaccurate RCS values, and that seven (and more) layers areyriecessar

obtain a satisfactory approximation of the profile resulting in a quite accurate RCS



characterization and a very good agreement of the higher order continuously inhomogeneous

anisotropic FEM model and the approximate layered HFSS model.

(a) (b)

Figure 1.3. Analysis of a continuously inhomogeneous anisotropic dielectric cubical scatterer
with the relative permittivity tensor given by (1.11): (a) exact higher order FEM-MoM model
with a single finite element and (b) approximate piecewise homogeneous anisotropic model, with
averaged permittivities of layers, for HFSS simulation.

— Higher order FEM
A HFSS 3 layers
v HFSS5 layers
e HFSS7 layers

Nommalized monostatic ¢¢ RCS [dB]

_m L 1 L 1 M 1 M 1 M 1

¢[degrees]
Figure 1.4. Normalized monostatic RCS (R@/ ) indlyeplane of the scatterer in Fig. 1.3.
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Finally, to demonstrate an accurate and efficient higher order large-domain FENisanély
waveguide structures with anisotropic continuously inhomogeneous materials, that also include
curvature, the last example is an H-plane waveguidendiion with a “partial-height”

cylindrical dielectric post, shown in Fig. 1.5(a), with the relative permittivity tensor defined as

1 0 , 0
g(V)=|0 1+7% 0|, -1<v<1, (1.12)
0 0 1

and theg,, component being represented as the second-dvbler?) Lagrange polynomial. For

the reference HFSS simulation, the post is modeled using six layers as depicted in Fig. 1.5(b). A
higher order FEM model of the junction and discontinuity consists of three trilikead) and

six triquadratic K = 2) hexahedral finite elements, as portrayed in Fig. 1.5(a), with polynomial
field-expansion ordersN, NS, andNg,) in the FEM simulation ranging from 2 to 7 in different

elements and different directions. In Fig. 1.6, we observe an excellent agreement of higher orde
continuous isotropic FEM and layered anisotropic HFSS results for the S-parameters of the

structure.

1.4. Conclusion

This paper has presented a novel higher order large-domain FEM technique for I$d3 ana
of open- and closed-region electromagnetic structures involving general anisotropic
inhomogeneous materials. The technique features Lagrange generalized curved parametric
hexahedral finite elements with anisotropic continuously inhomogeneous materials in

conjunction with curl-conforming hierarchical polynomial vector basis functions for field
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expansions. The examples have demonstrated efficient and accurate simulations of anisotropic

continuously inhomogeneous scattering and waveguide structures. In the analysis of scatterers,

““““

.

44

(@) (b)

Figure 1.5. H-plane WR-75 waveguide jimction with a “partial-height” continuously
inhomogeneous anisotropic cylindrical dielectric post whose relative permittivity tensor is given
by (1.12): (a) structure geometry £ 5mm, h=6mm, a=19.05mm, b=9525mm, and
c=30mm) and higher order large-domain FEM mesh and (b) approximate 6-layer model of the
post used in HFSS simulations.

S-parameters [dB]
55 %8

—— Higher order FEM
A HFSS

2k
AlS,|

26 1 1 1 1
70 75 80 85 90 95 100 105 11.0 115 120 125 130
Frequency [GHZ]

Figure. 1.6. Magnitudes &parameters of the waveguide structure in Fig. 1.5.
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the FEM domain is truncated by a hybridization with a higher order MoM-SIE technique. For
multiport waveguide discontinuities, a simple single-mode boundary condition is introduced
across the waveguide ports. This appears to be the first demonstration of large (up to a couple of
wavelengths across) anisotropic inhomogeneous curved finite elements with p-refined high-order
(e.g., seventh-order) field distributions for electromagnetic modeling. Our current and future
work includes applications of the new elements in electromagnetic cloaking, PMLs, and

waveguide component designs.
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2. HHGHER ORDER FEM-MOM-DIAKOPTIC METHOD FOR ANALYSIS
OF INHOMOGENEOUSANISOTROPIC DIELECTRIC AND

MAGNETIC SCATTERERS’

2.1. Introduction

The finite element method (FEM) is, by its inherent features, especially suitable for modeling
and analysis of structures that contain inhomogeneous, complex electromagnetic materials and
geometrical irregularities. The FEM is well established as a method of choice for such
applications, with the analysis of open-region scattering structures being performed truncating
the FEM domain by a hybridization with the method of moments (MoM) or by some sort of a
boundary condition. On the other hand, one possible general strategy aimed at extending the
practical applicability of the FEM over its inherent numerical limit and considerably enhancing
its efficiency in real-world simulations is the diakoptic approach-{[24], according to which,
the solution of a large and complex electromagnetic system is found as a linear combination of
solutions of diakoptic subsystems, using explicit linear relations between coefficients in
expansions of equivalent electric and magnetic surface currents on boundary surfaces of
subsystems.

The diakoptic analysis of electromagnetic systems is formally similar to the diakoptic
approach in circuit theory [21]. However, our diakoptic analysis is based on the surface
equivalence principle and operates with coefficients in expansions of surface electric and

magnetic currents and volume electromagnetic fields. The diakoptic analysis also belongs to the

2 This is an Accepted Manuscript of an article published by Taylor &cigdn Electromagnetics on 14 Apr.
2014 available online: http://wwww.tandfonline.com/10.1080/02726343.2014.877755
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class of domain decomposition methods {22%]. However, diakoptics takes explicitly into
account linear relations between coefficients of the equivalent surface current expansions, with
each electromagnetic subsystem being represented by linear relations written in the form of
matrices. In addition, the diakoptic approach uses a direct solution of the diakoptic linear system
of equations.

This paper presents a new FEM-MoM-diakoptic method for analysis of inhomogeneous
arisotropic dielectric and magnetic scatterers in the frequency domain, as a continuation of the
previous work in [14}{20]. The method splits the original electromagnetic system into a number
of closed-region subsystems containing material complexities, which are analyzed by a FEM
technique (FEM diakoptic subsystems), and an open-region subsystem enclosing the FEM
subsystems, analyzed by a MoM technique (MoM diakoptic subsystem). Each of the subsystems
is analyzed completely independently applying FEM or MoM solvers to obtain linear relations
between coefficients in the expansions of equivalent electric and magnetic surface currents on
the boundary surface of each subsystem (diakoptic surfaces). In the final system of equations, the
only unknowns are the expansion coefficients on diakoptic surfaces.

The method implements Lagrange-type generalized curved parametric hexahedral finite
elements of arbitrary geometrical-mapping orders, filled with inhomogeneous anisotropic
materials with continuous spatial variations of complex relative permittivity and permeability
tensors described by Lagrange interpolation polynomials of arbitrary material-representation
orders. Curl-conforming hierarchical polynomial vector basis functions of arbitrary field-
expansion orders are used for the approximation of the electric field vector within the finite
elements, while divergence-conforming higher order vector bases on generalized curved

parametric quadrilaterals are implemented for diakoptic surfaces. Furthermore, the connection
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between the diakoptic electric sources and the magnetic field in the FEM subsystems is enforced
using dual sets of higher order basis functions satisfying explicitly the natural relatioretvetwe
curl-conforming and divergence-conforming quantities, when closing the FEM domain by a
boundary surface with fictitious equivalent surface currents. Finally, this diakoptic method
inherently allows touching of the subsystems, i.e., the subsystems can share a common diakoptic
boundary— without requirements for introduction of additional basis functions. Note that,
theoretically, the diakoptic surfaces can be anywhere: away from the scatterers, at the boundary
of a scatterer, or even crossing the volume of a scatterer.

The rest of this paper is organized as follows. Section 2.2 presents the theory of the FEM-
MoM-diakoptic method for analysis of inhomogeneous anisotropic dielectric and magnetic
scatterers, starting with the surface equivalence principle, and deriving linear relations between
diakoptic coefficients and representing electromagnetic subsystems by diakoptic matrices. It also
presents the implementation of the method based on a magnetic-field FEM diakoptic formulation
and double-higher-order numerical discretization. In Section 2.3, the proposed diakoptic method

is validated in several characteristic scattering examples.

2.2. FEM-MoM-Diakoptic Method for Inhomogeneous Anisotropic Scatterers

2.2.1. Theory of FEM-MoM-Diakopticsfor Scattering Analysis

The diakoptic method is based on the surface equivalence principle [26], [27]. For instance,
consider an arbitrary closed surfa&e as shown in Fig. 2.1a, which divides the original
electromagnetic system into two regions, with sources of electromagnetic fields (e.g., lumped
generators or incident fields in the system) assumed to exist in both regions. Employing the

surface equivalence principle, equivalent sources are placed at each side of the b8(imdary
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each of the regions) and are chosen so that the electric and magnetic fields, géyetiaged
sources, inside each individual region remain the same as in the original system, while the fields

in the other region are annulled, as illustrated in Figs. 2.1b and 2.1c. For the inner region (reg 1),

the densities of equivalent electric and magnetic surface currents are givEfi*bynxHg

and M F%" = _nx E,5, where n denotes the inward looking unit normaSpand E;s and Hyg

stand for the electric and magnetic field vectors, respectively, on the inner silen dhe

original system in Fig. 2.1a. The equivalent sources for the outer region (reg 2) are obtained in an
analogous fashion. Applying the tangential continuity conditions for the fields in the original
system, we obtain the following relations between equivalent sources for the two regions:

Jred— g2 and Mm% = Mm% (2.1)

which will later be used explicitly to connect unknown variables in the diakoptic method.

N .'I‘i*

EZ’HZ i ' '4

(a) ) (c)
Figure 2.1. lllustration of the surface equivalence principle, as the theoretical foundation of the
FEM-MoM-diakoptic method: (a) original electromagnetic system, (b) equivalent problem for
the interior region, and (c) equivalent problem for the exterior region.
Next, we use an example depicted in Fig. 2.2 to describe the implementation of the diakoptic
analysis combining FEM and MoM solvers. The diakoptic approach starts with subdividing the
original electromagnetic system into a number of arbitrary non-overlapping subsystems, as

shown in Fig. 2.2a, where the so-called diakoptic boundary is the surface enclosing different
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subsystems and, in general, containing a number of disconnected closed surfaces. In the present
method, a FEM technique is used for the analysis of each of the closed-region subsystems (
Negy FEM subsystems), as indicated in Fig. 2.2b, while the open-region subsystem, that in Fig.

2.2c, is analyzed invoking a MoM technique (MoM subsystem). Secondly, the diakoptic
boundary is used as an interface between the FEM and MoM domains (subsystems) employing
the surface equivalence principle (Fig. 2.1) and allowing each of the subsystems to be
independently analyzed and then connected back together through relations in (2.1).
Consequently, when implementing the diakoptic approach using FEM and MoM solvers, the
unknowns, in general, are: (i) distributions of electric and magnetic fields of interiSitaasd

H in the FEM regions and (ii) distributions of equivalent surface electric and magnetic currents

of densitiesJ, and M . at the diakoptic boundary.

(a) (b) (©)

Figure 2.2. Application of the FEM-MoM-diakoptic technique for scattering analysis:
(a) original electromagnetic system split ink:g +1 parts (subsystems), (INgg\y closed-

region subsystems containing material complexities, analyzed by a FEM technique (FEM
diakoptic subsystems), and (c) an open-region subsystem, analyzed by a MoM technique (MoM
diakoptic subsystem).

Let the total number of unknown coefficients for the approximatio& cdnd H , placed in

column-matrices €] and [h], respectively, for all FEM subsystems b= = N, +Nf,
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NEEM NEEM
where N&; = Z NS and Nﬂ,t = Z Nih are the total numbers of coefficients[g] and[h],
i=1 i=1

and N¢ and Nih are the respective numbers of coefficients for ittle FEM subsystem. In
addition, there ar@D unknowns for the approximation df, and M . at the diakoptic boundary
(the union ofNgg,, disconnected boundary surfaces in Fig. 2.2b), naniebgefficients forJ,
, In the column-matrix[j.], and the same number of coefficients fdr,, in [m.], where

NEEM
D= ZDi , with D; being the number of diakoptic coefficients associated with-theFEM

i=1
subsystemi(=12,...,Nggy ). It is essential that the column-matridgg] and[m,] are of the

same dimensions.

Based on the linearity of the electromagnetic system in Fig. 2.2a, the objective of the
diakoptic analysis of each of the subsystems in Figs. 2.2b and 2.2c is to define linear relations
between electric and magnetic diakoptic sources belonging to the diakoptic boundary of the

subsystem, in the following form:
liac]=[Yillmac]+liaclo: k=12, (2.2)
where k=1 denotes the inner side (FEM side) of the union of all disconnected diakoptic

subdomains ané =2 denotes the outer side (MoM side) of the same union, and |Yigfes

the DxD diakoptic matrix of the subsystem afig,] o is the D x1 column-matrix containing
coefficients of J, that represent the excitation in the subsystem. In order to numerically
calculate the matriXY,], we assume that all the excitations in the subsystem are turned off and
the subsystem is excited with one, theth, unit-valued coefficient ifmg], while all other

coefficients infmy] are equal to zero. By using the FEM solver, we calculate coefficierts of
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H, and J, in the FEM subsystems, with the obtained coefficientsJgf representing,
numerically, thej -th column of the matrixY, ]. While MoM matrices are dense, FEM matrices

are sparse, and are stored and computed as such.

In the same analysis, we obtain the linear relations between coefficigntgjnand those in

[€] and[h]. These relations can be written as

ﬁ}:[c][meﬂ{ﬂo, (2.3)

with [C] being of dimensiondN{ =" x D . The matrix[C] is evaluated during the calculation of

matrices[Y,] in the same way, column by column, exciting the respective subsystem by a single
coefficient in [my] at the time, with the computed coefficients Bf and H thus filling the

respective column of the matrpC] , and stored to be used for subsequent calculation of the

final solution.

e
The excitationg[j 4], and {h} in (2.2) and (2.3) are found as the responses of a given
0

subsystem stipulating that all coefficientging ] are set to zero, while the original excitation is

turned on. By the standard FEM and MoM analysis, we calculate the coefficiedys Bf, and

e

H, which constitute, in the numerical sense, the respective column-mdjricks and LJ

0

Relations in (2.2) and (2.3) will be discussed in the following sections with specifics given for
both FEM and MoM solvers.

