
Tropical Cyclogenesis Via Convectively Forced Vortex 

Rossby Waves In A Three-Dimensional Quasigeostrophic M del 

Janice Enagonio and Michael T. Montgomery 

Research supported by the National Science Foundation 
Grant # NSF ATM-9529295. ' Hit· 

JUL 21 i 



TROPICAL CYCLOGENESIS VIA CONVECTIVELY FORCED VORTEX 

ROSSBY WAVES IN A THREE-DIMENSIONAL QUASIGEOSTROPHIC 

MODEL 

Janice Enagonio and Michael T. Montgomery 

Research supported by National Science Foundation Grants ATM-9312655 and 

ATM-9529295 

Principal Investigator: Michael T. Montgomery 

Department of Atmospheric Science 

Colorado State University 

Fort Collins , CO 80523 

July 1998 

Atmospheric Science Paper No. 656 

1111111111111111 1111 11111111111111111 1111111111 11111 111111111111111111 

U18401 6090966 

16 31
~0L 1942 -1 

()9/SB 38-()JQ- Ql GBC 



QC., 
1;'S2 
. C..6 
\r'--0,bSb 
l-\"TMDS 

ABSTRACT 

This work investigates the problem of tropical cyclogenesis in three dimensions. In 

particular, we examine the interaction of small-scale convective disturbances with a larger-

scale vortex circulation in a nonlinear quasigeostrophic balance model. Convective forcing 

is parameterized by its estimated net effect on the potential vorticity field. Idealized 

numerical experiments show that vortex intensification proceeds by ingestion of like-sign 

potential vorticity anomalies into the parent vortex and expulsion of opposite-sign poten-

tial vorticity anomalies during the axisymmetrization process. For the finite amplitude 

forcing considered here the weakly nonlinear vortex Rossby wave, mean-flow predictions 

for the magnitude and location of the spinup are in good agreement with the model re-

sults. Vortex development is analyzed using Lagrangian trajectories, Eliassen-Palm flux 

vectors, and the Lorenz energy cycle. 

Using numerical estimates of the magnitude of PV injection based on previous ob-

servational and theoretical work, we obtain spinup to a 15 ms-1 cyclone on realistic time 

scales. Simulation of a midlevel vortex with peripheral convection shows that axisym-

metrization results in the spinup of a surface cyclone. The axisymmetrization mechanism 

demonstrates the development of a warm-core vortex. The relative contribution from 

eddy heat fluxes and eddy momentum fluxes to the warm core structure of the cyclone is 

investigated. 

The vortex spinup obtained shows greater than linear dependence on the forcing 

amplitude, indicating the existence of a nonlinear feedback mechanism associated with 

the vortex Rossby waves. 

Building on recent work by several authors, this work further clarifies the significance 

of the axisymmetrization process for the problem of tropical cyclogenesis. The theory 
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is shown to be consistent with published observations of tropical cyclogenesis. Further 

observational tests of the theory, specific to the dynamics examined here, are proposed. 
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Chapter 1 

INTRODUCTION 

Tropical cyclones form in the presence of convective disturbances in the t ropics. Many 

such disturbances are present in an ocean basin at any time. However, only a small fraction 

(about 80 per year) evolve into tropical storms, which may in turn become hurricanes. It is 

generally accepted that favorable climatological conditions for tropical cyclogenesis include 

the presence of low-level cyclonic relative vorticity, the presence of low-level convergence, 

the absence of strong vertical shear of the horizontal winds, an atmosphere conducive 

to deep moist convection, a significant value of the planetary vorticity, and sea surface 

temperatures greater than approximately 26°C with a deep oceanic mixed layer. About 

80% of all tropical cyclones originate in or near the monsoon. troughs or the Intertropical 

Convergence Zone; most others form from disturbances in the easterly trade winds (Gray 

1968, Frank 1987) . 

There have been several significant theoretical studies of tropical cyclogenesis. Kuri-

hara and Tuleya (1981) studied cyclogenesis in a primitive equation numerical model. The 

initial state used was an idealization of an environment in which tropical storms in the 

Atlantic Ocean are observed to form. A shallow easterly wave was the cause of the initial 

disturbance. In the model results, a pressure drop from 1008 mb to 1002 mb occurred 

in 96 hr, with the maximum low-level wind intensifying to greater than 17 ms-1 after 96 

hr. The development of a tropical depression with a cluster-type cloud distribution and 

increasing rainfall from an init ially cloud-free state was observed. A warm core formed 

initially at approximately 335 mb and propagated downward during the intensification 

from tropical depression to tropical storm. A moist column extending from 200 to 700 mb 

developed by 96 hr. The tropical storm showed intense precipitation of 11 mm/hr within 
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a 300 km diameter region near the center, with less precipitation in the outer regions. An 

upper-level disturbance also evolved in the course of the integration. Kurihara and Tuleya 

also studied the effects of diabatic heating and, in an accompanying study (Tuleya and 

Kurihara 1981) , the effects of environmental winds on storm genesis. 

Challa and Pfeffer (1980, 1990) and Pfeffer and Challa (1981) studied the effect of 

large-scale asymmetries on tropical cyclone formation. They stressed the key role of large-

scale upper-level eddy-momentum-flux convergence in the cyclogenesis process. Eddy-

momentum-flux convergence induces a radial circulation which supplies warm, moist air 

to the center of the storm. Challa and Pfeffer (1990) based the initial conditions for their 

model on composites for developing and nondeveloping Atlantic tropical disturbances. 

The developing composite showed a large inward flux of angular momentum near 200 mb, 

at radii from 6° to 14° latitude from the disturbance 's center. The composite of non-

developers did not show a pronounced large-scale angular momentum flux. Challa and 

Pfeffer performed model integrations beginning with developer and nondeveloper compos-

ites. They also studied cases for which the initial conditions were the axially symmetric 

components of the composites for developers. They found that in all cases for which the 

initial conditions had large eddy-momentum-flux convergences, hurricanes developed in 

their model; for all cases for which the initial conditions did not, hurricanes did not de-

velop. They concluded that cooperative instability and Ekman pumping alone are not 

sufficient to amplify Atlantic tropical disturbances into hurricanes. 

Rotunno and Emanuel (1987) and Emanuel (1989) studied intensification from the 

air-sea interaction viewpoint. To investigate the role of convective available potential 

energy, Rotunno and Emanuel considered an idealized axisymmetric model with an explicit 

representation of convection and obtained spinup of a tropical cyclone beginning with a 

nearly convectively neutral sounding. In their theory, a finite-amplitude disturbance (a 

pre-existing vortex of 12 ms-1 maximum winds) is required in order to initiate genesis. 

Spinup then proceeds by a feedback between the radial temperature gradients which drive 

the vortex's circulation and anomalous sea-air heat transfer due to frictional inflow. The 

question of whether their models would also simulate cyclogenesis from a less intense 

pre-existing vortex of perhaps 5 ms-1 was left open. 
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Montgomery and Farrell (1993) proposed a cyclogenesis mechanism due to upper-

level potential vorticity (PV) anomalies interacting with a low-level vortex. Studies of 

this mechanism were made in two- and three-dimensional geostrophic momentum models. 

In a nearly moist neutral environment associated with cumulus convection, geostrophic 

lifting causes vortex stretching and thus spinup of the lower vortex. Depending on model 

parameters, cyclones of tropical storm intensity were obtained on time scales of 2.5-3.6 

days, and an incipient spiral structure was seen at the surface. This mechanism was 

advanced to describe genesis in the subtropics, but left open the issue of genesis in the 

deep tropics. 

Shapiro (1977) studied the transformation of easterly waves to tropical depressions. 

Shapiro developed a parameter f.1, which estimates the importance of nonlinear vorticity 

advection (wave self-interaction) in the disturbance. Quasi-linear easterly waves are char-

acterized by a balance between linear advection (local time changes and advection by the 

mean wind) and the Coriolis, pressure gradient and frictional forces. In a tropical storm 

the balance is between the Coriolis force and nonlinear advection, in particular centrifu-

gal acceleration. Large f. 1 indicates increasing importance of nonlinear contributions to 

the wave processes, and thus may be expected to indicate the onset of storm formation. 

Shapiro described a means of determining f.1 from regular operational wind observations, 

and applied the f.1 criterion to climatological data and to the data from a single hurricane 

season. 

Fritsch et al. (1994) described the radial growth and intensification of a warm core 

vortex over land. The authors suggested that such mesoscale vortices could provide the 

"starter vortex" required in some models of tropical cyclogenesis including that to be 

described in our paper. Fritsch et al. noted that over land - at least for the vortex they 

described - low-level cooling from melting and evaporation appeared to be too strong to 

allow the formation of a surface mesolow and surface warm core. They speculated that 

strong, long-term fluxes of warm, moist air from a warm water surface might be required 

for the formation of a tropical cyclone. 

Bosart and Sanders (1981 found that the mesoscale convective complex (MCC) re-

sponsible for the Johnstown flood became a tropical storm as it moved out over the warm 
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water of the Atlantic. Numerical simulations and some observational evidence (see Zhang 

and Fritsch 1987 and references therein) indicated that this MCC formed an inertially 

stable warm-core vortex. It has also been observed (Velasco and Fritsch 1987) that, of 

MCCs occurring over water, a significant fraction develop into tropical storms, perhaps 

because MCCs are often associated with midlevel vortices. 

Harr et al. (1996) reported a case study of the formation of a midget tropical cy-

clone during the TCM-93 field experiment. During two aircraft observation periods, three 

mesoscale convectively-generated vortices (MCVs) were identified in association with an 

area of persistent deep convection near a monsoon gyre. Only one of these M CV s developed 

into a low-level circulation; it eventually became tropical storm Ofelia. The successfully 

developing MCV was located within the cyclonic shear zone of the monsoon gyre. The 

development of the MCV into a tropical depression was accompanied by a strong outbreak 

of deep convection. 

The cyclogenesis process examined here builds on the recent studies of vortex ax-

isymmetrization and vortex Rossby wave dynamics by MacDonald (1968), Guinn and 

Schubert (1993) , Smith and Montgomery (1995), Kallenbach and Montgomery (1995) and 

Montgomery and Kallenbach (1997; henceforth MK ). MacDonald suggested that spiral 

rainbands in mature hurricanes might be due to Rossby waves on the vorticity gradient of 

the cyclone, and made quantitative observational estimates of the flux of cyclonic angular 

momentum from spiral band eddies toward the hurricane's radius of maximum winds. 

Guinn and Schubert made an extensive study of the connection between PV or vortex 

Rossby waves and mature hurricane spiral bands, including a simulation of the PV dy-

namics of convective asymmetries. Guinn and Schubert also discussed tropical cyclogenesis 

via ITCZ breakdown. 

MK studied azimuthally and radially propagating asymmetric disturbances on a cir-

cular vortex using an exact solution for wavenumber one due to Smith and Rosenbluth 

(1990), WKB solutions, a nondivergent numerical model, and a shallow water asymmet-

ric balance (AB) model (Shapiro and Montgomery 1993, Kallenbach and Montgomery 

1995, MK). These studies also indicated the existence of radially-propagating, wavelike 
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disturbances which depended on the radial gradient of the basic state vorticity and were 

therefore identified as vortex Rossby waves. Using the WKB approximation, MK derived 

dispersion relations and expressions for the radial and azimuthal group velocities for the 

nondivergent and divergent shallow water cases. The WKB results were validated using 

the numerical models. 

MK alEo examined the possible relationship between hurricane spiral bands and vortex 

Rossby waves. The AB model results were compared to high-resolution radar reflectivity 

observations of spiral bands studied by Tuttle and Gall (1995). The model results were 

consistent with the observations, but it was concluded that further observations were 

required to verify the existence of vortex Rossby waves in hurricanes. 

MK also studied vortex Rossby wave, mean flow interactions in the nondivergent 

model. They hypothesized that initial vorticity asymmetries such as those which arise 

from moist convective forcing would accelerate the mean tangential winds, and proposed 

this interact ion as a mechanism for tropical cyclogenesis. These ideas are analogous to the 

problem of the intensification and maintenance of a large-scale zonal jet by forced planetary 

Rossby waves (Shepherd 1987) except the pertinent vorticity gradient in our case is the 

radial vorticity gradient of the vortex. This paper tests the MK spinup mechanism in 

a fully nonlinear, three-dimensional quasigeostrophic (QG) balance model. The three-

dimensional character of the model allows the investigation of the vortex's eddy-forced 

secondary circulation, crucial to understanding the origin of the vortex's warm core. 

We examine the problem of vortex development associated with the production of 

cyclonic vertical vorticity by cumulus convection. Such convection could be caused by en-

vironmental forcing (Challa and Pfeffer 1980,1990, Pfeffer and Challa 1981, Montgomery 

and Farrell 1993) , or by mesoscale processes. Although it has long been known that 

energy extracted from the underlying ocean and realized as latent heat during condensa-

tion provides the principal energy source for tropical cyclones, and this process has been 

simulated by numerical models such as that of Ooyama (1969) and Kurihara and Tuleya 

(1981) , this work further elucidates the non-axisymmetric advective dynamics that pro-

motes the epscale transfer of convective-scale energy to vortex-scale energy. Organization 
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of convection by the storm is not necessary in our model, although organization into a 

tropical cloud cluster or mesoscale convective system is assumed. The cyclogenesis mech-

anism proposed here does not require a cooperative interaction between convection and 

the large-scale vortex. Cooperative interaction (Smith 1997; Stevens et al. 1997; Ooyama 

1982) could enhance the development process presented here at later stages in the cyclone 

life cycle, and may become the dominant development mechanism by the hurricane stage. 

For simplicity, we also ignore the possible effects of ambient vertical shear. 

Our work describes cyclogenesis from a pre-existing mesoscale vortex in the presence 

of convection, such as that which would be present in a tropical cloud cluster. The initiat-

ing vortex in our simulations has a 200 km radius of maximum tangential winds (RMW) 

and an initial maximum tangential wind speed of 5 ms-1. The physical setup is consistent 

with typical values for mesoscale convectively-generated vortices (Johnston 1981; Bartels 

and Maddox 1991). Cyclonic vortices of this type could also be found within the closed 

flow patterns occurring in easterly waves (Reed et al. 1977). PV anomalies generated 

by cumulus convection on the periphery of the vortex axisymmetrize into the parent vor-

tex. Although this process can be described phenomenologically as vortex merger and 

stripping, we show that it is also useful to characterize it in terms of the interaction be-

tween vortex Rossby waves and the mean flow. The wave, mean-flow approach, which has 

proven successful in describing other atmospheric phenomena such as the quasi- biennial 

oscillation and sudden stratospheric warmings (Holton 1992), is shown here to yield valid 

quantitative predictions for the magnitude and location of the vortex spinup at the finite 

amplitudes relevant to the cyclogenesis problem. The formation of a 5K warm core within 

a reasonable time scale provides compelling evidence that our proposed mechanism may 

capture the essence of the cyclogenesis process. In addition, we find that symmetric out-

breaks of penetrative convection near the center of the pre-existing vortex wil give stronger 

and more rapid spinup. Our cyclogenesis theory is in good agreement with the case study 

by Harr et al. (1996) described above, in which cyclogenesis was accompanied by a strong 

outbreak of convection. 
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Sensitivity studies of the ax:isymmetrization mechanism reveal the presence of non-

linear feedback in the spinup process, with the increase in tangential velocity generally 

having a greater than linear proportionality to the forcing amplitude. 

The cyclogenesis mechanism proposed here may be contrasted with cyclogenesis due 

to the interaction and merger of midlevel MCVs produced in the stratiform region of 

mesoscale c nvective systems in a favorable large-scale environment (Simpson et al. 1997, 

Ritchie and Holland 1997, Ritchie 1995). Our mechanism focuses on the process by which 

PV (or vorticity) anomalies due to moist penetrative convection relax to axisymmetry in 

the presence of a pre-existi::ig vortex, such as an MCV or a low-level cyclonic vorticity 

anomaly. he difference between these two approaches lies in the emphasis placed on 

the importance of convective versus stratiform heating. The two ideas are not mutually 

exclusive; in fact, Ritchie and Holland (1997; section 4b) describe an interaction of two 

low-level circulations in the early stages of cyclogenesis which may well be an example of 

our process. In addition, our work demonstrates the usefulness of the underlying vortex 

Rossby wave dynamics in describing the redistribution of convectively-induced PV. 

