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ABSTRACT

WEIGHTED ENSEMBLE: PRACTICAL VARIANCE REDUCTION TECHNIQUES

Computational biology and chemistry is proliferated with important constants that are desirable

for researchers. The mean-first-passage time (MFPT) is one such important quantity of interest

and is pursued in molecular dynamics simulating protein conformational changes, enzyme reac-

tion rates, and more. Often, the simulation of these processes is hindered by such events having

prohibitively small probability of observation.

For these rare-events, direct estimation by Monte Carlo techniques can be burdened by high

variance. We analyzed an importance sampling splitting and killing algorithm called weighted

ensemble to address these drawbacks. We used weighted ensemble in the context of a stochastic

process governed by a Markov chain (Xt)t≥0 with steady state distribution µ to estimate the MFPT.

Weighted ensemble works by partitioning the state space into bins and replicating trajectories in an

advantageous and unbiased manner. By introducing a recycling boundary condition, we improved

the convergence of our problem to steady state and made use of the Hill relation to estimate the

MFPT. This change allows relevant conclusions to be drawn from simulations that are much shorter

in time scale when compared to direct estimation of the MFPT.

After defining the weighted ensemble algorithm, we decomposed the variance of the weighted

ensemble estimator in a way that admits simple optimization problems to be posed. We also de-

fined the relevant coordinate, the flux-discrepancy function, for splitting trajectories in the weighted

ensemble method and its associated variance function. When combined with the variance formu-

las, the flux-discrepancy function was used to guide parameter choices for choosing binning and

replication strategies for the weighted ensemble algorithm.

Finally, we discuss practical implementations of solutions to the aforementioned optimization

problems and demonstrate their effectiveness in the context of a toy problem. We found that the
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techniques we presented offered a significant variance reduction over a naive implementation of

weighted ensemble that is commonly used in practice and direct simulation by naive Monte Carlo.

The optimizations we presented correspond to a reduced computational cost for implementing the

weighted ensemble algorithm. We further found that our results were applicable even in the case

of limited resources which makes their application even more appealing.
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Chapter 1

Introduction

With the surge of computational power, the scale of systems that can be modeled on a computer

is growing significantly. Many of these systems are stochastic processes and are prevalent in study-

ing molecular dynamics. The applications of molecular dynamics are wide-ranging, for instance,

charge hopping can be viewed as a random walk [1,2], protein-association reactions [3] or protein

conformational changes [4–7], and the dissociation rate for protein-ligands [8]. To obtain mean-

ingful results, researchers require accurate simulations of the dynamics that underlie these systems

which can be extremely complex [9,10]. Many of these processes occur in or near steady state due

to the homeostasis of the biological setting that governs them. Though there are many different

quantities of interest in these systems, the mean-first-passage time (MFPT) is one of particular

interest and will be the focus of this thesis.

MFPT calculations are desirable throughout biochemistry. For example, the Michaelis-Menton

equation gives the rate of enzymatic reactions as the inverse MFPT [11] and protein conformational

changes are often cast as MFPT problems [12, 13]. Another common problem is in the context of

charged ions and attempting to compute the transition rate from between potential wells [14, 15].

Generally, the stochastic process in these problems can be framed as a Markov chain (Xt)t≥0

with kernel K and steady state distribution p. The MFPT can be considered as a transition from a

source set A to a target set B. It is necessary to define ρA, the initial distribution in A, as this along

with B will define the MFPT for a choice in dynamics. Let τB denote the first passage time to B

(see Figure 1.1). The MFPT can then be found from

MFPT of X(t) from A to B = ❊[τB |X0 ∼ ρA] := ❊
ρA [τB].

Monte Carlo methods are one way of approaching the problem of estimating the probability of

events. Naive Monte Carlo methods involve independently simulating the dynamics many times
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Figure 1.1: Left: A three well potential. Right: Evolution by Brownian motion of a particle starting at

x = A. The first passage time τB denotes the first time t > 0 where x ≥ B. Red lines indicate the the

maxima of V (x).

and taking an average of the results. For example, in estimating the MFPT for a charged ion to

escape a potential well, a naive Monte Carlo simulation would initialize a particle with respect to

ρA and count the the time it takes the particle to escape. The estimation would be obtained by

averaging the results of these simulations across the number of trials.

More precisely, for a state space Ω, a random variable X with probability distribution p(X),

and a bounded real valued function f , N samples {X1, X2, . . . , XN} are drawn according to p. An

estimator of ❊[f(X)] can be obtained by:

❊[f(X)] =

∫

Ω

f(x)p(x)dx ≈ 1

N

N
∑

i=1

f(Xi) = θMC . (1.1)

From the law of large numbers, as N → ∞ the estimator θMC
a.s.−−→ ❊[f(X)]. Naive Monte Carlo

remains useful today though implicit in its construction is the assumption that p may be efficiently

sampled.

This assumption is not valid in many of the practices outlined earlier. Indeed, many significant

events occur with such small probabilities that direct observation by brute-force is not feasible.

Such "rare events" are still important in understanding biochemical problems such as protein fold-

ing [16] or ion transfers with a high activation barrier [17]. Importance sampling can be used
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to generate samples of the target distribution p more effectively, through the proposal of a new

distribution q. This introduces a new random variable f(X)p(X)/q(X) in the following way

❊
p[f(X)] =

∫

Ω

f(x)p(x)dx =

∫

Ω

f(x)
p(x)

q(x)
q(x)dx = ❊q

[

f(X)
p(X)

q(X)

]

, (1.2)

where the superscript denotes the probability distribution of X . A new estimator can then be

defined as

❊
q

[

f(X)
p(X)

q(X)

]

≈ 1

N

N
∑

i=1

f(Xi)
p(Xi)

q(Xi)
= θIS, (1.3)

and naive Monte Carlo techniques can be used with q as the new distribution.

Choosing q requires some care; for instance, q(X) ̸= 0 when p(X) ̸= 0. The variance of θIS is

Varq
[

f(X)
p(X)

q(X)

]

=

∫

Ω

(

f(x)
p(x)

q(x)

)2

q(x)dx−❊p[f(X)]. (1.4)

Changing the distribution (and random variable) results in a new variance with the difference in

variance given by

Varp[f(X)]− Varq
[

f(X)
p(X)

q(X)

]

=

∫

Ω

f 2(x)q(x)

(

1− p(x)

q(x)

)

dx. (1.5)

Intuitively, q should be chosen such that the likelihood ratio p/q is greater than small where

|f(X)|p(X) is large and large when |f(X)|p(X) is small. Such a choice of q will result in

more samples being drawn from important points in the state space. More significantly, this

also results in a variance reduction compared to naive Monte Carlo. Importantly, with q(X) =

f(X)p(X)/❊p[f(X)], by (1.4) it can be seen that θIS is a zero variance estimator.

For a Markov chain (Xt)t≥0 with stationary distribution µ, estimates of µ(f) =
∫

Ω
f(x)µ(x) dx

can be obtained by the trajectory average

µ(f) ≈ 1

T

T−1
∑

t=0

f(Xt).
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Such an estimate can be obtained through a variety of Markov Chain Monte Carlo (MCMC) algo-

rithms such as Metropolis-Hastings [18, 19] or Gibbs Sampling [20]. However, MCMC still does

not perform well when estimating the probability of rare sets as estimating the MFPT requires

prohibitively long simulation times.

Weighted ensemble is an importance sampling method that works by simulating and splitting

trajectories. It is useful in estimating the average of some observable with respect to the steady

state distribution of a Markov chain. Weighted ensemble works by employing weighted particles

that evolve via the underlying Markov kernel. Periodically, the particles are divided into bins and

resampled relative to their weights. Following the motivations of importance sampling, the choice

of bins and resampling should encourage more particles in important regions of the state space.

Weighted ensemble can exhibit a dramatic reduction in variance when compared to naive or direct

Monte Carlo.

Weighted ensemble is one of numerous path sampling approaches that have grown in popularity

due to their efficiency in simulating rare events. One of the most important uses of weighted

ensemble is to estimate the MFPT for a random process to transition between two states A and B.

Other approaches such as Adaptive Multi-level Splitting [21–23], Sequential Monte Carlo [24,25],

and Markov State Modeling [26–28] are also used in estimating the MFPT. However, weighted

ensemble has some key features that make it an attractive choice. Weighted ensemble can be used

to define an asymptotically unbiased estimator of the MFTP whose variance does not explode over

long time estimates. Weighted ensemble is also highly parallelizable and easily implemented due

to the WESTPA package [29–31] that is available.

In the context of rare events, transitions between A and B are also rare and direct simulation is

not tractable. Using weighted ensemble and imposing recycling boundary conditions, the MFPT

can be expressed in terms of the inverse of the steady state flux into B by the Hill relation [32,33].

The Hill relation will allow accurate estimates of the MFPT using paths that are significantly

shorter than the true MFPT.
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The rest of the thesis is ordered as follows. In Chapter 2, we first give an overview of weighted

ensemble in the context of computing the MFPT. In Chapter 3, we then give a detailed mathemat-

ical description of the weighted ensemble algorithm and derive some key properties. Chapter 4

finds formulas for the variance and discusses minimization strategies. Finally, Chapter 5 discusses

optimization techniques and Chapter 6 demonstrates the effectiveness of these strategies when

compared to direct Monte Carlo and traditionally implemented weighted ensemble in the context

of a 2D toy problem.
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Chapter 2

Weighted Ensemble Introduction

2.1 Weighted Ensemble Framework

Weighted Ensemble is a rare-event sampling method based on the splitting and merging of in-

dependently evolving particles. We assign each particle a positive weight such that the total weight

is 1. During the splitting and merging process, new weights are chosen so that the total weight

remains constant in time. Herein, we assume the Markov kernel K is uniformly geometrically

ergodic with respect to its stationary distribution µ. Weighted ensemble will be used to estimate

the steady-state average of a bounded real-valued function or observable f .

