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ABSTRACT 

 

 

 

INFORMING THE ECOLOGY AND CONSERVATION OF AMPHIBIANS  

IMPERILED BY CHYTRIDIOMYCOSIS 

 

 

 

More than 40% of the world’s amphibian species face imminent extinction, and 

population declines have been documented on every continent where amphibians are found. The 

species experiencing declines and extinctions are not random; rather, the most vulnerable species 

have similar life history characteristics, geographic ranges, and taxonomic associations. The 

observed declines are occurring more quickly than background rates of extinctions, and the fact 

that low-density and endemic species seem to be disproportionately affected has important 

implications for the conservation of global biodiversity. 

Scientists have identified several non-mutually exclusive drivers of global amphibian 

declines, ranging from well-studied factors including habitat loss and spread of invasive species 

to more recently identified phenomena such as climate change and emerging infectious diseases. 

A growing body of literature suggests that the emerging infectious disease chytridiomycosis, 

caused by the fungal pathogen Batrachochytrium dendrobatidis (hereafter Bd), is responsible for 

many observed frog and toad declines. Despite more than 20 years of active research on Bd and 

its amphibian hosts, large knowledge gaps remain that limit our understanding of both the 

ecology of this pathogen and appropriate management actions critically needed to mitigate the 

effects of disease. 

I sought to improve our understanding of amphibian-Bd dynamics and to provide 

information for those managing landscapes and species for resilience to chytridiomycosis. First, I 
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outlined a modeling framework that can be used to understand host-pathogen dynamics in 

systems where pathogens have free-living or vectored life stages. I discuss a sampling limitation 

that is common in amphibian-Bd systems and that creates an unobservable occupancy state. 

Using generated data, I assessed the impacts of this unobservable state on inference using several 

scenarios and suggest alternative strategies and sampling methods that would ameliorate 

difficulties with inference. 

Next, I applied the aforementioned modeling framework to a historic amphibian-Bd 

dataset on boreal toads (Anaxyrus boreas boreas) in the Southern Rocky Mountains (SRM). 

Boreal toads are highly susceptible to Bd, but populations demonstrate some variability in local 

extinction probabilities across the SRM. I evaluated several potential drivers of amphibian-Bd 

disease dynamics and identified elevation as the factor with the strongest influence on boreal 

toad-Bd dynamics. The importance of elevation suggests that an interaction between host density 

and pathogen physiological tolerances may result in the variation in disease risk observed in this 

system. Conservation biologists and managers can use these findings to prioritize sites for 

management intervention and to select among conservation actions including reintroductions, 

translocations, and habitat manipulations. Though I gained valuable information from this 

historic dataset, some parameters of biological interest were not estimated well due to the 

sampling dependencies that were present in this (and most) historic amphibian-Bd datasets. 

Amphibian skin swabs are the primary means of detecting Bd in amphibian-Bd systems. 

As a result of this dependence, I encountered difficulties estimating Bd’s distribution and 

persistence in the absence of amphibians. I evaluated the utility of water filtration for detecting 

Bd’s aquatic flagellated zoospore in the environment to alleviate these difficulties. I used a 

controlled laboratory experiment to assess how water type, Bd concentration, and the presence of 
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PCR inhibitors influence detection probability of Bd using water filtration. I found that detection 

probability was low unless PCR inhibitors were removed, but collecting multiple samples in time 

or space could compensate for low detection and generate unbiased estimates of occurrence. In 

addition, I found that the abundance of Bd estimated from qPCR did not accurately reflect true 

Bd abundance. My work illustrates the feasibility of environmental sampling for Bd and other 

aquatic organisms, and I presented design- and model-based recommendations for those studying 

amphibian disease dynamics, other host-pathogen systems, and those using environmental DNA 

(eDNA) to understand species distributions. 

Finally, I used the environmental sampling method validated in the laboratory (i.e., 

filtered water samples), in conjunction with amphibian skin swabs, to present the first estimates 

of Bd occurrence that are decoupled from amphibian populations in Chapter 4. I compared 

estimates of detection probabilities for the two pathogen detection methods, as well as 

hypothesized factors influencing these parameters. In addition, I compared decision criteria to 

classify samples as positive or negative, based on PCR results, and to evaluate inferential 

differences that result from different decision criteria. I found that heterogeneity in Bd 

occurrence was linked to the time since the predominant amphibian species was last detected at a 

site, rather than to environmental covariates (e.g., elevation). The decision criterion employed 

did not influence which covariates were deemed important but did result in different estimates 

for some parameters. Using a conservative decision criterion, estimates of Bd occurrence and 

swab-based detection probability were lower than with a more liberal criterion. Filtration-based 

detection probabilities were low and increased over the course of the season, while swab-based 

detection probabilities were higher and varied by season and by elevation. My work provides 

evidence of long-term Bd persistence in the environment and brings attention to the importance 
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of sampling the environment directly for understanding and mitigating disease-related threats to 

amphibian biodiversity. 

In summary, my dissertation provides valuable information to researchers and managers 

studying disease-related declines of amphibians at local, regional, and global scales. I have 

brought attention to a common sampling framework in these systems that limits inferences about 

the distribution and dynamics of Bd, validated a new sampling technology that will allow for 

improved estimation, and implemented a landscape-level field study using this technology that 

provides our first estimates of Bd distribution and persistence independent of amphibian 

populations. I also used a historic dataset to evaluate competing drivers of extinction risk for 

boreal toads and to identify potential elevational refuges for this species of concern. My findings 

provide some of the most complete estimates of amphibian-Bd dynamics in a temperate North 

American system, and are being used by the partners of the Boreal Toad Recovery Team as they 

implement management strategies, consider boreal toad reintroductions, and continue to monitor 

both boreal toads and Bd in the SRM. The recent discovery of Batrachochytrium 

salamandrivorans, an aquatic pathogen of salamanders with many similarities to Bd, makes my 

work salient to the understanding and management of other emerging infectious diseases. I have 

advanced the science of amphibian disease ecology and pathogen detection, and my work will be 

relevant to the global community of researchers and managers striving to understand and 

conserve amphibian populations imperiled by disease. 
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 INFERENTIAL BIASES LINKED TO UNOBSERVABLE STATES IN 

COMPLEX OCCUPANCY MODELS1 

 

 

 

SUMMARY 

Modeling of species distributions has undergone a shift from relying on equilibrium 

assumptions to recognizing transient system dynamics explicitly. This shift has necessitated 

more complex modeling techniques, but the performance of these dynamic models has not yet 

been assessed for systems where unobservable states exist. My work is motivated by the impacts 

of the emerging infectious disease chytridiomycosis, a disease of amphibians that is associated 

with declines of many species worldwide. Using this host-pathogen system as a general example, 

I first illustrate how misleading inferences can result from failing to incorporate pathogen 

dynamics into the modeling process, especially when the pathogen is difficult or impossible to 

survey in the absence of a host species. I found that traditional modeling techniques can 

underestimate the effect of a pathogen on host species occurrence and dynamics when the 

pathogen can only be detected in the host, and pathogen information is treated as a covariate. I 

propose a dynamic multistate modeling approach that is flexible enough to account for the 

detection structures that may be present in complex multistate systems, especially when the 

sampling design is limited by a species’ natural history or sampling technology. When multistate 

occupancy models are used and an unobservable state is present, parameter estimation can be 

influenced by model complexity, data sparseness, and the underlying dynamics of the system. I 

                                                 
1 Originally published as: Mosher, B. A., Bailey, L. L., Hubbard, B. A. and Huyvaert, K. 

P. (2017), Inferential biases linked to unobservable states in complex occupancy models. 

Ecography. doi:10.1111/ecog.02849. 
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show that, even with large sample sizes, many models incorporating seasonal variation in vital 

rates may not generate reasonable estimates, indicating parameter redundancy. I found that 

certain types of missing data can greatly hinder inference, and I make study design 

recommendations to avoid these issues. Additionally, I advocate the use of time-varying 

covariates to explain temporal trends in the data, and the development of sampling techniques 

that match the biology of the system to eliminate unobservable states when possible. 

INTRODUCTION 

Drawing inferences about spatial and temporal dynamics of species’ distributions is 

central to our understanding of ecology, as well as to making effective conservation and 

management decisions. Unfortunately, our understanding of the biotic and abiotic factors 

structuring species’ distributions are often based on static patterns that assume that species are at 

equilibrium with the environment, despite the fact that both species distributions and the 

environment are dynamic and distributional responses to change are not instantaneous (Yackulic 

et al. 2015, Clement et al. 2016). Many ecosystems under pressure from climate change, invasive 

species, habitat fragmentation, or emerging infectious disease are likely experiencing transient 

dynamics, where species distributions are not at equilibrium (Ovaskainen and Hanski 2002). In 

these cases, static distribution models can miss important dynamics and yield misleading 

biological inferences (Yackulic et al. 2015). Direct observations of the transient dynamics should 

yield stronger inferences, but such studies can be hindered by an inability to identify the system’s 

state or to appropriately account for important environmental variables. To address these 

challenges, scientists have developed complex multistate occupancy models that incorporate the 

dynamic nature of habitats, multiple interacting species, and other factors of interest, while 

accounting for species’ nondetection or state misclassification (Nichols et al. 2007, Richmond et 
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al. 2010, Miller et al. 2012a). However, increasing the number of mutually exclusive states in a 

system can result in cases where the true species distribution is unknown or even unobservable. 

State uncertainty arises when the state of a study unit cannot be ascertained perfectly by 

an observer (Pradel 2005). An unobservable state is an extreme case of state uncertainty where it 

is impossible to properly assign the unit’s true state (state-specific detection probability = pstate = 

0). State uncertainty and its consequences have been well-studied for individual-based mark-

recapture models (Kendall and Nichols 2002, Conn and Cooch 2009, Bailey et al. 2010), but less 

so for multistate occupancy models where state uncertainty may also occur (but see (Royle and 

Link 2006, Miller et al. 2011). Regardless of the model class, unobservable states may lead to 

misleading biological inferences due to parameter bias, lack of precision, or parameter 

redundancy (Catchpole and Morgan 1997, Cole et al. 2010, Hubbard et al. 2014).  

Multistate occupancy models assume that an unknown underlying species distribution 

describes a population of sample sites (Nichols et al. 2007, MacKenzie et al. 2009). Multiple 

occupied states are defined by an investigator depending on the biological questions of interest 

and may include reproductive status (Martin et al. 2009), disease state (Elmore et al. 2014), 

relative abundance (Falke et al. 2010), competitor occurrence (Steen et al. 2014), and/or habitat 

features (Miller et al. 2012a). Imperfect state assignment occurs during the observation process, 

as sites are repeatedly surveyed over a period of time when the state of the site is assumed to be 

static. Though the state does not change, the observations by the observers, which are imperfect, 

may change. 

The direct estimation of detection and classification probabilities to account for state 

uncertainty assumes that detection is possible for all occupied states (MacKenzie et al. 2009). 

This assumption may be violated in some scenarios, resulting in an unobservable state, but the 
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repercussions of this violation have not yet been explored in occupancy models. Unobservable 

states may stem from limitations in the sampling design or the nature of the system. For example, 

it may be difficult or impossible to identify certain life stages of species due to lack of 

technological ability or lack of knowledge about the system. 

Host-pathogen systems are one case where unobservable occupancy states may exist. For 

example, in the simplest case with a single target host and single free-living or vectored 

pathogen, the pathogen-only state cannot be observed if detection of the pathogen is conditional 

on host occurrence and detection unless alternative host species are sampled. Ignoring the 

unobservable state may lead to misleading conclusions regarding host-pathogen dynamics. I use 

expected values data generated under a simple host-pathogen scenario to explore the bias in 

parameters estimated when the unobservable state is “ignored” and pathogen detection is instead 

treated as a dynamic covariate influencing host occurrence. Next, I adopt a 2-species occupancy 

modeling approach (a special case of a multistate occupancy model; Richmond et al. 2010) 

where the probability of detecting the pathogen is fixed at 0 both when hosts are present but not 

detected, and when the pathogen occurs in isolation outside of the target host.   

 I used analytic and numeric approaches to explore how parameter values, sample size, 

and amount of missing data influence precision, bias, and parameter redundancy in this simple 

host-pathogen example with wide applicability to other systems. Obtaining unbiased estimates of 

system dynamics is necessary to correctly identify factors influencing changes in species 

distributions over time. These inferences and estimates are central to our ability to understand 

transient system dynamics and evaluate the effects of proposed management and conservation 

actions using predictive models. This work is the first to explore the impacts of unobservable 
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occupancy states on inference in multistate occupancy systems, and will be useful to those 

making conservation decisions in host-pathogen and other complex systems. 

METHODS 

Study System 

Though my work is widely applicable to a suite of biological systems, it is motivated by 

impacts of chytridiomycosis, an emerging infectious disease of amphibians worldwide (Skerratt 

et al. 2007). The causative agent of chytridiomycosis is the pathogen Batrachochytrium 

dendrobatidis (Bd), a fungus with a free-living aquatic zoospore that can infect amphibian skin 

(Berger et al. 2005). Understanding changes in the transient dynamics of both amphibian hosts 

and Bd is necessary to inform management during and after the onset of a chytridiomycosis-

linked perturbation to the host population or metapopulation. Of particular interest to us is the 

boreal toad (Anaxyrus boreas boreas) and Bd system in the Southern Rocky Mountains (SRM). 

Historically, sampling in the SRM consisted of detection-nondetection records for the host 

species (the boreal toad), with opportunistic swabbing of toads as the only means of detecting the 

pathogen (Bd), resulting in an unobservable, pathogen-only state. This scenario is typical of 

many long-term amphibian-Bd datasets. During a given season, each sampled potential breeding 

site must be in one of four mutually exclusive states: occupied by the target amphibian (host 

only, state A), occupied by Bd (pathogen only, state B), not occupied by either amphibian host or 

Bd (unoccupied, state U), or occupied by both the target amphibian and Bd (host and pathogen, 

state AB). 

Modeling Framework 

To explore the benefits and limitations of dynamic multispecies modeling, I assumed that 

the dynamics of my host-pathogen system were consistent with a 2-species occupancy model 
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(MacKenzie et al. 2004, Richmond et al. 2010), where pathogen detection depends on host 

occurrence and detection. Accordingly, I used the conditional binomial parameterization outlined 

by (Richmond et al. 2010) with a robust design extension to investigate dynamics across years. 

The model estimates the unconditional probability of initial host species (species A) presence 

(𝜓𝐴) and the probability of pathogen (species B) presence, conditional on host presence (𝜓𝐵𝐴) or 

absence (𝜓𝐵𝑎). Estimates of other state probabilities of interest can be calculated from these 

estimates, for instance the initial state distribution vector (for states A, B, U, and AB), 𝜑0: 

𝜑0 = [𝜓𝐴(1 − 𝜓𝐵𝐴) (1 − 𝜓𝐴)𝜓𝐵𝑎 (1 − 𝜓𝐴)(1 − 𝜓𝐵𝑎) 𝜓𝐴𝜓𝐵𝐴] 

Transitions among the four states (Figure 1.1) can be expressed as a transition probability matrix 

𝜑𝑡, with rows denoting the state of the site at time 𝑡 and columns denoting the state of the site at 

time 𝑡 + 1.Transitions are parameterized as a function of colonization (𝛾) and extinction (𝜀) 

probabilities similar to those presented in Miller et al. (2012a), and are state dependent (Table 

1.1). For instance, the probability of a site transitioning from state AB (host and pathogen) in 

year 𝑡 to state B (pathogen only) in year 𝑡 + 1  is the product of the probabilities of host extinct 

and pathogen persistence, given the presence of both species (i.e., 𝜀𝐴𝐵(1 − 𝜀𝐵𝐴)).  

Multiple state-specific detection parameters allow investigators to explore scenarios 

where the detection of the pathogen species (B) may vary as a function of the presence and/or 

detection of the host species (A). The detection matrix 𝑝𝑡 gives the probability of observing each 

possible state (columns) given a corresponding true state (rows; Table 1.2). Detection 

probabilities denoted 𝑝𝑥 indicate detection of species 𝑥 when it occurs alone, while probabilities 

denoted 𝑟𝑦 indicate detection when species co-occur. Species B’s detection probability may 

differ depending on whether species A is present and detected (𝑦 = 𝐵𝐴) or present and 

undetected (𝑦 = 𝐵𝑎). This model assumes that false positive detections do not occur. I 
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constrained the probability of detecting the pathogen when it occurs alone (𝑝𝐵) or with an 

undetected host (𝑟𝐵𝑎) to 0 based on my SRM boreal toad-Bd dataset, where boreal toad swabs 

are the only means of detecting Bd. I generated expected values data, and analyzed those data 

using various model types and structures, described below.  

Single-species Model 

To quantify the bias induced when the unobservable state is “ignored” and pathogen 

detection is simply treated as a dynamic covariate, I generated expected values data using the 2-

species model described above in Program GenPRES (Hines 2006) using parameter values that I 

deemed realistic for the SRM boreal toad-Bd system (Table 1.3). I generated detection-

nondetection records for 80 sites over 4 seasons, assuming 2 surveys were conducted per season. 

The generated data were designed to mimic the SRM boreal toad-Bd system and assume a high 

initial occupancy of toads (𝜓𝐴 =0.90) because the historic dataset conditions on boreal toad 

breeding sites rather than a random sample of potential breeding sites. The selected “true” 

parameters simulate a decline in host from 0.90 to 0.71 over 4 years (Table 1.3), which reflects 

of the status of SRM toad populations (unpublished dataset, Boreal Toad Recovery Team). 

The generated data were converted to a dynamic single-species dataset for host 

occurrence, with annual pathogen detection (1) or nondetection (0) information used as a time-

varying covariate. First, I used the initial occupancy parameterization of the dynamic single-

species occupancy model (MacKenzie et al. 2003), ran a single model consistent with the true 

model (𝜓1(. )𝛾(𝐵𝑑)𝜀(𝐵𝑑)𝑝(𝐵𝑑)), and compared resulting estimates to the true parameter values 

used to generate the expected values data.  Next, using an alternative parameterization 

(ψ(Bd)ε(Bd)p(Bd); MacKenzie et al. 2003), I modeled host occupancy and extinction 
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probabilities as a function of annual pathogen detection and investigated the magnitude and 

direction of the estimated effect of Bd on boreal toad occurrence.  

2-species Model 

The identifiability of the 2-species occupancy model has not been assessed when an 

unobservable state is present. Parameter redundancy, or non-identifiability, may occur when a 

dataset lacks information to estimate unique values for some model parameters. Redundancy can 

be either intrinsic, stemming from inherent model properties, or extrinsic, stemming from data 

sparseness (Gimenez et al. 2004). Several methods have been used to assess parameter 

redundancy in mark-recapture models (Gimenez et al. 2004) and I employ three to explore 

redundancy in my host-pathogen system: symbolic differentiation (Catchpole and Morgan 1997, 

Cole et al. 2010), an analytic-numeric method (Burnham 1987), and data cloning (Lele et al. 

2007).  

Symbolic differentiation is an analytic method that assesses the rank of a derivative 

matrix (the Jacobian) for a model using symbolic algebra (Catchpole and Morgan 1997, Cole et 

al. 2010), and is the preferred method for assessing parameter redundancy (Gimenez et al. 2004, 

Bailey et al. 2010). Full-rank matrices indicate that all parameters in a model are uniquely 

identifiable, while rank-deficient matrices indicate parameter redundancy. In addition to 

calculating the number of identifiable parameters, the identifiable parameter combinations may 

also be obtained based solely on model structure (Catchpole et al. 1998). Using symbolic 

differentiation, I evaluated models where all vital rates were constant or time-varying, and 

detection probabilities varied by survey, season, both, or were constant, creating 8 different 

models. I used a hybrid symbolic-numeric method with the symbolic algebra software MAPLE 
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to overcome memory issues in MAPLE and obtain final parameter redundancy results (Choquet 

and Cole 2012). 

Symbolic differentiation is often difficult to employ for complex models (Forcina 2008, 

Hunter and Caswell 2009) and in these cases alternatives exist (Choquet and Cole 2012, Cole 

2012) that can assess parameter redundancy. In addition to using the hybrid symbolic-numeric 

method, I also assessed bias, precision, and parameter redundancy using a numeric-analytic 

approach (Burnham 1987) and data cloning (Lele et al. 2007). To accomplish this, I generated 

expected values data under a “true” model and then analyzed the resulting dataset using different 

model structures (Burnham 1987, Schaub et al. 2004, Bailey et al. 2010). Bias and precision 

were assessed by comparing model estimates to the true parameter values and by using these 

metrics to investigate issues related to intrinsic or extrinsic parameter redundancy. If the 

identifiability of a parameter was questionable based on the numeric-analytic results (e.g., the 

standard error for a parameter was very large, but potentially reasonable), data cloning was used 

(Lele et al. 2007). This method artificially “clones” the observed data to increase sample size and 

provides a way to determine the identifiability of parameters in a model by approximating the 

asymptotic standard error of maximum likelihood estimates (Lele et al. 2010). If the standard 

error of the parameter of interest decreases predictably toward zero as the number of clones 

increases, the parameter is estimable. If not, the parameter is considered unidentifiable. Data 

cloning for select models was implemented in Program MARK using 1000 clones. Numeric 

methods are not prone to the computer memory problems that symbolic differentiation 

encounters, but can be subject to inaccuracies (Gimenez et al. 2004, Hunter and Caswell 2009). 

