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ABSTRACT 

 

 

 

SUCCESS IN CALCULUS I: IMPLICATIONS OF STUDENTS’ PRECALCULUS CONTENT   

 

KNOWLEDGE AND THEIR AWARENESS OF THAT KNOWLEDGE 

 

 

 

High failure rates in Calculus I contribute to the course acting a filter, rather than a pump, 

for STEM disciplines. One often cited source of difficulty for students in Calculus I is their weak 

precalculus content knowledge. In this three-paper dissertation, I investigate Calculus I students’ 

precalculus content knowledge and their awareness of that knowledge. In the first paper, I 

describe a methodology for collecting data about Calculus I students’ tendency to regulate their 

precalculus content knowledge and analyze the utility of quantifying self-regulated learning as a 

means for identifying at-risk students. In the second paper, I focus on two factors (calibration 

and help-seeking) to investigate the how they correlate with Calculus I students’ first exam 

performance. Results highlight the importance of calibration of precalculus content knowledge 

both directly on student success and how calibration accuracy mediates the benefits of help-

seeking. Quantitative analyses of students’ precalculus content knowledge highlight Calculus I 

students’ difficulty with the concept of graph, despite students’ high confidence in questions 

related to graph. In the third paper, I conduct interviews with Calculus I students to examine their 

conceptions of outputs and differences of outputs of a function in the graphical context to 

understand nuance in how students understand and reason with graphs. Results highlight that 

students’ understandings of quantities and frames of references in graphs of functions can be 

varied and stable. Students’ understanding of quantities also impacts their understanding of other 

concepts such as differences of outputs and difference quotient. Results of this dissertation have 
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implications for educators, tutor center leaders, and researchers interested in students’ 

understanding of graph, calibration, and help-seeking. 
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Chapter 1 - Introduction 

 

 

 

Introduction 

 

 

 

This dissertation was motivated from my own experiences as an instructor of 

undergraduate calculus at Colorado State University (CSU), particularly Math 160: Calculus I 

for Physical Scientists. While teaching, I noticed that students in my courses were having 

difficulty with content that I viewed as a prerequisite for the course. Students were generally 

successful with symbolically computing derivatives and integrals. However, students struggled 

with interpreting these concepts, using the algebraic and symbolic language to identify important 

features, such as critical points, or using graphs to evaluate limits. Given my mathematical 

training, I was confused by how students had difficulty with what I interpreted to be the easy part 

(e.g., identifying the critical values of the function after having found the algebraic expression 

for the derivative of a function). I believed that these impoverished understandings of precalculus 

concepts were why Calculus I students had difficulty with the course. Further, these difficulties 

were contributing to the high rates at which students failed Math 160 at CSU, where failing the 

course involves either withdrawing from the course or receiving a grade of D or F. This is 

because often students taking Math 160 at CSU need to earn a grade of ‘C’ or better in the course 

for their program of study or to take the next course in the calculus sequence, Math 161: 

Calculus II for Physical Scientists. Thus, I wanted to better understand the relationship between 

students’ success in Calculus I and their knowledge of precalculus content, specifically as a way 

to identify and support students who are at-risk of failing Math 160. 
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High rates of failures in Calculus I are not isolated to CSU; they are prevalent across the 

nation, with failure rates between 25% and 40% at research universities (Bressoud et al., 2013). 

Calculus I is a foundation for disciplines in Science, Technology, Engineering, and Mathematics 

(STEM) disciplines. Thus, high failure rates in Calculus I can act as a filter to STEM degrees 

because students often need an A, B, or C in order to progress through a STEM program of study 

(Steen, 1987). As the nation calls for increased numbers of STEM graduates (President’s Council 

of Advisors on Science and Technology (PCAST), 2012), it is critical that students are successful 

in Calculus I.  

Study Design 

 The goal of this dissertation study is to understand (1) how Calculus students’ awareness 

of their mastery of precalculus content knowledge and regulatory actions are related to course 

success, and (2) how Calculus I students can be used to identify and support students who are at-

risk of failing the course. Focusing on precalculus content knowledge affords early interventions 

with students at may be at-risk of failing the course. As early as the first day of class, Calculus I 

students can begin reviewing and supplementing their precalculus content knowledge as a way to 

prepare for the course. Hence, data regarding students’ precalculus content knowledge can be 

collected early in the semester, and potentially used to identify factors that are beneficial or 

counterproductive for learning and success in Calculus I. 

 This study followed a mixed methods explanatory sequential design (Creswell & Plano-

Clark, 2011). During the initial quantitative phase of this study (described Papers 1 and 2), I 

examined trends across all students in Calculus I to get a broad look at relationships between 

student success in the course and ways students regulate their precalculus content knowledge. 

During these analyses, I noticed that many Calculus I students answered questions related to 
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graphs of functions incorrectly. Consequently, I introduced an emergent research goal to 

understand how students’ conceptions for precalculus content support or hinder their conceptual 

development in Calculus I. During the second phase of this study (described in Paper 3), I 

conducted clinical interviews with students in enrolled in a different Calculus I at the institution. 

The purpose of these interviews was to gain insight into how their conceptions of graph related 

to their conceptual development. Together the quantitative and qualitative analyses provided 

insight into students’ awareness of precalculus content, particularly regarding graphs of 

functions. These results are discussed in the conclusion chapter of this dissertation. 

Study Background 

 This dissertation study took place at a predominantly white western research university. 

Quantitative data for this study were collected in the fall semester of 2016 from students in a 

first-semester calculus course intended for engineering students. Students seeking most STEM 

degrees are required to complete this course, except for students in the biological sciences (e.g., 

biology, zoology). Quantitative data collection was a part of an ongoing study investigating high 

failure rates in the course. With support from the course coordinator, I developed tools in the 

students’ learning management system that were intended to collect data about the students’ 

tendency to regulate their precalculus content knowledge. These tools were implemented across 

all sections of the course. 

Qualitative data was collected in the summer semester of 2019 from students in a 

calculus course intended for students in biological sciences. This course focused on applications 

of calculus, and concepts such as exponential growth and rate of change. Additionally, the 

calculus course for biological scientists had comparably high rates of failure to the calculus 
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course for engineering students. Data collection for this phase of the study was intended for this 

dissertation study. 

At CSU, there is evidence that students’ precalculus content knowledge, study habits, 

motivation, and Exam 1 scores are correlated with course success. Researchers have looked at 

factors correlated with success, such as precalculus content knowledge, study skills, motivational 

competencies (Reinholz, 2009; Worthley, 2013), while other researchers have looked at the 

impact of various institutional efforts (e.g., offering preparatory courses and two-semester 

Calculus I courses) to support students in being more successful (Pilgrim, 2010; Pilgrim & 

Gehrtz, 2016). The relationship between Exam 1 scores and course success suggests that any 

intervention for Math 160 students would need to occur before Exam 1, which occurs in the 

fourth week of classes, in order to have the greatest impact. Although precalculus content 

knowledge is important for success in the course, resources for improving students’ precalculus 

content knowledge should not be required of students because there is evidence that students’ 

activity with prerequisite content may detract students from Calculus I course work (Reinholz, 

2009). Students should be able to leverage these resources as necessary, particularly if they self-

identify as someone who needs to improve their precalculus content knowledge. In other words, 

students need to self-regulate their precalculus content knowledge to prepare for Calculus I 

(Zimmerman, 2000). It is my assumption that students who act in a self-regulated way to 

improve their precalculus content knowledge will also act in a self-regulated way as they learn 

calculus content. 

Overview of Papers 

The goal of this dissertation was to explore the ways that precalculus content knowledge 

impacts students’ success in Calculus I. My research goals were to understand (1) how Calculus I 
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students’ awareness of their mastery in precalculus and help-seeking actions correlate with their 

success, and (2) how Calculus I students’ conceptions for precalculus content impacted their 

conceptual development in Calculus I. My dissertation comes in the form of three papers, where 

the first two papers address the first research goal. The second research goal was emergent from 

my analyses conducted related to the first and second papers, which I will also describe. The 

third paper address this second emergent research goal. 

Summary of Paper 1 

In Paper 1, I describe self-regulated learning (SRL) and how acting in regulatory ways 

can be beneficial for students. To this end, I describe the creation of three online tools that can 

provide evidence of students regulating their precalculus content knowledge, specifically as a 

means to prepare for Calculus I. The design of these tools aligns with Zimmerman’s (2000) 

model of SRL, where students regulating their learning (1) prepare for engaging in a task 

(forethought phase), (2) engage in the task, and (3) reflect of the performance of the task. I aim 

to answer the research question: How does the degree to which Calculus I students self-regulate 

their precalculus content knowledge relate to course success?  

 With help from two experts (one in a mathematics department, and one in a school of 

education), I created a coding scheme that measured the extent to which students regulate their 

precalculus content knowledge in preparation for the course. This SRL score utilized data from 

the three tools as well as data regarding students’ access to precalculus help resources. This 

measure of SRL leverages SRL theory and related constructs, such as calibration, to create the 

score. I examined correlations between student success and the SRL score. Results highlight 

students’ SRL practices around reviewing precalculus content knowledge as a means to identify 

at-risk students in Calculus I. 



 6 

Summary of Paper 2  

The goal of the second paper of this dissertation is to better understand how one factor 

related to the SRL score, calibration, relates to success in Calculus I. Calibration is the alignment 

of one’s mastery with their perceptions of mastery, and is often measured in two ways: 

calibration accuracy and calibration bias. Calibration accuracy refers to the degree to which a 

student’s perceptions of mastery aligns with their mastery, while calibration bias refers to the 

degree to which a student’s perceptions of mastery exceeds their mastery. I hypothesize that 

calibration of precalculus knowledge is correlated with success in the first exam of Calculus I, 

and that help-seeking is one mechanism in which calibration supports student success. My 

research questions for this paper are: 

1. How do Calculus I students’ levels of calibration bias and accuracy correlate to 

performance on Exam 1, after controlling for incoming content mastery? and  

 

2. How do Calculus I students’ levels of calibration mediate the benefits of help-

seeking on Exam 1 performance, after controlling for incoming mastery? 

 

To answer these questions, I used data from two tools in students learning management system to 

create measures of calibration accuracy and calibration bias. I conducted a hierarchical linear 

regression analysis to examine how much variance in Exam 1 scores was captured by successive 

models that include additional combinations of covariates, such as number of visits to a 

university mathematics tutoring center. Results highlight the impact of students’ calibration on 

Exam 1 scores and the role of calibration in effective help-seeking. 

Subsequent Analyses and the Emergence of Paper 3 

The third paper in this dissertation was influenced by the analysis conducted on a content 

quiz used in Papers 1 and 2. In the fall of 2016, students enrolled in a calculus course for 

engineering students had access to a precalculus content quiz to gauge students’ mastery of 
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precalculus content. Of the nearly 450 students enrolled, 224 students consented to the study and 

completed the optional quiz. Of these students, only 31.3% received full points on at least one of 

the two multiple answer items asking about what f(2) refers to on a graph (Item 1) or what 

solutions to f(x) = 2 represent (Item 2).  These items are provided in Figure 1.1 and Figure 1.2.  

 

 

Q1: Consider the function g(x) = −3x + 2. 

What does g(2) represent? (Mark all that apply) 

a. The function gets multiplied by 2. 

b. The function evaluated at 2. 

c. The y-value on the graph of the function with x-coordinate 2. 

d. The x-value on the graph of the function with y-coordinate 2. 

e. The height of the graph of the function at ) = 2. 

f. The distance between the graph of the function at ) = 2 and the x-axis. 

g. The distance between the graph of the function at ) = 2 and the y-axis. 

h. The slope of the graph of the function at ) = 2. 

i. −3(2) + 2.	

Figure 1.1: Item 1 on the precalculus content quiz 
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Of the students that answered the items, 88.8% and 42.3% answered Item 1 and Item 2 at 

least partially correct (selecting only correct responses), respectively. Further 25.4% and 17.0% 

answered Item 1 and Item 2 correctly (selecting only correct answers and selecting all correct 

answers). Table 1.1 provides data regarding the accuracy of student’s responses to these two 

items.  

 

 

 

 

 

Q2: Consider the function -()) = −3x + 2. 

What does the solution to  -()) = 2  represent? (Mark all that apply) 

a. The function gets multiplied by 2. 

b. The function evaluated at 2. 

c. The y-value on the graph of the function with x-coordinate 2. 

d. The x-value on the graph of the function with y-coordinate 2. 

e. The height of the graph of the function at ) = 2.  

f. The distance between the graph of the function at ) = 2 and the x-axis. 

g. The distance between the graph of the function at ) = 2 and the y-axis. 

h. The slope of the graph of the function at ) = 2. 

i. −3(2) + 2.	

Figure 1.2: Item 2 on the precalculus content quiz 
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Table 1.1: Calculus I student’s responses to two items about graph, n = 224. 

  Accuracy of Responses to Item 1 

 

 

  Incorrect Partially  

Correct 

Correct  

 

Accuracy of 

Responses to 

Item 2 

Incorrect 18 (8.3%) 87 (39.9%) 23 (10.6%) 128 (57.1%) 

Partially  

Correct 

 

3 (1.4%) 46 (21.1%) 9 (1.4%) 58 (25.9%) 

Correct 4 (1.8%) 9 (4.1%) 25 (11.5%) 38 (17%) 

  25 (11.2%) 142 (63.4%) 57 (25.4%)  

 

The large percentage of incorrect responses to these items suggests that many students in the 

calculus course have not yet mastered content related to graphs. This analysis lead to the research 

goal of understanding how students’ conceptions for precalculus content support or hinder their 

conceptual development in Calculus I. The third paper in this dissertation addresses this goal. 

Summary of Paper 3 

In the data from the precalculus content quiz designed in the first paper of this 

dissertation, I found that many students in Calculus I answered items related to graphs of 

functions incorrectly (see Table 1.1). Since graphs are commonplace in the Calculus I curricula, 

it is vital that students understand graphs in the normative way. The goal of this paper is to 

explore what conceptions of graph students have and how those conceptions impact students’ 

conceptual development. As such, I adopt the radical constructivist perspective (von Glasersfeld, 

1995) to examine what students are thinking about graphs, rather than students’ responses are 

correct.  
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In this paper, I aim to answer the research question: How do Calculus I students’ 

conceptions of output impact students’ conceptions of the difference of outputs in a graphical 

context? To answer this question, I conducted clinical interviews with five Calculus I students in 

the summer of 2019.  I used theoretical thematic analysis (Braun & Clarke, 2006) to categorize 

students’ conceptions of output and differences of outputs. I used David, Roh, and Sellers’ 

(2019) constructs location-thinking and value-thinking describe students’ conceptions of output 

of a function and Thompson’s (1993) distinction of subtraction and quantitative difference 

describe their differences of outputs. I used inductive thematic analysis (Braun & Clarke, 2006) 

to code the conceptions that did not fit into these categories, identifying the mathematical object 

that students were referring to as they engaged with the task. This analysis showed that students 

have a variety of conceptions for output and they were related to their conceptions of difference 

of output. 
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Chapter 2 - Paper 1: Self-Regulated Learning: A Framework for Contextualizing Student Activity in Calculus I 

 

 

 

Paper 1: Self-Regulated Learning: A Framework for Contextualizing Student Activity in  

 

Calculus I 

 

 

 

Since the 1980s, Calculus I has commonly been labeled as a “filter” in the STEM 

pipeline, “blocking access to professional careers for the vast majority of those who enroll” 

(Steen, 1987, p. xi). As failure rates in the course (grade of D, grade of F, or course withdrawal) 

continue to remain high (around 25% at research universities) efforts to address the issue persist 

(Bressoud et al., 2013). Unfortunately, Calculus I at research institutions has been documented to 

have a negative impact on the student experience and, in fact, has led to students leaving 

programs of study requiring additional courses in mathematics (Bressoud & Rasmussen, 2015; 

Seymour et al., 2019; Seymour & Hewitt, 1997). Many are attempting to tackle this problem 

through changes in instructional practices, however, isolated instructional changes can be 

particularly challenging to sustain (Henderson et al., 2011). More recent efforts, such as the 

Student Engagement in Mathematics through an Institutional Network for Active Learning 

project, have sought to sustain instructional practices such as active learning and study what 

mechanisms at the institutional, departmental, and classroom level support lasting instructional 

change (Smith et al., 2017) 

In conjunction with instructional change, it is important that students are active 

participants in their own learning and success, especially at the undergraduate level where 

students are more autonomous in their learning. As students need to become more independent, I 

believe that students must enact and sustain a self-regulated approach to their own success, 
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including engaging in a process that enables them to assess, reflect on, and then modify their 

own learning behaviors. In this paper, I present a methodology to collect evidence of students 

behaving in a self-regulated way. I discuss what self-regulated learning (SRL) is, how it has been 

measured in the past, how I developed a set of tools that can measure SRL, and its relationship 

with academic performance.  

What We Can Learn About At-risk Students from Data 

Large amounts of data are collected on students. In addition to demographic data and 

course performance data, universities are capable of collecting data that describe engagement 

with courses via online and in-person interactions. If educational tools are designed with 

foresight, the data gathered by these tools can provide instructors with an ongoing assessment of 

student’s engagement and provide insight into the ways students engage with the course over 

time (Baker et al., 2004; Ma et al., 2015; Winne & Baker, 2013; Zhou & Winne, 2012). 

Additionally, the ways students use educational tools has been related to student’s academic 

achievement (Jo et al., 2015; Morris et al., 2005). Hence, data around students’ use of these tools 

could be leveraged to detect if students may potentially be at-risk of failing a course, affording 

early interventions to help students better prepare for the course. While fine-grained data about 

students’ interactions with digital resources can provide a rich set of data about individual 

students, those who do not engage with resources can easily be misrepresented by their digital 

footprint. 

Consider two Calculus I students, Matilda and Derek, both of whom are enrolled in the 

same Calculus I course. The course requires completion of online homework, which is due at the 

end of the semester, and all students have free access to a mathematics tutoring center (MTC). 

Despite the availability, neither student begins working on their online homework until the end 
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of the semester. Derek has been successful with cramming in his high school math classes, so he 

does not work on the online homework until the last week of class. Matilda, on the other hand, 

keeps up with the course content well, but has a heavy STEM course load and is struggling in her 

chemistry course. Having assessed her calculus and chemistry abilities, Matilda determines that 

she needs to spend more time on chemistry and prolongs working on her online homework until 

the last couple of weeks of the semester. Thus, by the time both students take their first exams 

(after four weeks of class), neither has made progress on any online homework. 

Before the last few weeks of the course, both Derek and Matilda are indistinguishable 

with respect to their digital footprints with the Calculus I online homework system because 

neither of the students have engaged with the online homework, albeit for different reasons. Each 

students’ lack of engagement does not imply either student will fail the course but may suggest 

that both are acting in non-productive ways that will hinder their success in the course. By 

combining the students’ online homework interactions with other data points, such as help-

seeking strategies, performance on assessments, and responses to feedback, a more detailed 

picture of the student can be painted. Anyone in a position to support student learning (e.g. 

educators, course coordinators, and administrators) can then use this data to build nuanced 

models of students that better represent and contextualize students’ actions in a course in terms 

of self-regulated learning theory. 

In this paper, I will discuss how I used a self-regulated learning framework to 

contextualize students’ out-of-the-classroom interactions in terms of students’ self-regulation 

through an SRL score. Further, I present findings that relate the SRL score to course 

performance data. In addition to looking at these relationships for the entire student population, I 

will also focus on students like Derek and Matilda, who have not used available calculus 



 14 

resources early in the course. This subpopulation will be referred to as disengaged students 

because regarding their actions early in the course, these students have not yet accessed the 

course’s online homework system nor visited the university MTC for help with calculus content. 

Self-Regulated Learning  

Identification of mistakes can be challenging for mathematics students. Students struggle 

with recognizing when a mistake occurs and how to make changes in study habits in order to 

minimize the occurrence of mistakes and address potential knowledge gaps (Zimmerman et al., 

2011). While there are many models of SRL (Boekaerts & Corno, 2005; Pintrich, 2000; Winne 

& Hadwin, 1998), I draw upon Zimmerman’s (2000) SRL model, which is based in Social 

Cognitive Theory. According to Zimmerman, SRL is “the self-directed process by which 

learners transform their mental abilities into academic skills” (p. 65) by actively monitoring and 

regulating their mental processes. Students that are described as self-regulated learners are 

continually deepening their understanding of the process by which they learn, and modifying and 

adapting their study habits and strategies to become more successful learners. Zimmerman 

(2000) describes SRL in terms of a three-phase model, including forethought, performance, and 

self-reflection. 

Forethought 

When a self-regulated learner plans to engage in a task, the student first engages in the 

pre-task phase forethought, which consists of two primarily processes: task analysis and self-

motivation. During task analysis, a self-regulated learner will set goals and identify strategies to 

employ so that those goals can be achieved (Zimmerman, 2000, 2002). Self-regulated learners 

have the skills to assess a task and determine appropriate strategies to apply to reach their 

decided goals. A student’s ability to analyze the task alone, however, is not enough for a student 
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to regulate their learning; their motivation will influence the level to which students enact these 

practices. 

Student’s self-motivation comes from their beliefs about themselves as learners such as 

their self-efficacy to complete the task, and the student’s expected outcomes from learning. For 

example, a student who expects to use the knowledge gained from the learning task may attempt 

to overcome potential obstacles and difficulties during the task than a student who does not 

expect to use the knowledge gained. Similarly a student who is interested in calculus content and 

feels efficacious about learning differentiation of trigonometric functions will more likely learn 

the content in a self-regulated way than a student who does not expect to use differentiation in 

their future profession and does not believe that they can learn the content area. A students’ 

beliefs such as their confidence or self-efficacy to complete the task about learning will further 

influence whether a student prepares for the learning task, as well as how they execute the task 

during the performance phase (Zimmerman, 2002).  

Performance 

Upon engaging with the learning task (i.e. during performance phase of SRL), self-

regulated learners begin implementing the strategies they identified in the forethought phase. 

Self-control and self-observation are primary elements of performance that require focus and 

adaptation in order to optimize effort (Zimmerman 2000). Through self-control and self-

observation competencies such as time management and attention focusing, a self-regulated 

learner is able to make adjustments to strategies that are not in the moment proving successful 

(Zimmerman 2000, 2002). By monitoring and maintaining a record (mental or physical) of task 

details during this phase, a self-regulated learner can consider adjustments to their strategies that 

may need to occur in the moment or in the future. The accuracy of the learner’s record of the 
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performance phase and their content knowledge are vital for a learner to make effective decisions 

about what strategies are proving successful, and which need to be adjusted to attain the intended 

learning goal.  

Self-Reflection 

Self-reflection involves learners being deliberately introspective after performing the 

learning task by drawing on their knowledge of the performance phase to assess what strategies 

were successful and how they could be improved. A self-regulated learner assesses their 

performance and then reacts to that self-judgment. Such a learner evaluates their performance by 

“comparing self-monitored information with a standard or goal” and “attributing causal 

significance to the results” (Zimmerman 2000, p. 21). For example, when a student receives a 

lower grade than expected on an exam (e.g., a ‘C’ instead of an ‘A’), their reaction may be to 

change their study habits and strategies or to seek help from an instructor or tutor. Each of these 

responses could be based on differing causal attributions. A student who deems a study tactic, 

such as creating flash cards, as unhelpful for an exam may change their study habits in the future 

to incorporate more completion and review of practice exams. A student who identifies the 

content of focus during studying may seek help with the content that they do not know 

sufficiently. For a self-regulated learner, results from the self-reflection phase will play a 

significant role in engagement with future tasks, such as the forethought and performance phases 

of future SRL cycles. 

Relationships between SRL and Calibration, Self-Efficacy, and Academic Performance  

In much of the literature, self-regulation has been closely tied to self-efficacy (Pintrich, 

2004; Pintrich et al., 1993; Pintrich & De Groot, 1990). Self-efficacy can be described as 

judgements of one’s competence to perform a task (Bandura, 1981; Schunk & Pajares, 2004). 
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The Motivated Strategies for Learning Questionnaire (MSLQ) (Pintrich et al., 1991) explicitly 

uses self-efficacy as one of its constructs, and significant positive correlations between self-

efficacy and academic performance have extensively been reported in the literature (Honicke & 

Broadbent, 2016; Pintrich, 2004; Pintrich et al., 1993). Bandura and Schunk (1981) found that 

for students who set attainable sub-goals in an academic setting had higher progress in self-

directed learning (related to SRL), academic performance, and perceived mathematical self-

efficacy. Self-efficacy in academic settings can be closely tied to student self-confidence, as 

researchers have used confidence measures on particular tasks as a measure of self-efficacy 

(Zimmerman et al., 2011). 

Related to SRL, students’ calibration of their self-efficacy and self-reflective judgements 

have been reported to be vital to success of implementing self-reflection in the SRL cycle 

(Schunk & Pajares, 2004; Zimmerman et al., 2011). By aligning one’s self-confidence to 

complete a task (both prior to completion and after completion) with their task abilities, a student 

will be better positioned to leverage feedback from a performance than if a student's confidence 

and abilities are misaligned. For example, Zimmerman and colleagues (2011) summarized that 

overly confident self-beliefs about one’s abilities can “hinder the adaptive use of feedback” (p. 

110). Given influence of students’ calibration on their reactions to feedback, it is no surprise that 

calibration of student’s pre- and post-task confidence have been found to be positively correlated 

to academic performance (Zimmerman et al., 2011).  

