
rOL-rD 
TA1 
C-b 
Cee-b~ .. ffi-35 
Clp•Z.. 

'Technical Report 

EVAPORATION FROM SMALL WIND WAVES 

by 

Juey-rong Lai 

and 

Erich J. Plate 

Prepared under 
National Science Foundation 

Grant No. GK 

Fluid Dynamics and Diffusion Laboratory 
Civil Engineering Department 

Colorado State University 
Fort Collins, Colorado 

June 1969 CER68-69JRL35 
Also CED68-69RL27 

.. 



, Technical Report 

EVAPORATION FROM SMALL WIND WAVES 

.. 

by 

Juey-rong Lai 

and 

Erich J. Plate 

Prepared under 

National Science Foundation 

Grant No. GK 

-
Fluid Dynamics and Diffusion Laboratory 

Civil Engineering Department 
Colorado State University 
Fort Collins, Colorado 

June 1969 

CER68-69JRL35 



ABSTRACT 

The evaporation rates from small wind-waves by forced 

convection in a range where the spray of water by strong 

wind act i on is not important has been studied in the 

laboratory. The effects of free stream velocity, wave 

conditions, and temperature difference between air and 

water (e i ther inversion conditions or lapse conditions) on 

evaporat i on were investigated, and the results were compared 

with previous work. The experimental data were correlated 

in terms of dimensionless groups, which were based on well­

known theories for exchange processe s in forced convection 

over sol i d surface. The transitiona l phenomenon was ana­

lyzed for evaporation as the wind blew over the solid sur­

face onto the water surface. 

For the lapse condition, the temperature difference 

was found to cause larg~r growth rates of the waves as 
I 

well as increased evaporation rates. The stratification . 
of air velocity atove the water surface was calculated, 

based on the Richardson criterion. No significant change 

was detected based on this criterion in this study. 
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NOMENCLATURE 

Symbol Definition 
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Chapter I 

INTRODUCTION 

The problem of evaporation by forced convection from 

a free surface has interested many scientists because of 

its numerous applications to technology and water conserva­

tion. For example, many industrial processes depend on 

simultaneous heat and mass transfer with evaporation or con­

densation. Evaporation from the ocean plays an important 

rol e in controlling the humidity and temperature distribu­

tion near the sea surface. Meteorologists consider the 

microscale convect i ve transport across the air-sea inter­

fac e an essential process in affecting the general circula­

tion of the atmosphere (Roll, 1965). The prediction of 

evaporation rates i s also critical to the design and 

deve lopment of water resources systems to reduce water 

los se s from lakes and reservoirs. 

The phenomenon of evaporation takes place when the 

vapor pressure above a free surface is less than the satu­

rated vapor pressure at that surface. When a vapor pressure 

dif fe rence exists, the kinetic theory of gases shows that a 

net flux of molecules must be directe d away from the water 

surface. When the liquid is in contact with its saturated 

vapor, the rate of evaporation of molecules is equal to the 

rate of condensation (i.e., the evaporation and condensation 

are in d ynamic equ ilibrium) . There is no mass loss due to 
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the evaporation at this condition. The higher the water 

temperature, the higher the observed saturated vapor pres­

sure ; thus, the total amount of evaporation will be 

increased by raising the water temperature . 

When wind blows over a free water surface, the evapora­

tion mechanism becomes more complex . The water vapor near 

the water surface is carried away by the wind. Thus, a 

gradient of vapor concentration is established , which 

combined with the wind field provides the driving force to 

decrease the vapor p ressure at the interface and eventually 

increase the evaporation rate. The complexity arises from 

·the interrelationship among the velocity, water surface, 

surface films, say of organic hydrophobic materials, and 

temperature difference s between water and air. The wind 

velocity distribution is affected by the surface waves 

(Miles, 1962; Kinsman , 1965; Plate and Hidy, 1967; and 

Chang , 1968). The water surface waves are affected by 

the temperature differe nce (Fleagle, 1956; and Hidy and 

Plate, 1968) and the surface film (Le Mer and Schaefer, 

1965; and Hidy and Plate, 1968). These four factors are 

interrelated to some extent and do not independently 

contribute to the evaporation. It is, therefore, very 

difficult to describe the whole evaporation me chanism by 

a simple relationship. 

Clean water has be en assumed in most laboratory studies 

or field obse rvations, so the effect of surface film is 
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presumed small. Yet, the three otner major factors which 

strongly affect the evaporation rates have not been studied 

simultaneously. In previous analytical or experimental 

work , as will be described briefly in Chapter II, one or 

two fac tors were emphasized, but the temperature difference 

be tween air and water was left out. Furthermore, some 

experimental results contradicted each other . 

and Hayami, 1959; and Easterbrook, 1968 ) 

(See Okuda 

The purpose of this study was to provide experimental 

data which can be used for developing a practical method to 

predic t the evaporation r ates from small wind waves . The 

situation of this study is indicated in Figure 2, (see 

Chapter III, p. 2). A turbulent boundary layer develops 

first over a solid boundary and continues onto the water 

surface. When waves are generated, the approaching boundary 

laye~ flow become s the outer layer while a new inner layer 

~eve~ops over the waves. The boundary layer for mass trans­

fer (inner layer for mass transfer) develops from the . leading 

edge (x = O), while the inner layer for momentum transfer 

deve lops somewhere at~ position downstream of the region 

where the water surface changes from smooth to rough. The 

inner layer for momentum transfer is assoc iated with a 

change in shear stress at the surface. For the flow far 

enough downstream, the inner layer has grown to encompass 

the whole shear layer , and this layer is in essential 
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equilibrium with the rough surface underneath. The portion 

of flow in this zone is define d as a fully developed turbu­

lent flow. The experiments were conducted in a laboratory 

channel in a range where a spray of water from breaking waves 

as would be cause d by a strong wind was unimportant. 

_The specific objectives of the study were: 

(1) to bring together the previous results of other 

investigations on predicting evaporation rates by using the 

ana lysis of the aut hor's experiment; 

(2) to inves t igate the effect of free stream velocity, 

fetch , and temperat ure difference on evaporation rates; 

(3) to analyze the transitional phenomenon of evapora­

tion when the wind blew over the solid plate onto the water 

surface; and 

(4) to correlate the aerodynamic and thermodynamic 

factors in the form of dimensionless equqtions. 
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Chapter II 

REVIEW OF LITERATURE 

As wind blows over a water surface, the evaporation 

rate is affected by velocity, wave shapes, and temperature 

differences. This chapter will review the available litera­

ture concerning the velocity profile over the small water 

waves and concentrate on the evaporation problem on the 

basis of analytical methods and -experimental data. 

2.1 Wind .Over Small Water Waves 

2.1.1 Wind Profiles 

The mean velocity profile .of .air above the mean 

water surface is needed to understand .the ,exchange of energy 

between air and water during wave generation by wind. Exami­

nation of Miles' (1957) inviscid shear f low model showed that 

a logarithmic velocity profile of air had been assumed to 

calculate the total energy growth of water waves. In marine 

' physics, the logarithmic profile has been used to describe 

the air flow in the atmospheric boundary over water. In 

laboratory studies, Hidy and Plate (1966), Plate and Hidy 

(1967), Shemdin and Hsu (1966), Hess (1968), and Chang (1968) 

all used the logar ithmic law to corre late the mean velocity 

data of their experiments. Therefore, the ''law of wall" 

has also been used throughout the author's experiment to 

describe the velocity profiles, as follows: 



where u 

u* 
u = Q,n z k z 

0 

is velocity, u* 

6 

is friction velocity, 2 T 
(u = -* p 

(2 -1) 

, is shear stress at wall ), z is the roughness length, 
0 

and k is von Karman's constant and assumed to be 0.4. 

To illustrate the wind action over the solid surface 

onto the liquid sur face with different roughness, a t wo­

layer model of shear flow was proposed by Plate and Hidy 

(1967). The upstream flow and outer layer was referred to 

as conditions over the smooth solid surface . The inner 

layer was referred to as conditions over the wavy liquid 

surface . Both layers were assumed to follow the logarithmic 

law of the wall with different friction velocity and rough­

nes s length. The i nner layer will grow in depth downstream 

and eventually coincide with the outer layer . Plate and 

Hidy investigated the values of friction velocity in tran­

sition with the given velocity profile in the outer layer 

ups tream by qpplying the momentum balance, mass conservation, 

and the conditions of velocity con tinuity . The agreement 

between the two-layer model and the experiments was quite 

satisfactory except very close to the leading edge. 

Although Equation (2-1) has been verified by many lab­

oratory studies and field observations, the relation between 

z and u* are not unique (see for example, Karaki and 
0 

Hsu, 1967). This leads to further studies in measuring 

the wind profile over the wavy surface. Shemdin (1967) 
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pointed out that the velocity profile, which was given by a 

fixed probe, needed correction for the effects o f shifting 

the streamline and of wave-induced perturbation . Chang 

(1 968 ), using the technique of moving probe, suggested the 

possible existence of separation ·near the peak of wave which 

affected the wind profile near the water surface . Thus, the 

wind profile above a wave height from mean water surface 

deviated from the logarithmic law . 

Dynamical relations between z and u* have been 
0 

reported in some laboratory studies. Kunishi (19 63 ) sug-

gested that the aerodynamic roughnes s of wavy surfaces is 

related to a characteristic wave height for a s mal l wave , 

and for the condition that the wave speed i s much less than 

the mean air speed. Hidy and Plate (19 66) found that a 

Reynolds number which is based on u* and a, (a is the 

standard deviation of water waves), correlated quite wel l 

wi th 1 z
0 

on log-log paper . 

2.1.2 ~oving and Flexible Boundary 

The concept of turbulent flow and boundary layer 

theory over the rigid wa ll has been studied quite extensively 

both theoretically and exper imentally. For the first approx­

imation, the theoretical approach of turbulent flow over 

rigid wall could be used to describe the wind over wavy 

surface , which was moving and flexible, and the experimental 

results could also be compared. Gupta and Mollo-Christenson 

(1 966 ) measured pressure s and constant speed lines in the 
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air flow over a boundary of solid waves to compare with 

Benjamin's (1959) theoretical prediction of phase-shift in 

wind-wave theory. The resulting s h ifts were only one-tenth 

of Benjamin's values . The reason for this is at present not 

understood. Zagustin et al. (196 6) carried out experiments 

in a laboratory flume with a moving belt in sine wave 

motion. Their results were compared to Miles' (1959) 

theoretical estimation of pressure component in shear flow 

model of wind-wave theory. It only agreed qualitatively, 

because the coupling of the flow in the two fluids cannot 

be neglected. The flexible and moving boundary can induce 

fluctua tion and turbulence, which are not considered in 

studying the turbulent flow over solid bounda ry . . Thus, 

applications o f the results of turbulent flow over solid 

boundaries are limited in the study o f air-sea interactions. 

2.2 Analytical Method to Evaluate Evaporation Rates 

The purpose of this section is to present and compare 

various form~las to estimate the evaporation rates from 

liquid surface. In reviewing the mechanism for the water 

vapor transport from interface to the gas stream, the rela­

tively straightforward theories for direct mass balance and 

turbulent transport are considered first as opposed to more 

sophiiticated methods attempting to account for a c hanging 

surface structure. The dimensionless correlations, which 

are based on analytical equation, are also included in this 
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section . The effect of roughness changes and other 

transitional phenoillenon on evaporation are discussed later . 

2. 2.1 Direct Mass Balance 

By u sing the concept of direct mass balance in 

control volume , an integral boundary-layer equation of mass 

transfer can be expressed as (see Eckert and Drake , 1959) : 

6* 
d e 

E = dx J p [q( z) - q<.) u ( z ) dz ( 2 -2 ) 
0 

where q is the concentration of water vapor. In deriving 

Equation (2-2) , one basic assumption was made; that is, neg­

l ecting the vertical velocity at the interface . For a given 

velocity profile and c oncentration displacement, the evapora­

t ion r ate is c alculated from Equation (2- 2). This procedure 

was adopted in this thesis for obtaining the "measured 

evaporation rate E." 

2 .2.2 Turbulence Diffusion 

A ge neral eddy diffusion equation for evaluating 

t he evaporation rate in t urbulent flow' is derived from 

a erodynamic theory, and may be written as (see for example , 

- Bird , Stewart , and Lightfoot , 1960): 

E = - pK 
e 

(2- 3) 

where E i s the evaporation rate , which is assumed constant 

everywhere, K the eddy diffusivity for mass, and q the 
e 

specific humidity . Knowledge of K 
e 

is still a challenge to 

the investigators of this field . In fact , Ke is affected b~ 

v elocity, temperature, concentration, surface condition , and 
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position. Different expressions for K have been derived e 

analytically in terms of many f a ctors at different boundary 

conditions (Brutsaert, 1965). Yet~ only under very limited 

conditions has even the most simple equation for 

verified. 