We will estimate
∫

f dµ by computing the weighted sum of f on the ensemble of particles at

each time point t ≥ 0. This estimation relies only on information that is available at time t. This

means that weighted ensemble does not need to store the entire trajectory of a particle, just its

current position and weight.

During the evolution or mutation step, we allow particles to independently evolve via the un-

derlying Markov kernel K. In practice, as another measure to minimize the variance, the mutation

step evolves the particles from time t to time t+∆t. This makes K a ∆t-skeleton of the underlying

diffusion process. Only the positions of the particles are updated in this step, the weights remain

fixed. The integrator time-step will only advance during the mutation step.

In the resampling process or selection step, we select particles to copy for the next evolution

step. We will refer to the particles before selection as parents and those after selection as children.

Each parent may have zero or many children but each child will only have one parent. The chil-

dren’s weight and position will depend on its parent. However, the weights are chosen to conserve

the total weight and the evolution of the children will still be independent.

We further require a set of bins B that define a partition of the state space. These bins may be

defined in an initialization step or at a particular time t. As B is a partition, each particle necessarily
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Figure 2.1: For the potential in Figure 1.1, the particles are represented by the black dots with size propor-

tional to their weight. Here, the red lines also denote the division between bins. Left: Before selection, the

ensemble of parents. Right: After selection with the same number of children in each bin. The new weights

of the children are represented by the size of the dots. See Chapter 3 for a more detailed description.

belongs to some bin u ∈ B. For each bin, let Nt(u) denote the number of children in bin u at time

t. This allocation of particles may be chosen independently of the number of parents in bin u with

the following provisions:

1. Unoccupied bins have zero children.

2. Occupied bins have at least one child.

3. The number of children in each bin is chosen such that the total number of particles remains

constant in time.

Children are selected from the parents in bin u proportional to the weights of the parents. This

selection can performed by a number of different processes. For instance, in Chapter 6, copies

are chosen via residual sampling. As any occupied bin u prior to selection will remain occupied

following selection, the process of resampling may also be thought of as splitting or merging the

trajectories in u.

7



2.2 Mean First Passage Time

Recall, we are interested in computing the mean first passage time (MFPT) between a metastable

source, A, and a sink, B, for a Markov process X(t) with steady state distribution µ. The relevant

function in computing the mean first passage time from A to B is the indicator function of the

target set:

✶B(X(t)) =















1 X(t) ∈ B

0 X(t) /∈ B

. (2.1)

The MFPT is affected only by the sets A and B, the distribution of particles ρA, and how the

particles evolve in time. Particles that reach B are held there until the end of the mutation step and

are recycled according to ρA at the end of the resampling time ∆t. Recycling in this way ensures

all flux into B is counted though it does introduce a negligible bias to the Hill relation. This bias

can be avoided in practice if the flux is counted at the end of each integrator step and recycling is

done immediately as a particle enters B.

The addition of a recycling boundary condition changes X(t) into an irreversible process. The

motivation for recycling is two-fold, first it allows the MFPT to be calculated by the Hill relation

and it causes the system to converge to steady state more quickly. For the latter, consider a simple

3-state system with a transition matrix K given by

K =













.999 .001 0

.999 0 .001

0 .001 .999













. (2.2)

Let A be the first state and B the third state. The MFPT from A to B is then approximately 106

as two successive transitions of probability 10−3 are required. However, the convergence of the

system to steady-state will be extremely slow using this kernel. To illustrate this, we consider

the eigenvalues of K. K is a transition matrix so 1 is an eigenvalue; let λ2 = |.999| denote the

eigenvalue of K with the second largest magnitude. For an initial distribution of particles υ ∈ ❘3

8



and t > 0, convergence to the equilibrium distribution follows

υKt ≈ µ+ λt
2vυ = µ+ .999tvυ. (2.3)

From (2.3), it is clear that convergence will be slow.

Recycling modifies (2.2) in the following way

K̃ =













.999 .001 0

.999 0 .001

1 0 0













. (2.4)

The eigenvalue of K̃ with the second largest magnitude is now λ̃2 = |−.001|. For t > 0, conver-

gence to the steady state distribution now follows

υKt ≈ µ+ λt
2vυ = µ+ (−.001)tvυ,

which will be much faster than (2.3). This example is a single illustration of a simple problem but

the principle that recycling improves convergence time holds true in general [34–38].

With these recycling boundary conditions, the Hill relation gives an expression for the MFPT

in terms of the inverse of the steady-state flux into B. Recall τB denotes the first passage time to

B and let Nt denote the number of arrivals in B by time t. The Hill relation then gives:

❊ [τB|X(0) ∼ ρA] =

(

❊[Nt|X(0) ∼ µ]

t

)−1

(2.5)

The estimate from (2.5) is useful in reducing the overall simulation time. The intuition for

this reduction in computational time is due to shifting the observable from directly computing the

MFPT to instead computing the flux into B. The former requires simulations at least as long as the

MFPT on average which are quite long due to the low probability of transitioning from A to B.
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In the latter case, provided we are in steady state, the simulation time will be significantly

shorter to achieve the same result. Furthermore, as discussed above, the time to approach steady

state can be much smaller than the MFPT. To see this, note that (2.5) implies that the probability of

a transition occurring in a finite time interval ∆t is simply ∆t/E
ρA [τB]. The significance of (2.5)

is that ∆t may be significantly smaller than the MFPT as the expression is true for any t > 0. For

systems with a long MFPT, (EρA [τB])
−1

is extremely small which necessitates weighted ensemble

(or another importance sampling technique) to accurately estimate. One immediate concern is

whether the computation time to converge to steady-state negates the gain of using the Hill relation.

Fortunately, convergence to steady state can be relatively fast with recycling boundary conditions.
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Chapter 3

Mathematical Description of Weighted Ensemble

3.1 Precise Description of Weighted Ensemble

We denote the parents at time t by ξ1t , . . . , ξ
N
t and their associated weights by ω1

t , . . . , ω
N
t

where N denotes the population of the ensemble. Similarly, we let ξ̂1t , . . . , ξ̂
N
t be the children

with associated weights ω̂1
t , . . . , ω̂

N
t . The individual steps of weighted ensemble then update the

position-weight tuples as follows:

{ξt, ωt}Ni=1
Selection−−−−−→ {ξ̂t, ω̂t}Ni=1,

{ξ̂t, ω̂t}Ni=1
Mutation−−−−−→ {ξt+1, ωt+1}Ni=1.

The particles belong to a common state space E which is partitioned into a finite set of m bins

B. The set of bins may be defined in an initialization step or during the selection step. At times, it

is easier to think of the bins as a partition on the particles rather than explicitly of E. One such case

is when using K-means clustering to assign the particles to bins. The result of K-means clustering

is a label for each particle rather than a division of the underlying space E.

B will always be defined such that every particle belongs to one bin u ∈ B. We can define the

weight of a bin at time t as

ωt(u) =
∑

i:ξit∈u

ωi
t, (3.1)

where any empty bin u is assigned a weight of zero.

In the mutation step, only the positions of the particles are updated by the chosen dynamics of

the system. One such choice (as in Chapter 6) is overdamped Langevin Dynamics

dXt = −∇V (Xt)dt+
√

2β−1dWt, (3.2)
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where Wt is standard Brownian motion and β, dt, and V (x) are user-chosen parameters. Between

selection steps, the integrator runs for time ∆t. As discussed in Chapter 2, the underlying kernel

of the simulation K∆t is a ∆t-skeleton of the true Markov kernel K.

In the selection step, for a population of N particles and a set of m bins B, each bin requires

an allocation giving the number of children to copy in that bin. We will denote the allocation for

bin u at time t by Nt(u). Recall that this allocation must satisfy that no empty bins are assigned

children, any occupied bins have at least one child, and that the total population remains fixed.

Thus, Nt(u) satisfies the following definition.

Definition 3.1.1. {Nt(u)}u∈B is a valid allocation if for Nt(u) ∈ {0} ∪◆, the following hold.

1. If ωt(u) = 0 then Nt(u) = 0.

2. If ωt(u) > 0 then Nt(u) ≥ 1.

3.
∑

u∈B Nt(u) = N .

Nt(u) can equivalently be understood as the number of copies of the parents or the number of

children in bin u at time t. For a specific parent ξit , we denote the number of children of ξit by C i
t .

The weights of the parents define an intra-bin distribution that is used during sampling. The

probability of copying a parent ξit ∈ u is then

P(copy ξit) =
ωi
t

ωt(u)
. (3.3)

This definition means that a parent may have multiple children but a child will have a unique

parent. We will denote the parent of a child by: par(ξ̂jt ) = ξit . Note, that it is not necessary that

j = i.

Only the parent’s position is copied. To maintain the total weight, the weight of the children in

bin u at time t are given weights

ω̂j
t =

ωt(u)

Nt(u)
. (3.4)

12



With this definition, the total weight is then conserved as for any t ≥ 0

N
∑

i=1

ω̂i
t =

∑

u∈B

ωt(u)

Nt(u)
Nt(u) =

∑

u∈B

ωt(u) = 1 (3.5)

The children in bin u then are defined by the tuple {ξ̂jt , ω̂j
t} where

ξ̂jt = ξit if par(ξ̂jt ) = ξit,

ω̂i
t =

ωt(u)

Nt(u)
,

for all parents ξit ∈ u.

Finally, it is convenient to define Fk, the σ-algebra generated by weighted ensemble until

the kth selection step and F̂k, the σ-algebra generated by weighted ensemble following the kth

selection step. Recall, ∆t is a fixed interval between selection steps. Therefore, the kth selection

step will occur when t = k∆t. Thus, we can write

Fk = σ
(

{ξis, ωi
t}i=1,2,...,N

0≤s≤t , {Nℓ(u)}u∈B0≤ℓ≤k, {Bℓ}0≤ℓ≤k, {ξ̂iℓ, ω̂i
ℓ}i=1,2,...,N

0≤ℓ≤k−1 , {C i
ℓ}i=1,2,...,N

0≤ℓ≤k−1

)

F̂k = σ
(

{ξis, ωi
x}i=1,2,...,N

0≤s≤t , {Nℓ(u)}u∈B0≤ℓ≤k, {Bℓ}0≤ℓ≤k, {ξ̂is, ω̂i
x}i=1,2,...,N

0≤s≤t , {C i
ℓ}i=1,2,...,N

0≤ℓ≤k

)

.