In order to obtain the solution of the original electromagnetic problem, in Fig. 2.2a, using

matrices that represent different subsystems in (2.2) and (2.3), we relate the diakoptic
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coefficients ofJ, and M, on the diakoptic boundary between FEM and MoM subsystems as

follows:

~lial=liel=liel, —[Mal=[Me]=[m¢], (2.4)

where we utilized the facts that the equivalent sources in (2.1) have opposite signs and that the
directions of vectors in Figs. 2.1b and 2.1c are opposite. Note that the mutual relations
connecting the diakoptic coefficients obtained for the interior side of the diakoptic surface for
any subsystem must also be satisfied on the surface outside that subsystem. This property is
further used when combining (2.2) and (2.4) to arrive to the following diakoptic matrix system of

equations:

([Ya]=[Y2DIme] =—lialo +liee]o: (2.5)

whose solution igm,]. This system of equations is solved with a direct solver (i.e., the system

is LU factorized, using partial pivoting with row interchanges, and then forward and backward
substitutions are performed), since it is dense in the general case. The diakoptic coefficients in
lil, k=12, are then computed frofim,] using (2.2), and the coefficients[ie] and[h], for
subsystems in Figs. 2.2b and 2.2c, are obtained from (2.3). Once we have these latter

coefficients, we can calculate the electromagnetic field at any point in space, as wglbtsean

guantity of interest for the original electromagnetic structure, in Fig. 2.2a.
2.2.2.Double-Higher-Order Magnetic-Field FEM Diakoptic | mplementation

The diakoptic method described in the previous sections is now applied in conjunction with
double-higher-order FEM and MoM solvers based on higher order geometrical modeling and
higher order field/current modeling. In specific, the building block for volumetric modeling in
FEM subsystems (Fig. 2.2b) is a Lagrange-type interpolation generalized hexahedron of arbitrary
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geometrical orderk,, K,, andK,, (K, Ky, Ky > 1), shown in Fig. 2.3a and analytically described

as [6]
Ky Ky Ky K |y

ruvw=> > ZrijkLiK“ (U)LTV(V)LEW(W), LiKU(u)zl_[u ul , —1<u,v,w<1, (2.6)
i=0 j=0 k=0 o U U

where Fijk =r(u,v;,w) are position vectors of interpolation nodes ah*éP (u) represent

Lagrange interpolation polynomials in the coordinate, with u  being defined as

u = (2 -Ky)/ Ky, i=0L...K,, and similarly forL’{v(v) and L (w).

W, ,w)="pﬁ(ll,\’,w) By (v, %) 1y (7,
Gy, w) g v w) By,
[%(u,v,w) &5, W) Ea(u,v,w)} =

v,
e

B Ws|eu@nm) 5, WnW e,nm

W) En@nW) Ex(4V,W)

Figure 2.3. Lagrange-type curved parametric elements for higher order FEM-MoM-diakoptic
analysis (Fig. 2.2) of inhomogeneous anisotropic dielectric and magnetic scatterers: (a)
generalized FEM hexahedron, defined by (2.6), and (b) generalized MoM quadrilateral patch.

The same polynomials in (2.6) are used to describe the continuous spatial variations of both
the complex permittivity and permeability tensorg(u,v,w) and [(u,v,w), of an
inhomogeneous anisotropic material filling the generalized hexahedral element in Fig. 2.3a, as

proposed in [28]. In specific, th&-component of is incorporated in the FEM model as
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My My My

eV W) = 30> D ePlnt (Why Y (L™ (W), (2.7)

m=0n=0p=0

where M, M,, and M, (M,,M,,M,, = 1) are arbitrary material-representation polynomial

orders (independent fror,, Ky, andKy), e%" =&, (rmp) are the respective permittivity
values at interpolation nodeg,,, corresponding to orders!,, M,, and M,,, and similarly for

all remaining components af and for all components qf .

The diakoptic surface enclosing each of the FEM domains is modeled using Lagrange-type
generalized curved parametric quadrilaterals, in Fig. 2.3b [10], which are surface two-
dimensional (2-D) versions of the hexahedron in Fig. 2.3a, and are conformal with the sides of
hexahedra belonging to the diakoptic surface [8].

In this work, we utilize théd-field FEM formulation (except in the last example, where the E-
field FEM formulation is used) and expand the magnetic field by means of curl-conforming

hierarchical polynomial vector basis functions of arbitrary field-expansion ofdgrsN,,, and
Ny (Ny. Ny, Ny, = 1) introduced in [6]. Furthermore, in the field expansion, basis functions that

possess tangential components at the boundary (marked by “boundary”) are distinguished from

those that do not (“interior”), as described in [2]:

N{bt NINTERIOR NBOUNDARY
H=>hfi= Y hifi+ D hgfg. (2.8)
i=1 i=1 i=1

Boundary volume basis functions are further used to generate divergence-conforming surface

basis functions asxfg; |S, for expanding the diakoptic surface currents in the following form

[19]:
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NBOUNDARY

Je=nxH|.= > ja(xfg)| (2.9)
i=1
NBOUNDARY
Me=—n><E|S= Zmd(nxfBi)ls, (2.10)

wherenis adopted to be the outward looking unit normal to the enclosed diakoptic shirface
In order to numerically establish the matrix relationships in (2.2), the FEM solver discretizes a

Galerkin-type weak form of the curl-curl magnetic-field vector wave equation,

| (vai).(EfledeV—kgj fi (i H BV = jkoft (1< E)ds: (2.11)
\% \ S
with kg = w./&pty being the free-space wave number is the angular frequency of the time-

harmonic excitation in the system). This discretization leads to a matrix equation with the

unknowns coefficients being only those describing boundary variables,

[Fes — Fai (Fy *F)] [ha] = —iko[(fa.n xfg)][Me]., (2.12)

and in which the connection in (2.10) is employed on the right-hand side of the equation such
that magnetic diakoptic sources can numerically be considered as excitation of the system. In
(2.12),Fgg, Fgi, Fig, andF, are the submatrices of a well-known FEM matrix [6], Witk, for

instance, standing for the submatrix corresponding to testing functions belonging to a set of the
interior FEM functions and basis functions being the boundary functions, and the opevta;tor

is a standard surface integral of a dot product of vector variabl@sd b. Note that while the

matrix [(fB,nxfB>] in (2.12) isill-conditioned, this does not deteriorate the overall accuracy of

the method, as shown in examples presented in this paper (and evaluated in other cases that are
not shown).

Next, boundary coefficients in the expansion of the magnetic field are equated to the

appropriate electric-current coefficients, using (2.9), so that a diakoptic linear relation in (2.2)
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can be established by inverting the system matrix in (2.12). Denoting the local diakoptic matrix

of the i -th FEM subsystem iffig. 2.2b by[Y{], and the corresponding source column-matrices

by [mie] and[jie] , we have

(Y1l MLl =[jL], [Yi]=—ikolFas — Fa (Fy "Fg)l *[fg.nxfg)], i=12...,Npgy, (2.13)

and the global diakoptic matfiX;] given in (2.5) is then assembled using the local matrices as

follows:
D, Dy - DNFEM
o o VRN
[Y1]= Bﬁ vi v2 (2.14)
DNFEM 7 | YlNFEM

Once the diakoptic excitatiorisn,] are found from (2.5), the magnetic field inside each of the

FEM domains can be calculated based on (2.3), U§hg which in turn, can easily be obtained

from (2.11) in terms of appropriate local matrices in the same fashion as in (2.14).

In cases where the original electromagnetic system, in Fig. 2.2a, is subdivided into a number
of touching FEM subsystems, the adjacent subsystems touch each other through parts of the
diakoptic surface, which is meshed in a way that a generalized quadrilateral patch belonging to
one side of the common area has its match on the opposite side, i.e., the meshes on opposite sides
of the diakoptic surface are conformal. Even though spatial positions of touching quadrilaterals
are the same, independent subsystems are pre-processed separately. In this setup, the touching
guadrilaterals need to have opposite orientations, that is, the directions of normal vectors n
should be opposite to one another, which is ensured by a simple adjustment of the two local

parametric coordinate systems for the two coinciding patches. Next, touching subsystems are
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assumed to be immersed in the air-filled open-region subsystem, and hence an infinitesimally
thin layer of air is considered to exist between the touching quadrilaterals. Consequently,
touching FEM domains influence each other through a MoM domain, where a numerical solver
is applied to a structure consisting of touching and other surfaces. The only issue with applying
the MoM solver relates to the calculation of singular and hyper-singular Galerkin impedance
matrix elements [10], due to the mutual contributions of surface currents belonging to two
touching surfaces. Since touching surfaces (faces of the adjacent diakoptic domains), although
belonging to two distinct diakoptic domains, actually share a unique surface in space, the
corresponding Galerkin impedances are computed by applying a self-integration prosgtdure,
testing and basis functions belonging to the two distinct surfaces coinciding in space. Namely,
the singularity extraction method for calculation of singular and hgpegular MoM operators

[10], [29], [5] is utilized. Note also that in the case of touching domains, matrix is not diagonal-
dominant, and it influences the final matrix obtained by the diakoptic method. Note, finally, that
any other FEM and/or MoM numerical discretization is possible within the framework of the

diakoptics, including low-order elements and bases.

2.3. Numerical Results

A special parallel version of the FEM-MoM-diakoptic solver based on the message passing
interface (MPI) basic linear algebra communication subprograms (BLACS) is developed, and
run on a CrayXTém platform. The Cray supercomputer used for simulations contains 52
compute nodes, with a total of 104 AMD Magny Cours 64-bit 1.9-GHz processors (two per
node), where each processor has 12 cores. A 32-GB RAM memory is available on each node,

while the interconnection between the nodes is SeaStar2+ with 2D torus topology.
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2.3.1.2-D Array of Dielectrically Coated PEC Spherical Scatterers

As the first example of the application and validation of the new diakoptic method, consider a
2-D array of 4x4 dielectrically coated spherical perfect-electric-conductor (PEC) scatterers,
depicted in Fig. 2.4. For each scatterer, the PEC sphere radigsli80 mm and the thickness

and relative permittivity of the coating ade= 35 mm ance, =4, respectively, while the center-

to-center distances between adjacent scatterers a#00 mm. The original system is divided

into 17 diakoptic subsystems, with 16 FEM subsystems modeling individual spherical scatterers
and one open-region MoM subsystem. The geometrical model of each spherical scatterer is
comprised of six FEM curvilinear hexahedra of the second geometrical dger&( =Ky = 2)
modeling the dielectric coating, with PEC boundary conditions on the inner surfaces and six
curvilinear quadrilateral patches on the outer surfaces, coinciding with the adopted diakoptic

boundary. The adopted field approximation orders in all FEM hexahedriNgre?2 in the
radial direction andN,, = N,, =4 in other two (transversal) directions, and these latter orders are

used for current expansions on the MoM patches (on the diakoptic boundaries) as well. This

results in a total oD = 3,072 diakoptic unknowns.

{ ‘(( \t‘ /(N\ /‘)’/’ /’i'\»)

© = !) ’11)),’.’\”1))
ooro”

Figure 2.4. 2-D array of dielectrically coated spherical PEC scatterers.
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Fig. 2.5 presents the normalized bistatic radar cross section (Rgﬁ)% (Ao henceforth

being the free-space wavelength), of the array at a frequére®5GHz as a function of the
scattered angle in two characteristic plane cuts. The excitation wave is incident from the

direction defined byd;,. =90° and ¢;,c =0, where 0 and ¢ are angular coordinates in the
spherical coordinate system shown in Fig. 2.4. The sding) (notation will be used in all

examples in this section. We observe an excellent agreement of diakoptic results with the
solution obtained by WIPL-D (pure-MoM commercial software), which serves as a reference.
The total number of unknowns used for modeling in WIPL-D is 9,216. The approximately three
times reduction in the number of the diakoptic unknowns, when compared with the commercial
higher order MoM software, comes from the implemented geometrically higher order modeling
and the diakoptic compression. Note also that the analysis of this problem using a low-order
variant of the proposed diakoptic method, with first-order (rooftop) basis functions on patches
that are not larger than A/10 in each dimension (with A being the wavelength in the dielectric
medium), would requir® = 19,200 diakoptic unknowns, and about 244 times longer time to
solve the matrix system of equations and about 39 times larger RAM memory for the simulation
than the presented higher order diakoptic solution.

In addition, shown in Fig. 2.5 are the RCS results for the same geometry and frequency but
with the dielectric coating being made from a continuously inhomogeneous dielectric material
whose relative permittivity undergoes a linear radial variation fepm 4 at the PEC boundary
to ¢, =10 at the outer surface of the scatterer. The higher order geometrical and numerical
model is the same as in the previous case but Mith1 in (2.7) for the local radial direction to
model the dielectric inhomogeneity. The solution using the continuously inhomogeneous FEM-

MoM-diakoptic model is compared with a WIPL-D solution for a three-layer piecewise
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homogeneous approximate model of the dielectric coating (with equivalent permittivities
calculated as the mean value of the inhomogeneous profile for each of the equallyérgk la

which takes 51,712 unknowns, and a good agreement of the two sets of results is observed.

Coatings Solution type

50 — Coatings Solution type ] =+ Homogeneous coatings, Diakoptics
40 -« = Homogeneous coatings, Diakoptics . Hompgeneou_s coatings, WIPL'D.
- Homogeneous coatings WIPL-D o Continuously inhomogeneous, Diakoptics |-
) . X ! . . —— Layered inhomogeneous, WIPL-D
30 o Continuously inhomogeneous, Diakoptics i i i i i i i i i i
B Layered inhomogeneous, WIPL-D ; ‘
'CE‘ 20 G H H H H H | H H H 'E
<10 N g 4
© 8 :
ok A Bad W W SaAd S © !
10
-20
-30 1 1 1 1 1 1 1 1 1 1 1 -4 ' L L L 1 Il Il Il 1 L L
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0 [deg] ¢ [deg]
(a) (b)

Figure 2.5. Normalized bistatic radar cross section of the array of scatterers in Fig. 2.4, for
homogeneous and continuously inhomogeneous dielectric coatings, respectively, computed by
the FEM-MoM-diakoptic method and by the pure-MoM commercial software WIPL-D: (a)

¢ =0 cut and (b)0 = 90° cut.