In Chapters 2 and 3 we discuss the formulation and implementation of the models used 

in our studies. The reader already familiar with the models may skip to Chapter 4, where 

we examine three-dimensional vortex ax:isymmetrization in the presence of convection. 

Vortex ax:isymmetrization is studied from the viewpoints of wave, mean flow interaction, 

Lagrangian trajectories and the energy budget. Chapter 5 examines vortex spinup in the 

presence of ongoing convection, and describes sensitivity tests of our results. Chapter 6 

reviews the most relevant observations of tropical cyclogenesis to our theory. Chapter 7 

summarizei; the results of our work and proposes further observational tests of the theory. 

A summary version of this work is to be published in the Journal of the Atmospheric 

Sciences (Montgomery and Enagonio 1998) . 



Chapter 2 

MODEL FORMULATION 

2.1 Introduction 

This chapter describes the formulation of the primary theoretical model used for our 

studies. We first present the primitive equations in pseudo-height coordinates. We next 

motivate the QG approximation, non-dimensionalize the primitive equations, and then 

derive the QG equations. Our model, here called the QG3D model, describes QG motion 

on an f-plane . The model uses three basic equations, for invertibility, adiabatic motion 

and PV conservation. The reader already familiar with QG theory may wish to go directly 

to Chapter 4 where the presentation of results begins. 

2.2 Primitive Equations in Pseudo-Height Coordinates 

For our vertical coordinate we adopt the pseudo-height z (Hoskins and Bretherton 

1972) : 

(2.1) 

where H 5 is the scale height , Gp is the specific heat of air at constant pressure, Cv is the 

specific heat at constant volume, 1 is the ratio Cp/Cv, and zero subscripts refer to typical 

values at the Earth's surface. The scale height Hs is based on the surface temperature 

Hs = RT5 /g = po/(pog) . The maximum z is attained when p-+ 0. For a scale height of 

8 km, 

From (2.1) one obtains 

- 'Y 
Za = Zmax = --H8 ::::; 28 km. , -1 

Bo dz= ---dp, pge 

(2 .2) 

(2.3) 
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Figure 2.1: Relationship between pseudo-height z and physical height h for the ICAO 
standard atmosphere and for isothermal and adiabatic atmospheres (from Hoskins and 
Bretherton 1972). 
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and for the physical height h, 
dp 
dh = -pg. (2.4) 

It follows that 0odh = Gdz. For an adiabatic atmosphere (8 = 00 ) , the pseudoheight 

equals t he physical height , z = h. The relationship between z and h for various atmo-

spheres is shown in Figure 2.1 from Hoskins and Bretherton (1972). Typical atmospheric 

soundings give a curve between the isothermal and adiabatic curves, so z h is usually a 

good approximation in the troposphere for stably stratified large-scale flows. 

In this theoretical study it is sufficient to consider an idealized atmosphere bounded 

below by a rigid horizontal surface at h = 0 (Earth's surface) and unbounded above. The 

vertical boundary conditions are w = dz/dt = 0 at z = Za and w = 0 at z = 0. The first 

condition follows from the definition of z and w in terms of pressure ( at p = 0 there can 

be no vertical motion). The second condition is an approximation based on the fact that 

at the ground we must have dh/ dt = 0. Since z h, it follows that w 0 at z = 0. This 

boundary condition filters Lamb waves. 

It proves convenient to introduce the pseudo-density 

( 
p ) 1/, ( z ) 1/(-y-l) 

P• ( z ) = Po Po = Po 1 - Za (2.5) 

which is a known function of pressure only. p. is chosen so that 

dp 
dz= - p.g. (2 .6) 

In pseudo-height coordinates, the adiabatic f - plane primitive equations are 

Du 8<P 
Dt - fv = - ax ' (2.7) 

Dv 8<P 
Dt +Ju= - 8y' (2.8) 

'v · (p.v) = 0, (2 .9) 

DG (2 .10) -=0 
Dt ' 

a<P - .!Le 
az - 0o ' (2.11) 
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where "v = i8x + j8y + k8z and 

D a a a a - = -+u-+v-+w-Dt at 8x 8y 8z 

is the material derivative. Here ( x, y) are the horizontal Cartesian coordinates, t is time, 

f is the local Coriolis parameter, v = ( u, v, w) = ( Dx / Dt, Dy/ Dt, D z / Dt), <I? is the 

geopotential and 8 the potential temperature. 

Since p. is a function of z only, (2.9) can be written 

(2.12) 

from which 
w '\7 . V = -----

"flls(l - :a) 
(2.13) 

If the characteristic vertical scale for w is much smaller than the scale height, the 

term on the right side of (2.13) can be neglected. In this case the continuity equation 

reduces to 

'\7 · V = Q. (2.14) 

Strictly, the Boussinesq approximation requires that the characteristic vertical scale of w 

be small compared to the scale height. Experience has shown us, however, that limitations 

of the Boussinesq approximation are not as severe as scaling suggests. 

2.3 Quasigeostrophic Approximation 

We next develop the QG approximation to the primitive equations. The QG approx-

imation has two major advantages. First, it simplifies the equations of motion. The QG 

approximation leads to the definition of the QG PV, which in the absence of diabatic 

heating is conserved following the geostrophic wind. A simple linear relationship between 

the QG PV and the geopotential, independent of time and of the ageostrophic velocities, 

is derived. Thus, one obtains a simple predictive algorithm for the PV and geopotential 

(and thus for the winds, temperature and vorticity). The second advantage of the QG 

formulation is that it filters gravity waves, which occur on time scales much shorter than 

the geostrophic motion. 
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The QG approximation is valid provided the Ross by number E = U / f L « 1, where 

U is a characteristic horizontal velocity and L a characteristic horizontal length scale. For 

a circular vortex forced by small but finite amplitude asymmetries this condition becomes 

Evortex = v(r)/ fr , where v(r) is the basic state tangential wind of the model vortex and r 

is the radius from the center of the vortex. In our work v is initially 5 ms-1 at the RMW 

and the RMW is 200 km; taking f = 5 · 10- 5 s-1 , we obtain E = 0.5 at the RMW. As 

the tangential winds increase, Evortex becomes l. For the results presented in this paper 

we take f = 10-4 s-1. Although the value for f is roughly twice that found at tropical 

latitudes, we have chosen the higher value in order to keep the initial Rossby number 

of the symmetric vortex less than unity. The justification for using the larger value of 

f is based on the idea of incorporating the average rotation rate of an incipient vortex 

into the definition of f. The physical justification behind this idea is provided in Shapiro 

and Montgomery (1993) , where the balance theory derived was based on a generalized 

Rossby number incorporating the local rotation rate of the vortex. An analysis of our 

results using the primitive equations and asymmetric balance equations (Shapiro and 

Montgomery 1993) is a topic of current work which will be reported in due course. Note 

that the basic axisymmetrization results described in Chapter 4 have maximum Rossby 

numbers of approximately 0.5 with Rossby numbers of about 0.3 at the RMW. The QG 

approximation is used here because of its simplicity; we believe that its regime of practical 

validity extends beyond the range of formal validity E « l. 

The QG equations of motion are traditionally obtained by carrying out a series expan-

sion of the dependent variables u,v, <P and w in powers of the Rossby number. Although 

the formulation has been thoroughly developed elsewhere ( e.g. Charney 1948; Lindzen 

1990) , the derivation of the QG approximation is reproduced here for its pedagogical 

value. 

Before carrying out the E-expansion it is useful to consider a fluid at rest in hydrostatic 

equilibrium. The static stability 

(2.15) 
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with Br the potential temperature of the resting basic state. 

The hydrostatic equation then gives 

!Le _ 8¢r 
00 r - 8z ' (2.16) 

where <Pr is the geopotential of the resting basic state. Writing Br as the sum of its value 

at z = 0 plus a function of z 

Br= 0o(l + J(z)), (2.17) 

equation (2 .16) can be integrated to obtain 

<Pr = gz + fo z gf (z')dz' 

or in terms of N; 
rz rz' <Pr =gz + lo dz' lo N;(z")dz". (2.18) 

We now non-dimensionalize the primitive equations so the Ross by number dependence 

appears explicitly. Let H be the depth of the troposphere. We then define the non-

dimensional variables ii,= u/U, ii = v/U, w = wL/(U H), x = x/ L , ii = y/ L, z = z/ H, 

i = tU/L and cl?= <P/(UJ L). 

Equation (2.10) can then be nondimensionalized as follows. The total geopotential 

if> = <Pr+¢, where ¢ represents the geopotential of the moving fluid, hereafter called the 

flow geopotential. Focusing on the vertical advection term we have 

(2 .19) 

2 ( 1 8
2¢) = wNr (z) 1 + N;(z) 8z2 (2.20) 

2 ( UJL 82¢) = wNr (z) 1 + N;(z)H2 8z2 . (2.21) 

Letting the horizontal scale L = the Ross by radius of deformation = N; H / f, where N; 

is a characteristic value of Nr, equation (2.21) becomes 

(2.22) 

(2.23) 



14 

where U/N;H = E and g(z) = (N;) 2/N;( z) is a function of order unity throughout the 

troposphere. 

Inserting the dimensionless variables and using equation (2.23), the thermodynamic 

equation becomes 

or 

(2.24) 

where N;( z) is the static stability in terms of z and NJ(z ) = N;(z )/(N;)2 is the reference 

static stability normalized by (N;)2 • 

The x-momentum equation can be written 

(2.25) 

and they-momentum equation is 

(2.26) 

We now expand u, v, ¢ and w as Taylor series in E. Dropping tildes we ~rite 

& ~u 
u = u(x, y, t; 1:) = u(x, y, t; 0)+ BE (x, y, t; 0)·E+ BE2 (x, y, t; 0)- 2 + ... = uo+u11:+u21:2+ ... , 

(2.27) 
8v 82v 1:2 

v = v(x , y, t; E) = v(x , y, t; 0) + BE (x, y , t; 0) · E+ &1:2 (x , y, t; 0) · 2 + ... = vo + v11:+v21:2 + .. . , 

(2.28) 
8cp 82 cp . E2 _ 2 

¢ = ¢(x, y, t; 1:) = ¢(x, y , t; 0)+ BE (x, y , t; 0)·E+ &1:2 (x, y, t , 0)· 2+ .. . = ¢0+¢11:+¢21: + .. . , 

(2.29) 
8w 82w 1:2 

w = w(x, y, t; E) = w(x, y, t; 0)+a;(x, y, t; 0)·E+ &1:2 (x, y, t; 0) ·2 + ... = wo+w11:+w21:2+ ... 

At zeroth order in E, the momentum equations give 

8¢0 
vo=-8x 

(2.30) 

(2.31) 
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from which 
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8¢0 
uo=-ay ' 

8uo 8vo _ 0 8x + 8y - · 

(2.32) 

(2.33) 

Thus uo and vo are the geostrophic winds. The continuity equation at zeroth order then 

gives 
8wo = 0 8z · (2.34) 

Integrating this equation in z and invoking the boundary condition that w = 0 at z = 0 

yields w0 = 0. 

The order E thermodynamic equation is 

D9 8¢0 2 -- +w1N0 = 0 
Dt 8z 

where 

The order f continuity equation is 

8u1 8v1 1 8(p.w1) -+-=-----8x 8y p. 8z · 

The order E momentum equations are 

and 

8uo 8uo 8uo 8¢1 -+uo-+vo--v1=--8t ax 8y ax 

8vo 8vo 8vo 8¢1 - +uo-+vo- +u1 = --. at ax 8y 8y 

Taking 8(2 .38)/8x - 8(2.37)/8y, we find 

( 8 8 8) (8vo 8uo) (8u1 8v1) 
8t + UO ax + Vo ay ax - ay + 8x + ay = O. 

Equations (2 .35), (2 .36) , and (2.39) can be combined to obtain 

(2 .35) 

(2.36) 

(2.37) 

(2.38) 

(2.39) 



which we write as 

where 

is the QG PV minus f. 

16 

DgQg = 0 
Dt 

Q = 8vo _ 8uo + 1 8 ( p. 8¢0 ) 
9 8x 8y p. 8z NJ 8z 

From equation (2.42), using equations (2.31) and (2.32), we also find 

(2.41) 

(2.42) 

(2.43) 

This equation, which relates the QG PV (minus f) to derivatives of the geopotential, is 

called the QG invertibility relation. 

In dimensional form, the PV conservation equation, the thermodynamic equation and 

the invertibility equation take the form 

DgQg = 0 
Dt ' 

(2.44) 

(2.45) 

and 

(2.46) 



Chapter 3 

THE QUASIGEOSTROPHIC AND NONDIVERGENT BAROTROPIC 

MODELS 

3.1 Introduction 

Two numerical models, a t hree-dimensional quasigeostrophic model and a barotropic 

nondivergent model, were used in this study. The models are described here. 

3.2 The Nondimensional QG Equations 

We will assume that the static stability is uniform throughout the troposphere, and 

take N 2 = (N;)2 = 10-4 s-2, where N; is the characteristic value of the resting state 

static stability defined in Chapter 2. Henceforth Q denotes the total QG PV, 00 is the 

potential temperature at the surface, H = 10 km is the depth of the model troposphere, 

and Lis the Rossby radius NH/f = 1000 km. For convenience we solve equations (2.44), 

(2.45) and (2.46) in nondimensional form. Denoting nondimensional variables with tildes 

we let 

(x,y,z,t) = (xL,yL,zH,if- 1 ), 

(vx, Vy, w) = N H(vx, Vy, 1 w), 

(<I.> , 0, Q) = (~N2 H2 ' 0N2 H0o ' Qf). 
g 

(3.1) 

(3.2) 

(3.3) 

Here ( Vx, Vy, w) denote the zonal geostrophic, meridional geostrophic and vertical veloc-

ities, respectively. We also define (r, ..\) to be the cylindrical coordinates with r = 0 at 

the center of the initial azimuthal mean vortex on the lowest level and u and v to be the 

radial and tangential geostrophic velocities. Overbars denote azimuthal mean quantities 



Quantity 
horizontal distance (x, y, r) 
vertical distance ( z) 
time (t) 
time period (T) 
horizontal velocity ( u, v) 
vertical velocity ( w) 
temperature (0) 
geopotential ( ¢) 
vertical vorticity ( () 
potential vorticity ( Q) 
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To obtain dimensional 
quantity, multiply 

nondimensional quantity by 
10 m 
104 m 
104 s 

Teddy = 2.91 days 
100 ms-1 

1 ms-1 

30 K 
104 J kg- 1 
10-4 s-1 

0.3 · 10-6 m2 s-1 K kg- 1 

Table 3.1: Factors to be used in converting from nondimensional to dimensional units . 

and primes represent departures from the azimuthal mean. Factors to be used in con-

verting between nondimensional and dimensional quantities are shown in Table 3.1. The 

conversion of PV to MKS units assumes a near-surface density of 1 kg m-3. Note also that 

T is used to indicate time periods in units of the initial eddy turnover time of the basic 

state vortex. The eddy turnover time of a vortex is defined here as Teddy = 21'C RM/ Vmax, 

where RM is the RMW and Vmax is the tangential wind at that radius. The eddy turnover 

time of our initial basic state vortex is 2.5 · 105 s or approximately 2.91 days. 

In equation (2.46), we neglect the vertical variation of p, consistent with the Boussi-

nesq approximation. We take 

- 2 - z g - -
cl>=2+N2H z + ¢ . 

The nondimensional invertibility equation becomes 

2 -
- 2- 8¢ -

'l:J h <p + 8z2 = Q - l. 

where 

The nondimensional thermodynamic equation becomes 

b 9 aJ __ 
0 Di oz +w- . 

(3.4) 

(3 .5) 
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The nondimensional PV equation is 

n99 = o. 
Dt 

(3.6) 

3.3 QG Model Numerics 

We now drop tildes and subscripts and use only nondimensional variables unless 

specified. Thus, unless otherwise specified u = (u,v) denotes the geostrophic wind. 