We summarize weighted ensemble by the following algorithm.

Algorithm 1. Weighted Ensemble

Initialization

1. Choose initial particles and positive weights {ξi0, ωi
0}Ni=1 such that

∑N

i=1 ω
i
0 = 1. Choose a

collection of bins or binning strategy B, an allocation strategy, a resampling interval ∆t, and

number of selection steps T . Set the weight of the flux J = 0.

For 0 ≤ t ≤ T , iterate the following:

Selection step
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1. Partition the parents. {ξit}Ni=1 according to B

2. For each bin u ∈ B perform the following:

i. Define Nt(u) for each bin u ∈ B according to the allocation strategy.

ii. Sample Nt(u) children from the parents in bin u according to (3.3)

P(copy ξit) =
wi

t

wt(u)
.

iii. Set the weights of the children, ξ̂jt ∈ u, according to (3.4)

ω̂j
t =

ωt(u)

Nt(u)
.

Mutation Step

1. Evolve the children {ξit, ωi
t}Ni=1 conditionally independently by K∆t to obtain the parents at

time t+ 1, {ξit+1}Ni=1.

2. Keep the weights fixed until the next selection step, {ω̂j
t}Nj=1 = {ωj

t+1}Nj=1.

3. After evolving,

i. J ← J +Wt where Wt is the weight of all particles that crossed into B.

ii. Recycle all particles that crossed into B according to ρA.

Remark 3.1. In steady state and with sufficient particles and bins, the weights (ωi
t) of the particles

(ξit) approximate the steady state distribution associated with the particles’ positions (µ(ξit)).

Remark 3.2. In algorithm 1, selection steps are performed conditionally on Ft and mutation steps

are performed conditionally on F̂t. Additionally,
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1. The allocation strategy in practice is typically taken as a uniform allocation where each

occupied bin is assigned the same number of children.

2. In practice, bins are usually based on the Root-Mean-Squared Distance from the sink.

3. We discuss other allocation and binning strategies in Chapter 4 and particular implementa-

tions in Chapter 5.

4. Weighted ensemble will converge for any valid choice of allocation strategy (satisfying def-

inition 3.1.1) so long as the resampling method is unbiased.

Remark 3.3. Direct Monte Carlo, i.e. independent particles, is a special case of algorithm 1 where

we enforce ❊[C i
t |Ft] = 1 for all parents {ξit}Ni=1. Equivalently, direct Monte Carlo is weighted

ensemble without a selection step.

3.2 Properties of Weighted Ensemble

Recall, we have assumed the Markov kernel K has stationary distribution µ. For a bounded

observable f , we compute the weighted sum of f on the ensemble of parents

N
∑

i=1

ωi
tf(ξ

i
t). (3.6)

From (3.6), we obtain an estimate

θT ≈
∫

f dµ,

where

θT =
1

T

T−1
∑

t=0

N
∑

i=1

ωi
tf(ξ

i
t). (3.7)

Specifically for computing the MFPT, we choose f as in (2.1). In Algorithm 1, when the

underlying dynamics enter the target set, they are held there until the end of the resampling interval.

As mentioned before, this introduces a small bias but admits nice variance formulas and ensures
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all flux into B is counted. The discretization of the underlying continuous process also introduces

a bias, though this and the bias from recycling are negligible. θT is then the average weight of the

particles that have been recycled by time T −1. This distinction clarifies that we only need the flux

into B with no knowledge of the full trajectory of the particles that cross into B. The estimations

obtained from algorithm 1 have two important properties.

Theorem 3.2.1. (Unbiased Property). In algorithm 1, let g be any bounded measurable function on

the state space and X(t) be a Markov chain with kernel K. Assume Xt has an initial distribution

ν where
∫

g dν = ❊

[

N
∑

i=1

ωi
0g(ξ

i
0)

]

.

Then for any t ≥ 0

❊

[

N
∑

i=1

ωi
tg(ξ

i
t)

]

= ❊ [g(X(t))] =

∫

Ktg dν.

Theorem 3.2.1 is a direct result of the one-step means, which will be introduced in the following

section, and the tower property of conditional expectation.

Theorem 3.2.2. (Ergodic Theorem). Let g be any bounded measurable function on the state space

and X(t) be a geometrically ergodic Markov chain with steady state distribution µ and kernel K.

The estimator of weighted ensemble is ergodic in the sense that almost surely

lim
T→∞

θT =

∫

g dµ.

Theorem 3.2.2 follows from Theorem 3.2.1 and our assumption that K is geometrically er-

godic. The proof of the ergodic theorem is beyond the scope of this thesis but can be found in [39].

Recall Remark 3.3, that if no selection steps are performed in algorithm 1, we recover direct

Monte Carlo sampling. Thus, for weighted ensemble to be a prudent choice, parameters (such as

binning and allocation methods) should be chosen to provide a variance reduction compared to the

Monte Carlo estimator. To inform these choices, we will derive variance formulas that show that
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the variance can be decomposed into a contribution from each of the three steps of algorithm 1.

Briefly, for weighted ensemble to beat direct Monte Carlo, the goal will be to leverage the selection

step to sufficiently reduce the variance of the mutation step.

3.3 Weighted Ensemble One Step Means

To begin, explicitly define the one-step mean for a particle in the following way. As a standing

assumption, g is a bounded measurable function on the state space.

Lemma 3.3.1. For each 1 ≤ i ≤ N and t ≥ 0,

❊

[

ωi
t+1g(ξ

i
t+1)

∣

∣

∣ F̂t

]

= ω̂i
tKg(ξ̂it). (3.8)

And, for each bin u ∈ B,

❊





∑

i:ξ̂it∈u

ω̂i
tg(ξ̂

i
t)

∣

∣

∣

∣

∣

∣

Ft



 =
∑

i:ξit∈u

ωi
tg(ξ

i
t). (3.9)

Proof. First, for (3.8), recall particles evolve via K by ξit+1 = K(ξ̂it, ·) and g(ξ̂it) is F̂t measurable.

Then ❊
[

g(ξit+1)
∣

∣

∣
F̂t

]

= Kg(ξ̂it). As the weight of a particle is constant in the evolution step, we

obtain:

❊

[

ωi
t+1g(ξ

i
t+1)

∣

∣

∣
F̂t

]

= ❊
[

ω̂i
tg(ξ

i
t+1)

∣

∣

∣ F̂t

]

= ω̂i
t ❊

[

g(ξit+1)
∣

∣

∣
F̂t

]

= ω̂i
tKg(ξ̂it).

Next, to prove (3.9), define the expected number of children for a parent ξit in bin u:

❊
[

C i
t

∣

∣ Ft

]

= Nt(u)
wi

t

wt(u)
, (3.10)

where wt(u) is the total weight in bin u at time t. By the weight update formula (3.4), the weight

of the children in bin u at time t is given by: ω̂j
t =

wt(u)
Nt(u)

.
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By summing over the parents in bin u at time t, we find:

❊





∑

i:ξ̂it∈u

ω̂i
tg(ξ̂

i
t)

∣

∣

∣

∣

∣

∣

Ft



 =
∑

i:ξit∈u

❊





∑

j:par(ξ̂jt )=ξit

ω̂j
t g(ξ̂

j
t )

∣

∣

∣

∣

∣

∣

Ft





=
∑

i:ξit∈u

❊
[

C i
t

∣

∣ Ft

]wt(u)

Nt(u)
g(ξit)

=
∑

i:ξit∈u

Nt(u)
wi

t

wt(u)

wt(u)

Nt(u)
g(ξit)

=
∑

i:ξit∈u

ωi
tg(ξ

i
t).

We can define the one-step means for the ensemble by summing (3.8) over all particles and

(3.9) all bins at time t.

Corollary 3.3.2. (Ensemble one-step means)

❊

[

N
∑

i=1

ωi
t+1g(ξ

i
t+1)

∣

∣

∣

∣

∣

F̂t

]

=
N
∑

i=1

ω̂i
tKg(ξ̂it). (3.11)

❊

[

N
∑

i=1

ω̂i
tg(ξ̂

i
t)

∣

∣

∣

∣

∣

Ft

]

=
N
∑

i=1

ωi
tg(ξ

i
t). (3.12)

The first consequence we will prove with Corollary 3.3.2 is the unbiased property of Theorem

3.2.1. Recall, we wish to show that for a Markov chain X(t) with kernel K and any t ≥ 0

❊

[

N
∑

i=1

ωi
tg(ξ

i
t)

]

= ❊ [g(X(t))] =

∫

Ktg dν,

given that

❊

[

N
∑

i=1

ωi
0g(ξ

i
0)

]

=

∫

g dν.
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Proof. It suffices to show that for any time t ≥ 0

❊

[

N
∑

i=1

ωi
tg(ξ

i
t)

∣

∣

∣

∣

∣

F0

]

=
N
∑

i=1

ωi
0K

tg(ξi0), (3.13)

as

❊

[

N
∑

i=1

ωi
0K

tg(ξi0)

]

=

∫

Ktg dν. (3.14)

As Ft and F̂t are filtrations, by the tower property and Corollary 3.3.2,

❊

[

N
∑

i=1

ωi
t+1g(ξ

i
t+1)

∣

∣

∣

∣

∣

Ft

]

= ❊

[

❊

[

N
∑

i=1

ωi
t+1g(ξ

i
t+1)

∣

∣

∣

∣

∣

F̂t

] ∣

∣

∣

∣

∣

Ft

]

= ❊

[

N
∑

i=1

ω̂i
tKg(ξ̂it)

∣

∣

∣

∣

∣

Ft

]

=
N
∑

i=1

ωi
tKg(ξit).

