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ABSTRACT

WEAK GALERKIN FINITE ELEMENT METHODS FOR ELASTICITY AND COUPLED

FLOW PROBLEMS

We present novel stabilizer-free weak Galerkin finite element methods for linear elasticity and

coupled Stokes-Darcy flow with a comprehensive treatment of theoretical results and the numerical

methods for each.

Weak Galerkin finite element methods take a discontinuous approximation space and bind

degrees of freedom together through the discrete weak gradient, which involves solving a small

symmetric positive-definite linear system on every element of the mesh. We introduce notation

and analysis using a general framework that highlights properties that unify many existing weak

Galerkin methods. This framework makes analysis for the methods much more straightforward.

The method for linear elasticity on quadrilateral and hexahedral meshes uses piecewise constant

vectors to approximate the displacement on each cell, and it uses the Raviart-Thomas space for the

discrete weak gradient. We use the Schur complement to simplify the solution of the global linear

system and increase computational efficiency further. We prove first-order convergence in the L2

norm, verify our analysis with numerical experiments, and compare to another weak Galerkin

approach for this problem.

The method for coupled Stokes-Darcy flow uses an extensible multinumerics approach on

quadrilateral meshes. The Darcy flow discretization uses a weak Galerkin finite element method

with piecewise constants approximating pressure and the Arbogast-Correa space for the weak gra-

dient. The Stokes domain discretization uses the classical Bernardi-Raugel pair. We prove first-

order convergence in the energy norm and verify our analysis with numerical experiments.

All algorithms implemented in this dissertation are publicly available as part of James Liu’s

DarcyLite and Darcy+ packages and as part of the deal.II library.
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Chapter 1

Introduction

1.1 Background

Many physical problems are expensive or difficult to simulate multiple times. For those reasons

we often rely on mathematical models of physical phenomena as a cheap surrogate for experimen-

tation. When appropriate and possible we desire models that satisfy properties such as conserva-

tion of mass, force, and energy. For our purposes, these mathematical models are transformed from

partial differential equations (PDEs) into variational models and then into finite element schemes

which may be solved on a computer.

Variational problems are defined on the Sobolev spaces; however, these spaces are infinite-

dimensional, and therefore pose difficulties for numerical computations. Instead, finite element

methods (FEMs) rely on finite-dimensional discretizations of these infinite-dimensional spaces in

order to develop computationally feasible algorithms. These discretizations may be continuous,

as with continuous Galerkin (CG) FEMs, or they may be discontinuous, as with discontinuous

Galerkin (DG), hybridizable discontinuous Galerkin (HDG), and weak Galerkin (WG) FEMs.

HDG and WG FEMs are DG methods that additionally place degrees of freedom on the mesh

skeleton, but WGFEMs are unique in their use of a weak gradient.

As nearly ten years have passed since the first WG preprint was posted in April 2011 [3],

WGFEMs have been used to tackle a broad spectrum of problems ranging from fluids [4–9], con-

tinuum mechanics [10–15], electricity and magnetism [16], interface problems [17], and even stock

pricing [18]. This list is not complete, but highlights some of the more prominent works. Some

other work has been done to analyze the computational advantages of WGFEMs. Mu, Wang,

Wang, and Ye analyze the computational aspects of WGFEMs in [19] and describe how to write

many of the discrete operators as matrices.
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There are several reasons that WGFEMs gained popularity in the past decade. The main at-

traction of WGFEMs is the reconstruction of differential operators from discontinuous functions

whose values live on a mesh and its skeleton. More importantly, these weak differential operators

are consistent with classical differential operators for continuous functions. These reconstructed

derivatives tie discontinuous degrees of freedom together and also provide desirable conservation

properties for mass and flux in fluid problems [3, 4].

Some approaches for discretizations with WGFEMs include stabilizers to limit the jumps

across the mesh skeleton [5, 12, 13, 20], but there are many stabilizer-free methods as well [4,

10,17,21,22]. WGFEMs are flexible and use any degree k ≥ 0 approximations, and they are even

used on polygonal meshes [20, 22] and hybrid meshes [23]. Some work has also been done com-

bining WGFEMs with other finite element discretizations [24], and Chapter 4 provides rigorous

analysis for a combination of WG and mixed CG discretizations.

From a computational standpoint, there are many other benefits to using WGFEMs. Due to

the local nature of the these weak differential operators, much of the assembly of a FEM problem

involves large amounts of computation on a small amount of data. This makes parallel computing

and even computations on a graphics processing unit (GPU) an excellent fit. Other computational

advantages include performing a Schur complement elimination on some degrees of freedom in

the global linear system. Recently Liu and Wang provided a framework in [25] for performing this

elimination before the linear system is even constructed.

One interesting test for numerical PDE solvers is simulating the behavior of linear elastic ma-

terials. Linear elasticity is a simplification of models for resolving forces inside of materials. More

specifically, the linear elasticity equation describes the behavior of a material within the linear re-

gion of the stress-strain relationship. This arises most importantly in structural analysis, as plastic

deformations to permanent structures tend to be undesirable, and it also appears in biomechanical

and geophysical applications. The main interest in developing solvers for linear elasticity is devel-

oping a solver which is robust for nearly incompressible materials. Such a solver may also serve

as a key building block for nonlinear elasticity.
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Flow problems are another interesting target for FEMs because there are many different types

of flow. Darcy flow is characterized by a fluid in a porous medium where flow is driven exclu-

sively by pressure. Darcy flow arises in models for groundwater flow and models for oil reservoirs

in petroleum engineering, and it also appears in many fluid filtration problems. The goal with

Darcy flow is to construct a mass conservative FEM without paying for additional, expensive

computations. For laminar incompressible flows, flow is modeled by the incompressible Stokes

equations. The Stokes equations are a simplification of the Navier-Stokes equations when the

Reynolds number is small, i.e., when viscous forces dominate inertial forces. These flows require

careful choice of discretization due to the divergence condition. Discretizations that satisfy the

Ladyzhenskaya–Babus̆ka–Brezzi condition [26–28] are required for studying Stokes flows.

Stokes-Darcy coupling, as the name implies, involves the coupling of Stokes and Darcy flows

along an interface. It often arises in applications where a fluid passes from a regime of laminar

flow into a porous medium. Some applications include flow of fluid in a karst aquifer, filtration of

fluid in a river through the riverbed, filtration of oil in a filter, filtration of blood through capillaries,

or filtration of exhaust in a catalytic converter [29–34]. We consider Stokes-Darcy coupling with

three conditions posed along the fluid interface: conservation of mass, balance of forces, and

the Beavers-Joseph-Saffman boundary condition [35, 36]. The problem of developing FEMs for

Stokes-Darcy flow is interesting because we now require two discretizations, and we would like

each discretization to satisfy their respective desirable properties. However, naively combining

two independent discretizations does not guarantee the pair converges, so there is a lot of recent

literature focusing on developing compatible discretizations for this [37–42].

1.2 Existing Methods

There are many existing methods for simulating the behavior of elastic materials and fluids

coupled on an interface. This section will provide an overview of some relevant, but certainly not

all existing methods that have been used to tackle these problems.
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1.2.1 Linear Elasticity

The development of FEMs for linear elasticity has been studied for at least six decades [43,44],

and particular emphasis has been placed on locking-free FEMs due to their value for problems

involving nearly incompressible materials. We will take a closer look at some more recent and

relevant FEMs for linear elasticity.

One method for the linear elasticity equation on polygonal meshes was developed in [20]. It

develops WGFEMs using vector-valued polynomials where each component has degree k ≥ 1

on element interiors and degree k − 1 on the mesh skeleton. It uses a stabilizer, but order k + 1

convergence is proven for displacement and order k convergence is obtained for stress and dilation.

We provide a comparison against this method in Chapter 3.

Other recent work for locking-free FEMs is found in [45, 46], where the authors consider

nonconforming mixed finite element methods (MFEMs) on rectangular meshes in two and three

dimensions. Their method is based on the Hellinger-Reissner variational principle for the pure

traction problem and it converges with optimal order.

More efficient methods for this may be found in [47] where the authors present a nonconform-

ing dimension-independent method on rectangular meshes. This approach uses the least degrees

of freedom per element in one, two, and three dimensions. Locking-free nonconforming finite

elements for linear elasticity on general quadrilaterals can be found in [48, 49], and mixed finite

elements on quadrilaterals can be found in [50] and references therein.

1.2.2 Stokes-Darcy Coupling

One of the most popular methods for solving coupled Stokes-Darcy flow recently has been

a domain decomposition FEM approach with Lagrange multipliers, which are also referred to as

mortar elements [51–53]. These methods tend to proliferate degrees of freedom as they require

mortar elements that exist only on the interface in addition to the degrees of freedom on the Stokes

and Darcy meshes along the interface, but allow for the flexibility of a meshes on each domain that

do not match along the interface.
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There is an existing approach for steady-state Stokes-Darcy coupling in [54] that uses WGFEMs

on both the Stokes domain and the Darcy domain. They use a stabilized approach on a polygo-

nal mesh with degree k polynomials on element interiors, degree k − 1 polynomials on element

boundaries, and 2× 2 matrices of degree k polynomials for the discrete weak gradient.

The authors in [55] also apply stabilized WGFEMs to steady-state Stokes-Darcy coupling.

They use arbitrary polynomial order for all polynomial spaces on a polygonal mesh and then de-

termine suitable choices for the spaces based on their analysis. Neither of the aforementioned

WGFEMs approaches utilize an H(div) conforming space for the velocity.

Some other approaches develop conforming mixed finite element methods [51, 56, 57], stabi-

lized mixed approaches [42], virtual elements [58], iterative coupling schemes [52, 59], and an

HDG Stokes with mixed Darcy discretization [60].

1.3 Contribution of This Thesis

This dissertation presents lowest-order WGFEMs for linear elasticity and a multinumerics ap-

proach involving WGFEMs and MFEMs for Stokes-Darcy coupling. These finite element methods

are computationally inexpensive and stabilizer-free.

Besides the definitions and notation in Chapter 2, we also prove lemmas which are not stated in

generality in literature. These lemmas describe properties of the projection operators for WGFEMs,

tools for expanding terms in analysis for the lowest-order WGFEMs, and properties of the discrete

weak gradient. These are commonly reproven in each paper for WGFEMs but we prove them once

and in more generality.

In Chapter 3 we perform analysis for the lowest-order WGFEM for linear elasticity on rectan-

gular and brick meshes in the primal formulation following our work in [10]. This method solves

for the displacement field using piecewise constants on each element and on the mesh skeleton.

The approach is stabilizer-free and obtains first-order convergence in displacement, stress, and di-

lation. We perform Schur complement reduction to further reduce the size of the global linear

system and increase computational benefit, as shown in the numerical examples. Additionally,
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we show numerically that this method may capture solutions for low regularity problems and it

extends to the more general quadrilateral and hexahedral meshes.

In Chapter 4 we develop an efficient FEM for steady-state Stokes-Darcy coupling. For Stokes

flow we use the classical Bernardi-Raugel pair (BR1, Q0) [61] for the mixed problem and for

Darcy flow we use the WG(P0, P0;AC0) space [62] in the primal formulation. This approach

utilizes the novel Arbogast-Correa space for quadrilaterals [63]. One advantage of this method

is that we do not use mortar elements as others do in [51–53, 64]; however, the WG degrees of

freedom on the mesh skeleton behave similarly to mortar elements and we use some techniques

from the analysis of mortar methods to analyze this method. We present rigorous analysis for

the method and show first-order convergence in the energy norm for Stokes velocity and Darcy

pressure and first-order convergence in the L2 norm for Stokes pressure. A numerical example is

also provided to suggest that all variables converge with optimal order with respect to the L2 norm,

although it is not proven.

Chapter 5 concludes the dissertation and provides insight for further extensions. It discusses

higher-order and higher dimensional extensions of these methods as well as applications to other

multiphysics problems. Further implementations and improvements in software are also discussed.
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Chapter 2

Weak Galerkin Finite Element Methods

WGFEMs were first introduced by Wang and Ye [3] for solving the second-order elliptic PDE

on an open polygonal (polyhedral when d = 3) domain Ω

−∇ · (a∇u) +∇ · (bu) + cu = f in Ω,

u = g on ∂Ω.

(2.1)

In order to discuss how to write WGFEMs for this problem, we must first introduce some

definitions and notation in Section 2.1.

2.1 Definitions and Notation

2.1.1 Sobolev Spaces and Meshes

We adopt the following notation for the remainder of this dissertation. For an open polygonal

(polyhedral when d = 3) domain Ω ⊂ Rd (d = 2, 3), let W k,p(Ω) (also sometimes denoted by

W k
p (Ω)) be the space of functions on Ω whose weak derivatives up to order k are in Lp(Ω). In the

case where p = 2, we will write Hk(Ω) := W k,2(Ω). We use L2(Ω), H1(Ω) as notation for scalar-

valued functions and L2(Ω), H1(Ω) for functions where each component is in L2(Ω) or H1(Ω),

respectively. A function lies in Lp(Ω) if its norm is finite

‖f‖Lp(Ω) :=

(∫

Ω

f p dµ

)1/p

, (2.2)

where µ is the Lebesgue measure on Ω. All integrals in this dissertation will be taken with respect

to a Lebesgue measure. The norm on H1(Ω) is defined similarly, by

‖f‖H1(Ω) :=


‖f‖2L2(Ω) +

∑

|α|=1

∫

Ω

(∂αf)2 dµ




1/2

, (2.3)

7



where α is a multi-index that accounts for all spatial partial derivatives of f , and similarly we say

f ∈ H1(Ω) if ‖f‖H1(Ω) <∞. For vector-valued functions, we define these norms similarly, except

instead acting on the l2 norm of the vector.

On Ω ⊂ Rd, we refer to a polygonal (polyhedral when d = 3) mesh Eh as a set of subdomains

Eh = {Ei : i = 1, . . . , n} which satisfy the conditions given in [65] in addition to two other

conditions:

1. int(Ei) ∩ int(Ej) = ∅ if i 6= j.

2.
n⋃

i=1

Ei = Ω.

3. Ei is a nondegenerate convex polygon (polyhedron when d = 3) for i = 1, . . . , n.

4. Ei ∩ Ej , is an entire vertex, edge, or face of Ei and of Ej when it is not empty and i 6= j.

We refer to the subdomains Ei as elements of the mesh, and we remark that part 4. of this

definition excludes the possibility of hanging vertices in the mesh. A triangular mesh is a polyg-

onal mesh consisting of only triangles, and similarly for quadrilateral, tetrahedral, and hexahedral

meshes. We will refer to the mesh skeleton as the set of edges (faces when d = 3) of the elements

of the mesh. The size of the mesh, h, is defined as roughly the largest element diameter of the

mesh

h :=
1√
d

max{diam(E) : E ∈ Eh}. (2.4)

We include the factor of d−1/2 for ease of presentation for results later, but we remark that it

does not change any of the analysis.

2.1.2 Weak Functions and Discrete Weak Functions

A weak function on an element E ∈ Eh is defined by Wang and Ye in [3] as a function whose

values on the interior and boundary of the element may disagree. More precisely, the space of

weak functions, W (E), is defined by

W (E) :=
{
v = {v◦, v∂} : v◦ ∈ L2(E), v∂|γ ∈ H1/2(γ), γ is an edge of E

}
. (2.5)
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Here H1/2(γ) is the trace space for L2(E) functions. If E is a three-dimensional domain, then

γ is instead a face of E. A dimension-independent approach is to say every v∂ is defined on the

mesh skeleton. From a computational standpoint, this isn’t very useful since W (E) is infinite-

dimensional; however, there is a discrete analogue of W (E) that is defined by replacing L2(E)

with the space of polynomials of d variables of total degree at most k1 ≥ 0, Pk1(E), and replacing

H1/2(γ) with the a similar space Pk2(γ) (k2 ≥ 0) on each face. These polynomials need not be

continuous from face to face. The weak Galerkin discrete space WG(Pk1 , Pk2) is the space of

discrete weak functions defined on Eh by

WG(Pk1 , Pk2) :=
{
vh = {v◦h, v∂h} : v◦h|E ∈ Pk1(E), v

∂
h|γ ∈ Pk2(γ), γ is a face of E ∈ Eh

}
. (2.6)

On quadrilaterals and hexahedra we will use the space WG(Qk1 , Qk2) for polynomials whose

degree in each variable does not exceed k1 on element interiors and does not exceed k2 on the

mesh skeleton. For example, on the reference element Ê = [0, 1]2, f(x̂, ŷ) = 1+ x̂ŷ+ x̂2ŷ satisfies

f 6∈ P2(Ê), f ∈ P3(Ê), and f ∈ Q2(Ê). Figure 2.1 shows how local degrees of freedom are

distributed on a general quadrilateral for some choices of k1, k2.

WG(Q0, Q0) WG(Q1, Q0) WG(Q0, Q1) WG(Q1, Q1)

Figure 2.1: Degrees of freedom for some choices of WG(Qk1 , Qk2)

2.1.3 Discrete Weak Differential Operators

We may now define the discrete weak gradient by combining the degrees of freedom on an

element and its boundary through integration by parts. Let Wgrad(E) = span{w1,w2, . . . ,wng}

9



be an ng-dimensional subspace of L2(E) for E ∈ Eh. We may also refer to this local space

by Wgrad for ease of notation, but since there is no concept of continuity across elements in the

definition of Wgrad it behaves like a broken finite element space across all of Eh. Then the discrete

weak gradient, denoted by ∇w : WG(Pk1 , Pk2) → Wgrad(E), is a local map defined by its action

and by utilizing both v◦h and v∂h so that

∫

E

∇wvh · q dA = −
∫

E

v◦h∇ · q dA+

∫

∂E

v∂hq · n ds, ∀q ∈ Wgrad. (2.7)

The notation n will always refer to the unit outward normal when it is unambiguous, and we

use bold lower-case characters such as q to represent vector-valued functions.