K been e 

By using the Equation (2-3), evaporation rates can be 

determined by averaging across the boundary layer. One inte­

gral technique approach has been described by Sheppard (1958). 

He considered the existence of diffusion sublayer near the 

water surface and applied Equation (2-3) in the form: 

E = - p (D + K ) ~ e az (2-4) 

where D is the molecular diffusivity of water vapor in air. 

The molecular and turbulent exchanges were supposed to occ ur 

simultaneously. He further assumed that K increased 
e 

linearly with height, z, or, 

(2-5) 

By inserting the relationship (2-5) into (2-4), Equation 

(2-4) was integrated, yielding the following relationship: 

( 2-6) 

where the subscripts s and a refer to heights, z = 0, and 

z = a. Since there are few field or experimental data 
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available to confirm this equation , the extent of applicabil­

ity for this equation remains to be .verified {Roll, 1965). 

2.2.3 Profile Method 

To derive a logarithmic law of mass transfer, t he 

fol lowing classical assumptions may be made: (1) t he change 

in scale of the eddy motion is a function of distance from 

the surface; and (2) t he air is saturated at the f ree sur­

fac e at the surface t emperature . Based on assumption 1, the 

coeffi c ient of turbulent d iffusion h as the relationship 

(Levich, 1965): 

K 
e 

'\., Q,2 au '\., z 2 au 
a z a z ( 2-7) 

where Q, is the length scale of important eddies. With 

Equations (2-3) and (2-7), the evaporation rate , E, can be 

·expr;e ssed as: 

au an E = pf3z 2 _:_:;t az az ( 2-8) 

where f3 is a constant . Using Equations (2-1) and (2-8), 
-

the logarithmi c l aw of mas s transfer is obtained a s: 

(2-9a) 

(2-9b) 

where t he value of k' is normally set equal to Karman's 
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constant as a first approximation , and in analogy to u* , 

q* can be defined as a friction humidity. The length scale , 

z , may be considered a hypothetical length or d istance om 

across a "layer '' of saturated air near the surface. Equation 

(2-9) also can be derived from the concept of Reynolds 

a nalogy which is d emonstrated in Schlichting ' s book (19 62 ), 

or by other methods describe d by Roll (19 65 ). The concept 

o f Reynolds analogy is based on the assumption, i.e.: 

T m H - = - = H , 
T m w w w 

to express the analogy between momentum, heat and mass as: 

and 

T 
~ 

TW 

H 
H 

w 

= (1 
K du + 

+ ~) 
\) 

dy + 

I m 
E 

= (!_+Ke) dq+ 
S v dy+ c~ 

(2-9c) 

where T is shear stress; m is mass flux; H is heat flux; 

+ + + 
u = u/u*' t = (t -t ) pC u*/H , q - (qw-q ) pku*/E and w p w 

+ 
Y = y/yo . 

The evaporation rates de termined by this method depend 

on knowledge of suitable values of q* and z
0
m, which 

vary with u, T, q surface conditions and height z 

Unfortunately, our knowledge is still rather limited on this 

aspect of the problem. At present , the only way to determine 
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these values is empirically from the profiles taken by 

experiments for different boundary cond i tions. 

2.2.4 Dimensionless Correlation 

Correlations in terms of dimensionless number were 

derived based on di fferent approaches, such as dimensional 

arguments,Reynolds analogy, numerical solution, and boundary 

layer theory. For the heat transfer p roblem , these correla­

tions have been studied extensively. Based on the analogy 

between heat and mass transfer, dimensionless mass transfer 

rate s can be obtained from heat transfer problems by 

replacing the Nusselt number with the Sherwood number and 

the Prandtl number with t he Schmidt number. Based on 

Reynolds analogy, Chi lton and Colburn (1934) derived the 

following dimensionless correlation for a smooth fla t plate: 

for laminar flow: 

Sh = const. (Sc) l/3 (Re) 112 

for turbulent flow: 

Sh~ const. (Sc) 1/ 3 (Re)O.S 

where · 

Sh= pEx D (q - q ), s co 
(= Sherwood number) 

Sc= \)/D , (= Schmidt number ) 

(2-10) 

(2-11) 

The above relation, Equation 2-10, was derived 

numerically by Lighthill (1950). Equations were also shown 

in Schlichting's book (1962), which were derived from the 

boundary layer theory . Reynolds et al. (1958) carried out 

a s er ies of experiments to arrive at a similar result. They 
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considered the effect of drag force and found the following 

relation for turbulent flow: 

Sh= const. 

C 1/2 
( _f_) (SC ) 1 / 3 (Re) 0 . 8 
2 

(2-12) 

where 

1 
Cf = ,/2 u~ , (= drag coefficient). 

If the drag coefficient is indepe ndent of the Reynolds 

number , then Equations (2-11) and (2-12) are seen to be 

identical. Either of the equations is commonly used to 

express the Sherwood number. 

When wind blows over the water waves, the air flow near 

the interface is affected by the wavy surface. For the 

first approximation , this effect can be considered as the 

roughness effect on a flow system over solid boundary. 

Papers citing the effect of surface roughness on heat 

(or mass) transfer are limited and contradict each other. 

For example, Smith and Epstein (1957), after examining 

commercial pipes of different roughness, indicated that the . 
roughness increased the pressure drop, and thus substantially 

increased the heat (or mass) transfer rate. According to 

Kolar's r esults (19 65 ), the rough pipe has low efficiency 

in heat (or mass) transfer. The efficiency is defined as 

the ratio of the amount of energy transferred as heat per 

unit temperature di f ference with the amount of energy needed 

to passing the fluid through the tube . The efficiency of 

the rough tube decrease s with increasing velocity more 
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rapidly than that for smooth tube . Thus , beyond some limit, 

fo r any combination of Reynolds number a nd Prandtl number , 

a n increase of roughness will no longer increase t he heat 

transfer coefficient . 

Levich (1965) proposed an explanation of the effect o f 

sur face roughne ss on mass transfer in turbulent flow. His 

model is s h own in Figure 1 . For a fully developed turbulent 

flow over the plate ,the c oncentration r emained constant 

* some d istance away from the wall . At o < z < o , there 
o e 

is a turbulent boundary layer in which both mean velocity 

and average concentration decreas e according to logarithmic 

law. In this zone, both momentum and matter are transferred 

by turbulent eddies . In the zone of the viscous sublayer 

( o < z < o ) , turbulent eddi e s became so weak that the 
0 

momentum transferred by the molecular process exc eeds t ha t 

transferred by turbulent eddies~ In the diffusion sublayer 

(z < o), the molecular mechanism domi nates over t he 
. 

turbulent mechanism. 

The thickness of the diffusion sublayer, which forms the 

main resistance to mass transfer, is related to the thickness 

of the viscous sublayer . A viscous sublaye r u s ually will 

d evelop around the roughness ·peak. However, a s eparation 

in the flow over individual protrusions will al so occur in 

the case of solid roughness where t he roughness height h 

is greater than o but smaller than the boundary layer 
0 
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thickne ss of momentum transfer o , and where the Reynolds 
m 

hu* 
number based on h and u (Re = --) is much larger * rgn v 

t han unity . The motion in the r egion , z = h , therefore 

must be turbulent , or at least highly agitated. The nature 

o f the motion in t h is zone, then, is likely not to be a 

function of viscosity ; it should be the function principally 

of height of roughness , h So the sca l e of characteristic 

turbulent eddies must be proportional to h , o r : 

1 ~ h . (2-13) 

Due to the a bove hypothesis , the velocity distribution of 

a turbulent flow in t he zone z = h is obtained as 

u = (2-14) 

Levich suggested that this velocity distribution is valid 

on ly when the corresponding Reynolds numbe r uo / v 
0 

is 

greater than or equal to unity . Thus, t ~e viscous sublayer 

develops near the roughness peak. The t hickness o of the 
' 0 

vi scous sublayer is determined by the condi tion 

or 

uo 
0 

V 

0 
0 

u o2 
* 0 = hv ~ 1 

= h/(Re ) 1/ 2 . 
rgn 

(2 -15 ) 

The evaporation rate can also be determined by expres­

sing the thickness of the diffus ion sublayer as 
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E:::: pD(q - q ) o . 
X oo 

(2-16) 

In the ca se of Sc == l, where o = o , from Equations (2-15) 
0 

and (2-16), the evaporation rate is given by: 

1/2 ( _ q )/(vh)l/2 E :::: pDu* q s 00 

and using the relation 

C 1/4 
E == pD (-f) 

1/2 u 
00 

(-) 
vh 

(2-17a) 

(2-17b) 

In dimensionless form, the above equatio~ c an be written as: 

Sh == Ex/pD(qs - q
00

) , rgn 

or 

Sh = const . rgn (2-18) 

where (~) is the roughness coefficient, A is width of 

protiusion and rg~ refers to roughness surface. 

1 For the case Sc >> 1, such as for salt in water, 
. 

Levich derived the following correlation of dimensionless 

groups: 

Sh = const. rgn 

C 1/4 A 1/2 
(-~) (Re) 1/2 (Sc) 1/4 (-) 
2 h (2-19) 

This has been partially verified in the case of the pipe flow 

for dis solved oxygen in water by Mahato and Shemitt (1967) in 

the range where 5 x 10 3 <Re< 3 x 105 . 

2.2.5 Solution of Transitional Boundary Layer 

A transitional boundary layer starts to grow with 

fetch, from x = 0 , as wind blows over the plate onto the 
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free surface. As the wind passes over the flat - plate, a 
~ 

boundary layer forms near the plate which is referred to 

as the outer layer further downstream. Air proceeds onto 

the water surface, and the inner layer of mass transfer will 

immediately develop with fetch, but the inner layer of 

momentum transfer will grow later as waves develop. After 

the fetch reaches some values in downstream position, these 

three layers will coincide if Sc ~ 1. Outer and inner 

layers no longer c an be defined in t he fully developed flow. 

The problem of heat transfer in transitional boundary 

layers, of the type involving a sharp change in surface 

condition, has been solved by Spalding (1963). He used a 

numerical method in solving the two-dimensional heat trans­

fer problem for the case of Pr= 1. He predic ted the heat 

transfer rate across a turbulent boundary for a stepwise 

~hange in wall temperature . By analogy between heat and 

mass transfer, his result can be used to es timate the mass 

transfer rate as: 

where 

cf 1;2 
St (--} ~ 

o 2 

-1/3 -2/3 
(x+) (Sc) for x+ < 10 3 

C 1/2 
StD ( 2 f) 

+ -1/9 -2/3 3 + 6 
~ (x) (Sc) for 10 <x <10 , 

St0 = E/p (q -q) U (= Stanton number ) and 
S 00 00 

X 

(2-20a) 

(2-20b) 

+ 
X = J ~/v d ~ (dimensionless di stance). 

p 
Spalding's results 

1 

were derived from a smooth surface and were ide ntical to 

Lighthill 's (1950) laminar flow solution (2-9) for small 
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values of + 
X • For large values of + x, his results were 

compared with the empirical r esults of Reynolds et al . (1959) 

(Equation 2-11 )) . The scatte r between e xperimental points 

and t he theoretical prediction were less t han+ 5 %. 

2.3 Evaporation from Field and Experimenta l Data 

A number o f s emi-empirical solutions have been intro­

duced based on field observations . Some experiments have 

been carried out in t he laboratory to study the phenomenon 

of evaporation. This section will discuss briefly some of 

the results. 

2.3. 1 Semi-Empirical Method 

For a large amount of experimental data, an 

empirical formula to estimate t he evaporation rate is given 

by: 

E = ( e - e) 
0 

(A + Bu) , (2-21) 

where e and e are the v a por pressure at the surface and 
0 

air, A and Bare constants, and u i s the mean wind speed 

at some specific elevation. Equation (2-21) was derived 

from theoretical considerations by Brutsaert (1965). For 

di fferent boundary conditions , di fferent constants, A and 

B, have been suggested. 

A logarithmic humidity profile has o ften been observed. 

Montgomery (1940) introduced an evaporation coefficient r
0 

as: 

aq 
a ( i n z) 

(2-2 2) 

The evaporation rate was obtained from the above equation as 
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(2-23) 

A similar expression for wind distribution with height has 

been used (Deacon and Webb , 1962). It is 

r = 1/u au/a( t n(z + z )) = u*/ku u a o a (2-24) 

Combining Equatior-s (2- 23) and (2 -24) , the evaporation rate 

is given by 

E = pk 2 r rDa (q - q) u u s a a (2-25) 

The reference height, z = a, is valid when the measured 

quantities u and q at this level follow logarithmic 

curves . A large number of ship observations at the singl e 

he ight on the ship bridge and the sea surface have been 

interpreted in terms of air-sea heat trans=er , evaporation, 

a nd other relevant problems . Good agreement between 

experiment and theory was found as long as the field condi­

tions were close to adiabatic. 