Pajares and Graham (1999) developed a methodology for quantifying calibration – 

analyzing how much a student underestimated or overestimated their confidence in performing 

the task. Using this methodology, Zimmerman et al. (2011) found that students who 

underestimated their abilities during pre- and post-task measures of confidence tended to have 
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higher academic performance than students who overestimated their abilities. Additionally, they 

saw that students who were conditioned with SRL instruction reported less overconfidence in 

both pre- and post-task confidence than students with standard instruction and were more 

accurate in their assessments of confidence. Students with SRL instruction, instruction focused 

on self-reflection, self-efficacy, and correcting mistakes, reported higher academic achievement 

results than students with the standard instruction. While this may be a result of the testing effect 

(i.e., increased retention due to more frequent testing; Roediger & Karpicke, 2006), analysis 

suggests that high reflectors - students who complete reflection forms more often on their 

quizzes – performed better on exams than low reflectors, after controlling for a pretest 

(Zimmerman et al., 2011). These results suggest that students who self-reflect more have better 

accuracy in confidence measure and these students tend to perform better on exams. Further, 

these self-regulatory skills can be taught to students. 

Measuring SRL 

The most commonly used instrument for measuring SRL is the MSLQ. The MSLQ is an 

81-item self-report questionnaire that evaluates undergraduate students’ motivation and learning 

strategies (Pintrich et al., 1991). Through its 15 subscales, the MSLQ has been used primarily to 

study components of SRL as well as examine the relationship to academic performance (Pardo et 

al., 2016; Pintrich et al., 1993; Pintrich & De Groot, 1990; Zimmerman & Kitsantas, 2014). 

There have also been some novel cases in which the MSLQ has been used to look at how SRL 

relates to interactions with learning management systems (Dabbagh & Kitsantas, 2005; J.-E. Lee 

& Recker, 2017). However, although extensively validated, the MSLQ is not without criticism. 

Two major criticisms are due to the MSLQ being a self-report, which give highly subjective 

responses, and that students need to recall back on previous events to accurately determine levels 
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of engagement in different processes, which can be skewed due to memory (Winne & Perry, 

2000). In addition, finding evidence of SRL outside of such self-reports is non-trivial (Winne & 

Baker, 2013; Winne & Jamieson-Noel, 2002). 

Research suggests that students’ self-reports on study behaviors may reflect how they 

think they should study (Worthley et al., 2016), and that students’ perceptions of what they 

should do does not align with how they actually studied (Winne & Jamieson-Noel, 2002). To 

overcome these issues, Cleary and colleagues (2012) argue that microanalytic protocols 

(questions used to assess self-regulation behaviors during a task) can provide better insight into a 

learner’s self-regulation. They argue that “assessment tools that examine regulatory thought and 

action as they occur in real time during a particular task [have] the potential to provide more 

useful information that can lead to contextualized, individualized interventions for youth who 

struggle in school” (p. 16). Microanalytic protocols alleviate some inaccuracies of self-reports 

due to memory by having subjects reply to questions around SRL during the task, though the 

subjectivity of the respondent can still be problematic. To make aspects of microanalytic 

protocols more objective, I designed online tools to capture observable, measurable events that 

align with SRL competencies while the student engages in preparing for a calculus course. 

Methods 

Data for this study came from a large, predominantly Caucasian western research 

university in the United States during the fall semester of 2016. The course (Calculus I) is large 

multi-section coordinated course with common syllabus, homework, and exams that primarily 

serves students seeking STEM majors, such as engineering, physics, mathematics, statistics, 

computer sciences, and chemistry. Course content includes limits, differentiation, and integration 
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for functions of one variable, much of which is considered foundational content for many STEM 

disciplines.  

Calculus I at the institution has historically had some of the highest rates of failure 

(finishing the course with a grade of D or F, or withdrawing from the course), with failure rates 

between 25% and 43% in the past 10 years. Research conducted at the institution suggests that 

poor study skills and impoverished content knowledge of precalculus may be factors contributing 

to the high failure rates in the course (Reinholz, 2009; Worthley, 2013). Nationally, similar 

findings hold, particularly that weakness with prerequisites for calculus (e.g., algebra, functions, 

and trigonometry) are source of difficulty for many calculus students (Agustin & Agustin, 2009; 

Breidenbach et al., 1992; Carlson, 1998; Carlson et al., 2015; Moore & Carlson, 2012). For 

example, Agustin & Agustin (2009) found that students struggling with first-semester calculus 

tend to have more errors due to precalculus content rather than calculus content.  

For these reasons, the importance of addressing prerequisite deficiencies was stressed to 

the students as being an integral part of the course, as calculus concepts rely heavily on the 

application of precalculus knowledge.  I designed online tools around the self-regulation of 

prerequisite skills for Calculus I, particularly around readiness and remediation of prerequisite 

skills. These online precalculus tools were made available in the first two weeks of the course for 

three primary reasons: (1) to encourage students to revisit precalculus material early in the 

course, (2) to support students in improving vital precalculus skills for the course, and (3) to 

collect data about students’ activity prior to the Exam 1. Reinholz (2009) identified Exam 1 at 

the institution as highly correlated with students’ success in the course, so any attempts at early 

intervention with students would likely need to occur before the fourth week of the course (i.e. 

before Exam 1). By collecting data about students by the second week of the course, analysis of 
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the data presented in this paper could be used to inform future interventions for students that may 

be at-risk of receiving a grade of D of F in the course. I hypothesize that self-regulation practice 

around precalculus material will translate into self-regulation around calculus content and, hence, 

success in Calculus I (Labuhn et al., 2010; Zimmerman et al., 2011; Zimmerman & Schunk, 

2001).  

Data Sources 

To study self-regulation around precalculus remediation, I designed three tools aligned 

with Zimmerman’s three phases of SRL. These tools included a self-assessment (forethought), a 

content quiz (performance), and a post-quiz reflection (self-reflection), all of which were 

optional for the students and made available through the students’ learning management system 

(LMS). 

Precalculus Self-Assessment 

The Precalculus Self-Assessment (PSA) is a 16-item survey asking students to rate their 

confidence in correctly answering precalculus questions on a 5-point Likert scale from 1 to 5 (no 

confidence, little confidence, average, confident, and very confident). By assessing their 

confidence in precalculus topics, the PSA fits into the task analysis component of forethought, 

allowing students to ask themselves how well they think they know precalculus material.  

Precalculus Content Quiz 

Students’ participation in performance phase of SRL was determined by whether or not 

the student took the Precalculus Content Quiz (PCQ). The PCQ is comprised of 12 multiple-

choice and multiple-answer questions about precalculus material essential for Calculus I. 

Precalculus topics for the content quiz and self-assessment included function notation, graphs of 
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functions, simplifying algebraic expressions, solving algebraic equations, basic trigonometry, 

and solving trigonometric equations. A PCQ score was created from students’ responses. 

Multiple choice questions were scored either with zero points (incorrect response) or one point 

(correct response), while multiple answer questions were scored either with zero points (at least 

one incorrect response was selected), 0.5 points (only correct responses were selected, though 

not all responses), or one point (only correct responses were selected, and all correct responses 

were selected). Therefore if a student completed the PCQ, their score could vary between 0 and 

12. 

Upon finishing the PCQ, students received information on what questions they answered 

correctly and incorrectly. When a question was answered incorrectly, immediate feedback was 

provided, though the correct answer was not given. Feedback included the relevant topic(s) 

associated to the incorrectly answered question that the student could review. In addition, links to 

available resources regarding the topic were also provided (see Precalculus Help Resources). 

Data collected from the PCQ by the researchers included student responses to each question. 

This information can provide insight to better understanding students’ self-regulation in the 

performance phase relating to self-control and strategy implementation. 

Precalculus Reflection Tool 

Students were given a five-item survey called the Precalculus Reflection Tool (PRT) 

which was intended to be used after the PCQ. The PRT asked students questions such as ‘What 

topics from the prerequisite content quiz do you plan to study?’ and ‘How do you plan to 

study/practice problems from the prerequisite content quiz material?’. Responding to the prompts 

of the PRT provides evidence that a student is reflecting on his or her performance on the PCQ. 

This behavior indicates that a student may be planning to address possible content weaknesses, 
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though it does not provide evidence of subsequent follow through (i.e. additional forethought and 

performance of the intended task). Such evidence would need to be obtained by tracking student 

access to digital and physical resources related to precalculus. 

Precalculus Help Resources 

To understand whether students were completing the cycle of SRL around preparing for 

Calculus I, data was collected about students’ usage of precalculus help resources (PHR). PHR 

were available both online and in-person formats to support students in improving their 

precalculus knowledge and skills. Online, students had access to a repository of activities and 

videos targeted at precalculus concepts, including the topics in the PSA and PCQ (e.g., 

trigonometric functions, manipulating algebraic expressions, solving algebraic equations, etc). 

To make the use of these digital resources as easy as possible for the students, the repository of 

the precalculus activities and videos was housed in the same system as the students’ online 

Calculus I homework. This online resource was made available to students through their LMS in 

two ways: either through a direct link, or through the links in the generated feedback of the PCQ. 

If a student navigated through the LMS to the online precalculus resources, data was collected 

that identified the student, thus providing information as to whether or not they used the 

precalculus online resources and when they used them. 

In addition to online resources, students could also seek help with precalculus content by 

participating in weekly precalculus workshops. These sessions were free to all students and 

publicized during Calculus I class periods. Students participating in the precalculus workshops 

were asked to work in groups to complete weekly worksheets and activities. The precalculus 

workshops aligned the content begin covered each week with important precalculus concepts that 

were either currently being used in the class or would be needed in the following week. For 
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example, one week before students in Calculus I were scheduled to cover optimization, the 

precalculus workshop focused on methods for finding zeros of functions (e.g., factoring 

binomials, solving trigonometric equations) because identifying zeros of derivative functions is 

one essential technique to identifying critical values of functions. The precalculus workshops 

took place in the same space as the university MTC, which afforded collecting data about what 

students were going to the precalculus workshops.  

Formulating the SRL Score 

Using the data from the online tools, I categorized responses (or lack thereof) within each 

tool as well as resource usage (see Table 2.1). Categories for students’ use of the PSA was based 

on their average responses across the 16 items on the PSA (between one and five), and coded to 

have either high confidence (mean confidence rating greater than or equal to three), low 

confidence mean confidence rating less than three), or did not use the PSA. The threshold of 

three was chosen to distinguish students with high and low confidence because three represented 

average confidence on the PSA, and anything above three would represent above average 

confidence for the particular item. Categories for students’ use of the PCQ was based on the 

number of correct responses they made (i.e. PCQ score) and coded as either high performance 

(PCQ score of eight points or higher), low performance (PCQ score of less than 8 points), or did 

not use the PCQ. The threshold of eight was chosen to distinguish students with high and low 

performance because the median PCQ score was eight. Categories for student’s use of the PRT 

was coded as either used or did not, based on whether or not the student used the PRT. Similarly, 

categories for students’ use of PHR were based on whether or not the student used either 

attended any of the precalculus workshops or whether they accessed the online precalculus 
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resources in the first two weeks of the semester. Students’ usage of the PHR was hence coded as 

either used or did not use.  

Table 2.1: Data Sources Leveraged to Create the SRL Score and How Each Data Source was 

Coded. 

Data Source  Categories for Data Sources 

PSA  High Confidence (Mean Response ≥ 3),  

Low Confidence (Mean Response < 3), or Did Not Use 

PCQ  High Performance (PCQ Score ≥ 8),  

Low Performance (PCQ Score < 8), or Did Not Use 

PRT  Used or Did Not Use 

PHR  Accessed/Attended or Did Not Access/Attend in the First 

Two Weeks of the Semester 

 

After coding student usage of each data source, I considered combinations of tool 

usage/response (e.g., student had high confidence, low performance, but not use PRT) and 

resource categories (e.g., accessed PHR). As a team, two educational researchers (one from the 

mathematics department, and one from the education department) and I then coded each 

combination of usage categories into a 6-point scale (between zero and five) representing the 

strength of evidence that a student was engaging in SRL. It is worth noting that SRL is a process 

that can stretch weeks, semesters, and years, so the SRL score is an early snapshot of the SRL 

process around the task of assessing one’s own precalculus knowledge and potential remediation 

of those skills within the first two weeks of class. 

Through this coarse coding, students’ interactions with the four data sources in Table 2.1 

were coded as one of 36 different combinations of student behaviors, though only 27 

combinations were observed. Each of the observed outcomes were analyzed using Zimmerman’s 
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three phase SRL model. Using the guiding question ‘How appropriately is the student responding 

to the feedback about their impressions on their precalculus abilities?’, students were assigned a 

SRL score of zero, one, two, three, four, or five, with a score of zero indicating no evidence of 

self-regulation and a score of five indicating evidence of a high level of self-regulation. Further, 

the SRL score incorporated the alignment of students’ precalculus confidence (PSA) and 

performance (PCQ), where students’ whom were more accurate in their precalculus mastery 

levels were coded to have higher SRL scores than students who were inaccurate alignment. This 

choice was made in alignment with prior research that suggests that the alignment of student’s 

perceptions and mastery has been found to be a product of SRL training (Zimmerman et al., 

2011). Additionally, students’ PSA was also taken into account in this score, as various studies 

have found self-efficacy to be strongly correlated with academic performance (Honicke & 

Broadbent, 2016; Pajares & Graham, 1999; Pajares & Miller, 1994). A full description of the 

coding scheme is provided in Appendix A.  

Consider Derek. Derek had high confidence (average PSA confidence greater than or 

equal to three) on the PSA and low precalculus performance on the PCQ (less than eight points 

on the PCQ). Further Derek did not use the PRT to reflect on his precalculus mastery, nor did he 

access any of the precalculus resources. Though Derek used both the PSA and the PCQ, he is not 

responding to the prompt from the PCQ suggesting precalculus deficiencies. Using the coding 

methodology for SRL, Derek would receive an SRL score of two, since he is not using the low 

PCQ score as a prompt to revisit precalculus material (See Table 2.2). Additionally, Derek is 

miscalibrated with his precalculus confidence and performance, as evidenced by his perception 

of high ability (i.e. high confidence in precalculus) and low precalculus mastery. If Derek instead 

used the PRT and sought precalculus remediation through either the digital or physical resources, 
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Derek would have received a four on the SRL score, since he would be tending to the feedback 

that his precalculus abilities were insufficient (see “Alternative” Derek in Table 2.2). 

Table 2.2: Resource Usage and SRL Score for Derek and “Alternative” Derek 

Student Coding of for Each Data Source SRL Score 

PSA coding PCQ coding PRT coding PHR coding 

Derek High 

Confidence 

Low 

Performance 

Did Not Use Did Not Use 2 

“Alternative” 

 Derek 

High 

Confidence 

Low 

Performance 

Did Use Did Use 4 

 

Now consider Matilda who used both the PSA and PCQ. She had low confidence on the 

PSA (average PSA confidence less than three), but had high precalculus performance on the 

PCQ (eight or more points on the PCQ). Since Matilda proved sufficiently strong with 

precalculus material, she decided not to reflect on her score nor seek precalculus remediation so 

that she could spend more time on courses in which she was having more difficulty such as 

chemistry. The way Matilda engaged with the tools shows appropriate actions given her 

background, and she therefore received an SRL score of four (see Table 2.3). Matilda did not 

receive a five because she was miscalibrated in her precalculus abilities and she had low 

confidence. Even if Matilda were to seek help or reflect on her PCQ score, Matilda would still 

receive a four since her abilities and confidence regarding precalculus material are still 

miscalibrated (see “Alternative” Matilda in Table 2.3). Only by having higher confidence in her 

abilities as well could she receive an SRL Score of five. 
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Table 2.3: Resource Usage and SRL Score for Matilda and "Alternative" Matilda 

Student Coding of for Each Data Source SRL Score 

PSA coding PCQ coding PRT coding PHR coding 

Matilda Low 

Confidence 

High 

Performance 

Did Not Use Did Not Use 4 

“Alternative” 

 Matilda 

Low 

Confidence 

High 

Performance 

Did Use Did Use 4 

 

Lastly consider the different student, Jay. Jay engaged with none of these optional tools 

and accessed none of the precalculus resources (did not use the PSA, PCQ, PRT, nor PHR). 

Though he may have been remediating his precalculus knowledge via tools and resources that 

were not being monitored, there was no evidence to indicate this due to the lack of engagement 

with the provided tools and resources. Therefore, Jay would have an SRL score of zero (see Jay 

in Table 2.4). 

Table 2.4: Resource Usage and SRL Score for Jay 

Student Coding of for Each Data Source SRL Score 

PSA coding PCQ coding PRT coding PHR coding 

Jay Did Not Use Did Not Use Did Not Use Did Not Use 0 

 

Data Collection and Analysis 

In addition to data gathered to compute the SRL score for each student, I collected data 

about students’ exam scores, online Calculus I homework access, MTC attendance, and final 

course grades. Many students enrolled in the course need to obtain a grade of ‘C’ or better in the 

course to satisfy their program of study. Hence, ‘success’ in Calculus I was defined by a final 

letter grade of A, B, or C, and grades of D and F were classified as ‘failure’. 
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Table 2.5 presents the distribution of SRL scores across the 376 consenting students with 

the failure rate for each group, that is the percentage of students who completed the course with a 

grade of D or F. The same data is also shown for the subset of students that were considered 

disengaged in the course, that is students who did not access the Calculus I online homework 

system nor visit the university MTC for help in the Calculus I course as of week four (prior to 

the first exam). Note that for this particular semester, the online homework for the entire course 

was due at the end of the semester, so students who had not yet accessed their online homework 

did not lose any points in the course. Data from this analysis is provided in Table 2.5. For 

example, of the 64 students who received an SRL score of three, 31.2% of those students 

received a grade of D or F. Of these 64 students, 23 of these students were identified as being 

disengaged with the course, and 52.2% of these disengaged students received a grade of D or F. 

Table 2.5: Summary Statistics for SRL Score Within Two Group of Consenting Students: All 

Students and All Disengaged Students. 

 All Students Enrolled in Calculus I Disengaged Students in Calculus I 

SRL Score Number of Students Failure Rate Number of Disengaged  

Students 

Failure Rate 

0 

1 

2 

3 

4 

5 

32 

50 

18 

64 

104 

108 

46.9% 

32% 

27.8% 

31.2% 

24% 

17% 

20 

16 

6 

23 

29 

23 

60% 

56.2% 

16.7% 

52.2% 

31% 

21.7% 

Total 376 26.3% 117 41% 
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Within both of these groups, failure rates tend to decrease as students SRL score 

increases (with the exception of those with an SRL score of two), and the disengaged students 

are of higher risk of failing than for all students. 

Table 2.6 provides data comparing the various academic performance measures of two 

groups of students: those who had ‘high’ SRL scores (three or larger) and low SRL scores (less 

than three). This comparative analysis was conducted for all consenting students (n = 376), as 

well as with the subpopulation of consenting students that were considered disengaged (n = 117).  

When considering all consenting students, spearman’s non-parametric correlation reported 

statistically significant differences between students with high and low SRL scores on all course 

exams and the final course grade, with r(374) > 0.14 and p < 0.005 for all correlations. Positive 

correlation coefficients suggest that students with high SRL scores have higher mean rank on all 

exams and the final course grade compared to students with low SRL scores. According to 

Cohen (1988), the effect sizes of this difference are small. 

Table 2.6: Spearman’s Correlation Between Students with High and Low SRL Scores in 

Academic Performance Within Two Group of Consenting Students: All Students and All 

Disengaged Students. 

Performance Variables Spearman’s correlation for  

all students (n = 376) 

Spearman’s correlation for 

disengaged students  

(n = 117) 

Exam 1 

Exam 2 

Exam 3 

Final Exam 

Course Grade 

r(374) = 0.14 

r(374) = 0.16 

r(374) = 0.17 

r(374) = 0.19 

r(374) = 0.23  

p = 0.005 

p = 0.002 

p = 0.001 

p = 0.0001 

p < 0.0001 

r(115) = 0.29 

r(115) = 0.36 

r(115) = 0.36 

r(115) = 0.38 

r(115) = 0.35 

p = 0.002 

p < 0.0001 

p < 0.0001 

p < 0.0001 

p < 0.0001 

Total 376 26.3% 117 41% 



 31 

When considering only students that were considered disengaged with the Calculus I 

course early in the semester, Spearman’s non-parametric correlation reported statistically 

significant differences between students with high and low SRL scores on all course exams and 

the final course grade as well, with r(115) ≥ 0.29 and p ≤ 0.002 for all correlations. Positive 

correlation coefficients suggest that disengaged students with high SRL scores have higher mean 

rank on all exams and the final course grade compared to disengaged students with low SRL 

scores. According to Cohen (1988), the effect sizes of this difference are medium. 

Lastly, I compared mean SRL scores with across two measures: students’ behavior in the 

Calculus I course with (1) online homework and (2) help seeking in the MTC. Data across these 

groups is provided in Table 2.7, below.  

Table 2.7: Mean SRL scores of Students According to Online Homework System Usage and 

Mathematics Tutoring Center Usage. 

 Online Homework System Usage  

Used Did not use Total 

MTC 

Usage 

Visited 3.60 (n = 50) 3.16 (n = 25) 3.45 (n = 75) 

Did not Visit 3.52 (n = 184) 2.81 (n = 117) 3.24 (n = 301) 

 Total 3.54 (n = 234) 2.87 (n = 142) 3.28 (n = 376) 

 

Of these four groups, the disengaged students (i.e., those who had not been to the MTC or 

worked on their Calculus I course online homework as of week four) had the lowest mean SRL 

score (2.81), while students who both sought help and used the online homework had the highest 

mean score (3.6). Those who only worked on online homework had slightly higher mean SRL 

score (3.52) than those who only sought help (3.16). A Kruskal-Wallis non-parametric test 

verified that these four behavioral groups differ in mean rank SRL score, χ2(3) = 15.0625, p = 
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0.013. Post Hoc Dunn’s test with FDR correction revealed that the mean rank of disengaged 

students is statistically lower than students who only engage in the Calculus I online homework 

before Exam 1, z = -3.67, p = 0.0018, r = 0.21. This provides some evidence that the SRL score 

is capturing evidence of students’ self-regulation. 

Discussion 

These findings show promise for being able to use an SRL framework to develop tools 

that measure the degree to which students’ behaviors are suggestive of SRL. Using these tools, I 

discussed a method for generating SRL scores for students by analyzing their behaviors, 

specifically those around prerequisite remediation and readiness for Calculus I. This was 

achieved by leveraging data from students’ interactions with online tools aimed to support 

students in preparing for Calculus I through assessing their precalculus content knowledge. In 

addition to capturing data about students’ SRL around precalculus material, I hypothesize that 

this score would be indicative of students’ SRL around calculus material in the course.  

In addition to measuring evidence of students’ engaging with SRL, the SRL score 

particularly seems to benefit identification of which disengaged students may be at-risk of failing 

Calculus I. The relationship between the SRL score and academic performance metrics suggests 

that more self-regulatory behaviors around prerequisite material correlate with higher course 

performance, which aligns with what is seen in the literature (Labuhn et al., 2010; Zimmerman et 

al., 2011; Zimmerman & Schunk, 2001). Assuming that students who act in a self-regulated way 

around prerequisite material will act in a self-regulated way in the course, one would expect the 

positive effects from self-regulating one’s learning in the beginning of the semester to compound 

as the semester progresses, which would agree with these stronger statistical relationships with 

later exams found in the data.  
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Additionally, the relationship between the SRL score and achievement in Calculus I 

grows stronger when considering only those students who are disengaged with Calculus I before 

their first exam. Students who are disengaged but have a higher SRL score tend to have higher 

success rates in the course than those who are disengaged with lower SRL scores. Similarly, 

when looking across all students (not just those who are disengaged), students who have higher 

SRL scores tended to be successful in Calculus I (i.e. receiving a grade of A, B, or C) on 

average, providing additional evidence of benefit of self-regulating one’s own learning 

(Broadbent & Poon, 2015).  

The SRL score provides a metric for those in positions to support students (e.g., 

instructors, course coordinators, administrators) to begin identifying students who may be at-risk 

of failing a course. For example, this study used a threshold of three on the SRL score to 

categorize students who provided evidence of self-regulating to a ‘high’ or ‘low’ degree. This 

work found differences in Calculus I course success can potentially be detected early. Such 

analysis can be done with all students but seems to be even more telling for students that are 

disengaged. With information about students’ self-regulation around precalculus remediation, 

instructors can potentially intervene with students before their behaviors and poor study habits 

negatively impact their mathematical understanding and course performance. Such interventions 

could involve focusing on students’ calibration of content knowledge, promoting available 

academic supports such academic help centers, or enrolling in a single credit course where 

students learn about SRL and apply this process throughout their courses.  

Limitations and Future Direction 

In the present work, the presence of the different phases of SRL was determined by 

whether or not the students used the designed online tools. This method relies on students’ 
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understanding the purpose for each tool and makes the assumption that lack of use is a conscious 

effort to avoid the tool and the associated SRL phase. Students were informed of the reasoning 

for the online resources in place during recruitment for the study, so it is unlikely that students 

used the online resources for other reasons, however, I recognize students whom are engaging in 

the SRL process may not be using the provided tools, and hence would have lower SRL scores 

that are accurate. The SRL score only measures the degree to which students engage in behaviors 

suggestive of engaging with SRL for which evidence is available. To begin providing evidence 

for other means of remediating, open-ended surveys could be implemented asking students what 

resources they currently utilize, and what resources they plan to use throughout the semester. 

This would provide an avenue for hypothesizing whether or not students use resources whose 

usage are not monitored. 