It’s not difficult to see from Equation (2.7) that if the values for v◦h and v∂h are continuous across

elements and their faces then vh and its discrete weak gradient behave like a continuous function

and the L2 projection of its gradient into Wgrad. The definition of the discrete weak gradient is

a statement about solving linear systems on an element E since ∇wvh ∈ Wgrad implies it is a

linear combination ∇wvh =
∑
i

ciwi. Plugging this in and writing the L2(E) inner product on the

left-hand side using inner product notation yields

(∑

i

ciwi,wj

)

E

= −
∫

E

v◦h∇ ·wj dA+

∫

∂E

v∂hwj · n ds, ∀j = 1, . . . , ng. (2.8)

This equation may be expanded additionally into a linear system that now involves the mass

matrix of the space Wgrad. Since the mass matrix is also a Gram matrix with respect to the L2(E)

inner product, let GWgrad
be the ng × ng Gram matrix of Wgrad, defined by

GWgrad
:=

[ ∫

E

wi ·wj dA

]ng

i,j=1

.

Then Equation (2.7) may be rewritten using this matrix as

10



GWgrad




c1

c2
...

cng



=




−
∫

E

v◦h∇ ·w1 dA+

∫

∂E

v∂hw1 · n ds

−
∫

E

v◦h∇ ·w2 dA+

∫

∂E

v∂hw2 · n ds
...

−
∫

E

v◦h∇ ·wng dA+

∫

∂E

v∂hwng · n ds




. (2.9)

Horn & Johnson show that a Gram matrix of an inner product space is always symmetric

positive-semidefinite (SPSD) and is further symmetric positive-definite (SPD) if the elements are

linearly independent [66]. In particular, since this Gram matrix uses basis functions fromWgrad, the

Gram matrix for discrete weak gradient computations is necessarily SPD. Computationally, solving

this system becomes more complex as ng = dim(Wgrad) increases, so it is important to develop

numerically efficient ways to compute this. A conjugate gradient solver may be unnecessary for

solving an SPD system for each element in the mesh, but carefully choosing the basis for Wgrad

may improve the computation time. Section 2.3 discusses some of those choices in more detail.

From a computational standpoint, computing the weak Gradient of a discrete weak function may be

done independently from other elements in the mesh and is therefore an easy target for exploiting

parallelism in software. It requires little information other than the cell’s vertices and orientation,

a numerical quadrature, and the shape function information. For the numerical quadrature, we use

the lowest-order Gaussian quadrature that still provides an exact integral on an affine mesh.

The discrete weak gradient is also defined for vector-valued functions, but it then acts as a

map ∇w : WG(P d
k1
, P d

k2
) → W d

grad. All of the remarks made above hold for this vector-valued

version, but now the gradient is computed componentwise, yielding a tensor-product structure

in the Gram matrix computations. When referring to WG FEMs, we will also use the notation

WG(Pk1 , Pk2 ;Wgrad) if there is a weak gradient structure. Patching together these spaces yields

the global finite element space, which is typically denoted by Vh.

The discrete weak divergence, denoted by ∇w·, of a discrete weak function is defined similarly

to the discrete weak gradient. The discrete weak divergence is defined on vector-valued polynomi-

als ∇w· : WG(P d
k1
, P d

k2
) → Wdiv, but similarly to Equation (2.7), it is defined by its action,
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(∇w · vh, q)E = −
∫

E

v◦
h · ∇q dA+

∫

∂E

(v∂
h · n)q ds ∀q ∈ Wdiv. (2.10)

As with (2.9), this requires solving a linear system which depends on nd := dim(Wdiv). The

linear system is

GWdiv




c1

c2
...

cnd



=




−
∫

E

v◦
h · ∇q1 dA+

∫

∂E

(v∂
h · n)q1 ds

−
∫

E

v◦
h · ∇q2 dA+

∫

∂E

(v∂
h · n)q2 ds

...

−
∫

E

v◦
h · ∇qnd

dA+

∫

∂E

(v∂
h · n)qnd

ds




. (2.11)

There is a discrete weak curl as well; however, the work in this dissertation does not rely on a

curl operator, so we will omit further discussion and instead refer the interested reader to [16] for

more information.

This treatment is different for the discrete weak strain, denoted by εw. Instead, it is simply

defined in terms of the discrete weak gradients

εw(vh) = (∇wvh + (∇wvh)
T )/2. (2.12)

Therefore, the discrete weak strain does not live in Wgrad, but rather a new space spanned by

the averages of each basis function with its transpose. This makes computations involving the

discrete weak strain slightly simpler because

εw(vh) =
1

2

(
ng∑

i=1

ciWi +

ng∑

i=1

ciW
T
i

)

=

ng∑

i=1

ci(Wi +W T
i )/2.

We will discuss this in more detail with the appropriate context in Chapter 3.
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2.1.4 A WG Finite Element Scheme for a General Elliptic Problem

We now revisit the task of writing a WG finite element scheme for Equation (2.1). First, we

test Equation (2.1) by v ∈ H1
0 (Ω) to obtain

∫

Ω

(−∇ · (a∇u) +∇ · (bu) + cu)v dA =

∫

Ω

fv dA, ∀v ∈ H1
0 (Ω),

where H1
0 (Ω) denotes functions that are compactly supported on H1(Ω). Applying integration by

parts, which is sometimes referred to as Green’s first identity, to the divergence terms yields

∫

Ω

(a∇u · ∇v)− bu · ∇v + cuv dA =

∫

Ω

fv dA, ∀v ∈ H1
0 (Ω).

This yields the variational form of Equation (2.1), which we write with L2 inner product nota-

tion as: Seek u ∈ H1
g,D(Ω) so that

(a∇u,∇v)Ω − (bu,∇v)Ω + (cu, v)Ω = (f, v)Ω, ∀v ∈ H1
0 (Ω). (2.13)

A WGFEM is now developed by taking a mesh Eh of the domain Ω, setting the finite element

space Vh := WG(Pk1 , Pk2 ;Wgrad), and replacing the differential operators with their corresponding

discrete weak differential operators. Let V 0
h is the subspace of Vh whose boundary components are

0 on the Dirichlet boundary, and let Q∂
h be the L2 projection onto Pk2 of the mesh skeleton. The

finite element scheme for problem is: Seek uh ∈ Vh satisfying uh|∂Ω = Q∂
hg and

∑

E∈Eh

((a∇wuh,∇wv)E − (buh,∇wv)E + (cuh, v)E) =
∑

E∈Eh

(f, v)E, ∀v ∈ V 0
h . (2.14)

For more details on the analysis for this problem, we refer the interested reader to continue

reading [3]. In the next section we more carefully examine the discrete weak differential operators

and projection operators to give an overview of tools for analysis of WGFEMs with an emphasis

on the lowest-order approximations.
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2.2 Properties for WGFEMs

This section contains lemmas for WGFEMs that will be referenced in later sections. These are

re-proven often in literature for each specific problem, but this section aims to establish them in

a more general form so they may be simply applied to each problem. First we introduce notation

specific to reading these lemmas.

For scalar-valued function spaces, let Vh := WG(Pk1 , Pk2 ;Wgrad) be any weak Galerkin finite

element space with no assumption on the structure of Wgrad. Let Qh = {Q◦
h, Q

∂
h}, be the local L2

projection into the finite element space consisting of Q◦
h : L2(E) → Vh and Q∂

h : L2(γ) → Vh,

where γ is a face in the mesh. Let Qh : L2(E)d → Wgrad be the local L2 projection associated

with the gradient space. These projections satisfy

∫

E

fv◦ dA =

∫

E

(Q◦
hf)v

◦ dA, ∀f ∈ L2(E), v◦ ∈ Pk1(E), (2.15)

∫

γ

gv∂ ds =

∫

γ

(Q∂
hg)v

∂ ds, ∀g ∈ L2(γ), v∂ ∈ Pk2(γ), (2.16)

∫

E

f · v dA =

∫

E

(Qhf) · v dA, ∀f ∈ L2(E)d,v ∈ Wgrad. (2.17)

We remark that if we choose to apply both Q◦
h and Q∂

h to the same function, we need enough

regularity that the function’s trace to element boundaries is still in L2(γ). This is possible when

the function lives in H1(E), and is also possible when the function lives in H1/2+ǫ(E) for ǫ > 0.

When a global interpolation into Wgrad is defined, we will denote it by Πh. For vector-valued

function spaces, let Vh := WG(P d
k1
, P d

k2
;Wgrad,Wdiv) be any weak Galerkin finite element space

of vector-valued functions with d components and with no assumptions on Wgrad or Wdiv. Let

Qh : L2(E) → Wdiv, Qh = {Q◦
h,Q

∂
h} : L2(E)d → Vh, and Qh : L2(E)d×d be the local L2

projections associated with the finite element space.

Lemma 2.1. (Commuting identities) [4, 67] For E ∈ Eh, the following hold in the L2(E) sense:

1. For f ∈ H1(E), we have ∇w(Qhf) = Qh(∇f);

2. For f ∈ H1(E)d, we have ∇w(Qhf) = Qh(∇f);

14



3. For f ∈ H1(E)d, we have ∇w · (Qhf) = Qh(∇ · f).

Proof. 1. Let w ∈ Wgrad. Then

∫

E

Qh(∇f) ·w =

∫

E

∇f ·w

=

∫

∂E

f(w · n)−
∫

E

f(∇ ·w)

=

∫

∂E

Q∂
hf(w · n)−

∫

E

Q◦
hf(∇ ·w)

=

∫

E

∇wf ·w

2. Let W ∈ Wgrad. Then

∫

E

Qh(∇f) : W =

∫

E

∇f : W

=

∫

∂E

f · (Wn)−
∫

E

f · (∇ ·W )

=

∫

∂E

Q∂
hf(Wn)−

∫

E

Q◦
hf(∇ ·W )

=

∫

E

∇wf : W

3. Let q ∈ Wdiv. Then

∫

E

Qh(∇ · f)q =
∫

E

(∇ · f)q

=

∫

∂E

(f · n)q −
∫

E

f · ∇q

=

∫

∂E

(Q∂
hf · n)q −

∫

E

(Q◦
hf) · ∇q

=

∫

E

(∇w · f)q

Often in the literature this lemma is shown alongside a commuting diagram for scalar-valued

functions in H1(E), as shown in Figure 2.2.
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H1(E) L2(E)

WG(Pk1 , Pk2) Vh

❄ ❄
✲

✲
∇

∇w

Qh Qh

Figure 2.2: Commuting diagram for WG(Pk1 , Pk2 ;Wgrad)

Lemma 2.2. (Conversion to trace) LetE ∈ Eh and k1 = k2 = 0 for the lowest-order weak Galerkin

finite element space.

1. For v ∈ Vh, w ∈ Wgrad, there holds (w,∇wv)E = (w · n, v∂ − v◦)∂E;

2. For v ∈ Vh, W ∈ Wgrad, there holds (W,∇wv)E = (Wn,v∂ − v◦)∂E;

3. For v ∈ Vh, w ∈ Wdiv, there holds (w,∇w · v)E = (wn,v∂ − v◦)∂E .

Here the value of v◦ on ∂E is taken as the extension of v◦ to the boundary of the element.

In some cases it is written as tr(v◦) to be more precise. This mild abuse of notation will appear

frequently throughout this dissertation.

Proof. Each of the proofs follows from applying the definition of weak gradient or weak diver-

gence and then a divergence theorem.

1. Let E ∈ Eh, v ∈ V
(0)
h , and w ∈ Wgrad. Then

(w,∇wv)E = −(∇ ·w, v◦)E + (w · n, v∂)∂E

= −(w · n, v◦)∂E + (w · n, v∂)∂E

= (w · n, v∂ − v◦)∂E.

2. Let E ∈ Eh, v ∈ V
(0)
h , and W ∈ Wgrad. Then
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(W,∇wv)E = −(∇ ·W,v◦)E + (Wn,v∂)∂E

= −(Wn,v◦)∂E + (Wn,v∂)∂E

= (Wn,v∂ − v◦)∂E.

3. Let E ∈ Eh, v ∈ Vh, and w ∈ Wdiv. Then

(w,∇w · v)E = −(∇w,v◦)E + (wn,v∂)∂E

= −(wn,v◦)∂E + (wn,v∂)∂E

= (wn,v∂ − v◦)∂E.

Lemma 2.2 reflects one of the nice properties of the lowest-order weak Galerkin finite element

methods. In the L2 sense on an element, the weak gradient acts as a sort of jump measurement

from one element to the next. This is also one of the many ways to show that the L2 norm of the

weak gradient induces a norm on a weak Galerkin finite element test space. When k1, k2 > 0,

similar ideas may be used, but the details become more intricate.

Lemma 2.3. (Coercivity of weak gradient) Suppose that Wgrad is a space that satisfies the follow-

ing conditions:

1. For any E ∈ Eh, qh ∈ Vh, there exists w ∈ Wgrad so that w · n|E∂ = q∂h − q◦h.

2. For any w ∈ Wgrad, the trace bound ‖w‖E . h1/2‖w · n‖∂E holds.

Then for the lowest-order weak Galerkin space k1 = k2 = 0, there holds

h−1/2‖q∂h − q◦h‖∂E . ‖∇wqh‖E, ∀qh ∈ Vh. (2.18)

For convenience, we have introduced the notation A . B to simplify an inequality A ≤ CB

when C > 0 is a constant independent of h.
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Proof. Choose w ∈ Wgrad so that w · n|E∂ = q∂h − q◦h. Then the choice of w, lemma 2.2, a

Cauchy-Schwarz inequality, and the trace bound for Wgrad, yield

‖q∂h − q◦h‖2∂E = 〈w · n, q∂h − q◦h〉∂E

= (w,∇wqh)E

≤ ‖w‖E‖∇wqh‖E

. h1/2‖w · n‖∂E‖∇wqh‖∂E

= h1/2‖q∂h − q◦h‖∂E‖∇wqh‖∂E.

Dividing by h1/2‖q∂h − q◦h‖∂E finishes the proof.

We remark that while the assumptions for this lemma appear strict, all finite element spaces

with degrees of freedom defined in terms of bulk normal fluxes are applicable. This extends to

vector-valued finite element spaces where the gradient of each component belongs to Wgrad.

Lemma 2.4. (Norm property of weak gradient) Let Vh be the lowest-order weak Galerkin finite

element space corresponding to k1 = k2 = 0. Let V 0
h be subspace of Vh whose functions are zero

on any subset of edges of a connected mesh Eh. Suppose that Wgrad satisfies the conditions stated

in Lemma 2.3. Then

‖∇wv‖L2(Eh) :=

(∑

E∈Eh

‖∇wv‖2L2(E)

)1/2

(2.19)

is a norm on V 0
h .

Proof. Checking the triangle equality and scalability by a constant are trivial. The only thing

that remains is to show that ‖∇wv‖L2(Eh) = 0 implies v ≡ 0. First, ‖∇wv‖L2(Eh) = 0 implies

‖∇wv‖L2(E) = 0 ∀E ∈ Eh. Since v is 0 on some edge in the mesh, consider a cell E adjacent to

such an edge. Then by Lemma 2.3, it must be the jump on the entire cell is 0, so the interior value

is 0. The value on the remaining edges of the element are also 0 by the same logic. Propagating

this information through the connected mesh implies that every value must be 0, and therefore we

conclude v ≡ 0.
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We remark this also extends to vector-valued functions just as Lemma 2.3. To summarize,

lowest-order WGFEMs equipped with a suitable choice of Wgrad have a nice structure associated

with them, but these properties are just a small number of applicable properties for WGFEMs since

this dissertation focuses primarily on the lowest-order methods.

2.3 Choices for Discrete Weak Gradient Space

This section presents a discussion on finite element spaces that will be used for Wgrad in later

analysis, their Gram matrices, and how they relate to the lemmas presented in the previous section.

In particular, we will focus on the lowest-order spaces so that we may match them with the lowest-

order methods discussed in the lemmas in the previous section. Since these are local spaces, we

will work with normalized coordinates X = x − xc, Y = y − yc, and Z = z − zc, where (xc, yc)

is the center of the element E when d = 2 and (xc, yc, zc) is the center of the element when

d = 3 [68]. The center is computed by taking the arithmetic average of the vertices of the element

E.

2.3.1 The Raviart-Thomas Space on Quadrilaterals and Hexahedra

Some of the most popular finite element spaces are the Raviart-Thomas spaces for quadrilater-

als and hexahedra, RT[k], k ≥ 0 [69]. The unmapped Raviart-Thomas space on a quadrilateral is

the space of vector-valued functions

RT[k](E) = Pk+1,k(E)× Pk,k+1(E), (2.20)

where Pk+1,k(E) denotes polynomials of degree k + 1 in x and degree k in y. The unmapped

Raviart-Thomas space on a hexahedron is

RT[k](E) = Pk+1,k,k(E)× Pk,k+1,k(E)× Pk,k,k+1(E), (2.21)
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where Pk+1,k,k(E) denotes polynomials of degree k + 1 in x, degree k in y, and degree k in

z. The increase of polynomial degree in a variable for its respective component accounts for

approximation of a vector field’s divergence. That is, the increase in order is necessary so that

the operator ∇· maps RT[k] onto Pk(E). In this dissertation we will focus on the lowest-order

space, RT[0], and when approximating a displacement vector field in Chapter 3, we will use the

WG(P d
0 , P

d
0 ;RT

d
[0], P0) space. Therefore we have Wgrad = RT d

[0], which are tensors where each

row is a function in the unmapped RT[0] space. We write the Raviart-Thomas space using the

following basis

RT[0] = span








1

0


 ,




0

1


 ,



X

0


 ,




0

Y








(2.22)

for a quadrilateral and

RT[0] = span








1

0

0



,




0

1

0



,




0

0

1



,




X

0

0



,




0

Y

0



,




0

0

Z








(2.23)

for a hexahedron. The Gram matrix for the hexahedral element is

GRT[0]
=




|E| 0 0
∫
E
X 0 0

0 |E| 0 0
∫
E
Y 0

0 0 |E| 0 0
∫
E
Z

∫
E
X 0 0

∫
E
X2 0 0

0
∫
E
Y 0 0

∫
E
Y 2 0

0 0
∫
E
Z 0 0

∫
E
Z2




, (2.24)

where the area of E, denoted by |E|, is given by |E| =
∫
E
1.

When the hexahedron is a parallelepiped, the off-diagonal entires of the Gram matrix vanish,

making weak gradient computations trivial. In the more general case, it is not guaranteed that

the off-diagonal entries vanish. One approach we briefly considered to combat this is to define
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(xc, yc, zc) as the hexahedron’s center of mass. This would ensure the off-diagonal entries vanish

at the cost of computing the barycenter for a general hexahedron; however, it is not clear that this

provides a significant advantage, so we refrain from doing so.

