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ABSTRACT 
 

 

EVALUATION OF STRESS COEFFICIENT METHODS TO ESTIMATE CROP  

 

EVAPOTRANSPIRATION 

 

 
 

Increased competition for water resources is placing pressure on the agricultural sector to remain 

profitable while reducing water use. Remote sensing techniques have been developed to monitor 

crop water stress and produce information for evapotranspiration (ET) based irrigation 

scheduling decisions. Use of stress detection methods allows producers to avoid exceeding set 

crop water stress levels and keep operations sustainable under limited irrigation despite some 

yield reduction. Remote sensing data such as spectral reflectance and infrared canopy 

temperature can be used to quantify crop water stress, often through the use of vegetation indices 

calculated from the near-infrared and red bands and temperature indices calculated from the 

thermal wavelength, respectively.  Reference ET methods estimate water use based on crop 

characteristics and climactic parameters assuming optimum soil water conditions. In order to 

adjust crop ET for water limited conditions such as drought or water allocation restrictions, ET 

scaling techniques that are sensitive to crop development and stress are necessary. The 

performance of five remote sensing techniques to estimate corn ET under drought conditions in 

Northern Colorado were evaluated: one method based on air temperature, canopy temperature 

and relative humidity (Crop Water Stress Index (CWSI)), three methods based strictly on canopy 

temperature including Degrees Above Non-Stress (DANS), Degrees above Canopy Threshold 

(DACT), and Temperature Ratio, and one method based on multispectral vegetation indices 

(NDVI Ratio). Data were collected during 2010 through 2013 growing seasons at the USDA-
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ARS Limited Irrigation Research Farm near Greeley, CO. Varying water deficit levels were 

imposed on corn (Zea mays L.) under pressurized drip irrigation. ET estimates from the five 

remote sensing techniques were compared to soil water balance (via neutron probe) and ET 

calculations. Results showed that stress coefficient methods with less data requirements such as 

DANS and DACT are responsive to crop water stress as demonstrated by low RMSE of ET 

calculations comparable to more data intensive methods such as CWSI (CWSI = 0.77 mm/day, 

DANS = 0.80 mm/day, DACT = 0.80 mm/day, Tc Ratio = 0.83 mm/day, NDVI Ratio = 0.85 

mm/day). Detailed tables indicate which remote sensing methods are appropriate to use given 

certain data availability and irrigation level, in addition to providing an estimation of the 

associated error in ET.  Using the most appropriate stress coefficient method has the potential to 

improve irrigation scheduling and therefore allow crops to reach the maximum possible yield 

given the level of deficit irrigation. Methods with fewer data requirements, such as DACT with 

only a single canopy temperature measurement requirement, may be more appropriate to 

improve on-farm water management in certain situations. Results justify use of simplified 

measures of stresss to improve deficit irrigation water management with limited data.  
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CHAPTER 1: INTRODUCTION 
 
 
 

Competition for limited water resources to supply the needs of a rapidly increasing global 

population places increasing pressure on agriculture to increase production while decreasing 

water use. The roles of population growth and climate variability in the future of water scarcity 

are explained in the following sections, followed by the pressure on producers to adapt to 

continuing to produce crops while applying less than full irrigation. Successful limited irrigation 

demonstrations are discussed, along with an explanation of how to closely monitor crop water 

use in order to accurately schedule irrigation applications under water scarce conditions. Next, a 

variety of methods used to monitor crop stress levels under limited irrigation are explored. 

Finally, the specific objectives of this evaluation are presented. 

1.1 Water Supply Challenges 

As climate change and population growth both place unprecedented demand on the world’s finite 

fresh water supply, heightened competition between various water users is likely to emerge. 

Irrigation, recreation, industry, and municipal users all rely on this limited resource. As the 

largest consumptive water user, irrigated agriculture experiences pressure to reduce water use 

while maintaining high yields (Hoffman and Evans, 2007). An additional challenge is presented 

by climate change which may alter historical precipitation patterns and limit farmers from 

applying full irrigation due to unprecedented droughts (Walthall et al., 2012). Priority for water 

supply to meet municipal demand will cause pressure for farms to lease or sell water rights to 

cities and discontinue production. In order to continue to sustain a rapidly growing population 

with vulnerable and limited water resources, producers must be adequately prepared to adapt 

historical irrigated agriculture practices.  
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1.1.1 Population 

Global population is rapidly increasing, with population projected to be above 10.9 billion by 

2100 and an expected 88.2 percent of global population living in less developed regions (United 

Nations, 2012). In order to produce more food with the same water resources, there will be 

pressure on producers to increase agricultural water productivity. Especially in areas with limited 

irrigation management data, adaptation will not be trivial. Increased population will result in 

higher crop demand for human consumption, livestock feed, and biofuels. In order for crop 

production to meet these quickly escalating needs, agricultural water productivity will need to 

improve significantly through use of innovative technology and methods to improve water 

management (Walthall et al., 2012).  

1.1.2 Climate 

Changes in precipitation and temperature patterns are causing uncertainty for producers globally. 

Farmers in semi arid places will need to adapt to this change in order to keep farming operations 

sustainable. Climate change is largely driven by the increase in emissions of greenhouse gases, 

but even if these are reduced in the future, it is predicted that effects will last for decades (IPCC, 

2007).  In the very near future, producers will need to adapt to new technologies and methods for 

irrigation water management in drought conditions. Changes in temperatures, precipitation 

patterns, and extreme events could have devastating ramifications on global food production if 

methods to overcome these new challenges are not developed and successfully applied (Walthall 

et al., 2012).  

1.2 Limited Irrigation 

Increased competition for water resources is placing pressure on the agricultural sector to 

maintain profits while reducing water use. A strategy under much current research is regulated 
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deficit irrigation, where irrigation applications are less than the full crop water requirement. 

Through regulated deficit irrigation, high water productivity is achieved by very careful 

monitoring of crop water status and corresponding irrigation event timing and amount. Deficit 

irrigation ideally causes no water losses due to deep percolation because it never fully 

replenishes the crop root zone. If deficit irrigation is growth stage based, there could be losses 

during growth stages receiving full irrigation but not during deficit irrigation applications. In 

addition, evaporation losses may be reduced by less frequent irrigation applications, giving the 

environment a reduced number of chances within a season to evaporate irrigation water from the 

soil surface before the crop is able to put that water to a beneficial use. Additionally, crops often 

have varying water stress sensitivity at different growing periods, which can help inform the 

producer when placing more stress on the plant will have a smaller impact on yield (Fereres and 

Soriano, 2007). Perceived high risk of reducing irrigation is often the reason producers choose to 

sell their land rather than apply less water in times of limited water resources (e.g., reduced well 

capacity, drought, and reduced water rights). Regulated deficit irrigation has the potential to 

enable producers to keep plant water stress within targeted limits and still produce an adequate 

yield. One economic incentive of deficit irrigation is that producers potentially have the option to 

lease water rights to other users such as municipalities, ultimately producing more profit from 

the lease of water in addition to the reduced yield than applying all available water as irrigation.  

1.2.1 Demonstration of Deficit Irrigation Practices 

Many farms have been historically over-irrigated, so using a tightly-budgeted deficit irrigation 

schedule may improve crop yield because it eliminates the harmful effects of over-irrigating such 

as waterlogging and salinity (Montoro et al., 2011).  A study by Li et al. (2005) was conducted in 

the Western Jilin province in China on a farm with furrow-irrigation and a Chernozem soil. 
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Results showed that compared to a rainfed control plot of corn, full irrigation increased yield 

49% and on average plots with supplemental irrigation increased yields 44% with corresponding 

irrigation totals of 327 mm and 260 mm respectively. Supplemental irrigation was applied four 

times in the season, corresponding to the periods when corn is most sensitive to stess including 

the time of sowing, vegetative stage, silking and heading stages and in the milk stage. These 

results indicate that deficit irrigation during critical growth periods may be an effective way to 

maintain production while decreasing water use. A review on deficit irrigation by Fereres and 

Soriano (2007) affirms the idea that applying less than full irrigation can increase water 

productivity and even farmers’ profits. They noted that successful deficit irrigation strategies are 

typically found within situations that permit applying at least 60% of crop water requirement and 

are designed based on crop drought sensitivity during each development stage. Clawson and 

Blad (1982) demonstrated use of infrared thermometry for scheduling irrigation. A canopy 

temperature-scheduled deficit plot had only a 5% yield reduction compared to full irrigation plot 

scheduled with neutron probe data. Only 127 mm of irrigation was applied to the stressed plot 

while the well-watered plot received 283 mm. Clawson and Blad concluded that crop canopy 

temperature data best indicates the plant water stress severity by identifying canopy temperature 

difference between a stressed plot and a fully-irrigated reference crop. Many other recent studies 

have explored the outcomes of deficit irrigation with similar results (Conaty, 2010; Kang et al., 

2000; Fereres and Soriano, 2007; Taghvaeian et al., 2013).  

