THESIS

A COMPREHENSIVE MICROBIOME ANALYSIS OF WHEAT AND ITS WILD RELATIVES

Submitted by

Heather Cantor

Department of Soil and Crop Sciences

In partial fulfillment of the requirements

For the Degree of Master of Science

Colorado State University

Fort Collins, Colorado

Summer 2018

Master's Committee:

Advisor: Patrick F. Byrne

Kirk Broders Mary Stromberger Copyright by Heather Cantor 2018

All Rights Reserved

ABSTRACT

A COMPREHENSIVE MICROBIOME ANALYSIS OF WHEAT AND ITS WILD RELATIVES

Microbiomes are diverse assemblages of endophytic and free-living microorganisms that can confer competitive advantages to their plant hosts such as water acquisition, nutrient mobilization, drought tolerance, salt tolerance, and disease resistance (Chaparro et al., 2012; Sherameti et al., 2008; Zolla et al., 2013). Plant domestication and selective breeding have altered the composition of these plant-microbe interactions in several crops. It is thought that the progenitors of the A, B, and D genomes in modern hexaploid wheat (*Triticum aestivum*) manage environmental stress in their native environment by establishing symbioses with a consortium of beneficial microbes (Iannucci et al., 2017). However, these microbial communities are not well understood.

The goal of this study is to better understand the core community of microbes in wild wheat relatives and how they differ from the microbiome of cultivated wheat. This study compares the bacterial and fungal taxa found in and on the leaves, roots, and rhizosphere of three accessions of hard winter wheat and 14 accessions of eight wild relative species grown in a common soil. These plants and the agricultural soil they inhabit were sampled from a randomized complete block design with two replications, grown in well-watered and waterlimited treatments in Fort Collins, Colorado. DNA was extracted and barcoded amplicon sequencing of the 16S-V4 (bacteria/archaea) and ITS2 (fungi) small subunit ribosomal RNA (rRNA) genes was used to describe the diversity of the microbial community associated with the root, rhizosphere and leaves of each accession.

ii

The results indicate that while there were limited differences in microbial communities among plant species, plant tissue type appears to be a strong predictor of microbial community structure. Across all plant genotypes, the rhizosphere consistently contained the most diverse and abundant microbiomes, followed by roots, and lastly leaves, which were the least diverse tissue type. When these three tissue types were analyzed independently (PERMANOVA), there was a significant difference in rhizosphere communities between the wet and dry treatments. Wet treatments contained a greater number of facultative anaerobes and bacteria common to cold, saturated soils. The wet treatment received an additional 13 mm of water, applied five days prior to collection. Overall, while plant host genotypes did not differ significantly in their microbiomes, some unique symbioses among different plant accessions indicate evolutionary adaptation. An initial look at the core microbiome shared among representatives of the five plant genomes in this study showed few shared sequence variants (<2% of total microbial SV's). However, this was largely explained by the use of high-resolution SV's that do not necessarily equate to different taxonomic assignment, suggesting an inflated number of actual microbial taxa. Coarser taxonomic overviews depicted a more realistic, and narrow, number of participating taxonomic groups in the phytobiome. Plant tissue type remained a chief driver of microbiome composition. Soil moisture and fertility may have also played a role in determining microbial community structure, but since they were not measured in this study, claims cannot as yet be made. The close genetic relationships among plant species in this study may have reduced the observable differences in microbial community structure. Additionally, common garden experiments limit the pool of potential plant-microbe interactions. Despite the advancement and evolution of modern wheat, the microbiome remains essentially the same as the microbiomes of wild relatives, when grown in the same soil. This indicates that modern winter wheat retains the

same ability to recruit and sustain its microbiome as its wild relatives. In the future, microbiome consensus studies in these hosts' centers of origin could broaden our understanding of long-evolved microbial symbioses.

ACKNOWLEDGEMENTS

There are many people to thank for their assistance in the success of this project. I would first like to thank my advisor and mentor Dr. Patrick F. Byrne for providing me with the invaluable opportunities to earn a Master's degree, network with industry experts, organize a plant breeding symposium, and teach undergraduates. Thank you to my other committee members, Drs. Kirk Broders (Dept. of BSPM) and Mary Stromberger (Dept. of SOCR), for their time, patience, and thoughtful ideas. Gloria Broders (Dept. of BSPM) was instrumental in introducing me to the vast world of bioinformatics and helping process my data. Thank you to Drs. Ann Hess (Dept. of Statistics) and Zaid Abdo (Dept. of Microbiology, Immunology, and Pathology) for statistical consultations. The Samuel Litzenberger Fellowship generously funded part of my graduate studies. Additional funding for my graduate studies and research expenses was provided by the NSF I/UCRC Collaborative Research Project: Wheat Genetics Resource Center: A Public-Private Consortium. Thank you to the students in the Byrne Lab and Broders Lab for helping plant, collect, and process plant tissue. Lastly, my gratitude goes out to family, friends, and my husband Darren Cantor for their unwavering belief in me.

ABSTRACT	ii
ACKNOWLEDGEMENTS	V
LIST OF TALBES	ix
LIST OF FIGURES	X
Chapter 1 Literature review	1
The Plant Microbiome: Who lives there and where do they come from?	1
Functions of Microbiomes in Plants.	2
Stress Tolerance	3
Disease Resistance	5
Water and Nutrient Uptake	7
Breeding for Microbiomes.	8
Goals and objectives	11
Chapter 2 A Comprehensive Comparison of the Microbiomes in Wheat and Its Wild Relatives Summary Introduction Materials and Methods Germplasm.	12 12 13 16 16
Field Trial	16
DNA Extraction.	18
Next-Generation Amplicon Sequencing	18
Data Analysis	19
Results and Discussion	23
Microbiome Diversity Associated with Wheat and Wild Wheat Relatives	23
Factors Driving Microbial Community Diversity	26
Conclusion	29
Tables	31
Figures	34
Chapter 3 Defining the Core Microbiome of Wheat and Its Wild Relatives by Ploidy and Tissue Type	62
Summary	62
Introduction	63
Materials and Methods	64
Germplasm	64
Field Trial	65
DNA Extraction	65
Next-Generation Amplicon Sequencing	67

TABLE OF CONTENTS

Data Analysis	
Results and Discussion	70
Conclusion	73
Tables	
Figures	
Chapter 4 Summary and Conclusions	
Summary	
Conclusions	91
References	
Appendix Tables	
Appendix Figures	

LIST OF TABLES

Table 2.1 Plant genotypes included in this study, by planting date
Table 2.2 Tissue type PERMANOVA <i>P</i> -values generated by 'adonis' tool in Vegan package forR (R Core Team, 2018)
Table 3.1 Plant genotypes used in this study, by planting date
Table 3.2 Table of four most abundant core taxa, their means per sample, and Kruskal-Wallis (KW) <i>P</i> -values (non-parametric test of different means [H _A : Not all core SV means are the same])

LIST OF FIGURES

Figure 2.1 Terrain map of ten wild wheat relative accessions used in this study in their centers of origin (*Ae. tauschii* TA 1707 is not plotted due to lack of collection data). Map courtesy of Jon Raupp, Wheat Genetics Resource Center, Kansas State University, Manhattan, KS, USA......34

Figure 2.6 Relative abundance bar plot for a) bacterial and b) fungal phyla by plant tissue type	
Figure 2.7 Percent abundance bar plot for a) bacterial and b) fungal phyla by plant tissue type	
Figure 2.8 Violin plot depicting abundance of G. <i>Puccinia</i> , the stripe-rust genus, found primarily in leaf tissue	r
Figure 2.9 Violin plot depicting abundance of C. Dothidiomycetes, the largest taxonomic class o Ascomycota, across all tissue types	f
Figure 2.10 Violin plot depicting abundance of P. Glomeromycota, the arbuscular mycorrhizal phylum, in the roots of wheat and wild relative species	

Figure 2.11 Principle coordinate analysis of plant tissue type and planting season using Bray- Curtis dissimilarity index for a) bacteria and b) fungi
Figure 2.12 Non-metric multidimensional scaling ordination of plant tissue types and their respective microbial phyla for a) bacteria and b) fungi
Figure 2.13 Random forest regression depicting the top 20 most important a) bacterial SV's and b) fungal SV's for discriminating rhizosphere samples between wet and dry treatments. The x-axis label "MeanDecreaseGini" refers to a decrease in the number of branches, and thus increase in homogeneity of nodes, in association trees generated by the random forest model and can be interpreted as "increase in SV importance"
Figure 2.14 Bar graphs of single variants for a) bacteria and b) fungi in order of ascending importance for discriminating rhizosphere samples into wet or dry response. Abbreviations refer to conventional taxonomic rankings
Figure 2.15 Top two most important bacterial taxa , a) SV21 and SV30, for discriminating rhizosphere samples into wet or dry response, faceted by plant species (the second most statistically significant variable after plant tissue type)
Figure 2.16 Top two most important fungal taxa, SV47 and SV32, for discriminating rhizosphere samples into wet or dry response, faceted by plant species (the second most statistically significant variable after plant tissue type)
Figure 3.1 Venn diagram of core bacterial taxa among A, B, D, and ABD genomes of wheat and related wildspecies
Figure 3.2 Venn diagram of core bacterial taxa among A, B, D, and AB genomes of wheat and related wild species
Figure 3.3 Bar plot of core bacterial taxa among A, B, D, AB, and ABD genomes of wheat and related wild species in this study
Figure 3.4 Venn diagram of core bacterial taxa among all tissue types
Figure 3.5 Bar plot of core bacterial taxa among all tissue types
Figure 3.6 Venn diagram of core fungal taxa among A, B, D, and ABD genomes of wheat and related wild species
Figure 3.7 Venn diagram of core fungal taxa among A, B, D, and AB genomes of wheat and related wild species
Figure 3.8 Bar plot of core fungal taxa among A, B, D, AB, and ABD genomes of wheat and related wild species in this study

Figure 3.9 Venn diagram of core fungal taxa among all tissue types
Figure 3.10 Bar plot of core fungal taxa among all tissue types
Figure 3.11 Venn diagram of core bacterial taxa among four accessions of <i>Aegilops tauschii</i> with distant geographic origins
Figure 3.12 Venn diagram of core fungal taxa among four accessions of <i>Aegilops tauschii</i> with distant geographic origins

Chapter 1

Literature Review

The Plant Microbiome: Who lives there and where do they come from?

Over the course of three billion years, microorganisms have colonized every observable ecosystem on our planet. The earliest known plant-microbe interactions formed 400 million years ago in the early Devonian period, between endophytic fungi and simple bryophytic land plants (Brundrett, 2002). Today, higher plants associate with bacteria, fungi, archaea, and protists across a gradient of symbioses. Pathogens, commensalists, and mutualists interact with plants above and below ground, within and around plant tissues, influencing the fitness of their plant hosts (Andreote et al., 2014; Lebeis, 2014). Plants provide habitats for these consortia of microbes in three broadly classified ecosystems: the rhizosphere (the soil immediately surrounding roots), endosphere (interior root, stem, and leaf tissue), and phyllosphere (the plant surface) (Berg et al., 2016).

Plant-associated microbes can be recruited through horizontal transmission (from the environment) or vertical transmission (from parent to offspring via seed) (Frank et al., 2017). Most vertically-transmitted endophytes are obligate mutualists, which ensures perpetuation of the symbiotic relationship. Pollen is a common vector of seed-born endophytes, bearing bacteria both on the inside and outside of pollen grains (Frank et al., 2017). Some examples of this action in nature include microbes that help plants germinate and grow in hostile environments by fixing atmospheric nitrogen, or breaking seed dormancy through the production of cytokines, as is seen in high plains ryegrass (*Lolium* spp.)(Frank et al., 2017). However, most endophytes are acquired horizontally from the environment.

The most abundant and diverse ecosystem in the plant microbiome exists in the roots and rhizosphere, where root exudates chemically signal the recruitment of specific microbial taxa from soil (Broeckling et al., 2008). This relationship can benefit plants in myriad ways, such as the conveyance of nutrients and stress tolerance from endophytic microbes, while microbes receive a steady supply of exuded carbon. Plant root exudates constitute 2-10% of the total carbon fixed by plants, constituting an abundance of food for soil microbiota, and are large dictators of the microbiome community structure (Broeckling et al., 2008). However, the rhizosphere is a highly competitive environment, implying resource limitation due to high microbial cell counts and activity. The components of root exudates differ among plant species, and are therefore capable of recruiting (through selective pressure or chemotaxis) distinct subsets of microbes from the bulk soil flora population tailored to the needs of each plant (Broeckling et al., 2008; Hartmann et al., 2008).

Functions of Microbiomes in Plants

The significant role of rhizosphere ecology to plant health was discovered in the early 20th century by the German botanist Lorenz Hiltner (Hartmann et al., 2008). Hiltner recognized that not only were distinct root exudates responsible for the development of distinct microbial communities, but that the roots of healthy plants were being influenced by the presence of endophytic bacteria (Hartmann et al., 2008). Hiltner's research focused mainly on leguminous crops, but since then the study of plant-microbe interactions has exploded with interest, leading to the discoveries of beneficial microbial associations among many plant clades (Andreote et al., 2014). In order to harness the plant microbiome for crop improvement, enhanced food security,

and increased farmer profitability, the ecological role of these plant growth-promoting microbes and their function in plant development must be explored.

Stress Tolerance

Abiotic stress is responsible for devastating crop losses worldwide, with drought stress being among the most destructive forces. With the climate growing less predictable and increasingly hostile toward healthy plant growth, the plant microbiome presents a promising frontier for combating abiotic stresses such as drought, cold, and salinity (Andreote et al., 2014; Gaiero et al., 2013; Mendes et al., 2013).

Many taxonomically diverse bacteria are capable of interrupting production of the stress hormone ethylene by digesting its pathway precursor, 1-aminocyclo-propane-1-carboxylic acid (ACC), as a source of nitrogen (Mendes et al., 2013). Under drought conditions, plants release the volatile hormone ethylene to initiate senescence and abscission (Jha et al., 2012). When this pathway is interrupted by ACC-deaminase activity, ethylene production is reduced and plants may continue to grow roots deeper into the soil moisture profile where they may escape drought and remain productive (Jha et al., 2012). Many bacteria possessing ACC-deaminase activity also produce the plant growth auxin indole acetic acid (IAA), including the taxa "*Brachybacterium saurashtrense* sp. nov., *Zhihengliuella* sp., *Brevibacterium casei*, *Haererehalobacter* sp., *Halomonas* sp., *Vibrio* sp., *Cronobacter sakazakii*, *Pseudomonas* spp., *Rhizobium radiobacter*, and *Mesorhizobium* sp.," (Mendes et al., 2012; Mendes et al., 2013). When ACC-deaminase activity and IAA production occur in concert, a remarkable stress tolerant plant profile may be achieved (Jha et al., 2012).

Certain fungal endophytes are also capable of conferring drought tolerance to their plant hosts. The basidiomycete Piriformospora india, originally isolated from plant roots in the Indian That desert, can endow the model species Arabidopsis thaliana (among many other less documented species) with drought tolerance by upregulating a diverse set of dehydrationresponse genes in the leaf tissue (Sherameti et al., 2008). While the communication pathway between these root endophytes and their host plants' shoots is not well understood, experimental evidence demonstrates a significant correlation between the *P.indica*-inoculated roots of Arabidopsis, Zea mays (maize), Brassica oleracea var. capitate (cabbage), and Nicotiana tabacum (tobacco) and a rapid sensitivity to drought response (Sherameti et al., 2008). These inoculated plants respond much faster to drought conditions than untreated plants, with increased production of myo-inositol (an auxin precursor that enhances stress tolerance and improves plant growth) and antioxidant enzymes, among other stress-mediating biosynthesis pathways (Kumar et al., 2009; Sherameti et al., 2008; Zhai et al., 2016). Since this primed stress response courtesy of P. indica has been observed in Arabidopsis, maize, cabbage, tobacco, and myriad wild desert species, it is likely that this action relies on general (as opposed to plant-specific) mechanisms, and may be amenable to association with other crop species (Kumar et al., 2009; Sherameti et al., 2008).