Extending this information allows us to define the tensor-valued space

RT 2
[0] = span {Wi : 1 ≤ i ≤ 8} , (2.25)

where

W1 =




1 0

0 0


 , W2 =




0 1

0 0


 , W3 =



X 0

0 0


 , W4 =




0 Y

0 0


 ,

W5 =




0 0

1 0


 , W6 =




0 0

0 1


 , W7 =




0 0

X 0


 , W8 =




0 0

0 Y


 .

(2.26)

The space RT 3
[0] is defined in the same fashion, but we refrain from writing all 18 members

explicitly. Due to the natural tensor product nature of this space, the Gram matrix for the weak

gradient is a block-diagonal version of the Gram matrix in Equation (2.24)

GRT 3
[0]

=




GRT[0]
0 0

0 GRT[0]
0

0 0 GRT[0]



. (2.27)

Aside from the simplicity that this basis provides, this space also satisfies the necessary condi-

tions for Lemmas 2.3 and 2.4, making it a prime candidate for use with lowest-order WGFEMs.

2.3.2 The Arbogast-Correa Space on Quadrilaterals

We now turn our attention to a similar space named the Arbogast-Correa space. Compared to

the classical Raviart-Thomas space [28] or the Arnold-Boffi-Falk space [70], the Arbogast-Correa

space constructed recently in [63] for convex quadrilaterals has better approximation properties
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and less degrees of freedom. The ACk(k ≥ 0) spaces are constructed using both unmapped

vector-valued polynomials and rational functions obtained via the Piola transformation. The local

Arbogast-Correa space is defined by

ACk(E) = P 2
k (E) + xP̃k(E) + Sk(E), (2.28)

where P 2
k (E) is the space of vector-valued polynomials of two variables with total degree at most

k, P̃k(E) is the space of homogeneous scalar-valued polynomials of two variables with degree

exactly k, and Sk(E) is a supplementary space of vector-valued rational functions obtained via the

Piola transformation.

For convenience, we write Sk = PEŜk, where PE is the Piola transformation. Let (x̂, ŷ) be the

coordinates in the reference element [0, 1]2. According to [63], for k = 0,

Ŝ0 = span{curl(x̂ŷ)}, (2.29)

and k ≥ 1,

Ŝk = span{curl((1− x̂2)x̂k−1ŷ), curl(x̂k−1ŷ(1− ŷ2))}. (2.30)

Roughly speaking, P 2
k (E) accounts for the approximation of a vector field on a convex quadri-

lateral, xP̃k(E) accounts for the approximation of divergence, and Sk offers a divergence-free

supplement. Their motivation for Sk comes from approaching a vector field approximation by

looking at the Helmholtz decomposition.

For these discrete spaces, we have

dim(P 2
k ) = (k + 1)(k + 2), dim(P̃k) = k + 1,

and

dim(Sk) = 1 if k = 0, dim(Sk) = 2 if k > 0.
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If we set sk = dim(Sk), then

dim(ACk(E)) = (k + 1)(k + 3) + sk. (2.31)

Note that (k + 1)(k + 3) = dim(RTk), which is the dimension of the k-th order Raviart-Thomas

space on a triangle [69]. Thus, sk acts similarly to the additional degrees of freedom needed for

augmenting the Raviart-Thomas space on a quadrilateral [63].

However, in Chapter 4 of this dissertation, we will use the WG(Q0, Q0;AC0) discretization.

Therefore we will focus on the lowest-order space AC0. We may write this space as

AC0 := span








1

0


 ,




0

1


 ,



X

Y


 ,PE




x̂

−ŷ







. (2.32)

In addition to the local projection operators discussed in Lemma 2.1, we also need the global

interpolation operator Πh. For any edge e in the mesh ED
h , this operators satisfies

〈(Πhv) · n, 1〉e = 〈v · n, 1〉e, ∀v ∈ H(div,ΩD). (2.33)

This flux-capturing property is extremely important for the analysis in Chapter 4. Since the

S0(E) portion of the space yields a more difficult basis function, we will not dive into a discussion

of the discrete weak gradient computation for this space as we did with the Raviart-Thomas space.

2.4 Software Implementation

While there are not many publicly available software packages for WGFEMs, all of the com-

putations in this chapter are publicly available as part of the DarcyLite and Darcy+ software

packages written in Matlab and C++, respectively [71]. These may be found on James Liu’s web-

site. Between DarcyLite and Darcy+, one may solve WGFEMs for Darcy flow, Stokes flow,

Stokes-Darcy coupling, linear elasticity, and poroelasticity on varying meshes and spatial dimen-

23



sions. These packages output errors and figures for postprocessed quantities such as the discrete

weak gradient as well as the primary variables.

There is also a WG tutorial available in the deal.II library, which is publicly available on

Github. The step-47 tutorial added in version 9.1 uses the WG(Pk, Pk;RT[k]) space (k = 0, 1, 2)

on quadrilaterals to solve Darcy flow [72]. We have also used a deal.II implementation of

WGFEMs to solve Darcy flow on a hexahedral mesh using the SPE10 dataset, which is a perme-

ability profile available in the Matlab Reservoir Simulation Toolbox [73, 74].

Since deal.II supports physics coupling along an interface (see step-46), and since we im-

plemented the Bernardi-Raugel element in deal.II as part of version 9.1 [72], the only finite

element space missing from deal.II to construct our Stokes-Darcy solver from Chapter 4 is the

ACk space. Instead, the results in Chapter 3 are derived from a three-dimensional implementation

in Darcy+ and a two-dimensional implementation in DarcyLite. The results in Chapter 4 are

all written and available in DarcyLite.

2.5 Assumptions for Mesh Quality

In this section we will present some related material for meshes to clarify and simplify later

analysis.

We will refer to a mesh as a rectangle mesh if every element has a clear tensor product structure.

That is, if E ∈ Eh may be written as E = [x1, x2]× [y1, y2]. We will refer to its three-dimensional

analogue as a brick mesh, where E ∈ Eh may be written as E = [x1, x2]× [y1, y2]× [z1, z2].

Following other weak Galerkin literature [75], we present some regularity assumptions for a

mesh, which we will refer to as a shape-regular mesh (not to be confused with a shape regular

family of meshes). In two dimensions, we say a mesh Eh with diameter h = maxE∈EhhE is shape-

regular if there are constants C1, C2, C3, C4 > 0 so that

1. |e| ≥ C1hE for all E ∈ Eh, e an edge of E.

2. |E| ≥ C2h
2
E for all E ∈ Eh.
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3. There exists a triangle with base e inside E whose height exceeds C3hE for all E ∈ Eh, e an

edge of E.

4. There exists a triangle containing E whose diameter does not exceed C4hE for all E ∈ Eh.

The definitions are similar for the three-dimensional case. A simple summary of the shape-

regular requirement, which was stated in [22], is that the following should hold for a mesh:

1. Edges are not too short.

2. Polygons are not too small.

3. Interior triangles are not too short.

4. Circumscribed triangles are not too tall.

For a quadrilateral E, let θ1 be the angle between the outward unit normal vectors on two

opposite edges, θ2 be the angle for the other two edges. Let σE = max{|π − θ1|, |π − θ2|} and hE

be the diameter of E. A quadrilateral mesh Eh is asymptotically parallelogram [1], provided that

there exists a positive constant C such that σE/hE ≤ C for all E ∈ Eh. This definition is similar

for an asymptotically parallelepiped mesh.

Quadrilateral and hexahedral meshes are more suitable than rectangular and brick meshes for

handling complicated domain geometry, and since WGFEMs place variables on the mesh skeleton,

quadrilateral and hexahedral meshes are also more efficient than triangular and tetrahedral meshes

for the same mesh size. Our numerical results in Chapter 3 show that asymptotically parallelogram

quadrilateral and asymptotically parallelepiped hexahedral meshes provide satisfactory results for

linear elasticity.
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Chapter 3

Linear Elasticity

3.1 Introduction

To discuss forces for elastic materials in d-dimensions, we introduce the second-order d × d

tensors, σ and ε. σ is the Cauchy stress tensor describing stresses experienced by a material

in a deformed state, and ε is the strain tensor describing the deformation of the material. For

infinitesimally small displacements u of particles in the material, the strain tensor is defined by the

symmetric gradient of the displacement of the material. This relation takes the form

ε = (∇u+∇uT )/2.

Because strain acts like a first-order differential operator for displacement, we may also notate

it like a differential operator with ε(u). The stress and strain tensors are related by the fourth-order

stiffness tensor C. For our model, we assume the elastic material is isotropic and homogeneous so

that the stiffness tensor is constant. Hooke’s law for continuous media therefore states

σ = Cε = 2µε+ λtr(ε)I,

where µ and λ denote the Lamé constants. The trace of the strain tensor is equal to

tr(ε(u)) =
d∑

i=1

εii =
d∑

i=1

∂ui

∂xi
= ∇ · u,

so we also may refer to ∇ · u as the dilation of the material. Since the Lamé constants relate a

dimensionless quantity ([ε] = 1) to a quantity with units for pressure ([σ] = ML−1T−2), these

constants also have units for pressure [λ] = [µ] = ML−1T−2, where M, L, T are general units

for mass, length, and time. The Lamé parameters are additionally related to the commonly used
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Young’s modulus E and Poisson ratio ν by

λ =
Eν

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
. (3.1)

From a physical standpoint, as λ becomes arbitrarily large, or as ν approaches 0.5 from the

left, a small compressive strain requires an arbitrarily large stress in a material, which may not be

physically possible. For that reason, a material is often referred to as incompressible when λ→ ∞

or when ν → 0.5. When the material experiences internal forces given by f , the forces are related

to the stress by

∇ · σ = f .

Combining these relations yields a system of PDEs governing the displacement of particles

within the isotropic linear elastic material in an open bounded polygonal domain Ω ⊂ Rd





−∇ · σ = f , in Ω,

σ = 2µε(u) + λ tr(ε(u))I, in Ω,

ε(u) = (∇u+∇uT )/2, in Ω,

u = uD, on ΓD,

−σn = tN , on ΓN ,

(3.2)

where ∂Ω may be partitioned into ∂Ω = ΓD∪ΓN , u ∈ H1(Ω)d is the unknown displacement func-

tion and f ∈ L2(Ω)d is the given body force. uD and tN are Dirichlet and Neumann boundary data

for the corresponding boundaries. uD is referred to as the displacement boundary condition and

tN is referred to as a traction boundary condition. We solve this problem in the primal formulation,

meaning we discretize only u. The stress and strain in (3.2) are computed from u.

We proceed to derive the variational form of the linear elasticity equation by testing against a

function v ∈ H1
0,D(Ω)

d, which is the space of H1(Ω) functions whose extension to the Dirichlet

boundary is 0. Integration by parts, splitting the integrals, and applying the traction boundary
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condition yields

∫

Ω

f · v =

∫

Ω

∇ · σ · v

=

∫

Ω

σ : ∇v −
∫

ΓN

σn · v

=

∫

Ω

(2µε(u) + λtr(ε(u))I) : ∇v +

∫

ΓN

tN · v

= 2µ

∫

Ω

ε(u) : ∇v + λ

∫

Ω

(tr(ε(u))I) : ∇v +

∫

ΓN

tN · v.

(3.3)

We observe

(tr(ε(u))I) : ∇v = (∇ · u)I : ∇v

= (∇ · u)tr(∇v)

= (∇ · u)
(

d∑

i=1

∂vi

∂xi

)

= (∇ · u)(∇ · v).

For the ε(u) : ∇v term, we have

ε(u) : ∇v = (∇u+∇uT )/2 : ∇v

= (∇u+∇uT )/2 : (∇v +∇v)/2

=
1

4
(∇u : ∇v +∇uT : ∇v +∇uT : ∇v +∇u : ∇v)

=
1

4
(∇u : ∇v +∇u : ∇vT +∇uT : ∇v +∇uT : ∇vT )

= ε(u) : ε(v).

Substituting these results back into Equation (3.3) yields
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∫

Ω

f · v −
∫

ΓN

tN · v = 2µ

∫

Ω

ε(u) : ∇v + λ

∫

Ω

(tr(ε(u))I) : ∇v

= 2µ

∫

Ω

ε(u) : ε(v) + λ

∫

Ω

(∇ · u)(∇ · v).

The variational form for the displacement form of the linear elasticity problem is now stated as

follows: Seek u ∈ H1
uD,D(Ω)

d so that

2µ(ε(u), ε(v))Ω + λ(∇ · u,∇ · v)Ω = (f ,v)Ω − (tN ,v)ΓN
, ∀v ∈ H1

0,D(Ω)
d. (3.4)

It has been known for decades that traditional CGFEMs suffer from loss in convergence rates

when tackling Equation (3.4) as λ becomes unbounded [65, 76, 77]. An elegant explanation for

why this occurs may be found in [65, 77], where a bound for the exact solution is given by

‖u‖H2 + λ‖∇ · u‖H1 ≤ C(‖f‖L2 + ‖uD‖H2 + ‖tN‖H1). (3.5)

This bound now drives a much more exciting discussion of the interplay between physics and

numerical discretization. For large values of λ, the H1 norm of ∇ · u must decrease at a rate

proportional to λ−1 or faster. ∇ · u is also referred to as the dilation of the material. This means

as λ → ∞, the dilation must satisfy ∇ · u → 0, which is equivalent to saying the material must

be incompressible. For that reason, the case of λ → ∞ is also referred to as the incompressible

limit. A finite element method for solving linear elasticity is said to experience locking if the finite

element solution deteriorates as λ increases [65]. The reason for a loss of convergence is often

because the finite element space cannot approximate a nonzero dilation-free displacement field.

To examine the incompressible limit more closely, consider the artificial pressure variable

p = λ∇ · u.

This allows the variational form for linear elasticity to be written in an equivalent mixed for-

mulation: Seek u ∈ H1
uD,D(Ω)

d, p ∈ L2(Ω) satisfying
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2µ(ε(u), ε(v))Ω + (∇ · v, p)Ω = (f ,v)Ω − (tN ,v)ΓN
, ∀v ∈ H1

0,D(Ω)
d,

(∇ · u, q)Ω − λ−1(p, q)Ω = 0, ∀q ∈ L2
0(Ω).

As λ → ∞, and assuming |ΓN | = 0, this equation looks similar to the saddle-point problem

for Stokes flow

2µ(ε(u), ε(v))Ω + (∇ · v, p)Ω = (f ,v)Ω, ∀v ∈ H1
0 (Ω)

d,

(∇ · u, q)Ω = 0, ∀q ∈ L2
0(Ω).

However, the case with no Neumann boundary conditions for Stokes flow is equivalent to the

variational form with (∇u,∇v)Ω because a calculus exercise shows ∇ · ε(u) = 1
2
∇2u when

∇ · u = 0. This means solving Equation (3.2) is similar to solving the problem





−µ∆u− (µ+ λ)∇(∇ · u) = f ,

u|∂Ω = uD.

(3.6)

We now make some modifications to Equation (3.4) in light of these insights. Assuming there

is no traction condition, we consider the variational formulation of the primal problem to find

u ∈ H1
uD,D(Ω)

d satisfying

µ(∇u,∇v) + (µ+ λ)(∇ · u,∇ · v) = (f ,v), ∀v ∈ H1(Ω)d. (3.7)

We refer to the formulation in Equation (3.4) as the strain-div formulation for linear elasticity,

and we refer to the formulation in Equation (3.7) as the grad-div formulation for linear elasticity.

We will introduce finite element schemes for both but only rigorously prove convergence of the

solution for the grad-div formulation.
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3.2 Weak Galerkin Finite Element Scheme

To develop the lowest-order WGFEMs for linear elasticity, we consider a mesh Eh of Ω con-

taining quadrilaterals or hexahedra which are shape-regular (from Section 2.5) and a finite element

space of the form WG(Qd
0, Q

d
0;Wgrad,Wdiv). In light of the properties discussed in Chapter 2, we

consider Wgrad = RT 3
[0] to be the unmapped Raviart-Thomas space on quadrilaterals. In the next

section we will prove Lemma 3.1 to show the discrete weak gradient for each component of the

shape functions satisfies Lemma 2.4. Additionally, to reduce computational complexity, we take

Wdiv = Q0. This may be viewed as a projection of dilation into piecewise constants, which is a

form of reduced integration.

Let Vh := WG(Qd
0, Q

d
0;RT

d
[0], Q0). The finite element scheme in the strain-div formulation for

the linear elasticity problem (3.2) is formulated as: Seek uh ∈ Vh such that uh|ΓD
h
= Q∂

h(uD) and

ASD
h (uh,v) = FSD

h (v), ∀v ∈ V 0
h , (3.8)

where

ASD
h (uh,v) = 2µ

∑

E∈Eh

(εw,d(uh), εw(v))E (3.9)

+ λ
∑

E∈Eh

(∇w · uh,∇w · v)E, (3.10)

and

FSD
h (v) =

∑

E∈Eh

(f ,v◦)E −
∑

γ∈ΓN
h

〈tN ,v∂〉γ. (3.11)

The finite element scheme in the grad-div formulation for the linear elasticity problem (3.6) is

formulated as follows: Seek uh ∈ Vh such that uh|ΓD
h
= Q∂

h(uD) and

AGD
h (uh,v) = FGD

h (v), ∀v ∈ V 0
h , (3.12)

31



where

AGD
h (uh,v) = µ

∑

E∈Eh

(∇wuh,∇wv)E (3.13)

+ (µ+ λ)
∑

E∈Eh

(∇w · uh,∇w · v)E, (3.14)

and

FGD
h (v) =

∑

E∈Eh

(f ,v◦)E. (3.15)

Using the framework developed in Chapter 2, we now proceed to perform analysis of the con-

vergence for this finite element scheme.

3.3 A Priori Error Analysis

The error analysis in this section focuses on the finite element scheme (3.12) for problem (3.6)

with homogeneous Dirichlet boundary conditions. We consider the grad-div formulation on a

rectangular mesh. We now use A . B to simplify an inequality A ≤ CB when C > 0 is a

constant independent of h and λ.

Definition 3.1. (Semi-norm on Vh) For v ∈ Vh, we define

|||v|||2 =
∑

E∈Eh

h−1
E ‖v∂ − v◦‖2E∂ . (3.16)

Due to Lemma 2.3, this is essentially the same as the discrete weak gradient. Additionally, if a

higher order WG space WG(Qd
k, Q

d
k)(k ≥ 1) is used, we must add another term to (3.16), ∇v◦, for

the classical gradient of its interior part. To see how this changes analysis, one may refer to [20].