2.3.2 Evaporation by Forced Convection 

Due t o the analogy between heat and mass transfer, 

many workers have used the heat transfer problem . For 

examp l e , Cermak (1956) u sed the von Karman equation of heat 

transfer to solve the p roblem of vapor transfer . The results 

of von Karman ' s analysis is given below fo r flow over a plate : 

St =Nu/Re Pr= 
X X X 

1 (2-26) 

This equation wa s transferred to the mass t ransfer problem 

by using the same procedure discussed in Section 2.2.4. His 
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hypothesis was compared with the results of a wind tunnel 

study. For a smooth, plane boundary, the agreement between 

theory and experiments was quite satisfactory. 

Smolsky and Sergeyev (1962) have investigated the heat 

and mass transfer during liquid evaporation. They found 

that an increased evaporation rate from a free surface over 

that expected from boundary layer calculations could be due 

to the effect of driving force of free stream. To account 

for such an effect, they introduced the Gukhman number, 

Gu= (T - T )/T, which characterized the mass loss of 
a w a 

evaporation attributed to the volumetric evaporation 

(LyKov, 1966). The temperatures T a 
and T are the dry w 

and wet bulb temperatures of free stream. Volumetric 

evaporation is a hypothetical mechanism for mass transfer 

in which sub-microscopic liquid particles are released from 

microscopic ripples at the free surface and carried into 

the outer air stream, where they evaporate. From Smolsky 

and Sergeyev rs experimental data, the final form for the 

Sherwood number over a smooth free surface was given by: 

Sh = 0.094 ReO.S sc 0 · 33 Gu 0 · 2 
X 

(2-27) 

This is similar to the previous results (Equation 2-12) but 

includes the temperature ratio, Gu. They investigated the 

mass trans fer ratio from different liquid surfaces, including 

water , acetone, benzol and butanol. Using Equation (2-27), 

t fre experimental points were grouped close to a straight 

line on log-log paper, the scattering no t exceeding~ 7 %. 

For a high free stream temperatur e , the Gukhman number may 
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be significant on empirical grounds, but the concept of 

volumetric evaporation is hard to imagine physically as a 

part of the transport mechanism. 

Okuda and Hayami (1959) carried out a series of 

experiments in a wi nd tunnel on evaporation of water fron 

a wavy surface. They found that the values of the evapo~a ­

tion coefficient, r0 , were independent of free stream 

velocity when t he spray of water was not important at 

fixed fe t ch. Their results were not generalized to estin ate 

the evaporation rate. They used filter paper above the 

water surface to measure spray of water. They found that 

the splashing of sprays from breaking waves in strong wi nd 

increased the evaporat ion rate (observed in a tank) far 

beyond evaporation rates produced by non-breaking waves. 

Easterbrook (1968) has also st~died the effects of 

waves on evaporation from a free surface by u s ing a wave 

tank-wind tunnel combination. He used a simplified equa~ion, 

which was de~ived from Equation (2-3), to evaluate the 

evaporation rate: 

E = K (q q ) s - z (2-28) 

where K = K /z is a measure of eddy diffusivity for t he 
e 

laye r from z = 0 to z = z, and K is assumed to be inde-

pendent of the he ight, z, and of the characteristics of ~he 

boundary layer turbulence . From his exper ' mental re sults 

in the laboratory , Easterbrook determined a quantitative 

relationship between K and wave c haracteristics, including 
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H (wave height) and P (wave period), and air flow 

characteristics, u , at the same time . 
00 

He found a decrease 

of evaporation rate in a certain wave range, while the wave 

properties, P and H, were increas ing. This is in contrast 

to Okuda and Hayami 's results which showed a general 

increase in evaporation rates with wind speed practicality. 

Easterbrook's laboratory results were u sed to fit the 

field data from Lake Hefner in Oklahoma. Only some of 

t he field data points agreed with laboratory results. 

The information on evaporation from wind generated 

waves by forced convection is still limited. Some 

measureme nts have been mad e , such as thos e of Brutsaert, 

Okuda and Hayami, and Easterbrook. However, the results 

are not satisfactory and some are contradictory to each 

other. Actually , the phenomenon of evaporation depends 

strongly on the wind generated waves and on the flow near 

the wave surface. Therefore, the author investigated the 

vapor transport from wind generated waves in the Colorado 

State University wind-wave channel facility by considering 

the effect of fetch, velocity, and temperature difference 

between air and water. 
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Chapter III 

THEORETICAL CONSIDERATION 

All of the previous works did not consider explicitly 

the effect of raising the water temperature on evaporation 

by forced convection . When the water temperature is raised 

higher than the air temperature , the evaporation rate will 

increase rapidly, so that the net vertical velocity at the 

surface ~snot necessarily negligible. In this chapter , the 

integral method of solving the evaporation problem is dis­

cussed by considering the evaporation on the surface as a 

plane source of variable strength. 

The modified analytical model proposed by Plate and 

Hidy (1967) has been adopted for the analysis. They sug­

gested an idealized model in which the air boundary layer 

over the water downstream from a solid plate can be separated 

into two-layered shearing flow. The schematic diagram of 

this model i~ shown in Figure 2. In the case of evaporation, 

the molecular diffusion near the wall dominates the transfer 

mechanism. Also the physical phenomenon of phase conversion 

yields a source strength which contributes a vertical veloc­

ity, v, of the vapor at the surface . The rectangle £mno 
s 

is taken as a control volume in Figure 2. The mass balance 

for the control volume is obtained by 

o* o * 
Xp V = rep u dz - J e dz a a ; a a Pb ub - x · P s vs 

0 0 

(3-1) 



Pa , qa , ta ( 0 ) 

(Outer 
lay r) 

2 ( ~ater) 

Fig. 2. Sketch of air and water motion associated with evaporation 
and growi ng waves. 
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where the source strength due to the phase conversion is set 

equal to psvs (Eckert and Drake, 1959). The value of p v s s 

is usually very small; however , at high positive tempera~ure 

difference between water and free stream, the term p v may s s 

become important. An additional equation is obtained when 

only the conservation of water vapor in the control volume 

is considered : 

x•E = 
o*-o 

J e 
0 

( 3-2) 

where the indices 1 and 2 referred to water vapor and dry 

air separately , while the subscripts a and b d enote the 

outer and inner layers, respectively. 

Equations (3-1) and (3-2), E becomes : 

Eliminating 

x•E 

where 

pbub dz+ x·p v q s s a 

and >- 'qb = 

V 
a 

from 

( 3-3) 

For an air-water mixture, E and V 
s 

can also be expressed, 

following Eckert and Drake (1959): 

E = - pls D (~) + Pls V 
s az s ( 3-4a) 

z=o 

D 
( aq) E = s 

1 qs az z=o 
(3-4b) 

Combining Equations (3-3), (3-4a), and (3-4b), the final 

expression for E is given by: 
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x' o* o* 
-(l+B) J Edx J 

e 
p(q-qs)ub dz-p(q -q ) J 

e dz = ub b s (3-5) 
0 0 0 

-

where B = (q -q )/(q -1) (= mass transfer parameter). a s s In 

deriving Equation (3-5), the vapor concentration in outer 

layer was assumed small and constant. So the effect of 

outer layer on evaporation is only shown in ub and o* e 

in Equation (3-5). The values of B have been used to 

express the mass transfer rate in similar solution by Dono­

van, Hanna, and Yeragunis (1967). They obtained a closed 

form similar solution of the probl em of turbulent boundary 

layer mass transfer with a finite interfacial veloci ty . 

Their results showed that the Stanton number is a function 

of Schmidt number, drag coeff icie nt, mass transfer para­

meter B and Spalding function (see Spalding, 1963) 

with zero interfacial velocity. 

For the velocity of Equation (2-1) and the humidity 

profile of Equation (2-5a) and assuming that the value of 

(qb - qs) is •constant in downstream direction (which is 

true in the laboratory when the wind-water channel reaches 

steady state, see also next chapter), the evaporation rat~ 

is obtained from Equation (3-5) as: 



z z 
om (1 9-n om)] -~ - z 
e 0 

z z 
+ om (1 9-n om) 
~ - -

z e 0 

This equation was 
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- p (qw -qs ) 

1] } 

che cked for 

u a* 

9- * 
e 

z om 

o* 

o* 
+ 9- n ~)-1 z 

0 

* e [ ( 9-n ~) -k- z 
0 

( 3-6) 

consistency thr ough the 

experimental data of this study, and the results are dis­

cussed in Chapter VI. Equation (3- 6 ) a pplies both to tran­

sitional boundary and to a ful ly developed turbulent bound­

ary. 

.. 
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Chapter IV 

EXPERIMENTAL EQUIPMENT AND PROCEDURE 

Most of the laboratory instrume nts and facilities used 

in this experiment have been described in previous reports 

by Plate and Hidy (1967), Hess (19 68 ), and Chang (1968), 

exce pt for the temperatu~e and humidity m~asurements. The 

1 latter equipment will be discussed in detail in the following 

section, but the facilities and instruments for wind measure­

ments will be summarized only briefly. 

4.1 Wind-Water Channe l 

The wind-water channel in the Fluid Mechanic s and 

Diffusion Laboratory at Colorado State University has been 

used for this experiment. The channe l (Figure 3) consists 

of a water channel 0.92 m wide and 11.2 cm deep. At the 

ups t ream end of the tunnel, a smooth aluminum plate 3.7 m 

long was installed at approximately the same height as the 
• 

water surfac e . Over the aluminum plate and water surface 

is a wind tunnel 1.09 m high. The channel has a plexiglass 

test section 13.7 m long. For a referenc e coordinate, the 

downstream edge of the plate was considered to be at x = 0, 

and along the water tunnel was a positive direction of 

x-coordinate (Figure 2). 

The air velocity was controlled by an axial fan at the 

outlet of the tunnel . The air flow was made uniform at the 

inle t and outlet sections through mesh screen and honeycomb 
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grids, as de scribed in previous works. To hea t the water, 

imme rsion heaters of a total capacity of 5,000 volts were 

installed at four different positions in t he test section 

at the bottom of the channel (Figure 3). These heaters 

were controlled by powerstats located out s ide the channel. 

An instrument carriage capab le of manual horizontal 

positioning and automatic vertical position ing was used to 

hold the sampling tube , t hermocouple and the Pitot-static 

tube during measurements. The movement of the carriage was 

remotely controlled by a counter in th~ control panel, 

located beside the channel. Because previous work has 

demonstrated that the properties of fluid flow in the channel 

are approximately uniform in a cross-stream direction hori­

zontally, measurements in the study were made only at dif­

ferent distances, x, along the centerline. 

4.2 Instrume ntat ion 

4.2.1 Wave Records 

A capacitance probe whose sensor was a 34-gauge 

magnet wire, was installed to continuously measure the 

water surface displacement at a given distance, x, as a 

function of time. The gauge was constructed so that the 

vertically stretched wire and the water surface formed two 

"plates'' of a condenser, and the wire insulation (Nyclad) 

provided the dielectric medium. The difference in capaci­

tance, due to the water depth, was measured by a capacitance 

bridge d eveloped in the Engineering Research Laboratory at 
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CSU. The circuit diagram of the bridge is shown in Figure 4 

in Chang's thesis (1968). The output signal of the CSU 

capacitance bridge was fed to an oscillograph recorder. 

The capacitance gauge-oscillograph combination was 

calibrated against water depth after each series of experi­

ments . The calibrations proceeded as follows: t he water in 

the channel was discharged to the sump very slowly, and the 

water depth and the output of the r e corder was simultaneously 

read for each period of 0.5 cm of water depth. Typical c ali ­

bration curves, which indicated a linear proportionality 

between water depth and recorde d elevation of the water sur­

face, are shown in Figures 4 and 5. 

For further statistical analysis , the wave record s were 

dig i tiz ed at equal time intervals of ~t = 0.02 seconds. Cal­

culations were made to obtain for each run the values of 

standard deviation, cr , amplitude spectra, ~ (f), and fre­

quency of maximum spectral density, f . The statistical com-
m 

puting metho~ used for these properties was that of Blackman 

and Tukey (1958), as discussed by Hidy and Plate (1966). 

(See also Chang, 1968). 

4.2.2 Air Flow 

The mean air velocity was measured by a Pitot­

static tube , using a 0.325 cm OD probe manufactured by the 

United Sensor Co. The probe was placed on the instrument 

carrier which ro se or descended step-by-step to give the 

mean air velocity profiles. In addition to the traveling 
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probe , a fixed Pitot-static tube of 0.65 CB OD , which 

yielded the reference velocity for every run, was located 

a bove t he aluminum plate and outside of the boundary layer. 