Another mechanism of drought tolerance conferred to plants by symbiotic microbes is the accumulation of compatible solutes in plant tissues that regulate osmotic pressure. Instead of experiencing destructive plummets in leaf water potential, plant tissues containing compatible osmolytes like glycine betaine and choline maintain turgor pressure and physiological function when confronted with drought, cold, and salinity (Hussain Wani et al., 2013). The Gram-positive soil bacterium *Bacillus subtilis* GBO3 is one such microbe whose volatile organic compounds

have been shown to upregulate plant genes responsible for the production of such osmolytes (Zolla et al., 2013).

Abiotic stress tolerance in plants is a complex quantitative trait and difficult to select for through conventional breeding methods. By continuing to annotate the microbiomes of successful plants in challenging climates, we may discover plant-microbe interactions with the potential to translate into low input, sustainable solutions for crop improvement.

Disease Resistance

Plant pathogens present another global threat to food security, often overwhelming years of breeding efforts by evolving weapons not recognized by host resistance genes. Beneficial microbes can help defend plants against pathogenic invaders by occupying niches to prevent invader establishment, producing antimicrobial compounds, and inducing systemic immune responses in plants for faster reactions to infections (Mendes et al., 2013; Ramamoorthy, 2001). Understanding and harnessing the plant microbiome (see section below) may help ward off future disease epidemics, reduce the reliance on synthetic pesticides, and prevent crop losses.

Many bacterial phyla contain taxa classified as plant growth-promoting rhizobacteria (PGPR) that serve a variety of functions benefiting plant growth; these phyla include Actinobacteria, Bacterioidetes, Firmicutes, and Proteobacteria (Chaparro et al., 2012). Phylum Proteobacteria has garnered the most interest for its role in a healthy plant microbiome, particularly the class Gamma-Proteobacteria which contains the notable PGPR genus *Pseudomonas* (Ramamoorthy, 2001). Certain *Psueodomonas* pathovars can produce anitifungal chlorinated lipopeptide molecules in the rhizosphere of *Beta vulgaris, Solanum tuberosum*, and *Oryza sativa* plants confronted with the economically devastating root rot pathogen *Rhizoctonia* *solani* (Mendes et al., 2012). Another species in this exceptional genus, *Pseudomonas fluorescens* str. CHA0, has demonstrated abilities to produce cyanide and the antibiotic 2,4-diacetylphloroglucinol in the rhizosphere of tobacco that protects against black root rot (*Thielaviopsis basicola*) (Keel et al., 1990).

Diverse assemblages of PGPR can fortify disease resistance by inducing systemic immune responses in their plant hosts. Seed treatments containing various *Pseudomonas* spp. have shown a remarkable ability to prime plants for faster immune responses when confronted with myriad diseases, insects, and nematodes (Ramamoorthy, 2001). Early microbe-associated molecular patterns and elicitors perceived by the plant from their *Psuedomonas* symbionts induce systemic resistance mechanisms such as hypersensitive response (necrosis), cell wall fortification, and salicylic acid-/jasmonic acid-dependent immune pathways that combat foreign invaders (Ramamoorthy, 2001).

However, many disease resistance mechanisms bestowed by the microbiome cannot be demonstrated by isolated microbial endophytes; plant host fitness is usually improved through the cooperation of a consortia of microbes (Hu et al., 2016). Genera in the Proteobacteria, including *Burkholderia, Rhizobium,* and *Methylophilus,* have been significantly correlated with the phyllosphere (outer surface) of *Arabidopsis* mutants that exhibit strong resistance to the fungal pathogen *Botrytis cinerea* (Ritpitakphong et al., 2016). In the rhizosphere of tomato, greater diversity of *Pseudomonas* sp. is associated with increased resistance to the bacterial plant pathogen *Ralstonia solanacearum* (Hu et al., 2016). Synergistic effects among antifungal-producing *Streptomyces* and *Bacillus* sp. and antibiotic-producing *Burkholderia* and *Pseudomonas* sp. can create enhanced suppression of rice sheath blight (*Rhizoctonia solani*) when found together in the plant rhizosphere (Ramamoorthy, 2001). The concept of a diverse

microbiome enhancing disease suppression is important to maintain when considering the manufacture of synthetic microbiomes for improved crop production.

Water and Nutrient Uptake

One of the best documented examples of beneficial plant-microbe interactions is fungal mycorrhizae mantling or colonizing plant roots for increased moisture and nutrient absorption (Augé, 2004; Brundrett, 2002; Safir, et al., 1972). Most notably, members of the phylum Glomeromycota contain non-pathogenic arbuscular mycorrhizae that penetrate root cells, increasing plant root surface area and facilitating a more effective transfer of soil moisture and carbon-rich exudates (Safir et al., 1972). Soil mycorrhizae can improve stomatal conductance, allowing plants to transpire and fix carbon when soil water potential is low, even if the plants themselves are not mycorrhizal (Augé, 2004). A greenhouse study in tomato inoculated the roots of one treatment with PGPR and mycorrhizal fungi, applied 75% less fertilizer than the uninoculated treatment, and achieved identical yields to the uninoculated, full-rate fertilizer treatment (Chaparro et al., 2012).

Increasing the bioavailability of soil nutrients is a vastly important role many PGPR play in the plant rhizosphere. Myriad taxa in the phyla Actinobacteria, Proteobacteria, and Firmicutes fix atmospheric nitrogen, but the most ubiquitous nitrogen-fixing genera across different soil types are *Arthrobacter*, *Rhizobium*, and *Bacillus* (Patel & Archana, 2017). The Gram-negative genera *Mesorhizobium* and *Rhizobium* (C. Alphaproteobacteria) form tightly symbiotic nodules on the roots of leguminous plants in the Fabaceae family (Elkoca et al., 2008). Soil nitrate residues from the roots of leguminous crops like clover and alfalfa are often in such surplus that they reduce required fertilization regimens for the following crop (Lenssen et al., 2007). Even

certain non-nodulating diazotrophs can penetrate the root cortex of economically important cereal crops like wheat, sorghum, and maize to enrich their tissues with bioavailable forms of nitrogen (Elkoca et al., 2008). In addition to endophytic diazotrophs, there are numerous examples of free-living nitrogen fixers across the bacterial kingdom, including the noteworthy genera *Azospirillum, Azotobacter, Bacillus, Enterobacter, Pseudomonas, Serratia*, and *Streptomyces* (Elkoca et al., 2008). Some of these bacteria are capable of performing several plant growth-promoting activities simultaneously, like producing plant growth factors, suppressing disease resistance, and improving nutrient availability. *Bacillus* sp. can solubize organic phosphorus in the soil from plant residues and animal waste into the plant bioavailable phosphate form (Elkoca et al., 2008). As prices for synthetic fertilizers continue to rise and their negative environmental impacts become more apparent, biofertilizers containing PGPR and mycorrhizal isolates may become more attractive as a sustainable alternative to conventional fertilizers.

Breeding for Microbiomes

In recognizing the pivotal role microbiomes play in the expression of plant traits such as abiotic/biotic stress resistance and nutrient use efficiency, the next generation of plant breeding could adopt an approach that targets the recruitment of beneficial microorganisms. Some genes that drive the establishment of microbial symbionts have already been characterized, including those that facilitate arbuscular mycorrhizae and leguminous root nodule development (Elkoca et al., 2008; Hohmann & Messmer, 2017). However, many of the genetic mechanisms underlying rhizodeposition characteristics remain elusive. This study, along with greater bodies of microbial census data from different plant genotypes, lays the groundwork for further genome-wide

association studies that correlate microbiome community structure with their associated recruitment genes. In the meantime, endophyte seed treatments and soil transplant experiments performed in the private and public sector have provided proof of concept for the new wave of resilient, productive crops that rely less on synthetic inputs (Gopal & Gupta, 2016).

Phytobiome research consistently suggests that a small number of microbial phyla dominate the plant rhizosphere and are largely conserved among plant species (Bulgarelli et al., 2015; Fierer, 2017). However, crop wild relatives have long been viewed as reservoirs for genetic diversity among plant breeders, and host genotype does appear to drive the differentiation of a small subset of plant microbiota (Bulgarelli et al., 2015; Hale et al., 2014). However, the case for strong genotype-dependent microbial diversity remains hotly debated. A 2015 study of the root microbiota in three subspecies of barley (*Hordeum vulgare ssp.*) noted that any significant variation in root community structure was purely quantitative and could be explained by differences in abundance, as opposed to the presence of unique microbial taxa (Bulgarelli et al., 2015). Additionally, many studies that compare the microbiomes of different plant species do so across a biogeographical range, with varying biotic and abiotic conditions (Coleman-Derr et al., 2015). Regardless, plant domestication remains a factor of interest in microbiome dissimilarity for its potential impact on plant breeding. An examination of bacterial communities within wild and domesticated strains of sunflower (Helianthus annuus) determined that differences in microbiomes were relatively minor across a plant domestication gradient, but fungal rhizosphere communities demonstrated greater differences (Leff et al., 2016). Where these fungal differences indicate mycorrhizal symbiosis or other physiologically-beneficial mechanisms, gene introgression opportunities for crop improvement may exist (Hohmann & Messmer, 2017; Mendes et al., 2013).

Wheat was chosen as a model species for this project due to its traceable hybridization history, living wild relatives, and importance as a human food source. Modern wheat cultivars are polyploids that acquired their genomes over thousands of years in the Middle East and Western Asia. *Triticum aestivum* (bread wheat) is a hexaploid species that contains an A, B, and D genomes (2n=6x=42 chromosomes), and *Triticum durum* (pasta wheat) is a tetraploid species that contains the A and B genomes (2n=4x=28 chromosomes). The A-genome progenitors are well-documented as *Triticum monococcum* and *Triticum urartu* (Gustafson et al., 2009). The B-genome's origin remains shrouded in controversy, but many accept the claim of *Aegilops speltoides* as the purported progenitor (Gustafson et al., 2009). These two species hybridized to form the AB-tetraploids *T. durum* and *T. dicoccoides* (Gustafson et al., 2009). Later, the D-genome progenitor *Aegilops tauschii* wildly introgressed to form the first generation of hexaploid wheat (Gustafson et al., 2009). Following these spontaneous speciation events, selective breeding and domestication by humans generated even greater genetic distance between these related species (Gustafson et al., 2009).

The narrowing genetic background of *T. aestivum* has led to interest in wild species introgression in recent years (Warburton et al., 2006). It is speculated that wild wheat relatives mitigate biotic and abiotic stresses in their native environments by recruiting microorganisms that enhance plant defense systems (Lebeis, 2014). One study found marked differences in the amount of microbial biomass carbon and nitrogen in the rhizosphere soils of 24 different wheat genotypes (Corneo et al., 2016). Another experiment found strong distinctions in bacterial richness in diversity across different maize fields, and a small but highly heritable variation in bacterial diversity among 27 inbred maize lines (Peiffer et al., 2013). These findings suggest strong differences in microbial communities among different soil types, and a small but

potentially meaningful opportunity for plant breeding (Peiffer et al., 2013). Plants possessing rhizodeposition genes that foster microbial communities capable of fixing atmospheric nitrogen have a competitive advantage in nutritionally depleted soils. Wild wheat relatives continue to grow in their center of origin, and their persistence in the gene pool creates unique opportunities for plant breeding experiments (Warburton et al., 2006). This foot print of living evolution provides a way to observe the effects of domestication on the microbiome of a vital global food crop.

Goal and Objectives

This basic research project is a critical early step toward breeding for microbiomes in the next generation of commercial wheat. The overall goal of this study is to better understand the core community of microbes in wild wheat relatives and how they differ from the microbiome of cultivated wheat. Specific objectives are as follows:

- Identify and compare the bacterial and fungal taxa in the leaves, roots, and rhizospheres of three accessions of wheat and 14 accessions of its CWRs (crop wild relatives).
- Determine the greatest driver(s) of microbiome variation from among the four variables in this study (i.e. host genotype, plant tissue, planting season, moisture treatment).
- 3. Define the core microbiome of wheat and its wild relatives by ploidy and tissue type.

Chapter 2

A Comprehensive Comparison of the Microbiomes in Wheat and Its Wild Relatives

Summary

The importance of microbiomes to plant growth and health has motivated research on the efficient characterization of these communities in numerous crops. Some studies indicate genotype-dependent microbial diversity across different wheat (*Triticum aestivum*) accessions, and suggest wild relative species might mitigate stress in their native environments through microbial interactions (Corneo et al., 2016; Iannucci et al., 2017). The narrowing genetic base of many modern crops has brought interest in wild relative introgression to plant breeding so such competitive advantages may be incorporated into modern germplasm (Gopal & Gupta, 2016). The goal of this study was to broaden the current knowledge of plant-microbe interactions and predictors of microbial community structure in wheat and wild wheat relatives (*Aegilops* and *Triticum* spp.) by quantifying the significance of several comprehensive variables including planting season, water treatment, plant tissue type, and plant genotype.

The host genotypes in this study were planted as a common garden experiment containing two treatments, wet and dry, in a randomized complete-block design in Fort Collins, Colorado. Leaves, roots, and rhizosphere soil were sampled from each plant at the pre-flowering stage following winter vernalization. DNA was extracted and sequenced on a two-lane Illumina MiSeq platform with primers designed to amplify the DNA of prokaryotes (bacteria and archaea) and fungi (Appendix Table 4.2). Raw sequence reads were processed through the bioinformatics pipelines DADA2 (for quality trimming and filtering) and Phyloseq (for community analyses) using R software. The results indicated minimal differences in microbial communities between

plant genotypes (PERMANOVA P > 0.05), and significant differences in plant tissue, especially in the rhizosphere (PERMANOVA P > 0.05). One notable, though not statistically significant, difference was the increased abundance of arbuscular mycorrhizae in the roots of the Coloradoadapted wheat cultivars and the D-genome progenitor *Aegilops tauschii*. Consistent with existing literature, soil moisture and soil fertility appear to be stronger predictors of rhizosphere ecology than plant genotype. The increased moisture of the wet treatment, as well as nutrient-enriched soils as suggested by cropping history records, may have led to greater diversity and abundance of aquatic and facultative-anaerobic bacterial species in rhizosphere samples (PERMANOVA P< 0.05). One of the discriminative fungal taxa (Tremellales) found in the dry treatment is a known decomposer of cellulose and raw plant matter, the presence of which was consistent with a recent cropping history of canola (*Brassica napus* L.) and plant residue.

While not all of the functional roles of soil and plant-associated microbes are well understood, evidence suggesting the most important influencers of microbial community structure will help drive more efficient research goals in the future. Experiments containing more distantly-related host genotypes may provide an opportunity to see significant differences among plant microbiomes, and demonstrate opportunities to breed for microbial-recruitment genes. The results from this research appear to indicate, however, that manipulating soil characteristics may be the most effective way to exploit soil microbes to enhance crop performance.

