
DISSERTATION

A UNIFIED MODELING LANGUAGE FRAMEWORK FOR SPECIFYING AND

ANALYZING TEMPORAL PROPERTIES

Submitted by

Mustafa Al Lail

Department of Computer Science

In partial fulfillment of the requirements

For the Degree of Doctor of Philosophy

Colorado State University

Fort Collins, Colorado

Summer 2018

Doctoral Committee:

Advisor: Robert B. France (deceased)
Advisor: Indrakshi Ray

Indrajit Ray
Idris Samawi Hamid
Yashwant K. Malaiya

Copyright by Mustafa Al Lail 2018

All Rights Reserved

ABSTRACT

A UNIFIED MODELING LANGUAGE FRAMEWORK FOR SPECIFYING AND

ANALYZING TEMPORAL PROPERTIES

In the context of Model-Driven Engineering (MDE), designers use the Unified Modeling Lan-

guage (UML) to create models that drive the entire development process. Once UML models are

created, MDE techniques automatically generate code from the models. If the models have unde-

tected faults, they are propagated to code where they require considerable time and effort to detect

and correct. It is therefore mandatory to analyze UML models at earlier stages of the develop-

ment life-cycle to ensure the success of the MDE techniques in producing reliable software. One

approach to uncovering design errors is to formally specify and analyze the properties that a sys-

tem has to satisfy. Although significant research appears in specifying and analyzing properties,

there is not an effective and efficient UML-based framework that specifies and analyzes temporal

properties.

The contribution of this dissertation is a UML-based framework and tools for aiding UML

designers to effectively and efficiently specify and analyze temporal properties. In particular, the

framework is composed of 1) a UML specification technique that designers can use to specify

temporal properties, 2) a rigorous analysis technique for analyzing temporal properties, 3) an opti-

mization technique to scale the analysis to large class models, and 4) a proof-of-concept tool. An

evaluation of the framework using two real-world studies shows that the specification technique

can be used to specify a variety of temporal properties and the analysis technique can uncover cer-

tain types of design faults. It also demonstrates that the optimization technique can significantly

speed up the analysis.

ii

ACKNOWLEDGEMENTS

All praise goes to Allah the Almighty, the Beneficent the Merciful, for guiding me and blessing

me with his favors that have enabled me to reach this milestone in my life.

I am truly grateful to many people for their help and support while doing this dissertation. I

would not have been able to complete the dissertation without their support and help.

I owe special thanks to my late advisor, Dr. Robert B. France, for accepting me to be his Ph.D.

student and offering me Graduate Research Assistantship. Dr. France has been a tremendous

source of inspiration. He has been very supportive and patient with me through the years. He

guided me when I was confused, encouraged me when I was depressed, and inspired me when I

did not know what to do. It was a tragedy to me, and to many others, when we lost him. Even

though he is no longer with us, he will always be a source of inspiration. I am deeply grateful for

his patience, guidance, and support.

I would like to express my sincere thanks to my advisor, Dr. Indrakshi Ray, for her untiring

support, encouragement, and willingness to always help me. I believe she stands out not only by

her scholarship activities, but also by her excellent human characteristics. She always cares for

me and all her other students. I am genuinely proud to be her student and I am grateful to her for

helping me in many steps through my career.

I would like to thank my Ph.D. committee members: Dr. Indrajit Ray, Dr. Geri Georg, Dr.

Yashwant K. Malaiya, and Dr. Idris Samawi Hamid for their valuable advice and help. A special

thanks goes to Dr. Georg for her invaluable contributions to improve the quality of this dissertation.

I also would like to give a special thanks to Dr. Malaiya who not only served n my committee, but

also for his invaluable constructive feedback on my teaching when I was a teaching assistant for

his class. Special thanks also goes to Dr.Indrajit Ray who wrote me a letter of recommendation

to be accepted to the graduate program at CSU. Many thanks goes to Dr. Hamid for being my

mentor through the years here at CSU, for great intellectual conversations, and the many favors he

has done for me.

iii

I am also grateful to the faculty of the computer science department who taught me and gave

me great advice and constructive feedback throughout the years, especially Dr. Sudipto Ghosh,

and Dr. Jim Bieman. I would like to thank the staff of the computer science department, especially

Kim, Sharon, and Wendy, for always granting me favors.

I would like to extend many thanks to my friends and fellow graduate students at CSU, spe-

cially, the members of the Software Engineering and DBSec research groups. Out of them, I would

recognize Ramadan Abdulnabi and Wuliang Sun who contributed to and participated in research

activities of this dissertation. I thank them for their inspiring discussions and willingness to help

in all situations.

I would like to extend many thanks to my friends and fellow students from my home country

here at CSU. I thank all of them for the great time, vacations, and activities that we spent together.

I would like to greatly express my gratitude to my sponsor, the Ministry of Higher Education in

the Kingdom of Saudi Arabia, for supporting me and covering my study expenses here in the U.S.

Last, but not least, I would like to express my deepest gratitude to my family. I start with

my father, Hussain Al Lail, and my mother, Zahraa Al Salah, who raised me to love knowledge

and scholarship. Unfortunately, I lost both of them while going through the different stages of the

scholarship path. I would like to express my sincere gratitude to all my brothers and sisters for their

love, support, encouragement, and doaa. I am especially indebted to my wife, Zainab Al Salah,

for her unconditional love, support, sacrifice, and for taking care of our kids while I was away for

many hours, days, and weeks, working on this dissertation. Finally, my children: Ali, Mohammed,

and Fatima have been the great drive that kept me going.

iv

DEDICATION

To The AWAITED.

To The INFALLIBLE FOURTEEN.

To my MOTHER and FATHER.

To my WIFE and KIDS.

To my SISTERS and BROTHERS.

To my FRIENDS.

v

TABLE OF CONTENTS

ABSTRACT . ii
ACKNOWLEDGEMENTS . iii
DEDICATION . v
LIST OF TABLES . ix
LIST OF FIGURES . xi

Chapter 1 Introduction . 1
1.1 Research Context . 1
1.2 Problems and Challenges . 4
1.3 Aim and Objectives . 9
1.4 Dissertation Contributions . 13
1.5 List of Publications . 14
1.6 Dissertation Structure . 14

Chapter 2 Systematic Literature Review . 15
2.1 Literature Review and Evaluation Methodology 16

2.1.1 Research Questions . 16
2.1.2 Search Process . 22
2.1.3 Study Inclusion/Exclusion Criteria . 23

2.2 Specification Approaches . 24
2.2.1 Survey of the Specification Approaches 25
2.2.2 Evaluation and Discussion of the Specification Approaches 30

2.3 Analysis Approaches . 32
2.3.1 Survey of the analysis Approaches . 32
2.3.2 Evaluation and Discussion of the Analysis Approaches 37

2.4 Open Problems and Future Research Directions 38
2.4.1 Challenges to integrating specification and analysis 39
2.4.2 Model Transformation Challenges . 40
2.4.3 Challenges in Property Specification 41
2.4.4 Tooling Challenges . 42

2.5 Chapter Summary . 44

Chapter 3 The Proposed UML Framewrok . 45
3.1 Overview of the Framework . 46

3.1.1 The framework design decisions . 46
3.1.2 Motivating Example . 48

3.2 The Analysis Technique . 50
3.2.1 Step1: Unfolding of the ADCM’s Behavior Figure. 3.4(a) 51
3.2.2 Step2: Interpreting TOCL as OCL Figure 3.7 60
3.2.3 Step 3: Analysis. 61
3.2.4 Step 4: Sequence diagram extraction Figure 3.9. 64

vi

3.3 The Property Specification Technique . 65
3.3.1 Dwyer’s Property Specification Patterns 66
3.3.2 Dwyer’s Patterns in TOCL and OCL 67

3.4 The Optimization Technique . 72
3.5 Chapter Summary . 79

Chapter 4 Evaluation . 81
4.1 Research Prototype Tool . 83
4.2 The Formal Specification of Generalized Spatio-Temporal Role-Based Ac-

cess Control Model . 88
4.2.1 Overview the GSTRBAC Model . 88
4.2.2 Location and Time Representation . 90
4.2.3 Effect of Spatio-Temporal Constraints on RBAC Entities 92
4.2.4 Effect of Spatio-Temporal Constraints on RBAC Operations 93
4.2.5 Spatio-Temporal Role Hierarchy . 96
4.2.6 Spatio-Temporal Separation of Duty 99
4.2.7 Spatio-Temporal Prerequisite Constraints 102

4.3 Case Study 1: Specification and Analysis of Generalized Spatio-Temporal
Role-Based Access Control Model . 104

4.3.1 Analyzing the GSTRBAC system . 104
4.3.2 Specifying temporal properties of the GSTRBAC system 112

4.4 Case Study 2: Specification and Analysis of The Steam Boiler Control
System . 114

4.4.1 The Steam Boiler Control System Problem 116
4.4.2 Analayzing the steam boiler system . 118
4.4.3 Specifying temporal properties of the SBCS system 123
4.4.4 Using The Optimization Technique . 125

4.5 Chapter Summary . 130

Chapter 5 Conclusions . 132
5.1 Summary of the Contributions and Limitations 133
5.2 Future Research . 138

Appendix A The USE Specification of The Traffic Light System 152
A.1 The Textual Specification . 152
A.2 Validation of The Snapshot Traversal Query Operations 162

Appendix B Patterns’ Specifications in TOCL and OCL 164
B.1 The Precedence Pattern . 164
B.2 The Absence Pattern . 165
B.3 The Existence Pattern . 166

Appendix C The Generalized Spatio-Temporal Role-Based Access Control Model 167
C.1 The USE Specification of GSTRBAC . 167
C.2 The Temporal Properties of The GSTRBAC System 190

vii

Appendix D The USE Specification of The Steam Boiler Control System 196
D.1 The USE Specification . 196
D.2 The Temporal Properties of The SBCS System 206
D.3 The Temporal Properties Fragments . 209

viii

LIST OF TABLES

2.1 Criteria used to define the research questions . 17
2.2 Specification approach research questions . 19
2.3 Analysis Approach Research questions . 21
2.4 Sources that are used to search for studies . 21
2.5 Search string terms . 22
2.6 Included studies . 24
2.7 Evaluation of specification approaches . 31
2.8 Evaluation of analysis approaches . 37

3.1 An example of converting operation pre- and postconditions to invariants 56
3.2 The STM invariants . 59
3.3 Descriptions of Dwyer’s patterns, taken from Dwyer’s et al. [49], organized in a table. . 67
3.4 Scopes of temporal properties, descriptions are taken from Dwyer’s et al. [49], orga-

nized in a table here. 68
3.5 The response pattern specifications in TOCL and OCL 69
3.6 The universality pattern specifications in TOCL and OCL 70
3.7 Some temporal properties of the traffic light system 72
3.8 TOCL and OCL specification of the temporal properties described in Table 3.7 73

4.1 Two temporal properties of the GSTRBAC model . 113
4.2 An Example of Using The Specification Technique to obtain an Instance of The Re-

sponse Pattern for GSTRBAC-TP1, taken from our previous work Al-Lail et al. [73] . . 113
4.3 An Example of Using The Specification Technique to obtain an Instance of The Uni-

versality Pattern for GSTRBAC-TP2, taken from our previous work Al-Lail et al. [73] . 114
4.4 Some temporal properties of the SBCS system, taken from our previous work Al-Lail

et al. [95] . 123
4.5 TOCL and OCL specification of the SBCS temporal properties described in Table D.1,

taken from our previous work Al-Lail et al. [95] . 124
4.6 Results of the optimization technique’s experiment (OT: Optimization Time, AT: Anal-

ysis Time, Total= OT + AT, SBCS-STM: Unsliced STM mode for SBCS) 129
4.7 Distribution of the properties we specified . 130

B.1 The precedence pattern specifications in TOCL and OCL 164
B.2 The absence pattern specifications in TOCL and OCL 165
B.3 The existence pattern specifications in TOCL and OCL 166

C.1 Temporal properties of the GSTRBAC model, GSTRBAC-TP1 to GSTRBAC-TP16 . . 190
C.2 TOCL and OCL specification of the GSTRBAC temporal properties described in Ta-

ble C.1 . 191
C.3 TOCL and OCL specification of the GSTRBAC temporal properties described in Ta-

ble C.1 . 192
C.4 Temporal properties of the GSTRBAC model, GSTRBAC-TP17 to GSTRBAC-TP32 . 193

ix

C.5 TOCL and OCL specification of the GSTRBAC temporal properties described in Ta-
ble C.4 . 194

C.6 TOCL and OCL specification of the GSTRBAC temporal properties described in Ta-
ble C.4 . 195

D.1 The Temporal properties of the SBCS system, SBCS-TP1 to SBCS-TP13 206
D.2 TOCL and OCL specification of the SBCS temporal properties described in Table D.1,

taken from our previous work Al-Lail et al. [95] . 207
D.3 TOCL and OCL specification of the SBCS temporal properties described in Table D.1,

taken from our previous work Al-Lail et al. [95] . 208

x

LIST OF FIGURES

1.1 Model checking process, taken from the Principles of Model Checking book [1]. 5

2.1 Kanso’s specification language examples [72] . 25
2.2 Partial GSTRBAC model, taken from Al-Lail et al. [73] 27
2.3 The steam-boiler control system as two state machines [75] 28
2.4 Class diagram for dining philosophers [77] . 29

3.1 A comparison between the research trend and the proposed approach. Note that us-
ing the proposed approach, no transformations are required to/from model checking
languages and tools, and the model type used is a design class model instead of state
machine or activity models. 46

3.2 A design class model of simple traffic light system 49
3.3 An Overview of the Analysis Approach, extended from our previous work (Al-Lail et

al. [73]). 51
3.4 An application of the analysis technique to the traffic light system (the conceptual

diagram was initially presented in Al-Lail [91]). 52
3.5 An example scenario, produced using USE Model Validator to show the correct func-

tionality of the Snapshot Traversal Query Operations specified in Listing 3.1. 58
3.6 The getPost() operation result when invoked on Snapshot1 of the scenario depicted in

Figure 3.5 . 58
3.7 Step two of the analysis technique: Interpreting TOCL as OCL, same as Figure 3.4(b),

presented here for ease of access . 61
3.8 The graphical representation of the STM of the traffic light system, produced using

USE Model Validator. The model includes the tested snapshot traversal operations,
transitions invariants, the STM invariants, and the OCL representation of the temporal
property. This figure shows the correctness of the UML and OCL specification of the
model. 62

3.9 Step four of the analysis technique: Sequence diagram extraction, same as Figure 3.4(c),
presented here for ease of access. 64

3.10 Dwyer’s patterns classification hierarchy, taken from Kanso’s et al. [72] 66
3.11 Graphical representations of Dwyer’s patterns scopes, taken from Dwyer’s et al. [49] . 67
3.12 Graphical illustration of the response pattern in the global scope (the first row in Ta-

ble 3.5), taken from our previous work Al-Lail et al. [73]. 69
3.13 Graphical illustration of the universality pattern in the between Q and R scope (the

fifth row in Table 3.6) taken from our previous work Al-Lail et al. [73]. 70
3.14 Interpretation rules of the response pattern-globally scope 71
3.15 A new graphical representation of the STM of the traffic light system. This figure is

similar to Figure 3.8 but it has been augmented with temporal properties TP1 to TP8,
as specified in Table 3.8. Appendix A provides the complete USE textual model of the
traffic light system. 74

3.16 Overview of the optimization technique, taken from our previous work Al-Lail et al. [96] 75

xi

3.17 The STM of the traffic light system . 78

4.1 An Overview of the Analysis Approach, extended from our previous work (Al-Lail et
al. [73]) . 83

4.2 Tool Architecture . 84
4.3 An example of TAUCM tool’s input 1: An Eclipse ecore model describing a UML

design class model. 86
4.4 An example of TAUCM tool’s input 2: A textual file, called OCL file that contains

OCL invariants and operation specification and an OCL representation of a TOCL
property. 86

4.5 An example of TAUCM tool’s input 3: A textual file, called properties file, which
defines scopes and a depth of the search. 87

4.6 UML Class Model for GSTRBAC, taken from our previous work (i.e., Abdunabi et
al. [67]). 89

4.7 Partial GSTRBAC model, taken from our previous work Al-Lail et al. [73] 106
4.8 The STM model of the Partial GSTRBAC model in Figure 4.7, taken from our previ-

ous work Al-Lail et al. [73] . 107
4.9 Counterexample: Scenario violating the Persistence-Check temporal property, taken

from our previous work Al-Lail et al. [73] . 110
4.10 Sequence diagram counterexample, taken from our previous work Al-Lail et al. [73] . . 112
4.11 A Visualization of the Steam Boiler Control System 115
4.12 The Design Class Model for the Steam Boiler Control System, taken from our previous

work Al-Lail et al. [95] . 117
4.13 The STM of The SBCS Design Class Model, taken from our previous work Al-Lail et

al. [95] with modification . 119
4.14 Counterexample: Scenario violating the temporal property, taken from our previous

work Al-Lail et al. [95] . 122
4.15 Overview of the optimization technique, taken from our previous work Al-Lail et al. [96]125
4.16 The STM slice with respect to SBCS-TP1, STM-TP1-Slice 126

A.1 An example scenario, produced using USE Model Validator to show the correct func-
tionality of the Snapshot Traversal Query Operations specified in Listing 3.1. 162

A.2 The getNext() operation yields the expected result when invoked on Snapshot1 of the
scenario depicted in Figure A.1 . 163

A.3 The getPost() operation yields the expected result when invoked on Snapshot1 of the
scenario depicted in Figure A.1 . 163

A.4 The getPrevious() operation yields the expected result when invoked on Snapshot4 of
the scenario depicted in Figure A.1 . 163

A.5 The getPre() operation yields the expected result when invoked on Snapshot4 of the
scenario depicted in Figure A.1 . 163

B.1 Graphical illustration of the precedence pattern in the global scope (the first row in
Table B.1). 164

B.2 Graphical illustration of the absence pattern in the global scope (the fifth row in Ta-
ble B.2). 165

xii

B.3 Graphical illustration of the existence pattern in the global scope (the second row in
Table B.3). 166

D.1 The STM slice with respect to SBCS-TP1, STM-TP1-Slice 209
D.2 The STM slice with respect to SBCS-TP2, STM-TP2-Slice 209
D.3 The STM slice with respect to SBCS-TP3, STM-TP3-Slice 210
D.4 The STM slice with respect to SBCS-TP4, STM-TP4-Slice 210

xiii

Chapter 1

Introduction

Software plays a critical role in a wide variety of products from phones to air travel. However,

modern software systems are complex and often include flaws, leading to various problems. For

example, software errors can destroy business’s reputations (e.g., IBM Pentium FDIV bug [2]),

cost a significant amount of money (e.g., NASA Mars Climate Orbiter [3]), and lead to failure of

critical missions (e.g., European Space Agency (ESA) Ariane 5 [4]). Errors in software can even

cause tragedies, such as the death of people (e.g., Therac25 [5]). These problems pose a significant

challenge to the Software Engineering community. The challenge is to create techniques and tools

that assist designers in reducing, or eventually, eliminating errors in software systems, regardless

of their complexity.

In this introductory chapter, we situate the research described in this dissertation in the broad

area of complex software development. We then explain the problem, express the aim and the

objectives, present the contributions, and list the publications that have resulted from our research.

1.1 Research Context
Software Engineering focuses on the development process of software. Software development

is inherently difficult for complex solutions, as it entails creating large program codes from so-

phisticated customer requirements [6] 1. As software complexity increases, so does the occurrence

of problems associated with these complexities. Problems associated with software complexity

occur because the existing development methods are ineffective, resulting in a situation commonly

known as ‘Software Crisis’ [7] 2. Techniques that require extensive handcrafting of code fail to

cope with the complexity [8]. They introduce accidental complexities, i.e., complexities that are

1“Complexity, I would assert, is the biggest factor involved in anything having to do with the software field” a
quote by Robert L. Glass [6].

2 Fred Brooks describes software crises as the state of software development practice in which too many software
projects take longer than expected, experience large operational failure, or are simply canceled [7]

1

not inherent in the software projects, but rather are introduced by the development techniques used.

Therefore, overcoming software crisis is one of the main concerns of the Software Engineering

community.

Model Driven Engineering (MDE) is a new software development methodology that is pro-

posed to minimize the accidental complexities associated with software development [8, 9]. An

MDE method shifts the focus from program coding to modeling activities that reduce the gap be-

tween customer requirements and program code through the building, refining, and maintaining

of software models 3. Software development focuses on creating and evolving models at different

levels of abstraction. Abstract models, such as Platform Independent Models (PIMs), are mechan-

ically transformed to detailed Platform Specific Models (PSMs) that are eventually used to auto-

matically generate substantial portions of the code. Ideally, software development tools automate

the various tasks with minimal human involvement.

As of 2018, MDE has been established as a modern software development methodology and

has been adopted successfully in many industries including: the automotive industry, aerospace,

telecommunications, and business information systems [10, 11, 12]. However, MDE is arguably

still a niche technology [13], and it needs to be developed further. While some modeling languages,

such as the Unified Modeling Language (UML), have become widespread [14], MDE techniques

have not reached their full potential [15, 16]. According to Bran Selic, an MDE scientist, this situ-

ation has resulted due to a combination of social, economical, and technical factors [16]. Further,

the use of models to automatically generate code has been relatively rare [13].

For an MDE approach to succeed, software designers must integrate the development process

with practical techniques to improve model quality. If a model has unresolved design faults, they

are propagated to the code where they can be more difficult to uncover and more expensive to

remove. Model analysis enables design fault detection, it also facilitates better understanding

of systems. Model analysis, therefore, is one of the potential benefits of MDE techniques as it

3A model is a simplification of the reality that still retains the elements relevant to the problem being investigated.
Computer scientist Robin Milner argues that to make software engineering parallel to other engineering fields we need
to “establish modeling as the basis of informatics”.

2

increases the designer’s ability to specify properties of a system formally and analyze its models

early in the development process. The property specification and analysis process reduces the

possibility of producing faulty designs; hence, saving time and effort to correct at the code level.

To ensure the most rigorous analysis possible, design must take into account the need to de-

scribe software model and properties precisely. As of 2018, the state of MDE practice suggests the

use of UML [17, 18] and Object Constraint Language (OCL) [19, 20]. UML and OCL are the de

facto standards for both description of software models and specification of their properties.

UML provides a rich set of visual modeling concepts to describe the structural and behavioral

aspects of software at different levels of abstraction 4. For example, class models are structural

and they explain the relationship between a collection of classes, types, and interfaces. Behavioral

models, such as sequence, activity, and state machine models, can be used to describe the behavior.

OCL is the standard for specifying constraints and structural properties on UML models. For

example, OCL is capable of expressing invariants, such as a class’s attribute value that must not

exceed a certain value. OCL can also be used to specify behavioral properties as pre- and postcon-

ditions of operations. However, OCL, based on first-order logic, lacks good support for temporal

properties, types of behavioral properties that require higher order logic. Further, as of 2018, the

MDE community has not produced a standard language for describing temporal properties, though

there are some OCL extensions for this purpose.

The research described in this dissertation focuses on specifying and analyzing temporal prop-

erties. Temporal properties are useful in capturing a broad range of relevant system properties

and requirements [22, 23]. To recognize the significance of temporal properties and their role in

software specification and verification, the Association for Computing Machinery (ACM) granted

Amir Pnueli the 1996 ACM Turing Award, the most prestigious award in computer science for

his “seminal work introducing temporal logic into computing science . . . ” [24]. Temporal prop-

erties are broadly categorized into two groups: safety and liveness. Safety properties specify that

4David Harel presented interesting arguments for using visual representation in software development. He ar-
gues that graphical modeling languaes, such as statecharts and UML, are befinicial in communicating design among
different stackholders [21].

3

bad things never happen, and liveness properties specify that good things should eventually hap-

pen. Software designers can use temporal logic formalisms, (e.g., Linear Temporal Logic [22] and

Computation Tree Logic [25]) to formally specify properties.

1.2 Problems and Challenges
Researchers have proposed many approaches to specifying and analyzing temporal properties

in the context of UML models; however, (as presented in the next chapter, the literature review)

evidence indicates that UML designers face some challenges that hinder the practical use of these

approaches. As of 2018, a complete “native” UML-based framework, techniques, and tools have

not been developed to overcome these difficulties. In this work, a “native” framework is defined

as a UML-based framework that exclusively uses UML notations and tools. The primary aim of

the research described in this dissertation, is to investigate whether it is feasible to develop such a

framework.

Most of the state-of-the-art UML-based approaches, to specifying and analyzing temporal

properties, use model checking (see Figure 1.1). Model checking is the prominent paradigm-

independent technique for analyzing temporal properties [1, 26]. A model checking technique

determines whether a behavioral model of a system satisfies a temporal property. To recognize the

significance of the model checking, ACM granted its inventors, Edmund Clarke, Allen Emerson,

and Joseph Sifakis, the 2007 ACM Turing Award for “their role in developing Model-Checking

into a highly effective verification technology that is widely adopted in the hardware and soft-

ware industries.” [27]. Further, ACM awarded Gerard Holzmann the 2001 ACM Software System

Award “For SPIN, a highly successful and widely used software model-checking system . . . It has

made advanced theoretical verification methods applicable to large and highly complex software

systems.” [28].
Figure 1.1 depicts the model checking process consisting of three tasks: modeling, specifica-

tion, and verification. A full model checking framework consists of the following components,

corresponding to the three tasks:

4

8 System Verification

derlying algorithms and data structures, together with the availability of faster computers
and larger computer memories, model-based techniques that a decade ago only worked for
very simple examples are nowadays applicable to realistic designs. As the startingpoint
of these techniques is a model of the system under consideration, we have as a given fact
that

Any verification using model-based techniques is only
as good as the model of the system.

Model checking is a verification technique that explores all possible system states in a
brute-force manner. Similar to a computer chess program that checks possible moves, a
model checker, the software tool that performs the model checking, examines all possible
system scenarios in a systematic manner. In this way, it can be shown that a given system
model truly satisfies a certain property. It is a real challenge to examine the largest possible
state spaces that can be treated with current means, i.e., processors and memories. State-
of-the-art model checkers can handle state spaces of about 108 to 109 states with explicit
state-space enumeration. Using clever algorithms and tailored data structures, larger state
spaces (1020 up to even 10476 states) can be handled for specific problems. Even the subtle
errors that remain undiscovered using emulation, testing and simulation can potentially
be revealed using model checking.

Model Checking

Modeling

satisfied
counterexample

requirements

Formalizing

specification
property

Simulation
location
error

system model

system

violated +

Figure 1.4: Schematic view of the model-checking approach.

Typical properties that can be checked using model checking are of a qualitative nature:
Is the generated result OK?, Can the system reach a deadlock situation, e.g., when two

Figure 1.1: Model checking process, taken from the Principles of Model Checking book [1].

1. A modeling language for describing the behavior of a system.

2. A specification language for formulating the property requirements.

3. An analysis method and tool that check if the model satisfies the property specification.

Generally, designers describe the behavior of a system as a model and specify a property re-

quirement in a manual manner. Model checking tools are then used to conduct the analysis auto-

matically. For example, in SPIN [29] framework, developers use PROMELLA language to model

the system behavior, LTL language [30] to specify temporal properties, and a toolkit that imple-

ments the model checking algorithms.

Instead of developing a “native” UML-based model checking framework, the majority of the

state-of-the-art approaches integrate UML with existing model checking technologies. Their goals

is to utilize the existing powerful model checking techniques and tools. The state-of-the-art meth-

ods use UML as the modeling language (the Modeling step in Figure 1.1). However, the methods

rely on non-UML based techniques and tools to formalize and analyze properties, (the Formalizing

and Model Checking steps in Figure 1.1). Members of the precise UML group initially proposed,

5

and argued for, the integrated-methods approach, in which UML is integrated with other formal

techniques, Evans et al. [31]. However, as will be explained shortly, this approach introduces

difficulties by demanding UML designers to have specialized skills and knowledge of multiple

non-UML techniques and tools. Examples of such approaches include: [32, 33, 34, 35, 36, 37, 38,

39, 40, 41, 42, 43, 44].

Chapter 2 provides evidence indicating those approaches are incompatible with UML design-

ers and introduce some challenges in effectiveness and efficiency. On the theoretical side, the ap-

proaches can sometimes miss design faults, which makes them ineffective. On the practical side,

they present problems with usability and introduce other accidental complexities, which makes

them inefficient.

A core cause of this incompatibility is the fundamental differences between UML and the

model checking languages in their design philosophy. In particular, UML was designed to be a

general language to model different kinds of systems, while the individual model checking lan-

guages were created to specify and analyze temporal properties effectively. On the model checking

side, the syntax and semantics of every construct are mathematically defined. This formality paves

the way for developers to build a toolset for the languages. On the UML side, however, many UML

constructs are either left undefined or are not precisely defined. These constructs are referred to

as the UML semantic variation points. For example, the UML standard declares three variation

points for the UML state machines: time management (synchronous vs. asynchronous), the event

selection policy, and the transition selection policy [45]. These three semantics points are vital

when specifying and analyzing temporal properties. While they are precisely defined by the model

checking languages, they are left undefined in the UML standard. Bernhard Rumpe and Robert

France argue that the variability in UML language and semantics introduces substantial difficulties

when building tool support for semantically related tasks, e.g., analyzing temporal properties of a

system [46].

Additionally, UML is a graphical language whereas model checking languages are mostly tex-

tual. On one hand, since the invention of model checking more than thirty years ago, model

6

checking scientists have utilized and built on the already existing theoretical foundation of tex-

tual programming languages. By doing so, scientists have developed both a theoretical foundation

and systematic techniques in order to define the syntax, semantics, and the pragmatics of their

model checking languages. However, there are important differences between graphical and tex-

tual languages that prevent a simple transfer of methods developed for the former to the latter.

Consequently, in the field of graphical modeling languages such as UML, the MDE community

needs significant theoretical and pragmatic developments to parallel model checking technologies.

For example, there is a lack of unified theories on how to design graphical modeling languages,

model synchronization, and model transformation. Bran Selic contends that the MDE community

needs substantial advancements in these areas to utilize UML properly [16].

In an attempt to reconcile these differences and utilize the powerful model checking techniques

and tools, the research trend focuses on the use of model transformation. That is, the state-of-the-

art approaches transform UML models to the input languages of model checking tools. We believe

that the use of model transformation in this context is a core cause of the challenges that hinder

UML designers to use these methods.

First, the use of these approaches requires UML designers to develop in-depth working knowl-

edge of non-UML-based model checking techniques to specify and analyze temporal properties.

Many of these approaches rely on heavyweight techniques that require extensive time to learn and

mathematical maturity [47]. To specify properties, the methods necessitate the use of mathemat-

ical temporal logic such as LTL and CTL. Edmund Clark and other model checking expert have

recognized the difficulty in the specification step that can be challenging for most model checking

practitioners [48, 49]. One can argue that if model checking practitioners (who may have better

mathematical training than traditional MDE designers) find property specification difficult, UML

practitioners may confront more problems than their model checking counterparts.

Second, in addition to the difficulties in using these heavyweight approaches, the analyses

may yield misleading results because their reliability depends on whether the transformation is

semantic-preserving. A transformation is semantic-preserving when the behavior of the model

7

before the transformation can be simulated by the behavior of the model after the transforma-

tion. To illustrate, if a model does not allow a system to reach a deadlock, a semantic-preserving

transformation produces a model that prevents deadlock as well. Showing that two models are

semantically-equivalent is possible by a technique called bisimulation introduced by Robin Mil-

ner [50]. Despite that, to apply bisimulation between two models, they must have an identical

semantic domain. This is not the case when the transformation takes place between UML and the

model checking languages.

The lack of semantic-preserving transformation renders the state-of-the-art approaches inef-

fective. Intuitively, as with any translation between two languages (natural languages included),

the analysis of the constructs in the target language may not uncover faults that exist in the origi-

nal language constructs, unless the translation preserves the meaning. A translation that does not

maintain the meaning can also introduce new meaning that did not exist in the original constructs.

Similarly, if a UML model and the derived model (by model transformation) do not semantically

bisimulate one another, then errors can occur. To rely upon the analysis results, someone needs

to show that transformation between the two languages is semantic-preserving. Researchers have

shown that obtaining proof that a transformation is correct is not possible [51, 52].

Lastly, to examine the analysis results from the model checking tool, the results must then

be presented to designers in UML notations. The going-back-to-UML process involves another

transformation. Traceability mechanisms [53] are applied to transfer the analysis results back to

UML. However, when two languages are designed for two different purposes, there is a lack of one-

to-one mappings between the two language constructs. To illustrate, two closely related languages

(UML and Alloy) lack one-to-one mappings between their constructs. For example, the UML

class attributes and class associations are both mapped to Alloy signature fields (see Anastasakis

et al. [54, 55]). The lack of one-to-one mappings (between UML constructs and Alloy constructs)

results in a challenging model transformation between the two languages [54]. In the context of

the state-of-the-art approaches, the UML and model checking languages are designed for different

purposes. The lack of one-to-one mappings from UML constructs to the target language constructs

8

results in the same challenges that we face when first transforming the models from UML to the

languages of the model checking tool used for analysis.

Instead of following the integrated methods approach, we investigate developing a “native”

lightweight UML framework consisting of the three components of a complete model checking

framework. The framework is defined as lightweight because of two aspects [47, 56]. First, the

framework does not rely on mathematical notations and only uses UML notations. The languages

used for modeling a system, and specifying its temporal properties, should be UML-based com-

bined with the tools used for the analysis. Second, the framework searches in constrained system

executions, unlike model checking that exhaustively explores all possible executions [47, 57, 58].

1.3 Aim and Objectives
This section states the aim and objectives of the dissertation. The aim is the overall purpose of

the dissertation, and the objectives are precise tasks that must be completed to achieve the aim.

• Aim: To develop a UML-based framework consisting of techniques and tools to formally

specify and analyze temporal properties of software designed using UML.

• Objectives:

1. To explore the state-of-the-art techniques and tools in order to identify research gaps

and challenges in the field of model checking UML models.

2. To develop a UML-based analysis technique that exclusively uses UML notations and

tools.

3. To streamline the process of specifying temporal properties for UML designers by de-

veloping a specification technique that uses UML notations.

4. To develop an optimization technique that reduces the time needed for analysis, allow-

ing the analysis to be scaled to larger UML models.

5. To provide a proof-of-concept tool by implementing the specification, analysis, and

optimization techniques.

6. To evaluate the framework through an actual software specification and analysis projects.

9

To achieve the first objective, we examined the state-of-the-art approaches to analyzing tem-

poral properties of systems that are modeled using UML. We categorized the material into spec-

ification and analysis techniques and then we conducted a Systematic Literature Review (SLR)

to define and obtain answers to specific questions that are related to the two types of methods.

The answers to the SLR questions helped identify open problems and gaps in the state-of-the-art

research.

The identification of the open problems and challenges was the primary results of the SLR

study. Many of the state-of-the-art approaches and tools are inadequate, and they introduce acci-

dental complexities that hinder their effectiveness and efficiency. We formulated the challenges as

open research questions that, if properly addressed, may lead to improvements toward achieving

the research objectives. We categorized the open research questions into the following groups:

(1) specification and analysis integration, (2) model transformation, (3) property discovery and

patterns, and (4) tooling.

The second objective is concerned with developing a lightweight analysis technique that exclu-

sively uses UML notations and tools. The proposed analysis method uses an OCL extension for

temporal properties, TOCL [59] and USE Model Validator [60], as the back-end analysis device.

Moreover, our technique uses and builds on an algorithm for generating Snapshot Transition Mod-

els (STMs) from UML design class model. The algorithm was defined by Yu et al. [61], members

of the Software Engineering group at Colorado State University. However, ordinary STMs, as

described by Yu et al. [62], do not support the specification and analysis of temporal properties.

Towards this end, we augmented the STMs generation process by defining the Snapshot Traversal

Query Operations, and STM invariants. In particular, using OCL, we defined the following six op-

erations: getNext(), futureClosure(), getPost(), getPrevious(), pastClosure(), and getPre(). These

operations facilitate defining the TOCL properties in OCL expressions. Further, the original algo-

rithm does not consider some UML constructs such as inheritance hierarchies between classes. We

provided support for these constructs.

10

We incorporated two methods in the analysis techniques to facilitate the lightweight analysis

approach. The first method is the small-scope hypothesis that has been suggested by Daniel Jack-

son at Massachusetts Institute of Technology (MIT). This concept has been implemented and used

by the Alloy Analyzer [63]. The second method is the search-depth that researchers in the area

of Bounded Model Checking have applied [64]. Finally, the analysis results produced by USE

Model Validator is given in a UML object diagrams. When the analysis requires large scopes and

search-depths, the results are hard to debug to uncover the design faults. As a first step to bet-

ter debugging, we developed an algorithm that converts the output of the USE tool to a sequence

diagram.

With regards to the third objective, improving the process of specifying temporal properties,

we developed a specification technique that uses UML notations. In 2003, Ziemann and Gogolla

defined the TOCL language at the University of Bremen in Germany [59]. However, they have

not developed a tool that parses and analyzes TOCL expressions. They also have not provided

a systematic method to specify temporal properties in TOCL. Dwyer et al. [49] have defined the

Property Specification Patterns that aid the process. They have described their patterns in formal

temporal logics such as LTL, CTL, and QRE. Despite that practitioners have used the specification

patterns, OCL, and TOCL languages in different context, the patterns have not been expressed

in TOCL or OCL. Towards streamlining this process, we carried out two tasks utilizing Dwyer’s

et al. patterns. First, we defined 40 TOCL specification patterns that UML designers can use

when specifying properties on UML design class models. Second, for analysis purposes of TOCL

expressions, we provided 40 OCL patterns that interpret TOCL on STMs that, in turn, can by

analyzed by the Model Validator. Consequently, UML designers can use UML notations to specify

properties and can then check them by UML tools.

The fourth objective aims to develop an optimization technique that reduces the time needed

for analysis. The technique is based on an existing technique that slices a UML class model to scale

the analysis to larger models. Wuliang Sun [65] developed the original slicing method. However,

similar to the original STMs, the original version of slicing algorithm did not target the analysis

11

of temporal properties. Specifically, the initial slicing algorithm takes standard UML class models

augmented by OCL constraints and it produces slices of the class models that have the relevant

model elements to the OCL properties. For our purpose, we needed a technique for UML class

models and TOCL properties. We collaborated with Wuliang to add two steps to the original

algorithm. First, before applying the slicing procedure, we needed to convert the design class

model to an STM augmented with the snapshot traversal operations. Second, we needed to apply

the interpretation rules to the TOCL expressions to obtain the OCL that I can provide to the slicing

algorithm. Adding these two steps into the algorithm, we attained the technique that is suitable for

optimizing temporal properties analysis.

The fifth objective is concerned with implementing the specification, analysis, and optimiza-

tion techniques. Kayle Hoehn and Wuliang Sun have implemented the algorithm that generates

STMs from UML design class models. We extended the implementation to add the necessary

code for creating the Snapshot Traversal Query Operations required by the analysis technique.

Moreover, we developed a partial implementation of the specification technique. Specifically, we

implemented the only widely used patterns, namely the Response and the Universality patterns, as

they cover 80% of properties used in the industry according to a study done by Dwyer et al. [66].

Finally, we modified the code of the slicing algorithm that was developed by Wuliang to provide

the required support for the optimization technique. Specifically, we incorporated my version of

the STMs’ generation implementation as well as the partial implementation of the TOCL interpre-

tation.

To achieve the sixth objective, we validated the framework by using the proof-of-concept tool to

specify and analyze two real-world case studies. The first study produced a novel software model

that is called the Generalized Spatio-Temporal Role-Based Access Control Model(GSTRBAC)

Abdunabi et al. [67]. The development of GSTRBAC focused on addressing the many application

requirements of wireless and mobile devices that make use of the spatiotemporal information of

a user, to provide better functionality. Such applications necessitate authorization models where

access to a resource depends on the credentials of the user and also on the location and time of

12

access. In the context of the research discussed in this dissertation, we used the specification

and the analysis techniques to formalize the model in UML and OCL notations. The second

case study is based on the Steam Boiler Control System (SBCS) specification problem [68]. The

SBCS specification problem has been used extensively to assess the effectiveness of many software

specification and verification approaches. Using SBCS, therefore, provides a benchmark study that

can be used to compare our framework with other current methods.

1.4 Dissertation Contributions
The overall contribution of this dissertation is a “native” UML framework for the specification

and analysis of temporal properties. The framework consists of techniques and tools that seek to

accomplish the objectives. The result of every objective adds significant knowledge to the field.

Therefore, this knowledge is considered one of the main contributions of this dissertation. The

contributions are listed below:

1. A state-of-the-art SLR on model checking UML models.

2. A lightweight analysis technique for analyzing temporal properties on UML class models.

3. A pattern-based UML property specification technique that uses the TOCL and OCL nota-

tions to specify temporal properties.

4. An optimization technique that is used to enhance the applicability of the analysis technique

to larger models.

5. A proof-of-concept tool based on the the proposed techniques.

6. The Generalized Spatio-Temporal Role-Based Access Control Model(GSTRBAC).

13

1.5 List of Publications
The research activities done to complete this dissertation have yielded multiple publications.

1. Mustafa Al-Lail, Ramadan Abdunabi, Robert B. France, Indrakshi Ray: Rigorous Analysis

of Temporal Access Control Properties in Mobile Systems. ICECCS 2013: 246-251

2. Mustafa Al-Lail, Ramadan Abdunabi, Robert B. France, Indrakshi Ray: An Approach to

Analyzing Temporal Properties in UML Class Models. MoDeVVa@MoDELS 2013: 77-86

3. Mustafa Al-Lail: A Framework for Specifying and Analyzing Temporal Properties of UML

Class Models. Demos/Posters/StudentResearch@MoDELS 2013: 112-117

4. Mustafa Al-Lail, Wuliang Sun, Robert B. France: Analyzing Behavioral Aspects of UML

Design Class Models against Temporal Properties. QSIC 2014: 196-201

5. Ramadan Abdunabi, Mustafa Al-Lail, Indrakshi Ray, Robert B. France: Specification, Val-

idation, and Enforcement of a Generalized Spatio-Temporal Role-Based Access Control

Model. IEEE Systems Journal 7(3): 501-515 (2013)

1.6 Dissertation Structure
The rest of the dissertation is organized as follows. Chapter 2 presents the SLR study on model

checking of UML models. The chapter also highlights and details the state-of-the-art challenges

in the field. Chapter 3 describes the details of the proposed UML framework and how it mitigates

some of these challenges in the field. The framework consists of the analysis, specification, and

optimization techniques along with the proof-of-concept tool. Chapter 4 focuses on the evaluation

of the proposed analysis, specification, and optimization techniques. In Chapter 5, we summarize

the contributions and discuss limitations of the framework and outline some of the future research

activities that can be done to enhance the framework.

14

Chapter 2

Systematic Literature Review

The focus of this chapter is achieving the first objective of the dissertation, which is “to ex-

plore the state-of-the-art approaches to identify research gaps and challenges in the field of model

checking UML models.” A substantial portion of this chapter is written to fulfill the requirement

of my Ph.D. Research Examination, i.e., the qualifying exam.

Many temporal property analysis methods exist. Based on an agreement, and the advice of my

late adviser Dr. France, the scope of this survey is limited to model checking. The reason is that

model checking is the most prominent approach to specifying and verifying temporal properties.

Further, it is the most successful and most used approach in both industry and academia. Surveying

the UML-based model checking technique can be more beneficial than finding open problems

in other methods that have not matured, been implemented, or used in the industry. Therefore,

identifying challenges and open problems in UML-based model checking methods paves the way

to developing better techniques that are applicable to industry.

We conducted a Systematic Literature Review (SLR) on model checking of UML models. A

systematic review follows a clear method to identify, analyze, synthesize, evaluate, and compare

literature works relevant to a particular research topic [69]. The SLR method allows researchers

to collect and summarize existing evidence when answering specific questions. The answers help

in identifying current limitations and open problems, hence, suggesting possible future research

directions.

Our application of the SLR process revealed a vast number (i.e., order of tens) of research

papers that meet the criteria to be included in this study. We included in this chapter the most sig-

nificant studies based on quality metrics (i.e., the number of citations and the place of publication).

We classified the papers into specification and analysis approaches, as these are the methods that

fit the dissertation’s aim and objectives. Specification approaches are those that focus on defin-

ing languages for specifying temporal properties in UML contexts for model checking analysis.

15

Analysis approaches are those that concentrate on the analysis of temporal properties using model

checking techniques. Ideally, UML designers aspire for an “effective” and “efficient” MDE model

checking framework. However, the results of this SLR study show that many challenges need to

be addressed to develop such a framework.

The rest of the chapter is organized as follows: we present the evaluation criteria (the research

questions defined by the SLR methodology) in Section 2.1. Section 2.2 surveys and evaluates the

specification approaches. The analysis approaches are studied and assessed in Section 2.3. In Sec-

tion 2.4, we discuss several challenges that are expressed as open research questions. Section 2.5

summarizes and concludes the chapter.

2.1 Literature Review and Evaluation Methodology
This section presents the details of the SLR process. SLR consists of defining the following:

(1) the research questions to be answered, (2) the search process by which the studies considered

for the survey are identified, and (3) the inclusion and exclusion criteria. The list of the included

studies is given at the end of the section along with a discussion of the threats to the validity of the

study.

2.1.1 Research Questions

Specifying the research questions is the most important part of any systematic review as they

drive the entire systematic review methodology. The questions are based on the criteria defined in

Table 2.1. These criteria capture our understanding of the strengths, challenges, and what needs to

be done in applying model checking.

Researchers have shown that many of model checking tools are very useful in uncovering

faults in real systems such as IEEE Futurebus+ standard [70]. On the other hand, many UML-

based model checking methods apply their approaches in toy examples to demonstrate that they

can find design faults. The effectiveness criterion in Table 2.1 checks if the method has been used

to find design faults in real-world systems.

16

Table 2.1: Criteria used to define the research questions

Criteria Description
Effectiveness Has the approach been applied to uncover design faults in real systems?
Scalability Does the approach use an optimization technique to cope with the state explosion

problem?
Tool Is there tool support?
Industrial adoption Has the approach been used in industrial projects?
Usability Does the approach use mathematical notations and tools that require a steep learn-

ing curve to use?
Formality Are the approach’s languages formally defined?
Pattern support Are temporal specification patterns defined?

The scalability criterion in Table 2.1 examines if a proposed approach applies any optimization

technique to cope with the state explosion problem. The main challenge of model checking is the

state explosion problem [48]. That is, it is difficult to check real-life complex systems in which the

state space is usually too large to be efficiently verified. To counter this problem, modern model

checkers apply optimization techniques such as: (a) symbolic representation of the state space by

partial order reduction or binary decision diagrams, (b) on-the-fly verification, or (c) abstraction

techniques.

In addition to the optimization techniques, another strength of model checking is that many

tools exist that are applicable to the analysis of many areas such as: hardware, software, and

communication protocols. The tool criterion in Table 2.1 identifies if the approach is supported by

a tool-set.

The industrial adoption criterion in Table 2.1 asks if the approach has been used in industrial

projects. One reason of the widespread use of models checking is that it has been successfully used

to uncover design faults in many industrial projects such as at IBM, Intel, and NASA.

Model checking techniques require mathematical maturity and steep learning curves. These

characteristics affect their usability, particularly for the UML designers who might not have strong

mathematical training. The usability criterion in Table 2.1 assesses if developers need to use math-

ematical notations and tools.

17

The formality criterion in Table 2.1 checks if the syntax and semantics of the languages used in

the approach are formally defined. For example, the formal description of the syntax and semantics

of CTL and LTL temporal properties plays a vital role in developing tools for model checking.

Specification of temporal properties in LTL and CTL is another main challenge that faces the

application of model checking. Studies have shown that only certain types of properties are relevant

in practice and are represented as property specification patterns. The pattern support criterion in

Table 2.1 assesses if a method is used to provide property patterns that assist the specification

process.

Specification Approach Research Questions

A specification approach aims to define a language that enables UML designers to specify tem-

poral properties of their UML models. Recall from Chapter 1 that in model checking terminology,

the specification component refers to the process of describing temporal properties in a formal

language, and the modeling component relates to defining the system behavior in a modeling lan-

guage. Though specification languages, such as Z, can be used to specify a model and properties

of a system. In this dissertation, a “specification language” refers to temporal logic specification

while a “modeling language” specifies the behavioral models.