To calculate the air flow, t he Pitot tubes were con­

nected to an electronic micromanometer (Transonic Equibar 

Type 12 0) . The manometer measured the difference between 

total pressure and the stat ic press r e , from which the mean 

air speed is calculate d by means of t he fo l lowing relation­

ship : 

u(x, z ) = ✓~p x 16.5 (m/sec) . (4-1) 

The pressure dif ference r ead off the micromanometer instru­

ment was c alibrated against a water manometer (Flow Corpora­

tion , Type MM2 ). 

4.2.3 Mean Temperature 

The fr ee stream temperature , T , was measured by a 
00 

merc ury-in-glass thermometer placed on t he upper frame of 

carriage whioh was located 10 cm below t he top of the channel 

at each run. The local air tempera t ure, T, in the boundary 

layer was measured with a 40-gauge Copper-Constantan thermo­

coup l e (Thermo-Electric Co.) us ing he f ree stream t empera­

ture a s a r eference. The output of the thermocouple was 

read with a potentiometer (Leeds & Northrup Co., Mode l 868 6) . 

Vol tag e differences were converted to temperature differences 

(T-T u sing standard calibrations , as given in the National 
00 

Bureau of Standards Circular 561). 
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The surface temperature of the water, T , was measured s 

with an infrared radiometer (Branes Engineering Co., Mode l 

IT-3). The radiometer was calibrated against a known, stable 

black body source (Mar latt and Grassman, 1968). To obtain 

T, the water t emperature T, which was measured by a ther-s w 

mometer immersed 2 . 5 cm b eneath the mean water surface, was 

also determined . With the same free stream velocity and 

temperature, the water surface t emperature was found to be a 

function of water temperature. This relationship is plotted 

in Figure 6, covering the range 10°C to 32°C. This curve is 

used as a calibration for obtaining the local surface temper­

ature throughout the wind-water tu _ne l. 

4.2.4 Specific Humidity 

The specific humidity of the air-vapor mixture was 

measured by sampling the gas stream through a static pressure 
I 

tube connected to a Consolidated Electrodynamic Co. moisture 
I 

monitor (Model 26-303) at a constant flow rate maintained by 

a vacuum pump. The sketch of the arrangement is shown in 

Figure 7. The sampling tube was made of a 0.163 cm OD brass 

tube. The Pitot-~ube, thermocouple and the sampling tube 

were set 2 cm apa~t on the instrument carriage. The only 

inlet for sampling the gas was a side hole in the tube to 

avoid the pressure drop in the tube. The brass tube was 

connected to the moisture monitor by a 5 mm OD Teflon Tube. 

The brass and Teflon tubes were recommended by Consolidated 

Electro-dynamic Co. because they absorbed only very little 
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moisture . The bypass value was use d to maintain a large 

· flow rate to insure stable operation , while only small 

s amples of gas were fass e d into the moisture moni tor. A 

soap fi l m type flowme ter (a " bubble - o-:neter ") and a valve 

were used to ma intain a constant flow rate through the 

moisture monitor . Two one-liter ballast volumes in the 

outlet line smoothed the pulsating motion caused by the 

vacuum pump . 

The moisture mo~itor offered a practical measure of 

trace water in the gaseou s mixture , s ~nce the instrument ' s 

electrolytic c e ll is used spe cifically to measure water 

mo isture. The electrolytic c e ll contained t wo platinum 

wire s , the space between was coated with phosphorous 

pentoxide (P2o5 ) which is a strong desiccant . When water 

vapo r wetted the P2 o5 , a potential afplied to the wires 

change d , ~reducing a me asurable electrolysis current. 

This current is directly proportional to the mass flow 

rate of wate~ vapor into the cell. Electrolysis o f the 

water absorbed in t~e P2o5 continuously regenerated the 

cell, thus permitting it to continuously measure all the 

moisture in the sample stream . 

The CEC moisture monitor u sed to detect low moisture 

contents was designed to operate at a constant flow rate 

(i. e . V=lOO cm3/min .). The instrument ' s range of applica­

t ion was extended to higher moisture contents by reducing 

t he flow rate . Thi s was done by by-passing the pressure 
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regulator of t he monitor and r epl acing it by t he bubble-o­

meter flowmeter c ircuit described above . The instrument 

was c a librated for u se at different flow rates by t he 

following procedu re . A flow of constant humid i ty was 

conducted through t he moisture monitor and the flow rate 

was d e creased in ste?S - The relationship between flow rate 

and apparent moistur e content obtained in t his manner is 

shown in Fig. 8. It is seen that the relation v1;v
2 

=(ppm)
1 

/(ppm) 2 holds for whole t esting range . The true moisture 

contents (ppm) 2 c an be expressed as : 

(ppm) 2 = (ppm ) 1 x 100/Vl 

where (ppm ) 1 is t he meter reading at flow rate v1 = 100 

cm3/ min. Through most of experiments of this study, the flow 

rates were reduced to 10-15 c m3/min. Only in two c ases , in 

whic h the water temperature and wave height were larges t, the 
I 

flow rates were reduced to 3 cm3/min. The humidity data us ed 
♦ 

were di fferences between local humidity in t he boundary layer 

and that of the fr ee stream gas . In thi s manner some of the 

systematic error due to the errors i n the low-flow-rate 

mea surements are cancelled . The r esponse time of t he mois­

ture monitor was found to be l ess t han 30 seconds (approxi ­

mately 63 % in 30 s e cond s to a step change in either 

dire ction ). A sta ~ l e r eading was obtai ned by tak ing the 

reading at each point at least t wo minutes after the probe 

had been positioned and t he flow thr ough the meter adjusted . 
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The output reading of the moisture monitor was in part per 

million (ppm) of water particles by volume . For convenience , 

p pm was transforme d to specific humidity by t~e relation : 

18 10-6 q = (ppm) X 2§" X 
gm of water 

[gm _of dry air] ( 4-2) 

The above equation came from the definition of q and ppm . 

4 . 3 Experimental Procedure 

Local measurements of mean velocity , temperature, and 

specific humidity of air were simultaneously taken by a 

Pitot-tube , thermocouple , and sampling tube for conditions 

o f steady flow. To achieve such conditions for a case 

where the water was cooler than air , the following 

p rocedure was used . 

The tunnel was allowed to operate at a normal air flow 

for two or three hours . During this period, the water 

t emperature would stop decreasing as a result of evaporative 

cooling and stay at a nearly constant value , deviating 

between+ 0. 1°C from an average value. The deviation was 

c aused by room temperature fluctuation . This case was 

defined as the "colj-water condition, '' where T = 12° ~ 
w 

15 °C and T = 2 0 ° - 25° C. Under such a c ondition, aT/az 
00 

i s positive , and stratification in air flow is stable . 

When the air temperature was lower than the water tempera­

ture, it was difficult to achieve stable temperatures, 

because of the limited heating capacity of the water channel . 
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The following procedure was used to slow the temperature 

d rop during the experimental time period . First , the water 

was heated to about 38°C, and the fan was started to blow 

a ir over the water surface for five to ten minutes . The 

f an was stopped, and the water was heated again . After 

r epeating this process several times , the temperature of 

t he water throughout the channel was very uniform . 

o ne run of the expe=iment , it would drop 1° - 2 °C. 

During 

This 

c ase was defined as the warm-water condition , where aT/az 

was negative , ~nd the air flow unstably stratified . The 

warm-water cases were c hosen as T = 27 ° - 34°C and T = 
W 00 

20 ° - 25°C . 

During all operations , the water level decreased 

gradually due . t o t~e evaporation , and a gap between the 

a luminum plate and the water surface developed . 'I'o maintain 

a condition of steady flow , it was then necessary to add 

water (cold or war~ ) continuously i nto the channel to keep 

t he water surface depth at x = 0, within 0. 2 mm of the same 

d epth . This would assure the same boundary condition at a 

d iscontinuity l ine between the solid and the l i qu id , as 

well a s a satisfactory smooth transition from the plate onto 

t he water surface . 

The velocity , humidity , and temperature distribution 

profiles were obtained for three different series of experi­

ments . First , the data were collected simultaneously f o r 

T , u and q at different downst~eam positions (x = 56 cm, 
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112 cm, 214 cm, 460 cm, 778 cm) with different reference 

velocities (vf = 4.17 m/sec. 5.64 ~/sec, 6.89 m/sec) for the 

cold-water case. For the warm-water case, the data were 

col lected simultaneously for T , u and q at different 

downstream positions (x = 116 cm, 214 c m, 460 cm, 610 cm) 

with a moderate temperature difference of T - T = 5° ~ 8°C s 00 

and then with a small temperature difference of T ~ T = s 00 

1° ~ 3°C. For the cold-water case, a third series of experi-

ments was carried out at a fixed fetch of x = 610 cm with a 

variation of air velocity corresponding to v = 8 m/sec, 
00 

8.8 m/sec, 9.9 m/sec , 12.1 m/sec, and 13.3 m/sec. 

The three meas~ring instruments were set parallel on 

the carriage 2 cm apart . The carriage was lowered close to 

the mean water surface, yet far enough away to avoid the 

instrument being hit by splash of the highest waves. The 

measured vertical distance from the mean water surface was 

set equal to z for all calculations. The carriage was 

raised step-by-step, and measurements were taken after each 

step until all instruments indicated an output which was 

independent of height . Then, it was lowered again, step-by­

step to reach the initial vertical position . The lowest 

values of z were measured before and after each run to the 

vertical displacement . The step-by-step method with a 

sampling period of two minutes would give enough time for 

the moisture monitor and the thermocouple to respond . The 

measurements close to the water surface were taken with 0.5 
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c m pe riod at different heights. The distance was increased 

a way from the water surface . Eight points per r un were taken 

when the carriage neared the l eading ·edge and increased to 

fi fteen points in downstream position. Finally, after each 

s eries of exper iments , a recording of the waves was t aken 

on a strip chart r ecorder . 
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Chapter V 

. RESUL'I'S 

5.1 Properties of t he Water Surface 

The propert i es of the water surface are importa nt fac­

tor s affecting the evaporation by increasing the apparent 

sur face area, and by changing the air flow near the surface . 

The c harac teristics of the surface waves c an be determined 

experimentally from the wave records. The re sults of typi­

cal statistical c omputation for the water surface displace­

ment were the standard deviation , o , wave energy spectrum , 

¢(f), and frequency , f , o f t he spectral peak . m . The values 

o f o and f r epresent the geome tric properties of signif­
m 

icant wave s . The wave energy spectrum ¢ (f) is t he Fourier 

transform of the autocorrelation function of the water s ur -

face displacement . 

Tabl e I. 

The values o f o and f are given in 
m 

To compare cold- and warm-water cases , the variations 

of o , f , and u with f etch are shown in Figure 9, and m co 

the effect of u* on f and o 
m 

at a fi xed position , x, 

is s hown in Figure 10 . For the cold-water case, t he stan­

dard deviation o was found to incr2ase linearly at a 

fixed downstream position with friction v e locity u*, and 

al so with fetch x. The peak fr equency f d i d c hange 
m 

rapidly at s mall values of x and u*, but its variation 

was sma l ler for the larger values of x and u*. 
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The effect of x and u* on o and f has been 
m 

shown in Figures 9 and 10. The effect of temperature dif­

f erence between air and water on wave geometry is shown in 

Figure 11. However , due to the limited capacity of the 

heating facility of the wind-water channel , the equilibrium 

fo r · the warm-water cases was hard to reach . So the data o f 

cold-water cases were adjusted to compare with warm-water 

c ases . In Figure 11, the values of u* of both cases are 

identical . This was accomplished by using the relation of 

Figure 10 to r ~duce the values of o and f of c old-water 
m 

cases until both cases had the same value of u*. The data 

in Figure 11 showed that in warmer water, a lower frequ ency 

f is found at x > 3 m. Also , the standard d eviation , o , 
m 

ii larger with the exception of t wo stat:ons , x = 460 cm 

and x = 778 cm. 

The wave energy spectra of wind waves , as described in 

Chapter IV , are shown in Figures 1 2 , 13, 14, and 15 for 

dif ferent conditions . In the spectral diagram the difference 

between cold- and warm-water cases is difficult to dis-

tinguish . The peak spectra f , o f course, decreases with 
m 

increasing fri c tion velocity u*, as determined from other 

work (for example , Hidy and Plate , 1966 ). An f -S law for 

~(f), which was suggested by Phillips (1 966 ) to show the 

equilibrium range of the gravity waves , can be applied to 

t he data to describe the slope of the envelope to all the 

spectral curves . However , beyond the peak , the value of 
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¢ ( f) decreased following a -7 
f law u p to f = 2 f . 

m 
For 

large values of f (f > 2 f ) , 
m <P ( f ) tends to follow a slope 

like -4 t han -5 
At t he of f , more f f . extreme range an 

f -7/3 law seems to fit t he results . This latter slope was 

suggested for ripples of f > 13 Hz by Hicks (as quoted by 

Phillips , 1966 ) as an equilibrium range for pure c apillary 

waves. All the r esults of the amplitude spectra of wind 

waves indicate the consistent agreement o f results of this 

e xper i ment with thos e of previous works such as Plate et al . 