To further improve the reliability of these resources, I plan to adjust the tools in three 

ways: (1) merge multiple tools into one, (2) provide options where students can skip to particular 

aspects of the tools, (3) utilize data in the PRT to inform the SRL score, and (4) include 

questions about students strategy usage when engaging with the PCQ. The first adaptation would 

both encourage students to engage in the SRL cyclic process, so that fewer tools can be used to 

capture an entire SRL cycle. By providing options whereby students can bypass questions, tool 

usage can begin to provide evidence of students actively avoiding a phase of self-regulation. 

Incorporating more data from students’ responses (such as from the PRT) in the SRL score 

would afford making a more nuanced metric, where, for example, data can be used to determine 

if a student is following through with their plans. Another means to improve the reliability of the 

SRL score would be to pose questions regarding how students navigated through the PCQ to 
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better understand how they are self-regulating during the performance phase of SRL, such as by 

implementing strategies.  

Another future direction for the present work is to continue SRL analysis throughout the 

semester around different tasks in Calculus I, such as around exam preparation. The SRL score 

described in this paper is a snapshot of the degree to which students are engaging in SRL during 

the Calculus I course. By including additional resources throughout the semester, the SRL score 

presented in this paper can act as an initial SRL score, which can be updated as students engage 

with other online tools in self-regulated ways. By measuring SRL throughout the semester, 

temporal aspects of students’ self-regulation may vary throughout the semester, and these 

changes can be investigated and correlated with students’ success. 

Based on student interactions with online tools and external resources, I am gaining 

insight in the role SRL plays in students’ resource usage. While this data combined with the SRL 

framework is informing modification, enhancements, and additional of online tools, the method 

does not take into account the student perspective. I believe that this evidentiary approach is a 

strength of this work, however conducting interviews with students (e.g., using Zimmerman and 

Martinez-Pons’ (1986) structured interview protocol) affords triangulating what I am seeing in 

the data with other qualitative methods for measuring SRL. Student interviews would provide an 

opportunity to better understand other ways students engage in the course as well as validate our 

quantitative findings. Additionally, SRL scores in conjunction with qualitative interview data can 

then inform intervention support to improve student success in Calculus I. For example, 

educators and departmental leaders could present students with the data that identified them as 

at-risk. Students could provide their opinion on their own actions indicated in the data, and the 

interviewers and students could discuss productive ways for the student to proceed in the course 
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and be successful. With the quantitative and qualitative data, departments can suggest to students 

an array of support mechanisms for each student that has been identified as at-risk.  
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Chapter 3 - Paper 2: Improving Effectiveness of Help-Seeking: A Study Supporting Student Success in Calculus I 
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Calculus I is a vital mathematics course for many STEM disciplines, providing 

foundational tools for studying the discipline and being a requirement for graduation. Low pass 

rates in college calculus courses have been documented in the literature for decades (Blair et al., 

2013; President’s Council of Advisors on Science and Technology (PCAST), 2012; Sonnert & 

Sadler, 2014; Steen, 1987), giving the Calculus I course the title ‘gatekeeper’ or ‘filter’ for 

college STEM disciplines. Many efforts have been made to improve course content (Thompson 

& Ashbrook, 2019) and to identifying particular aspects of successful calculus programs 

(Bressoud et al., 2013, 2015; Bressoud & Rasmussen, 2015; Hagman, 2019). While efforts for 

improvement vary in aim and scale, the importance of improving undergraduate calculus and 

students’ success in the course is clear. 

Factors Related to Success in Undergraduate Mathematics 

Frequently cited reasons for student difficulty in Calculus I include prior mathematical 

success, prerequisite knowledge, and student preparedness for college calculus courses (Agustin 

& Agustin, 2009; Carlson et al., 2015; Carlson, Oehrtman, et al., 2010; Champion & Mesa, 

2018; Murray, 1931; Sadler & Sonnert, 2018; Sonnert & Sadler, 2014). Almost a century ago, 

Murray (1931) identified that many students enrolled in calculus have difficulty with fractions, 

algebra, radicals, and exponentials. Additional research suggests that students’ difficulties with 

precalculus content continue to hinder students’ success in Calculus I. Agustin and Agustin 
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(2009) provide evidence that students struggling on exams in Calculus I course may be 

struggling with precalculus content to a higher degree than calculus content. They found that 

students struggling on Calculus I exams tended to lose more points on computational problems 

from mistakes on precalculus content than from mistakes on calculus content. Sonnert and Sadler 

(2014) suggest that while there is doubt as to whether taking a precalculus course improves the 

success of students enrolled in subsequent calculus courses, students’ mathematical preparation 

for college calculus courses is correlated with success. Sadler and Sonnert (2018) further found 

that a high level of mastery of prior mathematical content can improve a student’s predicted 

success in calculus by double what can be expected from having taken calculus in high school. 

All of these results highlight the importance of a high level of mastery in precalculus content 

when entering undergraduate calculus.  

Mathematics content knowledge is not the only reason students may have difficulty in 

undergraduate calculus, however. Students must be motivated to learn course content and, if 

necessary, re-evaluate their content knowledge to determine whether they need to enrich 

impoverished understandings of present and past content. Studies have found that students’ 

motivation and dispositions towards learning a content area can be related to success in 

mathematics (Champion, 2009; Ironsmith et al., 2003; McKenzie et al., 2004; Pajares & Graham, 

1999; Pajares & Kranzler, 1995; Pajares & Miller, 1994; Pintrich & De Groot, 1990; Thanheiser 

et al., 2013; Worthley et al., 2016). Ironsmith and colleagues (2003) found that students who 

were more confident tended to perform better in developmental mathematics courses, and that 

students whose goals for the course were learning based performed better than students whose 

goals were performance based. Conversely, overconfidence in mathematical judgments can 

hinder students’ performance through avoidance of beneficial practices such as help-seeking 
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(Ferla et al., 2010). Even with prospective elementary teachers, Thanhesier and colleagues 

(2013, 2014) found that preservice teachers believed that their procedural understanding of 

mathematics was sufficient for teaching elementary mathematics students, and thus viewed 

mathematics content courses as superfluous and “annoying prerequisites” (2014, p.234).   

Students who are entering Calculus I may view reviewing ideas from precalculus and 

algebra similarly to those prospective teachers. Having already passed a precalculus course, 

students have some evidence that they are sufficiently prepared for Calculus I. However, 

students’ perceived preparation may not be as accurate as they believe in the beginning of the 

course.  The Insights and Recommendations from the MAA National Study of College Calculus 

suggests a similar story with students enrolled in calculus: Bressoud (2015) reports that while 

81% of the 7440 university students believed they were ready for college calculus, only 56% of 

the 3664 students who passed the course reported (after completing the course) that they had 

been prepared for calculus at the beginning of the semester. These findings point to a 

discrepancy between students’ preparedness for calculus and students’ perceived preparedness 

for calculus. The alignment of one’s perceived mastery and observed mastery of a content area is 

called calibration.  

This paper aims to understand the role of calibration of Calculus I students’ prerequisite 

content knowledge with success in Calculus I, as well as calibration’s role in the effective use of 

a calculus help center (CHC).  Specifically, this paper aims to answer the following questions:  

1. How do students’ calibration of precalculus content relate to their first exam scores in 

a Calculus I course?  

 

2. How does students’ calibration of precalculus content and in-person help-seeking at a 

mathematics learning centering together relate to their first exam scores in a Calculus 

I course? 
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Literature Review 

To refine the research questions of this study, I will first discuss metacognition to 

highlight how calibration fits into the larger theory of metacognition. I then describe calibration, 

highlighting some key findings in the literature, as well as how calibration has been measured in 

the past. To connect calibration to help-seeking, I then discuss tutoring centers in mathematics to 

connect help-seeking with student success, concluding with the specific research sub-questions 

addressed in this study. 

Metacognition 

Metacognition is often characterized as knowledge of what one does and does not know. 

While used by many researchers (e.g., Flavell, 1979; Garofalo & Lester, 1985; Pintrich, 2002; 

Schoenfeld, 1992; Schraw, 1998), metacognition is often described in terms of two interrelated 

components: knowledge of cognition and regulation of cognition. Knowledge of cognition is 

described as what one knows, while regulation of cognition describes in what ways one acts or 

cognitively processes information (Garofalo & Lester, 1985). Metacognitive knowledge (a 

component of knowledge of cognition) is described in terms of three variables: the person, the 

task the person is engaging in, and the strategies the person can use during the task (Flavell, 

1979; Pintrich, 2002). Self-knowledge is a particularly important aspect to metacognitive 

knowledge with regard to academic success (Pintrich, 2002). For example, a student may 

understand that their content knowledge on solving quadratic equations is sufficient for an 

upcoming exam, while their knowledge of graphing quadratic functions is inadequate. This 

assessment of one’s knowledge may cue the student to enact strategies (such as reading a 

textbook or self-testing) to improve their knowledge about graphing quadratic equations prior to 

the upcoming exam. For this reason, metacognitive knowledge is important for learning and 
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student achievement. Without accurate self-knowledge however, a student may not recognize 

what content they have not yet mastered, thereby limiting cues to improve one’s content 

knowledge. 

Calibration 

When considering the student who judged their determined that their knowledge of 

graphing quadratic functions as insufficient for an upcoming exam, they are drawing on their 

metacognitive knowledge to determine when and how to regulate their cognition, and it is vital 

that the student’s self-knowledge/judgment is accurate (Pintrich, 2002). Calibration can be 

thought of as a component of metacognitive knowledge, as calibration is the degree of alignment 

between a person’s judgment of their performance on a task and their actual performance on the 

task (Bol & Hacker, 2001; Labuhn et al., 2010; Winne & Jamieson-Noel, 2002). Research 

suggests that calibration is correlated with student success (Bol & Hacker, 2012; Champion, 

2009; Kline & Dibbs, 2018; Labuhn et al., 2010; Pajares & Graham, 1999; Pajares & Miller, 

1994; Schraw et al., 1993; Sheldrake et al., 2014; Tian et al., 2018). Recent work by Wakefield 

and colleagues (2018) suggest that data about students’ prior mathematical ability, such as high 

school rank and standardized mathematics exam scores, in conjunction with a local course 

readiness activity for a given course can be used to help identify students’ risk of failing the 

course. The local readiness activity described involved a precalculus content quiz, which 

students could then retake to earn a better score. By looking at students’ success with the 

readiness activity, the researchers were also gathering information related to students’ 

motivation, current mastery of prior content, and productive reactions to cues about insufficient 

content knowledge (as determined by scores on the course readiness quiz). By retaking the quiz, 
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students are likely adjusting their inflated perceptions of mastery for particular material based on 

their feedback from prior quizzes in order to identify content areas that warrant review 

When looking at undergraduate students enrolled in developmental and introductory 

mathematics courses, Zimmerman and colleagues (2011) found that students who underestimate 

their abilities tended to perform better than students who overestimate. They found that while an 

instructional intervention did not seem to decrease students’ tendency to overestimate their 

abilities, they did find evidence that an intervention focusing on self-reflection may help students 

become more accurate in their self-judgments. This work provides evidence that students’ 

calibration (and metacognitive monitoring) is teachable (Desoete & De Craene, 2019; Ramdass 

& Zimmerman, 2008; Shilo & Kramarski, 2019). Research suggests that calibration is correlated 

with student success (Bol & Hacker, 2012; Champion, 2009; Kline & Dibbs, 2018; Labuhn et al., 

2010; Pajares & Graham, 1999; Pajares & Miller, 1994; Schraw et al., 1993; Sheldrake et al., 

2014; Tian et al., 2018). In addition, research suggests the relationship between student 

achievement and metacognitive knowledge (e.g., calibration) may be mediated by self-efficacy 

(Tian et al., 2018).  

Measurement of Calibration 

The calibration literature has generally found that students who are either more accurate 

in their perceptions or tend to underestimate their abilities have higher achievement on average 

than those who are less accurate or tend to overestimate (Bol & Hacker, 2012; Champion, 2009; 

Kline & Dibbs, 2018; Labuhn et al., 2010; Pajares & Graham, 1999; Pajares & Miller, 1994; 

Schraw et al., 1993; Sheldrake et al., 2014; Tian et al., 2018). This is found by measuring 

calibration in terms of two measures: calibration accuracy and calibration bias. Calibration 

accuracy describes magnitude of the difference between the perception of mastery and the 
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observed mastery, while calibration bias describes the degree to which the perceptions of 

mastery are higher than their actual mastery or the direction of the judgement errors (Bol & 

Hacker, 2012; Labuhn et al., 2010; Pajares & Graham, 1999). Calibration bias is often used to 

quantify the degree to which students overestimate (positive calibration bias) or underestimate 

(negative calibration bias) their abilities, while calibration accuracy describes the magnitude of 

these underestimations and overestimations. Methods for collecting data around calibration have 

varied through the literature (Lingel et al., 2019), though they all involve (a) a measure of 

students’ self-efficacy beliefs (or judgments of confidence to successfully perform a task; 

Bandura, 1997) for correctly answering a type of question and (b) observations of students’ 

performance on a task . Further variance in measurement of calibration can come from the means 

of data collection regarding students’ self-efficacy judgements (e.g., question format, predictions 

vs. postdictions), as well as how calibration is computed from this information.  

As an example, we describe a method for computing these measures of calibration bias 

and accuracy described by Pajares and Graham (1999), and implemented many times in the 

literature (e.g., Labuhn et al., 2010), using measures of self-efficacy to correctly answer items on 

a quiz (a prediction), and whether or not the student correctly answers the items. This 

methodology informs the methods used in the study presented in this paper. 

In this method, students are given multiple-choice mathematics questions, where prior to 

solving each mathematics questions, students’ must rate their self-efficacy for answering the 

preceding mathematics questions correctly. Measures of students’ self-efficacy (called their 

prediction scores) are then averaged across all items to create an average self-efficacy score. 

Students’ performance on each item is then scored along the same scale as the self-efficacy 

score. For example, if self-efficacy could range from 1 to 7 on each item, then the student 
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students’ performance on each item would be scored from 1 (incorrect) to 7 (correct). Calibration 

bias is then computed by subtracting the performance score from the self-efficacy score, giving a 

scale centered at 0 (e.g., a scale from -6 to 6). Calibration accuracy is then computed by 

computing the absolute value of calibration bias and reversing the resulting scale. For example, if 

calibration bias ranges from -6 to 6, then subtracting the absolute value calibration bias from 6 

would produce a scale from 0 to 6. Using this method, high values in calibration accuracy 

correspond to values of calibration bias near 0 and low values of calibration accuracy correspond 

to values of calibration bias that are far farther from 0.  

This method of calculating calibration bias and accuracy can be summarized as follows: (a) 

an item-wise calibration bias by subtracting the students true score from the students predicted 

score, (b) the calibration bias by averaging the item-wise calibration biases, and (c) the 

calibration accuracy by computing the absolute value of the averages of the item-wise calibration 

biases as described in Table 3.1. 

Table 3.1: A Description of Measures of Calibration Bias and Accuracy Used in the Literature 

Measure Computation 

Calibration Bias  

(Item-wise) 
Observed Score – Predicted Score 

Calibration Bias 

(General) 
Average of (Item-wise) Calibration Bias 

Calibration Accuracy 

(General) 
Absolute Value of (General) Calibration Bias 

 

This perspective recognizes the individual biases that students have on each question (here, 
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called item-wise calibration bias). By averaging students’ item-wise calibration bias, one loses 

variance in one’s judgments that may be present across various content. For example, a student 

who has maximal calibration bias on half of the content items and minimal calibration bias on 

the remaining half would have general calibration bias of 0, hence giving a maximal general 

calibration accuracy. This measure of calibration accuracy would seem to suggest that the 

student would show perfect accuracy on their self-efficacy judgments, however this measure is 

misrepresentative as the student has been wrong across all self-efficacy judgments. The accuracy 

of a student’s self-judgments is important for their learning as these perceptions likely indicate to 

the student whether their mastery is sufficient for their coursework or inadequate, thereby cueing 

the student to improve their content knowledge through studying or seeking help with an 

instructor or at an institutional tutoring center. 

Tutoring Centers 

 Tutoring centers have been described as an important resource for students enrolled in 

undergraduate mathematics course. The Characteristics of Successful Programs in College 

Calculus project identified tutoring centers and support mechanisms for students as one of seven 

characteristics of successful programs common among the studied programs (Bressoud & 

Rasmussen, 2015). The researchers found tutoring centers provides support for students 

struggling with course work and can provide a community for students. Additional evidence 

suggests that students who visit tutoring centers are expected to have higher exam and course 

outcomes (Byerley et al., 2018; Rickard & Mills, 2018). Byerley and colleagues (2018) found 

that after controlling for incoming ability and other factors, university students enrolled in 

Calculus II who visit a tutoring center more frequently are more likely to pass the course than 

students who visit the center less. Rickard and Mills (2018) reported a similar finding that 
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university students enrolled in Calculus I who visited the testing center more frequently tended to 

have a higher course grade score than students who had visited the tutoring center less 

frequently. Further, Rickard and Mills provide some evidence for differential effects for students 

visiting the tutoring center. When predicting final grades using ACT math scores, visits to 

tutoring center, high school math GPA and an interaction effect between visits to tutoring center 

and high school GPA, the resulting multiple regression model accounted for 35% of the variance 

of final scores. The interaction effect between visits and high school GPA alone accounted for 

3.5% of the variance in the final scores in Calculus I, which would suggest that students with 

lesser high school math GPA are expected to benefit from help-seeking at a tutoring center more 

than higher achieving students.  

Like Byerley et al. and Rickard and Mills, this study also examines differential effects of 

visiting tutoring center, but instead looks at how students’ calibration may mediate the impacts 

of visiting the tutoring centers. From a metacognition perspective, visiting a tutoring center can 

support students as they attempt to regulate their cognition. Metacognition theory (Flavell, 1979; 

Pintrich, 2002) anticipates the possibility of interactions between visiting a tutoring center and 

one’s calibration, and the present study aims to better understand the relationship between 

calibration, visiting a help center (or help-seeking more generally), and academic achievement.  

Research Questions 

In light of the research on metacognition, calibration and help-seeking, the overarching 

research questions were operationalized by using calibration bias and calibration accuracy to 

measure students’ calibration. The following research questions and sub-questions are hence 

addressed: 



 47 

1. How do students’ calibration of precalculus content relate to their first exam in a Calculus 

I course? 

 

a. How do students’ calibration bias and calibration accuracy of precalculus content 

at the beginning of a Calculus I course relate to students’ first exam scores? 

 

b. How do students’ calibration bias and calibration accuracy of precalculus content 

at the beginning of a Calculus I course relate to students’ first exam scores after 

accounting for incoming mathematical mastery? 

 

2. How does students’ calibration bias and calibration accuracy of precalculus content at the 

beginning of a Calculus I course and in-person help seeking at a calculus help center in a 

Calculus I course relate to their first exam score in the Calculus I course? 

 

a. How do measures of calibration bias and calibration accuracy mediate the 

relationship between students’ performance on the first exam and students’ 

number of attendances to the calculus help center? 

 

Methods 

Data for this study came from a first-semester calculus course (Calculus I) at a large, 

predominantly white, western university in the United States during the fall semester of 2016. 

The course reported in this study is one of three courses that could be considered a first-semester 

calculus courses available to students at the institution. The particular course primarily serves 

students seeking STEM majors, such as engineering, physics, mathematics, statistics, computer 

sciences, and chemistry. The other Calculus I courses offered at the university are specific for 

biology students and business students. The course is a large multi-section coordinated course 

with common homework, exams, and final exam. For brevity, this course will be referred to as 

Calculus I. Data for this study were collected as a part of a larger study investigating 

relationships between students’ activity during the course and pass rates. Data regarding 

students’ use of particular resources and prior mathematical knowledge were used to conduct a 

hierarchical regression analysis to both control for students’ incoming ability and examine the 

relationships of calibration and help-seeking with Exam 1 performance. 
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Data Sources 

In the first two weeks of the Calculus I course, all students had the opportunity to engage 

with a variety of online resources built and housed in their learning management system. All 

resources were optional and only available in the first two weeks of the course. Availability for 

the resources was staggered to suggest a particular sequence of engagement with the resources. 

Each resource focused on precalculus concepts that were deemed important for success in 

Calculus I, as determined by the local course-coordinator and experienced instructors of the 

course. Students who engaged with all of the resources (1) responded to a questionnaire about 

their perception of mastery of precalculus content, (2) completed a quiz on precalculus content, 

and (3) responded to a questionnaire regarding their plans to potentially remediate their 

mathematical skills and understandings of precalculus content. During the recruitment for this 

study, students were informed of the online resources made available to them through their 

learning management system, as well as the purpose of them. While students were encouraged to 

use these online resources, students were explicitly told that the resources were optional and that 

students’ use or non-use of the resources did not directly impact their course grade. To address 

the research questions for this study, data from two of the online resources were used to measure 

students’ calibration bias and accuracy of precalculus content, namely the precalculus self-

assessment and the precalculus content quiz. 

Precalculus Self-Assessment 

 The first tool available to the students was a survey asking students to rate their 

confidence in precalculus self-assessment (PSA). This was an optional 16-item assessment where 

students were asked to rate their ability to answer an item about particular precalculus concepts 



 49 

correctly on a 5-point Likert scale from 1 to 5 (no confidence, little confidence, average, 

confident, and very confident).  

Precalculus Content Quiz 

 The next resource that became available to students was a precalculus content quiz 

(PCQ). This 12-item optional quiz asked students a variety of questions vital to precalculus. 

Question types on the precalculus content quiz were either multiple choice (nine questions) or 

multiple answer (three questions). Multiple-choice questions were either marked as correct or 

incorrect, while multiple-answer questions were marked as either incorrect (at least one incorrect 

response was selected), partially correct (only correct answers were selected, though not all of 

them), or correct (all correct answers were selected, and no incorrect responses were selected).  

The PCQ and PSA were developed in the previous academic year and was refined 

through the fall semester of 2016. Content for the PCQ was based on past instructors’ 

experiences with students, common mistakes from students’ work on past exams, and the course 

coordinator’s expertise in the area. Precalculus topics for the PCQ and PSA included function 

notation, graphs of functions, simplifying algebraic expressions, trigonometry, and solving 

algebraic and trigonometric equations. Unlike the PCQ, the PSA was intended to ask students to 

make judgments about their mastery of content related to the PCQ but asked more generally.  

Incoming Mathematics Mastery 

 Student’s American College Test (ACT) Math scores and Scholastic Aptitude Test 

(SAT) Math scores were requested and collected from the university’s institutional research 

group. For students without an SAT Math score, their ACT Math score was converted to the 

SAT Math equivalent score (Dorans, 1999). For those students who had both SAT Math and 
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ACT Math scores, ACT Math scores were converted to SAT Math equivalent scores and the 

maximum of the SAT Math and the SAT Math equivalent scores were used as the student’s 

SAT/ACT Math score in the analysis. Students whose SAT Math and ACT Math scores were 

not available were omitted from the study. 

Calibration Bias and Calibration Accuracy Scores 

Items on PSA and PCQ were not intended to match identically. One reason for this was 

to limit the number of mathematical questions on the PCQ. It was hypothesized that adding more 

questions on the PCQ would reduce the number of students that would voluntarily complete it. 

Another reason the PSA and PCQ items did not match identically was due to similarities in ideas 

on PSA items. For example, two items on the PSA asked students to rate their confidence in 

recognizing incorrect polynomial expansion (PSA item 4, see Figure 3.1) and incorrect factoring 

(PSA item 5, see Figure 3.2) in someone’s work. However when examining whether such an 

error has been made, in for example the statement (" − 3)! = "! − 9	(PCQ item 3, see Figure 

3.3), the error made could be viewed as either incorrect polynomial expansion or factoring. To 

reduce redundancy and the number of items in the PCQ, only one item (PCQ item 3, see Figure 

3.3) was used. 

 



 51 

Figure 3.1: Item 4 on the PSA 

Figure 3.2: Item 5 on the PSA 

Figure 3.3: Item 3 on the PCQ 

When using items on the PCQ and the PCA to measure calibration bias and calibration 

accuracy, a process of mapping PSA items to each PCQ item was developed. Items on the PSA 

were assessed as to how relevant the content area of the PSA item aligned with each item on the 

PCQ. For each PCQ item, PSA items were coded as either not related to the content quiz item 

(coded as 0), partially related to the content quiz item (coded as 1), or strongly related to the 

Q5: How confident are you that you can recognize the following errors in 

someone’s work? 

  Incorrect factoring 

(1) No Confidence, (2) Little Confidence, (3) Average Confidence,  

(4) Confident, (5) Very Confidence 

Q3: The statement (" − 3)! = "! − 9 is: 

 

(a) Correct, (b) Incorrect, or (c) I don’t know 

Q4: How confident are you that you can recognize the following errors in 

someone’s work? 

  Incorrect polynomial expansion 

(1) No Confidence, (2) Little Confidence, (3) Average Confidence,  

(4) Confident, (5) Very Confidence 
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content quiz item (coded as 2). As many topics in mathematics are related, this coding method 

was intended to capture additional relationships between each PCQ item and items on the PSA 

that were not initially intended during the creation of the assessments. The author and the course 

coordinator coded the relationships between each PSA item and each PCQ item independently 

and discussed each code until agreement was reached.  

For example, item 1 on the PCQ is provided in Figure 3.4.  This item focuses on graphing 

and function notation, and hence was related to items 1, 2, 3, 15, and 16 on the PSA. Of those 

items, question 15 on the PSA was determined to have a strong relationship with item 1 on the 

PCQ. Hence the relationship between item 1 on the PCQ and item 15 on the PSA was coded as 

‘2’, while the relationship between item 1 on the PCQ and items 1, 2, 3, and 16 were coded as 

‘1’. The relationship between item 1 on the PCQ and other items on the PSA were coded as ‘0’.  