Table 2.2 lists the research questions that we need to answer for a particular specification ap-

proach. The table also shows the related evaluation criteria for every question. Because scalability

criterion (as defined in Table 2.1) is concerned with alleviating the state explosion problem with an

optimization technique, none of the questions in Table 2.2 impact scalability. However, it is worth

investigating how we can define temporal property patterns that not only ease the specification but

also help in developing better optimization technique to cope with the state explosion problem.

This investigation is out of the scope of this research. The questions are ordered based on their

significance.

Many modeling and specification languages developers use English to define the syntax and

semantics (e.g., UML initially was defined this way). This way of describing languages leads to

ambiguity and difficulties to develop tools for these languages. In particular, without a language’s

18

Table 2.2: Specification approach research questions

ID Question Related Criteria
SRQ1 Is the language syntax formally defined? Tool, Usability, Formality
SRQ2 Are the language semantics formally defined? Effectiveness, Tool, Formality
SRQ3 Does the language have tool support? Effectiveness, Tool, Industrial adoption
SRQ4 Are temporal property patterns defined? Usability, Industrial adoption, Pattern support

formal syntax and semantics, developers rely on assumptions to create CASE and IDE tools that

parse and perform semantically related activities such as analysis. Further, because of many ways

to understand English, developers may create different implementations of the same language, this

leads to interoperability problems between different tools.

SRQ1 and SRQ2 in Table 2.2, check if the language developers have precisely defined the

syntax and semantics. Whether the language syntax uses UML notations or not is important for the

UML designers who are familiar with these notations. The types of properties that can be analyzed

depend on the semantics used to define the language. Usually, temporal property specification

language semantics are formally defined either using linear-time logic or branching-time logic,

also called computation tree logic. Lamport studied the differences between the two formalisms

and concluded that some properties could be specified by each logic but not the other, and vice-

versa [71].

Additionally, MDE aims to create models that are useful for communication as well as for

analysis. This goal effects both the syntax and the semantics of a MDE language; graphical syn-

tax is more communicable than textual syntax and as precise semantics is necessary for effective

analysis approaches. The primary concern in the design of temporal logics language has been that

they must be precisely interpreted and analyzed. So far, I have not seen any temporal specification

language that is both analyzable and communicable.

In the context of automated software analysis, formally defining the syntax and semantics is

not enough; designers need tools to analyze their designs automatically. SRQ3 in Table 2.2 asks if

a specification approach provides tool support. In other words, without a tool, a formally specified

language may provide little benefit when analyzing complex software.

19

SRQ4 in Table 2.2 asks whether property specification patterns are defined for the language.

As discussed earlier, one of the main challenges in applying model checking is the difficulty of

specifying temporal properties; therefore, it is important to alleviate this problem [48, 49]. One

way is through better education, and another way is through the use of patterns that facilitate the

specification.

Analysis Approach Research Questions

An analysis approach provides techniques for ensuring that temporal properties of UML mod-

els are satisfied. Table 2.3 lists the research questions that are defined to evaluate the analysis

methods. The questions are ordered based on their significance, which is discussed next.

Concerning VRQ1 in Table 2.3, whether an analysis approach involves model transformation

(from UML to model checking languages), or not, is significant. As discussed in Chapter 1, model

transformations introduce a lot of accidental complexities. VRQ1 is broken into sub-questions,

each of which is concerned with a particular difficulty that the transformation introduces. VRQ1a

checks if the transformation has been shown to be correct. For exogenous transformation, proving

the correctness constitutes a major challenge in MDE (see Baudry et al. [51, 52]). Many model

transformation rules are defined verbally in English, but no tool is developed to do the transfor-

mation. Automation is one of the objectives and means of MDE; whether the transformation is

automatic or not is checked using VRQ1b. VRQ1c checks whether the produced counterexample

is transferred back to UML to be examined. The ability to debug counterexamples in UML nota-

tions is a major factor because UML designers may not have high knowledge in the target model

checking languages to debug counterexamples. Further, other specialized skills, such as using spe-

cific optimization techniques, that are not UML related, might be needed. This is checked using

VRQ1d.

VRQ2 in Table 2.3 asks whether the property to check is specified in UML notations. This is

important because UML designers should not be forced to learn notations they are not accustomed

to using.

20

Table 2.3: Analysis Approach Research questions

ID Question Related Criteria
VRQ1 Does the approach transform to a model checking? Effectiveness
a) Is the model transformation proven? Effectiveness, Formality
b) Is the transformation automatic? Tool, Industrial adoption, Usability
c) Are analysis results in UML term? Effectiveness, Usability
d) Are non-UML specialized skills needed? Usability
VRQ2 Are properties specified in UML notations? Usability, Industrial adoption
VRQ3 Is any optimization technique used? Effectiveness, Scalability
VRQ4 Is the approach heavyweight or lightweight? Usability, Industrial adoption
VRQ5 Has the approach been used in an industrial project? Industrial adoption

The state explosion problem is a major challenge that all model checkers suffer [48]. The

problem is more severe in model checking software than hardware because of the sheer number of

different software components and their data types. VRQ3 in Table 2.3 asks whether the proposed

analysis approach provides a technique to address this problem.

VRQ4 asks if the approach is lightweight, in the sense that it uses UML notations and tools, and

fits the working habits of the UML designers. Consequently, lightweight approaches are usable to

UML designers as they fit their working style and therefore minimize accidental complexity, while

heavyweight methods demand specific working environments to use [47].

As discussed above, one of the main strengths of model checking is that it has been shown to

be successful in uncovering faults within real complex systems. VRQ5 addresses this concern.

Table 2.4: Sources that are used to search for studies

Electronic
Source Web address
ACM Digital Library Portal.acm.org
Springer Link www.springerlink.com
Google Scholar scholar.google.com

Manual
Journal of Software and Systems Modeling (SoSyM)
IEEE Transactions on Software Engineering (TSE)
ACM Transactions on Software Engineering and Methodology (TOSEM)
MODELS Conference Series
Manual search through the references of identified primary studies

21

2.1.2 Search Process

The search process defines how the search for primary studies to be reviewed is undertaken.

It specifies: (1) the studies’ sources that will be searched, (2) the study string that will be used

when searching electronic resources, and (3) the inclusion/exclusion criteria. The next subsections

elaborate on these steps.

Studies Sources

Table 2.4 provides the list of the resources that were used in this study. Two search meth-

ods were used to obtain studies: (1) electronic, this includes searching different digital libraries

and databases using the search terms, and (2) manual, this includes searching major journals and

conferences in the field.

The Search String

A general approach to identifying a valid search string is to break down the structured search

questions into individual facets (i.e., population, intervention, comparison, outcome, context, and

study designs) [69]. Only two facets are relevant to this SLR study: (1) the population, which

comprises the concepts, technologies, or languages that are being treated, and (2) the intervention,

referring to techniques to do specific tasks (such as testing, analysis, or requirement specification).

In this study, population terms are related to UML language and the OCL, and intervention terms

are related to model checking.

Table 2.5: Search string terms

Population Terms

UML, OCL, Unified Modeling Language, Object

Constraint language, patterns, Temporal properties

Intervention Terms

Model checking, verification, validation, analysis,

extension, extended, transformation, checking

22

Table 2.5 shows the population and intervention terms. After defining these terms, the search

string was constructed by combining words in each group with the OR operator, then combining

the two groups by the AND operator.

2.1.3 Study Inclusion/Exclusion Criteria

Study inclusion/exclusion criteria are intended to identify those primary studies that provide

direct evidence about the research questions (Tables 2.2 and 2.3). Because the research described

in this dissertation focuses on developing UML-based model checking techniques, algorithms, and

tools, only approaches that aim to address this goal were included in the SLR.

UML and model checking have been integrated to model and verify real-time reactive systems

and probabilistic systems. In checking a real-time reactive system, explicit time constraints (e.g.,

a system responds in 5 milliseconds to a particular signal) are tested to ascertain that a system

satisfies them. Probabilistic systems are those in which the analysis guarantees that the system will

not fail in an x percentage of the time (e.g., 90% of the time). However, these types of systems

are out of the scope of this SLR study since the research described in this dissertation is aimed at

developing a framework for relative-time systems exclusively. Real-time and probabilistic model

checking approaches are therefore irrelevant.

The number of obtained studies that could be included in this study was sizable. The scope of

the study was limited to the approaches listed in Table 2.6. The table includes the five initial papers

selected by the research examination committee members, and selected ones obtained by the SLR

process, based on the following metrics: (a) number of citations, and (b) the quality of conference

or journal in which the approach was presented (i.e., top-tier conferences and journals Software

Engineering)

The next two sections survey the specification and the analysis approaches and then evaluate

them concerning the research questions.

23

Table 2.6: Included studies

Specification Approaches
Approach Reference

Kanso and Taha(2012)
Section 2.2.1

Bilal Kanso and Safouan Taha. Temporal Constraint Support for OCL. In
SLE, pages 83-103, 2012.

Ziemann and Gogolla(2003)
Section 2.2.1

Paul Ziemann, Martin Gogolla: OCL Extended with Temporal Logic. Ershov
Memorial Conference 2003.

Flake and Muller(2003)
Section 2.2.1

Stephan Flake and Wolfgang Muller. Formal Semantics of Static and Tem-
poral State-Oriented OCL Constraints. Software and System Modeling,
2(3):164-186, 2003.

Soden and Eichler(2009)
Section 2.2.1

Michael Soden, Haio Eichler: Temporal Extensions of OCL Revisited.
ECMDA-A 2009

Brandfield et al.(2002)
Section 2.2.1

Julian C. Bradfield,Juliana Kuster Filipe, Perdita Stevens: Enriching OCL Us-
ing Observational Mu-Calculus. FASE 2002

Analysis Approaches
Baresi et al. (2013)

Section 2.3.1
Luciano Baresi, Gundula Blohm, Dimitrios S. Kolovos, Nicholas Matragkas,
Alfredo Motta, Richard F. Paige, Alek Radjenovic, and Matteo Rossi. For-
mal verification and validation of embedded systems: the uml-based mades
approach. Software Systems Modeling, pages 1-21, 2013.

Moffett et al. (2013)
Section 2.3.1

Yann Moffett, JÃijrgen Dingel, Alain Beaulieu: Verifying Protocol Confor-
mance Using Software Model Checking for the Model-Driven Development
of Embedded Systems. IEEE Trans. Software Eng.39(9): 1307-1325 (2013)

Eshuis (2006)
Section 2.3.1

Rik Eshuis:Symbolic model checking of UML activity diagrams. ACM Trans.
Softw. Eng. Methodol. (TOSEM) 15(1):1-38 (2006)

Zurowska and Dingel (2013)
Section 2.3.1

Karolina Zurowska, Juergen Dingel: Model Checking of UML-RT Models
Using Lazy Composition. MoDELS 2013: 304-319

Lilius and Paltor(1999)
Section 2.3.1

Johan Lilius, Ivan Paltor: Formalising UML State Machines for Model Check-
ing.UML1999: 430-445

Zalila et al. (2013)
Section 2.3.1

Faiez Zalila, Xavier CrÃl’gut, Marc Pantel: Formal Verification Integration
Approach for DSML. MoDELS 2013: 336-351

2.2 Specification Approaches
In Section 2.2.1, a summary and an example of how to specify a temporal constraint are pre-

sented for five approaches. Section 2.2.2 evaluates and discusses the approaches based on the

specification research questions that were defined in Table 2.2.

24

OCL Temporal Extension

Bilal KANSO and Safouan TAHA

Context

•What is OCL (Object Constraint Language)?

– constraint specification language for Object-Oriented programs

– infixed syntax similar to programing languages

– formal semantics equivalent to first order predicate logic

•Limits of OCL

– absence of Time

– absence of Events

– absence of quantification over objects prior to Time

OCL is static, it does not support the description of dynamic behaviors

Example

1 context System

3 −− v e r i f i e s that eve ry i n s t a l l e d a p p l i c a t i o n has i t s dependenc ies i n s t a l l e d

as we l l

4 def : a l l a p p s d e p e n d e n c i e s i n s t a l l e d : Boolean =
s e l f . i n s t a l l e d a p p s−>f o r A l l (app : A p p l i c a t i o n | s e l f . i n s t a l l e d a p p s−>
i n c l u d e s A l l (app . d ependenc i e s))

6 context App l i c a t i o n

8 −− b u i l d s the t r a n s i t i v e c l o s u r e o f the \emph{dependenc ies} a s s o c i a t i o n

9 def : a l l d e p e n d e n c i e s : Set (A p p l i c a t i o n) =
s e l f . d ep endenc i e s . a l l d e p e n d e n c i e s−>asSe t ()−>i n c l u d i n g (s e l f)

11 −− v e r i f i e s that i n s t a l l i n g the a p p l i c a t i o n with i t s dependenc ies f i t s i n t o

the system ’ s f r e e memory

12 def : m a y i n s t a l l o n (s y s : System) : Boolean =
s e l f . a l l d e p e n d e n c i e s . s i z e−>sum () < s y s . f ree memory

Our Approach

Add the notion of Event

• isCalled(op,pre,post): specifies that operation op is
called from a state satisfying the precondition pre resulting
in a state satisfying the postcondition post.

op
√

pre
√

post
√

isCalled(op,pre,post)
√

• becomesTrue(Pred): specifies that the predicate Pred

has become true by the last operation invocation.

anyOp

Pred X Pred
√

becomesTrue(Pred)
√

Add the specification of Temporal Constraints : Pattern + Scope

Patterns

Occurrence Order

never always
eventually

(N times)

at least at most exactly

precedence response

(Chain)(Chain)

Q R Q Q R Q
Scopes:

globally

before Q

after Q

between Q and R

after Q unless R

1 context System

3 −− Safe ty Property : each a p p l i c a t i o n can be loaded at most one time

4 temp S a f e t y : l e t a p p t o I n s t a l l : A p p l i c a t i o n i n

5 e v e n t u a l l y i s C a l l e d (l o ad (app : A p p l i c a t i o n) , pre : app = a p p t o I n s t a l l)
6 at most 1 t imes

7 g l o b a l l y

9 −− L i v ene s s Property : each loaded a p p l i c a t i o n i s i n s t a l l e d a f t e rwa rd s

10 temp L i v e n e s s : l e t a p p t o I n s t a l l : A p p l i c a t i o n i n

11 becomesTrue (s e l f . i n s t a l l e d a p p s −>i n c l u d e s (a p p t o I n s t a l l))
12 f o l l ow i n g i s C a l l e d (l o ad (app : A p p l i c a t i o n) , pre : app = a p p t o I n s t a l l)
13 g l o b a l l y

Applications

Model checking

•Using our OCL Temporal Extension as a Temporal Logic

Object program

Formal model
(Kripke)

Temporal Logic
formula (LTL)

Requirements

Temporal
OCL

Model checker

Satisfied
Violated

(counter example)

Testing

•Using our OCL Temporal Extension as a Test-Purpose Specification Language

Animation

Formal
Specification

(OCL)
Implementation

conforms to?

Test generation Test CasesTest Puposes

Security
Properties

Temporal

OCL

Tuesday 5 June 2012, Forum E3S, Supélec.

(a) Class model

OCL Temporal Extension

Bilal KANSO and Safouan TAHA

Context

•What is OCL (Object Constraint Language)?

– constraint specification language for Object-Oriented programs

– infixed syntax similar to programing languages

– formal semantics equivalent to first order predicate logic

•Limits of OCL

– absence of Time

– absence of Events

– absence of quantification over objects prior to Time

OCL is static, it does not support the description of dynamic behaviors

Example

1 context System

3 −− v e r i f i e s that eve ry i n s t a l l e d a p p l i c a t i o n has i t s dependenc ies i n s t a l l e d

as we l l

4 def : a l l a p p s d e p e n d e n c i e s i n s t a l l e d : Boolean =
s e l f . i n s t a l l e d a p p s−>f o r A l l (app : A p p l i c a t i o n | s e l f . i n s t a l l e d a p p s−>
i n c l u d e s A l l (app . d ependenc i e s))

6 context App l i c a t i o n

8 −− b u i l d s the t r a n s i t i v e c l o s u r e o f the \emph{dependenc ies} a s s o c i a t i o n

9 def : a l l d e p e n d e n c i e s : Set (A p p l i c a t i o n) =
s e l f . d ep endenc i e s . a l l d e p e n d e n c i e s−>asSe t ()−>i n c l u d i n g (s e l f)

11 −− v e r i f i e s that i n s t a l l i n g the a p p l i c a t i o n with i t s dependenc ies f i t s i n t o

the system ’ s f r e e memory

12 def : m a y i n s t a l l o n (s y s : System) : Boolean =
s e l f . a l l d e p e n d e n c i e s . s i z e−>sum () < s y s . f ree memory

Our Approach

Add the notion of Event

• isCalled(op,pre,post): specifies that operation op is
called from a state satisfying the precondition pre resulting
in a state satisfying the postcondition post.

op
√

pre
√

post
√

isCalled(op,pre,post)
√

• becomesTrue(Pred): specifies that the predicate Pred

has become true by the last operation invocation.

anyOp

Pred X Pred
√

becomesTrue(Pred)
√

Add the specification of Temporal Constraints : Pattern + Scope

Patterns

Occurrence Order

never always
eventually

(N times)

at least at most exactly

precedence response

(Chain)(Chain)

Q R Q Q R Q
Scopes:

globally

before Q

after Q

between Q and R

after Q unless R

1 context System

3 −− Safe ty Property : each a p p l i c a t i o n can be loaded at most one time

4 temp S a f e t y : l e t a p p t o I n s t a l l : A p p l i c a t i o n i n

5 e v e n t u a l l y i s C a l l e d (l o ad (app : A p p l i c a t i o n) , pre : app = a p p t o I n s t a l l)
6 at most 1 t imes

7 g l o b a l l y

9 −− L i v ene s s Property : each loaded a p p l i c a t i o n i s i n s t a l l e d a f t e rwa rd s

10 temp L i v e n e s s : l e t a p p t o I n s t a l l : A p p l i c a t i o n i n

11 becomesTrue (s e l f . i n s t a l l e d a p p s −>i n c l u d e s (a p p t o I n s t a l l))
12 f o l l ow i n g i s C a l l e d (l o ad (app : A p p l i c a t i o n) , pre : app = a p p t o I n s t a l l)
13 g l o b a l l y

Applications

Model checking

•Using our OCL Temporal Extension as a Temporal Logic

Object program

Formal model
(Kripke)

Temporal Logic
formula (LTL)

Requirements

Temporal
OCL

Model checker

Satisfied
Violated

(counter example)

Testing

•Using our OCL Temporal Extension as a Test-Purpose Specification Language

Animation

Formal
Specification

(OCL)
Implementation

conforms to?

Test generation Test CasesTest Puposes

Security
Properties

Temporal

OCL

Tuesday 5 June 2012, Forum E3S, Supélec.

(b) isCalled event

OCL Temporal Extension

Bilal KANSO and Safouan TAHA

Context

•What is OCL (Object Constraint Language)?

– constraint specification language for Object-Oriented programs

– infixed syntax similar to programing languages

– formal semantics equivalent to first order predicate logic

•Limits of OCL

– absence of Time

– absence of Events

– absence of quantification over objects prior to Time

OCL is static, it does not support the description of dynamic behaviors

Example

1 context System

3 −− v e r i f i e s that eve ry i n s t a l l e d a p p l i c a t i o n has i t s dependenc ies i n s t a l l e d

as we l l

4 def : a l l a p p s d e p e n d e n c i e s i n s t a l l e d : Boolean =
s e l f . i n s t a l l e d a p p s−>f o r A l l (app : A p p l i c a t i o n | s e l f . i n s t a l l e d a p p s−>
i n c l u d e s A l l (app . d ependenc i e s))

6 context App l i c a t i o n

8 −− b u i l d s the t r a n s i t i v e c l o s u r e o f the \emph{dependenc ies} a s s o c i a t i o n

9 def : a l l d e p e n d e n c i e s : Set (A p p l i c a t i o n) =
s e l f . d ep endenc i e s . a l l d e p e n d e n c i e s−>asSe t ()−>i n c l u d i n g (s e l f)

11 −− v e r i f i e s that i n s t a l l i n g the a p p l i c a t i o n with i t s dependenc ies f i t s i n t o

the system ’ s f r e e memory

12 def : m a y i n s t a l l o n (s y s : System) : Boolean =
s e l f . a l l d e p e n d e n c i e s . s i z e−>sum () < s y s . f ree memory

Our Approach

Add the notion of Event

• isCalled(op,pre,post): specifies that operation op is
called from a state satisfying the precondition pre resulting
in a state satisfying the postcondition post.

op
√

pre
√

post
√

isCalled(op,pre,post)
√

• becomesTrue(Pred): specifies that the predicate Pred

has become true by the last operation invocation.

anyOp

Pred X Pred
√

becomesTrue(Pred)
√

Add the specification of Temporal Constraints : Pattern + Scope

Patterns

Occurrence Order

never always
eventually

(N times)

at least at most exactly

precedence response

(Chain)(Chain)

Q R Q Q R Q
Scopes:

globally

before Q

after Q

between Q and R

after Q unless R

1 context System

3 −− Safe ty Property : each a p p l i c a t i o n can be loaded at most one time

4 temp S a f e t y : l e t a p p t o I n s t a l l : A p p l i c a t i o n i n

5 e v e n t u a l l y i s C a l l e d (l o ad (app : A p p l i c a t i o n) , pre : app = a p p t o I n s t a l l)
6 at most 1 t imes

7 g l o b a l l y

9 −− L i v ene s s Property : each loaded a p p l i c a t i o n i s i n s t a l l e d a f t e rwa rd s

10 temp L i v e n e s s : l e t a p p t o I n s t a l l : A p p l i c a t i o n i n

11 becomesTrue (s e l f . i n s t a l l e d a p p s −>i n c l u d e s (a p p t o I n s t a l l))
12 f o l l ow i n g i s C a l l e d (l o ad (app : A p p l i c a t i o n) , pre : app = a p p t o I n s t a l l)
13 g l o b a l l y

Applications

Model checking

•Using our OCL Temporal Extension as a Temporal Logic

Object program

Formal model
(Kripke)

Temporal Logic
formula (LTL)

Requirements

Temporal
OCL

Model checker

Satisfied
Violated

(counter example)

Testing

•Using our OCL Temporal Extension as a Test-Purpose Specification Language

Animation

Formal
Specification

(OCL)
Implementation

conforms to?

Test generation Test CasesTest Puposes

Security
Properties

Temporal

OCL

Tuesday 5 June 2012, Forum E3S, Supélec.

(c) becomesTrue event

Figure 2.1: Kanso’s specification language examples [72]

2.2.1 Survey of the Specification Approaches

Kanso and Taha (2012)

Kanso and Taha [72] propose a language that extends OCL with events and property specifica-

tion patterns [49]. An example explains the use of the approach. Figure 2.1 shows how temporal

properties can be specified using the approach. This approach specifies temporal properties on

class models. The class model in Figure 2.1 represents the structure of a simple software system.

The system can be used to load, install, or run an application. One of the temporal requirements

is that an application can be loaded one time, at most. This is a safety property and it is specified

formally as:

context System

temp Safety: let apptoInstall : Application in

eventually isCalled(load(app:Application), pre: app=apptoInstall)

at most 1 time

globally

The expression uses isCalled(load(app:Application), pre=apptoInstall) event. As shown in

Fig 2.1(b) this event has the name of the operation to be called, the pre- and the postcondition.

25

This event is a generic construct that merges the operation (call/start/end) events with state change

events that exist in the standard OCL. This temporal property is an example of the response pattern

in the global scope that will be described in Chapter 3, along with other patterns and scopes. The

response pattern with global scope describes cause-effect relationships between a pair of events

in the entire system execution. The important point to note is that this approach uses patterns to

specify temporal properties.

The other event is becomesTrue(Pred), which is shown in Figure 2.1(c). To illustrate this event,

consider the following liveness property: each loaded application needs to be eventually installed

after it has been loaded. This requirement is expressed as:

context System

temp Liveness: let apptoInstall : Application in

becomesTrue(self.installed_app->includes(apptoInstall))

following isCalled(load(app:Application), pre:app=apptoInstall))

globally

In the expression above, the becomesTrue clause indicates that the predicate states the appli-

cation to install (i.e., apptoInstall) is included in the installed applications after a call to load the

application is invoked on the same application.

Ziemann and Gogolla (2003)

Ziemann and Gogolla [59] presented an extension of OCL with elements of linear temporal

logic. Past and future temporal operators are introduced. The extension is called Temporal OCL

(TOCL), and it allows the specification of temporal properties on UML class model. The intro-

duced temporal operators are integrated with the common OCL syntax. The researchers also define

the semantics of UML object models that represent the structural aspects of the system. The se-

mantics of TOCL operators are defined using the definition of this object model. They adopted the

definition of class models and augmented it with a description of state sequences.

An object model is a tuple M=(CLASS, ATTc, OPc, ASSOC, associates, roles, multiplicities,)

that consists of a set of classes (CLASS) with each class c having attributes (ATTc) and operation

26

+assignRole(in r : Role, in z : STZone) : RoleAssignment
+activateRole(in r : Role, in z : STZone) : RoleActivation
+deActivateRole(in r : Role, in z : STZone)
+getAssignedRoles(in z : STZone) : Set(Role)
+getActivatedRoles(in z : STZone) : Set(Role)
+updateZone(in z : STZone)

User

-zonechanged : Boolean

+getAssignedUsers(in z : STZone) : Set(User)

Role

STZone

RoleRelation

RoleAssignment RoleActivation

-user

1 -relations

*

-role1

-relations

*
-roles1..*

-rzones*

-relations

*

-zone1

-users*

-currentzone

1

Figure 2.2: Partial GSTRBAC model, taken from Al-Lail et al. [73]

(OPc) assigned to it. Associations (ASSOC) connect classes with each other. The function "as-

sociates" maps each association name to a finite list of participating classes. The function "roles"

assigns a role name to each participating class. Objects of associated classes can be connected with

links. The number of links an object can be associated with is specified by the function ’multiplici-

ties.’ A system state, also called snapshot, is defined as a tuple σ(M) = (σClass, σATT, σAssoc)

where σClass is a set of current objects and their current attribute values is σATT and σAssoc

are the links connecting the objects. An infinite state sequences for a model M is denoted as

σ∧(M) = 〈σ0, σ1, ...〉. The semantics of the introduced temporal operators are precisely defined

over state sequences.

As an example, consider the following GSTRBAC persistence property defined on the model

in Figure 2.2: “When a user changes his spatiotemporal zone in one state, then all the activated

roles must be deactivated in the next state.” The TOCL property given below formally specifies

this property.

context User inv:

self.zonechanged=true implies next

self.getActivatedRoles(currentzone)->isEmpty()

27

Figure 2.3: The steam-boiler control system as two state machines [75]

Flake and Mueller (2002)

Flake and Mueller [74] presented a UML profile extension to OCL, called temporal OCL. The

profile is based on the OCL metamodel and it uses Clocked CTL to define semantics. The authors

formally defined the notion of Statechart configuration that is a description that captures the set

of currently activated states of a UML statechart. They also integrated this notion into the formal

object model, as defined by Ziemann and Gogolla 2003 [59], and extended it with overall system

state. Based on this formal definition, the authors defined formal semantics of a trace over a given

model. In this formal model, a trace is an infinite sequence of system states. Temporal constraint

semantics are defined based on the notion of traces. Finally, a formal definition is provided for the

operation oclInState(s:OclState), which was only defined syntactically in the OCL standard.

Soden and Eichler (2009)

Soden and Eichler [75] proposed a language, called Linear Temporal OCL (LT-OCL), that ex-

tends OCL with linear temporal operators such as next, until, always, and eventually. The concrete

syntax of LT-OCL is defined by extending the attributed EBNF grammar that is mapped to the

abstract syntax defined as a MOF metamodel. The semantics is defined with M3Action language

over this metamodel [76]. M3Action language describes behavior with a graphical syntax similar

28

Figure 2.4: Class diagram for dining philosophers [77]

to UML Activities/Action, but with a precise update semantics defined for instances of MOF meta-

models. Actions that specify the operational behavior are defined in the extended metamodel as

specific MOperations. For example, elementary actions include OCL query operations to navigate

the model, an assign action to update class properties, and a create actions to instantiate a class.

To illustrate the approach, consider steam boiler control system [68]. The UML state machines

of the control program and the boiler components are depicted in Figure 2.3. The role of the

controller is to regulate the water supply to the boiler by switching on and off the pump as well

as the valve. The following LT-OCL expression specifies the requirement that if the water level is

below the minimum limit, the pump will eventually be started.

always(Event.allInstances()->forAll(value=’LevelMin’ implies

eventually(pump.activeState=’Pumping’)))

Brandfield et al.(2002)

Bradfield et al. [77] proposed the use of the observational mu-calculus to define the semantics

of their OCL temporal extension language θµ(OCL). Using θµ(OCL) requires an understanding

of temporal logic with fixed points, which might be hard for UML designers to learn. To alleviate

this problem, the authors provided some useful design templates of standard usage. The templates

use OCL notations and they are given semantics by translating them into θµ(OCL).

To illustrate the approach consider the class model of the dining philosophers depicted in Fig-

ure 2.4. One of the liveness properties of the model is “whenever a philosopher is hungry, he/she

29

will be able to eat eventually.” To formally specify this requirement, a UML modeler can use the

provided template named after/eventually. This template takes the following form:

context Classifier:

after: oclExpression

eventually: oclExpression

Like an invariant or a pre/post condition, this template is written in the context of a classifier.

The after clause expresses some trigger for the contract. Once the condition in the after class

becomes true, the contract specifies that the condition expressed in the eventually clause will even-

tually become true. This template can be instantiated to specify the liveness property above as

follows:

context Philosopher:

after: self.hungry=true

eventually: self.eating=true

The next section evaluates these methods.

2.2.2 Evaluation and Discussion of the Specification Approaches

Table 2.7 shows the evaluation results of the five included specification approaches that are

summarized in previous section 2.2.1. The results show that all the approaches do provide an

object-oriented syntax to their languages. One can see that all of these approaches provide a

textual language that extends the OCL standard. None of them provide graphical notations for

defining temporal properties. Although these approaches provide suitable notations to enable UML

designers to write textual temporal constraints that can be analyzed, graphical notations might be

helpful to communicate the properties of a system among different stakeholders.

Semantic-wise, the five approaches formally define precise semantics for their language. The

results also show that only two approaches, i.e., Kanso and Taha (2012) [72] and Bradfield et al.

(2002) [77], provide tool support that performs analysis tasks. Kanso and Taha implemented a

30

Table 2.7: Evaluation of specification approaches

Approach SRQ1:Syntax SRQ2:Semantics SRQ3:Tool SRQ4:Pattern
Kanso and Taha(2012)

Section 2.2.1 OCL+ events Yes, traces parser Yes

Ziemann and Gogolla(2003)
Section 2.2.1 OCL+ temporal operators Yes, traces No No

Flake and Muller(2003)
Section 2.2.1 OCL+CTL yes, Clocked CTL No No

Soden and Eichler(2009)
Section 2.2.1 OCL+ temporal operators Yes, traces No No

Brandfield et al.(2002)
Section 2.2.1 OCL+template clauses mu-calulus Yes Yes, templates

parser for their proposed language while Bradfield et al. (2002) developed a more advanced tool

that is capable of doing model checking analysis tasks. Other approaches lack the tool support.

Concerning pattern support, only Bradfield et al. (2002) [77] and Kanso and Taha (2012) [72]

define techniques to ease the specification of temporal properties. Kanso and Taha described their

language based on Dwyer’s patterns. However, the language only supports the specification of

temporal properties that are instances of Dwyer’s patterns, i.e., if a property cannot be specified

using any of the patterns, then it cannot be specified by the proposed language. The reason for

this shortcoming is that patterns are limited in their expressiveness power, which has been shown

by their designers [78]. Consequently, designers cannot specify certain properties using the Kanso

and Taha language. Bradfield et al. (2002) do not strictly provide support for the Dwyer’s patterns,

but their temporal specification templates are easy to use and may be as expressive as Dwyer’s

patterns. For example, the after/eventually template provides the cause/effect relationship among

different actions/states in a system. This relationship is defined as the response pattern by Dwyer

et al. [49]. Using Dwyer’s pattern, this relationship can even be restricted to a portion of the

system execution (scope) in which it should hold, but this feature is not supported by the templates

provided by Bradfield et al [77].

Among the surveyed specification approaches, the Bradfield et al. (2002) approach stands out.

The method defines the language formally, provides tool support, and augments the language with

templates that ease the specification of temporal properties. One shortcoming of this approach is

31

that it transforms the templates to observational mu-calculus and no proof of correctness for this

transformation is provided, as it is shown to be a difficult task [52].

2.3 Analysis Approaches
The previous section focused on surveying and evaluating selected specification approaches

identified by the SLR. This section focuses on surveying and evaluating selected SLR-identified

analysis approaches. Recall that the specification approaches focus on defining languages for

specifying temporal properties in UML contexts for model checking analysis. Analysis approaches

concentrate on the analysis of temporal properties using model checking techniques. Though some

analysis approaches provide ways to specify properties, they focus on the analysis not on the

specification.

This section is organized as follows: Section 2.3.1 provides summaries of the included analysis

approaches listed in Table 2.6 and Section 2.3.2 evaluates them based on the analysis questions

defined in Table 2.3.

2.3.1 Survey of the analysis Approaches

Baresi et al. (2013)

The designers of this approach provided a tool-chain that can be used for analysis and closed-

loop simulation. They use the MADES UML notation to model a system. MADES integrates a

subset of UML notations and elements from MARTE (the UML profile for modeling and Analysis

of Real time and Embedded systems). To specify temporal properties, the authors suggest the use

of TRIO language, a first-order linear temporal logic that supports a metric on time.

The approach proposed to combine several existing and mature technologies to perform the

analysis and the closed-loop simulation. During the analysis, MADES models are transformed to

a set of formulae expressed in the TRIO language. Then analysis uses a model checker Zot to

perform the analysis task. The analysis results are then returned to be presented to the designers in

MADES terms. The implementation employs a traceability tool to translate the results to MADES

32

notations. The closed-loop simulation aims to provide a trace of the system that both satisfy a

model of the system and a model of its environment.

Moffett et al. (2013)

This paper proposes an analysis approach that finds property violations in UML component

models. A UML component model consists of some components that exchange messages through

their interfaces. A behavior of a structured class can be described using a Behavioral State Machine

(BSM). Each interface of a component has a Protocol State Machine (PSM) that is used to describe

allowed message exchanges between two components. A message arriving at an interface may

trigger a transition in the BSM of the class owning the interface. If the BSM is not ready to

receive a message arriving at one of its interfaces, the message is dropped. This paper proposes

an approach to make sure that the behavior of a component, defined by its BSM, conforms to the

behavior defined by its interfaces, and all its PSMs. UML-RT is used to model a system as a

component diagram which includes BSMs of components and their corresponding PSMs.

Three types of property violations can occur: (1) input safety violation, (2) output safety viola-

tion, and (3) progress violation. An input safety violation occurs when a message is received at one

of the interfaces (ports) (PSM), but the behavior of the component (BSM) is not ready to receive

such a message. The output safety violation happens when a component tries to send a message

to another component through an interface, but the state of the interface does not allow it to send

a message. A progress violation occurs when the behavior of the component does not force the

component to make progress (e.g., send a message through a particular interface). In other words,

the behavior of the component allows an infinite loop in which the sending of the message is not

part of the loop.

To perform a conformance check against these violations, designers need to do three steps.

First, the behavior of the components and their ports must be formally defined and composed into

an automaton called a Verification Finite State Automaton (VFSA). The conformance check is

based on the exhaustive exploration of the state space of the VFSA. Second, the different types of

violations must be formally specified as LTL properties. The conformance check is then defined

33

as follows: a component behavior is said to conform to the behavior of its ports if and only if

the verification automaton (VFSA) does not violate any of the three LTL properties representing

the three types of violations. Lastly, to automatically perform the check, the VFSA and the LTL

properties are transformed to the input language of the Java PathFinder (JPF) model checker. If a

violation exists, a UML designer needs to debug the counterexample produced by JPF.

Eshuis (2006)

Eshuis [37] proposed an approach to verify UML activity diagrams using the NuSMV model

checker. The objective of the analysis process is to check the data integrity constraints of UML

activity and class diagrams by specifying temporal properties. For example, data cannot be refer-

enced before it is created or after it is deleted. Eshuis developed two tools to transform the activity

diagrams to the input language of NuSMV model checker, which in turn performs a symbolic

model checking using Binary Decision Diagrams to reduce the search space. Furthermore, this

approach uses propositional linear temporal logic with both past and future operators (PLTL) to

specify the temporal requirements to be analyzed.

Eshuis applied two types of transformations that he calls translations: requirement-level trans-

lations and implementation-level translations. The first transformation is based on Harel’s state-

charts semantics and can be efficiently verified, assuming the perfect synchrony hypothesis, i.e.,

the statechart responds immediately to input events from its environment. Though these machines

can be efficiently verified, they are unrealistic. In reality machines are not perfectly synchronous.

Because these machines abstract from any specific implementation and only focus on external re-

quirements, they are called requirement-level state machines; the translation to them is called the

requirements-level translation.

The second transformation is based on UML state machines that are more realistic because

they do not use the perfect synchrony hypothesis, i.e., state machines that use input queues. Be-

cause these statemachines are closer to the implementation-level, this translation is called the

implementation-level translation.

34

Though the two types of machines, UML state machines and Harel’s statecharts, have similar

syntax, they have been shown to have semantic differences [79]. Eshuis showed that these two

transformations are equivalent if the property checked is linear, separable and stuttering closed.

Linear properties are expressed in past linear temporal logic [23]. A temporal property is separated

if it can be written as boolean combinations, that is, using the Boolean operators disjunction,

conjunction, and negation of stuttering-closed local properties [80]. A property is stuttering closed

if the “next” time operator and its past time equivalent are not used. Eshuis claims that for a large

number of activity diagrams, when analyzing separable temporal, it does not matter which type of

translation is used because the outcome of the analysis is the same. Therefore, the requirement-

level translation, that uses the verifiable statecharts, is unrealistic because of the perfect synchrony

assumption can be used to verify the implementation-level models (UML state machines) for linear,

separable, and stuttering closed temporal properties.

Zurowska and Dingle (2013)

Zurowska and Dingle (2013) [35] proposed a novel UML-based model checking approach.

Their approach uses a UML profile targeting the modeling of real-time systems. Further, to al-

leviate the state explosion problem, the authors introduced a symbolic execution optimization

technique to reduce the number of components that need to be composed and considered dur-

ing the analyses. Their optimization technique, called lazy composition, reduces the number of

the composed components by leveraging the communication topology and the temporal property

being analyzed. To express properties and apply the lazy composition technique, they defined a

new temporal logic language as an extension of the CTL logic. This language, however, does not

use UML notions. Additionally, the authors described and proved the correctness of an algorithm

to check the satisfaction of the properties defined in the new temporal logic. They implemented

the model checking algorithm, and the lazy composition optimization technique in the prototype

checker (SAUML2).

The approach does not transform UML-RT models to any model checking languages. Zurowska

and Dingle argue for this approach by stating, “As opposed to several approaches to verify state-

35

charts including, e.g., [19,15], our technique avoids translation of models into the input language

of an existing model checker, which often introduces additional complexity to the analysis and

the interpretation of the results. Instead, UML-RT models are analyzed with the help of a formal

language designed to capture the core features of UML-RT, such as modularity, hierarchies and

communication.”

Lilius and Paltor (1999)

Lilius and Paltor (1999) formalized UML state machines for code generation, simulation, and

model checking [81]. The authors provided a complete formalization that is based on two steps.

First, they formalized the structure of a UML state machine by transforming it to a term rewriting

system. In the second step, the authors defined the operation semantics of state machines that can

be used for verification purposes using model checking.

Based on this formalization, Lilius and Paltor developed the vUML tool. vUML transforms

a UML state machine to PROMELA specifications, the input language of SPIN model checker.

Temporal properties to be checked by this method are specified in LTL. SPIN then verifies if

the behavior of the model does not violate the property. If SPIN finds a counterexample, vUML

transfers the SPIN trace to a UML sequence diagram to be presented to UML designers.

Zalila et al. (2013)

The authors of this paper provided an analysis approach that enables designers to rely on their

domain-specific languages (DSMLs) notations while receiving the benefits of model checking

tools. To specify temporal properties the authors proposed to use TOCL at the front, but instead

of directly verifying TOCL properties they transform them to LTL properties that are subsequently

verified. For the modeling stage of the system, the XSPEM DSML language, defined by a UML

profile, is used. To enable the analysis, a model conforming to XSPEM and a TOCL property

are transformed to the FIACRE formal language that is the front-end to several analysis toolboxes

such as the Tina and CADP model checkers. To present the analysis results in XSPEM terms, the

counterexample has to go through two levels of transformation, i.e., to Fiacre and then to XSPEM.

36

Table 2.8: Evaluation of analysis approaches

VRQ1 1-a 1-b 1-c
Anl.

1-d Sp. VRQ2 VRQ3 VRQ4
heavy

VRQ5

Approach MT proof automatic results skills Prop. Optim. /light industry
Baresi et al. (2013)

Section 2.3.1 Yes No Yes UML No
No

(LTL) Yes heavy Yes

Moffett et al. (2013)
Section 2.3.1 Yes No Yes No Yes

No
(LTL) Yes heavy No

Eshuis (2006)
Section 2.3.1 Yes No Yes No No

No
(PLTL) Yes heavy No

Zurowska and Dingel (2013)
Section 2.3.1

No NA NA NA NA
No

(CTL) Yes heavy No

Lilius and Paltor(1999)
Section 2.3.1 Yes No Yes UML Yes

No
(LTL) No heavy No

Zalila et al. (2013)
Section 2.3.1 Yes No Yes No No

Yes
(TOCL) No heavy No

2.3.2 Evaluation and Discussion of the Analysis Approaches

Table 2.8 shows the evaluation results of the six included analysis approaches. As the results

show (VRQ1-MT), all the approaches, except Zurowska and Dingle (2013), transform different

UML models to the input languages of the targeted model checking tools. As explained earlier,

model transformation introduces accidental complexities that need to be addressed. None of the

approaches that use model transformation handle all issues properly. In term of proving the cor-

rectness of a transformation (VRQ1 a), none of the approaches provides such a proof. Though all

of the surveyed studies have tools that automatically transform UML models to a targeted model

checking language, only Baresi et al. (2013) and Lilius and Paltor (1999) transform the analysis

results back to UML. However, even with automatic transformation, all the approaches require

special skills that are not UML related. For example, Lilius and Paltor (1999) transforms UML

state machines to PROMELA/SPIN and counterexamples to UML sequence diagram. However,

this approach demands UML designers to use LTL notations to specify properties. Further, most

of the approaches require UML designers to intervene to apply an optimization technique to cope

with the state explosion problem. Otherwise, these methods would be not scalable. It is note-

worthy that only Zurowska and Dingle (2013), described in section 2.3.1, provide a UML-based

optimization technique.

37

VRQ2 asks if the approach applies an object-oriented technique to specify a temporal property

formally. The results show that only Zalila et al. (2013) employs one of the property specification

approaches discussed in Section 2.2, specifically TOCL that is developed by Ziemann and Gogolla

(2003). All of the other analysis methods rely on notations that are not object-oriented such as

LTL or CTL notations. This fact suggests that future research work could focus on integrating the

specification and analysis in a UML-based framework.

With regards to optimization techniques, only the technique proposed by Zurowska and Dingle

(2013) provides a UML-based optimization method. All other approaches either rely on the opti-

mization techniques provided by the targeted model checkers or do not support any optimization.

Further, all the approaches are categorized to be heavyweight, as they require a considerable effort

to be learned and applied effectively or require the used of mathematical notations such as LTL

and CTL to specify properties. As the results show, only Baresi et al. (2013), described in sec-

tion 2.3.1, applied their proposed approach in industrial context. All other methods used examples

that are not from the industry to explain how the approaches are used.

Among the surveyed analysis approaches, Zurowska and Dingle (2013) is promising. The ap-

proach tries to eliminate the accidental complexities of transformation by directly defining model

checking algorithms and tools. Further, the method provides a UML-based optimization tech-

nique to alleviate the state explosion problem. Though the approach is a promising one, it could

be improved by (1) providing an object-oriented specification language for specifying temporal

properties, and (2) showing that the approach applies to analyze industrial systems.

2.4 Open Problems and Future Research Directions
Based on the SLR results, this section presents several open problems for the specification and

analysis of temporal properties in the context of the UML using model checking. In particular, it

can be argued that the MDE community needs advances to overcome the problems that are related

to the following categories:

38

1. Integrating specification and analysis approaches.

2. Model transformation.

3. Property specification.

4. Tooling.

For each of the following subsections, a category of challenges is discussed first and then

research questions are presented. Although these categories are discussed individually below, some

of them are quite interrelated.

2.4.1 Challenges to integrating specification and analysis

As shown in Table 2.7, many of the existing specification approaches lack analysis tools. Fur-

ther, as shown in Table 2.8, only one of the analysis methods supports a UML-based property

specification approach. This current situation results in two problems for UML designers. On

one hand, UML designers get few benefits by formally specifying a temporal property without the

ability to analyze it. For example, section 2.2.1 describes the Kanso and Taha (2012) approach

that includes an implementation to parse their proposed language. This is not sufficient, as the

primary motivation is the analysis of the specified properties. On the other hand, it is cumbersome

to demand UML designers to be proficient in LTL or CTL notation to specify a property that will

be checked by a provided analysis approach. This situation is the case for most of the analysis

approaches, as shown in Table 2.8. Table 2.8 also shows that some of the approaches transform the

analysis results and counterexamples to UML in order to be examined by UML designers. How-

ever, these approaches lack the simulation feature that is provided by traditional model checking.

Simulation of the counterexample is necessary to locate the fault. The methods that do provide the

counterexamples in UML do not consider doing the simulation of the counterexample using the

UML initial model.

39

To improve the situation, these are the research questions that need to be addressed:

1. What are the challenges that make the integration of specification and analysis in a single

UML-based framework hard?

2. How to present and simulate the analysis results in a form understandable by UML design-

ers?

3. How do we improve tractability mechanisms?

4. What are the technical factors, if any, that complicate the development of model checking

techniques, algorithms, and tools that exclusively use UML?

2.4.2 Model Transformation Challenges

Model transformations are an integral part in MDE and are used in a variety of purposes such

as: code generation from models and defining translational semantics of a domain-specific lan-

guage. This SLR study shows that many approaches use model transformations from UML to

languages that have model checking support. These approaches aim to utilize the analysis tools

that are provided by such languages. In this context, model transformation and traceability mecha-

nisms bridge the gap between UML used for specification and model checking languages used for

analysis [53].

However, these approaches that use model transformation introduce challenges that affect their

efficiency and effectiveness. First, the SLR showed that all methods lack proof of correctness of

the transformation. The accuracy of the analysis results depends on whether the transformation is

semantics-preserving or not. Proving the termination of the transformation process is another dif-

ficulty. Second, UML designers may not have a strong knowledge of the targeted model checking

languages and tools. As shown by SLR, many of these approaches require the use of specialized

skills that are not UML related. For example, designers need to specify properties in LTL, CTL, or

TRIO logic. UML designers must also be experts in the target language to effectively define some

40

UML constructs, such as inheritance, that cannot be transferred easily to the target model check-

ing languages. Third, the results of the analysis performed by the back-end analysis tool must

be presented to developers in UML terms to be examined, thus requiring another transformation

process.

These are the research questions that need to be answered:

1. How can we prove that a transformation produces semantically equivalent models?

2. How can we formally prove that a transformation terminates?

3. How can we eliminate the accidental complexities that are introduced by transformation/tra-

cability mechanisms?

4. How can we present or process extremely large counterexamples to locate faults?

5. Can we use model checking optimization techniques in the context of UML verification?

2.4.3 Challenges in Property Specification

As the results show, only one specification approach, Kanso and Taha (2012), has support of

Dwyer’s patterns [49]. Bradfield et al. (2002) does not support the patterns, but introduced property

templatest that are similar to Dwyer’s patterns. Although common knowledge of the Dwyer’s

patterns suggests that they are useful, this knowledge is only based on one study performed by

the designers of the patterns in 1999 [78]. They claim that 92% out of 555 different properties are

specifiable using their patterns. The specifications are taken from different application domains that

include: hardware protocols, communication protocols, GUIs, control systems, abstract date types,

avionics, operating systems, distributed object systems, and databases. However, more recent

evaluation studies are needed to evaluate the expressiveness of the patterns in defining properties

in new kinds of systems and new types of requirements.