(19 68 ), and Chang (1 968 ) . The data further suggest that 

there is no detectable thermal effect on frequency spectra . 

In wave e~ergy spectra of c old- and warm-water c ases for 

f > 13 Hz, the effect of capillary becomes a primary influ ­

ence on wave behavior . The temperatur e showed no effect o n 

the break frequency from gravity wave behavior to c apillary 

wave behavior. 

5 . 2 Air Flow 
. 

The measured velocity distributions above aluminum 

plate and water surface are shown in Figures 16 , 17, and 18 

fo r cold- and warm-water cases . At the s ame reference 

v elocity, the free stream velocity u 
00 

inc reased in the 

downstream direction . This was due to a favorab le pressure 

gradient along the positive x-direction . This was due to a 

favo rable pressure gradient along the positive x-direction 

in the c hannel . The boundary conditions at the water sur­

fac e are given in Table I. The dimensionless velocity 
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for different fetches are shown in Figures 19 

a nd 20. Like· other data taken in the CSU tunnel, all o f 

t hese profiles also can be correlated satisfactorily by the 

law of t he wal l (Eq . 2-1). 

In this study , the values of u* were obtained from 

the velocity profiles by the following method using two 

l evels of an assumed logarithmi c distribution: 

(5-1) 

where and are velocitie s at and which lie 

in the logarithmic part of the distribution curve . The 

v alues of u* found in thi s manner are given in Table II. 

For the fully d eve_oped rough flow defined by t he r egime 

b eyond a> 0.15 c o , the values of u* a re also given by an 

empirical formula given by Hidy and Plate (1 967 ) who com­

bined their findings with earlier results of other workers : 

= 0.0 185 u 1 · 5 (cm/sec). 
(X) 

( 5-2) 

Values of u* d etermined by use of Equations (5-1) and (5 -2) 

agreed within+ 5%. 

The variation of friction v e locity with fetch is plotted 

in Figures 21 and 22 , the curves showing that the friction 

velocity changes ma inly with the free stream velocity and 

only to a small d egree with the temperature difference 

(T _ T Compare d with the previous work of Plate and Hidy 
s (X)) • 
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(1967), u* showed a more gradual change from aluminum 

plate to the wavy surface , probably because the free stream 

v eloci ty in this experiment was smaller than in t he previ ­

ou s one. An increased free stream velocity tended to 

i ncrease the sharp change of u* at the transitional 

zone near x = 0. 

The values of z were obtained from Equation (2 - 1) 
0 

a fte r the values of u* had been obtained from Equation 

(5-1). Numerical values of z
0 

for e ach run are given in 

Table II. According to Hidy and Plate (1966), the values 

of roughness length over small water waves, z02 , c an be 

correlated empirically with a Reynolds number 

based on friction velocity and the standard deviation of 

the waves . Hidy and Plate reported an empirical formula 

for 

I 

at short fetch e s 

-4 
z

02 
= 1.4 x 10 

in a wind-water c hannel as : 

(5-3) 

Such a correlation for t his experiment is shown in Figu re 

23. It indicated satisfactory consistency between the 

experimental data at high and low free stream veloc ities 

of air, and earlier data o f Plate and Hidy (1967). The 

corre lation also held r easonably well for both warm- and 

co l d-water cases . However, t here may be a s ma ll d ifference 

related to a thermal effect on momentum transfer, which 

will b e discussed in the next sect ion. 
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5.3 Mean Temperature 

The vertical temperature distributions are also 

shown in Figures 16, 17 , and 18 over the different 

fetches. The temperature profiles have been modified 

by assuming that the thermal boundary layer had the same 

thickness as the concentration boundary layer , thus 

avoiding the t emperatu re gradient caused by elevation 

in t he building. During summer time, the temperature in 

the building increased about l°C per meter in elevation . 

There was no constant temperature zone. In other words , 

the t emperatu re , T , was selected as the temperature at 
00 

z > 8* , where 8* indicated the t hickness of concentra-e · e 

tion boundary layer. In t he cold-water case , t he ten-

dency of increasing the gradient of temperature along the 

downstream direction was similar to the gradient of 

velocity. Thus , the t endency of increasing shear stress 
; 

i r downstream position was similar to the heat transfer . 

In the warm-water case , the temperature profiles near the 

x = 0 showed a small bump, the shape of which enlarged, 

then d isappeared along the downstream direction. This 

may have been due to the effect on an outer boundary 

layer formed along the cold aluminum plate . The thermal 

condi tions at the bou ndary are given in Table I. It is 

difficult to construct a dimens ionless temperature profile 

in this experiment, since the temperature difference was 

small, and there were so many factors to influence such 
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a small temperature dif ference . For example , the fr ee 

stream velocity , the wavy surface , evaporation r ate , radi­

a tion and c onduction all contributed to this transfer 

mechanism . For better results , further study i s 

recommended. 

5. 4 Humidity Profiles and Evaporation Rates 

The spec ific humidity at the water surface c an be 

de termined u nder the assumption that it is equal to the 

saturated humidity qs 

surface temperature . 

at T, where T s s 

With the value 

i s the water 

at z = O, the 

measured humidity profiles at the different fet c hes are 

shown i n Figures 16, 17, and 18. In the cold water case, 

the gradient of the humidity profile , which showed the 

amount of mass transfer rate , increased slowly with x 

when x was small, but the g radient started to increase 

fa ster when x was large , indicating the effect of wind 

waves . In the warm-water c ase , t he tendency was similar , 

except at x·= 610 c m. At t hat particular point, t he 

humidi ty difference between different height seemed 

linearly increasing with height . 

Several vertical distributions of humidity a t dif­

ferent heights are shown in semi-logarithmic form in 

Figures 24 and 25. Most of t he data points form a straight 

line o n th i s type of plot , indicating that a logarithmic 

profi l e seems to be a u seful approximation for many of the 

humidity profi l es . The application of t he logarithmic 

p rofi l es will be discussed in Chapter VI. 
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The evaporation rat e , E , in gm/cm 2 /sec c an be evalu­

a ted from the experimental data for q(z) and u( z ) by 

considering a mass balance on a contro l volume in the air 

(F i gure 2 ). By considering the mass flux in terms of such 

a volume and n e glec t ing V 
s 

at the surface (see Chapter 

II) , 

co 

E = p~x J u(z) 
0 

[q (z) - q ] dz . 
co 

(5-4 ) 

To find the experimental values of the evaporation rate 

from Equation (5-4 ), the value s of u(q - q) were plotted 
co 

against z on linear paper. An optical planimeter (Mi lano 

Co., Type 236) was u sed to obtain the value of the integral. 

When z was small , it was not possible to obtain experi­

mentally the data for q and u, so they were extrapolated 

according to logarithmic law to give q and u at small 

z. Some typical curves of this linear plot are shown in 
I 

Figure 26. The values o f E calculated by this method 
♦ 

a re given i n Table III . The values of E decreased along 

the downstream direction until x is a pproximately 3 m, 

then the values of E increased . This indicates that the 

waves s eemed to increase the evaporation rate in this 

experiment once thei r amplitude exceeded a= 0.l cm . 

The thickness of the conc2ntration boundary layer, 

c:, was defined as the value of z, where the local spe­

ci fi c humidity difference was equal to 0 . 01 x (q - q ). s co 



-8 
O"' 
I 
O"' -::, 

1.2 ,----,.---r--~--,----r----y----,----.---.---r---.---.-.---~-ic--~--.---~-.----i 

6 

\ 
6 

1.0 

0 .8 

0.6 

0.4 

0.2 

0 
0 0 .4 

• 

0.8 1.2 1.6 

0 ~ # 33 

Cold - { 0 ~ # 36 
oter 

6 ~ #42 

Unit = 0 .852 

2.0 

Z ( in .) 

2.4 2.8 

Fig. 26. Mass flux against the variation of z. 

3.2 3.6 4.0 



70 

The boundary layers of vapor concentra tion are shown in 

Figures 16, 17 and 18. The effect of thermal stability in 

raising the internal boundary layer was predicted by 

Elliott (1968). The tendency of his results are consis­

tent with the experime ntal data of the present study. 

Th~ strong effect of surface temperature on evaporation 

can be seen in Figure 18 at the ups t ream position or 

transition zone, while the values o f 8* showed a sharp e 

increase due to the increasing of positive t emperature dif­

ference between air and water . For the fully developed 

turbu lent flow, the boundary layer thickness of mass trans­

fer eventually became the same for both cold- and warm-water 

cases . The values o f o* , which are obtained from experi-e 

mental data, are given in Table II. 

Another concentration thickness , le , has been 

defined by Kays (1966) as: 

1 
00 

le= 
(5-5) 

The concentration thickness of the boundary layer in mass 

trans fer problems is analogous to the momentum thickness 

of the flow field. The values of £e are connected with 

the flow of mass through an area normal to the surface. 

The values of le are listed in Table II. In solving the 

boundary layer equation of mass flow, 

important characteristic l ength. 

le should be an 



Table I . Boundary c onditions o f flow systems . 

q x103 q x103 
f s 00 

Run T T T gm of water gm of water X u a m w s 00 
00 

(gm of dry air) (gm of dry air ) No . (cm ) (m/sec ) (cm ) • (Hz ) ( oc) ( oc ) ( oc) 

34 56 5 . 64 -- -- 13 11. 9 25. 6 8 . 8 4 . 28 
37 112 5 . 67 -- - - 12 10 . 7 25 . 0 8.1 4.14 
40 214 5 . 95 -- -- 12 10 . 7 22 . 6 8 . 0 2 . 98 
43 460 6 . 40 - - -- 12 10 . 7 20 . 8 8 . 1 3.7 
46 778 6 . 95 - - -- 12 10 . 7 20 . 2 8 . 1 3 . 31 

35 56 6 . 89 -- -- 13 11 . 9 24 . 2 8 . 8 3.72 
38 112 7 . 24 0 . 0245 10 .5 12 10 . 7 25 . 0 8 . 2 3 . 72 
41 214 7 . 61 0 . 0701 7 . 02 12 10 . 7 22 . 6 8 . 2 3 . 36 --.i 
44 460 8 . 54 0 . 165 4 . 25 12 10 . 7 20 . 8 8 . 1 3 . 52 I-' 

47 778 9 . 25 0 . 323 3. 2 12 10 . 7 20 . 2 8 . 0 3.14 

48 610 7. 98 0 . 253 3. 9 15 .4 14 . 5 27 1 0 . 3 5 3 . 76 
49 610 8 . 78 0 . 309 3. 3 11.2 9 . 7 20.8 7 . 6 4 . 24 
51 610 9.88 0 . 37 3 . 0 11. 0 9. 6 21. 6 7 . 5 3 . 86 
52 610 12 . 1 0 . 449 2 . 8 12 . 2 10 . 9 21 8 . 2 3 . 59 
53 610 13 . 3 0 . 523 2 . 5 11 . 7 10 . 4 21 7. 95 4 . 42 

57 116 6 . 70 0 . 0248 1 0 . 5 30 29 22 . 6 27 . 5 7.05 
59 214 6 . 83 0 . 0659 7 . 3 34 33 . 2 27 33 . 2 6 . 74 
61 460 7 . 90 0 . 101 4 . 65 30 29 22 24 . 1 5 . 03 
67 610 8 . 05 0 . 227 3. 6 33 .8 32 . 1 26 .8 30 5 . 25 

56 116 6 . 69 0 . 01 7 3 1 1 26 . 6 25 . 6 21 . 6 20 . 9 6 . 44 
58 214 6 . 86 0 . 0559 7 . 4 30.5 29 . 3 24 28 . 2 6 . 92 
60 46 0 7 . 87 0 . 0897 4 . 6 25 . 9 25 . 2 23 19 . 1 4 . 6 
64 610 8 . 04 0 . 0237 3 . 7 27 . 1 26 . 4 25 . 4 22 5 . 17 



Table II. Characteristic parameters of flow system. 

u* 4 -q*x10 4 
xl0 3 cS * ExlOS z xl0 z Run* X cm 0 (gm o f wa~er) om t e e gm 

No . (cm) (sec) (cm) gm of air (cm) (cm) (cm) (cm~-sec) 

