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ABSTRACT

USING FLOW CYTOMETRY AND MULTISTAGE MACHINE LEARNING TO DISCOVER

LABEL-FREE SIGNATURES OF ALGAL LIPID ACCUMULATION

Most applications of flow cytometry or cell sorting rely on the conjugation of fluorescent dyes

to specific biomarkers. However, labeled biomarkers are not always available, they can be costly,

and they may disrupt natural cell behavior. Label-free quantification based upon machine-learning

approaches could help correct these issues, but label replacement strategies can be very difficult to

discover when applied labels or other modifications in measurements inadvertently modify intrin-

sic cell properties. Here we demonstrate a new, but simple approach based upon feature selection

and linear regression analyses to integrate statistical information collected from both labeled and

unlabeled cell populations and to identify models for accurate label-free single-cell quantification.

We verify the method’s accuracy to predict lipid content in algal cells (Picochlorum soloecismus)

during a nitrogen starvation and lipid accumulation time course. Our general approach is expected

to improve label-free single-cell analysis for other organisms or pathways, where biomarkers are

inconvenient, expensive, or disruptive to downstream cellular processes.
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Chapter 1

Introduction

There are many biological research tasks for which it is important to measure single-cell behav-

ior [1]. These tasks, which include cell counting, cell sorting, and biomarker detection, are widely

conducted using flow cytometry (FCM) [1–3]. Flow cytometry is a high throughput analysis tech-

nique that performs rapid multiparametric analyses to inspect and quantify large cell populations

and subpopulations [2–9]. FCM analysis is usually conducted by first fluorescently labeling cells,

and then quantifying fluorescence intensity of individual cells within large populations. Each cell

passes through a laser beam to excite fluorophores, and each cell’s data is recorded by measuring

emitted fluorescence intensity at longer wavelengths [5,7,9]. FCM also provides indirect measure-

ments of cell phenotypes through measurements of intrinsic cellular properties, such as cell size

and shape by forward-angle light scatter (FSC), and information about cellular granularity and mor-

phology by side-scattered light intensity (SSC) [8,10]. In addition to quantifying cell populations,

the related technique of fluorescence-activated cell sorting (FACS) allows researchers to separate

cell populations into different subpopulations with respect to their individual properties [8]. As the

name implies, sorting decisions are primarily based upon fluorescent labels [1, 11].

Despite broad application of fluorescent labels in flow cytometry measurements [10], applica-

tion of labels can be costly and may require unnecessary effort [12–14]. Labeling can also alter

cell behavior and interfere with cellular processes and downstream analyses by causing activat-

ing/inhibitory signal transduction [13, 15–19]. Additionally, some stains require cellular fixation

or are toxic, which limits downstream processing when sorting [18,20]. A label-free quantification

strategy could help prevent these adverse consequences by reducing operation costs and efforts, as

well as avoiding side effects of using labels on cells [12, 15]. In label-free quantification of FCM

measurements, computational methods are used to quantify targeted cellular information based on

measurements from other channels, i.e., from features.
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Current label-free quantification strategies employ various methods of machine learning within

their analyses to make use of large flow cytometry data sets [12, 13, 15, 17, 21, 22]. However, in

these strategies, the best intrinsic cellular features have been selected based solely on informa-

tion collected from fluorescently labeled cells (for instance, see [12, 21]). For some biological

processes, if labels indirectly affect intrinsic cell properties within training populations, then these

interactions could result in unexpectedly poor quantification of cell populations when tested on un-

labeled cells. We hypothesize that FCM data sets could be used to develop label-free quantification

strategies even when signatures are weak and are perturbed during the training process. In this

work, we test our hypothesis by combining supervised machine learning algorithms with analysis

of the distributions of single-cell data and their corresponding fluctuation fingerprints [23].

To demonstrate our approach, we conduct feature selection and regression analysis to find opti-

mized label-free feature combinations and quantify lipid accumulation in microalgae cells, that can

usually produce lipid content of 15% to 35% (potentially up to 80%), depending upon cultivation

conditions, growth media, and algal species [24–26]. For such microalgae to become sources of al-

ternative fuels, it will be necessary to monitor and maximize their ability to accumulate lipids [27].

To enable such quantification, we collect and examine FCM measurements of Picochlorum soloe-

cismus under nitrogen replete conditions, and nitrogen deplete conditions that will stress cells and

induce them to accumulate lipids. To measure lipid accumulation, we started with a traditional

label-based strategy using BODIPY 505/515 fluorescent dye. We measured cell properties with

and without the BODIPY stain, and we sought to find signatures in the latter preparation that are

capable of reproducing quantities of the former preparation. Using these labeled and unlabeled

data, we applied supervised machine learning algorithms to select the most informative features

and predict lipid content. As opposed to current methods [12, 13, 15, 17, 21, 22], we show that ac-

curate label-free cell quantification requires rigorous incorporation of statistical information from

biological experiments using both labeled and label-free measurements.1

1The Introduction Chapter of this thesis is from self article by Tanhaemami et al. [28].
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Chapter 2

Literature Review

In this chapter, we will start with a brief discussion on how single-cell research has changed the

view on studying cellular populations. We will then study how a flow cytometry analysis technique

is carried out, as well as the broad application of fluorescent labels. Followed by the motivation

points of this research, we will discuss about label-free quantification strategies during past few

years and their common mistake.1

2.1 Single-Cell Research and Flow Cytometry

Before the advent of single-cell research, cell cultures were assumed to act as an ergodic sys-

tem, i.e., cells are identical and are at equilibrium. Even in a population with growing cells, the

assumption of local equilibrium for the cells was accepted [29]. However, in an actually hetero-

geneous system (which can be can be phenotypic, caused by progression through cell cycles or

changes in the local environment, or genotypic, resulting from mutations), assumptions of this

nature could lead to incorrect analyses [4,29]. This drawback has led to the development of single-

cell studies.

Measurements at a single-cell level provide substantial, otherwise neglected, information about

cellular properties [23]. Inclination towards single-cell research, requires the use of technologies

that are capable of performing readouts at a single-cell level [9]. One of the most commonly

used methods for studying single cells is flow cytometry [2]. Flow cytometry (FCM) is a high-

throughput multiparametric analysis technique with the ability to read cells at rates as high as

100,000 cells per second [2, 6]. Multiparametric measurements and multivariate analysis capabil-

ities of FCM, along with its high readout rates, make it a powerful and widespread technique in

single-cell research [2–8, 29–31]. Providing insight about physical and chemical characteristics of

1Some parts of the Literature Review Chapter of this thesis are from the Curricular Practical Training (CPT)

received at the Dana-Farber Cancer Institute and Broad Institute of MIT and Harvard.
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individual cells [32], a flow cytometer is mostly used for the purpose of cell sorting, cell counting,

and biomarker detection in cellular populations [1–3, 8, 33]. These tasks allow for various studies

in single-cell research. For example, FCM can be employed to quantify cytokines, chromosomes,

nuclei, DNA and RNA content, and protein accumulation [7, 8]. The ability of FCM in sorting

cells has introduced the fluorescence-activated cell sorting (FACS) analysis, which enables dis-

tinction of different subpopulations in a larger cell population [1, 11]. FACS analysis can also be

used in identification and separation of the cells of interest in a heterogeneous mixture of cellular

populations [8].

In the following section, the mechanism of a flow cytometer is described, as well as the com-

mon fluorescent dyes, and their advantages and disadvantages. FACS analysis, as a specialized

type of flow cytometry that highly depends on use of fluorescent dyes, is also described. In Sec-

tion 2.3, computational strategies developed to avoid application of fluorescent dyes in FCM are

explained, along with their shortcomings and drawbacks. Lastly, in Section 2.4 of this chapter, the

motivation for this research is presented.

2.2 Flow Cytometry Analysis

Since its development in the 1950s and the 1960s [29, 34–37], flow cytometry (FCM) has

become the main technique for analyzing cellular populations that can quantify multiple char-

acteristics of single cells at a high rate [8, 34, 35, 38]. Differentiating and analyzing cells of

interest in a heterogeneous population can be carried out using a flow cytometer. Whether for

research, clinical, or industrial purposes, a flow cytometer is used in conducting numerous assays

including but not limited to measuring size of the cells, analyzing cellular complexities, quantifi-

cation of the DNA, RNA, and protein content, cell cycle analysis, and investigating cell mem-

branes [5, 7, 8, 30, 31, 34, 35, 39, 40].

In this section, mechanism of a typical flow cytometer is explained. Application of fluorescent

dyes in FCM and FACS analysis technique are also discussed.
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2.2.1 Mechanism of a Flow Cytometer

A typical flow cytometer consists of three main parts: (i) Fluidic system, (ii) optical system,

and (iii) signal detection and processing [8]. The essential part of a flow cytometer to perform a

single-cell analysis is the Fluidic system. The cell suspension is injected into the flow chamber by

pressurized air lines. At the same time, a sheath fluid forces the cell sample stream to be at the

central core of the flow, resulting in a coaxial flow. Because of the pressure difference between

the sample stream and the sheath fluid, the resulting coaxial flow aligns the cells to enter the flow

chamber in a single file. The process, known as hydrodynamic focusing, allows the cells to be

illuminated uniformly. It is worth noting that the sheath fluid and the cell suspension stream do not

mix because the hydrodynamic focusing produces a laminar flow in the flow chamber [8,30,37,41].