Another open research direction could be devoted towards discovering properties. The analysis

approaches assume that the temporal properties of a particular system are known, and are ready

to be specified and analyzed. This is not the case in complex systems. If designers are not aware

41

of the properties, they do not get specified and analyzed, which, in turn, could lead to undesired

system behavior. Therefore, developing techniques to discover properties enhances the reliability

of a system because such methods will determine the set inherent system properties that make sure

the system is not under-specified.

These are the research questions that need to be answered for advancing property specification:

1. How can we formulate temporal properties in a graphical manner that supports both human

communication as well as analysis amenability?

2. How can we determine if two temporal properties are semantically equivalent?

3. What are the types of properties that cannot be expressed by Dwyer’s patterns? How can we

evaluate the expressiveness of the patterns?

4. If Dwyer’s patterns are limited, how can we extend them, yet maintain analyzablity and

expressiveness?

5. How can we discover temporal properties that a system needs to satisfy?

2.4.4 Tooling Challenges

Software tools are the at the front-end of any software development paradigm. Software en-

gineers base their opinion of the usefulness of a paradigm based on the quality of tools pro-

vided [82, 83]. Having quality tools maximizes the benefits of a paradigm and minimizes the

difficulties designers go through to learn the paradigm. The importance of having quality tools in

the success of a particular technique can be demonstrated by comparing tools in model checking

and MDE. On one hand, one of the main strengths of model checking is its powerful tools that

are capable of uncovering faults in industrial systems, as discussed in Secttion 2.1. On the other

hand, many researchers have pointed out that inadequate MDE tools are one of the main barriers

to industrial adoption of MDE [16, 84, 85, 86, 87].

Like other MDE tools, the current UML-based model checking frameworks suffer the inad-

equacy problem. These frameworks lack features that make them efficient, effective, and usable

42

for use by UML designers. As discussed above and shown by Table 2.8, many of the approaches

use transformation. France and Rumpe [8] contend that it is challenging to ensure that the trans-

formation is semantically correct, and it is difficult to hide the complexities of the target model

checking languages and tools from UML designers. Consequently, these two challenges limit both

the effectiveness and the efficiency of these methods. The SLR results also show that many of

the approaches do not provide optimization techniques specific to UML models; this restricts the

scalability to check realistic systems. Finally, all the approaches are heavyweight; as such, they

demand a significant investment from the users to learn and to use the notations.

These are the research questions that need to be answered for building better UML-based tools:

1. What are the desirable features of UML-based model checking tools that minimize acciden-

tal complexity?

2. What are the aspects that make the development of an effective UML-based model checker

difficult?

3. How can we leverage the model checking optimization techniques in the context of model

checking UML models?

4. Is developing a lightweight analysis approach usable in this context?

This subsection discusses the challenges developers using UML face when using the current

UML-based model checking tools. The tooling challenges listed above agree with the results that

have been observed by many MDE practitioners and researchers. For example, Bran Selic [16]

asserts that overcoming the shortcomings of MDE tools is probably the most challenging issue that

needs to be addressed to make MDE a standard practice in the industry. He declares “Specifically:

the tools are far too complicated for most developers." The results of the SLR support Selic’s

contention.

Though inadequate tools are one factor of the slow adoption of MDE practices, one can argue

that the current state of MDE approaches makes developing useful tools difficult. In particular,

many MDE researchers, such as Selic, France, Rumpe, and Whitle document many of the MDE

43

technical challenges [8, 16, 83]. Adequately addressing these difficulties will pave the way for

developers to produce effective tools.

2.5 Chapter Summary
This chapter examined the field of applying model checking techniques in the analysis of sys-

tems that are specified using UML. The material was categorized into specification and analysis

approaches and the SLR method was applied to define and obtain answers to specific questions

that are related to the two types of methods. The answers to the questions helped us identify open

problems and gaps in the research.

The primary results of the SLR study are the identified challenges and open problems. Many of

the existing approaches and tools are inadequate, and they introduce accidental complexities that

affect their usability and effectiveness. The challenges were formulated as open research questions,

that if properly addressed, will improve the state-of-the-art research. The open research questions

were classified into the following groups: (1) specification and analysis integration, (2) model

transformation, (3) property specification and patterns, and (4) tooling. It is a mission of the MDE

community to seek answers to these questions, as they might yield insights that apply to other

areas of MDE, such as model transformation and development of MDE-based tools. The research

discussed in this dissertation intends to develop a framework that addresses some of the challenges

presented in this chapter. The following chapter describes the proposed UML framework.

44

Chapter 3

The Proposed UML Framewrok

The results of the SLR study, discussed in the previous chapter, identifies some challenges.

These difficulties are grouped into four categories: (1) challenges related to integrating speci-

fication and analysis, (2) model transformation challenges, (3) temporal property specification

challenges, and (4) challenges associated with existing MDE tools. In this chapter, we focus on

addressing some of the challenges related to integrating specification and analysis, and property

patterns. In the following chapter, we address some of the tooling challenges. This chapter dis-

cusses and provides details of how the proposed UML framework addresses some of the problems.

Specifically, the framework consists of the following techniques and their associated implementa-

tions:

1. A UML-based analysis technique that exclusively uses UML notations and tools

2. A property specification technique that improves the process of specifying temporal proper-

ties for UML designers

3. An optimization technique that reduces the time needed for analysis, allowing the analysis

to be scaled to larger UML models

The rest of the chapter is organized as follows. An overview of the proposed approach is given

in Section 3.1. In Section 3.2, I illustrate the proposed analysis technique using a simple example.

Section 3.3 describes how UML designers can use the specification method to specify temporal

properties. In Section 3.4, I describe the optimization technique.

45

(a) Current approaches (b) Proposed approach

Figure 3.1: A comparison between the research trend and the proposed approach. Note that using the
proposed approach, no transformations are required to/from model checking languages and tools, and the
model type used is a design class model instead of state machine or activity models.

3.1 Overview of the Framework

3.1.1 The framework design decisions

Figure 3.1 shows how the proposed framework deviates from the state-of-the-art approaches.

Two design decisions make the framework unique:

1. Design decision 1: Building “native” UML-based techniques and tools to do the specifica-

tion and the analysis tasks. Recall that a native UML-based technique is defined as one that

exclusively uses UML notations and tools.

2. Design decision 2: Using the UML design class model to specify both the system struc-

ture and behaviors that are expressed in OCL pre- and postconditions instead of UML state

machines or activity models.

Instead of transforming UML models to model checking languages and tools (as many state-

of-the-art approaches), the proposed framework uses UML notations and tools for specifying and

analyzing temporal properties.

Design decision 1 has some consequences. On the positive side, this design decision is intended

to eliminate the accidental complexities that the UML designers face when they transform UML

46

designs to model checking languages and tools. It is also aimed at making the framework more

usable to the UML designers since they are not required to gain expertise of the model checking

techniques used to either specify temporal properties or to understand the analysis results. There-

fore, the proposed framework is more “fit-the-purpose” for UML designers than other methods

requiring learning technologies that UML designers are not accustomed to using.

On the negative side, UML designers lose the power that model checking techniques and tools

provide. For example, the model checking community has developed some of the best software

systems such as SPIN 5. A set of mature optimization algorithms also exists that alleviate the

state explosion problem. Also, the property specification patterns (Dwyer et al. [49]) are defined

in formal languages that are processed by different model checkers. By developing a “native”

UML-based framework, UML designers lose these powerful tools and techniques.

To address the negative side of the design decision 1, we need to develop techniques and tools

whose functionality are similar to those of model checking techniques. This chapter discusses the

analysis, specification, and the optimization techniques that aim to address the functionality.

Traditionally, the behavior of a system is modeled using UML state machines or UML ac-

tivity diagrams. Unlike the state-of-the-art approaches that use UML state machines and activity

diagrams, the proposed framework utilizes UML design class models that are augmented with

operation specifications to specify the behavior.

This design decision has some consequences as well. On the positive side, UML class models

play a central role in MDE software development. All other types of models require a class model

to be consistent. For example, a UML state machine is a model that represents the behavior of

objects that are instances of classes in a class model. Relying on UML design class models to

specify the behavior brings some advantages. First, UML designers are more accustomed to using

class models to specify their designs than other types of UML models [10, 15]. Other types of UML

models need to be consistent with UML class models. Using the UML class model to define both

the structure and the behavior of the system eliminates the need to check the consistency between

5SPIN model checker was the winner of the 2001 ACM Software System Award [28]

47

different types of models. Lastly, many mature UML tools, such as USE Model Validator [60] and

OCLE [88], are built based on UML class models . Therefore, these tools and similar ones can

take advantage of the techniques developed in this dissertation.

Two issues arise concerning the use of OCL to represent behavior. Different model types have

different expressive power; therefore, certain models can not express certain properties, but others

can and vice versa. The first issue is concerning the expressiveness power of OCL to describe the

behavior of a system and whether OCL is as expressive as UML state machines or activity models.

Researchers have shown that UML class models augmented with OCL operation specifications

can represent the same behavior of a system as state machines [89, 90]. Consequently, UML

designers can use class models, augmented with OCL operations specification, without sacrificing

the expressiveness of UML state machines.

The second issue is that OCL is a textual language, and might not be as intuitive as the graphical

representations of behavior such as UML state machines or activity models. For some people,

representing the operations conditions in OCL textually is more involved than drawing some state

machines visually. Choosing the model type to represent behavior is a preference matter as some

designers like visual representation and others prefer textual form. Even for designers who like to

represent behavior using state machines, OCL is still needed to describe other aspects of the design

such as class invariants and state machines conditions. Therefore, one can argue that the use of

OCL is unavoidable.

3.1.2 Motivating Example

To put the two design decisions into context, consider the UML design class model in Fig-

ure 3.2. The figure presents a model of a simple traffic light controller. The behavior of the system

is specified using operation specifications that are expressed in OCL. The system consists of a set

of traffic lights and pedestrian buttons. Each of the lights is connected to some buttons. Three oper-

ations change the state of the system, i.e., requestPass(), switchCarLight(), and switchPedLight().

Intuitively, a pedestrian requests to cross the street by pressing a pedestrian button and waits for

48

Figure 3.2: A design class model of simple traffic light system

the pedestrian light to become green. Cars can pass when no pedestrian requests to cross the street.

By pressing the button, the requestPass() operation is invoked causing the light connected to the

button to be claimed. The switchCarLight() and switchPedLight() are invoked to change the color

of the car light and pedestrian light from green to red and vice versa, respectively. The pre- and

postconditions of the operations are expressed as OCL specifications in Figure 3.2.

Suppose that a UML designer needs to check if the system satisfies the following temporal

property “after requesting to cross the street, a pedestrian should eventually be able to cross the

street.” To check the property, the UML designer first needs to formally specify it. Traditional

OCL, being a first-order logic, cannot specify this temporal property as it specifies a constraint

on a sequence of states, which is a requirement that is hard to express in first-order logic. That

is, OCL is only capable of expressing state invariants restricting permissible object configurations

in one state whereas a temporal property restricts the allowable sequence of states. To define

the property, we can use a temporal extension to OCL (e.g., any of the specification approaches

described in Chapter 2). Our proposed framework uses the TOCL language to specify the above

temporal property. The TOCL property is given below. (Section 3.3 describes the specification

technique used to obtain such expression.)

context TrafficLight inv Pedestrians_Can_Cross_Street:

49

(self.requested = true implies sometime self.pedLight= # Green) and

(self.pedLight= # Green implies sometimePast self.requested = true)

There are few points that are worth noting regarding the above TOCL expression. First, the

expression is a temporal property, not a state invariant although it uses the inv OCL keyword. Sec-

ond, the notations used to specify the property are similar to OCL. A UML designer who is trained

to use OCL will find TOCL more familiar than notations such as LTL or CTL. Lastly, sometime

and sometimePast are temporal operators . These operators provide the required constructs to

specify the requirement that something eventually becomes true or has become true in the past.

TOCL provides other operators such as next, always, and until to specify many kinds of temporal

properties.

Given the system and the TOCL specification, we must answer the question: Does the sys-

tem behavior specified by the operation specifications allow a system execution that violates the

temporal property?

3.2 The Analysis Technique
We answer the question above with a lightweight analysis technique. Figure 3.3 presents a

general overview of the technique’s steps and Figure 3.4 provides details to applying the steps to

the simple traffic light system. At the front-end of Figure 3.3, a UML designer is responsible for

1) creating an Application Design Class Model (ADCM) and 2) defining a temporal property in

TOCL. An ADCM has structural and behavioral aspects similar to the traffic light class model

shown in Figure 3.2. A TOCL property is an instance of a property specification pattern (sec-

tion 3.3). Conceptually, at the back-end, the USE model validator generates a set of scenarios

against which the temporal property is checked. A scenario is a sequence of state transitions that

describes a particular system execution. If the ADCM model allows scenarios that violate the

property, the tool returns one such scenario as a counterexample.

As depicted in Figure 3.3, the technique involves four main steps that are explained in more

details using the traffic light example in Figure 3.4.

50

Figure 3.3: An Overview of the Analysis Approach, extended from our previous work (Al-Lail et al. [73]).

3.2.1 Step1: Unfolding of the ADCM’s Behavior Figure. 3.4(a)

An ADCM has structural and behavioral components. Step 1 integrates these two aspects in a

form amenable for temporal analysis. Towards this goal, Step 1 systematically converts anADCM

to another class model called Snapshot Transition Model (STM). An STM represents all valid

sequences of state transitions (i.e., S0, t0, S1, t1, etc.). Like any transition model, an STM has

states and transitions (refer to 3.4(a)) for the visual representation). A state in an STM is called

a snapshot and it is a UML structured class that represents a configuration of objects. In UML, a

structured class is a class that contains other classes as its parts. For example, S0 can be a snapshot

in which two objects are linked and their attribute values are provided. In the context of STMs,

transitions are objects of the Transition class. These transition objects represent operation calls

and have an association with the before and the after snapshots. For example, T0 is an object that

could represent a call for an operation that changes an attribute’s value or delete a link between two

objects. This operation call, along with its attributes, is represented as an object of the Transition

class. Query operations of an ADCM do not have side-effects on the system state; therefore, they

are not transitions and do not need to be represented in an STM. As such, an STM captures all

51

+switchCarLight() : Color
+switchPedLight() : Color

TrafficLight

-requested : Boolean
-pedLight : Color
-carLight : Color

+requestPass()

PedestrianButton

-counter : Boolean

-light 1

-button 1..*

Transition

-nextS1

-beforeT 0..1

-beforeS 1

-nextT0..1

PedestrianButton_requestPass

-PedButtonPre : PedestrianButton
-PedButtonPost : PedestrianButton

TrafficLight_switchCarLight

-TrafficLightPre : TrafficLight
-TrafficLightPost : TrafficLight
-ret : Color

Application Design Class Model(ADCM) Snapshot Transition Model(STM)

Before

After

«enumeration»
Color

+Green
+Red

TrafficLight_switchPedLight

-TrafficLightPre : TrafficLight
-TrafficLightPost : TrafficLight
-ret : Color

context PedestrianButton::requestPass()
pre: self.light.pedLight=#Red
post:self.light.requested=true

context TrafficLight::switchCarLight()
pre: true
post:self.carLight != selfcarLight@pre

context TrafficLight::switchPedLight()
pre: self.requested = true
post: self.pedLight != self.pedLight@pre
post: self.requested=false

Operation Specifications

ID : int
counter : Boolean

PedestrianButton

ID : int
requested : Boolean
pedLight : Color
carLight : Color

TrafficLight
«enumeration»

Color

+Green
+Red

context PedestrianButton_requestPass
inv:PedButtonPre.light.pedLight=#Red
inv:PedButtonPost.light.requested=true

context TrafficLight_switchCarLight()
inv:TrafficLightPost.carLight <> TrafficLightPre.carLight

context TrafficLight_switchPedLight()
inv: TrafficLightPre.requested = true
inv: TrafficLightPost.pedLight <> TrafficLightPre.pedLight
inv: TrafficLightPost.requested=false

Snapshot Traversal Operations

Transitions Invariants

context Snapshot::getNext():Snapshot
context Snapshot::getPost(): Set(Snapshot)
context Snapshot::getPrevious():Snapshot
context Snapshot::getPre(): Set(Snapshot)

-light1
-button1..*

(a) Step1: Unfolding of the ADCM ’s behavior as an STM

context TrafficLight
inv: self.requested= true
implies
next self.pedLight= #Green

TOCL Property specified in ADCM

 Pedestrians should be able
to cross the street in next
state if they request to cross
in the current state.

context TrafficLight
inv: let NextSnapshot:Snapshot=self.Snapshot.getNext()
in self.requested=true implies
NextSnapshot.TrafficLight.pedLight=#Green

OCL Property specified in STM

(b) Step2: Interpreting TOCL as OCL, note Step 3, analysis is carried out by USE Model Validator and is
not shown in this diagram

S1:Snapshot S3:Snapshot S2:Snapshot

b1:PedestrianButton b2:PedestrianButton

requestPass()

requestPass()

Sequence diagram

PedButtonPre : PedButton = b4
PedButtonPost : PedButton = b6

rp2 : PedestrianButton_requestPass

PedButtonPre : PedButton = b1
PedButtonPost : PedButton = b3

rp1 : PedestrianButton_requestPass

ID : int = 2
counter : Boolean = false

b2 : PedestrianButton

ID : int = 3
requested : Boolean = false
pedLight : Color = Red
carLight : Color = Green

tl1 : TrafficLightID : int = 1
counter : Boolean = false

b1 : PedestrianButton

ID : int = 2
counter : Boolean = true

b6 : PedestrianButton

ID : int = 3
requested : Boolean = true
pedLight : Color = Red
carLight : Color = Green

tl3 : TrafficLightID : int = 1
counter : Boolean = tue

b5 : PedestrianButton

ID : int = 2
counter : Boolean = false

b4 : PedestrianButton

ID : int = 3
requested : Boolean = true
pedLight : Color = Red
carLight : Color = Green

tl2 : TrafficLightID : int = 1
counter : Boolean = true

b3 : PedestrianButton

Sequence of snapshot transition (counterexample scenario)

BeforeBefore
After After

(c) Step4: Extracting a sequence diagram from a sequence of snapshot transition counterexample scenario

Figure 3.4: An application of the analysis technique to the traffic light system (the conceptual diagram was
initially presented in Al-Lail [91]).

52

possible states of an ADCM (using the Snapshot class) and it keeps information about successive

operation calls that change the states, using objects of the Transition class. This step is called

unfolding of an ADCM behavior.

Step 1, the unfolding of the ADCM ′s behavior step uses the definition of STMs as pro-

vided by members of the Software Engineering group at Colorado State University [61]. In our

research, Step 1 builds on the algorithm for generating STMs from an ADCMs. Ordinary

STMs, as described by Yu et al. [61], do not support the specification and analysis of tem-

poral properties. Towards this goal, the STM generation process is improved by defining the

SnapshotTraversalQueryOperations to add the needed support for temporal properties. In ad-

dition, we extended the generation process to provide support for other UML concepts such as

inheritance.

An STM is formed by:

1. creating the Snapshot class whose instances represent states,

2. creating a hierarchy of transition classes in which each concrete subclass represents calls of

an operation specified in the ADCM ,

3. converting operation specifications specified in an ADCM to invariants on the transitions

representing operation calls in the STM ,

4. defining the SnapshotTraversalQueryOperations, and

5. adding invariants to ensure well-formed STMs.

The first three steps above are taken from the algorithm presented by Yu et al. [61]. However,

extensions were added to enhance the algorithm to support various UML concepts such as inher-

itance. Steps four and five are additions to the algorithms. The fourth step provides support for

temporal property specification and analysis. The fifth step ensures that the STM is well-formed.

Concerning the first step (creating the Snapshot class) the concrete classes of an ADCM are

included as parts of the Snapshot structured class in an STM . For example, as shown in Fig-

53

ure 3.4(a), the PedestrianButton and TrafficLight classes in the ADCM are included as parts of

the Snapshot class in the STM . The attributes, associations, and class constraints in the ADCM

classes are transformed to the STM counterpart. Recall that an instance of the Snapshot class is

an object configuration of the system. For example, a snapshot object can have two traffic lights

both of which have a green color for cars to pass and a pedestrian requests one of them.

The original algorithm does not consider cases in which theADCM has inheritance hierarchies

between classes. Because inheritance relations are common in UML class models, this research

adds support of inheritance. If an ADCM contains inheritance hierarchies, they are first flattened

to produce an ADCM that consists only of concrete classes with no inheritance structures. Then

the concrete classes are included as parts of the Snapshot class. Flattening inheritance relations

neither affects class functionality, nor affects the behavior of the system.

The second step creates a hierarchy of transition classes. As shown in Figure 3.4(a), in an

STM , the abstract class Transition represents operation calls that modify the state of a system from

one snapshot to another. Therefore, the Transition class has two associations with the Snapshot

class to represent the before and after snapshots of the operation calls. The operations in ADCM

are specified as subclasses of the Transition class. To create the hierarchy of transition classes in

an STM , an abstract Transition superclass is first created, then a transition subclass is generated

for each operation that has side-effects in an ADCM . To illustrate, there are three operations in

the traffic light ADCM (requestPass(), switchCarLight(), and switchPedLight()). Therefore, three

transition subclasses are created (PedestrianButton_requestPass, TrafficLight_switchCarLight, and

TrafficLight_switchPedLight) to represent the operations. Objects of these transition subclasses

represent specific calls of the operations that the subclasses are derived from. For example, an

object of the PedestrianButton_requestPass class, on the top right side of Figure 3.4(a), rep-

resents a call of the operation requestPass() on a particular object of the PedestrianButton class in

the ADCM .

Note that each Transition subclass has a number of attributes. These attributes are created

to represent: 1) the before and after states of the object on which the operation is called, 2) the

54

parameter values of the operation call, and 3) the return value that the operation returns after the

call. The object on which an operation is invoked is modeled by two references (shown as attributes

in the Transition subclasses) that point to the object’s states before and after the operation call. For

example in Figure 3.4 (a), the PedestrianButton_requestPass transition class has two attributes

PedButtonPre and PedButtonPost that point to the before and after states of the pedestrian button

object that is invoked upon.

The return value of an operation in an ADCM is modeled as an attribute in the corresponding

transition subclass, in the associated STM. For example, consider the swithchPedlight() : Color

operation in the TrafficLight class in the ADCM . The operation returns a value of type Color;

therefore, the TrafficLight_swithchPedLight transition class in the STM has an attribute ret

of type Color.

Operations can have parameters of various types and they need to be represented in the STM .

Parameters that have types other than classes of ADCM (i.e., Integer, Double, Boolean, String,

etc.) are represented as attributes of the corresponding transition subclasses. This representation

is similar to representing the return value of an operation. For example, if the switchPedlight() :

Color operation had a parameter t of type Boolean, the operation’s corresponding transition class

in the STM (TrafficLight_switchPedLight) would have an attribute t of type Boolean.

A parameter of an operation can be of a class type, such as TrafficLight. Each object parameter

of an operation in ADCM is modeled as two attributes representing the before and after states of

the parameter, object, before and after the operation call. Note that in the traffic light system, none

of the operations have parameters.

Recall that the transition subclasses represent operation calls. The third step is concerned with

converting the operations’ pre- and postconditions to invariants defined on the transition subclasses.

These invariants ensure that the transition subclasses are only instantiated when the operation pre-

and postconditions are satisfied. Therefore, the restrictions on the behavior of every operation is

captured in the STM .

55

Table 3.1: An example of converting operation pre- and postconditions to invariants

requestPass() specification in ADCM invariants in STM

context PedestrianButton::requestPass()

pre: self.light.pedLight=#Red

post: self.light.requested=true

context PedestrianButton_requestPass

inv: PedButtonPre.light.pedLight=#Red

inv: PedButtonPost.light.requested=true

Consider the requestPass() specification and the corresponding invariants in Table 3.1. The

invariants in the STM are generated from operation specifications of the ADCM as follows. On

the ADCM side, the pre- and postconditions of the operation have the keyword self that refers

to the before and after states of the object on which the operation is called. These object states

are represented by references in the STM (i.e., PedButtonPre and PedButtonPost) and are defined

using invariants constraining the two references that represent the object on which the operation is

called (i.e., PedButtonPre and PedButtonPost). Similarly, Figure 3.4(a) shows the invariants that

are created from the OCL specifications of switchCarLight() and switchPedLight() operations.

Step four is concerned with defining the Snapshot Traversal Query Operations that aid the

specification and analysis of temporal properties. Recall that temporal properties are those that

involve defining constraints on a sequence of system state. It is necessary to define operations

that navigate a sequence of snapshots. In model checking techniques, operators are defined to

retrieve direct predecessors and successors of a state. Reachable states, from a specific state, are

also defined (see [92, chapter 2]). That is, the Post(s) and Pre(s) operators return the direct

successors and predecessors of a state s.

The process to generate ordinary STMs, as described by Yu et al. [62], however, does not

define operators similar to Post(s) and Pre(s) of model checking. We extended the process to

use Snapshot Traversal Query Operations to address the need for these operators.

Figure 3.4 (a) shows the signatures of the Snapshot Traversal Query Operations. The oper-

ation getNext() returns the next snapshot (direct successor) and the operation getPost()

returns the set of all snapshots that come after a snapshot (reachable states). The operations

56

c o n t e x t S n a p sh o t : : g e t N e x t () : S n a p s ho t
body : s e l f . nex tT . nex tS

c o n t e x t S n a p sh o t : : f u t u r e C l o s u r e (s : S e t (S n a p s ho t)) : S e t (S n a p s h o t)
body : i f i f s−> i n c l u d e s A l l (s . g e t N e x t ()−>a s S e t ()) t h e n s e l s e

f u t u r e C l o s u r e (s−>un ion (s . g e t N e x t ()−>a s S e t ())) e n d i f

c o n t e x t S n a p sh o t : : g e t P o s t () : S e t (S n a p s ho t)
body : s e l f . f u t u r e C l o s u r e (S e t { s e l f . g e t N e x t () })

c o n t e x t S n a p sh o t : : g e t P r e v i o u s () : S n a p s ho t
body : s e l f . b e f o r e T . b e f o r e S

c o n t e x t S n a p sh o t : : p r e v i o u s C l o s u r e (s : S e t (S n a p s ho t)) : S e t (S n a p s h o t)
body : i f s−> i n c l u d e s A l l (s . g e t P r e v i o u s ()−>a s S e t ()) t h e n s e l s e

p r e v i o u s C l o s u r e (s−>un ion (s . g e t P r e v i o u s ()−>a s S e t ())) e n d i f

c o n t e x t S n a p sh o t : : g e t P r e () : S e t (S n a p s ho t)
body : s e l f . p r e v i o u s C l o s u r e (S e t { s e l f . g e t P r e v i o u s () })

Listing 3.1: The OCL definitions of the Snapshot Traversal Query Operations

getPrevious() and getPre() are defined similarly. Listing 3.1 provides the OCL defini-

tions of these operations. Note that getPost() and getPre() define reachable snapshots and

require the concept of transitive closure operator to retrieve all the future and previous snapshots.

We defined a transitive operation using recursion since the OCL standard lacke a defintion of

transitive closure when we began the work. The OCL standard now includes a transitive closure

operator and part of our future work is to take advantage of it.

The operations getPost() and getPre() are defined recursively to specify transitive clo-

sure. These operations (getNext(), getPost(), getPrevious(), and getPre()) were defined and

tested with the OCL evaluator of the USE tool. An example of the expected results for getPost()

is shown in Figure 3.6. Appendix A shows the expected results of other operations.

57

Figure 3.5: An example scenario, produced using USE Model Validator to show the correct functionality
of the Snapshot Traversal Query Operations specified in Listing 3.1.

Figure 3.6: The getPost() operation result when invoked on Snapshot1 of the scenario depicted in Figure 3.5

The last step in generating STMs is to add constraints to the STM model to ensure it is well-

formed. This step is an addition to the algorithm described by Yu et. al. [61]. Table 3.2 lists the

invariants that are added to an STM .

58

Table 3.2: The STM invariants

No. OCL Expression
1

context Snapshot inv AcyclicScenario: - - prevents loops

self.getPost()→excludes(self) and self.getPre()→excludes(self)

2

context Snapshot inv OneScenario: - - ensures all scenarios are balanced

Snapshot.allInstances()→collect(s:Snapshot | s.getPrevious().oclIsUndefined())→size() = 1 and

Snapshot.allInstances()→collect(s:Snapshot | s.getNext().oclIsUndefined())→size() = 1

3

context Transition inv SameTrans : - - ensures only one transition connecting two snapshots

Transition.allInstances()→forAll(t:Transition | (self.nextS = t.nextS and self.beforeS = t.beforeS)
implies self = t)

4

context Snapshot inv SameSnapshot: - - ensures two snapshots are the same if

- - they are proceeded and lead to same transitions

Snapshot.allInstances()→forAll(s:Snapshot | (self.nextT = s.nextT and self.beforeT = s.beforeT)
implies self = s)

5

context PedestrianButton_requestPass inv definedobject:

- - ensures that objects in the before and after snapshots are defined

not self.PedButtonPre.oclIsUndefined() and not self.PedButtonPost.oclIsUndefined()

6

context TrafficLight_switchCarLight

inv definedobject: - - ensures that objects in the before and after snapshots are defined

not self.TrafficLightPre.oclIsUndefined() and not self.TrafficLightPost.oclIsUndefined()

7

context TrafficLight_switchPedLight

inv definedobject: - - ensures that objects in the before and after snapshots are defined

not self.TrafficLightPre.oclIsUndefined() and not self.TrafficLightPost.oclIsUndefined()

8

context PedestrianButton_requestPass

inv sameObjectID: - - ensures that the transitions’ before and after object reference are identical

self.PedButtonPre.ID = self.PedButtonPost.ID

9

context TrafficLight_switchCarLight

inv sameObjectID: - - ensures that the transitions’ before and after object reference are identical

self.TrafficLightPre.ID = self.TrafficLightPost.ID

10

context TrafficLight_switchPedLight

inv sameObjectID: - - ensures that the transitions’ before and after object reference are identical

self.TrafficLightPre.ID = self.TrafficLightPost.ID

59

The first invariant is called AcyclicScenario and it ensures that a scenario generated from

a STM is free of cycles. Loops are not allowed as every snapshot has different objects even

though the objects in two snapshots have the same configurations. Allowing loops, therefore, can

cause incorrect results when analyzing temporal properties. The cycles are prevented by producing

scenarios in which no snapshot is included in the set of the snapshots that follow it or the set

of snapshots that proceed it. The second invariant, OneScenario, makes sure that all possible

scenarios are balanced, they have one start snapshot and one end snapshot. This constraint prevents

creating snapshots that are unreachable or fragments of scenarios that are not well-connected. The

SameTrans constraint ensures that there is only one possible transition connecting two snapshots.

Similarly, the fourth invariant, SameSnapshot declares that if two snapshots can be reached by

the same transition and can lead to the same transition, the two snapshots must be the same. The

definedobject constraints (rows 5, 6, and 7) make sure that objects in the before and after snapshots

are defined. The sameObjectID invariants (rows 8, 9, and 10) ensure that the transitions’ objects

before and after states are referencing the same objects.

3.2.2 Step2: Interpreting TOCL as OCL Figure 3.7

A temporal property checked by the analysis technique is an instance of a property pattern

specified in TOCL (Section 3.3). Traditionally, a temporal logic formula, expressed in LTL, CTL,

or TOCL, is interpreted as a first-order logic formula on the traces of a transition system. This is the

standard method of defining the semantics of temporal logic languages [92]. In a similar manner,

the TOCL property is interpreted as OCL first-order logic expression defined in the context of the

STM that describes system traces. OCL can define constraints in UML class models; hence, it

can be used to restrict an STM . Step 2 of the analysis technique mechanically generates an OCL

expression constraining the STM from the TOCL property.

Consider the TOCL and OCL properties in Figure 3.7. The temporal property expresses the

requirement that when a traffic light is requested, pedestrian light becomes green in the next state.

To specify this property in TOCL notations, a UML designer needs to specify a context of the prop-

60

context TrafficLight
inv: self.requested= true
implies
next self.pedLight= #Green

TOCL Property specified in ADCM

 Pedestrians should be able
to cross the street in next
state if they request to cross
in the current state.

context TrafficLight
inv: let NextSnapshot:Snapshot=self.Snapshot.getNext()
in self.requested=true implies
NextSnapshot.TrafficLight.pedLight=#Green

OCL Property specified in STM

Figure 3.7: Step two of the analysis technique: Interpreting TOCL as OCL, same as Figure 3.4(b), presented
here for ease of access

erty. The context is the TrafficLight class. The TOCL expression states that the traffic light being

requested (self.requested = true) implies that in the next state (specified by the TOCL temporal

operator next) the traffic light for the pedestrian should be green (self.pedLight = #Green).

The TOCL property is interpreted on the STM using OCL expressions as follows. In the

OCL property, the auxiliary variable NextSnapshot is defined using the snapshot traversal opera-

tion getNext(). Having defined what the next state is, the OCL expression then asserts that if a

traffic light is requested, the pedestrian light should be green in the NextSnapshot (e.i., NextSnap-

shot.TrafficLight.pedLight = # Green).

Figure 3.8 provides a graphical representation of the STM of the traffic light system, produced

using USE Model Validator. Appendix A provides the complete USE textual specification of this

system. The appendix includes the snapshot traversal operations, transitions invariants, the STM

invariants, and the OCL expression of the temporal property. We have validated all of these by the

USE Model Validator.

3.2.3 Step 3: Analysis.

Step 1 (unfolding the behavior of ADCM as STM) and Step 2 (interpreting TOCL as OCL

on STM) pave the way for the analysis task in Step 3. The problem of checking TOCL properties

on an ADCM model is reduced to checking OCL on an STM. To check the validity of a TOCL

property on an ADCM , the USE model validator [93] searches for a counterexample scenario (an

instance of STM) that violates the corresponding OCL property.

61

Figure 3.8: The graphical representation of the STM of the traffic light system, produced using USE Model
Validator. The model includes the tested snapshot traversal operations, transitions invariants, the STM
invariants, and the OCL representation of the temporal property. This figure shows the correctness of the
UML and OCL specification of the model.

62

Analysis techniques such as model checking that rely on exhaustive search for a counterexam-

ple suffer from the state explosion problem. For UML-based systems, the state explosion problem

is even worse due to the dynamic allocation and deallocation of objects [94]. Additionally, in these

systems, a class can have unlimited number of objects. An STM, therefore, allows the generation

of an infinite number of scenarios. However, as computers have finite memory and computation

power, the analysis must be restricted to check limited scenarios. Unlike heavyweight analysis

techniques, such as traditional model checking in which the analysis exhaustively searches all pos-

sible executions of the system, our proposed analysis technique follows a lightweight approach to

checking properties. That is, the analysis technique considers only a subset of allowable scenarios

by an STM; which in turns makes the analysis computable and feasible.

We use two methods to constrain search space: search-scope and search-depth. The first

method is the small-scope hypothesis that has been suggested by Daniel Jackson [63]. A search-

scope defines the number of objects to be created for each class in a snapshot. To illustrate, if

the search-scope is five, the USE Model Validator creates five objects of each class belonging to a

particular Snapshot. The small-scope hypothesis states if a system violates a property then a small

counterexample, which shows the violation, is likely to exist.

The second method is the search-depth that researchers in the area of Bounded Model Checking

have applied [64]. A search-depth specifies the number of transitions (objects of the Transitions

class in our case) to be considered in an analysis task. To illustrate, a designer could set the search-

depth to 100, in such a case the tool only creates and checks all the possible scenarios that have up

to 100 transitions.

Putting the two methods in the context of the analysis technique, if an STM violates a temporal

property, a small counterexample is likely to exist. A UML designer sets the search-scope and

search-depth parameters and runs the tool to find a counterexample within the constrained search

space. If the analysis fails to find a counterexample, the designer might increase the search-scopes

and the search-depth and run the analysis task again to provide higher confidence that the property

holds. However, failure to find a counterexample does not guarantee the validity of a temporal

63

S1:Snapshot S3:Snapshot S2:Snapshot

b1:PedestrianButton b2:PedestrianButton

requestPass()

requestPass()

Sequence diagram

PedButtonPre : PedButton = b4
PedButtonPost : PedButton = b6

rp2 : PedestrianButton_requestPass

PedButtonPre : PedButton = b1
PedButtonPost : PedButton = b3

rp1 : PedestrianButton_requestPass

ID : int = 2
counter : Boolean = false

b2 : PedestrianButton

ID : int = 3
requested : Boolean = false
pedLight : Color = Red
carLight : Color = Green

tl1 : TrafficLightID : int = 1
counter : Boolean = false

b1 : PedestrianButton

ID : int = 2
counter : Boolean = true

b6 : PedestrianButton

ID : int = 3
requested : Boolean = true
pedLight : Color = Red
carLight : Color = Green

tl3 : TrafficLightID : int = 1
counter : Boolean = tue

b5 : PedestrianButton

ID : int = 2
counter : Boolean = false

b4 : PedestrianButton

ID : int = 3
requested : Boolean = true
pedLight : Color = Red
carLight : Color = Green

tl2 : TrafficLightID : int = 1
counter : Boolean = true

b3 : PedestrianButton

Sequence of snapshot transition (counterexample scenario)

BeforeBefore
After After

Figure 3.9: Step four of the analysis technique: Sequence diagram extraction, same as Figure 3.4(c), pre-
sented here for ease of access.

property because the analysis only covers a subset of the entire search space. In this case, the

analysis tool outputs a message indicating that the property is maintained within the given search-

scope and search-depth. In the case that the property is violated within the constrained search

space, the tool generates a counterexample scenario that shows how the requirement is broken.

The counterexample is an instance of the STM which is a UML object diagram. This format

should enhance the understandability of the counterexample.

Figure 3.9 shows the counterexample scenario of our example system that violates the TOCL

property shown in Figure 3.7. To uncover the fault, the designer must examine the counterexample.

Recall that the property states that when the traffic light is requested, the light of pedestrian should

be green in the next state. The scenario violates the property because the traffic light is requested in

snapshot S2 (i.e., requested=true), but the pedestrian light did not turn green in the next snapshot

S3 (i.e., pedLight=Red).

3.2.4 Step 4: Sequence diagram extraction Figure 3.9.

Step 4 is concerned with interpreting the counterexample. Because of the large number of

objects and transitions a counterexample scenario might have, the result of the analysis may be

complicated and difficult to examine. A design class model having few classes and few operations

64

Algorithm 1 Snapshot Transitions to Sequence Diagram
Input: Sequence of Snapshot Transition
Output: Sequence diagram
Algorithm Steps: For every object of the Class transition do
Step 1. Get the class name and the operation name that associated with transition.
Step 2. Get the object on which the operation is invoked on.
Step 3. Get the operation parameters from the transition object attributes.
Step 4. Get the return value from the ret attribute of the transition object.
Step 5. Draw a timeline for the object that the operation is invoked on from step 2.
Step 6. Draw an operation call on the object using the name of the operation and its attributes
from steps 1, and 3 above.
Step 7. Draw a return message of the operation with the value from step 4.

could make the results of the tool very complicated. We developed an algorithm that aids the

examining process Al-Lail et al. [95]. The algorithm extracts a sequence diagram from a scenario.

The designer can use the details of the sequence of the snapshot transition counterexample (the

output of Step 3) to uncover the fault. The sequence diagram shows the operation calls that were

performed on objects that resulted in the violation. Algorithm 1 provides a systematic way to

achieve this objective.

3.3 The Property Specification Technique
Recall that specifying temporal properties in formal languages such as LTL and CTL can be

challenging, as asserted by model checking experts [48, 49, 66, 78]. Specifying temporal properties

may be more challenging for UML designers who might not have strong mathematical training in

LTL and CTL languages.

The third objective of this dissertation is to improve the process of specifying temporal prop-

erties for UML designers. The technique improves the process by using property specification

patterns that ease the effort required to specify properties, and by providing UML-based language

representations of the patterns.

Section 3.3.1 provides the background on property specification patterns and section 3.3.2 gives

the details of the specification technique.

65

Figure 3.10: Dwyer’s patterns classification hierarchy, taken from Kanso’s et al. [72]

3.3.1 Dwyer’s Property Specification Patterns

The difficulty of specifying temporal logic properties was tackled by Dwyer et al. [49] using

patterns. They developed eight property specification patterns in different formal languages such

as LTL, CTL, and QRE. The patterns are categorized in two groups, as depicted in Figure 3.10:

— Occurrence patterns: Concerned with the occurrence of a given event or state during sys-

tem execution.

— Order patterns: Concerned with relative order in which multiple events or states occur

during system execution.

A pattern intends to specify a set of behavioral requirements that a designer wants a system’s

execution to exhibit or avoid. Table 3.3 provides descriptions of the patterns. Although there are

eight patterns, only three patterns (Response, Universality and its dual Absence) account for 80%

of the sample specification that included 511 temporal properties Dwyer et al. [66].

A scope of a temporal property defines the portion of a system’s execution where the property

must hold 6. A scope of a temporal property is determined by specifying a starting and an ending

state/event for the intended behavioral requirement. That is, the scope consists of all states/events

beginning with the starting state/event and up to, but not including, the ending state/event. Fig-

ure 3.11 depicts the scopes graphically and Table 3.4 specifies the portion of the system execution

6 Note that a scope of a temporal property is different from the search-scope used in analysis.

66

Table 3.3: Descriptions of Dwyer’s patterns, taken from Dwyer’s et al. [49], organized in a table.

Occurrence Patterns
Pattern Intent
Absence To describe a portion of a system’s execution that is free of certain events or states. Also

known as Never
Universality To describe a portion of a system’s execution which contains only states that have a desired

property. Also known as Henceforth and Always.
Existence To describe a portion of a system’s execution that contains an instance of certain events

or states. Also known as Eventually.
Bounded Existence To describe a portion of a system’s execution that contains at most a specified number of

instances of a designated state transition or event.
Order Patterns

Precedence To describe relationships between a pair of events or states where the occurrence of the
first is a necessary precondition for an occurrence of the second. We say that an occurrence
of the second is enabled by an occurrence of the first.

Response To describe cause-effect relationships between a pair of events/states. An occurrence of
the first, the cause, must be followed by an occurrence of the second, the effect.

Response Chains To describe a relationship between a stimulus event (P) and a sequence of two response
events (S,T) in which the occurrence of the stimulus event must be followed by an occur-
rence of the sequence of response events within the scope.

Precedence Chains To describe a relationship between an event or state P and a sequence of events or states
(S, T) in which the occurrence of S followed by T within the scope must be preceded by
an occurrence of the sequence P within the same scope.

Global

Before &
I

After Q

Between Q and R

After & until R

State Sequence R Q QRQ

Figure 2: Pattern Scopes

because they are relatively easy to encode in specifica-
tions and they have been the most commonly encoun-
tered in the real property specifications we studied. It
is possible, however, to define scopes that are open-left
and closed-right; we explain how to construct these vari-
ants of the mappings in a special part of the pattern sys-
tem (described below). In event-based formalisms the
underlying model does not allow two events to coincide,
thus event-delimited scopes are open at both ends.

Figure 2 illustrates the portions of an execution that
are designated by the different kinds of scopes. We note
that a scope itself should be interpreted as optional; if
the scope delimiters are not present in an execution then
the specification will be true.

Scope operators are not present in most specification
formalisms (interval logics are an exception). Never-
theless, our experience indicates that many informal re-
quirements are specified as properties of segments of
program executions. Thus a pattern system for proper-
ties should mirror this view to enhance usability.

We note that the various specification formalisms have
different semantics and expressive power, and that a
property that can be expressed easily in one formalism
may be unnatural, or even impossible to capture pre-
cisely, in a different formalism. For instance, in state-
based formalisms such as LTL or CTL, it is reasonable
to specify that a certain proposition hold throughout a
scope (the Universality pattern), and to regard this as
being in some sense dual to the Absence property stat-
ing that a proposition holds at no state in the scope.
In event-based formalisms, although it is easy to re-
quire that only certain events occur within a scope, the
property that a proposition holds throughout the scope
would probably be expressed in terms of the appropriate

occurrence of an event indicating that the proposition
has become true and the absence of an event indicating
that it has become false, which does not bear a sim-
ple relation to the Absence pattern. Similarly, we note
that some formalisms can express conditions involving
infinite executions, while others are limited to finite se-
quences of states or events. Although we expect that,
in practice, almost all of the properties to be specified
can be expressed in almost all of the com.monly used
formalisms, the pattern system should point out these
differences to the user.

A System of Specification Patterns
We have developed a system of property specification
patterns for finite-state verification tools. The pattern
system is a set of patterns organized into one or more
hierarchies, with connections between related patterns
to facilitate browsing. A user would search. for the ap-
propriate pattern to match the requirement being spec-
ified, use the mapping section to obtain a template of
the property in the formalism used by a particular tool,
and then instantiate that template by plugging in the
state formulas or events specific to the requirement.

In defining a specification formalism, one attempts to
give a small set of independent concepts from which
a large class of interesting specifications can be con-
structed. With the collection of specification patterns,
however, we are neither trying to give a smallest set that
can generate the useful specifications nor a complete
listing of specifications. Patterns are in the system be-
cause they appear frequently as property specifications.
We hypothesize that only a small fraction of the possible
properties that can be specified using logics or regular
expressions commonly occur in practice. These proper-
ties, and simple variants of them, make up our pattern
system. We expect the set of patterns to grow over
time as developers encounter property specifications of
real systems that do not easily map onto the existing
patterns.

The Patterns
Space limitations prohibit description of the patterns
in full detail; for that we have set up a web-site IS].
The full patterns contain additional examples, explana-
tion of relationships among the patterns, and mappings
to various formalisms. A list of our set of patterns,
with short descriptions, follows. In the descriptions, for
brevity, we use the phrase “a given state/event occurs”
to mean “a state in which the given state formula is
true, or an event from the given disjunction of events,
occurs.”

Absence A given state/event does not occur within a
scope.

Existence A given state/event must occur within a

414

Figure 3.11: Graphical representations of Dwyer’s patterns scopes, taken from Dwyer’s et al. [49]

for the scopes. For example, to specify the requirement that the system should react to a particular

event, a designer can use the response pattern in the global scope.

3.3.2 Dwyer’s Patterns in TOCL and OCL

The patterns of Dwyer’s et. al. are very useful to specify temporal properties in formal lan-

guages such as LTL, CTL, and QRE. We defined the patterns of Dwyer et al. in two UML-related

languages to accommodate UML designers:

67

Table 3.4: Scopes of temporal properties, descriptions are taken from Dwyer’s et al. [49], organized in a
table here.

Scope Portion of the system execution
Global The entire system execution
Before Q The execution up to a given state/event
After Q The execution after a given state/even
Between Q and R Any part of the execution from one given state/event to another given state/event
After Q until R Like the between scope but the designated part of the execution continues even if

the second state/event does not occur

1. TOCL that is used for specification of temporal properties on an ADCM .

2. OCL interpretation of TOCL on an STM that is used for analysis.

Table 3.5 shows the specification of the response pattern in TOCL and OCL notations. In

this section, we also give the specification of the Universality pattern; appendix B provides the

specifications of the other six patterns. We developed graphical illustrations of these patterns. For

example, the graphical representation of the response pattern is shown in Figure 3.12.

Note that the parts of the patterns that are between square brackets (e.g., [S |= P]) must be

replaced when instances of the patterns are specified. The expression [S |= P] in the OCL patterns

means that the property P holds in the snapshot S. P is an OCL boolean expression in the context

of a class, for example C. When using the patterns to write temporal properties, the OCL expression

representing S |= P is generated by navigating from the Snapshot S to C, the context of the OCL

expression P.

A user of the specification technique must follow two steps to specify a temporal property: (1)

determine the TOCL pattern and the scope that best fit a temporal requirement, and (2) derive a

TOCL property by replacing the parameters of the pattern with actual context and conditions. Each

TOCL pattern has interpretation rules to automatically generate the OCL counterpart. Figure 3.14

shows the graphical representation of these interpretation rules for the response pattern in the global

scope. Similar interpretation rules are defined for all TOCL specification patterns.