34 56 17 2.54 6 .3 8 2.54 0.283 3.5 1.3 
37 112 21 5. 85' 6 . 8 12.7 0.52 4.31 1.05 
40 21 4 26 .3 17.7 8 .2 0.522 5.1 0 .7 37 
43 460 30.2 30.2 9 . 32 81. 2 1. 403 10.2 0 .8 45 
46 77 8 34 45 .7 9 . 97 127 1 . 96 12.7 0 . 8G5 

35 56 25.5 2.44 5 . 83 0.36 0.284 2. 8 8 1.79 
38 112 29 .5 6.22 7.51 7.86 0 . 488 4 . 82 1. 43 
41 214 36 .3 25.0 8 . 66 18.8 0.781 7.64 1. 36 
44 460 46 . 0 82.0 I 9 .3 0 57 1 .3 5 11. 4 1.16 
47 778 52 . 0 175 9.84 132 2 . 33 16.2 1 . 36 

"-.l 
48 610 42 115 12.0 76 .3 2.1 14.6 18.3 N 

49 610 51. 9 150 5 . 85 122 2 . 96 15.2 14.5 
51 610 57 .2 228 6.80 183 3.12 16 . 5 18.6 
52 610 79 381 10.9 330 3 . 43 17 . 4 31.7 
53 610 90 485 9 . 48 510 3.53 17 . 8 27.4 

57 116 27.4 5.08 26.4 0.813 0.531 7.36 6.24 
59 214 33.1 25 . 5 50.8 54 1.11 9. 8 9.35 
61 460 37 .7 61 65 234 2.15 13.7 7.0 
67 610 42 . 6 192 105 1430 4.11 15 . 6 13.4 

56 116 23.5 1. 78 23 6.35 0.484 6.5 4.02 
58 214 31.4 15.5 44 .8 44.5 1.16 8.39 7. 88 
60 460 37.6 45.3 50 .5 144 1. 93 12. 4 4 .77 
64 610 41 . 6 152 66 965 3 . 56 15.7 7.85 

* Run no. 34-46 and 35-47 are cold water cases. 
Run no. 48-53 are cold water cases at fixed position. 
Run no. 57-67 and 56-64 are warm water cases. 
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Chapter VI 

DISCUSSION OF RESULTS 

The experimental results of this study have been pre­

s ented in Chapter v. To check the data of this study , both 

t he momentum and mass transfer phenomena will be compared 

with experimental or analytical results of earlier authors. 

To better understand the transport mechanism, the physical 

b ackground of different parameters was considered and is 

d iscussed to some extent in the light of the experimental 

r esul ts . An empirical relationship between momentum and 

mass transfer has been worked out using the experimental 

data . Finally , a direct and practical method to evaluate 

t he evaporation rate is proposed . 

6. 1 Nature o f the Water Surface 

The temperatu~e difference between water and air has 

s ome effect on structure of the surface waves (Fleagle , 

1 956 ). One•way to estimate the thermal effect on wave 

s tructure is to evaluate the net amplification rate of waves 

r esulting from the temperature difference . A theoretic al 

approach which includes physical parameters that vary with 

t emperature has been suggested by Miles (1962 ) and Benjamin 

(1 9 59 ) . Miles showed that (see also Hidy and Plate, 1968) 

t he net amplification rate for sma l l waves is given by : 

m = m + m a w (6-1 ) 
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where m is the growth factor predicted by Miles ' mathe­
a 

matical model , and m 
w 

is the d amping factor : 

where c is the phase s peed of wave , 

-2 kd 
e 

w 

( 6-2) 

is the kinematic 

viscosity of water , k is wave number , and d is water 

depth . 

The growth factor has the form: 

m 
a 

::: 1/2 u' 
s 

0 322 2 343 1/3 
[ . (~) (~) + 0. (uk *v ) ] '(6 -3) 

w2 k va u* w a 

where w is a comp lex stability function which is given in 

t erms of the variable 

z = c/u' o* 
s 

where u' is the slope of air velocity profile at the 
s 

water surface. 

( 6-4) 

Some calculations of m(k ) have been shown in Table II 

o f Hidy and Plate (1968). They assumed t ~a t -r = l dyne/ 
s 

cm2 and 6T = + 10°C, and they us e d Miles ' estimated value 

o f w adjusted for the change in the physical properties 

with temperature. They found an approximately 10 % change 

in net amplification rate for this range of temperature 

differe nce. Experimental data of this study (Figures 9, 

10 a nd 11) show that the values of f decrease and the 
m 

values of a increase as the temperature difference , 

Ts - T
00

, changes from positive to negative. By using 
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Figure 10 to account for the tempera ture effect in the 

~hange of f and 
m 

a , one obtains for a temperature 

d ifference of 6T = + 12°C to 6T = - 6°C and the same free 

stream velocity, that the standard deviation increased 

about 25 %. Since the standard deviation also indicates 

the wave h e ight; the increased standard deviation shows 

the dif ference in amplification rate for such a temperature 

difference . It was found from the experimental data and 

the thermal conditions of this study, that the net ampli­

fication rate , which was calculated froill Equations (6-2) 

a nd (6-3) , showed a 30 % increase from 6T = + 12°C to 

6T = - 6°C. The d ecrease of the damping factor (Eq. (6-2)) 

was largely due to the t emperature difference . However , the 

increase of growth factor (Eq . (6-3)) due to the temperature 

d ifference was small . Thus , while the Benjamin-Miles theory 
- -

also shows that m increases with increase of water tempera-

tur~ , it does not predict the l arge increases observed in 

the experim~ntal results . 

Roll (as quoted by Fleagle, 1956) d evised a statistical 

method to study the temperature effect on wave generation. 

He found that for the same winds , the mean wave height 

increased 22% as the air and sea temperature difference 

increased from 0° to 6 . 7°C. His results were based on 

measurements taken by North Atlantic weather ships . Fleagle 

(1956) later us ed the mean tabulate d data of wind speed , 

wave h e ight and air temperatures , based on measurements by 
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Atlantic and Pacific weather ships, to plot a relationship 

between air-sea temperature difference and wave height. 

His results showed that higher waves are generated on warm 

water (relative to air tempe rature ) than on cold water . 

The di fference amounted to an increase in wave height of 

roughly ten percent per d egree centigrade . Rolls' results 

agree with the experimental data of this study . Yet 

Fleagles ' results showed a stronger effect on t emperature 

difference . This may have been partially due to the 

deficiency in measuring sea surface temperature, and the 

way he s elected the field data and excluded the c ases o f a 

randomly agitated sea . 

6.2 Air Flow 

In the warm-water c ase , an unstable stratification 

developed in t he flow system, which may have had some effect 

on :t he air fiow n ear the water . A criterion for the magni­

tude of this effect is based on the flux form of the 

Richardson number, which is defined by : 

where 

= - gH/c T , ( au) 
p o a z 

H is the heat flux at the surface and T 
0 

(6-5) 

is the 

mean absol~te temperature . The values of H are contribu-

ted by: 

H =H t + He (6 -6 ) 

where Ht = latent heat due to evaporation ( = p EL/C ) , w p 
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aT He= sensible heat due to t emperature gradient (=Cp (32)s). 

The s e nsible heat was contributed by air and water . Here~ 

o nly sensible heat of air was cons idered and denoted by He. 

The ra tio between He and H£ is the Bowen ratio 

(B = Hc/H£ ) . In this exper iment , the values of B were 

equal to (+ ) 0.2 - 0.3 for the cold-wa ter case and equal to 

(-) 0.003 - 0.00 4 for the warm-water case . This indicated 

that the sensible heat of air was a n important source for 

evaporation of the cold-water ca se , while the sensible heat 

o f water was an important source for evaporation of the 

warm-water case. For the first approx imation in the warm­

water c a se , which had the grea ter hea t flux at the surface 

than the cool surface , the following as s umptions were made : 

K 
K au m 

T = p m az = p k u* (6 -7a) 

H = H£ - p EL/c w p (6-7b) 

and 
• 

K 
Rf h R ' Ri = - l "' K 

(6-7c) 
m 

where Ri is t he Richardson number in gradient form. The 

d ifference between Ri and Rf depends on the value of 

Kh/~ . Here , Kh/~ is assumed equal to unity . The 

values of Ri can be calculated by: 

u* 
2 

Rf "' Ri = gx lixE/T (-) s k 
( 6-8) 
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In the experiments of this study, Riis the order of 10-3 . 

For small Ri , the flow system can be considered as near­

adiabatic, which leads to the following equation to describe 

the velocity distribution (Roll , 1965): 

au=~ 1 
az K

2 
1 - aRi ' (6-9) 

where a is a constant and approximately equal to 10. On 

the basis of Equation (6-9), the velocity profile in the 

warm-water case would involve 2% error by neglecting the 

thermal effect of the Richardson criterion. Therefore, the 

effect of the unstable density stratification on mome ntum 

e xchange was considered negligible. The values and relation-

s hips between u* and z 
0 

in warm-water case, such as ex-

pres sed in Equations (5 -1) and (5-2), were similar for the 

s ame free stream conditions in the cold-water c ase . There­

fore, it was assumed that temperature difference between the 

air and the water did not modify the momentum transfer in 

this experime nt. 

The correlation between z and u*cr/v for both cold­o 
' 

a nd warm-water cases c an also be used to check the thermal 

e ffect on momentum transfer. As shown in Figure 23, the 

correlation held reasonably well for both cases, but there 

was a small difference which may not be accounted for by 

applying the Richardson criterion. Since virtually no 

i nformation is available on the combine d effects of waves 

and temperature difference on shear ing flow of air overhead , 
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this question should be investigated further in later 

studies . 

6.3 Humidity and Evaporation Rates 

6.3.1 Universal Concentration 

The "logarithmic law" for mean humidity profiles 

in turbulent boundary layers over a flat or a wavy surface 

has been d erived in the previous section and is given by 

Equation (2-9). The curves ·of dime nsionless humidity pro­

files placed in the form o f (q - q
8

)/q* with dimensionless 

height (z/z ) are shown in Figures 27 and 28 . Most of the om 

experimental data are well correlated along the line which 

is give by Equation (2-9) , except at large values of z/z . om 

Large values of z/z for each run indicate large distances om 

from the mean water sur face , where the logarithmic law did 

not hold, as is also the c ase for the velocity profiles. 

The results of this study suggested that the law of wall 

for the humidity distribution was a satisfactory approxima­

tion near the water surface for both the cold-water case 

(inversion condition) and warm-water case (lapse 

c onditions). 

Using Equation (2-9), the values of q* were evaluated 

from the humidity profiles by the relationship: 

(6 -10) 

where and designated the specific humidity at 
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a nd and lay in the curve of the logarithmi c part . 

After de termining t he values of z was evaluated om 

from Equation (2-9) . The numerical values of q* and 

z for this study are given in Table II. om 

The trends of q * were similar to that of u*. The 

variation of q* with fetc h is shown in Figures 21 and 22. 

The values of q* appeared to be mainly affected by ~he 

t emperature dif ference between air and water . The effect 

o f air velocity on q* was smaller than the effect of 

t emperature difference. To compare the properties of q* 

wi th u*, t he effect o f temperature difference between air 

a nd water on q* was similar to the effect of free stream 

velocity on u*. 

The l ength scale , z , is analogous to z , and is om o 

introduced as a characteristic l ength for the (logarithmic) 

humidity profiles. Es timation o f the values of z from om 

the momentum field is a us efu l and practical way for 

predicting t~e universal profile of humidity. A reason­

a ble correlation was found for the set of experiments . 

The dimensionless roughness lengths ( z / o ) 
0 

are shown in 

Figure 29 as a function of the Peclet number Pe= u*z /D, om 

which is based on the length z om The standard d evi-

at ion o f z /o from a straigh t line was+ 15 %, which is 
0 

considered to be a satisfactory fit for both the cold-

and warm-water c ases studied. From this corre lation, the 

values of evaporation can be estimated from knowledge of the 
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velocity field only, provided the thermal conditions at the 

water surface and free stream are given, or measured. 

6.3.2 Methods of Obtaining the Evaporation Rate 

In Chapter II, several semi-empirical methods for 

estimating the evaporation rate were outlined. In this 

section, these results are compared for consistency with 

those of previous investigators and with each other . For 

the latter comparison, the data of E calculated by the 

mass balance method, as shown in Table II, were taken as 

the standard. The other approximate methods were each 

shown to be u seful for estimating E over a c ertain range 

of boundary layer development. 