Lemma 3.1. (Trace equivalence for RT d
[0]) For E ∈ Eh, there holds

‖Wn‖2E∂ ≈ h−1
E ‖W‖2E, ∀W ∈ RT 2

[0](E). (3.17)
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Proof. It can be proved using the techniques in [28] that

‖w · n‖2E∂ ≈ h−1
E ‖w‖2E, ∀w ∈ RT[0](E),

where the equivalence holds with absolute constants that are independent of the mesh size. The

result in (3.17) is a matrix version of this equivalence.

Based on Lemma 3.1, we have a finite element space that satisfies Lemmas 2.1, 2.2, 2.3, and

2.4. Thus, the energy norm defined on the mesh satisfies the coercivity relation

|||v||| . ‖∇wv‖, ∀v ∈ V 0
h . (3.18)

Lemma 3.2. (Boundedness) Assume v ∈ Vh and E ∈ Eh. Then

‖∇wv‖2E . h−1
E ‖v∂ − v◦‖2E∂ . (3.19)

and

‖∇w · v‖2E . h−1
E ‖v∂ − v◦‖2E∂ . (3.20)

Proof. For the first inequality, we take W = ∇wv in Lemma 2.2, then apply the Cauchy-Schwarz

inequality, trace equivalence, and Young’s inequality to obtain

‖∇wv‖2E = 〈(∇wv)n,v
∂ − v◦〉E∂

≤ ‖(∇wv)n‖E∂‖v∂ − v◦‖E∂

≤ Ch
− 1

2
E ‖∇wv‖E‖v∂ − v◦‖E∂

Dividing by ‖∇wv‖E and squaring both sides completes the proof. The inequality for discrete

weak divergence can be proven in a similar way using the shape-regularity of the mesh, which we

require so that |E|/|E∂| ≈ h.
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Lemma 3.3. (Error equation) Let uh be the numerical solution from the lowest-order finite element

scheme in (3.12) with a homogeneous Dirichlet boundary condition. Let u be the exact solution of

(3.6). There holds

AGD
h (uh −Qhu,v) = µG1(u,v) + (µ+ λ)G2(u,v), (3.21)

where

G1(u,v) =
∑

E∈Eh

〈(∇u−Qh(∇u))n,v∂ − v◦〉E∂ , (3.22)

and

G2(u,v) =
∑

E∈Eh

〈(∇ · u−Qh(∇ · u))n,v∂ − v◦〉E∂ . (3.23)

Proof. Let v = {v◦,v∂} ∈ Vh and E ∈ Eh. Using the differential equation in (3.6) and integration

by parts, we have

(f ,v◦)E = −µ(∆u,v◦)E − (µ+ λ)(∇(∇ · u),v◦)E

= −µ〈(∇u)n,v◦〉E∂ + µ(∇u,∇v◦)E

− (µ+ λ)〈(∇ · u)n,v◦〉E∂ + (µ+ λ)(∇ · u,∇ · v◦)E.

Since v◦ is an elementwise constant vector, ∇v◦ = 0 and ∇ · v◦ = 0. Therefore, the previous

expression can be simplified as

(f ,v◦)E = −µ〈(∇u)n,v◦〉E∂ − (µ+ λ)〈(∇ · u)n,v◦〉E∂ . (3.24)

Under the assumptions of normal continuity of the exact solution and homogeneous boundary

conditions, we have

∑

E∈Eh

〈(∇u)n,v∂〉E∂ = 0,
∑

E∈Eh

〈(∇ · u)n,v∂〉E∂ = 0. (3.25)
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Combining these with (3.24) and the finite element scheme (3.12) gives

AGD
h (uh,v) =

∑

E∈Eh

(f ,v◦)E (3.26)

= µ
∑

E∈Eh

〈(∇u)n,v∂ − v◦〉E∂ (3.27)

+ (µ+ λ)
∑

E∈Eh

〈(∇ · u)n,v∂ − v◦〉E∂ . (3.28)

On the other hand, by the commuting identities in Lemma 1 and the conversion formulas in

Lemma 2, we have

(∇w(Qhu),∇wv)E = (Qh∇u,∇wv)E = 〈(Qh∇u)n,v∂ − v◦〉E∂ ,

and

(∇w · (Qhu),∇w · v)E = (Qh(∇ · u),∇w · v)E = 〈Qh(∇ · u)n,v∂ − v◦〉E∂ .

Thus we have, by summing over the entire mesh,

AGD
h (Qhu,v) = µ

∑

E∈Eh

〈(Qh∇u)n,v∂ − v◦〉E∂ (3.29)

+ (µ+ λ)
∑

E∈Eh

〈Qh(∇ · u)n,v∂ − v◦〉E∂ . (3.30)

Subtracting (3.30) from (3.28) yields the error equation claimed in (3.21).

Lemma 3.4. (Estimates on linear functionals) Under the same assumptions as Lemma 3.3 and

additionally assuming the exact solution of (3.6) has regularity u ∈ H2(Ω), for any v ∈ Vh, there

hold

|G1(u,v)| . h‖u‖H2(Ω)|||v|||, (3.31)

|G2(u,v)| . h‖∇ · u‖H1(Ω)|||v|||. (3.32)
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We remark that if u is the exact solution of (3.6), then G2(u,v) and G2(u,v) are indeed linear

functionals defined on Vh. In general, they can also be viewed as nonsymmetric bilinear forms

defined on H1(Ω) × Vh. This allows us to easily apply the above estimates in a duality argument

to be presented later.

Proof. Consider a fixed E ∈ Eh. By Lemma 3.1 and the approximation capacity of Qh, we

have

‖(∇u−Qh∇u)n‖E∂ . h
− 1

2
E ‖∇u−Qh∇u‖E . h

1
2
E‖u‖H2(E).

Applying the Cauchy-Schwarz and Young’s inequalities, and the definition of semi-norm (3.16)

gives

|G1(u,v)| .
( ∑

E∈Eh

hE‖(∇u−Qh∇u)n‖2E∂

) 1
2
( ∑

E∈Eh

h−1
E ‖v∂ − v◦‖2E∂

) 1
2

(3.33)

.
( ∑

E∈Eh

h2E‖u‖2H(E)

) 1
2
( ∑

E∈Eh

h−1
E ‖v∂ − v◦‖2E∂

) 1
2

(3.34)

≤ Ch‖u‖H2(Ω)|||v|||, (3.35)

as desired. The second estimate can be proven in a similar way. �

Theorem 3.1. Let u be the exact solution of (3.6) with H2(Ω) regularity and uh be the numer-

ical solution obtained from (3.12). There holds

µ
∑

E∈Eh

‖∇u−∇wuh‖2E + (µ+ λ)
∑

E∈Eh

‖∇ · u−∇w · uh‖2E . h2‖f‖2
L2(Ω). (3.36)

Proof. We utilize Lemma 2.1 to split the elementwise errors into projection errors and dis-

cretization errors as shown below,

‖∇u−∇wuh‖2E . ‖∇u−Qh∇u‖2E + ‖Qh∇u−∇wuh‖2E,

‖∇ · u−∇w · uh‖2E . ‖∇ · u−Qh(∇ · u)‖2E + ‖Qh(∇ · u)−∇w · uh‖2E.
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For the projection errors, we have first elementwise estimates

‖∇u−Qh∇u‖E . h‖u‖H2(E),

‖∇ · u−Qh(∇ · u)‖E . h‖∇ · u‖H1(E),

and then a mesh-wise estimate

µ
∑

E∈Eh

‖∇u−Qh∇u‖2E + (µ+ λ)
∑

E∈Eh

‖∇ · u−Qh(∇ · u)‖2E

. h2
(
µ‖u‖2

H2(Ω) + (µ+ λ)‖∇ · u‖2H1(Ω)

)
. h2‖f‖2

L2(Ω).

(3.37)

In the last step, we have used the fact that

µ‖u‖2
H2(Ω) + (µ+ λ)‖∇ · u‖2H1(Ω) . ‖f‖2

L2(Ω),

which can be derived from (3.5) using the techniques developed in [77].

For the discretization errors between the projection and the finite element solution, we combine

Lemmas 3.3 and 3.4 to obtain

µ
∑

E∈Eh

‖Qh∇u−∇wuh‖2E + (µ+ λ)
∑

E∈Eh

‖Qh(∇ · u)−∇w · uh‖2E,

. h2
(
µ‖u‖2

H2(Ω) + (µ+ λ)‖∇ · u‖2H1(Ω)

)
. h2‖f‖2

L2(Ω).

(3.38)

The desired result follows from combining (3.37) and (3.38). �

We now establish an L2-norm estimate using a standard duality argument.

Theorem 3.2. (L2-norm estimate for displacement) Let u be the exact solution of (3.6) with

H2(Ω) regularity and uh be the numerical solution obtained from (3.12). There holds

‖u− u◦
h‖L2(Ω) ≤ Ch‖f‖L2(Ω), (3.39)

37



where C is a positive constant independent of λ, h.

Proof. Let Φ be the solution of the dual problem





−µ∆Φ− (µ+ λ)∇(∇ ·Φ) = e◦h,

Φ|∂Ω = 0.

(3.40)

As usual, we assume the dual solution has full regularity as follows

µ‖Φ‖H2(Ω) + (µ+ λ)‖∇ ·Φ‖H1(Ω) ≤ C‖e◦h‖L2(Ω). (3.41)

We test the dual equation against v ∈ Vh on an arbitrary element E ∈ Eh and apply integration

by parts to obtain

− µ〈(∇Φ)n,v◦〉E∂ − (µ+ λ)〈(∇ ·Φ)n,v◦〉E∂ = (e◦h,v
◦)E. (3.42)

The normal continuity and boundary conditions of the dual solution together imply

∑

E∈Eh

〈(∇Φ)n,v∂〉E∂ = 0,
∑

E∈Eh

〈(∇ ·Φ)n,v∂〉E∂ = 0. (3.43)

Combined these yield

∑

E∈Eh

(e◦h,v
◦)E = µ

∑

E∈Eh

〈(∇Φ)n,v∂ − v◦〉E∂ + (µ+ λ)
∑

E∈Eh

〈(∇ ·Φ)n,v∂ − v◦〉E∂ . (3.44)

Alternatively, applying Lemma 2.1 and Lemma 2.2, we have elementwise

µ(∇w(QhΦ),∇wv)E + (µ+ λ)(∇w · (QhΦ),∇w · v)E

= µ(Qh∇Φ,∇wv)E + (µ+ λ)(Qh(∇ ·Φ),∇w · v)E

= µ〈(Qh∇Φ)n,v∂ − v◦〉E∂ + (µ+ λ)〈Qh(∇ ·Φ)n,v∂ − v◦〉E∂ .
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Over the entire mesh, we have

AGD
h (QhΦ,v) = µ

∑

E∈Eh

〈(Qh∇Φ)n,v∂ − v◦〉E∂

+ (µ+ λ)
∑

E∈Eh

〈Qh(∇ ·Φ)n,v∂ − v◦〉E∂ .

(3.45)

We now set v = eh in both (3.44) and (3.45), and perform a subtraction on both sides to obtain

‖e◦h‖2 −AGD
h (QhΦ, eh) = µG1(Φ, eh) + (µ+ λ)G2(Φ, eh).

The symmetry in AGD
h (·, ·) leads to

‖e◦h‖2 = AGD
h (eh,QhΦ) + µG1(Φ, eh) + (µ+ λ)G2(Φ, eh). (3.46)

Similar to Lemma 3.4, we have immediately

|G1(Φ, eh)| ≤ Ch‖Φ‖H2(Ω)|||eh|||,

|G2(Φ, eh)| ≤ Ch‖∇ ·Φ‖H1(Ω)|||eh|||.

The above two estimates combined with the dual regularity (3.41) imply

|µG1(Φ, eh) + (µ+ λ)G2(Φ, eh)| ≤ Ch‖e◦h‖ |||eh|||. (3.47)

To estimate |||eh|||, we first set v = eh in (3.21) and then apply Lemmas 2.3, 3.3, and 3.4 to

obtain

|||eh||| ≤ Ch‖f‖L2(Ω), (3.48)

where C > 0 is a constant independent of h and λ.

Applying Lemmas 3.3 and 3.4, and the regularity of the exact solution (3.5) yields
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|AGD
h (eh,QhΦ)| ≤ Ch‖f‖L2(Ω)|||QhΦ|||.

Applying Lemmas 2.3, 2.1, the stability of the projection Qh and dual regularity, we have

|||QhΦ||| . ‖∇w(QhΦ)‖ = ‖Qh∇Φ‖ ≤ ‖∇Φ‖ ≤ ‖Φ‖H2(Ω) . ‖e◦h‖.

Combining the above two estimates gives

|AGD
h (eh,QhΦ)| ≤ Ch‖f‖L2(Ω)‖e◦h‖. (3.49)

Finally, combining (3.46), (3.47), (3.48), and (3.49) yields the desired result. �

Theorem 1 and 2 combined imply that for elasticity problems on rectangular meshes, the

lowest-order WG finite element scheme (Q2
0, Q

2
0;RT

2
[0], Q0) has the following two properties.

• First order convergence in displacement, stress, and dilation (given full regularity of the

exact solution);

• The convergence order does not deteriorate as λ→ ∞, i.e, the method is locking-free.

For elasticity problems with low regularity (see Section 3.6, Example 3.2), say, u ∈ H1+s(Ω) with

s ∈ (0, 1), the method produces 1st order convergence in displacement and order s convergence in

stress and dilation.

Remarks on the extension to quadrilateral and hexahedral meshes. It can be observed

that the commuting identities in Lemma 2.1 play important roles in the error analysis. These

identities demonstrate that the discrete weak gradient and the discrete weak divergence provide a

good approximation to their classical counterparts.

Recall the definition of the discrete weak gradient,

∫

E

(∇wv) : W =

∫

E∂

v∂ · (Wn)−
∫

E◦

v◦ · (∇ ·W ), ∀W ∈ RT 2
[0](E),
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and Lemma 2.1

∇w(Qhu) = Qh(∇u).

The above two quantities are expected to be in the same finite dimensional space, say, the local

Raviart-Thomas space RT 2
[0](E) on a rectangle E, from which we take a typical test function W .

By the definition of discrete weak gradient, the definition of the projection Qh = {Q◦
h,Q

∂
h}, the

definition of the projection Qh, and Gauss Divergence Theorem, we should have

∫

E

∇w(Qhu) : W =

∫

E∂

(Q∂
hu) · (Wn)−

∫

E◦

(Q◦
hu) · (∇ ·W )

‖∫

E

Qh(∇u) : W

‖∫

E

(∇u) : W =

∫

E∂

u ·Wn−
∫

E◦

u · (∇ ·W ).

(3.50)

The 1st vertical equal sign holds due to the commuting property (Lemma 2.1). The 2nd vertical

equal sign holds by the definition of the L2-projection Qh. This leads to Matching Condition I

for (2.7), namely

(i) Wn (trace) lies in the same space as v∂ or in a subspace of this space (applicable to Q∂
hu);

(ii) ∇ ·W (div) lies in the same space as v◦ or in a subspace of this space (applicable to Q◦
hu).

A similar analysis for Lemma 2.1 leads to Matching Condition II for (2.10), namely

(i) The trace wn lies in the same space as v∂ or in a subspace of this space;

(ii) The gradient ∇w lies in the same space as v◦ or in a subspace of this space.

In this regard, for rectangles (d = 2) or bricks (d = 3), the WG(Qd
0, Q

d
0;RT

d
[0], Q0) discretiza-

tion is suitable.

The commuting identities in Lemma 2.1 while elegant, are not necessary conditions. Generally

speaking, if the discrepancy between each pair of quantities is a higher order quantity of the mesh
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size: O(h1+r) for some r > 0, then the error analysis in this section can still go through, although

it will become more technically involved.

For the WG(Q2
0, Q

2
0) discrete weak functions on quadrilaterals, there are two ways for con-

structing a space for their discrete weak gradients:

(i) Using the unmapped RT 2
[0] space, for which the divergence ∇ ·W is a constant vector, but

the trace Wn is not a constant vector;

(ii) Using the mapped RT 2
[0] space based on the Piola transform, for which Wn (trace) is a

constant vector, but ∇ ·W (div) is not a constant vector [78].

A similar discussion applies to hexahedra. When the quadrilaterals are asymptotically parallelo-

gram or the hexahedra are asymptotically parallelepiped, the aforementioned discrepancy will be

a higher order quantity of the mesh size. Thus our finite element schemes can be extended to these

types of quadrilateral and hexahedral meshes, see Section 6, Examples 3.3 and 3.5 for numerical

results.

3.4 Implementation

We have implemented WG(Q2
0, Q

2
0;RT

2
[0], Q0) on quadrilateral meshes (including rectangular

meshes as a special case) in our Matlab code package DarcyLite; and WG(Q3
0, Q

3
0;RT

3
[0], Q0)

on hexahedral meshes (including brick meshes as a special case) in our code package Darcy+.

For convenience, we use the normalized coordinates [68]

X = x− xc, Y = y − yc, Z = z − zc,

since
∫
E
X = 0,

∫
E
Y = 0,

∫
E
Z = 0 on a rectangle or brick E.

3.4.1 Calculation of Numerical Stress on a Quadrilateral

Recall the eight basis functionsWj(1 ≤ j ≤ 8) defined in (2.26). We now finish our discussion

of discrete weak strain from Chapter 2, as we need the averages
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W j =
1

2
(Wj +W T

j )

for strain and stress calculations. Specifically, we have

W 1 =




1 0

0 0


 , W 2 =




0 1
2

1
2

0


 , W 3 =



X 0

0 0


 , W 4 =




0 Y
2

Y
2

0


 , (3.51)

W 5 =




0 1
2

1
2

0


 , W 6 =




0 0

0 1


 , W 7 =




0 X
2

X
2

0


 , W 8 =




0 0

0 Y


 . (3.52)

Let φi(1 ≤ i ≤ 10) be one of the ten WG(Q2
0, Q

2
0) basis functions on a quadrilateral and its

discrete weak gradient be

∇wφi =
8∑

j=1

ci,jWj, 1 ≤ i ≤ 10.