68

Table 3.5: The response pattern specifications in TOCL and OCL

Scope TOCL in ADCM OCL in STM
Globally

context [Class]

inv: [P] implies

sometime [S]

context [Class]

inv: let CS: Snapshot = self.getCurrentSnapshot(),

in let FS: Set(Snapshot) = CS.getPost()

in [P] implies FS→ exists(s:Snapshot | [s |= S])

Before R

context [Class]

inv: [R] implies

sometime [S]

since [P]

context [Class]

inv: let CS: Snapshot = self.getCurrentSnapshot()

in let BS: Set(Snapshot) = CS.getPre()

in let PS: Set(Snapshot) = BS→ select(s:Snapshot | [s |= S])

in let SS: Set(Snapshot)= BS→ select(s’:Snapshot | [s’ |= S])

in [R] implies PS→forAll(ps:Snapshot |

ps.getPost()→exists(ss:Snapshot | SS→includes(ss)))

After Q

context [Class]

inv: [Q] implies

always ([P] im-
plies

sometime [S])

context [Class]

inv: let CS: Snapshot = self.getCurrentSnapshot()

in let FS: Set(Snapshot) = CS.getPost()

in let PS: Set(Snapshot) = FS→ select(s:Snapshot | [s |= S])

in let SS: Set(Snapshot)= FS→ select(s’:Snapshot | [s’ |= S])

in [Q] implies PS→forAll(ps:Snapshot |

ps.getPost()→exists(ss:Snapshot | SS→includes(ss)))

After Q until R

context [Class]

inv: [Q] implies

always ([P] im-
plies

sometime [S])

context [Class]

inv: let CS: Snapshot = self.getCurrentSnapshot()

in let FS: Set(Snapshot) = CS.getPost()

in let FSR1: Snapshot= FS→select(s:Snapshot | [s|= R])

→ asOrderedSet()→ first(),

in let PS: Snapshot= FS→ any(s:Snapshot | [s |= P]),

SS: Snapshot= FS→ any(s’:Snapshot | [s’ |= S])

in [Q] implies (PS.getPost()→ includes(SS) and

FSR1.getPre()→ includes(PS) and FSR1.getPre()→ includes(SS)

Between Q and R

context [Class]

inv: [Q] implies

([P] implies

sometime [S])

before [R]

context [Class]

inv: let CS: Snapshot = self.getCurrentSnapshot()

in let FS: Set(Snapshot) = CS.getPost()

in let FSR1: Snapshot= FS→select(s:Snapshot | [s|= R])

→ asOrderedSet()→ first(),

in let PS: Snapshot= FS→ any(s:Snapshot | [s |= P]),

SS: Snapshot= FS→ any(s’:Snapshot | [s’ |= S])

in [Q] implies (PS.getPost()→ includes(SS) and

FSR1.getPre()→ includes(PS) and FSR1.getPre()→ includes(SS)

CS

FS = CS.getPost()

Q

CS FS1
CS.getPre()

BTS = FS1.getPre()-> excluding(CS.getPre()->union(CS))

P R

FS->exists(s:Snapshot| [s R])

P P R

BTS->forAll(s:Snapshot| [s P])

s

Figure 3.12: Graphical illustration of the response pattern in the global scope (the first row in Table 3.5),
taken from our previous work Al-Lail et al. [73].

69

Table 3.6: The universality pattern specifications in TOCL and OCL

Scope TOCL in ADCM OCL in STM
Globally

context [Class]

inv: always [P]

context [Class]

inv: Snapshot.allInstances→ forAll(s:Snapshot | [s |= P])

Before R

context [Class]

inv: [R] implies

alwaysPast [P]

context [Class]

inv: let CS: Snapshot = self.getCurrentSnapshot()

in let BS: Set(Snapshot) = CS.getPre()

in [R] implies BS→ forAll(s:Snapshot | [s |= P])

After Q

context [Class]

inv: [Q] implies

always [P]

context [Class]

inv: let CS: Snapshot = self.getCurrentSnapshot()

in let FS: Set(Snapshot) = CS.getPost()

in [Q] implies FS→ forAll(s:Snapshot | [s |= S])

After Q until R

context [Class]

inv: [Q] implies

always [P] until [R]

context [Class]

inv: let CS: Snapshot = self.getCurrentSnapshot()

in let FSR1: Snapshot= CS.getPost()→

select(s:Snapshot | [s|= R])→ asOrderedSet()→ first()

in let PreFSR1=Set(Snapshot) = FSR1.getPre(),

in let CSPre: Set(Snapshot)= CS.getPre()→including(CS)

in let BTS: Set(Snapshot)= PreFS1→ reject(s:Snapshot | CSPre→includes(s))

in (([Q] and FSR1.isDefined) implies BTS→forAll(s:Snapshot | [s |= P]) or

(([Q] and FSR1.oclIsUndefined()) implies FS→forAll(s:Snapshot | [s |= P]))

Between Q and R

context [Class]

inv:[Q] implies

always [P] until [R]

context [Class]

inv: let CS: Snapshot = self.getCurrentSnapshot()

in let FSR1: Snapshot= CS.getPost()→

select(s:Snapshot | [s|= R])→ asOrderedSet()→ first()

in let PreFSR1=Set(Snapshot) = FSR1.getPre(),

in let CSPre: Set(Snapshot)= CS.getPre()→including(CS)

in let BTS: Set(Snapshot)= PreFSR1→reject(s:Snapshot | CSPre→includes(s))

in [Q] implies BTS→ forAll(s:Snapshot | [s |= P])

Q

CS FSR1

CSPre=CS.getPre()->including(CS)

BTS = FSR1.getPre()-> reject(s:Snapshot | CSPre->includes(s))

P P R

BTS->forAll(s:Snapshot| [s P])

Figure 3.13: Graphical illustration of the universality pattern in the between Q and R scope (the fifth row
in Table 3.6) taken from our previous work Al-Lail et al. [73].

70

For example, to specify a temporal property using the TOCL pattern depicted in Figure 3.14, a

UML designer needs to provide the context of the property ([Class]), and the two conditions [P]

and [S]. The corresponding OCL pattern and interpretation rules are employed to automatically

generate the OCL property to be used for analysis. Note how the sometimes temporal operator

is interpreted using OCL in an STM. Informally, on the TOCL side, sometimes S means that the

condition S should hold in one of the succeeding states (snapshots). On the OCL side, succeeding

snapshots are defined using an auxiliary variable FutureSnapshots. FutureSnapshots uses getPost()

snapshot traversal operation that returns the succeeding snapshots. One of these future snapshots

must satisfy the condition S (i.e., FutureSnapshots→exists(s:Snapshot | [s|=S]).

context [Class]

inv: [P] implies sometimes [S]

context [Class]

inv: let CurrentSnapshot:Snapshot= self.getCurrentSnapshot()
in let FutureSnapshots=Set(Snapshot)=CurrentSnapshot.getPost()

 in P implies FutureSnapshots->exists(s:Snapshot | [s|=S])

OCL Pattern on the STMTOCL Pattern on a ADCM

Figure 3.14: Interpretation rules of the response pattern-globally scope

To illustrate the use of the specification technique, consider Table 3.7 that provides natural

language descriptions of eight temporal properties of the traffic light system. A UML designer uses

the descriptions to decide the appropriate patterns and scopes of the required temporal requirements

(i.e., Pattern - Scope column in Table 3.7). Then the designer uses the corresponding TOCL pattern

to obtain a TOCL property, from which the OCL expression is derived. Table 3.8 provides the

TOCL and OCL expressions of the eight temporal properties presented in Table 3.7. Figure 3.15

shows a screenshot of the USE Model Validator indicating the correctness of the OCL expressions

of these properties.

71

Table 3.7: Some temporal properties of the traffic light system

No. Description Pattern - Scope

TP1 As soon as a traffic light is requested by a pedestrian, its car
light turns red.

Response-
Globally

TP2 After a pedestrian request to pass, the pedestrian light stays
red until the car light turns to red.

Universality-
Between Q and R

TP3 Before a pedestrian light turns to green, it must have been
requested and the car light is red.

Precedence-
Globally

TP4 Between the time when pedestrian request to pass and the
time when the car light turns red, the pedestrian light must
not be green.

Absence-
Between Q and R

TP5 After pedestrian light becomes red, the cars are allowed to
pass until a request is made by a pedestrian.

Universality-
After Q until R

TP6 The car light and the pedestrian light can not be green simul-
taneously.

Universality-
Globally

TP7 Before pedestrians can cross the street, the car light should
become Red after the pedestrians request to pass. The pedes-
trians must request to pass before they are allowed.

Response-
Before R

TP8 After the pedestrians light become red, and before it turns
green again, the car light must become Red after pedestrians
have to request passing again.

Response-
Between Q and R

3.4 The Optimization Technique
Recall that one advantage of the mainstream model checkers, such as SPIN, is the optimization

techniques they use to alleviate the state explosion problem. Losing the power of such optimization

techniques is a consequence of developing a “native” UML-based approach for specifying and

analyzing temporal properties, as explained in the beginning of this chapter.

Section 3.2 explains the analysis technique that explores the state space of an STM to check the

validity of a property. As the analysis technique is based on state exploration, the state explosion

problem hinders the technique’s applicability of the technique to larger class models. Both the

small-scope hypothesis and search-depth can alleviate the problem when a system violates a prop-

erty, as the analysis task is often able to produce a counterexample with small search-scope and

search-depth. However, realistic systems are complex. Applying the technique to analyze complex

systems is problematic for two reasons. First, generating and searching a state space even with

72

Table 3.8: TOCL and OCL specification of the temporal properties described in Table 3.7

No. Pattern-scope TOCL Specification on Class Model OCL Specification on the Snapshot Transition Model

TP1

Response-Globally

context TrafficLight

inv: self.requested = true implies

next self.carLight=#Red

context TrafficLight

inv: let CS: Snapshot= self.getCurrentSnapshot()

in let NS: Snapshot= CS.getNext()

in self.requested=true implies NS.light.carLight= #Red

TP2

Universality-Between
Q and R context TrafficLight

inv TP2:self.requested=true implies

always self.pedLight=#Red

until self.carLight=#Red

context TrafficLight

inv TP2: let CS: Snapshot = self.getCurrentSnapshot()

in let FSR1 :Snapshot = CS.getPost()→

select(sr:Snapshot | sr.light.carLight=#Red)→asOrderedSet()→first()

in let PreFSR1: Set(Snapshot)= FSR1.getPre()

in let CSPre: Set(Snapshot)= CS.getPre()→including(CS)

in let BTS: Set(Snapshot)= PreFS1→reject(s:Snapshot | CSPre→includes(s))

in self.requested=true implies BTS→forAll(s:Snapshot | s.light.pedLight=#Red)

TP3

Precedence-Globally

context TrafficLight

inv TP3: self.pedLight=#Green implies

sometimePast self.requested=true

context TrafficLight

inv TP3: let CS: Snapshot = self.getCurrentSnapshot()

in let PS: Set(Snapshot) = CS.getPre()

in self.pedLight=#Green implies PS→ exists (s:Snapshot | s.light.requested=true)

TP4

Absence-Between Q
and R context TrafficLight

inv TP4: self.requested=true implies

always not self.pedLight=#Green

until self.carLight=#Red

context TrafficLight

inv TP4: let CS: Snapshot = self.getCurrentSnapshot()

in let FSR1 :Snapshot = CS.getPost()→

select(sr:Snapshot | sr.light.carLight=#Red)→asOrderedSet()→first()

in let PreFSR1: Set(Snapshot)= FSR1.getPre()

in let CSPre: Set(Snapshot)= CS.getPre()→including(CS)

in let BTS: Set(Snapshot)= PreFSR1→reject(s:Snapshot | CSPre→includes(s))

in self.requested=true implies BTS→collect(s:Snapshot | s.light.pedLight=#Green)

→isEmpty()

TP5

Universality-After Q
until R context TrafficLight

inv TP5:self.pedLight=#Red implies

always self.carLight=#Green

until self.requested=true

context TrafficLight

inv TP5: let CS: Snapshot = self.getCurrentSnapshot()

in let FS : Set(Snapshot) = CS.getPost()

in let FSR1 :Snapshot = CS.getPost()→

select(sr:Snapshot | sr.light.requested=true)→asOrderedSet()→first()

in let PreFSR1: Set(Snapshot)= FSR1.getPre()

in let CSPre: Set(Snapshot)= CS.getPre()→including(CS)

in let BTS: Set(Snapshot)= PreFSR1→reject(s:Snapshot | CSPre→includes(s))

in ((self.pedLight=#Red and FSR1.isDefined) implies BTS→forAll(s:Snapshot |
s.light.carLight=#Green) or

((self.pedLight=#Red and FSR1.oclIsUndefined()) implies FS→forAll(s:Snapshot |
s.light.carLight=#Green))

TP6

Universality-Globally

context TrafficLight

inv TP6: always not

(self.pedLigh=#Green and self.carLight=#Green)

context TrafficLight

inv TP6:Snapshot.allInstances→forAll(s:Snapshot | not

(s.pedLigh=#Green and s.carLight=#Green)

TP7

Response-Before R

context TrafficLight

inv TP7: self.carLight=#Green implies

sometime self.carLight=#Red

since self.requested=true

context TrafficLight

inv TP7: let CS: Snapshot = self.getCurrentSnapshot()

in let BS: Set(Snapshot) = CS.getPre()

let PS: Set(Snapshot) = BS→select(ps:Snapshot | ps.light.requested=true)

in let SS: Set(Snapshot) = BS→select(ss:Snapshot | ss.light.carLight=#Red)

in self.carLight=#Green implies

PS→forAll(ps:Snapshot | ps.getPost()→exists(ss:Snapshot | SS→includes(ss)))

TP8

Response- Between Q
and R context TrafficLight

inv TP8: self.pedLight=#Red implies

(self.requested=true implies

sometime self.carLight=#Red)

before self.carLight=#Green

context TrafficLight

inv TP8: let CS: Snapshot = self.getCurrentSnapshot()

in let FS : Set(Snapshot) = CS.getPost()

in let FSR1 :Snapshot = FS→select(sr:Snapshot | sr.light.carLight=#Green)

→asOrderedSet()→first()

in let PreFS1: Set(Snapshot)= FSR1.getPre()

in let PS: Snapshot = FS→any(ps:Snapshot| ps.light.requested=true)

in let SS: Snapshot = FS→any(ss:Snapshot | ss.light.carLight=#Red)

in self.pedLight=#Red implies (PS.getPost()→includes(SS)

and FSR1.getPre()→includes(PS)and FSR1.getPre()→includes(SS))

small search-scope and search-depth can take significant time and memory. For example, creating

and analyzing a state space for a system of 15 classes and 20 operations (e.g., [67]) with search-

scope of five and search-depth of ten takes over two hours. The analysis task needs to create all

73

Figure 3.15: A new graphical representation of the STM of the traffic light system. This figure is similar
to Figure 3.8 but it has been augmented with temporal properties TP1 to TP8, as specified in Table 3.8.
Appendix A provides the complete USE textual model of the traffic light system.

74

Figure 3.16: Overview of the optimization technique, taken from our previous work Al-Lail et al. [96]

possible configurations of at least 11 snapshots of at least five objects of the 15 classes. Further,

the task needs to create the object configurations conforming to all the invariants and constraints.

This requires additional time. The second reason is that in complex systems subtle design faults

may not reveal themselves in small scope executions. Therefore, searching bigger state space is

necessary.

Recall that the fourth objective of this research is to propose a technique that scales the analysis

to large UML class models in order to alleviate the state explosion problem. This section describes

an optimization technique that can be used to scale the analysis.

Figure 3.16 depicts an overview of the optimization technique. The inputs of the optimiza-

tion algorithm are an STM and an OCL expression representing a TOCL temporal property. The

technique uses the temporal property as criterion to produce a fragment of the STM model that

only contains the STM model elements that are relevant to the analysis of the property. If the

STM fragment has fewer elements than the original STM, the analysis can handle larger analysis

scopes and depths taking less time and memory. Algorithm 2 presents a systematic way to produce

STM fragments based on the temporal property being analyzed. In collaboration with the author

of the original algorithm Sun et al. [65], we extended it to accomedate temporal properties queries,

Al-Lail et al. [96]. Algorithm 2 proceeds as described in the following steps:

1. The algorithm computes DRMElmts in lines 4-13, the set of STM model elements that are

directly referenced by the OCL property, by traversing the abstract syntax tree of the OCL

75

temporal property. This set includes a set of classes, attributes, enumerations, references,

and Snapshot Traversal Query Operations.

2. The algorithm then computes IRMElmts in lines 14-23, the set of STM model elements that

are indirectly referenced by the temporal property. This set contains the subclasses of the

classes that are directly referenced by the property.

3. The set of all related model elements, denoted RMElmts in line 24, then is the union of the

directly related and indirectly related model elements.

4. The algorithm then checks if any model invariants are relevant to the analysis of the OCL

property. An invariant is relevant to the property if the invariant references at least one STM

model element that is related to the property. As such, the algorithm computes tmpRMElmts

and checks if its intersection with RMElmts is not empty (lines 25-33).

5. Line 34 adds the set of elements of relevant invariants INVRMElmts to the set of all rele-

vant elements of the OCL property RMElmts. The generated STM fragment contains only

elements that are in RMElmts and the relevant invariants INVList Line 35.

To illustrate the optimization algorithm, consider the STM of the traffic light system in Fig-

ure. 3.17 and the following OCL representation of a temporal property defined on the STM.

context TrafficLight inv Pedestrians_Can_Crooss_Street:

let NextSnapshot:Snapshot = self.snp.getNext() in self.requested = true

implies NextSnapshot.TrafficLight.pedLight= # Green

Following the steps in the algorithm, the temporal property is defined in the context of class

TrafficLight, and thus directly depends on the class TrafficLight. The expression self.snp is an as-

sociation call and it returns a snapshot associated with the TrafficLight class (referred to by self).

Thus, there is a direct dependency with the reference snp and its type class, Snapshot. The expres-

sion snp.getNext() is an operation call expression and it returns a snapshot. There is, thus, a direct

dependency with the operation getNext(), and its type class, Snapshot. In addition, the getNext()

76

Algorithm 2 Extract STM fragment
1: Input: A STM, a list of invariants, INVList, and a temporal property in OCL, TP
2: Output: A STM fragment, and a subset of INVList that are relevant to the analysis of TP
3: Algorithm Steps:
4: Analyze the dependencies between STM and TP, set DRMElmts = a set of model elements that

are directly referenced by TP;
5: Set QOpers = a set of query operations from DRMElmts;
6: for QOpers not empty do
7: Set QOperDRMElmts = {};
8: for each element, QOper, in QOpers do
9: QOperDRMElmts = QOperDRMElmts ∪ a set of model elements directly referenced by

QOper;
10: end for
11: DRMElmts = DRMElmts ∪ QOperDRMElmts;
12: Set QOpers = a set of query operations from DRMElmts - QOpers;
13: end for
14: Set IRMElmts = {};
15: for each element, ME, in DRMElmts do
16: if ME is a class then
17: if ME has subclasses then
18: for each subclass, subME, of ME do
19: IRMElmts = IRMElmts ∪ subME;
20: end for
21: end if
22: end if
23: end for
24: Set RMElmts = DRMElmts ∪ IRMElmts;
25: Set INVRMElmts = {}
26: for each invariant, INV, in INVList do
27: Set tmpRMElmts = a set of model elements that are directly and indirectly referenced by

INV;
28: if tmpRMElmts ∩ RMElmts returns ∅ then
29: Remove INV from INVList
30: else
31: INVRMElmts = INVRMElmts ∪ tmpRMElmts
32: end if
33: end for
34: RMElmts = RMElmts ∪ INVRMElmts
35: Return RMElmts and INVList;

77

Figure 3.17: The STM of the traffic light system

operation is defined as: self.nextT.nextS (Listing 3.1), where self.nextT is an association call that re-

turns a transition associated with a snapshot, and thus the temporal property directly depends on the

reference nextT, and its type class Transition. The expression self.requested refers to an attribute

defined in class TrafficLight, and thus property directly depends on attribute requested. Similarly,

the expression NextSnapshot.TrafficLight.pedLight =# Green refers to an attribute defined in class

TrafficLight, and thus the property directly depends on the attribute pedLight. Because the attribute

pedLight has an enumeration type, Color, the property thus directly depends on Color. The ap-

plication of the algorithm reveals that temporal property is directly related to the following STM

elements: DRMElmts = {TrafficLight, Snapshot, Transition, snp, nextT, nextS, getNext(), pedLight,

requested, Color}.

Because class Transition has subclasses, the temporal property indirectly references the three

subclasses of the class Transition; therefore they belong to the set of the indirectly related model

78

element (IRMElmts = { PedestrianButton_requestPass, TrafficLight_switchCarLight, TrafficLight

_switchPedLight}).

The algorithm does a similar analysis for all the invariants that are defined in the STM model

in Table 3.2 and checks if the set of invariant-related model elements intersects with the set of the

temporal property related model elements. In this case all the STM invariants are related to the

property. In particular, the invariants AcyclicScenario, OneScenario, SameTrans, and SameS-

napshot are directly related to the temporal property as they have Snapshot and Transaction as

contexts that are elements of DRMElmts set defined above. Similarly, all invariants named define-

dobject and sameObjectID defined on the context of subclasses PedestrianButton_requestPass,

TrafficLight_switchCarLight, and TrafficLight_switchPedLight are indirectly related to the tem-

poral property. These subclasses are elements of IRMElmts and they are all included in the STM

fragment.

3.5 Chapter Summary
This chapter described the proposed UML framework for specifying and analyzing temporal

properties. Specifically, the following three techniques were discussed:

1. A UML-based analysis technique that exclusively uses UML notations and tools. The tech-

nique is lightweight as it neither uses sophisticated mathematical notations nor comprehen-

sively searches the entire search space. The search space is restricted by search-scopes and

search-depths. In addition, the analysis technique only uses UML notations to specify and

analyze temporal properties. Further, a UML-based tool (USE Model Validator) is employed

to find countersexamples that are also presented in two UML notations: object diagrams

representing a scenario that violates a property and a sequence diagram highlighting the sce-

nario operations calls. The analysis technique is not dependent on the USE Model Validator.

Provided the right tool, the analysis could be performed by more powerful tools such as

Satisfiability Modulo Theories (SMT) solvers.

79

2. A property specification technique that improves the process of specifying temporal prop-

erties for UML designers. The technique uses property specification patterns that ease the

effort required to specify properties and provides UML-based language representations of

the patterns. To achieve this objective, the patterns of Dwyer et al. are defined in two

UML-related languages: TOCL to specify temporal properties on an ADCM and an OCL

interpretation of TOCL on an STM that is used for analysis. Furthermore, interpretation

rules, used to automatically generate OCL expressions, are defined for each pattern.

3. An optimization technique that reduces the time needed for analysis, allowing the analysis to

be scaled to larger UML models. The technique employs an algorithm, which given a tem-

poral property, reduces a class model to the model elements that are relevant to the analysis

of the property. Removing irrelevant elements reduces the search space to be explored by

the analysis tool and provides a way for alleviating the state explosion problem.

We evaluate the techniques in the following chapter.

80

Chapter 4

Evaluation

As outlined in Chapter 1, this dissertation aims to achieve the following six objectives:

1. To explore the state-of-the-art techniques and tools in order to identify research gaps and

challenges in the field of Model Checking UML models.

2. To develop a UML-based analysis technique that exclusively uses UML notations and tools.

3. To streamline the process of specifying temporal properties for UML designers by develop-

ing a specification technique that uses UML notations.

4. To develop an optimization technique that reduces the time needed for analysis, allowing the

analysis to be scaled to larger UML models.

5. To provide a proof-of-concept tool by implementing the specification, analysis, and opti-

mization techniques.

6. To evaluate the framework through an actual software specification and analysis projects.

In Chapter 2, we conducted a Systematic Literature Review (SLR) that addressed the first

objective. Chapter 3 discussed the details of the UML framework consisting of the analysis, the

specification, and the optimization techniques that aimed to achieve the second, third, and fourth

objectives of the dissertation, respectively. This chapter aims to address the fifth and the sixth

objectives of the dissertation. It also provides the details of our Generalized Spatio-Temporal

Role-Based Access Control Model(GSTRBAC) model [67], as it is one of the contributions of our

research.

We developed a proof-of-concept research prototype to investigate the effectiveness of the tech-

niques. The effectiveness of the three techniques is determined as follows:

– The analysis technique is judged based on the ability of the technique to find design faults.

81

– The specification technique is judged based on its ability to specify temporal properties of

different kinds.

– The optimization technique is judged based on how much time is is saved as compared with

the time needed for analysis without optimization.

Using the proof-of-concept tool, we evaluated the three techniques by applying them to the

specification and the analysis of the following case studies:

1. The Generalized Spatio-Temporal Role-Based Access Control Model(GSTRBAC). The de-

velopment of GSTRBAC focused on addressing the many application requirements of wire-

less and mobile devices that make use of the spatio-temporal information of a user to provide

better functionality. Such applications necessitate authorization models where access to a re-

source depends on the credentials of the user and also on the location and time of access.

The analysis of GSTRBAC is published in our previous work Al-Lail et al. [73], and the

formal specification, validation, and enforcement of the model is published in Abdunabi et

al. [67].

2. The Steam Boiler Control System (SBCS) specification problem Abrial et al. [68]. The

SBCS specification problem has been used to assess the effectiveness of many software

specification and verification approaches such as the Spin model checker, Petri Nets, and

the PVS automated theorem prover. Using this case study, therefore, provided a benchmark

that can be used to compare our framework with other methods. The analysis of the SBCS

system is published in our previous work Al-Lail et al. [95].

The evaluation was done on a laptop computer with 2.2 GHz Intel(R) Core(TM) i7-3632QM

CPU, 8 GB RAM and Windows 8. As we will show in this chapter, the results of the studies show

that all the temporal properties of the two systems can be expressed by the specification technique,

and that the analysis technique is capable of uncovering design faults. Moreover, the optimization

technique can significantly reduce the time needed for analyzing large models.

82

Figure 4.1: An Overview of the Analysis Approach, extended from our previous work (Al-Lail et al. [73])

This chapter is organized as follows. We describe our prototype tool and its use in Section 4.2.

Section 4.2 provides the details of the GSTRBAC model and Section 4.3 shows how our analysis

and the specification techniques were used to obtain the final GSTRBAC model. In Section 4.4,

we provide the results of the SBCS case study and in Section 4.5, we summarize and discuss the

results of the evaluation .

4.1 Research Prototype Tool
Figure. 4.2 depicts the architecture of our proof-of-concept tool that provides implementation

of the steps of our analysis technique, depicted in Figure 4.1. The tool, named the Temporal

Analysis of UML Class Models (TAUCM), is composed of five implementation packages:

– Class Model to STM: This package generates STM models from design class models. Fur-

ther, it includes an Eclipse plugin that transforms OCL operation specifications to invariants

of the STM. This package implements the first step of the analysis techniques, as shown in

Figure 4.1. .

83

Figure 4.2: Tool Architecture

– TOCL to OCL Interpretation: This package implements the interpretation rules that generate

OCL expressions from TOCL properties. In addition, it has a plugin that transforms STM

models and their OCL expressions to USE specifications. This package provides partial

implementation of the second step of the analysis techniques, as shown in Figure 4.1.

– Optimization: This package has the implementation of the optimization technique.

– USE Model Validator: This package is used for the anlaysis step. The package is out-of-the-

shelf tool developed by the Database Systems Group at Bremen University [60].

– Snapshot Sequence To Sequence Diagram: This package produces a sequence diagram rep-

resentation of the output produced by USE Model Validator.

A substantial portion of the Class Model to STM package was implemented by Kayle

Hoehn and Wuliang Sun for the Scenario-Based Analysis Technique, which is the main contribu-

tion of Lijun Yu’s dissertation [97]. Yu’s dissertation had a totally different objective from ours.

84

Nevertheless, Yu’s work on generating STMs is applicable to our objectives. In our research, we

extended the implementation to add the necessary code to address temporal properties. Specifi-

cally, we augmented the implementation by adding code for creating the Snapshot Traversal Query

Operations and code for adding invariants to ensure the creation of well-formed STMs, the detains

of which are discussed in Chapter 3.

For the TOCL to OCL Interpretation package, we developed a partial implementa-

tion of the specification technique and its interpretation rules. Specifically, we only implemented

the widely used patterns, namely the Response and the Universality patterns. However, these pat-

terns cover 80% of properties used in industry according to a study done by Dwyer et al. [66].

Therefore, we believe this partial implementation is adequate for our proof-of-concept tool.

The Optimization package was initially implemented as part of Wuliang Sun’s slicing

technique [98]. Sun’s approach checks invariants of large class models by slicing the model to

submodels that are relevant to the invariants. In a joint work with Sun (i.e., Al-Lail et al. [96]),

we modified the algorithm and the code to accommodate temporal properties. Specifically, we

incorporated our version of the STMs’ generation process, and the partial implementation of the

TOCL interpretation to generate OCL constraint representations of temporal properties.

The tool was built upon a number of existing technologies. In particular, we used Java lan-

guage, Eclipse Modeling Framework (EMF) [99], and the Eclipse OCL API. EMF is used to

create, manipulate and validate UML models. The Eclipse OCL API is an implementation of the

OCL OMG standard for EMF-based models.

Figure 4.3, Figure 4.4, and Figure 4.5 provide visualizations of the different inputs of the

TAUCM tool. The inputs of the tool are (1) an EMF Ecore file: that describes a UML design class

model, i.e., ADCM, (2) an OCL file: a textual file that contains the ADCM’s OCL invariants and

operations specifications, (3) a TOCL file: a textual file that has an TOCL specification of a tempo-

ral property (4) a properties file: textual file that defines: a search_scope, a value K that represents

a search_depth of the analysis, and ranges of values to be assigned to numerical parameters and at-

85

Figure 4.3: An example of TAUCM tool’s input 1: An Eclipse ecore model describing a UML design class
model.

tributes to constraint the search space (e.g., 0 ≤ Age ≤ 100). Note that after the TOCL expression

is interpreted as OCL constraint, it gets added to the OCL file, as shown in Figure 4.4.

Figure 4.4: An example of TAUCM tool’s input 2: A textual file, called OCL file that contains OCL
invariants and operation specification and an OCL representation of a TOCL property.

86

Figure 4.5: An example of TAUCM tool’s input 3: A textual file, called properties file, which defines scopes
and a depth of the search.

A UML designer uses the tool as follows. The designer creates an Ecore ACDM using Ecore

Model Editor. The OCL operations specifications are created using a text editor and saved as

OCL.ocl (i.e., Figure 4.4). The user also specifies a temporal property in TOCL and saves it in

a file with tocl extension. The Ecore ACDM is transformed to an Ecore STM using the Class

Model to STM package. Furthermore, using the same package, the OCL operation specifica-

tions are transformed to invariants of the Ecore STM. The TOCL to OCL Interpretation

package generates an OCL expression from the TOCL property and includes it in the OCL file. If

optimization is required, the designer, at this stage, selects the option for the optimized model to

be generated. The Ecore file and the OCL file are then fed into the Optimization package and

the results of the optimization is saved as another Ecore and OCL file representing the optimized

model. The Ecore to USE, a subpackage in the TOCL to OCL Interpretation not shown in the

figure, reads the optimized Ecore STM, and the corresponding OCL file containing the temporal

property, and transforms the files to an USE specification. The USE Model Validator loads

the USE specification, and the textual file that defines the search parameters. The designer then

87

runs the analysis tasks and waits for the output. In case that the property is violated, the prototype

produces a counterexample, otherwise, the prototype indicates that no instance exists that violates

the property within given search-scope and search-depth.

4.2 The Formal Specification of Generalized Spatio-Temporal

Role-Based Access Control Model

4.2.1 Overview the GSTRBAC Model

In collaboration with Ramadan Abdunabi, we used an earlier version of the framework to

specify and analyze a novel access control model [67, 73]. The development of GSTRBAC focused

on addressing the many application requirements of wireless and mobile devices that make use of

the spatio-temporal information of a user to provide better access control functionality. GSTRBAC

is defined on top of the role-based access control RBAC model [100] to support access control for

mobile applications. RBAC is the de-facto access control model used in the commercial sector.

RBAC is policy-neutral and can be used to express different types of policies to simplify security

management.

Mobile applications typically have new authorization requirements where environmental con-

ditions, such as location and time, are used together with the credentials of the user to determine

access. For example, a mobile application policy may be that a user should not use his mobile

device to terminate the home motion-detector system from arbitrary out-of-home locations and

after midnight. Such services should be terminated at the time that a user leaves his smart home.

GSTRBAC can be used to specify this policy.

Figure 4.6 shows the UML class model of GSTRBAC. As we will show in Section 4.3, our

specification and analysis techniques were employed when designing the GSTRBAC model. The

model has 19 classes, 25 associations, 13 invariants, 37 operations, and 71 pre- and postconditions.

Appendix C provides the complete UML specification of the model in the USE textual representa-

tion.

88

+assignRole(in r : Role, in z : STZone)

+activateRole(in r : Role, in z : STZone)

+getAssignedRoles(in z : STZone)

+getActivatedRoles(in z : STZone)

+getAuthorizedRoles(in z : STZone)

+checkAccess(in o : Object, in a : Activity, in z : STZone)

User

+inheritsAH(in r : Role, in z : STZone) : bool

+getAuthorizedPermissions(in z : STZone)

+getAHJuniorRoles(in z : STZone)

+getAllAHInheritedRoles(in z : STZone)

+addAHJuniorRole(in r : Role, in z : STZone)

Role

+addSoDPermission(in p : Pemission, in z : STZone)

+deleteSoDPermission(in p : Pemission, in z : STZone)

+getSoDPermissions(in z : STZone)

Pemission
UserRoleRelation

UserRoleAssignment UserRoleActivation

PermissionAssignment

STZone

-user

1

-relations

*

-relations

*

-role

1

-role

1

-permAssig

*

-PermAssig

*

-permission

1

-users1..*

-currentzone

1..*

-roles1..*

-rzones1..*

-relation

*

-zone

1

-permAssig*

-zone1

ActivityObject

1

-object1

1

-activity1

-objects1..*

-ozones

1..*

RoleHierarchy

I_HierarchyA_Hierarchy

+getInvolvedRoles()

SOD

DSODSSOD

STZone

-zone

1

-rh1

-sod *

-zone

1

+getInvolvedPermissions()

PSSOD

-zone

1

-pssod*

-pssod*

-firstPermission1

-PSSOD*

-secondPermission1

-rh

*

-seniorRole1

-RH

*

-juniorRole1

-SOD

*

-secondRole

1

-sod

*

-firstRole1

LocationTimeInterval

*

-interval1

*

-location1

-pzones

1..*

-pemissions 1..*

Figure 4.6: UML Class Model for GSTRBAC, taken from our previous work (i.e., Abdunabi et al. [67]).

The core component of the GSTRBAC model is a spatio-temporal zone that is referred to as

STZone. STZone is a logical and abstract entity encapsulating the particularities of location and

time. The STZone class is associated with RBAC entities (e.g., User, Role, and Permission) and

relationships (e.g., UserRoleRelation, PermissionAssignment, RoleHierarchy, and Seperation of

Duties (SOD)), in order to define where and when these entities are accessible.

The primary GSTRBAC sets of Users, Roles, Permissions, and STZones, are represented by

concrete classes. GSTRBAC relationships (e.g., UserRoleRelation, PermissionAssignment, Role-

89

Hierarchy, and SOD) are represented by association classes that have been transformed to normal

classes in Figure 4.6, following the modeling guidelines in Booch et al. [18] and [101]. For exam-

ple, the class PermissionAssignment in Figure 4.6 represents the assignment of a role to permission

at particular STZone.

The model supports spatio-temporal constraints on user-role assignment, permission-role as-

signments, user-role activation, role hierarchy (RH), and separation of duties (SOD). Further, in

GSTRBAC, a user might move from a valid zone to an invalid zone after access is authorized.

Therefore, the system should revoke access when a user leaves the valid spatio-temporal zone.

The GSTRBAC objects might interact, in a subtle way, by invoking operations and exchanging

messages leading to violation of some of the model constraints. In such scenarios a user may ac-

cess some roles from undesirable zones, or a mobile user suddenly moves to an invalid zone while

exercising some rights. Therefore, it is important to ensure the soundness of the GSTRBAC model

by doing analysis and ensuring that there does not exist a scenario of operations that lead to the

violation of any of the predefined model constraints.

4.2.2 Location and Time Representation

As outlined above, each GSTRBAC set (e.g., Users, Roles, Permissions, and STZones) and

relation (e.g., user-role assignment, permission-role assignment, and role hierarchy) is associated

with spatio-temporal information. Before describing these sets and relations in details, we show

how spatio-temporal information is represented in the GSTRBAC model.

Location Representation

There are two types of locations: physical and logical. All users and objects are associated

with locations that correspond to the physical world. These are referred to as the physical loca-

tions. A physical location is formally defined by a set of points in a three-dimensional geometric

space. A physical location PLoci is a non-empty set of points {pi, pj, . . . , pn} where a point pk

is represented by three co-ordinates. The granularity of each coordinate is dependent upon the

application.

90

Physical locations are grouped into symbolic representations that will be used by applications.

We refer to these symbolic representations as logical locations. Examples of logical locations

are Fort Collins, Colorado etc. A logical location is an abstract notion for one or more physical

locations. We assume the existence of a mapping function m that converts a logical location to a

physical one.

[Mapping Function m] m is a total function that converts a logical location into a physical

one. Formally, m : L→ P , where P is the set of all possible physical locations and L is the set of

all logical locations.

Different kinds of operations can be performed on location data. We define two binary oper-

ators, namely, containment ⊆, and equality =. A physical location plocj is said to be contained

in another physical location plock, denoted as, plocj ⊆ plock, if the following condition holds:

∀pi ∈ plocj, pi ∈ plock. The location plocj is called the contained location and plock is referred

to as the containing or the enclosing location. Intuitively, a physical location plocj is contained in

another physical location plock, if all points in plocj also belong to plock. Two physical locations

plocr and plocs are equal if plocr ⊆ plocs and plocs ⊆ plocr. Note that these operators are defined

on physical locations. Thus, logical locations must be transformed into physical locations (using

mapping function m defined above) before we can apply these operators. We define a logical

location called anywhere that contains all other locations. Each application can describe logical

locations at different granularity levels. For example, some permissions may be applicable on the

entire state whereas other permissions are only applicable to people in the city.

Time Representation

The GSTRBAC model uses two kinds of temporal information. The first is known as time

instant and the other is time interval. A time instant is one discrete point on the time line. The

exact granularity of a time instant is application dependent. For instance, in some application a

time instant may be measured at the nanosecond level and in another one it may be specified at the

millisecond level. A time interval is a set of time instants. We use the notation ti ∈ d to mean that

ti is a time instant in the time interval d. We also define operators containment ⊆ and equality =

91

for operating on time intervals. A time interval dj is said to be contained in another time interval

dk, denoted as, dj ⊆ dk, if the following condition holds: ∀ti ∈ dj, ti ∈ dk. The interval dj is

called the contained interval and dk is referred to as the containing or the enclosing interval. Two

time intervals ds and dr are said to be equal if dr ⊆ ds and ds ⊆ dr. We define a time interval called

always that includes all other time intervals. Each application should be able to express different

types of temporal intervals.

Spatio-Temporal Zone

A spatio-temporal zone abstracts location and time representations into a single entity.

Spatio-temporal zone depends of the formalization of a spatio-temporal point.

[Spatio-Temporal Point] A spatio-temporal point is a pair of the form (d, l) where d and

l represent time interval and location respectively. An example of a spatio-temporal point is:

(Home Office, [6 p.m. - 8 a.m.]).

[Spatio-Temporal Zone] A spatio-temporal zone is a set of spatio-temporal points.

An example of a spatio-temporal zone is: {(HomeOffice, [6 p.m. - 8 a.m.]), (DeptOffice, [8

a.m. - 6 p.m.])}.

[Spatio-Temporal Zone Containment] A spatio-temporal zone P is contained in another

spatio-temporal zone Q, denoted by P ⊆ Q, if for every spatio-temporal point (d′, l′) ∈ P , there

exists a spatio-temporal point (d, l) ∈ Q, such that (d′, l′) ⊆ (d, l).

4.2.3 Effect of Spatio-Temporal Constraints on RBAC Entities

Each RBAC entity, namely, users, roles, permissions, and objects are associated with spatio-

temporal zones.

Users

We assume that each valid user carries a locating device that is able to track his location. The

location of a user changes with time. The spatio-temporal zone associated with a user gives the

user’s current location and time. The user’s current location and time information will be used for

making access decisions. Consequently, we require the minimal temporal and location interval be

92

used to express the spatio-temporal zone associated with a user. We define a function currentzone

that returns the minimal spatio-temporal zone associated with user u.

Objects

Objects may also be mobile like the user. Hence, we have locating devices that track the

location of an object. Moreover, an object may not be accessible everywhere. ozones represent

the spatio-temporal zone where the object is available.

Roles

Role can be assigned or activated only in specific locations and time. The role of on-campus

student can only be assigned/activated inside the campus during the semester. The spatio-temporal

zone associated with a role gives the location and time from which roles can be assigned or acti-

vated. The function rzones gives the set of spatio-temporal zones associated with a given role.

Permissions

Permissions are also associated with a spatio-temporal zone that indicate where and when

a permission can be invoked. For example, a permission to perform backup of servers can be

executed only from the department after 10 p.m. on Friday nights. The function pzones gives the

zones from which a specific permission can be activated.

4.2.4 Effect of Spatio-Temporal Constraints on RBAC Operations

In this section we discuss the effect of the time and location on the different RBAC relations,

namely, user role assignment, user role activation, and permission role assignment.

User Role Assignment

A user role assignment is location and time dependent. That is, a user can be assigned to a

role only if the user is in specific locations. For example, a person can be assigned the on-campus

student role only when he is in the campus during the semester. This relation is depicted in the

GSTRBAC class model as the subclass UserRoleAssignment of the class UserRoleRelation (see

Figure 4.6). The superclass UserRoleRelation is linked to STZone class to specify spatio-temporal

93

constraints on the user role assignment relationship. The assignment of user u to a role r in spatio-

temporal zone z is done through the class UserRoleAssignment.

The following OCL operation describes the pre and post conditions of the user-role assignment

operation, assignRole. The pre-conditions respectively specify that the role r is available in zone z,

the current user u is in zone z, and the role r is not already assigned to user u in zone z. Note that,

the association role rzones gives the set of zones where a role can be assigned or activated. The

association role currentzones determines the current STZone of a user. The OCL query operation

containedZones() in the STZone class returns the set of zones that are contained the current zone.

The query operation getAssignedRoles(z) determines the set of roles assigned to user in STZone

z. The post-condition asserts that a user-role assignment relationship instance has been created

between user u and role r in zone z, which is reflected by the fact that the role is included in the

set of the assigned roles in the STZone z. The complete specifications of all GSTRBAC operations

and constraints are in Appendix C.

context User::assignRole(r: Role, z:STZone): UserRoleAssignment

pre: r.rzones->includes(z)

pre: z.containedZones()->includes(self.currentzone)

pre: self.getAssignedRoles(z)->excludes(r)

post: self.getAssignedRoles(z)->includes(r)

User Role Activation

A user can activate a role if the role is available in the specific zone and it is already assigned

to that user. For example, the role of doctor trainee can only be activated in a hospital during the

training period. Role assignment and activation should only take place in a specific STZone set. In

Figure 4.6 of the GSTRBAC class model, the binary association between the class Role and the

class STZone defines the set of STZone of each role.

Similar to assignRole The activateRole operation in class User is specified in OCL as follows.

The preconditions are added to the activateRole operation to spatio-temporally restrict the execu-

tion of the operation by users. The first precondition checks that user u is currently in zone z, the

second one ensures that the role r is spatio-temporally available in zone z, the user u assignment

94

to role r in zone z is checked in the third precondition, and the last one verifies that the role r is not

already in active state by user u in zone z. The new OCL query operation getAssignedRoles(z) used

here gives the set of activated roles in STZone z in the user context. The post condition ensures

that the role is activated in the zone.

context User::activateRole(r: Role, z:STZone): UserRoleActivation

pre: z.containedZones()->includes(self.currentzones)

pre: r.rzones->includes(z)

pre: self.getAssignedRoles(z)->includes(r)

pre: self.getActivatedRoles(z)->excludes(r)

post: self.getActivatedRoles(z)->includes(r)

Check Access

This operation checks whether a user is authorized to perform some activity on an object during

a certain time and when the user is in a certain location. For instance, a user is allowed to fire a

missile only if he is assigned the role of top secret commander and he is in the controller room of

the missile during a severe crisis period. For a user to perform activity a on an object o in zone z,

there must be some role activated in z which has a permission p that can be invoked at z and the

zone of the object is in z. The OCL specification is given below.

context User::checkAccess(o:Object,a: Activity,z:STZone):Boolean

post: result = getActivatedRoles(z)-> collect(r | r.getAuthorizedPermissions(z))->asSet()

-> exists(p | p.object=o and p.activity=a and o.ozones->includes(z))

Permission Role Assignment

Some permissions may be assigned to a role during specific time and locations. For exam-

ple, the permission of opening a cashier drawer in a store should be only assigned to a salesman

role during the day time. A permission p can be assigned to a role in zone z only if z is in the

allowedzones for both the permission and the role. The OCL specification is given below.

context Role::assignPermission(p:Permission, z:STZone): PermissionAssignment

pre: p.pzones->includes(z) and self.rzones-> includes(z)

pre: self.getAssignedPermissions(z)->excludes(p)

post: self.getAssignedPermissions(z)->includes(p)

95

4.2.5 Spatio-Temporal Role Hierarchy

The structure of an organization in terms of lines of authority can be modeled as a hierarchy.

This organization structure is reflected in RBAC in the form of a role hierarchy [100]. Role hier-

archy is a transitive and anti-symmetric relation among roles. Roles higher up in the hierarchy are

referred to as senior roles and those lower down are junior roles. The major motivation for adding

role hierarchy to RBAC was to simplify role management. Senior roles can inherit the permissions

of junior roles, or a senior role can activate a junior role, or do both depending on the nature of

the hierarchy. This obviates the need for separately assigning the same permissions to all members

belonging to a hierarchy. Joshi et al. [102] identify two basic types of hierarchy. The first is the

permission inheritance hierarchy where a senior role inherits the permission of junior roles. The

second is the role activation hierarchy where a user assigned to a senior role can activate junior

roles.

In the GSTRBAC class model (Figure 4.6), permission inheritance hierarchy and role activa-

tion hierarchy are represented by the classes I-Hierarchy and A-Hierarchy, respectively. These

hierarchies are specializations of the abstract class RoleHierarchy. RoleHierarchy is associated

with STZone that describe the zones location and time as to where and when these hierarchical

relationships are enabled.