The total computation time for the FEM-MoM-diakoptic analysis of scatterers with both the
homogeneous and continuously inhomogeneous dielectrics (in Fig. 2.5) is 2 min 27 sec and the
RAM memory used for the storage of the diakoptic matrices is 288 MB, running the parallel

code on a 2x2-process grid, all processes are on a single compute node
2.3.2.Dielectric Scatterer Modeled by Multiple Touching FEM Domains

As the next example, we consider a dielectric (g = 2.25) brick-shaped scatterer, shown in Fig.

2.6, illuminated by a uniform plane wave incident from the direction defineél by=-90° and
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¢inc =0, with electric and magnetic field vectors given bg"® =-1i,V/m and

HINC = g7t y A/m at the global coordinate origin, wherg =,/uy/ey stands for the free-

space intrinsic impedance. The operating frequenty B50MHz. We model the brick by four
adjacent cubical FEM elements, each with edge leagtHL m and each being enclosed by the
diakoptic surface with air as the outer medium. All elements in the model are of the first
geometrical orderK, = K, = K,, = 1), whereas the orders of the field expansions (in all FEM
elements in all directions) and current expansions (on all square MoM patches surrounding each
of the FEM subdomains) are all the same and equal to 5. The total number of unknowns in the

final system of equations B = 1,200, while the total number of unknown coefficients used for

magnetic field expansion iBItrg,t = 2160.

(0.5m,-1.5m]0.5m) [a=1m

Z
7 Ly

(0.5m,0.5m,-1.5m)

nc

H inc
Einc

Figure 2.6. Brick-shaped dielectric scatterer modeled by four touching cubical FEM diakoptic
subsystems.

Shown in Fig. 2.7a is the computed real partgf in the FEM domains, in the vertical plane

defined byx =0, placed in the middle of the scatterer. For comparison, the same solution
obtained by WIPL-D is shown in Fig. 2.7b as a reference. We can conclude fréiguteehat

the agreement of the diakoptic results with the reference results is very good. Running the code
in a single process, the FEM-MoM-diakoptic solution takes 56 sec of simulation time and uses

43.9 MB of RAM memory to store the diakoptic matrices.
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(@ (b)

Figure 2.7. Real part of the internal magnetic field compokipin the vertical planex(= 0) in

the middle of the scatterer in Fig. 2.6 obtained by (a) the FEM-MoM-diakoptic method and (b)
the WIPL-D; The color-bar units am@aA/m.

2.3.3.3-D Array of Cubical Dielectric Scatterers

Next, consider a three-dimensional (3-D) array of cubical dielectric scatterers shown in Fig.
2.8. The cube edges and sideside distances between neighboring cubes amouwatt o= 1o,
and the relative permittivity fothe dielectric is g =2.25. The structure is modeled by 513
diakoptic subsystems (512 FEM domains and one open-region MoM domain). The volume and
surface elements in the model are of the first geometrical oldgrs K, = Ky, = 1, while the
field and current expansion orders are all the same and equal to 3. The size of the system of

diakoptic equations iB = 55,296.

Fig. 2.9 displays two characteristic normalized bistatic RCS plane cuts for uniform plane
wave excitation of the system shown in Fig. 2.8, with the results obtained by the diakoptic
method being compared with the reference WIPL-D solution. We observe from the figure an

excellent agreement of the two sets of results. The total number of unknowns used for modeling
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in WIPL-D is 24,576. Similarly to the first example, when comparing the diakoptic approach to
the pure MoM solution (by commercial software), the reduction in the number of unknowns in

the final system of equations is by 3.55 times.

Figure 2.8. 3-D array of cubical dielectric scatterers.
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Figure 2.9. Normalized bistatic RCS of the array of scatterers in Fig. 2.8 obtained by the FEM
MoM-diakoptic method and by WIPL-D: (ap = O cut and (b)0 = 90° cuit.

The total number of unknowns used for modeling in WIPL-D if no symmetries were exploited

is 110,592. Similarly to the first example, when comparing the diakoptic approach to the pure
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MoM higher order solution (WIPL-D), the reduction in the number of unknowns in the final
system of equations is by two times. However, note that the higher order FEM-MoM-diakoptic
method would allow modeling of inhomogeneous and/or anisotropic scatterers in the array in
Fig. 2.8 at essentially the same computational cost. Running the FEM-MoM-diakoptic parallel
code on a 16x16-process grid, on 16 compute nodes (16 processes per node), the simulation time
is 30 min 12 sec and the RAM memory consumption for the storage of the diakoptic matrices is
91.1 GB. Note also that, when compared to the higher order diakoptic solution, the low-order
diakoptic model specified in Section 2.3.i would require 7.11 times more diakoptic unknowns,

about 358 times longer direct-solver solution time, and about 50 times larger RAM memory.

2.3.4.2-D Array of PEC Sphereswith Cloaking Dielectric/Magnetic Metamaterial Covers

The final example is a 2-D array of cloaked spherical PEC scatterers, depicted in Fig. 2.10.
The radii of the PEC spheres d&g= 1 m, thicknesses of the cloaks dre 0.1 m (outer radii of
the cloaks areR, =R; +d), and distances between the scatterer centred ard m. Each
transformation-based metamaterial spherical cloak relies on the theory derived in [13], whereas
its detailed analysis by the higher order FEM-MoM can be found in [30]. The scatterextgeom
and incident plane wave direction are shown in Fig. 2.10. In the FEM-MoM-diakoptic analysis,
each of the cloaked regions is modeled by six curvilinear hexahedra of fourth geometrical orders,
Ku = Ky = Ky = 4, enclosed by six quadrilaterals conformal to the outer cloak surface. The

adopted field approximation orders aM;, =N, =N,, =5 for all FEM hexahedra, while the
current approximation orders ard, =N, =4 for all MoM patches. The total number of
diakoptic unknowns amounts Bb= 768. Continuous spatial variations of the medium tensors

and [t in the cloaked regions, obtained from the linear cloak transformation in the spherical (
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r,0,¢) coordinate system are given by [30]

_RZ(Rl_r)z 0 0
(R —Ryr .
=_=_ >
F=T= 0 om0 | (2.15)
0 Ro
- R2_ %_

whereR; andR; are the inner and outer radii, respectively, of the spherical cloak. The Cartesian

equivalents off and are implemented using (2.7) witd, =M, =M,, =6.

- &
& (e

LL/

Figure 2.10. 2-D array of PEC spheres with cloaking metamaterial covers whose permittivity and
permeability tensors are given in (2.15).

Shown in Fig. 2.11 is the normalized backscattering RCS of the array of cloaked spheres at
f = 55 MHz obtained by the FEM-MoM-diakoptic method, in the= O plane. For the purpose
of validation of the numerical solution, the computed RCS of the array of uncloaked PEC
spheres, with the continuously inhomogeneous anisotropic FEM elements constituting the
cloaking layer being replaced by homogeneous air-filled elements having all field and current
expansions and other parameters in the FEM-MoM-diakoptic analysis the same as in the cloak

model, is also shown in Fig. 2.11, where it is compared with the WIPL-D solution, and an
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excellent agreement of the two sets of results is observed. In addition, while having in mind that
the cloak is theoretically ideal (RCS theoretically vanishes), a WIPL-D solution for a
homogeneous air-filled sphere is shown as a reference, giving a clear insight into what a typical
numerical solution for the given geometry and an ideal invisibility material (scattering from free-
space) would be. We observe from the figure, a very significant reduction in the numerically
obtained scattering cross section of the array of cloaked spheres with respect to the array of PEC
spheres; namely, the RCS is so low that it is on par with the best numerical approximation of the

zero backscatter from an empty spherical region of the same size as the original scatterer, as
verified by WIPL-D. The total number of FEM unknownsNg,; = 2,260, (computation time:

24 min 5 sec, RAM memory: 18 MB, single process), while the total numbers of unknowns in
WIPL-D simulations are 3,456 for the array of air-filled spheres and 1,728 for the array of PEC

spheres.

—— 2D array of PEC spheres (WIPL-D)
30 —— 2D array of cloacked PEC spheres (Diakoptics)
----- 2D array of air filled spheres (WIPL-D)

2D array of PEC spheres with air coating (Diakoptics)
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Figure 2.11. Normalized bistatic RCS in ttpe= O plane of (i) the cloaked array in Fig. 2.10

computed using the FEM-MoM-diakoptics, (ii) the array of PEC spheres obtained by WIPL-D,

(i) the array of uncloaked spheres with the cloaks replaced by homogeneous air layers
calculated by the FEM-MoM-diakoptics, and (iv) the array of homogeneous air-filled spheres
obtained using WIPID.
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2.4. Conclusions

This paper has presented a new FEM-MoM-diakoptic method for analysis of inhomogeneous
anisotropic dielectric and magnetic scatterers in the frequency domain. The method splits
the original electromagnetic system into a number of closed-region FEM diakoptic subsystems
containing material complexities and an open-region MoM diakoptic subsystem. Each of the
subsystems is analyzed completely independently applying FEM or MoM solvers, and the
solution to the original problem is obtained from linear relations between coefficients in
expansions of equivalent electric and magnetic surface currents on diakoptic boundary surfaces.
The method implements large curved hexahedral finite elements, filled with inhomogeneous
anisotropic materials. Diakoptic electric sources and the magnetic field in FEM subsystems are
connected using dual sets of hierarchical polynomial vector basis functions explicitlyirsgtisfy
the natural relation between curl-conforming and divergence-conforming quantities. A technique
enabling touching of the subsystems, i.e., that the subsystems share a common diakoptic
boundary, has been introduced in the diakoptic method.

The proposed higher order FEM-MoM-diakoptic method and its versatility, accuracy, and
efficiency have been validated and demonstrated in several characteristic examples of finite
arrays of dielectric, dielectric/magnetic, and dielectrically coated PEC scatterers. Numerical
results include analysis of scatterers with straight edges and pronounced curvature, a scatterer
modeled by multiple touching FEM diakoptic domains, and a transformation-based metamaterial
cloaking structure, with the continuously inhomogeneous anisotropic cloaking region modeled
using large curved finite elements that allow continuous spatial variations of complex

permittivity and permeability tensors and high-order FEM field approximations.
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3. EFFICIENT SCALABLE PARALLEL HIGHER ORDER DIRECT
MOM-SIE METHOD WITH HIERARCHICALLY SEMISEARABLE

STRUCTURESFOR 3D SCATTERING®

3.1. Introduction

Recent trends in computational electromagnetics (CEM), in applications that involve
calculating, storing, and solving large and dense matrices, include applying fast, parallel (direct
or iterative) solvers for the system of equations in conjunction with compressed storage of large
matrices and their parts. Two general approaches emerge among fast methods attempting to
reduce numerical and storage complexity: (i) the fast multipole method (FMM) [31] ahktd (ii)
matrices [32}{34]. The idea behind both of them is to approximate the integral kernel by a
degenerate kernel using so-called functional skeletons. In the case of multipole methods, these
functions have to be known explicitly for each kernel, which means that the method and its
behavior depend heavily on the physics behind the exact problem to be solved. On the other
hand, in the case of algebraic methods, sudH-astrices, matrix blocks are approximated by
low-rank matrices.

H-matrix algorithms were first introduced by Hackbusch {§24], with their H-matrix
version being introduced in [35], and have been used efficiently with fast LU based direct solvers
or as preconditioners to fast iterative solvers. Hhmatrix methods are kernel independent so

they are suitable for application to any type of integral equation (IE) based foamula the

® Material included in this chapter is submittedl EEE Transactions on Antennas and Propagation: © 2015
IEEE, A. B. Mani¢, Frangois-Henry Rouet, Xiaoye Sherry Li, and Branislav Nbtaro§, “Efficient Scalable Parallel
Higher Order Direct MoM-SIE Method with Hierarchically Semiseparable Structure®f&cattering,” submitted
to |EEE Transactions on Antennas and Propagation.
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CEM community, several applicationsldftype direct solvers to tackle surface integral equation
(SIE) problems are presented in [3@0].

Matrix compression solvers rely heavily on a type of the low-rank matrix approximation
method such as singular value decomposition (SVD) [38], [41], rank-revealing QR (RRQR)
decomposition [42], [43] or adaptive cross approximation (ACA), where ACA can be codsidere
as rank-revealing LU (RRLU). ACA is well known and established method for fast matrix
computation in CEM, introduced first to solve the low-frequency (quasistatic) IE problems [44]
and then combined with different matrix compression methods to solve system of equations
arising in high-frequency SIE methods [4[]8].

In addition, semiseparable matrices, the ones that can easily be compressed and accurately
approximated by their lowank counterpart, and its application to Green’s function integral
kernel are discussed in [49]. In order to combine beneficial features of semiseparable matrices
and H-matrix representation, the hierarchically semiseparable matrices are most recently
introduced [50]. Solution of the two-dimensional (2D) SIE method of moments (MoM) using
hierarchically semiseparable compression is discussed in [51], where the authors comment on the
possible extension of their work to the 3D case.

On the other hand, it is well known that by using higher order basis functions for current/field
modeling in CEM, significant reductions in the number of unknowns, as well as faster system
matrix computation/solution, can be achieved [10] when compared to the traditional low order
modeling [52]. Tightly coupled with using higher order basis functions is higher order geometry
modeling [10] [26] and together they lay foundation to double higher order (DHO) modeling.
The DHO approach has been effectively used in both direct and iterative MoM-SIE solvers [53]

[57].

