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ABSTRACT

BIOLOGICALLY INSPIRED PERCHING FOR AERIAL ROBOTS

Micro Aerial Vehicles (MAVs) are widely used for various civilian and military applications

(e.g., surveillance, search, and monitoring, etc.); however, one critical problem they are facing is

the limited airborne time (less than one hour) due to the low aerodynamic efficiency, low energy

storage capability, and high energy consumption. To address this problem, mimicking biological

flyers to perch onto objects (e.g., walls, power lines, or ceilings) will significantly extend MAVs’

functioning time for surveillance or monitoring related tasks. Successful perching for aerial robots,

however, is quite challenging as it requires a synergistic integration of mechanical and computa-

tional intelligence. Mechanical intelligence means mechanical mechanisms to passively damp out

the impact between the robot and the perching object and robustly engage the robot to the perching

objects. Computational intelligence means computation algorithms to estimate, plan, and control

the robot’s motion so that the robot can progressively reduce its speed and adjust its orientation to

perch on the objects with a desired velocity and orientation.

In this research, a framework for biologically inspired perching is investigated, focusing on

both computational and mechanical intelligence. Computational intelligence includes vision-based

state estimation and trajectory planning. Unlike traditional flight states such as position and ve-

locity, we leverage a biologically inspired state called time-to-contact (TTC) that represents the

remaining time to the perching object at the current flight velocity. A faster and more accurate

estimation method based on consecutive images is proposed to estimate TTC. Then a trajectory

is planned in TTC space to realize the faster perching while satisfying multiple flight and perch-

ing constraints, e.g., maximum velocity, maximum acceleration, and desired contact velocity. For

mechanical intelligence, we design, develop, and analyze a novel compliant bistable gripper with

two stable states. When the gripper is open, it can close passively by the contact force between
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the robot and the perching object, eliminating additional actuators or sensors. We also analyze the

bistability of the gripper to guide and optimize the design of the gripper. At the end, a customized

MAV platform of size 250 mm is designed to combine computational and mechanical intelligence.

A Raspberry Pi is used as the onboard computer to do vision-based state estimation and control.

Besides, a larger gripper is designed to make the MAV perch on a horizontal rod. Perching experi-

ments using the designed trajectories perform well at activating the bistable gripper to perch while

avoiding large impact force which may damage the gripper and the MAV. The research will enable

robust perching of MAVs so that they can maintain a desired observation or resting position for

long-duration inspection, surveillance, search, and rescue.
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Chapter 1

Introduction

1.1 Background

Recent years have witnessed the growing popularity of Micro Aerial Vehicles (MAVs) in recre-

ational, scientific, and military applications. However, MAVs, especially those with multiple ro-

tors, are facing a common critical problem: limited flight time. The reason is that the Renolds

number (Re) decreases with the flyer’s size. Renolds number Re is proportional to the flight ve-

locity and chord length. And flight velocity is proportional to the square root of length [1]. Thus,

the smaller and slower the MAV is, the lower Renolds number it operates at. Furthermore, a lower

Renolds number will induce a smaller maximum lift coefficient CL and a larger drag coefficient

CD [2, 3]. However, glide ratio CL/CD determines flight distance and C1.5
L /CD determines flight

time. On the other hand, energy storage and conversion also suffer at small scales. Batteries are the

most common power supply for MAVs. However, the energy density of the battery is only about

0.15 kWh/kg, while large aircraft fuels is about 12 kWh/kg [4]. As shown in Table 1.1, the flight

time for commercial MAVs is usually less than 30 minutes.

Table 1.1: 10 commercial MAVs with longest flight time

Product Flight time Product dimensions Weight

Autel Robotics EVO Drone 30min 7.8 x 3.8 x 4 inches 1.9 pounds

Sim Too Pro 30min NA 5.95 pounds

DJI Phatom 4 28min 15 x 8.7 x 12.8 inches 8.82 pounds

DJI Mavic Pro 27min 12 x 12 x 12 inches 10 pounds

DJI Inspire 2 27min 59.1 x 59.1 x 39.4 inches 30 pounds

Parrot Bebop 2 25min 15 x 3.5 x 12.9 inches 1.1 pounds

DJI Phantom 3 Standard 25min 15 x 14 x 8.2 inches 8.2 pounds

DJI Phantom 3 Pro 23min 18 x 13 x 8 inches 9.2 pounds

3DR Solo 22min 18 x 18 x 10 inches 3.3 pounds

Yuneec Q500+ 22min 22.2 x 16.5 x 9.4 inches 2.5 pounds
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To address this problem, perching onto objects (e.g., walls, power lines, or ceilings) will signifi-

cantly extend aerial robots’ functioning time as they can save or even harvest energy after perching,

while also maintaining a desired altitude and orientation for surveillance or monitoring [5]. Suc-

cessful perching for aerial robots, however, is quite challenging as it requires not only intelligent

mechanical mechanisms to robustly engage the robot to the perching objects but also fast and accu-

rate estimation, planning, and control of the robot motion so that the robot can progressively reduce

its speed and adjust its orientation to perch on the objects with a desired velocity and orientation.

In recent years, researchers have investigated perching capabilities for aerial robots from both

the mechanical and control aspects. A detailed review can be found in [5], and here we will only

review some representative work. For mechanical investigations, the focus is on how to design

robust perching mechanisms to ensure successful perching. Doyle et al. developed an integrated,

compliant, and underactuated gripping foot as well as a collapsing leg mechanism to enable a

quadcopter to passively perch on the surface with moderate disturbances [6]. Daler et al. designed

a new perching mechanism based on a compliant deployable pad and a passive self-alignment

system. With this mechanism, active control during final touch down is not needed [7]. Pope

et al. designed a mechanism to make a quadcopter fly, perch passively onto outdoor surfaces,

climb, and take off again [8]. Graule et al. utilized controllable electrostatic adhesion to make

a robotic insect perch and take off from surfaces made of various materials [9]. Kovac et al.

designed a 4.6 g perching mechanism which allows UAVs to perch on vertical surface of natural

and man-made materials [10]. For investigations from the control and planning aspect, researchers

have focused on how to generate and track flight trajectories for perching. Moore et al. utilized

linear quadratic regulator trees to plan and track trajectory for fixed-wing aircrafts to perch on

power lines [11]. Mellinger et al. designed a trajectory for quadcopter aggressive maneuvers to

realize flights through narrow gaps and perching on inverted surfaces [12]. They also controlled

quadcopters to perch on inclined surfaces with a downward-facing gripper [13]. Mohta et al.

leveraged visual servoing with two known points on the target surface to achieve perching using

feedback from a monocular camera and an inertial measurement unit (IMU) [14]. In [15], a laser
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sensor is used to detect the perching initiation distance, and a pitch up process is used to assist

the deceleration. Further, in [16], they applied thrust after pitch up which reduces the timing and

sensing requirement for the perching triggering.

However, it’s nontrivial to accomplish reliable and robust perching. It requires both computa-

tional and mechanical intelligence. For the computational intelligence, first of all, the MAVs need

to know their flight states (e.g. position, velocity, and orientation). GPS, LIDAR, and distance

sensor are commonly used devices for estimating flight states. However, the GPS is not able to

work in the indoor environment, LIDAR is heavy for MAVs and detecting perching objects might

be difficult for the distance sensor in some cases. Meanwhile, other than implementing different

kinds of sensors, biological flyers can detect objects and estimate their flight states with their eyes.

Thus, a potential method to estimate flight states is to use the camera. Compared with the previous

sensors, the camera is able to work in the indoor environment and provide more information with

light weight. However, a monocular camera cannot provide states such as position (distance) or

velocity. Meanwhile, from biological study [17], bees use a visual information named time-to-

contact (also known as TTC and tau) to safely land on objects. Inspired by the biological research,

we use the time-to-contact as the flight state for aerial robot perching.

The second aspect of computational intelligence lies in how to utilize the estimated flight states

to design a trajectory as a reference for the perching process. Currently, there are two widely

used time-to-contact trajectory references, namely constant tau and constant tau dot strategy. If the

MAV follows the two tau references, the contact velocity between the MAV and the goal object

would be almost zero or zero, which we name it soft contact. However, soft contact is not ideal

for perching tasks since perching mechanisms (e.g., adhesion pad, microspine) usually require a

non-zero contact velocity to functionalize [10,11,13]. In this case, a trajectory in TTC space needs

to be designed for non-zero contact velocity. In this dissertation, we propose a constant tau dot

based two stage strategy (CTDTS) and an inverse polynomial based two state strategy (IPTS).

Both strategies can realize non-zero contact velocity and IPTS is potentially to be used to satisfy

more flight constraints.
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The last challenge for perching is to design a mechanical intelligent mechanism, a robust grip-

per to engage to the perching objects. In this dissertation, we present a bistable gripper design,

which can switch between a stable open state and another stable closed state. Such a design has

two advantages for perching compared with existing methods [8]. On one hand, it can leverage the

impact force during the perching to passively close, increasing the robustness of the mechanism

and eliminating the requirement for a sensor to detect the impact and an actuator to close the grip-

per. On the other hand, the gripper does not require additional energy input to maintain the stable

states, making it ideal for applications requiring long-duration monitoring or surveillance.

Figure 1.1: Mechanical intelligence and computational intelligence enable aerial robot perching

1.2 Outline and contributions of this dissertation

1.2.1 Outline

As shown in Figure 1.1, this dissertation focus on two main parts of aerial robot perching: com-

putational and mechanical intelligence. Computational intelligence includes flight state estimation
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and trajectory planning and mechanical intelligence details the compliant bistable gripper design.

And in the end, a micro aerial vehicle is developed to integrate both computational and mechanical

intelligence for aerial robot perching.

Chapter 2 first introduces the concept of time-to-contact and literature review on time-to-

contact. Then an image based featureless TTC estimation method is introduced. As an extension

to this featureless method, we consider angular velocities in the estimation method. A comparison

between feature based method and featureless method is provided to show the advantages of the

featureless method. And finally, several preliminary experiments using a mobile robot to estimate

and control TTC with and without angular velocities are carried out.

Since the two widely used TTC references namely, the constant tau and constant tau dot strat-

egy, cannot realize non-zero contact velocity, Chapter 3 provides CTDTS and IPTS for aerial robot

perching. In this chapter, a palm-sized quadcopter, Crazyflie 2.0 is used to conduct the perching

experiment. The TTC is estimated from a motion tracking system based on the definition of TTC:

TTC = X/V , where X is the remaining distance to contact the object and V is the velocity. Ex-

periments based on CTDTS and IPTS show that both strategies can realize no-zero contact velocity

while IPTS can satisfy more flight constraints.

Chapter 4 introduces the bistable mechanism and the compliant bistable gripper as the mechan-

ical intelligence. A mathematical model for the force-displacement characteristic of the gripper is

provided and experiments are carried out to verify the accuracy of the model. In addition, an anal-

ysis for bistability is provided as a guideline for future bistable mechanism design. At the end, a

series of perching experiments for both clipping and encircling method are conducted. The results

show that with properly designed open and closing forces, the compliant bistable gripper is able to

be used for aerial robot perching.

In the end, a customized MAV is designed in Chapter 5 to combine both computational intel-

ligence and mechanical intelligence. A Raspberry Pi 3B+ is used as the onboard computer. The

Raspberry Pi camera is used as the state estimation sensor. In addition, a large bistable gripper

which is assembled with 3D printed Polylactic acid (PLA) parts and shape memory alloys (SMAs)
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is designed as the perching mechanism for the larger customized MAV. The proposed CTDTS and

IPTS are used as reference trajectories to control the MAV to perch on a horizontal rod.

1.2.2 Contributions

The overall research objective of this study is to enable aerial robots with perching capability

based on biologically inspired information: time-to-contact.

The primary contributions to this field from this research are summarized below:

• Leveraged the featureless TTC estimation method to conduct the real-time robot motion

control for the first time. Extended the featureless TTC estimation method when angular

velocities exist during robot movement and verified that the expanded algorithm can achieve

good estimation results.

• Proposed two novel perching trajectories (CTDTS and IPTS) to realize non-zero contact

velocity in the TTC space, which solves the limitation of the two widely used TTC references

since they can only achieve zero contact velocity. Besides, optimized the IPTS to achieve

the fastest perching while satisfying different flight constraints.

• Expanded the usage of bistable mechanisms to the perching field by designing the bistable

gripper for Crazyflie. And thoroughly analyze the bistability of the mechanism to generate

a design guideline by selecting proper design parameters. Finally, Designed experiments to

realize aerial robot perching and object grasping.

• Implemented an aerial robot platform equipped with the onboard computer, camera, and

bistable gripper. Combined the computational intelligence and mechanical intelligence to

enable the aerial robots with the autonomous perching capability.
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Chapter 2

Computational Intelligence: State estimation

One important part of the MAV perching task is the feedback of the flight state. Unlike tradi-

tional flight states such as position, velocity, and orientation, we adopt time-to-contact (TTC) to

estimate how much time is left to contact the goal object with the current velocity. In this chapter,

first, we detail the time-to-contact background and related research, both the estimation algorithm

and the control. Then we introduce a featureless computation method of time-to-contact. Based

on that, we proposed a TTC estimation algorithm considering angular velocities. Several prelim-

inary experiments are conducted: 1) The advantages of the featureless time-to-contact estimation

algorithm compared with the feature-based method are verified. 2) Algorithm considering angular

velocities accuracy is verified. 3) And at the end, the time-to-contact based mobile robot braking

experiment is carried out to show the possibility of TTC being used as a flight state for aerial robot

perching.

2.1 Introduction

In nature, various insects or animals rely on vision to control their motion to negotiate dynamic

and uncertain environments. Insects can land on different surfaces such as ground or trees safely.

Hummingbirds, paragons of precision flight, can brake to gently dock on a flower with pinpoint

accuracy in a very short time [18]. Seabirds can adjust when to close wings before diving into the

water for fish [19]. All of such elegant actions are accomplished only by animals’ eyes, rather than

distance sensors.

By analyzing the continuous images captured by eyes, insects and birds extract the so-called

time-to-contact to guide their motion [20]. Time-to-contact (TTC) is defined as the time it would

take a moving observer to make contact with an object or surface if the current velocity is main-

tained. Comprehensive experimental studies have shown that time-to-contact is a pervasive cue

for animals’ navigation. It has been discovered that bees keep a constant rate of image expan-
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sion to perch on the flowers which is essentially a constant time-to-contact strategy [17]. Films

of pigeons flying to a branch were analyzed, and the results showed that pigeons also adopt time-

to-contact to perch [21]. By taking landing image sequences, fruit flies are also found to leverage

the inverse of time-to-contact to control the landing and obstacle avoidance process [22]. Besides

animals, drivers would also rely on time-to-contact to brake to avoid collision with obstacles or

pedestrians [23].

TTC is a part of the more general tau theory originated from Gibson’s research on the relation-

ship between animals’ visual information and their locomotion [24]. Based on Gibson’s work, Lee

first proposed the concept of TTC by pointing out that rather than distance or speed, drivers lever-

age TTC to determine when to accelerate or decelerate to drive safely [23]. Later, Lee introduced

tau coupling [25] to guide motions in three-dimensional space simultaneously. The basic concepts

of tau theory are as follows [26, 27]:

• A motion gap, denoted as X(t), is the changing gap with respect to time t between the

current state and the goal state. Motion gaps can be distance, force, angle, etc.

• Tau of a motion gap is the time to close this gap at its current closure rate Ẋ(t): τ =

X(t)/Ẋ(t). In the case with the gap being the distance, tau is the same as TTC. In this

chapter, we will use tau or TTC interchangeably since only the distance as a motion gap will

be considered.

• Tau-dot is the time derivative of tau. By maintaining a constant tau-dot, animals and insects

can land or perch on surfaces with a full stop.

