
Dissertation

Using Slicing Techniques to Support Scalable Rigorous Analysis of Class

Models

Submitted by

Wuliang Sun

Department of Computer Science

In partial fulfillment of the requirements

For the Degree of Doctor of Philosophy

Colorado State University

Fort Collins, Colorado

Spring 2015

Doctoral Committee:

Advisor: Indrakshi Ray

James M. Bieman
Yashwant K. Malaiya
Daniel S. Cooley

Copyright by Wuliang Sun 2015

All Rights Reserved

Abstract

Using Slicing Techniques to Support Scalable Rigorous Analysis of Class

Models

Slicing is a reduction technique that has been applied to class models to support model

comprehension, analysis, and other modeling activities. In particular, slicing techniques

can be used to produce class model fragments that include only those elements needed to

analyze semantic properties of interest. However, many of the existing class model slicing

techniques do not take constraints (invariants and operation contracts) expressed in auxiliary

constraint languages into consideration when producing model slices. Their applicability is

thus limited to situations in which the determination of slices does not require information

found in constraints.

In this dissertation we describe our work on class model slicing techniques that take into

consideration constraints expressed in the Object Constraint Language (OCL). The slic-

ing techniques described in the dissertation can be used to produce model fragments that

each consists of only the model elements needed to analyze specified properties. The slicing

techniques are intended to enhance the scalability of class model analysis that involves (1)

checking conformance between an object configuration and a class model with specified in-

variants and (2) analyzing sequences of operation invocations to uncover invariant violations.

The slicing techniques are used to produce model fragments that can be analyzed separately.

An evaluation we performed provides evidence that the proposed slicing techniques can sig-

nificantly reduce the time to perform the analysis.

ii

Acknowledgements

I am truly grateful to many people for this dissertation. I would not have been able to

complete the dissertation without their support and help.

I owe special thanks to my advisor, Dr. Robert B. France for his untiring support,

inspiration and guidance. He was the person who has been a tremendous source of inspiration

to this dissertation. He spent countless hours to help me make my pursuit of the Ph.D. a

successful and fulfilling journey. Even though he is no longer with us, he will be always living

in our minds.

I would like to express my sincere thanks to my advisor, Dr. Indrakshi Ray for her

untiring support, encouragement and help. Her insightful comments and feedback helped

me to refine my research work. I would like to thank my Ph.D. committee members Dr.

James M. Bieman, Dr. Yashwant K. Malaiya and Dr. Daniel S. Cooley for their valuable

advice and help.

I am also grateful to the faculty of the computer science department, especially Dr.

Sudipto Ghosh, Dr. A. P. Willem Bohm, Dr. Sanjay Rajopadhye, Dr. Indrajit Ray, Dr.

Chris Wilcox and Mr. Russ Wakefield for their help and friendship. I would like to thank

the staff of the computer science department, especially Kim and Sharon, for granting me

a favor all the time. I would like to extend many thanks to my friends and fellow graduate

students at CSU.

Last but not the least, I would like to express my deepest gratitude to my dear father,

who passed away in August 2009, for his love, encouragement and sacrifice, to my dear

mother, for her love, kindness, and support, and to my dear wife, for her love and support.

iii

Table of Contents

Abstract . ii

Acknowledgements . iii

List of Tables . vi

List of Figures . viii

Chapter 1. Introduction . 1

1.1. Problem . 1

1.2. Solution . 3

1.3. Evaluation . 5

1.4. Contribution . 6

1.5. Dissertation Structure. 6

Chapter 2. Literature Review . 7

2.1. Review Scope . 8

2.2. Research Questions . 8

2.3. Search Strategy . 9

2.4. Class Model Slicing Techniques . 12

2.5. Evaluation . 17

2.6. Open Issues . 18

Chapter 3. Background . 20

3.1. Invariant Checking Tools . 20

3.2. Analyzing Operation Contracts of UML Class Models . 22

Chapter 4. The Slicing Techniques . 25

iv

4.1. Co-slicing Class Model and Object Configuration. 25

4.2. Slicing a Class Model with OCL Constraints . 40

Chapter 5. Tool Support . 56

5.1. Prototype Architecture. 56

5.2. Implementation of the Slicing Techniques . 57

5.3. Implementation of the Evaluation Framework . 59

Chapter 6. Evaluation . 61

6.1. Evaluating Co-slicing of Class Model and Object Configuration. 61

6.2. Evaluating Contract-aware Slicing of Class Model . 70

Chapter 7. Conclusion . 89

7.1. Contribution . 89

7.2. Future Work . 92

Bibliography . 94

v

List of Tables

2.1 Electronic Search Result (from 2003 to 2014) . 10

2.2 Manual Search Result from Journals (from 2003 to 2014). 11

2.3 Manual Search Result from Conferences (from 2003 to 2014) . 11

2.4 An Evaluation of Class Model Slicing Techniques . 17

4.1 A list of invariants in the class model . 28

4.2 Footprint (i.e., dependent elements) of each invariant (see Table 4.1) defined in

the class model in Figure 4.1 . 31

4.3 A list of operation contracts in the LRBAC model . 43

4.4 A list of operation contracts in the LRBAC model . 44

4.5 A list of invariants in the LRBAC model . 45

4.6 Referenced Classes and Attributes for Each Operation Contract/Invariant Defined

in the LRBAC model . 46

6.1 A list of invariants used in the evaluation . 64

6.2 Contract checking results for the entire LRBAC model and corresponding model

fragments . 74

6.3 Size of the class models and the number of OCL invariants and operation contracts

defined in the models . 75

6.4 Slicing Results . 76

6.5 Contract checking results for the entire CarRental model and corresponding model

fragments . 79

vi

6.6 Contract checking results for the entire Project model and corresponding model

fragments . 81

6.7 Contract checking results for the entire CoachBus model and corresponding model

fragments . 83

6.8 Contract checking results for the entire RoyalAndLoyal model and corresponding

model fragments . 85

vii

List of Figures

3.1 USE Tool Overview (excerpted from the USE project [17]) . 21

3.2 Class Model Analysis Approach Overview . 23

4.1 A class model (expressed using the class diagram notation) that describes the

information system of a bus company . 27

4.2 An object model (expressed using the object diagram notation) conforming to the

class model given in Figure 4.1 . 27

4.3 Checking the UniqueTicketNumber invariant in the context of sliced class and

object models . 29

4.4 An overview of the invariant checking approach in the context of the slicing

technique . 30

4.5 A class model slice generated from the footprint of the MaxCoachSize invariant . . 33

4.6 An example of a sliced object model . 33

4.7 A modified version of the class model in Figure 4.1 (the multiplicity of the vm

reference has been changed). 37

4.8 A sliced class model generated from the UniqueTicketNumber invariant and the

class model in Figure 4.7 using the conservative slicing . 38

4.9 A sliced class model generated from the UniqueTicketNumber invariant and the

class model in Figure 4.7 using the aggressive slicing . 38

4.10 An object model that is not a valid instance of the class model in Figure 4.7 39

4.11 Technique Overview . 41

4.12 A Partial LRBAC Class Model . 42

viii

4.13 A Dependency Graph . 46

4.14 A Dependency Graph Representing a LRBAC Model with the Irrelevant Model

Elements Removed. 49

4.15 Dependency Graphs Representing Model Fragments Extracted from the LRBAC

Model in Fig. 4.12 . 52

4.16 A List of Model Fragments Generated from the LRBAC Model in Figure 4.12 55

5.1 Prototype Architecture . 57

5.2 A partial UML class model that describes the implementations of the slicing

techniques (part of classes, attributes, operation, and parameters are omitted). . . . 58

5.3 A partial UML class model that describes the implementation of the evaluation

framework (part of classes, attributes, operation, and parameters are omitted) . . . 60

6.1 The sizes of the object models used in the evaluation. 63

6.2 Box plot for the measurement of Checking Time for Unsliced class and object

Models (CTUM) . 65

6.3 Box plot for the measurement of Checking Time for Sliced class and object Models

(CTSM) . 65

6.4 Box plot for the measurement of ST . 66

6.5 Box plot for the measurement of Checking Time Speedup (CTS) 66

6.6 CTS-η Relationship in the context of each invariant . 68

6.7 Checking the contracts in the entire LRBAC model and the corresponding model

fragments w.r.t. each invariant given in Table 4.5 . 72

ix

6.8 Analyzing the Invariants in the Entire CarRental Class Model and the

Corresponding Model Fragments . 77

6.9 Analyzing the Invariants in the Entire Project Class Model and the Corresponding

Model Fragments . 80

6.10 Analyzing the Invariants in the Entire CoachBus Class Model and the

Corresponding Model Fragments . 82

6.11 Analyzing the Invariants in the Entire RoyalAndLoyal Class Model and the

Corresponding Model Fragments . 88

x

CHAPTER 1

Introduction

1.1. Problem

Research in Model-Driven Development (MDD) targets the rapidly growing complexity

of software system. MDD research aims to produce technologies that allow system devel-

opers to raise the level of abstraction at which complex software systems are developed.

This is accomplished through the use of models that can be analyzed and transformed to

concrete implementations. However, design errors in the models may be propagated into the

implementations via model-to-code transformation. If a design model contains errors that

are not removed before transformation, those errors can be passed to the generated code

where they can be more expensive to remove. Therefore, for MDD approaches to succeed, it

is very important to uncover design errors in models before they are used to generate code.

Rigorous analysis of models can enhance the ability of developers to understand the

system under development and to identify potentially costly design problems during the

early stages of software development. Class models expressed using the Unified Modeling

Language (UML) [15] are among the most popular models used in practice, and given their

pivotal roles, a number of tool-supported rigorous analysis techniques have been proposed

(e.g., see [17][36][19][18][14][21][31]). However, given that the complexity of software systems

is increasing, one can expect that class models used to represent these complex systems will

also grow significantly in size. For example, while design models were built by hand in the

early days of MDD, nowadays models with possibly more than one million of elements can

be built programatically (e.g., reverse engineering [6]). The scalability of current class model

1

analysis tools will become an issue in these situations. There is thus a need for techniques

that support scalable rigorous analysis of class models.

Slicing techniques [48] produce reduced forms of artifacts that can be used to support,

for example, scalable analysis of artifact properties. Slicing techniques have been proposed

for different software artifacts, including programs (e.g., see [16][48]), and models (e.g., see

[3][7][13][22][24]). In the MDD area, model slicing techniques have been used to support a

variety of modeling tasks, including model comprehension [3][7][24], analysis [20][27][28], and

verification [13][39][42].

In model slicing techniques slicing criteria are used to determine the elements that are

included in slices. Model slicing techniques typically proceed in two steps: (1) The depen-

dency between model elements of interest (i.e., elements satisfying a slicing criterion) and

the rest of the model is analyzed using heuristics related to a model’s properties (e.g., the

structure of a model); and (2) a fragment of the model consisting only of elements satisfying

a slicing criterion and their dependent model elements, is extracted from the model.

For example, in the context of class model analysis, a slicing criterion involves class model

elements being analyzed, and a generated class model fragment consists of class model el-

ements being analyzed and their dependent model elements. The dependency analysis be-

tween a slicing criterion and a class model ensures that the analysis results are preserved by

the slicing techniques, that is, the analysis results on the model fragment will be the same as

with the entire class model. This assertion is based on the observation that the slicing tech-

nique produces the fragment by identifying the model elements that are directly referenced

by the slicing criterion and analyzing their dependencies with other model elements.

Rigorous analysis of invariants and operation contracts expressed in the Object Con-

straint Language (OCL) [43] can be expensive when the class models are large. Model

2

slicing techniques can be used in these situations to reduce large models to just those frag-

ments that can be analyzed separately. This reduction can help reduce the cost of analysis.

However, many of the existing class model slicing techniques do not take constraints ex-

pressed in auxiliary constraint languages into consideration when producing model slices.

Their applicability is thus limited to situations in which the determination of slices does not

require information found in constraints. Therefore, the existing class model slicing tech-

niques cannot be applied to situations in which (1) invariants are used to specify additional

properties that cannot be expressed directly in a class model (e.g., an acyclicity property),

and (2) model-based software development approaches are contract based (e.g., design by

contract [30]).

1.2. Solution

In this dissertation we describe class model slicing techniques that take into consideration

invariants and operation contracts expressed in the OCL. The techniques are used to pro-

duce model fragments, each of which consists of only the model elements needed to analyze

specified properties. We have developed the slicing techniques to enhance the scalability

of two class model analysis techniques, (1) a technique for checking conformance between

an object configuration and a class model with specified invariants (i.e., invariant checking)

and (2) a technique for analyzing sequences of operation invocations to uncover invariant

violations.

Invariant Checking involves determining whether an instance (i.e., object model) of a class

model satisfies the well-formed rules (i.e., invariants) defined in the class model. It plays

an important role in MDD in that it can improve developers’ understanding of complex

systems and uncover structural errors in design models during the early stages of software

3

development. In this dissertation we describe an invariant checking approach that introduces

the model slicing technique to the invariant checking process. The approach aims to improve

the scalability of existing invariant checking tools used to determine whether an object model

satisfies the invariants defined in a class model. The approach is not intended to improve

the existing invariant checking algorithms. Instead, the approach aims to reduce the size of

the checking inputs to make the analysis more efficient. Therefore the approach described in

the dissertation is agnostic to the technological space. It means our approach preprocesses

the input of the invariant checking process, and thus is agnostic to the checking technologies

the software developers are working with.

In this dissertation we focus on analysis that involves checking the consistency between

an object model and the invariants defined in a class model, and checking whether an object

model is a valid instance of a class model is out of scope of the paper. Thus the precondition

of our approach is that the input object model must be a valid instance of the input class

model. Note that a valid instance of a class model, particularly in this dissertation, refers to

an object model that conforms to the structural constraints (e.g., multiplicity constraints)

defined in the class model, and it may or may not satisfy the invariants defined in the class

model.

We also propose a slicing technique to improve the efficiency of a model analysis technique

we developed (Contract Checking) to check that operation contracts do not allow invariant

violations when sequences of conforming operations are invoked [45]. The slicing technique

is used to reduce the problem of analyzing a large model with many OCL constraints (in-

cluding OCL operation contracts) to smaller subproblems that involve analyzing a model

fragment against a subset of invariants and operation contracts. Each model fragment can

be analyzed independently of other fragments. Given a class model with OCL constraints,

4

the slicing technique automatically generates slicing criteria consisting of a subset of invari-

ants and operation contracts, and uses the criteria to extract model fragments. Each model

fragment is obtained by identifying and analyzing relationships between model elements and

the constraints included in a generated slicing criterion.

1.3. Evaluation

We implemented a research prototype that provides implementations of two proposed

class model slicing techniques. The prototype was developed using the Java language and

Eclipse development platform, and builds upon the Eclipse Modeling Framework [44]. We

also developed an evaluation framework to investigate the effectiveness and correctness of

the proposed slicing techniques. The evaluation aims to answer the following questions:

(1) Q1: Can the slicing technique improve the efficiency of the invariant checking and

preserve the checking results?

Specifically the evaluation will explore whether (1) the use of the slicing technique

can reduce the invariant checking time (i.e., effectiveness of the slicing technique),

and (2) the checking results remain the same in the context of the slicing technique

(i.e., the correctness of the slicing technique).

(2) Q2: Can the slicing technique improve the efficiency of the contract checking and

preserve the checking results?

Specifically the evaluation will explore whether (1) the use of the slicing technique

can reduce the contract checking time (i.e., effectiveness of the slicing technique),

and (2) the checking results remain the same in the context of the slicing technique

(i.e., the correctness of the slicing technique).

5

1.4. Contribution

The major contribution of the research is a model slicing platform that provides imple-

mentations of two model slicing techniques. Below is a list of contributions of the research:

(1) A state-of-the-art survey on class model slicing techniques;

(2) A rigorous technique that supports slicing of object configurations and class models

including invariants;

(3) A rigorous technique that supports slicing of class models including both invariants

and operation contracts;

(4) A research prototype that provides implementations of two proposed class model

slicing techniques;

(5) A framework for evaluating the effectiveness and the correctness of the proposed

slicing techniques.

1.5. Dissertation Structure

The rest of the dissertation is organized as follows. Chapter 2 presents a systematic

literature review on class model slicing techniques. Chapter 3 describes the class model

analysis techniques whose scalability we aim to improve through slicing. Chapter 4 describes

the class model slicing techniques. Chapter 5 provides a tool support for the proposed slicing

techniques. Chapter 6 presents the results of an evaluation of the slicing techniques. Chapter

7 concludes the dissertation.

6

CHAPTER 2

Literature Review

In this chapter we present the result of a systematic literature review we conducted

on class model slicing techniques. A systematic review is important for research activities

since it summarizes existing techniques concerning a research interest and identifies further

research directions [23]. The purpose of the review described in this chapter is to compare

current class model slicing techniques and identify their limitations through a systematic

evaluation. The review follows a carefully designed paper selection procedure, and identifies

techniques in scientific journals and conferences from 2003 to 2014.

Kitchenham et al. [23] described a systematic procedure to identifying and analyzing

available literature relevant to a specific research topic. Tao [53] applied this procedure to

her doctoral research on deriving a UML analysis model from a use case model. The three-

step approach we used is based on the work described in [23] and [53]. First, we determined

the scope of the systematic review (Section 2.1), and identified the research questions to be

answered by the review (Section 2.2). Second, we developed a search strategy (Section 2.3)

for identifying relevant research papers. Third, we compared relevant publications on class

model slicing techniques (Section 2.4) and performed an evaluation of the work they describe

to answer the research questions identified earlier (Section 2.5).

The slicing techniques described in this dissertation aim to address open issues (Section

2.6) that are identified through the analysis of published work evaluated as part of our

systematic literature review.

7

2.1. Review Scope

The research described in the dissertation aims to use slicing techniques to enhance the

scalability of class model analysis. The scope of the systematic review can thus be restricted

to research on slicing techniques.

The systematic review focuses on slicing techniques that can handle UML class models.

Class models involved in the reviewed techniques must conform to the UML standard [15]

and can have invariants and operation contracts expressed using the OCL [43]. Slicing

techniques that take as inputs multiple models are also considered in the review if the inputs

of the slicing techniques include class models.

2.2. Research Questions

The systematic review aims to answer the following research questions:

(1) Purpose [PS]: What are the different techniques used for slicing class models? What

are their purposes? It is important to understand the purpose of a slicing technique

since the slicing purpose determines (1) the input of a slicing technique and (2) the

form of a slicing result (i.e., a slice).