1.2.2 Estimation of Evapotranspiration Under Drought Conditions 

Standardized methods of estimating crop water use (ET) assume fully irrigated conditions and 

therefore do not accurately estimate water use if soil moisture conditions are limiting. Thus, 

methods that are sensitive to crop development and stress are necessary during droughts or under 
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deficit irrigation.  Reference evapotranspiration is the ET from a specific reference crop (12 cm 

high clipped grass or 50 cm tall full-cover alfalfa) and therefore incorporates the effects of 

weather into the ET estimate (ASCE-EWRI, 2005). Eq. (1.1) is used to determine reference 

evapotranspiration according to ASCE-EWRI (2005) 

 ETsz =
0.408 ∆ (Rn- G) + γ

Cn

T+273
u2(es - ea)

∆ + γ (1 + Cd∙u2)
 

(1.1) 

where ETsz is the standardized reference crop evapotranspiration for reference surfaces (mm d
-1 

for hourly time steps), Rn is the net radiation at the crop surface (MJ m
-2 

d
-1

 for houly time steps), 

G is the soil heat flux density at the soil surface (MJ m
-2 

d
-1

 for houly time steps), T is the mean 

hourly air temperature at 1.5 to 2.5-m height (°C), u2 is the mean hourly wind speed at 2-m 

height (m s
-1

), es is the saturation vapor pressure at 1.5 to 2.5 m height (kPa), ea is the mean 

actual vapor pressure at 1.5 to 2.5-m height (kPa), Δ is the slope of the saturation vapor pressure-

temperature curve (kPa °C
-1

), γ is the psychometric constant (kPa °C
-1

), Cn is the numerator 

constant for each reference type and calculation time step (K mm s
3
 Mg

-1
 h

-1
), Cd is the 

denominator constant for each reference type and calculation time step (K mm s
3
 Mg

-1
 h

-1
), and 

units for the 0.408 coefficient are m
2 

mm MJ
-1

. To use the reference ET calculation method to 

estimate crop ET, the ratio of a cropped and reference surface is combined into a crop coefficient 

according to Allen et al. (2005) as shown below in Eq. (1.2)  

 ETc = ETref ∙ Kc (1.2) 

where Kc is the crop coefficient, ETc is crop ET (mm), ETref is reference surface ET (mm). The 

effect of climate on ET is described by ETref and the properties of the crop which affect ET are 

quantified by Kc (Allen et al., 2005). This method can be used to calculate the potential ET of a 

crop, but if used without adjustment for crops with severe water deficits it can become highly 
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inaccurate. To account for soil water limiting conditions, Allen et al. (1998) separated the crop 

coefficient into evaporation and plant transpiration components, the latter which included a stress 

coefficient (Ks) shown in Eq. (1.3) to quantify the effect of the water stress on crop transpiration  

 ETa= (K
cb

Ks + K
e
)ETref 

(1.3) 

where ETa is the crop ET under water-stressed conditions (mm), Ks is the stress coefficient 

which provides a quantitative index describing the level of water stress (0 – 1), Kcb is the basal 

crop coefficient, and Ke is the evaporation coefficient. This approach reduces the crop coefficient 

when the soil water content is less than the level of maximum allowable depletion (MAD) (Allen 

et al., 1998). Ks values describe the percentage of potential transpiration rate that a crop is 

experiencing reduced from 100 percent according to level of water stress. In soil water limiting 

conditions, Ks will be less than 1. Ks can be as low as 0 in the case that the plant can no longer 

extract water from extremely dry soil. If soil water conditions are not limiting, Ks will not be 

reduced from 1 because the crop will transpire at the full potential ET rate. Ks according to the 

Allen et al. (1995) FAO-56 soil moisture method is calculated with Eq. (1.4) 

 Ks = 
TAW - Dr

TAW - RAW
 

(1.4) 

where TAW is the total available soil water in the root zone (mm), Dr is the root zone depletion 

(mm), and RAW is readily available water (mm). RAW is the portion of TAW which a crop can 

extract from the root zone without suffering water stress. Reliable soil moisture data are difficult 

to obtain. While this soil-moisture based stress coefficient method has been shown to address the 

plant water status based on soil water availability, it has practical limitations for both commercial 

use and research. Adequate information about local soils is lacking and gathering frequent soil 

moisture data for the entire root zone can be prohibitively expensive and difficult. Additionally, 
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spatial variability of soils, both horizontally and vertically, makes it extremely difficult to 

extrapolate a “point source” measurement of soil moisture to an entire field.  

The basal crop coefficient can be obtained from published tabulated values in FAO-56. If 

needed, Kcb values for mid-season can be adjusted for climate, as in the case of FAO-56 

published Kcb values that are for humid climates and therefore need to be adjusted to be used in 

arid and semi-arid regions with Eq. (1.5)  

 
Kcb = Kcb(tab) + [0.04(u2 - 2) - 0.004(RHmin - 45)] (

h

3
)

3

 
(1.5) 

where Kcb(tab) can be found in Table 17 of FAO-56, u2 (m/s) is the mean daily wind speed at 2 m 

height above grass during mid-season growth stage, RHmin (%) is the mean value for minimum 

relative humidity during mid-season growth stage, and h (m) is the mean value for plant height 

during mid-season. The shallow soil water evaporation coefficient, Ke, is then calculated using 

Eq. (1.6)  

 Ke = Kr(Kc max - Kcb) ≤ few∙Kc max (1.6) 

where Ke ranges from 0 in the case of a dry soil surface to a maximum value limited by the 

available energy of the exposed soil for wet surface conditions and depends on the maximum 

value of Kc following rain or irrigation (Kc max), the dimensionless evaporation reduction 

coefficient (Kr) and the fraction of the soil that receives sunlight and water from wetting events 

(few) in addition to the previously defined Kcb. Kc max is calculated with Eq. (1.7) 

 
Kc max= max ({1.2 + [0.04(u2 - 2) - 0.004(RHmin - 45)] (

h

3
)

3

} , {Kcb + 0.05}) 
(1.7) 
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where all variables have been previously defined. Calculation of Kr assumes a two-stage drying 

process. In the case of the first drying stage, Eq. (1.8) is used, and in the second drying stage Eq. 

(1.9) is used.  

 Kr= 1.0 for De,j-1 ≤ REW (1.8) 

 
Kr= 

TEW- De,j-1 

TEW-REW
 for De,j-1 > REW 

(1.9) 

where cumulative depletion from soil surface layer at the end of the previous day, (De j-1, mm), 

determines the stage.  In the second stage the difference between cumulative depletion and total 

evaporable water (TEW, mm) governs the magnitude of Kr. Stages depend on whether the soil 

surface water content is greater or less than the readily evaporable water (REW, mm). Fraction 

of soil exposed to sunlight and is wetted (few) can be calculated with Eq. (1.10) 

 few= fw (1- 
2

3
fc) (1.10) 

Fraction of the surface that is wetted by irrigation and rain (fw) depends on irrigation type and is 

typically assumed to be 0.35 for drip irrigation. Fractional cover (fc) describes the percentage of 

bare soil covered by vegetation cover from a nadir view. Once Kc is calculated, Eq. (1.2) can be 

used to find actual crop ET.  

Daily ETc must be calculated in order to determine the soil water deficit through the water 

balance method. The water balance method uses inputs of ETc (mm), deficit for the day of 

interest (Di, mm), effective precipitation (P, mm), net irrigation (Irr, mm), deep percolation (DP, 

mm), and ground water flux (GW, mm) in Eq. (1.11) to calculate daily soil water deficits 

(Hoffman et al., 2007).  
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 Di = Di-1+ETc- P - Irr + DP - GW (1.11) 

In the absence of a high water table, GW inputs are assumed negligible. Di is calculated by 

taking into account the cumulative effect of the daily inputs and outputs on the previous day’s 

deficit (Di-1).  

1.3 Remote Sensing Methods to Detect Water Stress 

Remote sensing is one way to monitor crop water stress and make irrigation scheduling decisions 

that avoid yield-reducing stress levels. Remote sensing techniques are particularly beneficial 

because they are non-destructive and have the capability to be applied on various spatial and 

temporal scales. The unique data from remote sensing has been applied through simple methods 

to track crop health and improve water management decisions. Land surface multispectral 

reflectance and temperature information from remote sensing data can be used to quantify crop 

water stress through the use of different temperature indices calculated from the thermal 

waveband (Bausch, 2011; DeJonge et al., 2015) and vegetation indices calculated from the near-

infrared band and the red band (Neale et al., 1989; Bausch, 1993; Mefford, 2014). Additional 

methods have been developed that estimate fractional vegetation cover measurements from 

spectral vegetation indices (Trout et al., 2008; Johnson and Trout, 2012). 