As part of the optical system, as the cells pass through the flow chamber, they are illuminated

by a focused light source (usually a laser beam) at a certain wavelength. The laser beam hits

individual cells at the interrogation point. The process during which a cell traverses the beam is

called an event. At each event, the electrons of the fluorochromes attached to the cells are excited

by absorbing the energy from the laser beam. As the electrons drop to their lower energy orbitals,

they emit energy in the form of light at a higher wavelength. If the cells have autofluorescence

capability or are labeled with fluorescent dyes, the excitation-emission procedure can be detected

by the flow cytometer. In addition to fluorescence signals, scattered lights deflected from the cells

provide a handful of information regarding intrinsic cellular properties. The scattered light can be

in the forward angle to the laser beam (typically between 2° and 20°), called the forward scatter

(FSC). Alternatively, there is the side scatter (SSC), that is the light collected with an angle of

70° 6 θ 6 110°. FSC is proportional to the square of the radius of a sphere, hence it provides

information regarding size of the cells or their surface area. On the other hand, SSC is related

to the light reflected by the nucleus and other contents in a cell and gives information about cell

granularity. The optical systems also consists of a collection apparatus. A lens collects emitted

light from each event and a group of optical filters and mirrors redirect the light to the detectors for

recording and analysis. There are three types of filters used in the optical system: long-pass, short-
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pass, and band-pass filters. Long-pass filters allow for passage of lights with wavelengths equal to

or higher than a specific value. Short-pass filters transmit light that are equal to or shorter than a

fixed wavelength. Band-pass filters, however, only permit light with wavelengths in a certain and

narrow range [6, 8, 10, 30, 34, 35].

The third main part of a flow cytometer is the signal detection and processing. Signals from

scattered light and fluorescence are detected by the photodetectors in a flow cytometer. Selected

based on their sensitivity, photodetectors can be photodiods (PDs) or photomultiplier tubes (PMTs).

In general, PMTs, which are more commonly used in FCM, are more sensitive than PDs. While a

PD is able to detect stronger light signals generated by FSC, a PMT is preferred when weaker sig-

nals generated by SSC and fluorescence are favored. The detectors convert photons from emitted

signals to electrical impulses. The resulting electrical current is then directed to an amplifier, where

it is converted to either linear or logarithmic analog voltage pulses. By using an analog to digital

converter (A-to-D or ADC), the analog signals gathered from amplifiers are converted to digital

signals. The data from such digital signals are normally displayed in single-parameter histograms

(used for studying fluorescence intensities) or dual-parameter scatter plots (used for assays related

to FSC versus SSC) [7, 8, 30, 34, 35, 37, 39, 42].

2.2.2 Fluorescent Dyes in Flow Cytometry

For a fluorescent compound, there is a fixed range of wavelengths at which it can absorb and

emit quantum of light energy. When a fluorochrome is exposed to light, namely a laser beam in a

flow cytometry assay, the electrons on the fluorescent compound move from their lower orbitals to

their higher orbitals as a result of absorbing energy. This process causes the fluorescent compound

to be in an excited state. When electrons drop to their lower energy orbits, they emit the excess

energy in the form of light at a lower energy frequency, i.e., higher wavelength. Such process of

excitation because of absorbing the light energy and then emission of energy in the form of light

at a higher wavelength is called fluorescence [8, 34, 37, 39, 43]. The difference between the peak

wavelengths of excitation and emission signals in a fluorescence process is called the Stokes shift.
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Higher Stokes shift is more desirable since it means the excitation and emission wavelengths can

be distinguished from one another more easily [8, 37, 39].

While forward and side scattered light intensities in a flow cytometer offer useful information

about intrinsic cellular properties such as cell size, shape, and granularity, fluorescence signals

can be investigated to study the structure or functionality of the cells [30]. Although a cell might

have autofluorescence capabilities, there are a few intrinsically fluorescent compounds present and

they provide limited information about the cell [8]. Hence, fluorescent dyes are widely used in

FCM measurements to allow for understanding several characteristics of cellular populations and

presence of cell components that would be neglected otherwise [8, 34, 43, 44]. In flow cytome-

try, a proper fluorochrome may be chosen depending on its compatibility to the wavelength of

the laser beam (commonly Argon laser emitting light at 488 nm) and properties of interest in the

cells [34, 39, 43]. Moreover, autofluorescence can interfere with detection of target fluorescent

signals if they are very dim. Thus, selecting an appropriate fluorochrome in FCM measurements

is a vital task and should be conducted with extreme care [30]. A good fluorescent dye should

have high quantum yield (able to help detect low concentrations of the stain by emitting high cell-

associated fluorescence signal intensity), high Stokes shift, low toxicity, and high photostability.

It should also be biologically inert and highly soluble in water [30]. There are numerous fluores-

cent dyes available and they can be classified into several groups with respect to their applications

and mechanism of binding [8]. Some fluorochromes are used to label proteins and antibodies,

such as fluorescein isothicyanate (FITC with approximately 492/520-530 nm excitation/emission

wavelengths), phycoerythrin (PE with approximately 480-565/575-585 nm excitation/emission

wavelengths), and allophycocyanin (APC with approximately 650/660 excitation/emission wave-

lengths). Some other fluorochromes are used in detecting the DNA content, such as propidium

iodide (PI with excitation/emission wavelengths of approximately 305-580/623 nm). Additionally,

boron-dipyrromethene (BODIPY with approximate wavelengths of 503-505/512-515 nm of excita-

tion/emission) and Nile Red (with approximate wavelengths of 551/636 nm of excitation/emission

wavelengths) are commonly used for identification of lipids [8,18–20,27,30,34,37,39,43]. The de-
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sire for higher Stokes shift has led to invention of tandem dyes. In a tandem dye, two fluorochromes

are conjugated in a donor-acceptor relationship. The donor fluorochrome gets excited at a wave-

length. Being covalently coupled to the acceptor, the donor transforms its excitation energy to

the acceptor. The acceptor then emits light at a much higher wavelength. The advent of tandem

dyes is an outcome of a process called fluorescence resonance energy transfer (FRET) [8, 34, 43].

Describing the mechanisms of binding and applications for all available fluorescent dyes is beyond

the scope of this study, though if interested, the reader is encouraged to read the useful books au-

thored by Macey [34], Givan [37], and Shapiro [36], as well as several other scientific articles cited

in this section.

2.2.3 Fluorescence-Activated Cell Sorting (FACS)

A major application of a flow cytometry analysis is to sort a heterogeneous cell population

into separate subpopulations. Fluorescence-activated cell sorting (FACS) is a powerful technique

developed based on flow cytometry that enables us to sort a population of fluorescently-labeled

cells into two or more subsets. In FACS analysis, an operator first gates the cells of interest, i.e.,

defines the properties of the cells of interest by the flow cytometer software as they are interro-

gated. Then, as the cells leave the sample chamber, a nozzle containing the stream of the cells

– and the sheath fluid are vibrated at a high frequency by an acoustic piezoelectric crystal. The

vibration causes the sheath fluid to break into droplets, each of which isolating at most one cell.

When droplets leave the nozzle, they are electrically charged according to the operator-defined

gates. Later, electrically-charged droplets are deflected by electromagnetic plates which redirect

the droplets into their corresponding collection tubes. Alternatively, unwanted cells in the stream

will be collected into the waste [1, 8, 11, 34, 35, 40, 45].

2.3 Label-Free Quantification Strategies

Application of fluorescent dyes helps investigate multiple cellular properties, functions, and

structures [8, 30, 34, 43, 44]. Measurements in a Flow cytometer primarily rely upon fluorescently

8



labeling the cells for subsequent quantification and analysis [44]. However, labeling with a fluo-

rescent marker has several drawbacks. A fluorescent dye may have a negative impact on natural

cellular behavior, interfere with cellular processes, cause unwanted activating/inhibitory signal

transduction, and lead to fundamental errors in downstream analyses [12, 13, 15–18, 46, 47]. Fur-

thermore, fluorescent labels may not always be available and require extensive effort to be used

in elaborate experiments. Thus, the process of labeling can be complicated and time-consuming

[1, 10, 14, 19, 22, 44, 47]. Such adverse consequences has raised needs for methods to measure

cellular properties without the labels – or with less amount. Statistical analyses, combined with

machine learning methods, has paved the way for opening new windows in label-free quantification

of cell populations in FCM measurements. Several label-free quantification strategies have been

developed over the past few years to resolve this issue. For instance, Scholtens et al. used an image

cytometer combined with a Random Forest algorithm to classify circulating tumor cells (CTCs),

apoptotic CTCs, CTC debris, leukocytes, and debris not related to CTCs [48]. Weber et al. em-

ployed a parameter-free Fisher’s linear discriminant analysis classifier to detect differentiation in a

mixed population of proliferating and differentiating cells over time for PC12 cells on the basis of

phase contrast images [49]. Some studies applied support vector machines (SVM) for classification

purposes. Feng et al. proposed methods to classify Jurkat T cells and Ramos B cells in a polar-

ization diffraction imaging flow cytometry (p-DIFC) analysis using SVM [50]. The technology

of p-DIFC was also used in combination with SVM for classification of malignant versus benign

cells (PC3 and PCS prostate cell types) by Jiang et al. [51]. Li et al. have also integrated SVM

algorithms with complex holographic images to analyze 3-part leukocytes [52]. In another study,

Miura et al. discussed advantages of using SVM to quantify large populations of Euglena gracilis

cells and human cancer cells in light-sheet fluorescence imaging flow cytometry [53]. Other su-

pervised machine-learning based methods have also been introduced for the purpose of label-free

quantification. Using an imaging flow cytometer and gradient boosting machine-learning algo-

rithms, Blasi et al. were able to offer label-free strategies for identification of DNA content in

fixed and live Jurkat cells [12]. The study was later followed by Hennig et al. to provide a more

9



user-friendly software [21]. Eulenberg et al. suggested a deep convolutional neural network to

reconstruct cell cycle and disease progression analyses [22]. Jiang et al. presented methods to

classify aggregated platelets from single platelets and white blood cells by analyzing optofluidic

time-stretch microscopy images via logistic regression analysis [54].