Permission Inheritance Hierarchy

In our GSTRBAC model, the permission inheritance hierarchy is associated with spatio-temporal

constraints. For example, a project manager inherits the permissions of a developer when he is at

the customer site giving a demo. In permission inheritance hierarchy, a senior role can be added

to the junior role r in spatio-temporal zone z, if both roles are allowed in zone z and if r is not

already a junior role in this hierarchy. The following OCL expression expresses the pre and post

conditions that represent the spatio-temporal constraints for adding a new junior role.

context Role::addIHJuniorRole(r:Role,z:STZone): I_Hierarchy

pre: self.rzones->includes(z) and r.rzones-> includes(z)

pre: self.getIHJuniorRoles(z)->excludes(r)

post: self.getIHJuniorRoles(z)->includes(r)

96

The delete operation of a junior role from permission-inheritance hierarchy in particular zone

can be defined in the similar manner. The following OCL operation represent the deletion of

permissions-inheritance hierarchy relation instance I-Hierarchy between senior role and junior role

r in the STZone z.

context Role::deleteIHJuniorRole(r:Role, z:STZone)

pre: self.getIHJuniorRoles(z)->includes(r)

post: self.getIHJuniorRoles(z)->excludes(r)

The I-Hierarchy relationship must be acyclic as a junior role must not be able to inherit per-

missions from a senior role through the role hierarchy. The following OCL constraint specifies this

condition.

context r1,r2: Role inv IHierarchy_Cycle_Constraint:

not STZone.allInstances-> exists(z|r1.inheritsIH(r2,z) and r2.inheritsIH(r1,z)and r1<>r2)

The OCL boolean operation inheritsIH(r,z) returns true if a role is a junior role directly or

indirectly of the context role in particular zone, otherwise it returns false. This boolean operation

evaluates the inheritance relation between roles in question either directly or indirectly through

multiple levels of the permissions-inheritance hierarchy. Note that the definition of this operation

uses recursion to get the transitive closure of the inherit relation, as the OCL did not have definition

of the transitive closure operator at the time this research was initially done.

inheritsIH(r:Role,z:STZone): Boolean =

if (self.getIHJuniorRoles(z)->includes(r)) then true

else self.getIHJuniorRoles(z)->exists(j | j.inheritsIH(r,z))

endif

We define the OCL query operation getAuthorizedPermissions(z) to get the authorized permis-

sions for a given role at zone z. This includes the permissions directly assigned to the role (given by

getAssignedPermissions(z)) and also the permissions inherited through role hierarchy. This OCL

query operation returns a set of permissions that can be accessed by the context role at zone z.

context Role::getAuthorizedPermissions(z:STZone): Set(Permission)

Post: result= self.getAssignedPermissions(z)-> union(self.getAllIHInheritedRoles(z)->

collect(r | r.getAssignedPermissions(z)))->asSet()

97

The query getAllIHInheritedRoles(z) operation uses the inheritsIH(z) operation in order to

get the set of all junior roles that are inherited directly or indirectly by context role through

permissions-inheritance hierarchy in STZone z.

getAllIHInheritedRoles(z:STZone): Set(Role)=

Role.allInstances-> select(r | self.inheritsIH(r,z))-> asSet()

Role Activation Hierarchy

Restricted spatio-temporal role activation hierarchy allows members of senior roles to activate

junior roles in predefined spatio-temporal zones only when both roles are spatio-temporally avail-

able. For example, department chair can activate staff during the semester inside the department

building. The OCL operations of adding and deleting junior roles to the A-Hierarchy are defined

in the same way of the I-Hierarchy. Further, the OCL query operation getAHJuniorRoles(z) re-

turns all the junior role in A-Hierarchy of the context role in particular zone. The OCL addition

operation of junior role A-Hierarchy is defined as following:

context Role::addAHJuniorRole(r:Role,z:STZone): A_Hierarchy

pre: self.allowedzones->includes(z) and r.allowedzones->includes(z)

pre: self.getAHJuniorRoles(z)-> excludes(r)

post: self.getAHJuniorRoles(z)-> includes(r)

The OCL deletion operation of a junior role from A-Hierarchy is specified as following:

context Role::deleteAHJuniorRole(r:Role, z:STZone)

pre: self.getAHJuniorRoles(z) -> includes(r)

post: self.getAHJuniorRoles(z)-> excludes(r)

The cyclic constraints on the role activation hierarchy, A-Hierarchy, is defined in the same way

as the permission inheritance hierarchy, I-Hierarchy.

context r1,r2: Role inv AHierarchy_Cycle_Constraint:

not STZone.allInstances-> exists(z| r1.inheritsAH(r2,z) and r2.inheritsAH(r1,z) and r1<>r2)

inheritsAH(r:Role,z:STZone): Boolean =

if (self.getHHJuniorRoles(z)->includes(r)) then true else self.getAHJuniorRoles(z)->

exists(j | j.inheritsAH(r,z))

endif

98

The OCL query operation getAuthorizedRoles(z) is defined to get the authorized roles for the

context user that are explicitly assigned, or implicitly obtained through, A-Hierarchy in the STZone

z. The OCL query operation getAllAHInheritedRoles(z) defined in getAuthorizedRoles(z) returns

a set of junior roles inherited by context role in all paths of the A-Hierarchy for the zone z. The

result of this OCL query is a set of roles authorized to the user.

context User:: getAuthorizedRoles(z:STZone): Set(Role)

post: result= self.getAssignedRoles(z)-> union(self.getAssignedRoles(z)->

collect(r| r.getAllAHInheritedRoles(z))-> asSet())

4.2.6 Spatio-Temporal Separation of Duty

Separation of Duty (SOD) aims to prevent fraud and errors committed purposely or inadver-

tently by users. The main idea is to separate the responsibility of multiple individuals, such that no

single user or role will have enough authority to commit a fraud. An example is that the same indi-

vidual cannot be a member of purchasing-manger and accounts-manger roles because this creates

possibility of fraud. The purchasing-manger and accounts-manger roles are called mutually exclu-

sive roles or conflicting roles. This statement requires that exclusive roles should not be assigned

to the same individual.

The same security principle can also be applied to permissions to provide additional assurance

for separation of duties, in case of errors at higher level of mutually exclusive roles. The SoD

between permissions constraint states that conflict permissions can not be assigned to the same

role. For example, the permissions of preparing and approving purchase orders should not be

assigned to the purchasing-manger role. Intuitively, this security principle limits the distribution

of powerful permissions to roles.

Two classes of SoD constraints are formally defined in the classic RBAC known as static and

dynamic SoD constraints, are respectively termed as SSoD and DSoD [103]. SSoD prevents the

assignment of conflicting roles to the same user or assignment of conflicting permissions to the

same role. DSoD prevents the simultaneous activation of conflicting roles.

99

Role SSoD

Sometimes an organizational security policy requires that the same individual should not be

assigned to some roles in specific locations for some duration. For example, the same user should

not be assigned to billing clerk and accounts receivable clerk roles in the same time at specific

trade corporations. Therefore, we define the following OCL invariant to forbid the assignment of

two conflicting roles in particular zones to the same user.

context User inv SSOD_Constaint:

STZone.allInstances->forAll(z | not self.getAssignedRoles(z)-> exists(r1,r2 |

r1.getSSoDRoles(z)->includes(r2)))

The SSOD constraint might be violated through role hierarchy relation. A senior role can

inherit permissions from two junior roles that are conflicting by SoD. For example, the billing

supervisor role inherits permissions of the billing clerk role when the billing supervisor acknowl-

edges the correction of the bills issued by Billing Clerk, and Billing Clerk has SSoD relation with

the accounts clerk in an accounting department, then the billing supervisor should also have SSoD

relation with accounts clerk in the same department. This constraint on role hierarchy can be

specified using the OCL expression as follows:

context User inv SSOD_RH_Constraint:

STZone.allInstances-> forAll(z | not self.getAuthorizedRoles(z)-> exists(r1,r2 |

r1.getSSoDRoles(z)->includes(r2)))

The above OCL invariant restricts a user from having some conflicting roles through role hi-

erarchy. The OCL query getAuthorizedRoles(z) determines all roles authorized by a user through

role hierarchy, neither of these roles should conflict in zone z.

Permissions SSoD

Sometimes permissions are also related by SSoD relation; a role cannot acquire permissions

that are conflicting. In our model, permission SSoD can also be constrained by spatio-temporal

constraints. For example, a loan officer is not permitted to issue a loan request and approve it

in the bank building during the day-time. The following OCL invariant expresses the PSSoD

requirement:

100

context Role inv PSSOD_Constaint:

STZone.allInstances-> forAll(z | not self.getAssignedPermissions(z)-> exists(p1,p2 |

p1.getPSSoDPermissions(z)-> includes(p2)))

The above OCL invariant states that there are no permissions-role assignment relations for the

same role and two different permissions in a specific zone, and these permissions have PSSoD

relation in that zone. The query getPSSoDPermissions(z) specifies the conflicting permissions in

zone z based on PSSoD relation.

The above PSSOD_Constraint protects against the direct assignment of conflicting permissions

to roles, however, it can be violated through permissions-inheritance hierarchy. Such a situation

occurs if the senior role inherits some junior roles that have been mutually assigned conflicting

permissions. Thus, we need to check that permissions authorized directly (e.g assignment) or indi-

rectly (e.g hierarchy) for a role in some spatio-temporal zones do not have conflicting permissions.

This constraint is specified in the context of the role using the following OCL invariant to prevent

the violation of SSoD on permissions via role hierarchy.

context Role inv PSSOD_RH_Constraint:

STZone.allInstances-> forAll(z | not self.getAuthorizedPermissions(z)-> exists(p1,p2 |

p1.getPSSoDPermissions(z)-> includes(p2)))

The above OCL constraint states that no conflicting permissions are authorized to a role in a

specific zone. The query getAuthorizedPermissions(z) returns all permissions authorized for a role

via assignment or hierarchy relationships in GSTRBAC.

DSoD

Dynamic SoD is another form of mutual exclusion between roles considered at run-time. It

states that the mutually exclusive roles cannot be activated simultaneously by the same individual.

In our model, two conflicting roles cannot be activated in some spatio-temporal zone by the same

user. For example, simultaneous activation of Cashier and Cashier Supervisor is forbidden during

the working hours in the same store to deter such user from committing fraud. The following OCL

invariant specify this constraint:

101

context User inv DSOD_Constaint:

STZone.allInstances-> forAll(z | not self.getActivatedRoles(z)-> exists(r1,r2 |

r1.getDSoDRoles(z)->includes(r2)))

The above invariant states that if two roles are conflicting activation roles related by DSoD in

specific zone, then no single individual can have two role activation relation in the same critical

zone. The operation getDSoDRoles(z) returns the conflicting activation roles in a specific zone.

Note that this constraint restricts the explicit activation of conflicting roles in specific zone,

however, this constraint can still be violated through implicit role activation in role-activation hi-

erarchy. This might authorize a user to activate some conflicting junior roles. This constraint is

specified in GSTRBAC model using OCL expressions as following:

context User inv DSOD_RH_Constraint:

STZone.allInstances-> forAll(z | not self.getAuthorizedActiveRoles(z)-> exists(r1,r2 |

r1.getDSoDRoles(z)->includes(r2)))

This OCL constraint asserts that roles activated by a user in specific zone have no conflict. The

query operation getAuthorizedActiveRoles(z) returns the set of roles that can be activated by a user

through role-activation hierarchy in zone z.

4.2.7 Spatio-Temporal Prerequisite Constraints

Some organizations require some prerequisite conditions to be satisfied before an operation

such as user role assignment or user role activation can take place. This kind of constraint in

RBAC is termed as prerequisite constraints [104]. For example, a user should be assigned role r1

to be authorized for role r2.

Prerequisite Constraints on User-Role Assignment

In our model, we augment the prerequisite constraints on user-role assignment by restricting

the fact that the user must be assigned to some less critical role in a given spatio-temporal zone

before being assigned a more critical role in the same zone. For example, the role of emergency-

nurse can be assigned to John in the urgent care unit from 12:00 a.m. to 5:00 a.m. only if he is

assigned the role of nurse-on-night-duty at the hospital during those hours.

102

The following OCL constraint is defined to restrict the creation of user-role assignment in-

stances UserRoleAssignment on the condition of satisfaction of spatio-temporal prerequisite con-

straints. The OCL constraint states that for all zones if a user is assigned to a role r1 in particular

STZone z, this implies that the user has been assigned to all the prerequisite roles of r1. We use the

query operation getPrerequisiteRoles() which returns all the prerequisite roles for the context role.

The constraints prohibit the assignment of the critical role r1 to the context user in zone z unless

all the prerequisite roles are also assigned in the same zone.

context User inv Prerequiste_URAssign:

STZone.allInstances->forAll(z | Role.allInstances-> forAll(r1|(self.getAssignedRoles(z)->

includes(r1)) implies (self.getAssignedRoles(z)->includesAll(r1.getPrerequisiteRoles()))))

Prerequisite Constraints on Permission-Role Assignment

Sometimes prerequisite constraints are imposed on permission role assignment. A role can

be assigned a permission provided it has other prerequisite permissions already assigned to it.

In our model, some critical permissions can be assigned to roles in specific zones only if some

prerequisite permissions are already assigned to the same role in the same zone. For example, a

bank teller must have the permission of reading an account during working hours before he can

be given the permission to update that account. The prerequisite constraint on permission-role

assignment can be specified using OCL expression as follows.

context Role inv Prerequist_PRAssign:

STZone.allInstances-> forAll(z | Permission.allInstances-> forAll(p1 |

(self.getAssignedPermissions(z)-> includes(p1)) implies

(self.getAssignedPermissions(z) -> includesAll(p1.getPrerequisitePermissions()))))

Prerequisite User-Role Activation

Sometimes roles can be activated only if some prerequisite role can be activated. For example,

in a university the teaching assistant role can be activated during a semester in a department only

if the student role can be activated during the same time.

103

The following OCL invariant restricts the generation of user-role activation for critical roles

based on spatio-temporal prerequisite role activation constraint. This OCL invariant states that

every time a user u tries to activate role r1 in zone z, this constraints checks whether that user

has already activated prerequisite roles in that zone. The query operation getPrerequisiteRoles()

returns a set of prerequisite roles needed to activate role r1.

context User inv Prerequist_URActiv:

STZone.allInstances-> forAll(z | Role.allInstances-> forAll(r1 |

(self.getActivatedRoles(z)-> includes(r1)) implies

(self.getActivatedRoles(z)-> includesAll(r1.getPrerequisiteRoles()))))

4.3 Case Study 1: Specification and Analysis of Generalized

Spatio-Temporal Role-Based Access Control Model
We used the specification and the analysis techniques to specify and analyze the GSTRBAC

model that is discussed in previous sections. In addition, we followed an incremental approach as

we designed the model. That is, we specified and analyzed partial models of the GSTRBAC model.

During this process, we uncovered more than fifty design faults that we fixed before obtaining the

final design.

In this section, we present an example of using the analysis technique to find a design fault in

one of the partial models we created. Moreover, we present some of the temporal properties we

defined using the specification technique. However, we did not evaluate the optimization technique

using the GSTRBAC model as it had been designed before the incorporation of the technique in

our framework.

4.3.1 Analyzing the GSTRBAC system

During the design phase of the GSTRBAC model, we used a partial model of GSTRBAC in

which we only considered the parts of the model that are related to user-role interactions (see

Figure 4.7). The property that we were interested in checking was the requirement that when

104

a user changes a spatio-temporal zone, all the activated roles get deactivated in the next state.

Such property is referred to as persistence checking of spatio-temporal constraints. To check the

property, we used an earlier version of the analysis technique Al-Lail et al. [73]. As described in

Chapter 3, the analysis technique has the following four steps:

1. Unfolding the behavior of the model as an STM .

2. Interpreting a TOCL property as OCL expression.

3. Analyzing the model.

4. Extracting a sequence diagram outcome of the counterexample.

We show how we applied the above steps to the specification and analysis of the above temporal

property on the partial model.

Step1: Unfolding the Behavior

In this step, we converted the partial class model in Figure 4.7 to its corresponding STM .

The STM is formed by: (1) creating the Snapshot class, (2) creating a hierarchy of transition

classes representing operation invocation, (3) converting operation specifications to invariants of

the transition classes, (4) defining the Snapshot Query Operations, and (5) adding invariants to

ensure that the obtained STM is well-formed.

Figure 4.8 depicts the result of the unfolding of the partial GSTRBAC class diagram. The Snap-

shot class is a class that defines object configurations in a particular state. Note, as of April 2018,

the USE Model Validator does not have support for structured classes, as discussed in Chapter 3.

Consequently, we had to represent the Snapshot class as a class that has composition relation-

ships with the different classes that constitute the parts of the class Snapshot. This representation

is similar to the Structured Classefier, as defined by the OMG UML standard [105]. As shown

in Figure 4.8, the Snapshot class has composition relationships to User, STZones, Roles classes,

and their two types or relations, RoleAssignment and RoleActivation classes. Note that the orig-

inal partial model in Figure 4.7 has an inheritance hierarchy that is represented by the abstract

105

+assignRole(in r : Role, in z : STZone) : RoleAssignment
+activateRole(in r : Role, in z : STZone) : RoleActivation
+deActivateRole(in r : Role, in z : STZone)
+getAssignedRoles(in z : STZone) : Set(Role)
+getActivatedRoles(in z : STZone) : Set(Role)
+updateZone(in z : STZone)

User

-zonechanged : Boolean

+getAssignedUsers(in z : STZone) : Set(User)

Role

STZone

RoleRelation

RoleAssignment RoleActivation

-user

1 -relations

*

-role1

-relations

*
-roles1..*

-rzones*

-relations

*

-zone1

-users*

-currentzone

1

Figure 4.7: Partial GSTRBAC model, taken from our previous work Al-Lail et al. [73]

class RoleRelation. Following the guidelines in Chapter 3, abstract classes are not represented in

STMs as they do not have instances (objects) in the states of a system. In addition, the inheritance

hierarchy is flattened first, and then the concrete classes (i.e., RoleAssignment and RoleActivation)

are mapped as parts of the Snapshot class in the STM model (see Figure 4.8).

The second step of the unfolding step is creating a hierarchy of transition classes that represents

the operations. In the partial GSTRBAC model, we considered all seven of the operations shown in

Figure 4.7 as they relate to the persistence checking property. Please note that four of the operations

have side-effects and three are query operations. In particular, the operations that have side-effects

are assignRole(), updateZone(), activateRole(), and deActivateRole(). The query operations are

getAssignedRoles(), getActivatedRoles(), and getAssignedUsers().

As described in Chapter 3, we only need to consider the operations with side-effects, namely,

updateZone(), activateRole(), and deActivateRole(). Therefore, we defined these operations as

subclasses of the abstract Transition class in order to create the hierarchy. For example, the oper-

ation assignRole(r: Role, z:STZone) in the user class is mapped to the transition subclass User_

AssignRole. The query operations are needed to define invariants and temporal properties. These

106

User

-ID : Integer
-zonechanged : Boolean

Role

-ID : Integer

STZone

-ID : Integer

RoleAssignment

-ID : Integer

RoleActivation

-ID : Integer

-user

1

-assigns

* -role

1

-assigns

*

-roles1..*

-rzones*

-relations*

-zone

1

-users*

-currentzone

1

-user

1

-actvs

*

-role1

-acts*

+getNext() : Snapshot
+futureClosure(in sp : Set(Snapshot)) : Set(Snapshot)
+getPost() : Set(Snapshot)
+getPrevious() : Snapshot
+previousClosure(in sp : Set(Snapshot)) : Set(Snapshot)
+getPre() : Set(Snapshot)

Snapshot

-zone

*

-acts

*

-snp

1

-stzones *

-snp

1

-users *

-snp

1

-roles

*

-snp

1

-rActs *
-snp 1

-rAssgns *

Transition -PreviousTrans

0..1

-nextSnapshot 1

-nextTrans

0..1

-PreviousSnapshot 1

User_UpdateZone

-userPre : User
-userPost : User
-zonePre : STZone
-zonePost : STZone

User_ActivateRole

-userPre : User
-userPost : User
-rolePre : Role
-rolePost : Role
-zonePre : STZone
-zonePost : STZone
-ret : RoleActivation

User_AssignRole

-userPre : User
-userPost : User
-rolePre : Role
-rolePost : Role
-zonePre : STZone
-zonePost : STZone
-ret : RoleAssignment

User_DeactivateRole

-userPre : User
-userPost : User
-rolePre : Role
-rolePost : Role
-zonePre : STZone
-zonePost : STZone

{ordered} {ordered}

{ordered}

{ordered}

Figure 4.8: The STM model of the Partial GSTRBAC model in Figure 4.7, taken from our previous work
Al-Lail et al. [73]

operations are still included in the STM model, but they are not shown in the Figure 4.8 to simplify

the presentation. Further, no transition subclasses are created for the query operations.

The parameters of operations are mapped into attributes of the subclasses. If a parameter has a

class type, it is mapped into two attributes. For example, the parameters r of assignRole(r: Role,

z:STZone) are represented by rolePre, and rolePost, each of which specifies the parameters’ state

before and after the operation’s call. In addition, two attributes (userPre and userPost of type

User) are created for the object that the operation is invoked on. Because the assignRole(r:Role,

107

z:STZone) has a return value of type RoleAssignment, a ret attribute is created to represent the

return object.

The third step is concerned with converting the operations’ pre- and postconditions into invari-

ants defined in the context of the transition subclasses. The pre- and postconditions of the operation

assignRole(r:Role, z:STZone) are mapped to invariants on the transition subclass User_AssignRole

as follows.

context User::assignRole(r: Role, z:STZone): UserRoleAssignment

pre: self.currentzone->includes(z)

pre: self.getAssignedRoles(z)-> excludes(r)

post: self.getAssignedRoles(z)-> includes(r)

The above pre- and postconditions are converted to the following invariants.

context User_AssignRole

inv: userPre.currentzone->includes(zonePre)

inv: userPre.getAssignedRoles(zonePre)-> excludes(rolePre)

inv: userPost.getAssignedRoles(zonePost)-> includes(rolePost)

As described in Chapter 3, the above invariants ensure that the User_AssignRole transition

subclass is only instantiated when the pre- and post-conditions of the assignRole() operation are

satisfied. To elaborate, consider the first pre condition and its corresponding invariant. The pre-

condition states that the current zone of the user before the call of the operation must include the

zone where the role r is to be assigned. Recall from above that object in which the operation is

called and the parameters r and z of the operation assignRole() are represented by two attributes

of the same type in the STM model, namely userPre, userPost, rolePre, rolePost, zonePre,

and zonePost, respectively. Consequently, these attributes are used when defining the invariant

on the STM side. For the first invariant, the status of the user before the call (userPre) is used

to define the constraint. The invariant ensures that the current zone of the user of the before call

state includes the zone zonePre where the role rolePre is to be assigned. In our technique, we

108

guarantee that objects in the before and after snapshot are the same by making sure they have the

same ID. To achieve this, we define constraints, called frame constraints Gogolla et al. [106], that

specify objects and links are not affected by the operation are the same in the before and after

snapshots. The other invariants of the subclass User_AssignRole are defined in a similar manner.

These mapping rules are similarly applied on the other three operations that have side-effects,

namely, updateZone(), activateRole(), and deActivateRole().

For Step 4 (i.e., defining the Snapshot Query Operations), the query operations are added to the

STM , as shown in Figure 4.8. For Step 5 of the unfolding step (i.e., adding invariants to ensure

that the obtained STM is well-formed), the STM constraints are added to the STM . In particular,

the STM invariants in Table 3.2, on page 59, are directly created without any change.

Step2: Interpreting TOCL as OCL

We are interested in making sure that the partial GSTRBAC model does not violate the per-

sistence checking requirement. In our framework, a software designer uses TOCL to specify such

requirement. The property is specified in TOCL as follows:

context u:User inv Persistence_Check: u.zonechanged implies next

self.getActivatedRoles(currentzone)-> isEmpty()

The above TOCL property is specified on the class model in Figure 4.7. It states when a user

changes his zone, then the set of activated roles in the new zone is empty. The following constraint

is the corresponding OCL expression that is obtained by applying the interpretation rules from

TOCL and OCL, as described in Chapter 3.

context u:User inv Persistence_Check:

let CS: Snapshot = u.getCurrentSnapshot(),

in let NS: Snapshot = CS.getNext() in u.zonechanged

implies NS.u.getActivatedRoles(u.currentzone)-> isEmpty()

109

Figure 4.9: Counterexample: Scenario violating the Persistence-Check temporal property, taken from our
previous work Al-Lail et al. [73]

110

Step 3: Analysis

At the back end of the prototype tool, the analysis task is performed by the USE Model Valida-

tor to check the persistence property. Given all the required inputs (i.e., the STM model, search

scopes, search_depth, and the OCL property), the USE Model Validator tool attempts to produce a

scenario that violates the property. Figure 4.9 shows the counterexample that leads to the temporal

property violation.

As explained in Chapter 3, the analysis takes advantage of the small scope-hypothesis and the

search-depth to constrain the search space and make the analysis feasible. We instructed the tool

to produce a counterexample with search-depth of 3 and scopes of 1 user, 2 roles, and 2 zones in

each snapshot. Because the search-depth (number of transitions) is 3 the counterexample has four

snapshots as each transition connects two snapshots (see Figure 4.9). Snapshot1 shows that the

User1 (ID=1) was assigned to Role1(ID=1) in STZone1(ID=1). In the next state (Snapshot2), the

role got activated in the same zone through the invocation of the operation User_ActivateRole1. In

Snapshot3, the user moved to a different zone (User_UpdateZone1 transition), (STZone6 ID=2).

In addition, in Snapshot3, the user’s zonechanged attribute was changed to true. The next state of

the user with ID=1 should not have any roles activated. However, the role (Role with ID=1) was

still active.

To uncover the fault, we debugged the counterexample. The design fault we found is that the

UpdateZone() operation was missing a precondition that ensures that there is no activated roles

before the operation is called. We added the needed precondition to address this design fault.

Step 4: Sequence diagram extraction

Figure 4.9 shows the counterexample which is an object diagram representing a sequence of

snapshot transitions violating the temporal property. Such results might be complicated and diffi-

cult to debug in the case that the design class model is complex. Figure 4.10 shows the sequence

diagram of the counterexample. As future work, we intend to future develop the use of the se-

quence diagram to facilitate uncovering of design faults. That is, a user could click on a message

111

Figure 4.10: Sequence diagram counterexample, taken from our previous work Al-Lail et al. [73]

in a sequence diagram and could see how the state changed (the changed elements could be high-

lighted).

4.3.2 Specifying temporal properties of the GSTRBAC system

To specify temporal properties of a system in UML notations, a UML designer uses our spec-

ification technique to obtain the TOCL and OCL properties. As described in Chapter 3, a user of

the technique follows the following steps to specify a property:

1. Determine the TOCL pattern and the scope that best fit a temporal requirement

2. Obtain the TOCL property (i.e., instance of the pattern) by replacing the parameters of the

pattern by appropriate context and conditions

The interpretation rules are then employed to generate the OCL counterpart expression for the

analysis purpose.

We have specified 29 GSTRBAC temporal properties using our TOCL and OCL patterns. In

this section, we only describe two of these properties in Table 4.1 how the above steps are applied

to formally specify them. Appendix C provides the description and specifications of the rest of

properties.

112

Table 4.1: Two temporal properties of the GSTRBAC model

No. Description Pattern - Scope

GSTRBAC-TP1 If a role is available in a particular zone, the role should
eventually be assigned to a user in that zone.

Response-
Globally

GSTRBAC-TP2 When a user activates a role in a zone, the role remains
active until the user moves to a different zone.

Universality-
Between Q and R

Table 4.2: An Example of Using The Specification Technique to obtain an Instance of The Response Pattern
for GSTRBAC-TP1, taken from our previous work Al-Lail et al. [73]

Scope TOCL OCL
Scope:
Globally context [Class]

inv: [P] implies sometime [S]

context [Class]

inv: let CS: Snapshot = self.getCurrentSnapshot(),

in let FS: Set(Snapshot) = CS.getPost()

in [P] implies FS→ exists(s:Snapshot | [s |= S])

Example:
GSTRBAC-
TP1

context r:Role inv GSTRBAC-TP1:

r.getAvailableZones()→

includes(z:STZone) implies

sometime r.getAssignedUsers(z)→

notEmpty()

context r:Role inv GSTRBAC-TP1:

let CS: Snapshot= self.getCurrentSnapshot()

in let FS: Set(Snapshot)= CS.gePost()

in r.getAvailableZones()→ includes(z:STZone) implies

FS→ exists (s:Snapshot | s.r.getAssignedUsers(z)→

notEmpty())

The first property (GSTRBAC-TP1) specifies the requirement that if a role is available in a

particular zone, the role should be eventually assigned to a user in that zone. The description

indicates a cause/effect relationship between two events, i.e., the availability of a role in a zone and

the assignment of a role to a user in that zone. Therefore, the property is an instance of the response

pattern in the global scope. After that, we used the corresponding TOCL pattern to obtain a TOCL

property, from which the OCL expression is derived. For this we inserted the proper context and

conditions of the designated places indicated by square brackets. Table 4.2 provides the TOCL and

OCL expressions of GSTRBAC-TP1.

It is worth noting that the Persistence_Check property we specified and checked in Section 4.3.1

is a special case of the response pattern in which the effect occurs in the next state of the cause.

113

Table 4.3: An Example of Using The Specification Technique to obtain an Instance of The Universality
Pattern for GSTRBAC-TP2, taken from our previous work Al-Lail et al. [73]

TOCL OCL
Scope:Between
Q and R context [Class]

inv:[Q] implies

always [P] until [R]

context [Class]

inv: let CS: Snapshot = self.getCurrentSnapshot()

in let FSR1: Snapshot= CS.getPost()→

select(s:Snapshot | [s|= R])→ asOrderedSet()→ first()

in let PreFSR1=Set(Snapshot) = FSR1.getPre(),

in let CSPre: Set(Snapshot)= CS.getPre()→including(CS)

in let BTS: Set(Snapshot)= PreFSR1→reject(s:Snapshot |

CSPre→includes(s))

in [Q] implies BTS→ forAll(s:Snapshot | [s |= P])

Example:
GSTRBAC-
TP2

context u:User inv GSTRBAC-TP2:

u.getActivatedRoles(u.currentzone)→

includes(r:Role) implies always

u.getActivatedRoles(u.currentzone)→

includes(r) until

u.zonechanged= True

context u:User inv GSTRBAC-TP2:

let CS: Snapshot = self.getCurrentSnapshot()

in let FSR1 :Snapshot = CS.getPost()→ select(sr:Snapshot |

sr.u.zonechanged= True)→asOrderedSet()→first()

in let PreFSR1: Set(Snapshot)= FSR1.getPre()

in let CSPre: Set(Snapshot)= CS.getPre()→including(CS)

in let BTS: Set(Snapshot)= PreFSR1→reject(s:Snapshot |

CSPre→includes(s))

in u.getActivatedRoles(u.currentzone)→ includes(r:Role) implies

BTS→forAll(s:Snapshot | s.u.getActivatedRoles(u.currentzone)
→

includes(r))

The second GSTRBAC property (GSTRBAC-TP2) captures the requirement that when a user

activates a role in a zone then the role remains active until the user changes zone. Based on this

description, we decided that the property is an instance of a more complex pattern (the universality

pattern in between Q and R scope). Again, we defined the appropriate context and conditions to

obtain the TOCL property base on the University pattern in between Q and R. The TOCL and OCL

specifications of this property are given in Table 4.3.

4.4 Case Study 2: Specification and Analysis of The Steam

Boiler Control System
The second case study is based on the Steam Boiler Control System (SBCS) specification prob-

lem Abrial et al. [68]. The SBCS problem has been used extensively to assess the effectiveness of

many software specification and verification approaches. Ziemann and Gogolla [59] have defined

114

Figure 4.11: A Visualization of the Steam Boiler Control System

few temporal properties of the SBCS system, but to the best of our knowledge, we are the only

group that has applied a UML approach to designing the SBCS system. Similar to the GSTRBAC

case study, we followed an incremental approach as we designed the SBCS system. During the

design process, we uncovered 16 design faults.

In this section, we first give an overview of the SBCS problem. Then, we present an example

of using the analysis technique to find a design fault. Further, we present some of the tempo-

ral properties we defined using the specification technique. We also show the evaluation of the

optimization technique using the SBCS system.

115

4.4.1 The Steam Boiler Control System Problem

Figure 4.11 depicts a simple visualization of the system. We provide an informal specification

of the system’s program that controls the level of water in the steam boiler. The system must

work correctly and the water level must neither be too low, nor too high. The water level has to

be within two normal limits (minimalNormal and maximalNormal) and can not pass over

two critical limits (minimalLimit and maximalLimit); otherwise the steam boiler can be

seriously damaged.

The system uses different devices to maintain the level of the water in a steam boiler. The

physical system is composed of the following devices:

• The steam-boiler

• A device that measures the water in the steam-boiler

• A device that measures the quantity of steam coming out of the boiler

• Four pumps that supply the steam-boiler with water

• Four pump-controllers to supervise the pumps

• A valve that evacuates water from the steam-boiler

• An operator desk that manually stops the system

The system takes actions when any of the devices fail or when the water level exceeds one of

the defined limits. To illustrate, when the level of the water goes bellow the minimalNormal

value, the program sends a signal to the pump-controller to supply the boiler with water. The

physical units interact with each other via exchanging messages. There are four pump controllers

whose behavior is identical; therefore, we only specify one pump to simplify the discussion.

Figure 4.12 shows a design class model of the SBCS system. The class model is enriched with

a number of OCL invariants and operations’ pre and post conditions. We only present some of the

important OCL constraints. One of the important invariants states that the water level should not

exceed the capacity of the boiler. This invariant is specified in OCL as follows:

116

+startOperartion()

ControlProgram

-mode : Mode
-ready : Boolean
-failureDetected : Boolean
-wlmdFailure : Boolean
-smdFailure : Boolean
-pumpFailure : Boolean
-pumpControllerFailure : Boolean

PhysicalUnit

-ready : Boolean

+openValve()

SteamBoiler

-capacity : Double
-minimalNormal : Double
-maximalNormal : Double
-maximumIncrease : Double
-maximumDecrease : Double
-minimalLimit : Double
-maximalLimit : Double
-valveOpen : ValveState

Pump

-mode : State
-capacity : Double

-program

1

-units

*

-sb

1

-pump

1
+getSteam() : Double

SteamMeasurementDevice

-evaporationRate : Double

-smd

1

-sb

1

+getLevel() : Double

WaterLevelMeasurementDevice

-waterLevel : Double

-wlmd1
-sb 1

+openPump()
+closePump()

PumpController

-circulating : Boolean

-pump1 -controler 1

«enumeration»
Mode

+Normal
+Initialization
+Degraded
+Rescue
+EmergencyStop

«enumeration»
State

+On
+Off

«enumeration»
ValveState

+open
+closed

Figure 4.12: The Design Class Model for the Steam Boiler Control System, taken from our previous work
Al-Lail et al. [95]

context WaterLevelMeasurementDevice

inv: self.waterLevel < self.sb.capacity

Note that the level of the water could exceed the maximalLimit value. In such a case, the

system goes into the emergency stop mode. Another invariant states that the boiler valve can only

be opened during the initialization of the system. This invariant is given below.

context SteamBoiler

inv: self.valveOpen=#open implies self.program.mode =#Initialization

The class model has five operations that change the state of the system. The getLevel()

operation obtains the water level from the water measuring device and stores it in the variable

waterLevel. Note that the getLevel() does not read and then return the value of the variable

waterLevel, but it regularly updates it based on the measurement taken by the device. This

is reflected in the postcondition of the operation, as shown below. Similar to getLevel(),

the getSteam() operation gets the evaporation steam rate from the steam measuring device

117

and writes it in the evaporationRate variable. The openPump(), closePump(), and

openValve() operations open the pump, close the pump, and open the boiler valve, respectively.

The OCL specifications of getLevel() and openPump() are defined below. The complete

specification of the SBCS class model is provided in Appendix D.

context WaterLevelMeasurementDevice::getLevel(): Double

pre: self.program.mode= #Normal

post: self.waterLevel = result

context Pumpcontroller::openPump()

pre: self.pump.mode = # Off

post: self.pump.mode = # On

4.4.2 Analayzing the steam boiler system

We analyzed the design class model of the SBCS system to check if it satisfies the requirement

that as soon as the program recognizes a failure of the water measuring device it goes into the

Rescue mode. Ensuring that the system satisfies this property is critical to the safety of the

boiler. The following sections discuss the application of the steps of our analysis technique to this

analysis task.

Step1: Unfolding the behavior

In this step, we converted the class model in Figure 4.12 to its corresponding STM (see Fig-

ure 4.13). Following the guidelines in Chapter 3, a snapshot defines configurations of objects of

each of the concrete classes in Figure 4.12. Note that a SBCS system consists of a single device

of each of the types. That is, a SBCS system cannot have two steam boilers. Consequently, an

instance of the Snapshot class can only have one object of each of the classes. Because the USE

Model Validator does not have support for structured classes, we represented the Snapshot class

as a class that has composition relationships with the different classes that constitute the parts. As

shown in Figure 4.13, the Snapshot class has composition relationships to SteamBoiler, Pump,

118

-mode : Mode
-ready : Boolean
-failureDetected : Boolean
-wlmdFailure : Boolean
-smdFailure : Boolean
-pumpFailure : Boolean
-pumpControllerFailure : Boolean

ControlProgram

-ready : Boolean
-capacity : Double
-minimalNormal : Double
-maximalNormal : Double
-maximumIncrease : Double
-maximumDecrease : Double
-minimalLimit : Double
-maximalLimit : Double
-valveOpen : ValveState

SteamBoiler

-ready : Boolean
-mode : State
-capacity : Double

Pump
-sb

1

-pump

1

-ready : Boolean
-vaporationRate : Double

SteamMeasurementDevice -smd

1

-sb1

-ready : Boolean
-waterLevel : Double

WaterLevelMeasurementDevice

-wlmd1

-sb

1

-ready : Boolean
-circulating : Boolean

PumpControler

-pump1
-controler 1

+Normal
+Initialization
+Degraded
+Rescue
+EmergencyStop

«enumeration»
Mode

+On
+Off

«enumeration»
State

+open
+closed

«enumeration»
ValveState

-program1

-PC1

-program

1

-pump1

-program

1

-sb1

-program 1

-smd1

-program 1

-wlmd1

-snp 1
-boiler 1

-snp

1

-WLMD 1

-snp

1

-SMD 1

-snp 1

-pump 1

-snp

1

-PC

1

-snp

1

-program

1

+getNext() : Snapshot
+getPost() : Set(Snapshot)
+getPrevious() : Snapshot
+getPre() : Set(Snapshot)

Snapshot

Transition

-wlmdPre : WaterLevelMeasurementDevice
-wlmdPost : WaterLevelMeasurementDevice
-ret : Double

WaterLevelMesurementDevice_getLEVEL

-SBPre : SteamBoiler
-SBPost : SteamBoiler

SteamBoiler_OpenValve

{ordered}

{ordered}

-PreviousTrans

0..1

-nextSnapshot

1

-nextTrans

0..1

-PreviousSnapshot

1

{ordered}

-PCPre : PumpControler
-PCPost : PumpControler

PumpController_OpenPump

-PCPre : PumpControler
-PCPost : PumpControler

PumpController_ClosePump

inv: self.waterLevel < self.sb.capacity

inv: PCPre.pump.mode=#off
inv:PCPost.pump.mode=#on

inv: self.valveOpen=ValveState=#Open
implies self.program.mode=#Initialization

inv: PCPre.pump.mode=#on
inv:PCPost.pump.mode=#off

inv: SBPre.valveOpen=#Closed
inv:SBPost.valveOpen=#Open

inv: wlmdPost.waterLevel= ret

-CPPre : ControlProgram
-CPPost : ControlProgram

ControlProgram_Start

inv: CPPost.mode=#Normal

Figure 4.13: The STM of The SBCS Design Class Model, taken from our previous work Al-Lail et al. [95]
with modification

119

PumpController, ControlProgram, SteamMeasurementDevice, and WaterLevelMeasurementDe-

vice.

To create the hierarchy of transition classes, we generated a subclass of the abstract Transition

class for each operation. In the SBCS class model Figure 4.12, we only considered five modifier

operations and thereby we created five subclasses of the class Transition (i.e., getLevel(), star-

tOperation(), openValve(), openPump(), and closePump()). Note these operations in Figure 4.12

and their representations in Figure 4.13.

For each parameter of an operation, we should generate two attributes that represent the value

of the parameter before and after the call of the operation. However, none of the operations has a

parameter. On the other hand, we defined two attributes that point to the object’s states before and

after an operation call (e.g., wlmdPre and wlmdPost). An attribute is also created for the return

values of operation (e.g., ret).

As explained in Chapter 3, we need to represent the pre and post conditions of the operations

as invariants in the STM . Figure 4.13 shows all of these invariants. We demonstrate how the

getLevel() operation’s pre and post conditions were defined in the STM model. The above pre

and post conditions of getLevel() operation are converted to invariants in STM as follows:

context WaterLevelMeasurmentDevice_getLevel

inv: wlmdPre.program.mode=# Normal

inv: wlmdPost.waterLevel= ret

Similarly, we created transition subclasses and invariants for the other modifier operations.

Figure 4.13 shows these subclasses and invariants.

Step2: Interpreting TOCL as OCL

The property that we want to check is: as soon as the program recognizes a failure of the

water measuring device unit it goes into the rescue mode. This property is an instance of the

response pattern; therefore, we used our specification technique to define a TOCL expression for

this property as follows:

120

context ControlProgram

inv: self.wlmdFailure=true implies next self.mode= #Rescue

The TOCL states that if the water measuring device fails (self.wlmdFailure=true) then the

program goes into the rescue mode (nextself.mode = #Rescue). Using the interpretation rules

we defined for the response pattern in Chapter 3, we obtained the following OCL expression:

context ControlProgram

inv: let CS: Snapshot= self.snp

in NS: Snapshot= CS.getNext()

in self.wlmdFailure=true implies NS.program.mode= # Rescue

In the above OCL expression, the next state (NS) is returned by first getting the current snap-

shot, i.e., CS, and navigating to the next state by the operation getNext(). Then the OCL asserts

that if the water measuring device fails (self.wlmdFailure=true), then the program in the next state

is in the Rescue mode.

Step 3: Analysis

The USE Model Validator takes the STM model and the OCL property and checks if there

exists an instance of the STM model that violates the OCL expression. We analyzed the model

with a search_scope of one object of each class and a search_depth of 10 transitions. Figure 4.14

shows the counterexample that leads to the temporal property’s violation. Note that, the actual

counterexample has a total of 11 snapshots though we only show the first three snapshots that are

related to the property and the design fault.

In Figure 4.14, Snapshot1 shows that none of the units were failing, and all of them were ready

for operation. After starting the operation, the water level measuring device had a failure in the

next state (Snapshot2). Recall that the temporal property states that after a failure in the water

level measuring device, the system should go into the Rescue mode in the next state. However,

the system remained in the normal mode in Snapshot3. This sequence of transitions violates the

property.

121

Figure 4.14: Counterexample: Scenario violating the temporal property, taken from our previous work
Al-Lail et al. [95]

122

We examined the counterexample to find the design fault. We noted that the counterexample

has an object of the WaterLevelMeasurmentDevice_getLevel class. This should not have been

allowed after the failure of the water level measuring device. This situation indicated that the

getLevel() operation missed a precondition to check for this condition. We also discovered that

the other operations missed this precondition as well. In this case, one analysis task uncovered

multiple design faults. We added the necessary preconditions to all operations’ specifications to

satisfy the requirement. By adding these pre conditions, we guarantee that none of the operation’s

calls will proceed if the water measuring device is failing. By doing a follow up analysis after the

fix, we confirmed that the property was satisfied by the modified model.

4.4.3 Specifying temporal properties of the SBCS system

The SBCS system has many temporal requirements that need to be analyzed. We have speci-

fied 10 temporal properties using our specification technique. Table D.1 describes some of these

properties in English. Similar to our explanation in previous section, we used the descriptions to

determine the patterns and scopes. After that, we defined the TOCL properties as instances of the

approperiate patterns. The interpretation rules were then employed to generate the OCL counter-

part expressions to be used for the analysis. Table D.3 provides the TOCL and OCL specifications

of these properties. Appendix D provides the description and specifications for the rest of the

properties.

Table 4.4: Some temporal properties of the SBCS system, taken from our previous work Al-Lail et al. [95]

No. Description Pattern - Scope

SBCS-TP1 As soon as the program recognizes a failure of the water
measuring device unit it goes into the rescue mode.

Response-
Globally

SBCS-TP2 Failure of any physical units except the water measuring
device puts the program into degraded mode.

Response-
Globally

SBCS-TP3 If the water level is close to reaching the maximalLimit or
minimalLimit values (i.e., greater than maximalNormal
or less than minimalNormal) the program enters the mode
emergency stop.

Response-
Globally

SBCS-TP4 When the valve of the steam boiler is open, then eventu-
ally the water level will be lower or equal to the maximal
normal level.

Response-
Globally

123

Table 4.5: TOCL and OCL specification of the SBCS temporal properties described in Table D.1, taken
from our previous work Al-Lail et al. [95]

No. TOCL Specification on Class Model OCL Specification on the Snapshot Transition Model

SBCS-TP1 context ControlProgram

inv: self.wlmdFailure implies

next self.mode=# Rescue

context ControlProgram

inv: inv: let CS: Snapshot= self.snp

in NS: Snapshot= CS.getNext()

in self.wlmdFailure implies NS.program.mode= # Rescue

SBCS-TP2 context ControlProgram

inv: (smdFailure or pumpFailure

or pumpcontrollerFailure) implies

next self.mode=# Degraded

context ControlProgram

inv: let CS: Snapshot= self.getCurrentSnapshot()

in let NS: Snapshot = CS.getNext()

in (self.pumpcontrollerFailure or self.pumpFailure or

self.smdFailure) implies NS.program.mode =# Degraded

SBCS-TP3 context SteamBoiler

inv: (self.wlmd.waterLevel >

self.maximalNormal or self.wlmd.waterLevel

< self.minimalNormal) implies next

self.program.mode = # EmergencyStop

context SteamBoiler

inv: let CS: Snapshot = self.snp

in let NS: Snapshot = CS.getNext()

in (self.wlmd.waterLevel > self.maximalNormal or

self.wlmd.waterLevel < self.minimalNormal) implies

NS.program.mode = # EmergencyStop

SBCS-TP4 context SteamBoiler

inv: self.valveOpen = # open implies

sometime

(self.wlmd.waterLevel < = maximalNormal)

context SteamBoiler

inv: let CS: Snapshot = self.snp

in let FS: Set(Snapshot) = CS.getPost()

in self.valveOpen = # open implies FS→ exists

(s:Snapshot | s.WLMD.waterLevel < = maximalNormal)

124

Figure 4.15: Overview of the optimization technique, taken from our previous work Al-Lail et al. [96]

4.4.4 Using The Optimization Technique

Our optimization technique intends to reduce the time needed to analyze large class models.

Figure 4.15 depicts an overview of the optimization technique. As described in Chapter 3, the

inputs of the optimization algorithm are an STM and an OCL expression representing a TOCL

temporal property. The technique uses the temporal property as a criterion to produce a fragment

of the STM model that only contains the STM model elements that are relevant to the analysis

of the property. If the STM fragment has fewer elements than the original STM, the analysis can

handle larger analysis scopes and depths and it can take less time and memory.

In this section, we show the application of the optimization technique to the SBCS system. We

also present the result of our evaluation of the technique.

Applying the optimization technique

Consider the STM of the Steam Boiler Control System in Figure 4.13. This model is denoted

as SBCS-STM in this section. SBCS-STM has five transition subclasses that correspond to the

operations from the original class model of the system. The SBCS-STM model has a number

of OCL invariants that are: (1) transferred from the the original class model, (2) generated from

operations’ specifications, and (3) the STM invariants.

We applied the optimization technique to optimize the SBCS-STM with respect to the four

temporal properties in Table D.3. Figure 4.16 shows the SBCM-STM fragment that is produced by

125

Figure 4.16: The STM slice with respect to SBCS-TP1, STM-TP1-Slice

our proof-of-concept tool for SBCS-TP1. We only show how optimization was applied to produce

the fragment in Figure 4.16. Appendix D provides the fragments for the other three properties.

Algorithm 2 in Chapter 3 describes the following steps. The first step is concerned with finding

the direct model elements relevant to a temporal property. SBCS-TP1 is defined in the context

of class ControlProgram, and thus directly depends on the class ControlProgram. The expression

self.snp is an association call that returns a snapshot associated with the control program (referred

to by self). Thus, there is a direct dependency with reference snp and its type class, Snapshot.

The expression CS.getNext() is an operation call expression and it returns a snapshot. There is

thus a direct dependency with the operation getNext(), and its type class, Snapshot. In addition,

the getNext() operation is defined as: self.nextTrans.nextSnapshot, where self.nextTrans is an as-

sociation call and it returns a transition associated with the snapshot, and thus SBCS-TP1 directly

depends on the reference nextTrans, and its type class Transition. The expression self.wlmdFailure

refers to an attribute defined in class ControlProgram, and thus SBCS-TP1 directly depends on

attribute wlmdFailure. Similarly, the expression NS.program.mode refers to an attribute defined in

126

class ControlProgram, and thus SBCS-TP1 directly depends on the attribute mode. Because the

attribute mode has an enumeration type, Mode, SBCS-TP1 thus directly depends on Mode. There-

fore, SBCS-TP1 directly references the following STM elements DRMElmts = {ControlProgram,

Snapshot, Transition, snp, nextTrans, nextSnapshot, program , getNext(), wlmdFailure, Mode}.

The second step of the algorithm is concerned with computing the set of the indirect model el-

ements. Because the class Transition is in the direct related model element of SBCS-TP1 and

the class Transition has subclasses, SBCS-TP1 indirectly references the subclasses. As a re-

sult, the set of the indirect model elements is the following: IRMElmts = { WaterLevelMeasure-

mentDevice_getLEVEL, SteamMeasurementDevice_getSTEAM, SteamBoiler_OpenValve, Pump-

controller_ ClosePump, Pumpcontroller_OpenPump}. The third step is combining the sets of

direct and indirect model elements to produce a set of the related model elements, RMElmts =

DRMElmts ∪ IRMElmts.