Reference crop evapotranspiration can be adjusted for limited soil moisture conditions using a 

wide variety of approaches for estimating stress level and subsequent reduction in crop water 

use. Alternate methods to measuring soil moisture have significant advantages in ease of use and 

have the advantage of measuring stress in multiple locations within a field so a more accurate 

average stress level can be determined and better inform irrigation decisions. Such methods rely 

on remotely collected data such as spectral reflectance, fractional vegetation cover, and canopy 

temperature (Maes and Steppe, 2012).  
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1.3.1 Spectral Reflectance and Fractional Vegetation Cover Methods 

Reflectance-based basal crop coefficient (Kcb_refl) methods developed by Neale et al. (1989) and 

Bausch (1993) have been used to improve irrigation scheduling of corn. Eq. (1.12) describes the 

relationship between actual crop transpiration (Ta), Kcb, and reference crop transpiration (Tref) 

 Tact = Kcb∙T
ref

 (1.12) 

where Tact is crop transpiration under actual conditions and Tref is reference crop transpiration 

under non-water-stress conditions. Reflectance-based basal crop coefficient methods rely on 

remote sensing data to calculate a vegetation index (VI) and the linear relationship between VI 

and the reflectance-based crop coefficient. Neale et al. (1989) produced the relationship in Eq. 

(1.13) for corn in Greeley, Colorado 

 Kcb_refl = 1.181(NDVI) - 0.026 (1.13) 

where NDVI is the normalized difference vegetation index. NDVI is described by Eq. (1.14)  

 NDVI = 
Rnir - Rred

Rnir + Rred

 (1.14) 

where Rnir is reflectance in the near infrared band and Rred is reflectance in the red band. Bausch 

(1993) improved upon this equation by using the soil adjusted vegetation index (SAVI) in 

instead of NDVI. SAVI minimizes soil background effects by taking into account the soil type 

and crop growth stage. Bausch (1993) developed the Eq. (1.15) for corn in Fort Collins, 

Colorado 

 Kcb_refl = 1.416(SAVI)+0.017 (1.15) 

where all variables have been previously defined. SAVI is calculated as shown in Eq. (1.16) 
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 SAVI = 
(Rnir - Rred)(1+ L)

(Rnir + Rred + L)
 (1.16) 

where L is an adjustment factor that varies from 0 to 1 for soil type and growth stage. At high 

densities L is typically less than 0.5, and at low densities L can increase to 1 (Huete, 1998). 

Reflectance-based crop coefficients improved calculation of actual crop ET compared to the 

time-based crop coefficient method by tracking actual crop development which may vary due to 

weather patterns , water status, and agronomic conditions (Neale et al., 1989). 

Another development in the estimation of actual crop coefficients was the work of Trout et al. 

(2008) and Johnson and Trout (2012) which showed that Kcb can be estimated from fractional 

vegetation cover (fc). Johnson and Trout (2012) also demonstrated that if fc measurements are not 

available, NDVI can be used to estimate fc as shown in Eq. (1.17) developed by Johnson and 

Trout (2012) with a combination of 18 row crops, grains, orchards, and vineyards 

 fc = 1.22(NDVI) - 0.21 (1.17) 

where all variables have been previously defined. Once fc has been obtained either through Eq. 

(1.17) or by processing a picture taken from a nadir view (above the crop looking straight down) 

as described by Mefford (2014) to determine which fraction of pixels are vegetation, Eq. (1.18) 

will give the reflectance crop coefficient 

 Kcb_refl = 1.13∙fc+0.14 (1.18) 

where all variables have been previously defined. Reflectance-based crop coefficients assess 

current crop conditions instead of assuming the crop is under ideal conditions. Whether 

measured vegetation indices or fractional vegetation cover is used to calculate Kcb, it will 
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describe Ta better than a tabulated crop coefficient because it reflects not only the actual growth 

stage of the crop but also the water stress condition.  

Another way to use multispectral land surface reflectance data to obtain actual crop ET was 

proposed by Mefford (2014). This method relies on the ratio of NDVI of a deficit plot to the 

NDVI of a fully irrigated plot, as shown in Eq. (1.19) which was developed in a study on corn in 

Greeley, Colorado 

 Ks NDVIratio = 
NDVIs

NDVIns

 (1.19) 

where Ks NDVIratio is the stress coefficient calculated using the NDVI Ratio method, NDVIs is the 

NDVI of a stressed plot and NDVIns is the NDVI of a non-stressed plot. This ratio acts as stress 

coefficient similar to the water stress Ks in FAO-56 (Allen et al., 1998). An advantage of this 

method is that it is conceptually simple and requires only reflectance data from the red and near-

infrared bands. 

1.3.2 Canopy Temperature Methods 

Crop canopy temperature can be an indicator of crop water stress, as demonstrated by the energy 

balance of vegetation described by Eq. (1.20) 

 Rn = LE + H + G (1.20) 

where LE is the latent heat flux (Wm
-2

), H is the sensible heat flux (Wm
-2

), and G is the soil heat 

flux (Wm
-2

). Available energy (Rn – G) will be result in either sensible heat flux (crop canopy 

temperature) or latent heat flux (evapotranspiration). If there is adequate water in the root zone, 

available energy will be used by the plant for evaporating water (transpiration). Once all the 

water which the crop can easily extract (RAW) has been depleted from the soil profile, available 

energy will instead cause heating of the plant (Maes and Steppe, 2012). Measurements of crop 



 

13 
 

canopy temperature can provide valuable information about soil moisture content by partitioning 

the fate of available energy into ET and heating categories representative of crop water status. 

Using various canopy measurement techniques to obtain stress coefficients has the considerable 

advantage over soil moisture methods of minimal instrumentation and data collection needs in 

order to be used to estimate actual evapotranspiration. Canopy temperature methods chosen 

include the Crop Water Stress Index (CWSI) method, temperature ratio, Degrees Above Non-

Stress (DANS), and Degrees Above Canopy Threshold (DACT).  

Jackson et al. (1981) demonstrated the potential of using infrared thermometers for irrigation 

scheduling by devising the CWSI method. CWSI relies on the linear relationship between the 

difference between canopy and air temperature and the vapor pressure deficit. A non-transpiring 

baseline and a non-water-stressed baseline serve as the extreme bounds of crop water status. 

Non-transpiring baseline correlates with the difference between the canopy and air temperature 

for a crop which has completely stopped transpiring due to severe water stress, while the non-

water-stressed baseline represents the difference between the canopy and air temperature for a 

plant which is transpiring at the highest potential for given climatic conditions and is not under 

any stress. These baselines are displayed graphically in Figure 1 by a solid line for lower limit 

baseline (dT_LL) and a dashed line for upper limit baseline (dT_UL). CWSI varies from 0 to 1, 

being 0 if the difference between the canopy and air temperature is the same as the non-water-

stressed baseline for a given VPD (no stress), and 1 if the difference is as large as that of the non-

transpiring baseline (maximum stress). In the example, shown in Figure 1, the measured value 

results in a CWSI value of 0.64 which represents a plant that is severely stressed and therefore 

has an ET rate approximately equal to 36% of a non-water stressed crop.  
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Figure 1. CWSI example with baselines for Greeley, CO 

 

CWSI relies only on inputs of crop canopy termperature, relative humidity (RH), and air 

temperature if local baselines have already been established (Idso, 1982). CWSI, as well as all 

other canopy temperature methods, are less reliable when full cover has not yet been attained 

because canopy temperature measurements inevitably incorporate soil temperature (Jackson et 

al., 1981). Nonetheless, CWSI irrigation scheduling has proven to have the potential to be 

effective and to reduce water consumption.  CWSI method has been widely used in deficit 

irrigation studies and is considered a standard for irrigation scheduling under deficit irrigation 

(Irmak et al., 2000; Nielson and Alderfasi, 2010; Taghvaeian et al., 2012; Zia et al., 2011) 

In this study, the empirical baseline approach was applied using baselines determined for 

Northeastern Colorado by Taghvaeian (2014). Baselines provide a way to determine where a 

crop is in relation to minimum or maximum stress conditions as shown in Eq. (1.21) 

 CWSI = 
dTm-dTLL

dTUL-dTLL

 (1.21) 
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where dTm is the measured or actual difference between air and canopy temperature, dTLL 

represents the lower limit or non-water-stressed condition, and dTUL is the difference in the upper 

limit or critically-stressed condition. Assuming a linear relationship between the vapor pressure 

deficit (VPD) and the lower limit, the empirical baseline approach is valid for a given climate. 