The relationships between the PSA items and PCQ items are summarized in Appendix B.  

 

Figure 3.4: Item 1 on the PCQ 

Q1: Consider the function g(x) = −3x + 2. 

What does g(2) represent? (Mark all that apply) 

a. The function gets multiplied by 2. 

b. The function evaluated at 2. 

c. The y-value on the graph of the function with x-coordinate 2. 

d. The x-value on the graph of the function with y-coordinate 2. 

e. The height of the graph of the function at " = 2. 

f. The distance between the graph of the function at " = 2 and the x-axis. 

g. The distance between the graph of the function at " = 2 and the y-axis. 

h. The slope of the graph of the function at " = 2. 

i. −3(2) + 2.	
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For each PCQ item, a weighted average of each student’s responses to the PSA items was 

computed to create a confidence score. This weighted average was based on the coded 

relationships between the PSA and PCQ items and was used to create a confidence score for each 

PCQ item. For example, the confidence score for item 1 on the PCQ was computed by adding 

students’ responses to items 1, 2, 3, 15, and 16 on the PSA together after first multiplying the 

response to item 15 by 2. This sum was then divided by 6 to produce the weighted average. The 

formula for computing the confidence score for item 1 on the PCQ is provided below, where SAk 

represents the student’s response to item k on the PSA. 

Confidence score for item 1 of the PCQ =  
!"!#!""#!"##$∙!"!$#!"!%

&#&#&#$#&
 

Similarly to each PSA item, each PCQ item’s confidence score can vary from one to five, 

where five represents high confidence of success in the content area of the PCQ item, one 

represents a low confidence of success in the content area of the content quiz item, and three 

represents a mid-level confidence in the content area.  

Measuring Calibration Bias and Accuracy. The method for computing average 

calibration bias score used in this study is similar to those used by Schraw et al. (1993) and 

Labuhn et al. (2010) to compute (general) calibration bias. Students’ performance on each PCQ 

item was first scaled to match the scale of the PSA, where students’ responses to the PCQ were 

assigned either a score of 5 (for a correct response), 3 (a partially correct response), or 1 (an 

incorrect response). To create the item-wise calibration bias score, the performance score (1 

through 5) was subtracted from the self-efficacy score (1 through 5), resulting in a score 

potentially ranging from - 4 to 4. The sign of the calibration bias score for a given item 

represents the directionality of a student’s judgment errors, where a negative calibration bias 
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score suggests the student underestimated their abilities, a positive calibration bias score suggests 

the student overestimated their abilities, and a calibration bias scores of 0 suggests that the 

student is accurate in their judgement abilities. 

The methods employed in this study differ from those of Schraw et al. (1993) and Labuhn 

et al. (2010) in the computation of calibration accuracy. In this study, an item-wise calibration 

accuracy score is assigned to each PCQ item by first computing the absolute value of the item-

wise calibration bias scores (from 0 to 4) for each content quiz item and then reversing the scale 

to create a scale from 1 to 5. Item-wise calibration accuracy scores were then averaged to obtain 

the average calibration accuracy scores. This choice was made to preserve the variance in 

students’ biases. In the previous methods for computing calibration accuracy (e.g., Labuhn et al., 

2010; Pajares & Graham, 1999), a student who over predicts their performance for half of the 

items and under predicts the remaining half would have an average calibration bias score near 0, 

hence having a relatively high calibration accuracy score. The approach taken in this study 

would have the same calibration bias score but would have a low calibration accuracy since each 

prediction on each item was inaccurate.  

For example, a student (Student A) who answered a content quiz item correctly 

(performance score of 5) and who responded with the highest self-efficacy on all self-assessment 

items that were related to that particular content quiz item (self-efficacy score of 5) would have a 

calibration bias score of zero for the content quiz item. If another student (Student B) correctly 

answered the item (performance score of 5) yet responded with no self-efficacy for all self-

assessment items related to the content quiz item (self-efficacy score of 1), the student would 

have a calibration bias score of negative four for that the content quiz item. Similarly, a student 

who answered a content quiz item incorrectly (performance score of 1) and exhibited the highest 
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self-efficacy on self-assessment items related to the content quiz item (self-efficacy score of 5) 

would have a calibration bias score of 4 on the particular content quiz item. The computation for 

the item-wise calibration bias and accuracy scores are described in Table 3.2. These item-wise 

calibration bias scores were then averaged together to obtain an average calibration bias score for 

each student’s precalculus content mastery. For ease of language, the average calibration bias 

score will be referred to as the ‘Calibration Bias score’ or ‘Calibration Bias.’ 

Table 3.2: Item-wise Calibration Bias and Calibration Accuracy Computations for Hypothetical 

Students 

 Self-Efficacy 

Score for PCQ 

Item 

Performance 

Score for PCQ 

Item 

Item-wise 

Calibration Bias 

Item-wise 

Calibration 

Accuracy 

Student A 5 5 5 - 5 = 0 5 – 0 = 5 

Student B 5 1 5 – 1 = 4 5 - 4 = 1 

Range 1 to 5 1 to 5 -4 to 4 1 to 5 

 

Students’ calibration accuracy on each content quiz item was also created by subtracting 

the absolute value of the calibration bias score of each content quiz item from 6, resulting in a 

score ranging from 1 to 5. For each item, the calibration accuracy score represents how accurate 

the student’s self-efficacy was to the student’s performance on the content quiz item, where 5 

represents perfect accuracy between their self-efficacy score and their ability, and 1 represents 

complete inaccuracy between their self-assessment and their abilities.  For example, students 

who received a calibration bias score of 0 would have a calibration accuracy score of 5, and 
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students with calibration bias score of - 4 or 4 would have a calibration accuracy score of 1 for 

the particular content quiz item. For each student, the item-wise calibration accuracy scores were 

averaged to obtain an average calibration accuracy score for each student’s precalculus content 

mastery. For ease of language, the average calibration accuracy score will be referred to as the 

‘Calibration Accuracy score’ or ‘Calibration Accuracy.’ 

Calibration bias and calibration accuracy variables will further be normalized in the 

subsequent regression models for more easier interpret the regression models. Hence in the 

subsequent models, a calibration bias score of 0 will refer to the mean calibration bias score for 

the sample, and a calibration accuracy score of 0 will refer to the mean calibration accuracy 

score for the sample. 

Calculus Help Center 

 In addition to the calibration bias, calibration accuracy, and SAT/ACT scores, students’ 

attendance to the university’s Calculus Help Center (CHC) was recorded. Office hours of 

instructors and teaching assistants were held in the CHC. Students could freely visit the CHC 

anytime during the workday for scheduled appointments with their instructor or for drop-in 

appointments with an instructor or teaching assistant of a different section of the course. During 

this semester, 57.5% of the students enrolled in Calculus I visited the CHC at least once. On 

average, a student who visited the CHC visited 7.4 times throughout the semester. Of the 

students involved in this analysis, 65.5% of the students visited the center at least once, and 

students visiting the CHC on average visited 6.8 times throughout of the semester. 
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Study Sample 

 Of the 426 students enrolled in the course, 401 students consented to all aspects of the 

study. This study intended to only investigate students who were engaged throughout the entire 

course, and therefore included only students who completed all exams in the course. Students 

included in the sample for this analysis included students who (1) completed both the PSA and 

PCQ, and (2) had SAT Math or ACT Math scores accessible through institutional research. Two 

additional students were identified as outliers with respect to exam scores or number of visits to 

the CHC. The final sample for analysis included 194 students. The process of determining the 

final sample can be found in more detail in Appendix C. 

Results 

Before investigating the relationship of student calibration of precalculus material with 

Exam 1 performance, student competency on precalculus and prior mathematics content (both 

prior ability and current ability) was examined with regards to Exam 1 performance. Through 

bivariate linear regression, it was observed that SAT/ACT Math scores were positively 

correlated with Exam 1 scores, r = 0.4792, r2 = 0.2296, p < 0.0001, suggesting that students with 

higher SAT/ACT Math scores tend to score higher on the first exam in Calculus I. Likewise PCQ 

scores were positively correlated with Exam 1 scores, r = 0.3962, r2 = 0.157, p < 0.001, 

suggesting that students scoring higher on relevant precalculus questions in the first two weeks 

of the Calculus I course tend to have higher Exam 1 scores. This may not be a surprise for the 

reader familiar with precalculus content and limits of functions. The first exam primarily covers 

topics related to limits, and the evaluation of limits rely heavily on manipulation of algebraic 

expressions, understandings graphical representations of functions, and other past mathematical 

concepts. Likewise, many researchers have seen that both SAT and ACT scores are correlated 
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with success in Calculus (e.g., Ellis et al., 2016; Sadler & Sonnert, 2018; Sonnert & Sadler, 

2014), as are entrance exams and readiness exams (e.g., Carlson, Madison, & West, 2010, 2015; 

Carlson, Oehrtman, & Engelke, 2010; Wakefield et al., 2018).  

When using multiple linear regression to understand how scores on the precalculus 

content and the SAT/ACT together relate to Exam 1 performance, both measures of past 

mathematical knowledge predict Exam 1 scores after accounting for the other variable.  Even 

after accounting for SAT/ACT scores, hierarchical regression analysis revealed that student’s 

scores on the PCQ added predictive power to the model for predicting Exam 1 scores, r2 = 

0.2948, Dr2 = 0.0652, p < 0.0001.  This suggests that student’s SAT/ACT scores do not solely 

predict students’ precalculus knowledge as of the Calculus I course, particularly that the 

students’ performance on the PCQ accounts for variance in Exam 1 scores that wasn’t accounted 

for by their SAT/ACT scores. This suggests that students’ past performance in mathematics 

alone (as measured by the SAT/ACT math scores) does not tell the whole story of how 

precalculus and prior mathematics knowledge impacts success in Calculus I. One potential 

explanation for this is proximity of mastery of content relative to taking the calculus course. 

While many students in this study were freshman and sophomores, students may not have taken 

a mathematics course recently, so their SAT/ACT math scores may not be representative of their 

mathematics ability when enrolled in Calculus I. Students enrolled in a calculus course are 

drawing on their precalculus and prior mathematics content knowledge frequently when 

engaging in calculus content, such as reasoning about functions graphically, reasoning and 

solving algebraic equations and expressions, and making sense of new mathematical ideas using 

mathematical symbolizations such as function notation. Note that the SAT/ACT Math scores 

explains 10% of the variance in PCQ scores. 
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Calibration Measures Predicting Exam 1 Scores  

To investigate the relationship between student’s calibration bias and calibration accuracy 

of precalculus content knowledge and Exam 1 scores, a multiple linear regression was 

conducted. Descriptive statistics for calibration bias and calibration accuracy can be found in 

Table 3.3. Note that students in the sample on average tended to overestimate their abilities in 

precalculus content knowledge, though not to a significant degree.   

Table 3.3: Descriptive Statistics of non-normalized calibration bias and accuracy 

Variable Minimum Maximum Mean Median Standard 

Deviation 

Calibration 

Accuracy 

2.861 4.882 3.722 3.718 0.394 

Calibration 

Bias 

-1.862 1.500 0.085 0.101 0.578 

Note.  N = 194. 

Both calibration bias and calibration accuracy were correlated with students’ Exam 1 

scores. Calibration accuracy was found to be positively correlated with Exam 1 performance, r = 

0.2694, r2 = 0.0726, p < 0.001, which is considered to be a medium effect size. This suggests that 

students with one point higher average calibration accuracy are expected to score 8.3 points 

higher on Exam 1 than those students with a lesser average calibration accuracy. Note that the 

mean and standard deviation in calibration accuracy are 3.718 and 0.394, respectively, so 

students that are one standard deviation higher in calibration accuracy are expected to score 3.28 

points higher on Exam 1 from the model. Calibration bias was negatively associated with Exam 

1 performance, r = 0.2313, r2 = 0.0535, p < 0.001, which is considered to be a small-medium 

effect size. This suggests that students with one point lesser calibration bias are expected to score 
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4.8725 points higher on Exam 1 on average. Note that the mean and standard deviation in 

calibration bias are 0.0849 and 0.5778, respectively, so students with one standard deviation 

lesser of calibration bias are expected to score on average 2.815 points higher on Exam 1. This 

suggests that students who tend to be more accurate in their perceptions of their mastery of 

precalculus content knowledge tend to perform better on exams, and that students who tend to 

underestimate their content mastery tend to perform better on Exam 1 than students that tend to 

overestimate. 

In a multiple linear regression using both calibration bias and calibration accuracy as 

covariates to predict Exam 1 scores, the two measures of calibration account for 11.2% of the 

variance of Exam 1 scores (with 10.8% Adjusted R2). For ease of interpretation of the multiple 

regression model (to follow), the covariates (calibration bias and calibration accuracy) were 

normalized. Further in the combined model, the directionality of the relationship between both 

calibration measures and Exam 1 performance persists. In the multiple linear regression model 

for predicting Exam 1 performance, the model suggests that Exam 1 performance can be 

predicted with the following model: Exam 1 Score  = 77.1045 + 3.0805(Calibration Accuracy1)  

-2.5773(Calibration Bias2). All coefficients in the model are statistically significantly non-zero at 

the p = 0.01 level. 

The resulting model revealed a negative correlation coefficient of Exam 1 score with 

calibration bias. This suggests that students who have lesser calibration bias tend to have higher 

Exam 1 scores, when calibration accuracy is fixed. Since negative bias corresponds to 

underestimations in one’s precalculus knowledge and positive calibration bias corresponds to 

 
1 The variable ‘calibration accuracy’ has been normalized in this model, to have mean 0 and standard deviation 1. 
2 The variable ‘calibration bias’ has been normalized in this model, to have mean 0 and standard deviation 1.  
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overestimations, the model suggests that students who underestimate their abilities more tend to 

have higher Exam 1 scores than students who overestimate their abilities more. According to the 

model, students with one standard deviation lesser calibration bias score, on average, 3.0805 

points higher on Exam 1 when levels of calibration accuracy are the same. 

The model also has a positive correlation coefficient for calibration accuracy, which 

suggests that students who are more accurate in the PSA tend to perform better on Exam 1 than 

students whom are less accurate. Specifically, students who are one standard deviation higher in 

calibration accuracy tend to score 2.5773 points higher on Exam 1 scores when levels of 

calibration bias are the same. 

Calibration Measures when Controlling for Incoming Content Knowledge 

To investigate how calibration bias and calibration accuracy relate to Exam 1 scores after 

controlling for incoming ability, SAT/ACT Math scores were used to account for student’s 

incoming ability. This choice was made to avoid multicollinearity given the high correlations 

between PCQ scores and calibration measures. PCQ scores alone account for 35% and 50% of 

the variance in calibration bias and calibration accuracy, respectively3. The SAT/ACT Math 

scores, however, showed minimal collinearity with calibration measures, calibration bias: 

F(1,192) = 2.19, p = 0.14; calibration accuracy: F(1,192) = 16.79, p < 0.001, r = 0.28, r2 = 0.08. 

To quantify the potential impact of multicollinearity on the model, the variance inflation factor 

(VIF) was computed for each covariate in the model4. Variance inflation factors for calibration 

 
3 High correlations between these variables is not highly surprising as both calibration measures use students’ item-

wise scores on the PCQ. 
4 The variance inflation factor (VIF) quantifies the change in standard error in a regression model based on 

correlations between one covariate and the other covariates. The square root of the VIF corresponds to the 

multiplicative factor by which the standard error is expected to change. For example, a VIF of 4 suggests that the 

standard error in the regression model is at most √4 = 2 times as large as if there were no multicollinearity in the 
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bias, calibration accuracy, and PCQ scores were 1.1, 1.0, and 1.1, respectively. This suggests that 

for each covariate, the standard error in the regression model is at most 1.049 times as large as if 

there were no multicollinearity in the model. This is significantly less than the variance inflation 

factor when PCQ scores are used to account for incoming mathematical ability in the model, 

VIFPCQ scores = 4.752. While 4.752 is a still considered sufficiently low measure of VIF (Kutner et 

al., 2004; Sheather, 2009), SAT/ACT Math scores were chosen to account for incoming ability in 

the model due to the lower variance inflation factor5. 

Using hierarchical regression, SAT/ACT Math scores, average calibration bias, and 

average calibration accuracy were used to predict exam 1 scores. SAT/ACT Math scores were 

entered first into this model to control for incoming ability when predicting exam 1 scores. This 

initial model was significant, indicating that SAT/ACT Math scores were correlated with exam 1 

scores, F(1, 192) = 57.21, p < 0.0001, r2 = 0.2296, and that SAT/ACT Math score was a 

significant predictor of exam 1 scores, b = 5.8332, t(192) = 7.562, p < 0.001. This model 

suggests that students with a one standard deviation increase in SAT/ACT Math score on average 

score 5.8332 points higher on exam 1 than students with lesser SAT/ACT Math scores. Note that 

this is no surprise, as many sources have found that SAT and ACT scores are positively 

correlated with success in undergraduate course work (Sadler & Sonnert, 2018; Sonnert & 

Sadler, 2014). 

 
model. A VIF of 1 corresponds to the same in the standard error in the regression model as if there were no 

multicollinearity, one times as much error corresponds to no increase in error. 

5 Note that some researchers suggest that there is not cutoff for ‘high’ and ‘low’ variance inflation factors (David et 

al., 2019). For this reason, the author chose to use the variable corresponding to the lesser variance inflation factor, 

in this case SAT/ACT Math scores. 
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In addition to SAT/ACT Math scores, calibration bias and calibration accuracy were then 

used as covariates in a multivariate linear regression model to predict Exam 1 performance in the 

step of the hierarchical regression analysis. Comparing the new model (with measures of 

calibration and SAT/ACT Math scores as covariates) with the prior model (only SAT/ACT Math 

scores as covariates) affords examining the predictive value of calibration measures after 

controlling for incoming precalculus ability. The model including the two measures of 

calibration into the model improved the prior model, DF(2, 190) = 6.5806, p = 0.0018 , Dr2 = 

0.05. In the new model, calibration bias was statistically significant, b = -3.707, t(190) = -2.837, 

p < 0.01, suggesting that, on average, students who are one standard deviation lesser in 

calibration bias are expected to score 3.707 points higher on Exam 1 per change in standard 

deviation of calibration, when calibration accuracy and incoming ability are fixed. Calibration 

accuracy was also statistically significant in the new model, b = 4.204, t(190) = 2.118, p < 0.05, 

suggesting that, on average, students who are one standard deviation higher in calibration 

accuracy are expected to score 4.204 points higher on Exam 1. Together, these three variables 

(SAT/ACT Math scores, average calibration bias, and average calibration accuracy) account for 

29% of the variance in Exam 1 scores.  

Hierarchical Regression Analysis 

To investigate how measures of calibration and visits to the CHC impact Exam 1 scores, 

a four-step hierarchical multiple regression analysis was conducted where Exam 1 performance 

was the dependent variable. SAT/ACT Math score was entered in the first step of the model 

(Model 1) to control for variance in Exam 1 performance due to differences in SAT/ACT Math 

scores for later steps in the hierarchical multiple regression. The calibration variables (calibration 

bias and calibration accuracy) were entered at the second step (Model 2), the number of visits to 
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the CHC before Exam 1 (CHC Visits) variable was entered at the third step (Model 3), and the 

interaction effects between CHC visits and each measure of calibration were entered at the fourth 

step of the model (Model 4). The regression statistics are included in Figure 3.4. 
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The first step of the hierarchical regression analysis highlighted that students’ incoming 

mathematical mastery (as measured by SAT/ACT Math scores) significantly contributed to the 

model, accounting for almost 23% of the variance in Exam 1 performance. Introducing measures 

of calibration into the model (Model 2) accounted for an additional 5% of variance in Exam 1 

performance compared to the model only using incoming mathematical mastery (Model 1). This 

change in variance was further found to be statistically significant, F(2) = 6.5806, p < 0.05. 

When including number of visits to the CHC before Exam 1 to the hierarchical model 

(Model 3), the additional variance that CHC visits contributed was not statistically significant. 

Hence, the number of visits students make to the CHC before the first exam is not associated 

with performance in on the exam after controlling for Calibration Accuracy, Calibration Bias, 

and SAT/ACT Math scores. Given how close the p-value (p = 0.08) is to the significance 

threshold (a = 0.05) however, there is potential for type II error. Further investigation into the 

relationship between CHC Visits and Exam 1 scores (after controlling for measures of 

calibration and incoming ability) may be warranted in future studies. 

As statistical significance was not achieved with the inclusion of the CHC Visits variable 

to Model 2, the final step of the hierarchical regression (Model 4) was compared to Model 2, 

thereby examining the additional variance contributed in predicting Exam 1 scores by including 

three predictors into the model: (1) CHC Visits, (2) CHC Visits × Calibration Accuracy, and (3) 

CHC Visits × Calibration Bias, in effort to examine potential interaction effects between CHC 

Visits and measures of calibration on Exam 1 scores. Comparison of these models revealed that 

these three variables (CHC visits, and interaction effects between CHC visits and calibration 

measures) improved Model 2 by accounting for an additional 3.28% of the variance in Exam 1 

performance, F(3) = 2.9759, p=0.03289. Of the three included variables, only the interaction 
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term between CHC visits and calibration accuracy was statistically significant, b = 2.395, t(187) 

= 2.6426, p < 0.05, suggesting that the relationship between the number of CHC visits and 

predicted exam one performance is mediated by students’ measures of calibration accuracy. 

Model 4 suggests that the rate of change in Exam 1 scores per visit to the CHC differs 

between students with differing level of calibration accuracy, where the expected gain in 

predicted Exam 1 score per visit to the CHC is higher for students with higher calibration 

accuracy than students with lesser scores. Considering students with equal SAT/ACT Math 

scores and equal (and average) average calibration bias, students with the mean calibration 

accuracy are predicted, on average, to gain 1.43 points on their Exam 1 score per CHC visit, 

while students who are one standard deviation above the mean in calibration accuracy are 

predicted, on average, to gain 3.83 points per CHC visit, which is a rate 2.39 larger than that of 

students with average calibration accuracy.  

Further, Model 4 predicts those who are one standard deviation below the mean in 

calibration accuracy performed 0.96 lesser on Exam 1 per CHC visit compared to those whose 

average calibration accuracy is average within the sample. Model 4 is not suggesting that each 

visit to the CHC is negatively impacted the students’ grade. Rather, it suggests that students 

whose calibration accuracy is 1 standard deviation below the mean and who tend to go to the 

CHC tend to perform, on average, lesser than those students that do not visit the CHC prior to the 

exam. For instance, this trend may suggest that CHC visits are instead an indicator of a student 

struggling in the course. This will be further discussed in the Discussion section. 

In this model, the impact of number of CHC visits for predicting Exam 1 scores depends 

on both calibration accuracy and bias. The full model for predicting Exam 1 score (using 

normalized variables) is: Exam 1 Score = 76.61 + 5.32 (SAT/ACT Math Scores) + 1.43 (CHC 
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Visits) + 1.14(Calibration Accuracy) - 1.61(Calibration Bias) + 2.39 (Calibration Accuracy) × 

(CHC Visits)  - 1.48*(Calibration Bias) × (CHC Visits).  

According to the model, the expected gains in Exam 1 scores per visit to the CHC is 

dependent on students’ measures of calibration accuracy and bias. To help interpret the 

interaction terms between measures of calibration and CHC visits, consider the scatterplot of 

students’ normalized calibration bias and calibration accuracy in Figure 3.5. The green line 

represents all students in the sample that are expected to gain 1.43 points on Exam 1 for each 

visit to the CHC before Exam 1, including the ‘average student’ who has average levels of 

calibration bias and calibration accuracy (i.e. normalized calibration accuracy and bias of zero). 

According to the model, students below and to the right of the red line (i.e., have greater 

normalized calibration accuracy and lesser normalized calibration bias) are predicted to have 

higher Exam 1 gain for every visit to the CHC than students along the green line, while students 

who are above and to the left of the green line (i.e., have lesser normalized calibration accuracy 

and greater normalized calibration bias) are predicted to have lesser Exam 1 gains for every visit 

to the CHC. 
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Note. The green line represents all students who are expected to gain 1.43 points on Exam 1 per 

visit to the CHC, and the red line represents all students who are expected to gain no points on 

Exam 1 per visit to CHC. 

Figure 3.5: Scatterplot of Normalized Calibration Bias with respect to Normalized Calibration 

Accuracy 

The red line in Figure 3.5 represents all students whose predicted Exam 1 score is neither 

greater nor lesser regardless of the number of CHC visits before Exam 1. According to the 

model, students below and to the right of the red line (i.e., have greater normalized calibration 

accuracy and lesser normalized calibration bias, such as students on the green line) are predicted 

to have higher Exam 1 scores for every visit to the CHC, while students who are above and to the 

left of the red line (i.e., have lesser normalized calibration accuracy and greater normalized 

calibration bias) are predicted to have lesser Exam 1 scores for every visit to the CHC. 
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Discussion 

In addition to being correlated with student success, the PCQ accounts for additional 

variance in students’ exam scores beyond what was expected from SAT/ACT math scores. This 

suggests that students’ past performance in mathematics alone (as measured by the SAT/ACT 

math scores) does not tell the complete story of how precalculus and prior mathematics 

knowledge impacts success in Calculus. As previously mentioned, a potential explanation for 

this is proximity of mastery of content relative to taking the calculus course. While many 

students in this study were freshman and sophomores, students may not have completed a 

mathematics course in the last year, so their SAT/ACT math scores may not be representative of 

their mathematics ability when enrolled in Calculus I.  