I generated expected values data using parameter values from the SRM boreal toad-Bd 

system above (n = 80) and then: (1) decreased the quantity of data by introducing ‘missing 
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values’ to explore impacts of data sparseness, (2) increased the sample size two-fold (n = 160) to 

investigate how a reasonable increase in sample size might alter precision, and (3) increased the 

sample size one-hundred-fold (n = 8000) to separate intrinsic from extrinsic identifiability issues. 

In the missing values dataset, I considered the original 80 sites, where 20 sites were sampled for 

both species in every season (year), 20 sites were sampled in even seasons only, 20 sites were 

sampled in odd seasons only, and 20 sites were sampled each season for boreal toads but never 

for Bd. This sampling scheme reflects the tradeoffs that managers and biologists commonly 

make with limited time or financial resources. Finally, I explored a new set of parameter values 

for a different hypothetical host-pathogen system to determine how differences in host-pathogen 

dynamics may influence identifiability, bias, and precision for two sample sizes (n = 80, and n = 

8000). This new system reflects a rare host species that is highly susceptible to disease (hereafter 

“rare and susceptible host system”, 𝜀𝐴𝐵 = 0.9) and assumes a decline in host occurrence from 

0.20 to 0.07 over 4 years (Table 1.3).  

I investigated bias, precision, and parameter redundancy in these 6 unique scenarios by 

fitting a suite of forty-eight 2-species models to each generated dataset using RMark (Laake 

2013), a formula-based interface for Program MARK (White and Burnham 1999). The models 

included annual variation or constant structures for vital rates, and detection structures that were 

constant or variable by season or survey (Table 1.4). To reduce the number of models in the 

candidate set, estimated detection parameters (𝑝𝐴, 𝑟𝐴, and 𝑟𝐵𝐴) were constrained to have the 

same structure within a given model. Vital rate pairs (𝛾 𝐴 and 𝛾 𝐴𝐵, 𝛾𝐵 and 𝛾𝐵𝐴, 𝜀𝐴and 𝜀𝐴𝐵,  𝜀𝐵  

and 𝜀𝐵𝐴) were also constrained to have identical structures within the same model (Table 1.4). I 

ran the simplest model first, using simulated annealing, and fit new models using initial values 

from the simplest model to reduce computing time and to improve convergence.  
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RESULTS 

Single-species Model 

I found that using a covariate for an imperfectly detected pathogen resulted in bias in 

several vital rate parameters, using the initial occupancy parameterization (Table 1.5). 

Colonization of the host species in the absence of the pathogen (𝛾 𝐴) was underestimated and 

colonization of the host in the presence of the pathogen (𝛾 𝐴𝐵) was overestimated, leading to the 

inappropriate conclusion that host colonization is independent of pathogen presence (true 

difference in colonization probability = 0.65, estimated difference = 0.02). In addition, the 

extinction probability of hosts in the absence of the pathogen (𝜀𝐴) and the detection probability 

of hosts in the presence of the pathogen (𝑟𝐴) were both overestimated (Table 1.5). When I used 

the alternative parameterization and modeled host occupancy as a function of pathogen 

detection, the estimated relationship between Bd and host occurrence was positive (𝛽̂ =19.90) 

and was poorly estimated. This result is clearly incorrect, as the data were generated under the 

assumption that Bd negatively influences host occurrence. However, because Bd is only detected 

when the host is detected, all sites with Bd detections were also known to be occupied by the 

host, yielding the erroneous positive relationship with host occupancy. 

2-species Models 

Using symbolic differentiation, I found that the 2-species model had no intrinsic 

parameter redundancy when all four states were observable, even when vital rate and detection 

probabilities varied over time and/or surveys. However, when one of the states was 

unobservable, as in the SRM boreal toad-Bd system, the matrix was full-rank only when all vital 

rate parameters were time-constant and there were at least 3 seasons of data, with 2 or more 

surveys per season. Models with vital rate parameters that varied with time showed some 
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parameter redundancy, however, I was unable to obtain the estimable parameter combinations 

and determine which parameters were inestimable due to computational complexity and memory 

problems in MAPLE (Appendix 1.1). I was unable to identify a natural reparameterization for 

this model that would prove intrinsic parameter redundancy (e.g., as illustrated for different 

models in Cole 2012). 

Our numeric-analytic results corroborated the symbolic differentiation results, showing 

that the 3 models with time-constant vital rates provided unbiased estimates for all parameters 

regardless of the sample size, amount of missing data, parameter values, or detection structures 

used. In the SRM boreal toad-Bd system, all parameters in these models were estimated with a 

reasonable level of precision (SE < 0.50) at the smallest sample size evaluated (n = 80), and 𝜓𝐵𝑎, 

𝛾 𝐴, and 𝜀𝐵 had the largest standard errors among the parameters estimated (Chapter 1 Appendix 

1.2). In the rare and susceptible host-pathogen system, 𝜓𝐵𝑎, 𝛾𝐵, and 𝜀𝐵had the largest standard 

errors, which were > 0.5 at the smallest sample size evaluated (Appendix 1.3). In general, 

standard errors were larger in the rare and susceptible system than in the boreal toad system, and 

𝜓𝐵𝑎  was the least precise parameter in both systems. In both the SRM-boreal toad and rare and 

susceptible systems, precision improved with sample size, and precision was quite high when 

8000 sites were used (Appendices 1.2 and 1.3) indicating that some parameters may only be 

extrinsically identifiable at sample sizes that are not plausible in the real world. The introduction 

of missing data increased standard errors but did not create bias in time-constant models. For 

example, the average standard error for 𝜓𝐵𝑎 in time-constant models in the SRM-boreal toad 

system was 0.34 with a sample size of 80 sites, 0.50 when missing data were considered in the 

80 site dataset, 0.24 using 160 sites, and 0.03 using 8000 sites (recall the true and estimated 𝜓𝐵𝑎 

value was 0.05).  
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Of the 45 models with time variation in vital rates, 27 models appeared to be completely 

identifiable based on numeric-analytic and data cloning results (Appendices 1.2 and 1.3). This 

finding was independent of the dataset used. Despite many models being intrinsically 

identifiable, only 9 models with time variation yielded reasonable standard errors (SE < 0.50 on 

the probability scale) for all parameters in the SRM system at the smallest sample size, and no 

models were completely without precision issues for the rare and susceptible host system for the 

same sample size (n = 80). Other models, despite being identifiable, had extreme precision issues 

at small sample sizes. The 9 models providing valid inference for all parameters in the SRM 

system included models with time variation in host extinction (𝜀𝐴 and 𝜀𝐴𝐵) and/or pathogen 

colonization (𝛾𝐵 and 𝛾𝐵𝐴), but without time variation in other parameters. Though all parameters 

were technically identifiable in these models, the standard errors for 𝜓𝐵𝑎and 𝜀𝑡=1
𝐵  were large 

(>0.30), especially at small sample sizes. For the remaining models with time variation (18 

models), a comparison of results from the smallest and largest sample sizes, in conjunction with 

data cloning, imply that a subset of initial occupancy (𝜓𝐵𝑎) and vital rate parameters at the 

beginning of the time series (𝛾𝑡=1
𝐴 , 𝛾𝑡=1

𝐴𝐵 , 𝛾𝑡=1
𝐵 and 𝜀𝑡=1

𝐵 ) are often unidentifiable in models with 

complex time structures. These parameters are frequently biased with inestimable standard errors 

(Appendices 1.2 and 1.3). Patterns were consistent between the SRM and rare and susceptible 

host systems, but precision for identifiable parameters worsened with the inclusion of missing 

data and decreasing sample size. 

DISCUSSION 

When the detection of one species is related to the presence and/or detection of another, 

using an imperfectly detected covariate to describe a relationship in occurrence will often result 

in biased estimates of the effect being studied and thus misleading inferences. This problem 
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stems from the fact that what is actually being modeled is the relationship between the 

occurrence of one species and the detection of the other, rather than the independent occurrences 

of both species. While this problem has not been addressed explicitly until now, the issue has 

been intuited by ecologists for some time. For instance, initial work on barred and spotted owls 

in the Pacific Northwest of the US focused on using barred owl detection/nondetection data to 

model the occurrence of northern spotted owls (Kelly et al. 2003, Olson et al. 2005). Later, static 

2-species models demonstrated that barred owl detection was imperfect and potentially 

influenced by northern spotted owl detection (Bailey et al. 2009). Current research in this system 

uses a multispecies occupancy approach, similar to the methods I employed, to model variation 

in detection probabilities based on species co-occurrence and to estimate the distributional 

dynamics of both species (Yackulic et al. 2014, Dugger et al. 2016).  

Here, I examined an extreme case where detection of one species is completely 

dependent upon the occurrence and detection of another, resulting in an unobservable occupancy 

state. Though I use an amphibian-Bd system to describe my approach, this situation may exist in 

cryptic predator-prey systems, systems with territorial species, and many other host-pathogen 

systems. Using an imperfectly detected pathogen covariate resulted in underestimation of the 

effect of the pathogen on host colonization probability in one parameterization. My SRM 

example was based on data from historic breeding sites at the start of an epidemic, where most 

sites were occupied by the host at the beginning of the study, leaving few unoccupied sites to be 

colonized. For other systems with different initial state distributions, the parameters that are 

biased may vary, suggesting that the nature of the biological system likely influences which 

parameters are most difficult to estimate. Using the alternative parameterization, where 

occupancy is modeled directly as a function of the Bd detection as a covariate, I estimated an 
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erroneous positive effect of Bd on amphibian occurrence. My work may explain the puzzling 

findings of other studies where the effect Bd on host amphibians appears to be minimal or even 

slightly positive (Grant et al. 2016a) in regions with local extinctions attributed to Bd. 

Underestimating or misidentifying the impact of one species on another could result in host 

declines going undetected for long periods of time, and the failure to detect a negative pathogen 

effect when one exists. Management and conservation actions may be triggered late, or not at all, 

resulting in a higher likelihood of species extinction. I recommend that biologists explore 

potential biases in their system following the framework that I have outlined in this manuscript 

to avoid making erroneous inference. 

Though challenges arising from computational complexity and computer memory made 

symbolic differentiation difficult, I was able to use a combination of methods to determine that 

several parameters were intrinsically unidentifiable for models with complex time-varying 

parameter structures. More importantly, I found that some models with simple forms of time 

variation were both intrinsically and extrinsically identifiable, even for realistic sample sizes. My 

results inform researchers working in similar host-pathogen systems about which hypotheses can 

be reliably investigated and also about which parameters may be biased or extremely imprecise. 

In particular, I found that estimates of vital rate parameters at the beginning of the time series, 

the extinction probability of the pathogen (𝜀𝐵), and the initial probability of the pathogen when it 

occurs alone (𝜓𝐵𝑎) often suffered from bias, imprecision, and unidentifiability depending on 

model structure.  

The mark-recapture literature has shown that transitions to and from unobservable states 

(temporary emigration) are not identifiable at the end of a time series when these parameters are 

time-specific (Kendall et al. 1997). Additionally, survival of unobservable individuals is only 
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estimable if it is constrained to be equivalent to observable individuals (Kendall and Nichols 

2002). My work demonstrates a similar parallel for multistate occupancy models, as I found that 

state and vital rate parameters that condition on the unobservable state (the pathogen-only state 

in my example), are unidentifiable in many models that incorporate time variation in vital rates. 

Setting the first transition parameters equal to transition parameters for a later season, similar to a 

suggestion in the mark-recapture literature (Kendall et al. 1997), made all parameters identifiable 

(including 𝜓𝐵𝑎), but this remedy should be applied cautiously. The decision of which vital rates 

in the time series to set equal is an important one, based on the biological knowledge of the 

system. If substantial time variation in vital rates exists in the system, setting two truly different 

vital rate parameters equal to one another will produce biased estimates of both parameters, and 

may also cause bias in other parameters (Langtimm 2009). Another solution is to carefully 

evaluate which parameters are identifiable, as I did here, and to avoid interpretation of 

parameters that are not a true reflection of the biology of the system. 

Our dynamic multispecies results illustrate that, for a plausible real-world system, many 

models of interest may yield misleading or imprecise results when states are unobservable. These 

problems are exacerbated by data sparseness in the form of missing data, small sample sizes, and 

rare or difficult-to-detect species of interest. Data sparseness in these various forms is known to 

be problematic for occupancy models in general (Mackenzie and Royle 2005), but difficulties are 

amplified when unobservable states and time variation in vital rate parameters occur. For these 

reasons, it will be difficult to estimate time variation in occupancy dynamics for species that are 

inherently rare, infrequently sampled, or for species that have declined to only a fraction of their 

former range. If temporal variation in species vital rates is truly of interest, the only way to 

confidently estimate these dynamics is to eliminate the unobservable state. In the amphibian-Bd 
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system that I describe, using water filtration to detect the pathogen in its free-living form 

(Kirshtein et al. 2007), sampling other non-target host species, or using sentinel animals would 

provide information on pathogen presence and detection that is independent of host detection. In 

other systems, additional sampling strategies that would eliminate the unobservable state may be 

appropriate. Another alternative is to model seasonal variation in vital rates as a function of 

temporal covariates, which can eliminate redundancy (Cole and Morgan 2010). Given the 

tradeoff between surveying more sites, or surveying fewer sites more intensively, I suggest that 

researchers minimize missing observations at a smaller collection of sites because I found that 

the inclusion of missing data created larger standard errors than small sample sizes.  

In situations where the suggestions above are not possible (for instance, when historic 

data have already been collected as in the SRM case), researchers can use the numeric-analytic 

method and data cloning approaches, described here, to identify potential biases and parameter 

redundancy in their own systems. To my knowledge, I am the first to investigate how bias, 

precision, and parameter identifiability are influenced by state uncertainty in multistate 

occupancy models. While my study was motivated by a specific host-pathogen system, my work 

is widely applicable to other host-pathogen systems and to studies involving other interactions 

(e.g., competitive, predator, mutualistic, etc.). I encourage researchers to think carefully about 

the system being studied, and to strive to find an appropriate way to model dependencies in the 

data structure. Simulation and analyses of generated data specific to a system are valuable tools 

that can help researchers identify potential biases, elucidate realistic expectations for precision, 

and guide the interpretation of findings to maximize learning in complicated biological systems. 
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Table 1.1: Transition probabilities matrix 𝜑𝑡 in table form, illustrating transitions among four 

states for a 2-species dynamic occupancy model. Seasonal transition probabilities are expressed 

as combinations of vital rate parameters, colonization (𝛾) and extinction (𝜀) for both species (A 

and B) and are conditional upon the state at 𝑡. 

 

State at 

𝒕: 

State at 𝒕 + 𝟏: 

A B U AB 

A 
 (1 − 𝜀𝐴)(1 − 𝛾𝐵𝐴) 𝜀𝐴𝛾𝐵𝐴 𝜀𝐴(1 − 𝛾𝐵𝐴) (1 − 𝜀𝐴)𝛾𝐵𝐴 

B 
𝛾𝐴𝐵𝜀𝐵 (1 − 𝛾𝐴𝐵)(1 − 𝜀𝐵) (1 − 𝛾𝐴𝐵)𝜀𝐵 𝛾𝐴𝐵(1 − 𝜀𝐵) 

U 
𝛾𝐴(1 − 𝛾𝐵) (1 − 𝛾𝐴)𝛾𝐵 (1 − 𝛾𝐴)(1 − 𝛾𝐵) 𝛾𝐴𝛾𝐵 

AB 
(1 − 𝜀𝐴𝐵)𝜀𝐵𝐴 𝜀𝐴𝐵(1 − 𝜀𝐵𝐴) 𝜀𝐴𝐵𝜀𝐵𝐴 (1 − 𝜀𝐴𝐵)(1 − 𝜀𝐵𝐴) 
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Table 1.2: Detection probability matrix 𝑝𝑡 in table form, illustrating state-dependent detection 

probabilities for the general case of a 2-species dynamic occupancy model with four states. In the 

system I explored, 𝑝𝐵 and 𝑟𝐵𝑎 are constrained to 0 to illustrate that species B can only be 

detected when species A is both present and detected (as is the case with amphibian swab 

sampling for pathogens). 

 

True state 

at 𝒕: 

Observed state at 𝒕 + 𝟏: 

A B U AB 

A 
𝑝𝐴 0 (1 − 𝑝𝐴) 0 

B 
0 𝑝𝐵 (1 − 𝑝𝐵) 0 

U 
0 0 1 0 

AB 
𝑟𝐴(1 − 𝑟𝐵𝐴) (1 − 𝑟𝐴)𝑟𝐵𝑎 (1 − 𝑟𝐴)(1 − 𝑟𝐵𝑎) 𝑟𝐴𝑟𝐵𝐴 
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Table 1.3: ‘True’ parameter values used to generate expected values data under a dynamic 2-

species occupancy model for two host-pathogen scenarios: a common species with a moderate 

decline (modeled after boreal toads and Bd in the Southern Rocky Mountains), and a rare species 

with a severe decline. The true model assumes state-specific occurrence (𝜓), colonization (𝛾) 

and extinction (𝜀) processes, and detection probabilities (𝑝𝐴, 𝑝𝐵, 𝑟𝐴, 𝑟𝐵𝐴, 𝑟𝐵𝑎), in a 4 state system 

with one unobservable state. 

 

 Parameter  

Value 

SRM  

boreal toad-Bd 

Rare and 

Susceptible 

𝜓𝑡=1
𝐴  0.90 0.20 

𝜓𝑡=1
𝐵𝐴  0.20 0.80 

𝜓𝑡=1
𝐵𝑎  0.05 0.40 

𝛾 𝐴𝐵 0.05 0.05 

𝛾 𝐴 0.70 0.10 

𝛾𝐵𝐴 0.20 0.80 

𝛾𝐵 0.10 0.40 

𝜀𝐴𝐵 0.40 0.90 

𝜀𝐴 0.05 0.60 

𝜀𝐵𝐴 0.10 0.05 

𝜀𝐵 0.30 0.10 

𝑝𝐴 0.90 0.70 

𝑝𝐵 0.00 0.00 

𝑟𝐴 0.80 0.40 

𝑟𝐵𝐴 0.60 0.70 

𝑟𝐵𝑎 0.00 0.00 

Decline in host 

occurrence over 

4-season study 

period 

21% 

(from 0.90 to 

0.71) 

65% 

(from 0.20 to 

0.07) 
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Table 1.4: Model structures used to investigate bias, precision, and parameter redundancy using 

the analytic-numeric approach for a host-pathogen system with an unobservable state. All 

combinations of these structures were used, resulting in 48 total models that were fit to each 

expected values dataset. I constrained the total number of models investigated by assuming that 

estimated detection probabilities must have the same model structure, and that vital rate 

parameters for a particular species (for example, 𝛾 𝐴 and 𝛾 𝐴𝐵) must have the same structure. 

 

Model Parameters 

Occupancy 

(𝜓𝑡=1
𝐴 , 𝜓𝑡=1

𝐵𝐴 , 𝜓𝑡=1
𝐵𝑎 ) 

Colonization 

(𝛾) 

Extinction 

(𝜀) 

Detection 

(𝑝𝐴,  𝑟𝐴, 𝑟𝐵𝐴) 

Constant Constant Constant Constant 

 

Annual time 

variation in 

𝛾 𝐴 and 𝛾 𝐴𝐵 

Annual time 

variation in 

𝜀𝐴 and 𝜀𝐴𝐵 

Annual time 

variation in all 

detection parameters 

 

Annual time 

variation in 

𝛾𝐵 and 𝛾𝐵𝐴 

Annual time 

variation in 

𝜀𝐵 and 𝜀𝐵𝐴 

Within-season time 

variation in all 

detection parameters 

 

Annual time 

variation in 

all 𝛾 

Annual time 

variation in 

all 𝜀  
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Table 1.5: Metrics used to evaluate bias and precision of a dynamic single-species occupancy 

model using pathogen detection as a covariate, compared to ‘true’ parameter values.  