Inspired by biological studies, time-to-contact has been already applied to a variety of robotic

platforms such as mobile robots and aerial robots to achieve landing, docking, chasing, obstacle

avoidance, and navigation. For mobile robots, docking and obstacle avoidance are the two main

tasks. Souhila et al. estimated time-to-contact from optic flow to navigate a mobile robot in clut-

tered indoor environment [28]. Kaneta et al. employed time-to-contact to avoid obstacles and

chase another mobile robot, in which they obtained time-to-contact using the object size informa-
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tion from consecutive images [29]. McCarthy et al. utilized time-to-contact to control the docking

of a mobile robot in front of a vertical wall. They estimated time-to-contact using the divergence of

optic flow from image sequences by considering the effects caused by the focus of expansion [30].

For aerial robot platforms, landing and navigation are the two main tasks. Kendoul proposed sev-

eral time-to-contact controllers to control a quadcopter platform to realize the docking, landing,

and navigation [31], of which the time-to-contact is estimated from GPS. To achieve safe landings,

Izzo and Croon proposed different time-to-contact control methods [32]. They estimated time-

to-contact from optical flow divergence and validated their control algorithm using a Parrot AR

drone [33].

There are two widely used time-to-contact estimation methods: size based method [29,34–37]

and optic flow divergence based method [28, 32, 33, 38–40]. For the size based method, time-to-

contact can be calculated from: τ = A/Ȧ, where A is size of a feature or object in the image and

Ȧ is the time derivative of the size. To get the size of the objects, feature extraction and tracking

are needed in successive images which is not only time-consuming but also a challenging problem

in computer vision, especially in natural environments [34]. For the optic flow divergence based

method [33], feature extraction and tracking are also needed for recovering optical flow to estimate

the time-to-contact. Similarly, real time control is impeded by requirements for good features and

time-consuming extraction and tracking processes.

Recently, the shift of pixel has been utilized to estimate the time-to-contact with good estima-

tion results [41,42]. In addition, Horn et al. proposed a new method to estimate the time-to-contact

without relying on feature extraction and tracking, and we call it featureless method in this chapter

[43, 44]. This method directly manipulates all the intensities in two consecutive images based on

the constant brightness assumption to estimate the time-to-contact. Without feature extraction and

tracking, the computation time is shorter and the results are more reliable. Nevertheless, only a

simplified case when a camera with linear velocities is considered. Further, the estimation method

is not applied for the control of robots.
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Figure 2.1: General idea for robot perching based on tau theory

In this chapter, we aim to exploit and extend the featureless direct method proposed by Horn et

al. to estimate the time-to-contact, and then use the estimated time-to-contact to control the motion

of mobile robots using the constant time-to-contact strategy [30] as shown in Figure 2.1. There

are mainly three contributions in this chapter. First, we extend the featureless method to allow

estimation for more general settings when angular velocities exist, which is ubiquitous for robotic

platforms. Second, we improve the estimation results by using Kalman filtering on the estimated

time-to-contact. Third, combining the estimation method and the constant tau theory, we design

an error based controller with gain scheduling strategy to control the motion of a mobile robot for

docking. The estimation and control methods presented in this chapter can be extended to other

robotic platforms, especially for computation-constrained miniature robots [45, 46], for landing,

docking, or navigation.

The rest of this chapter is organized as follows: section 2.2 describes the featureless method to

estimate time-to-contact with and without angular velocities, Kalman filter and the control algo-

rithm. Based on the estimation and control algorithms, section 2.3 details the experimental setup,

results, and discussion. Section 2.4 concludes the chapter.
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2.2 Featureless Based Control Method

In this section, the featureless method to estimate time-to-contact in [44] is introduced first.

Then we extend this method by considering angular velocities. After that, Kalman filter is adopted

to improve the performance of this algorithm. At the end, an error based proportional controller

with gain scheduling is introduced.

Figure 2.2 shows a typical docking experiment scenario: a mobile robot carrying a camera

moves toward a wall with translational velocities Tx, Ty, and Tz and angular velocities ωx, ωy,

and ωz. A camera frame is defined as follows: the origin is at the center of the image sensor, X

axis along the optical axis, Y and Z axes parallel to the horizontal and vertical axis of the image

sensor, respectively. A point with coordinates (X , Y , Z) in the camera frame is projected to the

image frame with coordinates (x, y), where the image frame is a 2-dimensional coordinate frame

in the image plane with the origin located at the principle point, and x and y axes parallel to the

horizontal and vertical directions of the image plane, respectively. The goal of the braking is to

let the robot progressively decrease its speed as it is approaching the wall to finally realize a soft

contact with the wall.
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2.2.1 Time-to-contact Without Angular Velocities

In computer vision, the well-known constant brightness assumption is the brightness I of the

image point (x, y) at time t is constant, which can be written as follows [47]:

vxIx + vyIy + It = 0 (2.1)

where vx = dx/dt, vy = dy/dt are the optic flow vectors, Ix = ∂I/∂x, Iy = ∂I/∂y are the

brightness gradients, and It = ∂I/∂t is the rate of change for brightness with respect to time.

When the camera has both translational velocities and angular velocities as shown in Figure 2.2,

we obtain the optic flow vector equation [48]:















vx = −λTy
X

+ x
Tx
X

+ ωy
xy

λ
− λ2 + x2

λ
ωz + yωx

vy = −λTz
X

+ y
Tx
X

− ωz
xy

λ
+
λ2 + y2

λ
ωy − xωx

(2.2)

where λ is focal length. From Figure 2.2 we can know that time-to-contact can be calculated as:

τ =
X

Tx
(2.3)

Plugging the optic flow equation (2.2) into equation (2.1), we can solve the equation for time-to-

contact, which can be classified into three cases in [43] if the angular velocities are not considered:

Case I

The robot moves along the optical axis which is perpendicular to an upright planar surface:

τ =
1

C
= −

∑

G2

∑

GIt
(2.4)

where G = xIx + yIy, C = Tx
X

and
∑

is an abbreviation of
∑m

i=1

∑n
j=1, where i, j are the pixel

index in an m × n image. Unless otherwise stated,
∑

will have the same meaning in the rest of

this chapter.

12



Case II

The robot translates in an arbitrary direction, but the optical axis is perpendicular to an upright

planar surface:












∑
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IxIy
∑

GIx
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∑

I2y
∑
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∑
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∑
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


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




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
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










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∑
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











(2.5)

where A = −λTy
X

, B = −λTz
X

.

Case III

The robot translates along the optical axis which is relative to an upright planar surface of

arbitrary orientation:













∑

G2x2
∑

G2xy
∑

G2x
∑
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∑
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∑
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∑
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∑
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
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(2.6)

where

P = − pTx
λX0

Q = − qTx
λX0

C =
Tx
X0

m and n are the slopes of planar surface in X and Y directions in camera frame and the surface

equation can be written as

X = X0 + pY + qZ (2.7)

where X0 is the intersection of the optical axis and the surface. In [44], the estimation algorithm

for case II generates the best result when there is only translational movement. Therefore, we adopt

the algorithm in case II for our docking experiments in section III.

2.2.2 Time-to-contact with Angular Velocities

The previous three cases assume there is no angular velocity for the camera, which is not

true for general problems (an aerial robot with a camera is a typical example). As a result, we
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need to extend the method to incorporate angular velocities. To include the angular velocities, we

plug equation (2.2) into the constant brightness assumption equation and consider the surface in

equation (2.7), leading to the following equation:

C(1 +
P

C
x+

Q

C
y)(Ix

A

C
+ Iy

B

C
+G) + JIx +KIy + It = 0 (2.8)

where U and V are the same with previous definition in case II. M , N and W are the same with

previous definition in case III, and















J =
xy

λ
ωy −

λ2 + x2

λ
ωz + yωx

K =
λ2 + x2

λ
ωy −

xy

λ
ωz − xωx

(2.9)

Note that with a gyroscope to measure ωx, ωy, and ωz, we can know J and K for a certain image.

The equation is similar with case IV when the robot is moving with an arbitrary trajectory and

the orientation of the surface is arbitrary in [43]. We can formulate a least square problem to find

the five unknown parameters U , V , M , N and W that minimize the following error sum over the

interested image area:

∑

[C(1 +
P

C
x+

Q

C
y)(Ix

A

C
+ Iy

B

C
+G) + JIx +KIy + It]

2 (2.10)

Letting F = 1 + xP/C + yQ/C and D = IxA/C + IyB/C +G yields

∑

[CFD + JIx +KIy + It]
2 (2.11)

To solve the best values for the five unknown parameters, we differentiate the above sum with

respect to the five parameters and set the results to zero. As a result, the solution is similar with the

one stated in [43] which uses iterations to solve the nonlinear equation. Given an initial guess of

P/C and Q/C, then F is known and we can solve for A, B and C using the following equation:
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(2.12)

where Iω = JIx +KIy + It. Using the estimation of U , V and W , we can solve for the new M ,

N and W using

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(2.13)

Based on the new P , Q and C, we can continue the iteration for new A, B and C. Eventually, a

close approximation of time-to-contact can be obtained after several iterations.

For mobile robots, the case is simplified since the angular velocities ωx, ωy can be neglected

due to relatively small rotation aroundX and Y axis compared to possible rotations around Z axis.

Then we have J = −λ
2 + x2

λ
ωz and K = −xy

λ
ωz. Since in [43], case II gives the best results,

here we use equation (2.5), and equation (2.5) can be rewritten as:
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(2.14)

2.2.3 Kalman Filter

In the preliminary mobile robot docking experiments, the estimated time-to-contact might

abruptly change due to the low quality camera and measurement errors from gyroscope, which

caused the vibration of robot’s speed [49]. To address this problem, we adopt Kalman filter to

smooth the estimated time-to-contact. Kalman filter is widely used for obtaining more precise

measurements by using Bayesian inference and estimating a joint probability distribution over the

variables for each time frame even though there are noise and inaccuracies in the original measure-

ments. Here we set τ as the system state and assume the differential equation is [50]:
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









τi = Akτi−1 +Bkui−1 + wi−1

Zi = Cτi +Dui−1 + vi

(2.15)

where, ui−1 is the system input at time i− 1, Zi is measured time-to-contact at time i, A = C = 1

and B = D = 0, wi−1 = vi are the process and measurement noise respectively. Then the discrete

Kalman filter time predicting equations can be written as:











τ̄i = τi−1

P̄ci = Pci−1 + Ex

(2.16)

where τ̄i is predicted state estimate at time i and τi−1 is the filtered state at time i − 1. And the

update can be written as follows:



























Kci = P̄ci(P̄ci + Ez)
−1

τi = τ̄i +Kci(Zi − τ̄i)

Pci = (1−Kci)P̄ci

(2.17)

where Ex = Ez are process noise covariance and measurement noise covariance respectively. Kci

is the optimal Kalman gain at time i.

2.2.4 Error Based Proportional Controller with Gain Scheduling

After we get the estimation of time-to-contact, a controller can be designed to make the time-

to-contact track some reference trajectory so that the robot can perform different tasks such as

landing, docking and chasing. Let the reference value for time-to-contact τref be a constant value.

It has been verified that keeping a constant time-to-contact can realize a soft contact between the

observer and object [30, 51].

For the experiment, we focus on the mobile robot docking problem shown in Figure 2.2. In this

scenario the robot needs to control its speed as it is approaching the wall to realize a soft contact.

For this problem, a mobile robot with a camera attached moves towards a vertical wall, and we
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have the following equations:










Ẋ = −Tx, X(0) = X0

Ṫx = a, Tx(0) = Tx0

(2.18)

where X is the distance from the camera to the wall, Tx is the robot velocity along X axis of the

camera frame, and a is the acceleration which is in the same direction with Tx.

For this system, a standard proportional controller is widely used [30]:

a = K(τ − τref ) (2.19)

whereK is a constant proportional parameter. Even though this controller works, to get better con-

trol results, we design a new controller which is based on the error with gain scheduling strategy:

a = Kp(τ − τref ) (2.20)

where

Kp =











































































K11, τ ∈ [τref ,
8

7
τref )

K12, τ ∈ [
8

7
τref ,

9

7
τref )

K13, τ ∈ [
9

7
τref ,+∞)

K21, τ ∈ (
6

7
τref , τref ]

K22, τ ∈ (
5

7
τref ,

6

7
τref ]

K23, τ ∈ (0,
5

7
τref ]

(2.21)

where, K11 > K21, K12 > K22, K13 > K23. The proportional gains are based on the errors, so we

call it error based controller in this chapter. Why we design different gains for the same absolute

errors can be explained as follows. When X/Tx is larger than τref , τ = X/Tx can be adjusted to

reference value by increasing Tx. Since X is decreasing as long as Tx > 0, it works similarly with

the standard proportional controller. But, when X/Tx is smaller than τref , the increasing of X/Tx
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is not guaranteed if Tx decreases slowly since X is also decreasing as long as Tx > 0. Therefore,

we design larger proportional gains for positive errors to compensate the decreasing of X .

2.3 Experiment Results and Discussion

In this section, we conduct experiments to validate the performance of estimation and control

algorithms using a mobile robot platform. First, we verify the computational efficiency and accu-

racy of the featureless direct method. Based on this estimation method, the mobile robot docking

experiment is conducted. The performance of the error based controller with gain scheduling strat-

egy is tested. Second, we validate the estimation algorithm with angular velocities using image

sequences when the mobile robot has a specific angular velocity. Based on the extended algorithm,

we implement the estimation method with angular velocity and realize the docking experiment

control using the error based proportional controller with gain scheduling strategy when the robot

has angular velocities. To improve the control performance, we also adopt Kalman filter when

there is angular velocity.

For the general experiment setup, we developed an integrated system shown in Figure 2.3. A

mobile robot (A4WD1 from Robotshop) with four wheel drive serves as the main platform. A

Raspberry Pi 2 is used as the central processing unit to interface with a camera and a gyroscope,

estimate the time-to-contact, and compute the control command. An Arduino board (Arduino Pro

328 from Sparkfun) is employed to achieve closed-loop speed control of the robot. A forward-

facing Raspberry Pi camera module is mounted on the top of the mobile robot with a 3D printed

fixture. To validate the estimation algorithm with angular velocity, a distance sensor (OPT2011

from Automationdirect) is used to get the ground truth of time-to-contact. And an ADC converter

chip (MCP3008 from Sparkfun) is used to get the digital signal. A gyroscope (MPU6050 from

Sparkfun) is also employed to feedback the angular velocity. Several papers with checkerboard

patterns are randomly placed on a wall that the robot will move towards.
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Raspberry Pi 

ADC 

Figure 2.3: The robotic system used for onboard experiments.

2.3.1 Experimental Results without Angular Velocity

In this section, the estimation and control experiments of featureless direct method are con-

ducted. First we verify the computational speed and accuracy of the method, then we carry out the

docking experiment without angular velocities.

Estimation Experiment

In this experiment, we use image sequences to compare the computational speed and accuracy

of featureless direct method with the feature based method. The images are taken while the robot

is moving perpendicular to the wall with a constant speed. The initial distance is 3.81m and the

constant velocity of the robot is 0.57m/s. After taking 150 successive images, the robot will

stop. We estimate the computational speed and accuracy for the optic flow feature based method,

whose source code in Matlab is available [33]. Both estimation experiments are conducted on

Matlab2015a on a desktop (Intel (R) Core (TM) i-74790, 3.6GHz CPU, 4Gb RAM, 64 bit). With

a resolution of 192 × 72 pixels for each image, the computation time for each image pair is listed

in Table 2.1 for the direct featureless method and optical flow based method. In Table 2.1, we also

listed the average absolute error obtained by getting the mean of the difference between the ground
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truth and estimation value. One of the estimation results of featureless direct method and optic

flow based method are illustrated in Figure 2.4.

From the results, it is obvious that the featureless direct method is more computational efficient

compared with optic flow based method. Since every time the optic flow based method will gen-

erate different estimations which depend on feature extraction and tracking, we run the optic flow

based method for 5 times. The result shown in Figure 2.4 is the second estimation result. The 5

estimations generate average absolute error of 0.73, 1.12, 1.64, 1.70 and 1.61 respectively.