(2) Class Model Type [CMT]: What are the different types of class models used in

these slicing techniques? Four types of class models are supported by the existing

slicing techniques: basic class model [Basic] (i.e., class model that does not include

invariants or operation contracts), class model including invariants [Inv], class model

including operation contracts [Op], and class model including both invariants and

operation contracts [InvOp].

8

(3) Slicing Criterion [SC]: What are the different slicing criteria used by current class

model slicing techniques? Any class model elements can be included in a slicing

criterion depending on the slicing purpose.

(4) Intermediate Model [IM]: Do any of the current techniques use intermediate models

in the dependency analysis processes? For example, a slicing technique may use a

dependency graph as an intermediate model to perform the dependency analysis.

In this case, it may require extra effort for the slicing technique to transform a class

model into a dependency graph.

(5) Automation [AM]: Are current slicing techniques automated or automatable? A

slicing technique is (1) automated if the slicing technique has a tool support, or (2)

automatable if a slicing algorithm is presented in the paper.

2.3. Search Strategy

In this section we describe a two-step search strategy used to select papers that are

relevant to the class model slicing topic. First, we identified a number of relevant papers

using electronic and manual search (Section 2.3.1). Second, we refined the search result using

a selection criteria described in Section 2.3.2.

2.3.1. Electronic and Manual Search. We performed electronic search within

three electronic databases: IEEE Xplore, ACM Digital Library, and SpringerLink. The

electronic search was done in three steps. First, we came up with a list of query strings

that are related to class model slicing techniques. Second, each query string was used to

search three electronic databases. Table 2.1 presents the number of papers that were found

by the electronic search. The first column shows a list of query strings we used in the search.

The remaining columns (from the second column to the fourth column) show the number of

9

Table 2.1. Electronic Search Result (from 2003 to 2014)

Query Strings IEEE Xplore ACM Digital Library SpringerLink
UML class model slicing 3 218 95
UML model slicing 18 265 109
UML class model decomposition 6 866 459
UML model decomposition 34 1088 596
Decompose UML class model 2 268 504
Decompose UML model 12 338 663

papers that were found in the IEEE Xplore, the ACM Digital Library, and the SpringerLink

respectively. For example, given the “UML class model slicing” query string, three papers

were return from the IEEE Xplore, 218 papers were returned from the ACM Digital Library,

and 95 papers were returned from the SpringerLink.

As a complement to the electronic search, we performed a manual search in specific jour-

nals and conference proceedings. We manually searched all published papers from 2003 to

2014 in five potentially relevant, peer-reviewed journals: IEEE Transactions on Software En-

gineering (TSE), ACM Transactions on Software Engineering and Methodology (TOSEM),

Requirements Engineering Journal (JRE), Journal of Systems and Software (JSS), and Soft-

ware and Systems Modeling (SoSym). Table 2.2 presents the number of papers that were

found from these journals.

We also manually searched all published papers from 2003 to 2014 in eight potentially

related conference proceedings: ACM/IEEE International Conference on Software Engi-

neering (ICSE), ACM SIGSOFT Symposium on the Foundations of Software Engineering

(FSE), ACM/IEEE International Conference on Model Driven Engineering Languages and

Systems (MODELS), European Conference on Object-Oriented Programming (ECOOP),

IEEE/ACM International Conference on Automated Software Engineering (ASE), IEEE In-

ternational Conference on Software Maintenance (ICSM), IEEE International Requirements

Engineering Conference (RE), and International Conference on Fundamental Approaches to

10

Table 2.2. Manual Search Result from Journals (from 2003 to 2014)

Journals TSE TOSEM JRE JSS SoSym
Paper Number 1 0 0 0 1

Table 2.3. Manual Search Result from Conferences (from 2003 to 2014)

Conferences ICSE FSE MODELS ECOOP ASE ICSM RE FASE
Paper Number 1 1 3 0 1 1 0 0

Software Engineering (FASE). Table 2.3 presents the number of papers that were found from

these conferences.

2.3.2. Exclusion/Inclusion Procedure. As a tremendous number of candidate pa-

pers resulted from the electronic and manual search, an exclusion procedure was used to

refine the search result. The procedure takes as input a candidate paper, and accepts the

paper if it is relevant to the research topic described in Section 2.1 (i.e., UML class model

slicing):

(1) If the paper describes a slicing technique, go to the next step; otherwise, reject the

paper.

(2) If the slicing technique is used for models, go to the next step; otherwise, reject the

paper.

(3) If the input of the slicing technique includes UML class models, accept the paper;

otherwise, reject the paper.

The exclusion procedure was applied to the search result given in Section 2.3.1. We

started the procedure by reading the title and abstract of a candidate paper. When a

decision (i.e., accept or reject the paper) was not able to be made from the title and abstract

of the paper, we further checked the paper’s introduction and conclusion. In summary, 12

11

papers from the search result (i.e., [4][5][7][8] [20][22][26][27][38][39][40][41]) were identified

as relevant to the research topic by the exclusion procedure.

An inclusion procedure was then applied to these 12 relevant papers. The purpose of

the inclusion procedure is to identify additional papers that were not selected by the paper

search strategy described in Section 2.3.1. The four-step inclusion procedure was performed

on each of these 12 relevant papers. First, all the papers that are given in the reference list

of a relevant paper were selected. Second, all the papers that reference the relevant paper

were selected. The search engine, scholar.google.com, was used to identify all the papers

that reference a relevant paper. Third, the authors of the relevant paper were checked,

and their most recent publications on the same or similar topics were selected. Fourth, all

these selected papers were analyzed using the exclusion procedure given in this section. In

summary, three new papers (i.e., [25][28][42]) were identified as relevant to the research topic

by the inclusion procedure.

A total of 15 papers were selected using the exclusion/inclusion procedure.

2.4. Class Model Slicing Techniques

The papers that were selected using the search strategy described in Section 2.3 were

further analyzed, and eight primary studies were identified from these selected papers. Note

that all the papers describing the same or similar technique were counted as one primary

study. For example, papers, [39][40][41][42], describe the same slicing technique, and thus

were counted as one primary study. In the remainder of this section we describe these eight

primary studies on UML class model slicing:

(1) Kagdi et al. [22] proposed a technique to slicing UML class models for software

maintenance (e.g., to support the evolution of large software systems). The slicing

12

technique takes as input a large UML class model that represents a software system,

and generates a slice, a subset of a UML class model, based on a slicing criterion.

In their technique a slicing criterion could include classes, packages, components,

operations and relationships (e.g., association, generalization, dependency) defined

in the input class model. The computation of a slice starts from the model elements

satisfying the slicing criterion and searches their adjacent model elements through

the relationship defined in the UML metamodel. The search is terminated when the

maximal path length between starting model elements and ending model elements

is reached. The maximal path length is given by users as part of a slicing criterion.

The slice includes all the model elements identified in the search. Their slicing

technique can only handle basic UML class models, that is, class models without

invariants and operation contracts.

(2) Bae et al. [4][5] presented a slicing tool, UMLSlicer, for managing the complexity

of the UML metamodel. Their tool can be used to decompose the UML metamodel

into a set of metamodel fragments, where each metamodel fragment represents the

structure of a UML diagram (e.g., sequence diagram). In their approach a slicing

criterion includes a set of key classes given by a user. Their tool takes as input a

slicing criterion, and produces a metamodel slice that includes a “Basic Slice” and

an “Extended Slice”. The “Basic Slice” consists of (1) the given classes, and (2)

all the classes that are directly connected with the given classes through associa-

tion relationship. The “Extended Slice” includes all the classes that are the direct

and indirect ancestors of each metamodel element from the “Basic Slice”. Their

technique is domain dependent and therefore can only be used for slicing the UML

metamodel.

13

(3) Sen et al. [38] proposed a slicing technique for metamodel pruning (e.g., removing

unnecessary classes and properties from a metamodel). The slicing technique takes

as input a large metamodel and a slicing criterion including a set of classes and

properties of interest, and produces a pruned metamodel that is a subset of the

input metamodel. The pruned metamodel contains all the model elements specified

in the slicing criterion and their dependent elements from the input metamodel.

The dependency relationship between two elements is determined by a set of rules

given in their paper. For example, one of their rules specifies that class A depends

on class B if A is a subclass of B. The pruned metamodel also satisfies the struc-

tural constraints imposed by the input metamodel. Thus any instance of the pruned

metamodel is an instance of the input metamodel. Their technique is domain inde-

pendent and therefore can be used for slicing any metamodels that conform to the

UML standard.

(4) Blouin et al. [7][8] presented a domain specific language, Kompren, for developing

model slicers. The tool that builds upon the Kompren language allows a user to

provide a domain specific metamodel as input, and creates a slicer for the meta-

model. The generated slicer takes as input a model that conforms to the metamodel,

and produces a model fragment that is part of the input model. Kompren can be

used to generate a variety of model slicers depending on the slicing purpose. For ex-

ample, an endogenous model slicer ensures that the generated model fragments are

valid instances of the metamodel used to build the slicer, while an exogenous model

slicer relaxes the structural constraints (e.g., multiplicity constraint) specified on

the input metamodel, and produces model fragments that conform to the modified

14

metamodel. Kompren can generate tools for slicing basic UML class models and

UML class models including OCL operation contracts or invariants.

(5) Mall et al. [25][26] proposed a model slicing technique for a variety of purposes (e.g.,

model comprehension, impact analysis of design changes, critical model elements

identification). The inputs of their slicing technique include a class model and

a sequence diagram, and produces a model dependency graph as an intermediate

result. The model dependency graph is used to identify model elements that have

dependency relationships with the elements involved in a given slicing criterion. A

slicing criterion in their technique includes an object, one or multiple messages, and

the initial model data that represents initialized values of attributes in the object

during the execution of a scenario. The computation of a model slice requires the

information from multiple models (i.e., class model and sequence diagram). This is

in contrast to other works where slicing is performed on individual UML models.

Note that their slicing technique cannot handle UML class models including OCL

constraints.

(6) Jeanneret et al. [20] used a slicing technique to estimate the footprint of an operation

(i.e., the part of a UML class model used by an operation) without executing the

operation. The generated footprint can be used for change impact analysis (i.e.,

an analysis involves checking if a modification on the elements contained by an

operation’s footprint have an impact on the operation). The slicing technique takes

as input the contracts of a given operation (i.e., a slicing criterion) and a class model

in which the operation is defined, and produces a metamodel footprint (i.e., a set of

metamodel elements involved in the operation contract) as an intermediate result.

The metamodel footprint is then used to guide the class model slicing process. The

15

model elements that are not the instances of the elements involved in the metamodel

footprint are removed from the input class model. Since an operation’s contracts

can be specified using the OCL, their technique can be used to slice UML class

models including OCL operation contracts.

(7) Lano et al. [27][28] described a slicing technique used to produce smaller UML class

models for effective comprehension and analysis. Their slicing technique reduces the

size of a class model by removing attributes and OCL invariants from the controller

class (i.e., a class that usually serves as the access point to the services of a system

for external users) of the class model. A slicing criterion in their technique includes

the OCL operation contracts defined on the controller class. The class slicing pro-

cess follows two rules: (1) An OCL invariant that is not referenced by any operation

contracts can be removed from the controller class; (2) an attribute that is not ref-

erenced by any operations or invariants can be removed from the controller class.

A state machine is used in their slicing technique to determine if there exists a de-

pendency between an operation and an attribute. Compared with other techniques,

their technique focuses on slicing a single class rather than a class model.

(8) Shaiky et al. [39][40][41][42] used a slicing technique to improve the scalability of

an analysis that involves checking if a UML class model has a valid instance that

satisfies the invariants defined in the class model. The slicing technique reduces the

analysis problem of checking a large class model with OCL invariants into smaller

subproblems, where each subproblem involves checking a model fragment with a

subset of OCL invariants. Each model fragment is part of the input class model

and can be analyzed separately. The OCL invariants are used as slicing criteria in

their technique, and model elements that are not referenced by any invariants are

16

Table 2.4. An Evaluation of Class Model Slicing Techniques

No. Paper PS CMT SC IM AT
1 [22] Model mainte-

nance
Basic Class model el-

ements
No Automatable

2 [4][5] Metamodel
management

Basic Classes No Automated

3 [38] Metamodel
pruning

Basic Classes and
properties

No Automated

4 [7][8] Building
model slicer

Basic,
Inv
and
Op

Class model el-
ements

No Automated

5 [25][26] Model compre-
hension etc.

Basic Classes, scenar-
ios, and model
data

Dependency
graph

Automated

6 [20] Change impact
analysis

Op Operation con-
tracts

Metamodel
footprint

Automated

7 [27][28] Comprehension
and analysis

InvOp Operation con-
tracts

No Automatable

8 [39][40]
[41][42]

Analysis Inv Invariants Dependency
graph

Automated

removed from the input class model. The model decomposition process is guided

by the following rule: All constraints restricting the same model element should

be checked together and therefore must be contained in the same model fragment.

Their slicing technique can handle only UML class models including OCL invariants.

2.5. Evaluation

In this section we provide an evaluation of the class model slicing techniques described

in Section 2.4. The evaluation aims to address the research questions proposed in Section

2.2. Table 2.4 shows the results of the evaluation:

(1) Purpose: Five out of eight slicing techniques (1, 5, 6, 7, and 8) are used for model

management (i.e., maintenance, comprehension, and analysis), two of them (2 and

3) are used for metamodel management (e.g., metamodel pruning), and only one

technique (4) is used for building model slicers.

17

(2) Class Model Type: Seven out of eight slicing techniques can handle only one type of

class model, either basic class models (1, 2, 3 and 5) or non-basic class models (6 for

class models including operation contracts, 8 for class models including invariants,

and 7 for class models including both operation contracts and invariants), while

technique 4 can handle three types of class models. Note that metamodels are

typically represented using UML class models, and thus techniques that handle

metamodels can work for class models.

(3) Slicing Criterion: Four out of eight techniques (1, 2, 3 and 4) use only class model

elements in their slicing criteria, three of them operation contracts (6 and 7) and

invariants (8) as their slicing criteria, and only one technique (5) uses elements from

multiple models in its slicing criterion.

(4) Intermediate Model: Only three out of eight techniques (5, 6, and 8) generates

intermediate models in the model slicing process. Techniques 5 and 8 use depen-

dency graphs to perform the dependency analysis, and technique 6 uses a metamodel

footprint to extract an operation footprint from a class model.

(5) Automation: Six out of eight techniques (2, 3, 4, 5, 6, and 8) are automated because

they are supported by research prototypes, while techniques 1 and 7 are automatable

since only slicing algorithms can be found in their papers.

2.6. Open Issues

One open issue regarding the existing class model slicing techniques is that many of them

do not take invariants and operation contracts expressed in auxiliary constraint languages

(e.g., OCL) into consideration when producing model slices. Their applicability is thus

limited to situations in which the determination of slices does not require information found

18

in constraints. This limits the utility of class model slicing techniques in (1) situations where

invariants are needed to specify additional properties that cannot be expressed directly in a

class model (e.g., acyclicity property), and (2) model-based software development approaches

that are contract based (e.g., design by contract [30]). There are a few slicing techniques that

take into consideration class model constraints expressed in the OCL, but either they handle

only invariants (e.g., technique 8) or only operation contracts (e.g., technique 6), or they

can only be used to slice a single class (e.g., technique 7). Based on our systematic review,

none of the above techniques can be used to slice class models including both invariants and

operation contracts.

Another open issue is that many of the existing class model slicing techniques do not take

multiple models into consideration. This limits the utility of class model slicing techniques

in analyses where other types of models are needed. For example, consider an analysis

that involves checking if an instance of a class model (i.e., an object model) satisfies the

constraints defined in the class model. Such analysis takes as input both an object model

and a class model. However, existing model slicing techniques do not take both an object

model and a class model into account when producing model slices, and therefore cannot be

used to improve the scalability of the above analysis.

19

CHAPTER 3

Background

In this chapter we provide background material needed to understand the proposed slicing

techniques described in the disertation. In this dissertation we focus on two types of class

model analysis: one (Invariant Checking) that involves checking conformance between an

object configuration and a class model with specified invariants, and the other (Contract

Checking) that analyzes sequences of operation invocations to uncover invariant violations.

Section 3.1 describes a list of tools that can be used for invariant checking. Section 3.2

describes an approach we developed to tackle the contract checking.

3.1. Invariant Checking Tools

USE [17][36], developed by the Database Systems Group at Bremen University, is a

modeling tool for specifying object-oriented systems. Figure 3.1 shows an overview of the

USE tool. It allows developers to generate object models that are checked against user-

specified properties (e.g, invariants) expressed in a class model. A system with a set of

invariants can be specified using the USE specification language, that is based on a subset

of the UML class model notation [15] and the Object Constraint Language (OCL) [43]. An

object configuration can be created using the shell commands provided by the USE tool.

The feedback provided by the USE tool includes highlighted invariants that are inconsistent

with the given object configuration.

Alloy [19][18] is a formal specification language that was developed by the Software Design

Group at MIT. It has good tool support in the form of the Alloy Analyzer that translates an

Alloy specification into a boolean formula that is evaluated by embedded SAT-solvers. The

Alloy Analyzer generates examples or counter-examples of certain properties by exploring

20

Figure 3.1. USE Tool Overview (excerpted from the USE project [17])

a search space. The search space is typically bound by users in the form of limits on the

number of entities to be included in the search space. An Alloy model consists of signature

declarations, fields, facts and predicates. Each field belongs to a signature and represents a

relation between two or more signatures. Facts are statements that define constraints on the

elements of the model. Predicates are parameterized constraints that can be invoked from

within facts or other predicates.

The Alloy Analyzer can be used for invariant checking [29]. For example, class models

can be specified using Alloy signatures and fields, invariants defined on class models can be

specified using Alloy facts, and object models can be specified using Alloy predicates. If the

Alloy Analyzer cannot return an instance of an Alloy model for a predicate specifying an

object model within a bounded scope, the object model specified using the predicate may

not be consistent with a class model expressed using the Alloy model.

The Kermeta language [14][21][31] was developed by Triskell Team at INRIA. It is an

executable metamodeling language implemented on top of the Eclipse Modeling Framework

(EMF) [44] within the Eclipse development environment. It has been used for specifying

models, and model transformations that are compliant to the Meta Object Facility (MOF)

21

standard [32]. The Kermeta workbench allows developers to specify well-formedness rules

(i.e., invariants) on class models. These rules can be expressed using an OCL-like speci-

fication language. The Kermeta workbench provides several APIs for evaluating OCL-like

invariants against object configurations. It reports warning information if a given object

configuration does not satisfy the invariants defined in the class model.