Since analytical solutions of equations (3.4), (3.5), and (3.6) are generally not avail-

able, we solve them numerically on a set of discrete points in (x, y, z). The model begins 

by initializing the potential vorticity at all points in space, and the perturbation tempera-

ture 0 = 8¢/8z on the boundaries z=0 and z=l. Next the invertibility equation is solved 

for ¢ using successive overrelaxation (Press 1992), requiring convergence to 1 • 10- 4 in the 

pointwise residual. This requirement corresponds to a tolerance of approximately 1 mm in 

the geopotential height at 500 mb. We verified that decreasing this tolerance from 10- 4 to 

10-5 did not affect our results. Given¢, one then calculates the geostrophic winds, which 

are used to horizontally advect Q and 0(z = 0, z = l) by one time step. The invertibility 

relation is then solved again with the same convergence requirement, allowing another 

time step, and so forth until the desired number of time steps have been computed. 

The numerical solution is subject to periodicity in both x and y directions. The 

additional boundary condition used in solving equation (3.4) is obtained by evaluating the 

thermodynamic equation on (z = 0, z = l) and invoking the condition w = 0 to furnish 

an evolution equation for 0 on the horizontal boundaries. The updated values of 0 are 

then used as Neumann boundary conditions for the solution of the invertibility relation. 

The predicted fields ( Q, 0) are minimally corrected at each time step to insure solvability 

of the Neumann problem: solvability is equivalent to enforcing global conservation of 

quasigeostrophic potential vorticity. 

Timestepping is performed by a two-step predictor-corrector Adams-Bashforth method 

(Gazdag 1976). The advective terms of equations (3.5) and (3.6) are calculated using 

fourth-order Arakawa advection (Arakawa 1966) with the sign correction as noted by 



20 

Orszag (1971) in order to minimize dispersion errors. All other derivatives employ second-

order centered differences. 

The vertical grid spacing dz = 1.25 km, corresponding to nine vertical levels. The 

horizontal grid spacing (dx, dy) is typically 13.9 km, corresponding to about 14 grid points 

inside the radius of maximum winds of the initial circular vortex, and a total of 144 x 

144 total points in x and y. The Courant-Friedrichs-Lewy (CFL) condition then requires 

a time step less than or equal to 2. 78 · 103 s. We generally used a time step a factor of four 

to eight smaller than the CFL limit . For the single cluster and midlevel cases (sections 

4.4 and 4.5), we decreased the horizontal grid spacing to 7.5 km by increasing the number 

of (x, y, z) points in the model to 200 x 200 x 9 and shrinking the domain size from 2000 

x 2000 x 10 km to 1500 x 1500 x 10 km. 

The model also includes second-order horizontal diffusion of Q. Diffusion is added to 

remove small-scale PV associated with the potential enstrophy cascade. The value of the 

diffusion coefficient is based on two characteristic time scales, 1/2 Teddy and Tshear· The 

characteristic shear time is calculated based on the inverse of the local radial shear in a 

circular vortex, 

( dn)-1 

Tshear = r dr 

where f2 = v(r)/r is the angular velocity of the circular vortex in geostrophic and hydro-

static balance. For our vortex the maximum radial shear occurs initially near r = 0.15 

and has a dimensional value of 0.18 · 10-4 s-1 . This yields a diffusivity based on the vortex 

shear of Vshear = (horizontal grid spacing)2 /Tshear = 3.5 · 103 m2s-1 . Corresponding to 

1/2 Teddy we find Veddy = (horizontal grid spacing)2/(½Teddy) = 1.5 · 103 m2s-1 . Table 3.2 

lists the characteristic times and diffusion coefficients for these two cases. Based on these 

calculations and examination of the model results at small scales, we chose v = 4.2 · 102 

m2s-1 , a factor of six smaller than the mean value of Veddy and Vshear· The results pre-

sented below have been verified to be insensitive to the precise value of v used as long as 

PV with scales on the order of the grid spacing is removed rather than being allowed to 

accumulate. 



.!. 2 Teddy 
Tshear 
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Characteristic Time 
1.2 · 10° s 
5.6 · 104 s 

Diffusion Coefficient 
1.5 · lOJ mis- 1 

3.5 · 103 m2s-1 

Table 3.2: C' aracteristic times and horizontal diffusion coefficients based on the initial 
circular vortex, possessing maximum tangential winds of 5 ms- 1, radius of maximum 
winds at 200 km and a grid spacing of 13.9 km. 

We tested our principal results for sensitivity to the time step size and the required 

convergence tolerance of the invertibility solver. No sensitivity to these parameters was 

found. 

3.4 Lagrangian Trajectories 

As we will see in Chapter 4, a great deal can be learned about our model systems 

just from the fields of interest (PV, vorticity, geopotential and vertical velocity) , which 

are output by the model about six times per model run (typically at T = 0, 0.5 TE , TE , 

1.5 TE, 2 TE and 2.5 TE) - From the output fields we can obtain contour plots at each 

output time, as well as azimuthal means and asymmetries of the fields. 

To further elucidate the lateral mixing processes taking place within the vortex, an-

other diagnostic model was created. This model tracks Lagrangian trajectories of PV 

particles, small elements of fluid which have a fixed value of PV and are advected by the 

geostrophic wind.. Note these are not the trajectories of actual fluid parcels which are 

advected by the total wind. The "forward tracking" algorithm finds the end location of a 

particle with a given initial location at t = 0 after a given amount of time ( typically the 

model run time) has passed. The "backward tracking" algorithm finds, for a particle at a 

given location after the model has run, the location from which the particle originated at 

t = 0. Examples of problems which can be investigated with these algorithms are given 

in Chapter 4. 

To show how the trajectory algorithms are implemented, we first discuss forward 

tracking. We consider the inital-value problem 

(3 .7) 
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Forward Trajectories 
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Figure 3.1 : An example of the Lagrangian trajectories for three particles originating on 
the positive PV anomaly of the barotropic wavenumber two model run. X's depict the 
initial locations of the particles. 

(3.8) 

for the i'th PV particle, where u and v are the x and y velocity fields calculated by the 

model, and Xi(O) = a and Yi(O) = /3 are given. Thus, for each of the i PV particles we 

have a pair of coupled differential equations, which we wish to solve for Xi(t) and Yi(t). 

The equations are solved by fourth order Runge-Kutta integration (Burden and Faires 

1989, Abramowitz and Stegun 1972). To calculate the right-hand sides of equations (3. 7) 

- (3.8), gridded velocity fields at a chosen z level are output from the QG3D model at each 

time step. The values of u(xi, Yi, t) and v(xi, Yi, t) are obtained from the gridded velocities 

by bilinear interpolation. 

Model output is typically a plot of the trajectories in the ( x ,Y) plane at the chosen 

model level. An example is displayed in Figure 3.1, which shows trajectories for three par-

ticles initially located near one of the positive PV anomalies in a barotropic wavenumber 

two model run. 
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Backward trajectories are only slightly more complicated. The Runge-Kutta algo-

rithm must step through the velocity fields from the end (t = 2½TE) of the file to its 

beginning at t = 0. Because the trajectories are time-reversed (analogous to running a 

movie backwards) the velocity vectors must also be reversed . 

3.5 The B arotropic Nondivergent Model 

The fully nonlinear barotropic wavenumber two simulation described in section 4.2 

was performed with a semispectral model based on the two-dimensional nondivergent 

barotropic vorticity equation on an f-plane. Although the nondivergent vorticity equation 

can be simulated with the quasigeostrophic model by simplifying to barotropic dynam-

ics and interpreting ¢ as the streamfunction, comparatively higher temporal and spatial 

resolution can be obtained with t he semispectral model of MK extended to include the 

nonlinear advective terms. In the nondivergent model the perturbation streamfunction 7/J' 
and the perturbation relative vorticity (' are represented semispectrally: 

N 
"' A "l). 7/J'(r, >. , t) = '1/J1(r, t)ei (3 .9) 

l= -N 

and 
N 

('(r, >., t) = L (m(r, t)eim>-, (3.10) 
m=-N 

where ?/Ji and (m denote the azimuthal Fourier amplitudes for streamfunction and vorticity 

respectively and an azimuthal wavenumber truncation of N = 8 is used for the example 

considered. The dimensional prognostic equation for the streamfunction is 

(3.11) 

where 

n # k and v~ = (1/r)a/ar + 82 /8r 2 - n2 /r 2 . A diffusion coefficient v of 20 m2s-1 is 

used for this simulation. The inversion is carried out using a standard tri-diagonal solver. 
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Radial derivatives are computed with centered second-order differences. Timestepping is 

performed using a fourth-order Runge-Kutta scheme (Abramowitz and Stegun 1972). The 

radial grid spacing is 8.5 km, with 200 radial points. 

3.6 The Basic State Vortices 

For our first three examples the initial flow consists of a barotropic, circular vortex 

superposed with either of three types of perturbation asymmetries. The initial circular 

vortex for the barotropic simulation is the same as that used in the nondivergent calcula-

tions of MK (section 2). The basic state circular vortex for the three-dimensional model 

is defined by the PV field 

(3 .13) 

where 

(3 .14) 

(xc , Ye) is the center of the vortex, and parameters such as ao and /Jo are listed in Table 

3.3. For both cases the basic state vortex has an RMW of 0.2 (200 km), and a maximum 

tangential wind of 0.05 (5.0 ms-1 ) . Future work should investigate the precise thresholds of 

basic state vortex strength and areal extent required for the cyclogenesis process described 

here to occur. The maximum pressure drop associated with this initial basic state vortex in 

the three-dimensional model is 2. 7 mb. Figure 3.2 shows the corresponding radial profiles 

of the azimuthal mean PV, azimuthal mean vorticity, azimuthal mean flow geopotential 

and azimuthal mean tangential wind for the three-dimensional model basic state. In 

the three-dimensional model, to ensure compatibility with the doubly periodic boundary 

conditions the basic state PV has been adjusted so that the area integral of the anomalous 

basic state PV is zero. The adjustment is a small effect and amounts to the requirement 

that the net circulation in the horizontal plane is zero. 

For our fourth example we consider the case of a basic state vortex which, rather than 

being barotropic, has maximum tangential winds at the middle z level. This configuration 

is of meteorological interest because, as noted in Chapter 1, our initial basic state vortex 
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Figure 3.2: Radial profiles of the azimuthal mean potential vorticity, absolute vertical 
vorticity, flow geopotential and tangential wind for the basic state vortex. To obtain PV 
in 10-6 m2 s- 1 K kg-1 , m ltiply by 0.3. To obtain vorticity in s-1 , multiply by 10- 4 . 

To obtain geopotential in J kg-1, multiply by 104 . To obtain tangential wind in ms-1 , 

multiply by 100. 
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Parameter Value 
ao 0.900 
a1 4.12 
a2 1.00 
0'.3 1.00 
/Jo 32.0 
/31 128. 
f32 100. 
/33 100. 
Xe 1.00 
Ye 1.00 

Xel 1.25 
Yc1 1.00 
Xe2 0.75 
Ye2 1.00 

Table 3.3: Parameters describing the QG PV initialization. 

could be a mesoscale convectively-generated vortex; MCVs typically have maximum tan-

gential winds at midlevels (Johnston 1981, Bartels and Maddox 1991) . To model such an 

initial flow we take 

Q 1 -f3or2 
• ( ) midlevel = + aoe o Slll 7rZ . 

The parameters ao and /Jo are listed in Table 3.3 and are the same as were used for the 

barotropic basic state vortex. 

3. 7 Physical Description of Convection in the QG Model 

Although it is obviously not possible to resolve convective-scale dynamics ( e.g. Weis-

man et al. 1993, Trier et al. 1997) in a quasigeostrophic model, the approach taken here 

is a phenomenological one whereby the vertical vorticity budget of an incipient vortex and 

an ensemble of convective cells is parameterized by potential vorticity anomalies having a 

horizontal scale of approximately 200 km. Neglecting internal friction , Ertel's PV equation 

based on dry potential temperature is 
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where Ca is the absolute vorticity, p is the density and fJ is the heating rate associated with 

cumulus convection. In the QG Boussinesq approximation, only the vertical component 

of Ca • v' 0 is assumed significant, and the density is treated as constant yielding 

DQ (f + () 80 --~---
Dt ~ p 8z' (3.15) 

where ( is the magnitude of the vertical relative vorticity. Although the strict QG approx-

imation would neglect ( compared to f in equation (3.15), we retain both components of 

the vorticity for these numerical estimates. 

Since realistic convective heating profiles have 80 / 8z greater than zero at low levels 

and less than zero at high levels, convection is seen to create a positive PV anomaly at 

low levels and a negative PV anomaly aloft. Since 0 is assumed zero at the horizontal 

boundaries, (i.e. no explicit enthalpy fluxes at the ocean's surface), no PV is fluxed into 

the domain and consequently the mass-weighted integral of PV will not change (Hoskins 

et al. 1985; Section 7). 

The magnitudes of the convectively induced PV anomalies can be determined if the 

heating rate is known. Convective heating rates for midlatitude convective systems have 

been studied both observationally and theoretically (Gallus and Johnson 1991, Hertenstein 

1996); an appropriate value of 0 averaged over several convective cells is found to be 

0max 15 Khr-1 or 360 Kd-1. From recent radar observations of tropical mesoscale 

convective systems (Mapes and Houze 1995) one obtains an estimate for 0 of 190-380 

Kd-1 . Assuming further that the convective heating rate depends on z as sin(1rz/He), 

where He is the vertical scale, and that the incipient vortex has relative vorticity O(f), 

we find 
6 h . 

In 
2f 0max 7r , PV change ---H dt 1-2 PVU, 

0 P e 

where one PVU = 10-6 m2 s-1 K kg-1 . Here we have used f = 5 · 10-5 s-1 , He = 15 km, 

and taken p to be 1.0 kg m-3 for a realistic estimate of the magnitude of PV generation 

in the lower troposphere. As suggested by the observations of Zehr (1992) discussed in 

Chapter 6 and displayed in Figure 5.1, we integrate for a period of six hours corresponding 

to the bursts of convection shown in the figure. Although the peaks in the figure have a 
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duration of approximately 12 hours, we expect the lifetime of the cold-cloud tops to be 

longer than the time period during which heating is occurring. 

The main vortex's PV can be estimated similarly: 

(a 80 2f0oN2 
PVmain vortex~--;--~ --- 0.3 PVU. p uz gp 

Thus, even being quite conservative, we see that the convective anomalies for our system 

can have roughly the same PV magnitude as the basic state vortex. 

3.8 Initial PV Anomalies 

For the nondivergent simulation, the basic state vortex is perturbed with a localized 

wavenumber two vorticity disturbance whose Fourier amplitude is given by 

Ir - RMWI 0.13 ; 

Ir -RMWI > 0.13. 

Here ((RMW) is the azimuthal mean vorticity at the vortex's RMW and the parameters 

are chosen to give a maximum asymmetry at the RMW, where the physical space asym-

metry amplitude is 40 % of the basic state amplitude. A map plot of the relative vorticity 

for this anomaly added to the basic state is shown in the initial condition of Figure 4.1. 

The second and third asymmetries considered were intended to model the effects of 

an outbreak of convection near the initially circular vortex. 

A PV anomaly that has approximately the same magnitude as the basic state vortex 

PV and has the desired property of adding positive PV at low levels and depleting it at 

upper levels while keeping the mass-weighted integral of PV unchanged is given by 

(3.16) 

/32,Xc1, Xc2, Ycl and Yc2 are listed in Table 3.3. This configuration, called the two-cluster 

convective anomaly, has two regions of convection on opposite sides of the basic state 

vortex, at radii of 0.25 (250 km) from the center of the vortex. Contour plots of the PV, 

vorticity and flow geopotential for Q2 = Qbasic + Q2 are shown in Figure 3.3. The top and 
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middle panels of Figure 3.4 show an x-cross section of the initial basic state compared to a 

similar cross section of the two-cluster convective anomaly. The maximum pressure drop 

of each positive anomaly associated with Q2 is 1.0 mb (not shown), with a corresponding 

maximum : angential wind velocity of 3.0 ms- 1 (not shown). The maximum temperature 

deviation from the resting basic state for Q2 occurs at z = 0.5 and is approximately 0. 75 

K (not shown) . 