This work highlights the affordances of giving students an assessment (graded or 

ungraded) at the beginning of a course. This information communicates to the instructor material 

that may be difficult for students. While students have met the appropriate requirements to enroll 

in a course, students may not have mastered all of the prior content. An entry assessment can 

communicate to the instructor what content students are fluent with, which may or may not align 

with the instructor’s expectations. For example, an assessment may indicate the importance for 

an instructor to use precise language when discussing concepts such as graphs and function 

notation, where students may have non-normative meanings for the content (David, Roh, & 

Sellers, 2018, 2019; Moore & Thompson, 2015; Sencindiver, 2020; Thompson & Milner, 2018; 

Van Vliet & Mirin, 2020). Students enrolled in a calculus course are drawing on their 

precalculus and prior mathematics content knowledge frequently when engaging in calculus 

content, such as reasoning about functions graphically, reasoning and solving algebraic equations 
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and expressions, and making sense of new mathematical ideas using mathematical 

symbolizations such as function notation.   

While this study shows correlations of student performance with in-house assessments 

(e.g., the PCQ), success in accounting for students incoming ability could also be measured using 

validated instruments, such as the Precalculus Concept Assessment or Calculus Concept 

Readiness assessment (Carlson, Madison, et al., 2010; Carlson, Oehrtman, et al., 2010). These 

assessments utilize research on student learning and extensive testing and refinements to produce 

psychometrically desirable assessments for diagnosing student difficulties as well as determining 

one’s potential readiness for a course. One would expect similar trends in the data to be found if 

the same study were conducted using such assessments. 

Impacts of Calibration on Students’ Motivation and Success  

 This study expands on the calibration research by examining the effects of measures of 

calibration after accounting for variance from students incoming mathematics ability. 

Additionally, this work draws on a new way of measuring of calibration accuracy and bias 

through an average of item-wise measures of calibration accuracy and bias. I argue that this 

method better accounts for the subtitles of calibration accuracy and bias, as past methods for 

calibration accuracy may code students who are overconfident on some content and 

underconfident on other content as accurate across the entire content.  

 The findings of this study align with other research to suggest that measures of 

calibration are correlated with student’s success on exams (Bol & Hacker, 2012; Desoete & De 

Craene, 2019; Kline & Dibbs, 2018; Lingel et al., 2019), particularly that calibration bias is 

negatively correlated and calibration accuracy is positively correlated. While students who are 

underconfident may tend to have higher exam scores than students who are overconfident, 
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students’ accuracy of their perceptions of mastery account for more variance, as evidenced by 

the larger standardized coefficient of calibration accuracy than calibration bias in the model. 

Together these results highlight the importance of students’ metacognitive monitoring in the 

learning process. In addition to a direct correlation on exam scores, measures of calibration and 

metacognitive monitoring likely have indirect effects on students learning as well. Ferla and 

colleagues (2010) concluded that while high self-efficacy is correlated with high academic 

performance, students with high self-perceived competence can lead to overconfidence, thus 

impacting lower persistence and poor study habits. Similarly, calibration inaccuracy may impact 

students’ motivation to study and seek help. In order for help seeking to be deemed as necessary, 

a student must recognize a lack of mastery or a need to practice in a content area. Inaccuracies in 

self-perceptions of mastery, particularly overestimates, lie contrary to recognizing this need, 

thereby constraining this call to action. The current data further seem to provide evidence to this 

claim, particularly via the significant differences in the rates by which students are expected to 

benefit from help-seeking per visit.  

Impacts of Calibration on Help-Seeking 

Tutoring centers provide an avenue for students to get help and additional practice with 

difficult content and find a source of community with others seeking to improve their content 

knowledge (Bressoud & Rasmussen, 2015). For students struggling with course content, help 

seeking provides a mechanism for a student to potentially increase their course success through 

improving content knowledge. When considering Model 3, the analysis of these data suggests 

that the number of visits a student takes to help-center prior to an exam is not necessarily 

correlated with student performance on an exam, after controlling for measures of calibration and 

incoming mathematics mastery. From one perspective, this may seem as if the tutoring center is 
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not improving student success, however this does not seem to be the case. The analysis regarding 

Model 4 suggests that the rate at which students benefit on exam scores per visit to the help 

center is dependent on students’ calibration accuracy. Particularly students with more accurate 

perceptions of their mastery of precalculus (i.e. have higher measures of average calibration 

accuracy) are expected to score more points on Exam 1 per visit than students’ whose 

perceptions are less accurate. This work provides further evidence that visiting tutoring centers 

can improve students’ success and that these benefits may be stronger for some students than 

others (Rickard & Mills, 2018). 

One potential explanation for this relationship could be of the type of help that students 

ask for (and receive) when at a help center. Students who are more accurate in their perceptions 

of their mastery are likely more attuned to what content areas they need support in. A student 

who is more accurately calibrated in their perceptions of their mastery would therefore be better 

positioned to identify content areas that are particularly difficult for them compared to a student 

who are less accurate in their perceptions of their own content mastery. This accuracy in 

perceptions of mastery would enable such a student to ask a tutor for help with those particular 

content areas to optimize the impact of the help received and the student’s time in the center. 

From this perspective, the measure of calibration accuracy regarding precalculus content may be 

related to a students’ metacognitive awareness of calculus content mastery or general accuracy in 

perceptions of mathematical mastery. Future studies would need to investigate in more detail (a) 

how measures of one’s accuracy about precalculus content correlate with measures of one’s 

accuracy about calculus content (or more general content that students have learned with content 

that students are currently learning), and (b) how measures of students’ accuracy about 
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mathematical content relates to students’ planned and in the moment actions when seeking help 

in a help center. 

Students who tend to be inaccurate in their perceived mastery of content may not have as 

accurate a sense of what content they are weakest in and should be the focus of their studies and 

help seeking. In this regard, students who tend to be inaccurate in their mastery perceptions may 

be experiencing the Dunning-Kruger effect, that is, when students are generally unaware of what 

they know and not know (Dunning, 2011; Kruger & Dunning, 1999). While the Dunning-Kruger 

effect at times used to describe the phenomena of people who have little experience or skill in 

some task to describe themselves as highly competent in the skill, that is not how this term is 

being used here; it is intended to refer to those whose mastery is low (according to some 

standard) yet who believe that there are more knowledgeable or exhibit more mastery than they 

do. In this study, students whom are both inaccurate in their perceived mastery and exhibit 

minimal mastery of precalculus content would be experiencing the Dunning-Kruger effect. 

Calibration inaccuracy (or high calibration bias) coupled with low mastery would suggest 

perceptions of mastery of content which are not evidenced in data. For such students, help-

seeking would likely be less helpful because the content being reviewed with the tutor could 

potentially be determined by the student (who is not aware of what content they have not yet 

mastered). From this perspective, students who are experiencing the Dunning-Kruger effect may 

not be in the best position to determine what their strengths and weaknesses are, and hence may 

not ask for help with the content that would optimize their learning. When speaking with tutors 

in a tutoring center, students who are inaccurate in their own content mastery may tell a tutor that 

(a) they have mastered content that they need more practice with, (b) they have difficulty with 

content that they may be proficient with, or (c) they need general help with everything. These 
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sorts of requests may result in generally inefficient or unproductive discussions during a help 

session, thereby reducing the impact of visits to the help center, causing lesser benefits for 

students whose perceptions of their mastery are inaccurate than students whose perceptions of 

mastery are accurate.  

It is important to point out that this model may suggest that students who are inaccurate 

in their perceptions of mastery of precalculus content may be expected to have lesser scores on 

exam scores per visit to a help center. While this may be what Model 4 suggests, the analysis 

does not suggest that visiting to the help center is negatively impacting a student’s mastery of 

calculus content (thereby decreasing their Exam 1 score). While the relationship between tutors 

serving in help centers and the courses they serve can be quite varied generally (Byerley et al., 

2019), all tutors at the CHC were either instructors or learning assistance for the course. Given 

the expertise of those offering assistance during this study, it is unlikely that student interactions 

with a tutor would hinder one’s mastery of the content area. The potential negative correlation 

with visits and Exam 1 score instead could be indicative of a student struggling with the calculus 

content. In this sense, the negative correlation of exam performance with visiting the CHC is not 

a product of the interaction at the CHC; rather, it would be the fact the student needed to seek 

help.  

To illustrate how seeking help may be an indication of a student struggling with a course, 

consider a Calculus I student, Jerry. On the PSA for Calculus I, Jerry rates his confidence in 

precalculus as high, and on the PCQ, he has difficulty answering the questions, ultimately 

performing poorly. Jerry is not cued to visit the help center, however, given his confidence in his 

abilities, his past success in a proceduralized precalculus course, and his recognition of the 

symbols being used in class. After multiple weeks of difficulty and poor grades on homework 
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and quizzes, Jerry visits the CHC the week of the Exam 1. Jerry has difficulty identifying what 

he is having difficulty with in this Calculus I course and given the number of students in the 

CHC the week before the exam, the tutor does not have sufficient time to identify and address 

Jerry’s specific needs.   

Notice that Jerry prolongs his help-seeking based on his assumption that his precalculus 

skills are strong (based on his past mathematical experience) but does not realize that his 

proceduralized notions of precalculus are constraining him from making sense of what is 

happening during the class period or what is being asked in the homework. Jerry is unable to 

point to the source of his difficulties given his belief in the strength of his precalculus 

knowledge, but his overconfidence delays his recognition of needing to seek help. While his 

help-seeking is a step in the right direction, the time needed to identify his sources of difficulties 

is not enough, especially given the number of students all seeking help prior to the exam. In this 

sense Jerry visiting the CHC is an indication of struggle, but the time allotted to help the student 

and the frequency of visits are insufficient to help him in time. 

Suggestions for Practitioners: Supporting Students in Classrooms and Tutoring Centers 

This work highlights students’ thinking, perceptions, and actions that can impact their 

academic success. Given the importance of measures of calibration of perceptions of content 

knowledge both directly on exam performance and through improving the benefits of help-

seeking visits, it is important to support students enrolled in calculus (and likely other 

undergraduate courses) align their perceptions of their content knowledge with what is generally 

accepted in the mathematics community. Based in this analysis and literature, we provide 

suggestions that practitioners can implement in their classrooms and in tutoring centers to help 

support students enrolled in Calculus I. 
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In the classroom 

 Instructors often have the most interactions with students, and directly influence what 

mathematical practices and activities students engage in, whether in the context of large lecture 

or small classrooms. This role affords instructors the opportunity to draw on literature and 

research findings to create a classroom environment that (a) supports students in learning 

mathematical content and (b)  fosters the development of metacognitive skills related to student 

success (Labuhn et al., 2010; Zimmerman et al., 2011). To help students become more accurately 

calibrated, instructors may consider including more opportunities for students to assess their 

mastery of content knowledge, such as by providing students ungraded assessments where 

students can rate their confidence on content matter and test their hypotheses. By providing 

questions after the confidence assessment, students can be confronted with content that had not 

yet mastered, and hence adjust their mastery perceptions. Additionally, providing prompt (if not 

instantaneous) feedback about whether or not content items are correct would support students in 

recognizing that their solutions for mathematical questions may be non-normative. These 

practices would likely cause perturbations in a student’s self-perceptions of their content mastery 

and whether their methods of solutions align with the mathematical community. These 

perturbations can cue students to further practice and study mathematical content independently, 

with peers, or via help-seeking with an instructor or in a tutoring center.  

As with the other mentioned practices, instructors can further support students in aligning 

their perceptions of content mastery with normative views mathematical correctness through 

reflective practices. Instructors could provide students time in class to reflect on what content 

areas they can mathematically grow and a list of resources and ways for students to further 
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practice, study, and get help with mathematical content areas both for the current course as well 

as other content necessary for course. For example, an instructor may give students a list of 

mathematical topics covered each week, a place to rate their perceived mastery of each content 

area, as well as list of actionable ways that students can assess and learn particular mathematical 

content, such as using online resources for calculus and precalculus material, reviewing notes, 

and visiting a mathematics help-center and special content-focus workshops.  

Lastly, the instructor has the opportunity to establish sociomathematical and social norms in 

the classroom to foster alignment of perceived mastery with a normative mathematical standard 

(Cobb & Yackel, 1996; Yackel et al., 2000; Yackel & Cobb, 1996). By regularly implementing 

these practices, instructors can begin negotiating a sociomathematical norm where students are 

evaluating their perceived content mastery to a normative mathematical standard (Labuhn et al., 

2010). Through the prominence of resources, help seeking (such as at a tutoring center) can 

become a calculated and productive means of (a) learning mathematical content that has been 

identified as difficult or not-yet mastered, and (b) adjusting one’s self-perceptions of mastery. By 

establishing help seeking as a social norm, students may be more likely to visit help centers 

earlier and more frequently, potentially decreasing cases where students seek help right before 

the exam (like Jerry) and increasing the effectiveness of help centers. 

In Tutoring Centers  

 As measures of students’ calibration accuracy were correlated with the added benefits 

from in-person help-seeking, there are several potential ways that people involved in tutoring 

centers can leverage this data to potentially improve the effectiveness of help offered at help 

centers and student success.  

 One potential reason for why students who are inaccurate in their perceptions of content 
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mastery may not benefitting from help-seeking as much as students with accurate perceptions of 

mastery could be potential inefficiencies from students’ selected content areas during help-

seeking. From this perspective, students may not be the best judges of what content they should 

focus their studies when seeking help. An instructor, teaching assistant, or tutor in a help center 

may be better suited to determine where a students’ may be having difficulties. Rather than 

simply discussing a topic that a student suggests, members of help centers may want to seek 

evidentiary means for students’ mastery on suggested topics, such as through quizzes, exams, or 

even conversations about the mathematical topics or problems. Likewise tutor questioning would 

play a vital role in probing student thinking and determining strengths and weaknesses of 

students’ content knowledge, assuming the tutor’s notions of the content are normative. Tutors 

questioning and attention to students’ cognitive biases would help avoid potential issues of 

students misrepresenting their cognitive ability. For this reason, it would be beneficial for tutors 

to become aware of students’ potential inaccuracies in their content knowledge, as well as 

tutoring center directors to potentially train tutors in probing student thinking and seeking 

evidentiary accounts of students’ claims of mastery. With information about students’ thinking 

and mastery, tutors can suggest problems and content areas for students to practice both in and 

out of the help center. 

 Additionally, it would likely benefit tutors to have a set of materials, such as assessments 

and content questions, that they can easily draw upon when determining whether a student has 

mastered a content area or needs additional practice and support. These materials could be 

leveraged by both tutors and instructors to make student thinking accessible and to begin 

addressing content that is difficult for individual students. The use of such materials would 

afford tutors to organize students in tutoring centers with similar mathematical difficulties to the 
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same area where (a) the tutor can be more efficient by helping multiple students at once (such 

during times of high volume, such as prior to an exam) and (b) allow students whom have now 

mastered the material to help other students whom are currently learning that material. This later 

practice would both provide quicker response time when students enter the tutoring center, as 

well as helping the students who now has mastered the material to better her understanding by 

explaining to and helping others. Leaders of tutoring center and mathematics departments may 

want to establish a relationship and collaborate to create or collect such materials. Together, they 

can draw on research literature as well as the experiences of course coordinators, instructors, and 

tutors to inform items based on difficult concepts and common un-productive ways of thinking 

for the student population. 

To further support students, course coordinators could provide the tutoring center (or 

students) a list of topics for the course. One benefit would be to provide students with specific 

areas where they can focus their studies. By conferring with such a list of specific content areas, 

students would be less likely to overgeneralize their mastery of content areas, potentially 

improving their accuracy of self-knowledge. 

Another benefit for a list of content would be for tutors to assess student’s growing 

mastery of the content in alignment with the particular course. Given the varied levels of 

familiarity of tutor centers and the courses they serve (Byerley et al., 2019), tutors may or not 

know be familiar with what content and ways of reasoning are valued in a particular course. A 

list of content areas would help the tutors support students in their particular course by better 

assessing students’ content knowledge for the course and identifying particular content areas that 

a student may need additional support. Students could keep a copy of such a list and continually 

track their progress on course content to further guide their studies at home and at a tutoring 
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center. This document could further provide tutors more evidence of what content a student has 

and has yet to master.  

 In addition to having tutors better understand what content a student may want to focus 

their time on, prompt feedback on a student’s understanding of content would likely further 

improve the student’s metacognitive abilities, particular their calibration accuracy. By basing 

one’s perceptions in evidence such as the mathematical correctness of responses to content 

questions, students would become less susceptible to cognitive biases, thereby improving their 

calibration accuracy (through aligning their perceptions of mastery with data). These practices 

would also provide students with a better sense of what content they should likely continue 

practicing during independent study as well (Labuhn et al., 2010; Sheldrake et al., 2014; 

Zimmerman et al., 2011).  

Limitations 

 As optional online tools were used to measure calibration, the sample for this study may 

have been influence by selection bias. While this selection bias is a possibility, it is important to 

contextualize the student populations use of these tools. Of the 356 consenting students (which 

includes over 85% of the student population), 77.8% and 68% of the population use the PSA and 

PCQ respectively. The resulting 61.2% of the consenting students is an intersection of these two 

groups of students.  

Further choosing only students who had choose to use these tools is a control for student 

motivation. Self-efficacy and motivation have been said to support and constrain students’ use of 

metacognitive monitoring and calibration, as a students’ enactment of strategies are related to 

whether the student is motivated to succeed in the given task (Flavell, 1979; Pintrich, 2002). Tian 

and colleagues (2018) found that student self-efficacy mediates the relationship between 
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metacognitive monitoring and academic achievement, so it important to control for students’ 

self-efficacy or motivation. By choosing students who chose to use two optional online tools, the 

sample is in part limited to students who are motivated to complete optional assignments. 

Likewise, this study only included students who completed all exam in the course, further 

controlling for additional aspects of motivation through the duration of the entire course. Rather 

than a limitation, the choice of sample involved in this study is strength by including only 

students that have, to some extent, similar motivation in the course. 

 



  83 

Chapter 4 - Paper 3: You Only Get Out What You Put In: Calculus Students’ Graphical Understandings of Outputs and Differences of Outputs of Functions 
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Understanding the derivative is non-trivial, as students’ difficulties with the concept have 

been documented for decades (Lauten et al., 1994; Orton, 1983; Thompson, 1994; White & 

Mitchelmore, 1996). Some research has sought to categorize student errors with the derivative 

(e.g., Orton, 1983) while other research aims to identify the foundations or “cognitive roots” 

(Larsen et al., 2017) of the derivative that are hindering students from developing rich and 

productive meanings for the concept (Asiala et al., 1997; Byerley, 2019; Monk, 1994; 

Nemirovsky & Rubin, 1992; Thompson, 1994). Students’ difficulties with the derivative can be 

traced back to impoverished understandings of various prior mathematical concepts, such as 

function (Carlson et al., 2002; Oehrtman et al., 2008), ratio and slope (Byerley, 2019; Byerley & 

Thompson, 2017; Nemirovsky & Rubin, 1992; Orton, 1983), rate of change (Thompson, 1994; 

Thompson & Carlson, 2017; Zandieh, 2000), covariation (Thompson & Carlson, 2017), and 

variable (White & Mitchelmore, 1996).  

While students have proven proficient in computing derivatives of functions , students 

have difficulty understanding the rate of change of a function when given a graphical 

representation of a function (Larsen et al., 2017; Orton, 1983). When investigating calculus 

students’ reasoning about derivatives, Nemirovsky and Rubin (1992) found that students tended 

to use either resemblance-based or variation-based approaches to matching graphs of functions 

with the corresponding derivative. Resemblance-based approaches aimed to match perceptual 
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features of the two graphs (e.g., both graphs increasing over an interval), while variation-based 

approaches focused on local variation and the relationship between graphed quantities of a 

function and its derivative. Students’ meanings for graph are likely related to students’ use of 

these approaches, as students who understand a graph as a geometric object (e.g., a line) when 

matching graphs and derivatives may more readily attend to transformations of the shape of the 

graph (a resemblance-based approach) rather than coordinating changes in the quantities 

represented by the coordinates of points (a variation-based approach) (Moore & Thompson, 

2015). 

Carlson (1998) and Monk (1994) found that many students’ meanings for the graph of a 

function were derived from visual attributes of the graph rather than measured values. Monk 

(1994) found that students confused a graph of velocity with a graph of position, and that 

students often interpreted two cars to collide when the graphs of the cars’ velocities with respect 

to time intersect (Monk, 1992). These students’ reasoning (i.e. iconic translation (Monk, 1992)) 

is based on thinking about the graph of a function like a picture of the scenario, where points 

moving along the graph represent the cars in the scenario rather than representing the states of 

two covarying quantities.  

Based on prior research about students’ graphical understanding of the derivative, 

students’ understandings of a graphical representation of a function will impact the students’ 

development of their understanding of derivative in a graphical context. As a first step towards 

understanding how these ideas are connected, this work examines how students understand the 

output of a function and the differences of outputs to be represented in a graph, as these two 

concepts (output and difference of outputs) necessary for understanding the average rate of 

change of a function.  
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I draw on David, Roh, and Sellers’ (2019) location-thinking and value-thinking 

constructs (defined shortly) to characterize calculus students’ understandings of function outputs 

in graphical contexts. David, Roh, and Sellers (2019) found that students’ meanings for output, 

graph, and points on a graph can largely impact students’ reasoning about mathematical 

statements. I hypothesize that students’ meanings for output would impact their understanding of 

the differences of outputs, and their graphical understanding of the difference quotient. I imagine 

that students meaning for outputs would impact students’ understanding of the relationship 

between a function and its corresponding derivative. My work uses the location-thinking and 

value-thinking constructs in a new context than David and colleagues’ (2019) original study. 

This new context is influenced by Thompson’s work on quantitative reasoning (Thompson, 

2011) and his tasks on students’ understanding of magnitude and measurement (Thompson et al., 

2014). This study identifies how students with various meanings for output of a function may 

identify the difference of outputs on a graph. 

In this report, I use the constructs location-thinking, value-thinking, and conceptions of 

magnitude to investigate calculus students’ understandings of output of a function and 

differences of outputs of functions. Specifically, I address the following research questions: 

1. What conceptions for output of a function do students use when engaging in a 

graphical task? 

 

2. What conceptions for difference of the outputs of a function do students use when 

engaging in a graphical task? 

 

3. How do students’ conceptions for output relate to those for differences of output in 

a graphical task? 

 

Theoretical Perspective 

In this study, I adopt the radical constructivist perspective (von Glasersfeld, 1995). From 

this perspective, I assume that students’ have individual meanings for mathematical content 
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which are inherently inaccessible to others. Hence, the models of student’s thinking I make are 

what I believe the student understands. I draw on my own interpretations of their written work, 

speech, and gestures to develop these models in effort to explain what the students are doing. As 

I am basing my models on what I am observing through their speech, gestures, and drawings, I 

am particularly modeling student’s conveyed conceptions. Researchers aligned with this 

perspective do not claim that their interpretations of the student’s thinking are correct; rather, we 

argue that the resulting model for the students’ thinking is useful in explaining the student’s 

actions and utterances. 

Drawing on radical constructivism, I understand learning as a process of accommodating 

and assimilating to one’s schemes (Steffe & Thompson, 2000; von Glasersfeld, 1995). For me, a 

scheme is “an organization of actions, operations, images, or schemes—which can have many 

entry points that trigger action—and anticipations of outcomes of the organization's activity” 

(Thompson et al., 2014, p.11). Assimilation involves adapting new information to fit into our 

existing schemas (Steffe & Thompson, 2000). Accommodation of a scheme involves 

modifications to the scheme that are permanent, in so far as the modification reemerges when the 

scheme is used (Steffe & Thompson, 2000). I focus on functional accommodations, where “an 

accommodation is functional if it occurs in the context of the scheme being used” (Steffe & 

Thompson, 2000, p. 290). When a student experiences a perturbation, the student is unable to 

assimilate the results of their activity to their schemes. If the perturbation is serious enough, the 

student may accommodate their schemes, thereby engaging in the activity differently (von 

Glasersfeld, 1995). Hence when (1) a student conveys a meaning for a concept in one way, (2) 

becomes confused or perturbed, and subsequently (3) conveys a different meaning, I use this data 

as evidence of the student assimilated to a scheme, where the student had (1) operated using their 
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scheme, (2) experienced a perturbation, and (3) accommodated their scheme, thus having 

operated according to their modified scheme in an observably new way. 

When describing student’s conceptions, I draw on Thompson, Carlson, Byerley, and 

Hatfield’s (2014) description of understandings and meanings. From their perspective, a student 

is said to have an understanding when they are in a cognitive state resulting from assimilation, 

while a meaning is the “space of implications that the current understanding mobilize” (p.13). 

Students’ understandings and meanings can be considered either stable or in the moment. This 

distinction is determined by whether or not a student is assimilating to scheme. If a student’s 

meaning is stable, then the understanding resulted from assimilation to a scheme, and ‘the space 

of implications’ is the actions, operations, images, schemes, and anticipations that arise from 

having assimilated to the scheme. When Thompson et al. (2014) describe the scheme in the case 

of a stable meaning, the meaning is the scheme. This distinction between stable and in the 

moment (or unstable) understandings/meanings will helpful when modeling students’ thinking. 

In response to students being asked to represent the difference of outputs of a function, some 

students assimilated the question to their current meaning for output. Other students, however, 

accommodated their meanings for output to resolve the perturbations they were experienced 

when representing the difference of outputs. 