From the measured humidity distribution, the profile 

coefficient, r 0 , can be calculated by means of Equation 

(2-22). One set of the results at a fixed position, x = 

6.10 m, is shown in Figure 30, together with Okuda and 

Hay
1
ami 's results ta.ken in a wind-water tunnel under identi-

• 
cal conditions. When the wind speed, · u, was less than 

CX) 

10 m/sec, the values r 0 were nearly independent of u . 
00 

Okuda and Hayami observed that above u = 10 m/sec, the 
CX) 

surface became sufficiently agitated to produce spray from 

breaking waves . This caused a marked increase in evapora-

tion rate. The data taken in this study showed a similar 

sharp increase in r 
D 

at about u = 10 m/sec, which evi-
oo 

dently was related to spray formation. Droplets of spray 
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were actually observed above the wavy surface around or 

above this wind spe ed . 

From experimental knowledge of the profile parameters 

of the fields of velocity, temperature, and vapor concen­

tration, the evaporation rate can be c alculated by the 

approximate methods outlined in Chapter II as: 

El = - pk u*q* (2 -9b ) 

E2 = pk u* (q - q )/ tn [ (D + ku*o* )/D] s CX) e 
( 2-6) 

and 

d a* 
E3 = p 

dx 
J eu(q - q (X) ) dz, 
0 

(2 -2) 

where the values of E1 , E
2

, and E
3 

refer to the profile 

method, integral method, and experimental data, respectively. 

The values of E's are listed in Table III and plotted 

against . the x-coordinate in Figures 31 and 32. E
3 

is the 

I . • . d measured evaporation rate which is taken as the standar 
. 

for comparison . In the cold-water case, and for x > 3 

meters, the difference between E2 and E3 was small, so 

that Equation (2-6) gave a satisfactory simplified method 

to evaluate the evaporation rate in a well-developed turbu­

lent boundary layer . However, t he difference between E1 

and E
3 

was l arge and systematic over x > 3 meters , so the 

constant of Equation (2-9b) had to be adjusted from Karman 's 

constant of 0.4. As pointed out earlier, the Karman con­

stant, K, was used only for a first approximation. A 
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Table III. Evaporation rates 

Run 
No. 

34 
37 
40 
43 
46 

35 
38 
41 
44 
47 

4 8 
49 
51 
52 
53 

57 
59 
61 
67 

5 6 
58 
60 
6 4 

* * 

E
1
xio 5 

X 

(cm) ** 

56 0.438 
112 0.56 
214 0.871 
460 1.14 
77 8 1.37 

56 0.60 1 
112 0.8 59 
214 1. 27 
460 1.56 
778 1.70 

610 2.04 
610 1 . 33 
610 1. 57 
610 3.48 
610 3.45 

116 3.03 
214 6.36 
460 8.21 
610 14.2 

116 . 2.15 
214 5 .6 1 
460 6.45 
610 9.27 

(gm of water ) 
c m2-sec 

E2xl0 5 

** 

0.605 
0.631 
0.97 
0.935 
1.0 

0.9 95 
1.06 
1.14 
1. 26 
1.41 

1.68 
1.03 
1.19 
1.97 
1. 68 

3.63 
5.39 
4. 5 
6.75 

2 . 43 
4.26 
4 . 52 
5 . 49 

by different methods . 

5 E*xl0 5 5 E
3
xl0 E

4
xl0 

1 
** ** ** 

1.30 1.55 
1.05 1. 23 
0.745 0.706 0.8 85 
0.91 0. 911 1.0 4 
0.99 5 1.09 1. 27 

1 .7 9 1. 82 
1 . 43 1.48 
1.3 6 1.0 2 1.51 
1.16 1.25 1. 35 
1 .3 6 1. 36 1. 76 

1. 83 1.63 
1.25 1.06 
1. 5 6 1.26 
3.17 2.79 
2.74 2.77 

6.24 7.21 
9.35 9.54 
7.0 6.58 5 .75 

13.4 11.40. 17.10 

4.02 4.2 
7.88 8.07 
4.77 5.15 4.96 
7.85 7.42 9.75 
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result of this experiment showed that the constant in 

Equation (2-9b) should be 0.32 instead of 0.4. In other 

words, 

(6 -11) 

corresponding best to the experimental data for cold water 

in this study. In the warm-water case, the values of E2 

calculated in Equation (2-6), did not agree with experi­

mental data. This was due mainly to the fact that Equation 

(2-6) did not include the effect of temperature difference 

on surface conditions. However, the values of E* 1 esti-

mated in Equation (6-11), still agreed satisfactorily with 

the experimental data. 

The constant 0.32 in Equation (6-11) has another 

physical significance. In deriving Equation (2-9b), the 

evaporation rate should be: 

For the first approximation , K was assumed to be equal to 
e 

1)u, so Equation (6-12) became equal to Equation (2-9b) , 
K 

e consequently the factor 0.3J is actually equal to K k , or 
m 

with k = 0.4, it follows that: 

= 1.25 . (6-13) 

This relationship is similar to that obtained from Rider's 

observation (1 954): 
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1.12 + 0.04 . 

The 10 % difference between laboratory study and field 

observation is an allowable margin for satisfactory 

result s . 

(6-14) 

The logarithmic profiles of humidity and velocity can 

be related at t he same z · by the following relations : 

= 
q - q 
____ s + tn 

z 
om 

z 
0 

(6 -15) 

Equation (6-15) has been verified by the experime ntal data 

of this study. By dif ferentiation of (6-15) and assumed 

that z and z were independent of y, one obtains: o om 

~ dq 
Edy = 1 

T w 

du 
dy (6-16) 

If the local mass flux is equal to the evaporation rate and 

if fquation (6 -11) is us ed , one obtains the turbulent 

Schmidt number as : 

Sc,t = 0.8 . (6 -17) 

This value has b een suggested by many earlier workers 

(Spald i ng, 1964), and it is confirme d by the experimental 

data of this study. 

6.4 Roughness Effect on Evaporation Rates 

The water surface condition i s an important factor in 

the mass transfer from the fr ee surface. As waves grow by 



90 

wind action from ripples to well developed gravity waves, 

the effect on evapora tion and momentum transfer may be 

considered in t erms of an increasingly rough surface. 

When the waves develop there are two effects that modify 

the evaporation process: one kinematic and the other 

dynamic in character . As waves grow, the equivalent sur­

face area increases for a normal fetch, measured horizon­

tally along the mean water depth. This produces an 

apparent increase in evaporation with wave growth by a 

kinematic effect of increasing the apparent surface ar~a. 

In the second case, a dynamic effect c an occur when separa­

tion of air flow takes place over the waves. The latter 

influence has been discussed to some extent by Levich 

(1965) and Easterbrook (1968). It is not intuitively ob~ 

vious how separation would influence evaporation. For 

example, one could argue that separation would give rise 

to lower local air speeds near the surface in the trough of 

the water waves and reduce evaporation. On the other hand, 

if the evaporation rate depends on turbulent di ffusion away 

from the surface as well as on the molecular diffusion 

layer near the surface, one might suspect that increased 

turbulence by separation might contribute to an increase 

in evaporation rate. The latter tendency of turbulent 

transport may be observed in the results for the evaporation 

rate shown in Figures 31 and 32. The values of E
3 

tended 

to d ecrease with x initially as a mass transfer boundary 
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layer developed. There was an exception to this at x = 

214 min the warm-water c ase . This position was located 

close to the largest heater in the channel . This localized 

heat source i ncreases the evaporation rate by an amount 

which exceeds the decr ease due t o the d eveloping conce n­

tration boundary layer . After o > 0.15 cm, the values of 

E3 tend to increase somewhat as waves grow. Since it is 

known that separation occurs at least intermittently over 

waves i n this range , where c ~ u* (Chang, 1 968) , one c an 

interpret the increase in E3 with flow over waves partly 

as a kinematic modification , and partly as a dynamical 

influence of separation. 

An increase of surface area due to the waves action 

has been estimated by assuming sine waves with wave height , 

a (where a= 2o) o f water waves. The l ocal increase of sur­

face area was up to 16 % du e to sine water waves in this 

experiment with the assumption a/L = 0.1, where L is 

wave l ength ' and a is wave height. This amount o f correc­

tion was not enough to account for the total increase of 

evaporation by t he wavy s urface . The total increase of 

evaporation was 40 % in the c o ld-water case and up to 100 % 

in the warm-water case. Thus , the dynamic effect on evapo­

ration r ate evidently is more important than the kinematic 

effect. 

An influence of s eparati on on evaporation has been 

suggestGd by Easterbrook (1 968 ) based on a laboratory 
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study . Using a large wave tank-wind tunnel to measure the 

e ffect of wave condi tions , he indicate d that for certain 

c ombinations of wind speed and well-develope d waves the 

evaporation rate was minima l as the wave parameter , i . e ., 

t he ratio of wave height, H , t o wave per iod , P , increased . 

The appearance of a minimum in the evaporation rate effect 

was explained by Easterbrook based on the phenomenon of 

s eparation. The s eparation of air flow from the lee 

s ide o f the wave forms a vortex f l ow near the water surface . 

The vortices resist the transfer of heat and mass and become 

a n effective barrier t o the vertical transport of water 

v apor. The stability o f these vor t ices will d etermine the 

e vaporation rate . The evaporat i on rate will increase in 

unstable cases . These unstable cases are cau sed by the 

s tro ng wind over wavy surface or po s itive temperature 

d ifference between air and water . The evaporation rate 

will decrease in stable cases . These stable c ases exist 

i n some rang~s of me c hanically generated waves and wind 

(see Figure 33 ). 

Easterbrook ' s results are c ompared with the results of 

t his study in Figure 33. Due t o the different wave c ondi­

t ions, the wave paramter (H/Pft-sec - 1 ) of this study lies 

-1 
between 0. 02 and 0 . 08 ft-sec , so the d ata points of this 

s tudy do not fall into t h e shadowed area where the evapora-

t ion rate decreases with increasing wave motion . Figure 33 , 

taken from Easterbrook ' s report shows an increas e of the 
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Fig. 33. Evaporation coefficient against wave parame ter, 
(from Easterbrook , 196 8) . 
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evaporation rate with increasing wave parameter up to 0.0 8 

-1 ft-sec . The figure also indicates that the higher the 

free stream velocity , the larger the expected evaporation 

rate. This is qualitatively consistent with t he results of 

the present study. 

6.5 Evaporation Rates Expressed by Dimensionless Groups 

In the wind-water channel , where a steady wind blew 

over a smooth aluminum plate onto the water surface, the 

a ir motion itse lf induced the waves . The waves started as 

tiny ripples growing with increasing fetch to well-developed 

gravity waves . This process c aused a change from an aero­

dynamically smooth surface t o a rough surface (Kunishi , 

1963; Plate and Hidy , 1967). According to the different 

boundary conditions in a wind-water channel the mass trans­

fer problem was divided into different problems. First , 

the turbulent air with low vapor concentration flowed over 

the aluminum plate (Roughness 1) onto the water surface 
. 

(Roughness 2) with stepwise changes in vapor concentration 

at t he water surface . When the fetch was sma ll, or for 

cases close to the leading edge (x = 0), the water surface 

was also an aerodynamically smooth surface for the mass 

transfer problem . Then , the turbulent air passed over 

t he ripple-waves onto the well-developed gravity waves. 

In t he mass transfer problem , this was the turbulent flow 

over the rough surface with high vapor concentration at 

the surface. 
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The experimental corre l ation in t erms of d imensionless 

groups in thi s study can be expected to follow dif fere n t 

laws for different boundary conditions . In Figure 34 a 

plot of Sherwood number vs . Schmidt number and drag coe f ­

f i cient vs. Reyno l ds number is g iven . The Schmidt number 

o f -this study i s 0.71, which is calculated from the rat io 

v/D. In the range Re < 7 x 10 5 , the c orrelation for l ami-

nar flow over t he flat plate (Equation (2-1 0 )) fit t he 

e xperimenta l data for cold- and warm-water cases except f or 

an exponent of 0.6 for t he power law o f Reynolds number . 

In the r ange , 7 x 10 5 <Re< 5 x 10 6 , the correlation o f 

turbulent flow (Equ a tion (2 -12 )) f its the experimental 

data of the cold-water c ase , but not fo r t he warm-water case 

and t he c ase where the spray of water dominates the evapora­

t ion process . The spray of wat er caused by strong wind wa s 

a lso clearly shown in Figure 34 at Re> 5 x 10 6 where the 

depart re from Equat ion (2-1 2 ) exis t ed . The failur e of 

Equation (2 ~12) to correlate the data for the warm-water 

c ase , suggested that t he t emperature d ifference between 

a i r a nd water had a s ignificant effect on the transport 

mechani sm , pos sib ly through vo lumetri c evaporation or by 

c hanging the struc t ure of surface wave , or by mod i fyi ng the 

flow sys tem near the wate r surface . 