Taghvaeian (2014) developed the following baseline in Eq. (1.22)  

 dTLL = -1.99(VPD) + 3.04 (1.22) 

where all variables have been previously defined. Upper baseline was determined to be 5°C from 

observation. The chosen lower limit baseline described by Eq. (2.4) and the upper limit of 5°C 

are used in the example displayed in Figure 1.   Although  CWSI was originally suggested by 

Idso et al. (1981) to be applied at 2:00 pm (MST), CWSI was applied at 11:00am (MST) for this 

study according to the suggestion of Taghvaeian et al. (2014) in order to provide a good 

representation of the average daily stress experienced by the crop.   Canopy data were also 

originally suggested by Idso et al. (1981) to be taken by a handheld IRT directly into the rows of 

crop, but for this study it was chosen to use IRTs installed at an angle 23° below horizon and 45° 

east from north (rows were in north/south orientation) in order to minimize the background effect 

of the soil, 

A method to evaluate water stress that only requires crop canopy temperature was proposed by 

Bausch et al. (2011), according to Eq. (1.23) 

 Ks TcRatio=
TcNS

Tc

 (1.23) 

where Ks TcRatio is a stress coefficient proposed to be a surrogate for the water stress coefficient Ks 

from FAO-56 (Allen et al., 1998), Tc is the measured canopy temperature of a crop under water 

stress and TcNS is the temperature of a fully irrigated, non-stressed canopy. This temperature ratio 
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was found to be capable of quantitatively monitoring water stress and potentially be used in the 

place of the water stress coefficient when soil moisture measurements are not available (Bausch, 

2011).  

Alternate temperature methods have been proposed by Taghvaeian et al. (2014) and DeJonge et 

al. (2015) which are comparable to the CWSI, but like the Tc Ratio method of Bausch et al. 

(2011) require less inputs. The first method proposed by Taghvaeian et al. (2014) is Degrees 

Above Non-Stressed Canopy (DANS) which is the difference between canopy temperatures of 

stressed and non-stressed plants as described by Eq. (1.24) 

 DANS = Tc - TcNS (1.24) 

where Tc is the canopy temperature for the crop of interest and TcNS is the cooler canopy 

temperature of a nearby crop at the same time which ideally is the same variety and growth stage 

but fully irrigated. Another similar approach is Degrees Above Canopy Threshold (DACT), 

which is similar to DANS except that the canopy temperature threshold (Tcritical) is simply a 

known constant for a given crop. DACT is calculated with Eq. (1.25) 

 DACT = max(0,T
c
 - Tcritical) 

(1.25) 

where it is assumed that if the crop canopy is any temperature under Tcritical, it is not under any 

stress and DACT will return a value of 0. Tcritical is the threshold temperature for the crop (e.g. 

28° C for corn); this threshold has been used in other studies in conjunction with the time 

temperature threshold (TTT) method which similarly evaluates the amount of time the canopy 

temperature is above the threshold (O’Shaughnessy et al., 2010). Temperature threshold of 28°C 

represents the crop temperature at which photosynthetic enzyme activity is at its highest (Burke, 

1996). DACT has the advantage of only requiring a single canopy temperature measurement, 
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opposed to DANS which also requires canpy temperature of a fully irrigated crop. Both DACT 

and DANS suggest spot measurements to be taken around solar noon on sunny days, similar to 

CWSI, and have been found to have a comparable ability to monitor water stress (De Jonge et 

al., 2015). 

1.4 Objectives 

 The overall goal of this study is to compare the performance of several water stress coefficient 

methods to estimate evapotranspiration of corn in Northeastern Colorado under various levels of 

deficit irrigation. Specific objectives are: 

1. Use 2010 and 2011 data from the Limited Irrigation Research Farm (LIRF) to calibrate 

an equation to convert DANS and DACT indices into stress coefficients (Ks).  

2. Use five crop stress detection methods (CWSI, Tc Ratio, NDVI Ratio, DANS, DACT) 

with 2012 and 2013 corn data from LIRF to estimate daily evapotranspiration. Compare 

accuracy of each method by computing mean biased error (MBE) and root mean squared 

error (RMSE) of results compared to ET calculated by a neutron probe calibrated soil 

water balance. 

3. Provide suggestions of appropriate methods for evaluating water use and monitoring 

stress under different levels of irrigation and data availability.  
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CHAPTER 2: METHODS 

  
 
 
Overview of study details and experimental design can be found in the following section. The 

first section describes the study area, instrumentation, and data collection. The second part 

discusses the plan to calibrate DANS and DACT indices. The third section contains the rationale 

and methodology to compare all methods as stress coefficients in addition to the statistics used to 

evaluate and compare performance.  

2.1 Data Description 

Data collection was conducted in 2010 through 2013 at a Limited Irrigation Research Farm 

(LIRF) near Greeley, CO (40° 26’ N, 104° 38’ W, and 1428 m elevation). LIRF is a facility 

operated at maintained by the United States Department of Agriculture (USDA) Agricultural 

Research Service Water Management Research Unit (ARS-WMRU). LIRF is irrigated with a 

pressurized surface drip system. Treatments received irrigation corresponding to percentage of 

full crop ET. In 2010 and 2011 there were 3 different irrigation treatments used for this study, 

with 4 replications of each treatment. Plot layout maps for 2010 and 2011 can be found in 

Figures 21 and 22 in the appendix. Irrigation treatments are described in Table 1. In 2010 and 

2011, Treatment 1 received 100% of ETc, fully satisfying water requirements. Treatments 4 and 

5 received water seasonally proportional to Treatment 1 in response to critical growth periods. In 

order to have multiple independent years of data to calibrate and validate DANS and DACT 

index equations, the 2010 and 2011 growing seasons of corn were chosen for calibration. For 

evaluation and comparison of methods 2012 and 2013 data were used. Figure 2 displays the plot 

layout map for 2013. Table 2 displays the irrigation treatment structure of the plots used for this 

study, with first number being percent ET applied during vegetative stage and second number 
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being percent ET applied during maturation growth stage. All treatments received 100 percent of 

ET during the reproductive growth stages.  

 

Table 1. 2010 and 2011 irrigation treatments 

 

 

Table 2. 2012 and 2013 irrigation treatments 

 

a Three replicates in 2012                                                    
b No Tc observations in 2012 

 

 

 

Treatment #  

% ET 

Vegetative/ 

% ET 

Maturity 

1 100/100 

4 70/70 

5 55/55 

Treatment # 

% ET 

Vegetative/ 

% ET 

Maturity 

1 100/100 

2 100/50 

3 80/80 

6 80/40 

8
a 

65/65 

10
b 

65/40 

12 40/40 
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Figure 2. 2013 LIRF Treatment layout  
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Permanent stationary IRTs (model: SI-121, Apogee Instruments, Inc., Logan, Utah, USA) took 

continuous readings of canopy temperature (measured every 5 seconds and averaged over 30 

minute intervals). IRTs were attached to telescoping posts and adjusted throughout growing 

season to maintain a height of approximately 0.8 meters above the canopy. In order to minimize 

the background effect of the soil, IRTs were installed at an angle 23° below horizon and 45° east 

from north (rows were in north/south orientation). Spectral reflectance measurements were taken 

weekly around solar noon under conditions of minimal cloud cover with either Exotech or Skye 

light sensors. Soil moisture measurements were taken with a neutron probe (CPNInstrotek, 

503DR AM-241) at depths of 30 cm to 1050 cm from the surface before and after irrigation 

events, approximately 2 or 3 times a week. Accuracy ranges for neutron probe measurements are 

typically reported between 0.01 and 0.024 mm/m according to Huisman et al. (2003).   Evett et 

al. (2003) found that with field calibration all RMSE values were less than 0.01 m
3 

m
-3

. The 

neutron probe relies on the gravimetric method for its volumetric water concent calibration, so its 

accuracy is closely related to that of the gravimetric sampling method which is reported to be 

within 0.3% of water content (Topp and Ferré, 2002).  A time domain reflectometer (TDR) 

(miniTrase, 6050X3K1) was utilized for soil moisture measurements on days the neutron probe 

was used to obtain the volumetric water content within the top 15 cm of the soil profile. 

Meteorological data were obtained from the LIRF onsite weather station (CoAgMet Weather 

Station Network, Station GLY04, www.coagmet.com), just west of the LIRF research fields. 

Average daily weather parameters and  total rainfall amounts during study periods (July 7 – 

September 7) in 2010 through 2013 are presented in Table 3.  Total precipitation values can be 

compared to the long term total precipitation averagefor this time period of 70.7 mm in order to 
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infer whether a period was above or below average. Types and method of data collection are 

detailed in Table 4.  

Table 3. Average daily weather parameters during study period for 2010 – 2013 

Parameter 2010 2011 2012 2013 

Mean air temp. (°C) 21.2 22.3 22.1 21.6 

Max air temp. (°C) 30.7 32.0 32.0 31.0 

Min air temp. (°C) 12.5 13.8 13.1 13.5 

Mean Vapor pressure (kPa) 1.4 1.5 1.3 1.5 

Max. relative humidity (%) 91.9 92.1 87.7 93.8 

Min. relative humidity (%) 22.8 21.3 18.8 26.2 

Wind run (km d
-1

) 125.7 136.7 136.4 142.3 

Solar irradiance (MJ m
-2

 d
-1

) 22.6 22.3 22.9 21.2 

Precipitation (mm) 67.3 56.4 37.8 60.2 

 

Table 4. 2010 - 2013 experimental setup 

Experimental Setup 2010 - 2011 2012 2013 

Treatments 3 7 6 

Replications 4 4 4 

IRT equipment SI-121 Apogee SI-121 Apogee SI-121 Apogee 

IRT frequency 5 min, 30 min averages 5 min, 30 min averages 5 min, 30 min averages 

Multispectral equipment Exotech sensors N/A Skye light sensors 

Multispectral frequency Twice a week N/A Twice a week 

 

2.2 Model Calibration 

Temperature methods DANS and DACT both have units of °C and a theoretical scale of zero for 

no stress and a much larger number for high stress. These indices need to be normalized in order 

to use them as stress coefficients. An independent dataset of both temperature data and FAO-56 

method water stress coefficients (Ks FAO-56) were necessary in order to calibrate these methods 

before use in this study. LIRF 2010 and 2011 corn data were used for this purpose using Eq. 