The above studies are based on methods to incorporate supervised machine learning algorithms

with experimental single-cell measurements for two main goals: (i) to reduce the need for fluo-

rescent labels, and (ii) to compete with (or maintain) high-throughput capabilities of FCM mea-

surements. Nevertheless, they have a fundamental drawback: in their supervised machine learning

process, the training-validation steps and feature selection procedures are based on information

from fluorescently labeled cells. This key issue is the motivating element of our research, which is

discussed in the next section.

2.4 Motivation

As discussed in the previous sections, application of fluorescent labels can be costly, exhaus-

tive, cumbersome, harmful to cells’ natural behavior, be intrusive in cellular procedures, and even-

tually lead to problematic understandings in cell analyses [1, 10, 12–19, 22, 44, 46, 47, 47]. As a

response to such important pitfalls in FCM analysis, several studies have focused on integrating

various supervised machine-learning algorithms with FCM measurements, hoping to offer a com-

putational label-free quantification strategy [12, 21, 22, 48–54]. Although these studies are doing

an excellent job in offering avenues for label-free quantification strategies, they fail to correctly

identify and select features in their machine-learning pipelines. Merely concentrating on fluores-

cently labeled cells to extract the features leads to invalid label-free strategies in investigating single

cells. Even though the labels influence intrinsic cell properties only indirectly, the corresponding

information cannot be reliable in the training step of the used supervised machine-learning algo-

rithm. Strategies developed based upon the above common mistake will yield poor testing results

in quantification of cellular populations in a true label-free context.
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In this research study, we hypothesize that the training step can be carried out based on label-

free measurements. Our approach will produce valid results, even when signatures are perturbed

and are weak. We show that in employing supervised machine learning, feature-selection iterations

should consider both the labeled and unlabeled information.
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Chapter 3

Methods

We developed our label-free quantification strategy with respect to flow cytometry measure-

ments of lipid accumulations in Picochlorum soloecismus cells. P. soloecismus cells are marine

microalgae with the ability to accumulate lipids of up to 80% under stress, i.e., nitrogen replete

and nitrogen deplete conditions [24–26]. We monitored algal lipid accumulations and investi-

gated FCM measurements on P.soloecismus cells for several days. We then proceeded to generate

a method for label-free quantification of the lipid accumulation with respect to the above FCM

measurements.

In this chapter, we will discussed methods to develop our proposed label-free quantification

strategy, along with the related theoretical background.1

3.1 Cell preparation and flow cytometry measurements

Experiments were conducted by our collaborators at the Los Alamos National Laboratory

(LANL). P. soloecismus was grown in f/2 media containing half the recipe nitrogen and using

Instant Ocean sea salt (Blacksburg, VA) at 38 g/L [55, 56]. Cultures were grown at room temper-

ature on a 16 hour light/8 hour dark cycle and mixed by stirring. PH was maintained at 8.25 with

on-demand CO2 injection when the pH increased above the set-point. Cells were monitored for

a total of 46 days following nitrogen starvation, collected at 23 different days, and stored at 4 °C

prior to analysis.

Stained populations of cells were incubated with 22.6 µM BODIPY 505/515 (Thermo Fisher

Scientific) with 2.8% DMSO in media for 30 minutes at room temperature prior to analysis. Figure

3.1 shows representative images of high and low lipid cells. The analysis was performed using a

BD Accuri™ C6 flow cytometer with BD CSampler™ (BD Biosciences). Unstained samples

1Some parts of the Methods Chapter of this thesis are from self article by Tanhaemami et al. [28], and the Curric-

ular Practical Training (CPT) received at the Dana-Farber Cancer Institute and Broad Institute of MIT and Harvard.
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Figure 3.1: Images of low lipid (A,C) and high lipid (B,D) cells. Panels A and B show the bright field and

C and D are overlays of BODIPY staining (green) and chlorophyll fluorescence (red).
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were collected with a set volume of 10 µl on a high flow rate (66 µl/min). For stained samples

10,000 events were collected on a low flow rate (14 µl/min). Data was exported in .csv format for

subsequent analysis.

The Accuri™ C6 flow cytometer collected the data from measurements of P. soloecismus cells

in the following channels:

• FSC: Forward scatter (low angle scatter, generally related to size)

• SSC: Side scatter (90-degree scatter, generally related to granularity)

• FL1: 488 nm excitation, 530/30 nm collection, the main channel, used to look at BODIPY

signals

• FL2: 488 nm excitation, 585/40 nm collection

• FL3: 488 nm excitation, 670 LP (long pass) collection, used to look at auto fluorescence

• FL4: 640 nm excitation, 675/25 nm collection, auto fluorescence is also strong here

For the forward scatter, the side-scatter, and each channel FL1-FL4, the flow cytometer mea-

sures a pulse of light as each cell traverses the laser beam. Both the height (-H) and the inte-

grated area (-A) of these pulses were collected, providing two measures per channel, per cell. The

“Width” of a measured pulse is also recorded for each cell.

Table 3.1 presents the information provided at each channel in our flow cytometer.

All data was exported in .csv format. With these data, we next examined several iterative

training-validation strategies to discover signatures within the label-free data that could reproduce

the lipid accumulation at all times. Computations were executed in MATLAB™ R2017b environ-

ment.

3.2 Linear regression analysis

In an initial attempt to identify label-free signatures of lipid content, we considered linear

regression applied to match intrinsic features of labeled cells to lipid content (Fig. 3.2). In re-
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Table 3.1: Measured features by the Accuri™ C6 flow cytometer on lipid accumulations of the P. soloecis-

mus cells

Feature 1 Feature 2 Feature 3 Feature 4 Feature 5 Feature 6 Feature 7

FSC-A SSC-A FL1-A FL2-A FL3-A FL4-A FSC-H

Feature 8 Feature 9 Feature 10 Feature 11 Feature 12 Feature 13

SSC-H FL1-H FL2-H FL3-H FL4-H Width

gression analysis, there are two main types of variables: the response variable (denoted y) and

the explanatory variables (the set of predictors, denoted x) [57]. In this study, the response vec-

tor is the accumulation of the lipid content for each cell (called the target) and the predictor is a

matrix containing the data for intrinsic cellular properties measured by FSC, SSC, and other fluo-

rescence wavelengths (called the features). In regression analysis, the response is approximated as

a function of the predictors as

yi = f(xi) + εi (3.1)

where xi = (x1, . . . , xN)i is the vector of N intrinsic features for the ith cell, and εi is a ran-

dom measurement error for that cell [58]. In linear regression, the response (target) and predictor

(feature) variables are assumed to satisfy the linear relationship [58]

Y = XM, (3.2)

where the vector Y = [y1, . . . , yNc
]T is the vector of targets for Nc training cells; X = [xT

1 , . . . ,x
T
Nc

]T

is the corresponding matrix of features for the same cells; and M is the regression parameter or

regression coefficient.

Linear regression provides a preliminary insight about potential relationships between the pre-

dictor and the response variables. After defining the features and the target, the regression coeffi-

cient that minimizes the sum of squared difference of |Y −XM|22 can be calculated as

M = X−LY = (XTX)−1XTY. (3.3)
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Figure 3.2: Flow diagram of preliminary regression analysis to quantify lipid content based using intrinsic

(presumably label-free) features. The model is learned using labeled data and then tested on both labeled

and unlabeled data.

To perform a preliminary regression analysis, we first selected three training time points, cor-

responding to the lowest, the middle, and the highest BODIPY fluorescence intensities (in this

experiment, days 1, 14, and 46, respectively). We chose these days to capture the greatest possible

range of lipid accumulation phenotypes. For each time point, we considered FCM measurements

from a random set of 3000 labeled cells. We computed the regression coefficient, M, by Eq. (3.3)

using the labeled data sets X
(train)
L and Y

(train)
L . Next, we selected another three validation time

points, corresponding to the second lowest, another middle, and the second highest BODIPY fluo-

rescence intensities (in this experiment, days 0, 15, and 37, respectively). This time, we extracted
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information for both labeled, X
(valid)
L and Y

(valid)
L , and unlabeled cells, X

(valid)
U . Using the regres-

sion coefficient M computed from training data, we proceeded to predict the lipid content of the

labeled and unlabeled validation data sets.

3.3 Nonlinear approaches

To generalize our initial simple linear regression approach, we then added new features corre-

sponding to all possible products of the individual features as follows:

yi =f(x1, x2, ..., xN ,

x1
2, x2

2, ..., xN−1
2, xN

2,

x1x2, ..., xN−1xN) + ε.

(3.4)

This expanded linear regression analysis, which uses all possible quadratic features, is referred to

as the quadratic regression model.

3.4 Feature selection

To select the optimal features, we applied iterative training-validation strategies, in which we

applied a fitness function based on label-free measurements to select the most informative features.

To select the best combination of features, we employed a supervised learning strategy: we used a

linear regression analysis – with and without the quadratic terms – to find the regression coefficient

M for a given feature set for the training data. We then applied the genetic algorithm [59] to the

select the best combination of features that could predict the target validation data.