Introduction

The first person to recognize the pivotal role of rhizosphere ecology to plant health and development was an early 20th century German botanist named Lorenz Hiltner (Hartmann et al., 2008). Hiltner discovered the presence of endophytic bacteria in the root nodules of his most

vigorous leguminous plants, identifying a beneficial nitrogen-fixing symbiosis that is now well documented across the plant family Fabaceae (Hartmann et al., 2008). Microbiomes, defined as consortia of bacteria, fungi, and other microorganisms within a larger organism, influence their plant hosts' physiology by enhancing water uptake, nutrient availability, stress tolerance, and disease resistance (Lebeis, 2014; Mendes et al., 2013). The most diverse microbial ecosystem in the phytobiome is the rhizosphere, or thin interface of soil and carbon-rich root exudates that chemically signal the recruitment of specific microbial taxa suited to meet plant demands (Broeckling et al., 2008). Since Hilter's discoveries, the study of plant-microbe interactions has expanded, largely in the agricultural realm where the promise of microbial-mediated crop improvement has become a tantalizing frontier.

Ideas for strategies to integrate this new deluge of microbial metagenomic data into practical agricultural applications have included plant breeding for rhizosphere recruitment genes, inoculation-based seed treatments, and soil quality manipulation experiments (Berg et al., 2016; Gopal & Gupta, 2016). There is evidence to suggest that plant species plays a role in the structure of phytobiome communities (Coleman-Derr et al., 2015). In barley (*Hordeum vulgare*), an economically important row crop and close cousin to wheat, host genotype has demonstrated a small but highly significant effect on microbiome composition, and appears to shift as domestication steers away from these closely-evolved biogeographical symbioses (Bulgarelli et al., 2015). Since the metabolic composition of root exudates is known to be highly heritable and strongly differentiated among wheat relatives of differing ploidy, it prompts the question of whether crop wild relatives hold the key to manipulating the plant microbiome (Iannucci et al., 2017).

Crop wild relatives have long been known to plant breeders as reservoirs of genetic diversity. If beneficial microbial-recruitment genes exist in crop wild relatives in their centers of origin, where they have co-evolved over countless generations with microbes to mitigate myriad environmental stresses, they might be the easiest genes to integrate into the genome of an adapted crop cultivar due to their close genetic relationship (Gopal & Gupta, 2016; Hale et al., 2014). Common garden experiments, where wild plants are grown ex-situ (in agricultural soils, for example), provide a preliminary glimpse into the potential symbioses that can be formed from an ambient soil microbiome by these crop wild relatives using their intrinsic genetic diversity (Hale et al., 2014).

The diversity of wheat and wild relative germplasm analyzed in a common soil makes this study unique. Three modern wheat cultivars and 14 accessions of landraces and wild wheat relatives of varying ploidy were chosen for planting in a common garden experiment with a randomized complete block design, containing both a wet and dry treatment. The multivariate approach to this experiment provided a look into a general census of wheat microbiome data, as well as important predictors of microbial community structure. The overall goal of this study is to better understand the core community of microbes in wild wheat relatives and how they compare to the microbiome of cultivated wheat. The specific objectives of this study were to:

- Identify and compare the bacterial and fungal taxa in the leaves, roots, and rhizospheres of three accessions of wheat and 14 accessions of wheat CWRs (crop wild relatives).
- 2. Determine the factors driving microbiome variation from among the four variables in this study (i.e. host genotype, plant tissue, planting season, moisture treatment).

Materials and Methods

Germplasm

Three wheat cultivars, Byrd, RonL, and Kharkov, represent plants with "domesticated" microbiomes in this study. Byrd is a hard red winter wheat released by the Colorado Agricultural Experiment Station in 2010, purported to have excellent yield performance in both dryland and irrigated environments, tolerance to stripe and stem rust (*Puccinia striiformis* Westend and *Puccinia graminis* Pers.:Pers. F. sp. *tritici* Eriks. E. Henn, respectively), and favorable bread making qualities (Haley et al., 2012). RonL is a hard white winter wheat released by the Kansas Agricultural Experiment Station in 2006, adapted for dryland production in Kansas, and with excellent resistance to wheat streak mosaic virus (WSMV) (Martin et al., 2007). Kharkov is a much older hard winter wheat variety with origins in western Russia, but was grown widely across the American Great Plains in the early twentieth century (Charest & Phan, 1990). The seed of 14 landraces and wild relatives of wheat (*Triticum aestivum*) was sourced from the Wheat Genetics Resource Center at Kansas State University (https://www.k-state.edu/wgrc/), and the source of these accessions is shown in Figure 2.1. This latter group of plants includes diploid, tetraploid, and hexaploid genotypes (Table 2.1).

Field Trial

This experiment was planted at the Agricultural Research, Development and Education Center (ARDEC) near Fort Collins, Colorado (DMS Lat: 40° 35' 6.9288" N; DMS Long: 105° 5' 3.9084" W; Elevation (m): 1,526). This arid plains region has an average temperature of 10.1°C, average annual rainfall of 40.8 cm, and alkaline sandy clay loam soil (pH 7.9) (Appendix Table 1). Seeds were sown on October 15, 2015. Two seeds of each accession were planted 12

cm apart in a randomized complete block design with two replications, each in well-watered and water-limited treatments separated by about 5 m. The water-limited treatment was planted where canola (Brassica napus L.) was harvested about 30 days previously, whereas the well-watered treatment area was fallow the previous year. The plants grew to the 2-3 leaf stage, went dormant by early winter, and resumed growth in early March. Because the overwintering ability of these wild accessions was unknown, a second planting was done on February 13, 2016, which is traditionally early enough in Colorado to allow a minimum of 6 weeks of cool weather for plants to vernalize. Eight seeds of each accession were planted, in the same rows as the fall-planted materials in wet and dry treatments. Five of the 17 accessions were planted in October only, seven of the 17 were planted in February only, and five of the 17 were planted in both October and February. The region was not under drought stress at any point in the growing season, per the Palmer Drought Severity Index provided by NOAA (https://www.ncdc.noaa.gov/temp-andprecip/drought/historical-palmers/). Due to abundant spring rainfall, the "wet" plot was irrigated just once (13 mm) in June, five days prior to the sampling of October-seeded plants, and 16 days prior to the sampling of February-seeded plants. Soil moisture content analysis was not performed. The October-seeded plants were sampled on June 8 and February-seeded plants were harvested on June 19. This corresponded to the pre-heading to heading stage. Plants were not allowed to ripen to full maturity because several of the goatgrass species are considered potentially invasive in Colorado. A basic soil analysis was performed on a sample collected between the two fields at the time of harvest.

One healthy plant per plot (44 plants total) was dug up (15 cm deep) and the root ball shaken to release loose soil. Any soil that remained adhered to the root ball after vigorous shaking constituted the "rhizosphere", which was collected and stored at -80°C until DNA

extraction. Two bulk soil samples from the wet and dry fields were also collected for DNA sequencing. Three undamaged, mature leaf blades (non-flag leaf) were collected from each plant, along with roots from a diverse range of size classes. The roots were surface sterilized in a 0.05 M NaClO solution. Leaves were not sterilized in order to include the "phyllosphere" microbes that colonize the leaf surface. Leaves and roots were lyophilized, sealed in centrifuge tubes, and stored at room temperature until DNA extraction.

DNA Extraction

Leaf DNA was extracted with a ThermoScientific Plant DNA Kit (Thermo Fisher Scientific, Waltham, MA, USA). Root and rhizosphere DNA were extracted with a MoBio PowerMag Soil DNA Isolation Kit (Mo Bio Laboratories, Carlsbad, CA, USA). Both kits were optimized for the KingFisher[™] Flex Purification System. Once extracted, the DNA concentration was calibrated using a NanoDrop[™] spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA). The three 96-well plates (leaf, root, and rhizosphere) containing the extracted DNA were stored at -20°C until they were shipped on dry ice to the University of Minnesota Genomics Center for PCR-amplification, library preparation, and two-lane Illumina MiSeq sequencing.

Next-Generation Amplicon Sequencing

The ITS2 and 16S-V4 small subunit ribosomal RNA (rRNA) operons were sequenced to identify the fungi and bacteria/archaea in each sample, respectively. Primers were barcoded to identify which sequences correspond to which samples. These primers amplify DNA fragments 260-290 bp in length and are ideal candidates for amplification because they are highly

conserved, but possess sufficient variability to distinguish closely related taxa (Op De Beeck et al., 2014; Walters et al., 2015; Yao et al., 2010)(Appendix Table 4.2).. Additionally, the 16S-V4 primer refines the detection of *Thaumarchaeota*, a prokaryotic phylum known to play an important role in terrestrial nitrogen and carbon cycling (Walters et al., 2015). The ITS2 operon possesses superior detection of several ectomycorrhizal fungal species, including *Sistotrema sp., Rhizopogon luteolus*, and *Wilcoxina mikolae*, as well as arbuscular mycorrhizae in the Glomeromycota (Op De Beeck et al., 2014). Since Illumina MiSeq sequencers read 300 bp in each direction, these shorter fragments allow for almost complete double-stranded overlap, increasing base call accuracy (Goodrich et al., 2014). A downside to using primers for shorter genetic elements is that the sequences generated are less informative than reads with longer single-stranded tails (Kozich et al., 2013). Longer fragment sequences can generate higher resolution OTU's, but are prone to higher error rates (Quail et al., 2012). The resultant sequences were delivered digitally as "fastq" files for taxonomic identification and statistical analysis.

Data Analysis

The open-source software package DADA2 was used to model and correct Illumina amplicon sequencing errors for all raw .fastq reads in this study (Long et al., 2016). This highthroughput bioinformatics pipeline, built for use in R, improves the structure and quality of amplicon sequences so they can be passed downstream for taxonomic assignment and hypothesis-based analyses. The sequence cleaning pipeline for this project required five steps: filtering, dereplicating, denoising, chimera-removing, and merging. First, forward $(5' \rightarrow 3')$ and reverse $(3' \rightarrow 5')$ reads are trimmed where Phred quality scores fall below 20; a score of 20 or higher ensures base call accuracy of at least 99% (Bokulich et al., 2013). The tails of reads and

reverse reads in general have lower quality scores (Long et al., 2016). Next, a dereplication function inputs the filtered reads and outputs a list of unique sequences and their abundances. After dereplication, the unmerged sequences are passed to a denoising algorithm that identifies total number of true sequence variants through sample inference. More abundant sequences are also checked for chimeras by identifying sequence mismatches and indels. The chimeric model flags these offending sequences, and chimeras in this project were removed to improve accuracy. Finally, the filtered forward and reverse reads are merged to create paired-end sequences poised for clustering and taxonomic assignment (Long et al., 2016).

Another common filtering tool employed in metagenomics projects is rarefaction (McMurdie & Holmes, 2014). Rarefaction creates consistent sequencing "depth" by reducing the number of sequences in every sample to the number of sequences present in the sample with the fewest unique sequences. However, a downside to this method is that it does not account for differentially abundant taxa and wastes information in smaller studies (McMurdie & Holmes, 2014). Since this experiment contained only 268 samples (few compared to animal microbiome studies), rarefaction was not used.

After performing quality control in DADA2, the cleaned sequences were classified as true sequence variants, or SV's (based on 100% sequence similarity, as opposed to OTU's that are typically clustered by 97% similarity), and assigned taxonomy using the RDP database for bacteria and the UNITE database for fungi (Koljalg et al., 2014; Wang et al., 2007). This taxonomic information was passed to the open-source R package Phyloseq for pre-processing and all further analyses (McMurdie & Holmes, 2013).

Pre-processing began by looking at the total number and distribution of reads across SV's and samples (Appendix Fig. 4.1). These graphs depicted similar distributions between bacterial

and fungal reads; however, there are approximately twice as many bacterial taxa as fungal taxa. Next, the sequencing depth (or evenness) was summarized in general and category-specific histograms to evaluate the balance in this experiment (Appendix Fig. 4.2; Appendix Fig. 4.3). These graphs depicted normally distributed sequencing depth for both bacterial and fungal reads. Imbalance exists in the tissue type category because only two bulk soil samples were taken; bulk soil was only collected as a check, and the main tissues of interest (leaf, root, and rhizosphere) were sampled evenly. Imbalance also exists in the plant species category, since some species (i.e. Aegilops tauschii and Triticum aestivum) contained more accessions than other species. This imbalance was remedied by including an independent variable in the metadata spreadsheet titled "Genotype" that allowed analyses to be performed on the more evenly sampled plant accessions. Next, histograms of taxa prevalence were observed to better understand the depth of the data, specifically, how many reads of each taxon were found in each sample (Appendix Fig. 4.4). These graphs indicated that most taxa were not highly prevalent across all samples. To reduce the length of this skewed tail and to minimize noise from taxa with extremely low prevalence, the taxa table was filtered to exclude phyla that were observed less than 10 times across the entire dataset, as well as any kingdoms besides Fungi, Bacteria, and Archaea (the last of which is low abundance, but included with bacteria for the purposes of this project). Understanding the depth and distribution of sequencing data is vital when drawing conclusions from downstream analyses.

Analyses of microbial ecosystems typically look at two types of diversity: alpha (withinsample) diversity and beta (among-sample) diversity. Alpha diversity was evaluated using the Chao1 and Shannon indices, due to their comparability and reproducibility among microbiome studies. Beta diversity was interpreted by examining a combination of stacked bar charts, faceted

violin plots, and distance ordinations. Stacked bar charts provide ideal visualizations for coarsely differing abundances of microbial taxa, while violin plots depict varying abundances of a specific taxon across multiple plant categories (i.e. genotype and tissue). The ordinations included principle coordinate analyses and non-metric multidimensional scaling analyses, which work well with datasets containing null values. Additionally, both ordination methods work well with the Bray-Curtis index, which allows ordination models to calculate compositional dissimilarity between samples without the use of phylogenetic trees, which are currently unavailable for fungal taxa (unlike the UNIFRAC index, commonly seen in strictly bacterial studies). Data was transformed for principle coordinate analysis by using weighted Bray-Curtis distances. Phylogenetic-based metrics (such as cladograms) cannot yet be made with fungal sequence data because the ITS operon is not amenable to alignments across all fungal communities (Goodrich et al., 2014; Op De Beeck et al., 2014). Finally, plant tissue types were analyzed individually between planting season and treatment type using PERMANOVAs, or ANOVAs using permutations of distance metrics, to generate *P*-values and identify potential drivers of community diversity among samples. This technique was performed using the 'adonis' tool in the Vegan package for R and is recommended for "explaining communities with environmental variables" (Oksanen et al., 2018; R Core Team, 2017). All graphics were generated using the Phyloseq and Ggplot2 packages in R (McMurdie & Holmes, 2013; Wickham, 2009; R Core Team, 2017).

Results and Discussion

Microbiome Diversity Associated with Wheat and Wild Wheat Relatives

The bacterial and fungal communities associated with three tissue types taken from 17 accessions of wheat and wild wheat progenitors were analyzed through Illumina sequencing on a MiSeq platform. After performing quality control and filtering out phyla with a prevalence of <10 across the entire dataset, there remained 2,662 prokaryotic (bacterial and archaeal) taxa and 1,323 fungal taxa. As evidenced by alpha diversity boxplots and violin plots of the most highly represented microbial phyla, faceted by each independent variable (plant species, plant genotype, season, treatment, and tissue type), within-sample microbial diversity appears to be strongly driven by plant tissue type (Figs. 2.2-2.5, Appendix Figs. 4.4-4.5). For this reason, the focus of this study's results and discussion will be on community structure differentiation based on tissue type. Large sample size (n = 268) provides the freedom to interpret results through alpha/beta diversity graphs and distance ordinations.