The Eclipse OCL checker [46] is an implementation of the OCL OMG standard [43] for

EMF-based models. It provides APIs for (1) analyzing and transforming the abstract syntax

model of OCL expressions, and (2) parsing and evaluating OCL constraints and queries on

UML class models expressed in the EMF Ecore form [44]. The extensibility of the provided

APIs allows software modelers to develop their own customized prototypes for a variety of

OCL analysis tasks. The evaluation framework described in the dissertation also builds upon

the Eclipse OCL checker.

3.2. Analyzing Operation Contracts of UML Class Models

In previous work [45] we developed a class model analysis approach that uses the Alloy

Analyzer [18] to find scenarios (sequences of operation invocations) that start in valid states

(states that satisfy the invariants in the class model) and end in invalid states (states that

satisfy the negation of the invariants). The analysis uses the operation contracts to determine

the effects operations have on the state. If analysis uncovers a sequence of operation calls

that moves the system from a valid state to an invalid state, then the designer uses the trace

information provided by the analysis to determine how the operation contracts should be

changed to avoid this scenario.

The approach uses UML-to-Alloy and Alloy-to-UML transformations to shield the de-

signer from the back-end use of the Alloy language and analyzer. The transformations used

22

Figure 3.2. Class Model Analysis Approach Overview

in the approach build upon the UML2Alloy transformation tool [9][2][1] developed at the

University of Birmingham. The work proposed in [45] extends this prior work by providing

support for transforming functional behavior specified in a UML class model to an Alloy

model that specifies behavioral traces.

The approach in [45] also builds upon our previous work on the Scenario-based UML

Design Analysis (ScUDA) approach [52][50][51][49]. A designer uses ScUDA to check whether

a specific functional scenario is supported by a design class model in which operations are

specified using the OCL. In ScUDA, the property to be verified is expressed as a specific

sequence of state transitions (a functional scenario). The approach described in [45] goes

further in that the property to be verified is expressed in terms of valid and invalid states,

and analysis attempts to uncover scenarios that start in a specified valid state and end in

a specified invalid state. In summary, ScUDA is used to answer the question “Is the given

scenario supported by the UML class model?”, while the approach described in [45] is used

to answer the question “Is there a scenario supported by the UML class model that starts

in a specified valid state and ends in a specified invalid state?”.

23

Figure 3.2 shows an overview of the class model analysis approach. The dotted area

includes the front-end activities and models. The front-end models are the only models that

a security designer needs to manipulate directly. The security designer is responsible for

1) modeling access control policies using UML class model notation and the OCL, and 2)

specifying the property-to-verify. The property-to-verify is expressed in terms of an invariant

and its negation: The invariant characterizes the form of valid source states, and its negation

characterizes target invalid states. Object configurations representing software states are

called snapshots in this paper.

The back-end activities use three transformations (indicated in Fig. 3.2). Transformation

1 transforms the UML policy model to a class model, called a snapshot transition model, that

specifies valid snapshot transitions, where a transition describes the effect of an operation

on a state. The UML-to-snapshot model transformation defined in the SUDA approach [52]

is used for this purpose. Transformation 2 converts the snapshot model to an Alloy model.

The property-to-verify is transformed to an Alloy predicate, referred to as the verification

predicate, that is added to the Alloy model generated from the snapshot model. The resulting

Alloy model is fed into the Alloy Analyzer and the verification predicate is evaluated. The

Alloy Analyzer is used to determine if there exists an operation invocation sequence that

starts from a specified valid snapshot and ends in a specified invalid snapshot. If the Analyzer

finds a sequence then Transformation 3 is needed to convert the Alloy instance model of the

sequence to a UML object model describing the sequence.

24

CHAPTER 4

The Slicing Techniques

In this chapter we describe the slicing techniques that can be used for invariant checking

and contract checking. The first slicing technique can be used to improve the scalability of

the invariant checking that involves checking conformance between an object configuration

and a class model with specified invariants, and the second slicing technique can be used to

improve the scalability of the contract checking that involves analyzing sequences of operation

invocations to uncover invariant violations.

In the reminder of this chapter Section 4.1 describe the first slicing technique and Section

4.2 describes the second slicing technique respectively.

4.1. Co-slicing Class Model and Object Configuration

In this section we present the motivation for using the slicing technique to improve the

efficiency of the invariant checking approach (Section 4.1.1), use a motivating example to

illustrate the role of the slicing technique in the context of invariant checking (Section 4.1.2),

describe the slicing technique (Section 4.1.3), and provide a discussion of the slicing technique

(Section 4.1.4).

4.1.1. Motivation. At design time, a typical invariant checking process is character-

ized below: (1) A software modeler creates a class model; (2) He uses a tool (e.g., reverse

engineering tools) to create a set of object models that conform to the class model; (3) He

specifies a list of Well Formed Rules (WFRs) (i.e., invariants) and checks models against

the WFRs using invariant checking tools such as the Eclipse OCL checker [46]. The entire

process works well for small object models with hundreds of elements, and the modeler can

receive the feedback from the checking tools within seconds or minutes.

25

However, given the growing complexity of software systems, models used to represent

these complex systems will also grow significantly in size. While design models were built

by hand in the early days of MDD, nowadays models with possibly more than one million

of elements can be built programmatically. For example, we used a reverse engineering tool,

namely MoDisco [10], to generate Java models from multiple Eclipse platform plugins. The

object models generated from Eclipse plugins could have up to one million elements. The

checking time significantly goes up (e.g., more than two hours in the worse case scenario) for

large models with hundreds of thousands of elements. This motivates the use of the scalable

invariant checking approach in the context of large object models.

Checking object models against invariants does not need the entire class model and the

full object model to be present. Instead only a small part of the class and object models that

are referenced by the invariants needs to be used for the invariant checking. In addition,

a substantial number of invariants only reference part of the class model in which they are

defined [11]. This motivates the use of the slicing technique in the context of invariant

checking. The slicing technique thus can be used to reduce the size of the input class and

object models to make the checking more efficient.

4.1.2. Motivating Example. Figure 4.1 shows part of a class model that describes

the information system of a bus company (excerpted from [39]). In the class model, a trip

uses more than one coach. A coach is controlled by multiple security guards. A passenger

can buy multiple tickets from a vending machine located at a booking office. Adult and child

tickets are available for sale. A passenger can select more than one trip, where each trip can

be either private or regular. A booking office is managed by at most one manager. Figure

4.2 shows a valid instance of the class model given in Figure 4.1.

26

*

*

trips

-id : Integer
-baseSalary : Double

Employee

*

0..1

-shift : String
SecurityGuard

-hasMBA : Boolean
Manager

-number : Integer
VendingMachine

-name : String
-location : String
-officeID : Integer

BookingOffice

-number : Integer
-price : Double
-isRoundTrip : Boolean

Ticket

-isElderlyDiscount : Boolean
AdultTicket

-isSchoolTrip : Boolean
ChildTicket

-id : Integer
-name : String
-model : String
-noOfSeats : Integer

Coach

-name : String
-age : Integer
-idCard : String

Passenger

-name : String
-origin : String
-destination : String
-type : String
-number : Integer

Trip

-extras : String
PrivateTrip RegularTrip

coaches

*

*

trips

passengers

coach

guards

*

*

*

0..1

psg

tickets

coaches
offices

*

0..1

tickets

vm

*

0..1

office

vms

0..1

0..1

office

manager

Figure 4.1. A class model (expressed using the class diagram notation) that
describes the information system of a bus company

name : String = LasVegasTip
origin : String = Denver
destination : String = LasVegas
type : String = Regular
number : Integer = 1

rtrip1 : RegularTrip

id : Integer = 1
name : String = coach1
model : String = Benz
noOfSeats : Integer = 20

coach1 : Coach

name : String = DenverOffice
location : String = Denver
officeID : Integer = 1

bo1 : BookingOffice

number : Integer = 1
vm1 : VendingMachine

number : Integer = 1
price : Double = 24
isRoundTrip : Boolean = false
isElderlyDiscount : Boolean = false

t1 : AdultTicket

number : Integer = 2
price : Double = 16
isRoundTrip : Boolean = false
isElderlyDiscount : Boolean = true

t2 : AdultTicket

number : Integer = 3
price : Double = 12
isRoundTrip : Boolean = false
isSchoolTrip : Boolean = false

t3 : ChildTicket

name : String = Peter
age : Integer = 24
idCard : String = AB67823

p1 : Passenger

name : String = Tom
age : Integer = 65
idCard : String = AB2342

p2 : Passenger

name : String = Bill
age : Integer = 12
idCard : String = AB1212

p3 : Passenger

trips

coaches coaches

offices

office

vms

vm

vm

vm

tickets

tickets

tickets

tickets

tickets

tickets

trips

trips

trips

passengers

passengers

passengers

psg

psg

psg

Figure 4.2. An object model (expressed using the object diagram notation)
conforming to the class model given in Figure 4.1

Invariants defined in the class model are given in Table 4.1. For example, the UniqueT-

icketNumber invariant is defined in the context of the Ticket class in the ckass model, and it

specifies that every ticket must have a unique number. Such invariants cannot be expressed

directly using the class diagram notation, and thus are specified using other languages such

27

Table 4.1. A list of invariants in the class model

// Each coach has more than ten seats.
Context Coach inv MinCoachSize:
self.noOfSeats ≥ 10
// For every trip t that is assigned to a coach, the number of passengers associated
// with t must be smaller than the number of seats allowed for a coach.
Context Coach inv MaxCoachSize:
self.trips→forAll(t | t.passengers→size()≤ noOfSeats)
// Each ticket must have a unique number.
Context Ticket inv UniqueTicketNumber:
Ticket::allInstances()→forAll(t1, t2 | t1.number = t2.number implies t1 = t2)
// Each regular trip must have more than six passengers.
Context RegularTrip inv MinPassengers:
self.passengers→size() ≥ 6

as the OCL [43]. The model in Figure 4.2 may or may not satisfy the invariants defined in

the class model.

Tools, such as the Eclipse OCL checker [46], can be used in this situation for invariant

checking. They take as input the invariant, the class model and the object model, and

produce checking results, indicating whether the object model is consistent with the invariant

defined in the class model. In this case, the object model in Figure 4.2 does not violate

the UniqueTicketNumber invariant defined in the class model since t1, t2, t3 have different

numbers (i.e., 1, 2, 3).

Note that to check the UniqueTicketNumber invariant, we only need to look into the

tickets and their numbers. The rest of object model is not relevant to the checking. Indeed,

the UniqueTicketNumber invariant is defined in the context of the Ticket class and only

refers to the number attribute in the Ticket class. Therefore, instead of feeding the entire

class model in Figure 4.1 and the full object model in Figure 4.2 into the invariant checking

tools, we can use the slicing technique to generate smaller class and object models. Figure

4.3 shows the sliced class and object models that are parts of the original class and object

models. We can feed these generated class and object models into the tools for invariant

28

Ticket

-number : Integer number : Integer = 1

t1 : AdultTicket

Sliced Class Model Sliced Object Model

AdultTicket ChildTicket

number : Integer = 2

t2 : AdultTicket

number : Integer = 3

t3 : ChildTicket

Figure 4.3. Checking the UniqueTicketNumber invariant in the context of
sliced class and object models

checking. Note that we keep the classes AdultTicket and ChildTicket in the generated class

model since UniqueTicketNumber is defined in the context of the Ticket class and thus can

be inherited by the subclasses of the Ticket class. Therefore the instances of AdultTicket

and ChildTicket also need to be checked against the UniqueTicketNumber invariant.

It is also important to note that the slicing technique is needed for invariant checking only

if (1) the use of the slicing technique can reduce the invariant checking time (i.e., effectiveness

of the slicing technique), and (2) the checking results remain the same in the context of the

slicing technique (i.e., the correctness of the slicing technique). For example, the slicing

technique is needed for checking the UniqueTicketNumber invariant if (1) the checking time

for the class and object models in Figure 4.3 is less than that used for original class and

object models, and (2) the invariant checking results for the original models are the same

as the results for the models in Figure 4.3. We have conducted an evaluation to explore the

effectiveness and the correctness of the slicing technique in the context of invariant checking,

and the evaluation results are given in the Evaluation Chapter.

4.1.3. Slicing Technique for Invariant Checking. Figure 4.4 shows an overview

of the invariant checking approach in the context of the slicing technique. The input of the

checking includes a class model (MM), an object model (M), and one or many OCL invariants

29

Analysis

M

OCL
WFRs

MM OCL
Checking

(EMF, Use, Kermeta, Alloy)
SlicingFootprint

Computation
OCL

Checking
results

M'
MM'

Designer

<<conformsTo>>

Figure 4.4. An overview of the invariant checking approach in the context
of the slicing technique

(Well-Formed Rules). First, the approach computes a footprint from the class model and

OCL invariants. The concept of the footprint is from [20], where a footprint refers to part

of a class model that contains all elements that affect the outcome of an operation. In this

paper a footprint refers to all class model elements that are directly referenced by the input

OCL invariants. Second, the footprint serves as slicing criterion, and is used to generate a

sliced class model (MM’) from the input class model. The sliced class model (MM’) includes

(1) all the class model elements from the footprint, and (2) all the subclasses of the classes

in the footprint. Third, the sliced class model (MM’) is used to generate a sliced object

model (M’) from the input object model. The sliced object model (M’) contains only object

model elements that are instances of class model elements in MM’. Finally, the sliced class

and object models with the invariants are fed into the tools for invariant checking.

In the remainder of this section we illustrate the slicing technique step by step.

4.1.3.1. Generating Footprint. Table 4.2 shows the footprint of each invariant given in

Table 4.1. The footprint of an invariant contains class model elements such as classes,

attributes, references, and/or enumerations. The footprint computation takes as a class

model and an invariant, and analyzes the dependencies between the invariant and the class

30

Table 4.2. Footprint (i.e., dependent elements) of each invariant (see Table
4.1) defined in the class model in Figure 4.1

Invariant Dependent Classes Dependent Attrs/Refs
MinCoachSize Coach noOfSeats
MaxCoachSize Coach, Trip, Passenger trips, passengers, noOfSeats
UniqueTicketNumber Ticket number
MinPassengers RegularTrip, Trip, Passenger passengers

model. The dependency analysis is performed by traversing the syntax tree of the OCL

invariant.

For example, consider the footprint computation of the MaxCoachSize invariant. The

MaxCoachSize invariant is defined in the context of class Coach, and thus depends on class

Coach. The expression self.trips is an association end call expression and it returns a set of

trips assigned to the coach (referred to by self). There is thus a dependency with reference

trips, and its type class, Trip via the class Coach. The parameter t in the MaxCoachSize

invariant refers to an instance of class Trip, and the expression t.passengers returns a set

of passengers associated with a trip. There is thus a dependency with reference passengers,

and its type class, Passenger via the class Trip. The expression noOfSeats refers to an

attribute defined in class Coach, and the invariant thus depends on attribute noOfSeats

and its containing class, Coach. The footprint computation thus reveals the invariant refers

to and thus depends on the following class model elements: Coach, Trip, Passenger, trips,

passengers and noOfSeats.

Note that the MinPassengers invariant depends on both Trip and Passenger classes.

This is because MinPassengers uses the passengers reference in its definition (see Table 4.1).

Reference passengers is defined in the context of class Trip and can be inherited by the

subclasses (e.g., RegularTrip) of Trip. In addition, the type of the passengers reference is

class Passenger.

31

Algorithm 1 Slice a class model

1: Input: A footprint FP and the class model MM
2: Output: A sliced class model MM’
3: Algorithm Steps:
4: Set Subs = {};
5: for each element, Elmt, in FP do
6: if Elmt is a class then
7: for each indirect and direct subclass, Sub, of Elmt do
8: Subs = Subs ∪ Sub;
9: end for

10: end if
11: end for
12: Return FP ∪ Subs;

4.1.3.2. Slicing Class Model. Algorithm 1 is used to generate a sliced class model (MM’)

from a footprint (FP) and the original class model (MM). The slicing criteria in this case

would be the class model elements in the footprint. Algorithm 1 computes Subs, a set of

classes that are the subclasses of the classes in the footprint. The sliced class model contains

only elements that are from the footprint and Subs. The reason we keep these referred

classes’ subclasses in the sliced class model is that the instances of subclasses are also the

instances of their super classes, and thus can be used for invariant checking.

Consider the case in which a modeler wants to check whether the model in Figure 4.2

satisfies the MaxCoachSize invariant defined in the class model in Figure 4.1. Algorithm

1 can be used in this case to slice the class model in Figure 4.1 using the footprint of the

MaxCoachSize invariant. Figure 4.5 shows the sliced class model that is generated from the

footprint of the MaxCoachSize invariant. Since the footprint of the MaxCoachSize invariant

includes class Trip, and class Trip has two subclasses, PrivateTrip and RegularTrip, the

MaxCoachSize invariant also depends on PrivateTrip and RegularTrip. In summary the

class model elements that are referenced by the MaxCoachSize invariant include Coach,

Trip, PrivateTrip, RegularTrip, Passenger, trips, passengers, and noOfSeats.

32

* *trips

-noOfSeats : Integer
Coach

Passenger

Trip

PrivateTrip RegularTrip

*

*

passengers

Figure 4.5. A class model slice generated from the footprint of the Max-
CoachSize invariant

rtrip1 : RegularTrip
noOfSeats : Integer = 20

coach1 : Coach
trips

p1 : Passenger p2 : Passenger

p3 : Passenger

passengerspassengers

passengers

Figure 4.6. An example of a sliced object model

4.1.3.3. Slicing Object Model. Algorithm 2 is used to slice an object model. It takes as

input an object model (M) and a sliced model (MM’), and produces a sliced object model,

where each element in the sliced object model is an instance of a class model element in the

sliced class model. For example, given the sliced class model in Figure 4.5 and the object

model in Figure 4.2, Algorithm 2 can be used to generate a sliced object model (see Figure

4.6) that conforms to the sliced class model in Figure 4.5. Note that the sliced object model

is a valid instance of the sliced class model, but it may or may not satisfy the invariants used

to generate the sliced class model.

The algorithm checks each object (see lines 5-7) in M, and removes an object and its

slots/link ends if the object’s metaclass is not in the set of classes involved in MM’. For

example, object bo1:BookingOffice in Figure 4.2 is not an instance of any class involved in

33

the sliced class model in Figure 4.5, and thus can be removed from the object model. In

addition, its slots (i.e., name, location, and officeID) and link ends (i.e. coaches and vms) are

also removed from the object model. Note that both slots and link ends are the modeling

concepts used in the object diagram notation, where slots are the instances of attributes and

link ends are the instances of references.