Direct measurement of lipid content is unavailable for unlabeled cells, so direct validation of

label-free lipid predictions is not possible. However, since the labeled and unlabeled cells were

sampled from the same original population and at the same time, we reasoned that the labeled

and unlabeled populations should have the same distributions or statistics for their single-cell lipid

levels. Therefore, to validate label-free predictions, we compare label-free distribution predictions

17



to the labeled measurement distributions using the Kolmorogorov-Smirnov (KS) statistic [60]. The

genetic algorithm was used to find the set of features that led to the smallest KS statistic for the

unlabeled validation data.

3.5 The Kolmogorov-Smirnov statistic

To evaluate the success of our label-free quantification strategies, we need a metric to compare

measured and predicted lipid accumulation. As mentioned in the previous section, lipid content of

unlabeled cells cannot be directly measured for lipid accumulations. Hence, instead of individual

cells, it is the distributions of the cells that are investigated. For this purpose, the Kolmogorov-

Smirnov (KS) statistic is used. Moreover, the KS distance is a useful tool to analyze histogram

data and decide whether two sets of data are sampled from the same distribution [61]. The KS

distance is defined as the absolute value of the maximum difference between Fm(x) and Fp(x) for

all possible values of x [60], where Fm(x) and Fp(x) are defined as the cumulative distributions of

the measured and predicted values, respectively.

3.6 Weighted model

To further improve predictions of BODIPY signals for unlabeled cells, we considered a weighted

model that could be learned from all measurement of unlabeled features, including the fluorescent

channel in which BODIPY was measured in the labeled cells. To achieve this weighted model,

we first learned three separate regression coefficients M1, M2, and M3 based on the three training

time points (days 1, 14, and 46). These models were fixed for all subsequent computations. For

any arbitrary population, a new combination model could be formulated as a weighted sum:

M = α1M1 + α2M2 + α3M3, (3.5)

where the weights a = [α1, α2, α3] would be specific to any new population of unlabeled cells.
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We then sought to learn a secondary model to estimate a from populations of unlabeled data.

For this task, we defined sr = [µ
(r)
1 , . . . , µ

(r)
n , σ

(r)
1 , . . . , σ

(r)
n ] as a vector that contains the population

means and standard deviations of each feature (including quadratic features) in any population of

unlabeled cells. It is important to note – and will be discussed later in more detail – that because the

unlabeled cells are not treated with BODIPY, the statistics contained in sr can include the 530/30

nm channel, which allows access to previously unutilized information in the unlabeled cells. We

then constructed the population sample statistics matrix S = [sT1 , . . . , s
T
R] using R different ran-

domly sampled sub-population from the original training and validation data. For each rth random

population, we also performed a computational search to find an optimized model scaling factor

ar that yields the best possible comparison between measured and predicted targets in the training

and validation data, and we collected these into the matrix A = [aT
1 , . . . , a

T
R]

T .

With these definitions, we formulated a secondary regression analysis for ar as a function of sr

with the assumed linear form

ar = srQ+ ε, (3.6)

for which we could estimate the weight quotient Q as

Q ≈ S−LA. (3.7)

In this expression, Q defines a relationship between the unlabeled features (from computing s) and

the weights (a). To prevent overfitting in the determination of the weights, we generated another

set of random population samples from our training and validation data, and we used the genetic

algorithm to down select among the best columns of S (or rows of Q) to utilize for the estimate of

a.

Once fixed using the training and validation data, the multi-scale regression operators M1, M2,

M3 and Q could be applied to any new data sets XU and their summary statistics s to calculate

a = sQ, estimate M using Eq. (3.5), and predict the lipid content using Eq. (3.2).
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Chapter 4

Results and Discussion

The proposed label-free quantification strategy in this study opens new windows to correctly

identify label-free signatures in flow cytometry measurements. By addressing the common mistake

in other label-free quantification approaches (chapter 2), we offer a new method to accurately

quantify FCM measurements based on defining an optimized set of unlabeled features. In this

chapter, the results of our method are demonstrated and discussed in detail.1

Figure 3.2 depicts our initial strategy for label-free quantification. We monitored P. soloecismus

microalgae for a total of 46 days following nitrogen starvation, and measured data using FCM at

23 different time points. At each time point, we created two identical subsamples as depicted at

the top of Fig. 3.2. To obtain ground truth values for lipid accumulations, we labeled cells in

one subsample using BODIPY, and we left the other one unlabeled. We measured the BODIPY

signal in the labeled sample using a BD Accuri™ C6 flow cytometer for 10,000 labeled cells per

sample. We also collected another set of FCM measurements for 60,000 to 136,000 unlabeled

cells. Our FCM analyses recorded 13 features per cell, including the 488 nm excitation, 530/30

nm collection channel (FL1) corresponding to the BODIPY dye. We sought to predict the BODIPY

signal intensities using other measured features – flow cytometry measurements of forward scatter

(FSC), side scatter (SSC) and other fluorescence wavelengths (FL2 488 nm excitation, 585/40

nm collection, FL3 488 nm excitation, 670LP (long pass) collection, and FL4 640 nm excitation,

675/25 nm collection).

As described in Chapter 3, we sought to identify label-free quantification through several it-

erative training-validation strategies. First, we conducted a linear regression analysis on FCM

measurements of labeled cells (the training step), and then the model was used to predict the

lipid content of unlabeled P. soloecismus cells. The model was then applied to a different data

1The Results and Discussion Chapter of this thesis are from self article by Tanhaemami et al. [28].
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Figure 4.1: Preliminary regression analysis. (a) Correlations between measured and predicted values of

lipid content for labeled training data. Pearson’s correlation coefficients are shown for each time point. (b)

Histograms of lipid content for labeled training data. Measured in blue and predicted in red. Kolmogorov-

Smirnov distances between the distributions are shown. (c) Histograms of the lipid content for labeled

validation data. (d) Histograms of the lipid content for unlabeled validation data. Training data corresponds

to days 1, 14, and 46; validation data corresponds to days 0, 15, and 37. All lipid content measurements are

in arbitrary units of concentration (AUC). Bin sizes vary logarithmically.
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set gathered from labeled and unlabeled cells, and we evaluated the prediction accuracy using the

Kolmogorov-Smirnov statistic.

We performed training on three time points of our data. Time points corresponded to days 1,

14, and 46, which were were selected based on the lowest, the middle, and the highest BODIPY

signal intensities. We then validated our model on another three time points corresponding to the

second lowest, another middle, and the second highest BODIPY signal intensities (days 0, 15, and

37).

Figure 4.1 shows the results of applying the simple linear regression analysis using labeled data

only. Figure 4.1(a) shows that at each time point the predicted labeled training data has a strong

correlation with the measured data. Figure 4.1(b) suggests that a preliminary regression analysis

provides a strong classification for the labeled training data, which was consistent in Fig. 4.1(c)

for validation on labeled cells (KS distances between predictions and measurements for labeled

cells were 0.0480, 0.0527, and 0.0190 for the three validation time points). However, the same

regression model failed drastically when it was used to estimate the lipid content in the absence

of labels, and Fig. 4.1(d) shows that the difference between predicted and measured values of the

lipid content for unlabeled cells is extreme (KS distances were 0.9737, 0.9460 and 0.9233 for the

same validation time points as above).

To address the possibilities that we were overfitting the data or that linear regression was too

simple an analysis to extract the informative label-free features, we also applied another more ad-

vanced machine learning approach to learn lipid content from the intrinsic features. The quadratic

regression model, which corresponds to linear regression applied to linear and second order prod-

ucts of the original features, was also used to predict the lipid accumulations. As shown in Fig.

4.2, including second order products of the original features in regression analysis also does a

great job on labeled data. Nevertheless, it drastically fails to predict the lipid content for unlabeled

cells. From this observation we concluded that it is not the model being too simple that causes the

unlabeled predictions to fail.
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Figure 4.2: The quadratic regression model. The model works well for labeled data (rows 1, 2, and 3).

However, it fails to predict the lipid content for unlabeled cells (row 4). The first row represents the corre-

lation between measured and predicted values of the labeled training data. The 3 colors correspond to the

3 measurement replications at each day of FCM analysis (days 1, 14, and 46). Pearson’s correlation coeffi-

cients are shown for each replication. For validation (rows 2, 3, and 4), we selected days 0, 15, and 37. The

histograms show the results of prediction with this model for training (labeled cells) and validation (labeled

and unlabeled cells) data. Measured histograms are in blue, predicted are in red. The KS distances between

measured and predicted lipid content are shown on each plot. For all histograms, lipid accumulation are

shown in arbitrary units of concentration (AUC).
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To explain the failure of the labeled-cell-trained regression model on unlabeled cells, we sus-

pected that some channels in the flow cytometer might be adversely affected by application of

the BODIPY stain. Indeed, Fig. 4.3 shows that some intrinsic features (FL2-A and FL2-H, cor-

responding to the second channel of the flow cytometer) change substantially when BODIPY is

added to the cells. This channel is the closest to the FL1 channel that measures the lipid content,

where the BODIPY fluorescent dye is added. Moreover, it is conceivable that the level of this

disruption could be correlated with the amount of lipid in the cells, which means that it could be

equally present in both training and validation data for the labeled cells. As a result, these changes

could disrupt the training and cross-validation procedures and account for prediction failure when

tested on unlabeled cells.