It is notable that the estimation error of the featureless direct method in equation (2.5) also

relates to slope of the wall and true time-to-contact. Namely, larger surface slope or true time-to-

contact generates larger estimation error.

Table 2.1: Comparison of different methods

Method Time for each image pair (s) Average absolute error

Featureless direct method 0.037 0.4821

Optic flow(L-K method) based method 0.14 1.3629

Control Experiment

In this experiment, the estimation algorithm for case II in section 2.1.2 and the control law

in equation (2.20) are combined. The reference time-to-contact is set to be 2 s. We set the gain

scheduling parameters K11 = 6, K12 = 8, K13 = 10, K21 = 2, K22 = 4, K23 = 6 respectively.

The robot moves towards a fronto-parallel wall with an initial speed Tz0 of 0.38m/s, maximum

speed Tzmax of 1.14m/s and initial distance of 4.6m. As shown in Figure 2.5, for each control

loop, the Raspberry Pi will control the camera to grab a color image with a resolution of 192×144,

then convert the image into grayscale. Then the Raspberry Pi will run the estimation and control

algorithm, and send the speed command to the Arduino board. Sample images during the motion

are shown in Figure 2.6. Since part of each image includes ground information, we only use the

upper half part of the image (192×72 pixels) for estimation and control. With such a resolution,
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Figure 2.4: The estimation results for featureless direct method and optic flow based method
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Figure 2.5: Schematic for closed-loop control using the featureless estimation method and proportional

controller.

the Raspberry Pi can accomplish a control frequency of 20Hz. Note that in this experiment, the

gyroscope, distance sensor, and Kalman filter are not applied.

To see the control performance of the error based proportional controller with gain scheduling

strategy, five experiments with the standard proportional controller are carried out. Figure 2.7

shows the estimated time-to-contact and robot speed with respect to time without gain scheduling

strategy. Figure 2.8 shows the results of five docking experiments with gain scheduling strategy.

From Figure 2.8(a), we can see that because of the low speed at the beginning, the estimated time-

to-contact is much larger than the reference value, so the robot accelerates to decrease time-to-

contact. After that, the estimated time-to-contact is smaller than the reference value, and the robot

decelerates. Even there exist some vibrations, the time-to-contact approximately stays around the

reference value. The low quality of the camera mainly contributes to these vibrations. Although

there are some vibrations in the estimation, the robot is almost continuously decreasing speed as

22



(a) Image 1 (b) Image 25 (c) Image 50 (d) Image 73

Figure 2.6: Sample images for docking experiment. The four images are from the first experiment of the

error based controller. The first image is dimmer than others because of different light conditions from the

window.

shown in Figure 2.8(b), which realizes the safe docking task. However, some vibrations exist when

the robot is going to stop. These vibrations are caused by the algorithm when the robot is close to

any object [43, 52].

From the results we can see that error based proportional controller generates better perfor-

mance since the average steady state error of time-to-contact is 0.36 s while the standard propor-

tional controller gives the average steady state error of 0.45 s. Especially when the robot is near the

wall and there are less vibrations and the amplitude of the vibrations are smaller compared with

the results of the standard proportional controller.

2.3.2 Experimental Results with Angular Velocities

In this section, we first validate the featureless estimation algorithm with angular velocity, then

use the estimation algorithm and the error based gain scheduling controller to perform the docking

experiment. To test the performance of the Kalman filter in time-to-contact estimation algorithm,

we also perform docking control experiments with and without Kalman filter separately when there

is angular velocity.

Estimation Experiment

To validate the time-to-contact estimation algorithm with angular velocities, first we need to

get the ground truth of time-to-contact. We measure the distance with the distance sensor. Angular

velocity is measured by the gyroscope and sent to Raspberry Pi 2 through I2C communication.
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Figure 2.7: Experiment results for standard proportional controller. (a) is the controlled time-to-contact of

the 5 experiments with the standard proportional controller. The horizontal blue line is τref =2 s. And (b)

is the robot velocity during the experiment. The five colored curves represent the five experiment results

in both figures. For the five experiments, the robot stopped after it took 68, 64, 68, 80, and 75 images,

respectively.
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Figure 2.8: Experiment results for error based proportional controller with gain scheduling strategy. (a)

is the controlled time-to-contact of the 5 experiments with the error based proportional controller. The

horizontal blue line is τref = 2 s. (b) is the robot velocity during the experiment. The five colored curves

represent the five experiment results in both figures. For the five experiments, the robot stopped after it took

73, 66, 67, 80, and 72 images, respectively.
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(a) Image 1 (b) Image 30 (c) Image 60 (d) Image 90

Figure 2.9: Sample images for estimated time-to-contact with angular velocity. The four images are from

the experiment with angular velocity of which the mean is −45 ◦/s around Z axis.

The angular velocity which is about −45 ◦/s is applied by driving the wheels on the two sides with

different speed. In this case, only angular velocity around Z axis exists. The images are acquired

continuously right after the distance and angular velocity are sampled while the robot is moving.

The estimated time-to-contact is computed with equation (2.14) and the ground truth of time-

to-contact value is calculated by: X/Tx. X is the distance from the distance sensor. To compare

the performance of the extended algorithm with the algorithm which does not consider angular

velocities, we also plotted the estimation results of equation (2.5). Figure 2.9 represents the sample

images in the experiment. Figure 2.10 shows the estimation result with Kamlan filter for the

experiment.

From Figure 2.10, we can see that the trend of the estimated time-to-contact of extended algo-

rithm follows the ground truth. The extended algorithm gives the average absolute error of 0.43 s,

while the original algorithm gives the average absolute error of 0.87 s. It verifies the necessity and

the accuracy of the algorithm. Note that the smaller the angular velocity is, the less difference be-

tween the two algorithms is. Nevertheless, there are still some errors. The following reasons may

contribute to the error: (1) Although the robot does not move, the small unevenness of the ground

may lead to rotation about X and Y axis. (2) There is noise when gyroscope measures the angular

velocity. (3) The quality of the camera is not good enough as it has light intensity vibration. (4)

The slope of the wall also influence the estimation result since the algorithm does not consider the

slope.
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Figure 2.10: Time-to-contact with angular velocity

Control Experiment

In this section, we applied the estimation algorithm with angular velocities to control the dock-

ing process of the mobile robot using the error based proportional controller with gain scheduling

strategy. Two experiments are carried out: one with Kalman filter to smooth the estimation value

and the other one without Kalman filter. In these two experiments, the reference value of τ is set

to be 2 s. The robot moves towards a fronto-parallel wall with an initial speed Tx0 of 0.38m/s and

maximum speed Txmax of 0.95m/s . The initial distance from the wall to robot is 4.2m.

From Figure 2.11 and Figure 2.12 we can see that, at the beginning, because of the low speed,

the estimated time-to-contact is much larger than the reference value. Then the error based gain

scheduling controller begins to work to decrease time-to-contact by acceleration. After several

control loops, the estimated time-to-contact is maintained at the reference value. At the end, the

estimated time-to-contact is less than the reference value because of the high speed and short

distance to the wall. The error based controller begins to increase time-to-contact by deceleration.
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Figure 2.11: Experiment results without Kalman filter. (a) is the controlled time-to-contact of the 5 ex-

periments without Kalman filter. The horizontal blue line is τref=2 s. (b) is the robot velocity during the

experiment. The five colored curves represent the five experiment results in both figures. For the five exper-

iments, the robot stopped after it took 133,158,119,157 and 149 images, respectively.
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Figure 2.12: Experiment results with Kalman filter. (a) is the controlled time-to-contact of the 5 experiments

with Kalman filter. The horizontal blue line is τref=2 s. (b) is the robot velocity during the experiment. The

five colored curves represent the five experiment results in both figures. For the five experiments, the robot

stopped after it took 124, 122, 121, 142, and 129 images, respectively.
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Correspondingly, the speed will increase first and then decrease. By comparing the two figures,

it is obvious that Kalman filter plays an important role in smoothing the estimation results and

minimizing the speed vibrations.

2.4 Chapter Summary

Time-to-contact is a biologically inspired concept which can be applied to control the motion

of a robot to fulfill tasks such as landing, perching, or docking. In this chapter, a featureless method

is employed to estimate time-to-contact from image sequences. Such a method does not need to

extract and track features, resulting in more efficient computation compared with other feature

based methods. An error based controller with gain scheduling is implemented together with the

featureless estimation algorithm on a mobile robot platform. The speed of the mobile robot is

successfully controlled to maintain a reference time-to-contact. In addition, we also extended

the featureless estimation algorithm to incorporate angular velocities. Validation experiments and

control experiments are carried out. With the Kalman filter, the estimation algorithm and control

strategy lead to better performance. Future efforts will be focused on the landing control and

navigation of aerial robots. The results presented in this chapter can be readily applied to miniature

robots that only have the vision sensor for navigation and control.
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Chapter 3

Computational Intelligence: Trajectory Planning

The second part of computational intelligence lies in the trajectory planning in TTC space. In

last chapter we investigated how to leverage the constant tau strategy for braking to realize a soft

contact. And a second widely used tau reference is the constant tau dot strategy which can realize

zero contact velocity. However, in the perching scenario, a non-zero contact velocity is usually

necessary to make the perching mechanism functionalize. In this chapter, we propose two tau

based strategies, constant tau dot based two-stage strategy (CTDTS) and inverse polynomial based

two-stage strategy (IPTS), to realize the non-zero contact velocity. And IPTS can satisfy more

constraints with higher order polynomial. To verify the feasibility of CTDTS and IPTS for non-

zero contact velocity based perching tasks. We conduct perching experiments with a palm-size

quadcopter based on CTDTS and IPTS, respectively.

3.1 Introduction

As talk in chapter 1, researchers have investigated aerial robot perching from different perspec-

tives. However, almost all of the existing investigations on perching are position-based, i.e., they

require the precise position feedback either through global positioning systems (GPS) or motion

tracking system, making them unsuitable for autonomous perching in situations where positions

cannot be obtained (e.g., GPS-denied environments). In this chapter, we leverage the concept

of time-to-contact (TTC), defined as the projected time to contact a surface with the current ve-

locity, for the planning and control of aerial perching. Compared with position-based perching

methods, TTC-based methods can utilize simple but effective strategies to achieve autonomous

perching without complex planning and control. Further, it can be potentially realized with on-

board lightweight vision sensors to estimate TTC, which is ideal for miniature aerial robots as they

cannot carry heavy sensors (e.g., LIDAR).
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TTC or tau has been widely found in controlling the motion for humans, animals, and insects.

By estimating TTC from visual feedback, drivers can determine how to avoid collisions [23].

Bees keep a constant rate of image expansion (equivalent to TTC) to land on various vertical

surfaces [17]. Pigeons are discovered to adopt TTC to safely perch on branches [21]. Seabirds can

leverage TTC to adjust the timing to close wings before diving into the water for fish [19].

With biological inspirations, tau theory has also been recently applied to various robotic ap-

plications such as avoiding obstacles or landing on ground [31]. For existing tau-theory based

planning and control, the general architecture is illustrated in Figure 2.1 and can be described as

follows. First, a reference trajectory for tau or TTC is planned off-line based on the desired task

(e.g., perching, docking, or landing). Then by comparing the reference tau with the estimated tau,

which can be obtained from image feedback of cameras, GPS, or distance sensors, a controller is

designed to control the robot’s motion so that the reference tau can be tracked to accomplish the

desired task.

Substantial work has been performed to address the estimation and control problem shown in

Figure 2.1. Although extensive research has been carried out for estimation and control, the trajec-

tory planning problem in tau theory is underexplored. Indeed, most of the existing research simply

utilizes the constant tau dot strategy to generate the reference trajectory of tau [31]. However,

directly applying constant tau dot strategy to perching can only control the contact velocity to be

zero [30,31], which is not always desired for robotic perching. In fact, most perching mechanisms

require a substantial velocity in the direction perpendicular to the perching object to ensure that

gripping mechanisms can robustly attach to the object [13]. For example, the mechanism in [13]

requires a minimum normal velocity of 0.8m/s for successful perching. In such cases with non-

zero contact velocity, the existing tau theory is unlikely to work. To address this problem, we have

extended the tau theory by proposing a two-stage strategy to control the contact speed to a specific

value and validated the theory using a mobile robot [53]. However, the strategy can only satisfy

two constraints (contact velocity and maximum deceleration), making robust perching not feasible

as they normally require several constraints to be satisfied [13, 54]. In this chapter, we propose a
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new planning strategy for TTC-based robotic perching and validate the proposed strategy using a

palm-size quadcopter.

Our major contribution in this chapter is to leverage TTC or tau to accomplish robotic perching,

which requires simpler planning and control compared with position-based approaches. Specifi-

cally, there are two contributions. First, we propose a new two-stage planning method to generate

the reference trajectory for TTC. Such a method can generate optimal trajectories satisfying mul-

tiple constraints required for robust perching. Second, we validate the proposed planning strategy

using a palm-size quadcopter by mapping the planned trajectory in tau space into the commands

acceptable by the quadcopter. Note that in this chapter, although TTC is estimated from the mo-

tion tracking system in the experiments, we plan to integrate our vision-based estimation algo-

rithm [49, 55] with the proposed strategy for vision-based perching using onboard cameras in the

future using a larger quadcopter currently under developments.

The rest of this chapter is organized as follows. Section 3.2 describes existing planning strate-

gies for tau, including the widely used constant tau dot strategy (CTDS) [31] and our recently

proposed constant tau dot based two-stage strategy (CTDTS) [53]. The newly proposed two-stage

strategy will also be discussed in detail. Based on the planned reference, section 3.3 presents a

controller design to track the reference for perching with a quadcopter. To verify the performance

of the proposed planning strategies and control methods, section 3.4 discusses and compares the

simulation and experiment results.

3.2 Tau based trajectory generation

In this section, we first introduce two trajectory generation methods for tau (CTDS and CT-

DTS), discuss the need for new strategies for robust aerial perching, and detail the new inverse of

polynomial based two-stage strategy (IPTS).

As shown in Figure 3.1, the perching problem aims to control the motion of an aerial robot

flying towards a surface to contact the surface with a perching speed in a specific range so that

the gripping mechanism can robustly attach to the surface [56]. Generally, the orientations should
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Figure 3.1: General idea for three tau based strategies for perching, constant tau dot strategy (CTDS),

constant tau dot based two-stage strategy (CTDTS) and inverse of polynomial based two-stage strategy

(IPTS).

also be adjusted appropriately before the final touchdown; however, in this chapter, we will not

consider the attitude maneuvering as our main goal is to investigate the control of contact velocity

through the use of tau. If we establish a coordinate frame attached to the surface with X along the

perching direction, then the gap X(t) < 0 and velocity Ẋ(t) > 0. The desired contact velocity

is Vc ∈ (Vl, Vu), where Vl and Vu are the lower and upper bound for successful perching velocity,

respectively. For different perching mechanisms, Vl and Vu vary and can be obtained experimen-

tally. Without loss of generality, we assume the initial velocity is larger than the required contact

velocity Ẋ(0) > Vc since biological organisms generally decelerate to perch [5]. Let tc be the time

when contact occurs, then the non-zero contact velocity requirement is Ẋ(tc) = Vc 6= 0.
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3.2.1 Constant tau dot strategy (CTDS)

For braking or landing problem, the constant tau dot strategy (CTDS) has been shown to guide

animals or humans to smoothly decelerate to zero contact velocity [57, 58]. Also, the applications

of CTDS in robotic field effectively demonstrate its potential for robot motion control [31].