Repeating this process yields (3.13).

3.4 Weighted Ensemble Variance

We assume the population N is finite and find exact formulas for the variance of weighted

ensemble. To accomplish this, some precise definitions are required. For time t ≥ 0 and a bin u,

define the intra-bin distributions based on parents weights

ηut =
∑

i:ξit∈u

ωi
t

ωt(u)
δξit ,

where δξit is the Dirac delta distribution centered at ξit . We also introduce

ht,T =
T−t−1
∑

s=0

Ksf. (3.15)
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We let

ν(g) =

∫

g dν, Varνg = ν
(

g2
)

− (ν(g))2 ,

for a probability distribution ν and bounded measurable function g.

From Corollary 3.3.2, we can define the Doob martingales

Dt = ❊

[

T−1
∑

s=0

N
∑

i=1

ωi
sf(ξ

i
s)

∣

∣

∣

∣

∣

Ft

]

D̂t = ❊

[

T−1
∑

s=0

N
∑

i=1

ωi
sf(ξ

i
s)

∣

∣

∣

∣

∣

F̂t

]

.

These definitions facilitate decomposing the variance into separate variances for the initial condi-

tion, selection steps, and mutation steps. This decomposition will lead to nice formulas for each

variance term which, in turn, inspire optimizations in the choice of the binning and allocation

strategies of algorithm 1.

To begin, we decompose each term in the Doob martingales in the following manner.

Proposition 3.4.1. For 0 ≤ t ≤ T − 1,

Dt =
t
∑

s=0

N
∑

i=1

ωi
sf(ξ

i
s) +

N
∑

i=1

ωi
tKht+1,T (ξ

i
t) (3.16)

D̂t =
t
∑

s=0

N
∑

i=1

ωi
sf(ξ

i
s) +

N
∑

i=1

ω̂i
tKht+1,T (ξ̂

i
t) (3.17)

Proof. For (3.16), given Ft, we can split the expectation on information contained in the σ-algebra

until time t and information unavailable at time t. We obtain

Dt = ❊

[

T−1
∑

s=0

N
∑

i=1

ωi
xf(ξ

i
s)

∣

∣

∣

∣

∣

Ft

]

=
t
∑

s=0

N
∑

i=1

ωi
sf(ξ

i
s) +❊

[

T−1
∑

s=t+1

N
∑

i=1

ωi
sf(ξ

i
s)

∣

∣

∣

∣

∣

Ft

]

. (3.18)
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The expectation in the right-hand side of (3.18) can be expressed as

T−1
∑

s=t+1

❊

[

N
∑

i=1

ωi
sf(ξ

i
s)

∣

∣

∣

∣

∣

Ft

]

. (3.19)

Similar to the proof of Theorem 3.2.1, from Corollary 3.3.2 and the tower property, (3.19) can be

written as

T−1
∑

s=t+1

❊

[

N
∑

i=1

ωi
sf(ξ

i
s)

∣

∣

∣

∣

∣

Ft

]

=
T−1
∑

s=t+1

Ks

N
∑

i=1

ωi
tf(ξ

i
t) =

N
∑

i=1

ωi
t

T−1
∑

s=t+1

Ksf(ξit). (3.20)

Therefore, from (3.15)

Dt =
t
∑

s=0

N
∑

i=1

ωi
sf(ξ

i
s) +

N
∑

i=1

ωi
tKht+1,T (ξ

i
t).

The proof of (3.17) is similar.

We can now define the variance of θT by decomposing the Doob martingales. Notice that

θT =
1

T

T−1
∑

t=0

N
∑

i=1

ωi
tf(ξ

i
t) =

1

T
DT−1.

Theorem 3.4.2. (Variance Decomposition) For each T > 0,

Var(θT ) =

1

T 2
Var(D0) (3.21)

+
1

T 2

T−2
∑

t=0

❊

[

(D̂t −Dt)
2
∣

∣

∣
Ft

]

(3.22)

+
1

T 2

T−2
∑

t=0

❊

[

(Dt+1 − D̂t)
2
∣

∣

∣
F̂t

]

, (3.23)

where (3.21) is the variance due to the initial condition, (3.22) is the variance due to the selection

steps, and (3.23) is the variance due to the mutation steps.
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Proof. To compute the variance, notice that DT−1 may be written as

DT−1 = DT−1 − D̂T−2 + D̂T−2 −DT−2 +DT−2 − · · ·+D1 − D̂0 + D̂0 −D0 +D0

= (DT−1 − D̂T−2) + (D̂T−2 −DT−2) + (DT−2 − · · ·+ (D1 − D̂0) + (D̂0 −D0) +D0

In the multinomial expansion of D2
T−1, the martingale differences are uncorrelated and are Ft or

F̂t measurable for 0 ≤ t ≤ T − 2. Therefore

❊
[

D2
T−1

]

= D2
0 +

T−2
∑

t=0

❊

[

(D̂t −Dt)
2
∣

∣

∣
Ft

]

+
T−2
∑

t=0

❊

[

(Dt+1 − D̂t)
2
∣

∣

∣
F̂t

]

. (3.24)

Finally, we can write

Var(θT ) =
1

T 2

(

❊
[

D2
T−1

]

−❊[DT−1]
2
)

. (3.25)

Note that ❊[DT−1] = ❊[D0] from the martingale property. From (3.24), (3.25) can expressed

as

Var(θT ) =
1

T 2
❊
[

(DT−1 −❊[D0])
2
]

=
1

T 2
(D2

0 −❊[D0]
2)

+
1

T 2

T−2
∑

t=0

❊

[

(D̂t −Dt)
2
∣

∣

∣ Ft

]

+
1

T 2

T−2
∑

t=0

❊

[

(Dt+1 − D̂t)
2
∣

∣

∣
F̂t

]

to complete the proof.
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Chapter 4

Variance Minimization

Theorem 3.4.2 gives a clear expression of the variance of weighted ensemble in terms of the

constituent steps of algorithm 1. To make use of these formulas, we rewrite the expressions in

terms of ht,T . This choice will prove critical as we will show in this section that ht,T defines one of

the key coordinates for controlling the variance. From [39], we can write general expressions for

the selection and mutation variance as in Theorem 4.0.1.

Theorem 4.0.1. The selection variance at time t can be written

❊

[

(

D̂t −Dt

)2
∣

∣

∣

∣

Ft

]

= ❊

[

Var

(

N
∑

i=1

ω̂i
tKht+1,T (ξ̂

i
t)

) ∣

∣

∣

∣

∣

Ft

]

. (4.1)

Further, the mutation variance at time t can be written

❊

[

(

Dt+1 − D̂t

)2
∣

∣

∣

∣

F̂t

]

=
N
∑

i=1

(

ω̂i
t

)2
VarK

(

ht+1,T (ξ̂
i
t)
)

. (4.2)

Remark 4.1. There are many suitable choices for the sampling method. This choice will affect

the exact form of (4.1) as it will dictate how children are selected. However, the mutation variance

will remain as (4.2) regardless of the sampling method.

Notice that for 0 ≤ t ≤ T − 2 and for each bin u ∈ B, (4.2) depends on the distribution of

the children in u. The number of children in bin u will depend explicitly on the allocation Nt(u).

It therefore makes sense to define the mutation variance conditionally on Ft. From the expected

number of children given in (3.10), (4.2) can be expressed as

❊

[

(

Dt+1 − D̂t

)2
∣

∣

∣

∣

Ft

]

= ❊





∑

u∈B

ωt(u)

Nt(u)

∑

i:ξit∈u

ωi
tVarK(ht+1,T

(

ξit)
)

∣

∣

∣

∣

∣

∣

Ft



. (4.3)
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To minimize the variance of weighted ensemble as presented in algorithm 1, we seek strategies

that minimize equations (4.1) and (4.3). Intuitively, (4.1) is controlled by the variance in how

the children will evolve. This means that only trajectories which are in similar in their expected

behavior, that is ht+1,T (ξ
i
t) ≈ ht+1,T (ξ

j
t ), should be merged in this step. Only trajectories in

the same bin can be merged, thus we use binning to control the variance in the selection step.

Minimizing the variance of the mutation step is achieved by carefully choosing the allocation

Nt(u). Broadly, bins that have a high weighted variance in expected evolution should have more

particles allocated to that bin.

4.1 Coordinates for Variance Reduction

To minimize the variance in using weighted ensemble, we focus on the choice of binning and

allocation strategies. In addition to the initial distribution of particles, these are the only weighted

ensemble parameters. The motivation of this choice is that these two strategies determine where

and how many children are created which directly impacts the variance. Recalling Remark 3.3,

weighted ensemble can achieve a lower mutation variance by incurring a cost in the selection step.

The primary goal of choosing binning and allocation strategies is to over-sample regions in the

state space that which contribute volatility to the flux. A secondary objective will be to minimize

the cost incurred in the selection step by identifying particles that are in some way similar and

grouping them into bins.

To quantify different regions of state space as similar in terms of estimating the MFPT, we

define the flux discrepancy function. The discrepancy function is a mapping of the state space

E → ❘ and measures the difference in flux from starting at a point x in the state space compared

to the steady-state distribution, µ. Let NT denote the number of crossings into B in the time

interval [0, T ]). We then define the discrepancy function as

h(x) = lim
T→∞

(❊[Nt | x0 ∼ x]−❊[Nt | x0 ∼ µ]) . (4.4)
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Two points in state space will be considered similar under the discrepancy function if h evaluated

at each point is similar. During the resampling step, merging particles at these two points would

result in minimal information loss. h then describes particles that make similar contributions to the

flux and makes it an ideal coordinate for managing merging.