Alpha diversity was measured using the Chao1 and Shannon diversity indices and is summarized in boxplots (Fig. 2.2-2.5). While both measurements describe within-sample diversity, Chao1 reports richness (number of SV's per sample) and Shannon reports diversity (number of SV's and their evenness in a sample). In general, the median alpha diversity scores for bacteria and fungi between treatments (wet and dry) did not indicate any remarkable ecological distinction (Fig. 2.2). When planting seasons were compared, within-sample diversity was marginally higher in the spring than in the fall for both bacteria and fungi (Fig. 2.3). No significant trends were detected in the alpha diversity medians among plant species (Fig. 2.4). While Chao1 scores were similar for bacteria and fungi among all plant species, the highest prokaryotic Shannon score was in the diploid species *Triticum monococcum monococcum* (A-

genome relative). In contrast, fungal alpha diversity was highest in the diploid species Aegilops speltoides ligustica (closely related to the B-genome progenitor), but only slightly higher than the adapted modern cultivars of hexaploid Triticum aestivum (ABD-genome). Alpha diversity among plant tissue types was highly stratified (Fig. 2.5). The rhizosphere samples contained the highest alpha diversity scores, slightly higher than bulk soil samples, which confirms previous findings suggesting that plant-root exudates or other plant-related factors may lend greater microbial richness to root-zone soil (Coleman-Derr et al., 2015). Most often, however, plants select a subset of the total microbial community, so rhizospheres can have lower diversity and richness compared to bulk soil (Peiffer et al., 2013; Santoyo et al., 2017). Root tissue, rhizosphere soil, and bulk soil (below-ground samples) all contained higher levels of bacterial than fungal richness and diversity, as is also demonstrated by abundance bar plots (Figs. 2.6-2.7). Proteobacteria was the most abundant bacterial phylum (23% of total sequences), and the plant growth promoting rhizobacteria (PGPR) genus Pseudomonas was well-represented in the rhizosphere. Other phyla found among plant tissues containing PGPR taxa include Planctomycetes (18% of sequences), Bacteroidetes (11% of sequences), Actinobacteria (9% of sequences), Acidobacteria (6% of sequences), Firmicutes (4% of sequences), and Verrucomicroba (4% of sequences). As discussed in Chapter 1, many of the beneficial properties of these microbial symbionts are still putative and environment-specific, but their documented abundance in this experiment further reinforces their purported roles in plant health and development.

Leaf tissue, in contrast to below-ground samples, contained higher fungal richness and diversity, with a higher proportion of the phylum Basidiomycota than below-ground samples. This is in large part due to the high prevalence of the basidiomycete genus *Puccinia* found on
stripe rust-infected leaf tissue (Fig. 2.8); pesticides were not used in this project. The larger vaseshaped polygons encompassing the leaf samples in Figure 2.8 demonstrate the greater abundance of Puccinia in above-ground versus below-ground tissues; presence of Puccinia in below-ground tissue indicates contamination. Overall, the largest represented fungal phylum was the phylum Ascomycota (61% of sequences), whose class Dothidiomycetes contained the largest number of taxa across all tissue types (Fig. 2.9). Dothidiomycetes is the largest and most diverse ecological class of Ascomycota, containing numerous plant pathogens and decomposers important to soil carbon cycling (Mendes et al., 2013). A small quantity of arbuscular mycorrhizae from the phylum Glomeromycota (1% of total fungal reads) was found in root tissue (Fig. 2.6b). At least one root sample in every wild and domesticated wheat species contained Glomeromycota, but the hexaploid *Triticum aestivum* cultivars contained the largest amount of mycorrhizal root associations, followed by Aegilops tauschii (D-genome relative)(Fig. 2.10). With very few exceptions, the dominant Glomeromycete taxon found in roots was *Funneliformis mosseae*. This arbuscular mycorrhizal taxon is associated with enhanced water and nutrient uptake in diverse crop species, and may contribute to the robust growth of the three Colorado-adapted hexaploid cultivars in this study (Bitterlich et al., 2018; Chen et al., 2017). It also suggests that the Dgenome may be important for recruiting mycorrhizae and possessing root architecture conducive to such associations. Aegilops tauschii, the diploid D-genome progenitor, can grow roots deep into the soil moisture profile and be colonized by mycorrhizae, both traits of which contribute to the species' drought tolerance (Bektas et al., 2017). While all wild and domesticated wheat species possessed at least one root sample containing a member of order Glomeroales, this limited representation of Glomeromycete diversity is indicative of tilled agricultural soils where fungal hyphal networks are routinely disturbed (Schalamuk & Cabello, 2010). Another

remarkable group of fungi found in large abundance within the root tissue is phylum Chytridiomycota (Fig. 2.6b). Within this phylum, the overwhelming number of root samples contained fungi from class Chytridiomycetes. This class contains many infamous parasites; however, non-hyphal Chytrids in plant roots are purported to be capable of enhancing plant nutrient uptake in some arid rangeland species (Barrow et al., 1997).

Factors Driving Microbial Community Diversity

Beta diversity metrics were analyzed to elucidate major drivers of microbial community composition. Principle coordinate analyses (PCoA) using the Bray-Curtis dissimilarity index consistently indicated plant tissue type as the vector with the largest eigenvalue (responsible for the greatest amount of variability). In the bacterial PCoA, tissue type accounted for 8.6% of the among-sample variability, while tissue type accounted for 12.2% in the fungal PCoA (Fig. 2.10). Planting season was secondarily evaluated in the same graphs to determine whether fall- and spring-planted samples should be analyzed separately; the resulting lack of significant clustering between fall and spring suggested that separate analyses were not needed. This is not surprising, since both fall- and spring-planted plants underwent vernalization, flowered with a short delay for spring-planted materials, and were sampled within 11 days of one another. Non-metric multidimensional scaling (NMDS) ordinations also demonstrated pronounced clustering of tissue types and their respective microbial phyla (Fig. 2.11).

To further investigate any underlying factors influencing the significant differences among tissue types, tissues were analyzed individually by planting season, treatment, plant species, plant genotype, and plant ploidy through permutational analyses of variance (PERMANOVA)(Table2.2). When plant tissue types were analyzed individually, nearly half of

the total samples were found to differ significantly in microbial community structure for treatment (wet/dry), particularly in the rhizosphere (P-values: 0.046 [Fall, 16S], 0.002 [Spring, 16S], 0.002 [Fall, ITS2]). Due to an exceptionally rainy spring, the wet treatment only received one additional irrigation (13 mm) five days prior to tissue collection. Therefore, these significant PERMANOVA values suggested an additional, unaccounted variable, such as soil fertility, texture, or pH (Fierer, 2017). The cropping history of the field site indicated that the "wet" site was fallow the year before this study, while the "dry" site was planted immediately following a canola (Brassica napus L.) harvest. A fallow period allows moisture to accumulate in the soil profile, and the decomposing canola residue would return nutrients to soil (Kabir et al., 1999; Lenssen et al., 2007). Recently harvested sites are more likely to be depleted of key nutrients, such as nitrogen and carbon and to have a reduced soil moisture level (Kabir et al., 1999; Lenssen et al., 2007). The only soil test performed in this project was on a sample of bulk soil taken directly between the wet and dry sites (Appendix Table 4.1). Soil moisture status was not measured, so we cannot say whether it was a primary driver in microbiome composition. However, other studies have found that soil moisture and fertility, particularly the resultant effect on soil pH, play an enormous role on soil microbial biomass and diversity (Fierer, 2017; Leff et al., 2015).

A random forest regression was used to classify rhizosphere-sampled SV's in their order of importance for discriminating between wet and dry treatments (Figure 2.12). The most significant bacterial sequence variant found (SV21) was a member of the phylum Chloroflexi, in the proposed class Ellin 6529 (Figure 2.13). This taxon was found in higher abundance among wet samples across all wild and domesticated species in this study (Figure 2.14). Other members of the phylum Chloroflexi have been found in similarly cold, water-saturated soils in meadows

throughout the nearby Colorado Rocky Mountains (Costello et al., 2006). The second most significantly differentiating bacterial sequence variant (SV30) was *Flavobacterium succinicans*, a Gram-negative facultative anaerobe in the phylum Bacteroidetes whose presence has also been documented amongst frozen soils in northern latitudes (Zhang et al., 2006). F. succinicans was also found in higher abundance among wet rhizosphere samples, particularly in the plant species Triticum aestivum, Triticum dicoccoides, and Triticum urartu (Figure 2.14). The most significant fungal taxon (SV47) for distinguishing between wet and dry rhizosphere samples was Trichocladium asperum (Figure 2.13). This ascomycete is a slow-growing microfungi (loosely classified as "black yeast") that is resilient to environmental stresses and commonly found in soils and aquatic environments (Christian, 2014). T. asperum was most abundant in wet samples, predominately within the rhizosphere of the wild wheat relative Aegilops tauschii. The second most important fungal taxon (SV32) was another ascomycete in the family Tremellales (Figure 2.13). Members of the Tremellales are notable for their ability to decompose cellulose, and their populations tend to proliferate in soils with high organic litter content (Kuramae et al., 2013). Unlike the other top three significantly discriminative microbial taxa in this study, Tremellales was most represented among dry rhizosphere samples. This is consistent with the cropping history known of the dry site, which included a recent canola harvest and subsequent plant litter residue. The presence of distinct microbial taxa in wet and dry rhizosphere samples suggests that moisture, and likely soil conditions (e.g. pH, texture, organic matter content), play an important role in microbial community structure.

Conclusions

The initial goal of this study was to compare the microbiomes of wheat and its wild relatives through a multivariate approach, including an analysis of different plant tissue types. Ultimately, no significant differences were found among the microbiomes of three hexaploid wheat cultivars and 14 landrace and wild relative accessions of different ploidy levels. This is consistent with results in contemporary literature that indicate differences in the plant microbiome are relatively minor across a plant domestication gradient (Leff et al., 2016). Broader literature reviews agree that plant species identity is not a strong predictor of soil microbial communities (Gous et al., 2015). Alpha and beta diversity metrics suggest that plant tissue type, however, was the greatest driver of within-sample diversity. Overall, rhizosphere samples hosted the most complex microbial communities, with greater abundance and diversity than other tissue types. Upon deeper examination of among-sample diversity, treatment (wet/dry) influenced some underlying differences among tissue types. The different moisture regimes between sites, as well as an imbalanced cropping history that may have caused variable soil fertility, resulted in the notable presence of certain discriminative microbes.

This study confirms results from the current literature's understanding of distinct microbial communities among plant tissue types, as well as the critical role of soil conditions. The close phylogenetic relationships among the host germplasm in this study may have limited the ability to observe genotype-dependent microbial diversity. Biogeography is a known driver of microbial diversity, and that effect is diminished in common garden experiments such as this one. Future innovations in phytobiome technology can benefit from this study by the corroborative evidence demonstrating similar microbiome functionality among closely related

plant species, and the distinct microbial communities that occupy leaves, roots, and rhizosphere soil.

Tables

	Planted 15 October 2015			
Entry	Таха	Acc. No. ¹	Ploidy ²	Genome
1	Aegilops sharonensis	TA 1998	2x	В
2	Aegilops speltoides ligustica	TA 1772	2x	В
3	Triticum monococcum aegilopoides	TA 177	2x	А
4	Triticum monococcum monococcum	TA 142	2x	А
5	Triticum turgidum dicoccoides	TA 61	4x	AB
6	Triticum turgidum durum	TA 10451	4x	AB
7	Triticum urartu	TA 739	2x	А
8	Aegilops tauschii	TA 2374	2x	D
9	Aegilops tauschii	TA 2536	2x	D
10	Aegilops tauschii	TA 10106	2x	D
	Planted 13 February 2016			
Entry	Таха	Acc. No.	Ploidy	Genome
1	Aegilops tauschii	TA 1707	2x	D
2	Aegilops tauschii	TA 2458	2x	D
3	Aegilops tauschii	TA 2536	2x	D
4	Aegilops tauschii	TA 10144	2x	D
5	Aegilops tauschii	TA 10330	2x	D
6	Triticum aestivum	Kharkov	6x	ABD
7	Triticum aestivum	Byrd	6x	ABD
8	Triticum aestivum	RonL	6x	ABD
9	Triticum urartu	TA 739	2x	Α
10	Triticum monococcum monococcum	TA 142	2x	А
11	Aegilops speltoides ligustica	TA 1772	2x	В
12	Triticum turgidum dicoccoides	TA 61	4x	AB

 Table 2.1 Plant genotypes included in this study, by planting date.

¹ Accession number of Wheat Genetics Resource Center, Manhattan, KS (http://www.k-state.com/wgrc/). ² "x" refers to the number of chromosomes in a basic set, which is 7 for wheat and its wild relatives.

Primer	Season	Tissue	Variable	<i>P</i> -value
16S	Fall	Leaf	Genome	0.092
16S	Fall	Leaf	Genotype	0.501
16S	Fall	Leaf	Plant Species	0.360
16S	Fall	Leaf	Ploidy	0.160
16S	Fall	Leaf	Treatment	0.065
16S	Fall	Root	Genome	0.472
16S	Fall	Root	Genotype	0.557
16S	Fall	Root	Plant Species	0.223
16S	Fall	Root	Ploidy	0.116
16S	Fall	Root	Treatment	0.613
16S	Fall	Rhizosphere	Genome	0.389
16S	Fall	Rhizosphere	Genotype	0.313
16S	Fall	Rhizosphere	Plant Species	0.606
16S	Fall	Rhizosphere	Ploidy	0.278
16S	Fall	Rhizosphere	Treatment	0.046*
16S	Spring	Leaf	Genome	0.425
16S	Spring	Leaf	Genotype	0.359
16S	Spring	Leaf	Plant Species	0.340
16S	Spring	Leaf	Ploidy	0.651
16S	Spring	Leaf	Treatment	0.856
16S	Spring	Root	Genome	0.293
16S	Spring	Root	Genotype	0.784
16S	Spring	Root	Plant Species	0.468
16S	Spring	Root	Ploidy	0.256
16S	Spring	Root	Treatment	0.139
16S	Spring	Rhizosphere	Genome	0.627
16S	Spring	Rhizosphere	Genotype	0.538
16S	Spring	Rhizosphere	Plant Species	0.693
16S	Spring	Rhizosphere	Ploidy	0.497
16S	Spring	Rhizosphere	Treatment	0.002**
ITS2	Fall	Leaf	Genome	0.223
ITS2	Fall	Leaf	Genotype	0.137
ITS2	Fall	Leaf	Plant Species	0.147
ITS2	Fall	Leaf	Ploidy	0.223
ITS2	Fall	Leaf	Treatment	0.003**
ITS2	Fall	Root	Genome	0.179
ITS2	Fall	Root	Genotype	0.099
ITS2	Fall	Root	Plant Species	0.102
ITS2	Fall	Root	Ploidy	0.164
ITS2	Fall	Root	Treatment	0.041*
ITS2	Fall	Rhizosphere	Genome	0.132

Table 2.2 Tissue type PERMANOVA *P*-values generated by 'adonis' tool in Vegan package for R (R Core Team, 2018).

ITS2	Fall	Rhizosphere	Genotype	0.594
ITS2	Fall	Rhizosphere	Plant Species	0.112
ITS2	Fall	Rhizosphere	Ploidy	0.149
ITS2	Fall	Rhizosphere	Treatment	0.002**
ITS2	Spring	Leaf	Genome	0.936
ITS2	Spring	Leaf	Genotype	0.907
ITS2	Spring	Leaf	Plant Species	0.100
ITS2	Spring	Leaf	Ploidy	0.215
ITS2	Spring	Leaf	Treatment	0.225
ITS2	Spring	Root	Genome	0.693
ITS2	Spring	Root	Genotype	0.094
ITS2	Spring	Root	Plant Species	0.379
ITS2	Spring	Root	Ploidy	0.407
ITS2	Spring	Root	Treatment	0.910
ITS2	Spring	Rhizosphere	Genome	0.239
ITS2	Spring	Rhizosphere	Genotype	0.353
ITS2	Spring	Rhizosphere	Plant Species	0.132
ITS2	Spring	Rhizosphere	Ploidy	0.613
ITS2	Spring	Rhizosphere	Treatment	0.108

* significant at P < 0.05, ** significant at P < 0.005.