Smol sky and Sergeyev (1962 ) introduced the Gukhmann 

number , Gu, (s ee Chapter I I ) into the correlat ion of dimen­

sionless g roups . Their c orrelation line is also plotted in 
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Figure 34 (dashed line) to compare with this study. Most 

of the data points of t his experiment are lower than the 

da shed line , except some points of the warm-water case . 

Therefore, Smolsky and Sergeyev ' s correlation does not 

apply to correlate the d ata of thi s study . Instead , it is 

more likely that the temperature effect is associated with 

the observed c hange in wave s tructure . 

The Levich theoretical model for turbulent flow over a 

rough surface has been tried to c orrelate the c old- and 

warm-water cases . The results were not complete ly satis­

facto ry (Figure 35). The scattering of data above one l ine 

for both cases was slightly improved , compared with Figure 

5 6 34, over the range , 7 x 10 < Re< 5 x 10 ; but the power 

of Reynolds number is 0. 85 i nstead of 0.5, which was pre­

dicted by Levich. The Levich model, of course , is der ived 

for a sol i d rough boundary whi c h should be different from 

the dynamica lly deformable and moving boundary . The wind­

waves in the c hannel were moving and growing along with 

increasing fetc h . The t emperature difference was observed 

to have some effects on wave structure , a s indicated in 

Figure 11. For such a complex mechanism , it is very diffi­

cult to der ive the roughness effect in dimens ionless form 

based on a simple theoretical argument . However , an attempt 

has been made to combine the Levich t heoreti c al model and 

experimental r esults by modifying Levich ' s idea to account 

for a moving boundary . Instead of u sing Equation (2-15) 
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for the diffusion sublayer , a modified diffusion sublayer , 

om ' was proposed by the following equation : 

h 1/2 , 
0 = (~) g(~ 
m u* h 

(6-18) 

where A/h is the roughness coefficient , c the phase speed 

of . wave a nd c/u* the parameter whic h should account for 

the moving boundary and the air flow at the lee side of the 

waves . The function of was assumed based on the 

experimental data of this study , whic h was : 

A -1/4 -1/4 
g (- , ~) = (~) (1 - ~) 

h u* h u* 
(6-19) 

There was a c ritical condition at c = u*, analogous to the 

critical layer of wave generation . This may be the zone 

where the air flow forms a dead air pocket which inhibits 

the convective transport penetration of water vapor further 

into the boundary layer. Using Equation (6-19), the final 

form o f dimensionless number which was used is : . 
cf 1/4 1/4 1/2 A 1/4 

~) 
-1 1/4 

Sh - (- ) (Sc) (Re ) ( - ) [ ( 1 - ] 
2 h u* 

(6-20 a ) 

or 

c f 1/4 1/4 1/2 1/4 
Sh - (- ) (Sc) (Re ) (Rgn) (6-20b ) 2 

where Rgn = modified roughness coefficient (= _hA u* ) . 
U* - C 

The results are shown in Figure 36 . This correlation 
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reduced the error to within+ 6 % over the range 

5 6 7 x 1 0 <Re< 5 x 10 . The error was defined as the per-

centage deviated from the solid line in Figure 36 . Com­

pared with previous r esults (with an error of+ 2 0%) , this 

is a satisfactory corre lat i on over the range below 

6 Re · = 5 x 10 and when the spray of water droplets is appar-

ently insignificant . Three triangle data points in the 

upper portion of Figure 36 shows the region of spray for-

mation which corresponds to the case of u > 11 m/sec . 
00 

This information of spray agrees with the r esults of previ­

ous workers , such as Okuda and Hayami (1959) . 

The v a l ues of z were tabulated in Table II which om 

shows that the values of z increased with wave condi-om 

tions and temperature difference . The properties of z om 

were similar to Rgn modified roughness coefficient. So 

the relationship of z and Rgn is shown in Figure 37 . om 

The straight line was found in Figure 37 to correlate 

and Rgn . Thus, the values of z are an i mportant om 

z om 

characteristic length , which accounted for the effect of 

temperature difference and of wave condition as Rgn did . 

For a given velocity profile and surface geometry of water 

surface, the value s of z c ould be found from Figure 37 
om 

wi thin+ 2 0%. Then t he values of q* c ou ld be evaluated 

from Equation (2-9) and the eva poration rate estimated f rom · 

the profile method as discussed in section 6 . 3 . 2 . 
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6.6 Stepwise Change and Evaporation 

The proble~ of stepwise change in wall vapor conceri­

tration due to the evaporation in the turbulent flow has 

been discussed in Chapter II. Here , the experimental re­

sults of this study are compared with Spalding ' s (1963) 

numerical integration in Figure 38 , and the author's 

theoretic al approach in the next paragraph . For 

+ 4 x < 2 x 10 , the experimental data for both cold- and 

warm-water cases were consistent with Spalding's solution, 

except that the data line of this study was shifted to the 

right. The shi=t of the line was due to (1) the stepwise 

change of wall roughness , caused by the change of the flow 

system over the smooth flat plate (Roughness 1) onto an 

agitated water surface (Roughnes s 2); and (2) a smaller 

Schmidt number (Sc= 0.71 ) used in this experiment, while 

Spalding ' s solution was based on the assumption that Sc= 1. 

For 
+ ~ 4 

x = 2.7 x 10 , the data did not agree with numerical 

results. This simply indicated that Spalding ' s solution, 

which was obtained under the assumption that t he wall was 

smooth and flat, was not valid for this study at the down­

stream position . The breakdown point of this experiment 

was located at x+ > 2.7 x 10 4 , which is identical to the 

5 Re= 7 x 10 of Figure 20 . Further downstream , the evapo-

ration rate was affected both by the wave conditions and 

positive temperature differenc e between air a nd water. 
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The thermal effect on evaporation near the l eading 

edge (or in transitional region) is also included in the 

author's theoretical mode l . On deriving Equation (3- 6), 

all fac tors are considered. Thu s , t he thermal effect 

appeared in the values of B(mass transfer parame t er ) and 

o* (boundary layer t hickness of vapor concentration ). 
e 

The numerical values of evaporation r ates , which were 

c alc ulated directly from Equation (3 -6 ) are deno t ed by E4 

in Tab le III . Logarithmic profiles of velocity and humid­

ity distribution were assumed during the calculating pro­

cess. The values of E4 decreased initially with x and 

increased at t he downstream position , which agreed with 

experimental results . When x was small , the error of E4 

was within+ 10 %, but when x increased , the error of E
4 

was increased to+ 20 %. The err8r of this method is as soci -

ated with uncertainties in the quantities q*, z , z , and om o 

u* , which were determined from the experimental profiles . 
! 

Each of thes e characteristic val~es c a n generate~ 2 - 5 % 

error. Thus , the total error o f 20% is also satisfactory 

f or a check of con s i stency between thi s type of theory and 

t h e experiment in integra l method. 

Equation (3-6) appeared t o be a good approx i mation for 

evaluating t he e vaporation rates during the t ransitional 

process provided log profiles in humidity are observed . 

For t he fully developed turbulent flow , Equation (2-9) , the 

profile me thod wa s the more accurate me thod with less error 

induced by t he experimental results o~ this study . 
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-Tab l e I V. Numeric a l v alu e s o f d ime nsionle ss g roups . 

Run C ½ 
Shx l o·- 3 ( _f) -5 No. 2 Re xl0 Rgn >- /h 

CX) 

34 0.52 8 0.0 3 01 1.73 
37 0.975 0.0370 3.47 
40 1. 23 0.04 42 6.96 
43 2.83 0.0 471 16.1 
46 5.73 0.0 48 9 29.5 

35 0.6 4 8 0.037 0 2.11 
38 1.17 0.0 4 07 4.43 
41 1. 97 0.0 477 8.97 0.7 5 1.13 
44 3.81 0.05 4 21. 5 1.6 6 1. 31 
47 7.14 0.050 2 39.3 4.8 6 1.20 

48 5.68 0.0 5 2 6 26.6 3.61 1.01 
49 7.5 0.0591 29.3 3.5 1. 21 
51 10.2 0.0 58 3 2 .9 3.3 1.17 
52 13.7 0.0653 40.3 0.965 1.11 
53 1 5 .5 0.0 6 77 4 4 .3 1.00 1.19 

57 1.15 0.0 4 0 8 3.99 
59 2.45 0.0 484 7.50 2.3 1.27 
61 5.46 0.0 4 77 18.6 6.25 1.80 
67 10.7 0.0 52 9 25.2 28.9 1.32 

56 1.04 0.0351 3.98 
58 2.56 0.0 45 7 7.53 2.83 1.40 
60 4.91 0.0477 18.6 6.7 1.88 
64 9.20 0.0517 25.2 13.5 1.27 
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Chapter VII 

CONCLUSIONS 

Work toward the goals of this investigation , which 

were stated in ChaJte r I , has l ed to some concluding 

r emarks. On the basis of expe rime ntal results , some 

g eneral and p ractical methods of predicting the evapora­

t i o n rates from wind generated waves are established . 

Some phenomena of transfer mechani sm and temperature effects 

have been observed. Specifically , the results of t h is 

study were : 

(1) For c onditions where turbulent air flows over 

water with small waves , far downstream from any zone o f 

t ransition between flow over a smooth and aerodynamically 

r ough surface , the loc al evaporation rate could be 

d esc ribed satisfactorily by the fol lowing simp l e formula : 

E*I = - 0.3 2p U* q* {6 - 11) 

where U* a nd q* a r e analogous functions o f mean ve l ocity 

a nd humidity profi l es , derived from the "law o f the wa l l. '' 

(2) Fo r a stepwise c hange in vapor concentration at 

a wa ll, a d i rect mass balance method considering the vertical 

v elocity at i nterface and p ossible t hermal effects was 

deriv ed (Equation (3-G )). Compared with experimental 

r esults , Equation (3-6 ) offered a satisfactory r e sult in 

t he zone of a transitional convective boundary layer while 
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the other methods (for example , Equation (2-6 ) (integral 

method ) and (2-9 ) (profile method )) were unsatisfactory . 

The dimensionless correlation shown by the so l id line of 

Figure 34 at the range 5 Re< 7 x 10 was also a good 

approximate method in transitional r e gion . 

(3 ) In contrast to the recent work of Smosky and 

Sergeyev (1962) , the results of t h is study indicate that 

the difference between the wet bulb and the dry bulb 

t emperature in the free gas stream does not i nfluence the 

e vaporation rate . However , the nature of the wavy surface 

has t o be accounted for . A method representing an extension 

o f Levi ch ' s theory appears to offer a satisfactory correla­

t ion with exper imenta l resu l ts , as indicated in Figure 36 . 

(4) The surface waves inf luence the evaporation 

r ates in two ways , first by increasing the apparent surface 

a rea , and second , dynamical l y , by modifying t he air f l ow 

c lose to the water surface in contrast to flow over a smooth 
I 

s urfac e. 

(5 ) The air flow over free water surface generates the 

waves and increases the evaporation rate . I n strong wind, 

where u > 11 m/ sec , t he spray of water fr om a wavy 
~ 

s urfac e increases the evaporation rate rapidly . The 

a mount by which the evaporation is increased has no t been 

e xpressed either analytically or experimentally . 

(6 ) The temperature difference between air and water 

had a large effect on evaporation from a wavy surface . 

From direct meas ureme nts of wave height , or by means of 
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an i ndirect argume nt based on the large i ncrease of 

evaporation rates of the warm-water case (see also Figure 

3 4 ), it was shown that when the temperature of water was 

higher than that of t he air (lapse conditions ), the wave 

height was greater than during i nversion conditions at the 

s ame free stream velocity . 

(7) There was some indication that the t emperature of 

t he water surface also affected the velocity f i eld near 

t he surface . This difference has not been explained 

because Richardson ' s c riterion i ndicates that the effect 

o f s tratification on the velocity field of the air shoul d 

be negligible under the experimental conditions . 

There are two important studies which should be 

d one . One is the thermal effect in lapse conditions on 

wave structure and air stratific ation (or unstable stra ti ­

f ication) . Due to the heating capacity o= CSU ' s wind­

water channel , the lapse c onditions were not t oo well 

c on t rolled throughout t his study . With better t emperature 

c ont rol , t he p roblem o f heat transfer from wind generated 

waves by forced convec tion c an be more effectively studied . 

Secondly , it is necessary that the phenomenon of 

s eparation at the lee side o f wave be further investiga t ed . 

The c oncept of separation has been adopted in many places 

as a basis of physical explanation . Yet , there was no 

d irect measurement to show the existence of separation . 

The separation creates a vortex near the peak and trough , 
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and the vortices build a barrier to vertical transport 

of water vapor . If a humidity probe could be used which 

is mounted on a wave follower that always stays at a 

fixed distance from the water surface then a constant 

value of humidity would indicate the existence of 

separat ion . 
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