As we have discretized our problem, we are considering a Markov chain that evolves according

to the kernel K∆t where ∆t is the resampling time. More generally weighted ensemble computes

the average value of some observable f in practice. Therefore, (4.4) may more appropriately be

described by

h∆t(x) = lim
T→∞

(

❊

[

T
∑

k=0

f(X(k∆t))

∣

∣

∣

∣

∣

X0 ∼ x

]

−❊
[

T
∑

k=0

f(X(k∆t))

∣

∣

∣

∣

∣

X0 ∼ µ

])

. (4.5)

In the limit as ∆t→ 0 and f as the indicator function of the set B, through rescaling by ∆t it can

be shown that

h(x) = lim
∆t→0

∆t · h∆t(x).

Here, the requirement that recycling only occurs at the end of the resampling time, ∆t, is important.

This counts all flux into B in (4.5) before the particles are recycled according to ρA.

As we are interested in long time averages, in the limit that ∆t → 0, h can be interpreted as

limT→∞ ht,T . This allows the simplifications

lim
T→∞

Varηht+1,T = Varηh

lim
T→∞

VarηKht+1,T = VarηKh.

These formulas give simpler formulas for the selection variance (4.1)

❊

[

(

D̂t −Dt

)2
∣

∣

∣

∣

Ft

]

= ❊

[

Var

(

N
∑

i=1

ω̂i
tKh(ξ̂it)

) ∣

∣

∣

∣

∣

Ft

]

. (4.6)
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and the mutation variance (4.3)

❊

[

(

Dt+1 − D̂t

)2
∣

∣

∣

∣

Ft

]

= ❊





∑

u∈B

ωt(u)

Nt(u)

∑

i:ξit∈u

ωi
tVarK(h

(

ξit)
)

∣

∣

∣

∣

∣

∣

Ft



. (4.7)

The beauty in the discrepancy function is that it is able to address both our goals. Particles

are similar if the value of h is approximately the same at each region in the state space. h allows

a tangible means of creating bins that collect similarly behaving particles in the long-time limit.

This will minimize the variance term in (4.6) and mitigate the cost of merging trajectories.

The discrepancy function also addresses the goal of identifying regions of volatility. Regions

of state space where h has a high variance would indicate areas that have drastically variable

contributions to the flux into B. At low temperatures, h is roughly constant along metastable sets

and varies greatly in the regions between these sets. These regions of space are precisely those

which need to be over-sampled to reduce the mutation variance. For one mutation step, we can

quantify this idea by introducing the variance function

v∆t(x)
2 = ❊

[

h2(X(∆t)
∣

∣ x0 ∼ x
]

−❊[h(X(∆t) | x0 ∼ x]2. (4.8)

The relevance of (4.8) is that the mutation variance (4.2) can be rewritten use v∆t.

Proposition 4.1.1. The mutation variance at time t prior to selection satisfies

lim
T→∞

T 2
❊

[

(

Dt+1 − D̂t

)2
∣

∣

∣

∣

Ft

]

=
∑

u∈B

(ωt(u))
2

Nt(u)
❊

ηut
[

v2∆t

]

.

Proof. From the formula for mutation variance (4.2) and the weight update formula (3.4)

lim
T→∞

T 2
❊

[

(

Dt+1 − D̂t

)2
∣

∣

∣

∣

Ft

]

=
∑

u∈B

(

ωt(u)

Nt(u)

)2

❊





∑

i:ξ̂it∈u

VarK∆tht+1(ξ̂
i
t)

∣

∣

∣

∣

∣

∣

Ft



. (4.9)
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Recall ❊ [C i
t | Ft] = Nt(u)ω

i
t/ωt(u). Then (4.9) can be split as a sum over the parents to find

(4.9) =
∑

u∈B

(

ωt(u)

Nt(u)

)2
∑

i:ξit∈u

Nt(u)
wi

t

wt(u)
v∆t(ξ

i
t)

2

=
∑

u∈B

(ωt(u))
2

Nt(u)

∑

i:ξit∈u

wi
t

wt(u)
v∆t(ξ

i
t)

2. (4.10)

The sum over the parents in (4.10) can then be seen as a weighted average of v2∆t over the intra-bin

distribution at time t.

We can interpret (4.8) as the variance in future cumulative flux for a particle starting at x.

Again, it will be convenient to consider the result of the rescaled limit

v = lim
∆t→0

v∆t

∆t
.

We can connect the overdamped Langevin dynamics discretization

dXt = −∇V (Xt)dt+
√

2β−1dWt

to the continuous underlying process to address the rescaled limits above. We can more precisely

define the infinitesimal generator L in the case of overdamped Langevin dynamics by

Lg = −∇V · ∇g + β−1∆g

with appropriate boundary conditions. L is a second order operator that describes the evolution of

the Markov process. From the definition of an infinitesimal generator

Lh(x) = lim
∆t→0

lim
t→∞

❊
x[h(X∆t)]− h(x)

∆t
, (4.11)
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where ❊x[h(X∆t] = ❊[h(X∆t)|X0 ∼ x]. From (4.11) and (4.8), it can be shown that

lim
∆t→0

v∆t(x)
2

∆t
= lim

∆t→0

❊
x[h2(X∆t)]−❊x[h(X∆t)]

2

∆t

= Lh2(x)− 2h(x)Lh(x)

= 2β−1|∇h(x)|2

Furthermore, h∆t satisfies the poisson equation

(Id−K)h∆t = f −
∫

f dµ,

∫

h∆t dµ = 0. (4.12)

In practice, h and v2 are unknown but can be estimated by uninformed implementations of weighted

ensemble [40]. Rough estimates of K can be used to solve (4.12) to obtain estimates of h and v2.

4.2 Minimization Strategies

Adapting the observations of the previous section, we can outline our approach for minimizing

the variance of weighted ensemble. The driving idea will be to allocate particles in volatile regions,

meaning regions with large ∇h values, to minimize the mutation variance and to choose bins of

similar particles, in the sense of having similar h values, to minimize the selection variance. To

simplify the formulas involved, we will assume that N is fixed and let T → ∞. With the latter

assumption, recall

lim
T→∞

Varηht+1,T = Varηh

lim
T→∞

VarηKht+1,T = VarηKh.

We further assume that at time t, we employ both our binning and allocation strategy. This means

that allocation is performed with knowledge available before selection.

To minimize the mutation variance, recall Proposition 4.1.1. The advantage to writing the

mutation variance in this form is it allows for a simple optimization question to be posed. As we
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are only interested in choosing an allocation at time t, we can consider the following problem:

minimize
∑

u∈B

(ωt(u))
2

Nt(u)
❊

ηut
[

v2∆t

]

(4.13)

subject to Nt(u) ∈ ❘+ satisfying
∑

u∈B Nt(u) = N . The solution to the optimization problem

posed in (4.13) can be found from Lagrange multipliers to be

Nt(u) ∝
√

(ωt(u))2 ·❊ηut [v2∆t] ≈ ωt(u) ·❊ηut [v∆t] . (4.14)

Notice we have relaxed our requirements for the allocation as found in 3.1.1. The solution pre-

sented in (4.14) is then an approximate solution in terms of implementation. In practice, enforcing

◆t ∈ ❩≥0 and 3.1.1 is not difficult, [41] outlines one such algorithm.

An algorithm for choosing an optimal set of m bins, B is also outlined in [41]. We will adopt a

similar approach, attempting to choose bins to minimize the variance of h according to the intra-bin

distributions νu. That is

minimize
∑

u∈B

VarνuKh (4.15)

for partitions B of size m. The motivation for this approach is to consider the selection variance

given by (4.6). Recall that after selection, the weight of the children ω̂i
t is equal by (3.4) and the

evolution of particles in separate bins is uncorrelated. Therefore, for t ≥ 0 and a choice of bins u

with allocations Nt(u), the selection variance (4.6) is equivalent to

❊

[

(D̂t −Dt)
2
∣

∣

∣
Ft

]

= ❊





∑

u∈B

(

wt(u)

Nt(u)

)2

Var





∑

i:ξ̂it∈u

Kh(ξ̂it)





∣

∣

∣

∣

∣

∣

Ft



. (4.16)

In the following chapter, we will outline three successful strategies that are based on these princi-

ples.
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4.3 Comparison against Naive Methods

On a final note, in the limit that the number of bins m → ∞ and the population N → ∞ it

is clear that the selection variance will vanish. This is a consequence of Varν(Kh) → 0 for an

intra-bin distribution ν. However, this is not a practical choice. Simulations in molecular dynam-

ics typically come with great computational cost providing further restrictions on the number of

particles and bins that can be employed.

In complex problems of interest, this cost is largely dictated by the evolution of the particles

which places a limit on N . From Remark 3.3, the number of bins should be chosen such that Kh

does not vary too greatly and still allows over-sampling of important regions. No comprehensive

rigorous analysis has been completed on this idea for fixed finite N , but intuitively the number

of fixed spatial bins should not exceed N by too much. In the case of adaptive bins that directly

partition the particles, it is advisable that the number of bins is strictly less than N .

It has been shown that the mutation variance of weighted ensemble with positive selection

variance is bounded above by the mutation variance of direct Monte Carlo [39]. In problems where

v is nearly constant, there are no regions of the state space that will be over-sampled. Therefore,

we would expect weighted ensemble to perform on par with direct Monte Carlo. However, for

problems where v is highly variable, weighted ensemble can achieve a large reduction in variance

by optimal allocation. A myriad of practitioners have demonstrated that a variance reduction is

achievable in practice [40,42–45]. We will later demonstrate a variance reduction in the context of

a toy problem.

To further illustrate the potential gain over direct Monte Carlo, consider overdamped Langevin

dynamics on [0, 1] with A = 0, B = 1 and recycling boundary conditions. Let V (x) be the

potential and define

∆V = max
x∈[0,1]

V (x)− min
x∈[0,1]

V (x).