Literature Review 

Quantitative Reasoning 

Quantitative reasoning in mathematics education is a form of reasoning about situations 

where one conceptualizes the quantities involved and relationships between them (Thompson, 

2011; Thompson & Carlson, 2017). Rather than focusing on promoting symbolic manipulation 

and blind computation, quantitative reasoning focuses on how mathematical operations connect 
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to realizable situations and what relationships exists between different measurable aspects of the 

situation. For example, when imagining a car in motion and some means to keep track of or 

measure time, one can think about how the car’s position varies as well as how the two quantities 

(time and position or distance from a reference point) vary simultaneously. With this framing, 

one can ask questions about how the car’s distance changes with time, how the distance traveled 

on average changes with respect to changes in time over an interval of time, and how the 

distance traveled instantaneous changes with respect to changes in time over an interval of time.  

Thompson (2011) describes a quantity as one’s conception of an aspect or attribute of a 

situation as being measurable. For example, one can conceive of a line segment or a curvilinear 

arc as having a length, which is some of amount or size. This line segment’s length is 

measurable, and one may assign a numerical value to the length based on a unit of measure, such 

as inches, feet, or meters. While this numerical value changes depending on the unit of measure, 

the magnitude of quantity is invariant regardless of the measurement (Moore, Stevens, et al., 

2019; Thompson et al., 2014). One does not need to reason with numerical values to engage in 

quantitative reasoning; one only needs to anticipate that the quantity has a measure at any given 

instance and associate some amount or size to the quantity at those instances. 

Quantitative reasoning is closely related to covariational reasoning, which involves 

coordinating how two quantities simultaneously vary together (Thompson & Carlson, 2017). 

Covariational reasoning has been a focus for calculus students in particular because reasoning 

quantitatively about rates of change involves such coordination of quantities (Thompson, 1994). 

Research suggests that covariational reasoning is developmental and researchers often model 

students’ covariational reasoning with multiple levels (Carlson et al., 2002; Thompson & 

Carlson, 2017). Students’ in the moment level of covariation is commonly determined by 
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students’ covariation in graphical contexts, where students either represent the covariation of two 

quantities by creating a graph of the relationship, or by discussing the covariation of quantities 

represented in graphs (see Thompson & Carlson, 2017). 

Graph 

Graphs can represent the covariational relationship between two quantities (Carlson et al., 

2002; Moore et al., 2013). In the calculus classroom, graphs of functions provide opportunity to 

explore concepts such as average and instantaneous rate of change between two quantities, 

however, students do not always reason about graphs covariationally (Byerley & Thompson, 

2017; Nemirovsky & Rubin, 1992). Without instruction, graphs may be understood as a picture 

of a scenario (Carlson, 1998; Monk, 1994) or as an object on the page (Moore & Thompson, 

2015). Hence, students’ understanding of what a graph is and how it represents quantitative 

information is likely related to their success when reasoning about such concepts. 

Moore and Thompson (2015) discussed students’ understanding of graphs in terms of 

shape-thinking. They contrast students who view a graph as a wire on a coordinate system (static 

shape-thinking) with students who view a graph as a trace of two covarying quantities (emergent 

shape-thinking). Students using static shape-thinking tend to draw on perceptual features of the 

graph, while students using emergent shape-thinking recognize both the covariation of the two 

quantities as well as the shape of the graph (as a trace). Moore (2016) describes the mental 

activity that one engages in when using static or emergent shape-thinking, as either figurative or 

operative thought. Students’ thoughts about graph that, in the moment, are “based in and 

constrained by sensorimotor experience (including perception)” (Moore, 2016, p. 324) are said to 

be figurative. Students thoughts where “figurative material was subordinate to mental 

operations” (p. 324) is said to be operative. These constructs are a productive way for 
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distinguishing students who are viewing a graph as a source for encoding covariation of two 

quantities from those that are drawing perceptual features of graphs. While these constructs offer 

one way to categorize student’s activity and thinking around graphs, I primarily draw on the 

constructs of David, Roh, and Sellers (2019) in this work to discuss students’ conceptions of 

graphs, specifically how the output of a function is represented in a graph. 

Location-Thinking and Value-Thinking 

The goal of my research is to document how students’ conceptions of graphs impact their 

development of other mathematical ideas. David, Roh, and Sellers’s (2019) constructs value-

thinking and location-thinking are particularly helpful for categorizing students’ graphical 

thinking, particularly about the relationship between points on a curve and the output of a 

function. When investigating how undergraduate students reason about four mathematical 

statements related to the intermediate value theorem, David, Roh, and Sellers (2019) gave 

students six different graphs of functions and asked the students to evaluate whether the 

statements were true. While the students reasoned about the statements, the authors categorized 

the ways in which students were reasoning about the graphs. The constructs location-thinking 

and value-thinking were used to describe students’ understanding of outputs of functions, graph 

of a function, and points on a graph of a function. 

Students engaging in value-thinking are characterized as thinking of the output of a 

function for a given input value as a value. These students further understood a point on a graph 

as a pair of values [e.g. (input, output)], and a graph of a function as a set of input/output pairs. 

Students engaging in location-thinking are characterized as thinking of the output of a function 

for a given input value as a point lying in the Cartesian plane along the graph of the function. 

Further a student engaging in location-thinking treats a point on a graph as indistinguishable 
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from the resulting output for a given input value and a graph of a function as a collection of 

spatial locations in the Cartesian plane. 

David and colleagues (2019) coded students’ thinking based on how they labeled 

mathematical objects embedded in the graph. For example, students who created a label along 

the vertical axis and labeled the marking f(a) would be coded as using value-thinking, as would a 

student labeling a point on the graph as a coordinate-pair (a, f(a)). Students who created labels on 

a point along the curve and labeled it f(a) were instead coded as using location-thinking, as they 

are conveying that the point on the curve is the output. David et al. (2019) provide two graphs of 

a function with labels indicative of value-thinking (Figure 4.1a) and location-thinking (Figure 

4.1b) to illustrate the differences in students’ labeling activity in Figure 4.1 below. 

 

 

      (a)                         (b)   

Figure 4.1: A visual model of student work indicative of value-thinking (a), 

 and location-thinking (b). (David et al., 2019) 

David, Roh, and Sellers (2019) saw that students engaging in value-thinking tended to 

evaluate the truth of these statements in the normatively correct way, while students that were 

engaging in location-thinking more frequently gave incorrect responses when evaluating the 
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truth of the statements. In their sample, one student in Advanced Calculus/Real Analysis (the 

course with the highest level of mathematical preparation in the sample) used location-thinking 

to reason about graphs. This provides an existence proof that students who have been deemed 

successful in courses such as Calculus I and Introduction to Proof still find location-thinking a 

productive means for reasoning about graphs. 

My work connects students’ meanings for graph and output (in terms of location-thinking 

and value-thinking) to later conceptions for students have for other mathematical conceptions in 

calculus. While David, Roh, and Sellers (2019) used graphs with numerical axes, I consider what 

meanings for graph, and outputs of functions students draw on when representing the outputs and 

differences of outputs of a function in non-numerical graph, where quantities are represented 

using magnitudes of drawn line segments. 

Frames of Reference and Graphs 

When a student reasons with a graph, there is always a coordinate system in which the 

graph is in relation to. However, students may not necessarily attend to the coordinate system the 

curve is in relation to (Moore et al., 2013; Moore, Silverman, et al., 2019). Investigating a 

student’s frames of reference (Joshua et al., 2015; H. Y. Lee et al., 2019) provides a tool to 

inspect how to a student makes sense of a representational system. Joshua and colleagues (2015) 

describe that a student who is reasoning within a frame of reference must commit to (1) a unit to 

measure quantities, (2) a reference point to measure quantities in reference to, and (3) a 

directionality defining what is positive and negative. In terms of graphs, points in Cartesian 

coordinate systems are intended to represent data in a particular frame of reference, specifically 

the one Descartes intended. From this perspective, a person representing an input value along the 

x-axis with a normative view of a Cartesian coordinate system may be committing to the origin 
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as a reference point, committing to the rightward direction as the direction representing the 

‘positive direction’ (using the conventional orientation of the Cartesian coordinate system), and 

the numerical value/length in the rightward direction provides a multiplicative comparison of the 

measure of the quantity in relation to the unit. While the unit is vital for reasoning about 

measures of quantities and numerically representing quantities, a unit of measure is not necessary 

for reasoning about magnitudes of quantities, that is one’s conception of a quantity’ size without 

the need to measure the quantity (Thompson et al., 2014) 

Frank (2016) provides a model for understanding a point in the Cartesian plane as 

representing two quantities simultaneously by projecting orthogonally onto the axes, as shown in 

Figure 4.2. Using this model, the two quantities are represented as the directed distance from the 

origin to the end point of the segment along the respective axes and can be discussed in terms of 

frames of reference.  

 

 

Figure 4.2: Frank’s (2016) representation of a point as a projection of two quantities’ 

Consider the quantity represented by the y-coordinate of the point where the dotted lines 

intersect in Figure 4.2.  In terms of frames of reference, a student conceiving of this magnitude 

(in blue) in the normative way would likely conceive of the directed distance from the reference 
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point at the origin vertically (i.e., with the upward direction corresponding to the positive 

direction) to the labeled marking along the vertical axis. To associate a numerical value to this 

magnitude, one would need to commit to a unit to measure the magnitude and identify the 

measure of the magnitude in relation to the unit. In the context of graphs with unmarked axes 

however, students can represent the magnitude f(a) with a line segment of length f(a).  

Value-Thinking, Frames of Reference, and Differences  

In addition to marking along the vertical axis, a student may represent the magnitude of 

the output vertically from the horizontal axis upward to the point, in other words, from the 

marking a on the horizontal axis vertically to the point (a,f(a)), as shown in Figure 4.3. A student 

could further re-present the length of this line segment to other spatial locations on the graph, 

either by the request of a researcher or in efforts to compare the magnitude of two such 

quantities. Figure 4.3 below provides a variety of normative representations for the output of a 

when engaging in value-thinking. 
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Figure 4.3: Different representations of the output quantity when using value-thinking. 

When reasoning with non-numerical graphs, thinking of the output of a function in such 

as way may afford conceiving of the difference of two outputs of a function in a particularly 

productive way. Thompson (1993) describes two perspectives of a difference: the result of 

subtraction, and a quantitative difference. The first perspective involves the operation of 

subtraction between two numerical values, while the later involves a quantitative reasoning. 

Thompson (2011) elaborates on a quantitative difference as an additive comparison of two 

quantities which in turn is a quantity, which involves conceiving of “the amount by which one 

quantity exceeds another” (p. 203). One conceiving of a quantitative difference may position two 

magnitudes in such a way that they share a reference point and are oriented in the same direction. 

Then the magnitude of the difference can be represented as the length of the line segment 

between the ends of line segments representing the two magnitudes. Figure 4.4 highlights one 

way a student could potentially conceive of the difference of the two outputs f(b) and f(a) as a 
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quantity. The magnitude of the line segments in blue represents the output f(a) in two positions, 

one vertically from the horizontal axis to the point (a,f(a)) and one re-presented near a line 

segment representing the magnitude of f(b) in green, so that magnitudes f(a) and f(b) have 

spatially similar reference points. The magnitude of the red line segment represents f(b)-f(a), the 

difference of the two outputs f(b) and f(a). This second representation of f(a) is intended to 

exemplify how this representation can be used flexibly to perform both additive and 

multiplicative comparisons of two quantities. 

 

 

Figure 4.4: A graphical representation of two outputs of a function and the difference of the two 

outputs when using value-thinking in a quantitative context. 

 

Value-Thinking and Location-Thinking in Non-Numerical Contexts 

Value-thinking seems productive when representing outputs and differences of outputs in 

non-numerical graphing tasks. I hypothesize that a student using location-thinking in such a task 

would be able to represent two outputs of a function but would have difficulty representing the 
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difference of the two outputs. Students using location-thinking consider the output of a function 

to be a point on the curve, but it is not clear to me how a student would make sense of difference 

of two geometric points. Additionally, I do not believe it is necessary for a student graphing or 

identifying a point on a graph to necessarily reflect on the measures of the coordinates used to 

graph the point. Frank (2016) describes how a student plotting a point on a graph in terms of the 

recipe ‘over x units and up y units’ may not conceive of a point as a representing two quantities. 

This is akin to a person following directions of how to get from one place to another, but not 

knowing where their current position is in relation to the starting position1, which Skemp (1976) 

describes as an instrumental understanding. I expect students who do not conceive of a point as 

representing two quantities simultaneously to experience difficulty when representing the 

difference between two points and, hence, ultimately become perturbed. 

Given my expectations for students using value-thinking and location-thinking in a non-

numerical graphical context, I designed a task for students to represent outputs of functions and 

differences of outputs in a non-numerical graph. The graph includes axes with no a priori 

numerical values nor ‘tick marks’. I provide students lengths of line segments that represent the 

quantities as inputs for the function whose graph is given. This task is intended to problematize 

thinking rooted in location-thinking. While I expect students using value-thinking to progress 

productively through this task, I anticipate students engaging in location-thinking to have 

difficulty completing this task. 

 
1 I credit Dr. Cameron Byerley for this apt simile. The simile is very helpful for accounting the difference in 

performing an action and reflecting on the sensorimotor actions. 
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Methodology 

Data Collection and Task Design 

Data for this study was collected as part of a larger study aiming to understand how 

students’ understanding of a graph of a function impacts the development of the derivative of a 

function for a fixed input. Data was collected from first-semester calculus students enrolled in a 

calculus course tailored to biological scientists in the summer of 2019 at a large western public 

university. Recruitment occurred at the beginning of the first two class periods of the course, 

where five students agreed to participate in at least one interview for the study. Students were 

asked to participate in two 90-minute semi-structured interviews during the first two weeks of 

the semester and were financially compensated for their time. All but one student (Lisa) 

participated in both interviews which were scheduled one week apart. Each interview occurred 

before the students’ calculus course was scheduled to discuss rate of change in class. Three 

students were women, two students were men, and all five students were white. Each of the 

participants indicated having previously taken a first course in calculus within the past four 

years. No data was available regarding the student’s mathematical performance in past 

coursework. Interviews with students were recorded and transcribed to capture student’s 

utterances, drawings, and gestures. 

One task was chosen to be the focus of this paper. The task (inspired by a task from 

Thompson and colleagues (2014)) used Cartesian axes oriented in the conventional manner and 

asked students to represent the outputs of two inputs and the difference between those outputs 

(see Figure 4.5). 
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Figure 4.5: The interview task 

The first two questions asking students to represent f(a) and f(a+h) were designed to 

characterize students’ thinking of output as either value-thinking or location-thinking. The task 

was designed to necessitate a student to reason in a non-numerical, non-computational way, 

particularly with magnitudes, both as inputs and outputs of the function. Students need to reason 

with the magnitudes represented in the graph, thus allowing the interviewer/teacher/researcher to 

inquire what magnitudes on the paper students are attending to throughout the task. This choice 

was made so that students’ understandings of output in the graphical context would be at the 

forefront of their mathematical reasoning, instead of computation. Analysis of students’ 

responses to earlier versions of these items revealed that some students computed outputs and 

differences of outputs of functions numerically and only then matched the computed numerical 

value to a labeling represented on the graph. In this task, however, I anticipated that students 

using value-thinking would either need to draw on their measurement schemes to represent 

outputs or to create numerical values along the axes for some unit of measure. Students using 

location-thinking were expected to represent the output as a point along the curve. 

To further investigate the relationship between students’ understanding of output and 

differences of outputs, students were asked to represent f(a+h)-f(a). As previously discussed, I 

anticipated that students using value-thinking would be able to productively represent the 
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difference of the two outputs. By drawing on their measurement schemes, I expected students 

using value-thinking to understand or come to understand the ‘y-coordinate’ of a point as a 

vertical directed distance, either represented from the x-axis to the point on the curve or from the 

origin along the y-axis.  

As discussed previously, I expected the representation of f(a+h)-f(a) easier for students using 

value-thinking than for students using location-thinking. I expected students using location-

thinking when representing f(a+h)-f(a) to either experience difficulty conceiving of ‘the 

difference of two points’, or to potentially accommodate one’s meaning for difference to 

understand or come to understand the difference of two points as ‘the distance between two 

points’ as the length of the straight line segment between the two marked points.  

Students were then asked to estimate the average rate of change of f(x) from input a to a + h, 

though this item was not considered in this analysis except to highlight one student’s thinking 

about output and differences of outputs. Specifically, Alison’s conception of the difference of 

outputs became salient when discussing the numerator and denominator of the ratio of the 

average rate of change. 

Data Analysis 

Data was analyzed using theoretical thematic analysis (Braun & Clarke, 2006) where I 

coded instances of student’s reasoning about output as either location-thinking, or value-

thinking. Instances that did not fit either of these constructs were coded as ‘other’ and I used 

inductive thematic analysis (Braun & Clarke, 2006) to code the remaining conceptions of output 

based on what mathematical object the student seemed to be referring to. Similarly I used 

theoretical thematic analysis to analyze student’s conceptions of the difference of output, f(a+h)-

f(a), using Thompson’s (1993) distinction of subtraction and qualitative difference. For those 
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conveyed meanings that did not align with quantitative difference or subtraction, I used inductive 

thematic analysis to code what mathematical object the student seemed to be referring to. 

During thematic analysis, I employed both ongoing and retrospective analysis techniques 

(Steffe & Thompson, 2000; Thompson, 2008) to generate and test hypotheses about students’ 

conceptions of mathematical ideas. On-going analysis involved generating hypotheses about 

students’ thinking during the interview based on my inferences of students’ actions. At times, I 

also tested these hypotheses during the interview by asking the interviewee questions, such as 

asking why the student gestured in a specific way, what the student was referring to, or whether 

an idea was familiar to the student. Retrospective analysis involved analyzing the data after the 

interview to develop, test, and reject hypothesized models of students’ thinking. Working models 

of students’ thinking were iteratively refined until the models accounted for students’ utterances, 

drawings, and gestures during the episodes. The resulting models are the result of the research 

team discussing and iteratively refining working models until the models accounted for students’ 

utterances, drawings, and gestures during the episodes. The research team included the author 

and an expert in mathematics education research. As the data I drew on involved what was 

observable to me, these models are intended to describe the students’ conveyed meanings. 

Episodes 

As I was expecting students to experience perturbations and accommodations to their 

schemes during the course of the task (e.g., the anticipated difficulty for student’s using location-

thinking to conceive of the difference of outputs), I coded students’ activity with the task using 

multiple episodes. Different episodes were used to distinguish between different conceptions that 

student’s conveyed during the task. For example, the interviewer at times attempted to shift the 

student’s thinking during the task through a brief intervention. During such instances, students 
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typically conveyed different conceptions than prior to the intervention, and their activity was 

considered a different episode. Without the support of an intervention, one student (Colin) 

further spontaneously conveyed a different conception during the task as the result of an 

accommodation to his scheme and, hence, was coded as a different episode.  

Criteria for using Location-Thinking or Value-Thinking 

Students in the sample seemed to represent input values in ways I was not expected. 

Drawing on the frames of reference construct, I considered David, Roh, and Sellers (2019) 

description of location-thinking and value-thinking using the frames of references (Joshua et al., 

2015) construct. The students in David, Roh, and Sellers’s (2019) paper seemed to recognize the 

input value in the normative way, regardless of whether using location-thinking or value-

thinking. I found no evidence that those students were non-normative frames of reference for 

representing input values. Therefore, I used the frames of references construct (Joshua et al., 

2015; H. Y. Lee et al., 2019) as a criterion for determining whether or not students were using 

location-thinking and value-thinking constructs, by identifying whether the student represented 

the inputs in a non-normative way. Students who used non-normative frames of reference for 

representing input were coded as ‘other’. To this end, students that identified outputs as points on 

a curve would also have to use a normative frame of reference for a graph to be coded as using 

location-thinking. Likewise, students identifying a value or magnitude with a non-standard frame 

of reference would be coded as ‘other’. The normative frame of reference representing an input 

of a function for a graph in Cartesian coordinate system involves using the origin as a reference 

point and representing the rightward direction along the horizontal axis as positive.  
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Results 

In the theoretical thematic analysis (Braun & Clarke, 2006), three students (Abby, Colin, 

and Ethan) conveyed multiple conceptions for output, which were coded as different episodes. 

Abby and Colin’s activity with the task used two distinct conceptions for output, and Ethan 

conveyed three distinct conceptions throughout the task. Alison and Lisa each conveyed one 

conception for output. Table 4.1 provides a summary of the codes for each episode. 

Table 4.1: Codes for each episode 

Episode Frame of Reference 

for Input 

Conceptions of 

Output 

Conceptions for 

Difference of Outputs 

Abby 

(First) 

Non-Normative Point N/A 

Abby 

(Second 

and Final) 

Normative  Value-thinking Quantitative Difference 

Alison 

(First and 

Only) 

Non-normative Arc Length Quantitative Difference 

Colin 

(First) 

Normative Location-Thinking Point 

Colin 

(Second 

and Final) 

Normative Value-Thinking Quantitative Difference 

Ethan 

(First) 

Non-normative N/A N/A 

Ethan 

(Second) 

Normative Location-Thinking Point 

Ethan 

(Third and 

Final) 

Normative Value-Thinking Quantitative Difference 

Lisa (First 

and Only) 

N/A Arc Length Quantitative Difference 
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During five of the nine episodes, students’ conception of output aligned with either value-

thinking (three episodes) or location-thinking (two) episodes, as seen in Table 4.1. For the 

remaining four episodes, students conveyed non-normative frames of reference when 

representing the input. During one of these episodes (Ethan’s first episode), the student did not 

convey a meaning for output, as the student became perturbed quickly after describing the input 

value. During the remaining three episodes, students’ conceptions were coded as ‘other’. When 

reviewing the episodes coded as ‘other,’ I used inductive thematic analysis to create sub-codes to 

characterize what mathematical object the students identified as the output, which included ‘arc 

length’ and ‘point’. 

The sections that follow outline the different meanings for output that students conveyed 

during the task. I report five illustrative episodes to show the various conveyed conceptions that 

were observed during the task. The first episode comes from Colin’s first episode with the task to 

illustrate location-thinking. This episode is representative of the episodes where students using 

location-thinking. The second episode comes from Abby’s second episode to illustrate value-

thinking. Abby’s activity in this episode differs from the other students using value-thinking 

because Abby tended to measure the magnitudes of outputs in terms of the unit a. The other 

students that used value-thinking, Ethan and Colin, represented the outputs as magnitudes along 

the vertical axis and below a point on the curve, respectively. The following three examples 

illustrate the different conceptions students conveyed for output that were neither value-thinking 

nor location-thinking. Episodes three and four discuss the conceptions of output conveyed by 

Alison and Lisa, both of which were coded as ‘arc length’. The fifth and final episode presented 

comes from Abby’s first episode, where Abby’s conception of output was coded as ‘point’. 
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Episode I: Colin (Location-Thinking)  

Output 

When beginning his work on the task, Colin’s conveyed meaning of output aligned with 

location-thinking. To represent f(a), Colin first labeled a along the horizontal axis by using a 

piece of paper to measure the length a, measuring right along the horizontal axis from the origin 

(his reference point), and creating a dot at the end of the length a (see Figure 4.6). To represent 

f(a), Colin then identified the point on the curve that is “straight above that” by using the piece of 

paper to form a straight edge perpendicular to the horizontal axis from the marking a to find the 

point where the perpendicular line intersects the curve. 

 

 

Figure 4.6: Colin’s work after having plotted f(a), f(h), and f(a+h) 

Colin represented f(h) and f(a+h) in a similar fashion, specifically measuring the input 

length along the horizontal axis using the origin as the reference point and identifying the point 

on the curve above the marking along the axis as the output for the given input. Like the other 

students, Colin concatenated the lengths a and h to form the length a+h. Note that Colin was not 

prompted to represent f(h), a fact that he only noticed after he had already represented the output. 
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Given his representational activity for the outputs as points along the curve, Colin indicated a 

meaning for output consistent with location-thinking. Colin also conveyed this meaning when he 

described his work when representing f(h), saying “so this down here is the value of h as an 

input, and the output using h is right there”, where then creates the dot on the graph 

corresponding to f(h). Not only does this highlight that the point on the curve is the output of h’, 

but also highlights Colin’s attention to the spatial location of the point by saying ‘there’.  

Colin’s Attention to the Coordinates of Points 

Unlike Ethan, Colin additionally seemed to have a meaning for this point on the curve in 

reference to the axes. When describing the point on the curve, Colin wanted to represent the 

point in terms of the coordinates in Cartesian space. When representing an output, Colin 

commented on the lack of labeling along the axes. He indicated that the he could measure the y-

coordinate of the point f(a) in terms of the input value, saying “this is one a, and the y-value is 

whatever fraction of a that is” gesturing first horizontally and then vertically from the label a on 

the horizontal axis to the point labeled f(a) (see Figure 4.7).    

 

 

Figure 4.7: Colin’s gesturing while describing the ‘y-value’ of the point 
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Difference of Outputs 

When describing the difference of the outputs f(a+h) and f(a), Colin was explicit with his 

thinking. Colin understood the difference f(a+h)-f(a) as the point he previously identified as f(h) 

by drawing his attention to the markings for the input values of a and a+h. As Colin described 

his process for identifying f(a+h)-f(a), he said “f(a+h) is right there [gestures to the point labeled 

‘f(a+h)’], minus f(a) [gestures to the position on the horizontal axis labeled ‘a’] should just take 

us back to there [gestures to the point labeled ‘f(h)’]”. Notice that when was Colin gesturing, he 

pointed to the position a along the horizontal axis, despite saying ‘f(a)’. In this moment, Colin 

seemed to be focused on variation in the x-coordinate of the points. When the interviewer asked 

Colin about his thinking, Colin described his thinking while motioning along the horizontal axis. 