As SBCS-STM model has many invariants, and the forth step finds which of the invariants are

relevant to SBCS-TP1. As described in Chapter 3, an invariant is relevant to a property if any of

the invariant’s related model elements is in the set of the SBCS-TP1’s RMElmts. To find the set of

an invariant’s related model elements, the algorithm finds the set in the same manner of finding it

for temporal properties expression, i.e., finding the direct and indirect related elements. Therefore,

the tool did a similar analysis to find the RMElmts set for all the invariants that are defined in

the SBCS-STM, and checked if this set intersects with the set of SBCS-TP1’s RMElmts. If the

intersection of the two sets is not empty, the invariant and its related model elements are included

in the fragment. Figure 4.16 shows the returned ecore model of the related elements by the tool.

The related invariants are returned in an .ocl file.

Evaluation of the optimization technique

We performed an experiment to evaluate the optimization technique. The experiment involved

analysis of the four temporal properties in Table D.3. For each of the properties, two sets of

analyses were performed: (1) the analyses performed on the unsliced model (SBCS-STM), and

(2) the analyses performed on the model fragments that are relevant to the considered temporal

127

property (e.g., STM-TP1-Slice). We collected two types of time (in milliseconds) for each set: the

optimization time (OT) to obtain an optimized model (slice) for each of the properties, and the

analysis time (AT) to find a counterexample, if any. We also calculated the speedup percentages.

The hypotheses were: (1) the optimization technique is capable of significantly reduce the

analysis time, and (2) the analysis results are preserved. The result is preserved when the following

two conditions hold:

1. The two analyses either both reveal a counterexample or not

2. In case a counterexamples are found, the design faults uncovered by debugging the coun-

terexamples are the same

The case that any of the above conditions is not met indicates that incorrectness of the opti-

mization algorithm.

Table 4.6 presents the results of the experiment for the four properties. Each sub-table has a

column depth that represents the the number of transitions considered in an analysis task. The

sub-table labeled SBCS-TP1 Analysis, for example, shows the times used to analyze the SBCS-

STM model and STM-TP1-Slice with respect to SBCS-TP1. Note that the optimization time (OT)

is constant for every property (e.g., 411 for SBCS-TP1). The reason is that we only need to

optimize SBCS-STM once for each of the properties. After that, the optimized model (e.g., STM-

TP1-Slice) is analyzed with different search_depths.

As indicated by the speedup column, the optimization technique slows down the overall analy-

sis process for depths less than 5. This is because the time needed to slice SBCS-TP1 is longer than

the time needed to analyze the SBCS-STM with depth less than 5. However, for depths greater

than 5, the time for optimizing SBCS-STM with respect to SBCS-TP1 becomes relatively small

compared to the analysis time. This is particularly true for depths equal or greater than 10, as

indicated by the speedup column and the time needed for the analysis. Although the optimization

slows down the analysis for depths less than 5, it is less than a second, which can be insignificant

as compared to the analysis time of complex class models.

128

Table 4.6: Results of the optimization technique’s experiment (OT: Optimization Time, AT: Analysis Time,
Total= OT + AT, SBCS-STM: Unsliced STM mode for SBCS)

SBCS-TP1 Analysis SBCS-TP2 Analysis
STM-TP1-Slice SBCS-STM STM-TP2-Slice SBCS-STM

depth OT AT Total AT Speedup OT AT total AT Speedup
1 441 46 487 47 -936% 451 31 482 31 -1454%
2 441 94 535 94 -469%5 451 62 513 79 -549%
3 441 125 566 234 -141% 451 78 529 203 -160%
4 441 187 628 200 -214% 451 172 623 375 -66%
5 441 422 863 2046 57% 451 343 794 1672 52%
6 441 937 1378 5531 75% 451 1015 1466 3031 51%
7 441 2438 2879 5828 50% 451 2031 2482 5750 56%
8 441 2157 2598 9313 72% 451 3312 3763 12172 69%
9 441 5126 5567 75254 92% 451 5656 6107 38283 84%
10 441 11532 11973 30845 61% 451 10391 10842 24923 56%
11 441 15032 15473 190572 91% 451 13938 14389 172415 91%
12 441 24470 24911 207245 87% 451 27627 28078 372503 92%
13 441 36268 36709 391801 90% 451 33267 33718 608140 94%

TP3 Analysis SBCS-TP4 Analysis
STM-TP3-Slice SBCS-STM STM-TP4-Slice SBCS-STM

depth OT AT Total AT Speedup OT AT total AT Speedup
1 455 24 475 234 -102% 538 32 570 47 -1112%
2 455 49 500 156 -220% 538 47 585 78 -650%
3 455 86 537 234 -129% 538 156 694 171 -305%
4 455 125 576 328 75% 538 188 726 391 -85%
5 455 391 842 2375 64% 538 547 1085 1078 -0.6%
6 455 922 1373 8907 84% 538 1157 1695 2016 15%
7 455 2063 2514 4610 45% 538 2328 2866 5407 46%
8 455 3750 4201 9110 53% 538 3609 4147 15688 73%
9 455 6563 7014 61096 88.5% 538 7469 8007 73316 89%
10 455 10407 10858 81566 86% 538 9626 10164 21204 52%
11 455 16766 17217 419393 95% 538 11282 11820 512242 97%
12 455 26563 27014 151711 82% 538 16626 17164 135283 87%
13 441 32627 33078 477947 93% 538 34123 34661 511478 93%

The experiment also showed that the analysis results are preserved by the optimization tech-

nique. That is, the analysis performed on the unsliced model and on the slices are consistent in

checking the validity of a property. For example, the analysis of TP1 on SBCS-STM revealed a

counterexample; this is consistent with the analysis on STM-TP1-Slice, which revealed a coun-

terexample as well. The design fault found in both cases is the same, which is the missing precon-

ditions of the operations.

129

4.5 Chapter Summary
In this chapter, we applied the techniques in the context of two case studies: the GSTRBAC

model and the SBCS system. The first objective of the case studies was to evaluate the expressive-

ness of the specification technique in specifying a variety of properties. Using the specification

technique, we successfully specified 35 temporal properties in the GSTRBAC model and 14 prop-

erties in the SBCS system. It is worth emphasizing that during this process, we did not encounter

any property that we could not specify. The properties were a mixture of safety and liveness

properties, many of which were obvious instances of the proposed patterns. Table 4.7 shows the

distribution of the properties.

Table 4.7: Distribution of the properties we specified

Pattern Absence Universality Existence Bounded Existence

Number of properties 5 2 0 0

Pattern Precedence Response Chain Precedence Chain Response

Number of properties 4 28 0 0

Our findings regarding the most used patterns is in agreement with the results found by Dwyer

et al. [66]. In particular, as shown in the table above, the most widely used patterns are Response,

Universality, and Existence. This is similar to the finding in Dwyer et al. [66] as they showed

that the most used patterns are Response, Universality, and Absence. Note that the Absence is the

logical dual of Existence, i.e., the existence of one event is the absence of its negation.

The second objective of the case studies was to evaluate the effectiveness of the analysis tech-

nique in finding design faults. As we demonstrated in this chapter, the analysis technique is capable

of finding faults. We were able to uncover more that 50 design faults while designing the GSTR-

BAC model. Also, 16 design faults were found when we analyzed the SBCS system. We identified

the design faults we found into two categories:

130

1. Permissive models. The models in this case were under-specified, that is, the analyses

revealed that the models were missing needed constraints. The under-specification results

in violations of temporal properties by allowing unwanted states to be reached. The design

faults can further be classified as:

– Missing pre and post conditions of operations

– Missing class invariants

2. Restrictive models. The models in this case were overconstrained, that is, the analyses

revealed that the models were augmented with unnecessary constraints. Consequently, some

of the required behavior could not be obtained. For example, a combination of operations’

specifications do not allow the system to reach desired states. The design faults can further

be classified as:

– Unneeded pre or post conditions

– Unneeded class invariants

The third objective was to evaluate the usefulness of the optimization technique in saving time

when analyzing large models. As shown in Table 4.6, we found that optimization can significantly

speed up the analysis for depths greater than 10. For relatively small models, such as the SBCS

system, the time saved by optimization is in order of minutes. To illustrate, as shown in Table 4.6,

the time saved by optimization is almost 10 minutes, when analyzing SBCS-TP2 with depth 13.

However, recall that the optimization technique is property-based. For temporal properties that

require a substantial number of model elements of the original model, the optimization technique

produces a slightly smaller slice than the original model. In such cases, the technique provides

little time improvement. Nevertheless, this situation is very rare in realistic complex system.

131

Chapter 5

Conclusions

Software is everywhere, though we might be heedless of the extent of its influence, it plays an

increasing role in our society and economy. For example, correct functionality of modern cars,

mobile phones, and medical devices depends on the correctness of the internal software. However,

we have witnessed incidents in which software systems have disappointed us by failing to do what

they are intended to do or by doing what is undesired, causing catastrophic consequences to busi-

nesses and individuals. Such problems pose a significant challenge to the Software Engineering

community. This challenge is how to create techniques and tools that assist designers in reducing,

or even eliminating errors in software systems regardless of their complexity.

There has been a great deal of research in developing new techniques to overcome this chal-

lenge. Model-Driven Engineering (MDE) has been developed to alleviate such problems, and has

been established as a new paradigm for developing reliable, complex software systems. In the

context of MDE, designers use the Unified Modeling Language (UML) to create models that drive

the entire development process. Once UML models are created, MDE techniques automatically

generate code from the models. However, the MDE community lacks adequate techniques and

tools for specifying and analyzing temporal properties that aid in uncovering design faults in soft-

ware models. Model analysis must be done before design faults are automatically propagated to

code. Most of today’s state-of-the-art research focuses on using Model Transformation to Model

Checking, which is the prominent approach to verifying temporal properties. Unfortunately, this

approach complicates the process and results in a number of difficulties.

First, effective use of the state-of-the-art techniques requires UML designers to develop deep

working knowledge of the Model Checking techniques. These techniques are not based on MDE

and UML notations and tools. Further, studies have shown that developing adequate skills is

challenging for many Model Checking practitioners, let alone UML designers who might lack

proper training and mathematical maturity. Second, ensuring the reliability of the analysis results

132

produced requires a proof of accuracy of the transformations involved. Obtaining such a proof

is not trivial. Third, the analysis results obtained by the back-end Model Checking tools need to

be presented to designers in UML terms in order to uncover design faults. This requires another

transformation process that gives rise to the same difficulties inherent in the initial transformation.

Broadly speaking, the research described in this dissertation aims to enhance the field of speci-

fication and analysis of temporal properties using UML models. It does this by developing a native

UML-based framework that is composed of a set of UML-based notations, techniques and tools.

The proper use of this set amplifies UML designers’ skills in developing reliable software systems,

instead of forcing the designers to learn and deal with the complications of the existing non-UML

approaches.

This concluding chapter is organized as follows. In Section 5.1, we revisit contributions of

the research described in this dissertation and discuss the limitations of the work. We then, in

Section 5.2, point to some of the future research that can be done to enhance the usability and

applicability of the framework.

5.1 Summary of the Contributions and Limitations
In this section, we first examined the aim and objectives that we presented in the introduction.

Then, we summarized the contributions and discussed the limitations of our framework. The aim

and the objectives of this research were as follows:

• Aim: To develop a UML-based framework consisting of techniques and tools to formally

specify and analyze temporal properties of software designed using UML.

• Objectives:

1. To explore the state-of-the-art techniques and tools in order to identify research gaps

and challenges in the field of Model Checking UML models.

2. To develop a UML-based analysis technique that exclusively uses UML notations and

tools.

133

3. To streamline the process of specifying temporal properties for UML designers by de-

veloping a specification technique that uses UML notations.

4. To develop an optimization technique that reduces the time needed for analysis, allow-

ing the analysis to be scaled to larger UML models.

5. To provide a proof-of-concept tool by implementing the specification, analysis, and

optimization techniques.

6. To evaluate the framework through an actual software specification and analysis projects.

In Chapter 2, we examined the state-of-the-art approaches to analyzing temporal properties of

systems that are modeled using UML. We categorized the material into specification and analysis

techniques and then we applied the Systematic Literature Review (SLR) method to identify open

problems and gaps in the current research. We found that many of the existing approaches and

tools are inadequate and they introduce accidental complexities that hinder their effectiveness and

efficiency. We formulated the challenges as open research questions that, if properly addressed,

will lead to improvements toward achieving the research objectives. We then categorized the open

research questions into the following groups: (1) specification and analysis integration, (2) Model

Transformation, (3) property discovery and patterns, and (4) tooling. This dissertation focused on

developing a framework that addresses some of the challenges related to integrating specification

and analysis, property pattern, and tools. It is beneficial to the MDE community to find answers to

the identified questions, as their answers may yield insights that are applicable to other MDE areas

(such as Model Transformation and development of MDE-based tools).

In Chapter 3, we proposed a UML-based framework. We discussed and provided details of

the framework’s three techniques that addresses the second, third, and fourth objectives of our re-

search. A user of the framework can specify and analyze temporal properties without the need for

transforming UML models to other languages. The framework’s analysis technique determines if a

temporal property holds with respect to a set of automatically generated scenarios (i.e., representa-

tions of system executions). The number of the checked scenarios can be increased to increase the

designer’s confidence that a temporal property holds in a particular model. The analysis technique,

134

however, can not guarantee that the property holds within scenarios that are not checked. In addi-

tion, using the framework’s specification technique, the process of specifying temporal properties

is streamlined by the use of UML-based property patterns. Following two simple steps, UML

designers can use the provided property patterns to specify temporal properties on UML class

models using UML notations (i.e., TOCL and OCL languages). Hence, any class model analy-

sis tool could be employed to perform the analysis task. Finally, we discussed the framework’s

optimization technique that is used to scale the analysis to larger class models.

In Chapter 4, we evaluated the framework’s techniques using two case studies. The first case

study was based on the development of our Generalized Spatio-Temporal Role-Based Access Con-

trol Model(GSTRBAC) Abdunabi et al. [67]. We developed this model to address the many appli-

cation requirements of wireless and mobile devices that make use of the spatio-temporal informa-

tion of a user to provide better functionality. Such applications necessitate authorization models

where access to a resource depends on the credentials of the user, the user’s location, and time of

access. The second case study was based on the Steam Boiler Control System (SBCS) specifi-

cation problem, Abrial et al. [68]. The SBCS specification problem has been used extensively to

assess the effectiveness of many software specification and verification approaches. Using SBCS,

therefore, provided a benchmark study that can be used to compare the framework with other

methods.

We developed a proof-of-concept research prototype to investigate the effectiveness of the

framework’s techniques. The effectiveness of the three techniques was determined as follows:

(1) the specification technique was judged based on its ability to specify temporal properties of

different kinds, (2) the analysis technique was judged based on the ability of the technique to find

design faults, and (3) the optimization technique was judged based on how much time was saved

as compared with the time needed for analysis without optimization.

Using the specification technique, we successfully specified 29 temporal properties in the

GSTRBAC model and 10 properties in SBCS. The properties were a mixture of the two types

of properties: safety and liveness. Many of them were obvious instances of the proposed patterns

135

that provide a mean to specify many types of properties. It is worth emphasizing that we have not

encountered any property that we have been unable to specify. In addition, our findings, regarding

the most used patterns, agree with studies performed by other researchers (i.e., Dwyer et al. [66]).

Though the case studies showed that our specification technique was expressive to specify a variety

of properties, a more thorough comparison was needed to confirm the expressiveness of the TOCL

and OCL with the original forms of Dwyer’s patterns.

The specification technique, however, has a shortcoming. It uses a linear-time temporal logic

language instead of branching-time logic. Each type of logic could express certain properties that

the other could not express effectively. To accommodate such properties, we plan to develop a new

UML-based branching-time logic language and incorporate it in our framework.

The analysis technique has shown itself to be capable of finding design faults. Using the tech-

nique we were able to uncover more than 50 design faults while designing the GSTRBAC model.

Also, 16 design faults were found when we analyzed the SBCS system. Note that in both case

studies, the design faults were not seeded in the models to evaluate the effectiveness of the analysis

technique, but were uncovered during the analysis phase, not after the final models were released.

The number of design faults found is typical when designing and analyzing complex systems. We

identified two categories of design faults that were found by our analyses. The majority of the

design faults were due to permissive models. The analyses revealed that the models were missing

needed class invariants, or operations’ pre- and postconditions. The missing constraints allowed

the systems to reach prohibited states that violated temporal properties. To address design faults

in this category, we needed to add the missing constraints. The second, less common, category

of design faults are due to the models being too restrictive, which resulted in disallowing required

behavior, which again violated certain requirements. In this case, the models originally included

unnecessary constraints. To correct design faults due to this category, we needed to find and re-

move the unwanted constraints to allow the desired behavior. The case studies, therefore, showed

that the analysis technique is effective in finding design faults.

136

While the analysis technique is effective in analyzing properties and uncovering design faults,

it is only able to do it for certain types of properties. In particular, the technique can only handle

bounded safety and liveness properties. These properties are restricted by a boundary that limits

the number of transitions to be executed and analyzed. Therefore, the technique is unable to

analyze unbounded liveness properties such as fairness properties (e.g., every process should be

executed infinitely often). The reason is that fairness properties require the analysis of infinite

execution traces while our technique is only able to analyze finite execution traces. To address

this limitation, we plan to investigate how other techniques that have this shortcoming address this

problem. In particular, we will investigate and leverage the techniques used by Bounded Model

Checking [64].

With regard to evaluating the usefulness of the optimization technique, we compared the anal-

yses performed with optimization with the analyses performed without optimization. We focused

on two aspects for this comparison. The first was on whether the optimization technique preserved

the analysis results. That is, if the analyses performed with optimization found the same design

faults that were found by the analyses without optimization. The second aspect was how much

speedup was obtained when measuring the analysis time with and without the optimization. The

analyses produced the same results in all the cases that were done on 4 temporal properties of the

SBCS system. We also found that optimization can significantly speed up the analysis for large

models.

A limitation of the optimization technique is that it is property-based. That is, the time im-

provement of the the optimization technique depends on the nature of the property being analyzed.

If a property is connected with a small number of elements, the optimization is very beneficial.

However, in case that a property requires a significant number of model elements, the optimization

provides little time improvement.

137

5.2 Future Research
The research described in this dissertation has been successful in accomplishing its objectives

and achieving its aim. However, much more work can be done to further improve and refine our

contributions. The ideas presented in this dissertation have a great potential to be extended to help

meet the vision of MDE. Our future research will be mainly focused on contributing to the global

effort to establish MDE as a software development paradigm that is utilized to develop complex

industrial software projects.

We have formulated a few future research projects that build on the work of our research. The

following is a short description of three of these projects.

Project 1: An Object-Oriented Branching Tree Logic Language

Our framework relies on the use of specification approach that uses a linear-time temporal logic

language instead of branching-time logic. Each type of logic could express certain properties that

the other could not express effectively. Using the current framework, therefore, a designer could

find it difficult to specify non-linear temporal properties. To add more expressiveness and power to

the framework, we plan to develop an MDE branching-time logic language for specifying temporal

properties that are not expressed as effectively by the current language, TOCL.

Project 2: Evaluating the Property Specification Patterns

As discussed in Chapter 2, specifying temporal properties in formal languages is challenging.

Our specification technique alleviates some of the difficulties. The technique is based on Dwyer’s

eight property specification patterns. However, these patterns, while very useful, were proposed

more than 18 years ago. Many different systems have been investigated since then; hence, new

types of requirements may have emerged. In this project, we plan to investigate and evaluate the

applicability of the patterns to the new requirements and suggest proper improvements. Depending

on this evaluation’s result, we will adapt our specification technique to meet the emerging require-

ments.

138

Project 3: Discovering Software Properties

Many software specification and analysis techniques, such as the framework developed in this

dissertation, require specification of the target system’s desirable properties. When these properties

are known, they can be specified using appropriate formalisms that can then be verified using

different tools. Specifying these properties requires a deep understanding of the structure and

the behavior of a system. However, for early stages of a system’s development, many of the

properties are unknown. In this project, we plan to develop a technique that will aid in discovering

desirable system properties, which will aid in better understanding the system requirements. By

implementing this technique, the designers using our framework will be able to discover desirable

properties that may have been overlooked. Subsequently, these properties can be specified and

analyzed by the framework. Additionally, because temporal properties can be very similar, this

project will also investigate their consistency, independence, and consequences.

139

Bibliography

[1] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking (Representation and

Mind Series). The MIT Press, 2008.

[2] Wikipedia. Pentium FDIV bug.

[3] Douglas Isbell, Mary Hardin, and Joan Underwood. MARS CLIMATE ORBITER TEAM

FINDS LIKELY CAUSE OF LOSS .

[4] Jean-Marc Jézéquel and Bertrand Meyer. Design by Contract: The Lessons of Ariane. IEEE

Computer, 30(1):129–130, 1997.

[5] Nancy G. Leveson. An investigation of the therac-25 accidents. IEEE Computer, 26:18–41,

1993.

[6] Robert L. Glass. Sorting out software complexity. Commun. ACM, 45(11):19–21, 2002.

[7] Frederick P. Brooks Jr. The mythical man-month - essays on software engineering (2. ed.).

Addison-Wesley, 1995.

[8] Robert France and Bernhard Rumpe. Model-driven Development of Complex Software:

A Research Roadmap. In 2007 Future of Software Engineering, FOSE ’07, pages 37–54,

Washington, DC, USA, 2007. IEEE Computer Society.

[9] Anneke G. Kleppe, Jos Warmer, and Wim Bast. MDA Explained: The Model Driven Ar-

chitecture: Practice and Promise. Addison-Wesley Longman Publishing Co., Inc., Boston,

MA, USA, 2003.

[10] John Hutchinson, Mark Rouncefield, and Jon Whittle. Model-driven engineering practices

in industry. In ICSE, pages 633–642, 2011.

[11] John Hutchinson, Jon Whittle, Mark Rouncefield, and Steinar Kristoffersen. Empirical

assessment of MDE in industry. In Proceedings of the 33rd International Conference on

140

Software Engineering, ICSE 2011, Waikiki, Honolulu , HI, USA, May 21-28, 2011, pages

471–480, 2011.

[12] Parastoo Mohagheghi and Vegard Dehlen. Where is the proof? - A review of experiences

from applying MDE in industry. In Model Driven Architecture - Foundations and Appli-

cations, 4th European Conference, ECMDA-FA 2008, Berlin, Germany, June 9-13, 2008.

Proceedings, pages 432–443, 2008.

[13] Jon Whittle, John Hutchinson, and Mark Rouncefield. The state of practice in model-driven

engineering. IEEE Software, 31(3):79–85, 2014.

[14] Brian Dobing and Jeffrey Parsons. How UML is used. Commun. ACM, 49(5):109–113,

2006.

[15] Marian Petre. Uml in practice. In ICSE, pages 722–731, 2013.

[16] Bran Selic. What will it take? A view on adoption of model-based methods in practice.

Software and System Modeling, 11(4):513–526, 2012.

[17] Object Management Group. UML V2.5 , 2015.

[18] Grady Booch, James Rumbaugh, and Ivar Jacobson. The Unified Modeling Language User

Guide. Addison-Wesley Professional, second edition, 2005.

[19] Object Management Group. OCL V2.4 , 2014.

[20] Jos Warmer and Anneke Kleppe. The Object Constraint Language: Getting Your Models

Ready for MDA. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2

edition, 2003.

[21] David Harel. On visual formalisms. Commun. ACM, 31(5):514–530, 1988.

[22] Amir Pnueli. The Temporal Logic of Programs. In FOCS, pages 46–57, 1977.

141

[23] Zohar Manna and Amir Pnueli. The temporal logic of reactive and concurrent systems.

Springer-Verlag New York, Inc., New York, NY, USA, 1992.

[24] Association for Computing Machinery. A.M. TURING AWARD WINNERS, 1996.

[25] Edmund M. Clarke and E. Allen Emerson. Design and synthesis of synchronization skele-

tons using branching-time temporal logic. In Logic of Programs, Workshop, pages 52–71,

London, UK, 1982. Springer-Verlag.

[26] Edmund M. Clarke, Orna Grumberg, and Doron Peled. Model checking. MIT Press, 2001.

[27] Association for Computing Machinery. A.M. TURING AWARD WINNERS, 2007.

[28] Association for Computing Machinery. ACM SOFTWARE SYSTEM AWARD WINNERS,

2001.

[29] Gerard Holzmann. Spin model checker, the: primer and reference manual. Addison-Wesley

Professional, first edition, 2003.

[30] Amir Pnueli. The temporal semantics of concurrent programs. In Proceedings of the Inter-

national Sympoisum on Semantics of Concurrent Computation, pages 1–20, London, UK,

1979. Springer-Verlag.

[31] Andy Evans, Robert B. France, Kevin Lano, and Bernhard Rumpe. The UML as a Formal

Modeling Notation. In The Unified Modeling Language, «UML»’98: Beyond the Notation,

First International Workshop, Mulhouse, France, June 3-4, 1998, Selected Papers, pages

336–348, 1998.

[32] Johan Lilius, Ivan Porres, Ivan Porres Paltor, Turku Centre, and Computer Science. vuml: a

tool for verifying uml models. pages 255–258, 1999.

[33] Luciano Baresi, Gundula Blohm, Dimitrios S. Kolovos, Nicholas Matragkas, Alfredo Motta,

Richard F. Paige, Alek Radjenovic, and Matteo Rossi. Formal Verificattion and Validation

142

of Embedded systems: the UML-based MADES Approach. Software and System Modeling,

2(3):164–186, 2013.

[34] Faiez Zalila, Xavier Crégut, and Marc Pantel. Formal Verification Integration Approach for

DSML. In MoDELS, pages 336–351, 2013.

[35] Karolina Zurowska and Jürgen Dingel. Model Checking of UML-RT Models Using Lazy

Composition. In MoDELS, pages 304–319, 2013.

[36] Yann Moffett, Jürgen Dingel, and Alain Beaulieu. Verifying Protocol Conformance Using

Software Model Checking for the Model-Driven Development of Embedded Systems. IEEE

Trans. Software Eng., 39(9):1307–13256, 2013.

[37] Rik Eshuis. Symbolic Model Checking of UML Activity Diagrams. ACM Trans. Softw.

Eng. Methodol., 15:1–38, January 2006.

[38] Shao Jie Zhang and Yang Liu. An Automatic Approach to Model Checking UML State

Machines. In SSIRI (Companion), pages 1–6, 2010.

[39] Timm Schäfer, Alexander Knapp, and Stephan Merz. Model Checking UML State Machines

and Collaborations. Electr. Notes Theor. Comput. Sci., 55(3):357–369, 2001.

[40] Wuwei Shen and Weng Liong Low. Using Abstract State Machines to Support UML Model

Instantiation Checking. In IASTED Conf. on Software Engineering, pages 100–105, 2005.

[41] Jori Dubrovin and Tommi A. Junttila. Symbolic Model Checking of Hierarchical UML

State Machines. In ACSD, pages 108–117, 2008.

[42] Alexander Raschke. Translation of UML 2 Activity Diagrams into Finite State Machines

for Model Checking. In EUROMICRO-SEAA, pages 149–154, 2009.

[43] Artur Niewiadomski, Wojciech Penczek, and Maciej Szreter. A New Approach to Model

Checking of UML State Machines. Fundam. Inform., 93(1-3):289–303, 2009.

143

[44] Fei Xie, Vladimir Levin, and James C. Browne. Model checking for an executable subset

of uml. In ASE, pages 333–336, 2001.

[45] Franck Chauvel and Jean-Marc Jézéquel. Code generation from UML models with semantic

variation points. In Model Driven Engineering Languages and Systems, 8th International

Conference, MoDELS 2005, Montego Bay, Jamaica, October 2-7, 2005, Proceedings, pages

54–68, 2005.

[46] Bernhard Rumpe and Robert B. France. Variability in UML language and semantics. Soft-

ware and System Modeling, 10(4):439–440, 2011.

[47] Sten Agerholm and Peter Gorm Larsen. A Lightweight Approach to Formal Methods. In

Proceedings of the International Workshop on Current Trends in Applied Formal Method:

Applied Formal Methods, FM-Trends 98, pages 168–183, London, UK, 1999. Springer-

Verlag.

[48] Edmund M. Clarke. The Birth of Model Checking. In 25 Years of Model Checking, pages

1–26, 2008.

[49] Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. Property specification pat-

terns for finite-state verification. In FMSP, pages 7–15, 1998.

[50] Robin Milner. Communication and concurrency. PHI Series in Computer Science. Prentice

Hall, 1989.

[51] Benoit Baudry, Sudipto Ghosh, Franck Fleurey, Robert B. France, Yves Le Traon, and

Jean-Marie Mottu. Barriers to systematic model transformation testing. Commun. ACM,

53(6):139–143, 2010.

[52] Benoit Baudry, Trung Dinh-trong, Jean marie Mottu, Devon Simmonds, Robert France,

Sudipto Ghosh, Franck Fleurey, and Yves Le Traon. Traon. model transformation testing

challenges. In In Proceedings of IMDT workshop in conjunction with ECMDAâĂŹ06, 2006.

144

[53] Ismênia Galvão and Arda Goknil. Survey of Traceability Approaches in Model-Driven

Engineering. In EDOC, pages 313–326, 2007.

[54] Kyriakos Anastasakis, Behzad Bordbar, Geri Georg, and Indrakshi Ray. On Challenges Of

Model Transformation From UML To Alloy. Software and System Modeling, 9(1):69–86,

2010.

[55] Kyriakos Anastasakis. A Model Driven Approach for the Automated Analysis of UML Class

Diagrams. PhD thesis, School of Computer Science, 2009.

[56] Daniel Jackson. Alloy: A Lightweight Object Modeling Notation. ACM Transactions on

Software Engneering Methodology, 11(2):256–290, 2002.

[57] Daniel Jackson. Lightweight formal methods. In FME 2001: Formal Methods for Increas-

ing Software Productivity, International Symposium of Formal Methods Europe, Berlin,

Germany, March 12-16, 2001, Proceedings, page 1, 2001.

[58] Steve M. Easterbrook, Robyn R. Lutz, Richard Covington, John Kelly, Yoko Ampo, and

David Hamilton. Experiences Using Lightweight Formal Methods for Requirements Mod-

eling. IEEE Trans. Software Eng., 24(1):4–14, 1998.

[59] Paul Ziemann and Martin Gogolla. OCL Extended with Temporal Logic. In Ershov Memo-

rial Conference, pages 351–357, 2003.

[60] Mirco Kuhlmann, Lars Hamann, and Martin Gogolla. Extensive validation of ocl models

by integrating sat solving into use. In Judith Bishop and Antonio Vallecillo, editors, TOOLS

(49), volume 6705 of Lecture Notes in Computer Science, pages 290–306. Springer, 2011.

[61] Lijun Yu, Robert B. France, and Indrakshi Ray. Scenario-Based Static Analysis of UML

Class Models. In MoDELS, pages 234–248, 2008.

[62] Lijun Yu, Robert France, and Indrakshi Ray. Scenario-Based Static Analysis of UML Class

Models. In Proceedings of the 11th international conference on Model Driven Engineering

145

Languages and Systems, MoDELS ’08, pages 234–248, Berlin, Heidelberg, 2008. Springer-

Verlag.

[63] Daniel Jackson. Software Abstractions: Logic, Language, and Analysis. The MIT Press.

ISBN: 0262101149, 2006.

[64] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan Zhu. Symbolic Model

Checking without BDDs. In TACAS, pages 193–207, 1999.

[65] W. Sun, R. France, and I. Ray. Contract-Aware Slicing of UML Class Models. In Model-

Driven Engineering Languages and Systems, pages 724–739. Springer, 2013.

[66] Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. Patterns in property specifi-

cations for finite-state verification. In Proceedings of the 21st international conference on

Software engineering, ICSE ’99, pages 411–420, New York, NY, USA, 1999. ACM.

[67] Ramadan Abdunabi, Mustafa Al-Lail, Indrakshi Ray, Robert France. Specification, Val-

idation, and Enforcement of a Generalized Spatio-Temporal Role-Based Access Control

Model. IEEE Systems Journal, 2013.

[68] Jean-Raymond Abrial, Egon Börger, and Hans Langmaack. The Stream Boiler Case Study:

Competition of Formal Program Specification and Development Methods. In Formal Meth-

ods for Industrial Applications, pages 1–12, 1995.

[69] Barbara A. Kitchenham, Tore Dybå, and Magne Jørgensen. Evidence-based software engi-

neering. In ICSE, pages 273–281, 2004.

[70] Edmund M. Clarke, Orna Grumberg, Hiromi Hiraishi, Somesh Jha, David E. Long, Ken-

neth L. McMillan, and Linda A. Ness. Verification of the futurebus+ cache coherence pro-

tocol. Formal Methods in System Design, 6(2):217–232, 1995.

146

[71] Leslie Lamport. sometime” is sometimes not never” - on the temporal logic of programs. In

Conference Record of the Seventh Annual ACM Symposium on Principles of Programming

Languages, Las Vegas, Nevada, USA, January 1980, pages 174–185, 1980.

[72] Bilal Kanso and Safouan Taha. Temporal Constraint Support for OCL. In SLE, pages 83–

103, 2012.

[73] Mustafa Al-Lail, Ramadan Abdunabi, Robert B. France, and Indrakshi Ray. Rigorous anal-

ysis of temporal access control properties in mobile systems. In ICECCS, pages 246–251,

2013.

[74] Stephan Flake and Wolfgang Müller. Formal Semantics of Static and Temporal State-

Oriented OCL Constraints. Software and System Modeling, 2(3):164–186, 2003.

[75] Michael Soden and Hajo Eichler. Temporal extensions of ocl revisited. In ECMDA-FA,

pages 190–205, 2009.

[76] Markus Scheidgen and Joachim Fischer. Human Comprehensible and Machine Processable

Specifications of Operational Semantics. In Proceedings of the 3rd European Conference on

Model Driven Architecture-foundations and Applications, ECMDA-FA’07, pages 157–171,

Berlin, Heidelberg, 2007. Springer-Verlag.

[77] Julian C. Bradfield, Juliana Küster Filipe, and Perdita Stevens. Enriching OCL Using Ob-

servational Mu-Calculus. In FASE, pages 203–217, 2002.

[78] Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. Patterns in Property Specifi-

cations for Finite-State Verification. In ICSE, pages 411–420, 1999.

[79] Michelle L. Crane and Jürgen Dingel. UML vs. classical vs. rhapsody statecharts: not all

models are created equal. Software and System Modeling, 6(4):415–435, 2007.

[80] Doron Peled. On projective and separable properties. Theor. Comput. Sci., 186(1-2):135–

156, 1997.

147

[81] Johan Lilius and Iván Porres Paltor. Formalising UML state machines for model check-

ing. In Proceedings of the 2nd international conference on The unified modeling language:

beyond the standard, UML’99, pages 430–444, Berlin, Heidelberg, 1999. Springer-Verlag.

[82] Tony Clark, Robert B. France, Martin Gogolla, and Bran Selic. Meta-modeling model-based

engineering tools (dagstuhl seminar 13182). Dagstuhl Reports, 3(4):188–226, 2013.

[83] Jon Whittle, John Hutchinson, Mark Rouncefield, Håkan Burden, and Rogardt Heldal. In-

dustrial adoption of model-driven engineering: Are the tools really the problem? In Model-

Driven Engineering Languages and Systems - 16th International Conference, MODELS

2013, Miami, FL, USA, September 29 - October 4, 2013. Proceedings, pages 1–17, 2013.

[84] Tony Clark, Robert B. France, Martin Gogolla, and Bran V. Selic. Meta-Modeling Model-

Based Engineering Tools (Dagstuhl Seminar 13182). Dagstuhl Reports, 3(4):188–226,

2013.

[85] Johan Den Haan. 8 Reasons Why Model-Driven Approaches (will) Fail, 2008.

[86] Adrian Kuhn, Gail C. Murphy, and C. Albert Thompson. An Exploratory Study of Forces

and Frictions Affecting Large-Scale Model-Driven Development. In Model Driven Engi-

neering Languages and Systems - 15th International Conference, MODELS 2012, Inns-

bruck, Austria, September 30-October 5, 2012. Proceedings, pages 352–367, 2012.

[87] Federico Tomassetti, Marco Torchiano, Alessandro Tiso, Filippo Ricca, and Gianna Reggio.

Maturity of software modelling and model driven engineering: A survey in the italian indus-

try. In 16th International Conference on Evaluation & Assessment in Software Engineering,

EASE 2012, Ciudad Real, Spain, May 14-15, 2012. Proceedings, pages 91–100, 2012.

[88] Dan Chiorean, Mihai Paşca, Adrian Cârcu, Cristian Botiza, and Sorin Moldovan. Ensuring

UML Models Consistency Using the OCL Environment. Electron. Notes Theor. Comput.

Sci., 102:99–110, November 2004.

148

[89] Ivan Porres and Irum Rauf. Generating Class Contracts from Deterministic UML Protocol

Statemachines. In Models in Software Engineering, Workshops and Symposia at MODELS

2009, Denver, CO, USA, October 4-9, 2009, Reports and Revised Selected Papers, pages

172–185, 2009.

[90] Ivan Porres and Irum Rauf. From Nondeterministic UML Protocol Statemachines to Class

Contracts. In Third International Conference on Software Testing, Verification and Valida-

tion, ICST 2010, Paris, France, April 7-9, 2010, pages 107–116, 2010.

[91] Mustafa Al-Lail. A framework for specifying and analyzing temporal properties of UML

class models. In Joint Proceedings of MODELS’13 Invited Talks, Demonstration Session,

Poster Session, and ACM Student Research Competition co-located with the 16th Interna-

tional Conference on Model Driven Engineering Languages and Systems (MODELS 2013),

Miami, USA, September 29 - October 4, 2013., pages 112–117, 2013.

[92] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking (Representation and

Mind Series). The MIT Press, 2008.

[93] Mathias Soeken, Robert Wille, Mirco Kuhlmann, Martin Gogolla, and Rolf Drechsler. Ver-

ifying uml/ocl models using boolean satisfiability. In MBMV, pages 57–66, 2010.

[94] Dino Distefano. On Model Checking the Dynamics of Object-Based Software - a Founda-

tional Approach. PhD thesis, University of Twente, 2003.

[95] Mustafa Al-Lail, Ramadan Abdunabi, Robert B. France, and Indrakshi Ray. An Approach

to Analyzing Temporal Properties in UML Class Models. In MoDeVVa@MoDELS, pages

77–86, 2013.

[96] Mustafa Al-Lail, Wuliang Sun, and Robert B. France. Analyzing behavioral aspects of UML

design class models against temporal properties. In 2014 14th International Conference on

Quality Software, Allen, TX, USA, October 2-3, 2014, pages 196–201, 2014.

149

[97] Lijun Yu. A Scenario-Based Technique To Analyze UML Design Class Models. PhD thesis,

Colorado State University, 2014.

[98] Wuliang Sun, Benoît Combemale, Robert B. France, Arnaud Blouin, Benoit Baudry, and

Indrakshi Ray. Using Slicing to Improve the Performance of Model Invariant Checking.

Journal of Object Technology, 14(4):1:1–28, 2015.

[99] David Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks. EMF: Eclipse Mod-

eling Framework 2.0. Addison-Wesley Professional, 2nd edition, 2009.

[100] Ravi Sandhu, Edward Coyne, Hal Feinstein, and Charles Youman. Role-Based Access

Control Models. IEEE Computer, 29(2):38–47, February 1996.

[101] Larman Craig. Applying UML and Patterns: An Introduction to Object-Oriented Analysis

and Design and Iterative Development. Prentice Hall, third edition, 2004.

[102] James Joshi, Elisa Bertino, Usman Latif, and Arif Ghafoor. A Generalized Temporal Role-

Based Access Control Model. IEEE Transactions on Knowledge and Data Engineering,

17(1):4–23, 2005.

[103] Gail-Joon Ahn and Ravi Sandhu. Role-based authorization constraints specification. ACM

Transactions on Information Systems Security, 3(4):207–226, 2000.

[104] Gail-Joon Ahn and Michael Shin. Role-based authorization constraints specification using

object constraint language. In Proceedings of the 10th International Workshops on Enabling

Technologies: Infrastructure for Collaborative Enterprises (WETICE), pages 157–162, June

2001.

[105] Object Management Group. UML 2.3 Superstructure, may 2010.

[106] Martin Gogolla, Lars Hamann, Frank Hilken, Mirco Kuhlmann, and Robert B. France. From

Application Models to Filmstrip Models: An Approach to Automatic Validation of Model

150

Dynamics. In Modellierung 2014, 19.-21. März 2014, Wien, Österreich, pages 273–288,

2014.

151

Appendix A

The USE Specification of The Traffic Light System

A.1 The Textual Specification

model Tra f f i cL igh tSTM

enum Colo r { Green , Red}

c l a s s P e d e s t r i a n B u t t o n

a t t r i b u t e s

ID : I n t e g e r

c o u n t e r : Boolean

o p e r a t i o n s

r e q u e s t P s s () : Boolean

end

c l a s s T r a f f i c L i g h t

a t t r i b u t e s

ID : I n t e g e r

r e q u e s t e d : Boolean

p e d L i g h t : Co lo r

c a r L i g h t : Co lo r

o p e r a t i o n s

s w i t h C a r L i g h t () : Co lo r

s w i t c h P e d L i g h t () : Co lo r

end

152

c l a s s S n a p sh o t

o p e r a t i o n s

g e t N e x t () : S na p s h o t = s e l f . nex tT . nex tS

f u t u r e C l o s u r e (s : S e t (S na p s h o t)) : S e t (S na p s h o t) = i f s−>

i n c l u d e s A l l (s . g e t N e x t ()−>a s S e t ()) t h e n s e l s e

f u t u r e C l o s u r e (s−>un ion (s . g e t N e x t ()−>a s S e t ())) e n d i f

g e t P o s t () : S e t (S n a p s ho t) = f u t u r e C l o s u r e (S e t { s e l f . g e t N e x t () })

g e t P r e v i o u s () : S n a p s h o t = s e l f . b e f o r e T . b e f o r e S

p r e v i o u s C l o s u r e (s : S e t (S n a p s h o t)) : S e t (S n a p s h o t) = i f s−>

i n c l u d e s A l l (s . g e t P r e v i o u s ()−>a s S e t ()) t h e n s e l s e

p r e v i o u s C l o s u r e (s−>un ion (s . g e t P r e v i o u s ()−>a s S e t ())) e n d i f

g e t P r e () : S e t (S na p s h o t) = p r e v i o u s C l o s u r e (S e t { s e l f .

g e t P r e v i o u s () })

end

a b s t r a c t c l a s s T r a n s i t i o n

end

c l a s s P e d e s t r i a n B u t t o n _ r e q u e s t P a s s < T r a n s i t i o n

a t t r i b u t e s

P e d B u t t o n P r e : P e d e s t r i a n B u t t o n

P e d B u t t o n P o s t : P e d e s t r i a n B u t t o n

end

c l a s s T r a f f i c L i g h t _ s w i t c h C a r L i g h t < T r a n s i t i o n

153

a t t r i b u t e s

T r a f f i c L i g h t P r e : T r a f f i c L i g h t

T r a f f i c L i g h t P o s t : T r a f f i c L i g h t

r e t : Co lo r

end

c l a s s T r a f f i c L i g h t _ s w i t c h P e d L i g h t < T r a n s i t i o n

a t t r i b u t e s

T r a f f i c L i g h t P r e : T r a f f i c L i g h t

T r a f f i c L i g h t P o s t : T r a f f i c L i g h t

r e t : Co lo r

end

−−−−−−−−−−−−−−−−−−−−a s s o c i a t i o n s −−−−−−−−−−−−−−

a s s o c i a t i o n P e d e s t r i a n B u t t o n T r a f f i c L i g h t be tween

T r a f f i c L i g h t [1] r o l e l i g h t

P e d e s t r i a n B u t t o n [1 . . ∗] r o l e program

end

a s s o c i a t i o n B e f o r e T r a n s between

S n a p s ho t [1] r o l e b e f o r e S

T r a n s i t i o n [1] r o l e nextT

end

a s s o c i a t i o n A f t e r T r a n s between

154

S n a p s ho t [0 . . 1] r o l e nex tS

T r a n s i t i o n [0 . . 1] r o l e b e f o r e T

end

c o m p o s i t i o n S n a p s h o t P e d e s t r i a n B u t t o n between

S n a p sh o t [1] r o l e snp

P e d e s t r i a n B u t t o n [1] r o l e b u t t o n

end

c o m p o s i t i o n S n a p s h o t T r a f f i c L i g h t be tween

S n a p sh o t [1] r o l e snp

T r a f f i c L i g h t [1] r o l e l i g h t

end

−−−−−−−−−−−−−−c o n s t r a i n t s −−−−−−

c o n s t r a i n t s

−−−−−−−−−T r a n s i t i o n s I n v a r i a n t s −−−−−−−−−

c o n t e x t P e d e s t r i a n B u t t o n _ r e q u e s t P a s s

i n v : s e l f . P e d B u t t o n P r e . l i g h t . p e d L i g h t =#Red

i n v : s e l f . P e d B u t t o n P o s t . l i g h t . r e q u e s t e d = t r u e

c o n t e x t T r a f f i c L i g h t _ s w i t c h C a r L i g h t

i n v : s e l f . T r a f f i c L i g h t P o s t . c a r L i g h t <> s e l f . T r a f f i c L i g h t P r e .

c a r L i g h t

c o n t e x t T r a f f i c L i g h t _ s w i t c h P e d L i g h t

155

i n v : s e l f . T r a f f i c L i g h t P r e . r e q u e s t e d = t r u e

i n v : s e l f . T r a f f i c L i g h t P o s t . p e d L i g h t <> s e l f . T r a f f i c L i g h t P r e .

p e d L i g h t

i n v : s e l f . T r a f f i c L i g h t P o s t . r e q u e s t e d = f a l s e

−−−−−−−−STM I n v a r i a n t s −−−−−−−−−−−−−−−−

c o n t e x t S n a p sh o t i n v A c y c l i c S c e n a r i o : s e l f . g e t P o s t ()−>e x c l u d e s (

s e l f) and s e l f . g e t P r e ()−>e x c l u d e s (s e l f)

c o n t e x t S n a p sh o t i n v OneScenar io : S n a p s ho t . a l l I n s t a n c e s ()−>

c o l l e c t (s : S n a p s h o t | s . g e t P r e v i o u s () . o c l I s U n d e f i n e d ())−> s i z e ()

= 1 and S n a ps h o t . a l l I n s t a n c e s ()−> c o l l e c t (s : Sn a p s h o t | s .

g e t N e x t () . o c l I s U n d e f i n e d ())−> s i z e () = 1

c o n t e x t T r a n s i t i o n i n v SameTrans : T r a n s i t i o n . a l l I n s t a n c e s ()−>

f o r A l l (t : T r a n s i t i o n | (s e l f . nex tS = t . nex tS and s e l f . b e f o r e S

= t . b e f o r e S) i m p l i e s s e l f = t)

c o n t e x t S n a p sh o t i n v SameSnapshot : S n a p s ho t . a l l I n s t a n c e s ()−>

f o r A l l (s : S n ap s h o t | (s e l f . nex tT = s . nextT and s e l f . b e f o r e T =

s . b e f o r e T) i m p l i e s s e l f = s)

c o n t e x t P e d e s t r i a n B u t t o n _ r e q u e s t P a s s i n v d e f i n e d o b j e c t : n o t s e l f .

P e d B u t t o n P r e . o c l I s U n d e f i n e d () and n o t s e l f . P e d B u t t o n P o s t .

o c l I s U n d e f i n e d ()

156

c o n t e x t T r a f f i c L i g h t _ s w i t c h C a r L i g h t i n v d e f i n e d o b j e c t : n o t s e l f .

T r a f f i c L i g h t P r e . o c l I s U n d e f i n e d () and n o t s e l f . T r a f f i c L i g h t P o s t

. o c l I s U n d e f i n e d ()

c o n t e x t T r a f f i c L i g h t _ s w i t c h P e d L i g h t i n v d e f i n e d o b j e c t : n o t s e l f .

T r a f f i c L i g h t P r e . o c l I s U n d e f i n e d () and n o t s e l f . T r a f f i c L i g h t P o s t

. o c l I s U n d e f i n e d ()

c o n t e x t P e d e s t r i a n B u t t o n _ r e q u e s t P a s s i n v s a m e o b j e c t I D : s e l f .