38



Besides developing fast algorithms to solve MoM-SIE equations, the CEM researchers have
intensely investigated parallelization of the fast algorithms coupled with direct solvers in order to
speed up the simulations of electrically large electromagnetic structures. DHO MoM-SIE system
matrix filling followed by the computationally expensive LU decomposition on a full matrix was
implemented into parallel out-of-core hybrid GPU/CPU algorithm [56], while the performance of
a similar method using higher order basis functions was investigated on more than 4,000 CPU
cores on a distributed memory system [57]. Similarly, a patdHieU direct solver using hybrid
MPI-OpenMP that builds on the ability to combine both shared and distributed memory
programming was used to analyze 3D scattering problems with nearly 4 million unknowns [58]
Further, a parallel hierarchical ACA algorithm demonstrating an acceleration factortteager
200 was presented in [59].

This paper proposes a novel fast scalable higher order parallel algorithm for large and
complex scattering, radiation, and propagation problems in CEM based on the DHO MoM-SIE
modeling in the frequency domain [10], [2612], [60] in conjunction with a direct solver for
dense linear systems with hierarchically semiseparable structures (HSS) [61]. We are developing
asymptotically fast higher order direct algorithms for MoM-SIE solutions which, in a nutshell,
are an algebraic generalization to fast multipole methods. In addition to being fast, they offer a
promise of being memory- and communication-efficient and amenable to extreme-scale parallel
computing. The main advantage of the HSS algorithm is in the linear-complexity ULV-type
factorizations (whereas the conventional LU decomposition has cubic complexity). Our work
uses the recently developed new, state-of-the-art, algorithms for solving dense and sparse linear
systems of equations based on the HSS method [61]. The new HSS algorithms have been

demonstrated to have a dramatic advantage in terms of time and space complexity (e.g., ~70
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times less memory for seismic imaging examples with matrix size 2%5218-10) than the LU
factorization algorithm, and to be extremely scalable. In addition, this paper employs a RRQR
decomposition for the matrix (memory) compression. Its adaptive nature comes from the ability
to use the stopping criteria, i.e., relative tolerance value/minimal rank, which allows for the
method to store only the low-rank approximation of the original matrix that satisfies predefined
accuracy. In order to enhance the HSS compression and parallelization, a method for geometrical
preprocessing of the scatterers based on the cobblestone distance sorting technique [45] is
utilized. Hence, the MoM unknowns having spatial locality (belonging to the same mesh group)
also exhibit the data locality in the matrix system of equations. The basic theory and preliminary
results of the DHO HSS-MoM-SIE analysis are presented in a summary f(8@j.in

HSS compression is implemented in a multilevel fashion as described in [61] and, essentially,
its multilevel compression can be considered comparable to the one used in the MLACA
algorithm [47]. Furthermore, sexled multilevel “butterfly” algorithms [63]-[64], as well as the
fast solver presented in [65], have a similar basis to the multilevel compression coupled with
low-rank matrix representation.

This paper is organized as follows. Section 3.2 gives an overview of the MoM-SIE
methodology and the associated discretization using DHO modeling. In addition, geometrical
preprocessing used to group surface quadrilaterals into mesh groups that achieves spatial-data
locality in the system matrix is described. In Section 3.3, the HSS compression and the ULV
factorization followed by the solution of the compressed matrix is discussed. The parallelization
and communication between the processes in matrix filling and HSS compression/factorization is
outlined in Section 3.4. Section 3.5 provides numerical results and discussion, followed by the

conclusions in Section 3.6.
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3.2. DHO MoM-SIE Modeling of Metallic Scatterers

One of the most general and best established approaches to solving scattering CEM problems
is the one based on the method of moments in the surface integral equation formulation and the
frequency domain (FD) [26]. Inherently, the MoM results in dense linear systems, so the HSS

compression and solver are applied to allow for fast and memory efficient execution.
3.2.1. Surface Integral Equation Formulation

The MoM-SIE methodology is applicable to the analysis of metallic and dielectric structures,
where both electric and magnetic surface currents are introduced over boundary surfaces
between homogeneous parts of the structure, and surface integral equations based on boundary
conditions for both electric and magnetic field intensity vectors are solved with current densities
as unknowns. This paper focuses on metallic structures only. However, extending this work to
include problems involving dielectrics is straightforward based on [10].

If the structure made of a perfect electric conductor (PEC) is excited by a time-harmonic
electromagnetic field of electric field intensity®t the angular frequency o, then the scattered
field ES® can be expressed in terms of the surface electric currents of dansisjng the

boundary condition for the tangential fields at the surgeogthe structure as follows:

(Escat(‘Js)+ Einc) tang= 0> Escat(‘]s): —JoA -V (3.1)

A=u[35gds @ =éjvs~Js gdS (3.2)
S S

where A and @ are magnetic vector and electric scalar potential, respectively,

g =e'j°°\/aR/4nR, is the Green’s function for the unbounded homogeneous medium with
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parameters € and p, and R is the distance of the field point from the source point. Hence, (3.1)
and (3.2) constitute an electric field integral equation (EFIEyf@s unknown quantity, which

is discretized using the MoM.

3.2.2.Double Higher Order Modeling

Double higher order modeling consists of meshing the geometry of the electromagnetic
structure using DHO surface elements, which means that both geometry as well as the unknown
variable (surface current) are discretized using higher order functions. In specific, surface of the
structure is modeled using generalized curved quadrilaterals of arbitrary geometricaKgrders
andK,, shown in Fig. 3.1(a), and the current densdityover quadrilaterals is approximated by

means of hierarchical vector basis functions of arbitrarily high current-expansion Nycsand

Ny [10],
Ky Ky
r(u,v) = erkl LEU (u)L:<V (v),-1<u,v<], (3.3)
k=01=0
Ny Ny-1 o NulNy a,
3= D e Ru) o "RV (u,v) (3.4)
i=0 j=0 S i oo 3

arranged in a maximally orthogonalized fashion [§6F] as illustrated in Fig. 3.1(b). Herk,
represent Lagrange interpolation polynomiajsame position vectors of interpolation nodes,

are divergence-conforming polynomial basé&ss  |q x a| is the Jacobian of the covariant
transformation, and ,&oJr/ou and @=0r/ov are unitary vectors along the parametric
coordinates. The unknown current-distribution coefficienig {n (3.4) are determined by
solving the SIE in (3.1), employing Galerkin method. Double (geometrical and current) higher

order modeling enables the use of large curved patches, which can greatly reduce the number of
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unknowns for a given problem and enhance the accuracy and efficiency of the computation.
Element orders in the model, however, can also be low, so the low-order modeling approach is
actually included in the higher order modeling. Moreover, because our basis functions are
hierarchical, a whole range of element sizes and shapes, geometrical orders, and current
approximation orders can be used at the same time in a single simulation model of a complex

structure using the high order (more precisely, tovitigh order) CEM technique.

.(b)__

Figure 3.1. a) Generalized curved parametric quadrilateral patch for DHO MoM-SIE modeling
[10]. (b) Sketch of the orthogonality factor for maximally orthogonalized hierarchical basis
functions of the eight order [66].

3.2.3. Geometrical Preprocessing Based on Cobblestone Distance Sorting Technique

The geometrical grouping of the quadrilaterals in the object mesh based on their spatial
locality, as shown in Fig. 3.2, is done by applying the distance sorting technique [45] as outlined
by the steps described in Fig. 3.3. The grouping technique ensures data locality in the dense
system matrix, which is greatly beneficial for achieving the properties needed for the HSS
compression. Specifically, the cobblestone distance sorting technique divides the mééh into
mesh groups. Each matrix sub-block determined by the coordingiestdres the interactions

between MoM unknowns belonging to tifeandj™ mesh groups. The mesh size of each mesh
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Figure 3.2 lllustration of geometrical preprocessing of objects based on the cobblestone distance
sorting technique [45].

group (i.e., the number of unknowns) is predetermined by the number of processes, geometry,
and other simulation specifics and is given as an input to the geometrical preprocessor. The
outcome of the preprocessor is that MoM unknowns belonging to the same mesh group, besides
its spatial locality, exhibit the data locality in the matrix system of equations: self-interaction
blocks are on the diagonal, while near interactions tend to be closer to the diagonal and far
interactions further away from the diagonal of the system matrix. It is well known that the
numerical rank of the matrix block describing the interactions between two groups decreases
with the increase of the distance between the groups [B&] This matrix property plays a

significant role in the HSS matrix compression.

Distance Sorting Technique:
fork=1:N°
1. List all remaining (ungrouped) unknowns corresponding to basis functions on the quadrilaterdl mesh;

2. Create a box enclosing ungrouped mesh;
3. Find all projections of the remaining unknowns onto the vector defined by the diagonal of the |box;
4. Define thegroup’s “zero” point as the first unknown along the vector;

5. Sort all remaining unknowns based on the distance from the “zero” point;

6. Group the firsi, unknowns, whergl, is the predetermined number of unknowns inkﬁﬁeubgroup.
End

Figure. 3.3. The algorithm behind the cobblestone distance sorting technique [45], illustrated in
Fig. 3.2.
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3.3. HSSTheory

This section contains an overview of the HSS structures, their compression, factorization and

solution, defined and explained in more detail in [61].
3.3.1.HSS Structures

HSS representations rely on a cluster tféthat defines a hierarchical clustering (or
partitioning) of the index set [N], whereN is the number of rows and columns of the matrix. A
cluster tree is such that every nadge associated with an intervial For each nodee T there is
an index subseti — [1;N], such thattg Nt =0, teg Ut =t. At the root,ty—1 =1 = [1:N].

Consequentlypﬁ t is the submatrix of with t; andt; being its row and column index subsets,
i<t

respectively.

The HSS matrix form is defined (exists) on a corresponding clustet tfad.a. HSS tree.
For simplicity we only consider binary trees). Anlevel postorderedl consists of2k—1
numbered nodek (= 2°%), where the root (the only" level node) is labeled byk21, while k
nodes are leaves (first level nodes). Further, each nonleafi rodenas exactly two children
nodes that satisfy relatiaci < c2 <i, with c1 andc2 being itsleft and right child, respectively.

An example of the four-level HSS tree is given in Fig. 3.4.

0,14,5;2,3,6,7 4

0,1;2,3 / 4,5:6,7 3

0,1 / 23 {,5\ 6,7 2

[\ N I\ /) 1
o 1 2 3 4 5 6 7 LEVEL

Figure. 3.4. Four-level postordered binary tree used in the HSS representation.
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The maximum rank (or numerical rank for a given tolerance) of all HSS blocks is called
the HSS rank of matriA. Matrix A has a low-rank property and can be efficiently compressed
and solved using the HSS algorithnm it small comparing to the matrix size.

Compressed HSS representation is defined by using the so-called HSS gebgraiors;,

Bi, W, andV;, belonging to each nodeof the tree, such thddx_; =A, while nonleaf node

generators are constructed by using its children’s generators as follows:

Di — ATt & = Dcl UCchl\/C'_Z{ , (35)
II U c2 B(:2Vc|i| DCZ
U VW,
Ui ={ cchl} V| :{ cl cl}’ (3.6)
U c2 Rcz VcZWcz

where the superscript “H” denotes Hermitian transpose. Fig. 3.5 depicts a block example of the
8 x 8 HSS representation of a matrix defined on the corresponding HSS tree, given in the Fig.
3.4. Leaf levelD matrices are calculated and stored as fully dense, while other matrices are

calculated and saved in the compressed form obtained by the rank-revealing QR (RRQR)

decomposition.

Dl

B3 V6H B7 VH
D, U, 14

D U3R3

D; 6%

D8
D9
Dll

D12

Figure 3.5. lllustration of a corresponding HSS form.
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3.3.2.HSS Compression

HSS compression is done in two stages: row and column compression steps, where the latter
one is applied to an already rasmpressed matrix. RRQR decomposition is applied for
compression of all the matrices [43]. The steps in the algorithm behind the RRQR decomposition

are given in Fig. 3.6.

Rank-revealing QR decomposition:

Compression of M x N matrix A = QT with rankr and tolerance is given by following steps:
fori=1:min(M, N);

1. Find the colummy = A(:, j) with the maximum norm

2. Interchangé andf;

3. Settii = Ifily, if t; /t11 <1 thenr =i, exit;

4. Calculate thé" column ofQ: g = f,/t;;

5. Calculate thé" row of T: t = gH[ .1, f . 0,... N ]

6. Update the rest of the matrip€,,, fi,o,....Fn ] = [ Firg, Fiog fn] — Gt -
End

Figure 3.6. Rank-revealing QR algorithm.

Row compression step is applied in an upward sweep along the HSS tree, where at each leaf

level nodei, a local block row of the system matrAﬁiX, is calculated as explained in Section

3.2. Afterwards, initial RRQR decomposition is done and column HIBdKSS generators are
defined at leaf level nodes. In the next step along the HSS tree, a local matrix is defined using
children’s matrices and compressed as given in (3.7) and (3.8) and outlined in the row
compression algorithm in Fig. 3.7. The algorithm is applied in a recursive fashion along the HSS
tree, and the row compression stage is accomplished once the root node is reached.

In a similar fashion, column compression is applied in an upward sweep as given in the

column compression algorithm in Fig. 3.8. A block column maﬁﬁ&ti that was already
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compressed at the row compression stage is associated with eaclandad®lumn compressed

as given in (3.10) and (3.11). Construction of the mari¥SS form and all its generators is

obtained after the column compression stage. Note that the compression of the right-hand side is

done in the same fashion as the compression of the system matrix.

Row compression algorithm:

1. At the leaf level, row compression of the local matrix is calculated on each inode

Ai) = YiRe g )

2. At each norieaf level, matrices of interest are defined by children’s matrices and compressed ((3.7)
and (.8)). Children’s local matrices R are stored, while the matrix block forwarded to the parent

'S At

ATtClXtcz ~ UClﬁfClXtCZ ' ﬁtCZXtCl ~ UCZATfCZXtC]_' (37)

Atax(i) (%j
Fi = ~ o Y 3
(ﬁfczx(nti) Ry ) <) S

hode

Figure 3.7. Row compression algorithm.