 

Colin: Okay for this one, I’m thinking ‘f(a+h)’ [gesturing to the point labeled ‘f(a+h)’] 

should be the output of ‘a+h’ [gesturing to the marking ‘a’ on the horizontal axis] on 

the x-axis. But then for this one [the prompt ‘f(a+h)-f(a)’], I’m thinking f(a+h) is 

there [gesturing to the point ‘f(a+h)’], and then you’re subtracting that [gesturing to 

the point ‘f(a)’]… So I’m trying to think, are you moving along the x-axis [does a 

sweeping gesture from the marking ‘a+h’ to the marking ‘a’ along the horizontal 

axis, see Figure 4.8]…So like if it was f(a-h), you’d go here [gesturing to the marking 

‘a’ on the horizontal axis] and end up over here [gesturing on the horizontal axis 

between the ‘a’ and the origin]….Since it’s f(a+h), we’re over here [gesturing to the 

marking ‘a+h’ along the horizontal axis]. 
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Figure 4.8: Colin's sweeping motion from 'a+h' to 'h' 

As he gestures and described his thinking in the excerpt, Colin is focusing on the variation in the 

input values. Colin performs operations on the length a oriented on the horizontal axis, such as 

subtracting the length h (i.e., representing a-h) and adding the length h (i.e., representing a+h). 

When describing these operations, Colin is primarily focused on the horizontal axis, as 

evidenced by his gesturing only to the axis when referring to f(a-h). Colin further does not mark 

the corresponding point vertically oriented on the curve, nor does he gesture or speak about this 

hypothetical point. Colin’s identification of f(h) as the difference is consistent with what he 

would likely consider the output of the difference of the lengths a+h and a. 

Summary of Colin’s Thinking   

Colin represented input values in the normative way, using the origin as reference point, 

measuring the length of his input rightward along the horizontal axis from the reference point, 

and creating a labeled dot at the end of the line segment. Colin then identified the output for the 

given inputs in a way consistent with location-thinking, by tracing upward from the marking 

along the horizontal axis to find the point on the curve that was vertically oriented from the 

marking. To Colin (and Ethan during his second episode), the output of the function was a point 
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on the graph. Colin understood the difference of outputs in a way consistent with the output of 

the differences of inputs.  

Colin’s meaning for difference in this way was not stable. After reflecting on his work, 

revised his meaning of difference of outputs as a difference of coordinates pairs. 

 

Colin: But if you’re doing this [gestures to the point f(a+h) on the curve] minus this 

[gestures to the point f(a)], then you’re subtracting two.. coordinates. Cause this 

[gestures to the point f(a+h) on the curve] is a coordinate. It’s standing in for an ‘x-

comma-y-value’. So I’m wondering how would you take, um, ‘x1, y1’[writes ‘(x1, 

y1)’] and subtract ‘x2, y2’ [writes ‘-(x2, y2)’]. 

 

Colin, here, is conveying another understanding for the difference of outputs: a difference of 

coordinates.  

Episode II: Abby (Value-Thinking) 

Output 

Abby engaged in the task in a way consistent with value-thinking. While at times she 

described the point, Abby marked the output of inputs a and a+h along the vertical axis. A 

depiction of Abby’s graphing actions is provided in Figure 4.9. Abby first represented the input a 

by using a self-made ruler to measure the length a rightward along the horizontal axis with 

reference point at the origin (see the horizontal blue line segment in Figure 4.9) and then created 

a tick mark where the end of the length a met the horizontal axis (see the black line and label 

along the horizontal axis in Figure 4.9). To represent the output f(a), Abby then traced vertically 

from the marking to identify a point (from the tick mark a upward along the green vertical line in 
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Figure 4.9) and then horizontally to the vertical axis to create her another tick mark (see the 

green dotted horizontal line and black tick mark along the vertical axis labeled ‘f(a)’ in Figure 

4.9).  

 

 

Figure 4.9: A depiction of the results of Abby's graphing activity for f(a). 

In addition to identifying a position along the vertical axis as the output of the function, 

Abby seemed to understand the marking or ‘tick’ on the vertical axes as measurable. Abby 

measured the distance from the origin upward along the vertical axes using her self-made ruler. 

Abby particularly measured this distance in terms of the length of the input a, saying that “it’d be 

whatever this is [gesturing to the tick mark along the vertical axis]… which looks like it is half of 

one length of a”. Similarly Abby also identified the output of a+h similarly to how she identified 

the output of a, using the concatenated distance a+h. Likewise Abby recognized the marking she 

made as measurable, where she measured this output in terms of a, specifically as about three-

fourths a. 
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Difference of Outputs 

During this episode, Abby’s conveyed meaning for the difference of output was coded as 

a quantitative difference. When Abby was asked to represent the difference of the output of a+h 

and the output of a, she understood computations as representing the length of line segments. 

Abby used the numerical values she found for the two outputs (three-fourths a and one-half a, 

respectively) and subtracted the two outputs to get one-fourth a. While the computation is Abby 

did was subtraction, Abby was able to re-present the difference as a length elsewhere on the 

page, particularly representing the length as a portion of the line segment a, rather than relying 

on the distance between the output markings. Figure 4.10 is Abby’s work after completing the 

task.  

 

 

Figure 4.10: Abby's work during the second episode. 

Note that the vertical dashed lines and horizontal dashed lines were used to identify a 

point on the graph and then the output of the inputs h, a, and a+h. Further the line segment in the 

top right corner of Figure 4.10 is Abby’s re-presentation of the difference between the output of 
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a and the output of a+h, which she labels one-fourth of a. As Abby wrote created this marking, 

she indicated the connected between the length she drew and her graph, saying “that would be 

one-fourth [of a] [draws the line segment labeled one-fourth a in Figure 4.10] which is the same 

as this [gestures to the vertical axes in Figure 4.11]”.  

 

 

Figure 4.11: Abby's gesture to the vertical axis to represent f(a+h)-f(a) 

Summary of Abby’s Thinking 

 Figure 4.12 is a visual model of Abby’s thinking during this episode. Abby’s frames of 

reference for representing inputs during this episode aligned with the normative frame of 

reference. Additionally, her attention to the horizontal axis when representing the outputs f(a) 

and f(a+h) indicated a meaning for output consistent with what David, Roh, and Sellers (2019) 

describe as value-thinking. Abby further indicated a recognition of outputs as magnitudes by 

using the length a as a unit to measure f(a) and f(a+h). Abby recognized the difference of outputs 

as a quantitative difference by first subtracting the measures of f(a+h) and f(a) (three-fourths a 

and one-half a) and then connecting her computation to the magnitude represented in the graph 

(the vertical red line in Figure 4.12). 
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Figure 4.12: A model of Abby's thinking 

Episode III: Alison (Other/Arc Length) 

Input 

When Alison engaged with this task, the meaning Alison conveyed for output aligned 

with neither location-thinking nor value-thinking. Alison described the output as an arc length of 

the curve. Prior to representing f(a), Alison attempted three different ways of representing the 

input a, all of which were situated along the horizontal axis. Each attempt also involved 

measuring rightward along the horizontal axis, although Alison’s choice of reference point 

varied. Alison’s three choices of reference points are depicted in red (RP1), blue (RP2), and 

purple (RP3) in shown in Figure 4.13.  
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Figure 4.13: A depiction of Alison’s three choices of reference points 

On the first attempt to represent f(a), Alison measured from the origin, labeling a (in 

black) in Figure 4.14. On her second attempt, Alison identified a point near what she called the 

“turning point” of the graph, (see Figure 4.13, and the position on the curve with a vertical bar 

that is near the point of inflection of the function in Figure 4.14) where she created a new 

marking on the x-axis. Alison then used the position on the horizontal axis below where the 

turning point is as the reference point, measuring rightward along the axis and creating a vertical 

dash off of the axis. As shown in Figure 4.14, Alison extended the x-axis to create this marking 

and extended the graph off of the page by using an additional piece of paper (see Figure 4.15). 

The meaning Alison conveyed for a is represented by the length and position of the red line 

segment (see Figure 4.14).  
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Figure 4.14: Alison’s attempts at representing a along the horizontal axis 

 

Figure 4.15: Alison’s representations of outputs and differences of outputs 
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Output 

Shortly after extending the horizontal axis and the curve, Alison described that what she 

had done seemed incorrect, and then used the point of intersection of the curve with the 

horizontal axis as the reference point (see the point ‘RP3’ in Figure 4.13). Alison indicated that 

f(a) was an arc length along the graph of f(x) over a finite interval. After extending the line 

segment a right-ward from the reference point, she labeled the length of the arc from the point of 

intersection to the point on the curve above the end of a (see Figure 4.15). When asked about 

what f(a) referred to, she said “It’s that whole thing” while gesturing along the curve from one 

location on the graph to another, seemingly referring to the arc. At this moment, it was unclear 

whether Alison was referring to the arc as line or as an arc length, however it seemed that Alison 

was not understanding output as a point, and hence here activity was not coded as using location-

thinking. Further Alison is not marking the output along the vertical axis nor as a directed 

distance from the horizontal axis to a point, and hence not categorized as using value-thinking. 

As the interview progressed, it became clear that Alison was referring to the arc length of a 

portion of the curve.  

When representing f(a+h), Alison likewise conveyed a meaning for output aligned with 

an arc length over a finite interval, as seen in Figure 4.15. As Alison later described, “that whole 

length would be f(a+h)” while gesturing along the curve from the reference point to the end of 

the curve. Alison represented a+h along the horizontal axis by concatenating the lengths a and h 

to form a+h and measuring rightward from the same reference point. After extending both the 

horizontal axis and the curve, she represented f(a+h) similarly to f(a), using red braces from the 

point of the intersection to the point on the curve vertically above the end of the line segment 

a+h. 
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Difference of Outputs 

When representing the difference f(a+h)-f(a), Alison focused on the portion of the curve 

between the end points of the two arcs along the curve (i.e., those identified as f(a) and f(a+h)). 

After summarizing her prior work, Alison said “… if we’re subtracting, then I would take from 

this point to this point” while gesturing to the end points of the arcs f(a) and f(a+h), shown as red 

lines through the curve. It is unclear whether Alison is referring to the arc between the two points 

or the length of the arc, however Alison later indicated that she was referring to the arc length.  

When later asked to estimate the value 
!(#$%)'!(#)

%
, Alison indicated that the length of the 

arc was three lengths of h long. As seen in Figure 4.15, Alison measured the arc in terms of 

lengths of h, creating markings to designate the end of each successive length of h and labeling 

the number of lengths using h1, h2, and h3. Given that I saw no evidence of Alison experiencing a 

perturbation while representing the outputs through estimating this value, I believe that Alison’s 

meaning for output did not shift, and that she understood outputs as arc lengths for the entire 

duration of this task. It is worth noting that while an arc length can be viewed as a length or a 

value in relation to a unit of measure, arc length is not the normative understanding of the y-

coordinate of a point. Value-thinking is not defined by output of a function being a value; rather 

value-thinking would, quantitatively, refer to the magnitude of directed from the horizontal axis 

to the corresponding point on the curve or an equivalent magnitude, potentially positioned 

elsewhere (e.g., along the vertical axis). The meaning Alison conveyed for output was hence 

coded as ‘other’. 

Summary of Alison’s Thinking 

Alison conveyed a meaning for output aligned with neither location-thinking nor value-

thinking. A visual representation of Alison’s meaning for output is shown in Figure 4.16, where 
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the output f(a) is consistent with arc length. Alison’s conveyed meaning for output involved first 

representing the corresponding input on the graph by (1) identifying a reference point along the 

horizontal axis, and (2) extending a line segment of appropriate length rightward from the 

reference point along the horizontal axis. Alison then identified points on the curve that were 

vertically oriented from the end points of a, and then conceived of output of the input as the arc 

length of the curve between the two identified points on the graph. Alison’s conveyed meaning 

for difference of outputs aligned with Thompson’s (1993) quantitative difference, as the extent to 

which one quantity (e.g., f(a+h)) exceeds another quantity (e.g., f(a)).  As Alison’s conception of 

f(a+h) and f(a) shared the same initial reference point, the magnitude of the difference of the two 

arc lengths normatively aligns with the distance between the two end points of the arcs along the 

curve.   

 

 

Figure 4.16: Model of Alison’s work using her final choice of reference point 

The model for Alison’s thinking above helps explain why Alison’s initial choices of 

reference points for representing a along the horizontal axis were unsatisfactory to Alison. When 
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Alison used the origin as the reference point (‘RP1’ in Figure 4.13), Alison was able to identify 

point on the curve from the end point of a, but not the point vertically oriented from origin. 

Alison attempted to initially extend the graph downward below the x-axis (see Figure 4.14). 

Since Alison was unable to find where the graph intersected the vertical axis, she could not 

identify the end of the arc whose length would be the output of a, as shown in Figure 4.17a. 

When using her second choice of reference point, Alison needed to extend both the horizontal 

axis and the curve to represent the input a along the axis and to identify the end of the arc that I 

would expect Alison to identify as the output. She would have had to extend the axis and curve 

even further to represent the arc whose length is f(a+h). According to this model of Alison’s 

thinking, she would also be unable to identify the end of the arc whose length is f(a+h) without 

extending the horizontal axis and the curve more than she already had, as shown in Figure 4.17b. 

 

  

(a)       (b) 

Figure 4.17: Model of Alison's meaning for output for her first (a) and second (b) choices of 

reference point. 
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Episode IV: Lisa (Other/Arc Length) 

In this episode, Lisa does not convey a clear meaning for how to represent input values 

for the function f(x) in the graph. Hence, I do not include Lisa’s meaning for input. However, I 

use frames of reference are used to describe Lisa’s meaning for output. 

Output 

Lisa conveyed a meaning for output consistent with an arc length in a way that is distinct 

from how Alison represented output. The arc length Lisa identified was precisely the length of 

the input oriented along the curve. Lisa represented the arc length used the lowest point on the 

curve as the reference point for her measurements throughout the entire task. Figure 4.18 

represents Lisa’s activity with the task. 

 

 

Figure 4.18: A model of Lisa's activity 
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Lisa represented f(a) by measuring along the arc from the reference point for a length a 

using a self-made ruler, where f(a) is depicted in purple in Figure 4.18. In the follows passage, 

Lisa indicated that f(a) is the arc length. 

 

Lisa: Yeah, it would be like the whole distance from here [gesturing to the lowest blue ‘x’ 

in Figure 4.19] to here [gesturing to the other blue ‘x’ in Figure 4.19]..... I guess I 

should have written it over here [Lisa writes ‘f(a)’ near the x-axis] cause I wrote it as 

that point is 'f(a)', but it's like this whole thing 

Interviewer: Okay, it’s [referring to f(a)] the length of that line? 

Lisa: Yeah. 

 

 

Figure 4.19: Lisa's work 

Lisa seemed to be suggesting that the point along the curve marked with a blue ‘x’ is the 

end point of the line segment. It seemed that the line segment is the focus of Lisa’s attention, and 
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the end point is a feature of the line segment, instead of the focus of her attention. Particularly 

the blue ‘x’ markings represented the end points of the curve whose length was f(a). 

Lisa similarly conveyed a meaning of f(a+h) as the arc length along the curve of length 

a+h from the same reference point (depicted in red in Figure 4.18, and between the red ‘x’s in 

Figure 4.19). She created the length a+h by concatenating the lengths a and h. Lisa had difficulty 

representing f(a+h) given that the curve was not straight. Lisa then described a process of 

leveraging her previous work by (1) using the endpoint of the arc of length f(a) as a reference 

point, (2) measuring a distance of h, and then (3) creating an ‘x’ at the end point of the arc of 

length f(a+h), where the f(a+h) was the distance along the curve from the original reference 

point. 

 

Lisa: It would be easier to just measure from this point [gesturing to the endpoint of the 

arc with length f(a)] [for] this length [gesturing to a length ‘h’ in the prompt] to here 

[gesturing to what will be the endpoint of the arc of arc length f(a+h)]. Cause then 

from here to like over here [gesturing from the reference point and end point of the 

arc of length f(a+h)] it would be 'a+h'. Then it'd be from this x [the initial reference 

point in Figure 4.19] to a point over here [gesturing to where the endpoint of the arc 

of length f(a+h) will be in Figure 4.19]. 

 

This segment highlights the sophistication of Lisa’s measurement process, as she recognized that 

she could also produce the end point of the arc with length f(a+h) by measuring an additional 

length of h from the end point of the arc with length f(a).  
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Difference of Outputs 

Lisa’s description of the difference f(a+h)-f(a) aligns with what Thompson (1993) would 

call a quantitative difference of the two arc lengths, particularly the extent to which one arc 

length is larger than the other. She represented the difference as the arc length between the end 

points of the arcs of length f(a+h) and f(a). Lisa then labeled the length of the curve in green in 

Figure 4.19, also in blue in Figure 4.18.  

In the following except, Lisa described the difference f(a+h)-f(a). Lisa gestured between 

the end points of the arcs of length f(a) and f(a+h), referring to the length by which f(a+h) 

exceeded f(a). Lisa was doing an additive comparison of the arc lengths f(a+h) and f(a), 

specifically describing the length by which f(a+h) exceeded f(a).  

 

Lisa: Um, well, it would be.. So I have f(a+h) [gestures to the end points of the arc of 

length f(a+h)]... and then it would just be subtracting the distance of a, so would 

really just be the distance of h. So we just be…. from here to here [Lisa gestures from 

the end of the arc of length f(a) to the end of the arc of length f(a+h)]... Yeah. Cause 

this is ‘a+h’ [gesturing along the arc with length f(a+h) ]. And then if you take away 

‘a’, which is here [gesturing the length a given in the prompt], then it would just 

make this distance right here [gesturing to the end points of the arcs of length f(a) 

and f(a+h)]. 

 

Much like how Lisa understood f(a) and f(a+h) as distances, Lisa conveyed a meaning of f(a+h)-

f(a) as a distance, specifically an arc length. Lisa gestured to f(a+h)-f(a) similarly to when she 

used the end point of the arc of length f(a) to represent f(a+h). However, Lisa used a frame of 
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reference for f(a+h)-f(a) where the reference point was the endpoint of the arc of length f(a) 

rather than the point pf intersection. 

 Summary of Lisa’s Thinking 

Lisa’s meaning for output did not align with location-thinking or value-thinking. Lisa 

conveyed a meaning for outputs of the function f(x) as arc lengths. Lisa used ‘x’s to denote the 

endpoints of the arc of appropriate length and identified the arc length as the output of the 

function. Lisa’s sophisticated reasoning for identifying the endpoint of the arc of length f(a+h) 

and her coordination of frames of reference indicated that Lisa’s meaning for output was stable. 

Lisa further conveyed a meaning for difference of outputs as a quantitative difference, where she 

compared the arc lengths additively. Lisa’s meaning for difference of output also seemed to be 

stable. Later in the interview, Lisa derived a theorem: f(a+h) - f(a) = f(h). When the interviewer 

asked about this, Lisa replied: 

 

Lisa: ..cause this [gestures to the endpoints of arc with length f(a+h)-f(a)] is …the same 

distance as here [Lisa translates her index and middle fingers  to the endpoints of arc 

with length f(a+h)-f(a)], so that’s ‘f(h)’ cause then … the ‘a's right here [Lisa 

gestures to her writing ‘f(a+h)-f(a)’] would, like, cancel each other out, kind of. 

 

In this except, Lisa was assimilating the result that f(a+h)-f(a) was equivalent to f(h) to 

‘canceling the a’s’ in the symbolic expression. Given that many students refer to simplifying 

algebraic expressions with the phrase ‘canceling’, Lisa seemed to be identifying this result to a 

symbolic operation that she has does in the past.  
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Episode V: Abby (Other/Point) 

Input and Output 

 In Abby’s initial activity, indicated a non-normative frame of reference for representing 

input. Abby used the point of intersection between the curve and the horizontal axis as the point 

of reference, which coincides with Alison’s third and final choice of reference point. Abby 

further indicated a directionality for her frame of reference along the curve, generally in towards 

the portion of the graph to the top-right. Abby’s work and a model of Abby’s thinking are 

provided in Figure 4.20a and Figure 4.20b, respectively. 

 

   

(a)       (b) 

Figure 4.20: Abby's Work (a), and a Model of Abby's Meaning for Output (b) 

To represent f(a), Abby measured a distance of length a along the graph, from the 

reference point where the curve intersects the x-axis to the point on the curve that forms an arc 

length of length a. Abby discussed the process of identifying the point through a measurement 

process along the curve akin to measuring the “length of a trail” on a map, stating:  
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Abby: So then this [length] a, if you're doing like the maneuvering like I would do if I 

was trying to, like, figure out the length of a trail, this would be the length of a from 

here to here [gesturing along the curve]... like I took like the whole length of a here 

[gesturing to her reference point] and then all I do is, like, on the actual line itself, 

like, just continue to, like, align this, like, measurement that I'm using [gesturing to 

her self-made ruler] with the actual line, and just continuously turn it until I get to 

[length] a. 

 

Here, Abby is describing the process of measuring a curved line using a straight ruler. Abby 

measured an arc length of the curve from the reference point for a length of a, and identified the 

end point of the arc, indicating that this represented f(a). To identify the point f(a+h), Abby first 

formed a+h by concatenating the lengths a and h, and then measured an arc length from the 

same reference point along the curve for a length of a+h. The end point of this segment was 

identified as f(a+h). Prior to representing the differences of f(a+h) and f(a), the interviewer 

chose to intervene with the student to propose another way of thinking of the lengths of the line 

segments a and h. A model for Abby’s conveyed meaning for output are depicted in Figure 

4.20b.  

Discussion 

Output of a Function 

This analysis aligns with other research that suggests that calculus students bring a 

variety of understandings of output of a function to the classroom (David et al., 2019; Moore & 

Thompson, 2015). David, Roh, and Sellers (2019) described students’ conceptions of output of a 
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function as being represented by a point on a curve with the corresponding x-value (location-

thinking) or as the y-coordinate of this point (value-thinking), and the data in this report suggests 

that these meanings for output are conveyed in the context of non-numerical graphs as well. The 

results of analysis additionally provide an existence proof for other conceptions of the output of a 

function as well, that I will call arc length-thinking. Two of the students (Alison and Lisa) 

conveyed a meaning for output as an arc length of the curve, particularly when they first engaged 

with this activity. These conceptions for Alison and Lisa were stable meanings as both students 

were able to represent the difference of these two outputs without being perturbed and were 

consistent with their conceptions of output. For this reason, it does not seem likely that this is the 

first time that Alison and Lisa have reasoned in this way, and Alison and Lisa were assimilating 

to a scheme. 

Another student (Abby) also conveyed a difference meaning for output, particularly as a 

point on the curve. While in some ways similar to location-thinking, Abby’s thinking was 

distinct as she represented input values along the curve rather than parallel to the horizontal axis. 

Specifically, Lisa used a reference point at the intersection of the curve with the horizontal axis. 

Like the Alison and Lisa, Abby’s conveyed meaning during the first episode was stable. Though 

her meaning for difference of output was not conveyed, Abby indicated assimilating the task to 

measuring a trail, suggesting that her meaning for output was stable during her activity. While 

this analysis framed student’s location-thinking to specifically use the normative frame of 

reference, there is room for considering this thinking as location-thinking using a non-normative 

frame of reference. Future research may want to consider location-thinking and value-thinking in 

terms of non-normative frames of reference. 
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Difference of Outputs 

Throughout the seven episodes where students conveyed a conception for the difference 

f(a+h)-f(a), five of the episodes involved students conveying conceptions aligned with a 

quantitative difference, while none of the episodes involved students conceiving of difference as 

subtraction. As this task was designed to entail quantitative reasoning, it is not surprising that 

most students viewed the difference of outputs as a quantitative difference, where those 

quantities were what the student identified as an output.  

In these episodes, two students conceived of the difference of outputs as a point on the 

curve, both of whom were using location-thinking. Both students came to understand difference 

in this way by focusing on variation along the horizontal axes and conceiving of the difference of 

outputs in a way consistent with the outputs of the difference in inputs. While the students did 

not conceive of f(a+h)-f(a) as a quantity, they represented the input of the output f((a+h)-a) in a 

way consistent with a quantitative difference of a+h and a.  

In addition to quantitative difference, Thompson (1993) also described subtraction as a 

meaning for difference. This meaning for difference, however, was not present in this data set. 

While this could be a feature of the sample size (five students), I also believe that the task 

influenced this. The task was intended to necessitate quantitative reasoning by removing 

numerical markings from the axes and representing quantities with magnitudes. Without 

available measures, students would need to take it upon themselves to choose a unit of measure 

to measure as all lengths in reference to (which in terms of frames of reference involves 

committing to a unit (Joshua et al., 2015)). If a student were to do this, I believe it would be 

unlikely that they would forget what the numerical markings meant, as they would have created 

them. 
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Relationship Between Output and Difference of Output. 

Of the seven episodes where students conveyed conceptions for the difference of outputs, 

students also conveyed conceptions for output. Students that described f(a+h)-f(a) as a 

quantitative difference either used value-thinking or indicated a meaning for output as an arc 

length. In each of these cases, students represented outputs as the line segment and represented 

the difference as an additive comparison.  

Additionally, in each episode where students described the difference of outputs as a 

quantitative difference, the students conveyed a stable meaning for both output and difference of 

output, whether representing output in a standard way (e.g., value-thinking) or non-standard way 

(e.g., arc-thinking). I hypothesize that these were stable meanings for the output of a function 

because of the consistent nature of the students reasoning, as these students represented both the 

output and the difference of outputs as magnitudes. The consistency of students’ conceptions and 

the lack of evidence of the students experiencing perturbations during this activity suggest that 

the students were accommodating to a scheme. 