Assume that there is a potential barrier between A and B. As h is roughly constant in metastable

regions, v will vary greatly only if that potential barrier is large, that is if ∆V is large. The variance
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improvement factor follows

VIF =
dimensionless MCMC variance

dimensionless optimal WE variance
=

µ(v2)

µ(v)2
∼ exp(β∆V ),

where β is an inverse temperature parameter. Therefore, the reduction in variance from using

weighted ensemble can be significant for problems where v is far from a constant.

As noted in Remark 3.2, weighted ensemble is not usually accompanied by these minimization

practices. These naive implementations of weighted ensemble can provide improved stability in

the estimation of rare-events. We will show that by implementing allocation and binning strategies

that address (4.13) and (4.15), a further reduction in variance can be achieved.
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Chapter 5

Methods

5.1 Binning Methods

We will present static and adaptive binning methods which are inspired by the selection vari-

ance formula 4.16. Static binning methods are methods where the bins are set in during the ini-

tialization of the weighted ensemble simulation and remain fixed in time. The adaptive binning

method we cover will change in time where particles are partitioned at the beginning of each selec-

tion step. In Chapter 4, we found h to be of great importance for minimizing the selection variance.

The discrepancy function h is used in each optimized method below as it gives a 1D representation

of an n−dimensional problem.

Remark 5.1. In the following discussion with binning and allocation methods, we will adopt the

notation that bold characters (u, a, s, v) will denote binning strategies and script characters (u, w,

h, v) will denote allocation strategies. This distinction is made to clarify the difference between

uniform binning, u, and uniform allocation, u.

5.1.1 Static Binning Method

The first static method we present is where bins are created uniformly in space. This approach

does not use any of the minimization techniques outlined in Chapter 4 but is by far the most

common weighted ensemble scheme [44, 46–48]. Bins can easily be computed from the root-

mean-square deviation (RMSD) to the sink and subsequently evenly dividing the RMSD space

between A and B (see Figure 6.6). The parents {ξit} are assigned a bin based on the RMSD to B.

We will denote this method as u.

We now present two optimized static methods. Recall, we are choosing bins to minimize the

selection variance in (4.16). Selection may also be understood as splitting and merging trajectories

of particles in the same bin. Inherent in the process of merging is the introduction of a correlation
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in the ensemble of trajectories. This correlation is a direct result of merging two or more particles

who now share the same trajectory and results in an increase in variance. In an extreme case,

consider a weighted ensemble simulation with only one bin. Particles that are at the source are

likely to have a larger weight than those near the sink (as ω ∼ µ) and therefore are more likely to

be copied in the selection step. This would very likely result in a loss of flux and a larger overall

variance. From (4.4), these particles would have drastically different values of h and should not be

merged.

When the resampling interval ∆t and the integrator time step δt are small, Kh(ξit) ≈ h(ξit).

Therefore, to minimize the selection variance, particles should be binned to minimize the variance

in
∑

i:ξit∈u
h(ξ̂it).

During selection, we would like to limit this cost involved in merging. In this case, minimal

information is lost. Limiting the impact of these correlations is the goal of the method s (see Figure

6.7 (a)). We have established that h is the relevant coordinate for merging but do not yet have an

understanding on how to choose the size of the bins.

From Remark 3.1, the optimal allocation (4.14) can be interpreted as

∑

i:ξit∈u

µ(ξit) ·❊ηut
[

v∆t(ξ
i
t)
]

≈
∑

i:ξit∈u

µ(ξit) · v(ξit). (5.1)

The advantage to (5.1) is that it can be computed during initialization by choosing a set of points

uniformly distributed through the state space and computing the values of µ and v at each point.

This mesh is representative of a weighted ensemble algorithm with infinite particles in the limit

T → ∞. Furthermore, it can be used to define bins that are sampled equally while still oversam-

pling relevant parts of the state space. To reduce the impact of correlation, bins B can be chosen to

such that the optimal allocation is approximately uniform across B.

Combining these two ideas results in the method we denote as s (see Figure 6.7 (a)). First,

we consider sorted h space, H, to create bins with similar h values. Then, we consider bins
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B = {u1, u2, . . . , um} that partitionH and satisfy for any ui, uj

∫

x:h(x)∈ui

µ(x)v(x) dx ≈
∫

x:h(x)∈uj

µ(x)v(x) dx.

As s does not consider the resulting intra-bin distributions, we propose an improvement which

we will denote as v (see Figure 6.7 (b)). Retaining the framework of s, we introduce the added idea

that the bin-size modulated variance of the intra-bin distribution µv should be minimized. This can

be accomplished in the following way. Let {Hi}m−1
i=1 be level sets in H corresponding to the bins

we seek. Consider the sets

Ω1 ⊂ Ω2 ⊂ . . . ⊂ Ωm,

where

Ωi =

∫

x:h(x)≤Hi

µ(x)v(x) dx.

Let Ω = {Ω1,Ω2, . . . ,Ω3}. We can then solve

argmin
{Ωk}

m
k=1

∈Ω

|Ωk|Var(Ωk) (5.2)

by k-means clustering on Ω. Recall, we assumed a mesh that discretized our state space which

allows this computations in practice. Therefore, v may be understood as performing k-means

clustering on the CDF of the optimal allocation distribution (that follows from (5.1)).

To motivate the addition of bin size in the minimization problem, consider the selection vari-

ance (4.16) using the optimal allocation (4.14). As N →∞ and ∆t→ 0, the intra-bin distribution

ηut follows the optimal allocation distribution and Kh(ξ̂it) ≈ h(ξ̂it). Then the selection variance is

given by

❊





∑

u∈B

(

1

❊ηut [v∆t]

)2

Varηut





∑

i:ξ̂it∈u

h(ξ̂it)





∣

∣

∣

∣

∣

∣

Ft



. (5.3)

The expectation of v∆t term is the average value of v∆t in bin u. The inverse of this term would

correlate to (optimized) bin size in the following way, regions where v∆t is large would have
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smaller bins and vice versa. Hence, the selection variance follows bins size times a variance in

evolution term which agrees with (5.2).

Remark 5.2. Example code for the procedures in s and v is included in the appendix, sections A.1

and A.2 respectively.

5.1.2 Adaptive Binning Method

For adaptive bins, it is more natural to consider B as a partition of the particles rather than the

state space. Consider the parents {ξit}Ni=1 at time t. Taking ν as a uniform distribution, we can solve

(4.15) by k-means clustering on the set {h(ξit)} with m centroids. This will result in a labeling for

the parents that can be understood as partition B. We will denote this method as a.

5.2 Allocation Methods

Across the set of bins B = {ui}Ni=1 we tested four allocation methods. Let δtu represent if a bin

at time t, u, is occupied,

δtu :=















1 ∃ξti ∈ u

0 otherwise

.

Also, let N t
u be the allocation for bin u at time t. From Definition 3.1.1, it is implicit that if

δtu = 1 then N t
u ≥ 1. In each strategy, approximate allocations are presented. The requirement that

Nt(u) ∈ Z
≥0 means that care must be taken to ensure the population remains fixed at N . We will

perform sampling by residual sampling as defined in Algorithm 8.1 of [41] which also discusses

how to maintain the population in Algorithm 5.1 (of [41]). The choice of residual sampling is not

required and several other valid choices such as multinomial sampling are possible.

Summarizing, denote the distributions below as dt(u), then, each bin u is allocated ⌊Ndt(u)⌋.

Let nt(u) = N −∑u⌊Ndt(u)⌋ be the number of samples needed to maintain the population and

ϵt(u) = Ndt(u)− ⌊Ndt(u)⌋. Then n(t) samples can be drawn via multinomial sampling from the
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distribution

ϵt(u)
∑

u∈B ϵt(u)
.

Let u denote the uniform allocation strategy, where each occupied bin is assigned approxi-

mately the same number of children. Define

dt(u) =
δtu

∑

p∈B δ
t
p

.

Let w denote the strategy where a bin u is assigned a number of children proportional to its

relative weight. Define

dt(u) =
∑

i:ξit∈u

wt
i .

Similarly h assigns a bin u a number of children proportional to the product of the weights and

the absolute value of h of the parents ξit ∈ u. This is an approximation of the optimal allocation as

bins with relatively high w · |h| would indicate a region that should be over-sampled. Define

dt(u) =

∑

i:ξit∈u
wt

i |h(ξti)|
∑N

i=1 w
t
i |h(ξti)|

.

Finally, let v denote the optimal allocation, as found in (4.14). Define

dt(u) =

∑

i:ξit∈u
wt

i v(ξ
t
i)

∑N

i=1 w
t
i v(ξ

t
i)

.
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Chapter 6

Numerical Example Setting

We will demonstrate practical implementations of the variance reduction techniques as outlined

in Chapter 4. In this example, we consider overdamped Langevin dynamics

dX(tt) = −∇V (Xt) +
√

2β−1dWt,

where (Wt)t≥0 is standard Brownian motion with the 2D potential (see Figure 6.1)

(6.1)
V (x, y) = exp(−(50.5(x− 0.25)2 + 50.5(y − 0.75)2 + 2 · 49.5(x− 0.25)(y − 0.75)))

+ exp(−105(x2(1− x)2y2(1− y)2))

+ 0.5 exp(−(51x2 + 51y2 − 2 · 49xy)).

Figure 6.1: Contour plot for the potential V (x, y). The source A is highlighted blue and the sink set B is

highlighted green.
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We initially set β = 15 and will briefly comment on results for β = 30. Higher values of β

correspond to lower temperatures. This means that simulations will take significantly longer to

converge for larger β. Simulations were performed using 28 cores and in the simplistic setting

of this toy problem, to run 1000 trials for one set of parameters at β = 15 takes ∼ 5 hours

compared to ∼ 100 hours at β = 30. Thus, the majority of our results use β = 15 to cover the

most ground. However, at this temperature, the difference between direct Monte Carlo and the

optimized weighted ensemble methods is not significant (for example, Figure 6.10 or Figure 6.13).