Clearly, its discrete weak strain is

εw(φi) =
8∑

j=1

ci,jW j, 1 ≤ i ≤ 10.

Its discrete weak divergence is just a constant,

∇w · φi = di, 1 ≤ i ≤ 10.

The definition for discrete weak stress gives

σ = 2µ εw(φi) + λdi I2, 1 ≤ i ≤ 10,

where I2 is the order 2 identity matrix. By direct calculations, we obtain the numerical stress

corresponding to a single WG basis function φi(1 ≤ i ≤ 10) as
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



σxx = σ11 = (2µci,1 + λdi) + 2µci,3X,

σyy = σ22 = (2µci,6 + λdi) + 2µci,8Y,

σxy = σ12 = µ(ci,2 + ci,5) + µci,7X + µci,4Y,

σyx = σ21 = σ12.

(3.53)

This also states that the normal stress σ11 is a linear function of only the first coordinate, the normal

stress σ22 is a linear function of only the second coordinate, whereas the shear stress σ12 is a linear

function of both coordinates. In this regard, our numerical stress has the same form as that obtained

from the simplest nonconforming finite element method investigated in [47].

For graphical results involving elementwise averages of the stress components, we use (3.53)

and numerical integration.

3.4.2 Calculation of Numerical Stress on a Hexahedron

In the same spirit, we consider the eighteen normalized basis functions Wj(1 ≤ j ≤ 18) for

RT 3
[0] on a hexahedron. Their averages are
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W 1 =




1 0 0

0 0 0

0 0 0



, W 2 =




0 1
2

0

1
2

0 0

0 0 0



, W 3 =




0 0 1
2

0 0 0

1
2

0 0



, (3.54)

W 4 =




X 0 0

0 0 0

0 0 0



, W 5 =




0 Y
2

0

Y
2

0 0

0 0 0



, W 6 =




0 0 Z
2

0 0 0

Z
2

0 0



, (3.55)

W 7 =




0 1
2

0

1
2

0 0

0 0 0



, W 8 =




0 0 0

0 1 0

0 0 0



, W 9 =




0 0 0

0 0 1
2

0 1
2

0



, (3.56)

W 10 =




0 X
2

0

X
2

0 0

0 0 0



, W 11 =




0 0 0

0 Y 0

0 0 0



, W 12 =




0 0 0

0 0 Z
2

0 Z
2

0



, (3.57)

W 13 =




0 0 1
2

0 0 0

1
2

0 0



, W 14 =




0 0 0

0 0 1
2

0 1
2

0



, W 15 =




0 0 0

0 0 0

0 0 1



, (3.58)

W 16 =




0 0 X
2

0 0 0

X
2

0 0



, W 17 =




0 0 0

0 0 Y
2

0 Y
2

0



, W 18 =




0 0 0

0 0 0

0 0 Z



. (3.59)

Similarly, let φi(1 ≤ i ≤ 21) be a WG(Q3
0, Q

3
0) basis function. Assume its discrete weak gradient

and discrete weak divergence are respectively

∇wφi =
18∑

j=1

ci,jWj, ∇w · φi = di, 1 ≤ i ≤ 21.

Then its discrete weak stress is

45



σw,d(φi) = 2µ
18∑

j=1

ci,jW j + λdiI3, 1 ≤ i ≤ 21.

The components of the stress tensor are (see [47] also)





σxx = (2µci,1 + λdi) + 2µci,4X,

σyy = (2µci,8 + λdi) + 2µci,11Y,

σzz = (2µci,15 + λdi) + 2µci,18Z,

σxy = µ(ci,2 + ci,7) + µci,10X + µci,5Y,

σxz = µ(ci,3 + ci,13) + µci,16X + µci,6Z,

σyz = µ(ci,9 + ci,14) + µci,17Y + µci,12Z.

(3.60)

3.4.3 Block Diagonal Schur Complement

A salient feature of WGFEMs is the non-interaction between the basis functions defined in the

interiors of different elements in the mesh. This motivates the use of Schur complement when

solving the discrete linear system resulting from (3.8) or (3.12).

For ease of presentation, we assume the aforementioned linear system is partitioned as follows




A00 A01

A10 A11







x0

x1


 =




b0

b1


 , (3.61)

where label 0 refers to the degrees of freedom (DOFs) in element interiors, and label 1 refers to

the DOFs on element interfaces.

The first equation

A00x0 +A01x1 = b0

can be easily solved as

x0 = A−1
00 (b0 −A01x1) , (3.62)
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based on the assumption that A00 is invertible and x1 is available.

Substituting the above solution into the 2nd equation in (3.61) produces

(
A11 −A10A

−1
00 A01

)
x1 = b1 −A10A

−1
00 b0, (3.63)

which concerns only the unknown x1 and has a smaller size than the original linear system. Here

Â11 = A11 − A10A
−1
00 A01 is called the Schur complement (matrix) of the original partitioned

coefficient matrix in (3.61).

Usually, the Schur complement matrix is not formed explicitly, since it can be expensive to

compute. An iterative solver for (3.63) mainly requires the matrix-vector multiplication

Â11 v = A11v −A10A
−1
00 A01v.

This corresponds to four matrix-vector multiplications and one vector subtraction. For WG

FEMs, A00 is a block diagonal matrix where each block is a small-size SPD matrix, hence A−1
00

can be pre-computed. For an elasticity problem using the WG(Q3
0, Q

3
0;RT

3
[0], Q0) lowest-order

method on a brick or hexahedral mesh, A00 is a block diagonal matrix where each block is a 3× 3

SPD matrix. Its inverse can be obtained using Cholesky factorization.

3.5 A Related Method: WG(P 2
1 , Prm;P

2×2
0 , P0) With Stabiliza-

tion

In [20], a family of WG finite element schemes were developed for general polygonal and

polyhedral meshes, from which we can derive a particular WG method on rectangular meshes:

WG(P 2
1 , Prm;P

2×2
0 , P0), where P 2

1 means linear vector-valued polynomials are used for element

interiors, and Prm means the edgewise space of rigid motions (dim(Prm) = 3). Elementwise

there are 18 degrees of freedom for each rectangle. For these WG basis functions, however, their
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discrete weak gradients are just constant 2 × 2 matrices, and their discrete weak divergences are

also constants.

Here is a brief list for comparison. Our method

• does not require stabilization,

• uses fewer degrees of freedom,

• achieves first-order convergence in displacement, stress, and dilation.

The WG(P 2
1 , Prm;P

2×2
0 , P0) method derived from [20]

• requires stabilization,

• has 2nd order convergence in displacement but only 1st order in stress and dilation,

• can be applied to general polygonal meshes.

Overall, our approach is simpler and more suited for a the specific quadrilateral/hexahedral

case, but it does not obtain the 2nd order convergence in displacement seen in [20].

3.6 Numerical Results

In this section we present numerical experiments for these solvers for linear elasticity on rect-

angular and brick meshes. We include also numerical results on asymptotically parallelogram

quadrilateral (parallelepiped hexahedral) meshes. We observe the expected locking-free property

and optimal order convergence in displacement, stress, and dilation. The performance of the com-

putational approach using the Schur complement is also examined. In addition to uniform rectan-

gular and brick meshes, we use also graded rectangular meshes and asymptotically parallelogram

trapezoidal meshes (Figure 1).

Example 3.1 (Locking-free). This example is a variant of Example 1 in [79]. Specifically, the

domain is Ω = (0, 1)2, a Neumann condition is posed on the right boundary of the domain, whereas
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Figure 3.1: Some meshes used in numerical experiments: Left: An initial graded mesh used in Example 3.2

Case II; Right: An initial trapezoidal meshed used in Example 3.3 (see [1] also).

Table 3.1: Example 3.1 Case I (λ = 1.6644× 102): WG(Q2
0, Q

2
0;RT[0], Q0) on rectangular meshes

1/h ‖u− u◦
h‖ ‖σ − σh‖ ‖∇ · u−∇w · uh‖

8 2.5288e-01 6.6770e-01 2.1689e-03

16 1.2609e-01 3.2291e-01 1.0745e-03

32 6.2981e-02 1.6009e-01 5.3561e-04

64 3.1482e-02 8.0209e-02 2.6756e-04

Conv.rate 1st order 1st order 1st order

the other three sides have Dirichlet conditions. The known exact solution for displacement is

u(x, y) =




(π/2) sin2(πx) sin(2πy)

−(π/2) sin(2πx) sin2(πy)


+

1

λ




sin(πx) sin(πy)

sin(πx) sin(πy)


 ,

and hence

∇ · u =
π

λ
cos(π(x+ y)) =

(1 + ν)(1− 2ν)

Eν
π cos(π(x+ y)).

It is clear that ∇ · u 6= 0 if ν ∈ (0, 1
2
), and ∇ · u = 0 if ν = 1

2
.

Numerical results for WG(Q2
0, Q

2
0;RT[0], Q0) on rectangular meshes are shown in Tables 3.1

& 3.2. The convergence rates in displacement, stress, and dilation are demonstrably first order for

two different values of λ that are six orders of magnitude apart.
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Table 3.2: Example 3.1 Case II (λ = 1.667× 108): WG(Q2
0, Q

2
0;RT[0], Q0) on rectangular meshes

1/h ‖u− u◦
h‖ ‖σ − σh‖ ‖∇ · u−∇w · uh‖

8 2.5289e-01 6.6702e-01 2.1665e-09

16 1.2609e-01 3.2245e-01 1.0731e-09

32 6.2981e-02 1.5967e-01 5.3491e-10

64 3.1482e-02 7.9625e-02 2.6721e-10

Conv.rate 1st order 1st order 1st order

Example 3.2 (Low-regularity). This example is derived from [80]. The problem is posed on a

Γ-shaped domain Ω = (−1, 1)2 \ ([0, 1]× [−1, 0]) with a body force f = 0. The known analytical

solution for displacement in Cartesian coordinates is

u =
[
A cos θ − B sin θ, A sin θ +B cos θ

]T
=: [C,D]T , (3.64)

where (r, θ) are the polar coordinates and





A =
rα

2µ

(
− (1 + α) cos((1 + α)θ) + C1(C2 − 1− α) cos((1− α)θ)

)
,

B =
rα

2µ

(
(1 + α) sin((1 + α)θ)− C1(C2 − 1 + α) sin((1− α)θ)

)
.

(3.65)

Here α ≈ 0.544483737 is the so-called critical exponent.

We present further details about the exact solution that were not provided in the original paper

[80]. The dilation is

∇ · u = ∂rA+ (∂θB)/r + A/r, (3.66)

where





∂rA = A
α

r
, ∂rB = B

α

r
,

∂θA =
rα

2µ

(
(1 + α)2 sin((1 + α)θ)− C1(C2 − 1− α)(1− α) sin((1− α)θ)

)
,

∂θB =
1

2µ
rα
(
(1 + α)2 cos((1 + α)θ)− C1(C2 − 1 + α)(1− α) cos((1− α)θ)

)
.

(3.67)
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Table 3.3: Example 3.2 Case I (ν = 0.3): Lowest-order WG on uniform rectangular meshes

1/h ‖u− u◦
h‖ ‖σ − σh‖ ‖∇ · u−∇w · uh‖

8 3.5814e-06 7.4745e-01 4.0348e-06

16 1.7968e-06 5.1626e-01 2.7822e-06

32 8.9935e-07 3.5529e-01 1.9134e-06

64 4.4972e-07 2.4407e-01 1.3141e-06

128 2.2480e-07 1.6751e-01 9.0181e-07

Conv.rate 0.998 0.539 0.540

The stress is

σ =




2µ(∂xC) + λ(∇ · u) µ(∂yC + ∂xD)

µ(∂yC + ∂xD) 2µ(∂yD) + λ(∇ · u)


 , (3.68)

where 



∂xC = (∂rA) cos
2 θ − (∂θA)

cos θ sin θ
r

+ A sin2 θ
r

−(∂rB) cos θ sin θ + (∂θB) sin
2 θ
r

+B cos θ sin θ
r

,

∂yD = (∂rA) sin
2 θ + (∂θA)

cos θ sin θ
r

+ A cos2 θ
r

+(∂rB) cos θ sin θ + (∂θB) cos
2 θ
r

− B cos θ sin θ
r

,

∂yC + ∂xD = (∂rA) sin(2θ) + (∂θA)
cos(2θ)

r
− A sin(2θ)

r

+(∂rB) cos(2θ)− (∂θB) sin(2θ)
r

− B cos(2θ)
r

.

(3.69)

We choose E = 105, ν = 0.3 (Case I) or ν = 0.49999 (Case II).

For Case I (ν = 0.3), Table 3.3 shows the numerical results of the WG(Q0, Q0;RT
2
[0], Q0)

lowest-order method applied to a family of rectangular meshes. The displacement error has first

order convergence, whereas the stress and dilation errors have convergence rates of approximately

0.54, close to the critical exponent α. The singularity at the origin is also clearly reflected in the

profiles of the numerical dilation and stress shown in Figure 3.2.

For Case II (ν = 0.49999), we utilize graded meshes [81]. An initial mesh is shown in Figure 1

left panel, which has three partitions for the boundary segments connecting (0, 0) to (1, 0) or (0, 0)

to (0,−1). Successive regular refinements are performed. The results in Table 4 indicate that our
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Numerical displacement and dilation for h = 1
16

Numerical shear stress σxy for h = 1
64

Figure 3.2: Example 3.2 Case I (ν = 0.3): Low-regularity captured by the lowest-order WG method on

rectangular meshes

Table 3.4: Example 3.2 Case II (ν = 0.49999): Lowest-order WG on graded rectangular meshes

refinements ‖u− u◦
h‖ rate ‖σ − σh‖ rate ‖∇ · u−∇w · uh‖ rate

2 2.5254e-06 — 4.0880e-01 — 1.3870e-10 —

3 1.2630e-06 0.99 2.6754e-01 0.61 8.8424e-11 0.64

4 6.3149e-07 1.00 1.7960e-01 0.57 5.8522e-11 0.59

5 3.1571e-07 1.00 1.2189e-01 0.55 3.9426e-11 0.56

6 1.5784e-07 1.00 8.3149e-02 0.55 2.6792e-11 0.55

WG method handles the dual challenges of a corner singularity and near-incompressibility very

well, since the convergence rates for displacement, stress and dilation are essentially unchanged

from the case when ν = 0.3.

Example 3.3. For this example adopted from [47], the domain is Ω = (0, 1)2, and the Lamé

constants are λ = 1 and µ = 0.5. A homogeneous Dirichlet boundary condition is specified on

the entire boundary. The known analytical solution for displacement is u = [4x(1 − x)y(1 −

y),−4x(1− x)y(1− y)]T .

Numerical results using WG(Q2
0, Q

2
0;RT

2
[0], Q0) on rectangular meshes and asymptotically par-

allelogram trapezoidal meshes adopted from [1] are shown in Table 3.5. These demonstrate first

order convergence in displacement, stress, and dilation for both types of meshes.

Example 3.4 (Comparison with WG(P 2
1 , Prm;P

2×2
0 , P0) method). This example is directly

taken from [20] p. 359 testcase 9.3. In particular, Ω = (0, 1)2, λ = 1, µ = 0.5.
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Table 3.5: Example 3.3: Results of WG(Q2
0, Q

2
0;RT 2

[0], Q0) on rectangular meshes and asymptotically

parallelogram trapezoidal meshes adopted from [1]

Rectangular meshes

1/h ‖u− u◦
h‖ ‖σ − σh‖ ‖∇ · u−∇w · uh‖

23 3.032e-02 1.547e-01 1.002e-01

24 1.520e-02 7.752e-02 5.038e-02

25 7.605e-03 3.878e-02 2.522e-02

26 3.803e-03 1.939e-02 1.261e-02

Rate 1st order 1st order 1st order

Asymp. parallelogram trapezoidal meshes

1/h ‖u− u◦
h‖ ‖σ − σh‖ ‖∇ · u−∇w · uh‖

23 3.106e-02 1.762e-01 1.046e-01

24 1.556e-02 8.756e-02 5.248e-02

25 7.784e-03 4.368e-02 2.625e-02

26 3.892e-03 2.182e-02 1.312e-02

Rate 1st order 1st order 1st order

Numerical results for the WG(Q2
0, Q

2
0;RT

2
[0], Q0) method developed in this chapter and for the

WG(P 2
1 , Prm;P

2×2
0 , P0) method with ρ = 1 derived from [20] are shown in Table 3.6 for a se-

quence of rectangular meshes. As expected, the lowest-order WG method derived in this chapter

exhibits first order convergence in displacement and stress. For the WG method derived in [20],

the displacement has 2nd order convergence, since linear polynomials are used for approximation.

However, its stress has only 1st order convergence, since the discrete weak gradient is in P 2×2
0 and

the discrete weak divergence is in P0. For both WG methods, numerical dilation exhibit super-

convergence. However, this phenomena is specific to this example and the theoretical convergence

rates are just one.