To better understand the other two strategies, we briefly summarize the CTDS as follows. First,

as mentioned in the introduction, tau or time-to-contact (TTC) is defined as:

τ(t) =
X(t)

Ẋ(t)
(3.1)

For CTDS, suppose the rate of change of τ , i.e., the tau-dot, is a constant c, then we have:

τ(t) = ct+ τ0, τ0 =
X(0)Ẋ(0)

<
0 (3.2)

where X(0) < 0 is the initial distance, and Ẋ(0) > 0 is the initial velocity. Combining equa-

tions (3.1) and (3.2), we can solve for X(t), Ẋ(t), and Ẍ(t):

X(t) = X0

(

1 + c
Ẋ0

X0

t

)1/c

(3.3)

Ẋ(t) = Ẋ0

(

1 + c
Ẋ0

X0

t

)1/c−1

(3.4)

Ẍ(t) =
Ẋ2

0

X0

(1− c)

(

1 + c
Ẋ0

X0

t

)1/c−2

(3.5)

where X0 = X(0) and Ẋ0 = Ẋ(0). Based on the above equations, we cannot realize non-zero

contact velocities with c having different values. In fact, we can discuss it based on the ranges of c

according to [31]:

• When c ≤ 0,X(t), Ẋ(t), Ẍ(t) converge asymptotically to 0 for t→ ∞. Therefore, perching

is impossible since the time cannot be infinite when the contact occurs.
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• When 0 < c ≤ 0.5, X(t), Ẋ(t), Ẍ(t) become 0 at the same finite time. Although perching

can be accomplished in finite time, the contact velocity will always be zero.

• When 0.5 < c < 1, X(t) and Ẋ(t) become 0 at the same finite time, but Ẍ(t) becomes ∞.

Perching is infeasible since robots cannot have infinitely large accelerations.

• When c = 1, a robot will move towards the surface with a constant velocity—the initial

velocity. Perching is feasible in this case, but the contact velocity is fixed.

• When c > 1, Ẋ → ∞, Ẍ → ∞ as X → 0. Perching is again infeasible since robots cannot

have infinitely large velocities and accelerations.

For the general CTDS, c is chosen to be in (0, 0.5] so that the distance, velocity, and acceleration

can be zero in the same finite time to realize contact with a surface for landing or docking applica-

tions [31]. However, we can see that, with c ∈ (0, 0.5], the desired non-zero contact velocity cannot

be achieved since when the contact occurs, i.e., X(t) = 0, we have 1 + c Ẋ0

X0

t = 0, so Ẋ(t) and

Ẍ(t) would also be zero [31]. This means when the contact or perching occurs, both the velocity

and acceleration must be zero. In this case, the perching may fail if a non-zero contact velocity is

required. To address this problem, we have proposed the constant tau dot based two-stage strategy

(CTDTS) [53].

3.2.2 Constant tau dot based two-stage strategy (CTDTS)

As shown in Figure 3.1, CTDTS uses a constant tau dot strategy in the first stage to decelerate

to the desired contact velocity Vc. The second stage initiates when tau is larger than a prescribed

threshold τs (Note that τ ≤ 0 owing to the choice of frame setup as shown in Figure 3.1). In

the second stage, the same forward velocity is maintained at Vc until perching occurs. Note that

the initiation of the second stage is different from our previous CTDTS presented in [53], where

a prescribed distance is used. Using tau is better than distance as tau specifies how soon will the

robot contact the surface so that the robot can initiate an attitude maneuvering if necessary. Tau-

based threshold is also adopted in biological systems (e.g., flies [59] or hawks [60]) for attitude
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maneuvering or leg extensions before the final touchdown. In general, the magnitude of τs is rather

small and we assume that τ0 < τs < 0, where τ0 is the initial tau.

Assume the second stage starts at time ts with velocity Vc, then the reference trajectory for tau

can be represented in two stages

τref (t) =











ct+ τ0, if 0 ≤ t ≤ ts

τs + t− ts, if t > ts

(3.6)

With a specified threshold τs, desired contact velocity Vc, and τ0 depending on the initial con-

ditions, we need to solve the constant tau dot c and the switching time ts to obtain τref (t). A

unique solution can be found for c and ts by using the desired tau (τs) and velocity (Vc) at the stage

transition: τref (ts) = τs and Ẋ(ts) = Vc. In fact, the solution can be found as:

c =
log( τs

τ0
)

log( Vc
Ẋ0

) + log( τs
τ0
)

(3.7)

ts =
τs − τ0
c

(3.8)

With Ẋ0 > Vc > 0 and τ0 < τs < 0, we can easily show that c will be in (0, 1). However, the

unique solution for c and ts should satisfy the constraints for the acceleration capability of a flying

robot which is limited by its motors. Note that for the first stage with a constant tau dot, the robot

always decreases its speed when c ∈ (0, 1), i.e., Ẍ(t) is always negative. For the deceleration of

the whole process, after analysis, we know that when t ∈ [0, ts] [53]:

• If 0 < c ≤ 0.5, Ẍ(t) will monotonically increase. Since Ẍ0 < 0, the maximum deceleration

should be achieved at t = 0.

• If 0.5 < c < 1, Ẍ(t) will monotonically decrease. Since Ẍ0 < 0, the maximum deceleration

should be achieved at t = ts;

Therefore, the solution of c should satisfy the following deceleration constraint:
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Ẍ(0) = (1− c)
Ẋ2

0

X0

< amax, if 0 < c ≤ 0.5 (3.9)

Ẍ(ts) = (1− c)
Ẋ2

0

X0

(

Vc

Ẋ0

)
1−2c
1−c

< amax, if 0.5 < c < 1 (3.10)

where amax is the maximum acceleration/deceleration of the robot. With such constraints, we can

see that a major limitation for CTDTS is that the unique solution c may not satisfy the constraints

specified in equation (3.9) or (3.10), leading to no feasible solution for the reference tau. Therefore,

new strategies should be developed to address this issue.

To compare the time required for whole perching process with the proposed planning strategy

to be discussed in the next subsection, we obtain the total time for the two stages as [53]:

t =
X0

cẊ0

[

(

Vc

Ẋ0

)
c

1−c

− 1

]

−
(

X0

Ẋ0

)
1

1−c

(3.11)

3.2.3 Inverse of polynomial based two-stage strategy (IPTS)

The shortcomings of CTDTS can be addressed by proposing new strategies with more param-

eters in the first stage while keeping the second stage the same. In this subsection, we discuss a

new mathematical form of tau reference in the first stage based on the inverse of a polynomial:

τ(t) =
1

∑n
i=0 knt

n
(3.12)

where ki (i = 0, 1, . . . , n) are parameters to be determined. k0 = 1/τ0 can be determined by initial

conditions, while k1, k2, . . ., kn can be determined from multiple constraints or optimizations for

minimizing time, control effort, or energy, etc. As shown in Figure 3.1, the second stage for IPTS

is still constant velocity after tau reaches a specified threshold τs.

With the proposed trajectory in equation (3.12), the distance, velocity, and acceleration in the

first stage can be solved analytically from integration:

X(t) = X0 exp

(

n
∑

i=0

ki
i+ 1

ti+1

)

(3.13)
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Ẋ(t) = X0

n
∑

i=0

kit
i exp

(

n
∑

i=0

ki
i+ 1

ti+1

)

(3.14)

Ẍ(t) = X0





n
∑

i=1

ikit
i−1 +

(

n
∑

i=0

kit
i

)2


 exp

(

n
∑

i=0

ki
i+ 1

ti+1

)

(3.15)

The inverse of polynomial approach has three major advantages compared with the constant

tau-dot. First, with a larger n, more constraints can be satisfied since we need to solve for more

parameters. Therefore, the limitation for CTDTS can be eliminated. Second, as will be shown

in simulations and experiments, IPTS can generate a reference trajectory with a shorter perching

time, since the robot can accelerate first and then decelerate to the desired velocity. On the con-

trary, as discussed in section 2.2, CTDTS can only decelerate to the desired velocity. Third, the

resulting reference trajectories for both CTDS and CTDTS rely on the initial conditions (distance

and velocity) as can be seen from equations (3.3, 3.4, 3.5, 3.8). However, as we will numerically

show later, a fixed set of parameters for IPTS will work if the initial conditions are in a given range,

greatly facilitating implementations since estimating distance and velocity from tau is a difficult

problem [52, 61–63].

Since the number of parameters n in IPTS is flexible, we generally cannot obtain a unique

solution for them. In this case, we will take the minimum time optimization as an example to

obtain a unique solution and realize perching with the non-zero contact velocity requirement. For

this optimization, several constraints are set: (1) Similar to CTDTS, the second stage initiates at

time ts while the tau reaches a specified threshold τs. (2) The velocity Vc at time ts, i.e., the contact

velocity, should be in a reasonable range (Vl, Vu). (3) The velocity for the whole process should

be less than the maximum velocity Vmax. (4) The acceleration/deceleration should be less than

the maximum value limited by the capabilities of the motors. With such constraints, if we want to

minimize the total time t for perching, the optimization can be formulated as:
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min
k1,k2,...,kn

t = f(k1, k2...kn) (3.16a)

subject to τ(ts) = τs (3.16b)

Vl ≤ Ẋ(ts) ≤ Vu (3.16c)

Ẋ(t) ≤ Vmax for 0 ≤ t ≤ ts (3.16d)
∣

∣

∣
Ẍ(t)

∣

∣

∣
≤ amax for 0 ≤ t ≤ ts (3.16e)

where t = ts + |τs| is the total time for the two stages with ts the time for the first stage, which

can be numerically solved from τ(ts) = 1/(
∑n

i=0 knt
n) = τs. It should be noted that if we want

to minimize the total perching time as formulated in equation (3.16), then the resulting parameters

ki will uniquely depend on the initial conditions, i.e., given a set of initial conditions, we can solve

for a set of ki. However, if we don’t minimize the time, then it is possible that we can find a set of

ki that will only loosely depend on the initial conditions, i.e., as long as the initial conditions are

in a range, a fixed set of ki will make sure the perching constraints are satisfied.

3.3 Tau controller for aerial robots

We will verify the proposed trajectory generation methods in tau space using a palm-size and

open source quadcopter (Crazyflie 2.0, Bitcraze). To this end, we need to design a controller

to control the motion of the quadcopter to track the planned reference trajectories for successful

perching. The modeling and control for quadcopters have been investigated intensively in literature

[12, 31, 64–68]. In general, the control inputs for quadcopters are a combination of a thrust force

and a torque vector, of which the directions are along or around the axis of a body frame attached

to a quadcopter.

The Crazyflie quadcopter has an onboard and pre-tuned attitude controller to stabilize the ori-

entations around a reference orientation [θref , φref , ψref ] with θ, φ, and ψ the roll, pitch, yaw angle,

respectively. The attitude controller is implemented with the onboard IMU and the autopilot. In

order to control the robot to track the desired reference tau, we need to generate [θref , φref , ψref ]
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and the thrust force T . ψref is set to be zero which ensures the Crazyflie always faces the perching

surface so that the perching mechanism can work properly.

As shown in Figure 3.2, θref , φref , and T are obtained as follows. First, we implement a tau

controller in the desired perching direction X .

ux = kpx(1−
τref
τ

) + kix

∫

(1− τref
τ

) + kdx
d

dt
(1− τref

τ
) (3.17)

In this controller, instead of directly using τref − τ as the error item, we leverage 1− τref/τ since

such an error item has shown to have better performance [31]. Theoretically, we only need the tau

controller in equation (3.17) to control the motion along perching direction (in the world frame

shown in Figure 3.1, it is along the X direction). However, for our experiments later, we need

to control the motion in Y and Z direction since the field of view (FOV) of our motion tracking

system is limited. If the motion along Y and Z direction is not controlled, then the robot may fly

outside the FOV. The position control in Y and Z is implemented as a PID controller:















uy = kpy(yref − y) + kiy
∫

(yref − y) + kdy
d
dt
(yref − y)

uz = kpz(zref − z) + kiz
∫

(zref − z) + kdz
d
dt
(zref − z)

(3.18)

where yref and zref are set to be zero. With the computed (ux, uy, uz) expressed in world frame,

we can obtain θref , φref , and T by mapping (ux, uy, uz) into the body frame using the following

nonlinear transformation [64, 69]:































φref = σφ[arcsin(
uxSψref−uyCψref√
ux2+uy2+(uz+g)

2
)]

θref = σθ[arctan(
uxCψref+uySψref

uz+g
)]

T = σT [m(ux(SθCψrefCφ + SψrefSφ) + uy(SθSψrefCφ − CψrefSφ) + (uz + g)CθCφ)]

(3.19)

where m and g are the mass of Crazyflie and gravitational acceleration, respectively. S and C

corresponding to sin and cos respectively, and σ() is a saturation function to ensure the computed
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Figure 3.2: General control diagram for experiments. Three controllers are combined to generate the control

command for Crazyflie.

roll, pitch and thrust are in a reasonable range. We choose the nonlinear transformation in equa-

tion (3.19) due to its simplicity compared with other similar transformations [70, 71].

To gain better control performance, we adopt gain scheduling in τ controller for kpx [49]:

kpx =















kpx1 for
τref
τ
> 1

kpx2 for
τref
τ

≤ 1

(3.20)

where kpx1 > kpx2 > 0. As explained in [49], the advantage of using different proportional gains

is as follows. If τref/τ > 1, we can get Ẋ > X/τref , we need to decelerate to make Ẋ = X/τref

to achieve τref/τ = 1. However, the absolute value of X is also decreasing as the robot flying

towards the perching surface. Therefore, we need larger decelerations compared with the case

when τref/τ ≤ 1. We set kpx1 = 2.5kpx2 in our experiments, which will be discussed in the next

section.
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3.4 Simulation and experiment results

To validate the effectiveness of the proposed planning and control algorithms, we perform both

simulation and experiments to show that both CTDTS and IPTS can be leveraged for perching

with a non-zero contact velocity with the IPTS being able to satisfy more constraints with a shorter

perching time. We also demonstrate through simulations that IPTS will work when initial condi-

tions are not exactly known.

3.4.1 Simulation Results

For simulation, we only simulate the trajectory planning for tau to compare the performance

of different strategies discussed in section 3.2, leaving the controller implementation to experi-

ments. The initial conditions and constraints are selected based on the experimental setup to be

discussed in the next subsection. Based on the motion tracking system’s field of view, the initial

conditions are chosen as X0 = −3m and 1.5m/s. Based on the perching mechanism (needle)

and the perching surface (foam board), the bounds for the contact velocity are set as Vu = 1m/s,

Vl = 0.7m/s. Considering the delay of wireless communication and capabilities of Crazyflie, the

maximum velocity and acceleration/deceleration are selected as Vmax = 2.5m/s and |amax| =

1.4m/s2, respectively.

For the CTDS, in order to accomplish perching in finite time, c ∈ (0, 0.5]. Since the larger the

tau dot is, the faster the perching would be completed. Therefore, we set the tau dot to be c = 0.5.

With such a selection and the initial conditions, the tau reference for the whole perching process

is:

τrefCTDS(t) = 0.5t− 2 (3.21)

With such a tau reference, we simulate the CTDS and plot the distance, velocity, acceleration and

TTC with the blue lines in Figure 3.3a, 3.3c, 3.3e and 3.3g. As shown in the figure, it takes 4 s to

finish the perching process with a zero contact velocity.

For the CTDTS, based on the initial conditions and constraints, we choose the desired contact

velocity Vc = Vu = 1m/s so that the perching can be achieved faster. With both the desired
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switching tau τs = −0.5 s and contact velocity Vc, a unique solution exists for the constant c for

tau dot and time duration for the first stage ts. Considering the initial conditions and constraints,

we can solve them as c = 0.7337 and ts = 1.92 s. The solution of c is found to satisfy the constraint

of the acceleration specified in equation (3.10). The resulting tau reference for the whole perching

process is thus:

τrefCTDTS(t) =











0.7337t− 2, if t < 1.92

t− 2.42, if t ≥ 1.92

(3.22)

With such a tau reference, we simulate the CTDTS and plot the distance, velocity, acceleration

and TTC with the orange lines in Figure 3.3a, 3.3c, 3.3e and 3.3g. As shown in the figure, it takes

2.42 s to finish the perching process with a contact velocity the maximum allowable one.