Figures

Figure 2.1 Terrain map of ten wild wheat relative accessions used in this study in their centers of origin (*Ae. tauschii* TA 1707 is not plotted due to lack of collection data). Map courtesy of Jon Raupp, Wheat Genetics Resource Center, Kansas State University, Manhattan, KS, USA.

Figure 2.2 Alpha diversity panels (Chao1 and Shannon indices) for a) bacteria and b) fungi by treatment. Boxes encompass 50% of the data (interquartile range); the mid-line indicates the median value, the lower line indicates the lower quartile (25% of the data falls below this value), the upper line indicates the upper quartile (25% of the data falls above this value), and standard error bars bound the greatest and lowest values, excluding outliers.

Figure 2.3 Alpha diversity panels (Chao1 and Shannon indices) for a) bacteria and b) fungi by season. Boxes encompass 50% of the data (interquartile range); the mid-line indicates the median value, the lower line indicates the lower quartile (25% of the data falls below this value), the upper line indicates the upper quartile (25% of the data falls above this value), and standard error bars bound the greatest and lowest values, excluding outliers.

Figure 2.4 Alpha diversity panels (Chao1 and Shannon indices) for a) bacteria and b) fungi by plant species. Boxes encompass 50% of the data (interquartile range); the mid-line indicates the median value, the lower line indicates the lower quartile (25% of the data falls below this value), the upper line indicates the upper quartile (25% of the data falls above this value), and standard error bars bound the greatest and lowest values, excluding outliers. Column "NA" refers to bulk soil samples.

Figure 2.5 Alpha diversity panels (Chao1 and Shannon indices) for a) bacteria and b) fungi by plant tissue type. Boxes encompass 50% of the data (interquartile range); the mid-line indicates the median value, the lower line indicates the lower quartile (25% of the data falls below this value), the upper line indicates the upper quartile (25% of the data falls above this value), and standard error bars bound the greatest and lowest values, excluding outliers.

Figure 2.6 Relative abundance bar plot for a) bacterial and b) fungal phyla by plant tissue type.

Figure 2.7 Percent abundance bar plot for a) bacterial and b) fungal phyla by plant tissue type. Bulk soil is low because only two samples were taken.

Figure 2.8 Violin plot depicting abundance of G. *Puccinia*, the stripe-rust genus, found primarily in leaf tissue.

Figure 2.9 Violin plot depicting abundance of members of the class Dothidiomycetes, the largest taxonomic class of Ascomycota, across all tissue types.

Figure 2.10 Violin plot depicting abundance of the phylum Glomeromycota, the arbuscular mycorrhizal phylum, in the roots of wheat and wild relative species.

Figure 2.11 Principle coordinate analysis of plant tissue type and planting season using Bray-Curtis dissimilarity index for a) bacteria and b) fungi. Note: bacterial leaf samples are superimposed underneath root samples at apex of graph a).

- p_Acidobacteria
- p__Armatimonadetes

- p__Gemmatimonadetes
- p_Proteobacteria
- p_Verrucomicrobia

Figure 2.12 Non-metric multidimensional scaling ordination of plant tissue types and their respective microbial phyla for a) bacteria and b) fungi.

Figure 2.13 Random forest regression depicting the top 20 most important a) bacterial SV's and b) fungal SV's for discriminating rhizosphere samples between wet and dry treatments. The x-axis label "MeanDecreaseGini" refers to a decrease in the number of branches, and thus increase in homogeneity of nodes, in association trees generated by the random forest model and can be interpreted as "increase in SV importance".

a)

Most	important RSVs for classifying Rhizosphere samples into Dry or Wet response
SV105 -	K. Bacteria, P. Bacteroidetes, C. Flavobacteria, O. Flavobacteriales, F. Flavobacteriaceae, G. Flavobacterium
SV20 -	K. Archaea, P. Crenarchaeota, C. Thaumarchaeota, O. Nitrososphaerales, F. Nitrososphaeraceae, G. Candidatus Nitrososphaera, S. SCA1145
SV18 -	K. Bacteria, P. Acidobacteria, C. Acidobacteria-6, O. iii1-15
SV19-	K. Bacteria, P. Proteobacteria, C. Gammaproteobacteria, O. Xanthomonadales, F. Sinobacteraceae, G. Steroidobacter
SV230 -	K. Bacteria, P. Chloroflexi, C. TK17, O. mle1-48
SV228 -	K. Bacteria, P. Chloroflexi, C. TK17, O. mle1-48
SV99 -	K. Bacteria, P. Chloroflexi, C. S085
SV97 -	K. Bacteria, P. Planctomycetes, C. Phycisphaerae, O. WD2101
sv17-	K. Bacteria, P. Actinobacteria, C. Actinobacteria, O. Actinomycetales, F. Micrococaceae, G. Arthrobacter
SV232	K. Bacteria, P. Proteobacteria, C. Alphaproteobacteria, O. Rhodospirilales, F. Rhosospirillaceae
SV33	K. Bacteria, P. Acidobacteria, C. Acidobacteria-6, O. iii1-15
SV16	K. Bacteria, P. Gemmatimonadetes, C. Gemm-1
SV13	K. Bacteria, P. Acidobacteria, C. Acidobacteria-6, O. iii1-15
SV9-	K. Bacteria, P. Bacteroidetes, C. Saprospirae, O. Saprospirales, F. Chitinophagaceae
SV28 -	K. Bacteria, P. Actinobacteria, C. Thermoleophilia, O. Gaiellales, F. Gaiellaceae
SV124 -	K. Bacteria, P. Fibrobacteres, C. Fibrobacteria, O. 258ds10
SV25 -	K. Bacteria, P. Bacteroidetes, C. Cytophagia, O. Cytophagales, F. Cytophagaceae
SV12 -	K. Bacteria, P. Proteobacteria, C. Betaproteobacteria, O. Burkholderiales, F. Oxalobacteraceae, G. Janthinobacterium
SV30-	K. Bacteria, P. Bacteroidetes, C. Flavobacteria, O. Flavobacteriales, F. Flavobacteriaceae, G. Flavobacterium, S. succinicans
SV21 -	K. Bacteria, P. Chloroflexi, C. Ellin6529
	0.0 0.1 0.2 0.3 MeanDecreaseGini

b)	
M	ost important SVs for classifying Rhizosphere samples into Dry or Wet response
SV24 -	K. Fungi, P. Basidiomycota, C. Tremellomycetes, O. Tremellales, F. Tremellales, G. Cryptococcus, S. aerius
SV158 -	K. Fungi, P. Basidiomycota, C. Tremellomycetes, O. Cystofilobasidiales, F. Cystofilobasidiales, G. Mrakiella, S. aqualtica
SV12 -	K. Fungi, P. Chytriodiomycota, C. Chytridiomycetes, O. Olpidiales, F. Olpidiaceae, G. Olpidium, s. brassicae
SV151 -	K. Fungi, P. Ascomycota, C. Eurotiomycetes, O. Chaetothyriales, F. Herpotrichiellaceae, G. Exophiala, S. equina
SV514 -	K. Fungi, P. Ascomycota, C. Eurotiomycetes, O. Onygenales, F. Onygenaceae, G. Chrysosporium, S. pseudomerdarium
SV21 -	K. Fungi, P. Ascomycota, C. Dothideomycetes, O. Pleosporales, F. Sporomiaceae, G. Sporomiella
SV54 -	K. Fungi, P. Ascomycota, C. Sordariomycetes, O. Microascales
SV154 -	K. Fungi, P. Ascomycota, C. Sordariomycetes, O. Microascales, F. Microascaceae, G. Microascus, S. brevicaulis
SV57 -	K. Fungi, P. Zygomycota, C. Mortierellomycotina, O. Mortierellales, F. Mortierellaceae, G. Mortierella, S. alpina
pend SV49 -	K. Fungi, P. Ascomycota, C. Sordariomycetes, O. Hypocreales, F. Nectriaceae, G. Fusarium, S. solani
ozi sv43 -	K. Fungi, P. Ascomycota, C. Sordariomycetes, O. Hypocreales, F. Nectriaceae, G. Fusarium, S. brasiliense
Te SV40 -	K. Fungi, P. Ascomycota, C. Sordariomycetes, O. Microascales, F. Microascaceae, G. Scedosporium, S. prolificans
SV508 -	K. Fungi, P. Ascomycota, C. Dothideomycetes, O. Pleosporales, F. Corynesporascaceae, G. Corynespora
SV35 -	K. Fungi, P. Ascomycota, C. Sordariomycetes, O. Sordariales, F. Chaetomiaceae
SV59 -	K. Fungi, P. Ascomycota, C. Sordariomycetes, O. Hypocreales, F. Nectriaceae, G. Nectria, S. ramulariae
SV293 -	K. Fungi, P. Ascomycota, C. Eurotiomycetes, O. Eurotiales, F. Trichocomaceae, G. Peniciliium S. chysogenum
SV9 -	K. Fungi, P. Ascomycota, C. Pezizomycotina, O. Pezizomycotina, F. Pezizomycotina, G. Gamsia, S. simplex
SV128 -	K. Fungi, P. Ascomycota, C. Sordariomycetes, O. Sordariales, F. Chaetomiaceae, G. Trichocladium, S. asperum
SV32 -	K. Fungi, P. Ascomycota, C. Sordariomycetes, O. Microascales, F. Tremellales
SV47 -	K. Fungl, P. Ascomycota, C. Sordariomycetes, O. Sordariales, F. Chaetomiaceae, G. Trichocladium, S. asperum
	0.0 0.2 0.4 0.6 MeanDecreaseGini

Figure 2.14 Bar graphs of single variants for a) bacteria and b) fungi in order of ascending importance for discriminating rhizosphere samples into wet or dry response. Abbreviations refer to conventional taxonomic rankings.

Figure 2.15 Top two most important bacterial taxa , a) SV21 and SV30, for discriminating rhizosphere samples into wet or dry response, faceted by plant species (the second most statistically significant variable after plant tissue type).

Figure 2.16 Top two most important fungal taxa, SV47 and SV32, for discriminating rhizosphere samples into wet or dry response, faceted by plant species (the second most statistically significant variable after plant tissue type).

Chapter 3

Defining the Core Microbiome of Wheat and Its Wild Relatives by Ploidy and Tissue Type

Summary

Microbiomes containing consortia of bacteria and fungi associate with plants to confer competitive advantages such as water uptake, nutrient acquisition, and stress tolerance (Andreote et al., 2014). There has been avid interest in manipulating the microbiome of crops to reduce reliance on inorganic and costly agricultural inputs (Farrar et al., 2014). Microbial community structure differs among plant species and plant tissue, and in order to leverage these differentiations for crop improvement, conserved "core" taxa must first be identified (Bulgarelli et al., 2015; Lundberg et al., 2012). Plant domestication has altered the microbial assocations in many crops, and research has turned to crop wild relatives as potential reservoirs of genetic diversity and beneficial microbial symbioses (Bulgarelli et al., 2015; Leff et al., 2016). This is the first known study to identify a core microbiome among wheat and its crop wild relatives by ploidy (or plant species identity across a domestication gradient) and tissue type.

The host genotypes in this study included three adapted wheat cultivars and 14 accessions of eight wild wheat relative species, which were planted as a common garden experiment in a randomized complete block design in Fort Collins, Colorado. Leaves, roots, and rhizosphere soil were sampled from each plant at the pre-flowering stage following winter vernalization. DNA was extracted, PCR-amplified, and sequenced on a two-lane Illumina MiSeq platform with primers designed to isolate the DNA of prokaryotes (bacteria and archaea) and fungi (Appendix Table 4.2). Raw sequence reads were processed through the bioinformatics pipelines DADA2 (for quality trimming and filtering) and Phyloseq (for community analyses) using R software.

Large phylogenetic groups of microbes serve similar functional roles in many land plants, and therefore tend to be similarly recruited; studies suggest the microbial taxa dictated by plant species identity tend to be influential but few in number (Bulgarelli et al., 2015; Fierer, 2017). The core fungi among plant tissue types contained a larger proportion of the overall fungal taxa, corroborating literature indicating the influential role of plant tissue on fungal community structure (Coleman-Derr et al., 2015). Overall, this project provides one of the first glimpses into the core microbiomes of wheat and its wild relatives that may be leveraged in the future to improve crop performance.

Introduction

Plants possess microbiomes containing bacteria, archaea, and fungi that associate across a range of symbioses. Pathogens, commensalists, and mutualists interact with plants above and below ground, within and around plant tissues, influencing the fitness of their plant hosts (Andreote et al., 2014; Lebeis, 2014). The movement from plants' centers of origin and their subsequent domestication have altered the composition of plant-microbe interactions in several crops (Bulgarelli et al., 2015; Leff et al., 2016). It is thought that the progenitors of the A, B, and D genomes in modern hexaploid wheat manage environmental stress in their native environment by establishing symbioses with a consortium of beneficial microbes (Iannucci et al., 2017). Two widely documented examples of beneficial microbes include arbuscular mycorrhizae and nitrogen-fixing bacteria (Bitterlich et al., 2018; Elkoca et al., 2008). The diverse functionalities of the plant microbiome are not well understood, nor are all of the genetic mechanisms governing the development of these symbioses that thwart sophisticated plant immune systems (Andreote et al., 2014). However, we know that microbial community structure differs somewhat

across plant species and strongly across plant tissue (Coleman-Derr et al., 2015; Lundberg et al., 2012). Many coarse taxonomic groups of microbes serve similar functional roles in the plant microbiome and are therefore conserved (Bulgarelli et al., 2015; Lundberg et al., 2012). This is one of the first studies to define the core microbiome of wheat and its wild relatives by ploidy and tissue type. The importance of wheat as a model organism for this type of comparative study is outlined in Chapter 1. By identifying core groups of prokaryotes and fungi found in wheat and its wild relatives across a domestication gradient (A, B, D, AB, and ABD genomes), as well as the core microbiome among plant tissues (leaves, roots, and rhizospheres), this study provides a foundation for future opportunities to leverage the plant microbiome for crop improvement.

Materials and Methods

Germplasm

Three wheat cultivars, Byrd, RonL, and Kharkov, represent plants with "domesticated" microbiomes in this study. Byrd is a hard red winter wheat released by the Colorado Agricultural Experiment Station in 2010, purported to have excellent yield performance in both dryland and irrigated environments, tolerance to stripe and stem rust (*Puccinia striiformis* Westend and *Puccinia graminis* Pers.:Pers. F. sp. *tritici* Eriks. E. Henn, respectively), and favorable bread making qualities (Haley et al., 2012). RonL is a hard white winter wheat released by the Kansas Agricultural Experiment Station in 2006, adapted for dryland production in Kansas, and with excellent resistance to wheat streak mosaic virus (WSMV) (Martin et al., 2007). Kharkov is a much older hard winter wheat variety with origins in western Russia, but was grown widely across the American Great Plains in the early twentieth century (Charest & Phan, 1990). The seed of 14 landraces and wild relatives of wheat (*Triticum aestivum*) was sourced from the

Wheat Genetics Resource Center at Kansas State University (<u>https://www.k-state.edu/wgrc/</u>) (Figure 2.1). This latter group of plants includes diploid, tetraploid, and hexaploid genotypes (Table 3.1).