 

 𝝍𝒕=𝟏
𝑨  𝜸𝑨 𝜸𝑨𝑩 𝜺𝑨 𝜺𝑨𝑩 𝒑𝑨 𝒓𝑨 

True Model 

Parameter 

Value 
0.9 0.7 0.05 0.05 0.4 0.9 0.8 

Estimated 

Parameter 

Value 
0.91 0.35 0.33 0.08 0.42 0.87 0.87 

Absolute  

Bias 
0.01 0.35 0.28 0.03 0.03 0.03 0.07 

Standard 

Error 
0.04 0.09 0.09 0.02 0.08 0.02 0.03 
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Figure 1.1: State diagram and detection probabilities for a 2-species dynamic occupancy model 

with one unobservable state (state B). Species of interest can occur separately (states A or B), 

together (state AB), or not at all (unoccupied, state U). Arrows represent the seasonal transitions 

among states, with transition probabilities defined in Table 1.1. Species detection probabilities 

for occupied states are listed within each circle. Unobservable events are signified by detection 

probabilities being fixed at 0, and happen when species B occurs alone (𝑝𝐵) and when species A 

and B occur together, but species A is undetected (𝑟𝐵𝑎). 

 

 

 

 



24 

 COMPLEX ECOLOGICAL RELATIONSHIPS INFLUENCE EXTINCTION 

RISK IN AN AMPHIBIAN-PATHOGEN SYSTEM 

 

 

 

SUMMARY 

Emerging infectious diseases are an increasingly common threat to wildlife, and 

emergence is often driven by changes in host susceptibility, pathogen infectivity, or the 

environment. Chytridiomycosis, caused by the fungal pathogen Batrachochytrium dendrobatidis 

(Bd), is an emerging infectious disease that has been linked to amphibian declines around the 

world. Few studies exist that explore amphibian-Bd dynamics at the landscape scale, limiting our 

ability to identify factors influencing variation in population susceptibility and develop effective 

in situ disease management. Declines of boreal toads (Anaxyrus boreas boreas) in the southern 

Rocky Mountains are largely attributed to chytridiomycosis but there is variation in local 

extinction of boreal toads across this metapopulation. Using a large-scale historic dataset, I 

explored several potential factors influencing disease dynamics in the boreal toad-Bd system: 

genetic isolation of populations, amphibian community diversity, climate differences, and habitat 

permanence. I found evidence that boreal toad extinction risk was highest at low elevations 

where temperatures may be optimal for Bd growth and where large boreal toad populations 

facilitate density-dependent disease transmission. I illustrate a framework that will be useful to 

natural resource managers striving to make decisions in amphibian-Bd systems, and provide 

evidence that the physiological tolerances of Bd may interact with habitat features to shape 

amphibian declines. 
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INTRODUCTION 

Emerging infectious diseases (EIDs) can increase species extinction rates, shape 

community dynamics, and fundamentally alter how ecosystems function (Whiles et al. 2013, 

Rothermel et al. 2016, Langwig et al. 2016). Mechanisms underlying disease emergence are 

often poorly understood because declines happen quickly, pathogens may be newly described, 

and static patterns of disease metrics (e.g., occurrence or prevalence) fail to yield strong 

inferences about the mechanisms driving these dynamic systems (Hastings 2001, Yackulic et al. 

2015). Despite these difficulties, understanding the ecology of host-pathogen relationships and 

the factors that influence disease-related extinction events are central goals of ecologists and 

managers (Langwig et al. 2015).  

Though most pathogens are not predicted to drive their hosts to extinction (Anderson and 

May 1991, De Castro and Bolker 2005), evidence of this phenomenon exists in many natural 

settings (Thorne and Williams 1988, Schloegel et al. 2006, Smith et al. 2006, Ryan et al. 2008). 

Moreover, population-level responses to pathogens can vary within a single species over small 

spatial and temporal scales (Hosseini et al. 2004, Scherer et al. 2008, Savage and Zamudio 

2011). Variation in extinction risk may be linked to elements of host susceptibility, pathogen 

infectivity and virulence, environmental features, or interactions of these elements. 

Understanding the mechanisms that give rise to variation in disease dynamics underlies sound 

ecological insights and is the basis for conservation and management activities (Garner et al. 

2016). 

Chytridiomycosis has emerged as an infectious disease of amphibians and is caused by 

the aquatic fungal pathogen Batrachochytrium dendrobatidis (Bd; Berger et al. 1998). Despite 

almost 20 years of research on this pathogen, questions remain about which factors shape local 
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host-Bd dynamics (Venesky et al. 2014b). The global impacts of chytridiomycosis (Skerratt et al. 

2007), coupled with local extirpations and differential susceptibility of amphibian populations 

(Schloegel et al. 2006, Murphy et al. 2009), make identifying the factors that lead to extinction a 

conservation priority. Local genetic differences, host species community richness, variation in 

climate, and habitat differences across sites have all been suggested to influence amphibian-Bd 

dynamics (Searle et al. 2011, Heard et al. 2013, Addis et al. 2015, Clare et al. 2016a). Assessing 

the relative contributions of these factors to host-pathogen dynamics will improve our ability to 

successfully manage landscapes, species, and populations challenged by chytridiomycosis 

(Venesky et al. 2014b, Garner et al. 2016).  

One way that genetic differences among local populations of a species can arise is when 

immigration and dispersal processes are disrupted by physical barriers or habitat fragmentation 

(Gibbs 2001). Amphibians may be especially prone to population isolation due to their limited 

dispersal abilities (Blaustein et al. 1994), high breeding site fidelity (Smith and Green 2005), and 

their vulnerability to barriers like roads (Fahrig et al. 1995, Marsh et al. 2005) and inhospitable 

terrain (Funk et al. 2005, Murphy et al. 2010a, Watts et al. 2015). Some studies have identified 

genetic correlates of chytridiomycosis susceptibility in amphibians (Savage and Zamudio 2011, 

Bataille et al. 2015, Addis et al. 2015) that may account for the differences in disease dynamics 

observed among species and populations (Knapp et al. 2016, Savage and Zamudio 2016).  

The presence of an environmental or alternate host species “reservoir” could increase the 

potential of a pathogen to drive a host species to extinction (Rosà et al. 2003, Almberg et al. 

2011). While evidence for a long-lived or resting stage of Bd is minimal (Johnson and Speare 

2003; but see Di Rosa et al. 2007), multiple amphibian species often occupy the same breeding 

habitat and could serve as reservoir species that may alter local population extinction risk. Field 
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and laboratory studies in amphibian-Bd systems have found that host species community 

richness can either dilute or amplify disease risk depending on the composition and traits of co-

occurring hosts (Reeder et al. 2012, Venesky et al. 2014a, Han et al. 2015). 

Spatial and temporal differences in climate also influence patterns of disease (Selig et al. 

2006, Lafferty 2009). Changes in moisture or temperature across these dimensions can interact 

with the physiological tolerances of free-living pathogens or vectors to shape pathogen 

distributions (Minakawa et al. 2002) and can influence host stress and associated immune 

responses (Raffel et al. 2006). Bd growth and survival are sensitive to cold and hot temperatures, 

and, in culture, optimal growth of Bd occurs between 15 and 25 degrees Celsius (Piotrowski et 

al. 2004). In the tropics, chytridiomycosis-related amphibian declines are most pronounced in 

colder months and at high elevations where temperatures are near the thermal optimum for Bd 

growth (Pounds et al. 2006, Gründler et al. 2012, Sapsford et al. 2013). Nevertheless, studies of 

whether cold climates at northern latitudes limit the effects of Bd on amphibians are equivocal 

(Muths et al. 2008, Savage et al. 2011, Knapp et al. 2011).  

Differences in habitat quality or structure may also alter host-pathogen dynamics 

(Penczykowski et al. 2014) or effects of disease on individuals (Sauther et al. 2006). Some 

evidence suggests that warmer water and drier microhabitats may inhibit Bd growth 

(Puschendorf et al. 2011, Heard et al. 2013), such that amphibians breeding in semi-permanent 

wetlands experience a refuge from high Bd loads. However, these semi-permanent sites require 

tadpoles to metamorphose quickly and may lead to frequent reproductive failure even in the 

absence of disease (Karraker and Gibbs 2009, Zipkin et al. 2012). 

I evaluated the competing roles of geographic isolation, host species community 

composition, climate, and habitat permanence in shaping amphibian disease dynamics using a 
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long-term dataset on boreal toads (Anaxyrus boreas boreas) and Bd in the Southern Rocky 

Mountains (SRM). I used a dynamic two-species occupancy model to account for the imperfect 

detection of both toads and Bd and to obtain unbiased estimates of host and pathogen dynamics 

(Richmond et al. 2010, Chapter 1). My objectives were to: 1) identify the major factors driving 

local variation in amphibian-Bd occurrence dynamics in a temperate amphibian-Bd system, and 

2) quantify this variation, providing empirical estimates of boreal toad-Bd dynamics that will be 

useful for understanding amphibian extinction risk in the SRM and other temperate settings. 

METHODS 

Study Species 

Boreal toads are a species native to western North America that has experienced Bd-

related declines throughout the SRM (Muths et al. 2003, Scherer et al. 2005), but some 

populations with Bd persist within this region (Carey et al. 2005). Boreal toad breeding sites in 

the SRM vary in their elevation, habitat type, and whether other amphibian species occur in 

sympatry with boreal toads. In addition, some sites have been isolated from others by rugged 

terrain or major interstate highways that have existed for many years. These sources of variation, 

coupled with long-term monitoring of both boreal toad and Bd detection, make this an ideal 

system to investigate factors that may shape disease-related amphibian extinctions. 

Data Collection 

Boreal toad surveys were conducted annually from 2001-2010 at 82 historic breeding 

wetlands (hereafter, sites) in mountainous regions of Colorado and Wyoming (Figure 2.1). 

Boreal toads breed in a variety of habitat types, including beaver ponds, wet meadows, oxbows, 

and lake or pond margins, and sites range in elevation from 2470-3680 meters. Between 0-10 

(mean = 3) visual encounter surveys were conducted at sites each year during the boreal toad 
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breeding and developmental seasons. Boreal toad skin swab samples were collected 

opportunistically during the surveys and were analyzed using standard DNA extraction and 

qPCR protocols to detect Bd (Boyle et al. 2004, Bletz et al. 2015). In addition, researchers 

collected information on whether the breeding sites were semi-permanent (prone to seasonal 

drying) or permanent, and whether two other amphibian species native to the region (tiger 

salamanders [Ambystoma tigrinum] or boreal chorus frogs [Pseudacris maculata]) were detected 

during these visits.  

Modeling Framework 

I used a dynamic two-species occupancy model (Richmond et al. 2010, Miller et al. 

2012a, Chapter 1) to estimate boreal toad (species A) and Bd (species B) occurrence dynamics 

simultaneously (Table 2.1). The model assumes that sites are in one of four mutually exclusive 

states in any year and allows for estimation of these state probabilities: sites can be occupied by 

boreal toads only (state A; 𝜓𝐴(1 − 𝜓𝐵𝐴)), occupied by Bd only (state B; (1 − 𝜓𝐴)𝜓𝐵𝑎)), 

occupied by boreal toads and Bd (state AB; 𝜓𝐴𝜓𝐵𝐴), or unoccupied by either species (state U; 

(1 − 𝜓𝐴)(1 − 𝜓𝐵𝑎)). Transitions among states can occur between years (Figure 2.2). 

Colonization (𝛾) and extinction (𝜀) parameters characterize these transitions and are estimated 

for each species conditional on whether the other species is present (Table 2.1). For instance, the 

probability of a site transitioning from state A (boreal toad only) in year 𝑡 to state AB (boreal 

toad and Bd) in year 𝑡 + 1 is the product of the probabilities of boreal toad persistence in the 

absence of Bd in year 𝑡, and Bd colonization in the presence of boreal toads (i.e., (1 − 𝜀𝐴)(𝛾𝐵𝐴); 
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Figure 2.2, transition 4). Colonization and extinction parameters can be time-specific provided 

all four states are observable. 

Detection parameters (Table 2.1) describe the probability of detecting each species when 

they occur alone (𝑝𝐴 and 𝑝𝐵) or when they occur together (𝑟𝐴 and 𝑟𝐵𝐴). Finally, the model 

allows for a different detection probability for Bd when toads are present but not detected (𝑟𝐵𝑎). 

In my study, Bd is detected from skin swabs and therefore cannot be detected when boreal toads 

are absent or undetected (𝑝𝐵 = 𝑟𝐵𝑎 = 0). This sampling limitation creates an unobservable state 

that has implications for parameter estimation. In Chapter 1, I examined the ramifications of this 

unobservable state for parameter estimation and found some parameters were unidentifiable 

when models contained combinations of time-specific vital rates. In time-constant models, 

colonization and extinction probabilities for Bd in the absence of the host (𝛾𝐵 and 𝜀𝐵) were 

estimated imprecisely. Accordingly, I explored only models with time-constant vital rates with 

the understanding that some estimates may be extremely imprecise. 

Biological Hypotheses 

Because I lacked genetic data at the broad spatial scale encompassed by the study, I 

focused on populations isolated by barriers to movement that may result in local adaptation and 

thus putative genetic differences. A major interstate highway established in 1956 runs east-west 

(Interstate 70) and intersects with the Continental Divide (which often exceeds 4000 meters in 

elevation): these features separate boreal toad populations into four regions (NE, NW, SW, and 

SE; Figure 2.1) whose connectivity may be limited by impervious surfaces and topography 

(Murphy et al. 2010b). I note that this coarse measure of isolation may not necessarily reflect real 

genetic differences in toads, but could also indicate lack of dispersal of infApprected animals, 

different strains of Bd, or habitat differences among regions.  
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I explored potential impacts of amphibian host community richness by treating the 

occurrence of other amphibians (tiger salamanders or boreal chorus frogs) as a site-level binary 

covariate (present or absent). I used elevation as a proxy for climatic differences, where high 

elevation sites are generally colder with higher snowpack than low elevation sites. Finally, to 

investigate the impacts of seasonal drying, I classified sites as semi-permanent (and subject to 

periodic drying) or permanent (no drying). I made a priori predictions about which vital rate 

parameters these factors would be most likely to influence and why (Table 2.2A).  

In addition, I anticipated heterogeneity in the detection probability of both boreal toads 

and Bd across space and/or time. Accordingly, I generated a priori hypotheses and predictions 

for covariates influencing detection parameters as well (Table 2.2B).  

Modeling Approach 

I initially fit a simple model where all parameters were time-constant (14 total 

parameters); this model indicated that extinction probabilities for toads or Bd, in the absence of 

the other species, were zero (𝜀𝐴 = 𝜀𝐵 = 0.00; 95% CIs: [0.00, 0.02] and [0.00, 0.35], 

respectively). Therefore, I modeled these extinction parameters as time-constant, rather than as a 

function of covariates, in subsequent models. I employed a step-down modeling strategy 

(Lebreton et al. 1992) whereby I first explored factors resulting in variation in detection 

probability using the most general vital rate structures and constant, state-specific initial 

occupancy probabilities (Appendix 2.1). I then used the best-supported detection structure to 

explore hypotheses about factors influencing host-pathogen dynamics. Specifically, I fit additive 

models to explore whether boreal toad detection probabilities in the presence (𝑟𝐴) and absence 

(𝑝𝐴) of Bd were constant or varied either linearly or quadratically with day-of-year (DOY). In 
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addition, I investigated whether Bd detection probability (𝑟𝐵𝐴) was constant or varied either 

linearly or quadratically with elevation (elev). 

Factors thought to influence host-pathogen dynamics were weakly correlated: elevation 

and other amphibian presence (Spearman’s rank correlation coefficient, 𝑟𝑠 = -0.43), elevation and 

region (𝑟𝑠 = 0.35), and permanence and the presence of other amphibians (𝑟𝑠 = 0.39). To avoid 

overparameterization, given my data, I fit additive models for just one factor per model. The 

geographic isolation, or coarse region, of populations was expected to influence boreal toad vital 

rates in the presence of Bd only, while other factors were linked to Bd abundance and therefore 

could influence vital rate parameters related to either Bd or boreal toad dynamics (Table 2.2A). 

State-specific initial occupancy probabilities were modeled as constant across sites. Models were 

fit using the dynamic conditional-binomial 2-species occupancy model in Program MARK 

(White and Burnham 1999). 

RESULTS 

I found evidence of within-season variation in boreal toad detection probability, which 

was best modeled as a quadratic relationship with DOY (Figure 2.3A; Appendix 2.1). Detection 

of boreal toads at sites with Bd (𝑟𝐴) was considerably lower than when Bd was absent (𝑝𝐴), 

potentially due to differences in abundance. Detection of boreal toads was highest in the middle 

of the breeding season and declined toward the end of the season. The detection probability of 

Bd declined with elevation; linear and quadratic relationships received similar support (Figure 

2.3, Appendix 2.1). I retained the simpler linear Bd detection structure for the subsequent vital 

rate analysis because it was better supported and its 95% confidence interval largely overlapped 

that of the quadratic structure (Figure 2.3B, Appendix 2.1).  



33 

  The null model, indicating that vital rate parameters were not state-dependent (i.e., 𝛾 𝐴 =

𝛾 𝐴𝐵, 𝛾𝐵 = 𝛾B𝐴, etc.), was the least well-supported of the 33 models investigated (model weight 

= 0.00, Table 2.3), suggesting that Bd alters the occurrence dynamics of boreal toads and that the 

presence of boreal toads influences the colonization and persistence of Bd. A model that assumed 

the state-specific vital rates were identical among all sites was also not supported, providing 

evidence that toad-Bd dynamics vary across the landscape (model weight = 0.01, Table 2.3). 

Models that included my hypothesized factors were all better supported than these null 

hypotheses. Elevation was the best-supported hypothesis: models with either linear or quadratic 

relationships between elevation and host and/or pathogen vital rates were included in the top 6 

models (Table 2.3). Together, these 6 models received >60% of the cumulative model weight.  

Models suggesting that the presence of other amphibian species or that habitat 

permanence influenced boreal toad-Bd dynamics had limited support (Table 2.3). The presence 

of other amphibian species was somewhat associated with a higher probability that boreal toads 

would recolonize a site occupied by Bd (Figure 2.4A). Colonization and extinction estimates 

from the best model containing the effect of habitat permanence (model weight = 0.04, Table 

2.3) showed poor precision, though Bd extinction probability in the presence of toads was higher 

at semi-permanent sites, consistent with my a priori predictions (Figure 2.4B-C). Models 

suggesting that boreal toad-Bd dynamics differed among geographically isolated regions were 

not supported. 

Consistent with my expectations, extinction probabilities for both boreal toads and Bd 

were strongly influenced by the presence of the other species (host or pathogen) and were 

highest at intermediate elevations within my study system (Figure 2.5A and 2.5B). In the 

absence of Bd, boreal toads always persisted (𝜀 𝐴̂  = 0), but toad populations with Bd were 
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vulnerable to extirpation at intermediate elevations where annual extinction probabilities were ~ 

0.30 (Figure 2.5A). When boreal toads were present, the annual extinction probability of Bd was 

also highest at intermediate elevations (~0.30) and Bd was unlikely to go extinct at elevational 

extremes (Figure 2.5B). In the absence of boreal toads, Bd was likely to persist, though this 

parameter was difficult to estimate precisely (𝜀𝐵̂ = 0.02, 95% profile likelihood confidence 

interval from 0 to 0.15). Because I used only boreal toad swab samples in this study, I have very 

little information about Bd dynamics in the absence of toads such that the estimate of 𝜀𝐵 should 

be interpreted with caution (Chapter 1).  

The colonization probabilities of boreal toads and of Bd were also influenced by 

elevation. When host and pathogen co-occurred, boreal toads were more likely to recolonize high 

elevation sites should they become locally extinct and Bd was more likely to colonize low and 

mid-elevation sites (Figure 2.5C and 2.5D). Boreal toads were very unlikely to recolonize low 

and mid-elevation sites after going locally extinct (Figure 2.5C). When Bd was absent, boreal 

toads were very likely to colonize unoccupied historic breeding sites at any elevation (𝛾𝐴̂ = 1.00, 

95% profile likelihood confidence interval from 0.21 to 1.00), but this parameter was estimated 

imprecisely because boreal toads rarely go extinct in the absence of Bd (recall 𝜀 𝐴̂ = 0). In the 

absence of toads, Bd colonization was difficult to estimate well and should be interpreted with 

caution, again due to a lack of information about Bd in the absence of boreal toads (Figure 2.5D). 

To summarize, Bd readily colonized low elevation sites and was unlikely to go extinct in 

those locations, while boreal toad sites at low elevations that went extinct were very unlikely to 

be recolonized by toads. At intermediate elevations, Bd colonization and local extinction both 

occurred to some degree. Boreal toads were also likely to go extinct at intermediate elevations, 

but had some chance of recolonizing sites after extinction events. Finally, Bd was unlikely to 
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successfully colonize high elevation sites, and but if the pathogen did become established it was 

unlikely to go extinct at these sites. At high elevation sites, boreal toads were unlikely to go 

locally extinct but if they did, the site could often be recolonized.  