For this reason, we include results for β = 30 where we see a more pronounced difference.

Weighted ensemble will be used to compute the MFPT between the source set A = (.1, .5)

to the sink set B = [.5, .9] × [.6, 1]. Particles are initialized from a normal distribution centered

at A and recycled immediately to A during the mutation step. V (x, y) constrains the particles to

[0, 1]2 naturally so additional boundary conditions are not required. The advantage to working

with a toy problem is that it is relatively quick to estimate the true MFPT, the Markov kernel K,

and the steady state distribution µ. We take f = ✶B, the indicator function of the set B, and can

numerically solve the poisson equation (4.12) to find estimates of h and v (Figure 6.2 (a) and (b)

respectively).

The metastable regions of the potential, 6.1, are clear in Figure 6.2 (c). Notice in Figure 6.2

(a), that h is roughly constant inside the metastable regions. The basin containing B would also be

metastable were it not for the sink and h is roughly constant here as well. The transitions between

these regions is the only place where v is highly non-constant. From Section 4.2, the optimal

allocation will follow µ(x, y) · v(x, y). This allocation is given in Figure 6.2 (d) which indicates

that particles will be placed preferentially near the transitions between the metastable states.

Naive weighted ensemble simulations of the MFPT for this problem simulate transitions di-

rectly from A to B. However, this does not accurately simulate the dynamics of the system at low

temperatures. In the low temperature regime (large β), particles will transition to the intermediary

meta stable set in the bottom before crossing the potential barrier in the bottom right. As naive
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(a) h(x, y) (b) v(x, y)

(c) µ(x, y) (d) µ(x, y) · v(x, y)

Figure 6.2: Numerical solutions for the relevant splitting coordinates h (a) and v (b) and the steady state

distribution µ (c). The optimal allocation µ · v (d) indicates particles will be placed along the correct

transition pathway. Brighter (redder) areas correspond to higher values.

simulations do not capture this behavior, this leads to an instability in the estimate of the MFPT

and, consequentially, higher variance.

Figure 6.3, which plots relative occupancy of space for weighted ensemble simulations, shows

this behavior well. In Figure 6.3 (a), a naive weighted ensemble is shown to have most of the

particles in the first metastable state. As the particles are binned without using properties of the

underlying problem (for instance without using h), they are attempting to transition directly over

the large potential barrier. Furthermore, once particles make the transition many particles remain

“trapped” near the sink due to selection. In Figure 6.3 (b), naive Monte Carlo simulations again
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(a) Naive WE (b) NMC

(c) Adaptive Optimal (d) Static Optimal

Figure 6.3: Comparison of naive weighted ensemble (a) and naive Monte Carlo (b) with optimized strategies

(c) and (d). Each figure plots relative occupancy over a set of weighted ensemble simulations after relaxing

to steady state, with brighter (redder) areas having higher occupancy. The correct dynamics are shown in

(c) and (d) where particles transition to the metastable state at the bottom before crossing the large potential

barrier.

evolve without knowledge of h. As there is no selection step, the particles spend the majority of

the simulation time in the metastable sets without any clear progress.

In comparison to these uninformed simulations, Figure 6.3 (c) and Figure 6.3 (d) depict op-

timized binning schemes that show the correct dynamics clearly. In Figure 6.3 (c), an adaptive

binning scheme is employed with optimal allocation. Here, the particles can clearly be seen tran-

sitioning in the bottom right with a large proportion in the second metastable set. In Figure 6.3
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Figure 6.4: The sorted discrepancy function h.

The first non-constant part roughly corresponds

to a transition from metastable state on the left

to the bottom. The second, larger transition is

from the bottom metastable region to the basin

containing B.

Figure 6.5: µv sorted by the discrepancy func-

tion. Notice the sharp spike in the distribution

falls at the same place as the large barrier in h
(Figure 6.4)

(d), a static binning scheme is employed with optimal allocation. Here, the particles clearly show

a tendency to cluster where the transitions will most likely occur and can be seen transitioning in

the bottom right as well. From Chapter 5, Figure 6.3 (c) depicts binning method a and Figure 6.3

(d) depicts binning method v.

Remark 6.1. h increases when transitioning between the left to the bottom metastable regions to

the basin containing B with the latter transition corresponding to a much greater increase. This is

clearly seen when sorting h as in Figure 6.4. It will be convenient to apply this sorting to other

coordinates such as µ · v to define bins in practice. The greatest variance in µ · v is seen near the

large barrier in h (Figure 6.5).

6.1 Bin Visualizations

Using the methods discussed in Chapter 5, we will apply these strategies to this toy problem.

We initially set the number of bins to 6 for visualization and will vary this parameter later to explore

the impact on the variance.
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Figure 6.6: Strategy u. Different colored regions represent different bins.

The first static method presented in Section 5.1, u, is defined by bins that are created uniformly

in RMSD space, Figure 6.6. This method does not use any knowledge about the problem though

is commonly used in practice.

Next, two static optimized methods created level sets in sorted h space,H along with the CDF

of the optimal allocation distribution

∫

x:h(x)∈H

µ(x)v(x)δx, (6.2)

where δx is the delta function centered at the point x ∈ ❘2. By x : h(x) ∈ H, we mean that we take

the integral in (6.2) over x ∈ ❘2 such that h(x) is increasing. The first of these methods, s, was

defined using (6.2) and setting level sets in h space such that this distribution was uniform across

all bins. The second, v, used (6.2) to phrase a version of (4.15) that was solved using k-means

clustering. The bins produced from these methods are shown in Figure 6.7.
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(a) Strategy s (b) Strategy v

Figure 6.7: Comparison of binning methods s and v. Different colored regions correspond to different bins.

Unsurprisingly, the bins of s and v are remarkably similar, though the difference between the

two strategies is more explicit (Figure 6.8) when we consider the intra-bin distributions defined by

γt(u) ∝
∑

i:ξit∈u

µ(ξit)v(ξ
i
t)δξit .

Particularly for the bins near the large jump in h, it is clear that v has produced bins with smaller

variance with respect to µv. In Section 6.3, v will provide a greater reduction in the variance of

weighted ensemble estimations.

Lastly, recall the adaptive method a which creates bins by k-means clustering on the set

{h(ξit)}Ni=1.

6.2 Allocations

In Section 5.2, several allocation strategies were laid out. Shortly summarizing, u denotes

the uniform allocation where each occupied bin is assigned the same number of children. In

w, the allocation in each bin is proportional to the weight of the bin and in h it is proportional

to
∑

i:ξit∈u
ωi
t|h(ξit)|. Finally, v denotes the optimal allocation from (4.14) where the allocation

follows
∑

i:ξit∈u
ωi
tv(ξ

i
t).
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Figure 6.8: Left: binning by s. Right: binning by v. Plots depict µv values across sorted by h with the

levels sets of the bins represented by the black bars.

6.3 Results

It is common in practice to uniformly bin and allocate particles in spatial bins that are separated

by level sets of RMSD to B [44, 46–48]. We will refer specifically to this method as RMSD

weighted ensemble (or RMSD WE). We will also refer to the special case outlined in Remark 3.3

as direct sampling or direct/naive Monte Carlo.

We will begin by showing that the optimized methods provide a variance reduction over RMSD

weighted ensemble at β = 15 and discuss the impact of the parameters N and m. We then conclude

by showing that at β = 30, the performance of RMSD weighted ensemble is still worse than direct

sampling. However, at this temperature, direct sampling is significantly worse than the optimized

method: binning by v and allocating by v (see Figure 6.9 and Table 6.5).

Remark 6.2. In each set of trials, the number of selection steps T was chosen large enough to

ensure that all trials converged to the estimation of the exact inverse MFPT, J (Figure 6.10). A

numerical estimation of J was found by relaxation and confirmed by direct Monte Carlo. Then,

for N trials

1

N
N
∑

i=1

θiT ≈ J .
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Figure 6.9: Box and whisker plots on the estimation of the rate constant in Table 6.4 comparing the perfor-

mance of RMSD WE u, direct MC d, and v with optimal allocation. The estimation of the exact average is

depicted by the dashed line. Left: β = 15, no significant gain over direct MC. Right: β = 30, a significant

variance reduction is observed and summarized in Table 6.5.

We categorize the performance of a weighted ensemble implementation by

σ = σT/
√
N

where σT is the sample standard deviation.

In Table 6.1, we begin by comparing RMSD weighted ensemble to the optimization methods

detailed previously. These preliminary tests demonstrate a significant reduction in variance is

possible. By design, both s and v have similar performance for uniform and optimal allocations.

Interestingly, a performs best when allocating proportionally to the weights or to |h|.

Relative to our problem, N = 500 is still a large population. To simulate a more restrictive

case, we also consider N = 40 to demonstrate that a similar variance reduction is still achievable.

Additionally, the number of bins will affect the performance of the binning methods differently.

Intuitively, we would expect static methods to suffer compared adaptive methods at low bin counts

as there isn’t enough resolution in the initialization step to accurately predict the dynamics of the

problem. This intuition is supported by Tables 6.2 and 6.3.
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Figure 6.10: Example of convergence of weighted ensemble estimates for RMSD weighted ensemble

(RMSD WE), direct sampling or naive Monte Carlo (NMC), and binning by v with allocation v (Opti-

mal). Top: Plotted as the number of selection steps T vs the estimate θT , the estimate of exact average is

represented by the black bar. Bottom: Convergence of the standard deviation σT /
√
# Trials scaled by

√
T .

These results also suggest that static binning methods will begin to outperform adaptive meth-

ods for higher bin counts. As noted above, this may be an artifact of the toy problem under con-

sideration and we do not claim that this result holds in higher dimensions. Though, it is certainly

true that more bins may be used in static methods. This is a direct consequence of the adaptive

method a being indistinguishable from direct sampling for m ≥ N . Figure 6.11 gives an example

how the number of bins affects the performance for the optimized binning methods. As more bins

will reduce the selection variance, static binning methods may remain an effective choice in higher

dimensions if computational resources allow, so long as the number of bins does not significantly

exceed the number of particles. However, it is possible that in higher dimensions, adaptive binning
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Table 6.1: The results above were obtained over 1000 trials with N = 500, m = 6, β = 15, δt = .001,

∆t = 10, and 105 selection steps. Values reported as σT /
√
1000× 10−9.