As a model for convection that is localized in one area we take 

(3.17) 

and refer to this configuration as the single-cluster convective anomaly. Plots of the PV, 

vorticity and flow geopotential for Q3 = Qbasic + Q3 are shown in Figure 3.5. An x-cross 

section of the single-cluster convective anomaly is shown in the bottom panel of Figure 

3.4. The maximum pressure drop of the positive anomaly associated with Q3 is 0.92 mb 

(not shown), with a corresponding maximum tangential wind of 2.8 ms-1 (not shown). 

The maximum temperature deviation from a resting basic state for the Q3 anomaly occurs 

at z = 0.5 nd is approximately 0.75 K (not shown). 

When the negative anomalies associated with Q2 and Q3 are added to the basic state 

PV the total PV remains positive, thereby ensuring symmetric stability (f Q > 0) of the 

model atmosphere. 

For the midlevel vortex example we used the same single-cluster convective anomaly 

as that described above. Thus the PV distribution for this example is given by Q4 

Qmidlevel + Q3 · 
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Figure 3.3: Initial nondimensional basic state vortex+ baroclinic two-cluster PV, absolute 
vertical vorticity and fl.ow geopotential at top (z=l), bottom (z=O) and y-slice along y=l. 
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Figure 3.4: X-cross section of the initial basic state vortex PV (top panel), the initial 
two-cluster convective PV anomaly (middle panel), and the initial single-cluster convective 
PV anomaly (bottom panel). 
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Figure 3.5: Initial nondimensional basic state vortex + baroclinic single-cluster PV, abso-
lute vertical vorticity and flow geopotential at top (z=l) , bottom (z=O) and y-slice along 
y = 1. 



Chapter 4 

FUNDAMENTALS OF THREE-DIMENSIONAL VORTEX 

AXISYMMETRIZATION 

4.1 Introduction 

To lay a conceptual foundation for the dynamics of ongoing moist convection in vor-

tex shear fl.ow, we study first the free adjustment or "relaxation" associated with finite-

amplitude asymmetric PV anomalies near the radius of maximum winds of an incipi-

ent cyclonic vortex. The combination of a basic state barotropic circular vortex with 

three different asymmetries is analyzed in detail. The three representative examples are a 

barotropic wavenumber two anomaly and three-dimensional two-cluster and single-cluster 

anomalies which are intended to simulate the net effect of tropical convection. The prob-

lem of a midlevel vortex in the presence of convection is also considered. 

4.2 The Barotropic Wavenumber Two Asymmetry 

To validate the wave, mean-fl.ow predictions of MK as well as to provide a conceptual 

foundation for the upcoming baroclinic experiments we first consider the relaxation of the 

initial barotropic wavenumber two anomaly. Figure 4.1 shows the evolution of the total 

and asymmetric relative vorticity for this case. Waves propagating both azimuthally and 

radially are clearly evident in the asymmetric vorticity. In particular, as the positive and 

negative vorticity perturbations are sheared into trailing spirals by the mean vortex the 

perturbations propagate outward. Excitation of secondary wave features in the interior of 

the vortex following the shearing of the initial asymmetries is also evident. 

The axisymmetrizing wave disturbances evident in Figure 4.1 cannot be gravity waves 

since gravity waves are completely excised in the nondivergent model. Indeed, the waves 
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Figure 4.1: Evolution of the relative vertical vorticity and the relative vertical vorticity 
asymmetry for the barotropic wavenumber two simulation. Only the inner 800 km x 800 
km of the model domain is shown. 
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are vortex Rossby waves whose restoring mechanism is associated with the radial gradient 

of basic state vortex vorticity. The basic theory for these waves was developed by MK. 

The radial group velocity for vortex Rossby wave packets in the WKB approximation is 

given by 
C _ -2kn(o' 

gr - Jlo (k2 + * )2 ' 
0 

where n is the azimuthal wave number and (b is the basic state radial vorticity gradient at 

reference radius r = Jlo . The radial wavenumber k is given by k(t) = ko - ntO~ , where ko 

is its initial value, and n~ is the radial gradient of the basic state angular velocity. Outside 

the RMW, our initially circularly symmetric anomaly will be deformed to a downshear-

tilted patch. For downshear tilt ko > 0. Since for our vortex n~ < 0, the initially positive 

k will grow more positive with time. If the relative vorticity gradient is negative, as 

is initially the case, C9r will be positive and wave packets will propagate outward. In 

the upcoming examples using larger amplitude initial asymmetries, the outermost wave 

creates a region of positive mean vorticity gradient; in that region C9r < 0 and wave 

packets propagate inward. 

Figure 4.2 shows the wave-induced changes in azimuthal mean relative vorticity and 

tangential velocity. This figure can be compared with Figure 8 in MK; the results are in 

qualitative agreement. A notable feature of Figure 4.2 is the acceleration or "spinup" of 

the mean tangential winds and vorticity near the radius of the initial asymmetry. This 

spinup was predicted by MK; as we will see, it persists in the three-dimensional setting. 

Although significant excitation of higher wavenumber components does occur, analy-

sis of the wavenumber two vorticity component shows that the instantaneous wavenumber 

two packet propagates radially outward to a stagnation radius (r=0.27) very close to the 

zero in the 8v plot. This qualitative behavior was predicted in the WKB framework of 

MK, and is consistent with the wave activity interpretation of Held and Phillips (1987) 

generalized to vortex flow. Quantitativelr, the quasilinear prediction for 8v( r) using the 

linear solutions to compute the eddy vorticity flux yields a 8vmax of 0.10 ms-1; the value 

observed in the nonlinear model is 0.09 ms-1. The MK results , valid at second order in 

the wave amplitude, are still approximately valid . Thus the interaction of vortex Rossby 
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Figure 4.2: Change in the relative vertical vorticity and mean tangential wind at T=4 for 
the barotropic wavenumber two system. 8v in ms-1 is obtained by multiplying by 100. 
Solid line shows the result of the fully nonlinear simulation and dashed line shows the 
quasilinear result. 

waves with the mean flow captures the essence of the physics at these small but finite am-

plitudes. At higher amplitudes we find that wave-wave interactions play a more significant 

role. 

As the initial asymmetry is sheared by the mean vortex some of the positive vorticity 

anomaly is transported towards the interior of the vortex. The remaining portion of the 

positive vorticity anomaly is transported outward to form the positive vorticity filaments 

which orbit the vortex core. The negative vorticity anomaly is also transported outward 

and becomes more nearly axisymmetric. Lagrangian trajectory analyses lenq_further sup-

port to these ideas about vorticity transport in the symmetrization process. A contour 

plot of the initial azimuthal mean vorticity subtracted from the total vorticity at T = 

2.5 shows central regions of vorticity augmentation surrounded by spiral arms of vorticity 

depletion, with an outer region of vorticity augmentation as well. We studied Lagrangian 

back trajectories for particles destined to be found in each of these regions. Particles 

in the inner vorticity augmentation region were found to originate in the initial positive 

vorticity anomalies, in agreement with our understanding that positive vorticity from the 

anomalies moves inward and pools near the center of the vortex. Particles in the vorticity 
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depletion region backtracked to the initial vorticity depletion regions of the wavenumber 

two anomaly. 

A nearly neutral discrete Rossby mode associated with a sign change of the radial 

vorticity gradient is visible in the barotropic experiment for T > 4. Such modes are 

discussed further in section 4.8. 

4.3 The Two-Cluster Convective Anomaly 

We consider next the two-cluster convective anomaly. Figures 4.3 - 4.5 show the 

fields of potential vorticity, vorticity and geopotential for top, middle and bottom z sur-

faces as a function of time. At the top level, the negative anomalies are expelled from 

the main vortex and are advected around the vortex. The negative anomalies do not 

axisymmetrize. At low z levels the behavior is similar to the barotropic case discussed 

above; the positive anomalies merge into the main vortex, with accompanying production 

of high-PV filaments, and again the vortex symmetrizes almost completely. However, due 

to the wave-induced change in the mean vorticity gradient shown below, neutral or weakly 

unstable modes are evident in the inner core region (see section 4.8) . 

Figure 4.6 shows the azimuthal mean and asymmetric PV as a function of time at the 

highest model level (z=l). Disturbances to the mean flow are evident. As noted earlier, 

the PV deficit regions move outward. Axisymmetrizat ion does not occur at upper levels, 

however. The flow there resembles a vortex tripole (Polvani and Carton 1990, Orlandi 

and van Heijst 1992). From a linear wave viewpoint the tripole can be thought of as a 

finite amplitude wavenumber two discrete or weakly unstable vortex Rossby mode which 

is supported by a sign change in the mean radial PV gradient (see section 4.8). 

On the middle level (see Figure 4.3) there is almost no change in the PV distribu-

tion; since PV is conserved following the geostrophic wind in our quasigeostrophic model, 

particles of higher or lower PV from the other levels cannot move to this level. However, 

PV can be advected on the z = 0.5 surface. The flow geopotential, consistent with the 

isothermal boundary conditions on z = 0 and z = 1 for the anomalies chosen here, can be 

written as a Fourier series 
00 

¢ = L ef>m(x , y, t) cos(m1rz), 
m=O 
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Figure 4.3: PV evolution for the two-cluster convective case at top, middle and bottom 
model levels. 
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Figure 4.4: Evolution of the vorticity field for the two-cluster convective case at top, 
middle and bottom model levels. 
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Figure 4.5: Evolution of the geopotential field for the two-cluster convective case at top, 
middle and bottom model levels. 
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where ef>m denotes the m'th Fourier coefficient in the vertical. Initially we have contri-

butions from m = 0 and m = 1. The m = 0 contribution ·comes from the barotropic 

basic state vortex, while them= 1 contribution comes from the convectively-induced PV 

anomaly oc cos 1rz. Since 
8Q at= -U· '\7Q, 

in general higher vertical modes of ¢> will be excited as the symmetrization proceeds, 

leading to advection of PV on the z = 0.5 level. In practice, for these experiments we see 

very little change in the PV on this level. This is evidence for the self-consistency of our 

using only nine levels in the vertical. 

The bottom level (Figure 4. 7) shows an increase in mean PV at a radius of approx-

imately 0.1 (100 km) , especially at earlier times. As in the barotropic case, there is an 

overall steepening of the PV gradient. 

Figure 4.8 shows the evolution of the tangential velocity and the Rossby number 

with time at the bottom z surface. Figures 4.9(a) and (b) show the changes in the 

azimuthally averaged PV and tangential velocity at the bottom z surface. The similarity 

to the barotropic example (figure 4.2) is evident. The pooling of high PV at radius 0.125 

(125 km) is evident. A spinup of 1.0 ms-1 occurs over the period of 1 Teddy (approximately 

3 days) . No further acceleration is observed after 1 Teddy· 

In the double-cluster simulation, the stagnation radius of the initial wavenumber two 

wave packet is again approximately equal to the radius of the zero in the 8v plot (r=0.3). 

Taking the primary azimuthal mode and its next two harmonics into account, the value 

of 8vmax predicted by the quasilinear nondivergent theory is 0.94 ms-1. 

Forward Lagrangian trajectories for the two-cluster convective anomaly at the lowest 

model level have also been analyzed. Particles were placed randomly on a circle of radius 

0.1 (approximately the size at half maximum of the positive anomaly) centered at the 

anomaly center. The results for a few selected particles are shown in Figure 4.9(c) . Many 

of the particles move inward toward r 0.125 (125 km) . The others move outward to 

form the outer high-PV filaments. Tra·ectories at the highest level (not shown) were 

also analyzed. At this level, particles from the negative PV anomalies move generally 
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Figure 4.6: Evolution of the azimuthal mean PV and asymmetric PV for the two-cluster 
convective anomaly at the highest model level (z=l). 
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Figure 4. 7: Evolution of the azimuthal mean PV and asymmetric PV for the two-cluster 
convective anomaly at the lowest model level (z=O) . 
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Figure 4.8: Evolution of the azimuthal mean tangential velocity and the Ross by number for 
the two-cluster convective anomaly at the lowest model level (z=O). To obtain dimensional 
v in ms- 1, multiply nondimensional v by 100. 
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outward, in agreement with Figure 4.6. Particles from the positive anomalies at upper 

levels (resulting from subtracting the azimuthal mean from the total PV field - see Figure 

4.6 ) either move inward to form the slight bump of positive mean PV shown at r 0.225 

in the radial profiles of Figure 4.6, or move outward to form the secondary maximum 

at r 0.45. These results are in qualitative agreement with our understanding of the 

vortex's dynamics from the wave, mean flow diagnostics discussed above. 

The energy exchange between the mean flow and the eddies can also be quantified. In 

the absence of heating and friction the sum of the total kinetic energy K plus the available 

potential energy P integrated over the domain is conserved. The potential enstrophy is also 

conserved if the vertical boundaries are isothermal, as is the case for all initial conditions 

used here. We expect to see a slight decrease in energy and potential enstrophy with 

time due to the explicit diffusion of PV in the numerical model. Each of these quantities 

decreased by less than 0.5 % in a 1.5 eddy-turnover-time run. 

From Appendix A we have for the mean and eddy available potential energies P and 

P': 

and 

dP -- , --=-[P·K]+[P ·P] dt 

dP' = -[P' · K'] - [P' · P] . 
dt 

( 4.1) 

(4.2) 

[P • .K] represents the conversion of mean available potential energy to mean kinetic energy. 

[P' • P] represents the conversion of eddy available potential energy to mean available 

potential energy. [P' • K'] represents conversion of eddy available potential energy to eddy 

kinetic energy. For the mean and eddy kinetic energies .K and K': 

and 

d.K - - I -- = [P · K] + [K · K] dt 

dK' = [P' · K'] - [K' · .K] 
dt 

[K' • .K] represents conversion of eddy kinetic energy to mean kinetic energy. 

(4.3) 

( 4.4) 

The relationships ( 4.1) - ( 4.4) for the two-cluster convective experiment may be sum-

marized in Lorenz box diagrams such as Figure 4.10. All quantities follow the conventions 
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Figure 4.9: (a) Change in azimuthal mean PV (oQ) and (b) change in mean tangential 
wind (oii) at T=2.5 for the two-cluster convective case at the lowest model level (z=0). 
oii in ms- 1 is obtained by multiplying by 100. (c) Forward trajectories for the two-cluster 
convective anomaly at the lowest model level (z=0). The dotted line shows the location 
of the anomaly from which the particles originate. Only the inner 1200 km x 1200 km of 
the model domain is shown. 
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of Holton (1992) suitably defined for cylindrical geometry and are appropriately dimen-

sionalized for comparison with future results. As expected, the largest energy storage is 

found to be in the mean flow kinetic energy with much smaller amounts stored in the 

available potential energy of the mean flow , in the eddy kinetic energy and in the eddy 

available potential energy. The largest energy conversion is that from K' to R, corre-

sponding to the spinup of the basic state vortex by the eddies observed with the wave, 

mean flow diagnostics. 

4.4 The Single-Cluster Convective Anomaly 

For our third example we consider the single-cluster convective anomaly. The single-

cluster configuration is intended to simulate a localized outbreak of convection near the 

pre-existing vortex. For this case the center of the ( r ,>.) coordinate system is taken to be 

the geopotential minimum on the lowest level. The behavior is in many ways similar to 

the two-cluster convective anomaly. Figures 4.11 and 4.12 show the evolution of the mean 

and eddy PV fields at the top and bottom model levels, respectively, for this anomaly. At 

the top level, the positive and negative anomalies move apart; at the lowest level the two 

positive anomalies move together and symmetrize. However, the lowest-level 8Q and 8v 

distributions, plotted in Figures 4.13(a) and 4.13(b), show a new phenomenon: transport of 

PV to the center of the vortex. This occurs because the single-cluster convective anomaly 

has a wavenumber one Fourier component. Only wavenumber one can transport particles 

to the center of the vortex. This fact can be demonstrated as follows. From the azimuthal 

mean tangential momentum equation neglecting the Coriolis acceleration we have 

av __ --,;;, 
at - u "9 ' 

where (; is the asymmetric geostrophic vertical vorticity and we recall that u and v denote 

the radial and tangential geostrophic winds. Integrating over time, assuming the eddy-

vorticity flux becomes negligible after some time T gives 
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Figure 4.10: Lorenz energy box diagram for the two-cluster convective study at T=0.5. 
The energies P, P' , f< and K' are in 1015 J and the conversion quantities [P' · P] , [ P' • K'], 
[K' · f<], and [P · f<] are in 1015 J d-1. 
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By Taylor expanding the perturbation streamfunction 'lj;' and vorticity about the origin 

and changing to cylindrical coordinates, it can be shown that the nth Fourier coefficients 

for both 'lj;' and (~ vary as rn as r ----+ 0. The vorticity change for small r is then 

J:(- - 8(r8v) 2n-2 
Ug- O CXT , 

r r 

from which it follows that only n = l can transport vorticity (and thus PV) to the 

vortex center. The Lagrangian trajectories show the same effect. Figure 4.13(c) shows the 

forward trajectory paths for a few selected particles initially distributed randomly over 

the +PV anomaly, for the single-cluster case. Unlike Figure 4.9(c) in which particles are 

excluded from the center of the vortex, in Figure 4. 13( c) particles pass arbitrarily close to 

the center. 