For the IPTS, we use a third order polynomial (n = 3) to solve this problem since it is the

smallest order of polynomial that can satisfy the constraints in equation (3.16). With the initial

conditions and constraints, the optimization is performed with fmincon, a Matlab built in opti-

mization function. To avoid being trapped at local minima, we perform the optimization with

different initial conditions for k1, k2, and k3. The optimization algorithm generates the final re-

sults for the constants as k1 = −0.7166, k2 = −0.1907, k3 = 0.0067. With such constants, the

switching time 1.5148 s. As a result, the tau reference for the whole perching process is:

τrefIPTS(t) =











1

0.0067t3 − 0.1907t2 − 0.7166t− 0.5
, if t < 1.5148

t− 2.014, if t ≥ 1.5148

(3.23)

With such a tau reference, we plot the distance, velocity, acceleration and TTC with the yellow

lines in Figure 3.3a, 3.3c, 3.3e and 3.3g. Comparing the simulation results for the three different

trajectories, we can conclude that IPTS can take the advantage of motor capabilities to decelerate

and accelerate, while CTDTS can only allow for deceleration. Thus, the velocity of the first stage

for IPTS is increased first and decreased, which induces the faster perching compared with the

CTDTS. Further, CTDTS can only satisfy the acceleration constraint with a fixed contact velocity

Vc, while IPTS can satisfy additional velocity constraints with a flexible contact velocity in a range
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(Vl, Vu). For CTDTS, the acceleration figure verifies the maximum deceleration occurs at ts when

c > 0.5 as shown in equation (3.10).

From the simulation results, we can see that even the desired contact velocity Vc for IPTS

is specified in a range (Vl, Vu), the optimization will make Vc = Vu to realize the fastest perch-

ing. To investigate whether Vc will be always equal to Vu or not, we change the constraints to

Vmax = 2m/s, |amax| = 1m/s2. The resulting contact velocity from the optimization in this case

is 0.94m/s. Therefore, for different constraints, the contact velocity may not be Vu, and the con-

straint Vc ∈ (Vl, Vu) is necessary for the optimization of minimum time perching. In this case the

tau reference for the whole perching process for IPTS is:

τrefIPTS =











1

−0.2563t3 + 0.295t2 − 0.5745t− 0.5
, if t < 1.7628

t− 2.2628, if t ≥ 1.7628

(3.24)

The simulation results for all the three cases under the new constraints are shown in Fig-

ure 3.3b, 3.3d, 3.3f and 3.3h. The reference trajectory for CTDS and CTDTS are plotted in the

figure with blue and oranges lines, respectively. Note that for the new constraints, we set Vc =

0.94m/s for CTDTS to compare with the IPTS. The constant c for CTDTS can be solved as

0.7479 and the perching time is 2.504 s. The IPTS switches stage at ts = 1.7628 s and perches

at t = 2.2628 s. From the figure, we can see that the trends of the two simulations with different

constraints (left and right column of Figure 3.3) are exactly the same, but the contact velocities are

different.

To better visualize the results, we have listed all the constraints and the corresponding perching

time in Table 3.1. As can be seen from the table, IPTS can achieve the best performance under the

given constraints with a perching time of 2.014 s or 2.2628 s compared with 2.42 s or 2.504 s for

CTDTS and 4 s for CTDS.

In addition, we also conduct several simulations to show the advantage of IPTS strategy for

safe perching when the initial conditions are not exactly known. Under this situation, we don’t

aim to minimize the total perching time, but only to satisfy the contact velocity, maximum velocity
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Figure 3.3: Simulation results with different constraints. The left column shows simulations with Vmax =
2.5m/s, amax = 1.4m/s2. The right column shows simulations with Vmax = 2.0m/s, amax = 1.0m/s2.

From top to bottom are the distance, velocity, acceleration, and tau for CTDS, CTDTS, IPTS, respectively.

The CTDTS and IPTS can both realize the nonzero contact velocity and IPTS generates the faster perching.
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Constraints Strategy Contact velocity (m/s) Perching time (s)

Vmax = 2.5m/s amax = 1.4m/s2
CTDS 0 4

CTDTS 1 2.42

IPTS 1 2.014

Vmax 2.0m/s amax = 1.0m/s2
CTDS 0 4

CTDTS 0.94 2.504

IPTS 0.94 2.2628

Table 3.1: Simulation results comparison

IPTS order k V0 range Z0 range

3rd k1 = −0.60, k2 = −0.057, k3 = 0.054 [1.9, 2.0] [−3.9,−3.7]

4th k1 = −0.60, k2 = 0.15, k3 = −0.31, k4 = 0.14 [1, 1.7] [−2.9,−2]

5th k1 = −0.57, k2 = 0.13, k3 = −0.57, k4 = 0.53, k5 = −0.14 [1.4, 2.2] [−3.4,−2]

Table 3.2: Feasible initial conditions for different IPTS strategies

and maximum acceleration constraints. Thus the goal of safe perching can still be fulfilled. In this

case, a fixed set of coefficients ki can be found for a given range of initial conditions. Further,

the range will expand if the order of the polynomial in IPTS increases. We have tested several

examples for polynomials of different orders as shown in Table 3.2. From the simulations, we

can find many sets of ks to satisfy the constraints. For a 3rd order polynomial, one example set

is k1 = −0.60, k2 = −0.057, k3 = 0.054. With this set of k, as long as the initial condition

is Z0 ∈ [−3.88,−3.73] and V0 ∈ [1.89, 1.99], the constraints we used in the experiments can be

satisfied. A 4th order polynomial is also investigated, and the allowable range for Z0 and V0 will

increase to [−2.92,−2] and [1, 1.65], respectively. A 5th order polynomial will further increase

the range for Z0 and V0 to [−3.43,−2] and [1.4, 2.15], respectively. Note that the ranges for V0

and Z0 shown in Table 3.2 are generated from a given set of ks. We can also find other sets of

ks to generate different ranges. Therefore, we believe that if the initial conditions can be roughly

estimated, then we can find a fixed set of ks to satisfy the constraints as long as the estimated

initial conditions fall inside the range for the set of ks. Fortunately, estimating initial distance and

velocity from TTC is highly possible as demonstrated in some recent research results [61, 63].
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3.4.2 Experimental results

After simulations, we experimentally test the tau based trajectory planning and control to en-

able perching for aerial robots. Although our ultimate goal is to leverage vision as feedback to

estimate tau [49,53,55,72], the hardware cannot provide accurate estimation with demanded com-

putation time. In our initial step, we use a motion tracking system (V120: Trio, Optitrack) which

can provide more accurate and faster feedback compared with monocular camera to track the po-

sition and orientation of the Crazyflie in the world frame. The V120: Trio is a pre-calibrated

motion tracking system with three high speed cameras, of which the estimation error can be less

than 1mm. The largest distance it can track with larger markers is about 5.2m. The quadcopter,

Crazyflie, only weighs about 27 g (without markers for motion tracking) with a size of 92×92×29

mm. Due to the small size and light weight, it is very safe for indoor experiments. Currently, the

perching mechanism is realized by a needle placed in front of Crazyflie, although more sophisti-

cated mechanisms will be investigated in the future. A vertical foam board serves as the perching

surface.

The experiment scheme is shown in Figure 3.4a. A motion tracking coordinate system is

defined as shown in Figure 3.4b. In this system, origin is set at the optical center of the middle

camera, X axis is defined along the optical axis of the middle camera, Z axis is defined upward,

and Y axis is defined based on the former axis. The motion tracking system feedback the robot’s

position, which is sampled by a laptop running windows with Motive—a software provided by

Optitrack. The same position is then transmitted to a desktop running Linux with Robot Operating

System (ROS). On this desktop, we first estimate the current τ using τ = X/Ẋ , where X is the

distance alongXm axis between the Crazyflie and the perching board placed at 5 meters away from

the motion tracking system. And the velocity Ẋ is obtained from the position X using a Kalman

Filter. Based on the estimated τ and position in Y and Z, we compute the control command based

on the controllers in equations (3.17) and (3.18), which will then be mapped to [T, θref , φref ]
T

through the nonlinear transformation. The computed [T, θref , φref ]
T is then wirelessly transmitted

to the Crazyflie through the Crazyradio to control its motion.
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(b) Coordinate system setup

Figure 3.4: Experiment scheme and motion tracking system coordinate setup. The coordinate system origin

Om is projected as O′

m at the center of the perching board along Xm axis. The position and orientation of

Crazyflie are measured by motion tracking system. The distance X between Crazyflie and the perching

board is calculated by X = Xmc − 5. Then τ is calculated by definition and control command is generated

by the τ controller and position controller.
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For the perching experiments, we use the same initial conditions with the simulation: X0 =

−3m, Ẋ0 = 1.5m/s, Vu = 1m/s, and Vl = 0.7m/s. The constraints are also the same based on

the Crazyflie’s capability: Vmax = 2.5m/s, and |amax| = 1.4m/s2. Note that even the maximum

acceleration of the Crazyflie and velocity are larger than the chosen constraints, the delay from

wireless transmitting the control command confines the control performance. The constraints and

perching velocity range are obtained after several tests with a manual remote controller. To make

the Crazyflie have the specific initial conditions, we first accelerate the initially hovering Crazyflie

for a while. When X0 ≈ −3m and Ẋ0 ≈ 1.5m/s are satisfied, we initiate the first stage of the

two-stage tau based strategy at time t0. When the feedback tau of Crazyflie is τ = τs = −0.5 s,

the second stage is initiated at time ts. After that, the Crazyflie is controlled to perch on the foam

board with a constant speed.

The PID parameters for the controllers are selected as follows: kpx2 = 0.4kpx1 = 31000,

kix = kdx = 2500, kpy = 14500, kiy = 2000, kdy = 4500, kpz = 20000, kiz = 1500, kdz = 3500,

which are tuned based on the thrust signal range which is in (0, 65535). Similarly, the saturation

function is selected as:

σφ(ω) = σθ(ω) =



























− 25◦, if ω ≤ −25◦

ω, if − 25◦ < ω < 25◦

25◦, if ω ≥ 25◦

(3.25)

σT (T ) =



























10000, if T ≤ 10000

T, if 10000 < T < 65000

65000, if T ≥ 65000

(3.26)

We conduct five experiments for both the CTDTS and the IPTS, respectively. CTDS is not

tested since it cannot achieve non-zero contact velocity required for perching. We fill all the five ex-

perimental results area with yellow and plot the mean value of the five experimental results in red.

The results of CTDTS, with a total perching time of 3.24 s, are shown in Figure 3.5a, 3.5c and 3.5e,
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while the results of IPTS, with a total perching time of 2.90 s, are shown in Figure 3.5b, 3.5d

and 3.5f.

From the figures, we can see that both CTDTS and IPTS can be used for non-zero contact

velocity perching. IPTS can generate faster perching while satisfy more constraints. For CTDTS,

after t0, there is still a small period that the Crazyflie keeps increasing speed. It is because from

t = 0 s to t0, the Crazyflie is always accelerating and it cannot respond fast enough to decelerate

immediately. Despite this small period, it is almost decreasing by controlling the tau to follow the

reference. Note that there is a period of increasing speed because of the tracking performance of

the tau controller. When τref > τ , the Crazyflie increases its speed to increase the actual τ and vice

versa. Finally, it follows τref very well and the contact speed is about 0.97m/s. On the other hand,

for the IPTS, similar to the simulation results, the speed first increases then decreases and finally

contact the surface with a speed of about 0.91m/s. Also the τ tracks the reference value quite well,

although there exists some discrepancy after t0 which might due to the delay of the Crazyradio.

For both CTDTS and IPTS, the tau reference in the second stage can be used for controlling the

aerial robot to fly with almost a constant speed even though the speed slightly decreases which is

again caused by Crazyradio delay.

3.5 Chapter Summary

Tau theory has been widely applied for robot motion control for tasks such as landing and

docking. In this chapter, we propose two TTC or tau based two-stage strategies to realize perching

for aerial robots with a non-zero contact velocity. Specifically, we design CTDTS and IPTS as

the tau reference and develop the corresponding control laws. Simulation results have shown that

both CTDTS and IPTS can accomplish a non-zero contact velocity with IPTS being able to satisfy

more constraints and generate a shorter perching time. Furthermore, perching experiments with a

palm-size quadcopter also validate the faster perching of the IPTS.
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Figure 3.5: Experiment results for CTDTS (left column) and IPTS (right column). From top to the bottom

are the distance, velocity, and tau for CTDTS and IPTS, respectively. The CTDTS and IPTS can realize the

nonzero contact velocity, and IPTS requires shorter time for perching.
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Chapter 4

Mechanical Intelligence: Gripper Design

With the proposed trajectory planning algorithm discussed in last Chapter, we can realize non-

zero contact velocity. However, we used a needle as a perching mechanism in last chapter. In

this chapter, we detail the design and analysis of a compliant bistable mechanism. The gripper

has two unique characteristics. First, using bistability, it can passively switch from open to closed

state using impact between the gripper and the perching object, eliminating additional sensors

to detect the collision. Second, the gripper has two perching methods for different objects. For

objects with a small height, the gripper can form a closed diamond shape to encircle the objects

(encircling method). For objects with a large height, the gripper’s two fingers can clip on each

side of the objects to utilize the friction forces for perching (clipping method). We analyze the

proposed gripper design to predict the required force for opening and closing the gripper. We also

predict the size of objects that will allow for successful perching for the clipping method. All the

theoretical analysis are experimentally verified. Finally, we integrate the mechanism onto a palm-

size quadcopter, and demonstrate successful perching with both clipping and encircling methods

onto different objects.

4.1 Introduction

In aerial robot perching tasks, besides the estimation, planning, and control, it is equally impor-

tant that a lightweight and reliable perching mechanism should be designed to be rigidly attached

to and easily released from the perching objects. Before introducing the compliant bistable gripper

in Figure 4.1. We first briefly review several recent research on perching mechanism design (a

detailed review can be found in [8, 73]). Based on the perching objects, we can categorize most

perching methods into surface perching and rod perching. Surface perching means the perching

object is a flat surface such as wall and ceiling, while rod perching means the object resembles a rod

shape (e.g., tree branches). For surface perching, adhesion pad and microspine are widely used.
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For instance, electrostatic adhesion is adopted in [9] to perch and detach the Robobee on surfaces

with different materials. Anderson controlled a fixed-wing MAV to adhere itself to the perching

surface with a sticky pad [74]. A perching mechanism using fiber-based dry adhesives and passive

self-alignment system is implemented on a 300 g flying platform [75]. Kovač et al. presented a

4.6 g perching mechanism that could convert the impact into the snapping motion to stick needles

into the surface [10]. Recently, they also proposed a spider inspired tensile anchoring modules to

launch several tensile anchors on fixed objects to perch the MAV [76]. Mehanovic et al. proposed a

bird-like pitch up strategy for the fix-wing drone to decrease the impact force and adjust the perch-

ing orientation [16]. Using gecko-inspired adhesive grippers, Thomas et al. controlled a MAV to

perch on inclined surfaces [13]. Stanford Climbing and Aerial Maneuvering Platform (SCAMP)

was developed for perching, climbing and taking off again [8]. For rod perching, a perching mech-

anism with grasping capability is usually adopted. For instance, a songbirds-inspired perching

mechanism utilizes the weight of MAV to passively apply tendon tension to actuate the gripping

foot [77]. Nguyen et al. designed a passively adaptive microspine grapple that could conform to

the surface of convex perching targets such as tree branches [78]. Hang et al. designed a set of

actuated landing gears which enables MAVs to perch or rest on many different objects [79].