Field Trial

This experiment was planted at the Agricultural Research, Development and Education Center (ARDEC) near Fort Collins, Colorado (DMS Lat: 40° 35' 6.9288" N; DMS Long: 105° 5' 3.9084" W; Elevation (m): 1,526). This arid plains region has an average temperature of 10.1°C, average annual rainfall of 40.8 cm, and alkaline sandy clay loam soil (pH 7.9)(Appendix Table 1). Seeds were sown on October 15, 2015. Two seeds of each accession were planted 12 cm apart in a randomized complete block design with two replications, each in well-watered and water-limited treatments separated by about 5 m. The water-limited treatment was planted where canola (*Brassica napus* L.) was harvested about 30 days previously, whereas the well-watered treatment area was fallow the previous year. The plants grew to the 2-3 leaf stage, went dormant by early winter, and resumed growth in early March. Because the overwintering ability of these wild accessions was unknown, a second planting was done on February 13, 2016, which is traditionally early enough in Colorado to allow a minimum of 6 weeks of cool weather for plants to vernalize. Eight seeds of each accession were planted, in the same rows as the fall-planted materials in wet and dry treatments. Five of the 17 accessions were planted in October only, seven of the 17 were planted in February only, and five of the 17 were planted in both October and February. The region was not under drought stress at any point in the growing season, per the Palmer Drought Severity Index provided by NOAA (https://www.ncdc.noaa.gov/temp-andprecip/drought/historical-palmers/). Due to abundant spring rainfall, the "wet" plot was irrigated

just once (13 mm) in June, five days prior to the sampling of October-seeded plants, and 16 days prior to the sampling of February-seeded plants. Soil moisture content analysis was not performed. The October-seeded plants were sampled on June 8 and February-seeded plants were harvested on June 19. This corresponded to the pre-heading to heading stage. Plants were not allowed to ripen to full maturity because several of the goatgrass species are considered potentially invasive to Colorado. A basic soil analysis was performed on a sample collected between the two fields at the time of harvest.

One healthy plant per plot (44 plants total) was dug up (15 cm deep) and the root ball shaken to release loose soil. Any soil that remained adhered to the root ball after vigorous shaking constituted the rhizosphere, which was collected and stored at -80°C until DNA extraction. Two bulk soil samples from the wet and dry fields were also collected for DNA sequencing. Three undamaged, mature leaf blades (non-flag leaf) were collected from each plant, along with roots from a diverse range of size classes. The roots were surface sterilized in a 0.05 M NaClO solution. Leaves were not sterilized in order to include the "phyllosphere" microbes that colonize the leaf surface. Leaves and roots were lyophilized, sealed in centrifuge tubes, and stored at room temperature until DNA extraction.

DNA Extraction

Leaf DNA was extracted with a ThermoScientific Plant DNA Kit (Thermo Fisher Scientific, Waltham, MA, USA). Root and rhizosphere DNA were extracted with a MoBio PowerMag Soil DNA Isolation Kit (Mo Bio Laboratories, Carlsbad, CA, USA). Both kits were optimized for the KingFisher[™] Flex Purification System. Once extracted, the DNA concentration was calibrated using a NanoDrop[™] spectrophotometer (Thermo Fisher Scientific,

Waltham, MA, USA). The three 96-well plates (leaf, root, and rhizosphere) containing the extracted DNA were stored at -20°C until they were shipped on dry ice to the University of Minnesota Genomics Center for PCR-amplification, library preparation, and two-lane Illumina sequencing.

Next-Generation Amplicon Sequencing

The ITS2 and 16S-V4 ribosomal RNA (rRNA) operons were sequenced to identify the fungi and bacteria in each sample, respectively (Appendix Table 4.2). These primers amplify DNA fragments 260-290 bp in length and are ideal candidates for amplification because they are highly conserved, but possess sufficient variability to distinguish closely related taxa (Op De Beeck et al., 2014; Walters et al., 2015; Yao et al., 2010). Additionally, the 16S-V4 primer refines the detection of *Thaumarchaeota*, a prokaryotic phylum known to play an important role in terrestrial nitrogen and carbon cycling (Walters et al., 2015). The ITS2 operon possesses superior detection of several ectomycorrhizal fungal species, including Sistotrema sp., *Rhizopogon luteolus*, and *Wilcoxina mikolae*, as well as arbuscular mycorrhizae in the Glomeromycota (Op De Beeck et al., 2014). Since Illumina MiSeq sequencers read 300 bp in each direction, these shorter fragments allow for almost complete double-stranded overlap, increasing base call accuracy (Goodrich et al., 2014). A downside to using primers for shorter genetic elements is that the sequences generated are less informative than reads with longer single-stranded tails (Kozich et al., 2013). Longer fragment sequences can generate higher resolution OTU's, but are prone to higher error rates (Quail et al., 2012). The resultant sequences were delivered digitally as ".fastq" files for taxonomic identification and statistical analysis.

Data Analysis

The open-source software package DADA2 was used to model and correct Illumina amplicon sequencing errors for all raw .fastq reads in this study (Long et al., 2016). This highthroughput bioinformatics pipeline, built for use in R, improves the structure and quality of amplicon sequences so they can be passed downstream for taxonomic assignment and hypothesis-based analyses. The sequence cleaning pipeline for this project required five steps: filtering, dereplicating, denoising, chimera-removing, and merging. First, forward $(5' \rightarrow 3')$ and reverse $(3' \rightarrow 5')$ reads are trimmed where Phred quality scores fall below 20; a score of 20 or higher ensures base call accuracy of at least 99% (Bokulich et al., 2013). The tails of reads and reverse reads in general have lower quality scores (Long et al., 2016). Next, a dereplication function inputs the filtered reads and outputs a list of unique sequences and their abundances. After dereplication, the unmerged sequences are passed to a denoising algorithm that identifies total number of true sequence variants through sample inference. More abundant sequences are also checked for chimeras by identifying sequence mismatches and indels. The chimeric model flags these offending sequences, and chimeras in this project were removed to improve accuracy. Finally, the filtered forward and reverse reads are merged to create paired-end sequences poised for clustering and taxonomic assignment (Long et al., 2016).

Another common filtering tool employed in metagenomics projects is rarefaction (McMurdie & Holmes, 2014). Rarefaction creates consistent sequencing "depth" by reducing the number of sequences in every sample to the number of sequences present in the sample with the fewest unique sequences. However, a downside to this method is that it does not account for differentially abundant taxa and wastes information in smaller studies (McMurdie & Holmes,

2014). Since this experiment contained only 268 samples (few compared to animal microbiome studies), rarefaction was not used.

After performing quality control in DADA2, the cleaned sequences were classified as true sequence variants, or SV's (based on 100% sequence similarity, as opposed to OTU's that are typically clustered by 97% similarity), and assigned taxonomy using the RDP database for bacteria and the UNITE database for fungi (Koljalg et al., 2014; Wang et al., 2007). This taxonomic information was passed to the open-source R package Phyloseq for pre-processing and all further analyses (McMurdie & Holmes, 2013).

Pre-processing began by looking at the total number and distribution of reads across SV's and samples (Appendix Fig. 4.1). These graphs depicted similar distributions between bacterial and fungal reads; however, there are approximately twice as many bacterial taxa as fungal taxa. Next, the sequencing depth (or evenness) was summarized in general and category-specific histograms to evaluate the balance in this experiment (Appendix Fig. 4.2; Appendix Fig. 4.3). These graphs depicted normally distributed sequencing depth for both bacterial and fungal reads. Imbalance exists in the tissue type category because only two bulk soil samples were taken; bulk soil was only collected as a check, and the main tissues of interest (leaf, root, and rhizosphere) were sampled evenly. Imbalance also exists in the plant species category, since some species (i.e. Aegilops tauschii and Triticum aestivum) contained more accessions than other species. This imbalance was remedied by including an independent variable in the metadata spreadsheet titled "Genotype" that allowed analyses to be performed on the more evenly sampled plant accessions. Next, histograms of taxa prevalence were observed to better understand the depth of the data; specifically, how many reads of each taxon were found in each sample (Appendix Fig. 4.4). These graphs indicated that most taxa were not highly prevalent across all samples. To reduce

the length of this skewed tail and to minimize noise from taxa with extremely low prevalence, the taxa table was filtered to exclude phyla that were observed less than 10 times across the entire dataset, as well as any kingdoms besides Fungi, Bacteria, and Archaea (the last of which is low abundance, but included with bacteria for the purposes of this project). Understanding the depth and distribution of sequencing data is vital when drawing conclusions from downstream analyses.

Following pre-processing, the cleaned and assembled dataset was partitioned into subsets containing each of the five wheat/wild wheat relative genomes (A, B, D, AB, and ABD), and each of the three primary tissue types (leaf, root, and rhizosphere). Venn diagrams were created among genomes and among tissue types. Since Venn diagrams were made with four ellipses, two genome subsets were generated (A, B, D, AB, and A, B, D, ABD), and tables of the overlapping core microbial taxa were created (Appendix Tables 3-6). The core microbiomes of each subset, or the microbial taxa shared among all genomes/tissues, were subsequently described. Additionally, the non-parametic test for differences in means, the Kruskal-Wallis test, was performed to determine whether the mean number of reads per core SV were significantly different. Raw mean values were used to identify the most abundant core taxa in each of the four main factors (i.e., 16S-V4 x tissue, 16S-V4 x genome, ITS2 x tissue, and ITS x genome). All data analysis and visualization was performed in R.

Results & Discussion

After raw read processing, a total of 5,276 bacterial SV's and 1,323 fungal SV's were identified. The higher number of identified prokaryotic species is likely due to larger bacterial sequence databases. The greater ratio of bacteria:fungi biomass is indicative of agricultural soils

(Santoyo et al., 2017). While it is important to note that abundance does not always correlate directly to functional importance within microbial ecosystems, the disparately high means of the top core taxa is worth exploring (Fierer, 2017).

Of the total 5,276 prokaryotic SV's, 80 (1.5% of total prokaryotic SV's) were found to be common among all representative wheat and wild wheat relative genomes in this study (A, B, D, AB, and ABD) (Fig. 3.1-3.2). However, the means of each of these core taxa were significantly different (Kruskal-Wallis $P < 2.2e^{-16}$) (Table 3.2, Fig. 3.3). The most highly abundant bacterial taxon shared among the five genomes in this study was a member of the Family Chitinophagaceae (Phylum Bacteroidetes) (df = 79, μ = 86.13). This family contains scores of diverse genera, including mostly non-motile, aerobic commensal species common in grassland and farmland soils, and some plant growth-promoting rhizobacteria (PGPR) with auxinproducing capabilities documented in the rhizospheres of tomato (*Solanumm lycopersicum*) and cowpea (*Vigna unguiculata*) (Madhaiyan et al., 2018).

The core bacterial taxa among the leaf, root, and rhizosphere tissues contained 78 SV's (1.5% of total prokaryotic SV's) and also possessed significantly different means (Kruskal-Wallis $P < 2.2e^{-16}$) (Fig. 3.4-3.5, Table 3.2). The most abundant bacterial taxon shared among the three plant tissues in this study was a member of the genus *Paenibacillus* (Phylum Firmicutes) (df = 77, μ = 23.94). *Paenibacillus* contains species found in a variety of environments, including soil, water, and even insect larvae. Some *Paenibacillus* species found in rhizosphere soil are capable of conferring beneficial induced systemic resistance to plant hosts like rice (*Oryza sativa*) and *Arabidopsis*, as well as preventing *Fusarium* wilt in watermelon (*Citrullus lanatus*) (Kim et al., 2017; Yaoyao et al., 2017).

Of the total 1,323 fungal SV's, 194 (14.7% of the total fungal SV's) were present among all representative wheat and wild wheat relative genomes in this study (A, B, D, AB, and ABD) (Fig. 3.6-3.8). The higher proportion of core fungal taxa as compared to core bacterial taxa among plant genome identities corroborates existing literature suggesting that fungal communities are more strongly influenced by plant genotype (Broeckling et al., 2008; Brundrett, 2002). The most highly abundant core fungal genome taxon was *Gamsia simplex* (Phylum Ascomycota) (df = 193, μ = 798.80). The phylogeny of *Gamsia* sp. is contested and frequently included with the closely related Microascaceae genus *Wardomyces* (Christian, 2014). Saprobic fungi in these two genera are decomposers of organic matter and ubiquitous in soils worldwide (Christian, 2014).

The core fungal taxa within the three plant tissues in this study contained 38 SV's (2.9% of the total fungal SV's) (Fig. 3.9-3.10). The most abundant core fungal tissue taxon was *Gibberella intricans* (Phylum Ascomycota) (df = 37, μ = 381.62). This pathogenic species is the teleomorph, or sexual stage, of *Fusarium equiseti* (Corda) Sacc., *Fusarium falcatum* Appel & Wollenw., *Fusarium gibbosum* Appel & Wollenw., *Fusarium roseum* 'Gibbosum', and *Fusarium roseum* var. *equiseti* (CABI Compendium of Invasive Species, 2018). *Fusarium* diseases can affect the above- and below-ground parts of wheat and similar crops; therefore, it is unsurprising to find this common pathogen as an abundant core microbe of all three plant tissues in this study. The reproductive spores of *Fusarium* species can easily spread to their surrounding soils and be taken up by subsequently emergent plants (Nirenberg, 1981).

Microbiomes also display distinct compartmentalization across plant tissues. Arbuscular mycorrhizae in the Glomeromycota were only found in root tissue, as well as a large number of potentially parasitic Chytridiomycota. Leaf tissue contained several unique Proteobacteria taxa

belonging to the order Myxococcales. The rhizosphere and bulk soil samples were the only ones to possess bacteria from the phylum OD1 and several Ascomycete species, including the pathogen *Fusarium solani*.

A final set of Venn diagrams were generated to look at the number of core bacterial and fungal taxa shared among four accessions of *Aegilops tauschii* (Fig. 3.11-3.12). The accessions chosen were TA 10144, TA 10330, TA 2374, TA 2458, based on their distant geographic origins. Not all bacterial or fungal taxa identified in this study were found in this subset of *Ae. tauschii* accessions, therefore the number of taxa represented in the Venn diagrams is lower than the overall total for the study. Each of the four *Ae. tauschii* accessions contained a greater proportion of unique bacterial taxa than shared or core bacterial taxa (Fig. 3.11). While there was a greater number of unique fungal taxa within each *Ae. tauschii* accession, the proportion of shared and core taxa was also much higher (Fig. 3.12). These findings indicate that symbioses with fungal endophytes may have been more greatly conserved across differing populations of *Ae. tauschii*, whereas bacterial communities have developed distinctions through adaptation via biogeographical opportunities.

Conclusions

The overall goal of this study was to define the core microbiome of wheat and its wild relatives by ploidy and tissue type. The taxa shared among the five wheat and CWR genomes (A, B, D, AB, ABD) and their leaves, roots, and rhizospheres are referred to as "core microbiomes". The consensus in the field of microbial ecology is that most taxa are rare, and few are abundant; however, it is estimated that approximately 2% of total soil taxa are ubiquitous and abundant (Fierer, 2017). To make matters more confounding, greater abundances of certain microbes are

not always correlated with ecological importance. Functional redundancies exist in microbial ecosystems, and an artifact of culture-independent sequencing studies is accounting for the DNA of dead (non-functional) cells (Goodrich et al., 2014).

While most of the bacterial sequence variants (SV's) in the core genome microbiome in this study belong to the Phylum Proteobacteria, the most abundant SV belongs to the Phylum Bacteroidetes in a family of Gram-negative aerobes common to farm and grassland soils. Regardless, Proteobacteria remains a vastly common bacterial phylum in soils, containing many PGPR species with promising applications for crop improvement (Hardoim et al., 2008). The majority of bacterial SV's in the core tissue microbiome belong to the Phylum Actinobacteria, but the single largest SV, *Paenibacillus*, belongs to the Phylum Firmicutes. While *Paenibacillus* is commonly found in many different soil types, the coarse phylogenetic dominance of Actinobacteria can be expected in agricultural soils like the one in this study where nutrient inputs are higher than natural ecosystems and the pH runs neutral – basic (Appendix Table 4.1) (Leff et al., 2015). The large number of microbes found in only a single plant tissue suggests strong compartmentalization of microbial communities within a plant host.