Column compr ession algorithm:

1. At the leaf level, let us defing on each nodeas:

L-1
t= Ufsib(ancee(i,l))’ ()
I-1

wheresib(i) stands for a sibling node whices(i,l) is the ancestor of the nodet the level. The
column compression of the local matrix is calculated:

Aoy = ApiVi' (3.10)

2. At each norieaf level matrices of interest are defined by children’s matrices and compressed further,

b, Ao Al
WP Ak )T A |wy, | 311)

Bry = ﬁfclxiz’ Bez = Aﬁc%ﬂl' (3.12)

Figure 3.8. Column compression algorithm.
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3.3.3. ULV HSS Factorization and Solution

The ULV factorization is applied to the HSS compressed form of the mfatrix3.5) in order
to find orthogonal¢,V) and triangularl{) matrices. The factorization is done by multiplying the

local matrix given in (3.5) at the nodéy specially constructe@ andP matrices,

{Qc'i 0 }{ Dt Ucchch'ZHF’c'f 0} (3.13)
0 Q(|:-|2 UCZBCZVCT DC2 0 PC|_2|

Q matrices are formed by th@L factorization of column block&) matrices in order to
introduce zero off-diagonal row blocks:

0 0
Uy = ch{u‘“ J! Uer = QCZ|:G } (3.14)

C c2

whereJck,k=12 are lower triangular matricies of sizeg, r« being the rank of théJy

matrix. Q matrices are used further to defiby, = QY Dy k=12 which are conveniently

partitioned as:

« | Dy1: D
Dy =| JoKHM T2 —12, (3.15)
Dck 21 Dck 2,2

SO thatf)ck:zz is a square matrix of size equalrt@ Finally, P matrices are defined by the

following LQ factorization:

(Dck;ll [Sck;lz): (Dck;ll O)Pck- (3.16)
Applying (3.14)-(3.16) and using orthogonality properties of involffednd Q matrices,

(3.13) may be expressed in a new form:
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IBclll ~O {~ ~2 -4 1
Der21 Derp UerBerVeza V02:2] (3.17)

UCZBCZ ch Vc|]—|;2] Dc2;2,1 D02;2,2
Note that all non-zero off-diagonal blocks in (3.17) are of small dimensions relative to the full
matrix dimension. At this stage, it is easy to redefine parent generators using only a small part of

children’s generators,

~ - ~H - ~
D | - DcngH UaBeiVez U, {LﬂClRﬂ},Vi :|:Ycl'2wc1:|_ (3.18)
U c2 Bc 2Vc:L'2 Dc 2,22 u c2 |:‘)c2 V02;2W02

Note also that, for example, a square malixs still saved in the compressed fashion as
before but its new dimension is ony +re, while after the HSS compression stage it was
Sizeof(te U te).

Algorithm described in (3.13)-(3.18) is then performed in an upward sweep. When the root
node is reached, an LU factorization with partial pivoting is performed on a square dense matrix
of a dimension far smaller than the starting matrix. Once (3.18) is solved on the parent node, it is
straightforward to use3(17) and calculate children’s solutions. Solving the matrix is done in a

downward sweep and the final solution is obtained when the leaf level is reached.
3.4. Parallelization Strategy

The parallelization strategy of the HSS-MoM-SIE method is adopted from [61] for HSS
compression and solution and from [69] for MOM-SIE matrix filling. Communication method
between the processes is adopted to be the same as the communication layeofethstate-
dense linear algebra library ScaLAPACK [70]: BLACS (Basic Linear Algebra Communication
Subprograms) library [71]. Further, both libraries are used for execution of all lilgedoraa

computations applied to full storage dense matrices.
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MoM-SIE matrix filling is done as given in Section I, where the parallel matrix filing builds
on top of the cobblestone geometrical processing as introduced in [69]. If the total number of

processes running the simulatiorNigocs, then number of mesh groups used in the preprocessing
isSNY = /Nprocs. Further, each process can be described by its 2D coordipatgswherep,

g = 1.N? and the local matrix calculated by thpe §) process corresponds to the SIE interactions
between thg-th andg-th mesh group.
Matrix calculation and initial RRQR compression are done at the leaf level, where the 2D

process grid is divided intk subgrids, with each subgrid belonging to one leaf level node and

defining the nde’s process context. Each of the k subgrids is of SiZBIg/kx N9, as shown in
Fig. 3.9.

Processes belonging to one leaf-level nodentext are used to calculaﬁﬁ whereA is

x|

the MoM-SIE system matrix, and its corresponding excitation vector set. All matrices are stored
using the so-called distributed 2D block cyclic storage on a 2D process grid on a distributed
memory systems [70]. Further, when two of the nodes at the same level have overlapping
calculations, the calculations are n@dundantly done only on one node’s context and
efficiently forwarded to the other node using BLACS communication routines. Following this,
all the calculations done at children’s nodes needed at any of the parent’s nodes are forwarded in
the upward sweep along the HSS tree.

After the calculation of the local matrices at the leaf-level nodes, geneiatare stored,
while the initial parallel RRQR compression is done to obthiandR matrices, as given in the
first step of the HSS compression (Fig. 3.7). All HSS operations (HSS compression, ULV
factorization and solution) are performed in parallel, either in upward or downward sweep along
the HSS tree [61]At upper levels in the HSS tree, each node uses all children’s processes to
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define its own context. For example, as shown in Fig. 3.4, at the third HSS level, nodes 7 and 14
are children to the fourth level node 15 and their corresponding 2x2 2D process grids: {0,1; 2,3}
and {4, 5; 6,7} are combined together into 2x4 2D process grid: {0, 1, 4, 5; 2, 3, 6, 7}. The
parent context is obtained by combining the two children’s contexts either side by side or one on

top of the other, because the size of both children’s contexts is the same. At each node, matrices

are stored using the 2D block cyclic storage defined for the current node context [69]
Computations done on each of the HSS generators are performed in parallel where each process
is running computations on its local matrix “chunk.” Throughout the computation phases,
intracontext sequences of communication are done to ensure that the data needed for accurate
computation is available to each process. After computation at the current node, preparation for
the following step is done: both intracontext and intercontext data exchange and matrix

redistribution for the new context needed on the next level of the traversal along the HSS tree.

Jol1]4ls
12]316]7
819]12113]
10{11)14/15] HSS BINARY TREE
|of1]4]5 8]9]12[13]
['2367 10111415‘\
ol1 4|5 JE 12[13)
1213 6 10/11 14[15]

( 7
A
—
[oT1]2]3) |4|5|6i7| [8Tofro[11) [12[13]14[15) MATRIX FILLING

Figure 3.9. lllustration of a process context change throughout matrix filling phase and HSS
solver on a level 3 HSS tree and using 16 processes.

Details behind the communication at each step in the parallel HSS solver can be found in [61]
Some of the examples of intracontext communication throughout the computation phase are the
following: In the RRQR algorithm, when finding the norm of each column, norm of each local
column is found and then BLACS function for summing the norms in a column-wise fashion on

a 2D process grid is used. Afterwards, a similar row-wise communication function finds the
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maximal norm and communicates it to all context processes. Such communication subroutines
are the standard “combine operation” BLACS subroutines. Each participating process
contributes data that is combined with data of other processes to produce a final result.

Similarly, the example of matrix redistribution is given in preparation of the next step moving
up the HSS tree from level 3 to level 4. Two children’s matrices are merging, as well as their
contexts to define parent’s matrix and a corresponding context. Due to the 2D block cyclic
distribution of matrices, the data exchange when contexts {0, 1; 2, 3} and {4, 5; 6, 7} are
switched to {0, 1,4, 5; 2, 3,6, 7} is achieved by the following pairwise data exchanges: 0 «> 4, 1

— 52 6,and3 - 7.

3.5. Numerical results and Discussion

This section provides numerical results obtained by the DHO HSS-MoM-SIE analysis. All
simulations were run on the TACC Stampede supercomputer that was accessed through The
Extreme Science and Engineering Discovery Environment (XSEDE) [72]. Stampede has 6400
compute nodes where each node contains two Xeon Intel 8-Core 64-bit E5-processors (16 cores
on each node). The core frequency is 2.7 GHz and supports 8 floating-point operations per clock
period with a peak performance of 21.6 GFLOPS/core or 346 GFLOPS/node. Each node
contains 32 GB of memory (2 GB/core). Nodes are interconnected with Mellanox FDR

InfiniBand technology in a 2-level fat-tree topology [73].

3.5.1. Example 1. Spherical Scatterer

As the first example of the application as well as the validation of the HSS-MoM-SIE method,

consider the analysis of scattering from a PEC sphere of diadheteb666),, with Ag being the
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free-space wavelength. First, consider a higher-order mesh of the scatterer, maximal specified
size of which is to be less than or equal to a wavelength. After the meshing procedure, the patch
size s is approximately 0.929<S<0.95%, for all 96 geometrically second-ordef (=K, = 2)

curvilinear quadrilateral patches modeling the sphere. The adopted current approximation orders

areN, =N, = 4, which results in a total & = 3,072 MoM-SIE unknowns. Fig. 3.10 shows the
normalized bistatic radar cross section (RGS),/22 , as a function of the scattered angle, in

two characteristic plane cuts. The excitation plane wave is incident from the direction defined by
(Oinc;Pinc) = (90°,0), where 0 and ¢ are angular coordinates in the spherical coordinate system. For
the set of results given in Fig. 3.10, number of levels in the full postordered HSS tree is chosen to
be 5, which contains 16 leaves, while the number of processes used in the parallel simulation is
64. In the same figure, we observe the convergence of the results to the analytical Mie solution
with the decrease af the RRQR relative tolerance (used in the HSS compression).

In addition, Table 3.1 provides the information on the average error, maximal rank, memory
consumption, and total simulation time (including matrix filling, compression, factorization, and
solution times) for different simulations given in Fig. 3.10. The average error is obtained as the
average of the absolute error between the normalized bistatic RCS calculated by the numerical
method and by the analytical Mie’s series, respectively. The averaging is done by taking into

account the error in a numb&t() of directions describing the bistatic RCS plane,

dir

1
Czwz

i=0

Ginum—ciMlE‘/Xé. (3.19)

Based on the convergence of different graphs given in Fig. 3.10, as well as the average err
given in Table 3.1, it can be concluded that the accuracy of the results is easy to control by the

relative tolerance or maximal rank used in the RRQR. In addition, by inspecting the results given
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in Fig. 3.10 and Table 3.1, as well as the results of the wide range of performed simulations
(different tree levels and RRQR relative tolerance) using the same higher order model, scattering
results for the PEC sphere that can readily be considered as accurate are obtained in simulations
with the maximal rankr > 490. Maximal rank in the HSS compression corresponds to the
maximal number of independent degrees of freedom (DoFs) needed for an accurate numerical
simulation [74]. The number of DoFs needed to accurately model a scatterer should depend

solely on the scatterer properties and not on the used discretization [63. 68, 74

35 | | MIE solution

— = 1.107 =210
=510 1=11079
1=3107 =510

35 || MIE solution
— = 1.107 w1 =2.10
1=510" t=1107

0 0 |
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Figure 3.10. Normalized bistatic radar cross section of a spherical PEC scatterer computed by
the HSS-MoMSIE method using preprocessed mesh given in the Fig. 2 and by the Mie’s series:
(&) ¢ =0 cut and (b) 6 = 90° cut.

TABLE 3.1
SIMULATION PARAMETERS FOR THE RESULTS GIVEN INFIG. 3.10

RRQR rel. Maximal Time [s] Storage ¢ [dB] ¢ [dB]
tolerance rank [GB] (¢ =0cut) (6=90°_cut)
1=1107 385 7.76 0.04 1.4964 2.2911
1=510° 433 8.00 0.05 1.3417 1.5164
=310 464 8.21 0.06 0.7309 0.9651
=210 493 8.27 0.06 0.0875 0.1567
1=110° 531 8.79 0.07 0.0319 0.0518
1=510" 575 8.92 0.08 0.0170 0.0403

Further analysis that compares low- and high-order modeling results shows the advantage of
higher order modeling when capturing the real rank of the scattering problem. In particular, the
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adopted low-order model of the same PEC scatterer consists of 7,776 geometrically first-order
(Ky =Ky = 1) quadrilaterals with the maximal size of 0.12X. The adopted current approximation
orders areNy =N, =1, resulting in a total ofN=15552 unknowns. After the initial
discretization, when compared to the higher order model, the number of unknowns in the low-
order model is more than 5 times larger. However, due to the physical properties of the scatterer,
the maximal numerical rank of the compressed HSS matrix should be approximately the same

for both models.
On the other hand, Fig. 3.11, shows the ers@'™—6ME | in the RCS for three choices of

low-order simulations and one higher-order simulation, confirming that in order to achieve
similar accuracy, a low-order simulation needs almost twice as large numerical rank. This is
confirmed by the information in Table 3.2 that contains the average error for the four simulations

given in Fig. 3.11.
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Figure 3.11. Error of the normalized bistatic RCS of the PEC scatterer computed by the HSS-
MoM-SIE method with respect to the exact Mie solution(@&)0 cut and (b) 6 = 90° cut.

Further, note that the true low-order modelling based on RWG functions [31] defined over flat

triangular patches uses from 500 to 600 unknowns per square wavelength [47, 48, 75], which
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leads to a truly low order model of a PEC sphere with around 35,000 to 40,000 unknowns,
making the number of unknowns more than 10 times larger than in the atidptaddel.

Next, we test the scalability performance of the HSS-MoM-SIE methad the same
example. Because the higher order model with only 96 quadrilaterals is not well fitted for
simulations on hundreds of processes, the scalability testing of the method is done on a low-order
model of the sphere. All simulations used in the test are set up for the tolerasckd ™ and
level 5 full postordered HSS tree. Note that the number of leaves in the tree is 16, which, for the
particular example, corresponds to the minimal number of processes that can be used in a parallel
run of the HSS-MoM-SIE code. The runtime of the parallel code on 16 processes is thus adopted
to be the baseline computational time used in the speed-up calculations. To measure scalability,
we run the same model on 64, 256, and 1,024 processes, and observe an excellent scalability

performance in Fig. 3.12.