P e d B u t t o n P r e . ID = s e l f . P e d B u t t o n P o s t . ID

c o n t e x t T r a f f i c L i g h t _ s w i t c h C a r L i g h t i n v s a m e o b j e c t I D : s e l f .

T r a f f i c L i g h t P r e . ID = s e l f . T r a f f i c L i g h t P o s t . ID

c o n t e x t T r a f f i c L i g h t _ s w i t c h P e d L i g h t i n v s a m e o b j e c t I D : s e l f .

T r a f f i c L i g h t P r e . ID = s e l f . T r a f f i c L i g h t P o s t . ID

−−================The t e m p o r a l p r o p e r t i e s =======================

−−−−− A p e r d e s t r i a n s s h o u l d be a b l e t o p a s s i n n e x t s t a t e i f t h e y

r e q u e s t t o p a s s i n t h e c u r r e n t s t a t e

c o n t e x t T r a f f i c L i g h t

i n v OCLTemporalProper ty : l e t Nex tSnapsho t : S na p s h o t = s e l f . snp .

g e t N e x t ()

i n s e l f . r e q u e s t e d = t r u e i m p l i e s Nex tSnapsho t . l i g h t . p e d L i g h t =# Green

−−=========TP1================

157

−− As soon as a t r a f f i c l i g h t i s r e q u e s t e d by a p e d e s t r i a n , i t s

c a r l i g h t t u r n s r e d .

c o n t e x t T r a f f i c L i g h t

i n v TP1 : l e t CS : S n a p s h o t = s e l f . snp

i n l e t NS : S n a p s h o t = CS . g e t N e x t ()

i n s e l f . r e q u e s t e d = t r u e i m p l i e s NS . l i g h t . c a r L i g h t =#Red

−−=========TP2================

−− A f t e r a p e d e s t r i a n r e q u e s t t o pass , t h e p e d e s t r i a n l i g h t s t a y s

r e d u n t i l t h e c a r l i g h t t u r n s t o r e d .

c o n t e x t T r a f f i c L i g h t

i n v TP2 : l e t CS : S n a p s h o t = s e l f . snp

i n l e t FS1 : S n a p s h o t = CS . g e t P o s t ()−> s e l e c t (s r : Sn a p s h o t | s r .

l i g h t . c a r L i g h t =#Red)−>a s O r d e r e d S e t ()−> f i r s t ()

i n l e t PreFS1 : S e t (S n a p s h o t) = FS1 . g e t P r e ()

i n l e t CSPre : S e t (S n a p s h o t) = CS . g e t P r e ()−> i n c l u d i n g (CS)

i n l e t BTS : S e t (S n a p s h o t) = PreFS1−> r e j e c t (s : Sn a p s h o t | CSPre−>

i n c l u d e s (s))

i n s e l f . r e q u e s t e d = t r u e i m p l i e s BTS−> f o r A l l (s : Sn a p s h o t | s . l i g h t .

p e d L i g h t =#Red)

−−−=========TP3================

−−B ef o r e a p e d e s t r i a n l i g h t t u r n s t o green , i t must have been

r e q u e s t e d and t h e c a r l i g h t i s r e d .

c o n t e x t T r a f f i c L i g h t

158

i n v TP3 : l e t CS : S n a p s h o t = s e l f . snp

i n l e t PS : S e t (S n a p s h o t) = CS . g e t P r e ()

i n s e l f . p e d L i g h t =# Green i m p l i e s PS−> e x i s t s (s : S n a p s h o t | s . l i g h t .

r e q u e s t e d = t r u e)

−−=========TP4================

−−Between t h e t ime when p e d e s t r i a n r e q u e s t t o p a s s and t h e t ime

when t h e c a r l i g h t t u r n s red , t h e p e d e s t r i a n l i g h t must n o t be

g r e e n . \ \

c o n t e x t T r a f f i c L i g h t

i n v TP4 : l e t CS : S n a p s h o t = s e l f . snp

i n l e t FS1 : S n a p s h o t = CS . g e t P o s t ()−> s e l e c t (s r : Sn a p s h o t | s r .

l i g h t . c a r L i g h t =#Red)−>a s O r d e r e d S e t ()−> f i r s t ()

i n l e t PreFS1 : S e t (S n a p s h o t) = FS1 . g e t P r e ()

i n l e t CSPre : S e t (S n a p s h o t) = CS . g e t P r e ()−> i n c l u d i n g (CS)

i n l e t BTS : S e t (S n a p s h o t) = PreFS1−> r e j e c t (s : Sn a p s h o t | CSPre−>

i n c l u d e s (s))

i n s e l f . r e q u e s t e d = t r u e i m p l i e s BTS−> c o l l e c t (s : Sn a p s h o t | s . l i g h t .

p e d L i g h t =# Green)−>isEmpty ()

−−=========TP5================

−−A f t e r p e d e s t r i a n l i g h t becomes red , t h e c a r s a r e a l l o w e d t o

p a s s u n t i l a r e q u e s t i s made by a p e d e s t r i a n .

c o n t e x t T r a f f i c L i g h t

i n v TP5 : l e t CS : S n a p s h o t = s e l f . snp

159

i n l e t FS : S e t (S n a p s h o t) = CS . g e t P o s t ()

i n l e t FSR1 : S n a p s h o t = CS . g e t P o s t ()−> s e l e c t (s r : Sn a p s h o t | s r .

l i g h t . r e q u e s t e d = t r u e)−>a s O r d e r e d S e t ()−> f i r s t ()

i n l e t PreFS1 : S e t (S n a p s h o t) = FSR1 . g e t P r e ()

i n l e t CSPre : S e t (S n a p s h o t) = CS . g e t P r e ()−> i n c l u d i n g (CS)

i n l e t BTS : S e t (S n a p s h o t) = PreFS1−> r e j e c t (s : Sn a p s h o t | CSPre−>

i n c l u d e s (s))

i n ((s e l f . p e d L i g h t =#Red and FSR1 . i s D e f i n e d) i m p l i e s BTS−> f o r A l l (s

: S n a ps h o t | s . l i g h t . c a r L i g h t =# Green)) o r ((s e l f . p e d L i g h t =#Red

and FSR1 . o c l I s U n d e f i n e d ()) i m p l i e s FS−> f o r A l l (s : Sn a p s h o t | s .

l i g h t . c a r L i g h t =# Green))

−−=========TP6================

−−The c a r l i g h t and t h e p e d e s t r i a n l i g h t can n o t be g r e e n

s i m u l t a n e o u s l y .

c o n t e x t T r a f f i c L i g h t

i n v TP6 : S n a p s h o t . a l l I n s t a n c e s −> f o r A l l (s : S n a p s h o t | n o t (s . l i g h t .

p e d L i g h t =# Green and s . l i g h t . c a r L i g h t =# Green))

−−=========TP7================

−−B ef o r e p e d e s t r i a n s can c r o s s t h e s t r e e t , t h e c a r l i g h t s h o u l d

become Red a f t e r t h e p e d e s t r i a n s r e q u e s t t o p a s s . −−−−The

p e d e s t r i a n s must r e q u e s t t o p a s s b e f o r e t h e y a r e a l l o w e d .

c o n t e x t T r a f f i c L i g h t

i n v TP7 : l e t CS : S n a p s h o t = s e l f . snp

160

i n l e t BS : S e t (S n a p s h o t) = CS . g e t P r e ()

i n l e t PS : S e t (S n a p s h o t) = BS−> s e l e c t (ps : Sn a p s h o t | ps . l i g h t .

r e q u e s t e d = t r u e)

i n l e t SS : S e t (S n a p s h o t) = BS−> s e l e c t (s s : Sn a p s h o t | s s . l i g h t .

c a r L i g h t =#Red)

i n s e l f . c a r L i g h t =# Green i m p l i e s PS−> f o r A l l (ps : Sn a p s h o t | ps .

g e t P o s t ()−> e x i s t s (s s : Sn a p s h o t | SS−> i n c l u d e s (s s)))

−−=========TP8================

−−A f t e r t h e p e d e s t r i a n s l i g h t become red , and b e f o r e i t t u r n s

g r e e n aga in , t h e c a r l i g h t must become Red a f t e r p e d e s t r i a n s

have t o r e q u e s t p a s s i n g a g a i n .

c o n t e x t T r a f f i c L i g h t

i n v TP8 : l e t CS : S n a p s h o t = s e l f . snp

i n l e t FS : S e t (S n a p s h o t) = CS . g e t P o s t ()

i n l e t FSR1 : S n a p s h o t = FS−> s e l e c t (s r : S n a p s h o t | s r . l i g h t .

c a r L i g h t =# Green)−>a s O r d e r e d S e t ()−> f i r s t ()

i n l e t PreFS1 : S e t (S n a p s h o t) = FSR1 . g e t P r e ()

i n l e t PS : S n a p s h o t = FS−>any (ps : S n a p s h o t | ps . l i g h t . r e q u e s t e d =

t r u e)

i n l e t SS : S n a p s h o t = FS−>any (s s : S n a p s h o t | s s . l i g h t . c a r L i g h t =#

Red)

i n s e l f . p e d L i g h t =#Red i m p l i e s (PS . g e t P o s t ()−> i n c l u d e s (SS) and

FSR1 . g e t P r e ()−> i n c l u d e s (PS) and FSR1 . g e t P r e ()−> i n c l u d e s (SS))

−−=========End of USE S p e c i f i c a t i o n ============

161

A.2 Validation of The Snapshot Traversal Query Operations

Figure A.1: An example scenario, produced using USE Model Validator to show the correct functionality
of the Snapshot Traversal Query Operations specified in Listing 3.1.

162

Figure A.2: The getNext() operation yields the expected result when invoked on Snapshot1 of the scenario
depicted in Figure A.1

Figure A.3: The getPost() operation yields the expected result when invoked on Snapshot1 of the scenario
depicted in Figure A.1

Figure A.4: The getPrevious() operation yields the expected result when invoked on Snapshot4 of the
scenario depicted in Figure A.1

Figure A.5: The getPre() operation yields the expected result when invoked on Snapshot4 of the scenario
depicted in Figure A.1

163

Appendix B

Patterns’ Specifications in TOCL and OCL

B.1 The Precedence Pattern

Table B.1: The precedence pattern specifications in TOCL and OCL

Scope TOCL in ADCM OCL in STM
Globally

context [Class]

inv: [P] implies

sometimePast [S]

context [Class]

inv: let CS: Snapshot = self.getCurrentSnapshot(),

in let PS: Set(Snapshot) = CS.getPre()

in [P] implies PS→ exists(s:Snapshot | [s |= S])

Before R

context Class

inv: [R] implies

sometimePast [S]

since [P]

context Class

inv: let CS: Snapshot = self.getCurrentSnapshot()

in let BS: Set(Snapshot) = CS.getPre()

in let PS: Set(Snapshot) = BS→ select(s:Snapshot | [s |= P])

in let SS: Set(Snapshot)= BS→ select(s’:Snapshot | [s’ |= S])

in [R] implies PS→forAll(ps:Snapshot |

ps.getPre()→exists(ss:Snapshot | SS→includes(ss)))

After Q

context [Class]

inv: [Q] implies

always ([P] im-
plies

sometimePast [S])

context Class

inv: let CS: Snapshot = self.getCurrentSnapshot()

in let FS: Set(Snapshot) = CS.getPost()

in let PS: Set(Snapshot) = FS→ select(s:Snapshot | [s |= P])

in let SS: Set(Snapshot)= FS→ select(s’:Snapshot | [s’ |= S])

in [R] implies PS→forAll(ps:Snapshot |

ps.getPre()→exists(ss:Snapshot | SS→includes(ss)))

After Q until R

context [Class]

inv: [Q] implies

always ([P] im-
plies

sometimePast[S])

context [Class]

inv: let CS: Snapshot = self.getCurrentSnapshot()

in let BS: Set(Snapshot) = CS.getPre()

in let PS: Snapshot= BS→select(s:Snapshot | [s |= P]),

SS: Snapshot= BS→ select(s’:Snapshot | [s’ |= S])

in [Q] implies BS→includes(PS) and BS→includes(SS)

and PS.getPre()→ includes(SS)

Between Q and R

context [Class]

inv: [Q] implies

([P] implies

sometimePast[S])

before [R]

context [Class]

inv: let CS: Snapshot = self.getCurrentSnapshot()

in let BS: Set(Snapshot) = CS.getPre()

in let BSR1: Snapshot= BS→select(s:Snapshot | [s|= R])

→ asOrderedSet()→ first(),

in let PS: Snapshot= BS→ any(s:Snapshot | [s |= P]),

SS: Snapshot= BS→ any(s’:Snapshot | [s’ |= S])

in [Q] implies (PS.getPost()→ includes(SS) and

FSR1.getPre()→ includes(PS) and BSR1.getPre()→ includes(SS)

CS

BS = CS.getPre()

P

BS->exists(s:Snapshot| [s R])
s

S

Figure B.1: Graphical illustration of the precedence pattern in the global scope (the first row in Table B.1).

164

B.2 The Absence Pattern

Table B.2: The absence pattern specifications in TOCL and OCL

Scope TOCL in ADCM OCL in STM
Globally

context [Class]

inv: always not [P]

context [Class]

inv: Snapshot.allInstances→ collect(s:Snapshot | [s |= P])→isEmpty()

Before R

context [Class]

inv: [R] implies

alwaysPast not [P]

context [Class]

inv: let CS: Snapshot = self.getCurrentSnapshot()

in let BS: Set(Snapshot) = CS.getPre()

in [R] implies BS→ collect(s:Snapshot | [s |= P])→isEmpty()

After Q

context [Class]

inv: [Q] implies

always not [P]

context [Class]

inv: let CS: Snapshot = self.getCurrentSnapshot()

in let FS: Set(Snapshot) = CS.getPost()

in [Q] implies FS→ collect(s:Snapshot | [s |= P])→isEmpty()

After Q until R

context [Class]

inv: [Q] implies

always not [P] until
[R]

context [Class]

inv: let CS: Snapshot = self.getCurrentSnapshot()

in let FSR1: Snapshot= CS.getPost()→

select(s:Snapshot | [s|= R])→ asOrderedSet()→ first()

in let PreFSR1=Set(Snapshot) = FSR1.getPre(),

in let CSPre: Set(Snapshot)= CS.getPre()→including(CS)

in let BTS: Set(Snapshot)= PreFS1→ reject(s:Snapshot | CSPre→includes(s))

in (([Q] and FSR1.isDefined) implies

BTS→collect(s:Snapshot | [s |= P])→isEmpty()) or

(([Q] and FSR1.oclIsUndefined()) implies

FS→collect(s:Snapshot | [s |= P])→isEmpty())

Between Q and R

context [Class]

inv:[Q] implies

always not [P] until
[R]

context [Class]

inv: let CS: Snapshot = self.getCurrentSnapshot()

in let FSR1: Snapshot= CS.getPost()→

select(s:Snapshot | [s|= R])→ asOrderedSet()→ first()

in let PreFSR1=Set(Snapshot) = FSR1.getPre(),

in let CSPre: Set(Snapshot)= CS.getPre()→including(CS)

in let BTS: Set(Snapshot)= PreFS1→reject(s:Snapshot | CSPre→includes(s))

in [Q] implies BTS→ collect(s:Snapshot | [s |= P])→isEmpty()

Q

CS FSR1

CSPre=CS.getPre()->including(CS)

BTS = FSR1.getPre()-> reject(s:Snapshot | CSPre->includes(s))

P P R

BTS->forAll(s:Snapshot| [s P])->isEmpty()

Figure B.2: Graphical illustration of the absence pattern in the global scope (the fifth row in Table B.2).

165

B.3 The Existence Pattern

Table B.3: The existence pattern specifications in TOCL and OCL

Scope TOCL in ADCM OCL in STM
Globally

context [Class]

inv: sometime [P]

context [Class]

inv: Snapshot.allInstances→ exists(s:Snapshot | [s |= P])

Before R

context [Class]

inv: [R] implies

alwaysPast [P]

context [Class]

inv: let CS: Snapshot = self.getCurrentSnapshot()

in let BS: Set(Snapshot) = CS.getPre()

in [R] implies BS→ exists(s:Snapshot | [s |= P])

After Q

context [Class]

inv: [Q] implies

sometime [P]

context [Class]

inv: let CS: Snapshot = self.getCurrentSnapshot()

in let FS: Set(Snapshot) = CS.getPost()

in [Q] implies FS→ exists(s:Snapshot | [s |= P])

After Q until R

context [Class]

inv: [Q] implies

sometime [P] until
[R]

context [Class]

inv: let CS: Snapshot = self.getCurrentSnapshot()

in let FSR1: Snapshot= CS.getPost()→

select(s:Snapshot | [s|= R])→ asOrderedSet()→ first()

in let PreFSR1=Set(Snapshot) = FSR1.getPre(),

in let CSPre: Set(Snapshot)= CS.getPre()→including(CS)

in let BTS: Set(Snapshot)= PreFS1→

reject(s:Snapshot | CSPre→includes(s))

in (([Q] and FSR1.isDefined) implies

BTS→exists(s:Snapshot | [s |= P])) or

(([Q] and FSR1.oclIsUndefined()) implies

FS→exists(s:Snapshot | [s |= P]))

Between Q and R

context [Class]

inv:[Q] implies

sometime [P] until
[R]

context [Class]

inv: let CS: Snapshot = self.getCurrentSnapshot()

in let FSR1: Snapshot= CS.getPost()→

select(s:Snapshot | [s|= R])→ asOrderedSet()→ first()

in let PreFSR1=Set(Snapshot) = FSR1.getPre(),

in let CSPre: Set(Snapshot)= CS.getPre()→including(CS)

in let BTS: Set(Snapshot)= PreFS1→

reject(s:Snapshot | CSPre→includes(s))

in [Q] implies BTS→ exists(s:Snapshot | [s |= P])

CS

BS = CS.getPre()

R

BS->exists(s:Snapshot| [s P])
s

P

Figure B.3: Graphical illustration of the existence pattern in the global scope (the second row in Table B.3).

166

Appendix C

The Generalized Spatio-Temporal Role-Based Access

Control Model

C.1 The USE Specification of GSTRBAC

model GSTRBAC

−−∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ C l a s s e s ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

−− c l a s s e s

c l a s s User

a t t r i b u t e s

name : S t r i n g

o p e r a t i o n s

a s s i g n R o l e (r : Role , z : STZone) : Use rRoleAss ignment

d e a s s i g n R o l e (r : Role , z : STZone)

a c t i v a t e R o l e (r : Role , z : STZone) : U s e r R o l e A c t i v a t i o n

d e a c t i v a t e R o l e (r : Role , z : STZone)

g e t A s s i g n e d R o l e s (z : STZone) : S e t (Role) = s e l f . r e l a t i o n s −> s e l e c t (r |

r . o c l I s T y p e O f (UserRoleAss ignment) and r . zone=z)−> c o l l e c t (r |

r . r o l e)−>a s S e t ()

g e t A c t i v a t e d R o l e s (z : STZone) : S e t (Role) = s e l f . r e l a t i o n s −> s e l e c t (r

| r . o c l I s T y p e O f (U s e r R o l e A c t i v a t i o n) and r . zone=z)−> c o l l e c t (r |

r . r o l e)−>a s S e t ()

167

g e t A u t h o r i z e d R o l e s (z : STZone) : S e t (Role) = s e l f . g e t A s s i g n e d R o l e s (z)

−>un ion (s e l f . g e t A s s i g n e d R o l e s (z)−> c o l l e c t (r | r .

g e t A l l A H I n h e r i t e d R o l e s (z))−>a s S e t ())

checkAccess (o : Objec t , a : A c t i v i t y , z : STZone) : Boolean =

g e t A c t i v a t e d R o l e s (z)−> c o l l e c t (r | r . g e t A u t h o r i z e d P e r m i s s i o n s (

z))−>a s S e t ()−> e x i s t s (p | p . o b j e c t =o and p . a c t i v i t y =a)

end

c l a s s STZone

end

c l a s s Role

o p e r a t i o n s

addAHJuniorRole (r : Role , z : STZone) : A_Hiera rchy

d e l e t e A H J u n i o r R o l e (r : Role , z : STZone)

a d d I H J u n i o r R o l e (r : Role , z : STZone) : I _ H i e r a r c h y

d e l e t e I H J u n i o r R o l e (r : Role , z : STZone)

addSSoDRole (r : Role , z : STZone) : RSSOD

de le t eSSoDRole (r : Role , z : STZone)

addDSoDRole (r : Role , z : STZone) : DSOD

dele teDSoDRole (r : Role , z : STZone)

a s s i g n P e r m i s s i o n (p : P e r m i s s i o n , z : STZone) : P e r m i s s i o n A s s i g n m e n t

d e a s s i g n P e r m i s s i o n (p : P e r m i s s i o n , z : STZone)

getSSoDRoles (z : STZone) : S e t (Role) = s e l f . sod−> s e l e c t (s | s . zone

=z and s . o c l I s T y p e O f (RSSOD))−> c o l l e c t (s | s . g e t I n v o l v e d R o l e s

())−>un ion (s e l f . SOD−> s e l e c t (s | s . zone=z and s . o c l I s T y p e O f (

168

RSSOD))−> c o l l e c t (s | s . g e t I n v o l v e d R o l e s ()))−>e x c l u d i n g (s e l f)

−>a s S e t ()

getDSoDRoles (z : STZone) : S e t (Role) = s e l f . sod−> s e l e c t (s | s . zone=z

and s . o c l I s T y p e O f (DSOD))−> c o l l e c t (s | s . g e t I n v o l v e d R o l e s ())−>

un ion (s e l f . SOD−> s e l e c t (s | s . zone=z and s . o c l I s T y p e O f (DSOD))

−> c o l l e c t (s | s . g e t I n v o l v e d R o l e s ()))−>e x c l u d i n g (s e l f)−>a s S e t ()

g e t J u n i o r R o l e s (z : STZone) : S e t (Role) = R o l e H i e r a r c h y . a l l I n s t a n c e s

−> s e l e c t (h | h . s e n i o r R o l e = s e l f and h . zone=z)−> c o l l e c t (rh | rh .

j u n i o r R o l e)−>a s S e t ()

g e t A H J u n i o r R o l e s (z : STZone) : S e t (Role) = A_Hiera rchy . a l l I n s t a n c e s −>

s e l e c t (ah | ah . s e n i o r R o l e = s e l f and ah . zone=z)−> c o l l e c t (ah1 |

ah1 . j u n i o r R o l e)−>a s S e t ()

g e t I H J u n i o r R o l e s (z : STZone) : S e t (Role) = I _ H i e r a r c h y . a l l I n s t a n c e s −>

s e l e c t (ah | ah . s e n i o r R o l e = s e l f and ah . zone=z)−> c o l l e c t (ah1 |

ah1 . j u n i o r R o l e)−>a s S e t ()

g e t P r e r e q u i s i t e R o l e s () : S e t (Role) = s e l f . p r e r e q u i s i t e R o l e −>a s S e t

()

i n h e r i t s (r : Role , z : STZone) : Boolean = i f (s e l f . g e t J u n i o r R o l e s (z)−>

i n c l u d e s (r)) t h e n t r u e e l s e s e l f . g e t J u n i o r R o l e s (z)−> e x i s t s (j |

j . i n h e r i t s (r , z)) e n d i f

i n h e r i t s A H (r : Role , z : STZone) : Boolean = i f (s e l f . g e t A H J u n i o r R o l e s (

z)−> i n c l u d e s (r)) t h e n t r u e e l s e s e l f . g e t A H J u n i o r R o l e s (z)−>

e x i s t s (j | j . i n h e r i t s A H (r , z)) e n d i f

169

i n h e r i t s I H (r : Role , z : STZone) : Boolean = i f (s e l f . g e t I H J u n i o r R o l e s (

z)−> i n c l u d e s (r)) t h e n t r u e e l s e s e l f . g e t I H J u n i o r R o l e s (z)−>

e x i s t s (j | j . i n h e r i t s I H (r , z)) e n d i f

g e t A l l A H I n h e r i t e d R o l e s (z : STZone) : S e t (Role) = Role . a l l I n s t a n c e s −>

s e l e c t (r | s e l f . i n h e r i t s A H (r , z))−>a s S e t ()

g e t A l l I H I n h e r i t e d R o l e s (z : STZone) : S e t (Role) = Role . a l l I n s t a n c e s −>

s e l e c t (r | s e l f . i n h e r i t s I H (r , z))−>a s S e t ()

g e t A s s i g n e d P e r m i s s i o n s (z : STZone) : S e t (P e r m i s s i o n) = s e l f . permAssig

−> s e l e c t (pa | pa . zone=z)−> c o l l e c t (pa1 | pa1 . p e r m i s s i o n)−>

a s S e t ()

g e t A u t h o r i z e d P e r m i s s i o n s (z : STZone) : S e t (P e r m i s s i o n) = s e l f .

g e t A s s i g n e d P e r m i s s i o n s (z)−>un ion (s e l f . g e t A l l I H I n h e r i t e d R o l e s (z

)−> c o l l e c t (r | r . g e t A s s i g n e d P e r m i s s i o n s (z)))−>a s S e t ()

end

c l a s s P e r m i s s i o n

o p e r a t i o n s

addSoDPermiss ion (p : P e r m i s s i o n , z : STZone) : PSSOD

d e l e t e S o D P e r m i s s i o n (p : P e r m i s s i o n , z : STZone)

g e t S o D P e r m i s s i o n s (z : STZone) : S e t (P e r m i s s i o n) = s e l f . pssod−>

s e l e c t (s | s . zone=z)−> c o l l e c t (s | s . g e t I n v o l v e d P e r m i s s i o n s

170

())−>un ion (s e l f . PSSOD−> s e l e c t (s | s . zone=z)−> c o l l e c t (s | s .

g e t I n v o l v e d P e r m i s s i o n s ()))−>e x c l u d i n g (s e l f)−>a s S e t ()

g e t P r e r e q u i s i t e P e r m i s s i o n s () : S e t (P e r m i s s i o n) = s e l f .

p r e r e q u i s i t e P e r m i s s i o n −>a s S e t ()

end

c l a s s O b j e c t

end

c l a s s A c t i v i t y

end

c l a s s L o c a t i o n

end

c l a s s T i m e I n t e r v a l

end

a b s t r a c t c l a s s U s e r R o l e R l a t i o n

end

c l a s s UserRoleAss ignment < U s e r R o l e R l a t i o n

end

c l a s s U s e r R o l e A c t i v a t i o n < U s e r R o l e R l a t i o n

end

171

a b s t r a c t c l a s s R o l e H i e r a r c h y

end

c l a s s A_Hiera rchy < R o l e H i e r a r c h y

end

c l a s s I _ H i e r a r c h y < R o l e H i e r a r c h y

end

a b s t r a c t c l a s s SOD

o p e r a t i o n s

g e t I n v o l v e d R o l e s () : S e t (Role) = s e l f . f i r s t R o l e −> i n c l u d i n g (s e l f

. s econdRole)

end

c l a s s RSSOD < SOD

end

c l a s s DSOD < SOD

end

c l a s s P e r m i s s i o n A s s i g n m e n t

end

c l a s s PSSOD

o p e r a t i o n s

172

g e t I n v o l v e d P e r m i s s i o n s () : S e t (P e r m i s s i o n) = s e l f .

f i r s t P e r m i s s i o n −> i n c l u d i n g (s e l f . s e c o n d P e r m i s s i o n)

end

−−∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ A s s o c i a t i o n s

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

−− a s s o c i a t i o n s

a s s o c i a t i o n URRUser between

User [1] r o l e u s e r

U s e r R o l e R l a t i o n [∗] r o l e r e l a t i o n s

end

a s s o c i a t i o n URRRole between

Role [1] r o l e r o l e

U s e r R o l e R l a t i o n [∗] r o l e r e l a t i o n s

end

a s s o c i a t i o n URRZone between

STZone [1] r o l e zone

U s e r R o l e R l a t i o n [∗] r o l e r e l a t i o n s

end

a g g r e g a t i o n ZoneLoca t ion between

STZone [1 . . ∗] r o l e i n c l u d e

L o c a t i o n [1] r o l e l o c a t i o n

end

173

a g g r e g a t i o n Z o n e T i m e I n t e r v a l be tween

STZone [1 . . ∗] r o l e i n c l u d e

T i m e I n t e r v a l [1] r o l e i n t e r v a l

end

a s s o c i a t i o n UserZone between

User [∗] r o l e u s e r s

STZone [1 . . ∗] r o l e c u r r e n t z o n e s

end

a s s o c i a t i o n RoleZone between

Role [1 . . ∗] r o l e r o l e s

STZone [1 . . ∗] r o l e a l l o w e d z o n e s

end

a s s o c i a t i o n P e r m i s s i o n Z o n e between

P e r m i s s i o n [1 . . ∗] r o l e p e r m i s s i o n s

STZone [1 . . ∗] r o l e zones

end

a s s o c i a t i o n Objec tZone between

O b j e c t [∗] r o l e o b j e c t s

STZone [1 . . ∗] r o l e zones

end

174

a g g r e g a t i o n P e r m i s s i o n O b j e c t be tween

P e r m i s s i o n [∗] r o l e p e r m i s s i o n

O b j e c t [1] r o l e o b j e c t

end

a g g r e g a t i o n P e r m i s s i o n A c t i v i t y between

P e r m i s s i o n [∗] r o l e p e r m i s s i o n

A c t i v i t y [1] r o l e a c t i v i t y

end

a s s o c i a t i o n RolePermZone between

P e r m i s s i o n A s s i g n m e n t [∗] r o l e permAssig

STZone [1] r o l e zone

end

a s s o c i a t i o n SODZone between

SOD [∗] r o l e sod

STZone [1] r o l e zone

end

a s s o c i a t i o n PSSODZone between

PSSOD [∗] r o l e pssod

STZone [1] r o l e zone

end

a s s o c i a t i o n RHZone between

175

R o l e H i e r a r c h y [∗] r o l e rh

STZone [1] r o l e zone

end

a s s o c i a t i o n RH1Role between

Role [1] r o l e j u n i o r R o l e

R o l e H i e r a r c h y [∗] r o l e RH

end

a s s o c i a t i o n RH2Role between

Role [1] r o l e s e n i o r R o l e

R o l e H i e r a r c h y [∗] r o l e rh

end

a s s o c i a t i o n SOD1Role between

Role [1] r o l e f i r s t R o l e

SOD[∗] r o l e sod

end

a s s o c i a t i o n SOD2Role between

Role [1] r o l e secondRole

SOD[∗] r o l e SOD

end

a s s o c i a t i o n PSSOD1Permission between

P e r m i s s i o n [1] r o l e f i r s t P e r m i s s i o n

PSSOD [∗] r o l e pssod

176

end

a s s o c i a t i o n PSSOD2Permission between

P e r m i s s i o n [1] r o l e s e c o n d P e r m i s s i o n

PSSOD [∗] r o l e PSSOD

end

a s s o c i a t i o n PerAssToRole between

Role [1] r o l e r o l e

P e r m i s s i o n A s s i g n m e n t [∗] r o l e permAssig

end

a s s o c i a t i o n P e r A s s i T o P e r m i s s i o n between

P e r m i s s i o n [1] r o l e p e r m i s s i o n

P e r m i s s i o n A s s i g n m e n t [∗] r o l e PermAssig

end

a s s o c i a t i o n P r e r e q u i s i t e R o l e between

Role [∗] r o l e p r e r e q u i s i t e R o l e

Role [∗] r o l e r e q u i s t o r R o l e

end

a s s o c i a t i o n P r e r e q u i s i t e P e r m i s s i o n between

P e r m i s s i o n [∗] r o l e p r e r e q u i s i t e P e r m i s s i o n

P e r m i s s i o n [∗] r o l e r e q u i s t o r P e r m i s s i o n

end

177

−−∗∗

C o n s t r a i n t s and I n v a r i a n t s

∗∗∗

c o n s t r a i n t s

c o n t e x t RSSOD

i n v SSOD_Cons t ra in t : n o t UserRoleAss ignment . a l l I n s t a n c e s −> e x i s t s (

ura1 , u r a2 | u r a1 . u s e r = u ra2 . u s e r and u ra1 . r o l e = s e l f . f i r s t R o l e

and u ra2 . r o l e = secondRole and u ra1 . zone= s e l f . zone and ura2 . zone

= s e l f . zone)

c o n t e x t User

i n v SSOD_With_RH_Constraint : STZone . a l l I n s t a n c e s −> f o r A l l (z | n o t

s e l f . g e t A u t h o r i z e d R o l e s (z)−> e x i s t s (r1 , r2 | r1 . getSSoDRoles (z)

−> i n c l u d e s (r2)))

c o n t e x t User

i n v A c t i v a t i o n _ C o n s t r a i n t _ w i t h _ R H : s e l f . c u r r e n t z o n e s −> f o r A l l (z |

s e l f . g e t A u t h o r i z e d R o l e s (z)−> i n c l u d e s A l l (s e l f . g e t A c t i v a t e d R o l e s

(z)))

c o n t e x t Role

i n v P e r m i s s i o n _ I n h e r i t a n c e _ C o n s t r a i n t 1 : STZone . a l l I n s t a n c e s −>

f o r A l l (z | s e l f . g e t A u t h o r i z e d P e r m i s s i o n s (z)−> i n c l u d e s A l l (s e l f .

g e t A l l I H I n h e r i t e d R o l e s (z)−> c o l l e c t (r | r .

g e t A s s i g n e d P e r m i s s i o n s (z))−>a s S e t ()))

178

i n v P e r m i s s i o n _ I n h e r i t a n c e _ C o n s t r a i n t 2 : STZone . a l l I n s t a n c e s −>

f o r A l l (z | s e l f . g e t A l l I H I n h e r i t e d R o l e s (z)−> f o r A l l (r | r .

g e t A s s i g n e d P e r m i s s i o n s (z)−> i n t e r s e c t i o n (s e l f .

g e t A u t h o r i z e d P e r m i s s i o n s (z)) = r . g e t A s s i g n e d P e r m i s s i o n s (z)))

c o n t e x t User

i n v A c t i v a t i o n _ C o n s t r a i n t : s e l f . c u r r e n t z o n e s −> f o r A l l (z | s e l f .

g e t A s s i g n e d R o l e s (z)−> i n c l u d e s A l l (s e l f . g e t A c t i v a t e d R o l e s (z)))

c o n t e x t Role

i n v H i e r a r c h y _ C y c l e _ C o n s t r a i n t : n o t STZone . a l l I n s t a n c e s −> e x i s t s (

z | s e l f . i n h e r i t s (s e l f , z))

c o n t e x t DSOD

i n v DSOD_Constraint1 : n o t U s e r R o l e A c t i v a t i o n . a l l I n s t a n c e s −> e x i s t s

(ura1 , u r a2 | u r a1 . u s e r = u ra2 . u s e r and u ra1 . r o l e = s e l f . f i r s t R o l e

and u ra2 . r o l e = secondRole and u ra1 . zone= s e l f . zone and ura2 . zone

= s e l f . zone)

c o n t e x t User

i n v DSOD_Constaint2 : STZone . a l l I n s t a n c e s −> f o r A l l (z | n o t s e l f .

g e t A c t i v a t e d R o l e s (z)−> e x i s t s (r1 , r2 | r1 . getDSoDRoles (z)−>

i n c l u d e s (r2)))

c o n t e x t PSSOD

179

i n v PSOD_Cons t ra in t1 : n o t P e r m i s s i o n A s s i g n m e n t . a l l I n s t a n c e s −>

e x i s t s (pa1 , pa2 | pa1 . r o l e =pa2 . r o l e and pa1 . p e r m i s s i o n = s e l f .

f i r s t P e r m i s s i o n and pa2 . p e r m i s s i o n = s e l f . s e c o n d P e r m i s s i o n and

pa1 . zone= s e l f . zone and pa2 . zone= s e l f . zone)

c o n t e x t Role

i n v PSOD_RH_Constaint : STZone . a l l I n s t a n c e s −> f o r A l l (z | n o t

s e l f . g e t A u t h o r i z e d P e r m i s s i o n s (z)−> e x i s t s (p1 , p2 | p1 .

g e t S o D P e r m i s s i o n s (z)−> i n c l u d e s (p2)))

c o n t e x t User

i n v P r e r e q u i s t _ U R A s s i g n : STZone . a l l I n s t a n c e s −> f o r A l l (z | Role .

a l l I n s t a n c e s −> f o r A l l (r1 | (s e l f . g e t A s s i g n e d R o l e s (z)−> i n c l u d e s (

r1)) i m p l i e s (s e l f . g e t A s s i g n e d R o l e s (z)−> i n c l u d e s A l l (r1 .

g e t P r e r e q u i s i t e R o l e s ()))))

c o n t e x t User

i n v P r e r e q u i s t _ U R A c t i v : STZone . a l l I n s t a n c e s −> f o r A l l (z | Role .

a l l I n s t a n c e s −> f o r A l l (r1 | (s e l f . g e t A c t i v a t e d R o l e s (z)−> i n c l u d e s

(r1)) i m p l i e s (s e l f . g e t A c t i v a t e d R o l e s (z)−> i n c l u d e s A l l (r1 .

g e t P r e r e q u i s i t e R o l e s ()))))

−−∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ O p e r a t i o n s S p e c i f i c a t i o n s

∗∗

−−∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗User O p e r a t i o n s

∗∗∗

180

c o n t e x t User : : a s s i g n R o l e (r : Role , z : STZone) : Use rRoleAss ignment

p r e a s s i g n R o l e P r e C o n d 1 _ d e f i n e d O b j e c t s : r . i s D e f i n e d and z .

i s D e f i n e d

p r e a s s i g n R o l e P r e C o n d 2 _ Z o n e I n c l u d e d : s e l f . c u r r e n t z o n e s −>

i n c l u d e s (z) and r . a l l o we dz on es−> i n c l u d e s (z)

p r e a s s i g nR o le P r eC o nd 3 _ Ro l eN o t As s i gn e d : s e l f . g e t A s s i g n e d R o l e s (z

)−>e x c l u d e s (r)

p r e ass ignRolePreCond4_RoleNotSSoD : s e l f . g e t A s s i g n e d R o l e s (z)−>

c o l l e c t (r | r . ge tSSoDRoles (z))−>e x c l u d e s (r)

p o s t Ass ignSTRolePos tCond1_NewUserRoleRela t ion : (s e l f . r e l a t i o n s

− s e l f . r e l a t i o n s @ p r e)−> s i z e () =1

p o s t AssignSTRolePostCond2_NewRoleAssignment : (s e l f . r e l a t i o n s −

s e l f . r e l a t i o n s @ p r e)−> f o r A l l (r l | r l . oc l IsNew () and r l .

o c l I s T y p e O f (UserRoleAss ignment) and r l . zone=z and r l . r o l e −>

i n c l u d e s (r))

p o s t Ass ignSTRolePos tCond3_Ro le I sAss igned : s e l f . g e t A s s i g n e d R o l e s (z

)−> i n c l u d e s (r)

c o n t e x t User : : d e a s s i g n R o l e (r : Role , z : STZone)

p r e d e a s s i g n R o l e P r e C o n d 1 _ R o l e I s A s s i g n e d : s e l f . g e t A s s i g n e d R o l e s (z)

−> i n c l u d e s (r)

p o s t d e a s s i g n R o l e P o s t C o n d 1 _ R o l e D e a s s i g n e d : s e l f . g e t A s s i g n e d R o l e s (

z)−>e x c l u d e s (r)

p o s t d e a s s i g n R o l e P o s t C o n d 2 _ R o l e A s s i g n m e n t O b j e c t D e l e t e d : (s e l f .

r e l a t i o n s @ p r e − s e l f . r e l a t i o n s)−> s i z e () =1 and (

181

UserRoleAss ignment . a l l I n s t a n c e s @ p r e − UserRoleAss ignment .

a l l I n s t a n c e s)−> s i z e () =1

c o n t e x t User : : a c t i v a t e R o l e (r : Role , z : STZone) : U s e r R o l e A c t i v a t i o n

p r e a c t i v a t e R o l e P r e C o n d 1 _ d e n f i n e d O b j e c t : r . i s D e f i n e d and z .

i s D e f i n e d

p r e a c t i v a t e R o l e P r e C o n d 2 _ Z o n e I n c l u d e d : s e l f . c u r r e n t z o n e s −>

i n c l u d e s (z) and r . a l l o we dz on es−> i n c l u d e s (z)

p r e a c t i v a t e R o l e P r e C o n d 3 _ R o l e N o t : s e l f . g e t A c t i v a t e d R o l e s (z)−>

e x c l u d e s (r)

p r e a c t i v a t e R o l e P r e C o n d 4 _ R o l e I s A s s i g n e d : g e t A s s i g n e d R o l e s (z)−>

i n c l u d e s (r)

p o s t a c t i v a t e R o l e P o s t C o n d 1 _ N e w U s e r R o l e R e l a t i o n : (s e l f . r e l a t i o n s −

s e l f . r e l a t i o n s @ p r e)−> s i z e () =1

p o s t a c t i v a t e R o l e P o s t C o n d 2 _ N e w R o l e A c t i v a t i o n : (s e l f . r e l a t i o n s −

s e l f . r e l a t i o n s @ p r e)−> f o r A l l (r l | r l . oc l IsNew () and r l .

o c l I s T y p e O f (U s e r R o l e A c t i v a t i o n) and r l . zone=z and r l . r o l e −>

i n c l u d e s (r))

p o s t a c t i v a t e R o l e P o s t C o n d 3 _ R o l e I s A s s i g n e d : s e l f . g e t A c t i v a t e d R o l e s (

z)−> i n c l u d e s (r)

c o n t e x t User : : d e a c t i v a t e R o l e (r : Role , z : STZone)

p r e d e a c t i v a t e R o l e P r e C o n d 1 _ R o l e I s A c t i v a t e d : s e l f .

g e t A c t i v a t e d R o l e s (z)−> i n c l u d e s (r)

p o s t d e a c t i v a t e R o l e P o s t C o n d 1 _ R o l e D e a c t i v a t e d : s e l f .

g e t A c t i v a t e d R o l e s (z)−>e x c l u d e s (z)

182

p o s t d e a c t i v a t e R o l e P o s t C o n d 2 _ R o l e A c t i v a t i o n D e l e t e d : (s e l f .

r e l a t i o n s @ p r e − s e l f . r e l a t i o n s)−> s i z e () =1 and (

U s e r R o l e A c t i v a t i o n . a l l I n s t a n c e s @ p r e − U s e r R o l e A c t i v a t i o n .

a l l I n s t a n c e s)−> s i z e () =1

−−∗∗Role

O p e r a t i o n s

∗∗∗

c o n t e x t Role : : addAHJuniorRole (r : Role , z : STZone) : A_Hiera rchy

p r e a d d A H J u n i o r R o l e P r e C o n d 1 _ d e f i n e d O b j e c t s : r . i s D e f i n e d and z .

i s D e f i n e d

p r e addAHJuniorRolePreCond2_ZoneInc luded : s e l f . a l l ow ed zo ne s−>

i n c l u d e s (z) and r . a l l o we dz on es−> i n c l u d e s (z)

p r e addAHJuniorRolePreCond3_NotAHJuniorRole : g e t A H J u n i o r R o l e s (z)

−>e x c l u d e s (r)

p o s t addAhJun io rRolePos tCond1_NewRoleHie ra rchy : (s e l f . rh − s e l f .

rh@pre)−> s i z e () =1 and (s e l f .RH − s e l f . RH@pre)−> s i z e () =1

p o s t addAhJuniorRolePos tCond2_NewRoleA_Hierarchy : (s e l f . rh − s e l f

. rh@pre)−> f o r A l l (rh | rh . oc l IsNew () and rh . o c l I s T y p e O f (

A_Hiera rchy) and rh . zone=z and rh . j u n i o r R o l e = r and rh .

s e n i o r R o l e = s e l f)

p o s t addAhJun io rRolePos tCond3_Role I sAdded : s e l f . g e t A H J u n i o r R o l e s (z

)−> i n c l u d e s (r)

c o n t e x t Role : : d e l e t e A H J u n i o r R o l e (r : Role , z : STZone)

183

p r e d e l e t e A H J u n i o r R o l e P r e C o n d 1 _ R o l e I s J u n i o r R o l e : s e l f .

g e t A H J u n i o r R o l e s (z)−> i n c l u d e s (r)

p o s t d e l e t e A H J u n i o r R o l e P o s t C o n d 1 _ R o l e D e l e a t e d : s e l f .

g e t A H J u n i o r R o l e s (z)−>e x c l u d e s (r)

p o s t d e l e t e A H J u n i o r R o l e P o s t C o n d 2 _ A H i e r a r c h y O b j e c t D e l e t e d : (s e l f .

rh@pre − s e l f . rh)−> s i z e () =1 and (s e l f . RH@pre − s e l f .RH)−> s i z e

() =1 and (A_Hiera rchy . a l l I n s t a n c e s @ p r e − A_Hiera rchy .

a l l I n s t a n c e s)−> s i z e () =1

c o n t e x t Role : : a d d I H J u n i o r R o l e (r : Role , z : STZone) : I _ H i e r a r c h y

p r e a d d I H J u n i o r R o l e P r e C o n d 1 _ d e f i n e d O b j e c t s : r . i s D e f i n e d and z .

i s D e f i n e d

p r e a d d I H J un i o r R o l e P re C o n d 2 _ Z on e I n c l u d e d : s e l f . a l l ow ed zo ne s−>

i n c l u d e s (z) and r . a l l o we dz on es−> i n c l u d e s (z)

p r e a d d I H J u n i o r R o l e P r e C o n d 3 _ N o t I H J u n i o r R o l e : g e t I H J u n i o r R o l e s (z)

−>e x c l u d e s (r)

p o s t addIHJun io rRo lePos tCond1_NewRoleHie ra rchy : (s e l f . rh − s e l f .

rh@pre)−> s i z e () =1 and (s e l f .RH − s e l f . RH@pre)−> s i z e () =1

p o s t add IHJun io rRo lePos tCond2_NewRole I_Hie ra r chy : (s e l f . rh − s e l f

. rh@pre)−> f o r A l l (rh | rh . oc l IsNew () and rh . o c l I s T y p e O f (

I _ H i e r a r c h y) and rh . zone=z and rh . j u n i o r R o l e = r and rh .

s e n i o r R o l e = s e l f)

p o s t add IHJun io rRo lePos tCond3_Ro le I sAdded : s e l f . g e t I H J u n i o r R o l e s (z

)−> i n c l u d e s (r)

c o n t e x t Role : : d e l e t e I H J u n i o r R o l e (r : Role , z : STZone)

184

p r e d e l e t e I H J u n i o r R o l e P r e C o n d 1 _ R o l e I s J u n i o r R o l e : s e l f .

g e t I H J u n i o r R o l e s (z)−> i n c l u d e s (r)

p o s t d e l e t e I H J u n i o r R o l e P o s t C o n d 1 _ R o l e D e l e a t e d : s e l f .

g e t I H J u n i o r R o l e s (z)−>e x c l u d e s (r)

p o s t d e l e t e I H J u n i o r R o l e P o s t C o n d 2 _ I H i e r a r c h y O b j e c t D e l e t e d : (s e l f .

rh@pre − s e l f . rh)−> s i z e () =1 and (s e l f . RH@pre − s e l f .RH)−> s i z e

() =1 and (I _ H i e r a r c h y . a l l I n s t a n c e s @ p r e − I _ H i e r a r c h y .

a l l I n s t a n c e s)−> s i z e () =1

c o n t e x t Role : : addSSoDRole (r : Role , z : STZone) : RSSOD

p r e addSSoDRolePreCond1_def inedObjec t s : r . i s D e f i n e d and z .

i s D e f i n e d

p r e addSSoDRolePreCond2_ZoneIncluded : s e l f . a l l o we d zo ne s−> i n c l u d e s

(z) and r . a l l ow ed zo ne s−> i n c l u d e s (z)

p r e addSSoDRolePreCond3_NotSSODRole : getSSoDRoles (z)−>e x c l u d e s (r)

p o s t addSSoDRoleRolePostCond1_NewSOD : (s e l f . sod − s e l f . sod@pre)−>

s i z e () =1 and (s e l f .SOD − s e l f . SOD@pre)−> s i z e () =1

p o s t addSSoDRoleRolePostCond2_NewSSOD : (s e l f . sod − s e l f . sod@pre)