To mitigate this effect, we removed features FL2-A and FL2-H from the regression analysis

and then repeated the linear regression. Figure 4.4(a-b) shows quantification results when the

above two features are removed. We found that removing corrupted features led to substantial im-

provement for the quantification of unlabeled data (KS improved from 0.92-0.97 in Fig. 4.1(d) to

0.11-0.38 in Fig. 4.4(b)). It is interesting to note that removal of disrupted features reduces accu-

racy of lipid prediction for labeled cells. This occurs because the labeling inadvertently modulates

some “intrinsic” features in the labeled cells and introduces extraneous feature-target correlations

that are actually detrimental to predictions for unlabeled cells. A troublesome consequence of these

correlations between labels and intrinsic features is that these disrupted features are immune to re-

moval when cross-validation analysis is applied exclusively to labeled cells. Figure 4.5 provides

extended plots of the outcomes of regression analyses upon removal of the corrupted features.

Next, we used the genetic algorithm on combinations of labeled and completely unlabeled

data to explore if further feature reduction could enhance label-free classification. Figure 4.4(c-d)

shows the results following the application of the genetic algorithm, which automatically selected

FSC-A, SSC-A, FL3-A, FSC-H, and the width of the signal as the most informative features.

Down-selecting to these most informative features resulted in a slightly smaller KS distance (0.10

- 0.35) between measured and predicted values of the lipid content for unlabeled cells. Extended
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Figure 4.3: Comparison of the features with and without BODIPY stain. (a) Kernel densities of features for

labeled and unlabeled cells, averaged over all times. Labeled cells are shown in blue, and unlabeled cells

are in red. (b) KS distance between labeled and unlabeled features distributions. FL2-A and FL2-H features

show clear dependence on the BODIPY stain. Horizontal line denotes threshold used to remove corrupted

features.
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Figure 4.4: Regression results after various approaches to feature selection. (a) Training on reduced fea-

tures. (b) Validation of the model in (a) on unlabeled cells. (c) Training based on the features selected by

the GA. (d) Validation of the model in (c) on unlabeled cells. (e) Training based on the features selected

by the GA on quadratic features and interactions. (f) Validation of the model in (e) on unlabeled cells. For

all cases, measured values are shown in blue and predicted in red. Kolmogorov-Smirnov distances between

distributions are shown. Training data corresponds to days 1, 14, and 46; validation data corresponds to

days 0, 15, and 37.
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Figure 4.5: Linear regression on reduced features. Accuracy of the model is decreased for labeled data

(rows 1, 2, and 3) due to removing the disrupted features. However, we see an important improvement in

predicting the lipid content for the unlabeled cells (row 4). The first row represents the correlation between

measured and predicted values of the labeled training data. The 3 colors correspond to the 3 measurement

replications at each day of FCM analysis (days 1, 14, and 46). Pearson’s correlation coefficients are shown

for each replication. For validation (rows 2, 3, and 4), we selected days 0, 15, and 37. The histograms show

the results of prediction with this model for training (labeled cells) and validation (labeled and unlabeled

cells) data. Measured histograms are in blue, predicted are in red. The KS distances between measured and

predicted lipid content are shown on each plot. For all histograms, lipid accumulation are shown in arbitrary

units of concentration (AUC).
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results are provided in Fig. 4.6. Selected features by the genetic algorithm on linear features are

also presented in Table 4.1.

Table 4.1: Feature selection by the genetic algorithm on linear features. There are 11 features in our flow

cytometry measurements. Selected features are shown in green. Features FL1-A and FL1-H correspond to

the main fluorescence channel (targets to be predicted). Hence, they are not considered in the application of

the genetic algorithm. Regression coefficient values for each selected feature are shown.

’FSC-A’ 6.3395

’SSC-A’ 0.0548

’FL2-A’ 0

’FL3-A’ -0.1703

’FL4-A’ 0

’FSC-H’ -2.9008

’SSC-H’ 0

’FL2-H’ 0

’FL3-H’ 0

’FL4-H’ 0

’Width’ -6.8632

During the automated feature selection for linear regression on linear features (Fig. 4.4(c-d)

and Fig. 4.6), we did not incorporate higher order effects (e.g., “interactions”) between predictor

variables. To enhance our modeling and potentially extract more information from the data, we

added an expanded set of products of feature values to the input. As shown in Fig. 4.4(e,f) and

in Fig. 4.7, expansion of the input matrix of features to include quadratic and first order interac-

tion terms, followed by label-free feature selection via the genetic algorithm, resulted in a slight

improvement to label-free predictions for the lipid content. In this case, the genetic algorithm iden-

tified the product of FSC-A and FL4-H, the square of FSC-H, and the product of FL4-H and signal

width as the most informative attributes. Selected features by the genetic algorithm on quadratic

features are also presented in Table 4.2.

After cross-validation and feature reduction, the predictions using label-free data had improved

substantially, but we noticed that there remained some substantial systematic prediction errors. In

particular, predictions using a single regression model appeared to be biased toward the aver-

age lipid levels and led to over-prediction of low lipid populations (early time points) and under-

28



0 5 10 15 20

Measured

0

5

10

15

20

P
re

di
ct

ed

Labeled Training Day 1

m
 =

 1

r
1
 = 0.60948

r
2
 = 0.66646

r
3
 = 0.57791

Labeled Replica 1

Labeled Replica 2

Labeled Replica 3

5 10 15

Lipid Content (AUC)

0

0.01

0.02

0.03

P
ro

ba
bi

lit
y

Labeled Training Day 1

KS
1
 = 0.2423

5 10 15

Lipid Content (AUC)

0

0.01

0.02

0.03

P
ro

ba
bi

lit
y

Labeled Validation Day 0

KS
0
 = 0.3900

5 10 15

Lipid Content (AUC)

0

0.01

0.02

0.03

P
ro

ba
bi

lit
y

Unlabeled Validation Day 0

KS
0
 = 0.3547

0 5 10 15 20

Measured

0

5

10

15

20

P
re

di
ct

ed

Labeled Training Day 14

m
 =

 1

r
1
 = 0.71081

r
2
 = 0.77271

r
3
 = 0.66171

5 10 15

Lipid Content (AUC)

0

0.01

0.02

0.03

P
ro

ba
bi

lit
y

Labeled Training Day 14

KS
14

 = 0.1243

5 10 15

Lipid Content (AUC)

0

0.01

0.02

0.03

P
ro

ba
bi

lit
y

Labeled Validation Day 15

KS
15

 = 0.0993

5 10 15

Lipid Content (AUC)

0

0.01

0.02

0.03

P
ro

ba
bi

lit
y

Unlabeled Validation Day 15

KS
15

 = 0.1000

0 5 10 15 20

Measured

0

5

10

15

20

P
re

di
ct

ed

Labeled Training Day 46

m
 =

 1

r
1
 = 0.86072

r
2
 = 0.84887

r
3
 = 0.8644

5 10 15

Lipid Content (AUC)

0

0.01

0.02

0.03

P
ro

ba
bi

lit
y

Labeled Training Day 46

KS
46

 = 0.3950

5 10 15

Lipid Content (AUC)

0

0.01

0.02

0.03

P
ro

ba
bi

lit
y

Labeled Validation Day 37

KS
37

 = 0.3830

5 10 15

Lipid Content (AUC)

0

0.01

0.02

0.03

P
ro

ba
bi

lit
y

Unlabeled Validation Day 37

KS
37

 = 0.3317

Figure 4.6: Regression analysis after performing automated feature selection by the genetic algorithm on

linear features. Better prediction accuracy for the unlabeled cells. The first row represents the correlation

between measured and predicted values of the labeled training data. The 3 colors correspond to the 3 mea-

surement replications at each day of FCM analysis (days 1, 14, and 46). Pearson’s correlation coefficients

are shown for each replication. For validation (rows 2, 3, and 4), we selected days 0, 15, and 37. The

histograms show the results of prediction with this model for training (labeled cells) and validation (labeled

and unlabeled cells) data. Measured histograms are in blue, predicted are in red. The KS distances between

measured and predicted lipid content are shown on each plot. For all histograms, lipid accumulation are

shown in arbitrary units of concentration (AUC).
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Figure 4.7: Regression analysis after performing automated feature selection by the genetic algorithm on

quadratic features. Slight improvement is observed for prediction of the unlabeled cells’ lipid content. The

first row represents the correlation between measured and predicted values of the labeled training data. The

3 colors correspond to the 3 measurement replications at each day of FCM analysis (days 1, 14, and 46).

Pearson’s correlation coefficients are shown for each replication. For validation (rows 2, 3, and 4), we

selected days 0, 15, and 37. The histograms show the results of prediction with this model for training

(labeled cells) and validation (labeled and unlabeled cells) data. Measured histograms are in blue, predicted

are in red. The KS distances between measured and predicted lipid content are shown on each plot. For all

histograms, lipid accumulation are shown in arbitrary units of concentration (AUC).
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Table 4.2: Feature selection by the genetic algorithm on quadratic features. There are 11 features in our flow

cytometry measurements. Selected features are shown in green. Features FL1-A and FL1-H correspond to

the main fluorescence channel (targets to be predicted). Hence, they are not considered in the application of

the genetic algorithm. Regression coefficient values for each selected feature are shown.

Feature

’FSC-A’ ’SSC-A’ ’FL2-A’ ’FL3-A’ ’FL4-A’ ’FSC-H’ ’SSC-H’ ’FL2-H’ ’FL3-H’ ’FL4-H’ ’Width’

’FSC-A’ 0 0 0 0 0 0 0 0 0 0 6.7021 0

’SSC-A’ 0 0 0 0 0 0 0 0 0 0 0

’FL2-A’ 0 0 0 0 0 0 0 0 0 0

’FL3-A’ 0 0 0 0 0 0 0 0 0

’FL4-A’ 0 0 0 0 0 0 0 0

’FSC-H’ 0 -1.5845 0 0 0 0 0

’SSC-H’ 0 0 0 0 0 0

’FL2-H’ 0 0 0 0 0

’FL3-H’ 0 0 0 0

’FL4-H’ 0 0 -6.9141

F
ea

tu
re

’Width’ 0 0

prediction of high lipid content populations (late time points). We hypothesized that this bias to

the middle could be corrected by allowing the model itself to adapt in accordance with signatures

in the label-free data.