(2.1)  
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 Ks DANS = max (1 - 
DANS

x
, 0) 

(2.1) 

where Ks DANS is the DANS-based stress coefficient, and x is a variable optimized to reduce the 

RMSE between Ks DANS and Ks FAO-56 for the data from 2010 and 2011 LIRF corn.. Similarly, the 

stress coefficient from DACT (Ks DACT) is calibrated with Eq. (2.2), 

 Ks DACT = max (1 - 
DACT

y
, 0) (2.2) 

where “y” is a variable optimized to reduce RMSE between Ks DANS and Ks FAO-56 for the data 

from 2010 and 2011 LIRF corn.. These equations were designed to reach practical limits for Ks; 

that is, when DANS and DACT are zero, there is no stress and Ks is thus equal to 1 similar to Eq. 

(1.4). However, when DANS = x or DACT = y, that would indicate maximum stress therefore Ks 

= 0. This study will focus on the performance of each index under different irrigation schemes.  

2.3 Basal Crop Coefficient, Kcb 

Three methods to calculate Kcb were used in this study. ETr, or reference ET from a tall reference 

crop, was chosen in this study because alfalfa has historically been the reference crop for 

Colorado and better captures the climatic effects such as wind on ET. The first method was 

tabular Kcb, which was determined by constructing a curve using crop-specific values with the 

method specified by the ASABE Monograph for alfalfa reference ET (Hoffman et al., 2007). In 

the monograph the tabular values are based on time between planting and effective cover and 

then later on number of days after full cover. Coefficients were derived in Idaho for a tall 

reference crop under standardized conditions and adapted for use with the ASCE standardized 

reference ET equation. A source of error with tabulated values is that corn under different 

environmental conditions will likely not grow at the same rates. Use of growing degree days may 
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be more accurate, and this could even be different year to year in the same location with local 

seasonal variability. Additionally, severe water stress may further alter growth rates based on 

timing of severe water deficit or water application. Tabulated Kcb values represent the potential 

or maximum water transpiration fraction in relation to the reference crop for a certain growth 

stage and environmental conditions. However, if environmental or agronomic conditions depart 

from ideal conditions then adjustment of Kcb values is needed. If tabulated Kcb values are used 

instead of measured Kcb_refl which reflect actual crop conditions, it causes error in the resulting 

crop ET estimates. In order to more accurately track actual growth progression of deficit 

irrigation plots, canopy cover or reflectance data can be used to estimate Kcb throughout the 

season. 

Trout and Johnson (2007) developed a method to calculate Kcb with canopy cover data using Eq. 

(1.18). This equation was developed with a weighing lysimeter and a combination of 18 row 

crops, grains, orchards, and vineyards. In order to calibrate Kcb values for corn, the coefficients 

were calibrated with Kcb_refl values calculated from actual ET measurements from a Bowen Ratio 

Energy Balance system at LIRF, therefore producing Eq. (2.3) 

 Kcb_refl = 1.01∙fc + 0.15 (2.3) 

where all variables have been previously defined. This method of obtaining Kcb from fractional 

cover data represents the second Kcb method used in this study. The third method chosen was to 

estimate fc from NDVI to represent situations where fc data are not available. Reflectance data 

can be used to estimate fractional cover by entering reflectance data into Eq. (1.14) to estimate 

NDVI, and then using NDVI within Eq. (1.17) in order to obtain a value for fractional cover. 

Quality of the canopy cover and NDVI data obtained and the accuracy of the processing methods 

will govern which method performs best. By applying all three methods to obtain basal crop 
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coefficient values, the absolute and relative accuracies can be observed within the context of this 

study. 

2.4 Stress Coefficient, Ks 

Stress detection methods CWSI, DANS, DACT, Tc Ratio, and NDVI ratio were all used in the 

place of the soil moisture based Ks in order to evaluate the potential for replacing soil moisture 

data with alternative inputs of canopy temperature and reflectance data.  CWSI can be used in 

Eq. (2.4) to determine water use of the crop according to Jackson et al. (1981) 

  Ta = (1 - CWSI) ∙ Tc 
(2.4) 

where Ta is crop transpiration under actual conditions and Tc is crop transpiration under non-

water-stressed conditions. It can be seen that in this way, the quantity (1 – CWSI) is equivalent 

to a stress coefficient, as it represents the percent of crop water consumption compared to non-

water-stressed conditions. The CWSI-based stress coefficient (Ks CWSI) is calculated with Eq. 

(2.5) 

  Ks CWSI = (1 - CWSI) 
(2.5) 

where all variables have been previously defined. DANS and DACT methods were applied 

according to Eq. (1.24) and Eq. (1.25), respectively, for each treatment replication using 

temperature data collected at 1400h and then those values were averaged in order to find a daily 

value of Ks for each method.  

Tc Ratio method was similarly applied using Eq. (1.23) with temperatures collected at 1400h. 

NDVI Ratio method was used with reflectance data as described in Eq. (1.19) in order to obtain a 

Ks value for each treatment. Neither Tc Ratio or NDVI ratio fully conform to the definition of an 

index [0,1] since both methods cannot produce a value of 0 even in the case of a non-transpiring 
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crop. Despite this range issue, they are both presented as potential surrogates of the FAO-56 

water stress Ks and were therefore be directly evaluated as such (Mefford, 2014; Bausch et al., 

2011). 

2.5 Estimation of Crop ET 

Actual crop ET was independently calculated from measured soil moisture data using the soil 

water balance method over the growing season. In order to get daily values of water deficit from 

soil moisture data, a water balance method was applied by using a spreadsheet into which the 

irrigation events (I), effective precipitation events (P, mm), deep percolation (DP, mm) were 

input and soil moisture deficit (Di) was calculated according to Eq. (2.6) described in Hoffman et 

al. (2007) 

 Di = Di-1 + ETa - P - I + DP - GW (2.6) 

where GW is the ground water input (mm), which is neglected if the water table is not high (i.e. 

in the root zone), and Di-1 is the deficit for the previous day (mm). Soil moisture measurements 

throughout growing season were used to anchor the soil water deficit calculations to true values. 

Time domain reflectometer (TDR) readings were used for 0 to 150 mm depth and neutron probe 

readings were used for 150 to 1050 mm.  Neutron probe readings give estimated values for 

volumetric water content (VWC) of the soil, which can be subtracted from VWC at field 

capacity (FC) to obtain soil water deficit (SWD). Estimates of VWC at FC for each depth (0 to 

150, 150 to 450, and 750 to 1050 mm) of each treatment were procured from Agricultural 

Research Service – Water Management Unit (ARS-WMU) in Fort Collins, CO using pressure 

plate analysis and later verified with observations following irrigation and rainfall events. Root 

zone depth (Rz) was modeled throughout the season based on observation from previous years by 

ARS-WMU and used in order to find the total SWD of the root zone. If deficit of a section of 
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root zone was calculated to be negative, then the spreadsheet returns a deficit value of zero and 

the negative value is assumed to be deep percolation. ETref from the onsite weather station and 

Kcb based on tabular values are utilized to predict ETa on days with no soil moisture data.  

2.6 Method Comparison 

Stress detection methods chosen to be converted into stress coefficients (Ks) are identified and 

briefly described in the following list. For the sake of this comparison each was converted into 

an index before it was used to calculate ET. In order to isolate and analyze the effect a particular 

Kcb method may have on the accuracy of each Ks method, each stress coefficient was applied 

with each of tabular, canopy cover, and NDVI based Kcb values. 

1) CWSI as calculated with the empirical baseline (Idso et al.,1981)  

2) Ratio of stress NDVI to non-stress NDVI (Mefford, 2014)  

3) Ratio of non-stress Tc to stress Tc (Bausch, 2011) 

4) DANS method (Taghvaeian et al., 2014), normalized to yield values from 0 to 1 

5) DACT method (DeJonge et al., 2014), normalized to yield values from 0 to 1 

Once all stress coefficients had been calculated for the study period in 2012 and 2013, each was 

evaluated compared to the observed neutron probe soil water balance ET estimates.  The main 

statistics to evaluate the performance of each method are the root mean square error (RMSE),  

mean biased error (MBE) and mean relative error (MRE) as shown in Eq. (2.7), Eq. (2.8), and 

Eq. (2.9) respectively 

 RMSE = [N-1 ∑ (Pi-Oi

N

i=1

)

2

]

0.5

 
(2.7) 
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MBE = N-1 ∑ (Pi-Oi

N

i=1

) 

(2.8) 

 

MRE = N-1 ∑
|Pi - Oi|

Oi

N

i=1

 

(2.9) 

 

where N is the number of observations, P is the model-prediction, and O is an observation. 