Figure 4.13(b) shows a low-level spinup of about 0.4 ms-1 for single-cluster convection. 

This is about a factor of 2.5 smaller than for the two-cluster convective anomaly. This 

reflects the fact that the total initial forcing in the single-cluster case is approximately a 

factor of two smaller: we use the same magnitude anomaly in both cases, but there are 

two positive anomalies for the two-cluster case and only one for the one-cluster example. 

For a comparison of the spinup due to single-cluster versus double-cluster anomalies as a 

function of the anomaly amplitude, see section 4.7. 

Table 4.1 shows the dependence of the final maximum low-level azimuthal mean tan-

gential wind speed about the geopotential minimum on the radial location of the convec-

tive patch for the single-cluster convective configuration. Convection at or near the center 

of the basic state vortex produces significantly greater values of Vmax• For radii much 

greater than the initial radius of maximum winds of the basic state vortex, a slight spin-

down (8vmax < 0) is observed. This is because, for anomalies at radii much greater than 

the initial RMW of the basic state vortex, the surface RMW moves outward, resulting in 

some spindown at inner radii (::; 200 km) and a slight increase in surface mean tangential 

winds at larger radii (300 - 500 km) . An overall slight reduction in the maximum mean 

tangential surface wind, compared to the nominal case, is observed. The final radius of 

maximum winds also depends on the init ial radial location of the convection, ranging from 
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Figure 4.11 : Evolution of the azimuthal mean PV and asymmetric PV for the single-cluster 
convective case at the highest model level (z=l). Radial profiles extend only to approxi-
mately 700 km because of the motion of the lowest-level center of the system. 
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Figure 4.12: Evolution of the azimuthal mean PV and asymmetric PV for the single-cluster 
convective anomaly at the lowest model level (z=0). Radial profiles extend only to ap-
proximately 700 km because of the motion of the lowest-level center of the system. 
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Figure 4.13: (a) Change in azimuthal mean PV (6Q) and (b) change in azimuthal mean 
tangential wind (6v) at T=2.5 for the single-cluster convective case at the lowest model 
level (z=0) . 6v in ms-1 is obtained by multiplying by 100. (c) Forward trajectories for 
the single-cluster convective case at the lowest model level (z=0). The dotted line shows 
the location of the anomaly from which the particles originate. Only the inner 800 km x 
800 km of the model domain is shown. 
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Radius of Convective Anomaly 
(km) 

0 
100 
250 
400 
500 

7.0 
6.4 
5.6 
4.9 
4.7 

Table 4.1: Final maximum azimuthal mean tangential wind as a function of the radial 
location of the convective patch from the initial vortex center. 

approximately 150 km for convection at the center to 235 km for convection at 500 km 

radius. 

The largest increase in tangential velocity occurs when the convective patch is placed 

at the center of the initial basic state vortex. In view of this fact, the reader may wonder 

why our emphasis is on the role of asymmetries in the spinup process. However, it should 

be noted that, assuming that at the genesis stage the pre-existing vortex does not play a 

strong role in organizing the convection, it is more probable that convective outbreaks will 

occur somewhere near the periphery of the vortex rather than very close to the center; 

thus we believe that asymmetric processes are likely to be an important contribution to 

mechanisms for tropical cyclogenesis. As discussed in Chapter 6, observations appear to 

indicate that asymmetries play an important role in the genesis process. When symmetric 

convection does occur, it can be expected to yield stronger and more rapid spinup. 

4.5 A Midlevel Vortex With Convection 

The time evolution of the midlevel vortex configuration is shown in Figures 4.14 -

4.17. The figures show contours of PV on z=0, z=0.25, z=0.5, z=0.75 and z=l, as well 

as a plan view of contours of PV versus x and y on z=0. The midlevel vortex is initially 

centered at x=0. 75, y=0. 75. The low-level PV anomaly, initially 0.25 (250 km) from the 

center of the basic state vortex, is drawn approximately 0.2 (200 km) into the center to a 

position underneath the main vortex and subsequently remains aligned with it , producing 

a vertically stacked vortex in the mid- to low-level troposphere. In contrast, the negative 

PV anomaly at upper levels is expelled laterally from the axis of the now-aligned vortex 
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system. This example demonstrates that our axisymmetrization mechanism could cause 

an MCV to appear to "build downward" in the presence of peripheral convection, resulting 

in spinup of strong winds at the surface. 

The midlevel vortex experiment shows some spinup of the azimuthal mean tangential 

wind about the center of the midlevel vortex. At T=0 the mean tangential wind maximum 

at the surface occurs at about 300 km from the axis of the mean vortex, approximately 

corresponding to the position of the convective anomaly. The mean surface tangential 

wind maximum measured about the axis of the midlevel vortex is 2.3 ms- 1. At T=2.5, the 

surface RMW has contracted to 150 km and the mean surface tangential wind maximum 

has increased to 3.0 ms-1, with a maximum spinup of 1.7 ms- 1. The surface vortex is 

now capable of further growth if convection continues to occur around it. 

4.6 Warm Core Formation Through Axisymmetrization 

In the course of the two-cluster relaxation experiment, a slight warming of 0.08 Kin 

the azimuthal mean temperature field is observed at middle to low levels. As we will see 

in Chapter 5, in the presence of ongoing convection a strong warm core of magnitude 3-5 

K forms during the axisymmetrization process. We now discuss the physical basis for the 

warming observed in the relaxation experiments. 

On azimuthally averaging the thermodynamic equation we obtain 

a¢ a [-] 2 g...,. _ z = -- ru1¢/ -N w+-0. at r8r z 0o (4.5) 

Contributions to 8¢z/8t come from radial eddy-heat flux, mean vertical motion, and 

heating due to convection. In the relaxation experiments after the initial pulse 0 = 0. 

The mean vertical motion is given by the radial derivative of the transverse stream-

function: 
a -w=-a '1/J , r r 

where "if is deduced upon solving the Sawyer-Eliassen equation derived in Appendix A: 

(4.6) 
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Figure 4.14: Contours of PV versus x and yon z=O , z=0.25 , z=0.5, z=0.75 and z=l , as 
well as a plan view of contours of PV versus x and y on z=O, for the midlevel vortex with 
single-cluster convection at time T=O. 
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Figure 4.15: Contours of PV versus x and yon z=O, z=0.25, z=0.5, z=0.75 and z=l , as 
well as a plan view of contours of PV versus x and y on z=O, for the midlevel vortex with 
single-cluster convection at time T=2.25 days. 
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Figure 4.16: Contours of PV versus x and yon z=O, z=0.25 , z=0.5, z=0.75 and z=l, as 
well as a plan view of contours of PV versus x and y on z =O, for the midlevel vortex with 
single-cluster convectionat t ime T=4.66 days. 
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Figure 4.17: Contours of PV versus x and y on z=O, z=0.25, z=0.5, z=O. 75 and z=l , as 
well as a plan view of contours of PV versus x and y on z=O, for the midlevel vortex with 
single-cluster convection at time T=7.07 days. 
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a --E = --(ru'q/) r8r z 

J a [ -J F = --- r(rv'u') . 
r 2 8r 

Note that equation (4.6) is dimensional. E represents the contribution from eddy-heat 

flux forcing, and F represents the contribution from eddy-momentum flux forcing. 

Neglecting for the moment the contribution from the eddy-heat fluxes, the physics 

responsible for the mean vertical motion can be illustrated with a simple example. Figure 

4.18 shows schematically the change in the mean tangential wind 8v induced by eddy-

momentum flux forcing following the imposition of a convective PV anomaly at low levels 

near the undisturbed circular vortex. As we have already seen in section 4.3 , a local 

torque is exerted on the circular vortex during the axisymmetrization process which causes 

a net spinup of the tangential winds. Because the secondary circulation always acts to 

oppose changes induced by the geostrophic fl.ow, the mean transverse circulation consists 

of a radially outward fl.ow near t he 8v maximum which increases the vortex's moment of 

inertia and tends to resist the spinup. Similarly, near the 8v minimum the mean transverse 

circulation is radially inward. The resultant mean convergence leads to mean ascent in 

between the two regions, as sketched in the figure; by mass conservation, mean subsidence 

develops near the center of the vortex as shown. When the contribution from eddy-heat 

fluxes is included the dynamics are no longer so simple. 

As a first look at the relative importance of heat and momentum flux contributions 

to the development of the warm core, .azimuthal mean Eliassen-Palm (EP) flux vectors 

(Edmon et al. 1980) for the two-cluster relaxation experiment have been analyzed. In 

cylindrical coordinates the quasigeostrophic EP flux vector, derived in Appendix A, is 

given by 

F - ( -, / / , 8<//) - - rv u , - N 2 ru Bz . 

Figure 4.19 shows the EP flux vectors along with contours of the radial PV flux (u'Q' = 

-~ 'v · F) for the two-cluster relaxation experiment at time T=0.5 Teddy· The directions of 
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Figure 4.18: Top: change in the mean tangential wind (8v) induced by eddy momen-
tum flux forcing following the imposition of a convective PV anomaly at low levels near 
the undisturbed circular vortex. Bottom: schematic Green's function response to the 
Sawyer-Eliassen equation in the vicinity of a delta function source corresponding to an 
inward eddy momentum flux near the lower boundary of the domain. Solid and dotted 
lines show streamlines. Arrows show direction of the flow. In the inner core of the vortex 
subsidence is induced, leading to warming in that region. 
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the EP flux vectors indicate whether heat or momentum is being fluxed in or out of the 

vortex: upward arrows indicate inward heat flux and rightward arrows indicate inward 

cyclonic momentum flux. At low levels, for r < 0.3, u'Q' is negative, indicating that 

the PV flux is upgradient (into the vortex); for r > 0.3, u'Q' is positive, showing the 

downgradient flux of PV into the high-PV filaments at larger radii. The greater values of 

'v • F at lower levels agree with our other diagnostics indicating that the energy transferred 

to the mean flow is greater at lower levels. 

The degree of horizontality of the EP flux vectors gives some indication of the rel-

ative importance of eddy-mome tum flux versus eddy-heat flux. However, as indicated 

in equation ( 4.6), the mean transverse streamfunction is derived from derivatives of the 

fluxes rather than from the fluxes themselves. For a direct comparison of the effects of 

momentum flux to heat flux we turn to explicit computation of the forcing terms in the 

Sawyer-Eliassen equation. 

Analytical calculations have been carried out in order to study the relative importance 

of the heat flux and momentum flux contributions. Writing the perturbation geopotential 

relative to the barotropic mean vortex ¢( r) as 

00 00 

¢'(r, .\ , z, t) = L I:' ein>.¢mn(r, t) cos m1rz, 
m=On=-oo 

where ¢mn is the Fourier coefficient for the m 'th vertical and n'th azimuthal mode and 

the prime on the sum denotes omission of the n = 0 component, it can be shown that 

if only one vertical mode and one azimuthal mode are present the resultant heat flux is 

identically zero. To give a nonzero heat flux more than one vertical or azimuthal mode 

must be involved. 

The relative importance of the heat flux and momentum flux contributions have been 

studied using the quasigeostrophic model. A simulation initialized with the two-cluster 

convective anomaly was studied with resultant fields output every 0.125 Teddy in order 

to study the rapid azimuthal shearing of the asymmetry. At each output time the two 

forcing terms, 8E / 8r and -8F / 8z, were calculated and plotted. The results for some 

selected times are shown in Figure 4.20. We see from Figure 4.20 that at early times 
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Figure 4.19: Eliassen-Palm flux vectors and mean radial potential vorticity flux 
(u'Q' = -~'v • F) for the pulsed two-cluster convective anomaly at T = 0.5. To con-
vert F to dimensional units, multiply the horizontal component by 1010 m3s- 2 and the 
vertical component by 108 m3s-2 . 
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the momentum flux term -8F/8z dominates the heat flux term 8E/8r everywhere. The 

effect of the momentum flux is best seen by looking at -8F / 8z at T=0.375 in Figure 4.20. 

The momentum flux forcing at low levels inside the radius of maximum winds is strongly 

positive. The elliptic operator in equation ( 4.6) tends to reverse the sign of the operand, 

so that in the region where -&F / &z is strongly positive, i/J is strongly negative. It follows 

that w is negative near the center of the vortex at low levels; thus there is subsidence in 

that region as expected. 

All t hroughout this process the heat flux term is non-zero; by T = 0.375 the heat 

flux becomes a significant contribution to the forcing at upper levels. Nevertheless the 

maximum warming occurs in the middle to lower levels where the momentum flux is 

dominant. 

4. 7 Nonlinear Feedback in the Axisymmetrization Process 

As we will see in the following chapter, it is of interest to study the dependence of 

the maximum spinup 8vmax on the asymmetry amplitude. In the quasilinear nondivergent 

regime 8v scales as r,2vmax, where Vmax is the maximum wind of the basic state vortex, 

and r, is the strength of the asymmetry relative to the basic state vortex (MK). Using 

r, = Q' /Qmax where Q' is the maximum magnitude of the PV anomaly and Qmax is the 

maximum PV of the basic state, and recalling that the invertibility relation is linear, we 

find that 8v ~ Q'2 /vmax• In our experiments Q' /Qmax is not small, but this scaling may 

nevertheless be approximately valid. Experiments were performed to test the dependence 

of 8vmax and the maximum temperature change 8Tmax on Q' and Vmax · 

Figure 4.21 shows the results of these tests, along with the predicted maximum 8v and 

maximum 8T assuming linear and quadratic scaling in Q'. Note that, since the upper levels 

do not axisymmetrize, one obtains small fluctuations in the azimuthal mean quantities for 

the single-cluster experiments as the low-level center of the system moves. For the two-

cluster case at the tested amplitudes the scaling of 8vmax is intermediate between linear 

and quadratic. However, the temperature change 8Tmax has a greater than quadratic 

dependence on Q'. For the single-cluster case, the dependence of 8vmax is greater than 
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quadratic, but the variation of the temperature change with amplitude is quite small. For 

the single-cluster experiments, t he largest spinup occurs inside the RMW, at r::::; 150 km, 

due to the ability of the wavenumber one component to transport like-sign PV all the way 

to the center of the vortex. 

The dependence of 8vmax and 8'I'max on Vmax was also tested. For the double cluster 

experiment 8vmax is approximately inversely proportional to Vmax, for an increase of 20 % 

in Vmax• For the single-cluster case, an increase of 20 % in Vmax results in a 24 % decrease 

in 8vmax . For both cases 8'I'max is essentially unaffected by a change in vortex strength. 

We have not yet developed a simple scaling argument which predicts the dependence of 

8T max on anomaly amplitude and vortex strength. 

These results are indicative of nonlinear feedback in the dynamics. From the dimen-

sional vertical vorticity equation for QG dynamics 

(4.7) 

some type of nonlinear spinup effect is expected. 

On the face of it one might claim that the spinup in these experiments occurs simply 

because the azimuthal mean radial secondary circulation is converging the convectively 

generated relative vorticity into the storm's inner core. This idea is incorrect for two 

reasons. First, as seen from equation (4.7), in QG theory the azimuthal mean secondary 

circulation (which is solely ageostrophic) converges only planetary, not relative vorticity. 