To test this idea, we introduced a new strategy based on weighted models that could be learned

from all measurement of unlabeled features. Our weighted model was formed by a linear combi-

nation of three models, each learned from labeled and unlabeled data at three training time points.

The weights applied to these three models were estimated (using a secondary regression analysis)

from measured statistics of the unlabeled features (see Chapter 3 for more details on the related

methods). Importantly, the re-weighting of the models allows incorporation of the 530/30 nm FCM

channel, which was previously discarded due to the fact that it was needed for the measurement of

BODIPY in the labeled cells.

Figure 4.8 shows the results of our new label-free quantification strategy for labeled cells (Fig.

4.8(a)) and unlabeled cells (Fig. 4.8(b-g)). It can be seen here that using model weights, which

are based only on statistics of unlabeled features, enables the model to predict the BODIPY signal

with a remarkably high accuracy. The expanded weighted model analysis allows for a substantially

improved ability to quantify lipid content for both labeled and unlabeled cells. The very small KS

distance (0.14, 0.09, and 0.09) on the three validation time points represent an exceptional success

in predicting the BODIPY signals based on label-free measurements.
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Figure 4.8: Results of the weighted model. Distributions of lipid content for (a) labeled training data,

and (b) unlabeled validation data. KS distances between distributions are shown. (c) Testing the final

strategy on four unlabeled testing time points: Days 7, 16, 20, and 34. See supplementary figure S10 for

corresponding results for all 17 testing time points. “KS data" is the average KS distance between measured

lipid distributions. All lipid contents are in arbitrary units of concentration (AUC).
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For the final machine learning model, the genetic algorithm selected the product of SSC-A

and SSC-H, the square of FL3-A, the product of FL4-A and SSC-H, and square of FL3-H as

the most informative features for the construction of the regression analyses at the three training

time points. Table 4.3 presents the selected features based on our proposed strategy, when applied

on linear features. Alternatively, Table 4.4 presents the selected features based on our proposed

strategy, when applied on quadratic features. For the secondary regression analysis used to define

the weights of the regression analyses, the optimum found by the genetic algorithm relied on

statistical information from all fluorescence channels (including the 530/30 nm channels that was

previously discarded during labeled cells measurements). The selected columns of the test statistic

(based on quadratic features) are presented in Table 4.5.

Table 4.3: Our proposed strategy (weighted model). Application of the genetic algorithm on linear features

(selected features are shown in green). The 3 trained models will have different weights. The genetic algo-

rithm is performed to select the most informative features of each model separately. Regression coefficient

values for each selected feature are shown.

’FSC-A’ 0 0 0

’SSC-A’ 0.3116 0 0.5483

’FL2-A’ 0 0 0

’FL3-A’ 0 0 -0.0983

’FL4-A’ -0.0754 1.1708 -0.1790

’FSC-H’ 0 0 0

’SSC-H’ 0 0 0

’FL2-H’ 0 0 0

’FL3-H’ 0 0 0.9724

’FL4-H’ 0.9466 0 0

’Width’ 0 0 0
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Table 4.4: Our proposed strategy (weighted model). Application of the genetic algorithm on quadratic

features (selected features are shown in green). The genetic algorithm is applied to the 3 models M1, M2,

and M3 separately.

Feature (Model 1)

’FSC-A’ ’SSC-A’ ’FL2-A’ ’FL3-A’ ’FL4-A’ ’FSC-H’ ’SSC-H’ ’FL2-H’ ’FL3-H’ ’FL4-H’ ’Width’

’FSC-A’ 0 0 0 0 0 0 0 0 0 0 0 0

’SSC-A’ 0 0 0 -0.5060 0 0 0 0 0.9099 0 0

’FL2-A’ 0 0 0 0 0 0 0 0 0 0

’FL3-A’ 0 0 0 0 0 0 0 0 0

’FL4-A’ 0 0.1716 0 0 0 0 0 0

’FSC-H’ 0 0 0 0 0 0 0

’SSC-H’ 0 0 0 0 0 0

’FL2-H’ 0 0 0 0 0

’FL3-H’ 0 0 0 0

’FL4-H’ 0 0 0

F
ea

tu
re

(M
o

d
el

1
)

’Width’ 0 0

Feature (Model 2)

’FSC-A’ ’SSC-A’ ’FL2-A’ ’FL3-A’ ’FL4-A’ ’FSC-H’ ’SSC-H’ ’FL2-H’ ’FL3-H’ ’FL4-H’ ’Width’

’FSC-A’ 0 0 0 0 0 0 0 0 0 0 0 0

’SSC-A’ 0 0 0 0 0 0 0 0 0 0 0

’FL2-A’ 0 0 0 0 0 0 0 0 0 0

’FL3-A’ 0 0 0 0 0 0 0 0 0

’FL4-A’ 0 0.5854 0 0 0 0 0 0

’FSC-H’ 0 0 0 0 0 0 0

’SSC-H’ 0 0 0 0 0 0

’FL2-H’ 0 0 0 0 0

’FL3-H’ 0 0 0 0

’FL4-H’ 0 0 0

F
ea

tu
re

(M
o

d
el

2
)

’Width’ 0 0

Feature (Model 3)

’FSC-A’ ’SSC-A’ ’FL2-A’ ’FL3-A’ ’FL4-A’ ’FSC-H’ ’SSC-H’ ’FL2-H’ ’FL3-H’ ’FL4-H’ ’Width’

’FSC-A’ 0 0 0 0 0 0 0 0 0 0 0 0

’SSC-A’ 0 0 0 0 0 0 0.3494 0 0 0 0

’FL2-A’ 0 0 0 0 0 0 0 0 0 0

’FL3-A’ 0 -0.0629 0 0 0 0 0 0 0

’FL4-A’ 0 0 0 -0.1393 0 0 0 0

’FSC-H’ 0 0 0 0 0 0 0

’SSC-H’ 0 0 0 0 0 0

’FL2-H’ 0 0 0 0 0

’FL3-H’ 0 0.4719 0 0

’FL4-H’ 0 0 0

F
ea

tu
re

(M
o

d
el

3
)

’Width’ 0 0
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Table 4.5: After performing a secondary regression analysis, our strategy yielded a weight quotient (contain-

ing information related to the means and standard deviations of the label-free measurements – see Methods

section) used to calculate each corresponding weight (α1, α2, and α3). As a result of using the genetic algo-

rithm, the most important columns of the test statistic (or rows of the weight quotient) are selected. Selected

information by the genetic algorithm are indicated by green boxes.

The means of the features, their quadratic values, and their pairwise interactions.

Feature Means (Model 1)

’FSC-A’ ’SSC-A’ ’FL1-A’ ’FL2-A’ ’FL3-A’ ’FL4-A’ ’FSC-H’ ’SSC-H’ ’FL1-H’ ’FL2-H’ ’FL3-H’ ’FL4-H’ ’Width’

’FSC-A’ 0 0 0 0 0 0 0 0 0 0 0 0 0 0

’SSC-A’ 0 -0.0002 0 0 0 0 0 0 0 0 0 0 0

’FL1-A’ 0 0 0 0 0 0 0 0 0 0 0 0

’FL2-A’ 0 0 0 0 0 0 0 0 0 0 0

’FL3-A’ 0 0 0 0 0 0 0 0 0 0

’FL4-A’ 0 0.7151 0 0 0 0 0 0 0

’FSC-H’ 0 0.1017 0 0 0 0 0 0

’SSC-H’ 0 0 0 0 0 0 0

’FL1-H’ 0 -1.6985 0 0 0 0

’FL2-H’ 0 0 0 0 0

’FL3-H’ 0 0 0 0

’FL4-H’ 0 0 0

F
ea

tu
re

M
ea

n
s

fo
r
α
1

’Width’ 0 0

Feature Means (Model 2)

’FSC-A’ ’SSC-A’ ’FL1-A’ ’FL2-A’ ’FL3-A’ ’FL4-A’ ’FSC-H’ ’SSC-H’ ’FL1-H’ ’FL2-H’ ’FL3-H’ ’FL4-H’ ’Width’

’FSC-A’ 0 0 0 0 0 0 0 0 0 0 0 0 0 0

’SSC-A’ 0 -0.5351 0 0 0 0 0 0 0 0 0 0 0

’FL1-A’ 0 0 0 0 0 0 0 0 0 0 0 0

’FL2-A’ 0 0 0 0 0 0 0 0 0 0 0

’FL3-A’ 0 0 0 0 0 0 0 0 0 0

’FL4-A’ 0 -0.2651 0 0 0 0 0 0 0

’FSC-H’ 0 0.2427 0 0 0 0 0 0

’SSC-H’ 0 0 0 0 0 0 0

’FL1-H’ 0 1.2247 0 0 0 0

’FL2-H’ 0 0 0 0 0

’FL3-H’ 0 0 0 0

’FL4-H’ 0 0 0

F
ea

tu
re

M
ea

n
s

fo
r
α
2

’Width’ 0 0

Feature Means (Model 3)

’FSC-A’ ’SSC-A’ ’FL1-A’ ’FL2-A’ ’FL3-A’ ’FL4-A’ ’FSC-H’ ’SSC-H’ ’FL1-H’ ’FL2-H’ ’FL3-H’ ’FL4-H’ ’Width’

’FSC-A’ 0 0 0 0 0 0 0 0 0 0 0 0 0 0

’SSC-A’ 0 0.5597 0 0 0 0 0 0 0 0 0 0 0

’FL1-A’ 0 0 0 0 0 0 0 0 0 0 0 0

’FL2-A’ 0 0 0 0 0 0 0 0 0 0 0

’FL3-A’ 0 0 0 0 0 0 0 0 0 0

’FL4-A’ 0 -0.4344 0 0 0 0 0 0 0

’FSC-H’ 0 -0.2852 0 0 0 0 0 0

’SSC-H’ 0 0 0 0 0 0 0

’FL1-H’ 0 0.3706 0 0 0 0

’FL2-H’ 0 0 0 0 0

’FL3-H’ 0 0 0 0

’FL4-H’ 0 0 0

F
ea

tu
re

M
ea

n
s

fo
r
α
3

’Width’ 0 0
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Table 4.5 (continued)

The standard deviations of the features, their quadratic values, and their pairwise interactions.