In this chapter, we present a bistable gripper design, which can switch between a stable open

state and another stable closed state. Such a design has two advantages for perching compared

with existing methods [8]. On one hand, it can leverage the impact force during the perching to

passively perch, increasing the robustness of the mechanism and eliminating the requirement for a

sensor to detect the impact and an actuator to close the gripper. On the other hand, the gripper does

not require additional energy input to maintain the stable states, making it ideal for applications

requiring long-duration monitoring or surveillance.

Bistable mechanisms have been widely used in different areas [80]. For grippers, Nguyen et al.

designed a bistable gripper for grasping and releasing objects [81]. Thuruthel et al. [82] designed

a soft bistable gripper to rapidly grasp unstructured objects. Besides gripper, the bistability for

carefully designed mechanical structures has also been recently exploited for various applications
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Passively 

closing

(a) Gripper 2.0

(b) Clipping perching (c) Encircling perching

Figure 4.1: Proposed bistable gripper with two perching methods. (a) the two stable states of the gripper.

It can be passively switched from open to closed state through impact force. It can switch from closed to

open using a lever-motor system. (b) the clipping perching method which utilizes the friction force to hold

the robot’s weight. (c) the encircling perching method which relies on the closed diamond shaped formed

by the fingers to hold the robot’s weight.

including deployable structures [83, 84], jumping robots [85, 86], swimming robots [87], origami

robots [88, 89], soft robots [90], shape morphing [91], and mechanical metamaterials [92, 93]. To

the best of our knowledge, it has yet to see how bistability can be used for perching mechanisms

except our previous work [94, 95].

There are three major contributions in this chapter. First, we utilize the concept of bistability

to design a novel gripper, which suits MAV perching well since it can rely on impact forces to

trigger the perching process, and does not require additional energy after perching. Second, we

thoroughly analyze the bistability of the mechanism to generate a design guideline for selecting
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proper design parameters. Third, we develop a complete mechatronics system for aerial perching

by integrating the gripper onto a palm-size quadcopter, which can perform repeatable perching and

releasing.

The rest of this chapter is organized as follows. Section 4.2 introduces the working principle of

bistable mechanisms and the new gripper design. Section 4.3 analyzes the mechanism by deriving

the equation for force-displacement characteristics and equation for grasping forces of the bistable

gripper. The bistability of the gripper based on two important parameters is also discussed. Section

4.4 details the experiment setup and results to verify the force-displacement characteristics mod-

eling and demonstrate the repeatable perching-releasing cycle for two different perching methods.

Section 4.5 summarizes the chapter.

d

F𝑀𝑀1 𝑀𝑀0 𝑀𝑀2

Revolute joint

Beam

Switching pad

Base

Figure 4.2: Schematic of a basic bistable mechanism for our bistable gripper. It has four revolute joints in

black, two rigid links in purple, a switching pad in pink, and two beams (together with the base) in grey. It

has two stable states at S1 and S2. When an upward force F is applied on the switching pad, the mechanism

can switch from S1 to S2 through the intermediate state S0. During the process, the two vertical beams will

be pushed outside. If the force is removed, it can switch to the closest stable state S1 or S2 with the recovery

forces generated from bending beams. And vice versa, a large enough downward force on the switching pad

can make the mechanism switch from S2 to S1 through S0.

4.2 Bistable gripper design

Our gripper design is based on a basic bistable mechanism as shown in Figure 4.2. The mech-

anism consists of four revolute joints, two rigid links, a switching pad, and two beams connected

to a rigid base. It has two stable configurations illustrated as S1 and S2, where no force input is
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Figure 4.3: Force-displacement characteristic for the basic bistable mechanism. The figure shows the force

required to maintain the switching pad at a specific travel distance. The maximum force for this transition

from S1 to S2 is Fmax and the minimum force is Fmin. The displacement the switching pad needs to travel

is do from S1 to S0 and dc from S0 to S2.

needed to maintain the configuration. It can switch between S1 and S2 through external forces.

For instance, it can switch from S1 to S2 when a force F is applied upward on the switching pad.

During the process, the rigid links will rotate, and the two beams will be bent outside. When it

arrives configuration S0, no force is needed to maintain the current unstable state. After passing

S0, an opposite force is required to maintain the current configuration. Otherwise, it can switch

to S2 with the recovery force from bending beams. And vice versa, a downward force can also

be applied on the switching pad to make the mechanism switch from S2 to S1 through S0. The

relationship between the force F and displacement d is called force-displacement characteristic as

shown in Figure 4.3. In the figure, we have two critical forces: the maximum force Fmax and the

minimum force Fmin, meaning the force needs to be larger than Fmax to switch from S1 to S2,

larger than |Fmin| to switch from S2 to S1. do and dc are the corresponding displacements between

two neighboring zero forces.
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Figure 4.4: Solid model for bistable gripper in the closed stable state. The gripper consists of a base with

beams, fingers, a switching pad, contact feet, tubes, and a lever-motor releasing system. One side of the

lever can be dragged by the motor while the other side will push the bottom of the switching pad upward to

open the gripper.

Our new design is based on the basic bistable mechanism (Figure 4.2) with a key difference:

the basic mechanism has a symmetric force-displacement characteristic (i.e., Fmax = |Fmin|), but

our bistable gripper can have a tunable force-displacement profile with different magnitudes of

Fmin and Fmax that can deal with the requirements of perching: easy to close (a small impact force

can close the gripper), and stable to hold (only a large force can open the gripper). Such tunable

performance is accomplished by replacing the two revolute joints attaching to the switching pad

with elastic/compliant joints. Details on why such a change can lead to tunable performance are

elaborated in section 4.3.3.
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Figure 4.5: The schematic of the bistable gripper in two stable states: The left figure is the closed state,

where no strain energy is in the tubes or beams. A force Fopen can be applied on the bottom of the switching

pad to open it. The right figure is the open state, where strain energy is stored in both beams and tubes with

beams being pushed outward and tubes being bent. A force Fclose can be applied on the top of the switching

pad to close it. Some unnecessary parts such as the contact feet and lever-motor system are not shown for

simplicity

.

Our new design can be illustrated using a solid model (Figure 4.4). It consists of the following

elements: a base with two vertical beams, two fingers (consisting of lower finger and upper finger)

connected to the beams via rotational joints, a switching pad that will contact the perching object

to close and be pushed by the lever to open, two contact feet attached to the end of the two upper

fingers, two elastic tubes connecting the fingers to the switching pad, and a cable-driven lever

actuated by a DC motor. We choose tubes as compliant joints instead of traditional torsional

springs since tubes can be easily customized to different lengths to generate different torsional

stiffness. Also, the tubes are chosen as the compliant joints for convenient fabrication [96], but it

can be replaced with any compliant materials (e.g., multimaterial 3D printing [97]).

With such a design, the gripper has a closed stable state and an open stable state as shown in

Figure 4.1a. It can switch from the initially closed state to the open state as follows. If an upward

force from the cable-driven lever is applied on the bottom of the switching pad, the two fingers will

pivot around the rotational joints to push the two vertical beams outward and bend the two tubes,
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storing strain energy in the beams and tubes. When the switching pad passes a critical point, the

stored strain energy will push the switching pad upward without any input. Eventually, the gripper

will stop at the open stable state. Similarly, the gripper can switch from the open state to the closed

state by applying a downward force on the top of the switching pad. For perching, this force can

directly come from the impact force.

Compared with our old gripper [94], we revised the design in three major aspects. First, the

old gripper has three beams on the base and three fingers rotating on each beam. Although the

three fingers can form a closed shape to hang on a perching object, they complicate the perching

preparation of the old gripper since the MAV needs a good yaw angle to initiate the perching.

Only in the desired range for the yaw angle could the fingers grab the perching object successfully.

To address this issue, we use only two fingers rotating on two beams in the new design. Such a

design can increase the range of perching yaw angle for about 60◦. Second, besides the encircling

perching method that the old gripper utilizes, the new gripper can also perch with a new clipping

method for large objects that the gripper cannot encircle. As shown in Figure 4.1b, when the new

gripper is closed, the two feet can contact the two sides of the object to generate friction forces to

clip on the object. To generate large enough friction forces, each foot is composed of a soft film

made from elastomers glued onto a rigid base, which can freely rotate about the upper finger. With

the rotational feet, the gripper can adapt to different shaped objects in natural environments. Third,

we design a new lever-motor system to open the new gripper to release the MAV from the perching

state. In the old gripper, the releasing mechanism is based on heat and not repeatable. As shown

in Figure 4.4, the new lever-motor system consists of a lever driven by a motor through a cable.

One side of the lever is connected to a motor shaft through a cable, while the other side is under

the switching pad. After opening, the motor will be controlled to rotate in the opposite direction to

release the cable, and the lever will switch back to the original position due to the heavier switching

side.
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4.3 Bistable gripper analysis

To use the designed gripper for perching, we need to analyze the relationship between the force

applied to the switching pad and the resulting displacement: the force-displacement characteristic.

Such a relationship can determine the required force to switch between the two stable states. After

that, we derive the friction force that can be generated by the gripper for clipping perching. In

the end, we investigate the underlying working principle and show how the design parameters will

influence the mechanism’s bistability by defining a bistability index.

4.3.1 Force-displacement characteristic

To analyze the force-displacement characteristic, we redraw a simplified sketch of the new

gripper in Figure 4.5 for both open and closed state. Since the lever-motor system does not influ-

ence the force-displacement characteristic, it is not drawn in the sketch. As shown in Figure 4.5,

lh is the distance from the end of the switching pad handle to the centerline of the switching pad.

lt is the length of the hollow tube. lf is the distance from the pivot to the end of the lower finger.

a2 is the upper finger’s length, while a1 is the length from the centerline of the upper finger to the

pivot. The angle between the upper and lower finger is α. The distance from the pivot to the base

is lb. The angle between the handle of the switching pad and the horizontal direction is θ0. hb is

the height of the base.

The bistability is generated by the deformation of the elastic tube and the vertical beam (see

section 4.3.3 for a detailed analysis). Therefore, we will model the statics for the gripper by

considering these two elements. For the flexible tube, we model it with the PRBM [80], a widely

used technique for compliant mechanisms. Specifically, we model the tube as two rigid links

connected by a rotational joint. Note that there are more complicated models with more joints [97]

as well as models with Beam Constraint Model (BCM) which takes into account the nonlinearities

arising from load equilibrium applied in the deformed configuration [98], but we use the PRBM for

simplicity. To represent the tube’s resistance to bending, we assume a torsional spring associated

with the joint. The joint locates at γlt away from the end connected with the fingers, where lt
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is the tube length. Detailed γ values can be found in [80]. In this paper, we use γ = 0.83 to

maximize the pseudo-rigid-angle while achieve an accurate estimation [80]. The spring constant

for the torsional spring is kθ = πγ2EytIt/lt, where Eyt and It are Young’s modulus and second

moment of inertia of the tube, respectively. For the beam, we model it as a linear spring which

can only be compressed in the horizontal direction, since its outward displacement is small. The

spring constant is kd = 3EybIb/l
3
b , where Eyb and Ib are Young’s modulus and second moment of

inertia of the beam, respectively. We ignore the change of lb in vertical direction since the change

is estimated to be only 0.63% of the original beam length in our design.

With the above models for tubes and beams, Figure 4.5 can be redrawn in Figure 4.6 for math-

ematical derivation. The green lines represent the initial closed configuration C0, and the red lines

represent one of the configurations during state transition C1. Due to the symmetry of the gripper,

the switching pad at the centerline can only move in the vertical direction with displacement d.

Since the applied force F is the only input and the switching process is quasi-static, the force-

displacement characteristic between F and d can be derived from the total strain energy E in linear

springs for beams and torsional springs for tubes through the following equation [87]:

F =
∂E

∂d
(4.1)

From the assumptions about linear and torsional springs, the strain energy in the two beams can be

written as

Eb = kddb
2

where db is the horizontal displacement of the linear spring. It can be solved from the following

geometrical relationship

H2 + L0
2 = (H − d)2 + (L0 + db)

2

where L0 = (lf + γlt) cos θ0, H = (lf + γlt) sin θ0 are constants (Figure 4.6). With this equation,

we can solve db as a function of d: db =
√

2Hd+ L0
2 − d2 − L0. The strain energy in the two

tubes can be written as
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Et = kθ(θ1 − θ0)
2

where θ1 is the angle between the lower finger and the horizontal axis at configuration C1, which

can also be represented as a function of d: θ1 = arctan (H − d)/(L0 + db). Therefore, the total

strain energy E is

E = Et + Eb = kθ(θ1 − θ0)
2 + kddb

2 (4.2)

Plugging the energy into equation (4.1), we can obtain the force-displacement characteristic as

F (d) = − 2

L0 + db
[−kddb(H − d) + kθ(θ1 − θ0)] (4.3)

4.3.2 Friction force

Our new gripper has a new perching method called clipping, for which friction forces are

utilized for perching onto objects with a large height. To ensure successful clipping, it is necessary

to analyze the friction force generated by the two contact feet for a perching object with a given

size.

The clipping scenario is also depicted in Figure 4.6, where a rectangular purple object is placed

vertically with the contact feet clipping on it. We assume the surface of the perching object is flat

and in the vertical direction. When the gripper is closed, its fingers will contact the surfaces to

generate a normal force Fn, resulting in a friction force f that acts on the contact point to support

the MAV’s weight. a3 is the distance from the beam pivot to the contact point, and ϕ is the angle

between the horizontal direction and a3 (Figure 4.6). a3 can be solved based on the geometric

relationship shown in Figure 4.5.

a3 =
√

a21 + a22 − 2a1a2 cosα (4.4)

ϕ can also be solved similarly based on the geometric relationship shown in Figure 4.6.
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Figure 4.6: Sketch for mathematical modeling of the gripper. Only the left part of the gripper is shown. The

bending beam is modeled as a linear spring, and the tube is modeled as a torsional spring. The green lines

represent the initial closed state C0 and red lines represent one of the configurations during state transition

C1. For clarity, the upper fingers are not drawn in C0. For the clipping scenario, a purple rectangle is drawn

as the perching object and normal force Fn and friction force f are drawn in purple at the contact point.

ϕ = π − arccos
a21 + a23 − a22

2a1a3
− θ1 (4.5)

For a given design of the gripper, the size of the perching object can determine whether the

perching is successful or not. Therefore, we need to solve the range of sizes for the object that

will allow for successful perching. To do this, we first derive the vertical displacement d for the

switching pad given the object’s size P . Then, we obtain the normal force Fn from d. Finally,
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we can determine successful perching by checking if µFn ≥ f = mg/2, where µ is the friction

coefficient, m is the mass of the MAV.

The relationship between the object size P and the displacement d can be obtained from the

geometrical relationship (Figure 4.6)

P = 2 (db + L0 + dh − a3 cosϕ) (4.6)

where dh = [(1− γ)lt + lh] cos θ0. From this equation, we can numerically solve d given P since

db and ϕ are functions of d. To obtain the normal force Fn from d, we analyze the statics using

free body diagram for fingers of the gripper. As shown in Figure 4.6, there are four torques acting

on the finger: recovering torque from the tube in clockwise direction τθ, torque generated by Fd

from linear spring acting on tube pivot τkd in clockwise direction, torque generated from Fn in

counter-clockwise direction τFn , and torque generated by f in counter-clockwise direction τf . If

we assume MAV is able to perch on the object, i.e., f = mg/2, we can have the torque equilibrium

equation

τFn + τf = τθ + τkd (4.7)

By solving equation (4.7), the normal force Fn can be obtained as a function of d

Fn(d) =
kddb(H − d) + kθ(θ0 − θ1)−mg(dh − P/2)/2

a3sinϕ+H − d
(4.8)

With Fn(d), we can see if the clipping perching will be successful by checking if µFn ≥ f =

mg/2.