Based on these spatially varying dynamic patterns from the best-supported model, the proportion 

of sites where only boreal toads occur has declined steadily over time, and these declines were 

most pronounced at low elevations (Figure 2.6A). Simultaneously, the proportion of sites with 

Bd increased over the course of the study and was also highest at low elevations (Figure 2.6B). I 

confirmed that the elevation relationships generated by the best model were not merely a 

function of assuming constant initial occupancy states by running a post-hoc model where the 

initial conditional distribution of Bd (𝜓𝐵𝐴 and 𝜓𝐵𝑎) varied as an additive function of elevation. 

This model was not as well-supported as the model with constant Bd occupancy probabilities 

(ΔAICc = 1.83), and produced nearly identical trajectories as those shown in Figure 2.6.  

It is important to note that I could not model time variation in vital rate parameters 

(𝛾 and 𝜀), as the presence of an unobservable state yields biased estimates of most time-varying 

parameters (Chapter 1). Without time variation in vital rate parameters, the state distributions, 

i.e., the proportion of sites in each of the four mutually exclusive states, will reach an equilibrium 

(Green et al. 2011, Miller 2012), which may or may not reflect the biology of this system. Even 

with the simplifying assumption of time-constancy, I had difficulty identifying covariate 

relationships for 𝜀𝐴, 𝜀𝐵 , 𝛾 𝐴, and 𝛾𝐵 due to data sparseness for various states. The only way to 

relax this assumption and to explore time-variation in host and pathogen vital rate parameters is 

to sample Bd when boreal toads are not detected, thus removing the unobservable state (Chapter 

1). 
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DISCUSSION 

Capturing the dynamics of both hosts and pathogens is important for understanding co-

evolution, the potential for genetic resistance, and the factors that influence disease dynamics 

across landscapes and systems. I present the first landscape-scale analysis of an amphibian-Bd 

system where both host and pathogen dynamics are modeled explicitly and imperfect and 

variable detection of both species is considered. I present a framework for evaluating competing 

factors for local variation in host-pathogen dynamics and provide estimates of parameters in the 

boreal toad-Bd system. This framework will be applicable to other host-pathogen systems and 

will be immediately useful for guiding amphibian-pathogen monitoring and conservation efforts.   

I found differences in boreal toad and Bd dynamics across elevations that resulted in less 

pronounced boreal toad declines at high elevations where Bd was also less likely to occur. High 

elevation sites in the SRM experience lower temperatures, shorter growing seasons, and higher 

daily temperature fluctuations than sites at lower elevations (Carey et al. 2005). Thus, the 

variation in dynamics that I observed across an elevational gradient may be related to: 1) 

temperature-dependent growth of Bd, 2) elevational influences on host densities, or 3) an 

interaction between these factors.  

Experimental studies have identified upper and lower temperature thresholds between 

which Bd growth is optimal (Johnson et al. 2003, Piotrowski et al. 2004). Temperature has also 

been linked to chytridiomycosis outbreaks in natural settings (Pounds et al. 2006, Bosch et al. 

2007). The colder temperatures at high elevations in temperate systems likely limit the 

pathogen’s ability to invade and cause infection, resulting in lower Bd detection probabilities 

(Muths et al. 2008, Chestnut et al. 2014), reduced infection prevalence (Murphy et al. 2009), and 

decreased infection intensities (Kriger et al. 2007). My work corroborates the idea that 
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temperature may influence Bd growth, as I found lower Bd occupancy and detection at high 

elevations. Differences in Bd detection probability likely reflect heterogeneity in Bd abundance 

(Chapter 3).  

An alternative, but not mutually exclusive, explanation for the elevational effects that I 

identified relates to amphibian life history characteristics. Like most amphibian species, high 

elevation boreal toad populations tend to have more frequent reproductive failure (Carey et al. 

2005) and lower recruitment than low elevation populations. In addition, female boreal toads do 

not breed every year (Muths et al. 2010) and breeding frequency may be reduced at higher 

elevation sites (Muths et al. 2013). These processes can lead to lower population densities at high 

elevations. While it has been suggested that the high growth rate and reproductive potential of Bd 

sometimes drive hosts to extinction before density-dependent effects are realized (Vredenburg et 

al. 2010a, Fisher et al. 2012), the low density of boreal toads at high elevations may prevent Bd 

from causing mass mortality. Sub-optimal growth conditions for Bd may interact with low boreal 

toad densities at high elevations, lowering infection loads and/or decreasing transmission rates, 

providing a potential mechanism(s) for host population persistence in the face of disease (Briggs 

et al. 2010).  

While I assume that the elevational relationships I identified were the result of 

temperature differences, additional variables such as canopy cover, precipitation, occurrence of 

aquatic predators may also be correlated with elevation and may be partially responsible for the 

differences I found (Becker et al. 2012, Lanier et al. 2016). In my system, elevation was 

negatively correlated with the presence of other amphibian species (𝑟𝑠 = -0.43) and the highest 

elevation sites lacked other amphibians. Experimental studies of multispecies amphibian host 

communities have found both positive and negative relationships between host diversity and the 
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risk of disease with Bd depending on species traits, life stages studied, and strength of 

competitive interactions (e.g., Searle et al. 2011, Venesky et al. 2014a, Han et al. 2015). Future 

work on this topic is needed and will require sampling efforts that target multiple species. 

Management Implications 

My ability to estimate most parameters related to Bd persistence, colonization, and 

occurrence in the absence of boreal toads was limited because swab samples were only collected 

when toads were both present and detected. Empirical estimates of these parameters would be 

valuable to management agencies as they consider mitigation strategies that target reducing the 

colonization and persistence of Bd (Gerber et al. in revision, Converse et al. 2017). Knowing 

how long Bd persists in the environment, or in reservoir hosts, after the extirpation of target 

amphibians can help guide amphibian reintroduction or translocation efforts and other 

management actions (Chapter 4). I stress that long-term monitoring initiatives in this and other 

host-pathogen systems with free-living hosts would benefit from employing methods to survey 

for pathogens outside of their target hosts.  

In Bd systems, collecting skin swabs from co-occurring, but non-target, amphibian 

species and surveying for Bd zoospores using water filtration can provide additional information 

on the presence of the pathogen when the target host is not detected (Kirshtein et al. 2007, 

Chestnut et al. 2014). Expanding survey methods to include standardized surveys for non-target 

amphibians may also provide better information about host community structure and stability 

and disease prevalence in these other species. Samples collected using water filtration (i.e., 

environmental DNA) could document the presence of multiple amphibian and pathogen species 

simultaneously with a single water sample (Blooi et al. 2013). 



39 

Chytridiomycosis is one of the worst diseases to affect vertebrates in recorded history 

(Skerratt et al. 2007), but there are strikingly few examples of in situ management actions and 

their impacts on amphibian-Bd dynamics (Scheele et al. 2014, Garner et al. 2016). Empirical 

measures of host-pathogen dynamics can be valuable for population projections, structured 

decision-making, reintroduction efforts, and as a baseline for measuring impacts of management 

interventions (Gerber et al. in revision, Converse et al. 2017, Russell et al. 2017). My work 

identifies elevational variation in boreal toad extinction risk that results in high-elevation refugia 

for toads, provides empirical data as the basis for management decision-making, and provides 

valuable recommendations for the long-term monitoring of both amphibians and their pathogens.  
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Table 2.1: List of parameters estimated in the dynamic two-species occupancy model including 

initial state parameters (𝜓), vital rate parameters (colonization, 𝛾 and local extinction ε), and 

detection probabilities (𝑝 and 𝑟). I fixed the detection of Bd (species B) to be 0 when boreal 

toads (species A) were absent (𝑝𝐵) or present but undetected (𝑟𝐵𝑎) to reflect that Bd can only be 

detected on boreal toad skin swabs in this system. While these parameters can vary through time 

(noted with subscript 𝑡 below), the presence of an unobservable state in my study restricted us to 

assume that colonization and extinction parameters were constant through time. 

 

 

 

 

 

 

 

 

 

 

 

Parameter Description 

𝜓𝑡=1
𝐴  Initial probability of occupancy for species A 

𝜓𝑡=1
𝐵𝐴  Initial probability of occupancy for species B, given species A is present 

𝜓𝑡=1
𝐵𝑎  Initial probability of occupancy for species B, given species A is absent 

𝛾𝑡
𝐴 Probability of colonization by species A, given species B is absent 

𝛾𝑡
𝐴𝐵 Probability of colonization by species A, given species B is present 

𝛾𝑡
𝐵 Probability of colonization by species B, given species A is absent 

𝛾𝑡
𝐵𝐴 Probability of colonization by species B, given species A is present 

𝜀𝑡
𝐴 Probability of extinction of species A, given species B is absent 

𝜀𝑡
𝐴𝐵 Probability of extinction of species A, given species B is present 

𝜀𝑡
𝐵 Probability of extinction of species B, given species A is absent 

𝜀𝑡
𝐵𝐴 Probability of extinction of species B, given species A is present 

𝑝𝑡
𝐴 Detection probability of species A, given species B is absent 

𝑝𝑡
𝐵 Detection probability of species B, given species A is absent 

𝑟𝑡
𝐴 Detection probability of species A, given species B is present 

𝑟𝑡
𝐵𝐴 Detection probability of species B, given species A is present and detected 

𝑟𝑡
𝐵𝑎 Detection probability of species B, given species A is present and undetected 
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Table 2.2: Factors hypothesized to influence disease dynamics (A) and detection probability (B) 

in a boreal toad-Bd system. For each factor of interest, I hypothesize which parameters are 

affected, the expected effect (positive or negative), and the rationale for these predictions. 

A. Colonization and Extinction Probabilities for Boreal Toads and Bd 

Factor (proxy) Covariate 

Type 

Parameters Influenced 

(Hypothesized effect) 

Rationale 

Genetic differences 

(isolated regions) 

Categorical 𝛾 𝐴𝐵, 𝜀𝐴𝐵 

(Differences expected, 

but direction 

unknown) 

Geographically isolated 

boreal toad populations 

may adapt differently 

to disease. 

Other amphibians present 

(single host species vs. 

multiple host species) 

Binary 

(1 = other 

amphibians 

known to be 

present) 

𝛾 𝐴𝐵, 𝜀𝐴𝐵, 𝛾𝐵, 𝛾𝐵𝐴, 𝜀𝐵𝐴 

( - , + , + , + , - ) 

Additional amphibian 

species may amplify or 

dilute impacts of 

disease on boreal toads, 

and amplification was 

hypothesized in this 

system. 

Climate (elevation) Continuous 𝛾 𝐴𝐵, 𝜀𝐴𝐵, 𝛾𝐵, 𝛾𝐵𝐴, 𝜀𝐵𝐴 

Negative (linear) or 

quadratic 

Very cold or very 

warm temperatures 

may limit Bd growth. 

Habitat type (semi-

permanent vs. permanent) 

Binary 

(1 = 

permanent) 

𝛾 𝐴𝐵, 𝜀𝐴𝐵, 𝛾𝐵, 𝛾𝐵𝐴, 𝜀𝐵𝐴 

( - , + , + , + , - ) 

Semi-permanent 

wetlands are prone to 

desiccation and could 

lower Bd abundances. 

B. Detection Probabilities for Boreal Toads and Bd 

Driver Covariate 

Type 

Parameters Influenced 

(Predicted effect) 

Rationale 

Elevation Continuous 𝑟𝐵𝐴 

Linear (-) or quadratic 

Very warm or very 

cool temperatures may 

limit Bd growth. 

Day-of-Year Continuous 𝑝𝐴, 𝑟𝐴 

Linear (+) or quadratic 

Boreal toad life stages 

present throughout the 

breeding season vary in 

their conspicuousness. 

 

  



42 

Table 2.3: Model selection table for boreal toad and Bd disease dynamics showing the 10 best-supported models. Covariates included 

elevation (elev), host amphibian species richness (amph), habitat permanence (perm), and the putative genetic isolation of populations 

(gen; none in table). Model selection information including, AICc, Δ AICc, model weights, number of parameters (K), and deviance 

are shown for each model. I explored only additive relationships between parameter pairs (𝛾 𝐴 and 𝛾 𝐴𝐵, 𝛾𝐵and 𝛾𝐵𝐴, etc.). Models 

names reflect the model structure for each vital rate parameter and include effects of elevation (elev), a quadratic effect of elevation 

(elev2), the presence of multiple amphibian species (amph), habitat permanence (perm), and constant models (.).  Genetic isolation was 

also explored but did not appear in the top 10 models. Each model in this analysis had the same detection structure (𝑝𝐴/𝑟𝐴 (DOY2) 𝑟𝐵𝐴 

(elev); DOY2 represents a quadratic effect of day-of-year while elev represents a linear effect of site elevation), which was identified as 

the most parsimonious in the first part of the step-down procedure (Appendix 2.1). 

Model Name AICc Δ AICc 

Model 

Weight K Deviance 

𝛾 𝐴(.) 𝛾 𝐴𝐵(elev2) 𝛾𝐵(elev2) 𝛾𝐵𝐴(elev2) 𝜀𝐴(.) 𝜀𝐴𝐵(elev2) 𝜀𝐵(.) 𝜀𝐵𝐴(elev2) 2228.07 0.00 0.28 25 2175.3 

𝛾 𝐴(.) 𝛾 𝐴𝐵(elev) 𝛾𝐵(elev) 𝛾𝐵𝐴(elev) 𝜀𝐴(.)𝜀𝐴𝐵(elev) 𝜀𝐵(.)𝜀𝐵𝐴(elev) 2229.27 1.20 0.15 21 2185.31 

𝛾 𝐴(.) 𝛾 𝐴𝐵(.) 𝛾𝐵(elev2) 𝛾𝐵𝐴(elev2) 𝜀𝐴(.)𝜀𝐴𝐵(.) 𝜀𝐵(.)𝜀𝐵𝐴(elev2) 2231.05 2.97 0.06 21 2187.09 

𝛾 𝐴(.) 𝛾 𝐴𝐵(.) 𝛾𝐵(elev) 𝛾𝐵𝐴(elev) 𝜀𝐴(.)𝜀𝐴𝐵(.) 𝜀𝐵(.)𝜀𝐵𝐴(elev) 2231.42 3.35 0.05 19 2191.82 

𝛾 𝐴(.) 𝛾 𝐴𝐵(.) 𝛾𝐵(elev) 𝛾𝐵𝐴(elev) 𝜀𝐴(.)𝜀𝐴𝐵(.) 𝜀𝐵(.)𝜀𝐵𝐴(.) 2231.61 3.53 0.05 18 2194.17 

𝛾 𝐴(.) 𝛾 𝐴𝐵(.) 𝛾𝐵(.) 𝛾𝐵𝐴(.) 𝜀𝐴(.)𝜀𝐴𝐵(.) 𝜀𝐵(.)𝜀𝐵𝐴(elev) 2232.02 3.95 0.04 18 2194.58 

𝛾 𝐴(.) 𝛾 𝐴𝐵(.) 𝛾𝐵(perm) 𝛾𝐵𝐴(perm) 𝜀𝐴(.)𝜀𝐴𝐵(.) 𝜀𝐵(.)𝜀𝐵𝐴(perm) 2232.20 4.13 0.04 19 2192.6 

𝛾 𝐴(.) 𝛾 𝐴𝐵(.) 𝛾𝐵(.) 𝛾𝐵𝐴(.) 𝜀𝐴(.)𝜀𝐴𝐵(.) 𝜀𝐵(.)𝜀𝐵𝐴(perm) 2232.55 4.48 0.03 18 2195.11 

𝛾 𝐴(.) 𝛾 𝐴𝐵(amph) 𝛾𝐵(.) 𝛾𝐵𝐴(.) 𝜀𝐴(.)𝜀𝐴𝐵(.) 𝜀𝐵(.)𝜀𝐵𝐴(.) 2232.65 4.58 0.03 18 2195.21 

𝛾 𝐴(.) 𝛾 𝐴𝐵(.) 𝛾𝐵(.) 𝛾𝐵𝐴(.) 𝜀𝐴(.)𝜀𝐴𝐵(.) 𝜀𝐵(.)𝜀𝐵𝐴(elev2) 2233.00 4.77 0.03 19 2193.40 

𝛾 𝐴(.) ≠ 𝛾 𝐴𝐵(.), 𝛾𝐵(.)≠ 𝛾𝐵𝐴(.), 𝜀𝐴(.) ≠ 𝜀𝐴𝐵(.), 𝜀𝐵(.) ≠ 𝜀𝐵𝐴(.) 2235.26 7.03 0.01 17 2199.98 

Null model: 𝛾 𝐴(.) = 𝛾 𝐴𝐵(.), 𝛾𝐵(.) = 𝛾𝐵𝐴(.), 𝜀𝐴(.) = 𝜀𝐴𝐵(.), 𝜀𝐵(.) = 𝜀𝐵𝐴(.)  2261.03 32.79 0.00 14 2232.15 
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Figure 2.1: Map of 82 historic boreal toad breeding sites (black points) in Colorado and southern 

Wyoming with two potential geographic barriers (The Continental Divide [black line] and 

Interstate 70 [grey line]). The shaded region represents the known historic range of boreal toads 

in Colorado (Colorado Parks and Wildlife. 2017. CPW Boreal Toad Shapefile Download - 

Overall Range. Species Activity Mapping Project. 

http://www.arcgis.com/home/item.html?id=3723aadaf0eb41acaed0b95289e1b5f6. Site accessed 

March 27, 2017.).  

http://www.arcgis.com/home/item.html?id=3723aadaf0eb41acaed0b95289e1b5f6
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Figure 2.2: State transition diagram and detection probabilities for a 2-species dynamic 

occupancy model. Boreal toads (species A) and Bd (species B) can occur separately (states A or 

B), together (state AB), or not at all (unoccupied, state U). Arrows represent the annual 

transitions among states, with transition probabilities consisting of products of state-specific 

colonization (𝛾) and extinction (𝜀) probabilities. Species detection probabilities for occupied 

states are listed within each circle. Unobservable states and events are signified by detection 

probabilities being fixed at 0; these occur when Bd exists in the absence of toads (species B 

occurs alone, 𝑝𝐵=0) and when toads and Bd occur together (state AB), but toads are not detected 

(𝑟𝐵𝑎=0). 
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Figure 2.3: Best-supported detection probability relationships from the stepwise modeling 

procedure for boreal toads and Bd. Detection probability for boreal toads was related to day-of-

year (A) and was lower when Bd was present (dashed line; 𝑟𝐴). Bd detection probability (B) 

varied with elevation in either a linear (solid line) or quadratic (dashed line) fashion. Estimates 

and 95% confidence intervals (shaded areas) are given for the best-supported detection structures 

given general structures for other parameters. 
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Figure 2.4: Estimates of boreal toad colonization and Bd extinction for Southern Rocky 

Mountain populations studied from 2001-2010. I present estimates of boreal toad colonization 

when Bd is present with and without other amphibian species (A) with 95% confidence intervals. 

I also present estimates of Bd colonization (B) and extinction (C) with 95% confidence intervals 

by habitat type when boreal toads are (dark grey) and are not (light grey) present. Each set of 

estimates comes from the best-supported model containing these factors, though none of these 

models were particularly well-supported.  
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Figure 2.5: Effects of elevation on boreal toad and Bd dynamics for Southern Rocky Mountain 

populations studied from 2001-2010. Estimates and 95% confidence intervals are from the best-

supported model of boreal toad-Bd dynamics. A quadratic effect of elevation influenced boreal 

toad (A) and Bd extinction (B) when host and pathogen co-occured. Elevation also influenced 

boreal toad colonization in the presence of Bd (C) and Bd colonization independent of boreal 

toad presence (D).  
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Figure 2.6: Derived annual estimates of boreal toad and Bd occurrence for southern Rocky 

Mountain populations studied from 2001-2010. Annual estimates of toad occurrence in the 

absence of Bd (i.e. the proportion of occupied toad sites without Bd) (A) and estimated annual 

proportion of sites with Bd (B). Estimates are given for three elevations of interest, representing 

low, mid and high elevation historic toad sites. Estimates and 95% confidence intervals are based 

on the best-supported model.  
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 DESIGN- AND MODEL-BASED RECOMMENDATIONS FOR DETECTING 

AND QUANTIFYING AN AMPHIBIAN PATHOGEN IN ENVIRONMENTAL SAMPLES 

 

 

 

SUMMARY 

Accurate pathogen detection is essential for developing management strategies to 

address emerging infectious diseases, an increasingly prominent threat to wildlife. Sampling for 

free-living pathogens outside of their hosts has benefits for inference and study efficiency, but is 

still uncommon. I used a laboratory experiment to evaluate the influences of pathogen 

concentration, water type, and qPCR inhibitors on the detection and quantification of 

Batrachochytrium dendrobatidis (Bd) using water filtration. I compared results pre- and post-

inhibitor removal, and assessed inferential differences when single versus multiple samples were 

collected across space or time. I found that qPCR inhibition 

both Bd detection and quantification in natural water samples, resulting in biased 

inferences about Bd occurrence and abundance. Biases in occurrence could be 

mitigated by collecting multiple samples in space or time, but biases in Bd quantification were 

persistent. Differences in Bd concentration resulted in variation in detection probability, 

indicating that occupancy modeling could be used to explore factors influencing heterogeneity in 

Bd abundance among samples, sites, or over time. Our work will influence the design of studies 

involving amphibian disease dynamics and studies utilizing environmental DNA (eDNA) to 

understand species distributions. 
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INTRODUCTION 

Emerging infectious diseases (EIDs) are a prominent threat to wildlife (Langwig et al. 