Example 3.5 (Schur complement). For this three-dimensional example, Ω = (0, 1)3, λ =

µ = 1, the known exact solution for displacement is

u =
1

3π




sin(πx) cos(πy) cos(πz)

cos(πx) sin(πy) cos(πz)

cos(πx) cos(πy) sin(πz)



. (3.70)

Accordingly, the dilation is
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Table 3.6: Example 3.4: Results of two WG methods on rectangular meshes

WG (Q2
0, Q

2
0;RT

2
[0], Q0)

1/h ‖u− u◦
h‖ ‖σ − σh‖ ‖∇ · u−∇w · uh‖

23 6.029e-02 2.823e-02 1.104e-03

24 3.015e-02 1.404e-02 3.132e-04

25 1.507e-02 7.011e-03 8.648e-05

26 7.538e-03 3.504e-03 2.347e-05

Rate 1st order 1st order ≈ 1.85
WG (P 2

1 , Prm;P
2×2
0 , P0) with ρ = 1

1/h ‖u− u◦
h‖ ‖σ − σh‖ ‖∇ · u−∇w · uh‖

23 5.750e-03 4.489e-02 6.621e-03

24 1.483e-03 2.082e-02 2.087e-03

25 3.746e-04 1.007e-02 6.093e-04

26 9.394e-05 4.980e-03 1.711e-04

Rate 2nd order 1st order ≈ 1.75

Table 3.7: Example 3.5: Lowest-order WG solver on hexahedral meshes: Single-matrix approach

1/h ‖u− u◦
h‖ ‖σ − σh‖ ‖∇ · u−∇w · uh‖ DOFs #Itr

4 2.488e-02 3.557e-01 1.361e-01 912 116

8 1.289e-02 1.875e-01 7.034e-02 6720 312

16 6.552e-03 9.564e-02 3.574e-02 51456 706

32 3.291e-03 4.795e-02 1.793e-02 402432 1415

64 1.648e-03 2.398e-02 8.968e-03 3182592 2748

Rate 0.97 0.97 0.98

∇ · u = cos(πx) cos(πy) cos(πz). (3.71)

The body force is f = 6π2(λ+ 2µ)u and the exact stress is

σ =




σxx σxy σxz

σyx σyy σyz

σzx σzy σzz



,

where
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Table 3.8: Example 3.5: Lowest-order WG on hexahedral meshes: Schur-complement approach

1/h ‖u− u◦
h‖ ‖σ − σh‖ ‖∇ · u−∇w · uh‖ DOFs #Itr

4 2.488e-02 3.557e-01 1.361e-01 720 69

8 1.289e-02 1.875e-01 7.034e-02 5184 168

16 6.552e-03 9.564e-02 3.574e-02 39168 352

32 3.291e-03 4.795e-02 1.793e-02 304128 659

64 1.648e-03 2.398e-02 8.968e-03 2396160 1292

Rate 0.97 0.97 0.98





σxx = σyy = σzz = (3λ+ 2µ)/3 cos(πx) cos(πy) cos(πz),

σxy = (−2µ/3) sin(πx) sin(πy) cos(πz),

σxz = (−2µ/3) sin(πx) cos(πy) sin(πz),

σyz = (−2µ/3) cos(πx) sin(πy) sin(πz).

(3.72)

This problem is solved using WG(Q3
0, Q

3
0;RT

3
[0], Q0) on a sequence of hexahedral meshes

adopted from [82], which are smooth perturbations of brick meshes. Specifically, the hexahedral

mesh nodes are 



x = x̂+ 0.03 sin(3πx̂) cos(3πŷ) cos(3πẑ),

y = ŷ − 0.04 cos(3πx̂) sin(3πŷ) cos(3πẑ),

z = ẑ + 0.05 sin(3πx̂) cos(3πŷ) sin(3πẑ),

where (x̂, ŷ, ẑ) are the brick mesh nodes. Both single-matrix and Schur-complement approaches

are tested. As shown in Tables 3.7 and 3.8, the errors in displacement, stress, and dilation are the

same, since two equivalent discrete linear systems are solved. However, it can be observed that the

numbers of iterations for the Schur-complement approach are about half of those for the single-

matrix approach. Additionally, the Schur-complement approach has the advantage that there are

approaches to compute it without forming the block matrix first, which makes it beneficial for large

problems which may be memory-bound on some machines.

Example 3.6 (A nearly incompressible block under compression). This example is taken

from [83]. An elastic body has elasticity modulus E = 240.56595979 and Poisson’s ratio ν =

0.499899987, respectively. Accordingly, its Lamé constants are λ = 4.00837688 ∗ 105 and µ =
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8.0194 ∗ 101. This brick-shaped body is under compression on the middle part of its two opposite

surfaces. Utilizing symmetry, we consider the top-upper-right octant of the brick domain and set

the origin at the center to give an elasticity problem posed on the unit cube Ω = (0, 1)3, see Figure

3.3 left panel. The symmetry implies that for the displacement u = [u1, u2, u3]
T , we have u1 = 0

on the left face x = 0, u2 = 0 on the back face y = 0, u3 = 0 on the bottom face z = 0. A constant

downward traction [0, 0,−1]T (point-wise) is posed on (0, 1
2
)2 × {z = 1}. No analytical solution

is available for this problem.

Figure 3.3: Example 3.6: A nearly incompressible block under compression. Left: An illustration

for the problem; Right: A profile of the vertical displacement (z-component) obtained from using

WG(Q3
0, Q

3
0;RT 3

[0], Q0) with h = 1/8.

Figure 3.4: Example 3.6: WG(Q3
0, Q

3
0;RT 3

[0], Q0) applied with h = 1/8. Left: Profile of elementwise

normal stress σzz; Right: Elementwise dilation and deformation magnified 100 times. Plots were produced

using VisIt [2]. Note the positive and negative scales are not equal.
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We apply the lowest-order WG(Q3
0, Q

3
0;RT

3
[0], Q0) finite element method on a uniform 8×8×8

brick mesh. The normal stress σzz is shown Figure 3.4 left panel. The numerical dilation and

deformation using the displacement values in element interiors is shown in the right panel of Figure

3.4. The deformation was magnified by 100 times for better visual effect. It can be clearly observed

that the external faces {x = 1} and {y = 1} are deformed inwards, while the top face (lower-left

part) is being deformed downwards. The lowest-order weak Galerkin method is therefore able to

capture the main features of this problem on even a very coarse mesh.

3.7 Summary

Our work is closely related to that in [47] in terms of seeking a simple method. Here is a brief

comparison. The method in [47]:

• is in the mixed formulation and results in a saddle-point problem,

• has fewer DOFs per element: 9 in two dimensions and 18 in three dimensions,

• is 1st order accurate in displacement and stress.

Our methods

• are in primal formulation for displacement, resulting in SPD linear systems,

• have slightly more DOFs per element: 10 in two dimensions and 21 in three dimensions,

• are 1st order accurate in displacement, stress, and dilation,

• are extendable to quadrilateral and hexahedral meshes.

Our methods apply to asymptotically parallelogram (parallelepiped) quadrilateral (hexahedral)

meshes. This assumption on mesh quality is not really a severe restriction, since a polygonal

domain can be partitioned into a family of asymptotically parallelogram quadrilateral meshes [1].

Similarly, a polyhedral domain can be partitioned into a family of asymptotically parallelepiped

hexahedral meshes by nested refinement [84]. We additionally discuss potential extensions and

higher-order methods for this chapter’s finite element methods in Chapter 5.
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Chapter 4

Stokes-Darcy Coupling

4.1 Introduction and Notation

Let ΩD,ΩS ∈ Rd (d = 2, 3) be two open domains of Darcy and Stokes flow, respectively,

which share a (d − 1) dimensional interface ΓI := ΩD ∪ ΩS . To tie back the application of flow

over a riverbed, we will often depict the Stokes domain above the Darcy domain as in Figure 4.1.

Figure 4.1: An example of the Stokes-Darcy configuration for d = 2.

Suppose that each domain has its own respective Dirichlet and Neumann conditions so further-

more ∂ΩD may be partitioned as ∂ΩD = ΓD
D ∪ ΓD

N ∪ ΓI and similarly, ∂ΩS may be partitioned as

∂ΩS = ΓS
D ∪ ΓS

N ∪ ΓI . Given a permeability tensor K which is uniformly SPD on ΩD, a source

term fD ∈ L2(ΩD), and boundary conditions pDD, uD
N , the goal of the Darcy equation is to find

pressure pD ∈ H2(ΩD) so that





∇ · (−K∇pD) = fD in ΩD,

pD = pDD on ΓD
D,

(−K∇pD) · n = uDN on ΓD
N.
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We refer to the Darcy velocity as uD = −K∇pD. To be dimensionally consistent, this defini-

tion should also incorporate the dynamic viscosity µ for the fluid; however, we may think of it as

just another constant factor incorporated in the permeability.

Given a body force fS on a region of incompressible laminar flow and boundary conditions

tSN , uS
D, the goal of the incompressible Stokes equations is to find velocity uS ∈ (H2(ΩS))d and

pressure pS ∈ H1(ΩS) satisfying





−∇ · σ = fS in ΩS ,

σ = 2µε(uS)− pSI in ΩS ,

ε(uS) = (∇uS + (∇uS)T )/2 in ΩS ,

∇ · uS = 0 in ΩS ,

uS = uS
D on ΓS

D,

σn = tSN on ΓS
N.

We will refer to σ as the stress tensor and ε as the strain rate tensor. Along the interface ΓI ,

the fluids interact. Hence, three conditions are imposed: mass conservation, normal stress continu-

ity, and the Beavers-Joseph-Saffman boundary condition. The first two conditions state, roughly

speaking, that matter is neither created nor destroyed and for every action there is an equal and

opposite reaction. The Beavers-Joseph-Saffman boundary condition was developed empirically

by the work of Beavers and Joseph in [35] and then improved by the work of Saffman in [36]

and it may be thought of as a friction term for the interface as the combined effect of the Darcy

permeability and a dimensionless friction coefficient α. Let n be the outward unit normal vector

on a domain when the meaning is unambiguous, let nD and nS be the outward unit normals for

the domains ΩD and ΩS , respectively, and let t be the unit tangent along the interface ΓI . The

interface equations are
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−uS · nS = uD · nD,

nTσn = −pD,

tTσn = − µ1/2α√
tTKt

uS · t.

(4.1)

We will substitute β := µ1/2α√
tTKt

for simplicity of notation. Combined, these equations yield the

single system seeking (pD,uS , pS) satisfying





∇ · (−K∇pD) = fD in ΩD,

pD = pDD on ΓD
D,

(−K∇pD) · n = uDN on ΓD
N,

−∇ · (2µε(uS)− pSI) = fS in ΩS ,

∇ · uS = 0 in ΩS ,

uS = uS
D on ΓS

D,

σn = tSN on ΓS
N,

uD · nD = −uS · nS on ΓI ,

nTσn = −pD on ΓI ,

tTσn = −βuS · t on ΓI .

(4.2)

4.2 Dimensional Analysis

Due to the conflicting use of coefficients and units in existing literature, we briefly perform

some dimensional analysis and discuss the units of the constants shown in Equation 4.2 for clarity.

The easiest variable to approach first is the fluid velocity u, which has units [u] = L1T−1. The

symmetric gradient is a first-order differential operator in space and therefore has units [ε] = L−1.

This is why the ε(u) is referred to as the strain rate tensor, as it has units [ε(u)] = T−1. The relation

σ = 2µε(uS)− pSI implies that stress has the same units as pressure, i.e., [σ] = [p] = M1L−1T−2.

Based on that, and the relation between strain rate and stress, we have [µ] = M1L−1T−1.

Returning to the permeability tensor and recalling that we absorbed the dynamic viscosity, the

units for K are [K] = M−1L3T1. Based on the BJS condition, we may deduce the units for the
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Beavers-Joseph-Saffman constant by observing

[σ] = [µ]1/2[α][K]−1/2[uS ].

Substituting in the known values yields

M1L−1T−2 = (M1L−1T−1)1/2[α](M−1L3T1)1/2(L1T−1).

Hence, the constant α we refer to in the BJS condition is dimensionless.

4.3 Weak Formulation

In order to develop a weak formulation for the finite element scheme to rely on, we begin by

testing the Darcy equation by a test function q ∈ H1
0,ΓD

D
(ΩD) then integrating over ΩD, followed

by integration by parts, the Gauss divergence theorem, ∂ΩD = ΓD
D ∪ΓD

N ∪ΓI , and q|ΓD

D
= 0 yields

∫

ΩD

fDq =

∫

ΩD

−∇ · (K∇pD)q

=

∫

ΩD

K∇pD · ∇q −
∫

∂ΩD

(K∇pD) · nq

=

∫

ΩD

K∇pD · ∇q +
∫

ΓD

D

uD · nq +
∫

ΓD

N

uD · nq +
∫

ΓI

uD · nDq

=

∫

ΩD

K∇pD · ∇q +
∫

ΓD

N

uDNq −
∫

ΓI

uS · nSq.

Since the quantity uDN is known, it may be moved to the opposite side, yielding

∫

ΩD

K∇pD · ∇q −
∫

ΓI

uS · nSq =

∫

ΩD

fDq −
∫

ΓD

N

uDNq.

Testing the first Stokes equation by a test function v ∈ XS,0 and integrating over ΩS yields
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∫

ΩS

fS · v =

∫

ΩS

(−∇ · (2µε(uS)− pSI)) · v

=

∫

ΩS

(2µε(uS)− pSI) : ∇v −
∫

∂ΩS

(2µε(uS)− pSI)n · v

=

∫

ΩS

2µε(uS) : ε(v)−
∫

ΩS

pSI : ∇v −
∫

ΓS

N

σn · v −
∫

ΓI

σn · v

=

∫

ΩS

2µε(uS) : ε(v)−
∫

ΩS

pS∇ · v −
∫

ΓS

N

tSN · v −
∫

ΓI

σn · v.

We have used : to represent the matrix colon product, also known as the dot product or Frobe-

nius inner product of matrices. We also used the fact from Chapter 3 that ε(u) : ∇v = ε(u) : ε(v).

For the Stokes equation, the traction condition tSN is a known quantity, so it may be moved to the

right-hand side. Along the interface ΓI , the vector σn can be decomposed as normal and tangen-

tial components. That is, in two dimensions, σn = (nTσn)n + (tTσn)t. This allows the integral

along ΓI to be simplified further as

−
∫

ΓI

σn · v = −
∫

ΓI

((nTσn)n+ (tTσn)t) · v

= −
∫

ΓI

(nTσn)(n · v) + (tTσn)(t · v)

=

∫

ΓI

pD(nS · v) + β(uS · t)(v · t).

We remark that in three dimensions, there are two orthogonal tangential directions, meaning

that σn must instead be decomposed as σn = (nTσn)n+ (tT1 σn)t1 + (tT2 σn)t2.

This changes the previous integral for a three-dimensional problem to

−
∫

ΓI

σn · v =

∫

ΓI

pD(nS · v) + β1(u
S · t1)(v · t1) + β2(u

S · t2)(v · t2),

where βi represents the constant β corresponding to permeability in tangential direction i. More

concisely, one may write

−
∫

ΓI

σn · v =

∫

ΓI

pD(nS · v) +
d−1∑

i=1

βi(u
S · ti)(v · ti);
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however, to ease the burden of notation, we will write the integrals as we did for the d = 2 case,

but remain mindful of this fact. The resulting weak form of the first Stokes equation is

∫

ΓI

pD(v · nS) +

∫

ΩS

2µε(uS) : ε(v) +

∫

ΓI

β(uS · t)(v · t)−
∫

ΩS

pS∇ · v

=

∫

ΩS

fS · v +

∫

ΓS

N

tSN · v.

Testing the incompressibility equation with a function r ∈ Y yields

−
∫

ΩS

(∇ · uS)r = 0.

For these weak forms, define the bilinear operators

AD(pD, q) =

∫

ΩD

K∇pD · ∇q,

CI(pD,v) =

∫

ΓI

pD(v · nS),

AS(uS ,v) =

∫

ΩS

ε(uS) : ε(v) +

∫

ΓI

β(uS · t)(v · t),

BS(pS ,v) =

∫

ΩS

pS∇ · v,

and define the linear operators

FD(q) =

∫

ΩD

fDq +

∫

ΓD

N

uDNq,

FS(v) =

∫

ΩS

fS · v +

∫

ΓS

N

tSN · v.

Then the weak form of the system of equations may be written with these operators as





AS(uS ,v) −BS(pS ,v) +CI(pD,v) = FS(v),

BS(r,uS) = 0,

−CI(q,uS) +AD(pD, q) = FD(q).

(4.3)
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4.4 The Bernardi-Raugel Space on Quadrilateral Meshes

Before we proceed to the finite element scheme, we will briefly discuss the Bernardi-Raugel

space, which we refer to by BR1. The Bernardi-Raugel space is another classical finite element

space presented in [61] for Stokes flow. The BR1 space is an enrichment of Qd
1 by edge-based

bubble functions motived by the fact that the pair (Qd
1, Q0) is not an LBB stable combination

for Stokes flow. Indeed, the pair (BR1, Q0) is an LBB stable combination for Stokes flow on

quadrilateral meshes, so this motivates its use for our Stokes domain discretization.

Let E be a quadrilateral with vertices Pi(xi, yi)(i = 1, 2, 3, 4) starting at the lower-left corner

and going counterclockwise. Let ei(i = 1, 2, 3, 4) be the edge connecting Pi to Pi+1 with the

modulo convention P5 = P1. Let ni(i = 1, 2, 3, 4) be the outward unit normal vector on edge

ei. A bilinear mapping from (x̂, ŷ) in the reference element Ê = [0, 1]2 to (x, y) in a general

quadrilateral is established as follows





x = x1 + (x2 − x1)x̂+ (x4 − x1)ŷ + ((x1 + x3)− (x2 + x4))x̂ŷ,

y = y1 + (y2 − y1)x̂+ (y4 − y1)ŷ + ((y1 + y3)− (y2 + y4))x̂ŷ.

(4.4)

On the reference element Ê, we have four standard bilinear functions

φ̂4(x̂, ŷ) = (1− x̂)ŷ, φ̂3(x̂, ŷ) = x̂ŷ,

φ̂1(x̂, ŷ) = (1− x̂)(1− ŷ), φ̂2(x̂, ŷ) = x̂(1− ŷ).

(4.5)

After the bilinear mapping defined by (4.4), we obtain four scalar basis functions on E:

φi(x, y) = φ̂i(x̂, ŷ), i = 1, 2, 3, 4. (4.6)

These are used to define eight node-based local basis functions for Q1(E)
2:
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

φ1

0


 ,




0

φ1


 ,



φ2

0


 ,




0

φ2


 ,



φ3

0


 ,




0

φ3


 ,



φ4

0


 ,




0

φ4


 . (4.7)

Furthermore, we define four edge-based scalar functions on Ê:

ψ̂1(x̂, ŷ) = (1− x̂)x̂(1− ŷ), ψ̂2(x̂, ŷ) = x̂(1− ŷ)ŷ,

ψ̂3(x̂, ŷ) = (1− x̂)x̂ŷ, ψ̂4(x̂, ŷ) = (1− x̂)(1− ŷ)ŷ.

(4.8)

They become univariate quadratic functions on respective edges of Ê, and for that reason they are

sometimes referred to as edge-based “bubble functions.” For a generic convex quadrilateral E, we

utilize the bilinear mapping to define

ψi(x, y) = ψ̂i(x̂, ŷ), i = 1, 2, 3, 4. (4.9)

Then we have four edge-based local basis functions on E as shown in Figure 4.2:

bi(x, y) = ni ψi(x, y), i = 1, 2, 3, 4. (4.10)

Figure 4.2: Four edge-based bubble functions used in the BR1 space.