This study reinforces existing literature suggesting that plant tissue is an influential driver of microbial community structure (explaining the small number of shared core taxa)(Bulgarelli et al., 2013; Coleman-Derr et al., 2015). The higher proportion of core fungi among the five wheat and CWR genomes (14.7% of total fungal taxa) also corroborates studies indicating the more pivotal role of plant species identity on fungal communities (Broeckling et al., 2008; Brundrett, 2002). The core microbiome among bacterial genomes appears small, suggesting some plant genotype-dependent variability. There is evidence in the literature to suggest plant domestication may leave a detectable footprint among a small but influential group of microbes across closely

related plant species (Bulgarelli et al., 2015). In Chapter 2, "A Comprehensive Comparison of the Microbiomes in Wheat and Its Wild Relatives", plant species identity was not shown to be a statistically significant predictor of microbial community structure. A possible explanation for the limited core microbial taxa is the use of high resolution sequence variants (SV's), as opposed to coarser taxonomic groups that would likely reveal a large proportion of the microbiome shared amongst most plant species (Bulgarelli et al., 2015; Fierer, 2017; Lundberg et al., 2012). The comparison of four accessions of Aegilops tauschii indicated that many microbial symbioses, both bacterial and fungal, were conserved despite divergent breeding. The differences among microbial communities may be due to genetic adaptation by the plant hosts via biogeographical opportunities in distinct soil types. An in-situ experiment aimed at identifying microbial associations among crop wild relatives in their centers of origin could provide a more robust view of the potential interactions these different genotypes can form. Larger sampling depth and increased plant replication would also provide greater opportunities to witness plant genotypedependent trends. Overall, this project provides one of the first comparisons of the microbiomes in wheat and its wild relatives that may be leveraged in the future to improve crop performance.

Tables

	Planted 15 October 2015				
Entry	Таха	Acc. No. ¹	Ploidy ²	Genome	
1	Aegilops sharonensis	TA 1998	2x	В	
2	Aegilops speltoides ligustica	TA 1772	2x	В	
3	Triticum monococcum aegilopoides	TA 177	2x	Α	
4	Triticum monococcum monococcum	TA 142	2x	А	
5	Triticum turgidum dicoccoides	TA 61	4x	AB	
6	Triticum turgidum durum	TA 10451	4x	AB	
7	Triticum urartu	TA 739	2x	А	
8	Aegilops tauschii	TA 2374	2x	D	
9	Aegilops tauschii	TA 2536	2x	D	
10	Aegilops tauschii	TA 10106	2x	D	
	Planted 13 February 2016				
Entry	Taxa	Acc. No.	Ploidy	Genome	
1	Aegilops tauschii	TA 1707	2x	D	
2	Aegilops tauschii	TA 2458	2x	D	
3	Aegilops tauschii	TA 2536	2x	D	
4	Aegilops tauschii	TA 10144	2x	D	
5	Aegilops tauschii	TA 10330	2x	D	
6	Triticum aestivum	Kharkov	6x	ABD	
7	Triticum aestivum	Byrd	6x	ABD	
8	Triticum aestivum	RonL	6x	ABD	
9	Triticum urartu	TA 739	2x	А	
10	Triticum monococcum monococcum	TA 142	2x	А	
11	Aegilops speltoides ligustica	TA 1772	2x	В	
12	Triticum turgidum dicoccoides	TA 61	4x	AB	

Table 3.1 Plant genotypes used in this study, by planting date.

¹ Accession number of Wheat Genetics Resource Center, Manhattan, KS (http://www.k-state.edu/wgrc/). ² "x" refers to the number of chromosomes in a basic set, which is 7 for wheat and its wild relatives.

Table 3.2 Table of four most abundant core taxa, their means per sample, and Kruskal-Wallis (KW) *P*-values (non-parametric test of different means [H_A: Not all core SV means are the same]).

Primer	Factor	SV	Taxon	DF	Mean (µ)	KW <i>P</i> -
						value
16S-V4	Tissue	SV11	Paenibacillus	77	23.94	<2.2e ⁻¹⁶
16S-V4	Genome	SV9	F.	79	86.13	$<2.2e^{-16}$
			Chitinophagaceae			
ITS2	Tissue	SV14	Gibberella	37	381.62	$<2.2e^{-16}$
			intricans			
ITS2	Genome	SV9	Gamsia simplex	193	798.80	<2.2e ⁻¹⁶

Figures

Figure 3.1 Venn diagram of core bacterial taxa among A, B, D, and ABD genome wheat species.

Figure 3.2 Venn diagram of core bacterial taxa among A, B, D, and AB genomes of wheat and related wild species.

Figure 3.3 Bar plot of core bacterial taxa among A, B, D, AB, and ABD genomes of wheat and related wild species in this study.

Figure 3.4 Venn diagram of core bacterial taxa among all tissue types.

Figure 3.5 Bar plot of core bacterial taxa among all tissue types.

Figure 3.6 Venn diagram of core fungal taxa among A, B, D, and ABD genomes of wheat and realted wild species.

Figure 3.7 Venn diagram of core fungal taxa among A, B, D, and AB genomes of wheat and related wild species.

Figure 3.8 Bar plot of core fungal taxa among A, B, D, AB, and ABD genomes of wheat and related wild species in this study.

Figure 3.9 Venn diagram of core fungal taxa among all tissue types.

Figure 3.10 Bar plot of core fungal taxa among all tissue types.

Figure 3.11 Venn diagram of core bacterial taxa among four accessions of *Aegilops tauschii* with distant geographic origins.

Figure 3.12 Venn diagram of core fungal taxa among four accessions of *Aegilops tauschii* with distant geographic origins.

Chapter 4

Summary and Conclusions

Summary

The plant microbiome consists of microorganisms that influence their hosts' physiology and has demonstrated importance in the health and development of plants. Some microbes confer competitive advantages, such as nutrient fixation and water uptake, and have stoked interest in the field of agriculture, where inputs like water and nitrogen are growing increasingly expensive and/or scarce (Chaparro et al., 2012). Characterizing these consortia of bacteria, fungi, and other symbiotic microbes in numerous crops is an important step in leveraging the plant microbiome for crop improvement.

Wheat is a globally important food crop with a complex evolutionary history, including polyploidy speciation events, whose wild relatives continue to grow in their centers of origin (Gustafson et al., 2009). Some studies indicate genotype-dependent microbial diversity across different wheat (*Triticum aestivum*) accessions, and suggest wild relative species might mitigate stress in their native environments through microbial interactions (Corneo et al., 2016; Iannucci et al., 2017). The narrowing genetic base of domesticated crops like wheat has led to interest in wild relatives species as reservoirs of genetic diversity, and could provide a stepping stone toward breeding for microbiomes (Warburton et al., 2006; Gopal & Gupta, 2016).

This study broadened the current knowledge of plant-microbe interactions and predictors of microbial community structure in wheat (*Triticum aestivum*) and wild wheat relatives (*Aegilops* and *Triticum* spp.) by quantifying the significance of several comprehensive variables including planting season, water treatment, plant tissue type, and plant genotype. Additionally,

the effects of domestication on the microbiome of modern hexaploid wheat and its wild relative species was explored by identifying a conserved "core" community of microbial taxa. The diversity of wheat and wild relative germplasm analyzed in a common soil makes this study unique, and the findings contribute to a larger body of work seeking to illuminate drivers of healthy microbiome acquisition.

Conclusions

Overall, no significant differences were found among the microbiomes of three hexaploid wheat cultivars and 14 landrace and wild relative accessions of different ploidy levels. This corroborates existing literature that suggests differences in the plant microbiome across closely related species is relatives minor (Leff et al., 2016). Plant tissue type (i.e. leaves, roots, and rhizosphere soil) remains a strong driver of microbial community structure. Soil moisture and pH are known predictors of microbiome diversity and may have played a role in the communities in this study, but since they were not measured conclusions cannot as yet be made (Fierer et al., 2017).

The "core" microbiome shared among five wheat and wild relative species (representing five distinct genomes: A, B, D, AB, and ABD) was generally smaller than the number of taxa unique to each genome or shared between only a few genome representatives. Plant species identity appears to play a slightly larger role in determining fungal communities than bacteria, exhibited by the greater "core" of fungal taxa. However, the small number of core taxa may be explained by the use of high resolution sequence variants (SV's), as opposed to coarser taxonomic groups that would have likely revealed a larger proportion of the microbiome shared among most plant species (Bulgarelli et al., 2015; Fierer, 2017; Lundber et al., 2012).

Interestingly, the plant species with the greatest proportion of the fungal phylum Glomeromycota were *Triticum aestivum* and *Aegilops tauschii*, suggest the D-genome may be important for recruiting arbuscular mycorrhizae.

From these results, it appears that many microbial symbioses were conserved despite divergent breeding. The differences among microbial communities may be due to genetic adaptation by the plant hosts. However, the close genetic relationships among the plant species in this study may have reduced the observable differences in microbial community structure. Additionally, common garden experiments limit the pool of potential plant-microbe interactions. Despite the domestication of modern wheat, the microbiome remains essentially the same as that of its wild relatives when grown in the same soil. Future research in these hosts' centers of origin could broaden our understanding of long-evolved plant-microbe interactions.

References

- Andreote, F. D., Gumiere, T., & Durrer, A. (2014). Exploring interactions of plant microbiomes. *Scientia Agricola*, 71(6), 528–539. https://doi.org/10.1590/0103-9016-2014-0195
- Augé, R. M. (2004). Arbuscular mycorrhizae and soil/plant water relations. Canadian Journal of Soil Science, 84(4), 373–381. https://doi.org/10.4141/S04-002
- Barrow, J. R., Havstad, K. M., & Mccaslin, B. D. (1997). Fungal root endophytes in fourwing saltbush, *atriplex canescens*, on arid rangelands of southwestern USA. *Arid Soil Research and Rehabilitation*. https://doi.org/10.1080/15324989709381470
- Berg, G., Rybakova, D., Grube, M., & Köberl, M. (2016). The plant microbiome explored: Implications for experimental botany. *Journal of Experimental Botany*, 67(4), 995–1002. https://doi.org/10.1093/jxb/erv466
- Bitterlich, M., Sandmann, M., & Graefe, J. (2018). Arbuscular Mycorrhiza Alleviates Restrictions to Substrate Water Flow and Delays Transpiration Limitation to Stronger Drought in Tomato. *Frontiers in Plant Science*, 9(February), 1–15. https://doi.org/10.3389/fpls.2018.00154
- Bokulich, N. A., Subramanian, S., Faith, J. J., Gevers, D., Gordon, I., Knight, R., ... Caporaso, J. G. (2013). Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing, 10(1), 57–59. https://doi.org/10.1038/nmeth.2276.Quality-filtering
- Broeckling, C. D., Broz, A. K., Bergelson, J., Manter, D. K., & Vivanco, J. M. (2008). Root exudates regulate soil fungal community composition and diversity. *Applied and Environmental Microbiology*, 74(3), 738–744. https://doi.org/10.1128/AEM.02188-07
- Brundrett, M. C. (2002). Coevolution of roots and mycorrhizas of land plants. *New Phytologist*, 154(2), 275–304. https://doi.org/10.1046/j.1469-8137.2002.00397.x
- Bulgarelli, D., Garrido-Oter, R., Münch, P. C., Weiman, A., Dröge, J., Pan, Y., ... Schulze-Lefert, P. (2015). Structure and function of the bacterial root microbiota in wild and domesticated barley. *Cell Host and Microbe*, 17(3), 392–403. https://doi.org/10.1016/j.chom.2015.01.011
- Bulgarelli, D., Schlaeppi, K., Spaepen, S., van Themaat, E. V. L., & Schulze-Lefert, P. (2013). Structure and Functions of the Bacterial Microbiota of Plants. *Annual Review of Plant Biology*, 64(1), 807–838. https://doi.org/10.1146/annurev-arplant-050312-120106
- Chaparro, J. M., Sheflin, A. M., Manter, D. K., & Vivanco, J. M. (2012). Manipulating the soil microbiome to increase soil health and plant fertility. *Biology and Fertility of Soils*, 48(5), 489–499. https://doi.org/10.1007/s00374-012-0691-4
- Chen, S., Zhao, H., Zou, C., Li, Y., Chen, Y., Wang, Z., ... Ahammed, G. J. (2017). Combined inoculation with multiple arbuscular mycorrhizal fungi improves growth, nutrient uptake and photosynthesis in cucumber seedlings. *Frontiers in Microbiology*, 8(DEC), 1–11. https://doi.org/10.3389/fmicb.2017.02516
- Christian, J. (2014). Phylogeny of saprobic microfungi from Southern Europe. *Studies in Mycology*, 78, 373–451. https://doi.org/10.1016/j.simyco.2014.09.002

- Coleman-Derr, D., Desgarennes, D., Fonseca-Garcia, C., Gross, S., Clingenpeel, S., Woyke, T., ... Tringe, S. (2015). Biogeography and cultivation affect microbiome composition in the drought-adapted plant Subgenus Agave. *In Review*, 798–811. https://doi.org/10.1111/nph.13697
- Corneo, P. E., Suenaga, H., Kertesz, M. A., & Dijkstra, F. A. (2016). Effect of twenty four wheat genotypes on soil biochemical and microbial properties. *Plant and Soil*, 404(1–2), 141–155. https://doi.org/10.1007/s11104-016-2833-1
- Elkoca, E., Kantar, F., & Sahin, F. (2008). Influence of nitrogen fixing and phosphorus solubilizing bacteria on the nodulation, plant growth, and yield of chickpea. *Journal of Plant Nutrition*, *31*(1), 157–171. https://doi.org/10.1080/01904160701742097
- Farrar, K., Bryant, D., & Cope-Selby, N. (2014). Understanding and engineering beneficial plant-microbe interactions: Plant growth promotion in energy crops. *Plant Biotechnology Journal*, 12(9), 1193–1206. https://doi.org/10.1111/pbi.12279
- Fierer, N. (2017). Embracing the unknown: Disentangling the complexities of the soil microbiome. *Nature Reviews Microbiology*, 15(10), 579–590. https://doi.org/10.1038/nrmicro.2017.87
- Frank, A., Saldierna Guzmán, J., & Shay, J. (2017). Transmission of Bacterial Endophytes. *Microorganisms*, 5(4), 70. https://doi.org/10.3390/microorganisms5040070
- Gaiero, J. R., McCall, C. A., Thompson, K. A., Day, N. J., Best, A. S., & Dunfield, K. E. (2013). Inside the root microbiome: Bacterial root endophytes and plant growth promotion. *American Journal of Botany*, *100*(9), 1738–1750. https://doi.org/10.3732/ajb.1200572
- Goodrich, J. K., Di Rienzi, S. C., Poole, A. C., Koren, O., Walters, W. A., Caporaso, J. G., ... Ley, R. E. (2014). Conducting a microbiome study. *Cell*, *158*(2), 250–262. https://doi.org/10.1016/j.cell.2014.06.037
- Gopal, M., & Gupta, A. (2016). Microbiome selection could spur next-generation plant breeding strategies. *Frontiers in Microbiology*, 7(DEC), 1–10. https://doi.org/10.3389/fmicb.2016.01971
- Gous, P. W., Gilbert, R. G., & Fox, G. P. (2015). Drought-proofing barley (Hordeum vulgare) and its impact on grain quality: A review. *Journal of the Institute of Brewing*, *121*(1), 19–27. https://doi.org/10.1002/jib.187
- Gustafson, P., Raskina, O., Ma, X., & Nevo, E. (2009). Wheat Evolution, Domestication, and Improvement. *Wheat Science and Trade*, 3–30. https://doi.org/10.1002/9780813818832.ch1
- Hale, I. L., Broders, K., & Iriarte, G. (2014). A Vavilovian approach to discovering cropassociated microbes with potential to enhance plant immunity. *Frontiers in Plant Science*, 5(September), 1–7. https://doi.org/10.3389/fpls.2014.00492
- Haley, S. D., Johnson, J. J., Peairs, F. B., Stromberger, J. A., Hudson, E. E., Seifert, S. A., ... Seabourn, B. W. (2012). Registration of "Byrd" Wheat. *Journal of Plant Registrations*, 6(3), 302. https://doi.org/10.3198/jpr2011.12.0672crc
- Hardoim, P. R., van Overbeek, L. S., & Elsas, J. D. van. (2008). Properties of bacterial endophytes and their proposed role in plant growth. *Trends in Microbiology*, *16*(10), 463–471. https://doi.org/10.1016/j.tim.2008.07.008