TABLE 3.2
SIMULATION PARAMETERS FOR THE RESULTS GIVEN INFIG. 3.11
Maximal dB

Model type | - ok (¢C=[o c]ut) ® k Sg%%]cut)
High Order 493 0.0875 0.1567

825 0.2353 0.6521
Low Order 854 0.3541 0.5108

913 0.0845 0.1947

3.5.2. Example 2. NASA Almond

In the second example, the HSS-SIE-MoM code is applied to analyze scattering from a NASA
almond [76], an established benchmarking structure for monostatic RCS computations. In

specific, we consider a PEC almond of the maximal siz&,4# a frequency of 50 GHz, with

the overall surface of the scatterer being equal to Lé.lIhe constructed higher order model

of the almond uses a total of 16,384 curvilinear quadrilateral element&witiK, = 2 and the
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current approximation in different directions on different patches ranging NMgy= 1 to

Nuv = 3 depending on the electrical dimensions of the quadrilateral element. The final number of
unknowns (that would be even smaller if larger patches and even INghevere used) is
149,756. A similar scatterer is analyzed in [75] using the model with around 450,000 unknowns.
In addition, applying, for comparison, the true lower order quadrilateral modeling to the almond
scatterer requires 524,288 unknowns defined over 262,144 patchd§,with, = 1 andNy, = 1

on all the patches.
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Figure 3.12. Performance and scalability of the HSS-MoM-SIE method applied to the simulation
of a low-order PEC sphere model with the number of levels in the HSS tree equal to 5.

Fig. 3.13 shows the monostatic scattering computations of the DHO model of the PEC
almond obtained by the HSS-MoM-SIE method and validated by the full-storage direct solver
using ScaLAPACK LU decomposition [69] simulation of the same model, as well as against the
low-order modeling resulfg5]. The normalized monostatic RCS is calculated for 361 different
directions, in the = 0 plane, with the polarization of the incident electric field along-dnds.

The HSS compression is done using the relative tolerarc®10* on the §' level HSS tree.

The maximal rank of the compressed matrix comes out to be 3,926. The simulation is run in
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parallel on 256 processes, with matrix calculation and HSS compression times being 846 s and
2,596 s, respectively. Further, the HSS factorization time is 41.95 s, while the total
backsubstitution time for all 361 excitation vectors is 5.36 s. ScaLAPACK LU decomposition
time on the same number of processes is 8,565 s, which, in terms of the performance can be
compared to total time of the HSS compression and factorization: 2,638 s. The compressed
matrix storage in the DHO HSS-MoM-SIE simulation amounts to 20.78 GB, while the full
matrix storage for the same model would require 180 GB of memory. In addition, the LO
guadrilateral model described above would require 2.2 TB. Hence, we observe great advantages
of the DHO modeling coupled with the direct solver and HSS compression of the MoM-SIE
matrix in the analysis of electrically large objects with multiple excitations (right-hand side

values).
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Figure. 3.13. Normalized monostatic RCS of a PEC NASA almond computed at 50 GHz by the
full-storage direct ScaLAPACK LU-MoM-SIE and HSS-MoM-SIE methods.

3.6. Conclusions

This paper has proposed a novel fast scalable parallel algorithm and solver for large scattering

problems based on double (geometrical and current-approximation) higher order MoM in the SIE
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formulation and the frequency domain in conjunction with a direct solver for dense linear
systems with hierarchically semiseparable structures, namely, with a HSS matrix representation
for compression, factorization, and solution of the system matrix. In addition, a RRQR
decomposition for memory compression has been used, with a stopping criterion in terms of the
relative tolerance value/minimal rank, allowing for the method to store only the low-rank
approximation of the original matrix that satisfies predefined accuracy. In order to enhance the
HSS compression and parallelization, a method for geometrical preprocessing of the scatterers
based on the cobblestone distance sorting technique has been employed, such that the MoM
unknowns belonging to the same mesh group and thus having spatial locality also exhibit the
data locality in the matrix system of equations.

Numerical examples have shown how the accuracy of the DHO HSS-MoM-SIE method is
easily controllable by using the relative tolerance for the matrix compression. Moreover, the
examples have demonstrated low memory consumption, as well as much faster simulation time,
when compared to the direct LU decomposition. Finally, great scalability of the algorithm has
been demonstrated on more than thousand processes.

Overall, the DHO HSS-MoM-SIE method and its future extensions and advancements are
asymptotically faster direct algorithms for IE solutions that are memory and communication-
efficient and amenable to extreme-scale parallel computing. They also are purelgialgatr
kernel-independent and enable dramatically faster monostatic scattering computations than
iterative solvers and reduced number of unknowns when compared to low-order discretizations.

This paper has focused on metallic scatterers. Nonetheless, due to the truly algebraic nature of
the method, its extension to any electromagnetic system solved by the MoM-SIE analysis is

straightforward.
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4. DUFFY METHOD FOR EVALUATION OF SINGULAR POTENTIAL
INTEGRALS OVER CURVED QUADRILATERALS WITH HIGHER
ORDER BASIS FUNCTIONS IN SIE ANALYSIS OF ANTENNAS AND

SCATTERERS'

4.1. Introduction

In analysis of antennas and scatterers based on the method of moments (MoM) in conjunction
with the surface integral equation (SIE) approach [10], one of the most important problems in the
development of a MoM-SIE technique and its implementation and optimization aimed to result
in an accurate and efficient modeling and computational tool is the treatment of singular
potential two-dimensional (2-D) integrals involved in the self-terms of the Galerkin impedance
matrix, with the testing patch coinciding with the source patch, namely, when an observation
(testing) point belongs to the source patch (with basis functions). This problem is even more
pronounced and challenging when higher order basis functions are used for the approximation of
surface currents of the antenna/scatterer, and especially when such functions are defined on
curved surface (boundary) elements (patches) employed for geometrical modeling of the
structure [5].

Most of the previous research in overcoming the problem of singular integrals in MoM-SIE
modeling has been devoted to handling the singularities on planar triangular patches with low-
order current approximations, typically in the form of Rao-Wilton-Glisson (RWG) basis

functions [77}H83]. Several works, on the other hand, deal with the problem of evaluation of

* © 2014 |IEEE. Reprinted, with permission, from A. Bait, M. Djordjevic, and B. M. Notaros, “Duffy
Method for Evaluation of Weakly Singular SIE Potential Integrals oveve@u@Quadrilaterals with Higher Order
Basis Functions,” |EEE Transactions on Antennas and Propagation, Vol. 62, No. 6, June 2014.
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singular potential integrals for curved quadrilateral patches with higher order basis functions
[10], [5], [84}-[88]. In particular, singularity extraction (subtraction) consisting of analytical
integration of a principal singular part of the integrand and numerical integration of the residual
using quadrature formulas [77] and it is implemented for RWG triangles in [78],[79], and for
curved quadrilateral elements with higher order hierarchical polynomial vector basis functions in
[10], [5].

Singularity cancellation methods for evaluation of singular integrals are based on coordinate
transformations, i.e., on mapping of the integration domain to a new parametric domain such that
the Jacobian of the transformation cancels out the singular term in the integrand. As a typical
representative of this approach, the Duffy method [89], originally proposed for a volumetric
integration domain [90], is applied to evaluation of singular integrals over planar [80] and
curvilinear triangles [87], [88]. A polar transformation method for singularity cancellation is
proposed for planar triangles with RWG functions [81]. Its implementation for singular potential
integrals over curved quadrilateral elements with higher order hierarchical polynomial bases is
given in [84], where a comparison of this technique and the singularity extraction method [10]
[5] is presented as well. Rectangular transformation methods for singularity cancellation, first
proposed for curved volume MoM elements [91], are applied to solve potential integrals over
curved quadrilateral elements with higher order hierarchical polynomial bases in [85] and [86]
The arcsinh transformation method is applied for evaluating singular and near-singular potential
integrals over flat triangular and quadrilateral MoM-SIE patches [82]. Singularity cancellation
methods for computation of singular and near-singular potential integrals for flat triangles and

linear basis functions using four different transformations are compared in [83].
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Overall, there seems to be a lack of investigations and reported results on the treatment of
singular potential integrals involved in the self Galerkin MoM-SIE impedance matrix entries for
curved surface elements with higher order basis functions, as well as results for the accuracy and
convergence properties of different methods for different locations of singular points in
parametric domains, different basis functions on flat or curved surface elements, and overall.

In response to the above lacks of more adequate methods and more comprehensive studies of
various methods, this paper proposes a Duffy method for singularity cancellation to evaluate
singular potential integrals involved in the self Galerkin MoM-SIE impedances defined on
Lagrange-type generalized curved parametric quadrilateral surface elements of arbitrary
geometrical orders with polynomial basis functions of arbitrary current-approximation orders.

This paper also presents a comparison of the integration accuracy when using five different
methods for evaluation of singular potential integrals, namely, (i) the singularity extraction
method [5], (ii) the Duffy method for singularity cancellation (proposed in this paper), (iii) the
polar transformation method for singularity cancellation [84], (iv) the quadratic rectangular
transformation method for singularity cancellation [85], and (v) the cubic rectangular
transformation method [86]. The study is performed for the integrals defined on a flat and a
curved patch, both elements being electrically large, namely, two wavelengths in each
dimension, for constant basis functions and for a choice of high-order polynomial bases, and all
for five different characteristic locations of the singular point on the patch. In addition, example
of full 2-D/2-D singular integral defined over highly-curved and badly-shaped patch is given.

We show that overall, of the five integration methods considered, the proposed Duffy method
for singularity cancellation comes out to be the most accurate, the most rapidly converging with

the increase of the order of integration formulas, and the fastest to execute.
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4.2. Theory

We consider a MoM-SIE model of an antenna or scatterer built using generalized curved
parametric quadrilaterals of arbitrary geometrical orderandK, (K,, K, > 1), shown in Fig.
4.1 and analytically described in the parametriev domain &[10]
KU KV L.
ruv)=> > ruv, —1<uvs<i, (4.1)

i=0 j=0

where r; are constant vector coefficients related to position vectors of interpolation nodes

defining the quadrilateral. When these elements are used in conjunction with higher order
polynomial basis functions, all entries of the Galerkin impedance matrix can be foundaas li

combinations of 2-D/2-D Galerkin integrals [10], which, for the case of testing and basis
functions being defined on the same patch (self Galerkin integrals), contain the following

singular inner 2-D basic potential integrals computed at an observation (testingYupoug)

belonging to the source quadrilateral patch:

e—ij

4R

11
o = [ Ju™"g(Rydudv, g(R) =
-1-1

, k=24 Jequo » R=|r(u,v)—r(up, Vo), (4.2)

with g being the freaepace Green’s function, f the operating frequency of the antenna/scatterer,

andR the distance of the source poift,v) from the point(uy,Vy), referred to as the singular

point. When the two points coincid®, is zero, and a special treatment of the singularity is
needed. In what follows, we outline singularity cancellation Duffy method and overview four

different methods for solving integrals in (4.2).
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a v
Q u
Figure 4.1. Generalized curved parametric quadrilateral defined by (4.1).

4.2.1. Duffy Method for Singularity Cancellation

Here, we propose a Duffy method to solve integrals in (4.2) defined over curvilinear,
electrically large patches with higher order bases, which is based on subdividing the parametric
u—Vv square domain into four parametric triangles defined by the singular point and the vertices
of the square, as shown in Fig. 4.2. Note that this is a modification in the spirit of the original
Duffy method initially proposed for a 3-D domain of integration [90], which would imply a
subdivision of the parametric square into eight right-angled triangles (much like in Fig. 4.4).
Each triangle in Fig. 4.2, having the singular point as one of its vertices, is then independently
mapped into a new- sdomain as illustrated on example of first region. In [87] Duffy method is
implemented for triangle local coordinates while in [88] it is further developed using mapping of
curvilinear triangle to isosceles right triangle.

Mapping to thep—s domain differs for different triangles in Fig. 4.2 but can be expressed in

a unified way as follows:
a=ag+pc, b=by+ ps, 0< p<l, 5 <s<s,, c=const, 4.3)

with coordinatesa and b standing for eitheu or v. With this notation, Table 4.1 provides

mapping parameters for each region (triangle).
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Based on (4.3), the Jacobian of the mapping can be defined and computed, for every triangle, as
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region4 ]~
. 1,-1)
u

Figure 4.2. Duffy method for singularity cancellation: subdivision of the paranuetric square

domain into four parametric triangles with local constar#nd constans parametric lines in
triangular region 1.

TABLE 4.1
PARAMETERS OF THEDUFFY MAPPING IN(4.3) FOR

THE FOUR TRIANGULAR REGIONS INFIG. 4.2.

Region 1 Region 2 Region 3 Region 4

u=a,v=b v=a,u=b wu=a,v=b v=a,u=b
S=lv, §--l-u §=-1-y  § -1,

§=1—V0 szl_uo ngl_vo S‘zlzl_uo

Combining (4.3) and (4.1), the radial distance from the singular point in triangular region |

in Fig. 4.2 can be expressed as a polynomiap invith coefficients d being functions «f, as

follows [note that the only term in the binomial expansionubf! using @.3) that does not

contain p is upvg1:
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1= 1234. (4.5)

Hence, the singular integral over regiocan be expressed using (4.2)5§, and (4.4) in a

way that removes (cancels) the singularity,

| |
1% mn 1% m .n.—jkR

DL fu™ R 9 u™"e” dpds 4

Inn—4nj.jl?e \Sdpds——4nj-[ Koty ( 6)
O Osid) + Z dlp't

namely, the singular dependence on pheoordinate in (4.5) is canceled lpy in the expression

for the Jacobian in (4.4), so the integral in the final form in (4.6) can be evaluated in a
straightforward fashion numerically, using quadrature (e.g., Gauss-Legendre) formulas. Finally,
the contributions of individual triangles are added up for the total potential integral,

I

2 3
m +1

4
m + lm

+1'm

4.2.2.Four Integration Methods used for Comparison

Singularity extraction method: The method of extracting the singularity consists of
analytical integration of a principal singular part of the integrand over a (generally not
rectangular) parallelogram whose surface is tangential to the surface of the generalized
guadrilateral at the singular point, and numerical integration of the rest using Gauss-Legendre
guadrature formulas [10], [5]. The parallelogram is defined by the unitary vectors [10] of the
generalized quadrilateral at the singular point. The singular integral is evaluated analytically as in
[77] while the other integral is well behaved in the vicinity of the pdigf,v,) and can be

accurately integrated numerically.
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Polar Transformation Method for Singularity Cancellation: Polar transformation [84]
uses the same triangulation as in the Duffy method in Fig. 4.3(a) while mapping the parametric

u—Vv domain into a new—0 domain, with a standard meaning of the radial coordinatand
angular coordinatef, in the polar coordinate system centered at the singular gagty,), in

the u —v domain.