Let Q1(E)
2 be the set of vector-valued mapped bilinear functions on a quadrilateral E. Com-

bining the Q1(E)
2 functions and the bubble functions, the BR1(E) space on the quadrilateral is
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defined as

BR1(E) = Q1(E)
2 + span(b1,b3,b3,b4). (4.11)

The global finite element space is defined by combining all local spaces, but care must be

taken to define the global bubble functions in a consistent manner. This may be done by defining

an orientation for each edge and using that to assign a consistent direction to each bubble function’s

normal vector.

4.4.1 Properties of the (BR1, Q0) Element Pair for Stokes Flow

The (BR1, Q0) pair satisfies several appealing properties which will be beneficial for the ap-

proximation of Stokes flow. First, the addition of bubble functions allows for enrichment of inter-

polation. In [61], the global interpolation operator, denoted here as Ph, is specified as the piecewise

bilinear interpolant at mesh nodes and the bubble function coefficients are so defined that the bulk

flux is captured on each edge ei,

∫

ei

(Phv − v) · n = 0, ∀v ∈ H1
0(Ω). (4.12)

For a polygonal domain ΩS and a shape-regular mesh ES
h consisting of convex quadrilaterals, this

implies that for all E ∈ ES
h ,

(wh,∇ · (Phv − v))E = 0, ∀v ∈ H1
0(Ω), ∀wh ∈ Q0(E). (4.13)

Another property described in [61] is the inf-sup condition. Let Vh be the global BR1 finite

element space on the mesh ES
h and let V0

h be the space of functions in Vh that vanish on all

boundaries. Then the discretization satisfies the inf-sup condition

γ‖wh‖L2(ΩS) ≤ sup
v∈V0

h

(wh,∇ · vh)ΩS

‖ε(vh)‖L2(ΩS)

, ∀wh ∈ Q0(ES
h ), (4.14)

where γ > 0 is a constant independent of mesh size h.
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4.4.2 Implementation Details

This section presents the finite element scheme for the coupled problem, but first we will intro-

duce appropriate notations and spaces.

Let ES
h , ED

h be shape-regular quadrilateral meshes of ΩS ,ΩD, respectively, with size h, and

let ΓI
h be a mesh of ΓI , which is conforming with ES

h and ED
h . Let VS

h ,W
S
h be the global BR1

and piecewise constant spaces on ES
h for the unknowns (uS

h , p
S
h), respectively. Then let V D

h be

the WG(Q0, Q0) space on ED
h for the unknowns {pD,◦

h , pD,∂
h }. Furthermore, we use V

S,0
h , V D,0

h

to denote the subspaces of VS
h , V

D
h consisting of functions that vanish on Dirichlet boundaries,

respectively. Figure 4.3 shows where the degrees of freedom for this multinumerics coupling are

located.

Figure 4.3: Degrees of freedom for the coupled WG(Q0, Q0;AC0) (light green), BR1 (blue), Q0 (dark

red) method for Stokes-Darcy flow.

The Stokes discretization requires 2(#nodes) + (#edges) + (#elements) variables for the

discretization and the Darcy discretization requires (#edges) + (#elements) variables for the

WG(Q0, Q0), making this a very economic combination of finite element methods.

Now we have four discrete bilinear forms defined on these finite element spaces:

67



AS
h(u

S
h ,vh) =

∑

E∈ES

h

2µ

∫

E

ε(uS
h) : ε(vh) +

∑

e∈ΓI

h

∫

e

β(uS
h · tSe )(vh · tSe ), (4.15)

BS
h (p

S
h ,vh) =

∑

E∈ES

h

∫

E

pSh(∇ · vh), (4.16)

CI
h (p

D
h ,vh) =

∑

e∈ΓI

h

∫

e

pD,∂
h (vh · nS), (4.17)

AD
h (p

D
h , qh) =

∑

E∈ED

h

∫

E

(K∇wp
D
h ) · ∇wqh, (4.18)

and two discrete linear forms

FS
h (vh) =

∑

E∈ES

h

∫

E

f · vh +
∑

e∈ΓS

N,h

∫

e

tSN · vh, (4.19)

FD
h (qh) =

∑

E∈ED

h

∫

E◦

sq◦h −
∑

e∈ΓD

N,h

∫

e

uDNq
∂
h −

∑

E∈ED

h

∫

E

Qh(−KfD) · ∇wqh, (4.20)

where Qh is the local projection from L2(ΩD)2 to the broken AC0 space.

Our finite element scheme for the coupled Stokes-Darcy flow problem is: Seek uS
h ∈ VS

h ,

pSh ∈ W S
h , and pDh ∈ V D

h such that uS
h |ΓS

D
= Ph(u

S
D), p

D
h |ΓD

D
= Q∂

h(p
D
D), and for any vh ∈ V

S,0
h ,

rh ∈ W S
h , and qh ∈ V D,0

h , there holds





AS
h(u

S
h ,vh) −BS

h (p
S
h ,vh) +CI

h (p
D
h ,vh) = FS

h (vh),

BS
h (rh,u

S
h) = 0,

−CI
h (qh,u

S
h) +AD

h (p
D
h , qh) = FD

h (qh).

(4.21)

Note that the assembly for each of the discrete bilinear forms AS
h ,BS

h and AD
h is handled almost

as with the independent Stokes or Darcy problem. An important part of this implementation is the

handling of the interface term CI
h and the BJS condition within the AS

h term.

After a numerical Darcy pressure pDh is obtained from solving the sparse monolithic system,

we define the numerical Darcy velocity by postprocessing the numerical Darcy pressure by
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uD
h = Qh(−K(∇wp

D
h − fD)). (4.22)

The numerical Darcy velocity is used in the upcoming section to show the weak Galerkin dis-

cretization provides conservation properties for the flow in the Darcy domain.

4.5 A Priori Error Analysis

This section presents a rigorous analysis for the new finite element scheme. For ease of pre-

sentation, we adopt the following assumptions.

(i) K = κI. For analysis on Darcy solvers with a general permeability, see [23].

(ii) fD = 0. Then uD = −κ∇pD and uD
h = −κ∇wp

D
h due to (i) and (4.22).

(iii) Homogeneous pure Dirichlet boundary conditions are posed for both Stokes and Darcy parts.

We define the following energy semi-norms for vh ∈ VS
h and qh ∈ V D

h :

|||vh|||2h = AS
h(vh,vh), |||qh|||2h = AD

h (qh, qh), (4.23)

which induce an energy semi-norm on the space VS
h × V D

h :

|||(vh, qh)|||2h = |||vh|||2h + |||qh|||2h. (4.24)

4.5.1 Properties of Operators and Subspaces

For the Stokes part, let πh as the local L2-projection operator from L2
0(Ω) to W S

h . We start our

analysis by observing that Lemmas 2.1, 2.2, 2.3, 2.4 all apply to this choice of finite element space

per the discussion in Chapter 2.

Under the assumption K = κI, Lemma 2.1 implies that

Qh(K∇pD) = K(Qh∇pD) = K∇w(Qhp
D).
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Lemma 4.1. (Conservation of mass for Darcy flow) For any E ∈ ED
h , there holds

∫

E∂

uD
h · n =

∫

E

f. (4.25)

Proof. This statement is common in the literature for weak Galerkin methods for Darcy flow, but

the only difference here is we choose vh = 0, rh = 0, and qh = {χE◦ , 0} in (4.21). The remainder

of the proof follows from applying the conversion to trace and definition of the Darcy velocity (see

also [4, 62]).

Lemma 4.2. (Bulk flux continuity for Darcy flow) For any two elements E1, E2 ∈ ED
h which share

an interior edge e, their respective local velocities uD
h,1,u

D
h,2 satisfy

∫

e

uD
h,1 · n1 +

∫

e

uD
h,2 · n2 = 0. (4.26)

Proof. This is another common statement for weak Galerkin methods for Darcy flow, and just

as in Lemma 4.1, we choose vh = 0, rh = 0, but qh = {0, χe}. The remainder of the proof

may be obtained by applying a conversion to trace and definition of numerical Darcy velocity (see

also [4, 62]).

4.5.2 Existence and Uniqueness

In this subsection, we prove the existence and uniqueness of the finite element scheme (4.21).

It suffices to show the uniqueness, since the discrete linear system is finite-dimensional and square.

This will be accomplished by setting the source terms to zero and then showing that all parts of the

discrete solution are zero. Thus, we consider the special system





AS
h(u

S
h ,vh) −BS

h (p
S
h ,vh) +CI

h (p
D
h ,vh) = 0,

BS
h (rh,u

S
h) = 0,

−CI
h (qh,u

S
h) +AD

h (p
D
h , qh) = 0.

(4.27)

We set vh = uS
h , rh = pSh , and qh = pDh , and sum the equations to obtain
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∣∣∣∣∣∣(uS
h , p

D
h )
∣∣∣∣∣∣2

h
= AS

h(u
S
h ,u

S
h) +AD

h (p
D
h , p

D
h ) = 0.

This immediately implies ε(uS
h) = 0, uS

h · t = 0, and ∇wp
D
h = 0. The fact that the Dirichlet

boundary in the Stokes domain is nonempty implies uS
h = 0. The discrete inf-sup condition (4.14)

then implies pSh = 0. Finally, the norm property of discrete weak gradient from Lemma 2.4 implies

pDh ≡ 0. Furthermore, from this we conclude |||(·, ·)|||h is a norm on V
S,0
h × V D,0

h .

4.5.3 Error Equations

We split the errors of finite element solutions as discrete errors and projection errors. The

discrete errors are defined as

eSh = Phu
S − uS

h , eSh = πhp
S − pSh , eDh = Qhp

D − pDh , (4.28)

The projection errors are defined as

uS −Phu
S , pS − πhp

S , pD −Qhp
D.

In this subsection, we establish error equations to express the above discrete errors in terms of the

projection errors, which are known to be controlled by the regularity of the exact solutions and the

approximation capacity of the finite element subspaces constructed.

Lemma 4.3. (Error equations) Let (uS , pS , pD) be the exact solutions to the coupled Stokes-Darcy

flow problem (4.2) with homogeneous Dirichlet boundary conditions on the whole boundary (ex-

cept the interface). Let (uS
h , p

S
h , p

D
h ) be the numerical solutions obtained from the finite element

scheme (4.21). Then for any vh ∈ V
S,0
h , rh ∈ W S,0

h , and qh ∈ V D,0
h , there holds





AS
h(e

S
h ,vh) −BS

h (e
S
h ,vh) +CI

h (e
D
h ,vh) = GS(uS , pS , pD,vh),

BS
h (rh, e

S
h) = 0,

−CI
h (qh, e

S
h) +AD

h (e
D
h , qh) = GD(uD, qh),

(4.29)
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where 



GS(uS , pS , pD,vh) = AS
h(Phu

S − uS ,vh)

−BS
h (πhp

S − pS ,vh) + CI
h (Qhp

D − pD,vh),

GD(uD, qh) =
∑

E∈ED

h

(Πhu
D −Qhu

D,∇wqh)E.

(4.30)

Proof. To handle Darcy pressure error, we use the 3rd equation in the finite element scheme

(4.21) to obtain

AD
h (e

D
h , qh) = AD

h (Qhp
D, qh)−AD

h (p
D
h , qh)

= AD
h (Qhp

D, qh)−FD
h (qh)− CI

h (qh,u
S
h).

By Lemma 2.1, the first term in the last line is converted to

AD
h (Qhp

D, qh) =
∑

E∈ED

h

(K∇w(Qhp
D),∇wqh)E

=
∑

E∈ED

h

(Qh(K∇pD),∇wqh)E

= −
∑

E∈ED

h

(Qhu
D,∇wqh)E.

(4.31)

To deal with Darcy source term s = ∇ · (−K∇pD), we consider qh ∈ V D,0
h . Then

FD
h (qh) =

∑

E∈ED

h

(s, q◦h)E◦ =
∑

E∈ED

h

(
∇ · (−K∇pD), q◦h

)
E◦

=
∑

E∈ED

h

(∇ · uD, q◦h)E◦ =
∑

E∈ED

h

(∇ · (Πhu
D), q◦h)E◦ .

Note that Πhu
D is in the global AC0 space. By the definition of discrete weak gradient, we have

FD
h (qh) =

∑

E∈ED

h

〈(Πhu
D) · n, q∂h〉E∂ −

∑

E∈ED

h

(Πhu
D,∇wqh)E.

The interpolant in the global AC0 space is continuous. Therefore, the terms for the interior edges

vanish, and the terms for Dirichlet edges satisfy q∂h = 0, so the only surviving terms lie on the
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interface edges. Thus we have

FD
h (qh) =

∑

e∈ΓI

h

〈(Πhu
D) · nD, q∂h〉e −

∑

E∈ED

h

(Πhu
D,∇wqh)E. (4.32)

Combining the above results yields

AD
h (e

D
h , qh) =

∑

E∈ED

h

(Πhu
D −Qhu

D,∇wqh)E

−
∑

e∈ΓI

h

〈(Πhu
D) · nD, q∂h〉e − CI

h (qh,u
S
h).

(4.33)

Therefore, subtracting CI
h (qh, e

S
h) from AD

h (e
D
h , qh) yields

AD
h (e

D
h , qh)− CI

h (qh, e
S
h) = AD

h (e
D
h , qh)− CI

h (qh,Phu
S − uS

h)

= AD
h (e

D
h , qh) + CI

h (qh,u
S
h)− CI

h (qh,Phu
S)

=
∑

E∈ED

h

(Πhu
D −Qhu

D,∇wqh)E −
∑

e∈ΓI

h

〈(Πhu
D) · nD, q∂h〉e

−
∑

e∈ΓI

h

〈(Phu
S) · nS , q∂h〉e

=
∑

E∈ED

h

(Πhu
D −Qhu

D,∇wqh)E +
∑

e∈ΓI

h

〈(Phu
S −Πhu

D) · nD, q∂h〉e.

(4.34)

By the flux-capturing property of theBR1 interpolation operator (4.12), the flux capturing property

of theAC0 interpolation operator (2.33), and the first interface condition, the second sum vanishes,

and one is led to the 3rd error equation in (4.29)
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AD
h (e

D
h , qh)− CI

h (qh, e
S
h) = AD

h (e
D
h , qh)− CI

h (qh,Phu
S − uS

h)

=
∑

E∈ED

h

(Πhu
D −Qhu

D,∇wqh)E +
∑

e∈ΓI

h

〈(uD −Πhu
D) · nD, q∂h〉e

=
∑

E∈ED

h

(Πhu
D −Qhu

D,∇wqh)E

= GD(uD, qh).

(4.35)

To handle the Stokes velocity error, we use the 1st equation in the finite element scheme (4.21).

We remark that while the Stokes discretization is conforming, we proceed carefully due to the CI
h

term to obtain

AS
h(e

S
h ,vh) = AS

h(Phu
S ,vh)−AS

h(u
S
h ,vh)

= AS
h(Phu

S ,vh)−FS
h (vh)− BS

h (p
S
h ,vh) + CI

h (p
D
h ,vh).

(4.36)

Similarly, we utilize Stokes 1st equation to rewrite the forcing term and obtain

FS
h (vh) =

∑

E∈ES

h

(f ,vh)E =
∑

E∈ES

h

(−∇ · σ,vh)E

=
∑

E∈ES

h

(σ,∇vh)E − 〈σn,vh〉E∂

=
∑

E∈ES

h

2µ(ε(uS), ε(vh))E − (pS ,∇ · vh)E − 〈σn,vh〉E∂ .

(4.37)

All normal contributions of stress cancel across the interior edges, leaving only the interface edges,

where σnS is once again decomposed into normal and tangential components, yielding

FS
h (vh) =

∑

E∈ES

h

2µ(ε(uS), ε(vh))E − (pS ,∇ · vh)E

+
∑

e∈EI

h

〈βuS · tS ,vh · tS〉e + 〈pD,vh · nS〉e.
(4.38)

So we have
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FS
h (vh) =

∑

E∈ES

h

2µ(ε(uS), ε(vh))E +
∑

e∈EI

h

〈βuS · tS ,vh · tS〉e

−BS
h (p

S ,vh) + CI
h (p

D,vh).

(4.39)

Therefore,

AS
h(e

S
h ,vh) = AS

h(Phu
S ,vh)−

∑

E∈ES

h

2µ(ε(uS), ε(vh))E

−
∑

e∈EI

h

〈βuS · tS ,vh · tS〉e + BS
h (p

S − pSh ,vh)− CI
h (p

D − pDh ,vh)

= AS
h(Phu

S − uS ,vh) + BS
h (p

S − πhp
S + πhp

S − pSh ,vh)

− CI
h (p

D −Qhp
D +Qhp

D − pDh ,vh)

= AS
h(Phu

S − uS ,vh) + BS
h (e

S
h ,vh)− CI

h (e
D
h ,vh)

− BS
h (πhp

S − pS ,vh) + CI
h (Qhp

D − pD,vh)

= GS(uS , pS , pD,vh) + BS
h (e

S
h ,vh)− CI

h (e
D
h ,vh),

(4.40)

which yields the 1st error equation in (4.29).

4.5.4 Error Estimation

For the approximation capacity of the finite element spaces used for the scheme in this disser-

tation, one has the following results. For any quadrilateral element E, there holds

‖uS −Phu
S‖k . h2−k‖uS‖H2(E), k = 0, 1;

‖pS − πhp
S‖0 . h‖pS‖H1(E).

(4.41)

Additionally, we shall frequently use the following standard trace inequality for any scalar- or

vector-valued H1-function
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hE‖φ‖2e . ‖φ‖20 + h2E|φ|21. (4.42)

Based on these facts, we have

‖(uS −Phu
S) · t‖e . h

3
2
E‖uS‖H2(E). (4.43)

We shall also use the following bounds for norms of a function v ∈ H1(ΩS):

‖∇ · v‖L2(ΩS) . ‖ε(v)‖L2(ΩS) ≤ ‖∇v‖L2(ΩS) ≤ ‖v‖H1(ΩS). (4.44)

Theorem 4.1 (Energy norm error estimate). Let (uS , pS , pD) ∈ H2(ΩS)×H1(ΩS)×H2(ΩD)

be the full-regularity solutions to (1–5) under the assumptions from the beginning of this section.