Second, most of the spinup occurs in the inner core of the storm where the azimuthal mean 

radial circulation at low levels is outward (hence divergent) . From the PV viewpoint, since 

potential vorticity is advected solely by the geostrophic wind, its advection into the core 

occurs purely through eddy transports. 

4.8 Amplitude Sensitivity and Wave-Induced Discrete Vortex Modes 

In all the experiments described thus far, the upper-level PV anomalies do not ax-

isymmetrize. In addition to the fact that the upper-level anomalies exist in favorable shear, 

we believe that the disruption of axisymmetrization at upper levels can be traced to the 
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Figure 4.21: Maximum 8v and maximum change in temperature as a function of anomaly 
amplitude for the double cluster and single cluster relaxation experiments. Model results 
are compared with predictions assuming linear and quadratic scaling. The amplitude is 
displayed in units of the nominal anomaly pulse amplitude. 8v is in ms- 1 and 8T in K. 
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existence of discrete neutral or unstable vortex Rossby modes propagating azimuthally 

around the vortex center. For linear waves neutral nonsingular modes require a vanishing 

radial PV gradient somewhere in the flow (Pedlosky 1987; section 7.8), while unstable 

modes require 8q/8r to change sign at least once (Gent and McWilliams 1986). To inves-

tigate these ideas, we studied smaller-amplitude disturbances which permitted us to enter 

a quasi-linear regime. 

When the amplitude of the anomalies was decreased by a factor of five from the 

nominal case, we still obtained a weak wave-induced sign change of the azimuthal radial 

PV gradient at upper levels near r = 350 km. The time evolution of the upper-level 

azimuthal mean PV and the asymmetric PV for this experiment are shown in Figure 

4.22. Under these conditions one can discern a persistent upper-level wavenumber two 

disturbance after the axisymme rization at low levels is complete. Despite the presence 

of differential rotation at all levels, the disturbance retained its shape as it propagated 

cyclonically around the vortex. 

In order to verify the fact that this mode's existence depended on the sign change 

of the azimuthal mean radial PV gradient, we moved the anomalies inward to a position 

150 km from the center of the vortex. This change had the effect of superposing the 

anomalies on a larger value of the basic state PV so that the basic state 8q/8r dominated 

the wave-induced radial PV gradient. The time evolution of the upper-level azimuthal 

mean PV and the asymmetric PV for this experiment are shown in Figure 4.23. In this 

configuration we observe axisymmetrization at all levels, verifying the disappearance of 

the discrete or weakly unstable baroclinic modes. 

The existence of wave-induced discrete neutral or weakly unstable baroclinic vortex 

modes raises intriguing possibilities about their ability to orchestrate further convective 

bursts near the RMW and sustain intensification. A thorough investigation of these ideas 

requires a self-consistent cumulus convection model which is beyond the scope of this 

paper. This topic, as well as further investigation of the underlying dynamics of the 

discrete vortex Rossby modes, remains for future work. 

We also examined the effect on the low-level axisymmetrization of significantly in-

creasing the anomaly amplitude. Figure 4.24 shows the evolution of the azimuthal mean 
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Figure 4.22: Time evolution of the azimuthal mean PV and asymmetric PV at the highest 
model level (z=l) for a two-cluster convective experiment with anomaly amplitudes a 
factor of 5 smaller than nominal (at T = 0, 1, 2, 3, 4). Anomalies are 0.25 (250 km) from 
the basic state vortex center. 
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Figure 4.23: Time evolution of the azimuthal mean PV and asymmetric PV at the highest 
model level (z=l) for a two-cluster convective experiment with anomaly amplitudes a 
factor of 5 smaller than nominal (at T = 0, 1, 2, 3, 4). Anomalies are 0.15 (150 km) from 
the basic state vortex center. 
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PV and asymmetric PV on the lowest level for a two-cluster relaxation experiment in which 

the anomaly amplitude was increased by a factor of 3 over its nominal value. By T=3, the 

axisymmetrization is virtually complete except for the presence of a small wavenumber 

two persistent mode. The maximum spinup in this experiment is 7 ms-1 , yielding a final 

Vmax of 11.5 ms-1. 

4.9 Summary 

In this chapter we discussed the results of vortex axisymmetrization relaxation exper-

iments. In combination with a basic state barotropic circular vortex, three PV anomaly 

cases were considered: a barotropic wavenumber two anomaly, a three-dimensional two-

cluster anomaly, and a three-dimensional single-cluster anomaly, the latter two of which 

were intended to simulate tropical convection. 

The barotropic wavenumber two run showed many expected features. The outer 

positive anomalies merged with the central vortex as the system symmetrized. Steep-

ening of the radial PV profile was observed. Wavelike disturbances in the asymmetric 

vorticity field , identified as vortex Rossby waves, were visible. As the axisymmetrization 

progresses, regions of both positive and negative azimuthal mean radial vorticity gradient 

are evident. Thus Rossby wave packets can propagate either inward or outward in differ-

ent radial regions. Spinup of the mean vortex was nevertheless a robust feature of these 

experiments, in agreement with the predictions of MK. Lagrangian trajectory analyses of 

the barotropic wavenumber two case agreed well with our other interpretations, showing 

that positive anomaly particles pool near the center of the vortex or move outward into 

positive PV filaments, whereas negative anomaly particles remain near the same radius 

or move outward. 

The two-cluster convective run showed many features similar to the wavenumber two 

barotropic run, including axisymmetrization of the positive PV anomalies and the presence 

of wavelike disturbances in the asymmetries. At low levels, pooling of PV near the center 

of the vortex was observed. The Lagrangian trajectories at the lowest level confirmed the 

PV pooling effect. A spinup of approximately 1 ms-1 over 2.9 days was observed. As we 
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Figure 4.24: Evolution of the azimuthal mean PV and asymmetric PV on the lowest model 
level (z=O) for a two-cluster relaxation experiment with PV anomalies 3 times larger than 
the nominal amplitude. Contour interval for the asymmetry plots is 0.3. 
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will see in the following chapter, repeated pulses of convectively-generated PV near the 

radius of maximum winds can result in a spinup on the order of 10 ms-1 in 3.6 days. 

We also considered the case of a single-cluster convective anomaly. The most impor-

tant feature of this case was that, in contrast to the two-cluster cases, PV particles from 

the positive anomaly were transported all the way into the center of the vortex. Spinup 

also occurred for the single-cluster anomaly. 

Finally, we considered the case of a midlevel vortex with convective forcing, of interest 

because mesoscale convectively-generated vortices occur at midlevels. The positive PV 

anomaly at low levels was pulled approximately 200 km to a position underneath the 

main vortex and subsequently remained aligned with it. In contrast, the negative PV 

anomaly at upper levels was expelled laterally from the axis of the now-aligned vortex 

system. This experiment illustrates that a midlevel vortex, in the process of aligning 

with a near-surface PV anomaly associated with peripheral convection, appears to build 

downward to the surface. 

During the relaxation experiments warming of the vortex core was observed. Both 

eddy-heat and eddy-momentum fluxes contributed to the warming. 

The maximum spinup 8vmax in the relaxation experiments showed a greater than lin-

ear dependence on the asymmetry amplitude, indicating the presence of nonlinear feedback 

in the spinup process. The persistence of upper-level PV anomalies in these experiments 

appeared to be due to discrete neutral or unstable vortex Rossby modes propagating az-

imuthally around the vortex center. In a configuration in which the anomalies did not 

bring about a sign change in the radial PV gradient, axisymmetrization was observed at 

all levels. 



Chapter 5 

THREE-DIMENSIONAL VORTEX DYNAMICS UNDER CONVECTIVE 

FORCING 

5.1 Pulsed Convective Studies 

In the previous chapter, we described studies of the axisymmetrization of a vortex 

forced by initial asymmetric PV anomalies. We examined various aspects of this problem, 

and demonstrated that the PV anomalies cause vortex spinup. 

For a more realistic model of cyclogenesis, we should incorporate the fact that con-

vection is not simply an initial forcing condition on the vortex; convective activity is 

often ongoing. Convection in a tropical cloud cluster typically occurs in bursts of cumu-

lus activity, as shown in Figure 5.1 from Zehr (1992). The figure shows a time series of 

convective activity in a tropical cloud cluster which eventually became Typhoon Abby in 

1983. The level of convection is indicated by the fraction of the cloud cluster area with 

IR brightness temperature Ts less than -65° C, indicative of deep cumulus convection. 

This observational method is described in greater detail in Chapter 6. 

To simulate this multiple-burst effect, "pulses" of convective activity in the form of 

small-scale PV anomalies were added to the PV field at intervals (typically 0.5 Teddy, half 

the initial eddy turnover time of the vortex, or about 1.5 days) during the timestepping 

process. A pulse consisted of a PV anomaly having the same shape as the initial convective 

anomaly. Although the convective bursts shown in Figure 5.1 are of extended duration, 

this feature is impractical to simulate in our model. Rather, our PV pulses occur all at 

once at the chosen timestep. In the quasigeostrophic model the wind and height fields 

adjust instantaneously to the PV field in accord with the invertibility relation ( equation 

(3.4)). Recall that gravity-inertia waves are excised in the balanced model. Model runs 
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thus consisted of an initial vortex and asymmetric PV anomaly, which were pulsed with 

additional asymmetric PV anomalies each 0.5 Teddy· The pulse was applied just after 

the model fields were written out. Since the runs were 2.5 Teddy in duration, there were 

typically 4 pulses in addition to the initial anomaly. Because the local shear time (see 

section 3.3) Tshear = 0.2 Teddy, applying a pulse each 0.5 Teddy just after the data was 

written out assured that the mean fields had stabilized subsequent to the pulse by the 

next output time. 

Since the PV pulses had a z-dependence of cos 1rz , as much negative as positive PV 

was added within the domain by each pulse, ensuring that the total PV of the fluid did 

not change. This is consistent with the general requirement noted in Chapter 3 t hat, in 

the absence of friction and heat fluxes on boundaries, convection merely redistributes PV 

such that its mass-weighted integral is invariant. 

In most of the simulations described here, the pulses grew in amplitude, with the 

amplitude Ak of the k'th pulse given by 

(5.1) 

where Ao is the initial pulse amplitude and E = 0.2. The amplitude of the convective 

maximum was increased to simulate the increasing relative vorticity being converged - a 

primitive equation effect not captured in the strict implementation of our quasigeostrophic 

model which only converges planetary vorticity explicitly. The time rate of change of the 

potential vorticity is given by equation (3.15). Thus the amplitude of the first pulse is 

given by A1 = (1 + E)Ao, where E represents the contribution of the relative vorticity; 

similarly A2 = (1 + E)A1 = (1 + E) 2 Ao, and so forth. As we will see below, if the pulse 

amplitude does not increase, considerably less spinup is achieved. 

Figure 5.2 shows the azimuthal mean PV fields and azimuthal mean tangential winds 

at the lowest level as a function of time for a pulsed experiment with a two-cluster con-

vective anomaly, with pulse amplitude increasing according to equation (5.1). The vortex 

tangential winds increase by 10 ms-1, yielding a final maximum tangential wind of 16 

ms- 1 . A plot of the change in tangential velocity 6v at z = 0 after 2.5 Teddy is shown in 

Figure 5.3(a). 
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Figure 5.2: Time evolution of the azimuthal mean PV field (Q) and azimuthal mean 
tangential wind (v) at z = 0 for a two-cluster pulsed PV asymmetry. To obtain the 
tangential wind in ms-1 , multiply the nondimensional velocity by 100. 
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Figure 5.4 shows the azimuthal mean potential vorticity, flow potential temperature, 

flow geopotential and tangential wind plotted as a function of r and z at T = 2.5 for 

the two-cluster pulsed asymmetry. Anticyclonic flow at upper levels is evident. Another 

feature of interest is the strong (~ 5K) warm core which forms at the center of the vortex 

(one non-dimensional temperature unit corresponded to 30 K) . In section 5.3 the formation 

of the warm core is discussed in detail. 

Figure 5.5 shows the azimuthal mean PV fields and azimuthal mean tangential winds 

for an experiment in which the pulse amplitude did not grow with time ( E = 0 in equation 

( 5.1)). Because the successive pulses of fixed PV tend to contribute a fixed value of PV to 

the vortex, in this case less spinup was obtained. Since the fluid is incompressible, particles 

can replace but not overlap each other. Thus as the high PV particles are attracted toward 

the center, they tend to pile up at the outside radius of the inner PV maximum, leading 

to a broadening of the inner PV maximum with time. A plot of 8v at the bottom model 

level for this experiment is shown in Figure 5.3(b). 

Experiments with single-cluster pulsed convective forcing were also performed. Figure 

5.3(c) shows 8v for one such experiment . A spinup of approximately 7.0 ms-1 is obtained. 

As in the unpulsed axisymmetrization experiments, the single cluster anomaly gives less 

spinup than the two-cluster anomaly. If the low-level spinup scaled linearly with the 

amount of positive PV injected, the single-cluster anomaly would be expected to contribute 

only 50 % as much PV to the vortex as the double cluster does. Actually, it contributes 

considerably more than 50 %; the single-cluster anomaly appears to be more efficient 

at the spinup process. This greater efficiency is likely a manifestation of the nonlinear 

feedback effect discussed in section 4.7. 

Figure 5.6 shows the time evolution of the asymmetric PV fields on the highest and 

lowest levels for the pulsed single-cluster asymmetry. At low to middle levels the positive 

anomalies are attracted into the main vortex during the symmetrization process. At high 

levels the negative anomalies are repelled from the main vortex; the anomalies rotate 

around the parent vortex and little or no axisymmetrization occurs. 
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Figure 5.4: Azimuthal mean total potential vorticity Q(r, z), flow potential temperature 
iJ(r, z), flow geopotential ef>(r, z) and tangential wind v(r, z) for the pulsed two-cluster con-
vective anomaly, contoured as a function of r and z, at T = 2.5. To obtain potential 
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Figure 5.5: Time evolution of the azimuthal mean PV ( Q) and azimuthal mean tangential 
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81 

PV Asymmetry T=0, Z=1 PV Asymmetry T=O, Z=0 
2.0 2.0 

1.5 1.5 
c-o~-

1.0 1.0 
-0.05~ 

0.5 0.5 

0.0 0.0 
0.0 0 .5 1.0 1.5 2.0 0 .0 0.5 1.0 1.5 2.0 

PV Asymmetry T=0.5, Z=1 PV Asymmetry T=0.5, Z=0 
2.0 2.0 

1.5 1.5 

1.0 • 1.0 1'~ -o. 

0 .5 0.5 

0.0 0.0 
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 

PV Asymmetry T= 1.0, Z= 1 PV Asymmetry T= 1.0, Z=0 
2.0 2.0 

1.5 1.5 

1.0 ~·, 1.0 

""--=-- / 
0.5 0.5 

0 .0 0.0 
0.0 0.5 1.0 1.5 2.0 0 .0 0.5 1.0 1.5 2.0 

PV Asymmetry T=1 .5, Z=1 PV Asymmetry T=1 .5, Z=0 
2.0 2.0 

1.5 

~-)) 
1.5 

1.0 1.0 .. 
0.5 -::::.:. -==--0.~ 0.5 

0.0 0.0 
0.0 0 .5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 

PV Asymmetry T=2.0, Z=1 PV Asymmetry T=2.0, Z=0 
2.0 2.0 

1.5 

~)} 
1.5 

1.0 1.0 ., 
0.5 < = -===--oJ/Y 0.5 

0 .0 0.0 
0 .0 0.5 1.0 1.5 2.0 0 .0 0 .5 1.0 1.5 2.0 

PV Asymmetry T=2.5, Z=1 PV Asymmetry T=2.5, Z=0 
2.0 2.0 

1.5 

---~)) 
1.5 \•·· 1.0 1.0 

0 .5 . ::::::.-=.-=-... 0.5 

0 .0 0 .0 
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 

Figure 5.6: PV asymmetry fields as a function of time at z = 0 and z = I for the standard 
pulsed single-cluster convective anomaly. These z values correspond to the lower and 
upper boundaries, respectively. Contour interval is 0.1. 
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Run Type 
Nominal 2-cluster convective pulsed 
2-cluster, constant pulse amplitude 
2-cluster, anomalies at 400 km 
2-cluster, scrambled 
2-cluster, high frequency 
Nominal I-cluster convective pulsed 
I-cluster high frequency 

Maximum 8v (ms- ) 
10.2 
6.4 
4.9 

10.3 
9.4 
7.0 
8.9 

Table 5.1: Sensitivity tests of the quasigeostrophic model under convective forcing. 