Algorithm 2 also checks the slots and link ends of each unremoved object. Lines 9-13

remove a slot of an object if the slot’s corresponding attribute is not included in Attrs, a set of

attributes in MM’. Lines 14-18 remove a link end of an object if the link end’s corresponding

reference is not included in Refs. For example, object rtrip1:RegularTrip in Figure 4.2 has

5 slots and 4 link ends. Since class RegularTrip and its super class Trip in Figure 4.5 have

no attributes, the slicing algorithm removed all the slots from object rtrip1:RegularTrip as

indicated in Figure 4.6. Similarly, class RegularTrip and its super class Trip in Figure 4.5

have only one reference, passengers. Thus, the slicing algorithm removed link end coaches

from object rtrip1:RegularTrip.

4.1.4. Discussion. The slicing technique described in Section 4.1 can have different

variations based on (1) the number of input invariants (Section 4.1.4.1), (2) the way of

footprinting (Section 4.1.4.2), (3) the way of slicing the object model (Section 4.1.4.3), and

(4) the checking context (Section 4.1.4.4).

In the remainder of this section we look into these variations in each subsection.

4.1.4.1. Single v.s. Multiple Invariants. The slicing technique described in Section 4.1

can be used for a single invariant or multiple invariants. The illustration example given

in Section 4.1 shows how the slicing technique handles single invariant input. If the input

includes multiple invariants (e.g., N invariants), the slicing technique generates a sliced class

model and a sliced object model for each invariant, and performs the checking N times. Thus

34

Algorithm 2 Slice an object model

1: Input: An object model, M, and a sliced class model, MM’
2: Output: A sliced object model that conforms to MM’
3: Algorithm Steps:
4: Set Clss = a set of classes in MM’, set Attrs = a set of attributes in MM’, set Refs = a

set of references in MM’;
5: for each object, obj, in M do
6: if obj’s metaclass not in Clss then
7: Remove obj and its slots/link ends from M;
8: else
9: for each slot, sl, of obj do

10: if sl’s corresponding attribute not in Attrs then
11: Remove sl from obj;
12: end if
13: end for
14: for each link end, le, of obj do
15: if le’s corresponding reference not in Refs then
16: Remove le from obj;
17: end if
18: end for
19: end if
20: end for
21: Return M;

the problem of checking multiple invariants can be reduced to the problem of checking single

invariant.

It is possible to perform footprinting and slicing only once (e.g., generate one sliced class

model and one sliced object model for multiple invariants), and use the generated sliced class

and object models in each invariant checking. In this case, the checking time would increase

since the sliced class and object models for multiple invariants could be larger than the

sliced class and object models for a single invariant (the model usage increases). However,

since the time saved for footprinting and slicing (i.e., seconds) is much smaller than the

time increased for checking (e.g., minutes), it is not worth checking one sliced model against

multiple invariants.

35

It is also possible to (1) produce a single invariant from multiple invariants using con-

junction, and (2) checking the conjunctive invariant against the object model. However,

invariants conjunction may cause two problems. First, the accuracy of the checking results

would be decreased. For example, if an object model violates the conjuncted invariant, it

is not clear about which single invariant is violated by the object model. Second, checking

the conjuncted invariant would be computationally different from (or worse than) checking

multiple invariants one by one. For example, one would use the operation allInstance() to

merge two invariants with different contexts (e.g., see the MinCoachSize and MinPassengers

invariants in Table 4.1) into one conjuncted invariant (see the ConjunctedInv invariant be-

low).

Context RegularTrip inv ConjunctedInv:

self.passengers→size() ≥ 6 and Coach.allInstances()→forAll(c|c.noOfSeats ≥ 10)

If the checking complexity of MinCoachSize and MinPassengers is O(N) and O(M), the

checking complexity of ConjunctedInv would be O(N * M) while the total checking complex-

ity of MinCoachSize and MinPassengers would be O(N + M). This is because every time

the tool checks an instance of RegularTrip, it checks all the instances of Coach.

4.1.4.2. Static v.s. Dynamic Footprinting. The way of footprinting can be categorized

into two types: static footprinting and dynamic footprinting [20]. Static footprinting uses

only the information from the invariant to guide the footprinting process. The model foot-

printing described in Section 4.1 is an example of static footprinting [20]. Dynamic foot-

printing uses the elements in object models to identify an invariant that is applicable to the

object models (referred to as checking relevant invariant). The intuition behind this is based

36

*

*

trips

-id : Integer

-baseSalary : Double

Employee

*

0..1

-shift : String

SecurityGuard
-hasMBA : Boolean

Manager

-number : Integer

VendingMachine

-name : String

-location : String

-officeID : Integer

BookingOffice

-number : Integer

-price : Double

-isRoundTrip : Boolean

Ticket

-isElderlyDiscount : Boolean

AdultTicket

-isSchoolTrip : Boolean

ChildTicket

-id : Integer

-name : String

-model : String

-noOfSeats : Integer

Coach

-name : String

-age : Integer

-idCard : String

Passenger

-name : String

-origin : String

-destination : String

-type : String

-number : Integer

Trip

-extras : String

PrivateTrip RegularTrip

coaches

*

*

trips

passengers

coach

guards

*

*

*

0..1

psg

tickets

coaches
offices

*

1

tickets

vm

*

0..1

office

vms

0..1

0..1

office

manager

Figure 4.7. A modified version of the class model in Figure 4.1 (the multi-
plicity of the vm reference has been changed)

on the following observation: If each element in an object model is not an instance of any

class model element that is referred by an invariant, there is no need to check the object

model against the invariant because the object model will not violate the invariant.

The dynamic footprinting is helpful for achieving higher CTS (see Metric 1). For example,

suppose that an invariant checking is irrelevant with respect to an object model. There is

thus no need to check the object model against the invariant (i.e., CTSM is 0). In addition,

the time used to analyze object models is quite small (e.g., seconds). Therefore, CTS would

be significantly improved in this case.

4.1.4.3. Aggressive v.s. Conservative Class Model Slicing. In aggressive slicing, the sliced

class model only contains the elements in the footprint (i.e., slicing criterion) and the sub-

classes of the classes in the footprint. In conservative slicing (also called pruning [38]), the

sliced class model also contains the classes that are types of the mandatory references (i.e.,

the lower bound of the multiplicity of the reference must be equal to or larger than 1) from

the classes in the footprint.

37

-number : Integer
Ticket

AdultTicket ChildTicket

*

1

vm VendingMachine

Figure 4.8. A sliced class model generated from the UniqueTicketNumber
invariant and the class model in Figure 4.7 using the conservative slicing

-number : Integer

Ticket

AdultTicket ChildTicket

Figure 4.9. A sliced class model generated from the UniqueTicketNumber
invariant and the class model in Figure 4.7 using the aggressive slicing

For example, Figure 4.7 shows a modified version of the class model in Figure 4.1. Note

that the multiplicity of the vm reference in Figure 4.1 is 0..1, while the multiplicity of the vm

reference in Figure 4.7 is 1. The vm reference in Figure 4.7 is an example of the mandatory

reference.

Given the UniqueTicketNumber invariant and the class model in Figure 4.7, the class

model (see Figure 4.9) generated using the aggressive slicing contains only the Ticket class

and its subclasses, while the class model (see Figure 4.8) generated using the conservative

slicing contains the mandatory reference (i.e., vm) and its type class (i.e., VendingMachine).

The slicing technique described in Section 4.1 uses the aggressive slicing. This is mainly

because the aggressive slicing could produce smaller class and object models and thus reduce

the checking time. However, the aggressive slicing could be a threat to the correctness of the

slicing technique if the input object model is not a valid instance of the input class model.

38

number : Integer = 1
price : Double = 24
isRoundTrip : Boolean = false
isElderlyDiscount : Boolean = false

t1 : AdultTicket

number : Integer = 2
price : Double = 16
isRoundTrip : Boolean = false
isElderlyDiscount : Boolean = true

t2 : AdultTicket

number : Integer = 3
price : Double = 12
isRoundTrip : Boolean = false
isSchoolTrip : Boolean = false

t3 : ChildTicket

Figure 4.10. An object model that is not a valid instance of the class model
in Figure 4.7

For example, Figure 4.10 shows an object model that is not a valid instance of the class

model in Figure 4.7. Given the object model in Figure 4.10 and the class model in Figure 4.7,

the checking results should return false since a ticket needs to be associated with a vending

machine (see the multiplicity of the vm reference). However, if we use the class model in

Figure 4.9 (i.e., the result of the aggressive slicing for the UniqueTicketNumber invariant)

to slice the object model in Figure 4.10, and check the sliced object model against the

UniqueTicketNumber invariant in the context of the class model in Figure 4.9, the checking

results would return true, which contradicts the checking results without using the slicing

technique.

If we use the class model in Figure 4.8 to slice the object model in Figure 4.10, and

check the sliced object model, the checking results would return false (see the multiplicity

of the vm reference), which is consistent with the checking results without using the slicing

technique. Therefore, to use the aggressive slicing, we need to add a precondition to the

slicing technique, that is, the input object model must be a valid instance of the input class

model.

4.1.4.4. Checking in the Context of the Entire Class Model v.s. the Sliced Class Model.

In the slicing technique described in Figure 4.1, the sliced object model is checked in the

context of the sliced class model. This is mainly because of two reasons. First, the sliced

39

class model is smaller than the entire class model, and the invariant checking in the context

of the sliced class model would take less time. Second, the aggressive slicing could produce

object models that are not valid instances of the entire class model, and the checking results

for such object models in the context of the entire class model always return false.

For example, given the UniqueTicketNumber invariant, the object model in Figure 4.2

and the class model in Figure 4.7, the aggressive slicing technique would produce a sliced

class model in Figure 4.9 and a sliced object model in Figure 4.10. When the sliced object

model is checked in the context of sliced class model, the checking results would be true

(every ticket has a unique number) which is consistent with the checking result without

using the slicing technique. However, if the sliced object model is checked in the context

of the entire class model in Figure 4.7, the checking result would be false, because a ticket

needs to be associated with a vending machine, and the sliced object model is not a valid

instance of the class model in Figure 4.7. Therefore, to check the sliced object model in

the context of the entire class model, we need to use the conservative slicing for the slicing

technique.

4.2. Slicing a Class Model with OCL Constraints

The model slicing technique described in this section is used for contract checking. It

decomposes a large class model into fragments, where each fragment contains model elements

needed to analyze a subset of the invariants and operation contracts in the class model.

Figure 4.11 shows an overview of the slicing technique.

The input to the technique is a UML class model with invariants and operation contracts

expressed in the OCL. The technique has two major steps. In the first step, the input class

model with OCL constraints is analyzed to produce a dependency graph that relates (1)

40

Figure 4.11. Technique Overview

invariants to their referenced model elements, and (2) operation contracts to their containing

classes and other referenced classes and class properties. The dependencies among model

elements are determined by relationships defined in the UML metamodel.

In the second step of the technique, the dependency graph is used to generate slicing

criteria, and the criteria are then used to extract one or more model fragments from the

class model. The generated model fragments can be analyzed separately.

In the remainder of this section we present a UML class model and use the model to illus-

trate the process for generating a dependency graph, the slicing algorithm used to decompose

the class model into model fragments, and a discussion of the slicing technique.

4.2.1. Illustrating Example. We will use the Location-aware Role-Based Access

Control (LRBAC) model, proposed by Ray et al. [33] [34] [35], to illustrate the model

slicing technique. LRBAC is an extension of Role-Based Access Control (RBAC) [37] that

takes location into consideration when determining whether a user has permission to access

a protected resource.

In LRBAC, roles can be assigned to, or deassigned from users. A role can be associated

with a set of locations in which it can be assigned to, or activated by users. A role that is

associated with locations can be assigned to a user only if the user is in a location in which

the role can be assigned. A user can create a session and activate his assigned roles in the

41

Figure 4.12. A Partial LRBAC Class Model

session. A role can be activated in a session only if the user that creates the session is in a

location in which the role can be activated. Figure 4.12 shows part of a design class model

that describes LRBAC features.

Permissions are granted to roles, and determine the resources (objects) that a user can

access (read, write or execute) via his activated roles. Permissions are associated with

locations via two relationships: PermRoleLoc and PermObjLoc. PermRoleLoc links a

permission to its set of allowable locations for the role associated with the permission, and

PermObjLoc links a permission to its set of allowable locations for the object associated

with the permission. MaxRoles in class Session refers to the maximum number of roles that

can be activated by a session.

42

Table 4.3. A list of operation contracts in the LRBAC model

// Op1: Assign a role r to user u
Context User::AssignRole(r:Role)
// Precondition: user u has not been assigned role r and user u is in a location in
// which role r can be assigned to him
Pre: self.UserAssign→excludes(r) and r.AssignLoc→includes(self.UserLoc)
// Postcondition: user u has been assigned role r
Post: self.UserAssign = self.UserAssign@pre→including(r)
// Op2: Update a user’s ID
Context User::UpdateUserID(id:Integer)
Pre: self.UserID != id
Post: self.UserID = id
// Op3: Move a user into a new location l
Context User::UpdateLoc(l:Location)
// Precondition: user u has not been in location l and user u has not been assigned any role
Pre: self.UserLoc→excludes(l) and self.UserAssign→isEmpty()
// Postcondition: user u has been in location l
Post: self.UserLoc→includes(l)
// Op4: Update a user’s age
Context User::UpdateAge(age:Integer)
Pre: age > 0
Post: self.Age = age
// Op5: Update a user’s name
Context User::UpdateUserName(name:String)
Pre: self.UserName != name
Post: self.UserName = name

Operation contracts and invariants in the LRBAC model are specified using the OCL.

Examples of OCL operation contracts for the LRBAC model are given in Table 4.3 and

Table 4.4. Examples of OCL invariants for the LRBAC model are given in Table 4.5.

For the LRBAC model, one may want to determine if there is a scenario in which the

operation contracts allow the system to move into a state in which a user has unauthorized

access to resources. In previous work [45], we developed a class model analysis technique

that uses the Alloy Analyzer [18] to find scenarios (sequences of operation invocations) that

start in valid states (states that satisfy the invariants in the class model) and end in invalid

states. The analysis uses the operation contracts to determine the effects operations have on

the state. If analysis uncovers a sequence of operation calls that moves the system from a

43

Table 4.4. A list of operation contracts in the LRBAC model

// Op6: Update a session’s maximum activated roles
Context Session::UpdateMaxRoles(NoOfRoles:Integer)
Pre: self.MaxRoles != NoOfRoles
Post: self.MaxRoles = NoOfRoles
// Op7: Update a role’s name
Context Role::UpdateRoleName(name:String)
Pre: self.RoleName != name
Post: self.RoleName = name
// Op8: Add an AssignLoc link between a role and a location
Context Role::AddAssignLoc(l:Location)
Pre: self.AssingLoc→excludes(l)
Post: self.AssignLoc = self.AssignLoc@pre→including(l)
// Op9: Update a location’s name
Context Location::UpdateLocName(name:String)
Pre: self.LocName != name
Post: self.LocName = name
// Op10: Update a permission’s name
Context Permission::UpdatePermName(name:String)
Pre: self.PermName != name
Post: self.PermName = name
// Op11: Update an object’s ID
Context Object::UpdateObjID(id:Integer)
Pre: self.ObjID != id
Post: self.ObjID = id

valid state to an invalid state, then the designer uses the trace information provided by the

analysis to determine how the operation contracts should be changed to avoid this scenario.

Like other constraint solving approaches, performance degrades as the size of the model

increases. The slicing technique described in the paper can improve the scalability of the

analysis approach by reducing the problem to one of separately analyzing smaller model

fragments.

4.2.2. Constructing a Dependency Graph. Dependencies among invariants, oper-

ation contracts and model elements are computed by traversing the syntax tree of the OCL

invariants and operation contracts. For example, consider the analysis of the operation con-

tract for AssignRole (the contract is given in Section 2). The expression self.UserAssign

44

Table 4.5. A list of invariants in the LRBAC model

// Inv1: Each user’s age must be greater than 0.
Context User inv NonNegativeAge:
self.Age ≥ 0
// Inv2: Each user has a unique ID.
Context User inv UniqueUserID:
User.allInstances()→forAll(u1, u2:User|u1.UserID = u2.UserID implies u1 = u2)
// Inv3: Each user is either male or female.
Context User inv GenderConstraint:
self.Gender = “male” or self.Gender = “female”
// Inv4: For every role r that is assigned to a user, the user’s location belongs to
// the set of locations in which role r can be assigned.
Context User inv CorrectRoleAssignment:
self.UserAssign→forAll(r|r.AssignLoc→includes(self.UserLoc))
// Inv5: The number of roles a user can activate in a session cannot exceed the value
// of the session’s attribute, MaxRoles.
Context Session inv MaxActivatedRoles:
self.MaxRoles >= self.SesRole→size()
// Inv6: Each object has a unique ID.
Context Object inv UniqueObjectID:
Object.allInstances()→forAll(o1, o2:Object|o1.ObjID = o2.ObjID implies o1 = o2)

is an association end call expression and it returns a set of roles assigned to the user (re-

ferred to by self). There is thus a dependency between this contract and the class Role.

The expression self.UserLoc returns a user’s current location, and thus there is a depen-

dency with the class Location. The parameter r refers to an instance of class Role, and

r.AssignLoc returns a set of locations in which role r can be assigned to any user. The

analysis thus reveals the operation contract for AssignRole references and thus depends on,

the following classes: User, Role and Location. If an OCL constraint involves a statement

like Role.allInstances(), then the OCL constraint references class Role. A similar analy-

sis is done for each OCL contract and invariant. Table 4.6 lists the referenced classes and

attributes for the contracts and invariants defined in the LRBAC model.

The computed dependencies and relationships defined in the UML metamodel are used

to build a dependency graph. A dependency graph consists of nodes and edges, where each

node represents a model element (e.g., classes, attributes, operations and invariants), and

45

Table 4.6. Referenced Classes and Attributes for Each Operation Contrac-
t/Invariant Defined in the LRBAC model

Operation Contract/Invariant Referenced Classes Referenced Attributes
Op1 AssignRole User, Role, Location None
Op2 UpdateUserID User UserID
Op3 UpdateLoc User, Role, Location None
Op4 UpdateAge User Age
Op5 UpdateUserName User UserName
Op6 UpdateMaxRoles Session MaxRoles
Op7 UpdateRoleName Role RoleName
Op8 AddAssignLoc Role, Location None
Op9 UpdateLocName Location LocName
Op10 UpdatePermName Permission PermName
Op11 UpdateObjID Object ObjID
Inv1 NonNegativeAge User Age
Inv2 UniqueUserID User UserID
Inv3 GenderConstraint User Gender
Inv4 CorrectRoleAssignment User, Role, Location None
Inv5 MaxActivatedRoles Session, Role MaxRoles
Inv6 UniqueObjectID Object ObjID

Figure 4.13. A Dependency Graph

each edge represents a dependency between two elements. For example, if a class model has

only one class that includes only one attribute, the generated dependency graph consists of

two nodes, a node representing the class and a node representing the attribute, and one edge

that represents the relationship between the attribute and its containing class.