Quadratic and Cubic Rectangular Transformation Methods for Singularity
Cancellation [85], [86], subdivides the parametric—v square domain into four rectangular
regions whose common vertex is the singular point. Note that the rectangular transformation for
singularity cancellation in SIE integrals is applied with 2 (quadratic transformation) in [85],

while [86] implements the same transformation with3 (cubic transformation).

4.3. Numerical Results and Discussion

In this section, we compare the integration accuracy when using five different methods for
evaluation of singular potential integrals, (i) the singularity extraction method, and four
singularity cancellation methods, namely, (ii) the Duffy method, (iii) the polar transformation
method, (iv) the quadratic & 2) rectangular transformation method, and (v) the cubie3)
rectangular transformation method, described in the previous section. All methods are
implemented for solving integrals in (4.2) defined on curved quadrilaterals described by (4.1),
for several choices of the singular point.

In examples, the integrals are defined on a square plate and on a spherical patch, respectively,
for two choices of basis functions, that fo= n =0 and that fom=2 andn =6 in (4.2), and for

five different locations of the singular point defined in thev parametric domain as shown in
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Fig. 4.3 and specified in Table 4.3. Example of convergence results for 2-D/2-D integral defined

on highly-curved and badly-shaped geometry is also considered.

AV
1,1 an
D*
e
5 B

E

1-1) (-1 u
Figure. 4.3. Five different choices of the singular poigt (o), with parametric coordinates
given in Table 4.3, in the— v parametric domain, over curved quadrilaterals in Fig. 4.1.

All results are given in terms of the relative integration error computed as
3={1m = Tom /[T @.7)
where I~rm is the reference “exact” value of the integral. All computations are performed in

double machine precision.
4.3.1. Integral with Constant Basis Functions over a Square Plate

As the first example, we consider the integral in (4.2)nfigr n =0, namely, with constant
basis functions, over a square flat plate of side leagtl2 m, at a frequency=300MHz, so
thata = 2, with A standing for the free-space wavelength. With reference to Fig, the “exact”
value roo in this special case (flat plate) can be obtained by first analytically transforming the 2-

D integral inu andv as

jkd
- treRuay & Petodpdy &Te co9dp
-1 =10 0 1=1 0
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and then numerically solving the final non-singular 1-D integral$ .irThis example’s I~00

integral values are given in Table 4.2. Fig. 4.5 shows the error in (4.7) against the orders of
Gauss-Legadre integration formulas, i.e., numbers of integration points, in each of the region’s
local directionsNGL (the same in both directions), for five different singular points in Fig. 4.3

and five different integration methods.

)

0
v 4

8,

Figure 4.4. For integration in (4.8) over one of the eight right-angled triangles constituting a
square flat plate, to compute the reference “exact” value of the integral lgo

TABLE 4.2

EXACT INTEGRAL VALUE |y OVER FLAT PLATE OF SIZE2A FOR SINGULAR POINTS GIVEN INFIG. 4.3.

Point A 0.0390728194148081 - 0.0338074127356726i
Point B - 0.0104077559218362 - 0.0873743257011760i
Point C - 0.019482990210943 - 0.117888060820110i

Based on Figs. 4.5(a)-(c), we conclude that, for singular points A, B, and C, the Duffy method
and the polar transformation method for singularity cancellation perform the best, with the Duffy
method converging even faster in some cases than the latter method. We also observe that,
accuracy and convergence properties of the singularity extraction method noticeably outperform
the cubic rectangular transformation method, and especially the quadratic rectangular
transformation method. From Figs. 4.5(d)-(f), we realize that the Duffy method is considerably

more accurate and faster converging than the polar transformation method for some specific
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choices of singular points, i.e., points D and E, and that the singularity extraction method

features the highest convergence rate of all the methods for smaller vaN@ls. of

o A < —=— Singularity extraction 0 <[~ [ —=— Singularity extraction
N —eo— Duffy method \ > N —e— Duffy method
2 =~ —a~— Polar transformation > ~ 2 N —a~— Polar transformation
B =3 — Quadratic transform. “r :\ X “r = Quadratlc transform.
I~ = = Cubic transformation |~ '\§ - = = Cubic transformation
o L -~ - I - L ~
4 \-\_\ 4 .\'\-\_\ = -4 \. ~ o \
——— . —— . =~ <
g - — & % ~-. g N T
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Figure 4.5. Evaluation of the integigy (for m=n=0) in (4.2) over a square flat plate using the
singularity extraction method, the Duffy method for singularity cancellation, the polar
transformation method for singularity cancellation, the quadratic rectangular transformation
method for singularity cancellation, and the cubic rectangular transformation method: integration
error in (4.7) against the order of Gauss-Legendre integration fornNs, for five different
singular points in Fig. 4.34 is computed as given in (4.8) and Fig. 4.4].

Note, however, that this is electrically a rather large patch, namely, k) 2plate
considered as a single MoM element, and that smaller patches, e.g., those on thejoftler of
and 0.2.x0.5,, also used in higher order MoM-SIE techniques, and especially electrically small
patches measuring 0.20.1\ and less, characteristic for low-order MoM-SIE techniques, require
far lower values oNGL for a given accuracy of integration and a given machine precision
(double precision).

Overall, wherNGL is not limited, as shown in Figs. 4.5(e)-(f), the best convergence behavior

is achieved by the Duffy method. While for some singular points and lower valiN&Lofthe
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singularity extraction method reaches certain accuracy levels the fastest, further improvement of
its accuracy at the expense of adopting higd@kL values is rather slow. On the other hand, both
the Duffy method and the polar transformation method exhibit a logarithmic-type of convergence
with increasing\NGL.

Among the results for all singular points, the worst accuracies and convergence behaviors for

all integration methods are those in Fig. 4.5(f). The singular point E in

Fig. 4.3 thus comes out to be the worst-case scenario for the evaluation of the fmag;’adg
any of the methods, and the error graphs in Figs. 4.5(e) and (f) may be considered as defining
and limiting the accuracy and convergence properties of the individual methods as long as the
integration performance at specific singular points is concerned.

Table 4.4 provides information on computation times for the five integration methods, for
singular point A andNGL = 20. We see that, out of all the methods, the Duffy method is the

fastest to execute.

TABLE 4.3

PARAMETRIC COORDINATES OF SINGULAR POINTS INFIG. 4.3.

Point A Point B Point C Point D Point E

U, =0 Uy=05 u;=06 uy,=08 u,=09

vV, =0 V=01 v;=04 v;=08 v,=-09

4.3.2.Integral with High-Order Basis Functions and Geometry

In the second example, we evaluate the integral in (4.2) for a selection of high-order basis
functions given byn=2 andn =6 over a curved quadrilateral patch (in Fig. 4.1) of the fourth

geometrical order, namely, witk, =K, =4 in (4.1), modeling one-sixth of a sphere of radius
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a=1.2732m, at a frequency=300MHz, with the patch being abouk Zcross. Shown in Fig.

4.6 is the geometry of the patch and the error in (4.7) against the order of Gauss-Legendre
integration formulasNGL, for singular points A, B, C, D, and E in Fig. 4.3 and the five different
integration methods. Based on the results in the previous example, as well as on extensive
numerical investigations of the five methods in this (second) example, it is established that both
the Duffy method and the polar transformation method for singularity cancellation with the order
of Gauss-Legendre integration formulas adopted to be as higiGhs=200 can reliably be
considered as the fully converged and highly accurate, with negligible differences between
results of the two method (for all five singular points analyzed, the relative difference between
results obtained using Duffy and polar transformation methods Wb =200 is less than

1.5x10'). Therefore, we choose the solution by the Duffy method W@BL =200 as the
reference (“exact”) result for I~26 in (4.7) in this example.

Conclusions about the accuracy and convergence properties of different integration methods,
and their relative advantages and shortcomings, for different singular points and overall, are
similar to those drawn in the previous example. In addition, we realize that all the methods
perform well in Fig. 4.6(a) since singular point location A yield non-singular integral in (4.2),
due to the polynomial part of the integrand having higher-order zeros. Figs. 4.6(b)-(f)
demonstrate that the polar transformation method offers substantially slower convergence for
singular integrals defined over curved patch when compared to ones defined on the flat
geometry.

Further, for low orders of integration formulas, five methods result in a comparable precision;
however, with the increase in number of integration points, Duffy and polar transformation

methods yield a convergence superior to other methods.
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Figure 4.6. Evaluation of the integrgk (for m=2 andn=26) in (4.2) over a spherical patch
using five different integration methods: integration error in (4.7) against the order of integration
formulas,NGL, for five different singular pointd4s is computed by the Duffy method witiGL

= 200).

4.3.3. Example of 2-D/2-D Integral

In addition, in similar fashion as in previous example, we evaluate full 2-D/2-D integral, used
to assembly Galerkin impedance matrix element, defined on the highly-curved and badly-shaped
patch K, = K, = 4) modeling half of the oblate spheroid of maximal dimensiowh order of
testing and basis polynomials being= n, = 4 andm,= n, = 6, respectively. Based on
conclusions given in [92] we adopt®&5L = 6 for calculation of outer, well-behaved integral
while NGL for inner 2-D integration was ranged as depicted in Fig. 4.7. Patch geometry and
convergence results of integrd),,g¢ are given in the Fig. 4.7 while conclusions drawn stay the
same as in previous examples. Note that accuracy dfahfl 10* that can be considered as

optimal in higher-order SIE modeling is first reached by the Duffy method.
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TABLE 44
COMPUTATION TIMES FOR FIVE INTEGRATION METHODSINTEGRAL |gg OVER

A SQUARE FLAT PLATE SINGULAR POINTA, AND NGL = 20).

Singularity Duffy Polar Quadratic Cubic
extraction method transform. transform. transform.
390 ps 328 s 359 us 390 ps 374 ps

4.4. Conclusions

This paper has proposed a Duffy method for singularity cancellation to evaluate singular
potential integrals involved in the self Galerkin impedances defined on Lagrange-type
generalized curved parametric quadrilateral surface elements of arbitrary geometeczairath
polynomial basis functions of arbitrary current-approximation orders in MoM-SIE analysis of
antennas and scatterers. In addition to providing a new singularity cancellation method for the
considered MoM-SIE elements and basis functions, the paper is considered as a step forward in
overcoming the current lack of evaluations of various possible singularity treatment and
integration methods, and assessments of the accuracy and convergence properties of different
methods, and their relative advantages and shortcomings, for different locations of singular
points in parametric domains, different basis functions on flat or curved surface elements, and
overall.

A final overall conclusion based on evaluations of singular potential integrals in several
examples, is that, of the five integration methods considered, the Duffy method for singularity
cancellation comes out to be the most accurate, the most rapidly converging with the increase of

the orders of Gauss-Legendre integration formulas, and the fastest to execute.
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Figure 4.7. 2-DI2D l4466integral over badlyshaped and highkgurved patch.
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5. NUMERICAL COMPUTATION OF NEAR-SINGULAR AND NEAR-
HYPERSINGULAR INTEGRALSIN HIGHER ORDER METHOD OF

MOMENTSUSING CURVED QUADRILATERAL PATCHES

5.1. Introduction

In numerical techniques based on the method of moments (MoM) in the surface integral
equation (SIE) formulation in the frequency domain, special attention must be paid to achieving
high accuracy, which includes advanced methods for numerical computation of singular and
near-singular integrals defined on MoM-SIE patches. The techniques for dealing with such
integrals, which arise for zero or small soutodield distances in computing the MoM matrix
ertries, can broadly be classified into singularity extraction or subtraction methods and
singularity cancellation or coordinate transformation methods. Also, when a MoM-SIE method is
aimed at analysis of both metallic and dielectric/magnetic structures, such generality in
electromagnetic MoM-SIE simulations increases the singularity of the integral kernel, and
requires special treatment of highly singular integrals. Finally, this problem is even more
pronounced when higher order basis functions are used for the approximation of electric and
magnetic equivalent surface currents in the MoM-SIE method and when such functions are
defined on curved patches.

This paper presents a novel method for numerical computation of near-singular (potential)
and near-hypersingular (field) integrals defined on Lagrange-type generalized paraetktric
guadrilateral MoM-SIE surface elements of arbitrary geometrical orders with polynomial basis
functions of arbitrary current-approximation orders. The integrals are evaluated using a method

based on the singularity extraction, which consists of analytical integration of a principal singular
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part of the integrand over a (generally not rectangular) parallelogram whose surface is close to
the surface of the generalized quadrilateral near the singular point and numerical integration of
the rest using Gauss-Legendre quadrature formulas.

The majority of the existing extraction techniques, used in MoM-SIE modeling so far, have
been developed for planar triangular patches involving low-order basis functions. Few of those
have been extended to curved patches but without really taking into account the curvature of the
surface. The presented integration technique considers the curvature of the patch by extracting
multiple terms in the evaluation of the principal singular part. Further, the theory behind the
extraction technique has been extended to consider integrals with higher order basis functions.

Numerical examples demonstrate fast convergence of the novel integration method with
increasing the orders of Gauss-Legendre integration formulas, i.e., numbers of integration points,
over quadrilateral patches, in a variety of cases. Integrals are calculated over curvedyttiche
curvature ranging from flat or almost flat patches to those with very pronounced curvature, such
as spherical patches. Examples show steady behavior of the integration method for arbitrary
choice of the location as well as the distance of the near-singular point. Further, examples
investigate the numerical behavior of integrals with different choices of basis functions varied
from constant approximations to very-high-order polynomial bases, and for elements with sizes
varied from electrically very small to electrically large quadrilaterals extending to a amiuple
wavelengths in each dimension.