Figure 5. 7 shows r - z mean fields for the pulsed experiment with the single-cluster 

convective anomaly. An upper-level anticyclone and warm core can also be seen in this 

figure. 

5.2 Sensitivity Tests 

Recognizing the chaotic nature of cumulus convection, it is important to demonstrate 

that the hypothesis proposed here is not sensitive to details of how convection is repre-

sented in our model. Strictly speaking, this problem should be studied with a full physics 

model capable of adequately resolving cumulus convection and mesoscale dynamics. Such 

a study is beyond the scope of the present approach. As a substitute, we have performed 

some simple sensitivity tests with the quasigeostrophic model, which assure that our results 

are essentially independent of details of the pulsing scheme such as the pulse frequency 

and location. A summary of the sensitivity tests is given in Table 5.1. 

The first of these tests showed that our results are actually quite sensitive to the radial 

location of the convection. We performed a simulation which was the same as the nominal 

two-cluster experiment except that the two convective anomalies were placed at 400 km, 

rather than 250 km, from the center of the vortex. The pulse amplitude in this run was 

increased according to equation (5.1). For the 400 km case, the tangential wind maximum 

broadened relative to the 250 km case. The maximum spinup, 4.9 ms-1, occurred at a 

radius of approximately 350 km. These results are qualitatively consistent with the results 

for the relaxation experiments described in Chapter 4. Figure 5.8 shows the azimuthal 

mean tangential wind and 8v for this experiment. 
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Figure 5.7: Azimuthal mean total potential vorticity Q(r, z), flow potential temperature 
0(r, z), flow geopotential ¢(r, z ) and tangential wind v(r, z) for the pulsed single-cluster 
convective anomaly, contoured as a function of r and z , at T = 2.5. To obtain potential 
vorticity in PVU (10-6 m2 s-1 K kg-1 ), multiply the nondimensional quantity by 0.3, 
where a mean tropospheric density of 1.0 kg m-3 has been assumed. To obtain tempera-
tures in K, multiply the nondimensional quantity by 30. To obtain geopotential in J kg-1 , 

multiply the nondimensional quantity by 104 . To obtain velocities in ms-1, multiply the 
nondimensional quantity by 100. 
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Figure 5.8: Mean tangential winds (v) and change in tangential wind (8v) at z = 0 for 
pulsed model with anomalies located at 400 km (rather than 250 km) from the vortex 
center. To obtain velocities in ms-1, multiply the nondimensional quantity by 100. 
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To test for sensitivity to the pulse location when the pulse anomalies were at the 

same radius from the vortex but had different orientations, we created what we refer to 

as "scrambled" pulses. The initial two-cluster convective anomalies were located at 250 

km along the x-axis as usual. However, the first secondary pulse anomalies, though also 

in the two-cl us ,er configuration, were placed at 250 km along the y-axis, rotated 90° from 

the initial anomaly. The second pulse was rotated back 90° to the position of the initial 

anomaly, and thereafter the pulses alternated between these two orientations along the x 

and y axes. T he scrambled pulse runs gave quite similar results to the normal runs, with 

a maximum spinup of 10.3 ms-1. 

The dependence of the spinup on the pulse frequency was also tested. The vortex's 

shear time is 5.6 · 104 s, while the eddy turnover time Teddy is 2.5 · 105 s. Since Tshear is 

considerably ess than Teddy and we normally pulse the system every 0.5 Teddy, the pulsed 

asymmetries tend to be sheared well before the onset of the next pulse. Thus, we expect 

that for a fixed total number of convective pulses, the mean tangential winds and thus 

the spinup should be approximately independent of the pulse frequency. To check this, 

we performed experiments for both the single- and the double-cluster cases with the pulse 

frequency doubled, but with the same total number of pulses as in the nominal runs. 

These experiments correspond to all of the spinup occurring in approximately 3.6 days 

rather than approximately 7.3. The 8v plots for the high frequency runs are shown in 

Figures 5.9 and 5.10, which should be compared to Figures 5.3(a) and 5.3(c). The figures 

are similar and the values of maximum 8v differ by about 1-2 ms-1. Thus, as expected, 

the frequency of the convective pulsing in this frequency range does not significantly affect 

our results. In fact, if the convective anomalies were stronger, the spinup time could be 

considerably shorter. It should be recalled that the amplitudes used for the PV anomalies 

are quite conservative, given our estimate of tropical convective heating rates in section 

3.7. As noted in section 4.8, in the relaxation experiments we find that axisymmetrization 

at middle to low levels occurs even when the PV anomaly amplitude is increased by a 

factor of three over its nominal value. 
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Figure 5.9: Azimuthal mean tangential winds (v) and change in tangential wind (8v) at 
z = 0 for the high frequency pulsed double-cluster experiment. To obtain velocities in 
ms-1 , multiply the nondimensional quantity by 100. 
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Figure 5.10: Azimuthal mean tangential winds (v) and change in tangential wind (8v) at z 
= 0 for the high frequency pulsed single-cluster experiment. To obtain velocities in ms- 1, 

multiply the nondimensional quantity by 100. 
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5.3 Warm Core Formation 

Figure 5.11 shows the time evolution of the azimuthal mean potential temperature de-

viation from the resting atmosphere for the nominal two-cluster pulsed convective anomaly. 

As before, one non-dimensional temperature unit corresponds to 30 K. The azimuthal 

mean vortex has an initial warm core of approximately 0.5 Kat z=0.5. The warm anomaly 

arises from the wavenumber zero component of the imposed asymmetry. The asymme-

try induces a negative vertical shear which is maximum at z = 0.5. Thus thermal wind 

balance implies the initial warm core. 

In the course of the experiment, which corresponds to 2.5 Teddy or about 7.3 days, 

the warm core intensifies to a 5 K level. As demonstrated above, our model can actually 

achieve full spinup in 1.25 Teddy or about 3.6 days. Thus we can demonstrate the buildup 

of a 5 K warm core on a reasonable time scale for tropical cyclogenesis. This is a significant 

result , as it links the formation of a warm core to the axisymmetrization process. 

To investigate the mechanisms responsible for the warm core structure under multiple 

pulsing, we consider first the azimuthal mean vertical velocity deduced from the thermo-

dynamic equation (3.5). Normally, in multiple-pulsed runs the pulsing occurs each 0.5 

Teddy, just after the model fields and azimuthal averages are written out. Since the shear 

time Tshear = 0.2 Teddy , with the conventional pulsing scheme the mean field quantities 

have stabilized subsequent to the pulse before they are output. In order to focus on the 

relaxation process, we performed an additional experiment with the pulses occurring 0.5 

Tshear before each 0.5 Teddy output time. Thus, the outputs occurred during rather than 

after the symmetrization process. 

Figure 5.12 shows the mean azimuthal vertical velocity on z-surfaces 0.75, 0.5 and 

0.25 at T = 0.5 - 2.5. One nondimensional unit of iiJ corresponds to 1.0 ms- 1. For T = 0.5 

- 1.0 most of the vertical velocities are of order 0.01-0.02 cms-1 . These vertical velocities 

are too small to account for the observed temperature increase of the vortex by mean 

subsidence warming alone during this period. Recalling the thermodynamic equation in 

dimensional form, 
80 0o 2 -=-u·'\70--N w at g ' 

(5.2) 
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Figure 5.11: Time evolution of the azimuthal mean potential temperature deviation from 
the resting atmosphere for the nominal pulsed two-cluster convective experiment. One 
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in 1.0 Teddy the expected temperature change of the vortex core due to such mean subsi-

dence is 
0o 2 6.0 -N WTeddy 0.075 - 0.15 K 
g 

The observed mean warming in the first Teddy is approximately 2 K. 

By T=l.0, however, the z=0.25 level shows a subsidence of nearly 0.1 cms-1 . Ver-

tical velocities at the other displayed levels remain small until T=2.0 , when we observe 

mean subsidence at all levels within the radius of maximum winds with maximum vertical 

velocities in the range 0.1 - 0.4 cms-1. Subsidence of order 0.1 cms- 1 then persists at all 

levels in the inner core through T=2.5. Thus, we expect subsidence warming to be more 

significant at later times during the run. 

The results for iiJ are consistent with the plots of the Sawyer-Eliassen forcing terms, 

which are shown in Figure 5.13. For example, at T=l.5 at the z=0.25 level the total 

forcing is increasing as one moves outward from r=0 to r=0.15. As noted in our earlier 

discussion of the Sawyer-Eliassen forcing for the simple relaxation experiment, it follows 

that 'ljJ is decreasing, and therefore that iiJ is negative; this agrees with the iiJ plots which 

show significant subsidence in the inner core at this level. On the other hand, at z=0. 75 

at the same time the forcing is essentially constant through the inner core; consequently, 

the vertical velocities are small at the upper level. 

At T=2.0, the forcing at z=0.25 in the inner core is again increasing with radius, so 

we also expect subsidence in this case. Since the total forcing is significantly stronger, we 

predict a larger value of w; the observed maximum value increases from 0.08 cms-1 to 

0.25 cms- 1. 

5.4 Summary 

In this chapter we considered the problem of three-dimensional axisymmetrization of a 

vortex under convective forcing. Convection was represented by pulsed potential vorticity 

anomalies whose magnitude and vertical structure are consistent with observations of 

cumulus heating (see section 3.7). Vortex intensification proceeds by ingestion of like-

sign PV anomalies into the parent vortex and expulsion of opposite-sign anomalies during 
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Figure 5.12: Azimuthal mean vertical velocity w at model levels z=0.75 , 0.5 and 0.25 at 
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the axisymmetrization process. Vortex spinup is sensitive to the radial location of the 

convection. If the convection occurs far from the main vortex the inner-core winds do not 

increase significantly. 

Significant spinup on realistic time scales requires convergence of relative as well as 

planetary vorticity. A warm core develops in association with the intensification of the 

winds. Both eddy-heat and eddy-momentum fluxes contribute to the development of the 

warm core. 



Chapter 6 

COMPARISON WITH OBSERVATIONS 

6.1 Introduction 

In this chapter we discuss observations concerning tropical cyclogenesis which are 

relevant to our work. We examine two sets of observations: the study of Zehr (1992) 

based on satellite, aircraft and conventional data and the rawinsonde composite study of 

Lee (1986, 1989a, 1989b). 

6.2 Observations of Tropical Cyclogenesis: Zehr's Results 

An extensive observational study of tropical cyclogenesisin the western North Pacific 

is provided by Zehr (1992). The satellite data in Zehr's study consisted of digitized infrared 

and visible data from the Geostationary Meteorological Satellite with data available since 

1977. This data set had the advantage over hard-copy satellite images that large amounts 

of data could be quickly analyzed with consistent and objective algorithms. In the IR 

data, the brightness temperature TB measures the radiative temperature of clouds or the 

Earth's surface. In tropical regions horizontally large, very cold IR areas occur due to 

deep cumulonimbus convection and mesoscale convective systems, since clouds with very 

cold TB have tops near the tropopause. The IR data were analyzed with respect to the 

moving center of the cyclone or disturbance. Details of the center finding algorithm are 

described in (Zehr 1992). 

Typical satellite analysis results for the Zehr study are time series of the fraction of 

cloud areas with TB < -65° or - 75°C for a given disturbance. An example is shown in 

Figure 5.1. Pertinent to our work is the occurrence of multiple bursts of convection, at 

intervals of approximately 24 hours, prior to the tropical depression designation. These 
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convective bursts are incorporated in our model as "pulses" of convective activity (see 

section 5.1). 

6.3 Observations of Tropical Cyclogenesis: Lee's Rawinsonde Results 

We have also examined the results of a published rawinsonde composite study of 

tropical cloud cluster evolution and cyclogenesis in the western North Pacific (Lee 1986, 

Lee 1989a, Lee 1989b). This study was a major improvement over previous ones in that 

it used 21 years of data rather than the 10 year set used previously (Zehr 1976; McBride 

1979, 1981a,1981b; and McBride and Zehr 1981). The increase in data allowed the use 

of stricter composite criteria and better estimates of time rates of change ( crucial to the 

results here) . Also, better satellite data were available for selecting non-genesis cloud 

clusters for study, and finding the centers of the clusters. 

In his study, Lee compared a composite of 341 selected developing cyclones to 332 

"nonpersistent nongenesis" and 328 "persistent nongenesis" tropical cloud clusters. The 

nongenesis clusters were required to be at least 4° in diameter and not elongated in shape, 

located in the region of interest, and not associated with a cyclone or precyclone system. 

Clusters which could be observed only within one 24-hour time period were defined as 

non-persistent nongenesis (NN) clusters, and those which were visible for two or more 

days were termed persistent nongenesis (PN) clusters. Developing cyclones are signified 

by GN. Determination of center positions for the nongenesis and genesis cases is described 

in (Lee 1986, Lee 1989a). 

To study time evolution, composites for the developing cyclones were formed for 

various evolutionary time stages. The cyclone system was selected for inclusion in the 

composites when it was identified as a tropical depression. This was defined as evolutionary 

Stage 3. Stage 3 included the first two 12-hour time periods following identification as a 

tropical depression. Stage 4 included the two 12-hour periods immediately after Stage 3, 

Stage 2 included the 24 hours immediately before Stage 3, and Stage 1 included the 24 

hours prior to Stage 2. 

Extensive comparisons were made between the genesis and nongenesis composites. 

Here we will discuss only those comparisons which are directly relevant to our results. 
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Figure 6.1: Azimuthal mean vertical motion (w) averaged over 0°- 4° and 0°-6° radius for 
genesis Stages 1-4 and for the nongenesis case (NG). BK is a background profile. (From 
Lee 1989a) 

Azimuthal mean vertical motions (w) averaged over 0°- 4° and 0°-6° radius were 

derived using the kinematic method by assuming zero vertical motion at the surface and 

100 mb. The vertical motion profiles are shown in Figure 6.1. The w distributions for 

nongenesis and genesis (Stage 2) cases were approximately the same. However, for the 

genesis composite between Stage 2 and Stage 3 there was a large increase in upward 

vertical motion, which then decreased again for Stage 4, suggesting that, in agreement 

with Zehr's work, an outbreak of cumulus activity occurred shortly prior to the tropical 

depression designation. 

A cross section of the azimuthal mean tangential wind for the NN, PN and genesis 

cases is shown in Figure 6.2. The genesis case initially shows stronger cyclonic circulation 

at mid to low levels, which rapidly increases as the winds evolve in time. This is one of 

the major differences between the genesis and nongenesis composites. 
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Stages 1-4 and for the NN and PN composites at Stage 2 (from Lee 1989a). 
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As a test of the applicability of our quasigeostrophic model, it is of interest to note 

the Rossby numbers at the radius of maximum winds corresponding to Figure 6.2. At 

genesis stage 1 
4 ms-1 

Ro = (2.8 • 10-5 s-1 )(5.5 . 10s m) = 0·26 « l ; 

for this stage of genesis the QG approximation is a good one. For genesis stage 3 

9 ms- 1 
Ro= --------- = 1 3· 

(3.5 · 10-5 s-1 )(2 • 105 m) · ' 

at this stage the QG approximation is no longer strictly applicable. 

The source of the increase in cyclonic circulation was investigated using a tangential 

momentum budget analysis in a coordinate system moving with the storm system. De-

noting the azimuthal mean tangential wind by ii, its depth-integrated time rate of change 

is given by 

f aav dp = mean terms + eddy terms + motion terms + surface friction. 
ltroposphere t 

The mean term is the part of av/ at which can be determined by the mean circulation: 

1 ( - - av) mean term = - u(r - uf - w-a dp. 
trop. P 

Here u is the azimuthally averaged radial wind and (r is the azimuthally averaged rela-

tive vertical vorticity. The motion term signifies the spin-down of the system due to its 

northward motion; this can be calculated from 

motion term= 1 -erfdp, 
trop. 

where Cr is the radial component of the system motion and the bar denotes an azimuthal 

average. Details of how the system motion is estimated are given in Lee's papers. Following 

Frank (1977) the surface term is estimated using Deacon's empirical formula for the drag 

coefficient and various other small corrections (Lee 1989b). The mean, motion and surface 

friction terms can be determined from the composited data. The eddy term is calculated 

as the residual of the other terms; it includes any other residual effects such as data errors. 