46

Figure 4.13 shows a graph that describes the dependency relationship among classes,

attributes, operations and invariants of the LRBAC class model described in Fig. 4.12.

Algorithm 3 describes the process used to generate the graph.

Steps 1 to 5 describe how the metamodel relationships and computed dependencies be-

tween OCL invariants and contracts and their referenced model elements are used to build an

initial dependency graph. In step 6 of the algorithm, if an operation contract (op) or invariant

(inv) only references its context class, cls, and an attribute in cls, attr, the edge that points

to vertex cls from vertex op (or inv), can be removed because the dependency can be inferred

from the dependency between the vertex cls and the vertex attr. For example, Table 4.6

shows that operation UpdateUserID’s (Op2) only references class User and its attribute

UserID in its specification. The edge pointing to vertex User from vertex Op2 is redun-

dant, and is thus removed from the dependency graph shown in Fig. 4.13. Invariant Inv5

in Table 4.6 references its context class, Session, and class Session’s attribute, MaxRoles,

in the specification. But the edge pointing to vertex Session from vertex Inv5 cannot be

removed from Fig. 4.13 since invariant Inv5 also references class Role in its specification

through the navigation from class Session to class Role.

4.2.3. Analyzing a Dependency Graph. The generated dependency graph is used

to guide the decomposition of a model into fragments that can be analyzed separately. The

first step is to identify model elements that are not involved in the analysis. These are

referred to as irrelevant model elements. The intuition behind this step is based on the

following observation: If the classes and attributes that are referenced by an operation, are

not referenced by any invariant, the operation as well as its referenced classes and attributes

(i.e., analysis-irrelevant model elements) can be removed from the class model because a

system state change triggered by the operation invocation will not violate any invariant

47

Algorithm 3 Dependency Graph Generation Algorithm

Input: A UML Class Model + OCL Operation Contracts/Invariants
Output: A Dependency Graph
Algorithm Steps:
Step 1. Create a vertex for each class, attribute, operation contract and invariant of the
class model in the dependency graph.
Step 2. For every attribute, attr defined in a class, cls, create a directed edge from vertex
attr to vertex cls.
Step 3. For every class, sub, that is a subclass of a class, super, create a directed edge
from vertex sub to vertex super.
Step 4. For every class that is part of a container class (i.e., a class in a composition
relationship), create a directed edge to a container class vertex from a contained class
vertex.
Step 5. If there is an association between class x and y, and the lower bound of the
multiplicity of the association end in y is equal to or greater than 1, create a directed edge
to vertex y from vertex x.
Step 6. For every referenced class (cls) and attribute (attr) of an operation contract (op)
or invariant (inv), create a directed edge to vertex cls and attr from vertex op or inv. If
the operation contract or invariant only references its context class and its context class’s
attribute (or attributes) in its specification, the edge that points to vertex cls from vertex
op or inv, is removed.

defined in the model. Similarly, if the classes and attributes that are referenced by an

invariant, are not referenced by any operation, the invariant as well as its referenced classes

and attributes (i.e., analysis-irrelevant model elements) can be removed from the class model

because any operation invocation that starts in a valid state will not violate the invariant.

Irrelevant model elements are identified using the process described in Algorithm 4, and are

removed from the class model.

The second step is to identify model elements that are involved in a local analysis problem.

A local analysis problem refers to an analysis that can be performed within the boundary of

a class [39]. Model elements that are involved in a local analysis problem are referred to as

local analysis model elements. For example, operation UpdateUserID in Fig. 4.12 is used to

modify the value of attribute UserID in class User, and invariant Inv2 defines the uniqueness

constraint on UserID. The invocation of operation UpdateUserID may or may not violate

48

Figure 4.14. A Dependency Graph Representing a LRBAC Model with the
Irrelevant Model Elements Removed

the constraint specified in Inv2, but it will not violate other invariants because UserID is

not referenced by other operations or invariants. Thus an analysis that involves checking

if an invocation of UpdateUserID violates Inv2 can be performed within the boundary of

User. Model elements that are involved in local analysis problems are identified using the

process described in Algorithm 5. Note that in the above example, UpdateUserID, UserID

and Inv2 are identified local analysis model elements. Thus these model elements and their

dependent model elements (User and User’s dependent class Location) can be extracted from

the LRBAC model and analyzed separately.

In the third step, the class model is further decomposed into a list of model fragments

using Algorithm 6.

4.2.3.1. Identifying Irrelevant Model Elements: Algorithm 4 is used to remove analysis-

irrelevant model elements. The algorithm first computes ARClsAttrV Set, a set of anal-

ysis relevant class and attribute vertices, where each vertex is directly dependent on at

least one operation vertex and at least one invariant vertex. The algorithm then computes

49

AROpInvV Set, a set of analysis relevant operation and invariant vertices, where each ver-

tex has a directly dependent vertex that belongs to ARClsAttrV Set. The algorithm then

performs a Depth-First Search (DFS) from each vertex in AROpInvV Set, and labels all the

analysis-relevant vertices, ARV Set. The vertices not in ARV Set represent the irrelevant

model elements that need to be removed from the class model.

Figure 4.14 shows a dependency graph representing a LRBAC model with the analysis

irrelevant model elements removed. Lines 6-14 of Algorithm 4 compute ARClsAttrV Set.

Lines 6-9 compute OpDV Set, a set of directly dependent attribute and class vertices from

each operation vertex. Similarly, lines 10-13 compute InvDV Set, a set of directly dependent

attribute and class vertices from each invariant vertex. ARClsAttrV Set is the intersection

of OpDV Set and InvDV Set.

Lines 15-19 compute AROpInvV Set. For example, vertex Op4 is an analysis-relevant

operation vertex because its directly dependent vertex, Age, is an analysis-relevant attribute

vertex, while vertex Op5 is analysis-irrelevant because UserName is not an analysis-relevant

vertex. Lines 21-25 compute ARV Set.

4.2.3.2. Identifying Local Analysis Model Elements: Algorithm 5 is used to identify frag-

ments representing local analysis problems. The algorithm first computes a set of attribute

and class vertices, LocalV Set, that are involved in the local analysis problems. A vertex,

ClsAttrV , is added to LocalV Set only if (1) the vertex is a member of ARClsAttrV Set

(indicated by Line 6), and (2) all vertices directly dependent on ClsAttr have no other di-

rectly dependent vertices (indicated by Lines 7-15). The algorithm then uses the vertices

in LocalV Set to construct new dependency graphs, where each graph represents a model

fragment involved in a local analysis problem.

50

Algorithm 4 Irrelevant Model Elements Identification Algorithm

1: Input: A dependency graph
2: Output: A set of analysis-irrelevant vertices
3: Algorithm Steps:
4: Set OpV Set = a set of operation vertices, InvV Set = a set of invariant vertices;
5: Set V Set = all the vertices in the dependency graph, OpDV Set = {}, InvDV Set = {};
6: for each operation vertex OpV in OpV Set do
7: Get a set of OpV ’s directly dependent vertices, OpV DDSet;
8: OpDV Set = OpDV Set ∪ OpV DDSet;
9: end for

10: for each invariant vertex InvV in InvV Set do
11: Get a set of InvV ’s directly dependent vertices, InvV DDSet;
12: InvDV Set = InvDV Set ∪ InvV DDSet;
13: end for
14: Set ARClsAttrV Set = OpDV Set ∩ InvDV Set, Set AROpInvV Set = {};
15: for each vertex V in OpV Set ∪ InvV Set do
16: if one of V ’s directly dependent vertex is in ARClsAttrV Set then
17: AROpInvV Set = AROpInvV Set ∪ V ; Break;
18: end if
19: end for
20: Set ARV Set = {};
21: for each vertex V in AROpInvV Set do
22: Perform a Depth-First Search (DFS) from vertex V ;
23: Get a set of labeling vertices, V DFSSet, from vertex V ’s DFS tree;
24: ARV Set = ARV Set ∪ V DFSSet;
25: end for
26: Return (V Set - ARV Set);

The dependency graph in Fig. 4.14 is decomposed into several subgraphs, as shown in

Fig. 4.15a and Fig. 4.15b, using Algorithm 5. Each dependency graph in Fig. 4.15a represents

a model fragment involved in a local analysis problem.

For example, {UserID,Age,ObjID} is the LocalV Set set of the dependency graph in

Fig. 4.14. The vertices that directly depend on vertex ObjID are Op11 and Inv6, and they

are moved from DG to a new dependency graph. Vertex ObjID’s DFS tree consists of

ObjID, Object and Location, and they are copied from DG to the new dependency graph.

ObjID is then removed from DG. Note that vertex Object becomes analysis-irrelevant in

DG after vertex ObjID, Op11, and Inv6 have been removed from DG. Thus it is necessary

51

(a) Local Analysis Model Ele-
ments identified by Algorithm 5

(b) Reduced Dependency Graph
with Local Analysis Model Elements
Removed

Figure 4.15. Dependency Graphs Representing Model Fragments Extracted
from the LRBAC Model in Fig. 4.12

to perform Algorithm 4 on DG to remove the analysis-irrelevant vertices, as indicated by

Line 25.

4.2.3.3. Decomposing the Dependency Graph: Algorithm 6 is used to decompose a depen-

dency graph without analysis-irrelevant vertices and local analysis problem related vertices.

The algorithm computes a set of slicing criteria where each criterion consists of a set of oper-

ation and invariant vertices. Each slicing criterion is then used to generate a new dependency

graph that represents a model fragment.

For example, for each vertex, v, inARClsAttrV Set, Line 5 of Algorithm 6 computes a col-

lection Col, where each member of Col is a set of operation and invariant vertices that directly

depend on v. ARClsAttrV Set (see Algorithm 4) is a set of class and attributes vertices on

which both operation and invariant vertices directly depend. For example, ARClsAttrV Set

for the graph shown in Fig. 4.15b is {MaxRoles, User, Location, Role}. Thus Col for the

graph is {{Op6, In5}, {In4, Op1, Op3}, {In4, Op1, Op3, Op8}, {In4, Op1, Op3, Op8, In5}}.

52

Algorithm 5 Local Analysis Problem Identification Algorithm

1: Input: A dependency graph, DG, produced from the original graph after removing the
irrelevant vertices produced by Algorithm 4

2: Output: A set of dependency graphs
3: Algorithm Steps:
4: Reuse ARClsAttrV Set in Algorithm 4;
5: Set LocalV Set = {};
6: for each vertex, ClsAttrV , in ARClsAttrV Set do
7: Set Flag = TRUE;
8: for each vertex, V , that is directly dependent on ClsAttrV do
9: if V has other directly dependent vertices then

10: Set Flag = FALSE; Break;
11: end if
12: end for
13: if Flag == TRUE then
14: LocV Set = LocV Set ∪ ClsAttrV ;
15: end if
16: end for
17: for each vertex, LocalV , in LocalV Set do
18: Create an empty dependency graph, SubDG;
19: Move the operation and invariant vertices that directly depend on LocalV , from DG

to SubDG;
20: Perform a DFS from vertex LocalV ;
21: Get a set of labeling vertices, LocalV DFSSet, from vertex LocalV ’s DFS tree;
22: Copy LocalV DFSSet from DG to SubDG;
23: Remove LocalV from DG;
24: end for
25: Perform Algorithm 4 on DG to remove analysis-irrelevant vertices;

Line 6 uses the union-find algorithm described in [12] to merge the non-disjoint sets

in Col, and produce a collection of sets with disjoint operation and invariant vertices. For

example, Col for the graph shown in Fig. 4.15b becomes {Op6, In5, In4, Op1, Op3, Op8, In5}

with the union-find algorithm being used.

Lines 7-16 use each disjoint set, S, in Col to construct a new dependency graph from the

input dependency graph DG. Lines 8-13 build a forest for S from each DFS tree of a vertex

in S. Lines 14-15 create a new dependency graph that consists of all vertices in the forest.

Since Col for the graph shown in Figure 4.15b has only one disjoint set, the forest generated

from the disjoint set consists of all the vertices in the dependency graph, indicating that

53

Algorithm 6 Dependency Graph Decomposition Algorithm

1: Input: A dependency graph, DG, produced from the original graph by Algorithm 5
2: Output: A set of dependency graphs
3: Algorithm Steps:
4: Recompute ARClsAttrV Set for DG using Algorithm 4;
5: Compute a collection Col = S1, S2,...,Sv of operation and invariant vertex sets, where
Sv represents a set of operation and invariant vertices that directly depend on vertex v,
a member of ARClsAttrV Set;

6: Use the disjoint-set data structure and algorithm described in [12] to merge the
nondisjoint-sets in Col;

7: for each set, S, in Col do
8: Set SubV Set = {};
9: for each vertex, V , in S do

10: Perform a DFS from vertex V ;
11: Get a set of labeling vertices, V DFSSet, from vertex V ’s DFS tree;
12: SubV Set = SubV Set ∪ V DFSSet;
13: end for
14: Create an empty dependency graph, SubDG;
15: Copy all the vertices in SubV Set, from DG to SubDG;
16: end for
17: Delete DG;

the graph in Figure 4.15b is the minimum dependency graph that cannot be decomposed

further.

Figure 4.16 shows four model fragments extracted from the LRBAC model in Figure

4.12. Each model fragment corresponds to a dependency graph in Figure 4.15.

4.2.4. Discussion. The slicing technique described in the section is limited in its ability

to produce smaller model fragments from a large class model w.r.t. the OCL constraints

(i.e., invariants and operation contracts). There may be constraints that reference all model

elements of a class model and thus require the entire class model to be present when analyzed

(reflecting a very tight coupling across all model elements). In this case, the slicing technique

described in this dissertation does not ensure that more than one independently analyzable

fragments will be produced from a class model. However, an empirical study conducted by

Juan et al. [11] showed that in practice a substantial number of invariants only reference

54

Figure 4.16. A List of Model Fragments Generated from the LRBAC Model
in Figure 4.12

part of the class model in which they are defined. Thus our slicing technique is expected to

work for many class models used in practice.

55

CHAPTER 5

Tool Support

We implemented a research prototype that provides (1) implementations of two proposed

class model slicing techniques, and (2) a framework for evaluating the proposed slicing tech-

niques. The prototype builds upon a number of existing technologies:

(1) The prototype was developed using Java language and Eclipse development plat-

form.

(2) The UML class models used for the prototype are specified in Ecore files, the OCL

invariants and operation contracts are specified in textual files, and the object con-

figurations are specified using XMI files.

(3) The prototype uses the Eclipse Modeling Framework [44] to parse Ecore class models

and XMI object configurations.

(4) The prototype uses the APIs from Eclipse OCL project [46] to (1) parse the OCL

constraints defined in the UML class models and (2) check conformance between an

object configuration and a class model with OCL invariants.

In this chapter we present the component architecture of the prototype (Section 5.1),

and describe the implementations of the proposed class model slicing techniques (Section

5.2) and the evaluation framework (Section 5.3).

5.1. Prototype Architecture

Figure 5.1 shows the prototype components and their usage dependencies. The Eclipse

OCL Project and Eclipse Modeling Framework components are third party components. The

descriptions of the non-third party components in Figure 5.1 are given below:

56

Figure 5.1. Prototype Architecture

(1) org.csu.slicing.main: The component acts as a driver of the model slicing framework.

It provides the implementations of two proposed class model slicing techniques.

(2) org.csu.slicing.evaluation: The component acts as a drive of the evaluation frame-

work. It can be used to check conformance between an object configuration and a

class model with OCL invariants.

(3) org.csu.slicing.instance: The component is used to generate object configurations

for the evaluation.

(4) org.csu.slicing.uml2: The component is automatically generated by the Eclipse Mod-

eling Framework. It provides APIs that can be used to create object configurations

that conform to the UML2 class model.

(5) org.csu.slicing.util: The component provides utility functions that can be used to

load, prepocess and save the class models, OCL constraints, and object configura-

tions.

5.2. Implementation of the Slicing Techniques

Figure 5.2 shows a partial UML class model that provides key classes used for the im-

plementation of the slicing techniques. Below is the descriptions of the classes in Figure

5.2:

57

Figure 5.2. A partial UML class model that describes the implementations
of the slicing techniques (part of classes, attributes, operation, and parameters
are omitted)

(1) AbstractVisitor: The class is an abstract class from the Eclipse OCL project [46].

It provides all of the visitXyz() methods for the OCL metamodel (i.e., the abstract

syntax tree of the OCL).

(2) RefModelElmtVisitor: The class extends the AbstractVisitor class, and provides the

implementations of all of the visitXyz() methods for the OCL metamodel. It is used

to process the abstract syntax tree (AST) parsed from OCL text.

(3) InvPrePostAnalyzer: The class loads the constraints (including invariants and op-

eration contracts) from an OCL file and uses the RefModelElmtVisitor visitor to

identify the model elements that are referenced by the constraints.

(4) EMFHelper: The class provides helper functions that are used to load and save class

models, OCL constraints and object configurations.

58

(5) DGGenerator: The class generates a dependency graph from a class model with

invariants and operation contracts.

(6) Slicer: The class provides the implementation of the class model slicing technique.

The sliceModel() method in the class is used to generate class model fragments.

(7) Coslicer: The class extends the Slicer class, and uses the sliceInstance() method

to generate object configuration fragments. It is used for the class model slicing

technique that handles class models, object configurations and OCL invariants.

(8) ContractAwareSlicer: The class provides the implementations of the slicing algo-

rithms for class models with invariants and operation contracts. It is used for the

class model slicing technique that handles class models with invariants and operation

contracts.

5.3. Implementation of the Evaluation Framework

Figure 5.3 shows a partial UML class model that provides key classes used for the im-

plementation of the evaluation framework. The framework provides support for two types

of class model analysis described in Chapter 3. Below is the descriptions of the classes in

Figure 5.3:

(1) InsGenerator: The class allows users to generate random object configurations used

for the evaluation.

(2) Ecore2XMI: The class converts Ecore class models to XMI object configurations

used for the evaluation.

(3) SizeCalculator: The class is used to measure the sizes of class models (e.g., number

of classes) and object configurations (e.g., number of objects).

59

Figure 5.3. A partial UML class model that describes the implementation
of the evaluation framework (part of classes, attributes, operation, and param-
eters are omitted)

(4) Evaluator: The class uses the OCL evaluation APIs from the Eclipse OCL project

to check conformance between an object configuration and a class model with OCL

invariants.