Let (uS
h , p

S
h , p

D
h ) ∈ V

S,0
h ×W S

h × V D,0
h be the numerical solutions of (4.21). Then

∣∣∣∣∣∣(eSh , eDh )
∣∣∣∣∣∣

h
. h

(
‖uS‖H2(ΩS) + ‖pS‖H1(ΩS) + ‖pD‖H2(ΩD)

)
,

‖eSh‖ . h
(
‖uS‖H2(ΩS) + ‖pS‖H1(ΩS) + ‖pD‖H2(ΩD)

)
.

(4.45)

Proof. Taking vh = eSh , rh = eSh , and qh = eDh in the error equations (4.29) and summing them

yields

∣∣∣∣∣∣(eSh , eDh )
∣∣∣∣∣∣2

h
=
∣∣∣∣∣∣eSh

∣∣∣∣∣∣2
h
+
∣∣∣∣∣∣eDh

∣∣∣∣∣∣2
h
= AS

h(e
S
h , e

S
h) +AD

h (e
D
h , e

D
h )

= GS(uS , pS , pD, eSh) + GD(uD, eDh ).

(4.46)

Part (1) Handling GS(uS , pS , pD, eSh). Recall that

GS(uS , pS , pD,vh) = AS
h(Phu

S − uS ,vh)− BS
h (πhp

S − pS ,vh) + CI
h (Qhp

D − pD,vh).

The three terms on the right-hand side of GS will be estimated individually.

(i) For AS
h(Phu

S − uS , eh), by applying triangle inequalities, Cauchy-Schwarz inequalities,

trace inequalities, and the following fact that is derived from (4.44):
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‖ε(Phu
S − uS)‖L2(ΩS) . ‖Phu

S − uS‖H1(ΩS),

we obtain

∣∣AS
h(Phu

S − uS , eSh)
∣∣

=

∣∣∣∣∣∣
∑

E∈ES

h

2µ(ε(Phu
S − uS), ε(eSh))E +

∑

e∈EI

h

〈β(Phu
S − uS) · tS , eSh · tS〉e

∣∣∣∣∣∣

≤ 2µ


∑

E∈ES

h

‖ε(Phu
S − uS)‖2E




1
2

∑

E∈ES

h

‖ε(eSh)‖2E




1
2

+


∑

e∈EI

h

‖(Phu
S − uS) · tS‖2e




1
2

∑

e∈EI

h

‖β 1
2eSh · tS‖2e




1
2

. h‖uS‖H2(ΩS)

∣∣∣∣∣∣eSh
∣∣∣∣∣∣

h
+ h

3
2‖uS‖H2(ΩS)

∣∣∣∣∣∣eSh
∣∣∣∣∣∣

h
.

(4.47)

For BS
h (p

S − πhp
S , eSh), we apply similar techniques to obtain

∣∣BS
h (p

S − πhp
S , eSh)

∣∣ =
∣∣∣
∑

E∈ES

h

(pS − πhp
S ,∇ · eSh)E

∣∣∣

≤


∑

E∈ES

h

‖pS − πhp
S‖2E




1
2

∑

E∈ES

h

‖∇ · eSh‖2E




1
2

≤ ‖pS − πhp
S‖L2(ΩS)‖∇ · eSh‖L2(ΩS)

. h‖pS‖H1(ΩS)‖ε(eSh)‖L2(ΩS)

≤ h‖pS‖H1(ΩS)

∣∣∣∣∣∣eSh
∣∣∣∣∣∣

h
.

(4.48)

Finally, for CI
h (p

D −Qhp
D, eSh), we estimate its interface terms by using the techniques for duality

pairing in [64]. This yields
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∣∣CI
h (p

D −Qhp
D, eSh)

∣∣ =

∣∣∣∣∣∣
∑

e∈EI

h

〈pD −Qhp
D, eSh · n〉e

∣∣∣∣∣∣

≤ ‖pD −Qhp
D‖

H−
1
2 (ΓI

h)
‖eSh · n‖

H
1
2 (ΓI

h)

≤ h‖pD‖
H

1
2 (ΓI)

‖eSh‖H1(ΩS

h )

≤ h‖pD‖H1(ΩD)

∣∣∣∣∣∣eSh
∣∣∣∣∣∣

h
,

(4.49)

where the inequalities for eSh are due to a trace inequality and then the Korn’s inequality.

Part (2) Handling GD(uD, eDh ). Recall that

GD(uD, qh) =
∑

E∈ED

h

(Πhu
D −Qhu

D,∇wqh)E.

This involves two approximations to uD. Each converges with first order. Based on the approxi-

mation capacity of Πh,Qh (and triangle inequalities), we have, for each element E,

‖Πhu
D −Qhu

D‖E ≤ ‖Πhu
D − uD‖E + ‖uD −Qhu

D‖E . h‖uD‖H1(E).

Then by the Cauchy-Schwarz inequality, we have

GD(uD, eDh ) =
∑

E∈ED

h

(Πhu
D −Qhu

D,∇we
D
h )E

≤


∑

E∈ED

h

‖Πhu
D −Qhu

D‖2E




1
2

∑

E∈ED

h

‖∇we
D
h ‖2E




1
2

. h‖uD‖H1(ΩD)

1√
κ

∣∣∣∣∣∣eDh
∣∣∣∣∣∣

h
,

(4.50)

where in the last step we have used the fact
∣∣∣∣∣∣eDh

∣∣∣∣∣∣2
h
≥ κ

∑
E∈ED

h
‖∇we

D
h ‖2E .

Combining these results, noting that ‖uD‖1 . ‖pD‖2 and dividing both sides by
∣∣∣∣∣∣(eSh , eDh )

∣∣∣∣∣∣
h

yields the first inequality in (4.45).

78



Part (3) Handling ‖eSh‖. First, we remark that solving the first error equation (4.29) for BS
h

yields

∣∣BS
h (e

S
h ,vh)

∣∣ =
∣∣AS

h(e
S
h ,vh) + CI

h (e
D
h ,vh)− GS(uS , pS , pD,vh)

∣∣ .

This holds true for each vh ∈ V
S,0
h , so we may additionally restrict v|ΓI ≡ 0, for which we denote

by v ∈ V0
h ⊂ V

S,0
h to obtain

∣∣BS
h (e

S
h ,vh)

∣∣ =
∣∣AS

h(e
S
h ,vh)− GS(uS , pS , pD,vh)

∣∣

.
∣∣∣∣∣∣eSh

∣∣∣∣∣∣
h
|||vh|||h + h

(
‖uS‖H2(ΩS) + ‖pS‖H1(ΩS) + ‖pD‖H2(ΩD)

)
|||vh|||h

. h
(
‖uS‖H2(ΩS) + ‖pS‖H1(ΩS) + ‖pD‖H2(ΩD)

)
|||vh|||h.

(4.51)

The inf-sup condition for BS
h is well-known in the case of Stokes flow [61], and it applies to

vh ∈ V0
h. Therefore, we have

‖eSh‖L2(ΩS) . sup
v∈V0

h

|BS
h (e

S
h ,vh)|

|||vh|||h

. h
(
‖uS‖H2(ΩlS) + ‖pS‖H1(ΩS) + ‖pD‖H2(ΩD)

)
,

(4.52)

which concludes the proof.

Later on in numerical experiments, we shall also observe that

• L2-norm of Stokes velocity errors exhibits 2nd order convergence;

• L2-norm of Darcy pressure errors exhibits 1st order convergence.

4.6 Numerical Results

This section presents numerical experiments to demonstrate accuracy and efficiency of our new

finite element solver for coupled Stokes-Darcy flow problems.

Example 4.1 (Known analytical solutions). First we consider an example that has a known

analytical solution. The example is taken from [55]. Specifically, the domain for Stokes flow is
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ΩS = (0, π) × (0, 1), the domain for Darcy flow is ΩD = (0, π) × (−1, 0), and the interface is

ΓI = (0, π) × {y = 0}. Fluid viscosity is set as µ = 1, the permeability matrix is K = I, and

fD = 0.

For the Stokes part, the exact solutions for velocity and pressure are

uS(x, y) =




cos(x)v′(y)

sin(x)v(y)


 , pS(x, y) = sin(x) sin(y),

where v(y) = 1
π2 sin

2(πy)− 2. Clearly, ∇ · uS = 0. For the Darcy part, one has

pD(x, y) = sin(x)(ey − e−y), uD(x, y) = −




cos(x)(ey − e−y)

sin(x)(ey + e−y)


 .

We verify that the divergences satisfy

∇ · uD = 0, ∇ · uS = 0.

The strain and stress tensors for the Stokes domain are

∇uS =




− sin(x)v′(y) cos(x)v′′(y)

cos(x)v(y) sin(x)v′(y)


 ,

ε(uS) =




− sin(x)v′(y) 1
2
cos(x)(v(y) + v′′(y))

1
2
cos(x)(v(y) + v′′(y)) sin(x)v′(y)


 ,

σ =




sin(x)(−2µv′(y)− sin(y)) µ cos(x)(v(y) + v′′(y))

µ cos(x)(v(y) + v′′(y)) sin(x)(2µv′(y)− sin(y))


 .

Therefore, the resulting source term and body force are
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fD = ∇ · uD = 0,

fS =




(−2µv′(y)− sin(y)) cos(x) + µ cos(x)(v′(y) + v′′′(y))

(−µ sin(x)(v(y) + v′′(y)) + (2µv′′(y)− cos(y)) sin(x)


 ,

where v′(y) = 1
π
sin(2πy), v′′(y) = 2 cos(2πy), v′′′(y) = −4π sin(2πy). To verify the interface

conditions, conservation of mass along ΓI requires

uD · nD = −uS · nS

−




cos(x)(ey − e−y)

sin(x)(ey + e−y)


 · nD = −




cos(x)v′(y)

sin(x)v(y)


 · nS

−




0

2 sin(x)


 · nD = −




0

−2 sin(x)


 · nS ,

which is satisfied since nD = −nS along ΓI . Along the interface, σ = 0, so the continuity of

normal stress equation is satisfied because

nTσn = 0 = −pD.

The BJS condition behaves similarly. Because uS is perpendicular to the interface, the BJS

condition yields

tTσnS = 0 = −
(

α

2
√
K

)
uS · tS .

Example 4.1 is tested on a sequence of uniform rectangular meshes that have n partitions in

each of x, y-directions. In this case, the local AC0 space is the same as the classical RT[0] space.

The numerical results in Table 4.1 demonstrate the proved first order convergence in the discrete

error energy norm, in addition to the Stokes pressure error L2-norm. We remark that although it
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Table 4.1: Example 4.1: Errors and convergence rates

n
∣∣∣∣∣∣(eSh , eDh )

∣∣∣∣∣∣
h

Rate ‖uS − uS
h‖L2 Rate ‖pS − pSh‖L2 Rate ‖pD − pDh ‖L2 Rate

8 7.8459e-01 – 1.2081e-02 – 1.0693e-01 – 2.7925e-01 –

16 4.0554e-01 0.95 2.7332e-03 2.14 5.3511e-02 0.99 1.4022e-01 0.99

32 2.0445e-01 0.99 6.6254e-04 2.04 2.6757e-02 0.99 7.0187e-02 0.99

64 1.0244e-01 0.97 1.6429e-04 2.01 1.3378e-02 1.00 3.5103e-02 0.99

128 5.1250e-02 0.99 4.0987e-05 2.00 6.6892e-03 0.99 1.7553e-02 0.99

was not proved, for this numerical example, we observe second order convergence in the Stokes

velocity error L2-norm and first order convergence in the Darcy pressure error L2-norm.

Example 4.2 (Lid-driven cavity + heterogeneous permeability). This example couples the

well-known lid-driven cavity problem for Stokes flow and Darcy flow in a heterogeneous per-

meability field. Here the Stokes domain is ΩS = (0, 2) × (0, 1) whereas the Darcy domain is

ΩD = (0, 2)× (−1, 0).

For the Stokes part, µ = 1. There is no body force. Dirichlet boundary conditions are posed.

Specifically, for the top-side (y = 1), one has uS
D = [1, 0]T ; for the left- and right-sides, a no-slip

boundary condition (u = 0) is posed.

For the Darcy part, a heterogeneous permeability K = κI is given. Specifically, ΩD is divided

uniformly into 10× 5 blocks. Labeling from left to right and top to bottom, these six blocks have a

very low permeability value κ = 10−6: (2, 2), (2, 4), (2, 7), (2, 9), (3, 2), (3, 5). For the remaining

blocks, κ = 1 instead. There is no source, and fD = 0. A no-flow boundary condition (uD ·n = 0)

is posed on the left-, right-, and bottom- sides of the domain.

There is no known analytical solution for comparison, but our new finite element scheme can

capture the main physics features. Shown in Figure 4.4 are the velocity and pressure profiles

obtained on a uniform rectangular mesh with h = 1/20. Here are some qualitative observations.

(i) Smooth flow exchange between the free flow (Stokes) and the porous-medium flow (Darcy)

across the known interface (y = 0): for x > 1, flow travels from the Stokes domain to the

Darcy domain; for x < 1, flow travels from the Darcy domain to the Stokes domain;

(ii) Pressure singularity at the two corners (0, 1), (2, 1) for Stokes flow;
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(iii) Detours of flow path around the six low permeability blocks for Darcy flow.

Figure 4.4: Example 4.2: Numerical velocity and pressure obtained from using CG(BR1, Q0) +

WG(P0, P0;AC0) on a rectangular mesh with h = 1/20. (Velocity is plotted at element centers and the

magnitude is doubled for better visual effect.)

4.7 Summary

There are several noteworthy takeaways from this method. This method

• uses a primal formulation for Darcy flow with a mixed formulation for Stokes flow,

• satisfies an inf-sup condition for the energy norm in Equation (4.24),

• satisfies continuity of mass and bulk flux in the Darcy domain,

• has first-order convergence of uS and pD in the energy norm,

• has first-order convergence of pS in the L2 norm,

• uses 5 degrees of freedom per element in the Darcy domain and 13 degrees of freedom per

element in the Stokes domain.
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We also observe second-order convergence for Stokes velocity in the L2 norm, although it was

not proven.
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Chapter 5

Conclusion

We have presented rigorous analysis and numerical results for two FEMs based on WG dis-

cretizations. Each of the presented methods satisfies physically meaningful properties while main-

taining a relatively cheap computational cost.

5.1 Locking-Free WGFEMs for Linear Elasticity

This method presented in Chapter 3 is a locking-free stabilizer-free approach to solving lin-

ear elasticity in the displacement formulation on quadrilateral and hexahedral meshes. It uses

piecewise constants on element interiors and the mesh skeleton, and it additionally avoids direct

discretization of other variables such as stress, therefore requiring very few variables in the global

linear system compared to other methods. This method uses the Schur complement to remove the

element interior degrees of freedom from the global system, reducing the number of variables even

further.

Building off the general analysis performed in Chapter 2, locking-free first-order convergence

in the L2 norm of displacement is proven for this method, and a comparison with another WGFEM

for linear elasticity is provided. Many numerical examples are provided to verify the robustness of

the solver in two and three dimensions. A low regularity example is tested as an attempt to stress

the method, and the computational advantage from the Schur complement reduction is verified in

another example.

Computational details are provided throughout the chapter and the software implementation is

publicly available in the DarcyLite and Darcy+ software packages.

5.2 Efficient Quadrilateral Solver for Stokes-Darcy Coupling

This method presented in Chapter 4 is an extensible stabilizer-free multinumerics approach to

a coupled interface problem on quadrilateral meshes. It combines the classical Bernardi-Raugel
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pair (BR1, Q0) for Stokes flow on quadrilaterals with the WG(Q0, Q0;AC0) element for to yield a

computationally cheap discretization that satisfies the satisfies the inf-sup condition on the Stokes

domain and mass conservation and bulk flux continuity on the Darcy domain.

First-order convergence in the energy norm for Stokes velocity and Darcy pressure is proven,

and first-order convergence in the L2 norm of Stokes pressure is proven. Some numerical examples

are tested to verify the method behaves as expected, and first-order convergence in the L2 norm is

also observed for the Stokes velocity and Darcy pressure variables.

This software implementation is publicly available in the DarcyLite software package.

5.3 Extensions and Future Work

We expect the work in Chapter 3 extends to WG(Qd
k, Q

d
k;RT

d
[k], Qk) (d = 2 or 3) methods

(k ≥ 1) for linear elasticity on asymptotically parallelogram quadrilateral meshes or asymptoti-

cally parallelepiped hexahedral meshes. This extension would involve more technical analysis, but

it would still contain many of the same ideas. One of the things that changes the analysis is that

Lemma 2.2 no longer holds. Instead, there is an additional term that appears and requires the clas-

sical gradient, which then causes these additional terms to proliferate in the analysis, but otherwise

the analysis is similar.

In Chapter 4 we prove analysis for the case of homogeneous Dirichlet boundary conditions on

both domains with a constant permeability tensor for analysis purposes, but arguments to make

these more general are technicalities. We expect this work generalizes to hexahedral meshes

by instead taking Wgrad as the Arbogast-Tao (ATk) space. Higher order methods may be con-

structed by using the Taylor-Hood pair in the Stokes domain combined with higher polynomial

order WG spaces in the Darcy domain. Another possible extension for this method involves us-

ing WG(Qk, Qk;ACk) discretizations for quadrilaterals on both domains since the ACk offers

divergence-free supplements. As with Chapter 3, the higher order extension of this work would

suffer from a proliferation of additional terms since Lemma 2.2 has additional terms for higher

order methods, but would otherwise remain similar.
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While we presented one use of WGFEMs for a multiphysics problem coupled across an in-

terface in Chapter 4, there are plenty more interesting multiphysics applications that are worth

studying. We believe that the methodology for the analysis of Stokes-Darcy coupling extends to

a larger class of domain decomposition methods and different physics for WGFEMs. Multiscale

FEMs may be viewed as domain decomposition methods as well, and thus similar extensions may

apply.

There are plenty of opportunities for implementation of WGFEMs in parallel programming

models like Message Passing Interface (MPI), Open Multi-Processing (OpenMP), and Compute

Unified Device Architecture (CUDA). This may be done in dedicated WGFEMs software like

DarcyLite and Darcy+ or in larger more general packages like deal.II. While the current

implementation in deal.II does not showcase these models, deal.II contains many inherent

capabilities for handling these computations and is therefore another good choice for future work.
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