It is important to note that any vertical fluxes of angular momentum are also included in 

Lee 's eddy term. 
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mean + eddy +motion +surface 8t 
(ms-1day-1) = terms terms terms friction 

10 - 50 

Non-Non 0 - + 0.4 -0.1 -0.2 -0.1 -
Per-Non 0 - +0.4 -0.1 -0.2 -0.1 -
Gen-S1 +1.7 = +0.7 +1.6 (70 %) -0.3 -0.3 
Gen-S2 +2.0 - +1.4 +1.6 (53 %) -0.4 -0.6 -
Gen-S3 +1.8 = +2.6 +0.7 (21 %) -0.4 -1.1 

50 _ 90 

Non-Non 0 - -0 .1 +0.6 -0.4 -0.1 -
Per-Non 0 - +0.1 +0.4 -0.4 -0.1 -
Gen-S1 1.2 = +0.4 +2.0 (83 %) -0.8 -0.4 
Gen-S2 0.0 = +0.3 +1.2 (80 %) -0.9 -0.6 
Gen-S3 0.2 = +0.4 +1.4 (78 %) -1.0 -0.6 

Table 6.1: Lee's tangential momentum budget analysis (from Lee 1989b). Units are 
ms-1day-1 . 

Lee's tangential momentum budget results are shown in Table 6.1. It is evident that 

for the genesis case the contributions from the eddy terms are quite large compared to all 

other terms, particularly at Stages 1 and 2. 

The importance of the eddy terms in the early stages of cyclogenesis is consistent with 

our theory, which posits large inward fluxes of eddy angular momentum on sub-synoptic 

scales (1 ° - 5°) subsequent to each convective burst. However, because Lee's eddy term is 

determined by the residual method, Lee's large eddy fluxes cannot be directly identified 

with our horizontal eddy fluxes ; for example, vertical eddy fluxes could also contribute to 

Lee's residual. The importance of eddy-momentum fluxes on the larger scale (5° - 9°) is 

not inconsistent with suggested environmental influences on tropical cyclogenesis (Challa 

and Pfeffer 1980, 1990; Pfeffer and Challa 1981; Montgomery and Farrell 1993). 



Chapter 7 

SUMMARY AND CONCLUSIONS 

In this work we have examined the dynamics of the interaction of moist penetra-

tive convection with a larger-scale vortex. Convection is parameterized by its estimated 

net effect on the potential vorticity field. Convection could be initiated by environmen-

tal asymmetries such as those described by Challa and Pfeffer (1980,1990), Pfeffer and 

Challa(1981) and Montgomery and Farrell (1993) , or by mesoscale processes. Here we 

provide an explicit explanation of how convective-scale rotational kinetic energy is trans-

formed to kinetic energy of the large-scale vortex. 

For simplicity, a three-dimensional quasigeostrophic balance model is used to eluci-

date the underlying dynamics. This approach has the virtue of excising gravity waves, 

allowing one to focus exclusively on the rotational advective dynamics. Vortex axisym-

metrization proceeds by the ingestion of like-sign potential vorticity anomalies accompa-

nied by the formation of filaments surrounding the larger-scale vortex as well as expulsion 

of opposite-sign PV anomalies. Our results on merger of like-sign PV anomalies are qual-

itatively consistent with theoretical work on vortex merger in two-dimensional Euler flow 

(Melander et al. 1988, Ritchie and Holland 1993) and two-layer quasigeostrophic flow 

(Polvani 1991). The dynamics of vortex Rossby waves are seen to usefully characterize 

the axisymmetrization process, in that the vortex Rossby wave theoretical predictions 

for the spinup magnitude and the location of wave mean-flow acceleration are in good 

agreement with the model results. Examination of Lagrangian trajectories, the Lorenz 

energy cycle and Eliassen-Palm flux diagrams give a consistent picture of the process of 

axisymmetrization and vortex intensification. 

With reasonable assumptions about the magnitude of PV injection associated with 

moist penetrative convection, we obtain spinup to a 15 ms-1 cyclone on realistic timescales. 
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Simulation of a midlevel vortex with peripheral convection shows that axisymmetrization 

results in the spinup of a surface cyclone. A warm core vortex of order SK forms as 

a natural consequence of the axisymmetrization process. In the relaxation experiments, 

both heat flux and momentum flux are found to contribute to the development of the warm 

core. In the pulsed convective experiments, subsidence warming is initially too small to 

account for the observed warming; however, after the first Teddy subsidence warming is 

significant. 

At the finite amplitudes determined consistent with our calculation of the magni-

tude of PV injection, the spinup obtained shows greater than linear dependence on the 

amplitude. This fact implies the existence of a nonlinear feedback mechanism associated 

with convectively forced vortex Rossby waves. Discrete neutral or weakly unstable vortex 

Rossby modes are observed to propagate azimuthally around the vortex center both at 

upper and lower levels; the possible role that these modes may play in orchestrating future 

convection, leading to further intensification of the vortex, requires additional study. 

Numerical simulations of tropical cyclogenesis using a full physics primitive equation 

model ( taking into account horizontal advection, vertical advection, stretching, tilting of 

horizontal vorticity and friction) show that the dominant contributions to the low-level 

vertical vorticity tendency are horizontal advection and stretching (Kurihara and Tuleya 

1981). This provides evidence that our idealized model is not too idealized, i.e. , that 

we have incorporated the fundamental processes producing the storm's vertical vorticity 

even though we have neglected, for example, boundary layer friction and the complex 

mesoscale interactions leading to tilting of horizontal vorticity. Observations (Lee 1986, 

1989a, 1989b) suggest that small-scale eddy processes are important at the early stages 

of tropical cyclogenesis. These results are consistent with our expectations for vortex 

development by axisymmetrization in the presence of moist penetrative convection. 

Further observations are needed, however, to confirm or falsify the theory described 

here. These include observations of patches of low-level cyclonic relative vorticity in associ-

ation with convection near t he incipient vortex, such as a mesoscale convectively-generated 

vortex. While one of the ultimate goals of an observational field program for tropical cy-

clogenesis should be to construct fine-scale PV maps, for convenience we suggest the use of 
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the absolute vorticity as a useful proxy for PV. A key process in our theory is the shearing 

of such vorticity patches by the incipient vortex. Accompanying the shearing one would 

like to observe the upgradient transport of vorticity into the vortex and the downgradient 

transport into surrounding filaments . As the dynamics of vortex Ross by waves have been 

shown to usefully characterize the wave, mean-flow interaction for the PV anomaly am-

plitudes considered here, it would be of great interest to observe wavelike features in the 

PV ( or vorticity) field which are consistent with their local dispersion relation derived in 

MK. In principle, this dispersion relation can be used to distinguish vortex Rossby waves 

from gravity-inertia waves. 

Future work will test the theoretical conclusions developed here in a fully nonlinear 

three-dimensional primitive equation model and an asymmetric balance model, with moist 

processes represented in a more realistic manner. 



Appendix A 

QG WAVE-MEAN FLOW DIAGNOSTICS IN CYLINDRICAL 

COORDINATES 

A.1 Introduction 

In this appendix we derive t he wave-mean flow diagnostics for the three-dimensional 

quasigeostrophic model in cylindrical coordinates. Though the results are well known in 

the analogous Cartesian description of middle-latitude synoptic-scale motions, the corre-

sponding derivation for stably stratified vortex flows at small Rossby numbers is presented 

here for completeness. The key results consist of the derivation of the Eliassen-Palm vec-

tor, the Sawyer-Eliassen equation, and the mean and eddy energetics equations. 

A.2 Boussinesq Primitive Equations in Cylindrical Coordinates 

The hydrostatic frictionless primitive equations on an f-plane with the Boussinesq 

approximation in cylindrical pseudo-height coordinates are: 

f: 
8u 8u v 8u 8u v2 8<P 
8t + u 8r + -;: 8>-. + w 8z - f v - -;: = - 8r 

8v 8v V 8v 8v UV 8if! 
8t + u 8r + -;: 8>-. + w 8z + f u + -:;:- = - r8>. 

8<P g z : 0=--+-8 
8z 0o 

8<Pz + u8<Pz + _v 8<Pz + w8<Pz -- _g e· thermodynamic : 
8t 8r r 8>-. 8z 0o 

8 8v 8w 
continuity : r 8r (ru) + r 8>. + Bz = 0 

(A. I) 

(A.2) 

(A.3) 

(A.4) 

(A.5) 

Here 8 denotes the rate of potential temperature change associated with cumulus con-

vection after averaging over many cumulus cells, 0o is the potential temperature at the 

surface, and we recall that u, v, and w are the radial , azimuthal and vertical velocities 

respectively. Other notation is standard. 
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A.2.1 Quasigeostrophic Approximation 

When the Rossby number v/ fr is small compared to unity and thermal forcing evolves 

slowly with time, the flow evolves near a state of geostrophic balance. At zeroth order in 

the Rossby number, (A.1)-(A.5) with vanishing w at z = 0, H are approximated by 

w=O. 

(A.6) 

(A.7) 

(A.8) 

Flow evolution enters at first order in the Rossby number, with (A.1 )-(A.5) approximated 

by 

( 
a a v9 a) v; 
at + Ug Br + -; a>-. Ug - f Va - -; = 0, 

( 
a a v9 a ) u9 v9 8t + Ug 8r + -; 8).. Vg + f Ua + -r- = 0, 

8¢ g 0=--+-0, 
8z 0o 

( 
a a v9 a) 2 g · 
at+ Ug 8r +-; a>-. </>z + wN (z) = 0o 0, 

8 8va aw 
r8r (rua) + r8>-. + az = o, 

(A.9) 

(A. 10) 

(A.11) 

(A.12) 

(A.13) 

where ( ua, va) are the ageostrophic radial and tangential velocities, respectively, and 

(A.14) 

is the horizontally averaged static stability. 0 is the flow potential temperature and 0r is 

the potential temperature of the resting basic state (see Chapter 2). 

The vertical vorticity equation is obtained by forming 8[r(A.10)]/(r8r)-8(A.9)/(r8>-.): 

(A.15) 

where 

(A.16) 
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Forming the combination a[(A.12) x ~];az + (A.15) and using (A.13) to eliminate the 

divergence term yields the quasigeostrophic potential vorticity equation with a heat source 

( a a v9 a) [ a ( f 8<!>)] g a ( 10) at + Ug 8r + -:;: a>-. (g + 8z N 2 az = 0o 8z N 2 . (A.17) 

The bracketed quantity represent the quasigeostrophic potential vorticity minus f and 

will be denoted by Q9 • 

A.2.2 Wave - Mean Flow Diagnostics 

Let 

(A.18) 

where 

(A.19) 

denotes an azimuthal average. 

Mean PV Equation 

From the definitions of u9 and Q9 

(A.20) 

(A.21) 

Substituting (A.18) into (A.17) and azimuthally averaging yields the azimuthal mean PV 

equation: 
aQ 9 a - g a ( J 0 ) 8t = - ror (ru~Q~) + 00 oz N 2 ' 

(A.22) 

where ug · v'h( ) = v'h · [ug( )] has been used. 

Since u~(~ = I/r28(r2u~v~ )/8r , it follows that 

--,-QI _ ---,;:-i I a ( / 0</>1 ) Ug 9 - ug'>g + ug 8z N 2 8z (A.23) 
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where 

(A.24) 

(A.25) 

(A.26) 

(A.27) 

is the Eliassen-Palm (EP) flux vector. In terms of F the mean PV equation (A.22) is 

(A.28) 

Mean Momentum and Temperature Equations 

Azimuthal mean tangential momentum and temperature equations result on substi-

tuting (A.18) into equations (A.IO) and (A.12), respectively, and azimuthally averaging. ' 

The result is 

where 

avg - ----,yr 1-at - -ug'>g - Ua, 

8¢z - a [ -,--;:;-] N2- g -0. at - - r8r rug'+'z - w + 0o ' 

...,. 1 1271" . {ua, w , 0} = - { Ua, w, 0}d.\. 
27T o 

Mean Transverse Circulation Equation 

(A.29) 

(A.30) 

(A.31) 

A diagnostic equation for the azimuthal mean transverse circulation (mean secondary 

circulation) (ua, w) is deduced by requiring that the mean vortex remain in a state of 

thermal wind balance. The thermal wind equation for the mean vortex is 

1av9 =!._(a¢). 
8z 8r 8z 

(A.32) 

Differentiating (A.32) with respect to time and substituting (A.29) and (A.30) yields 

N 2 aw _ f 2 aua = f !._u' (' _ !._ [_i_ (ru' ¢' ) ] + !!_ 80 
Br 8z 8z 9 9 8r r8r 9 z 0o 8r 

(A.33) 

(A.34) 
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BF BE =--+-- Bz Br' (A.35) 

where F = - Ju~(~ and E = loB - r~r (ru~¢~)- Defining a transverse streamfunction 'lj; : 

w = r~r "'ifi, Ua =-~~' the transverse circulation equation is given by 

2 2-N2~(_!_"'ifi) +LB 7P _BE_ BF 
Br rBr r Bz2 - Br Bz · (A.36) 

Equation (A.36) is called the Sawyer-Eliassen equation. 

By requiring that the volume integral of the relative angular momentum (prv9 ) re-

mains unchanged, it follows (from (A.29) and the boundary condit ion that w must vanish 

on the top and bottom boundaries) that the streamfunction "'ifi(r, H) = "'ifi(r , 0). Without 

loss of generality, since only derivat ives of -;jj are physically significant, we can take "'ifi = 0 

on the boundaries. 

A.2.3 The Lorenz Energy Cycle 

Budgets for integrated mean kinetic, eddy kinetic, mean available and eddy available 

energies may be derived in a straightforward manner beginning with the quasigeostrophic 

total kinetic energy equation assuming frictionless fl.ow 

(A.38) 

and total available potential energy assuming adiabatic fl.ow (i.e. in between convective 

pulses) 

(A.39) 

In (A.38) Ua = (ua, Va, w) and pis a constant average density for the troposphere. Equa-

tion (A.38) is obtained by forming u9 x (A.9) + v9 x (A.10) and making use of (A.13) 

and the fact that the geostrophic wind is horizontally nondivergent. Equation (A.39) is 

obtained in a similar fashion after forming ¢z x (A.12) . 

The integrated mean kinetic and eddy kinetic energy equations are then obtained as 

follows. Forming pv9 x (A.29) and integrating over the entire fluid (0 ::; >. '.'S 21r; 0 ::; z '.'S H; 

0 ::; r '.'S oo) gives the equation for integrated mean kinetic energy K : 

df< - - I -dt = [P · K] + [K · K l, (A.40) 
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where 

- (1 -2) K = 2,PVg ' (A.41) 

[P · k] = (pw¢z), (A.42) 

and 

I - ( -dO) [K ·K] = pru'v'- . 9 9 dr (A.43) 

Here n = v/r is the azimuthal mean angular velocity of the fluid and the bracket denotes 

a volume integral over the entire fluid. Substituting (A.18) into (A.38), azimuthally aver-

aging, and then subtracting (A.40) from the averaged result, one obtains the equation for 

the integrated eddy kinetic energy K': 

d!' = [P' · K'] - [K' · K], (A.44) 

where 

(A.45) 

and 

The equations for integrated mean available and eddy available potential energy are ob-

tained in a similar fashion. The equation for integrated mean available potential energy 

Pis 
dP - - I -
dt=-[P·K]+[P · Pl, 

while the equation for integrated eddy available potential energy P' is 

dP' = -[P' · K'] - [P' · P]. 
dt 

In (A.46) and (A.47) 

and 

[P'. P] = ( pf avgu' ,/..I) N 2 Bz g'l' z . 

(A.46) 

(A.47) 

(A.48) 

(A.49) 

(A.50) 



109 

As confirmation that the above is consistent with total energy conservation for adiabatic 

frictionless flow, we note that (A.40) + (A.44) + (A.46) + (A.47) yields 

:t[K + K' + P + P'] = 0. (A.51) 
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