(5) Ecore2Alloy: The class transforms Ecore class models to Alloy models. The gener-

ated Alloy models are fed into the Alloy Analyzer for rigorous analysis of invariants

and operation contracts defined in the class models.

60

CHAPTER 6

Evaluation

The objective of this evaluation is to investigate the effectiveness and correctness of

the proposed slicing techniques. Specifically the evaluation aims to answer the following

questions:

(1) Q1: Can the slicing technique improve the efficiency of the invariant checking and

preserve the checking results?

(2) Q2: Can the slicing technique improve the efficiency of the contract checking and

preserve the checking results?

In the remainder of this chapter we present the results of the evaluation for Q1 (Section

6.1) and Q2 (Section 6.2).

6.1. Evaluating Co-slicing of Class Model and Object Configuration

Q1 can be divided into the following research questions:

RQ1.1 Can the slicing technique improve the efficiency of the invariant checking?

RQ1.2 Can the slicing technique preserve the invariant checking results?

To answer RQ1.1, we need to check whether the invariant checking time for unsliced class

and object models (CTUM) is greater than the invariant checking time for sliced class and

object models (CTSM). To avoid the bias of simply comparing the checking time of large

and small models (i.e., unsliced and sliced models), we also need to take the time used to

generate footprint and to slice class and object models (ST) into consideration.

Metric 1 below can be used to answer RQ1.1:

(1) CheckingT imeSpeedup(CTS) =
CTUM

CTSM + ST

61

If CTS is above 1, the slicing technique can improve the efficiency of the invariant checking.

If CTS is below 1, the checking efficiency is not improved, and there is no need to use the

slicing technique in the context of the invariant checking.

The slicing technique aims to improve the efficiency of the invariant checking. Thus it

should not change the checking results. To answer RQ1.2, we need to check whether the

invariant checking results for unsliced class and object models are the same as that for sliced

class and object models.

The evaluation also provides the evaluation results for RQ1.3:

RQ1.3 Does the object model usage (i.e., the percentage of object model elements that

are needed for the invariant checking) have negative impact on the checking time

speedup (i.e., the lower the object model usage, the higher the checking time

speedup)?

In RQ1.3, we are interested in exploring the relationship between the object model usage and

the checking time speedup, that is, whether the decrease of the object model usage would

make the checking time speedup increase. To answer RQ1.3, we need to calculate both the

object model usage (see Metric 2) and the checking time speedup (see Metric 1). Metric

2 below is used to estimate the object model usage, η, where #sm refers to the number of

elements in the sliced object model and #um refers to the number of elements in the unsliced

object model:

(2) η =
#sm

#um

In the remainder of this section we describe the data used in the evaluation, the evaluation

results, and the threats to validity we identified.

62

0

200000

400000

600000

800000

1000000

1 9 17 25 33 41 49 57 65 73

N
u

m
b

e
r

o
f

e
le

m
e

n
ts

Object model number (from 1 to 73)

Object Model Size

Figure 6.1. The sizes of the object models used in the evaluation

6.1.1. Data Collection. The class model used for the evaluation is the Java meta-

model. The reason we chose Java metamodel is that (1) it is fairly complex (345 model

elements including classes, attributes, references, and enumerations), and (2) its instances

are relatively easy to collect from Java programs using reverse engineering tools. The object

models used for the evaluation are generated from 73 Eclipse projects (Java source code).

The reason we chose Eclipse projects is that (1) the Eclipse platform is widely used in both

industry and academia, and (2) the object models generated from the Eclipse projects are

quite large. We used a reverse engineering tool, namely MoDisco [10], to generate object

models from the Java projects.

Figure 6.1 shows the sizes of the object models used in the evaluation. The sizes of these

73 models range from 175926 (i.e., object model generated from the org.eclipse.gmf.runtime.d-

raw2d.ui.render.awt plugin) to 993319 (i.e., object model generated from the org.eclipse.emf.-

ecore.xcore.ui plugin) in terms of total number of object model elements including objects,

links, and slots. Six invariants were used in the evaluation (see Table 6.1).

63

Table 6.1. A list of invariants used in the evaluation

Context TagElement inv Inv1:
self.fragments→select(te | te.oclIsTypeOf(TextElement))→forAll(te1 |
TextElement.allInstances()→exists(te2 | te2.text = te1.oclAsType(TextElement).text))
Context SingleVariableAccess inv Inv2:
VariableDeclaration.allInstances()→exists(vd | vd = self.variable)
Context Modifier inv Inv3:
(self.bodyDeclaration <> null implies BodyDeclaration.allInstances()→exists(bd | bd
= self.bodyDeclaration)) and (self.singleVariableDeclaration <> null implies
SingleVariableDeclaration.allInstances()→exists(svd | svd =
self.singleVariableDeclaration)) and (self.variableDeclarationStatement <> null implies
VariableDeclarationStatement.allInstances()→exists(vds | vds =
self.variableDeclarationStatement)) and (self.variableDeclarationExpression <> null implies
VariableDeclarationExpression.allInstances()→exists(vde | vde =
self.variableDeclarationExpression))
Context TypeAccess inv Inv4:
Type.allInstances()→exists(t—self.type.name = t.name)
Context MethodInvocation inv Inv5:
MethodDeclaration.allInstances()→exists(md | md = self.method) and
self.arguments→forAll(arg | arg.oclIsTypeOf(SingleVariableAccess) implies
SingleVariableAccess.allInstances()→exists(sva | sva = arg))
Context ExpressionStatement inv Inv6:
Expression.allInstances()→exists(e | e = self.expression)

6.1.2. Evaluation Results. The evaluation was performed on a laptop computer with

2.17 GHz Intel Dual Core CPU, 3 GB RAM, and Windows 7.

6.1.2.1. Effectiveness of the Slicing Technique. The evaluation framework takes as input

the class model, 73 object models, and six invariants. For a pair of one object model and one

invariant, the evaluation framework performs the following four steps. First, it checks the

object model against the invariant in the context of class model, and measures the checking

time (CTUM). Second, it generates a sliced class model for the invariant, slices the input

object model using the sliced class model, and measures the time used to generate footprint

and to slice the class and object models (ST). Third, it checks the sliced object model

against the invariant in the context of the sliced class model, and measures the checking

time (CTSM). Fourth, it calculates the CTS based on Metric 1. In total, there are 73 CTSs

64

0

2000

4000

6000

8000

Inv1 Inv2 Inv3 Inv4 Inv5 Inv6C
h

e
ck

in
g

ti
m

e
 (s

e
co

n
d

s)

Invariants

Checking Time for Unsliced Class and Object

Models

Figure 6.2. Box plot for the measurement of Checking Time for Unsliced
class and object Models (CTUM)

0

200

400

600

800

1000

Inv1 Inv2 Inv3 Inv4 Inv5 Inv6C
h

e
ck

in
g

ti
m

e
 (s

e
co

n
d

s)

Invariants

Checking Time for Sliced Class and Object

Models

Figure 6.3. Box plot for the measurement of Checking Time for Sliced class
and object Models (CTSM)

for each invariant. Note that to ensure the evaluation results are reliable, we calculated the

CTS ten times for each pair of invariant and object model, and used its average value.

Figure 6.2 shows the distribution of the checking time for unsliced class and object models

for each invariant. Although most of the CTUMs are less than 2000 seconds, the CTUM

could achieve 7860 seconds (i.e., more than two hours) in the worst case scenario (see the

65

0

0.5

1

1.5

2

Inv1 Inv2 Inv3 Inv4 Inv5 Inv6

Ti
m

e
 (s

e
co

n
d

s)

Invariants

Time used to Generate Footprint and Slice

Class and Object Models

Figure 6.4. Box plot for the measurement of ST

0
5
10
15
20
25
30
35
40

Inv1 Inv2 Inv3 Inv4 Inv5 Inv6

C
h

e
ck

in
g

 t
im

e
 s

p
e

e
d

u
p

Invariants

Speedup Box Plot

Figure 6.5. Box plot for the measurement of Checking Time Speedup (CTS)

box plot for Inv6). Figure 6.3 shows the distribution of the checking time for sliced class

and object models for each invariant. All the CTSMs are less than 1000 seconds, and most

of the CTSM are less than 200 seconds. Compared with CTUM and CTSM, the time used

to generate footprints and to slice class and object models (ST) is quite small. Figure 6.4

shows the distribution of the STs for each invariant. All the STs are less than two seconds.

66

Figure 6.5 shows the distribution of the checking time speedup for each invariant. All

the CTSs are calculated using Metric 1. Given Inv5, the CTSs for the 73 models vary from

2.5 (minimum CTS) to 31.1 (maximum CTS). The medium CTS for Inv3 is about 5.0, the

first quartile is about 4.0 and the third quartile is about 8.0. Since the CTS for each pair

of invariant and object model is above 1, the value of CTSM + ST must be smaller than

CTUM (refer to Metric 1). Thus, the slicing technique can improve the efficiency of the

invariant checking (refer to RQ1).

Figure 6.5 also shows how significantly the slicing technique improves the checking effi-

ciency. In the worst case scenario, the CTS is close to 1.5 (see the minimum CTS for Inv1),

while in the best case scenario, the CTS is close to 36.0 (see the maximum CTS for Inv4).

Since the first quartile of CTSs for each invariant is above 2.0, the slicing technique can

significantly improve the checking efficiency for three fourths of the object models used in

the evaluation (i.e., 55 object models). In summary, the slicing technique can reduce the

time used for invariant checking.

6.1.2.2. Correctness of the Slicing Technique. In the invariant checking, the checking tool

matches an object with an invariant if the object is an instance of a class in the context of

which the invariant is defined, and checks the object against its matched invariant. If an

object satisfies its matched invariant, the object would be identified as a valid object w.r.t.

the invariant. To analyze the correctness of the slicing technique, we need to identify both

matched and valid objects for each invariant in unsliced and sliced object models respectively.

Given an invariant, if (1) its matched objects in the unsliced object model are the same as the

matched objects in the sliced object model, and (2) its valid objects in the unsliced object

model are the same as the valid objects in the sliced object model, the slicing technique

preserves the checking results for the invariant (refer to RQ1.2).

67

0

5

10

15

20

25

0% 5% 10% 15% 20% 25% 30% 35%

C
TS

 (c
h

e
ck

in
g

ti
m

e
 s

p
e

ed
u

p
)

η (model usage)

CTS-η Relationship for Inv1

(a) CTS-η Relationship in the con-
text of Inv1

0

3

6

9

12

15

18

0% 5% 10% 15% 20% 25% 30% 35%

C
TS

 (c
h

e
ck

in
g

ti
m

e
 s

p
e

ed
u

p
)

η (model usage)

CTS-η Relationship for Inv2

(b) CTS-η Relationship in the con-
text of Inv2

0

3

6

9

12

15

0% 5% 10% 15% 20% 25% 30% 35%

C
TS

 (c
h

e
ck

in
g

ti
m

e
 s

p
e

ed
u

p
)

η (model usage)

CTS-η Relationship for Inv3

(c) CTS-η Relationship in the con-
text of Inv3

0

6

12

18

24

30

36

0% 5% 10% 15% 20% 25% 30% 35%

C
TS

 (c
h

e
ck

in
g

ti
m

e
 s

p
e

ed
u

p
)

η (model usage)

CTS-η Relationship for Inv4

(d) CTS-η Relationship in the con-
text of Inv4

0

8

16

24

32

0% 5% 10% 15% 20% 25% 30% 35%

C
TS

 (c
h

e
ck

in
g

ti
m

e
 s

p
e

ed
u

p
)

η (model usage)

CTS-η Relationship for Inv5

(e) CTS-η Relationship in the con-
text of Inv5

0

3

6

9

12

15

0% 5% 10% 15% 20% 25% 30% 35%

C
TS

 (c
h

e
ck

in
g

ti
m

e
 s

p
e

ed
u

p
)

η (model usage)

CTS-η Relationship for Inv6

(f) CTS-η Relationship in the con-
text of Inv6

Figure 6.6. CTS-η Relationship in the context of each invariant

We used ID injection to accurately check whether an object in the unsliced object model

corresponds to an object in the sliced object model. For example, at the class model level,

we added an ID attribute into the top level class of the Java metamodel, and we kept the

top level class with its ID attribute in the sliced Java metamodel. At the object model level,

68

we generate a unique ID for each object in the model. The evaluation results showed both

unsliced and sliced object models have the same set of matched and valid objects for each

invariant. In summary, the slicing technique preserves the invariant checking results.

6.1.2.3. Relationship between the Checking Time Speedup and the Model Usage. The eval-

uation framework continues with the steps described in Section 6.1.2.1, and calculates the

model usage (η) for each CTS based on Metric 2. In total, there are 73 ηs for each invariant.

We drew a scatter plot of the η (i.e., X-axis) and CTS (i.e., Y-axis) for each invariant (see

Figures 6.6a-6.6f).

The scatter plots show that when the model usages are small (i.e., less than 20%), most

of the CTSs are above 3.0 (see Figure 6.6b, Figure 6.6c, Figure 6.6d, Figure 6.6e, and Figure

6.6f). The scatter plots also show that when the model usage increases (e.g., greater than

20%), almost half of the CTSs are below 3.0 (see Figure 6.6a) and 9% of the CTSs (e.g.,

about six CTSs) are below 2.0. In summary, the model usage has negative impact on the

checking time speedup.

6.1.3. Threats to Validity. The Java metamodel used in the evaluation may not be

well representative of class models used in practice. It is possible that the slicing technique

would be less efficient in other settings (e.g., the UML metamodel). To mitigate this threat,

we also used the UML metamodel and its instances to evaluate the slicing technique. The

evaluation results for the UML metamodel showed that the slicing technique can significantly

improve the invariant checking while preserving the checking results.

Construction threats lie in the way we defined the formulas used in the evaluation. The

choices of formula and statistical analysis may have impact on evaluation results and con-

clusions. For example, Metric 1 does not take the model loading time into consideration.

69

The reason we made this choice is because the model loading time is relatively small com-

pared with the checking time (e.g., seconds v.s. minutes/hours). In addition, models may

be already loaded when performing the invariant checking.

The validity of the evaluation results could be affected by calculations performed by the

evaluation framework. To mitigate this threat, we calculated the CTS ten times for each

pair of invariant and model, and used its average value. In addition, we used different sizes

of object models (see Figure 6.1) in the evaluation to ensure the results are reliable.

Another threat to validity we identified is the mono-operation threat, that is, only one

class model was used in the evaluation. To mitigate this threat, we selected invariants that

use different structural parts of the Java metamodel.

6.2. Evaluating Contract-aware Slicing of Class Model

Q2 can be divided into the following research questions:

RQ2.1 Can the slicing technique improve the efficiency of the contact checking?

RQ2.2 Can the slicing technique preserve the contract checking results?

Metric 1 (CTS) given at the beginning of Section 6.1 is used to calculate the invariant

checking time speedup achieved by the first type of the slicing technique. Unlike the first

type of slicing technique, the second type of slicing technique is used for contract checking,

and it may produce more than one model fragments from a class model. Since the first type

of the slicing technique produces only one model fragment (i.e., sliced class model) from

an input class model, Metric 1 cannot be used to estimate the effectiveness of the slicing

technique used for contract checking. In addition, the contract checking approach requires

users to specify the search scope (i.e., the maximum number of instances the Alloy Analyzer

can produce for a class) for each class model, and the contract checking time may vary

70

w.r.t. the search scope. Therefore, to answer RQ2.1, we need to check whether the contract

checking time for the entire class model is greater than the contract checking time for the

corresponding model fragment w.r.t. the Alloy search scope. The evaluation was conducted

on a laptop computer with 2.17 GHz Intel Dual Core CPU, 3 GB RAM, Windows 7 and the

Alloy Analyzer (version 4.2 with SAT4J).

The slicing technique aims to improve the efficiency of the contract checking. Thus it

should not change the checking results. To answer RQ2.2, we need to check whether the

contract checking results for unsliced class models are the same as that for sliced class models.

In the remainder of this section we describe the evaluation results for the LRBAC class

model (Section 6.2.1)and other class models (Section 6.2.2). We also describe the threats to

validity we identified.

6.2.1. Evaluation Results for LRBAC. We applied the slicing technique to the

LRBAC class model in Figure 4.12, and it took 827 milliseconds to decompose the class

model into 4 fragments as shown in Figure 4.16. The Alloy Analyzer was used to analyze

the contracts that may violate the invariants given in Table 4.5 in the class model and the

corresponding model fragment respectively.

Figure 6.7 shows the results of an evaluation we performed on the entire LRBAC class

model and the corresponding model fragments. Each subfigure in 6.7 has an x axis, namely

SearchScope, indicating the maximum number of instances the Alloy Analyzer can produce

for a class, and a y axis, namely Time, showing the total analysis time (in millisecond) for

building the SAT formula and finding an Alloy instance. For example, Figure 6.7a shows

the time used to analyze the invariant Inv1 in the entire model Model (see Figure 4.12) and

the model fragment Submodel2 (see Figure 4.16) respectively.

71

(a) Analyzing Inv1 (b) Analyzing Inv2

(c) Analyzing Inv3 (d) Analyzing Inv4

(e) Analyzing Inv5 (f) Analyzing Inv6

Figure 6.7. Checking the contracts in the entire LRBAC model and the
corresponding model fragments w.r.t. each invariant given in Table 4.5

The difference between the time used for analyzing Model and that for Submodel2 is

relatively small when the Alloy search scope is below 5. For a search scope above 10, the

time used for analyzing Model becomes significantly large while that for Submodel2 is still

below 5000 ms. Figure 6.7c shows that the analysis time for the Inv3 invariant remains

72

at 0, and Inv3 is not included in any model fragment. This is because Inv3 was removed

after the dependency analysis identified the invariant as an analysis-irrelevant element. In

summary, the slicing technique can significantly reduce the time used for contract checking

when the Alloy search scope is large (e.g., more than 10).

Note that the four algorithms described in the paper use set addition/deletion operations,

a depth-first-search algorithm, and a disjoint-set algorithm. Thus the execution time for

implementations of these four algorithms should not increase significantly as the size of

the class model increases. Since the execution time of SAT solver-based tools (e.g., Alloy)

could be exponential on the size of the class model, the slicing algorithm described in the

dissertation could speed up the verification process for large models.