RMSE summarizes model error in terms of magnitude and MBE describes model bias. MRE 

measures size of error relative to the size of the observation. Applying RMSE, MBE, and MRE 

provides information about strengths and weakness of model performance and facilitates 

comparison between methods.  
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CHAPTER 3: RESULTS AND ANALYSIS 
 
 
 

Transformation of DANS and DACT into indices is detailed and the calibration error statistics 

are provided in this chapter. Evaluation of all the methods applied daily, weekly, and monthly is 

presented, in addition to the effects of filtering data for clouds or insufficient canopy cover and 

taking running averages of stress coefficient values. Finally, recommendations of most 

appropriate methods considering irrigation level and data availability are provided along with an 

estimate of associated error.  

3.1 DANS and DACT Calibration 

Stress detection methods DANS and DACT required transformation in order to be used in the 

place of a stress index or Ks value. For this preliminary evaluation of DANS and DACT as stress 

coefficients, Eq. (1.24) and (1.25) were calibrated with data from LIRF 2010 and 2011 corn 

growing season. This causes them to differ from the other methods in this study by containing an 

empirically calibrated component while other methods were not calibrated for CO environmental 

conditions. This is a preliminary study to evaluate the feasibility of applying these simple 

measures of stress to improve deficit irrigation water management with limited data.  

DANS and DACT are both in units of degrees Celsius, so in order to use them as unitless stress 

coefficients a method to normalize them was required. In order to calibrate parameters “x” and 

“y” in Eq. (2.1) and (2.2), FAO-56 soil moisture-based Ks values were calculated from a neutron 

probe calibrated soil water balance (SWB) from corn at LIRF in 2010 and 2011. These Ks 

numbers were then used to identify the values for “x” and “y” which minimized the RMSE of 

DANS and DACT Ks values for 2010 and 2011. Considering all treatments and both years, 

optimized values for “x” and “y” used in this study were 29.1 and 27.7, respectively. For this 
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dataset the optimized values for both DANS and DACT were similar because the non-stress crop 

was often near 28°C, frequently causing these two indices to converge.  Average 14:00 pm 

(MST) temperature of the non-stress canopy was 27.6 for 2010 and 27.9 in 2011,  and for the 

stressed crop same time of day average canopy temperature was 29.3 for 2010 and 31.0 for 2011.  

Measured temperatures of near 28°C for the non-stress crop while other treatments were reading 

much higher temperatures helps confirm the use of 28°C as the threshold for stress in DACT 

index to represent the temperature that a well-watered crop will maintain under conditions when 

the canopy of a water-stressed crop will be much higher.  

Training set statistics from 2010 and 2011 data yielded very similar RMSE and MBE values for 

both DANS and DACT stress coefficients (Table 5). Low RMSE and MBE values indicate that 

DANS and DACT are closely related to a water stress index and have the potential to serve as 

stress coefficients.  

Table 5. Training set statistics for x and y values which minimize Ks DANS and Ks DACT RMSE 

Stress 

Coefficient 

 x/y 

Value 

Ks 

RMSE 

Ks 

MBE 

Ks DANS 27.7 0.15 0.033 

Ks DACT 29.1 0.14 -0.031 

 

In order to analyze how the error in Ks DANS and Ks DACT change for each year and treatment 

combination with different values for “x” and “y” Figure 3 and Figure 4 were constructed. These 

graphs show that for most logically reasonable scaling values, the error is nearly constant with 

asymptotic behavior around an error of approximately 0.15 when considering all treatments. A 

potential advantage of asymptotic behavior is that it indicates the indices may not be overly 

sensitive to these parameters but irrigation level can still help predict what best value of “x” or 

“y” will be. A non-stress crop will have lowest error with an infinitely large value for “x” or “y” 



 

31 
 

in order to force all Ks values to 1, while a severely-stressed crop such as Treatment 5 in this 

study appears to have highest accuracy with a variable of “x” or “y” within a range of roughly 16 

to 19. A moderately stressed crop, represented by Treatment 4, may be best described by a 

parameter between 20 and 30 for either DANS (or DACT) indices. Eliminating non-stress plots 

from this analysis resulted in optimized “x” values of  23.2 in 2010 and 20.1 in 2011, and “y” 

values of 26.6 in 2010 and  24.4 in 2011, which may indicate that the range of 20 to 30 is an 

optimal range for either index if the exact stress level is unknown, as optimized values fall within 

this range for all deficit crops in this study.  Further research is necessary to fine tune the 

relationship between optimal empirical values and irrigation level in order to establish 

confidence in choosing these parameters without data from previous years and determine the 

sensitivity and transferability under different climactic conditions, crops, and/or hybrids. 

 

Figure 3. DANS RMSE with varying "x" values for each treatment and year combination 
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Figure 4. DACT RMSE with varying "y" values for each treatment and year combination 
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3.2.1 Daily, Weekly, and Seasonal ETa Estimation Error 

All Ks methods were used within a soil water balance spreadsheet which uses FAO-56 dual crop 

coefficient method to estimate actual evapotranspiration. Daily ETa estimations for all 

combinations of Ks and Kcb were compared to daily ETa values from neutron probe calibrated 

SWB. ETa RMSE (mm/day) estimates from each combination of Ks and Kcb method over the 

study period in 2013 are displayed in Figure 5. For 2013, the effect of using tabular values 

instead of canopy cover measurements resulted in only slightly increased error (an average of 

0.04 mm/day) and using NDVI to calculate canopy cover also only slightly improved accuracy 

over using tabulated values (an average of 0.05 mm/day). The five Ks methods performed at 

similar levels of accuracy, and the low RMSE of DANS and DACT as compared with CWSI 

indicates that these indices have potential to be used as stress coefficients. RMSE (mm/day) of 

ETa from 2012 for the available data (all except reflectance) is shown in Figure 6 in order to 

validate the conclusions from Figure 5. Tabulated Kcb values resulted in more error over canopy 

cover Kcb values in 2012, increasing RMSE an average of 0.17 mm/day compared to the 0.04 

mm/day seen in 2013. In 2012 CWSI performed slightly worse than the other methods with an 

average RMSE of 0.96 mm/day compared to the average RMSE of all other methods which was 

0.84 mm/day.  



 

34 
 

 

Figure 5. Daily ETa estimate RMSE (mm/day) of each Ks and Kcb combination in 2013 
 

 
Figure 6. Daily ETa estimate RMSE (mm/day) of each Ks and Kcb combination in 2012 
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NDVI and tabular Kcb methods had averages of 10.8% and 13.4% error, respectively, indicating 

that canopy cover Kcb method or NDVI Kcb method is preferred in order to lower percentage 

error in ETa estimation regardless of Ks method used. Daily ETa MRE (%) for the 2012 dataset 

(Figure 8) confirms the conclusions from the 2013 MRE analysis.  Similar to 2013, all methods 

performed on similar levels, ranging from an average of 14.6% error for CWSI to 16.6% error 

for NDVI Ratio.  Canopy cover Kcb had an average of 14.0% error among all stress coefficient 

methods and  tabular K cb methods had an average of 18.0 % error, confirming the advantage of 

using canopy cover Kcb values.  The main difference between years 2012 and 2013 in terms of 

MRE is that 2012 MRE is much higher overall, with average error of all Kcb and Ks combinations 

of 16.0% compared to 11.2% in 2013. This can be attributed to the different environmental 

conditions for those years, as 2012 had  less precipitation and higher temperatures on average.  

Stress coefficient methods are designed to work best in average climate conditions, so when 

conditions diverge error increases. For example, DACT assumes a non-stress canopy 

temperature of  28 °C and DANS assumes that there is a non-stress canopy temperature which 

can be measured, neither of which is true in extremely hot conditions when even crops not under 

soil moisture limiting conditions will be exhibiting higher stress levels due to divergent 

environmental conditions. 
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Figure 7. Daily ETa estimate MRE (%) of each Ks and Kcb combination in 2013 
 

 

Figure 8. Daily ETa estimate MRE (%) of each Ks and Kcb combination in 2012 
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having an overall slightly lower R
2 

than CWSI has less scatter among the mid-range ETa values 

which demonstrates that DANS performs very well for days with average ETa, while CWSI had 

quite a bit of scatter throughout the whole range of ETa values.  NDVI Ratio scatterplot (Figure 

11) had the lowest R
2 

of the stress coefficient methods at R
2 

 = 0.76.  NDVI Ratio also displayed 

most scatter at low ETa values, possibly demonstrating the range issue dicussed earlier that 

causes NDVI ratio not to be able to reach low values and therefore may not be able to 

sufficiently reduce ETa to represent stressed conditions.  High error among all methods on days 

with lower ETa can also be attributed to these days being those with lower reference ETa and 

therefore having lower heat stress, which is what these methods are designed to detect. DACT 

and Tc Ratio both had R
2 
values of 0.83 and scatterplots are shown in Figure 12 and  Figure 13, 

respectively. 