4.3.3 Bistability analysis

If the parameters in equation (4.3) are not chosen appropriately, the mechanism may become

monostable, meaning it only has one stable state. To provide design guidelines to generate the

bistability required for perching, we investigate how two important design parameters will influ-

ence the bistability of this mechanism.
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(a) (b) (c)

Figure 4.7: Bistability analysis. (a) The gripper is bistable if kd = 3000N/m and kθ = 0.02Nm/rad. (b)

the gripper is monostable if kd = 1000N/m and kθ = 0.03Nm/rad. (c) Bistability index will change with

respect to kd and kθ.

We first qualitatively investigate the reason for bistability using simulations. The bistability of

the designed gripper is generated by the competition of potential energy from the tubes (Et) and

beams (Eb). To see this, we plotEt andEb as well as the total energy (E) for a bistable (Figure 4.7a)

and monostable case (Figure 4.7b). From the two figures, Et will monotonically increase because

the tube will increasingly bend as the displacement increases. But Eb will increase first and then

decrease because db (Figure 4.6) will first increase and then decrease. Combining Et and Eb, the

total energy E = Et + Eb can have either a single minimum at the initial configuration (d = 0,

Figure 4.7b) or two minima (Figure 4.7a), with different choices of kd and kθ. Note that different kd

can be realized by choosing different thicknesses for the beam, while different kθ can be achieved

using tubes with different lengths.

In addition to the potential energy, we can also determine the bistable or monostable from the

force-displacement characteristic. In the quasi-static state transition case, the force-displacement

in Eqn. (4.3) is the first-order derivative of the potential energy, which can tell the direction of the

potential energy curve. If the force is always positive, the energy will be monotonically increasing

as in the monostable case (Figure 4.7b). If the initial positive force becomes negative at some d,

the potential energy will decrease and have a local minimum as in the bistable case (Figure 4.7a).

In other words, the system is bistable if there exists negative force in Eqn. (4.3) and monostable if

F ≥ 0 for all d.
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With the observations for the force, we define a bistability index denoted as BI to numerically

investigate how kd and kθ will influence the bistability

BI = −Fmin
Fmax

(4.9)

where Fmin and Fmax is the minimum and maximum force in the force-displacement characteristic

of the bistable mechanism, respectively. For the gripper, 0 ≤ BI ≤ 1. BI = 0 for all monostable

mechanism since Fmin = 0 at the initial configuration. BI ≤ 1 means the magnitude of Fmin

is less or equal than Fmax. This can be explained by looking at the slope of the energy curve.

Because the decreasing of energy is only generated by Eb, the negative slope cannot be larger than

the positive slope. The extreme case BI = 1 happens when kθ = 0, which means the tube is a

traditional rotational joint without any torsional stiffness. This case will be the one illustrated in

Figure 4.2.

To systematically explore how will kd and kθ influence the bistability, we plot BI with respect

to kd and kθ as shown in Figure 4.7c. In the simulation, we have kd ∈ [0, 5000] with a step size of

50 N/m and kθ ∈ [0, 0.1] with a step size of 0.001 Nm/rad. The plot indicates that larger kd will

increase the bistability index because Eb will dominate Et, making the shape of the total energy

closer to Eb with two minima (Figure 4.7a). Larger kθ will decrease the bistability index, because

Et will dominate Eb, making the shape of the total energy closer to Et with a single minimum.

4.4 Experiment

In this section, we detail the fabrication of the gripper and experimentally test the force-

displacement characteristic and compare it with the theoretical results. We also verify the ob-

ject sizes for successful perching using the clipping method. Finally, perching experiments using

both encircling and clipping methods are carried out on different objects in both controlled and

uncontrolled environments.
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Table 4.1: Design parameters of the gripper

a1(mm) a2(mm) α(◦) θ0(
◦) hb(mm)

9 37.8 60 30 6.5

lb(mm) lf (mm) lt(mm) lh(mm)

23.8 15 6 8.81

4.4.1 Gripper fabrication and Perchflie

Most of the parts of the gripper are 3D-printed and then assembled. Five different parts (Fig-

ure 4.4) are 3D-printed using veroclear material with an Objet printer (Objet30 pro, Stratasys): one

base with two vertical beams and the motor enclosure, two fingers, one switching pad, two contact

feet, and one lever. The fingers are connected to the switching pad through a tube with an inner di-

ameter of 1.5875mm and an outer diameter of 6.35mm (ULTRA-C-062-3, Sain-Tech). The film

attached to the contact feet is fabricated from curable elastomers (Ecoflex30, Smooth-On). The

DC motor (GH6124s, Gizmoszone) weighs less than 1.5 g and can provide 200 g cm torque. And

the motor driver (DRV8838, Pololu) can provide a continuous current of 1.7A with less than 1 g

weight. The detailed design parameters for the gripper are shown in Table 4.1. The parameters are

chosen to make the gripper easy to close but stable to hold. With the design parameters, the theo-

retical switching forces for two directions are Fmax = 2.15N (opening force) and Fmin =−0.41N

(closing force) respectively. The gripper system weighs about 8 g including the motor driver. It is

then attached to the Crazyflie (Crazyflie2.0, Bitcraze) using a zip tie as shown in Figure 4.8. The

whole system, termed as Perchflie, is about 40 g including a flow deck on the bottom for stable

motion control.

As shown in Figure 4.4, the lever is connected to the stand with a shaft. The whole length of

the lever is about 52mm, of which both the pushing side and the dragging side is about 26mm.

With this dimension, the force and travel distance are the same for both sides. A string is coiled on

the motor and the other side is tied to the dragging side of the lever. With this lever-motor system,

a full opening procedure requires about 2 s at the full motor speed.
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Figure 4.8: Perchflie. Gripper is attached to the Crazyflie with a zip tie. The whole system is about 40 g
including a flow deck.

4.4.2 Force-displacement characteristic experiment

To verify our mathematical model that predicts the activation force, we first conduct experi-

ments to obtain the force-displacement characteristic. The experiment setup is shown in Figure 4.9.

The main test machine is a motorized tension/compression test stand (ESM303, Mark-10). With

a force gauge (M5-2, Mark-10) connected, the stand can move with a constant speed both upward

and downward while measuring both tension and compression force. The measuring range of M5-

2 is 10N with a precision of 0.002N. And a software (MESURTM gauge Plus, Mark-10) is used

for recording the force and displacement data.

We separate the experiments into two parts to minimize possible hysteresis: dragging for the

opening force and pushing for the closing force. In the dragging experiment, the gripper starts with

the closed state and ends at 0N when no external force is needed to switch it to the open state. The

switching pad is connected to the force gauge through a string. While the switching pad is dragged

to move upward with a constant speed, the software records the displacement and force data. For

the pushing experiment, the gripper starts with the open state and ends at 0N when no external

force is needed to switch it to the closed state. During the experiments, the force gauge moves

downward to push the switching pad. 10 pushing and 10 dragging experiments are carried out,

and the individual pushing and dragging experiment data is combined to generate a whole force-

displacement characteristic figure. The experiment results are plotted in Figure 4.10. The yellow
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shaded area shows the distribution range (maximum and minimum force at each displacement) of

the experiment result. The dashed red line is the theoretical result, and the solid blue line shows

the mean value of the 10 combined experiment results. To quantify the experiment results, there

are several important parameters, i.e., maximum force Fmax, minimum force Fmin, maximum

opening displacement do (displacement between the first two zero forces), and maximum closing

displacement dc (displacement between the last two zero forces). We show the mean of these 4

parameters in 10 experiments together with the theoretical value from the simulation in Table 4.2.

From Figure 4.10 and Table 4.2, the experimental results are reasonably accurate. The error

mainly comes from our simplified models. First, we model the beams as linear springs and the

tubes as torsional springs, but they may not exactly follow the spring laws. Second, the fabrication

and assembly process may also introduce some errors for the exact dimensions for each of the

components. From Figure 4.10, the error increases when the opening force is decreasing for the

opening experiment. The largest error (10.94%) occurs with the maximum opening displacement.

The reason is that the tubes are compressed since they are parallel to the base. This period corre-

sponds to the lagging part of the experiment results. The compression will result in a smaller lt,

which will increase the bending stiffness kθ based on PRBM. As analyzed in section 4.3, larger kθ

will increase BI and make the system less bistable. This will make the force-displacement char-

acteristic decrease more slowly. To better illustrate this phenomenon, we simulate several cases

with six different tube lengths (5mm to 7mm with a step size of 0.4mm) and plot the force-

displacement characteristics to compare the difference (Figure 4.11). The simulation results show

that the force-displacement characteristics are almost the same before 9mm displacement. After

9mm, grippers with longer tubes tend to have a larger force to make the system more bistable.

As a result, the force profiles for grippers with shorter tubes decrease slower than the longer ones,

which explains the lagging of the experiment results.
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Figure 4.9: Force-displacement characteristic experiment setup. The gripper is attached to the test stand

and a hook is attached to the force gauge. In dragging experiment, the hook will pull the switching pad with

a string. In pushing experiment, the hook will directly push the switching pad. Meanwhile, the software will

record the corresponding displacement and tension/compression force.

Table 4.2: Experiment data and simulation data comparison

Fmax(N) Fmin(N) do(mm) dc(mm)
Simulation 2.15 -0.41 12.62 4.89

Experiment 2.12 -0.39 14.17 5.23

Error(%) 1.4 5.1 10.94 6.5

4.4.3 Friction test experiment

As the gripper can generate different normal forces Fn and friction forces f on different sized

objects, we experimentally test the prediction for successful perching on objects with different

sizes in this subsection.

We use 3D printed objects made from Polylactic Acid (PLA) with different sizes as the perch-

ing object. First, we experimentally test the friction coefficient µ between Ecoflex 30 and 3D
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Figure 4.10: Force-displacement characteristic experiment results. 10 pushing and 10 dragging experiments

are carried out. The yellow shaded area shows the experiment force range. The blue line shows the mean of

forces from 10 experiments. The dashed red line shows the simulation result from mathematical models.

printed PLA. Since Ecoflex 30 is soft, the friction coefficient between it and PLA is not constant.

We experimentally test and find that the friction coefficient varies with normal force. In this exper-

iment, we designed a container with a mass of 3.08 g. Then we added different weights from 0 g to

65 g with a step size of 5 g, and use the test stand to horizontally drag the ecoflex 30 on 3D printed

PLA surface. The maximum friction force before relative motion occurs is recorded to calculate

µ. After 6 consistent tests, we find that a minimum of 5th order polynomial can fit the result well:

µ = −52Fn
5 + 107Fn

4 − 80Fn
3 + 27Fn

2 − 4Fn + 1 (4.10)
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Figure 4.11: Simulations for the influence of different tube length to the force-displacement characteristic.

Six different tube lengths from 5 mm to 7 mm are used. For different tube lengths, the force-displacement

characteristics are almost the same before about 9 mm displacement. After 9 mm, the gripper with longer

tubes tends to have a larger recover force to make the system more bistable.

With Eqn. (4.8) and Eqn. (4.10), we can calculate the range for the size of the PLA objects

that will allow for successful perching. The perching object should have a width from 3.7mm to

36.4mm.

To verify the prediction, we printed several PLA cubes with eight different sizes for boundary

cases: 3, 4, 5, 6, 33, 34, 35, and 36 mm. We manually make the robot clip on the cubes and see

whether it can stay or not. The results show that the robot can perch on such cubes with sizes of 5,

6, and 33 mm, which is a bit smaller than the estimation range. This error might be caused by the

friction coefficient estimation.
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4.4.4 Perching and grasping experiment

After verifying our models, we conduct various perching experiments for Perchflie in con-

trolled and uncontrolled environments as well as the grasping experiment. For encircling perching,

as long as the dimension of the perching object is smaller than the space formed by the fingers and

switching pad, the Perchflie can successfully perch on it. For tall objects, the robot can use the

clipping method to clip on the objects to hold the Perchflie with enough friction forces.

The perching experiments are conducted on two different objects with the two perching meth-

ods: encircling and clipping, with two typical experiments shown as image sequences in Fig-

ure 4.12. The clipping perching is conducted on a vertically placed cardboard with a width of

7mm. The encircling perching is conducted on a cuboid wood with a width of 31mm and a height

of 5mm. In each experiment, the Perchflie is manually controlled to take off and accelerate to the

perching object. With an impact force acting on the switching pad, the gripper will close to perch

with either clipping or encircling method. After perching, the motor is controlled to open the grip-

per. After detachment, Perchflie hovers immediately. The motor continues rotation to fully open

the gripper while hovering. After the gripper is fully opened, the motor will rotate in the opposite

direction to leave the lever away from the switching pad for the next perching. At last, the motor

stops and Perchflie can perch again. Figure 4.12 illustrates the perching sequence for one cycle of

perching and releasing for the two different objects.

To investigate the potential of this bistable gripper, we conducted one more grasping experi-

ment. Limited by the payload of the Crazyflie, the object is a 116×77×14 mm foam. The foam

is manually put on the gripper when the Perchflie is airborne. After the Perchflie arrives at the

destination. The gripper is controlled to release the object. The process is shown in Figure 4.13.

4.5 Chapter Summary

In this chapter, we design, analyze, and develop a bistable compliant gripper to enable passive

perching for MAVs. The bistability makes the gripper passively trigger the perching process by

the impact force. With a lever mechanism driven by a DC motor, it can repeat the perch and take-
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(a) Clipping perch

a b c d e f

(b) Encircling perch

Figure 4.12: Two perching experiments on different objects with two perching methods. The first image se-

quence shows the clipping method on cardboard. The second image sequence shows the encircling method.

In each experiment, the Perchflie undergoes a) taking off, b-c) perching, d) staying on the object, e-f) re-

leasing. A detailed view of the perching state for both clipping and encircling is shown in Figure 4.1 (b) and

(c).

off cycle. It also provides two different perching methods, clipping and encircling, to expand the

objects that it can perch. We investigate the cause of the bistability to provide a design guideline by

defining a bistability index. We establish a model to predict the force-displacement characteristics

for the gripper and experimentally verify the proposed model. Various perching experiments are

conducted to show the feasibility of this gripper for MAV perching.

73



Figure 4.13: Image sequence for aerial grasping. A foam is manually put on the gripper when the robot is

airborne. After the Perchflie arrives at the destination, it lands and opens the gripper to release the foam.
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Chapter 5

Integration of Computational and Mechanical

Intelligence

In previous chapters, computational intelligence (both state estimation and trajectory planning)

and mechanical intelligence are implemented individually. To combine all these techniques on one

robot, a customized MAV which contains an onboard computer, a camera, and a larger gripper

is developed. In this chapter, the MAV is controlled to autonomously perch on a horizontal rod

with both CTDTS and IPTS. The TTC is estimated from position and velocity feedback from the

motion tracking system. Both experiments show the customized MAV system is able to combine

computational and mechanical intelligence to realize robust autonomous perching.

5.1 MAV platform

Although the Crazyflie used in chapters 3 and 4 performs well in experiments, due to its limited

computational power, it is impossible to implement the estimation and control algorithm onboard,

even without considering the extra payload from both the camera and gripper. Thus, a new cus-

tomized MAV with high computational power and a large payload is needed to combine both

computational intelligence and mechanical intelligence to realize the autonomous perching.

The customized MAV platform is shown in Figure 5.1. It consists of a 250mm carbon fiber

frame (Lumenier QAV250 from flightclub), a Raspberry Pi 3 B+ as the onboard computer, a Rasp-

berry Pi camera as the TTC estimation sensor (for future work), an autopilot (Mindracer from

Mindpx) which controls the motors speed through a 4 in 1 ESC (Spedix from Amazon), a 3D

printed larger bistable gripper, a releasing motor (from Pololu), a motor driver (DRV8838 from

Pololu), 5 reflective markers for the motion tracking system, and other necessary parts for a quad-

copter, i.e., brushless motors, propellers, etc. The whole MAV system is about 498 g and can hover

in the air for about 4 minutes.
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Figure 5.1: The customized MAV platform. The Raspberry Pi is used as the onboard computer, receiving

the local position data from the motion tracking system, processing images, and sending attitudes, and thrust

setpoints. A larger bistable gripper is installed on top of the drone, and a motor is used to release the gripper.