The evaluation also showed that the contract checking results are preserved by the slicing

technique (see RQ2.2). For example, the analysis performed on the unsliced model and the

model fragments both found that the constraints specified in invariant Inv2, Inv5 and Inv6

were violated by operation UpdateUserID, UpdateMaxRoles and UpdateObjID respec-

tively. The analysis of the full model also revealed that Inv3 is not violated by operation

invocations; this is consistent with the identification of Inv3 as an analysis-irrelevant element.

Table 6.2 shows the contract checking results for the entire LRBAC model and the cor-

responding model fragments. The first row in the table shows a list of Alloy search scopes,

ranging from one to 12. The second row in the table shows the contract checking results

for the Inv1 invariant in the context of the entire LRBAC model (Model). The results show

that no Alloy instance was found for Model within the corresponding Alloy search scopes,

indicating that the contracts defined in the LRBAC model did not violate Inv1. Since Inv1

is also included in the model fragment Submodel, Inv1 was checked in the context of Sub-

model. The checking results for Submodel revealed (see the third row in the table) that the

73

Table 6.2. Contract checking results for the entire LRBAC model and cor-
responding model fragments

Search Scope 1 2 3 4 5 6 7 8 9 10 11 12
Instance Found
in Model for
Inv1

No No No No No No No No No No No No

Instance Found
in Submodel2
for Inv1

No No No No No No No No No No No No

Instance Found
in Model for
Inv2

No Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Instance Found
in Submodel1
for Inv2

No Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Instance Found
in Model for
Inv3

No No No No No No No No No No No No

Inv3 is not in-
cluded in any
fragment
Instance Found
in Model for
Inv4

No No No No No No No No No No No No

Instance Found
in Submodel4
for Inv4

No No No No No No No No No No No No

Instance Found
in Model for
Inv5

No Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Instance Found
in Submodel4
for Inv5

No Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Instance Found
in Model for
Inv6

No Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Instance Found
in Submodel3
for Inv6

No Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

contracts included in Submodel did not violate Inv1 within the corresponding Alloy scopes;

this is consistent with the checking results for Model.

The fourth and fifth rows in Table 6.2 show that the checking results for Inv2 in the

context of Model are the same as that for Inv2 in the context of Submodel1. The sixth row in

74

Table 6.3. Size of the class models and the number of OCL invariants and
operation contracts defined in the models

Model Size #
of
Invs

of Op
Con-
tracts

CarRental 48 8 2
Project 47 3 4
CoachBus 66 6 6
RoyalAndLoyal 151 9 6

Table 6.2 show that the contracts defined in Model did not violate the Inv3 invariant. The

seventh row show that Inv3 is not included in any model fragment, indicating that it is an

analysis-irrelevant element. Therefore, it will not be violated by any operation invocation;

this is consistent with the checking results for Inv3 in the context of Model. The rest of

the rows in Table 6.2 show that the checking results for Inv4, Inv5, and Inv6 in the context

of Model are the same as that in the context of the corresponding model fragments. In

summary, the contract checking results are preserved by the slicing technique.

6.2.2. Evaluation Results for Other Class Models. We also used a variety of

class models to evaluate the slicing technique. Below is a list of class models used in the

evaluation:

• CarRental: The class model, from the USE project [17], describes the concepts of

the car rental service;

• Project: The class model, from the USE Project [17], describes the concepts of a

project management system;

• CoachBus: The class model, from the class model slicing paper [39], describes the

information system of a bus company;

• RoyalAndLoyal: The class model, from the OCL book [47], describes loyalty pro-

grams for companies that offer their customers various kinds of bonuses.

75

Table 6.4. Slicing Results

Model Slicing
Time
(ms)

Fragment Size #
of
Invs

of Op
Con-
tracts

CarRental 889
Local0 4 1 1
Leftover1 9 1 1

Project 846 Leftover0 24 3 4

CoachBus 780
Local0 4 1 1
Local1 4 1 1
Leftover2 12 2 3

RoyalAndLoyal 837
Locl0 6 1 1
Loftover1 32 7 2

Table 6.3 shows the size of these class models (in terms of total number of class model

elements including classes, attributes, references, operations, and enumerations) and the

number of invariants and operation contracts defined in the models. For example, the Car-

Rental class model has 48 elements, eight invariants and two operation contracts. Note that

the CoachBus class model used in the evaluation is not the same as the one used in Section

4.1 because it has six operation contracts.

We applied the slicing technique to these class models, and Table 6.4 shows the slicing

results. For example, it took 889 milliseconds to generate two fragments, namely Local0

and Leftover1, from the CarRental class model. Local0 has four elements, one invariant and

one operation contract, and Leftover1 has nine elements, one invariant and one operation

contract. The Alloy Analyzer was used to analyze the contracts defined in the class model.

Specifically for an invariant defined in a class model, the Alloy Analyzer checks the invariant

in the context of the class model and the corresponding model fragment respectively.

In the remainder of this section we describe the evaluation results for each class model.

6.2.2.1. Evaluation Results for the CarRental Class Model. Figure 6.8 shows the results

of an analysis we performed on the entire CarRental class model and the corresponding model

76

(a) Analyzing Invariant Person3 (b) Analyzing Invariant Branch2

(c) Analyzing Invariant Employee1

Figure 6.8. Analyzing the Invariants in the Entire CarRental Class Model
and the Corresponding Model Fragments

fragments. Two fragments, namely Local0 and Leftover1 (see Table 6.4), were generated from

the CarRental class model.

Both the time used for analyzing Person3 in Local0 and the time used for analyzing

Brach2 in Leftover1 are relatively small even when the Alloy search scope is up to nine,

while the time used for analyzing Person3 in Model and the time used for analyzing Branch2

in Model increases significantly when the Alloy search scope is greater than six. Note that

there are nine invariants in the CarRental class model, while only two invariants exists in

the generated model fragments. This is because the rest of invariants were removed after the

dependency analysis identified them as analysis-irrelevant elements. For example, Figure

6.8c shows that the Employee1 invariant is not included in any model fragment, and its

77

analysis time remains at 0, indicating that the invariant will not be violated by any operation

invocation. The analysis of the entire model also revealed that the Employee1 invariant is

not violated by operation invocations; this is consistent with the identification of Employee1

as an analysis-irrelevant element. In summary, the slicing technique can significantly reduce

the time used for contract checking in the context of the CarRental class model.

The evaluation also showed that the contract checking results are preserved by the slicing

technique. Table 6.5 shows the contract checking results for the entire CarRental class model

and the corresponding model fragments. The first row in the table shows a list of Alloy search

scopes, ranging from one to nine. The second row in the table shows the contract checking

results for the Person3 invariant in the context of the entire CarRental model (Model). The

results revealed that Alloy instances were found for Model when the Alloy search scope is

greater than one, indicating that the contracts defined in the CarRental class model violated

the Person3 invariant. Since Person3 is also included in the model fragment Local0, Person3

was checked in the context of Local0. The checking results revealed (see the third row in the

table) that the contracts included in Local0 violated Person3 when the Alloy search scope is

greater than one; this is consistent with the checking results for the entire CarRental model.

The fourth and fifth rows in Table 6.5 revealed that the checking results for Branch2 in

the context of Model are the same as that for Branch2 in the context of Submodel1. The sixth

row in Table 6.5 show that the contracts defined in Model did not violate the Employee1

invariant. The seventh row show that Employee1 is not included in any model fragment,

indicating that it is an analysis-irrelevant element. Therefore, it will not be violated by

any operation invocation; this is consistent with the checking results for Employee1 in the

context of Model. In summary, the contract checking results for the CarRental class model

are preserved by the slicing technique.

78

Table 6.5. Contract checking results for the entire CarRental model and
corresponding model fragments

Search Scope 1 2 3 4 5 6 7 8 9
Instance Found in
Model for Person3

No Yes Yes Yes Yes Yes Yes Yes Yes

Instance Found in Lo-
cal0 for Person3

No Yes Yes Yes Yes Yes Yes Yes Yes

Instance Found in
Model for Branch2

No Yes Yes Yes Yes Yes Yes Yes Yes

Instance Found in
Leftover1 for Branch2

No Yes Yes Yes Yes Yes Yes Yes Yes

Instance Found in
Model for Employee1

No No No No No No No No No

Employee1 is not in-
cluded in any frag-
ment

6.2.2.2. Evaluation Results for the Project Class Model. Figure 6.9 shows the results of

an analysis we performed on the entire Project class model and the corresponding model

fragments. In this case, only one model fragment, Leftover0, was generated from the Project

class model (see Table 6.4). The Leftover0 fragment shares the same invariants and operation

contracts with the entire class model. Since the model fragment (i.e., 24 elements) has fewer

elements than the entire class model (i.e., 47 elements), it could be expected that the analysis

time used for the model fragment is less than that for the entire class model. This is confirmed

by the analysis results (see Figure 6.9).

When the Alloy search scope is small (e.g., less than six), the difference between the

analysis time used for the model fragment and the analysis time used for the entire class

model is not significant. For example, when the Alloy search scope is five, the time used

for analyzing NotOverLoaded in Leftover0 is about 350 milliseconds, while the time used for

analyzing NotOverLoaded in Model is about 550 milliseconds. When the Alloy search scope

is large (e.g., equal to or more than six), the analysis time used for the entire class model is

almost two times more than the time used for the model fragment. For example, when the

79

(a) Analyzing Invariant Employ-
eesInProject

(b) Analyzing Invariant NotOverloaded

(c) Analyzing Invariant ActiveProject

Figure 6.9. Analyzing the Invariants in the Entire Project Class Model and
the Corresponding Model Fragments

Alloy search scope is six, the time used for analyzing NotOverLoaded in Leftover0 is about

450 milliseconds, while the time used for analyzing NotOverLoaded in Model is about 1200

milliseconds. In summary, the slicing technique can significantly reduce the time used for

contract checking in the context of the Project class model.

The evaluation also showed that the contract checking results are preserved by the slicing

technique. Table 6.6 shows the contract checking results for the entire Project class model

and the corresponding model fragments. The first row in the table shows a list of Alloy

search scopes, ranging from one to nine. The second row in the table shows the contract

checking results for the EmployeesInProject invariant in the context of the entire Project

80

Table 6.6. Contract checking results for the entire Project model and corre-
sponding model fragments

Search Scope 1 2 3 4 5 6 7 8 9
Instance Found in Model for
EmployeesInProject

No Yes Yes Yes Yes Yes Yes Yes Yes

Instance Found in Leftover0
for EmployeesInProject

No Yes Yes Yes Yes Yes Yes Yes Yes

Instance Found in Model for
NotOverLoaded

No No No Yes Yes Yes Yes Yes Yes

Instance Found in Leftover0
for NotOverLoaded

No No No Yes Yes Yes Yes Yes Yes

Instance Found in Model for
ActiveProject

No Yes Yes Yes Yes Yes Yes Yes Yes

Instance Found in Leftover0
for ActiveProject

No Yes Yes Yes Yes Yes Yes Yes Yes

model (Model). The results revealed that Alloy instances were found for Model when the

Alloy search scope is greater than one, indicating that the contracts defined in the Project

class model violated the EmployeesInProject invariant. Since EmployeesInProject is also

included in the model fragment Leftover0, EmployeesInProject was checked in the context of

Leftover0. The checking results revealed (see the third row in the table) that the contracts

included in Leftover0 violated EmployeesInProject when the Alloy search scope is greater

than one; this is consistent with the checking results for the entire Project model.

The fourth and fifth rows in Table 6.6 revealed that the checking results for NotOver-

Loaded in the context of Model are the same as that for NotOverLoaded in the context of

Leftover0. The sixth and seventh rows in Table 6.6 revealed that the checking results for

ActiveProject in the context of Model are the same as that for ActiveProject in the con-

text of Leftover0. In summary, the contract checking results for the Project class model are

preserved by the slicing technique.

6.2.2.3. Evaluation Results for the CoachBus Class Model. Figure 6.10 shows the results

of an analysis we performed on the entire CoachBus class model and the corresponding

81

(a) Analyzing Invariant NonNegativeAge (b) Analyzing Invariant UniqueT-
icketNumber

(c) Analyzing Invariant MinCoachSize (d) Analyzing Invariant MaxCoachSize

Figure 6.10. Analyzing the Invariants in the Entire CoachBus Class Model
and the Corresponding Model Fragments

model fragments. Three model fragments, namely Local0, Local1 and Leftover2 (see Table

6.4), were generated from the CoachBus class model. Both the time used for analyzing

NonNegativeAge in Local0 and the time used for analyzing UniqueTicketNumber in Local1

are relatively small (less than 300 milliseconds) even when the Alloy search scope is up to

nine. The time used for analyzing MinCoachSize in Leftover2 steadily grows as the Alloy

search scope increases. But it is still less than the time used for analyzing MinCoachSize in

the entire CoachBus class model. The time used for analyzing MaxCoachSize in Leftover2 is

much less than the time used for analyzing MaxCoachSize in Model when the Alloy search

scope is large (greater than seven). Note that the CoachBus class model has six invariants

82

Table 6.7. Contract checking results for the entire CoachBus model and
corresponding model fragments

Search Scope 1 2 3 4 5 6 7 8 9
Instance Found in Model for
NonNegativeAge

No Yes Yes Yes Yes Yes Yes Yes Yes

Instance Found in Local0 for
NonNegativeAge

No Yes Yes Yes Yes Yes Yes Yes Yes

Instance Found in Model for
UniqueTicketNumber

No Yes Yes Yes Yes Yes Yes Yes Yes

Instance Found in Local1 for
UniqueTicketNumber

No Yes Yes Yes Yes Yes Yes Yes Yes

Instance Found in Model for
MinCoachSize

No Yes Yes Yes Yes Yes Yes Yes Yes

Instance Found in Leftover2
for MinCoachSize

No Yes Yes Yes Yes Yes Yes Yes Yes

Instance Found in Model for
MaxCoachSize

No Yes Yes Yes Yes Yes Yes Yes Yes

Instance Found in Leftover2
for MaxCoachSize

No Yes Yes Yes Yes Yes Yes Yes Yes

(see Table 6.3), and two of them are not shown in Figure 6.10 because they were removed as

analysis-irrelevant elements. In summary, the slicing technique can significantly reduce the

time used for contract checking in the context of the CoachBus class model.

The evaluation also showed that the contract checking results are preserved by the slicing

technique. Table 6.7 shows the contract checking results for the entire CoachBus class model

and the corresponding model fragments. The first row in the table shows a list of Alloy

search scopes, ranging from one to nine. The second row in the table shows the contract

checking results for the NonNegativeAge invariant in the context of the entire CoachBus

model (Model). The results revealed that Alloy instances were found for Model when the

Alloy search scope is greater than one, indicating that the contracts defined in the CoachBus

class model violated the NonNegativeAge invariant. Since NonNegativeAge is also included

in the model fragment Local0, NonNegativeAge was checked in the context of Local0. The

checking results revealed (see the third row in the table) that the contracts included in Local0

83

violated NonNegativeAge when the Alloy search scope is greater than one; this is consistent

with the checking results for the entire CoachBus model.

The fourth and fifth rows in Table 6.7 revealed that the checking results for UniqueT-

icketNumber in the context of Model are the same as that for UniqueTicketNumber in the

context of Local1. The sixth and seventh rows in Table 6.7 revealed that the checking results

for MinCoachSize in the context of Model are the same as that for MinCoachSize in the

context of Leftover2. The eighth and ninth rows in Table 6.7 revealed that the checking

results for MaxCoachSize in the context of Model are the same as that for MaxCoachSize in

the context of Leftover2. In summary, the contract checking results for the CoachBus class

model are preserved by the slicing technique.

6.2.2.4. Evaluation Results for the RoyalAndLoyal Class Model. Figure 6.11 shows the

results of an analysis we performed on the entire RoyalAndLoyal class model and the cor-

responding model fragments. Two fragments, namely Local0 and Leftover1 (see Table 6.4),

were generated from the RoyalAndLoyal class model. The Local0 model fragment has only

one invariant (UniqueName) and one operation contract. Compared with the time used

for analyzing UniqueName in the entire class model (up to 18000 milliseconds), the time

used for analyzing UniqueName in Local0 is significantly small (less than 100 milliseconds).

The time used for analyzing ProgramPartner1, nrOfParticipants, ServiceLevel1, Customer10,

sizesAgree, CustomerCard3 in Leftover1 is less than 2000 milliseconds even when the Alloy

search scope is up to nine. The time used for analyzing Customer1 in Leftover1 steadily

grows as the Alloy search scope increases, and it reaches 4000 milliseconds when the search

scope is up to 9. At this point, the time used for analyzing Customer1 in the entire class

model is about 24000 milliseconds. Note that the RoyalAndLoyal class model has nine in-

variants (see Table 6.3), and only one of them is not shown in Figure 6.11 because it was

84

Table 6.8. Contract checking results for the entire RoyalAndLoyal model
and corresponding model fragments

Search Scope 1 2 3 4 5 6 7 8 9
Instance Found in Model for
UniqueName

No Yes Yes Yes Yes Yes Yes Yes Yes

Instance Found in Local0 for
UniqueName

No Yes Yes Yes Yes Yes Yes Yes Yes

Instance Found in Model for
ProgramPartner1

No Yes Yes Yes Yes Yes Yes Yes Yes

Instance Found in Leftover1
for ProgramPartner1

No Yes Yes Yes Yes Yes Yes Yes Yes

Instance Found in Model for
nrOfParticipants

No Yes Yes Yes Yes Yes Yes Yes Yes

Instance Found in Leftover1
for nrOfParticipants

No Yes Yes Yes Yes Yes Yes Yes Yes

Instance Found in Model for
ServiceLevel1

No No No No No No No No No

Instance Found in Leftover1
for ServiceLevel1

No No No No No No No No No

Instance Found in Model for
Customer10

No Yes Yes Yes Yes Yes Yes Yes Yes

Instance Found in Leftover1
for Customer10

No Yes Yes Yes Yes Yes Yes Yes Yes

Instance Found in Model for
sizesAgree

No Yes Yes Yes Yes Yes Yes Yes Yes

Instance Found in Leftover1
for sizesAgree

No Yes Yes Yes Yes Yes Yes Yes Yes

Instance Found in Model for
Customer1

No No No No No No No No No

Instance Found in Leftover1
for Customer1

No No No No No No No No No

Instance Found in Model for
CustomerCard3

No No No Yes Yes Yes Yes Yes Yes

Instance Found in Leftover1
for CustomerCard3

No No No Yes Yes Yes Yes Yes Yes

removed as analysis-irrelevant element. In summary, the slicing technique can significantly

reduce the time used for contract checking in the context of the RoyalAndLoyal class model.