  

Figure 9. Scatterplot of CWSI ETa vs. Neutron Probe ETa (mm), R
2
 = 0.86 
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Figure 10. Scatterplot of DANS ETa vs. Neutron Probe ETa (mm), R
2
 = 0.85 

 

 

Figure 11. Scatterplot of NDVI Ratio ETa vs. Neutron Probe ETa (mm), R
2
 = 0.76 

y = 0.949x 

R² = 0.847 

0

2

4

6

8

10

12

0 2 4 6 8 10 12

D
A

N
S

 E
T

a
 (

m
m

) 

Neutron Probe ETa (mm) 

DANS 

y = 0.964x 

R² = 0.758 

0

2

4

6

8

10

12

0 2 4 6 8 10 12

N
D

V
I 

R
a

ti
o

 E
T

a
 (

m
m

) 

Neutron Probe ETa (mm) 

NDVI Ratio 



 

39 
 

 

Figure 12. Scatterplot of DACT ETa vs. Neutron Probe ETa (mm), R
2
 = 0.83 

 

Figure 13. Scatterplot of Tc Ratio ETa vs. Neutron Probe ETa (mm), R
2
 = 0.83 
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weather station to not be optimal for the computation of CWSI. A nearby field under deficit 

irrigation with in situ weather data was used to confirm this hypothesis of micro-climate 

variation.  Three levels of irrigation were applied on the nearby field: high frequency deficit 

irrigation (HFDI), low frequency deficit irrigation (LFDI), and full irrigation (FI).  HFDI 

experienced moderate water stress, LFDI was placed under severe water stress, and FI was not 

intentionally water stressed.For further detail on field layout, irrigation, soils, etc. see 

Taghvaeian et al. (2013).  Comparing in situ (field) weather data in August for 2012 and 2013 to 

the off-field or agricultural weather station data at 11:00 am (MST), when CWSI was applied for 

this study, showed that for all irrigation levels, using nearby weather station introduced error 

(Table 6).  Full irrigation had the highest vapor pressure deficit (VPD) error both years, with 

RMSE values of 0.31 kPa (14%) and 0.36 kPa (19%) for 2012 and 2013, respectively.  Data 

from 2013 showed that for this year of the study there was consistent underestimation of VPD 

from weather station data, ranging from -0.07 kPa (-4%) to -0.23 kPa (-11%) for FI and HFDI, 

respectively. Comparison of weather station to in situ VPD supports the idea that in field 

conditions may diverge from those of a nearby weather station and introduce error into CWSI 

calculations.   

 

Table 6. MBE and RMSE (in kPa and %) for the VPD datasets from COAGMET at 11am (MST) 

as compared to in situ weather data for all irrigation treatments (FI, LFDI, and HFDI) for August 

1-31 in 2012 and 2013 

  2012 2013 

Statistic FI LFDI HFDI FI LFDI HFDI 

RMSE (kPa) 0.31 0.26 0.25 0.36 0.33 0.36 

RMSE (%) 13.7 11.2 10.8 19.4 17.4 18.1 

MBE (kPa) 0.06 -0.01 0.02 -0.07 -0.11 -0.23 

MBE (%) 2.8 -0.5 0.9 -4.0 -5.7 -11.3 
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To investigate the effect of VPD error on CWSI calculations from using a nearby weather station 

instead of in field readings, CWSI  was calculated for this nearby field assuming a canopy-air 

temperature differential of 2.5 ºC and using the same baselines as were used in this study (Table 

7).  Considering both years, using weather station data incurred an average RMSE in Ks CWSI 

values of 0.05 (7.6%) and an average MBE of -0.01 (-1.9%).  Errors in Ks CWSI  cause subsequent 

errors in estimation of ETa, which reduces the accuracy of CWSI ETa estimates when in situ air 

temperature and relative humidity data are not used.   

Table 7. MBE and RMSE (unitless and %) for Ks CWSI from COAGMET at 11am (MST) as 

compared to in situ weather data for all irrigation treatments (FI, LFDI, and HFDI) for August 1-

31 in 2012 and 2013 

  2012 2013 

Statistic FI LFDI HFDI FI LFDI HFDI 

RMSE (unitless) 0.04 0.03 0.03 0.06 0.06 0.06 

RMSE (%) 6.1 5.4 5.0 9.6 9.3 9.9 

MBE (unitless) 0.00 -0.01 0.00 -0.01 -0.02 -0.03 

MBE (%) 0.2 -1.0 -0.4 -1.8 -3.4 -5.3 

 

As previously mentioned, CWSI was applied at 11:00 am (MST) for this study, but if it is 

applied according to Idso et al. (1981) at 2:00 pm (MST), effect of using in situ weather data 

may be different than if CWSI is applied at 11:00 am (MST).  To investigate that theory, Table 8 

and Table 9 were created identically to Table 6 and Table 7, only changing from 11:00 am  

(MST) data to 2:00 pm (MST) data in order to directly contrast the two datasets.  Average RMSE 

of VPD for 2:00 pm data was 12.0% as compared to 15.1% for 11:00 am data, displaying that in 

situ weather data in this case varied from the weather station more at 11:00 am than at 2:00 pm.  

Similarly, average RMSE of Ks CWSI values for 2:00 pm data was 3.7% and 7.6% for 11:00 am 

data.  Therefore, the choice to apply CWSI at 11:00 am (MST) for this study may better describe 

the average daily stress experienced by the crop but there may be increased divergent 
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microclimate implications when not applying the method with in situ weather data and at the 

time period prescribed by the method.   

Table 8. MBE and RMSE (in kPa and %) for the VPD datasets from COAGMET at 2 pm (MST) 

as compared to in situ weather data for all irrigation treatments (FI, LFDI, and HFDI) for August 

1-31 in 2012 and 2013  

  2012 2013 

Statistic FI LFDI HFDI FI LFDI HFDI 

RMSE (kPa) 0.40 0.35 0.33 0.35 0.28 0.35 

RMSE (%) 13.3 11.5 10.9 14.0 10.0 12.2 

MBE (kPa) 0.20 0.18 0.22 0.19 -0.05 -0.14 

MBE (%) 6.6 5.8 7.2 7.5 -2.0 -4.8 

 

Table 9. MBE and RMSE (unitless and %) for Ks CWSI from COAGMET at 2 pm (MST) as 

compared to in situ weather data for all irrigation treatments (FI, LFDI, and HFDI) for August 1-

31 in 2012 and 2013 

  2012 2013 

Statistic FI LFDI HFDI FI LFDI HFDI 

RMSE (unitless) 0.03 0.02 0.02 0.03 0.02 0.02 

RMSE (%) 4.2 3.6 3.1 4.6 2.9 3.5 

MBE (unitless) 0.01 0.01 0.01 0.02 0.00 -0.01 

MBE (%) 1.9 1.6 2.1 3.0 -0.3 -0.8 

 

Figure 14 displays the RMSE (mm/day) of daily ETa estimates for each stress coefficient method 

separated by treatment in order to see the effect of irrigation level on the performance of each 

method. This figure shows that the performance of each stress coefficient was similar for all 

treatment levels, with higher stress water-limited plots incurring higher errors from all methods.  

Figure 15 displays the MBE of daily ETa estimates over the study period and this chart shows 

that all of the chosen Ks methods slightly over-estimated ETa with CC Kcb values and slightly 

underestimate ETa when applied with NDVI and Tabular Kcb values. In addition, Figure 15 

indicates that a composite Kcb model, averaging the three methods, may be the least biased 

estimate for Kcb.  
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Figure 14. Daily ETa estimate RMSE (mm/day) of each Ks method for each treatment 
 

 
Figure 15. Daily ETa estimate MBE (mm/day) of each combination of Ks and Kcb methods 
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in Figure 16. In this case, the error in estimated ETa decreased for all methods when time step 

was increased from a day to a week. NDVI Ratio improved the least with an error decrease of 

0.16 mm/day (19%), and CWSI improved the most with an improvement of 0.25 mm/day (32%). 

However, the ranking of the performance of the Ks methods remained the same, indicating that in 

this study the time step did not affect the relative performance of the methods.  

 

Figure 16. Weekly ETa estimate RMSE (mm/day) for each combination of Ks and Kcb 
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with relative humidity and air temperature data obtained from the nearest weather station. This 

is, not with in-situ data as the method prescribes. If in-situ relative humidity and air temperature 

were available, most probably more accurate values of CWSI would have been obtained.  