Feature Standard Deviations for α1

’FSC-A’ ’SSC-A’ ’FL1-A’ ’FL2-A’ ’FL3-A’ ’FL4-A’ ’FSC-H’ ’SSC-H’ ’FL1-H’ ’FL2-H’ ’FL3-H’ ’FL4-H’ ’Width’

’FSC-A’ 0 0 0 0 0 0 0 0 0 0 0 0 0 0

’SSC-A’ 0 0 0 0 0 0 0 0 0 0 0 0 0

’FL1-A’ 0 0 0 0 0 0 0 0 0 0 0 0

’FL2-A’ 0 0 0 0 0 0 0 0 0 0 0

’FL3-A’ 0 0 0 0 0 0 0 0 0 0

’FL4-A’ 0 0 0 0 0 0 0 0 0

’FSC-H’ 0 0 0 0 0 0 0 0

’SSC-H’ 0 0 0 0 0 0 0

’FL1-H’ 0 0 0 0 0 0

’FL2-H’ 0 2.1244 0 0 0

’FL3-H’ 0 0.4623 0 0

’FL4-H’ 0 0 0

F
ea

tu
re

S
ta

n
d
ar

d
D

ev
ia

ti
o
n
s

,

fo
r
α
1

’Width’ 0 0

Feature Standard Deviations for α2

’FSC-A’ ’SSC-A’ ’FL1-A’ ’FL2-A’ ’FL3-A’ ’FL4-A’ ’FSC-H’ ’SSC-H’ ’FL1-H’ ’FL2-H’ ’FL3-H’ ’FL4-H’ ’Width’
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After we validated the final label-free lipid estimation model (Figs. 4.8(a) and 4.9), we fixed

all parameters and sought to test it for label-free quantification in new circumstances. Figure 4.8(c)

shows that the final model yielded exceptional prediction accuracy of the BODIPY signal for this

previously unseen testing data at time points corresponding to days 7, 16, 20 and 34, and Fig. 4.10

shows the corresponding predictions at the remaining 17 time points not used in the training data

set.
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Figure 4.9: Our optimized label-free quantification strategy based on weighted models. The weights applied

to the 3 trained models were estimated (using a secondary regression analysis) by measured tests statistics of

the unlabeled features. The model was able to predict the lipid content of unlabeled cells with a remarkable

high accuracy. The first row represents the correlation between measured and predicted values of the labeled

training data. The 3 colors correspond to the 3 measurement replications at each day of FCM analysis (days

1, 14, and 46). Pearson’s correlation coefficients are shown for each replication. For validation (rows 2, 3,

and 4), we selected days 0, 15, and 37. The histograms show the results of prediction with this model for

training (labeled cells) and validation (labeled and unlabeled cells) data. Measured histograms are in blue,

predicted are in red. The KS distances between measured and predicted lipid content are shown on each

plot. For all histograms, lipid accumulation are shown in arbitrary units of concentration (AUC).
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b Testing the proposed weighted model for all 17 time points

Figure 4.10: Testing the weighted model on all 17 testing time points. The data were not seen previously

by the model. Measured histograms are in blue, predicted are in red. The average KS distances between

measured and predicted are shown. Lipid accumulation are shown in arbitrary units of concentration (AUC).
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Figure 4.11(a) also shows that the trained model correctly quantified average and standard de-

viation of lipid accumulation (in log scale) at each day following nitrogen starvation. We note that

the training and validation data were taken at only three time points each, yet the model sufficed to

predict the lipid levels for all of the remaining 17 time points. Figure 4.11(b) shows the changes in

model weights, a, which were estimated solely from the statistics of the unlabeled data (three bio-

logical replicas per time point) and without any information about the time of measurement. The

figure demonstrates that the secondary model correctly adapts these weights from a domination of

α1 at early times, α2 at middle times and α3 at late times.

Figure 4.11(c) compares how much the lipid distributions changed over the course of the ni-

trogen starvation experiment as quantified using labeled (blue) or label-free (red) strategies. We

found that the KS difference between the initial and final time points found for the label-based

and label-free measurements were in excellent agreement of 0.83 and 0.82 respectively. Using the

KS distance, we can now compare the dependence of the population distribution on changes to

underlying variables, using analyses similar to those demonstrated in [62] to quantify population

responses to external regulatory factors. In our case, figure 4.11(d) shows the KS distance between

distributions at variable time t compared to the initial or final times and calculated from the direct

lipid measurements (blue, gold) or label-free estimates (red, purple). Once again, we find that

the comparisons using label-free measurements are in excellent agreement with the label-based

measurements for all time points throughout the nitrogen starvation process.

Table 4.6: Selected features at the three training time points corresponding to M1, M2, and M3. The

genetic algorithm selects feature means, and feature standard deviations for the weight quotient Q.

M1 SSC-A*FL3-A , SSC-A*FL3-H , FL4-A*FL4-A

M2 FL4-A*FL4-A

M3 SSC-A*SSC-H , FL3-A*FL3-A , FL4-A*SSC-H , FL3-H*FL3-H

Q (means) SSC-A*SSC-A , FL4-A*FL4-A , FSC-H*FSC-H , FL1-H*FL1-H

Q (standard deviations) FL2-H*FL2-H , FL3-H*FL3-H
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Figure 4.11: Analysis of the weighted model. (A) Average lipid content at each day after nitrogen starvation.

The blue and red shaded areas show the standard deviation as measured and predicted, respectively. Training,

validation, and testing time points are shown in black rectangles, green triangles, and red and blue circles,

respectively. (B) Model weights calculated based on label-free information of the testing data at each day

after nitrogen starvation. α1,α2, and α3 correspond to the weights for model 1, model 2, and model 3,

respectively. (C) Comparison of the distributions of the lipid content between days 0 and 37 after nitrogen

starvation. The KS distance between the measured values is 0.8277. The KS distance between the label-

free values is 0.8213. (D) Change in the KS distance with respect to time. Blue and red show the changes

in KS distance between day 0 and other days after nitrogen starvation for measured and label-free data,

respectively. Yellow and purple show the changes in KS distance between day 46 and other days after

nitrogen starvation for measured and label-free data, respectively. All lipid contents are in arbitrary units of

concentration (AUC).

40



Table 4.6 presents the most informative features selected by the genetic algorithm for the con-

struction of the regression analyses at the three training times and for the multi-model weighting

coefficients. Tables 4.3 - 4.5 provide the specific numerical values for all regression coefficients.

In this case, the feature selection results can be interpreted in terms of known biology.To aid in

this interpretation, figure 4.12(A) shows the median levels of three of the most important label-

free features (SSC, FL3-A, and FL4-A) and the median measured lipid content versus time after

nitrogen starvation. First, we note that the label-free SSC-A measurement is positively correlated

with lipid content throughout the time course. This is easily explained by noting that SSC is in-

dicative of granularity of the cells, and as lipids generally accumulate in lipid bodies as shown in

figure 3.1, these bodies are likely to account for the increased scattering measurements in the flow

cytometer. Second, we note that the fluorescence channels FL3 and FL4 exhibit weak negative

correlations to lipid content at later times. Much of the fluorescence measured in these channels

is likely to originate from chlorophyll. Our analysis suggests that nutrient deprived cells, which

are accumulating lipids as a stress response, slowly deplete their levels of chlorophyll over time,

an observation that is consistent with previous studies applying bulk cell culture analyses to other

species of algae [63, 64]. For the secondary regression analysis used to define the weights of the

regression analyses, the optimum found by the genetic algorithm relied primarily on these same

features, but were supplemented by statistical information from other fluorescence channels, in-

cluding the 530/30 nm channel that was discarded to conduct training on labeled cells.