2015) and are important drivers of local extinctions (Smith, Sax, and Lafferty 2006). In addition 

to affecting host species, disease-related declines can have cascading effects on community 

structure and ecosystem-level processes (Whiles et al. 2013, Hollings et al. 2014, Jachowski et 

al. 2014). Emerging infectious diseases in amphibian populations are on the rise, with ranavirus 

infections, saprolegniosis, Ribeiroia spp. infections, and chytridiomycosis contributing to 

mortality events (Daszak et al. 2003). Chytridiomycosis is caused by the fungal pathogens 

Batrachochytrium dendrobatidis (Bd) and Batrachochytrium salamandrivorans (Bsal). Bd is 

implicated in the declines of over 200 anuran species across the globe (Skerratt et al. 2007), and, 

though Bsal is a newly identified pathogen causing disease in urodelans, it has already been 

linked to fire salamander (Salamandra salamandra) extirpations in the Netherlands (Martel et al. 

2013). Both pathogens are of concern to natural resource scientists and managers, and key 

uncertainties about pathogen transmission, distributions, and dynamics within amphibian host 

populations remain (Venesky et al. 2014b, Grant et al. 2016b). 

Pathogen detection is central to understanding host-pathogen dynamics and to making 

informed management decisions (Voyles et al. 2014). Swabbing amphibian skin is the 

recommended (Hyatt et al. 2007) and most common method for detecting Bd and Bsal. 

Collecting skin swabs can be difficult at sites where host amphibian species are rare or extinct, 

but understanding the persistence and distributions of these pathogens in the environment in 

these places remains important for providing valuable ecological and conservation insights. For 

instance, sites without amphibians are preferred for amphibian reintroduction initiatives (Muths 

et al. 2014a) and Bd status of potential sites must be assessed to maximize the probability of 
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success of costly reintroductions. Relying on swabs can also make it difficult to answer basic 

ecological questions about pathogen persistence in the absence of amphibian hosts (Chapter 1) or 

to assess the spatial or temporal distribution of Bd or Bsal in water bodies. 

Water filtration can be used to detect Bd’s infective stage (Berger et al. 2005) without 

relying on amphibian host presence and detection and it is an important technology for pathogen 

detection in both aquatic and terrestrial amphibian communities. Filtration has been used to 

detect zoospores in rainwater (Kolby et al. 2015),  in baths of distilled water in which 

amphibians were soaked (Hyatt et al. 2007, Shin et al. 2014), and in aquatic habitats such as 

amphibian breeding ponds (Schmidt et al. 2013, Chestnut et al. 2014). Filtration can be used to 

survey potential amphibian reintroduction sites currently devoid of hosts, yielding information 

about pathogen distributions independent of host distributions. Additionally, filtration could 

make survey efforts more efficient by eliminating capture and handling of amphibians and by 

allowing multiple independent sample types (e.g., visual encounter surveys, amphibian swabs, 

and Bd filtration samples) to be collected during a single site visit. The relationship between Bd 

detection and Bd concentration is largely unknown because the filtration method has not been 

experimentally assessed at low concentrations or abundances of Bd that are likely characteristic 

of natural settings. For filtration to become a useful field method, its utility for both detecting 

and quantifying pathogen DNA must be assessed. 

Many modern molecular methods (e.g., quantitative real-time polymerase chain reaction 

or qPCR) provide information about the occurrence and quantity of target DNA found in a 

sample. Quantities estimated from qPCR could be used to understand the relationship between 

infection load and disease risk for resident or reintroduced amphibians, but the validity of this 

index is not well-supported for Bd swabs (Clare et al. 2016b) and has never been assessed for 
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filtered water samples. Despite this lack of validation, quantitative estimates from qPCR have 

been used as both indices and true measures of Bd abundance (Miller et al. 2012b, Venesky et al. 

2014a). Understanding the relationship between the estimated quantity of Bd and true Bd 

concentration is central to understanding infection thresholds (Vredenburg et al. 2010b), 

assessing impacts of management actions (Scheele et al. 2014), and targeting areas for 

reintroduction of declining amphibian species (Muths et al. 2014). 

The presence of inhibitory agents (e.g., humic acid) in field samples can interfere with 

qPCR and cause errors (i.e., false negatives) which can bias biological inference. qPCR 

inhibition has been identified in amphibian swab samples (Kosch and Summers 2013) and in 

filtered water samples where shed DNA is captured (McKee et al. 2015). The presence of qPCR 

inhibitors likely influences both the detection and quantification of Bd DNA, but the extent of 

this influence has not been explored. 

I designed an experiment to evaluate the effects of Bd concentration, water type (distilled 

and natural), and qPCR inhibition on detection and quantification of Bd captured using water 

filtration. I evaluated samples independently (single sample scenario) or in groups (multiple 

samples scenario) to mimic spatial and temporal replication in field studies. I chose 

concentrations of Bd that were low but biologically relevant to amphibians, as these 

concentrations will be most informative to those designing field studies, understanding disease 

dynamics, and developing conservation strategies. I assessed qPCR inhibition by comparing Bd 

detection and quantification in two water types (distilled and natural) and by analyzing samples 

with and without removing contaminants that can inhibit qPCR reactions. I discuss the 

implications of my work in the context of host-pathogen ecology, study design, and ecological 
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modeling, and provide information that will be useful to researchers and managers seeking to 

better understand and conserve amphibian communities. 

MATERIALS AND METHODS 

Experimental and Molecular Methodology 

I cultured Bd strain JEL274, originally collected from a boreal toad (Anaxyrus boreas 

boreas) in Colorado, until zoospores were mature (Kirshtein et al. 2007). I used a 

hemocytometer and bright-field microscopy to determine the concentration of the harvested 

cultures and then diluted the zoospores with sterile deionized water to create solutions varying in 

Bd concentration. 

I randomly assigned levels of two factors (concentration and water type) to 300 study 

units (250-mL glass jars) and investigated Bd detection via water filtration at 5 concentrations: 0, 

0.05, 0.175, 1, and 50 zoospores/mL. The 0 zoospore/mL group served as a negative control, 

while the 0.05 zoospore/mL group was included to explore the lower limit of detection of Bd 

(Boyle et al. 2004, Kirshtein et al. 2007, Kerby et al. 2012). The highest concentration (50 

zoospores/mL) was selected for its lethality to young-of-the-year boreal toadlets experimentally 

bathed in this concentration for 72 hours, whereas the intermediate levels represent 

concentrations that were sub-lethal to boreal toadlets and that likely exist in natural settings 

(Carey et al. 2006).  

I considered two water types: distilled water and water from a natural, lotic source where 

Bd had never been detected. Natural water was selected to investigate how inhibitors influence 

pathogen detection, while distilled water was selected because it is commonly used to bathe 

amphibians prior to filtration (sensu Shin et al. 2014) and has been used in studies of molecular 

methodology (sensu Bletz et al. 2015). The natural water was autoclaved and allowed to sit for 
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20 days before the experiment to render any Bd DNA undetectable (Piotrowski et al. 2004, 

Thomsen et al. 2012). I included an equal number of jars (n = 36) for all groups except the 

control groups (n = 6).  

I inoculated jars with known concentrations of Bd and let the jars rest for 18 hours prior 

to sampling. Upon sampling, I briefly agitated each jar and then drew one, 60-mL sample from a 

total volume of 200mL using a 0.22-µm Sterivex capsule filter with a male Luer-Lok (Millipore, 

Billerica, MA) connected to a sterile 60-mL syringe. After collection, I prepared the sample 

using lysis buffer according to the protocols in Chestnut et al. (2014). Samples were maintained 

at room temperature until DNA was extracted (within 17 weeks of collection).  

I extracted DNA using Gentra Puregene Tissue Kits (Qiagen, Valencia, CA; Chestnut et 

al. 2014). I initially analyzed the extracts in triplicate wells using the qPCR assay outlined by 

Boyle et al. (2004) and updated by Kerby et al. (2012), but I found low Bd detection probabilities 

in the natural water that provided evidence of PCR inhibition (see Results). Subsequently, I used 

a post-extraction spin column purification kit (OneStep™ PCR Inhibitor Removal Kit, Zymo 

Research, Irvine, CA) on each sample and analyzed the resulting post-purification sample in 

triplicate with qPCR. Extraction and qPCR were conducted in separate lab spaces using 

dedicated supplies and workspaces. Aerosol-barrier pipette tips were used, and all laboratory 

equipment and benches were cleaned with bleach in between procedures. 

The target region for amplification during qPCR was the internal transcribed spacer 

region one (ITS1), which is variable in copy number per zoospore among Bd strains (Longo et al. 

2013). I estimated the number of ITS1 copies present in single JEL274 zoospore by comparing 

the amplification rates between a known quantity of JEL274 zoospores and a qPCR standard 

made from PCR amplicons of the ITS1 region. I used this information to convert estimated 
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number of copies from qPCR to estimated zoospore counts, and used these counts to quantify 

bias in estimates of Bd concentration. I investigated the correlation between qPCR copy number 

and Bd concentration because the Bd strain is unknown in most field studies. 

Bd Occurrence and Detection 

I investigated how two different sampling scenarios, “single sample” and “multiple 

samples”, might influence bias in estimates of Bd occurrence. In the single sample scenario, 

single jars were used as sample units. This scenario corresponds to collecting a single water filter 

(i.e., field sample) at a wetland (Figure 3.1). For the multiple samples scenario, I redefined a 

study unit as a collection of three jars (i.e., field samples) within the same treatment group to 

emulate field protocols where multiple filters are collected at a single site over space or time 

(e.g., Chestnut et al. 2014; Pilliod et al. 2014; Figure 3.1). This reduced my sample size from 36 

to 12 study units per treatment, but increased the number of opportunities for detection within 

each study unit.   

Occupancy models use repeated surveys to estimate the probability that a study unit is 

occupied by the species of interest, while explicitly allowing for imperfect species detection. I 

used results from all 3 qPCR replicates (hereafter, “wells”) per filter sample as repeat surveys to 

detect Bd. I modeled both Bd occurrence (𝜓) and detection probability (𝑝) as additive and 

interactive functions of Bd concentration and water type using standard occupancy models 

(MacKenzie et al. 2002) for the single sample scenario. For the multiple samples scenario, I used 

a multi-scale occupancy model (Nichols et al. 2008) to accommodate multiple filter samples per 

study unit and multiple qPCR wells per sample. In this case, I estimated the probability that a 

study unit (group of 3 jars) was occupied by Bd (𝜓), the probability that Bd was present in an 

individual filter sample given that the study unit was occupied (𝜃), and the probability of 
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detecting Bd given that it was present on a filter (𝑝). I modeled 𝜓, 𝜃, and 𝑝 as additive and 

interactive functions of Bd concentration and water type. In both sampling scenarios, I 

conditioned on samples that were inoculated with Bd and compared the estimated occupancy 

probabilities with the true values (𝜓𝑡𝑟𝑢𝑒 = 𝜃𝑡𝑟𝑢𝑒 = 1) to quantify estimation biases using the 

observed data. Models were fit to both pre- and post-purification data. 

Zoospore Quantification 

I assessed the validity of copy number as an index of Bd concentration in the single and 

multiple samples scenarios by calculating the Spearman’s rank-order correlation coefficient (rs) 

between the mean qPCR copy number for a sample and the known concentration. I included 

nondetections (i.e., wells with qPCR copy number estimates of 0) and compared the correlation 

coefficients for both pre- and post-purification datasets to assess the impact of qPCR inhibition 

on quantity estimation.  

Next, I converted qPCR copy number to zoospore concentration using strain-specific Bd 

information and used linear regression to evaluate if relative bias in the estimated concentration 

(𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑏𝑖𝑎𝑠 =  
𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑[𝐵𝑑]−𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙[𝐵𝑑]

𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙[𝐵𝑑]
) was related to water type or known Bd 

concentration. Positive relative bias values indicate an overestimation of concentration via 

qPCR, while negative values indicate underestimation. I used relative bias as the response 

variable for this regression analysis because I expected that bias and variance would vary 

substantially among concentrations.  

Software and Multimodel Inference  

 I used an information-theoretic approach to rank candidate models using Akaike’s 

Information Criterion corrected for small sample sizes (AICc; Burnham and Anderson 2002). 

Occupancy models were fit using the R package ‘RMark’ (White and Burnham 1999, Laake 
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2013). To account for model selection uncertainty, I report model-averaged parameter estimates 

that consider all models. Spearman’s rank-order correlation and linear regression models for 

relative bias were conducted in R (R Development Core Team 2012).  

RESULTS 

Thirty-three percent (4/12) of negative control jars yielded false positive results when 

purification was not performed, compared to 8% post-purification (1/12 jars). The negative 

control jar that tested positive when inhibitors were removed did not test positive without 

removing inhibitors. I eliminated questionable detections in both datasets by imposing a 

threshold based on the highest copy number estimated in the negative controls (samples with 

fewer than 8.9 qPCR copies pre-purification and 63.7 copies post-purification were excluded). 

These samples were estimated to contain less than 1 zoospore. 

The proportion of jars where Bd was detected in at least one qPCR well varied among 

concentrations and water types (Table 3.1). I detected Bd in at least one of three wells in 127 of 

288 (44%) inoculated jars pre-purification, and in at least one of three wells in 185 of 288 (64%) 

inoculated jars post-purification.  

Bd Occurrence and Detection 

  Of the 46 single sample occupancy models fit to the pre-purification data, only three 

were supported (Appendix 3.1A). All supported models included an interactive effect of water 

type and concentration on detection and, while detection increased with concentration in distilled 

water, it was unrelated to concentration in natural water (Figure 3.2A). The best-supported 

covariates for occupancy were an interactive effect of water type and concentration, an additive 

effect of these factors, and water type alone. Pre-purification estimates of occurrence in distilled 

and natural water were biased across concentrations, suggesting that Bd occurred in ≤25% of 
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natural water samples and ≤75% of distilled water samples at low concentrations though all jars 

were inoculated with Bd (Figure 3.2C, Table 3.1). Post-purification, a model where both 

detection and occupancy varied as an additive effect of concentration and water type received 

0.85 of the model weight (Appendix 3.1B). Model-averaged estimates revealed that post-

purification detection probability for natural water was higher and more closely related to 

concentration than pre-purification (Figure 3.2, top panel). Post-purification, model-averaged 

estimates of Bd occurrence increased with concentration in both water types but were still 

negatively biased at low concentrations (Figure 3.2D, Table 3.1). Interestingly, both detection 

and occupancy probabilities were estimated to be higher in natural water than in distilled water 

post-purification (Figure 3.2B and 3.2D).  

When multiple samples were used and purification was not employed, several multi-scale 

occupancy models received support. Best-supported models generated unbiased estimates of Bd 

occurrence (𝜓̂ = 1.0) that were constant across treatment types (Table 3.1, Appendix 3.2A). 

However, estimates of Bd presence on individual filters (𝜃) varied with concentration and water 

type, were biased low, and were identical to 𝜓 estimates from the single-sample occupancy 

analysis (Figure 3.2C). The best-supported models for the post-purification dataset also 

suggested a constant occurrence of Bd with estimates of 1.0 for all treatment groups (Table 3.1, 

Appendix 3.2B). The estimates of Bd availability were once again biased low, but were much 

higher in natural water than they were pre-purification (Figure 3.2D).  Detection probability was 

influenced by concentration and water type in both datasets, and was identical to the detection 

probabilities estimated in the single-sample occupancy analyses (Figure 3.2A and 3.2B). 
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Zoospore Quantification 

 I removed five outliers from the pre-purification dataset and two from the post-

purification dataset before assessing the quantification of Bd under the different sampling 

scenarios. The estimated mean copy number for these outliers was at least an order of magnitude 

higher than any other sample in the same treatment group. Different samples were identified as 

outliers in the pre- vs. post-purification datasets. 

When single samples were considered, the pre-purification estimate of the correlation 

between qPCR copy number and known zoospore concentration was positive but low in natural 

water (rs = 0.13, Appendix 3.3) and was much higher once purification was employed (rs = 0.79, 

Appendix 3.3). The correlation between qPCR copy number and known Bd concentration was 

high for distilled water when single samples were used, regardless of whether purification had 

been applied (rs = 0.69 pre-purification versus 0.72 post-purification, Appendix 3.3).  

Combining multiple samples improved the correlation between qPCR copy number and 

known zoospore concentration in both water types, but not as much as did the application of the 

purification protocols in natural water (Figure 3.3 top panel, Appendix 3.3). The purification 

process resulted in a three-fold increase in the correlation between qPCR copy number and 

known zoospore concentration in natural water (rs = 0.31 pre-purification versus rs = 0.90 post-

purification, Appendix 3.3) while no change was seen for distilled water (rs = 0.85, Appendix 

3.3) when multiple samples were used. 

I found consistent negative bias in estimated pathogen concentration (i.e., the constant 

model was best-supported, Appendix 3.4A) using pre-purification data (Figure 3.3C). Post-

purification analyses of relative bias supported an interaction between concentration and water 

type (Appendix 3.4B). Zoospore concentration was overestimated in natural water samples post-
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purification, especially at the highest concentration, while bias in distilled water remained 

minimal and negative (Figure 3.3D). I present relative bias results for only the multiple samples 

scenario because the findings were identical to those from the single sample scenario. 

DISCUSSION 

As the amphibian pathogens Bd and Bsal become more widespread, amphibian declines 

are expected to become more common and severe (Yap et al. 2015). Researchers and managers 

need to understand the distribution and dynamics of these pathogens, even at sites where 

amphibians no longer occur, so that the success of management actions can be assessed. No 

previous study has experimentally investigated the consequences of imperfect detection and 

qPCR inhibition on inferences about Bd occurrence (Walker et al. 2007, Kirshtein et al. 2007). 

Further, the only assessment of quantification of Bd zoospores using water filtration focused on a 

concentration that was not biologically realistic (>1,000 times higher than my concentrations; 

Kirshtein et al. 2007). My work fills these knowledge gaps and yields findings that influence 

study design, molecular and statistical analyses, and associated biological inferences in 

amphibian-pathogen systems or environmental DNA (eDNA) studies. 

When multiple samples were collected and qPCR inhibitors were reduced, I reliably 

detected Bd at low concentrations that are likely common in wild systems. A multiscale 

occupancy approach is a natural fit for pathogen detection data that are imperfect and generated 

in duplicate or triplicate (McClintock et al. 2010, Lachish et al. 2012) and such approaches can 

yield important insights about how covariates influence pathogen distributions. While I am not 

the first to recommend that conservation biologists and managers should collect multiple samples 

through time and space to maximize pathogen detection probabilities (Schmidt et al. 2013), I am 
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the first to show how qPCR inhibition and pathogen concentration influence estimates of 

pathogen occurrence and detection at multiple scales of interest.  

I found that filter-level Bd occurrence (𝜃) is related to pathogen concentration, and I 

suggest exploiting this relationship to explore the factors influencing heterogeneity in Bd 

occurrence across temporal and spatial scales. For example, understanding the site characteristics 

that promote Bd occurrence may help managers identify which candidate reintroduction sites 

have little or no Bd and subsequently present the lowest risk of disease to reintroduced 

amphibians. In terrestrial amphibian communities, filtration may be a useful tool for detecting 

pathogens from fomites or amphibians bathed in water (Hyatt et al. 2007, Shin et al. 2014). In 

this case, using a framework like the one I present would allow the exploration of site- and 

individual-level covariates that influence the occurrence (𝜓) and prevalence (𝜃) of Bd infections. 

While three filters were sufficient to obtain unbiased estimates of site-level occupancy in 

my experiment, I expect more spatial and temporal heterogeneity in natural settings (Walker et 

al. 2007, Chestnut et al. 2014); additional samples will be required, especially at newly invaded 

sites with low concentrations of Bd. Pilot studies where multiple samples are collected and 

analyzed can help investigators anticipate plausible detection probabilities in their system and to 

optimize the number of samples needed to address study objectives. Collecting and analyzing 

multiple samples is expensive, but I have shown that the inferential gains of multiple samples are 

great. Further, strategies like pooling samples (Boyle et al. 2004) can reduce laboratory costs.  

Previous studies mention a concern for false positives (Schmidt et al. 2013, Olson et al. 