Strategy u w h v

u 20.6 12.6 14.9 15.7

a 7.30 1.06 .928 1.81

s 1.39 4.06 1.52 1.64

v .624 2.17 1.03 .776

schemes will be more robust. For this problem at least, Figure 6.11 suggests that there is an optimal

number of bins to choose. This was not investigated and in general, choosing the best number of

bins remains largely heuristic.

Table 6.4 gives a stronger idea of the improvement of optimized methods over RMSD weighted

ensemble. We set N = 100 and performed small samples to determine that m = 10 gave the lowest

variance. For the optimized binning methods we chose the optimal allocation v. Table 6.4 shows a

variance reduction by a factor of 900 when binning by v for our problem. Figure 6.12 also shows

the stark performance difference. RMSD weighted ensemble’s large variance is due to its inability

to capture the dynamics of the underlying system correctly (Figure 6.3).

This inability to accurately capture the underlying dynamics can lead to a problem beyond

performing worse than even direct Monte Carlo. In practice, RMSD weighted ensemble may

appear to converge to an incorrect estimate if not enough time steps are allowed. From Chapter 3,

the estimator θT is unbiased and ergodic so RMSD weighed ensemble remains valid though care

must be taken to ensure convergence.

Another significant question to address is whether these improvements over RMSD weighted

ensemble offer similar improvements over direct sampling. At β = 15, there is marginal im-

provement but direct sampling also significantly outperformed RMSD weighted ensemble at this

temperature. A smaller test at β = 30 (Table 6.5) found the performance of direct sampling is still

better than RMSD weighted ensemble but that at this temperature, the best performing optimal
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Table 6.2: The results above were obtained over 1000 trials with N = 40, β = 15, δt = .001, ∆t = 10,

and 105 selection steps. Values reported as σT /
√
1000× 10−9.

m = 2 m = 4 m = 6 m = 8

u w v u w v u w v u w v

u 35.0 ∗ ∗ 38.9 ∗ ∗ 37.1 ∗ ∗ 36.3 ∗ ∗
a 9.89 6.89 7.95 9.83 3.45 6.26 10.4 3.13 5.16 10.9 2.95 3.99

s 26.8 27.0 27.4 11.5 13.0 11.0 5.53 7.69 4.61 3.98 5.91 2.48

v 25.3 25.1 24.4 7.88 11.0 7.73 3.06 5.09 1.86 2.46 4.18 1.40

Table 6.3: The results above were obtained over 1000 trials with N = 500, δt = .001, β = 15,

∆t = 10, and 105 selection steps. Values reported as σT /
√
1000× 10−9.

m = 2 m = 4 m = 6 m = 8

u w v u w v u w v u w v

u 15.3 ∗ ∗ 17.9 ∗ ∗ 20.6 ∗ ∗ 23.1 ∗ ∗
a 6.91 5.09 5.45 6.92 1.20 2.38 7.30 1.06 1.81 7.22 1.00 1.26

s 14.1 16.2 13.0 3.47 8.12 3.92 1.39 4.06 1.64 .853 2.78 1.08

v 11.1 15.1 11.0 2.34 6.70 2.92 .624 2.17 .776 .504 1.53 .552

Figure 6.11: Performance of optimized strategies against the number of bins over 100 trials. S denotes

binning by s with optimal allocation, V denotes binning by v with optimal allocation, and A denotes binning

by a with allocation proportional to weights. 20 particles were used with δt = .001, ∆t = 10, and 105

selection steps.
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Table 6.4: RMSD weighted ensemble u against binning by s and v with optimal allocation. 104 trials with

N = 100, m = 10, β = 15, δt = .001, ∆t = 10, and 105 selection steps.

σT/
√
104 × 10−10

u 85.42

s 4.790

v 2.843

Figure 6.12: Box and whisker plots on the estimation of the rate constant in Table 6.4 versus the strategy

employed. The estimation of the exact average is depicted by the dashed line. Left: RMSD weighted

ensemble versus optimized implementations. Right: Comparison of v and s (both with optimal allocation).

method achieves a significant reduction in variance. These tests converge significantly slower and

out of convenience we limited our discussion above to the β = 15 case.

Table 6.5: Results of 500 trials for β = 30. The results report σT /
√
500 for N = 120, m = 6, δt = .001,

∆t = 10, and 107 selection steps for RMSD WE u, direct MC d, and binning and allocating by v.

σ
u 1.86× 10−10

d 1.24× 10−11

v 1.89× 10−12

We also investigated the impact of the number of bins on the performance of weighted ensemble

at β = 30 and for a low population of N = 40. Similar to Tables 6.2 and 6.3, with a small number

of bins, a has the best performance and v performs poorly; with more bins, v performs the best (see

Figure 6.13). With 2 bins, both RMSD weighed ensemble and v had many samples that recorded

no flux which highlights the potential benefit to using an adaptive binning scheme.
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For molecular dynamics, the evolution step will consume the majority of computational re-

sources. This means that k-means clustering, a potentially expensive algorithm, will not be a bur-

den on the simulation time. However, for this problem with 10 bins, v significantly outperforms

all methods, σv = 6.10× 10−12, compared to the adaptive method σa = 2.15× 10−11.

(a) m = 2 (b) m = 10

Figure 6.13: Box and whisker plots for the estimation of the rate constant with 100 trials, N = 40, β = 30,

δt = .001, ∆t = 10, and 107 selection steps for RMSD WE u, direct MC d, a with w, and v with v.Left: 2

bins. Right: 10 bins.
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Chapter 7

Conclusion

This thesis presented the framework for the weighted ensemble algorithm in the context of

computing the mean first passage time. We showed that the variance of weighted ensemble can be

decomposed in terms of the steps of the algorithm, the initialization, selection, and mutation steps.

Using these formulas, the key coordinates for controlling the selection variance were identified.

From these coordinates, variance reduction strategies were constructed and implemented in a nu-

merical example. In this example, we found that a significant reduction in variance was achievable

in comparison to both naive Monte Carlo estimation and the industry standard RMSD weighted

ensemble. The significance of this result lies in reducing the computation time of estimating the

MFPT.

Notably, the variance minimization theories were derived in the large N and T regime. In

practice, the particle count may be severely limited, though we showed that the techniques can

still improve the variance in the estimation. It remains to be seen if there are better strategies for

problems with few particles and bins. Extending the results of the toy problem to problems in

molecular dynamics would also be a next step. It is possible that a variation of k-means, the Min-

Max k-means algorithm [49], may provide additional benefits. The MinMax k-means algorithm

would minimize the worst intra-bin variance rather than the cumulative variance.

Beyond simply seeing success with the minimization techniques at finite N , the variance im-

provement factor over RMSD weighted ensemble stays roughly the same in our tests. Therefore,

simulations with relatively few particles may still see similar reductions in variance when imple-

menting the strategies we have proposed. It should be noted that the choice of allocation scheme

may depend on the binning method. In particular, adaptive binning on h-space through k-means

clustering performs best when allocating by the weights of the bins or the weights scaled by h.

To reach a desired accuracy, increasing the population will allow a greater number of bins

which will further reduce the variance. Our tests show that there may be an optimal number of
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bins to choose for a particular population but do not offer any guidance on how to choose this

number.

We also assumed a constant resampling time of ∆t throughout. This parameter will affect the

selection variance and its best choice does not have rigorous mathematical guidance. There is a

balance in choosing ∆t due to how the selection and mutation variances are affected. As the se-

lection variance will depend on the similarity of the particles being merged, longer ∆t lag times

will result in larger variance, so long as some resampling steps occur. Instead, ∆t should be short

enough to take advantage of the weighted ensemble algorithm. Through binning and selection,

particles in the weighed ensemble algorithm can “ratchet” their way over large potential barri-

ers which reduces the mutation variance. In general, the best choice of parameters for weighted

ensemble remains open.
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Appendix A

Supplementary Code

A.1 Code: Levels for binning strategy s

(Using MATLAB functions) - Recall, h, µ, v are vectors representing the exact function value

at even points in [0, 1]2 space and m is the number of bins.

Data: h, µ, v
[SH, inds]← sort(h) ; /* sort h and store permutation */

alloc← µ(inds). ∗ v(inds) ; /* get allocation distribution */

cs_alloc← cumsum(alloc) ; /* roughly
∫

µ · v */

cs_bins← linspace(cs_alloc(1), cs_alloc(end),m+ 1);
; /* cs_bins = bins with constant

∫

µ · v */

cs_bins← (levels(2 : end− 1)) ; /* set upper/lower bound to ∞ */

;

; /* convert µv bins in h space */

levels← zeros(m− 1, 1);
for i=1:m-1 do

levels(i)← find(cs_alloc > cs_bins(i), 1); /* find 1st instance of

logical */

end
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A.2 Code: Levels for binning strategy v

(Using MATLAB functions) - Recall, h, µ, v are vectors representing the exact function value

at even points in [0, 1]2 space and m is the number of bins.

Data: h, µ, v
[SH, inds]← sort(h) ; /* sort h and store permutation */

alloc← µ(inds). ∗ v(inds) ; /* get allocation distribution */

cs_alloc← cumsum(alloc) ; /* roughly
∫

µ · v */

k_bins← kmeans(cs_alloc,m);
; /* kmeans to minimize the intrabin variance */

;

; /* convert µv bins in h space */

levels← zeros(m, 1);
for i=1:m-1 do

levels(i)← SH(find(k_bins == i, 1)); /* find 1st instance of logical

*/
end

levels← (sort(levels))(2 : end)
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