A substantial impediment to the development of label-free strategies for flow cytometry anal-

ysis is that collective dynamics can cause one cell population to behave differently from another,

even when they are prepared in similar environmental conditions. Moreover, it is not uncommon

that two flow cytometers, with different settings or containing different optical components, could

yield different measurements, even when used to measure the same cell populations. With these

issues in mind, we next sought to test the generality of our approach when applied to a new prepa-

ration of P. soloecismus over time during nitrogen starvation and quantified using a different flow

cytometer (BD Accuri™ C6 Plus, which has a different fluidics system) with matching detectors.
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Figure 4.12: Testing the final model on independent cell populations and with a new flow cytometer. (A,B)

The median values of the most informative label-free features (solid lines) and the label-based lipid mea-

surement (dashed lines) versus time after nitrogen depletion using (A) the original cell preparation and (B)

for a subsequent independent cell preparation measured with a different flow cytometer. (C) Evaluation

of the final weighted model’s estimates of lipid content when applied to new cells with the new flow cy-

tometer. Blue shows the lipid accumulation for the measured values of the lipid content at each day after

nitrogen starvation. Red shows the label-free predictions of the lipid content for the same days. Both curves

have been normalized relative to the measure lipid level on Day 0. Lipid content are in arbitrary units of

concentration (AUC).
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Without any re-training of our previous model (i.e., using the same features and model parame-

ters identified above), we sought to quantify the lipid accumulations over time for the new data

set. Owing to variation in the flow cytometer and its settings, the quantitative values for the mea-

surements changed considerably, as can be seen in figures 4.12(A) and 4.12(B), which show the

median measurements for the label-free features and lipid measurement for the old and new data

sets, respectively. Despite substantial differences, figure 4.12(C) demonstrates that our previous

model still correctly captures the trend of increasing lipid accumulations over time based on the

label-free information collected using the new cell preparation and new flow cytometer.

Finally, we used our weighted model to explore the possibility that it could be used to sort

unlabeled cells according to the lipid content within those cells. To simulate this situation, we

generated mixed cell populations by combining 2500 cells randomly chosen from the initial (low

lipid) time point and 2500 cells randomly chosen from the final (high lipid) time point. We then

applied the previously identified model ({M1,M2,M3,Q}) on the entire mixed population to

predict the distribution of lipids from the label-free features. Figure 4.13 shows the results of this

mixture for the quantification based upon labels (panel A) and based upon label-free measurements

(panel B). In each case, the green lines correspond to the sub-population taken from the early time

points, the purple lines correspond to the label-free measurements, and the black lines correspond

to the full mixed distributions. We assumed an optimal gate (vertical dashed line in figure 4.13),

and we asked what fraction of cells from the green/purple sub-populations would be correctly

assigned to the low/high populations. As a benchmark, we found that the label-based sorting

accuracy was 72.84% to classify low lipids cells and 94.32% to classify high lipid cells (figure

4.13(A)). The label-free sorting accuracy performed equally well at 79.64% correct classification

of low lipids and 92.2% correct classification of high lipids and (figure 4.13(B)). These results

suggest that label-free classification could be used in principle for sorting applications, but full

evaluation of this hypothesis, as well as strategies to optimize label-free sorting gates, remain to

be validated through future experimental investigations.
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Figure 4.13: Simulation of a typical cell sorting experiment. (A) Sorting the labeled cells based on our

optimized weighted model into high and low lipid content. Label-based sorting accuracy of 94.32%. (B)

Sorting the unlabeled cells based on our optimized weighted model into high and low lipid content. Label-

free sorting accuracy of 92.2%. For all panels, the lipid content are in arbitrary units of concentration

(AUC). Simulated populations were generated by combining experimental data from 2500 cells from Day 0

and 2500 cells from Day 37.
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Chapter 5

Conclusions and Future Work

Single-cell quantification and classification are crucial tasks in many biological and biomedical

applications, and flow cytometry (FCM) is one of the most common tools used for these tasks.

Computational strategies have substantial potential to identify label-free markers and mitigate the

expense or disruptive effects of traditional FCM analyses. In this study, we have demonstrated

the use of mathematical tools and statistical methods, including regression analysis and machine

learning to extract quantitative information from intrinsic properties of unlabeled cell populations.

We discovered that computational classifiers that are learned using intrinsic features measured in

labeled cell populations may appear to be highly predictive when compared to other labeled cells,

but these same models may then fail dramatically when tested on truly label-free data (Figs. 4.1

and 4.2).

The key to our integrated strategy is careful consideration of the variations within heteroge-

neous single-cell populations. We reasoned that distributions of labeled and unlabeled cell popu-

lations should have shared statistics that could help to circumvent the issue of data corruption due

to label applications. Under that inspiration, we developed a multi-stage regression approach that

incorporates collections of both labeled and unlabeled data in the same conditions. From these

data sets, we learn which features’ statistics are conserved, which features vary between different

treatments, and which features are most valuable to predict lipid content in unlabeled cells when

trained using labeled cells. Figure 5.1 depicts a flow diagram of our new approach and its three

main components of (i) linear regression applied to features and feature products to discover the

correlations between intrinsic features and lipid content within labeled cells; (ii) genetic algorithms

to automatically select features that contain useful information, but which avoid misleading or dis-

tracting artifacts contained within large FCM data sets; and (iii) a new model-weighting strategy

to allow application of different statistical models in different situations.
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Figure 5.1: Flow diagram of the final multi-stage label-free quantification strategy.
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The combination of regression analyses, genetic algorithms and model weighting approaches

yields a final set of models and weights that are uniquely determined from the statistical properties

of unlabeled cell population measurements. Using this approach, we can then extract sufficient

information to provide efficient label-free quantification of lipid content in Picochlorum soloe-

cismus over time during nitrogen starvation. Our final model accurately estimates lipid content

distributions over time that span several orders of magnitude (Figs. 4.8, 4.9, and 4.10). More-

over, although direct verification of lipid content for unlabeled single-cells is not possible, our

final regression models preserved single-cell prediction accuracy for lipid content in labeled cells,

especially at later time points when lipid content is highest (Pearson’s correlation coefficient of R

= 0.74-0.87; shown on Fig. 4.9).

Together, the proposed computational tools could help circumvent the need for biochemical

labels to reduce expense and open new avenues for single-cell research. For example, label-free

quantification will be instrumental to sort cells into different subpopulations, without the (poten-

tially terminal) cellular disruptions associated with standard biochemical markers. Once trained

through several rounds of regression and genetic algorithms, our final model for algal lipid quan-

tification reduces down to a simple linear operation applied to a handful of 7 second-order products

of features of the unlabeled cells. Such operations are easily computed in less than a microsecond

per cell, making the label-free analysis ideal for use in gating and sorting applications as a stand-in

for fluorescence in fluorescence-activated cells sorting (FACS) analyses.

Applied to algae cultivation for biofuels and bioproducts (food and feed ingredients), real time

monitoring of cultures can provide information on the health and productivity of the algal cells.

This allows for harvesting when the cells are at maximum yield, or prior to being overtaken by pests

or predators. Moreover, the ability to monitor without the addition of dyes increases the speed of

analysis and decreases costs. Additionally, the ability to sort cells of interest without labels would

enable selection of subpopulations with a desired phenotype of interest, such as higher content of

lipid or other value added products, such as specialty oils or cannabinoids. This type of selection

would allow for directed improvement of strains without direct genetic modification.
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Furthermore, the ability to analyze and sort cells without labels is broadly useful as a strategy

to improve productivity of cell cultivation operations for a variety of applications in the medical

or pharmaceutical industry. While our machine learning approach will not substitute for the use

of labels in every application in flow cytometry, it is applicable in cases where there are subtle

morphological features that accompany a biological change in a cell. This approach allows iden-

tification of those morphological changes that would be normally detected with a label, and in

this case we were able to identify them with machine learning and allow detection in the absence

of a dye. For example in analyzing Ewing sarcoma, sorting a heterogeneous population of cells

into normal and cancerous cells would require an excessive dedication of time and energy. The

researchers would normally profile the cell population on a single-cell level using a microfluidic-

enabled platform. The expression of the EWS-FLI1 fusion gene (which is the main cause for

Ewing sarcoma) is then detected via a marker of interest. Although, finding the correct and useful

biomarker can be challenging. Marker detection can be highly dependable on the flow cytometer

and a marker of interest that is shown in one flow cytometer may not be detected in another. Such

obstacle can lead to serious bias towards identification of the marker of interest for EWS-FLI fu-

sion gene expression. The entire process, as a result, would be exhaustive and exposed to various

errors. A correctly trained label-free computational strategy could remove such errors and save an

enormous amount of time and energy.

Our analysis and development of our label-free quantification strategy was performed on Pic-

ochlorum soloecismus microalgae cells, which are known to have high autofluorescence (collected

in the the FL3 channel, see Chapter 3). Although the signals collected from unlabeled cells are

weak for those cells compared to the labeled cells, autofluorescence could be strong enough to help

us correctly identify unlabeled signatures. As a follow-up study, to further expand our strategy, the

same analysis approach should be taken for cells with very low or no autofluorescence capabilities.

The result of such analysis could be either a more generalized label-free quantification method, or

to define a specific range for autofluorescence of the investigated cells.
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Although we used regression for modeling and the genetic algorithm for feature selection, our

strategy is not specific to them. These two steps can be replaced and examined by any other method

to model and select the most informative features. However, computational costs may vary. Our

developed label-free quantification strategy can go beyond flow cytometry. We can use our method

for any large data set to find features that best express a targeted information. We can utilize our

current quantification strategy to examine large data sets with more features, e.g., imaging flow

cytometry.

Lastly, it should be mentioned that utilizing a computational strategy can be exhaustive for

a biologist. Our strategy, while successful in quantifying the target signals in unlabeled cells,

cannot have the chance to be more developed if it is pure code. Hence, there is an essential need

to provide a graphical user interface (GUI) for our label-free quantification tools. Developing

a GUI can be done in MATLAB, as well as several other programming platforms. Moreover,

since such modeling approaches and developments are computationally expensive, use of cloud-

based environments such as the Google Cloud Platform™, Terra™ (formerly known as the Google

FireCloud™), and Docker™ could be advantageous. 1

1Some parts of the Conclusions and Future Work Chapter of this thesis is from self article by Tanhaemami et

al. [28], and the Curricular Practical Training (CPT) obtained at the Dana-Farber Cancer Institute and Broad Institute

of MIT and Harvard.
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