2013) and employ thresholds (Venesky et al. 2014a, Shin et al. 2014), indicating that false 

positives may be more common than is often acknowledged. Precautionary measures including 

changing gloves frequently, wearing room-dedicated laboratory coats, cleaning equipment with 



62 

 

bleach, and using aerosol-barrier pipette tips and a dedicated clean room for extraction and qPCR 

are all best practices that should be incorporated to reduce contamination (Goldberg et al. 2016). 

In addition, researchers should incorporate negative controls at each level of sample preparation 

to adequately assess if and when false positives occur (Goldberg et al. 2016). Incorporating an 

experimentally derived threshold to remove false positives (as I did here) will also remove true 

detections, resulting in decreased detection probabilities. Model-based methods to account for 

false positives also exist, and the best option to account for false positives will likely be context-

dependent. For instance, if low-level contamination is seen in the negative controls, qPCR copy 

number could be used to classify detections as “certain” or “uncertain” (potentially a false 

positive) using a multiple detection state occupancy model (Miller et al. 2011). 

 I caution against using estimates of qPCR copy number as a direct measure of Bd 

abundance without further research, as copy number estimates were biased, especially at high 

concentrations in this study. I did find a high correlation between qPCR copy number and 

concentration treatment group when multiple samples were used, indicating that copy number 

may still be useful for differentiating between different types of sites that exist in natural settings 

(e.g., newly invaded [low Bd concentration], sub-lethal/endemic [intermediate Bd concentration], 

and lethal/epidemic [high Bd concentration]) using a multi-state occupancy approach 

(MacKenzie et al. 2009). Copy number may also be useful for modelling abundance-induced 

heterogeneity in detection among occupied sites in the field (Miller et al. 2012b). My findings 

mirror those of Clare et al. (2016), who found that, while qPCR copy number from swabs could 

allow differentiation between moribund and visually healthy individuals, it was not an accurate 

representation of true infection load. My study is the first of its kind to investigate how the 
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quantification of Bd isolated from the environment is influenced by qPCR inhibition and the 

collection of multiple samples.  

Inhibition during qPCR strongly influenced Bd detection and quantification, and can 

cause negatively biased estimates of Bd occurrence and abundance especially when only a single 

sample is collected. When multiple samples were collected, purifying DNA led to a 3-fold 

increase in correlation between copy number and known Bd concentration in natural water. I 

recommend testing for qPCR inhibition in every sample using internal positive controls (IPC; 

Hyatt et al. 2007). When evidence of qPCR inhibition is found, I recommend that a process to 

reduce inhibition be used (e.g., OneStep™ PCR Inhibitor Removal Kit, Zymo Research, Irvine, 

CA). Other approaches for removing inhibitors should be examined in a rigorous experimental 

framework similar to what I present here before they are used with field samples. Studies that 

fail to identify and address qPCR inhibition may grossly underestimate pathogen distributions. 

Amphibian skin swabs also contain inhibitory agents (Kosch and Summers 2013, Blooi et al. 

2013), and I expect that, without purification, those sample types are also subject to biased 

inferences of prevalence (Becker and Zamudio 2011) or individual infection loads (Stockwell et 

al. 2016). 

Conclusions  

Though improving and refining field and lab methods for the detection of amphibians and 

their pathogens is crucial, all sampling methods are imperfect. Thus, ‘best practices’ should 

include collecting multiple samples, using multiple detection methods, and accounting for 

imperfect detection using both laboratory and modelling techniques. Employing multiple 

detection methods on a single site visit creates gains in study efficiency; filter samples for eDNA 

can complement visual encounter surveys for amphibian detection (Pilliod et al. 2013) and filter 



64 

 

samples for Bd or Bsal can complement skin swabs of resident or sentinel individuals for 

pathogen detection (Schmidt et al. 2013). Performing multiple assays on a single filter sample 

offers opportunities to detect multiple hosts, pathogens, and other species simultaneously (Blooi 

et al. 2013).  

Existing studies of amphibian-Bd or Bsal occurrence dynamics have been limited to 

studying the prevalence of these pathogens within one or several known host populations (e.g., 

Vredenburg et al. 2010b, Savage et al. 2011). Understanding the dynamics of amphibian hosts 

and their pathogens at the landscape scale requires the ability to sample each species 

independently (Chapter 1) and will yield insights about metapopulation dynamics, long-term 

species persistence, and the success of management actions. My findings are valuable to 

conservation biologists and managers as they strive to understand and manage complex 

amphibian-pathogen systems. 
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Table 3.1: Estimated proportion of sample units that were occupied by Bd using raw data and occupancy modeling approaches. I used 

both pre- and post-purification datasets for four Bd concentrations (zoospores/mL) in conjunction with these approaches. Using raw 

detection data, a sample was classified as occupied if Bd was detected in at least one of the three qPCR wells. Model-averaged 

estimates and unconditional standard errors (in parentheses) are given for occupancy approaches.   

  Raw Data Single Sample Occupancy Multiple Samples Occupancy 

  Pre-purification Post-purification Pre-purification Post-purification Pre-purification Post-purification 

[Bd] Distilled Natural Distilled Natural Distilled Natural Distilled Natural Distilled Natural Distilled Natural 

0.05 0.47 0.11 0.06 0.56 
0.72 0.16 0.10 0.54 1.00 1.00 1.00 1.00 

(0.17) (0.07) (0.04) (0.08) (0.00) (0.00) (0.00) (0.00) 

0.17

5 
0.53 0.25 0.31 0.81 

0.66 0.23 0.31 0.82 1.00 1.00 1.00 1.00 

(0.12) (0.07) (0.07) (0.05) (0.00) (0.00) (0.00) (0.00) 

1 0.69 0.28 0.58 0.95 
0.73 0.27 0.60 0.94 1.00 1.00 1.00 1.00 

(0.08) (0.07) (0.08) (0.03) (0.00) (0.00) (0.00) (0.00) 

50 0.94 0.25 0.92 0.97 
0.86 0.31 0.90 0.99 1.00 1.00 1.00 1.00 

(0.08) (0.10) (0.05) (0.01) (0.00) (0.00) (0.00) (0.00) 
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Figure 3.1: Single and multiple sample scenarios in an example field study of Bd occurrence in an aquatic environment. Single 

samples can be used to make inferences about Bd detection probability (𝑝) and site-level occupancy (𝜓). If multiple samples are 

collected, additional inferences can be made about heterogeneity in Bd occurrence across space or time (𝜃). Resulting replicate qPCR 

results from both sampling strategies can be analyzed in an occupancy framework that accounts for imperfect detection.  
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Figure 3.2: Model-averaged estimates of Bd detection and occupancy probability. Bd detection 

(𝑝, A and B) and occupancy (𝜓, C and D) are provided with 95% confidence intervals from 

standard single sample occupancy analyses when purification methods were (right column) and 

were not (left column) applied. Occupancy estimates presented here are identical to model-

averaged Bd filter occurrence (𝜃) estimates from the multiscale occupancy analysis. 
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Figure 3.3: Relationship between qPCR copy number and known experimental concentration. 

This relationship was determined using multiple samples pre- (A) and post- purification (B). The 

1:1 line in plots A and B illustrates the true relationship between qPCR copy number and known 

concentration. Model-averaged estimates and 95% confidence intervals for estimated relative 

bias in Bd concentration from linear regression models before (C) and after (D) purification 

when multiple samples were used. 
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 TESTING THE WATERS: USING ENVIRONMENTAL SAMPLING TO 

UNDERSTAND THE PERSISTENCE OF AN AMPHIBIAN PATHOGEN 

 

 

 

SUMMARY 

The persistence of pathogens, or how long the pathogen can survive outside of a host, is 

an important driver of host-pathogen dynamics. However, a reliance on host-based pathogen 

detection methods can complicate these insights. The amphibian pathogens Batrachochytrium 

dendrobatidis (Bd) and Batrachochytrium salamandrivorans (Bsal) are pathogens of global 

conservation concern. Despite having a free-living life stage, little is known about the 

distribution and persistence of these pathogens outside of the amphibian host. I combine historic 

amphibian monitoring data and contemporary host- and environment-based pathogen detection 

data to obtain estimates of Bd occurrence independent of amphibian distributions. We also assess 

inferential differences arising from using different decision criteria to classify samples as 

positive or negative, and evaluate differences in detection probability using water filters and 

amphibian swabs.  

We found evidence of long-term Bd persistence for several years after the predominant 

amphibian species was last detected. The decision criterion used to classify samples as positive 

or negative was important; using a more liberal criterion yielded lower estimates of Bd 

occurrence than when a conservative criterion was used. The liberal and conservative criteria 

also suggested different covariates of importance when modeling Bd detection. Water filtration-

based detection probabilities were lower than those from swabs, and swab-based detection 

probabilities varied seasonally, declining in the early fall. My work provides evidence of long-
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term Bd persistence in the environment and also underscores the importance of environmental 

samples for understanding and mitigating disease-related threats to amphibian biodiversity. 

INTRODUCTION 

Pathogens that can persist in the absence of hosts often spread rapidly and are more likely 

to cause local extinctions than pathogens that are directly transmitted. For instance, the emerging 

infectious diseases of malaria, chronic wasting disease, and white-nose syndrome are all caused 

by persistent pathogens and are of considerable conservation concern (Woodworth et al. 2005, 

Sharp and Pastor 2011, Lorch et al. 2013). The mechanism of persistence depends on the 

pathogen’s life history, but can be linked to vector populations (Minakawa et al. 2002, Gomez-

Diaz et al. 2010), the presence of non-host reservoirs (Broza and Halpern 2001), or the 

pathogen’s ability to survive for long periods of time in the absence of hosts (Breban et al. 2009, 

Almberg et al. 2011, Hoyt et al. 2016). Knowing whether, and how, pathogens persist outside of 

hosts is necessary for predicting the spread of disease (Rogers and Randolph 2000) and for 

understanding the risk of pathogen pollution or spillover into new host populations (Daszak et al. 

2000). These predictions also have conservation implications and can be used to identify 

appropriate management actions for host species of concern.  

Initial efforts to detect emerging pathogens often focus on host-based detection methods 

(e.g., histology, serology, fecal samples, skin swabs, etc.) and ignore the pathogen or vector’s 

environmental niche. For pathogens with free-living or vectored stages, data gained from 

sampling the environment or vector directly, rather than the host, can provide valuable 

information about pathogen distributions. Findings can be used to complement theoretical, 

experimental, and ex situ studies and provide a more complete understanding of the ecology of 

newly emerging infectious diseases (Carver et al. 2010). The environmental life stages common 
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in fungi are often unsampled, and are therefore not well understood, despite consensus that these 

stages may be central drivers of host-pathogen ecology and ensuing disease dynamics (Briggs et 

al. 2010, Fisher et al. 2012, Lorch et al. 2013).  

Emergence of the amphibian pathogens Batrachochytrium dendrobatidis (Bd) and 

Batrachochytrium salamandrivorans (Bsal) and the concomitant disease chytridiomycosis are of 

global conservation concern (Skerratt et al. 2007, Grant et al. 2017, Fisher 2017). These fungal 

pathogens have aquatic, free-living infective zoospores, and have been linked to declines of 

anurans (Fisher et al. 2009) and urodelans (Spitzen-van der Sluijs et al. 2013). Sampling 

amphibian hosts via histology, skin swabs, and water baths (Hyatt et al. 2007, Martel et al. 2013, 

Blooi et al. 2013, Shin et al. 2014, Dillon et al. 2017) are the most commonly used methods to 

detect Bd and Bsal, despite the fact that the infectious stage of these pathogens exists in the 

environment (Berger et al. 2005). In addition, Bd has been detected in non-amphibian hosts 

(Shapard et al. 2012, McMahon et al. 2013, Liew et al. 2017); the potential for non-amphibian 

hosts of Bsal has not yet been explored. A reliance solely on host-based pathogen detection 

methods created difficulties when estimating pathogen occurrence when amphibian hosts are 

undetected or locally extinct, and resulted in an incomplete view of pathogen distributions and 

dynamics (Chapter 1). The long-term environmental persistence of Bd and Bsal in the absence of 

amphibian hosts has never been addressed using data from natural settings, though a mechanism 

of long-term Bd persistence would explain many observed amphibian declines and have 

important implications for conservation efforts.  

Surprisingly little is known about the persistence of Bd in the environment. Though 

zoospores remain motile for only 24 hours before encysting (Piotrowski et al. 2004), Bd can 

survive in water or sediment for up to 12 weeks in laboratory settings (Johnson and Speare 2003, 
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Johnson et al. 2005, Walker et al. 2007). In addition, experiments have shown that Bd can grow 

on sterile feathers, snakeskin, and other media, suggesting that non-amphibian hosts could play a 

role in transmitting Bd to novel environments (Longcore et al. 1999, Johnson et al. 2005, 

Garmyn et al. 2012). Filtration-based methods (Kirshtein et al. 2007, Hyman and Collins 2012) 

can be used to estimate the occurrence of Bd or Bsal independent of amphibian occurrence, but, 

to date, these methods have only been used at sites where amphibian populations are extant 

(Schmidt et al. 2013, Chestnut et al. 2014). An understanding of Bd’s and Bsal’s persistence and 

distribution in the absence of amphibian hosts would facilitate amphibian reintroduction efforts 

(Muths et al. 2014b), the identification of saprobic stages or non-amphibian hosts (Di Rosa et al. 

2007, Stegen et al. 2017), and our ability to measure success of management actions focused on 

limiting Bd’s growth in the environment. 

I sampled for Bd in the environment and on the skin of multiple species of amphibians to 

evaluate the long-term persistence of Bd in an area that has experienced amphibian declines. My 

objectives were to: 1) determine whether Bd persists in the environment after amphibian 

extinctions by modeling Bd occurrence as a function of the time since the last detection of a 

target amphibian species; 2) explore the factors that influence filter and swab-based pathogen 

detection probabilities; and 3) investigate whether my findings were sensitive to the criteria used 

to classify samples as Bd positive or negative. My work underscores the importance of 

developing and using environmental samples to understand the distribution of free-living and 

vectored pathogens and contributes new information about the long-term persistence of Bd.   
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MATERIALS AND METHODS 

Study System 

The boreal toad (Anaxyrus boreas boreas) is a native western North American amphibian 

species with populations that are currently in decline throughout the Southern Rocky Mountains 

(SRM; Gerber et al. in revision, Carey 1993, Muths et al. 2003). Boreal toads within the SRM 

usually inhabit wetlands, wet meadows, beaver ponds, oxbows, and pond margins found at 

elevations between 2,615-3,385 meters (Hammerson 1999). Bd was first detected in the SRM in 

1998 and has been implicated in boreal toad declines throughout that region (Chapter 2, Corn 

2003, Muths et al. 2003).  

Data Collection 

In 2014, investigators from Colorado State University and the Boreal Toad Conservation 

Team sampled 103 wetlands thought to be suitable for toad breeding throughout Colorado and 

southern Wyoming for Bd using water filtration and amphibian swabs. The sampled sites fell 

into two groups: sites that historically supported boreal toad populations (Group 1: 87 sites), and 

sites with suitable boreal toad breeding habitat, but where boreal toads have never been detected 

(Group 2: 16 sites). Sites were visited between 1 and 6 times each during the boreal toad 

breeding season. On a single site visit, I collected three water filter samples from wetland 

margins (Kirshtein et al. 2007, Chestnut et al. 2014). DNA was analyzed from filter samples 

using standard extraction procedures and real-time polymerase chain reaction (qPCR) protocols 

(Kirshtein et al. 2007, Kerby et al. 2012). A commercially available inhibitor removal kit 

(OneStep™ PCR Inhibitor Removal Kit, Zymo Research, Irvine, CA) was used before qPCR 

analysis to remove compounds that might inhibit the qPCR reaction (Chapter 3, McKee et al. 

2015). I also made every attempt to capture and swab any amphibians encountered during site 
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visits. DNA from swab samples was extracted and analyzed using qPCR (Kerby et al. 2012, 

Bletz et al. 2015). Each filter and swab sample was analyzed in triplicate. 

Sampling variation, difficulty in amplifying small amounts of DNA, and the presence of 

inhibitors can all result in inconsistency in results among PCR replicates (Chapter 3, Navidi et al. 

1992). I created Bd detection histories for each site by condensing the triplicate qPCR results 

from each filter and swab into a detection (1) or non-detection (0) based on a “liberal” or 

“conservative” decision criterion. Using the liberal decision criterion, each sample (filter or 

swab) was considered positive if Bd DNA was amplified in at least one of the three replicates 

(sensu Hyatt et al. 2007, Schmidt et al. 2013). Under the conservative decision criterion, samples 

were considered positive if Bd DNA was amplified in at least two of the three qPCR replicates 

(sensu Kerby et al. 2012). The conservative criterion is currently employed by the Boreal Toad 

Conservation Team to classify environmental DNA samples and amphibian swabs as positive for 

the target species (host or pathogen; H. Crockett, personal communication).  

Biological Hypotheses 

I used a single-season, single-species occupancy framework (MacKenzie et al. 2002) to 

estimate the probability of Bd occurrence (‘occupancy’) at a wetland (𝜓), which is defined as the 

sampling unit in my study. Conditional on occurrence, I also estimated the probability of Bd 

detection using filter samples (𝑝𝑓𝑖𝑙𝑡𝑒𝑟) and swab samples (𝑝𝑠𝑤𝑎𝑏).  

I hypothesized that Bd occurrence would be negatively related to the amount of time 

since boreal toads were last detected, suggesting that Bd may go locally extinct following host 

amphibian extinction. I used historic boreal toad monitoring data collected from 2001-2014 by 

the Boreal Toad Conservation Team to determine the amount of time since the last boreal toad 

detection (‘time since toads’, or TST) at each site. While TST is not identical to the time since 
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local boreal toad extinction, I expect TST to be highly correlated with the time since severe 

boreal toad declines, because, if they are present, the detection probability of boreal toads is 

typically very high during the breeding season (Chapter 2, Pilliod et al. 2010). When TST was 

known (i.e., for Group 1), values ranged from 0 for sites where toads were detected in 2014 to 13 

for sites where toads were last detected in 2001. I included an additive effect of group and a 

group by TST interaction (group*TST) so that the TST covariate was only used to model Bd 

occurrence for sites where TST was known (Group 1), estimating a mean Bd occurrence for sites 

in Group 2 that was independent of Group 1.  

Host community composition can influence amphibian-Bd dynamics and the presence of 

less susceptible amphibian species may offer a mechanism for Bd persistence after declines 

and/or extirpation of a susceptible species (Reeder et al. 2012, Venesky et al. 2014a, Scheele et 

al. 2016). In the SRM, boreal toads sometimes co-occur with tiger salamanders (Ambystoma 

tigrinum), boreal chorus frogs (Pseudacris maculata), and/or wood frogs (Lithobates sylvaticus). 

Therefore, I investigated whether Bd was more likely to occur at sites where other amphibian 

species historically occurred (amph = 1) than where they did not (amph = 0). The amph covariate 

reflects whether other amphibian species were ever detected at each site. I hypothesized that an 

interaction between TST and amph (TST*amph) would be supported, and that Bd occurrence 

would decline more steeply with TST if alternate reservoir hosts were not present (Dobson 2004). 

Past work has shown that Bd occurrence in this system may decrease with elevation, likely due 

to the cold temperatures and short growing season at high elevation sites (Chapter 2), and I 

evaluated this hypothesis by exploring models where Bd occurrence was either linearly (elev) or 

quadratically (elev2) related to elevation.  
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In addition to hypotheses associated with Bd occurrence, I also tested for differences in 

Bd detection at occupied sites. Differences in Bd abundance or Bd load can lead to detection 

differences in occupancy studies (Chapter 3, Royle and Nichols 2003). Laboratory experiments 

have shown that Bd growth is strongly influenced by temperature (Piotrowski et al. 2004) so I 

hypothesized that different temperature regimes across elevations or across the amphibian 

breeding season (DOY) would influence Bd detection probability using either sampling method. 

In addition, I expected that the total volume of water filtered would be positively related to Bd 

detection using filters, though this has not been supported by previous work (Chestnut et al. 

2014). Susceptibility to chytridiomycosis is variable among amphibian populations and may be 

linked to differences in skin microbiome (Woodhams et al. 2007) or life history characteristics 

(Reeder et al. 2012, Venesky et al. 2014a). I hypothesized that swabs collected from boreal toads 

would have higher Bd detection probabilities than swabs collected from other amphibian species, 

reflecting a higher expected prevalence, and potentially, higher infection loads for toads. 

Accordingly, I evaluated effects of several covariates (elevation [elev and elev2], day-of-year 

[DOY and DOY2], filter volume [volume], and amphibian species swabbed [sp]) on detection 

parameters and hypothesized that Bd detection probabilities would be higher for swabs than 

filters at wetlands with Bd. 