−> f o r A l l (sod | sod . ocl IsNew () and sod . o c l I s T y p e O f (RSSOD) and

sod . zone=z and sod . f i r s t R o l e = r and sod . secondRole = s e l f)

p o s t addSSoDRoleRolePostCond3_RoleIsAdded : s e l f . ge tSSoDRoles (z)−>

i n c l u d e s (r)

c o n t e x t Role : : de le t eSSoDRole (r : Role , z : STZone)

p r e de le teSSoDRolePreCond1_RoleIsSSoDRole : s e l f . ge tSSoDRoles (z)−>

i n c l u d e s (r)

185

p o s t d e l e t e S S o D R ol e P o s tC o n d 1 _R o l e D e le a t e d : s e l f . ge tSSoDRoles (z)−>

e x c l u d e s (r)

p o s t de le teSSoDRolePos tCond2_SSODObjec tDele ted : (s e l f . sod@pre −

s e l f . sod)−> s i z e () =1 and (s e l f . SOD@pre − s e l f .SOD)−> s i z e () =1

and (RSSOD . a l l I n s t a n c e s @ p r e − RSSOD . a l l I n s t a n c e s)−> s i z e () =1

c o n t e x t Role : : addDSoDRole (r : Role , z : STZone) : DSOD

p r e addDSoDRolePreCond1_def inedObjec t s : r . i s D e f i n e d and z .

i s D e f i n e d

p r e addDSoDRolePreCond2_ZoneIncluded : s e l f . a l l o we d zo ne s−> i n c l u d e s

(z) and r . a l l ow ed zo ne s−> i n c l u d e s (z)

p r e addDSoDRolePreCond3_NotDSODRole : getDSoDRoles (z)−>e x c l u d e s (r)

p o s t addDSoDRoleRolePostCond1_NewSOD : (s e l f . sod − s e l f . sod@pre)−>

s i z e () =1 and (s e l f .SOD − s e l f . SOD@pre)−> s i z e () =1

p o s t addDSoDRoleRolePostCond2_NewDSOD : (s e l f . sod − s e l f . sod@pre)

−> f o r A l l (sod | sod . ocl IsNew () and sod . o c l I s T y p e O f (DSOD) and

sod . zone=z and sod . f i r s t R o l e = r and sod . secondRole = s e l f)

p o s t addDSoDRoleRolePostCond3_RoleIsAdded : s e l f . getDSoDRoles (z)−>

i n c l u d e s (r)

c o n t e x t Role : : de le teDSoDRole (r : Role , z : STZone)

p r e dele teDSoDRolePreCond1_RoleIsSSoDRole : s e l f . getDSoDRoles (z)−>

i n c l u d e s (r)

p o s t de l e t eDSoDRolePos tCond1_RoleDe lea t ed : s e l f . getDSoDRoles (z)−>

e x c l u d e s (r)

186

p o s t dele teDSoDRolePostCond2_DSODObjectDele ted : (s e l f . sod@pre −

s e l f . sod)−> s i z e () =1 and (s e l f . SOD@pre − s e l f .SOD)−> s i z e () =1

and (DSOD. a l l I n s t a n c e s @ p r e − DSOD. a l l I n s t a n c e s)−> s i z e () =1

c o n t e x t Role : : a s s i g n P e r m i s s i o n (p : P e r m i s s i o n , z : STZone) :

P e r m i s s i o n A s s i g n m e n t

p r e a s s i g n P e r m i s s i o n P r e C o n d 1 _ d e f i n e d O b j e c t s : p . i s D e f i n e d and z .

i s D e f i n e d

p r e a s s i g n P e r m i s s i o n C o n d 2 _ Z o n e I n c l u d e d : p . zones−> i n c l u d e s (z) and

s e l f . a l l ow ed zo ne s−> i n c l u d e s (z)

p r e a s s i g n P e r m i s s i o n P r e C o n d 3 _ P e r m i s s i o n N o t A s s i g n e d : s e l f .

g e t A s s i g n e d P e r m i s s i o n s (z)−>e x c l u d e s (p)

p r e a s s i g n P e r m i s s i o n P r e C o n d 4 _ P e r m i s s i o n N o t S S o D : s e l f .

g e t A s s i g n e d P e r m i s s i o n s (z)−> c o l l e c t (p e r | p e r . g e t S o D P e r m i s s i o n s

(z))−>e x c l u d e s (p)

p o s t a s s i g n P e r m i s s i o n P o s t C o n d 1 _ N e w P e r m i s s i o n A s s i g n m e n t : (s e l f .

permAssig − s e l f . permAssig@pre)−> s i z e () =1

p o s t a s s ignPe rmis s ionPos tCond2_NewRoleAss ignmen t : (s e l f . permAssig

− s e l f . permAssig@pre)−> f o r A l l (pa | pa . oc l IsNew () and pa . zone

=z and pa . p e r m i s s i o n−> i n c l u d e s (p))

p o s t a s s i g n P e r m i s s i o n P o s t C o n d 3 _ P e r m i s s i o n I s A s s i g n e d : s e l f .

g e t A s s i g n e d P e r m i s s i o n s (z)−> i n c l u d e s (p)

c o n t e x t Role : : d e a s s i g n P e r m i s s i o n (p : P e r m i s s i o n , z : STZone)

p r e d e a s s i g n P e r m i s s i o n P r e C o n d 1 _ P e r m i s s i o n I s A s s i g n e d : s e l f .

g e t A s s i g n e d P e r m i s s i o n s (z)−> i n c l u d e s (p)

187

p o s t d e a s s i g n P e r m i s s i o n P o s t C o n d 1 _ P e r m i s s i o n D e a s s i g n e d : s e l f .

g e t A s s i g n e d P e r m i s s i o n s (z)−>e x c l u d e s (p)

p o s t

d e a s s i g n P e r m i s s i o n P o s t C o n d 2 _ P e r m i s s i o n A s s i g n m e n t O b j e c t D e l e t e d

: (s e l f . permAssig@pre − s e l f . permAssig)−> s i z e () =1 and (

P e r m i s s i o n A s s i g n m e n t . a l l I n s t a n c e s @ p r e − P e r m i s s i o n A s s i g n m e n t .

a l l I n s t a n c e s)−> s i z e () =1

−−∗∗

P e r m i s s i o n O p e r a t i o n s

∗∗∗

c o n t e x t P e r m i s s i o n : : addSoDPermiss ion (p : P e r m i s s i o n , z : STZone) :

PSSOD

p r e a d d S o D P e r m i s s i o n P r e C o n d 1 _ d e f i n e d O b j e c t s : p . i s D e f i n e d and z .

i s D e f i n e d

p r e addSoDPermiss ionPreCond2_ZoneInc luded : s e l f . zones−> i n c l u d e s (z

) and p . zones−> i n c l u d e s (z)

p r e addSoDPermiss ionCond3_NotSSODPermission : g e t S o D P e r m i s s i o n s (z)

−>e x c l u d e s (p)

p o s t addSoDPermissionPostCond1_NewSOD : (s e l f . p s sod − s e l f .

pssod@pre)−> s i z e () =1 and (s e l f . PSSOD − s e l f . PSSOD@pre)−> s i z e ()

=1

p o s t addSoDPermissionPostCond2_NewPSOD : (s e l f . p s sod − s e l f .

pssod@pre)−> f o r A l l (ps sod | ps sod . ocl IsNew () and pssod . zone=z

and pssod . f i r s t P e r m i s s i o n =p and pssod . s e c o n d P e r m i s s i o n = s e l f)

188

p o s t addSoDPermis s ionPos tCond3_Pe rmis s ion I sAdded : s e l f .

g e t S o D P e r m i s s i o n s (z)−> i n c l u d e s (p)

c o n t e x t P e r m i s s i o n : : d e l e t e S o D P e r m i s s i o n (p : P e r m i s s i o n , z : STZone)

p r e d e l e t e S o D P e r m i s s i o n P r e C o n d 1 _ P e r m i s s i o n I s S S o D R o l e : s e l f .

g e t S o D P e r m i s s i o n s (z)−> i n c l u d e s (p)

p o s t d e l e t e S o D P e r m i s s i o n P o s t C o n d 1 _ R o l e D e l e a t e d : s e l f .

g e t S o D P e r m i s s i o n s (z)−>e x c l u d e s (p)

p o s t de l e t eSoDPermis s ionPos tCond2_PSSODObjec tDe le t ed : (s e l f .

pssod@pre − s e l f . p s sod)−> s i z e () =1 and (s e l f . PSSOD@pre − s e l f .

PSSOD)−> s i z e () =1 and (PSSOD . a l l I n s t a n c e s @ p r e − PSSOD .

a l l I n s t a n c e s)−> s i z e () =1

−−=========End of USE S p e c i f i c a t i o n ============

189

C.2 The Temporal Properties of The GSTRBAC System

Table C.1: Temporal properties of the GSTRBAC model, GSTRBAC-TP1 to GSTRBAC-TP16

No. Description Pattern - Scope

GSTRBAC-TP1 If a role is available in a particular zone, the role should
eventually be assigned to a user in that zone.

Response-
Globally

GSTRBAC-TP2 When a user activates a role in a zone, the role remains
active until the user moves to a different zone.

Universality-
Between Q and R

GSTRBAC-TP3 In a spatio-temporal zone, a user can only activate roles
that were previously assigned to the user in the zone

Precedence-
Globally

GSTRBAC-TP4 A role must be enabled in a spatio-temporal zone before
it is assigned to a user in that zone.

Precedence-
Globally

GSTRBAC-TP5 A user should not be assigned to two conflicting roles in
the same zone.

Absence-
Globally

GSTRBAC-TP6 A role can not be assigned to two conflicting permissions
in the same zone.

Absence-
Globally

GSTRBAC-TP7 A role must be assigned to a less critical role in a given
spatio-temporal zone before being assigned more critical
roles.

Precedence-
Globally

GSTRBAC-TP8 A role can be assigned a permission in a specific zone if
some prerequisite permissions are already assigned to that
role in the same zone.

Precedence-
Globally

GSTRBAC-TP9 If a a user is assigned to a role in paricular zone, the user
will eventually activate that role in the zone.

Response-
Globally

GSTRBAC-TP10 A user who is assigned to a senior role will be able to use
the premissions assigned to any of th ejunior roles.

Response-
Globally

GSTRBAC-TP11 When a role is made as a senior role to another role in a
zone, the user who is assign to the senior role can activate
the junior role in that zone.

Response-
Globally

GSTRBAC-TP12 A role will be used to get access to resources using its
assigned permissions at a particular zone.

Response-
Globally

GSTRBAC-TP13 After a user is assigned a role in a particular zone, the user
will not be able to be assigned to any of the conflicting
roles

Absence-
After Q

GSTRBAC-TP14 A role can not be assigned to two conflicting permissions
at a particular zone.

Absence-
Globally

GSTRBAC-TP15 After a user is assigned to two conflicting roles dynami-
cally, the user can only activate one of them in a particular
zone.

Absence-
After

GSTRBAC-TP16 When a user is deassigned from a role in a particular zone,
the user will not be able to activate the role.

Response-
After

190

Table C.2: TOCL and OCL specification of the GSTRBAC temporal properties described in Table C.1

No. TOCL Specification on Class Model OCL Specification on the Snapshot Transition Model

GSTRBAC-TP1 context r:Role inv GSTRBAC-TP1:

r.getAvailableZones()→ includes(z:STZone)

implies sometime r.getAssignedUsers(z)→ notEmpty()

context r:Role inv GSTRBAC-TP1:

let CS: Snapshot= self.getCurrentSnapshot()

in let FS: Set(Snapshot)= CS.gePost()

in r.getAvailableZones()→ includes(z:STZone) implies

FS→ exists (s:Snapshot | s.r.getAssignedUsers(z)→ notEmpty())

GSTRBAC-TP2 context u:User inv GSTRBAC-TP2:

u.getActivatedRoles(u.currentzone)→ includes(r:Role)

implies always

u.getActivatedRoles(u.currentzone)→ includes(r)

until

u.zonechanged= True

context u:User inv GSTRBAC-TP2:

let CS: Snapshot = self.getCurrentSnapshot()

in let FSR1 :Snapshot = CS.getPost()→ select(sr:Snapshot |

sr.u.zonechanged= True)→asOrderedSet()→first()

in let PreFSR1: Set(Snapshot)= FSR1.getPre()

in let CSPre: Set(Snapshot)= CS.getPre()→including(CS)

in let BTS: Set(Snapshot)= PreFSR1→reject(s:Snapshot | CSPre→includes(s))

in u.getActivatedRoles(u.currentzone)→ includes(r:Role) implies

BTS→forAll(s:Snapshot | s.u.getActivatedRoles(u.currentzone)→ includes(r))

GSTRBAC-TP3 context u:User inv GSTRBAC-TP3:

u.getActivatedRoles(z:STZone)→

includes(r1:Role) implies sometimePast

u.getAssignedRoles(z)→ includes(r1)

context u:User inv GSTRBAC-TP3:

let CS: Snapshot = self.getCurrentSnapshot()

in let PS: Set(Snapshot) = CS.getPre()

in u.getActivatedRoles(z:STZone)→ includes(r1:Role)

implies PS→ exists (s:Snapshot | s.u.getAssignedRoles(z)→ includes(r1))

GSTRBAC-TP4 context r:Role inv GSTRBAC-TP4:

r.assignedUsers(z:STZone)→ notEmpty() implies

sometimePast (z.enabledRoles()→ includes(r))

context r:Role inv GSTRBAC-TP4:

let CS: Snapshot = self.getCurrentSnapshot(),

in let PS: Set(Snapshot) = CS.getPre()

in r.assignedUsers(z:STZone)→ notEmpty() implies

PS→ exists(s:Snapshot | (s.z.enabledRoles()→ includes(r))

GSTRBAC-TP5 context u:User inv GSTRBAC-TP5:

always not u.getAssignedRoles(z)→

(r1,r2:Role | r1.getSSoDRoles(z)→(r2))

context u:User inv GSTRBAC-TP5:

Snapshot.allInstances→forAll(s:Snapshot | not s.u.getAssignedRoles(z)→

(r1,r2:Role | r1.getSSoDRoles(z)→(r2))

GSTRBAC-TP6 context r:Role inv GSTRBAC-TP6:

always not r.getAssignedPersmissions(z)→

(p1,p2:Permission | p1.getPSSoDPermissions(z)→(p2))

context r:Role inv GSTRBAC-TP6:

Snapshot.allInstances→forAll(s:Snapshot | not s.r.getAssignedPersmissions(z)→

(p1,p2:Permission | p1.getPSSoDPermissions(z)→(p2))

GSTRBAC-TP7 context u:User inv GSTRBAC-TP7:

u.getAssignedRoles()→includes(r1)

implies sometimePast

(u.getAssignedRoles(z)→ includesAll(r1.getPreqAssRoles()))

context u:User inv GSTRBAC-TP7:

let CS: Snapshot = self.getCurrentSnapshot(),

in let PS: Set(Snapshot) = CS.getPre()

in u.getAssignedRoles()→includes(r1) implies PS→ exists(s:Snapshot |

s.u.getAssignedRoles(z)→ includesAll(r1.getPreqAssRoles()))

GSTRBAC-TP8 context r:Role inv GSTRBAC-TP8:

r.getAssignedPermissions(z)→includes(p1) implies

sometimePast (r.getAssignedPermissions(z)→ includesAll

(p1.getPrerequisitePermissions()))

context r:Role inv GSTRBAC-TP8:

let CS: Snapshot = self.getCurrentSnapshot(),

in let PS: Set(Snapshot) = CS.getPre()

in r.getAssignedPermissions(z)→includes(p1) implies PS→ exists(s:Snapshot |

s.r.getAssignedPermissions(z)→ includesAll(p1.getPrerequisitePermissions()))

191

Table C.3: TOCL and OCL specification of the GSTRBAC temporal properties described in Table C.1

No. TOCL Specification on Class Model OCL Specification on the Snapshot Transition Model

GSTRBAC-TP9 context u:User inv GSTRBAC-TP9:

u.getAssignedRoles(z)→includes(r) implies

sometime u.getActivatedRoles(z)→(r)

context u:User inv GSTRBAC-TP9:

let CS: Snapshot = self.getCurrentSnapshot(),

in let FS: Set(Snapshot) = CS.getPost()

in u.getAssignedRoles(z)→includes(r) implies FS→ exists(s:Snapshot |

s.u.getActivatedRoles(z)→(r))

GSTRBAC-TP10 context u:User inv GSTRBAC-TP10:

u.getAssignedRoles(z)→(r) implies

sometime u.getAuthorizedPermissions(z)→includesAll(

p:Permission | r.getJuniorRoles(z)→includes(r2) and

r2.getAssignedPermissions(z)→includes(p))

context u:User inv GSTRBAC-TP10:

let CS: Snapshot = self.getCurrentSnapshot(),

in let FS: Set(Snapshot) = CS.getPost()

in u.getAssignedRoles(z)→(r) implies FS→ exists(s:Snapshot |

s.u.getAuthorizedPermissions(z)→includesAll(p:Permission |

r.getJuniorRoles(z)→includes(r2) and r2.getAssignedPermissions(z)→includes(p)))

GSTRBAC-TP11 context r1,r2:Role inv GSTRBAC-TP11:

r1.getAHJuniorRoles(z)→includes(r2) implies

sometime r1.getAssignedUsers(z)→forAll(

u:User | u.getActivatedRoles(z)→includes(r2))

context u:User inv GSTRBAC-TP11:

let CS: Snapshot = self.getCurrentSnapshot(),

in let FS: Set(Snapshot) = CS.getPost()

in r1.getAHJuniorRoles(z)→includes(r2) implies FS→ exists(s:Snapshot |

s.r1.getAssignedUsers(z)→forAll(u:User | u.getActivatedRoles(z)→includes(r2))

GSTRBAC-TP12 context r:Role inv GSTRBAC-TP12:

r.getAssignedPermissions(z)→includes(p) implies

sometime r1.getAssignedUsers(z)→includes(u:User |

u.checkAccess(o,a,z)=True and p.object=o and p.activity=a)

context r:Role inv GSTRBAC-TP12:

let CS: Snapshot = self.getCurrentSnapshot(),

in let FS: Set(Snapshot) = CS.getPost()

in r.getAssignedPermissions(z)→includes(p) implies FS→ exists(s:Snapshot |

sr1.getAssignedUsers(z)→includes(u:User |

u.checkAccess(o,a,z)=True and p.object=o and p.activity=a))

GSTRBAC-TP13 context u:User inv GSTRBAC-TP13:

u.getAssignedRoles(z)→includes(r1) implies

always not u.getAssignedRoles(z)→includes(r2:Role |

r1.getSSoDRoles(z)→includes(r2))

context u:User inv GSTRBAC-TP13:

let CS: Snapshot = self.getCurrentSnapshot()

in let FS: Set(Snapshot) = CS.getPost()

in u.getAssignedRoles(z)→includes(r1) implies FS→ collect(s:Snapshot |

s.u.getAssignedRoles(z)→includes(r2:Role | r1.getSSoDRoles(z)→includes(r2)))→

isEmpty()

GSTRBAC-TP14 context r:Role inv GSTRBAC-TP14:

always not r.getAssignedPermissions(z)→includes(p1,p2 |

p1.getSoDPermissions(z)→includes(p2))

context u:User inv GSTRBAC-TP14:

Snapshot.allInstances→ collect(s:Snapshot | s.r.getAssignedPermissions(z)→

includes(p1,p2 | p1.getSoDPermissions(z)→includes(p2)))→isEmpty()

GSTRBAC-TP15 context u:User inv GSTRBAC-TP15:

(u.getAssignedRoles(z)→includes(r1) and

u.getAssignedRoles(z)→includes(r2) and

r1.getDSoDRoles(z)→includes(r2)) implies

always not(u.getActivatedRoles(z)→includes(r1) and

u.getActivatedRoles(z)→includes(r2))

context u:User inv GSTRBAC-TP15:

let CS: Snapshot = self.getCurrentSnapshot(),

in let FS: Set(Snapshot) = CS.getPost()

in (u.getAssignedRoles(z)→includes(r1) and

u.getAssignedRoles(z)→includes(r2) and

r1.getDSoDRoles(z)→includes(r2)) implies

FS→ collect(s:Snapshot | s.u.getActivatedRoles(z)→includes(r1) and

s.u.getActivatedRoles(z)→includes(r2)))→isEmpty()

GSTRBAC-TP16 context u:User inv GSTRBAC-TP16:

deactivateRole(r,z)=True implies

always (u.getActivatedRoles(z)→excludes(r))

context u:User inv GSTRBAC-TP16:

let CS: Snapshot = self.getCurrentSnapshot(),

in let FS: Set(Snapshot) = CS.getPost()

in deactivateRole(r,z)=True implies FS→forAll(s:Snapshot |

s.u.getActivatedRoles(z)→excludes(r))

192

Table C.4: Temporal properties of the GSTRBAC model, GSTRBAC-TP17 to GSTRBAC-TP32

No. Description Pattern - Scope

GSTRBAC-TP17 When a user enters a zone, the user can only activate the
assigned roles in that zone

Response-
Globally

GSTRBAC-TP18 When a user leaves a zone, the user’s assigned roles in
that zone does not change.

Response-
Globally

GSTRBAC-TP19 Once an object is available in a zone, users can access that
object in that zone.

Response-
Globally

GSTRBAC-TP20 When a user deactivate a senior role, the user can not use
the permission of the junior roles to gain access.

Response-
Globally

GSTRBAC-TP21 When a user is assigned to a role, the user can not be
assigned to anly of the conflicting roles in that zone.

Response-
Globally

GSTRBAC-TP22 When a role is assigned to a permission in particular zone,
the role ca not be assigned to any of the conflicting per-
missions.

Response-
Globally

GSTRBAC-TP23 When an object is assigned to a particular zone, the object
can be accessed in that zone.

Response-
Globally

GSTRBAC-TP24 When a permission is associate to a zone, it can be as-
signed to the roles that are enabled in the same zone.

Response-
Globally

GSTRBAC-TP25 When a role is assigned to a permission in a particular
zone, the role can be used to access the objects associated
with the permission only if the object is available in the
zone.

Response-
Globally

GSTRBAC-TP26 When a user is deassigned from a role, the use can then
be assigned to any of the role’s conflicting roles in the a
zone.

Response-
Globally

GSTRBAC-TP27 When a role is added as a junior role to another, the ju-
nior role can not inherits permissions from a senior role
through the role hierarchy.

Response-
Globally

GSTRBAC-TP28 When a role is added as a junior role to another role
through activation hierarchy, the user assigne to junior
role can not activate the senior role through the hierarchy.

Response-
Globally

GSTRBAC-TP29 When a user changes a spatio-temporal zone, all the acti-
vated roles get deactivated in the next state.

Response-
Globally

193

Table C.5: TOCL and OCL specification of the GSTRBAC temporal properties described in Table C.4

No. TOCL Specification on Class Model OCL Specification on the Snapshot Transition Model

GSTRBAC-TP17 context u:User inv GSTRBAC-TP17:

u.zonechanged implies sometime

u.getActivatedRoles(u.currentzone)→

excludesAll(r:Role | r.rzones→excludes(u.currentzone))

context u:User inv GSTRBAC-TP17:

let CS: Snapshot = self.getCurrentSnapshot(),

in let FS: Set(Snapshot) = CS.getPost()

in u.zonechanged implies FS→ exists(s:Snapshot |

su.getActivatedRoles(u.currentzone)→

excludesAll(r:Role | r.rzones→excludes(u.currentzone)))

GSTRBAC-TP18 context u:User inv GSTRBAC-TP18:

let AssignRoles: Set(Role) = u.getAssignedRoles(u.currentzone)

in u.zonechanged implies next u.getAssignedRoles(u.currentzone)

→includesAll(AssignRoles)

context u:User inv GSTRBAC-TP18:

inv: let CS: Snapshot = self.getCurrentSnapshot(),

in let NS: Snapshot = CS.getNext()

in let AssignRoles: Set(Role) = u.getAssignedRoles(u.currentzone)

in u.zonechanged implies NS.u.getAssignedRoles(u.currentzone)→

includesAll(AssignRoles)

GSTRBAC-TP19 context u:User, o:Object, a:Activity inv GSTRBAC-TP19:

o.ozones→includes(z:STZone) implies sometime

u.checkAccess(o,a,z)=True

context u:User, o:Object, a:Activity inv GSTRBAC-TP19:

let CS: Snapshot = self.getCurrentSnapshot()

in let FS: Set(Snapshot) = CS.getPost()

o.ozones→includes(z:STZone) implies

FS→exists(s:Snapshot | s.u.checkAccess(o,a,z)=True)

GSTRBAC-TP20 context r:Role inv GSTRBAC-TP20:

inv: [P] implies

sometime [S]

context r:Role inv GSTRBAC-TP20:

inv: let CS: Snapshot = self.getCurrentSnapshot(),

in let FS: Set(Snapshot) = CS.getPost()

in [P] implies FS→ exists(s:Snapshot | [s |= S])

GSTRBAC-TP21 context r:Role inv GSTRBAC-TP21:

inv: [P] implies

sometime [S]

context r:Role inv GSTRBAC-TP21:

inv: let CS: Snapshot = self.getCurrentSnapshot(),

in let FS: Set(Snapshot) = CS.getPost()

in [P] implies FS→ exists(s:Snapshot | [s |= S])

GSTRBAC-TP22 context r:Role inv GSTRBAC-TP22:

inv: [P] implies

sometime [S]

context r:Role inv GSTRBAC-TP22:

inv: let CS: Snapshot = self.getCurrentSnapshot(),

in let FS: Set(Snapshot) = CS.getPost()

in [P] implies FS→ exists(s:Snapshot | [s |= S])

GSTRBAC-TP23 context r:Role inv GSTRBAC-TP23:

inv: [P] implies

sometime [S]

context r:Role inv GSTRBAC-TP23:

inv: let CS: Snapshot = self.getCurrentSnapshot(),

in let FS: Set(Snapshot) = CS.getPost()

in [P] implies FS→ exists(s:Snapshot | [s |= S])

GSTRBAC-TP24 context r:Role inv GSTRBAC-TP24:

inv: [P] implies

sometime [S]

context r:Role inv GSTRBAC-TP24:

inv: let CS: Snapshot = self.getCurrentSnapshot(),

in let FS: Set(Snapshot) = CS.getPost()

in [P] implies FS→ exists(s:Snapshot | [s |= S])

194

Table C.6: TOCL and OCL specification of the GSTRBAC temporal properties described in Table C.4

No. TOCL Specification on Class Model OCL Specification on the Snapshot Transition Model

GSTRBAC-TP25 context r:Role inv GSTRBAC-TP25:

inv: [P] implies

sometime [S]

context r:Role inv GSTRBAC-TP25:

inv: let CS: Snapshot = self.getCurrentSnapshot(),

in let FS: Set(Snapshot) = CS.getPost()

in [P] implies FS→ exists(s:Snapshot | [s |= S])

GSTRBAC-TP26 context r:Role inv GSTRBAC-TP26:

inv: [P] implies

sometime [S]

context r:Role inv GSTRBAC-TP26:

inv: let CS: Snapshot = self.getCurrentSnapshot(),

in let FS: Set(Snapshot) = CS.getPost()

in [P] implies FS→ exists(s:Snapshot | [s |= S])

GSTRBAC-TP27 context r:Role inv GSTRBAC-TP27:

inv: [P] implies

sometime [S]

context r:Role inv GSTRBAC-TP27:

inv: let CS: Snapshot = self.getCurrentSnapshot(),

in let FS: Set(Snapshot) = CS.getPost()

in [P] implies FS→ exists(s:Snapshot | [s |= S])

GSTRBAC-TP28 context r:Role inv GSTRBAC-TP28:

inv: [P] implies

sometime [S]

context r:Role inv GSTRBAC-TP28:

inv: let CS: Snapshot = self.getCurrentSnapshot(),

in let FS: Set(Snapshot) = CS.getPost()

in [P] implies FS→ exists(s:Snapshot | [s |= S])

GSTRBAC-TP29 context u:User inv GSTRBAC-TP29:

let CS: Snapshot = u.getCurrentSnapshot(),

in let NS: Snapshot = CS.getNext()

in u.zonechanged implies NS.u.getActivatedRoles(currentzone)

→ isEmpty()

context u:User inv GSTRBAC-TP29:

u.zonechanged implies next

self.getActivatedRoles(currentzone)→ isEmpty()

195

Appendix D

The USE Specification of The Steam Boiler Control

System

D.1 The USE Specification

model SteamBoilerSTM

enum v a l v e S t a t e { open , c l o s e d }

enum S t a t e {on , o f f }

enum Mode { Normal , I n i t i a l i z a t i o n , Degraded , Rescue ,

EmergencyStop }

c l a s s S t e a m B o i l e r

a t t r i b u t e s

r e a d y : Boolean

c a p a c i t y : Rea l

minimalNormal : Rea l

maximalNormal : Rea l

maximumIncrease : Rea l

maximumDecrease : Rea l

m i n i m a l L i m i t : Rea l

maximalLimi t : Rea l

valveOpen : v a l v e S t a t e

o p e r a t i o n s

g e t C u r r e n t S n a p s h o t () : S na p s h o t = s e l f . snp

196

end

c l a s s SteamMeasurmentDevice

a t t r i b u t e s

r e a d y : Boolean

e v a p o r a t i o n R a t e : Rea l

o p e r a t i o n s

g e t C u r r e n t S n a p s h o t () : S na p s h o t = s e l f . snp

end

c l a s s WaterLeve lMeasurmentDevice

a t t r i b u t e s

r e a d y : Boolean

w a t e r L e v e l : Rea l

o p e r a t i o n s

g e t C u r r e n t S n a p s h o t () : S na p s h o t = s e l f . snp

end

c l a s s Pump

a t t r i b u t e s

r e a d y : Boolean

c a p a c i t y : Rea l

mode : v a l v e S t a t e

o p e r a t i o n s

g e t C u r r e n t S n a p s h o t () : S na p s h o t = s e l f . snp

end

197

c l a s s PumpCont ro le r

a t t r i b u t e s

r e a d y : Boolean

c i r c u l a t i n g : Boolean

o p e r a t i o n s

g e t C u r r e n t S n a p s h o t () : S na p s h o t = s e l f . snp

end

c l a s s C o n t r o l P r o g r a m

a t t r i b u t e s

mode : Mode

r e a d y : Boolean

f a i l u r e D e t e c t e d : Boolean

wlmdFa i lu r e : Boolean

s m d F a i l u r e : Boolean

pumpFa i lu r e : Boolean

p u m p C o n t r o l e r F a i l u r e : Boolean

o p e r a t i o n s

g e t C u r r e n t S n a p s h o t () : S na p s h o t = s e l f . snp

end

c l a s s S n a p sh o t

o p e r a t i o n s

g e t N e x t () : S na p s h o t = s e l f . n e x t T r a n s . n e x t S n a p s h o t

f u t u r e C l o s u r e (s : S e t (S na p s h o t)) : S e t (S na p s h o t) = i f s−>

i n c l u d e s A l l (s . g e t N e x t ()−>a s S e t ()) t h e n s e l s e

f u t u r e C l o s u r e (s−>un ion (s . g e t N e x t ()−>a s S e t ())) e n d i f

198

g e t P o s t () : S e t (S n a p s ho t) = f u t u r e C l o s u r e (S e t { s e l f . g e t N e x t () })

g e t P r e v i o u s () : S n a p s h o t = s e l f . p r e v i o u s T r a n s . p r e v i o u s S n a p s h o t

p r e v i o u s C l o s u r e (s : S e t (S n a p s h o t)) : S e t (S n a p s h o t) = i f s−>

i n c l u d e s A l l (s . g e t P r e v i o u s ()−>a s S e t ()) t h e n s e l s e

p r e v i o u s C l o s u r e (s−>un ion (s . g e t P r e v i o u s ()−>a s S e t ())) e n d i f

g e t P r e () : S e t (S na p s h o t) = p r e v i o u s C l o s u r e (S e t { s e l f .

g e t P r e v i o u s () })

end

a b s t r a c t c l a s s T r a n s i t i o n

−−o p e r a t i o n s

−− n e x t T r a n s i t i o n () : T r a n s i t i o n = s e l f . n e x t S n a p s h o t . n e x t T r a n s

−− c l o s u r e T r a s i t i o n s (s : S e t (T r a n s i t i o n)) : S e t (T r a n s i t i o n) =

i f s−> i n c l u d e s A l l (s . n e x t T r a n s i t i o n ()−>a s S e t ()) t h e n s e l s e

c l o s u r e T r a s i t i o n s (s−>un ion (s . n e x t T r a n s i t i o n ()−>a s S e t ()))

e n d i f

−− f u t u r e T r a n s i t i o n s () : S e t (T r a n s i t i o n) = c l o s u r e T r a s i t i o n s (

S e t { s e l f . n e x t T r a n s i t i o n () })

end

c l a s s Wate rLeve lMeasu rmen tDev ice_ge tLeve l < T r a n s i t i o n

a t t r i b u t e s

wlmdPre : WaterLeve lMeasurmentDevice

wlmdPost : WaterLeve lMeasurmentDevice

r e t : Rea l

end

199

c l a s s SteamMeasurmentDevice_getSteam < T r a n s i t i o n

a t t r i b u t e s

smdPre : SteamMeasurmentDevice

wmdPost : SteamMeasurmentDevice

r e t : Rea l

end

c l a s s S teamBoi le r_OpenValve < T r a n s i t i o n

a t t r i b u t e s

s b P r e : S t e a m B o i l e r

s b P o s t : S t e a m B o i l e r

end

c l a s s PumpControler_OpenPump < T r a n s i t i o n

a t t r i b u t e s

PCPre : PumpCont ro le r

PCPost : PumpCont ro le r

end

c l a s s PumpControler_ClosePump < T r a n s i t i o n

a t t r i b u t e s

PCPre : PumpCont ro le r

PCPost : PumpCont ro le r

end

c l a s s C o n t r o l P r o g r a m _ S t a r t O p e r a t i o n < T r a n s i t i o n

a t t r i b u t e s

200

CPPre : C o n t r o l P r o g r a m

CPPost : C o n t r o l P r o g r a m

end

−−−−−−−−−−−−−−−−−−−−a s s o c i a t i o n s −−−−−−−−−−−−−−

a s s o c i a t i o n S t e a m B o i l e r C o n t r o l P r o g r a m between

S t e a m B o i l e r [1] r o l e sb

C o n t r o l P r o g r a m [1] r o l e program

end

a s s o c i a t i o n SteamBoilerWLMD between

S t e a m B o i l e r [1] r o l e sb

WaterLeve lMeasurmentDevice [1] r o l e wlmd

end

a s s o c i a t i o n SteamBoilerSMD between

S t e a m B o i l e r [1] r o l e sb

SteamMeasurmentDevice [1] r o l e smd

end

a s s o c i a t i o n SteamBoilerPump between

S t e a m B o i l e r [1] r o l e sb

Pump [1] r o l e pump

end

a s s o c i a t i o n ControlProgramPump between

201

C o n t r o l P r o g r a m [1] r o l e program

Pump [1] r o l e pump

end

a s s o c i a t i o n PumpControlerPump between

PumpCont ro le r [1] r o l e c o n t r o l e r

Pump [1] r o l e pump

end

a s s o c i a t i o n C o n t r o l P r o g r a m P u m p C o n t r o l e r be tween

C o n t r o l P r o g r a m [1] r o l e program

PumpCont ro le r [1] r o l e PC

end

a s s o c i a t i o n ControlProgramWLMD between

C o n t r o l P r o g r a m [1] r o l e program

WaterLeve lMeasurmentDevice [1] r o l e wlmd

end

a s s o c i a t i o n ControlProgramSMD between

C o n t r o l P r o g r a m [1] r o l e program

SteamMeasurmentDevice [1] r o l e smd

end

a s s o c i a t i o n B e f o r e T r a n s between

S n a p s ho t [0 . . 1] r o l e p r e v i o u s S n a p s h o t

T r a n s i t i o n [0 . . 1] r o l e n e x t T r a n s

202

end

a s s o c i a t i o n A f t e r T r a n s between

S n a p s ho t [0 . . 1] r o l e n e x t S n a p s h o t

T r a n s i t i o n [0 . . 1] r o l e p r e v i o u s T r a n s

end

c o m p o s i t i o n S n a p s h o t S t e a m B o i l e r s be tween

S n a p sh o t [1] r o l e snp

−−S n a p sh o t [∗] r o l e s n a p s h o t s

S t e a m B o i l e r [1] r o l e b o i l e r

end

c o m p o s i t i o n SnapshotWMD between

S n a p sh o t [1] r o l e snp

WaterLeve lMeasurmentDevice [1] r o l e WLMD

end

c o m p o s i t i o n SnapshotPump between

S n a p sh o t [1] r o l e snp

Pump [1] r o l e pump

end

c o m p o s i t i o n S na p s ho t Pu m p Co n t ro l e r be tween

S n a p sh o t [1] r o l e snp

PumpCont ro le r [1] r o l e PC

end

203

c o m p o s i t i o n SnapshotSMD between

S n a p sh o t [1] r o l e snp

SteamMeasurmentDevice [1] r o l e SMD

end

c o m p o s i t i o n S n a p s h o t C o n t r o l P r o g r a m between

S n a p sh o t [1] r o l e snp

C o n t r o l P r o g r a m [1] r o l e program

end

−−−−−−−−−−−−−−c o n s t r a i n t s −−−−−−

c o n s t r a i n t s

−−TP1

c o n t e x t C o n t r o l P r o g r a m

i n v : l e t CS : S n a p s h o t = s e l f . snp i n l e t NS : S na p s h o t = CS . g e t N e x t ()

i n s e l f . w lmdFa i lu r e i m p l i e s NS . program . mode= # Rescue

−−TP2

c o n t e x t C o n t r o l P r o g r a m

i n v : l e t CS : S n a p s h o t = s e l f . snp i n l e t NS : S na p s h o t = CS . g e t N e x t ()

i n (s e l f . s m d F a i l u r e o r s e l f . pumpFa i lu r e o r s e l f .

p u m p C o n t r o l e r F a i l u r e) i m p l i e s NS . program . mode= # Degraded

−−TP3

c o n t e x t S t e a m B o i l e r

i n v : l e t CS : S n a p s h o t = s e l f . snp i n l e t NS : S na p s h o t = CS . g e t N e x t ()

204

i n (s e l f . wlmd . w a t e r L e v e l > s e l f . maximalNormal o r s e l f . wlmd .

w a t e r L e v e l < s e l f . minimalNormal) i m p l i e s NS . program . mode= #

EmergencyStop

−−TP4

c o n t e x t S t e a m B o i l e r

i n v : l e t CS : S n a p s h o t = s e l f . snp i n l e t FS : S e t (S na p s h o t) = CS .

g e t P o s t ()

i n s e l f . va lveOpen = # open i m p l i e s FS−> e x i s t s (s : S n a p s h o t | s .WLMD

. w a t e r L e v e l <= maximalNormal)

−−TP5

c o n t e x t C o n t r o l P r o g r a m

i n v : l e t CS : S n a p s h o t = s e l f . snp i n l e t NS : S na p s h o t = CS . g e t N e x t ()

i n (s e l f . mode=# I n i t i a l i z a t i o n and s e l f . w lmdFa i lu r e) i m p l i e s NS .

program . mode= # EmergencyStop

−− i n i t i a l c l a s s d iagram i n v a r i a n t s

c o n t e x t WaterLeve lMeasurmentDevice

i n v : s e l f . w a t e r L e v e l < s e l f . sb . c a p a c i t y

c o n t e x t S t e a m B o i l e r

i n v : s e l f . va lveOpen =# open i m p l i e s s e l f . program . mode=#

I n i t i a l i z a t i o n

205

c o n t e x t PumpControler_OpenPump

i n v : PCPre . pump . mode = # o f f

i n v : PCPost . pump . mode = #on

−−=========End of USE S p e c i f i c a t i o n ============

D.2 The Temporal Properties of The SBCS System

Table D.1: The Temporal properties of the SBCS system, SBCS-TP1 to SBCS-TP13

No. Description Pattern - Scope

SBCS-TP1 As soon as the program recognizes a failure of the water
measuring device unit it goes into the rescue mode.

Response-
Globally

SBCS-TP2 Failure of any physical units except the water measuring
device puts the program into degraded mode.

Response-
Globally

SBCS-TP3 If the water level is close to reaching the maximalLimit or
minimalLimit values (i.e., greater than maximalNormal
or less than minimalNormal) the program enters the mode
emergency stop.

Response-
Globally

SBCS-TP4 When the valve of the steam boiler is open, then eventu-
ally the water level will be lower or equal to the maximal
normal level.

Response-
Globally

SBCS-TP5 When the program is in the initialization mode and a fail-
ure of the water level measurement device is detected it
puts the program in the emergency stop mode.

Response-
Globally

SBCS-TP6 When the system is in initialization mode, it remains in
this mode until all physical units are ready or a failure of
the water level measurement device has occurred.

Universality-
between Q and R

SBCS-TP7 When the pump fails, the system goes into the degraded
mode.

Response-
Globally

SBCS-TP8 When the steam measuring device fails, the system goes
into the degraded mode.

Response-
Globally

SBCS-TP9 When the pump controller fails, the system goes into the
degraded mode.

Response-
Globally

SBCS-TP10 When a failure is detected, the system goes into the de-
graded mode.

Response-
Globally

206

Table D.2: TOCL and OCL specification of the SBCS temporal properties described in Table D.1, taken
from our previous work Al-Lail et al. [95]

No. TOCL Specification on Class Model OCL Specification on the Snapshot Transition Model

SBCS-TP1 context ControlProgram

inv: self.wlmdFailure implies

next self.mode=# Rescue

context ControlProgram

inv: inv: let CS: Snapshot= self.snp

in NS: Snapshot= CS.getNext()

in self.wlmdFailure implies NS.program.mode= # Rescue

SBCS-TP2 context ControlProgram

inv: (smdFailure or pumpFailure

or pumpcontrollerFailure) implies

next self.mode=# Degraded

context ControlProgram

inv: let CS: Snapshot= self.getCurrentSnapshot()

in let NS: Snapshot = CS.getNext()

in (self.pumpcontrollerFailure or self.pumpFailure or

self.smdFailure) implies NS.program.mode =# Degraded

SBCS-TP3 context SteamBoiler

inv: (self.wlmd.waterLevel >

self.maximalNormal or self.wlmd.waterLevel

< self.minimalNormal) implies next

self.program.mode = # EmergencyStop

context SteamBoiler

inv: let CS: Snapshot = self.snp

in let NS: Snapshot = CS.getNext()

in (self.wlmd.waterLevel > self.maximalNormal or

self.wlmd.waterLevel < self.minimalNormal) implies

NS.program.mode = # EmergencyStop

SBCS-TP4 context SteamBoiler

inv: self.valveOpen = # open implies

sometime

(self.wlmd.waterLevel < = maximalNormal)

context SteamBoiler

inv: let CS: Snapshot = self.snp

in let FS: Set(Snapshot) = CS.getPost()

in self.valveOpen = # open implies FS→ exists

(s:Snapshot | s.WLMD.waterLevel < = maximalNormal)

SBCS-TP5 context ControlProgram

inv: (self.mode = # Initialization

and self.wlmdFailure) implies

next self.mode =# EmergencyStop

context ControlProgram

inv: let CS: Snapshot = self.snp

in let NS: Set(Snapshot) = CS.getNext()

in (self.mode = # Initialization and self.wlmdFailure)

implies NS.program.mode = # EmergencyStop

SBCS-TP6 context ControlProgram

inv: self.mode = # Initialization implies

always self.mode = # Initialization

until (PhysicalUnit.allInstances→

forAll(u: PhysicalUnit | u.ready))

context ControlProgram

inv: let CS: Snapshot = self.snp

in let FS1: Snapshot = CS.getPost()→ select(s:Snapshot |

s.boiler.ready and s.SMD.ready and s.pump.ready

and s.PC.ready and s.WLMD.ready)→ first()

in let PreFS1=Set(Snapshot) = FS1.getPre()

in let BTS: Set(Snapshot)=PreFS1→ excluding(CS.getPre())

in self.mode = # Initialization implies BTS→ forAll

(s1:Snapshot | s1.program.mode= # Initialization)

207

Table D.3: TOCL and OCL specification of the SBCS temporal properties described in Table D.1, taken
from our previous work Al-Lail et al. [95]

No. TOCL Specification on Class Model OCL Specification on the Snapshot Transition Model

SBCS-TP7 context ControlProgram

inv: self.pumpFailure implies

next self.mode=# Degraded

context ControlProgram

inv: inv: let CS: Snapshot= self.snp

in NS: Snapshot= CS.getNext()

in self.pumpFailure implies NS.program.mode= # Degraded

SBCS-TP8 context ControlProgram

inv: self.smdFailure implies

next self.mode=# Degraded

context ControlProgram

inv: inv: let CS: Snapshot= self.snp

in NS: Snapshot= CS.getNext()

in self.smdFailure implies NS.program.mode= # Degraded

SBCS-TP9 context ControlProgram

inv: self.pumpControllerFailure implies

next self.mode=# Degraded

context ControlProgram

inv: inv: let CS: Snapshot= self.snp

in NS: Snapshot= CS.getNext()

in self.pumpControllerFailure implies

NS.program.mode= # Degraded

SBCS-TP10 context ControlProgram

inv: self.failureDetected implies

next self.mode=# Degraded

context ControlProgram

inv: inv: let CS: Snapshot= self.snp

in NS: Snapshot= CS.getNext()

in self.failureDetected implies

NS.program.mode= # Degraded

208

D.3 The Temporal Properties Fragments

Figure D.1: The STM slice with respect to SBCS-TP1, STM-TP1-Slice

Figure D.2: The STM slice with respect to SBCS-TP2, STM-TP2-Slice

209

Figure D.3: The STM slice with respect to SBCS-TP3, STM-TP3-Slice

Figure D.4: The STM slice with respect to SBCS-TP4, STM-TP4-Slice

210

	Abstract
	Acknowledgements
	Dedication
	List of Tables
	List of Figures
	Introduction
	Research Context
	Problems and Challenges
	Aim and Objectives
	Dissertation Contributions
	List of Publications
	Dissertation Structure

	Systematic Literature Review
	Literature Review and Evaluation Methodology
	Research Questions
	Search Process
	Study Inclusion/Exclusion Criteria

	Specification Approaches
	Survey of the Specification Approaches
	Evaluation and Discussion of the Specification Approaches

	Analysis Approaches
	Survey of the analysis Approaches
	Evaluation and Discussion of the Analysis Approaches

	Open Problems and Future Research Directions
	Challenges to integrating specification and analysis
	Model Transformation Challenges
	Challenges in Property Specification
	Tooling Challenges

	Chapter Summary

	The Proposed UML Framewrok
	Overview of the Framework
	The framework design decisions
	Motivating Example

	The Analysis Technique
	Step1: Unfolding of the ADCM's Behavior Figure. 3.4(a)
	Step2: Interpreting TOCL as OCL Figure 3.7
	Step 3: Analysis.
	Step 4: Sequence diagram extraction Figure 3.9.

	The Property Specification Technique
	Dwyer's Property Specification Patterns
	Dwyer's Patterns in TOCL and OCL

	The Optimization Technique
	Chapter Summary

	Evaluation
	Research Prototype Tool
	The Formal Specification of Generalized Spatio-Temporal Role-Based Access Control Model
	Overview the GSTRBAC Model
	Location and Time Representation
	Effect of Spatio-Temporal Constraints on RBAC Entities
	Effect of Spatio-Temporal Constraints on RBAC Operations
	Spatio-Temporal Role Hierarchy
	Spatio-Temporal Separation of Duty
	Spatio-Temporal Prerequisite Constraints

	Case Study 1: Specification and Analysis of Generalized Spatio-Temporal Role-Based Access Control Model
	Analyzing the GSTRBAC system
	Specifying temporal properties of the GSTRBAC system

	Case Study 2: Specification and Analysis of The Steam Boiler Control System
	The Steam Boiler Control System Problem
	Analayzing the steam boiler system
	Specifying temporal properties of the SBCS system
	Using The Optimization Technique

	Chapter Summary

	Conclusions
	Summary of the Contributions and Limitations
	Future Research

	The USE Specification of The Traffic Light System
	The Textual Specification
	Validation of The Snapshot Traversal Query Operations

	Patterns' Specifications in TOCL and OCL
	The Precedence Pattern
	The Absence Pattern
	The Existence Pattern

	The Generalized Spatio-Temporal Role-Based Access Control Model
	The USE Specification of GSTRBAC
	The Temporal Properties of The GSTRBAC System

	The USE Specification of The Steam Boiler Control System
	The USE Specification
	The Temporal Properties of The SBCS System
	The Temporal Properties Fragments