Similarly, the average seasonal performance of DACT with only -0.5% error in total ETa 

estimation compared to 1.0% error of CWSI shows that if there is no onsite air temperature and 

relative humidity data, DACT has the potential to perform as well as CWSI for prediction of 

stress and estimation of ETA with only the single input of a canopy temperature measurement.  

 

Figure 17. Error in study period ETa (mm) of each Ks method for each treatment 
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Figure 18. Error in study period ETa (%) of each Ks method for each treatment 
 

3.2.2 Effect of Filtering and Running Averages 

Stress indices which rely on canopy temperature and canopy reflectance often  suggest that data 

are taken during sunny afternoons.  Conditions of cloud cover can mask crop water stress by 

causing temporary cooling of leaves.  Canopy temperature indices require the crop to have 

sufficient canopy cover in order to avoid  inaccurate temperature readings which incorporating 

the warmer temperature of soil into the canopy temperature reading. Filters for canopy cover and 

cloudy days were applied independently and simultaneously to identify the effect the filters had 

on ETa error. Sunny conditions are determined by the ratio of clear-sky solar radiation (Rs) to 

actual solar radiation (Rso). Sufficient canopy cover was considered to be greater than 70% and 

near clear-sky solar radiation to be (Rs / Rso) greater than 80% at the time of data collection. As 

shown in Figure 19, overall the methods improved slightly with separate cloud filtering and 

insufficient canopy cover filtering, with an average decrease in ETa error of 0.03 mm/day (3%) 

and 0.07 mm/day (10%), respectively. Number of data points (N) with each filter scenario was 

1512 for no filtering, 1008 for cloud filtering, 1396 for CC filtering and 908 for both cloud and 

-6%

-4%

-2%

0%

2%

4%

6%

1 2 3 6 8 12 Avg

S
tu

d
y

 P
er

io
d

 E
T

a
 E

rr
o

r 
(%

) 

Treatment 

CWSI

DANS

DACT

Tc Ratio

NDVI Ratio



 

47 
 

CC filtering when considering 2013 data in order to have a full dataset to evaluate and compare 

stress coefficient methods. Error decreased further when both cloudy days and insufficient 

canopy cover days were filtered out, an average decrease in ETa error of 0.13 mm/day (19%). 

Reduction of ETa error by filtering for these conditions demonstrates that the accuracy of the 

methods will improve if early season and cloudy days are avoided for data collection.  As 

displayed in Figure 19, error when evaluating only cloudy days resulted in increased error of 

0.03 mm/day (3%)  which indicates that while it is suggested to collect data under sunny 

conditions, the indices may still be useful under cloudy conditions.  As defined previously, in 

this study cloudy conditions are considered to be days where (Rs/Rso) is less than 0.8 at the time 

of data collection, with the lowest Rs/Rso ratio in the study period being 0.43. 

 

Figure 19. Effects of filtering data for clouds, canopy cover, and for clouds and canopy cover  
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underestimate crop water stress. One way of investigating these sources of variability is to 

evaluate the effect of running averages of the data in order to see if smoothing Ks values removes 

noise and increases accuracy of ETa estimations or reduces the ability of indices to capture daily 

crop stress.  

A running average was performed on the Ks values for each method and then statistics were 

calculated for the ETa estimations corresponding to the new Ks values. The original error of the 

daily indices is plotted next to the daily RMSE of the methods after taking 3, 5, and 7-day 

running averages on the dataset in Figure 20. From these results it can be seen that running 

averages did not cause water stress coefficient methods to increase in accuracy. All indices 

performed best when used on a daily or 3-day time step, and lost accuracy (up to 0.09 mm/day or 

10%) when averaged over longer time intervals. This result suggests that accurate monitoring of 

corn stress status may perform best with frequent (i.e. daily) measurements, and should not be 

based on less frequent measurements.  

 

Figure 20. Effect of 3, 5, and 7 day running averages on RMSE of ETa estimates 
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3.2.3 Recommendations of Most Appropriate Method 

This study has very practical ramifications for consultants, producers, and researchers choosing 

between different water stress and irrigation water management techniques. Data availability 

governs the available options and the chosen levels of acceptable water stress further limit which 

methods will perform well. Table 10 summarizes the data requirements for each method and 

presents the RMSE of daily ETa for each in order to analyze if increased data requirement 

corresponds to increased accuracy.  In Table 10, “target” refers to the crop in question for which 

a Ks value is being assigned.   

Table 10. Comparison of basic data required for each Ks method tested and associated ETa 

estimation RMSE 

 

DANS and DACT have fewer data requirements, yet only a decrease in accuracy of 0.03 

mm/day (0.6%) in ETa estimation compared to CWSI. This equivalency of DACT to CWSI is 

particularly noteworthy because the DACT method only requires a single canopy temperature 

measurement.  DACT also may be applicable in more situations than DANS or Tc Ratio because 

in times of drought a non-stress canopy may not exist on site to measure, or there could be 

stresses other than water stress contributing to higher temperatures (i.e. nutrient deficiency, heat, 
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etc.). However, it is worth noting that the DACT and DANS methods have been locally 

calibrated (trained) and therefore a good performance was expected while the other methods 

have been applied as they have been published in the literature (i.e., without local calibration and 

in the case of the CWSI index without in situ weather data). In the absence of canopy 

temperature data, the NDVI ratio could be used; however it has the same limitation of needing a 

non-stress NDVI measurement. In order to provide guidelines for a variety of different irrigation 

levels and data availability, the analysis was run for all combinations of stress coefficient 

methods and basal crop coefficient methods to provide the average daily ETa RMSE in mm of 

each pair as displayed in Table 11.  

Table 11. Average daily ETa RMSE (mm) by treatment 

 
 

 

The user could utilize this table by first identifying the level of irrigation which is most 

representative of his or her chosen water stress level. Next, the producer could eliminate methods 

that require more data than he or she has access to or consider all options to identify the 
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additional data required to implement the higher accuracy methods. Finally, the combination of 

stress coefficient and basal crop coefficient methods with lowest error could be identified. This 

would provide the producer with not only the best option for water management for his or her 

field, but also an estimate of expected average daily ETa RMSE error.   
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CHAPTER 4: CONCLUSION 
 
 
 

This study compared and evaluated the accuracy of various water stress coefficient methods for 

estimating crop ETa under different levels of deficit irrigation. Results can inform users which 

stress coefficient will most likely perform best given the available data and irrigation level in 

addition to providing an estimation of the expected error in ETa estimations. Using the most 

appropriate water stress coefficient method has the potential to improve irrigation scheduling and 

therefore allow crops to reach the maximum possible yield given the degree of deficit irrigation. 

Results also give researchers indications of which methods have the most potential to be further 

investigated and refined. Methods with only canopy temperature measurements (DANS, DACT, 

and Tc Ratio) performed with comparable error to more data intensive methods such as CWSI 

and demonstrated the potential for simple methods to be used for irrigation scheduling.  A 

sensitivity analysis was performed regarding using off-site versus in situ air temperature and 

relative humidity which demonstrated that applying CWSI with off-site weather data incurred a 

RMSE in Ks CWSI values of 7.6% when applied at 11:00 am  (MST) and a RMSE of 3.7% when 

applied at 2:00 pm  (MST), concluding that using nearby weather station data to calculate CWSI 

introduces error, and that if weather station data must be used, 2:00 pm  (MST) may be a more 

appropriate time to apply the CWSI method. 

Future studies should evaluate how stress coefficient methods perform in various climates and 

under different irrigation types.  A constraint of this study is that it only focused on drip irrigated 

corn in Northern Colorado over 2 years and therefore is limited in its ability to evaluate a wide 

variety of applications. Future work is needed to investigate the transferability of DANS and 

DACT as stress coefficients and the sensitivity of the empirical component. A wider range of 
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environmental conditions would be required to test the performance of these methods for various 

climatological conditions.  Additional limitations include only having a neutron-probe soil water 

balance in order to estimate crop water use, considering that accuracy of neutron probe soil water 

content is only within 0.3% of water content.  Use of a large monolithic weighing lysimeters 

could benefit a supplemental analysis in order to provide an additional level of analysis and have 

increased confidence in the outcomes.  This study was conducted with research grade IRTs, but 

future work could test the sensitivity of each temperature-based Ks method to errors in crop 

canopy temperature in order to study feasibility of using less expensive IRTs to monitor crop 

water stress.  Another study could look into applying each method from aerial platforms and 

compare the performance of various stress coefficient methods when applied on different levels. 

Results from comparing various platforms of remote sensing to calculate stress coefficients could 

provide irrigation districts with recommendations how to inexpensively use remote sensing on a 

larger scale to estimate crop water use and improve water management under deficit irrigation.     
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APPENDIX 

 
 
 

 
Figure 21. LIRF 2010 Treatment Layout  

 

 

Figure 22. LIRF 2011 Treatment Layout 