Modeling Framework 

I fit the occupancy models in Program MARK (White and Burnham 1999) and compared 

models using Akaike’s Information Criterion corrected for small sample sizes (AICc; Burnham 

and Anderson 2002). I employed a step-down modeling strategy (Lebreton et al. 1992) to 

identify best-supported hypotheses for each parameter. First, using the most general covariate 

structure that the data could support for Bd occurrence [𝜓( elev + elev2  + amph + group + 
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group*TST + TST*amph)] and a time-specific structure for Bd detection probability using swabs 

[𝑝𝑠𝑤𝑎𝑏(t)], I evaluated support for my competing hypotheses about variation in 𝑝𝑓𝑖𝑙𝑡𝑒𝑟, which I 

expected to be both lower and less variable than 𝑝𝑠𝑤𝑎𝑏. I evaluated 14 model structures for 

𝑝𝑓𝑖𝑙𝑡𝑒𝑟: constant, elev, elev2, DOY, DOY2, volume, and additive combinations of these variables. 

Retaining the most parsimonious structure for 𝑝𝑓𝑖𝑙𝑡𝑒𝑟, I next fit a set of 14 covariate models to 

𝑝𝑠𝑤𝑎𝑏.  These models were identical to those fit for 𝑝𝑓𝑖𝑙𝑡𝑒𝑟, except that the amphibian species 

swabbed (sp) was assessed instead of the filter volume (vol). The most parsimonious structure 

for 𝑝𝑠𝑤𝑎𝑏 was retained for my investigation of factors influencing Bd occurrence (𝜓).  

When evaluating Bd occurrence, I used a common hierarchical modeling framework 

(sensu Doherty et al. 2002, Dugger et al. 2016) rather than running all possible combinations of 

models to reduce the possibility of spurious results (Doherty et al. 2012). I began with the 

general covariate structure for 𝜓 and first removed interaction terms (TST*amph and 

group*TST), followed by main effects (group, TST, amph, elev2, and elev), retaining the model 

with the lowest AICc at each step. I completed the entire model building and selection procedure 

for two datasets: one that used the liberal criterion for determining whether a sample was 

positive, and another that used the conservative criterion.  

RESULTS 

A total of 307 filters were collected from 103 sites and amphibian swab samples (n=296) 

were collected from 61 of the 103 sites. Of the swab samples collected, 253 were from boreal 

toads and 43 were from other amphibian species (Ambystoma tigrinum [4 samples], Pseudacris 

maculata [26 samples], and Lithobates sylvaticus [13 samples]). Using the conservative decision 

criterion instead of the liberal criterion resulted in 6 fewer sites with Bd detections from filter 

samples and 19 fewer sites with Bd detections using swabs. Naïve Bd occurrence (𝜓𝑛𝑎ï𝑣𝑒 =
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# 𝑠𝑖𝑡𝑒𝑠 𝑤𝑖𝑡ℎ Bd 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠

# 𝑠𝑖𝑡𝑒𝑠 𝑠𝑎𝑚𝑝𝑙𝑒𝑑
) when detections from both sampling methods were combined decreased 

from 0.50 to 0.31 when the conservative decision criterion was used. 

Detection Probability: Variable Selection and Estimates 

 The best-supported structures for 𝑝𝑓𝑖𝑙𝑡𝑒𝑟  and 𝑝𝑠𝑤𝑎𝑏 differed based on the decision 

criterion used (for details, see Chapter 4 Appendices). Using the liberal criterion, the best-

supported structure for 𝑝𝑓𝑖𝑙𝑡𝑒𝑟 was a constant detection probability (𝑝̂𝑓𝑖𝑙𝑡𝑒𝑟 = 0.12; Figure 4.1A), 

while 𝑝𝑓𝑖𝑙𝑡𝑒𝑟 varied positively with DOY when the conservative criterion was used (from 0.05 in 

the early season to 0.32 in the late season; Figure 4.1A). Detection probability of Bd using swabs 

(also termed prevalence) was best modeled as a quadratic function of DOY using the liberal 

decision criterion, and ranged from as high as 0.57 in the middle of the breeding season to as low 

as 0.34 in the late breeding season (Figure 4.1B). Using the conservative criterion, 𝑝𝑠𝑤𝑎𝑏 was 

lower than with the liberal criterion, varied as an additive function of DOY and elev2, and was 

highest in the early season and at intermediate elevations (Figure 4.1B). These best-supported 

detection structures were used to model Bd occurrence. 

Bd Occurrence 

 I found support for the hypothesis that Bd occurrence was negatively related to TST 

regardless of the decision criterion used (weight > 0. 45 for each criterion; Table 4.1), but 

substantial uncertainty was associated with these estimates (Figure 4.1C). While the choice of 

decision criterion did not influence the model ranking or the direction of the effect (Table 4.1), 

estimates of Bd occurrence were much higher using the liberal decision criterion, especially 

when boreal toads had been detected within the past 5 years (Figure 4.1C). An effect of group 

was not supported (Table 4.1), indicating that Bd occupancy at wetlands where boreal toads had 

never been detected (Group 2) was similar to occupancy at historic boreal toad breeding sites 
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currently supporting toads (𝜓̂𝐺𝑟𝑜𝑢𝑝2,𝐿𝑖𝑏𝑒𝑟𝑎𝑙 = 0.84 and 𝜓̂𝐺𝑟𝑜𝑢𝑝2,𝐶𝑜𝑛𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑣𝑒 = 0.56). Regardless 

of the decision criterion used, the second best-supported model assumed a constant probability of 

Bd occurrence (weight = 0.30 [liberal] and 0.27 [conservative]) and, together, the top two models 

received >75% of the total weight (Table 4.1). Other hypotheses including effects of elevation, 

the presence of other amphibians, and group differences were not well-supported; while 

elevation appeared to be somewhat supported, it was identified as a pretending variable because 

it differed from the top model by a single parameter and had a ΔAICc value of ~2 (Arnold 2010).  

DISCUSSION 

The ability of pathogens to persist in vectors or reservoirs can drastically alter outcomes 

of disease dynamics and predictions of host extinction risk (Godfray et al. 1999). Despite this, 

the survival of Bd and Bsal outside of amphibian hosts has not been explored in natural settings. 

Currently, a lack of understanding about the mechanisms influencing the distribution and 

environmental persistence of Bd and Bsal limit our ability to successfully mitigate 

chytridiomycosis in nature (Garmyn et al. 2012, Garner et al. 2016, Grant et al. 2017). I 

investigated the environmental distribution and persistence of Bd in a landscape where some 

amphibian populations were extirpated. I found that Bd occurrence slowly decreased after local 

target amphibian populations declined, regardless of whether other amphibian hosts were 

present. My work provides evidence of long-term Bd persistence and underscores the importance 

of learning more about this pathogen’s distribution outside of amphibian hosts. 

Researchers evaluating samples for the presence of Bd use a variety of decision rules to 

decide whether molecular samples are positive or negative and generally do not asses the 

ramifications of these choices. My case study shows that, while the choice of decision criterion 

did not influence the relative support for covariates of Bd occurrence, it did influence occupancy 
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estimates. In addition, inference regarding factors that influence Bd detection and subsequent 

detection probability estimates were sensitive to the criterion used. I did not find evidence of 

contamination or false positives in my negative controls, so the liberal criterion may be most 

appropriate in instances like my case study. Using the conservative criterion, which is the current 

method employed by the Boreal Toad Conservation Team, results in underestimates of Bd 

occurrence and prevalence (𝑝𝑠𝑤𝑎𝑏) and evidence for temporal heterogeneity in 𝑝𝑓𝑖𝑙𝑡𝑒𝑟 that may 

not be accurate. Because these estimates are sometimes used to influence future study designs 

(i.e., the timing and number of samples to collect), this decision is especially critical. Using best 

practices including assessing inhibition and incorporating positive and negative controls at each 

step in sample preparation (Goldberg et al. 2016) will help researchers understand the risk of 

false positives versus false negatives and guide decisions related to sample classification. The 

objectives of data collection may also influence the classification process; for instance, if early 

detection of the emerging pathogen Bsal is the goal, the more sensitive liberal criterion may be 

preferred. 

 Theoretical models and laboratory experiments have suggested that Bd and Bsal may 

persist in reservoir host populations or in the environment (Johnson et al. 2005, Di Rosa et al. 

2007, Mitchell et al. 2008, Stegen et al. 2017), but evidence from natural settings has been 

minimal. Previous studies that sampled Bd in the aquatic environment focused only on sites 

where amphibian populations were extant during sampling (Schmidt et al. 2013, Chestnut et al. 

2014). My work is the first to take place in a landscape where local extirpations have occurred 

and shows that Bd may persist for many years after amphibian species declines. The mechanism 

of persistence remains unknown, but deserves future study as conservation actions may differ 

depending on whether persistence is due to saprobic or dormant fungal life stages (Di Rosa et al. 
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2007), non-amphibian hosts (Shapard et al. 2012), or recolonization by transient amphibians or 

other mobile organisms (Garmyn et al. 2012).  

I found little evidence that elevation influenced Bd occurrence in my study, though other 

studies have shown a negative relationship between Bd occurrence and elevation (Chapter 2, 

Chestnut et al. 2014). I did find evidence of an elevational effect on swab detection probability, 

which likely reflects increased Bd prevalence or infection loads at elevations representing 

moderate temperatures in the SRM system. I stress that the study presented here is a snapshot of 

Bd dynamics, and that future long-term studies that explore Bd colonization and extinction 

probabilities using environmental Bd samples are necessary to more fully understand Bd’s niche, 

especially in the absence of amphibian hosts (Yackulic et al. 2015). My work shows that future 

work on Bd dynamics should incorporate a mosaic of sites where amphibians are both extant and 

extirpated. Similarly, the presence of other amphibian hosts did not influence Bd occurrence in 

my study, but I was restricted to a coarse measure of this variable. Because reservoir hosts and 

environmental reservoirs can both promote pathogen persistence (Dobson 2004, Briggs et al. 

2010), future work should continue to explore this potentially important variable. 

I found evidence of temporal heterogeneity in Bd detection probability using filters, but 

only using the conservative criterion. Estimates of filtration-based detection probability in this 

system were substantially lower than those reported previously (Schmidt et al. 2013, Chestnut et 

al. 2014), but this was expected as I was sampling at sites where amphibians may not have been 

present. Detection probability using filters was lower than 𝑝𝑠𝑤𝑎𝑏, but it was similar to that 

reported for low concentration Bd samples in an experimental setting (Chapter 3) and for other 

low density aquatic macroorganisms sampled using water filtration (i.e., eDNA; Moyer et al. 

2014, Wilcox et al. 2016). If water filtration were the sole method used to sample Bd, my work 
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suggests that approximately 20 filters would be necessary to be 95% certain of detecting Bd 

when it is present at sites in my study area. However, when amphibians are not present or if the 

environmental distribution of Bd is of interest, sampling with filtration is effective and can be 

used to detect multiple species of amphibians and pathogens potentially resulting in efficiency 

gains overall (Blooi et al. 2013). Incorporating water filtration into monitoring initiatives and 

manipulative field experiments provides a means to track changes in Bd’s persistence through 

time, to identify reintroduction sites, and to measure the impacts of management interventions. 

Low detection probabilities of Bd in the late summer and early fall from swab samples 

may be a function of lower Bd loads, decreased prevalence, the characteristics or behaviors of 

amphibians at the sites, or combinations of these. Seasonality of Bd infections has been identified 

in many amphibian systems, and has largely been hypothesized to be related to seasonal 

temperature patterns (Kriger and Hero 2007, Petersen et al. 2016). Swab-based detection was 

sensitive to the decision criterion used; elevation was identified as an important covariate only 

when the conservative criterion was used and detection estimates were lower under this criterion. 

Underestimating the prevalence of Bd infections (𝑝𝑠𝑤𝑎𝑏) may hinder the timely response of 

managers to amphibian declines, and I reiterate the importance of using adequate controls and 

standards to understand which criterion is most appropriate in a setting. Substantially fewer 

amphibian swab samples than filter samples need to be collected to achieve the same level of 

certainty about Bd occurrence and the exact number will depend on the time of year and 

elevation that samples are collected. I suggest collecting amphibian swab samples, either from 

target, non-target, or sentinel animals, whenever possible. However, in cases where amphibians 

are not present, I illustrate the importance of collecting environmental (filter) samples to detect 

Bd. 
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Conclusions 

Understanding pathogen distributions, both in the presence and absence of target host 

species, is essential for predicting, mitigating, and preventing the emergence of infectious 

diseases of wildlife. Current Bd and Bsal distribution models, detection databases, and eco-

epidemiological models rely solely on the detection of these pathogens on known hosts, using 

swab samples (Olson et al. 2013, Richgels et al. 2016). Predictions based on these data do not 

reflect the fact that Bd may persist in the environment in the absence of amphibians and have a 

different distribution in the environment than in amphibian hosts. Pathogen detection methods 

that sample free-living zoospores are necessary to understand the distributions, tolerances, and 

ecology of Bd and Bsal, to understand risk to resident amphibian populations, and to identify 

conservation solutions (Grant et al. 2017). My work provides evidence of the long-term 

persistence of Bd in the absence of target amphibians and I present sampling and analytical 

frameworks that can be used to understand Bd outbreaks and for understanding and predicting 

the spread of Bsal. 

 

 

 



84 

 

Table 4.1: Model selection results for Bd occupancy probability (𝜓) at 103 sites in the SRM using best-supported detection structures. 

Model selection information including number of parameters (K), ΔAICc, model weights, and deviance are shown for each candidate 

model for two decision criteria used to classify samples as positive: Liberal (≥1 of 3 qPCR replicates positive) and Conservative 

Criterion (≥2 of 3 qPCR replicates positive). Model names reflect the occupancy model structure and include linear (elev) and 

quadratic (elev2) effects of elevation, the time since the last boreal toad detection (TST), whether other amphibian species were 

historically present at the site (amph), a group effect indicating whether TST was known or unknown (g), and constant models (.). All 

models were fit using the best-supported decision probability structures for filter (𝑝𝑓𝑖𝑙𝑡𝑒𝑟) and swab samples (𝑝𝑠𝑤𝑎𝑏). 

A. Liberal Decision Criterion 

Model K ΔAICc Model Weight Deviance 

𝑝𝑓𝑖𝑙𝑡𝑒𝑟(.) 𝑝𝑠𝑤𝑎𝑏(DOY+DOY2) 𝜓(g*TST) 6 0.00 0.47 555.33 

𝑝𝑓𝑖𝑙𝑡𝑒𝑟(.) 𝑝𝑠𝑤𝑎𝑏(DOY+DOY2) 𝜓(.) 5 0.91 0.30 558.49 

𝑝𝑓𝑖𝑙𝑡𝑒𝑟(.) 𝑝𝑠𝑤𝑎𝑏(DOY+DOY2) 𝜓(elev + g*TST) 7 2.30 0.15 555.32 

𝑝𝑓𝑖𝑙𝑡𝑒𝑟(.) 𝑝𝑠𝑤𝑎𝑏(DOY+DOY2) 𝜓(elev + elev2 + g*TST) 8 4.56 0.05 555.23 

𝑝𝑓𝑖𝑙𝑡𝑒𝑟(.) 𝑝𝑠𝑤𝑎𝑏(DOY+DOY2) 𝜓(elev + elev2 + g*TST + amph) 9 5.98 0.02 554.25 

𝑝𝑓𝑖𝑙𝑡𝑒𝑟(.) 𝑝𝑠𝑤𝑎𝑏(DOY+DOY2) 𝜓(g + elev + elev2 + g*TST + amph) 10 9.68 0.00 555.49 

𝑝𝑓𝑖𝑙𝑡𝑒𝑟(.) 𝑝𝑠𝑤𝑎𝑏(DOY+DOY2) 𝜓(g + elev + elev2 + amph) 9 10.79 0.00 559.06 

𝑝𝑓𝑖𝑙𝑡𝑒𝑟(.) 𝑝𝑠𝑤𝑎𝑏(DOY+DOY2) 𝜓(g + elev + elev2 + g*TST + amph + TST*amph) 11 12.19 0.00 555.49 

       

B. Conservative Decision Criterion 

Model K ΔAICc Model Weight Deviance 

𝑝𝑓𝑖𝑙𝑡𝑒𝑟(DOY) 𝑝𝑠𝑤𝑎𝑏(DOY + elev + elev2) 𝜓(g*TST) 8 0.00 0.48 376.04 

𝑝𝑓𝑖𝑙𝑡𝑒𝑟(DOY) 𝑝𝑠𝑤𝑎𝑏(DOY + elev + elev2) 𝜓(.) 7 1.13 0.27 379.52 

𝑝𝑓𝑖𝑙𝑡𝑒𝑟(DOY) 𝑝𝑠𝑤𝑎𝑏(DOY + elev + elev2) 𝜓(elev + g*TST) 9 2.40 0.14 376.04 

𝑝𝑓𝑖𝑙𝑡𝑒𝑟(DOY) 𝑝𝑠𝑤𝑎𝑏(DOY + elev + elev2) 𝜓(elev + elev2 + g*TST) 10 3.73 0.07 374.91 

𝑝𝑓𝑖𝑙𝑡𝑒𝑟(DOY) 𝑝𝑠𝑤𝑎𝑏(DOY + elev + elev2) 𝜓(elev + elev2 + g*TST + amph) 11 6.12 0.02 374.79 

𝑝𝑓𝑖𝑙𝑡𝑒𝑟(DOY) 𝑝𝑠𝑤𝑎𝑏(DOY + elev + elev2) 𝜓(g + elev + elev2 + g*TST + amph) 12 8.65 0.01 374.75 

𝑝𝑓𝑖𝑙𝑡𝑒𝑟(DOY) 𝑝𝑠𝑤𝑎𝑏(DOY + elev + elev2) 𝜓(g + elev + elev2 + amph) 11 8.98 0.01 377.65 

𝑝𝑓𝑖𝑙𝑡𝑒𝑟(DOY) 𝑝𝑠𝑤𝑎𝑏(DOY + elev + elev2) 𝜓(g+elev+elev2+g*TST+amph+ TST*amph) 13 11.23 0.00 374.71 
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Figure 4.1: Best-supported factors influencing Bd detection (using filters [A] and swabs [B]) and Bd occurrence (C) in the SRM. 

Relationships are shown with 95% confidence intervals from the best-supported models using Liberal (≥1 of 3 qPCR replicates 

positive; solid line and dark shading) and Conservative (≥2 of 3 qPCR replicates positive; dotted or dashed lines, light shading) 

decision criteria. Different relationships for detection were supported depending on the decision criterion used, and the same covariate 

(TST) was supported for Bd occurrence.  
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CHAPTER 1 APPENDICES 

Chapter 1, Appendices 1.1–1.3 are available at <www.ecography.org/appendix/ecog-02849>.  
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CHAPTER 2 APPENDIX 

 

Appendix 2.1: Model results for the 10 best-supported detection structures for boreal toad (species A) and Bd (species B) detection 

data from 2001-2010, using a dynamic two-species occupancy model. Model names, ΔAICc, model weights, number of parameters 

(K), and deviance are shown for each model. Parameters include the detection probability of boreal toads when Bd is present (𝑟𝐴) or 

absent (𝑝𝐴), and the detection probability of Bd when boreal toads are present and detected (𝑟𝐵𝐴). I investigated detection structures 

where boreal toad detection probability was constant, varied linearly (DOY) or quadratically (DOY2) with day-of-year. I evaluated 

support for models where Bd detection probability was constant or varied with elevation, linearly (elev) or quadratically (elev2). All 

models had state-specific initial occupancy probabilities and general structures for each covariate on vital rate parameters. 