This paper is organized as follows. Section 5.2 gives an overview of the novel singularity
extraction. In Section 5.3 numerical results and discussion are provided, followed by the

conclusions in Section 5.4.
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5.2. Doublehigher order singularity extraction
5.2.1.Near-Singular and Near-Hyper-Singular Integrals

We consider a MoM-SIE model of an antenna or scatterer built using generalized curved
parametric quadrilaterals of arbitrary geometrical ordgrandK, (K,, K, > 1), shown in Fig.
5.1 and analytically described in the parametriev domain as [10].
Ky Ky
r(u,v)=Z:Z:rk|ukvI , T1<uv<l (5.1)
k=01=0
where r,, are constant vector coefficients related to position vectors of interpolation nodes
defining the quadrilateral. When these elements are used in conjunction with higher order
polynomial basis functions, all entries of the Galerkin impedance matrix can be foundaas i
combinations of 2-D/2-D Galerkin integrals [10]. In a general case, these contain the following

singular inner 2-D basic potential integrals computed at an observation (testing) point , that is

close to the source quadrilateral patch:

10, i-iBR 11 . _iBR
12 = jIMdudv, .”u'v‘ 1+JBRe ’ dudv
: 47R % 4nR
e ]
B=24f \Jeouo, R=[rUV)—r(U,,V,)—dn|, (5.2)

with f being the operating frequency of the antenna/scatterefiRdhéd distance of the source
point (u,v) from the field point, referred to as the near-singular paif,,v,) is the position
vector of the so called close point projection (cpp) from the field point onto the quadrilateral of
interest, andly is the distance of the field point from its projection, winle the unit normal to

the quadrilateral surface. When the two points are clBsbecomes small, and a special

treatment of the near-singularity is needed.
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(a) (b)
Figure 5.1. a) Generalized curved parametric quadrilateral patch for double-higheviokde
SIE modeling. (b) Sketch of the orthogonality factor for maximally orthogonalized hierarchical
basis functions of the eight order.

The traditional singularity extraction method consists of extracting the singularity of
analytical integration of a principal singular part of the integrand over a (generally not
rectangular) parallelogram, whose surface is tangential to the surface of the generalized
quadrilateral at the singular point, and numerical integration of the rest using Gauss-Legendre
guadrature formulas [10], [5]. The parallelogram is defined by the unitary vectors [10] of the
generalized quadrilateral at the cpp point. The near-singular integral is evaluatgttahaas
in [93] while the other integral is well behaved in the vicinity of the point and can be accurately
integrated numerically.

The vectoR, which describes the distance between the source and test points, can be written

as

KU KV
R(up + du,vp +dv) = —dgn + > > aduav'. (5.3)

k=01=0
k+l1>1

The notationay is used to represent thé and|™ derivative ofr with respect tau andyv,
evaluated at the pointud, vo), close point projection of the near-singular point onto the
curvilinear surface. We consider that, by the definition of the cpp pomigoxaoy/| azoxaos| at

(Uo, Vo), then the expansion & can be rewritten as:
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R? = d3 +h2du® + bZdv? + 2 h, cosedudv + t, (5.4)
wherehy, b, and cos are defined by h? =a,5- 89— 2dgasy - N, bZ =ay; -89 — 2dgag, -n and

cosx = (ayp-a9;— 2dgay1-n)/k, , While do is the distance of near-singular point to its

projection. Furthermore, it is worth noting thais a polynomial ofdu and dv with all terms
being of at least the third order.
Novel higher order extraction introduces a new type of parallelogram tangential to the

quadrilateral atup, Vo), so thatRe, the distance between any parallelogram point from the near-
singular is R? = dZ +b2du® + b?dv? + 2b b, cosadudv, i.e. R®=R3+t. Consequently, the
parallelogram used for extraction of the integrand singularities is tangential to the quadrilateral at

the cpp point and has sides of the lerigtandb, with ana angle between them.

near-singular field point .
)]

Figure 5.2. lllustration of the singularity extraction method based on the analytical integration
over parallelogram tangential to the quadrilateral at the close point projection.

In order to account for the curvature of the quadrilateral, the discrepancy between distances

from curvilinear patch and the flat parallelogram can be expanded as:
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JA 2
R-Ro = R (1+%j _1|~Ro EL—E(L] (5.5)

Following the same idea, the expansion of the integrands that considers higher order terms is
done as follows,

efjﬁR

~ Ci (dU,dV)1 (1+jBR

2i— 3 2i—
RPI 1 R -y Rpl 1

= , (5.6)

BR =
e PR 3 D, (du,dv)
)

VF

I
[

i
with C andD being polynomials oflu anddv. In the same fashion as in (5.5), it is easily shown
that expansions in (5.@8pnsist exclusively of odd terms B§.

Finally, integrals given in (5.2) are calculated by applying the numerical integration to the
smooth integrand obtained by subtracting the truncated expansions given in (5.6) from the
original integrandIntegration of the higher-order integrals over the parallelogram is performed

analytically.
5.2.2. Analytical integralsover parallelogram

Analytical closed form formulas for computing the integrals involving higher order basis
functions andR] (n > —3) singularities, over flat surfaces are first developed in [93]. Here, these

formulas are extended to consider integrals of this type for any.déor the simplicity of this
formulation, close projection pointi@, vO) is assumed to be (0,0), without any loss of generality
for the formulas developed here.

First, a local orthogonaty coordinate system is introduced as given in Fig. 5.3. Next, the

localu andv coordinates, as well as their corresponding unit vectors, are represented as:

u:(X_Ctgay) v=—Y _ 4=% V=%cosx + ysina. (5.7)

b, ' hsina’
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Furthermore, in the same fashion as in [93], polar coordinates are defired iyl + b W,

while local coordinates can be defined via the scalar product of vectors as:

u :éﬁ(k—ctg(a)y), V= b&/?;a' (5.8)

Figure 5.3. Parallelogram in the local nonorthogonal uv coordinate system and its corresponding
orthogonal locaky coordinate system.

Finally, the surface gradient is defined ﬁg(RB*Z) (n+2)RE5 for any oddn. The last

equation is used together with (5.8) to rewrite the integrals over the parallelogram:
IRBU pquszw'[ R puPAdS
S hJ S
()A(_Ctgay) n+2\,  p—
-y uPvads 5.9
hJ(mz)j Jre?) (5.9)

()[;J r(]:tf(;y J‘ [V (RB+2up 1VC1) R|2+2V3(u p_lvq)}dS.

The last equation in (5.9) is obtained by applying the gradient product rule. In addition, the

gradient of the simple polynomial functions in the local coordinate system can be expsessed a

p-1,,4 p-1,, pya-1
puP v/ % ctgn ™ o gy VT

b, b, b, sina y (5.10)

Vs(u pvq):
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So, if IQ*p*q:jupquBdS a surface integral across the parallelogram and,

S

i) = jupquBdI is a line integraalong thei™ parallelogram side (as labeled in Fig. 5.3),

linei

then formulas may be obtained via the divergence theorem from (5.9) as:

1 +4p- +2,p—-19- &= =~ 1 N+2,p— .

IQ'p'q=m —(p-DA I 2P 294 g, " 2P lJFETu'”\'i,linzép lq} (5.11)

woa_ 1| M+2.p.a- 720161, ST 120 5.12

20 g (O DAL RS e } (5.12)
with the corresponding coefficients being = 1 : __r B,=B, = clgo

(b, sina)? (b,sina)?’

.1, 0 T, /
T, :g(x—ctg(a)y) andT, = avs)i/na '

Formulas given in (5.11) and (5.12) can be used in the recursive fashion to calculate analytical
solution for any 10”9 integral. The traversing through recursive formula is applied until

1000 1020 001, nA1 are reachedNote that recursion im is done in steps of two, so all

remaining terms have odd. Once all terms can be describedyg) {(0, 0), (0, 1), (1, 0), (1,
1)}, special p, q) independent recursive formulas are developed leading to the final solution,
which depends only on integrals with known analytical solutions:

|S—J,o,o’|g1,10’|S—J,o,1’|S—3,o,o,|s—31,o,|s—3,o,1_ By following the procedure described in [93],

recursive formulas for line integrals are developed in the same fashion.
The main difference between the work presented here and work done by Prof. Oijala in [93]

is the extension of these formulas to any odd integ€@riginally, work in [93] was developed
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for higher order basis functions over flat triangles with no need to calculate integrats<with
However, the developed scheme was not applicable to curvilinear patches. Future development
of this novel extraction scheme consists of its application to full 4D integrals arising in
computation of the impedance matrix elements from the MoM solution of various integral
equation formulations which are used in the electromagnetic analysis of metallic, dielectric and

composite structures.
5.3. Numerical Results

In this section, the integration accuracy using the new singularity extraction method is
evaluated. All methods are implemented for solving integrals in (5.2) defined on curved
guadrilaterals described by (5.1), for arbitrary choice of the near-singular point.

All results are given in terms of the relative integration error computed as
8 = 10910 rm ~ T /[T1m| - (5.13)

where |, is the reference “exact” value of the integral. All computations are performed in

double floating-point precision. Note that the novel extraction method performs numerical
integration over the entirev domain without subdividing it into four square or triangular
subdomains, having close point projection point as the new vertex. The described subdivision is
characteristic of the majority of extraction or cancellation schemes, which overall would
introduce four times more integration points. The described subdivision is very inefficient,
especially when projection is close to the domain edge, which, in the Galerkin type of testing,
describes the majority of numerical cases of near-singular integrals.

Furthermore, local coordinates of the close point projection used in numerical examples are

chosen to show convergence of the method for cases where projection is very close to the edge
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of the integration domain, i.e. cases where other integration methods exhibit very low accuracy

and, in some cases, even divergence.

5.3.1.Near-Singular and Near-Hypersingular Integralsover Curvilinear Spherical patch

In the first set of numerical results, we evaluate the integrals in (5.2) for a selection of both
low-order and high-order basis functions given oy §)=( 0, 0) and §§, 9)=( 6, 6),
respectively, over a curved quadrilateral patch (in Fig. 5.1a) of second geometrical order, i.e.
Ky =K, =2in (5.1), modeling one-sixth of a sphere of radigsl m, at a frequenc§ = 2 rad/m
and distance, = 0.001m, while close point projection is performed at local coordinages) =
(0.9, 0.9). The integrals are calculated using novel double higher order singularity extraction
with the expansion in (5.6) truncatediat 5 and full expansion o andD coefficients (5.6).

Figs. 5.4a and 5.4b show excellent convergence of near singular and near hypersingular
integrals, respectively, fop(q) = ( 0, 0) with the increase of number of Gauss-Legendre points.
In addition, Figs. 5.4c and 5.4d show the same type of results, fiyr< ( 6, 6) integrals.

In order to show robustness of the method, for the same choice of the close point projection,
distance dy is ranged from I m to 10° m, covering the full range of near-
singular/hypersingular points (near-singular/hypersingular behavior). Figures Sdba-5.
correspond to the cases analyzed in the Figs 5.4a to 5.4d, respectively, and show great robustness

and accuracy of the method for a number of Gauss-Legendre integration pointd®le#&)
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Figure 5.4. Convergence of the novel higher order singularity extraction with the increase of
NGL points on the second order spherical patch, modeling one sixth of the sphere, with cpp local
coordinates W, Vo) = ( 0.9, 0.9) andlp = 0.001m:a) (p, ) =( 0, 0), singular integrals, bp,(
g) =( 0, 0), hypersingular integrals) (p, ) =( 6, 6), singular integrals, dp,(q) =( 6, 6),
hypersingular integrals.

5.4. Near-Singular and Near-Hypersingular Integrals calculated using optimized

expansion of power series

Further, on a new set of results, expansion used in higher order singularity extraction (5.6) is
again truncated at= 5 while optimal choice o€ andD coefficients contains only the highest

order term in the expansion.
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Figure 5.5. Accuracy of the novel higher order singularity extraction over the full ran
nearsingular distances on the second order spherical patch, modeling one sixth of the
with cpp local coordinatesud, vo) = ( 0.9, 0.9) andNGL=8 a) (p, q) = ( 0, 0), singular integrals
b) (p, ) = ( 0, 0), hypersingular integrals) (p, g) = ( 6, 6), singular integrals, dp,(q) = ( 6, 6),
hypersingular integrals.

Figs. 5.6a and 5.6b show convergence of singular and hypersingular integrals, rdgpective
for a higher order polynomial choic@,(q) =( 6, 6) on the spherical patch described in the
previous example, at a frequency p = 2 rad/m and distance dp = 0.0001m, while close point
projection is at local coordinatesy( Vo) = ( 0.99, 0.99). In addition, Fig. 5.6¢c and 5.6d show

excellent convergence of singular and hypersingular integrals, respectively, for thehssaree

of distances and close point projection coordinates on a non-planar, distorted bilinear patch.
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Figure 5.6. Convergence of the novel higher order singularity extraction calculatgd usin
optimized expansion of power series, with cpp local coordinateso) = ( 0.99, 0.99)d, =
0.0001m and g q) =( 6, 6), over a) spherical patch, singular integrals, b) spherical patch,
hypersingular integrals, c) bilinear patch, singular integraishilchear patch, hypersingular
integrals.

5.5. Conclusions

A novel method for numerical computation of near-singular (potential) and near-
hypersingular (field) integrals defined on Lagrange-type generalized curved parametric
guadrilateral MoM-SIE surface elements of arbitrary geometrical orders with polynomial basis

functions of arbitrary current-approximation orders was presented. The integrals are evaluated
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using a method based on the singularity extraction, which consists of analytical integration of a
principal singular part of the integrand over a parallelogram whose surface is close to the surface
of the generalized quadrilateral near the singular point and numerical integration of the rest using
Gauss-Legendre quadrature formulas. The parallelogram used in the new technique is
constructed in order to approximate geometry of the curved quadrilateral more accurately than
the parallelogram used in the traditional singularity extraction. Further, curvature of the
guadrilateral was approximated by introducing higher order terms in the integral expansion. In
addition, special analytical formulas were developed to solve for higher order integrals over
planar surfaces. Finally, the method was optimized and tested on a special set of numerical
experiments chosen because they exhibited very low accumatin(some cases even diverped
when analysed by other integration methods. The overall conclusion is that the new integration

method is very robust and performs extremely well in all tested examples.
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