Both episodes where students used location-thinking also involved the student indicating 

that f(a+h)-f(a) was a point on the curve. These were also the only students who represent the 

difference in this way. Both students seemed to focus on the variation along the horizontal axis 

and represented the difference of output in a way consistent with the output of the difference of 

inputs. Students’ understanding of the difference of output as a point, however, was in the 

moment, as both students seemed perturbed and uneasy with their claim. In fact, after reflecting, 

Colin considered an alternative understanding for difference of output, particularly as a 

difference of coordinate-pairs. This illustrates that Colin’s conception of the difference of 

outputs was unstable (i.e., in the moment) and that a difference of coordinate-pairs is another 
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potential meaning for difference of outputs, specifically when using location-thinking. Colin’s 

deduction that the difference of outputs would need to be the difference of coordinates pairs 

(based on his meaning for outputs as points) was “unfamiliar” to him. Colin then accommodated 

his meaning for output to align with value-thinking.  

Conclusion and Implications 

My work builds on David, Roh, and Sellers’s (2019) constructs to describe student’s 

meanings for outputs of graphs, particularly in quantitative contexts. David et al. describe 

students’ meanings for output as points (location-thinking) and y-coordinates of points (value-

thinking). Both Alison and Lisa’s thinking suggest another meaning for output: arc length of a 

curve, or arc-thinking. These students both used non-normative frames of reference for 

representing the input value when conveying this meaning, however, there is evidence that 

Alison’s meaning has the potential for being consistent with a normative frame of reference for 

input. Alison’s initial choice of reference point was normative, however she changed to another 

reference point. My model for Alison’s thinking would suggest that using the origin as reference 

point was problematic because she could not identify one end of the arc length she would be 

considering. This particularly was a feature of the task, as the curve did not visibly intersect the 

vertical axis.  I conjecture that Alison would have not changed her reference point if the curve 

intersected the vertical axis and had been visible continuous and, hence, would have used a 

normative frame of reference while representing the output of a function using arc-thinking.  

Educators can use this data by first acknowledging that students in the classroom may 

have non-normative meanings for how outputs of functions are represented in graphs. This 

research aligns with the work of others to suggest that a meaning for graph should not be taken 

as shared (David et al., 2019; Moore, Stevens, et al., 2019; Moore & Thompson, 2015). 
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Understanding the ways that students understand graphs of functions and how graphs represent 

quantities (e.g., value-thinking, arc-thinking, location-thinking) can help teachers anticipate these 

meanings in the classroom, supporting the interpretation of students’ activity and reasoning 

about graphs during in-the-moment instruction. Teachers can further use this information to 

strategically choose examples of functions such that the graph of the function under a particular 

coordinate system may entail different variation in the output quantities depending on how the 

student is conceiving of output, rather than an example that may be ambiguous under different 

meanings for output. For example, the graph of the linear function f(x) = 2x - 3 in Cartesian 

coordinates can similarly be seen as increasing at a constant rate of change by a student engaging 

in value-thinking (see Figure 4.21a) or by a student who is conceiving of the arc length of a 

curve using a normative or non-normative reference point (see Figure 4.21b for a non-normative 

reference point).  
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    (a)     (b) 

Figure 4.21: Linear change in output when using value-thinking (a) and when output using arc-

thinking (b). 

To support students in accommodating their meanings to be more productive, it is 

essential that students find their reasoning problematic, or at least different from what is 

considered normatively correct. Using such an example may not support students recognizing 

differences in their reasoning compared to their peers, and likely would not support students in 

transitioning from their non-normative meaning for output. Using examples that entail different 

variation may afford classroom conversations about graphs, how mathematicians represent data, 

and how the instructor and the mathematical community intends to depict variation between two 

quantities using a Cartesian coordinate system, thereby supporting students in transitioning to 

normative conceptions of output and the difference of output. 

Differences of Outputs and Learning in Calculus 

This work contributes to the body of research around students’ thinking of concepts in 

calculus. To help illustrate how these outputs of a function and the differences of output relate to 
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rate of change of a function, I draw on Zandieh’s (2000) work, where she deconstructs the 

concept of derivative as a function into three layers: function, limit, and ratio. These layers are 

connected in the framework through process-object pairs, where a process conception of one 

layer can draw on the object (or pseudo-object) conception of another layer, forming a chain of 

process-object pairs (ratio to limit to function). In this way, Zandieh says that the derivative 

function is the limit of a ratio. In a symbolic context, this ratio is often referred to as the 

difference quotient or 
!(()'!(#)

('#
. Work by Byerley (2019) and Byerley and Thompson (2017) 

describe how students’ conceptions for slope, fraction, and measure can impact their conceptions 

for rate of change. They argue that students’ understanding of a rate of change is impacted by 

their conceptions of a ratio, which is the ratio of changes of an output quantity with respect to 

changes of the corresponding input quantity, or the change in y with respect to the change in x. 

Extending Zandieh’s (2000) chain, one can argue that the ratio is a ratio of differences, 

specifically the changes in one quantity (output quantity) in relation to the changes in another 

quantity (input quantity). The numerator of this fraction is precisely the difference in outputs of a 

function, and students’ conceptions of these differences (and hence outputs) are essential in 

students’ conceptions of the derivative. 

This analysis also provides evidence of some of the downstream conceptions that one 

may expect for the difference of outputs for those using value-thinking, location-thinking, and 

arc length-thinking. In a quantitative context similar to the one described in this paper, educators 

may expect students focusing on this difference of output as the magnitude of a vertical line 

segment as being indicative of value-thinking, and students focusing on this difference as the 

magnitude of an arc as being indicative of arc length-thinking. Students focusing on difference of 

output as a point or as the subtraction of coordinate-pairs may be indicative of location-thinking. 
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Given the limited sample size, however, I suggest further research to document other meanings 

that students may convey for difference of output, as well as other concepts along Zandieh’s 

(2000) chain such as average rate of change and instantaneous rates of change. 

Frames of Reference and Supporting Accommodation to Normative Meanings  

This analysis suggests that the origin as the normative reference point for graphs in 

Cartesian coordinates is non-obvious for students. When first engaging with this task, four of the 

five students reasoned about the quantities represented in the graph using non-normative frames 

of reference, particularly non-normative reference points for representing the input of the 

function. Additionally, two of the five students conveyed a directionality for their frame of 

reference along the curve rather than along (or parallel to) the horizontal axes. While this 

perspective is productive when considering arc length or parametric equations, teachers may 

want to support students in coming to normative frames of reference when interpreting graphs of 

functions in Cartesian coordinates. I suggest teachers provide students opportunities to reason 

with quantitative situations and create graphs that represent the relationship between the 

covarying quantities in the situations. Creating graphs would likely support students in coming to 

normative frames of reference, especially if students first created graphs with numerical axes. 

Through such activity, students would need to reflect on how quantities are represented in a 

graph, further supporting the identification of normative meaning of output of a function.  

To further support students coming to normative conceptions of graphs in the classroom, 

instructors can also be careful to label the axes of graphs as well as the curve of a graph in 

Cartesian coordinates as ‘y = f(x)’ rather than ‘f(x)’. Such precision can support students in 

connecting their mathematical meanings across algebraic and graphical contexts. For example, 

Colin leveraged this expression as he transitioned from location-thinking to value-thinking.  
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After being perturbed when considering f(a+h)-f(a) as a difference of coordinates, Colin began 

to consider the output as the y-coordinate of the point he had been thinking was the output. Colin 

said the following when reflecting on this moment. 

 

Colin: … If you’d asked me at the beginning, having not just thought about it for a long 

time, [I] would have said that it [f(a)] was the point. But now that I think about, like, 

it’s like y = f(x), and all we did was substitute the a there, so I would say that this 

[f(a)] is the y-value.  

 

Colin provides an example of how with a student with the appropriate supports can naturally 

transition from unproductive meanings to productive meanings. 
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Chapter 5 - Conclusion 

 

 

 

Conclusion 

 

 

 

Discussion 

This dissertation identifies factors related to student success in Calculus I with the 

intention of informing interventions for students that may be at-risk of failing Calculus I. The 

first paper suggested that students who regulate their precalculus content knowledge tend to 

perform better in Calculus I than students that do not. However, due to coarse nature of the 

coding scheme for the SRL score, it is difficult to give targeted advice to students identified as 

at-risk given both the complex nature of SRL and the limited information captured by the tools. 

The second paper in this dissertation helps clarify some of the relationships that were involved in 

the first paper. Drawing on students’ calibration of their precalculus content knowledge, my 

work suggests that students who tend to underestimate their precalculus mastery tend to have 

higher scores on Exam 1 than students who overestimate their abilities. Students who tend to be 

more accurate in their precalculus mastery also tend to perform better on Exam 1 than students 

whose perceptions of precalculus mastery are inaccurate. Students who are more accurate their 

assessments of precalculus mastery further tend to benefit more from help-seeking than students 

who are inaccurate in their assessments of precalculus mastery. This deeper analysis of 

calibration and help-seeking provides additional recommendations for students who have be 

identified as at-risk, such as the hypothetical student Derek.    

Recall that Derek is a student with high precalculus confidence, low demonstrated 

mastery, and who has neither reflected on his precalculus content quiz results nor sought help to 
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improve his precalculus mastery. Given Derek’s precalculus confidence and mastery, in the first 

paper I suggested that Derek could regulate his precalculus knowledge by engaging in the 

reflection phase of SRL and using the feedback from the precalculus content quiz to inform his 

future studies. Derek could do so by reflecting on his quiz score by using the precalculus 

reflection tool and seeking help with precalculus material either online or through in-person 

precalculus-focused workshops. By doing these actions, Derek would have a higher SRL score. 

The second paper elucidates on how instruction and intervention could better support Derek. I 

found that students who are inaccurate in their calibration may not benefit from help-seeking as 

much as students who are more accurately calibrated. This could be the case because students 

who are attuned to their content knowledge would more likely be efficient and accurate in 

identifying what content areas would be most productive to focus on during a tutoring session, 

thereby increasing the effectiveness of help-seeking. As Derek exhibits low mastery and high 

confidence in his precalculus ability, Derek would likely be categorized as having high 

calibration bias and low calibration accuracy. Results from the second paper suggest that not 

only should Derek seek help to improve his precalculus content knowledge, but that helping 

Derek become more accurate in his abilities also plays an important role. While seeking help 

from various resources would likely support his growing precalculus content knowledge, his 

perceptions of mastery may hinder the effectiveness of that help. Specifically, Derek’s inaccurate 

calibration may inhibit him from targeting the content areas that would be most beneficial for his 

conceptual growth. By improving Derek’s calibration accuracy, Derek will be better positioned 

to identify the content with which he needs support.  

 While the second paper highlights the importance of calibration, past researchers suggest 

that a strong normative foundation in precalculus content knowledge is also important for 
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success (Agustin & Agustin, 2009). Quantitative data from the first two papers suggest that many 

students entering calculus have not yet mastered concepts related to graphs. As described in the 

analysis of the PCQ in the introduction to this dissertation, less than 12% of students enrolled in 

a calculus course who took the precalculus content quiz answered both items related to graph 

correctly, and over 60% of students made an incorrect response to one of these multiple answer 

items (i.e., answered at least one question incorrectly). Clinical interviews in the third paper of 

this dissertation corroborates this finding, as all five Calculus I students demonstrated non-

normative conceptions for output when first engaging with the task. Not only were the 

conceptions of output of a function incorrect, but one category of these conceptions (i.e., arc 

length-thinking) was stable, where the students had consistent and coherent ways of making 

sense of difference of outputs throughout the task. The stability of students’ non-standard 

conceptions of graphed quantities supports quantitative findings that students in Calculus I, in 

general, had low levels of calibration accuracy and high levels of calibration bias on items 

related to graphs. Together, these findings from this quantitative and qualitative data suggest that 

graphs of functions may be one content area to target when trying to improve students’ 

calibration accuracy because (1) there seems to be room for growth for many Calculus I students 

and (2) incorrect meanings may engender stable conceptions that are counterproductive to 

students in the course. Students like Derek may have a consistent system of conceptions for 

precalculus content, such as graphs of functions and how quantities are represented in graphs, but 

have not yet recognized that these conceptions will be problematic. Once students recognize that 

their non-normative meanings are unproductive, they can begin to accommodate meanings to 

ones that are more productive and standard. Until those students find their meaning 



 139 

unproductive, however, students with stable non-normative meanings for graph would likely 

exhibit high confidence in their abilities to answer items related to graphs correctly.  

I hypothesize that students’ non-normative, yet consistent, conceptions of graph may 

explain why students in Calculus I are inaccurate in their perceptions of mastery of graph, where 

students’ high calibration bias on graphing items (in the introduction to this dissertation) may be 

indicative of non-normative stable meanings (in the third paper of this dissertation). While this 

dissertation study provides evidence toward this claim, further work ought to investigate the 

relationships between students’ calibration bias and their stable non-normative meanings of 

graph. To further investigate whether high calibration bias is indicative of non-standard 

meanings of graphs, I suggest that future researchers conduct clinical interviews with students 

where students indicate their confidence in content related to graphs and answer questions 

related to graph. I further suggest that future researchers measure students’ calibration bias and 

accuracy using students’ confidence of correctly completing the task before seeing the item (i.e., 

predictions) and after responding to the item (i.e., postdictions; Labuhn et al., 2010; Schraw et 

al., 1993). Measuring the alignment of students’ perceptions of mastery after the task with their 

observed mastery would give insight into students’ perceived success after they have already 

completed the items rather than before they have seen the items (e.g., in this dissertation). It is 

unclear whether students’ confidence in answering questions related to graphs in this study was 

related to their perceived success with the task or whether the task was unexpected for the 

student. Using students’ confidence in having completed the item correctly after answering the 

question would more likely capture data about students’ perceived success with a given task.  

I suggest that future work investigating high calibration bias and stable non-normative 

meanings for graphs additionally account for students’ motivation for learning mathematical 
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content. Unlike students in the first and second papers, the participants in the third paper were 

enrolled in a calculus course that is a terminal course for many programs of study that the course 

serves. As such, students’ motivation to learn mathematical content may differ for those in the 

third paper and those in the first and second papers. Similarly many students in the calculus 

course for biological scientists (in the third paper) defer to take the course in their third or fourth 

year of their undergraduate career, while most students in the calculus course for engineers (in 

the first and second papers) take the course in their first or second year. These differences in the 

courses and their student populations may indicate differences in students’ intrinsic interest in 

learning the calculus content and differences in students’ mathematical preparation for the 

respective courses. 

Implications 

Graphs are commonly used in the Calculus I classroom, and it is important that students 

understand graphs in a productive and normative way. Results from this dissertation suggest that 

interventions for at-risk Calculus I students should aim to improve students’ calibration accuracy 

of precalculus content, both generally and specifically with graphs of functions. While graphs of 

functions should be a focus for such interventions, it would also be beneficial for instructors to 

consider integrating intentional time in class to focus on how graphs of functions represent 

information about how two quantities covary early in the semester, such as on the first day, and 

throughout the semester. Qualitative data suggest that Calculus I students may hold a variety of 

conceptions for graph, and quantitative data could indicate that large numbers of students hold 

such non-normative meanings, as evidenced by the high numbers of overconfident students 

enrolled in Calculus I. By integrating activities and discussion around graphs of functions into 

class, a large proportion of Calculus I students can potentially be perturbed from non-normative 
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to normative conceptions of graph. Further, early and regular activity around graphs in the 

classroom could support instructors’ understanding of how students in the class make sense of 

graphs, which in turn could impact how they facilitate the development of students’ normative 

conceptions of graph. Use and sense-making of multiple representations have been stressed in 

elementary through secondary literature (National Council Of Teachers Of Mathematics, 2000), 

and my work suggests that continued use of graphical representations and cohesion with other 

representations is also crucial for student learning.  

On the first day, instructors could have students work in small groups to identify different 

quantities in graphs and discuss their results with other groups. Instructors can strategically 

choose functions whose graphs would elicit different responses depending on various expected 

conceptions that students hold, such as value-thinking, location-thinking, or arc length-thinking. 

Further, the instructor could provide graphs of functions devoid of numerical axes to have 

students’ think about how graphs represent information. Discussing relationships between visual 

representations and other representations of function, such as algebraic representations, may 

support students in connecting their graphical meanings for function with other representations to 

support more coherent meanings across representations (Knuth, 2000).  

Additionally, this work highlights the importance of one aspect of SRL: Calibration. 

Students looking to regulate their content knowledge must be aware of their content knowledge, 

and it is productive for students’ judgements about their content knowledge to be accurate. The 

analysis in the second paper provides description for how calibration and help-seeking together 

correlate to student success. Instructors can support their students in becoming more accurate in 

their perceptions by having students reflect about their mathematical content knowledge 

regularly inside and outside the classroom (Bol et al., 2012; Zimmerman et al., 2011). 
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Zimmerman et al. (2011) found that students who tended to reflect more on assignments tended 

to be less overconfident in their abilities and performed better on exams than students who did 

not reflect as much. By having students practice judging their own mastery and reflect more, 

instructors can foster an environment where students can improve their calibration accuracy (Bol 

et al., 2012), thereby improving the effectiveness of their academic help-seeking. Given the 

detailed suggestions we can make about these calibration and help-seeking, I suggest that 

researchers looking to identify at-risk students using SRL look at how specific aspects of SRL 

impact student success rather than SRL as one construct. This way, educators and administrators 

can use this information about these competencies to identify supports for students, similarly to 

what I described for Derek.  

Future Work 

In future work, I plan to investigate how different meanings students’ have for graphs 

engender conceptions for other mathematical concepts, such as average rate of change and the 

derivative at a point. For example, Stump (2001) described a preservice teacher’s conception of 

slope of a function consistent with the length of the hypotenuse of a triangle rather that the ratio 

of vertical change to horizontal change. I suspect that this conception of slope as hypotenuse may 

be related to non-normative conceptions of output on a graph because slope as hypotenuse would 

be consistent with arc learning-thinking. In other future work, I will investigate what supports 

students in transitioning from non-normative conceptions of output (e.g., location-thinking and 

arc length-thinking) to normative ones (e.g., value-thinking).  

Regarding calibration, I will continue to examine the role calibration plays in student 

success and help-seeking, as well as how to support students in becoming more accurately 

calibrated. Research suggests that students who reflect more frequently tend to have higher levels 
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of calibration compared to those who do not reflect as frequently (Zimmerman et al., 2011). 

Consequently, I recommend that instructors provide more opportunities for students to reflect on 

their content knowledge both inside and outside of class. For example, Pilgrim et al. (2020) 

describe questions intended to prompt students into thinking about whether they can successfully 

complete an item similar to a previously worked problem without additional support. Likewise, 

researchers have found that prompting students to identify what concepts they grasped and what 

their strengths and weaknesses were supported students in becoming more accurately calibrated 

in both individual and group settings (Bol et al., 2012). 

Lastly, I plan to investigate effects of self-efficacy with help-seeking in order to 

determine how this correlates with student performance. Self-efficacy has also been correlated 

with both student success and self-regulation (Tian et al., 2018; Worthley, 2013). Incorporating 

self-efficacy into the models used in the second paper, after accounting for incoming ability, may 

clarify the relationship amongst these three competencies and illuminate nuanced suggestions for 

intervening with students. For example, helping Derek become more accurately calibrated would 

likely involve decreasing Derek’s self-efficacy. It would be important to understand how Derek’s 

deflated self-efficacy would impact his performance in the course. Likewise, interviews with 

students would help uncover other potential effects that calibration, self-efficacy, and help-

seeking have on students’ affect with Calculus I and persistence into Calculus II. 
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Appendix A- SRL Score Coding Scheme 

 

 

 

SRL Score Coding Scheme 

 

 

 

Coding for Each Data Source Corresponding 

SRL Score 
PSA PCQ PRT PHR 

High 

Confidence 

High 

Performance 

Did Use Did Use 5 

High 

Confidence 

High 

Performance 

Did Use Did Not Use 4 

High 

Confidence 

High 

Performance 

Did Not Use Did Use 3 

High 

Confidence 

High 

Performance 

Did Not Use Did Not Use 4 

High 

Confidence 

Low 

Performance 

Did Use Did Use 4 

High 

Confidence 

Low 

Performance 

Did Use Did Not Use 2 

High 

Confidence 

Low 

Performance 

Did Not Use Did Use 3 

High 

Confidence 

Low 

Performance 

Did Not Use Did Not Use 2 

High 

Confidence 

Did Not Use Did Use Did Use 3 

High 

Confidence 

Did Not Use Did Use Did Not Use 1 

High 

Confidence 

Did Not Use Did Not Use Did Use 3 
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High 

Confidence 

Did Not Use Did Not Use Did Not Use 1 

Low 

Confidence 

High 

Performance 

Did Use Did Use 4 

Low 

Confidence 

High 

Performance 

Did Use Did Not Use 3 

Low 

Confidence 

High 

Performance 

Did Not Use Did Use 3 

Low 

Confidence 

High 

Performance 

Did Not Use Did Not Use 2 

Low 

Confidence 

Low 

Performance 

Did Use Did Use N/A 

Low 

Confidence 

Low 

Performance 

Did Use Did Not Use 2 

Low 

Confidence 

Low 

Performance 

Did Not Use Did Use 3 

Low 

Confidence 

Low 

Performance 

Did Not Use Did Not Use 1 

Low 

Confidence 

Did Not Use Did Use Did Use 3 

Low 

Confidence 

Did Not Use Did Use Did Not Use 2 

Low 

Confidence 

Did Not Use Did Not Use Did Use N/A 

Low 

Confidence 

Did Not Use Did Not Use Did Not Use N/A 

Did Not Use High 

Performance 

Did Use Did Use N/A 

Did Not Use High 

Performance 

Did Use Did Not Use N/A 

Did Not Use High 

Performance 

Did Not Use Did Use N/A 
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Did Not Use High 

Performance 

Did Not Use Did Not Use N/A 

Did Not Use Low 

Performance 

Did Use Did Use 3 

Did Not Use Low 

Performance 

Did Use Did Not Use 1 

Did Not Use Low 

Performance 

Did Not Use Did Use N/A 

Did Not Use Low 

Performance 

Did Not Use Did Not Use N/A 

Did Not Use Did Not Use Did Use Did Use 2 

Did Not Use Did Not Use Did Use Did Not Use 1 

Did Not Use Did Not Use Did Not Use Did Use 1 

Did Not Use Did Not Use Did Not Use Did Not Use 0 
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Appendix B - Coded Relationships between Precalculus Self-Assessment Items and Precalculus Content Quiz Items 

 

 

 

Coded Relationships between Precalculus Self-Assessment Items and Precalculus Content 

 

Quiz Items 

 

 

 

  PSA Items 

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

PCQ 

Items 

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 2 1 

2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 2 

3 0 0 1 2 2 0 0 0 0 0 0 0 1 0 0 0 

4 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 

6 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 

7 2 2 2 2 2 0 0 0 0 0 0 0 2 0 0 0 

8 0 0 0 0 0 0 0 2 0 0 2 0 0 0 0 0 

9 0 0 0 0 0 0 0 0 2 0 2 0 0 0 0 0 

10 0 0 1 0 0 0 0 2 2 0 2 0 0 0 0 0 

11 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

12 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 0 

 

Note. Coded relationships between PSA and PCQ items are coded as either ‘0’, ‘1’, or ‘2’, where 

‘0’ represents no relationship between the items, ‘1’ represents a relationship between the items, 

and ‘2’ represents a strong relationship between the items.  
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Appendix C – Data Regarding Resource Usage and Population Sample 

 

 

 

Data Regarding Resource Usage and Population Sample 

 

 

 

Participants in this study included students enrolled in a predominantly Caucasian 

western university’s Calculus I course in the fall semester of 2016. Of the 426 students enrolled 

in the course, 401 students consented to all aspects of the study. As many students formally drop 

the course or informally disengage from, this study intended to only investigate students who 

were engaged throughout the entire course. The data set for this study hence used only students 

who completed all exams in the course, leaving 356 students. Further this study intended to study 

the calibration of these students, so only students who completed the PSA and the PCQ were 

included in the sample. Of the 356 students, 77.8% and 68% of the students completed the PSA 

and PCQ, respectively, of which 218 students completed both (see Table C.1). 

Table C.1: Number of consenting students by PSA and PCQ usage (percentage of entire 

population) 

  PSA  

  No use Did use Total 

PCQ 
No use 55 59 114 (32%) 

Did use 24 218 242 (68%) 

 Total 79 (22.2%) 277 (77.8%) 356 

 

In addition to the calibration bias, calibration accuracy, and SAT/ACT scores, students’ 

attendance to a Calculus Help Center (CHC) was recorded. Office hours of instructors and 
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teaching assistants were held in the CHC. Students could freely visit the CHC during the 

workday for scheduled appointments with their instructor or for drop-in appointments with an 

instructor of a different section of the course. It is worth note that Calculus I was the lowest level 

course that the CHC served, so any instructor could one working in the CHC could help Calculus 

I students with whatever question they may have.  

Including only students whom have consented to the study, completed all exams, choose 

to complete the PSA and the PCQ, and whose SAT Math or ACT Math scores were available, 

there are a total of 196 students in the sample. Two students were further removed from the data 

set from being outliers with regards to CHC visits before Exam 1and Final Exam performance, 

giving 194 students to be used for this research study. 

Including only students whom have consented to the study, completed all exams, choose 

to complete the PSA and the PCQ, and whose SAT Math or ACT Math scores were available, 

there are a total of 196 students in the sample. Two students were further removed from the data 

set from being outliers with regards to CHC visits before the first exam or final exam 

performance (See Figure C.1), giving 194 students to be used for this research study. 
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Note. The two left-most points were excluded from the analysis as they were outliers. 

Figure C.1: Scatterplot of Student Final Exams and Number of Visits to CHC Before Exam 1 

 