In this chapter, section 5.2 details the new gripper design and the design necessity. Section 5.3

introduces the trajectory planning in this perching task and the perching experiment results using

CTDTS and IPTS. Section 5.4 concludes this chapter.

5.2 New gripper design

Since the new MAV platform is much heavier than the Crazyflie, a larger bistable gripper (The

name larger gripper will be used to refer to the new one in this chapter.) which can hold a larger

weight is designed as shown in Figure 5.2.

Similar to the bistable gripper in Chapter 4, the larger gripper consists of 4 main parts: the beam

and base, the lever (the motor is not designed to be installed on the gripper.), the switching pad, and

the fingers (upper finger and lower finger). There are two main differences between the gripper in

Chapter 4 and the larger gripper. First is that the connection parts between the switching pad and
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Figure 5.2: The larger gripper. It consists of 4 main parts: the beam and base, the lever (the motor is not

designed to be installed on the gripper.), the switching pad, and the fingers (upper finger and lower finger).

It is designed only for encircling perching.

the fingers are replaced with shape memory alloy (SMA). For the bistable gripper in Chapter 4,

a silicone tube is used as the compliant connection. However, during preliminary designs, two

drawbacks of the silicone tubes presented: First, the tube tends to bend out of the cross-section

plane of the tube, which makes the gripper asymmetric in the open state. Second, as talked about

in Chapter 4, the torsional stiffness of the tube influence the bistability. Compared to the stiffness

of the beams, it is difficult to find a strong tube which can provide large enough torsional resistance,

which makes BI = − Fmin
Fmax

≈ 1. when Fmin ≈ Fmax, it means we can not achieve the easy to

close, but stable to hold requirement for the gripper. However, the silicone tube is only served as

a compliant connection. Thus, any compliant material can be potentially used to replace the tube.

Finally, the shape memory alloy (SMA) turns out to be a good substitute as shown in Figure 5.3.

And three parallel SMAs work well for generating the appropriate opening and closing forces. The

SMA is designed to be inserted into the holes on the switching pad and the lower finger. To avoid

the possible bending-out direction movement, the lower finger is extended as a shell for the SMA

and connected to the switching pad with a shaft. The second difference is that the contact feet are

removed since only encircling perching is considered. The tip of the top finger is designed to be

flat in the horizontal direction to make it hold on to the flat surfaces more firmly.
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Table 5.1: Design parameters of the larger gripper

α(◦) θ0(
◦) hb(mm) lb(mm) lf (mm) ls(mm) lh(mm)

60 30 12 50 25 29.5 5.5

Shape Memory Alloy

bending-out direction

bending-out direction

Figure 5.3: Three parallel SMAs are used as the compliant part to connect the switching pad and the fingers.

To avoid the possible bending-out movement shown above, the lower finger is extended to be a shell for the

SMA and connected to the switching pad with a shaft.

All the parts of the larger gripper are 3D printed with PLA material using a Prusa printer

except the shafts and SMAs. The total weight is 24.47 g (without the motor) while the gripper in

Chapter 4 is 8 g (with the motor). The design parameters are shown in Table 5.1. Since the upper

finger dimension is only related to the clipping perching, some parameters are not listed. lf for

the larger gripper is the distance from the pivot of the finger to the surface where the SMA hole

is designed. And ls is the SMA length which corresponds to the tube length lt in Chapter 4. And

other parameters are referred to the same part as described in Section 4.3.3.

5.3 Trajectory planning and experiment

To validate the combination of computational intelligence and mechanical intelligence, the

new MAV is controlled to autonomously perch on a horizontal rod with CTDTS or IPTS based on

both motion tracking system and feedback. In this section, both CTDTS and IPTS trajectories are

designed. And both the simulation and experiments are carried out.
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Table 5.2: Planning and experiment initial conditions comparison

X0 Ẋ0 Vl Vu Vmax amax amin τs
Old simulation -3 1.5 0.7 1 2.5 1.4 -1.4 -0.5

New simulation -1.65 0.8 0.1 0.3 1 5 -9.8 -0.5

5.3.1 Trajectory planning

Before conducting the perching experiment, we first simulate the CTDTS and IPTS to see

whether the simulation can achieve good results. As discussed in Chapter 4, the gripper will be

installed on top of the MAV. We changed the TTC control direction from flying forward to flying

upward. However, the experimental space is limited by the height of the roof. We have to change

the initial conditions under the height limitation. The initial conditions for IPTS in this chapter

(referred to as new simulation) are listed in Table 5.2 together with the ones in Chapter 3 (referred

to as old simulation) for comparison. In this chapter, the initial conditions of CTDTS and IPTS are

the same. The only difference in the simulation constraints is that for CTDTS, Vl = Vu = 0.3m/s

while IPTS has different Vl and Vu. Note that the maximum velocity of the new MAV can be larger

than 2m/s, but it is set to 1m/s for safety reasons.

With the new initial conditions and constraints, the switching time for CTDTS is ts = 2.64 s,

and the reference is as Equation 5.1. Similar to Chapter 3, a third order IPTS is used, the switch

time ts = 1.91 s, and the reference is as Equation 5.2.

τrefCTDTS(t) =











0.591t− 2.06, if t < 2.64

t− 3.143, if t ≥ 2.64

(5.1)

τrefIPTS =











1

0.3106t3 − 0.8824t2 − 0.24t− 0.4848
, if t < 1.92

t− 2.42, if t ≥ 1.92

(5.2)

The planned trajectory is shown in Figure 5.4 for both CTDTS and IPTS. The CTDTS takes

about 3.14 s while the IPTS takes about 2.42 s to finish the perching. Since the CTDS has been
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Figure 5.4: Planned trajectories for the new initial conditions and constraints. The blue line shows the

result of the CTDTS and the orange line shows the IPTS. From top to bottom, left to right, are the distance,

velocity, acceleration, and TTC trajectories.

shown not appropriate for perching, it is not simulated here. Similar to the previous simulation, the

IPTS will increase velocity first and decrease the velocity later, which is faster than the CTDTS.

5.3.2 Perching Experiment

In this section, the new CTDTS and IPTS trajectories are used to control the MAV to perch

onto a horizontal rod based on the TTC estimated from position and velocity feedback from the

motion tracking system. The experiment setup is introduced first. Then the perching results are

presented.
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Experiment setup

The perching scenario is simplified to control the MAV to autonomously perch on a horizontal

rod with encircling perching, as shown in Figure 5.5. In this scenario, the main direction we want

to apply TTC control is the Z direction. The X and Y direction positions are controlled with

position feedback from the motion tracking system. The larger bistable gripper is installed on top

of the MAV. To make the gripper perfectly grasp the rod, the Raspberry Pi camera is also used to

detect the lines and estimate the orientation of the rod. Finally, the Raspberry Pi will send roll,

pitch, yaw, and thrust commands to control the motion of the MAV.

The control flow chart is shown in Figure 5.6. The Raspberry Pi 3 B+ is used as the onboard

computer. It receives the drone position from the motion tracking system through wifi. Then it

sends the control commands, local position information, etc, to the autopilot (mindracer). On the

other hand, the autopilot will send the sensor output and firmware estimator (extended Kalman

Filter) data back to the Raspberry Pi. With the local position information from Raspberry Pi,

the autopilot is able to switch to the offboard board, in which it can directly receive the control

command from the Raspberry Pi. Finally, the autopilot will send speed commands to the ESCs

based on the control command received. When releasing is needed, the Raspberry Pi will send the

PWM signal to the releasing motor and control the drone to safely land on the ground. Raspberry

Pi is also used to estimate the rod orientation and the TTC through the camera.

Perching with motion tracking system feedback

As a preliminary step, the TTC is estimated from the position and velocity feedback from the

motion tracking system. In both CTDTS and IPTS experiment, the MAV is first controlled to hover

under the rod. Then the camera will continuously capture the images of the rod on top of it. The

Raspberry Pi will estimate the rod orientation by detecting the most confident lines with Hough-

LinesP function in OpenCV with Kalman Filter. The estimated rod orientation is transformed to

goal yaw angle based on the geometric relationship. And finally, the goal yaw angle is sent to the

autopilot to make the gripper align with the rod using the controller implemented in the firmware.

Next, the MAV will be controlled to accelerate. When both the distance and velocity are in a
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reasonable range with respect to the initial conditions in Section 5.3.1, the TTC control (CTDTS

or IPTS) is initiated. After switching time ts, the MAV will be controlled to fly upward with a

constant speed based on TTC feedback until perching is realized. When needed, the Raspberry Pi

will control the releasing motor to open the gripper and safely land the MAV.

ForX and Y direction, PD and PID controllers using position feedback are designed, the output

is the desired pitch and roll angle respectively. The corresponding PD parameters for X direction

are: kpx = 2.2, kdx = 6 and PID parameters for Y direction are: kpy = 4, kdy = 10, kiy = 0.4. The

output of the two controllers are the desired pitch and roll angle, respectively. The Z direction is

controlled with a tau controller as shown in Eqn 3.17 but with only a P term. For CTDTS, kpz = 10

while kpz = 11.5 in IPTS.

The perching experiment results are shown in Figure 5.7. The left column shows the results for

the CTDTS while the right column shows the IPTS. From top to bottom are distance, velocity, and

TTC. Five experiments are carried out for each strategy. The first stage of both strategies starts at

t = 0 s. For CTDTS, the average switch time (thick vertical blue line) for 5 experiments is about

2.78 s compared to 2.64 s as planned. For IPTS, the average switch time for 5 experiments is 1.74 s

compared to 1.91 s as planned. As planned, the CTDTS will decrease velocity until it reaches

the switch time. The IPTS will first increase velocity then decrease the velocity until the switch

time. After switch time, the MAV tries to fly upward with a constant velocity. The dashed green

lines in the TTC figures are the reference TTC trajectory for each strategy. Overall, the perching

performance is acceptable. However, the second stage, which controls the velocity to be constant

based on TTC feedback, is not performing well. More research needs to be done to solve this

problem.

5.4 Chapter Summary

In this chapter, a customized MAV platform is used to combine computational intelligence

and mechanical intelligence. To make the new MAV perch on a horizontal rod, a larger bistable

gripper using SMA is designed. Both CTDTS and IPTS using motion tracking system based TTC
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estimation perching are experimentally carried out. The experiment shows that the computational

intelligence and mechanical intelligence propose in this dissertation can be used for aerial robot

perching.
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Y

Z

Figure 5.5: The perching scenario of the experiment. The MAV is controlled to perch on the horizontal rod.

The X and Y directions are controlled with position feedback while the Z direction of the MAV is controlled

with TTC feedback. Both CTDTS and IPTS are implemented on the perching experiments.
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Control commands and 

local position information

Mavlink

Motor 

Speed

Motive

Local 
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Local 

Position PWM for Releasing

Sensor, EKF, etc, Estimation

Raspi 3 B+

Mindracer

Trio:120

Figure 5.6: The control flow chart of the experiment. The Raspberry Pi 3B+ is used as the onboard com-

puter. It sends the desired setpoints and local position information to the autopilot. With the local position

information received, the autopilot can directly receive the Raspberry Pi control command and control the

MAV motion.
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Figure 5.7: Experiment results for CTDTS (left column) and IPTS (right column). From the top to the

bottom are the distance, velocity, and tau for CTDTS and IPTS, respectively. For each strategy, the yellow

area represents the range of 5 experiments at a specific time. The second stage starts at the blue vertical

line (2.78 s for CTDTS and 1.74 s for IPTS). The reference TTC is plotted in dashed green lines in the TTC

figures. The CTDTS and IPTS can realize the nonzero contact velocity, and IPTS requires a shorter time for

perching.

86



Chapter 6

Conclusions and future work

6.1 Conclusions

In this dissertation, a customized MAV platform is designed to combine computational intelli-

gence and mechanical intelligence for aerial robot perching. The goal of this research is to enable

MAVs with perching capability to potentially extend their flight time. However, there are two

common challenges: computational challenge and mechanical challenge.

The computational challenge in perching tasks consists of flight state estimation, perching

trajectory planning, and control. For the state estimation challenge, a visual information, time-

to-contact (TTC), which is inspired by the landing process of the birds and flies, is used as the

feedback. To estimate the TTC, a featureless method is used and extended by considering angular

velocities. And preliminary experiments using the new estimation algorithm are carried out to

control the mobile robot to autonomously brake before colliding with the objects in front. However,

the widely used TTC trajectory will generate zero or very small contact velocity. This is not ideal

when the perching mechanism needs a triggering force. To solve this challenge, two reference

trajectories, CTDTS and IPTS, are proposed to realize non-zero contact velocity based on TTC

feedback. Following CTDTS, the MAV can decelerate to the desired contact velocity and maintain

the velocity until perching finishes. Alternatively, the MAV can accelerate first, then decelerate to

the desired contact velocity and maintain the velocity until perching following the IPTS. Both the

preliminary experiments using Crazyflie and the final perching experiment with the customized

MAV show the feasibility of CTDTS and IPTS for non-zero contact velocity perching. And IPTS

is shown to be faster while can satisfy more perching constraints.

On the other hand, the mechanical challenge requires the gripper to be swiftly closed at contact

and stable enough to hold the weight of the MAV. To solve this, a bistable gripper which has

two stable states is designed. The two stable states of the bistable gripper can switch back and
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forth with large enough triggering forces. With the stored strain energy in the bent beams and

bent compliant parts (tubes or SMAs), the state transition is fast and does not require additional

force once it passes the critical point. In addition, a design guideline is provided to help design

an appropriate gripper to achieve desired closing and opening forces. The perching experiments

using both Crazyflie and the customized MAV show the capability of the gripper in perching tasks.

In the end, a customized MAV is used to combine both computational intelligence and mechan-

ical intelligence to realize the autonomous aerial robot perching. A Raspberry Pi 3B+ is used as

the onboard computer to do the state estimation and control. The successful perching experiments

show the feasibility of the proposed computational intelligence and mechanical intelligence in the

autonomous perching application.

6.2 Future work

Although this dissertation shows that the computational intelligence and mechanical intelli-

gence can be combined together to realize robust MAV perching, there are still several directions

worth to be investigated.

First, in the state estimation part, for birds and flies, TTC to a specific object in their eyes can

be estimated fast and accurately. However, the TTC estimation method used in this dissertation

assumes the perching object will occupy the whole image. This assumption does not always hold

especially when the perching object is only a rod or a power line. One possible solution is to use

the size-based estimation method. However, it requires more computational power to do feature

extraction and matching. To solve this problem, a Raspberry Pi 4B+ with a better cooling system

can be potentially used.

As the second part of the computational intelligence, the trajectory planning based on TTC only

considers non-zero initial velocity cases. However, a more natural perching scenario would be the

MAV first locates the perching object while hovering, then initiates the perching process. In this

case, the initial velocity V0 = 0, and τ0 = ∞. To consider this more generally, a trajectory should

be planned with V0 = 0 based on divergence, the reciprocal of TTC. In addition, the trajectory
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planning requires a good estimation of bothX0 and V0, which is not considered in this dissertation.

Implementation of initial condition estimation as talked in [63] could be adopted.

Finally, for the bistable gripper, there are two potential improvements can be done. First, the

current releasing mechanism (the motor-driven lever system) occupies a large 3D space, which can

be improved using some in-plane mechanisms (e.g., a Sarrus linkage). Second, a more accurate

method, beam constraint model (BCM) can be used to derive the force-displacement characteristics

of the gripper, since BCM considers the varying loading conditions, boundary conditions, and

initial beam curvature compared to the Pseudo-Rigid-Body-Model.

With the above potential improvements, a more intelligent MAV platform can be used to com-

bine the computational intelligence and mechanical intelligence for autonomous perching.
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