The evaluation also showed that the contract checking results are preserved by the slicing

technique. Table 6.8 shows the contract checking results for the entire RoyalAndLoyal class

model and the corresponding model fragments. The first row in the table shows a list of Alloy

search scopes, ranging from one to nine. The second row in the table shows the contract

85

checking results for the UniqueName invariant in the context of the entire RoyalAndLoyal

model (Model). The results revealed that Alloy instances were found for Model when the Alloy

search scope is greater than one, indicating that the contracts defined in the RoyalAndLoyal

class model violated the UniqueName invariant. Since UniqueName is also included in the

model fragment Local0, UniqueName was checked in the context of Local0. The checking

results revealed (see the third row in the table) that the contracts included in Local0 violated

UniqueName when the Alloy search scope is greater than one; this is consistent with the

checking results for the entire RoyalAndLoyal model.

The rest of the rows in Table 6.8 show that the checking results for ProgramPartner1,

nrOfParticipants, ServiceLevel1, Customer10, sizesAgree, Customer1 and CustomerCard3

in the context of Model are the same as that in the context of the corresponding model

fragments. In summary, the contract checking results for the RoyalAndLoyal class model are

preserved by the slicing technique.

6.2.3. Threats to Validity. The validity of the evaluation results could be affected by

calculations performed by the evaluation framework. To mitigate this threat, we calculated

the contract checking time ten times for each pair of invariant and class model, and used its

average value. In addition, we used different sizes of class models in the evaluation to ensure

the results are reliable.

Construction threats lie in the way we defined the formulas used in the evaluation. The

choices of formula and statistical analysis may have impact on evaluation results and conclu-

sions. For example, the class model slicing is not taken into consideration when we compare

the checking time used for the model fragments and for the entire class model. This is mainly

because the slicing time is relatively small compared with the contract checking time when

the Alloy search scope is large (e.g., less than one second v.s. seconds). Moreover, the slicing

86

technique is used only once for each class model in the evaluation, and it may produce more

than one model fragments. On the other hand, the contract checking may be performed

more than once on a model fragment. Therefore, it may introduce bias when we simply

compare the checking time used for the entire class model with the checking time used for

one model fragment plus the class model slicing time.

In addition, the model loading time is not taken into consideration in the evaluation.

The reason we made this choice is because (1) the class model loading time is relatively

small compared with the contract checking time (e.g., milliseconds v.s. seconds), and (2)

class models may be already loaded when performing the contract checking.

87

(a) Analyzing Invariant
UniqueName

(b) Analyzing Invariant
ProgramPartner1

(c) Analyzing Invariant
nrOfParticipants

(d) Analyzing Invariant
ServiceLevel1

(e) Analyzing Invariant
Customer10

(f) Analyzing Invariant
sizesAgree

(g) Analyzing Invariant
Customer1

(h) Analyzing Invariant
CustomerCard3

Figure 6.11. Analyzing the Invariants in the Entire RoyalAndLoyal Class
Model and the Corresponding Model Fragments

88

CHAPTER 7

Conclusion

In this chapter we summarize contritions of the dissertation (Section 7.1) and provide an

overview of plans for future related work (Section 7.2).

7.1. Contribution

The contribution of this dissertation includes (1) a state-of-the-art survey on class model

slicing techniques, (2) a rigorous technique that supports co-slicing of class models and object

configurations, (3) a rigorous technique that supports slicing of class models including both

invariants and operation contracts, (4) a research prototype that provides implementations

of two proposed class model slicing techniques, and (5) an evaluation framework for the

proposed slicing techniques.

For the state-of-the-art survey, we conducted a systematic literature review on class model

slicing techniques. The systematic review compared current class model slicing techniques

and identified their limitations through a systematic evaluation. The review follows a care-

fully designed paper selection procedure, and identified eight class model slicing techniques

in scientific journals and conferences from 2003 to 2014.

We proposed a slicing technique to improve the efficiency of model analysis (i.e., Invariant

Checking) that involves checking whether an instance of a class model satisfies the invariants

defined in the class model. The slicing technique uses the invariant being checked to produce

sliced class and object models from the input class and object models. The output of the

slicing technique (i.e., sliced class and object models) can be more efficiently analyzed by

invariant checking tools. Note that the slicing technique is not intended to improve the

existing invariant checking algorithms. Instead, the technique aims to reduce the size of

89

the checking inputs to make the analysis more efficient. It means our slicing technique

preprocesses the input of the invariant checking process. Therefore the technique described

in the dissertation is agnostic to the technological space. We applied the slicing technique to

a variety of tools (e.g., Kermeta Workbench [14], USE [17] and Alloy Analyzer [18]), showing

that the slicing technique is agnostic to the checking technologies the software developers

are working with.

We also presented a slicing technique for class models that includes invariants and op-

eration contracts. The slicing technique is used to improve the efficiency of a class model

analysis technique (i.e., Contract Checking) that involves checking a sequence of operation

invocations to uncover violations in specified invariants. The slicing technique can reduce

the problem of analyzing a large model with many invariants to smaller subproblems that

involve analyzing a model fragment against a subset of invariants and operation contracts.

Each model fragment can be analyzed independently of other fragments. Given a class model

with OCL constraints, the slicing approach automatically generates slicing criteria consist-

ing of a subset of invariants and operation contracts, and uses the criteria to extract model

fragments. Each model fragment is obtained by identifying and analyzing relationships be-

tween model elements and the constraints (invariants and operation contracts) included in

a generated slicing criterion.

We developed a research prototype that provides implementations of two proposed class

model slicing techniques. The prototype was developed using Java language and Eclipse

development platform. The UML class models used for the prototype are expressed using the

Ecore standard (i.e., the de-facto standard to define class models), the OCL invariants and

operation contracts are specified in textual files, and the object configurations are expressed

using the XMI standard (i.e., the de-facto standard to serialize models). The prototype uses

90

the Eclipse Modeling Framework (EMF) [44] to parse Ecore class models and XMI object

configurations. Even though the evaluation framework builds upon Java and Eclipse, the

slicing technique is not bound to a particular technical space, and it can be implemented

using any language and framework.

We also developed an evaluation framework for the proposed slicing techniques. The

evaluation framework builds upon both the EMF and the Eclipse OCL project [46]. The

framework uses the EMF to parse and serialize class and object models. The framework

uses the Eclipse OCL project to (1) parse the OCL invariants defined in a class model and

(2) check an object model against the class model with OCL invariants. The evaluation

framework also builds upon the Alloy Analyzer [19], and provides a transformation between

class models and Alloy models. The generated Alloy models can be fed into the Alloy

Analyzer for rigorous analysis of invariants and operation contracts defined in the class

models.

The purpose of the evaluation is to check whether (1) the proposed slicing technique

improves the efficiency of the invariant checking and the contract checking, and (2) the

checking results for the sliced models are the same as the unsliced models. We have evaluated

the slicing technique for invariant checking with the Java class model and 73 object models

produced from the Eclipse plugins. The evaluation we performed provides evidence that the

proposed slicing technique can significantly reduce the time (e.g., achieving checking speedup

ranging from 1.5 to 36) to perform the invariant checking for the Java class model and its

instances while preserving the checking results.

We have also evaluated the slicing technique for contract checking using a variety of

class models. The results of the evaluation we performed showed that the proposed slicing

technique can significantly reduce the time to perform the contract checking for large Alloy

91

search scope. The evaluation also revealed that the proposed slicing technique can preserve

the contract checking results.

7.2. Future Work

The proposed slicing techniques can be limited in their abilities to produce smaller models

from a large class model. There may be constraints (operation contracts or invariants) that

reference all model elements of a class model and thus require the entire class model to be

present when analyzed (reflecting a very tight coupling across all model elements). In this

case, the slicing techniques described in this dissertation do not ensure that more than one

class model elements will be removed from a class model. Therefore, one objective of our

future work is to address the limitation of the proposed slicing techniques. We plan to use

class model refactoring techniques to reduce the coupling across elements of a class model if

the proposed slicing techniques cannot produce smaller models from the class model.

One of the proposed slicing techniques described in the dissertation is used to improve

the efficiency of the invariant checking. However, the invariant checking is not the only usage

scenario for the slicing technique. The slicing technique can be further improved and used

for other modeling tasks that involve both class and object models. One future direction of

this work would be to evaluate the impact of the slicing technique on other kinds of modeling

tasks (e.g., model transformation).

Another future direction of this work could be slicing invariants using the information

found in object models. For example, a complex invariant may reference a substantial

number of class model elements, while an object model may only reference a small subset

of class model elements. In this case, checking the object model against the invariant would

not require the entire invariant to be analyzed. Thus, the slicing technique would use the

92

information in the object model to reduce the complex invariant into smaller subinvariants,

where only a subset of the subinvariants are needed to analyze the object model.

93

Bibliography

[1] K. Anastasakis. UML2Alloy Reference Manual. UML2Alloy Version: 0.52 [Online]

available at http://www. cs. bham. ac. uk/˜ bxb/UML2Alloy/files/uml2alloy manual.

pdf (retrieved 01/09/2009), 2012.

[2] K. Anastasakis, B. Bordbar, G. Georg, and I. Ray. UML2Alloy: A Challenging Model

Transformation. In Model Driven Engineering Languages and Systems, pages 436–450.

Springer, 2007.

[3] K. Androutsopoulos, D. Binkley, D. Clark, N. Gold, M. Harman, K. Lano, and Z. Li.

Model projection: simplifying models in response to restricting the environment. In

Proceedings of 33rd International Conference on Software Engineering (ICSE), pages

291–300. IEEE, 2011.

[4] J. Bae and H. Chae. UMLSlicer: A tool for modularizing the UML metamodel using

slicing. In Proceedings of the 8th IEEE International Conference on Computer and

Information Technology, pages 772–777. IEEE, 2008.

[5] J. Bae, K. Lee, and H. Chae. Modularization of the UML metamodel using model slicing.

In Fifth International Conference on Information Technology: New Generations, pages

1253–1254. IEEE, 2008.

[6] Xavier Blanc, Isabelle Mounier, Alix Mougenot, and Tom Mens. Detecting model incon-

sistency through operation-based model construction. In Software Engineering, 2008.

ICSE’08. ACM/IEEE 30th International Conference on, pages 511–520. IEEE, 2008.

[7] A. Blouin, B. Combemale, B. Baudry, and O. Beaudoux. Modeling model slicers. In

Model Driven Engineering Languages and Systems, pages 62–76, 2011.

[8] A. Blouin, B. Combemale, B. Baudry, and O. Beaudoux. Kompren: modeling and

generating model slicers. Software & Systems Modeling, pages 1–17, 2012.

94

[9] B. Bordbar and K. Anastasakis. UML2ALLOY: A tool for lightweight modelling of

discrete event systems. In IADIS AC, pages 209–216, 2005.

[10] H. Brunelière, J. Cabot, G. Dupé, and F. Madiot. Modisco: A model driven reverse

engineering framework. Information and Software Technology, 56(8):1012 – 1032, 2014.

[11] J. Cadavid, B. Combemale, and B. Baudry. Ten years of Meta-Object Facility: an

analysis of metamodeling practices. In Technical Report by the Triskell Team at INRI-

A/IRISA, pages 1–25, 2012.

[12] T.H. Cormen. Introduction to algorithms. The MIT press, 2001.

[13] R. Eshuis and R. Wieringa. Tool support for verifying UML activity diagrams. IEEE

Transactions on Software Engineering, 30(7):437–447, 2004.

[14] F. Fleurey, Z. Drey, D. Vojtisek, C. Faucher, and V. Mahé. Kermeta language, reference

manual. Internet: http://www. kermeta. org/docs/KerMeta-Manual. pdf. IRISA, 2006.

[15] R. France, A. Evans, K. Lano, and B. Rumpe. The UML as a formal modeling notation.

Computer Standards & Interfaces, 19(7):325–334, 1998.

[16] K.B. Gallagher and J.R. Lyle. Using program slicing in software maintenance. IEEE

Transactions on Software Engineering, 17(8):751–761, 1991.

[17] M. Gogolla, F. Büttner, and M. Richters. USE: A uml-based specification environment

for validating UML and OCL. Science of Computer Programming, 69(1):27–34, 2007.

[18] D. Jackson. Alloy: A lightweight object modelling notation. ACM Transactions on

Software Engineering and Methodology (TOSEM), 11(2):256–290, 2002.

[19] D. Jackson, I. Schechter, and I. Shlyakhter. Alcoa: The alloy constraint analyzer. In

Proceedings of the 22th International Conference on Software Engineering, pages 730–

733. IEEE, 2000.

95

[20] C. Jeanneret, M. Glinz, and B. Baudry. Estimating footprints of model operations.

In Proceedings of the 33rd International Conference on Software Engineering, pages

601–610. IEEE, 2011.

[21] J.M. Jézéquel, O. Barais, and F. Fleurey. Model driven language engineering with

kermeta. Generative and Transformational Techniques in Software Engineering III,

pages 201–221, 2011.

[22] H. Kagdi, J.I. Maletic, and A. Sutton. Context-free slicing of UML class models. In Pro-

ceedings of the 21st IEEE International Conference on Software Maintenance (ICSM),

pages 635–638. Ieee, 2005.

[23] S. Keele. Guidelines for performing systematic literature reviews in software engineering.

Technical report, EBSE Technical Report EBSE-2007-01, 2007.

[24] B. Korel, I. Singh, L. Tahat, and B. Vaysburg. Slicing of state-based models. In

Proceedings of International Conference on Software Maintenance (ICSM), pages 34–

43. IEEE, 2003.

[25] J. Lallchandani and R. Mall. Slicing UML architectural models. ACM SIGSOFT Soft-

ware Engineering Notes, 33(3):4, 2008.

[26] J. Lallchandani and R. Mall. A dynamic slicing technique for UML architectural models.

IEEE Transactions on Software Engineering, 37(6):737–771, 2011.

[27] K. Lano and S. Kolahdouz-Rahimi. Slicing of UML models using model transformations.

In Model Driven Engineering Languages and Systems, pages 228–242, 2010.

[28] K. Lano and S. Kolahdouz-Rahimi. Slicing techniques for UML models. Journal of

Object Technology, 10, 2011.

96

[29] S. Maoz, O. Ringert, and B. Rumpe. Semantically configurable consistency analysis for

class and object diagrams. In Model Driven Engineering Languages and Systems, pages

153–167. Springer, 2011.

[30] Bertrand Meyer. Applying’design by contract’. Computer, 25(10):40–51, 1992.

[31] A. Muller, F. Fleurey, and J. Jézéquel. Weaving executability into object-oriented

meta-languages. In Model Driven Engineering Languages and Systems, pages 264–278.

Springer, 2005.

[32] QVT Omg. Meta Object Facility (MOF) 2.0 query/view/transformation specification.

Final Adopted Specification (November 2005), 2008.

[33] I. Ray and M. Kumar. Towards a location-based mandatory access control model.

Computers & Security, 25(1):36–44, 2006.

[34] I. Ray, M. Kumar, and L. Yu. LRBAC: A location-aware role-based access control

model. Information Systems Security, pages 147–161, 2006.

[35] I. Ray and L. Yu. Short paper: Towards a location-aware role-based access control

model. In Proceedings of the First International Conference on Security and Privacy

for Emerging Areas in Communications Networks, pages 234–236. IEEE, 2005.

[36] M. Richters and M. Gogolla. Validating UML models and OCL constraints. In the UML

2000 Unified Modeling Language, pages 265–277. Springer, 2000.

[37] R.S. Sandhu, E.J. Coyne, H.L. Feinstein, and C.E. Youman. Role-based access control

models. Computer, 29(2):38–47, 1996.

[38] S. Sen, N. Moha, B. Baudry, and J. Jézéquel. Meta-model pruning. In Model Driven

Engineering Languages and Systems, pages 32–46. Springer, 2009.

97

[39] A. Shaikh, R. Clarisó, U.K. Wiil, and N. Memon. Verification-driven slicing of UM-

L/OCL models. In Proceedings of the IEEE/ACM international conference on Auto-

mated Software Engineering, pages 185–194. ACM, 2010.

[40] A. Shaikh and U. Wiil. UMLtoCSP (UOST): a tool for efficient verification of UM-

L/OCL class diagrams through model slicing. In Proceedings of the ACM SIGSOFT

20th International Symposium on the Foundations of Software Engineering, page 37.

ACM, 2012.

[41] A. Shaikh, U. Wiil, and N. Memon. Uost: UML/OCL aggressive slicing technique for

efficient verification of models. In System Analysis and Modeling: About Models, pages

173–192. Springer, 2011.

[42] A. Shaikh, U.K. Wiil, and N. Memon. Evaluation of tools and slicing techniques for

efficient verification of UML/OCL class diagrams. Advances in Software Engineering,

2011, 2011.

[43] O.M.G.A. Specification. Object constraint language, 2007.

[44] D. Steinberg, F. Budinsky, E. Merks, and M. Paternostro. EMF: Eclipse Modeling

Framework. Addison-Wesley Professional, 2008.

[45] W. Sun, R. France, and I. Ray. Rigorous analysis of UML access control policy models.

In Proceedings of IEEE International Symposium on Policies for Distributed Systems

and Networks (POLICY), pages 9–16. IEEE, 2011.

[46] Eclipse OCL Project Team. Eclipse OCL Project. In

http://projects.eclipse.org/projects/modeling.mdt.ocl. Eclipse Community, 2005.

[47] Jos B Warmer and Anneke G Kleppe. The object constraint language: getting your

models ready for MDA. Addison-Wesley Professional, 2003.

98

[48] M. Weiser. Program slicing. In Proceedings of the 5th International Conference on

Software Engineering, pages 439–449. IEEE Press, 1981.

[49] L. Yu, B. France, I. Ray, and W. Sun. Systematic scenario-based analysis of UML

design class models. In Proceedings of 17th International Conference on Engineering of

Complex Computer Systems (ICECCS), pages 86–95. IEEE, 2012.

[50] L. Yu, R. France, and I. Ray. Scenario-based static analysis of UML class models. In

Model Driven Engineering Languages and Systems, pages 234–248, 2008.

[51] L. Yu, R. France, I. Ray, and S. Ghosh. A Rigorous Approach to Uncovering Security

Policy Violations in UML Designs. In Proceedings of 14th IEEE International Confer-

ence on Engineering of Complex Computer Systems (ICECCS), pages 126–135. IEEE,

2009.

[52] L. Yu, R. France, I. Ray, and K. Lano. A light-weight static approach to analyzing

UML behavioral properties. In Proceedings of 12th IEEE International Conference on

Engineering Complex Computer Systems (ICECCS), pages 56–63, 2007.

[53] T. Yue. Ph.D. Dissertation: Automatically deriving a UML analysis model from a use

case model. Carleton University, 2010.

99