 

Model Δ AICc 
Model 

Weight 
K Deviance 

𝑝𝐴/𝑟𝐴(DOY2) 𝑟𝐵𝐴(elev) w/most general elevation structure on vital rates  0 0.46 25 2175.46 

𝑝𝐴/𝑟𝐴(DOY2) 𝑟𝐵𝐴(elev2) w/most general elevation structure on vital rates 0.53 0.35 26 2173.76 

𝑝𝐴/𝑟𝐴(DOY2) 𝑟𝐵𝐴(constant) w/most general elevation structure on vital rates 3.82 0.07 24 2181.5 

𝑝𝐴/𝑟𝐴(DOY2) 𝑟𝐵𝐴(elev2) w/most general amphibian richness structure on vital rates 4.54 0.05 22 2186.63 

𝑝𝐴/𝑟𝐴(DOY2) 𝑟𝐵𝐴(elev) w/most general amphibian richness structure on vital rates 4.93 0.04 21 2189.21 

𝑝𝐴/𝑟𝐴(DOY2) 𝑟𝐵𝐴(elev2) w/most general amphibian richness structure on vital rates 7.19 0.01 22 2189.27 

𝑝𝐴/𝑟𝐴(DOY2) 𝑟𝐵𝐴(elev) w/most general amphibian richness structure on vital rates 7.91 0.01 21 2192.19 

𝑝𝐴/𝑟𝐴(DOY2) 𝑟𝐵𝐴(elev2) w/most general genetic barriers structure on vital rates 8.95 0.01 30 2173.17 

pA/rA (DOY2) 𝑟𝐵𝐴(elev) w/most general genetic barriers structure on vital rates 9.29 0.00 29 2175.77 

pA/rA (DOY2) 𝑟𝐵𝐴(constant) w/most general amphibian richness structure on vital rates 14.14 0.00 20 2200.6 

 

 

 



116 

 

CHAPTER 3 APPENDICES 

 

Appendix 3.1: Model selection results for pre-purification (A) and post-purification (B) models 

applied to Bd detection-nondetection data for each inoculated jar (single sample scenario). I 

examined additive (+) and interactive (*) effects of water type (WT) and concentration (treated 

as a categorical, Conc.f [factor], or continuous, Conc.c [continuous], variable) for both detection 

(p) and occupancy (𝜓) parameters. Number of parameters (K), Akaike’s Information Criterion 

adjusted for small sample sizes (AICc), ΔAICc, model weight, and deviance are given for each 

model. 

A. Pre-Purification Single Sample Occupancy 

Model K AICc ΔAICc Model Weight Deviance 

𝜓(WT*conc.f) 𝑝(WT*conc.f)  16 685.82 0.00 0.48 651.81 

𝜓(WT+conc.f) 𝑝(WT*conc.f)  13 686.67 0.85 0.31 659.34 

𝜓(WT) 𝑝(WT*conc.f)  10 687.53 1.71 0.20 666.73 

        

B. Post-Purification Single Sample Occupancy 

Model K AICc ΔAICc Model Weight Deviance 

𝜓(WT+conc.f) 𝑝(WT+conc.f)  10 644.59 0.00 0.85 623.80 

𝜓(WT+conc.f) 𝑝(WT*conc.f)  13 649.52 4.93 0.07 622.19 

 𝜓(WT*conc.f) 𝑝(WT+conc.f) 13 649.66 5.06 0.07 622.33 
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Appendix 3.2: Model selection results for multi-scale occupancy models fit to pre-purification 

(A) and post-purification (B) Bd detection-nondetection data using the multiple samples 

scenario. Model parameters include Bd occupancy of the sample unit (𝜓), Bd filter-level 

occurrence (𝜃), and detection probability (𝑝). I examined additive (+) and interactive (*) effects 

of concentration (Conc.f [factor] and Conc.c [continuous]) and water type (WT) in both 

detection, occupancy, and local availability parameters.  Number of parameters (K), Akaike’s 

Information Criterion corrected for small sample size (AICc), ΔAICc, model weights, and 

deviance are given for each model.   

 

A. Pre-Purification Multiple Sample Occupancy 

Model K AICc ΔAICc 
Model 

Weight 
Deviance 

𝜓(constant) 𝜃(WT) 𝑝(WT*conc.f)  11 691.87 0.00 0.37 666.73 

𝜓(constant) 𝜃(WT+conc.f) 

𝑝(WT*conc.f)  
14 692.53 0.65 0.27 659.34 

𝜓(constant) 𝜃(WT*conc.f) 𝑝(WT*conc.f)  17 693.65 1.78 0.15 651.81 

 𝜓(WT) 𝜃(WT) 𝑝(WT*conc.f) 12 694.49 2.62 0.10 666.73 

 𝜓(WT) 𝜃(WT+conc.f) 𝑝(WT*conc.f) 15 695.34 3.47 0.06 659.34 

        

B. Post-Purification Multiple Sample Occupancy 

Model K AICc ΔAICc 
Model 

Weight 
Deviance 

 𝜓(constant) 𝜃(WT+conc.f) 

𝑝(WT+conc.f) 
11.00 648.94 0.00 0.72 623.80 

 𝜓(WT) 𝜃(WT+conc.f) 𝑝(WT+conc.f) 12.00 651.56 2.62 0.19 623.80 
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Appendix 3.3: Spearman’s rank-order correlation coefficients (𝑟𝑠) for the relationship between 

qPCR copy number and experimental Bd concentration in distilled and natural water samples. 

Correlation was calculated under the single and multiple samples scenarios, both with and 

without DNA purification. 

 

 Pre-purification 

 Distilled  Natural 

Single Sample 0.69 0.13 

Multiple Samples 0.85 0.31 

  Post-purification 

  Distilled Natural 

Single Sample 0.72 0.79 

Multiple Samples 0.85 0.90 
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Appendix 3.4: Model selection results for the best-supported linear regression models applied to 

data on relative bias in estimates of Bd concentration from my experiment. I examined additive 

(+) and interactive (*) effects of inoculated concentration (Conc.f [factor] and Conc.c 

[continuous]), water type (WT). Number of parameters (K), Akaike’s Information Criterion for 

small sample sizes (AICc), ΔAICc, Akaike weights, and deviance are given for each model.   

A. Pre-Purification Multiple Samples Relative Bias 

Model K AICc ΔAICc Model Weight Deviance 

Constant 2 212.83 0.00 0.38 208.70 

WT 3 213.37 0.54 0.29 207.11 

Conc.f 5 214.81 1.98 0.14 204.15 

WT+Conc.f 6 215.42 2.59 0.10 202.48 

WT*Conc.f 9 215.69 2.86 0.09 195.60 

        

B. Post-Purification Multiple Samples Relative Bias 

Model K AICc ΔAICc Model Weight Deviance 

WT*Conc.f 9 598.74 0.00 1.00 578.65 

WT+Conc.f 6 620.60 21.87 0.00 607.66 

WT 3 640.72 41.99 0.00 634.46 

Conc.f 5 645.36 46.62 0.00 634.70 

Constant 2 659.71 60.97 0.00 655.58 
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CHAPTER 4 APPENDICES 

Introduction 

The best-supported structures for detection differed depending on the decision criterion 

used. Using the liberal criterion, a constant probability of 𝑝𝑓𝑖𝑙𝑡𝑒𝑟 was best-supported (weight = 

0.31, Appendix 4.1A). When the conservative criterion was used, there was substantial 

uncertainty about the best-supported structure; a positive relationship between 𝑝𝑓𝑖𝑙𝑡𝑒𝑟 and DOY 

was supported (weight = 0.25, Appendix 4.1B). I retained a constant detection structure for 

𝑝𝑓𝑖𝑙𝑡𝑒𝑟 for the liberal criterion, and DOY for the conservative criterion.  

Using the best-supported structures for 𝑝𝑓𝑖𝑙𝑡𝑒𝑟 and a general model structure for Bd 

occurrence, I found evidence of a relationship between 𝑝𝑠𝑤𝑎𝑏 and DOY with both decision rules, 

though the form of the relationship differed and elevation was also important using the 

conservative criterion (Appendix 4.2). Using the liberal criterion, a quadratic effect of DOY was 

well-supported (weight = 0.31) and was retained for the next modeling step (Appendix 4.2A). 

Using the conservative criterion an additive effect of DOY and elevation was supported (weight 

= 0.27) such that detection was highest early in the season and at intermediate elevations 

(Appendix 4.2B). I retained these best-supported structures to model Bd occurrence.  
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Appendix 4.1: Model selection results for competing hypotheses about factors influencing Bd 

detection probabilities using water filtration (𝑝𝑓𝑖𝑙𝑡𝑒𝑟).  Other model parameters include general 

structures for swab detection (𝑝𝑠𝑤𝑎𝑏(𝑡)) and Bd occurrence (𝜓). Given information includes: 

number of parameters (K), ΔAICc, model weights, and deviance. Results are shown for two 

decision criteria used to classify samples as positive: Liberal and Conservative. Models include 

effects of filter volume (vol), linear (elev) and quadratic (elev2) effects of elevation, linear (DOY) 

and quadratic (DOY2) effects of day-of-year, and constant models (.).  

A. Liberal Decision Criterion - 𝑝𝑓𝑖𝑙𝑡𝑒𝑟 

Model K ΔAICc 
Model 

Weight 
Deviance 

𝑝𝑓𝑖𝑙𝑡𝑒𝑟(.) 𝑝𝑠𝑤𝑎𝑏(𝑡) 𝜓(general) 20 0.00 0.31 550.09 

𝑝𝑓𝑖𝑙𝑡𝑒𝑟(vol) 𝑝𝑠𝑤𝑎𝑏(𝑡) 𝜓(general) 21 0.87 0.20 547.80 

𝑝𝑓𝑖𝑙𝑡𝑒𝑟(DOY)  𝑝𝑠𝑤𝑎𝑏(𝑡) 𝜓(general) 21 1.19 0.17 548.11 

𝑝𝑓𝑖𝑙𝑡𝑒𝑟(vol + DOY) 𝑝𝑠𝑤𝑎𝑏(𝑡) 𝜓(general) 22 2.76 0.08 546.44 

𝑝𝑓𝑖𝑙𝑡𝑒𝑟(elev) 𝑝𝑠𝑤𝑎𝑏(𝑡) 𝜓(general) 21 3.09 0.07 550.01 

𝑝𝑓𝑖𝑙𝑡𝑒𝑟(vol+elev) 𝑝𝑠𝑤𝑎𝑏(𝑡) 𝜓(general) 22 4.10 0.04 547.78 

𝑝𝑓𝑖𝑙𝑡𝑒𝑟(DOY+DOY2) 𝑝𝑠𝑤𝑎𝑏(𝑡) 𝜓(general) 22 4.20 0.04 547.89 

𝑝𝑓𝑖𝑙𝑡𝑒𝑟(DOY+elev)  𝑝𝑠𝑤𝑎𝑏(𝑡) 𝜓(general) 22 4.39 0.03 548.07 

𝑝𝑓𝑖𝑙𝑡𝑒𝑟(vol + DOY + DOY2) 𝑝𝑠𝑤𝑎𝑏(𝑡) 𝜓(general) 23 5.86 0.02 546.22 

𝑝𝑓𝑖𝑙𝑡𝑒𝑟(elev + elev2)  𝑝𝑠𝑤𝑎𝑏(𝑡) 𝜓(general) 22 6.23 0.01 549.91 

𝑝𝑓𝑖𝑙𝑡𝑒𝑟(vol + elev + elev2)  𝑝𝑠𝑤𝑎𝑏(𝑡) 𝜓(general) 23 7.27 0.01 547.63 

𝑝𝑓𝑖𝑙𝑡𝑒𝑟(DOY + DOY2 + elev)   𝑝𝑠𝑤𝑎𝑏(𝑡) 𝜓(general) 23 7.52 0.01 547.88 

𝑝𝑓𝑖𝑙𝑡𝑒𝑟(DOY + elev + elev2) 𝑝𝑠𝑤𝑎𝑏(𝑡) 𝜓(general) 23 7.63 0.01 547.99 

𝑝𝑓𝑖𝑙𝑡𝑒𝑟(DOY + DOY2 + elev + elev2) 𝑝𝑠𝑤𝑎𝑏(𝑡) 𝜓(general) 24 10.83 0.00 547.77 

B. Conservative Decision Criterion - 𝑝𝑓𝑖𝑙𝑡𝑒𝑟 

Model K ΔAICc 
Model 

Weight 
Deviance 

𝑝𝑓𝑖𝑙𝑡𝑒𝑟(DOY)  𝑝𝑠𝑤𝑎𝑏(𝑡) 𝜓(general) 21 0.00 0.25 382.32 

𝑝𝑓𝑖𝑙𝑡𝑒𝑟(.) 𝑝𝑠𝑤𝑎𝑏(𝑡) 𝜓(general) 20 0.32 0.22 385.79 

𝑝𝑓𝑖𝑙𝑡𝑒𝑟(DOY+elev)  𝑝𝑠𝑤𝑎𝑏(𝑡) 𝜓(general) 22 1.33 0.13 380.41 

𝑝𝑓𝑖𝑙𝑡𝑒𝑟(elev) 𝑝𝑠𝑤𝑎𝑏(𝑡) 𝜓(general) 21 1.65 0.11 383.97 

𝑝𝑓𝑖𝑙𝑡𝑒𝑟(vol + DOY) 𝑝𝑠𝑤𝑎𝑏(𝑡) 𝜓(general) 22 3.19 0.05 382.26 

𝑝𝑓𝑖𝑙𝑡𝑒𝑟(vol) 𝑝𝑠𝑤𝑎𝑏(𝑡) 𝜓(general) 21 3.20 0.05 385.52 

𝑝𝑓𝑖𝑙𝑡𝑒𝑟(DOY+DOY2) 𝑝𝑠𝑤𝑎𝑏(𝑡) 𝜓(general) 22 3.22 0.05 382.29 

𝑝𝑓𝑖𝑙𝑡𝑒𝑟(vol+elev) 𝑝𝑠𝑤𝑎𝑏(𝑡) 𝜓(general) 22 4.20 0.03 383.27 

𝑝𝑓𝑖𝑙𝑡𝑒𝑟(DOY + DOY2 + elev)   𝑝𝑠𝑤𝑎𝑏(𝑡) 𝜓(general) 23 4.23 0.03 379.98 

𝑝𝑓𝑖𝑙𝑡𝑒𝑟(DOY + elev + elev2) 𝑝𝑠𝑤𝑎𝑏(𝑡) 𝜓(general) 23 4.52 0.03 380.27 

𝑝𝑓𝑖𝑙𝑡𝑒𝑟(elev + elev2)  𝑝𝑠𝑤𝑎𝑏(𝑡) 𝜓(general) 22 4.66 0.02 383.74 

𝑝𝑓𝑖𝑙𝑡𝑒𝑟(vol + DOY + DOY2) 𝑝𝑠𝑤𝑎𝑏(𝑡) 𝜓(general) 23 6.49 0.01 382.23 

𝑝𝑓𝑖𝑙𝑡𝑒𝑟(vol + elev + elev2)  𝑝𝑠𝑤𝑎𝑏(𝑡) 𝜓(general) 23 7.17 0.01 382.92 

𝑝𝑓𝑖𝑙𝑡𝑒𝑟(DOY + DOY2 + elev + elev2) 𝑝𝑠𝑤𝑎𝑏(𝑡) 𝜓(general) 24 7.53 0.01 379.87 
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Appendix 4.2: Model selection results for competing hypotheses for factors influencing Bd 

detection probabilities using amphibian swabs (𝑝𝑠𝑤𝑎𝑏).  Other model parameters include a best-

supported structure for filter detection (𝑝𝑓𝑖𝑙𝑡𝑒𝑟) and a general structure for Bd occurrence (𝜓). 

Given information includes: number of parameters (K), ΔAICc, model weights, and deviance. 

Results are shown for two decision criteria used to classify samples as positive: Liberal and 

Conservative. Covariates include species swabbed (sp), linear (elev) and quadratic (elev2) effects 

of elevation, linear (DOY) and quadratic (DOY2) effects of day-of-year, and constant models (.). 

A. Liberal Decision Criterion 

Model K ΔAICc 
Model 

Weight 
Deviance 

𝑝𝑓𝑖𝑙𝑡𝑒𝑟(.) 𝑝𝑠𝑤𝑎𝑏(DOY2) 𝜓(general) 11 0.00 0.31 553.18 

𝑝𝑓𝑖𝑙𝑡𝑒𝑟(.) 𝑝𝑠𝑤𝑎𝑏(sp+DOY2) 𝜓(general) 12 0.30 0.26 550.91 

𝑝𝑓𝑖𝑙𝑡𝑒𝑟(.) 𝑝𝑠𝑤𝑎𝑏(DOY2+elev) 𝜓(general) 12 2.15 0.10 552.76 

𝑝𝑓𝑖𝑙𝑡𝑒𝑟(.) 𝑝𝑠𝑤𝑎𝑏(sp) 𝜓(general) 10 2.60 0.08 558.28 

𝑝𝑓𝑖𝑙𝑡𝑒𝑟(.) 𝑝𝑠𝑤𝑎𝑏(DOY) 𝜓(general) 10 3.42 0.06 559.11 

𝑝𝑓𝑖𝑙𝑡𝑒𝑟(.) 𝑝𝑠𝑤𝑎𝑏(sp+DOY) 𝜓(general) 11 3.84 0.04 557.02 

𝑝𝑓𝑖𝑙𝑡𝑒𝑟(.) 𝑝𝑠𝑤𝑎𝑏(.)𝜓(general) 9 3.96 0.04 562.10 

𝑝𝑓𝑖𝑙𝑡𝑒𝑟(.) 𝑝𝑠𝑤𝑎𝑏(DOY2+elev2) 𝜓(general) 13 4.77 0.03 552.76 

𝑝𝑓𝑖𝑙𝑡𝑒𝑟(.) 𝑝𝑠𝑤𝑎𝑏(sp+elev) 𝜓(general) 11 4.94 0.03 558.11 

𝑝𝑓𝑖𝑙𝑡𝑒𝑟(.) 𝑝𝑠𝑤𝑎𝑏(DOY+elev) 𝜓(general) 11 5.84 0.02 559.01 

𝑝𝑓𝑖𝑙𝑡𝑒𝑟(.) 𝑝𝑠𝑤𝑎𝑏(elev) 𝜓(general) 10 6.09 0.01 561.77 

𝑝𝑓𝑖𝑙𝑡𝑒𝑟(.) 𝑝𝑠𝑤𝑎𝑏(sp+elev2) 𝜓(general) 12 7.31 0.01 557.92 

𝑝𝑓𝑖𝑙𝑡𝑒𝑟(.) 𝑝𝑠𝑤𝑎𝑏(DOY+elev2) 𝜓(general) 12 8.38 0.00 558.99 

𝑝𝑓𝑖𝑙𝑡𝑒𝑟(.) 𝑝𝑠𝑤𝑎𝑏(elev2) 𝜓(general) 11 8.54 0.00 561.72 

B. Conservative Decision Criterion 

Model K ΔAICc 
Model 

Weight 
Deviance 

𝑝𝑓𝑖𝑙𝑡𝑒𝑟(DOY) 𝑝𝑠𝑤𝑎𝑏(DOY+elev2) 𝜓(general) 13 0.00 0.27 374.71 

𝑝𝑓𝑖𝑙𝑡𝑒𝑟(DOY) 𝑝𝑠𝑤𝑎𝑏(DOY2+elev2) 𝜓(general) 14 1.10 0.16 373.13 

𝑝𝑓𝑖𝑙𝑡𝑒𝑟(DOY) 𝑝𝑠𝑤𝑎𝑏(DOY2+elev) 𝜓(general) 13 2.20 0.09 376.91 

𝑝𝑓𝑖𝑙𝑡𝑒𝑟(DOY) 𝑝𝑠𝑤𝑎𝑏(DOY) 𝜓(general) 11 2.50 0.08 382.40 

𝑝𝑓𝑖𝑙𝑡𝑒𝑟(DOY) 𝑝𝑠𝑤𝑎𝑏(DOY+elev) 𝜓(general) 12 2.55 0.08 379.89 

𝑝𝑓𝑖𝑙𝑡𝑒𝑟(DOY) 𝑝𝑠𝑤𝑎𝑏(elev2) 𝜓(general) 12 2.66 0.07 379.99 

𝑝𝑓𝑖𝑙𝑡𝑒𝑟(DOY) 𝑝𝑠𝑤𝑎𝑏(DOY2) 𝜓(general) 12 2.81 0.07 380.15 

𝑝𝑓𝑖𝑙𝑡𝑒𝑟(DOY) 𝑝𝑠𝑤𝑎𝑏(sp+DOY) 𝜓(general) 12 3.53 0.05 380.86 

𝑝𝑓𝑖𝑙𝑡𝑒𝑟(DOY) 𝑝𝑠𝑤𝑎𝑏(sp+DOY+DOY2) 𝜓(general) 13 3.81 0.04 378.53 

𝑝𝑓𝑖𝑙𝑡𝑒𝑟(DOY) 𝑝𝑠𝑤𝑎𝑏(elev) 𝜓(general) 11 4.12 0.03 384.02 

𝑝𝑓𝑖𝑙𝑡𝑒𝑟(DOY) 𝑝𝑠𝑤𝑎𝑏(sp+elev2) 𝜓(general) 13 5.02 0.02 379.73 

𝑝𝑓𝑖𝑙𝑡𝑒𝑟(DOY) 𝑝𝑠𝑤𝑎𝑏(sp+elev) 𝜓(general) 12 5.28 0.02 382.62 

𝑝𝑓𝑖𝑙𝑡𝑒𝑟(DOY) 𝑝𝑠𝑤𝑎𝑏(sp) 𝜓(general) 11 5.82 0.01 385.72 

𝑝𝑓𝑖𝑙𝑡𝑒𝑟(DOY) 𝑝𝑠𝑤𝑎𝑏(.)𝜓(general) 10 9.13 0.00 391.54 