- Hartmann, A., Rothballer, M., & Schmid, M. (2008). Lorenz Hiltner, a pioneer in rhizosphere microbial ecology and soil bacteriology research. *Plant and Soil*, *312*(1–2), 7–14. https://doi.org/10.1007/s11104-007-9514-z
- Hohmann, P., & Messmer, M. M. (2017). Breeding for mycorrhizal symbiosis: focus on disease resistance. *Euphytica*, *213*(5), 1–11. https://doi.org/10.1007/s10681-017-1900-x
- Hu, J., Wei, Z., Friman, V.-P., Gu, S.-H., Wang, X.-F., Eisenhauer, N., ... Jousset, A. (2016).
 Probiotic Diversity Enhances Rhizosphere Microbiome Function and Plant Disease
 Suppression. *mBio*, 7(6), e01790-16. https://doi.org/10.1128/mBio.01790-16
- Hussain Wani, S., Brajendra Singh, N., Haribhushan, A., & Iqbal Mir, J. (2013). Compatible Solute Engineering in Plants for Abiotic Stress Tolerance - Role of Glycine Betaine. *Current Genomics*, 14(3), 157–165. https://doi.org/10.2174/1389202911314030001
- Iannucci, A., Fragasso, M., Beleggia, R., Nigro, F., & Papa, R. (2017). Evolution of the Crop Rhizosphere: Impact of Domestication on Root Exudates in Tetraploid Wheat (Triticum turgidum L.). *Frontiers in Plant Science*, 8(December). https://doi.org/10.3389/fpls.2017.02124
- Jha, B., Gontia, I., & Hartmann, A. (2012). The roots of the halophyte Salicornia brachiata are a source of new halotolerant diazotrophic bacteria with plant growth-promoting potential. *Plant and Soil*, *356*(1–2), 265–277. https://doi.org/10.1007/s11104-011-0877-9
- Kabir, Z., Halloran, I. P. O., & Hamel, C. (1999). Combined e ects of soil disturbance and fallowing on plant and fungal components of mycorrhizal corn (Zea mays L.). *Soil Biology and Biochemistry*, *31*, 307–314. https://doi.org/10.1016/S0038-0717(98)00124-2
- Kim, Y., Sukweenadhi, J., Seok, J. W., Kang, C. H., & Choi, E. (2017). Complete genome sequence of Paenibacillus yonginensis DCY84 T, a novel plant Symbiont that promotes growth via induced systemic resistance, 1–7. https://doi.org/10.1186/s40793-017-0277-8
- Koljalg, U., Nilsson, R. H., Abarenkov, K., Tedersoo, L., Taylor, A. F. S., & Bahram, M. (2014). Towards a unified paradigm for sequence-based identification of fungi. *Molecular Ecology*, 22(November 2013), 5271–5277. https://doi.org/10.1111/mec.12481
- Kozich, J. J., Westcott, S. L., Baxter, N. T., Highlander, S. K., & Schloss, P. D. (2013). Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the miseq illumina sequencing platform. *Applied and Environmental Microbiology*, 79(17), 5112–5120. https://doi.org/10.1128/AEM.01043-13
- Kumar, M., Yadav, V., Tuteja, N., & Johri, A. K. (2009). Antioxidant enzyme activities in maize plants colonized with Piriformospora indica. *Microbiology*, 155(3), 780–790. https://doi.org/10.1099/mic.0.019869-0
- Kuramae, E. E., Hillekens, R. H. E., de Hollander, M., van der Heijden, M. G. A., van den Berg, M., van Straalen, N. M., & Kowalchuk, G. A. (2013). Structural and functional variation in soil fungal communities associated with litter bags containing maize leaf. *FEMS Microbiology Ecology*, 84(3), 519–531. https://doi.org/10.1111/1574-6941.12080
- Lebeis, S. L. (2014). The potential for give and take in plant–microbiome relationships. *Frontiers in Plant Science*, 5(June), 1–6. https://doi.org/10.3389/fpls.2014.00287
- Leff, J. W., Jones, S. E., Prober, S. M., Barberán, A., Borer, E. T., Firn, J. L., ... Fierer, N. (2015). Consistent responses of soil microbial communities to elevated nutrient inputs in

grasslands across the globe. *Proceedings of the National Academy of Sciences*, *112*(35), 10967–10972. https://doi.org/10.1073/pnas.1508382112

- Leff, J. W., Lynch, R. C., Kane, N. C., & Fierer, N. (2016). Plant domestication and the assembly of bacterial and fungal communities associated with strains of the common sunflower, Helianthus annuus. *New Phytologist*, 214(1), 412–423. https://doi.org/10.1111/nph.14323
- Lenssen, A. W., Johnson, G. D., & Carlson, G. R. (2007). Cropping sequence and tillage system influences annual crop production and water use in semiarid Montana, USA. *Field Crops Research*, *100*(1), 32–43. https://doi.org/10.1016/j.fcr.2006.05.004
- Long, M., Tao, S., Vega, D., Jiang, T., Wen, Q., & Sophia, L. (2016). DADA2: High resolution sample inference from Illumina amplicon data, *8*(5), 444–454. https://doi.org/10.1158/1940-6207.CAPR-14-0359.Nrf2-dependent
- Lundberg, D. S., Lebeis, S. L., Paredes, S. H., Yourstone, S., Gehring, J., Malfatti, S., ... Dangl, J. L. (2012). Defining the core *Arabidopsis thaliana* root microbiome. *Nature*, 488(7409), 86–90. https://doi.org/10.1038/nature11237
- Madhaiyan, M., Poonguzhali, S., Senthilkumar, M., Pragatheswari, D., Lee, J., & Lee, K. (2018). a plant-growth-promoting bacterium in the family Chitinophagaceae isolated from rhizosphere soil, (2015), 578–586. https://doi.org/10.1099/ijs.0.069377-0
- McMurdie, P. J., & Holmes, S. (2013). Phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. *PLoS ONE*, *8*(4). https://doi.org/10.1371/journal.pone.0061217
- McMurdie, P. J., & Holmes, S. (2014). Waste Not, Want Not: Why Rarefying Microbiome Data Is Inadmissible. *PLoS Computational Biology*, *10*(4). https://doi.org/10.1371/journal.pcbi.1003531
- Mendes, R., Kruijt, M., de Bruijn, I., Dekkers, E., van der Voort, M., Schneider, J. H. M., Piceno, Y. M., DeSantis, T.Z., Andersen, G. L., Bakker, P., Raaijmakers, J. (2012). Deciphering the RhizosphereMicrobiome for Disease-Suppressive Bacteria. *Science*, 1097(2011), 1097–1100. https://doi.org/10.1126/science.1203980
- Mendes, R., Garbeva, P., & Raaijmakers, J. M. (2013). The rhizosphere microbiome: Significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. *FEMS Microbiology Reviews*, 37(5), 634–663. https://doi.org/10.1111/1574-6976.12028
- Nirenberg, I. (1981). A simplified method for identifying Fusarium spp . occurring on wheat, 0–1.
- Op De Beeck, M., Lievens, B., Busschaert, P., Declerck, S., Vangronsveld, J., & Colpaert, J. V. (2014). Comparison and validation of some ITS primer pairs useful for fungal metabarcoding studies. *PLoS ONE*, 9(6). https://doi.org/10.1371/journal.pone.0097629
- Patel, J. K., & Archana, G. (2017). Diverse culturable diazotrophic endophytic bacteria from Poaceae plants show cross-colonization and plant growth promotion in wheat. *Plant and Soil*, *417*(1–2), 99–116. https://doi.org/10.1007/s11104-017-3244-7
- Peiffer, J. A., Spor, A., Koren, O., Jin, Z., Tringe, S. G., Dangl, J. L., ... Ley, R. E. (2013). Diversity and heritability of the maize rhizosphere microbiome under field conditions. *Proceedings of the National Academy of Sciences*, 110(16), 6548–6553.
https://doi.org/10.1073/pnas.1302837110

- Quail, M. A., Smith, M., Coupland, P., Otto, T. D., Harris, S. R., Connor, T. R., ... Gu, Y. (2012). A tale of three next generation sequencingplatforms: comparison of Ion Torrent, PacificBiosciences and Illumina MiSeq sequencers. *BMC Genomics*, 13(1), 1. https://doi.org/10.1186/1471-2164-13-341
- Ramamoorthy, V. (2001). Induction of systemic resistance by plant growth promoting rhizobacteria in crop plants against pests and diseases. *Crop Protection*, 20(1), 1–11. https://doi.org/10.1016/S0261-2194(00)00056-9
- Ritpitakphong, U., Falquet, L., Vimoltust, A., Berger, A., Métraux, J. P., & L'Haridon, F. (2016). The microbiome of the leaf surface of Arabidopsis protects against a fungal pathogen. *New Phytologist*, 210(3), 1033–1043. https://doi.org/10.1111/nph.13808
- Safir, G. R., Boyer, J. S., & Gerdemann, J. W. (1972). Nutrient status and mycorrhizal enhancement of water transport in soybean. *Plant Physiology*, *49*(5), 700–703. https://doi.org/10.1104/pp.49.5.700
- Santoyo, G., Hernández-Pacheco, C., Hernández-Salmerón, J., & Hernández-León, R. (2017). The role of abiotic factors modulating the plant-microbe-soil interactions: Toward sustainable agriculture. A review. *Spanish Journal of Agricultural Research*, *15*(1), 1–15. https://doi.org/10.5424/sjar/2017151-9990
- Schalamuk, S., & Cabello, M. (2010). Arbuscular mycorrhizal fungal propagules from tillage and no-tillage systems: possible effects on Glomeromycota diversity. *Mycologia*, 102(2), 261–268. https://doi.org/10.3852/08-118
- Sherameti, I., Tripathi, S., Varma, A., & Oelmüller, R. (2008). The Root-Colonizing Endophyte Pirifomospora indica Confers Drought Tolerance in Arabidopsis by Stimulating the Expression of Drought Stress–Related Genes in Leaves. *Molecular Plant-Microbe Interactions*, 21(610), 799–807. https://doi.org/10.1094/MPMI-21-6-0799
- Walters, W., Hyde, E. R., Berg-lyons, D., Ackermann, G., Humphrey, G., Parada, A., ... Jansson, J. K. (2015). Transcribed Spacer Marker Gene Primers for Microbial Community Surveys. *mSystems*, 1(1), e0009-15. https://doi.org/10.1128/mSystems.00009-15.Editor
- Wang, Q., Garrity, G. M., Tiedje, J. M., & Cole, J. R. (2007). Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. *Applied and Environmental Microbiology*, 73(16), 5261–5267. https://doi.org/10.1128/AEM.00062-07
- Wickham, H. C. N.-J. or A. B. R. R. Q. W. 2009 J. or A. B. R. R.-S. O. Q. W. 2009. (2009). Ggplot2 : elegant graphics for data analysis. *Use R!*, viii, 212.
- Yao, H., Song, J., Liu, C., Luo, K., Han, J., Li, Y., ... Chen, S. (2010). Use of ITS2 region as the universal DNA barcode for plants and animals. *PLoS ONE*, 5(10). https://doi.org/10.1371/journal.pone.0013102
- Yaoyao, E., Yuan, J., Yang, F., Wang, L., Ma, J., Li, J., ... Huang, Q. (2017). SQR 21 potentially benefits watermelon growth by re - shaping root protein expression. AMB Express. https://doi.org/10.1186/s13568-017-0403-4
- Zhai, H., Wang, F., Si, Z., Huo, J., Xing, L., An, Y., ... Liu, Q. (2016). A myo-inositol-1phosphate synthase gene, IbMIPS1, enhances salt and drought tolerance and stem nematode resistance in transgenic sweet potato. *Plant Biotechnology Journal*, *14*(2), 592–602.

https://doi.org/10.1111/pbi.12402

- Zhang, D. C., Wang, H. X., Liu, H. C., Dong, X. Z., & Zhou, P. J. (2006). Flavobacterium glaciei sp. nov., a novel psychrophilic bacterium isolated from the China No. 1 glacier. *International Journal of Systematic and Evolutionary Microbiology*, 56(12), 2921–2925. https://doi.org/10.1099/ijs.0.64564-0
- Zolla, G., Badri, D. V., Bakker, M. G., Manter, D. K., & Vivanco, J. M. (2013). Soil microbiomes vary in their ability to confer drought tolerance to Arabidopsis. *Applied Soil Ecology*, 68, 1–9. https://doi.org/10.1016/j.apsoil.2013.03.007

Appendix Tables

Appendix Table 1 Soil analysis at field trial site at the Agricultural Research and Development Educational Center (ARDEC) in Fort Collins, Colorado, USA. Soil sample taken on day of tissue collection (June 8th, 2016).

Scott Re	eid/Pat Byrne/Soil	& Crop	Sciences							Colorado	State Uni	versity	
1170 Ca	mpus Delivery					PAP-Accredit	ted	Soil, Plant, & Water Program 2014		Soil, Wat	er and Pla	nt Testing	g Laboratory
Colorado	State University									Natural &	Environm	ental Scien	nces Bldg - A320
						NAPT	5			Fort Colli	ns, CO 80	0523-1120	
						2015		Participating					
DATE RECEIVED: 06-07-2016						Laboratory		(970) 491	-5061 FA	X: 491-29	930		
DATE R	EPORTED: 06-10	-2016											
										BILLING	:		
					RESEA	ARCH SOIL ANALYSIS							
									-AB-DTP	4			
Lab	Sample		paste	Lime	%				-ppm				Texture
#	ID #	pН	EC	Estimate	ОМ	NO ₃ -N	Р	K	Zn	Fe	Mn	Cu	Estimate
			mmhos/cm										
R5944	2016 micro-surface	7.9	0.7	Very High	2.7	6.9	14.0	314	3.1	6.2	1.9	1.7	Sandy Clay Loam
R5944-1	2016 micro-surface					15.1							

Appendix Table 2 Selective primers for *Illumina* amplicon sequencing used in this study (UMGC Dual-Index Microbiome Amplification, 2016).

Amplification Region	Primer	Sequence
		TCGTCGGCAGCGTCAGAT
		GTGTATAAGAGACAGGTG
16S-V4	Meta_V4_515F	CCAGCMGCCGCGGTAA
		GTCTCGTGGGCTCGGAGA
		TGTGTATAAGAGACAGGG
16S-V4	Meta_V4_806R	ACTACHVGGGTWTCTAAT
		TCGTCGGCAGCGTCAGAT
		GTGTATAAGAGACAGTCG
ITS2	5.8SR'	ATGAAGAACGCAGCG
		GTCTCGTGGGCTCGGAGA
		TGTGTATAAGAGACAGTC
ITS2	ITS4_Nextera	CTCCGCTTATTGATATGC

SV	Phylum	Class	Order	Family	Genus	Species
SV	p_Asc	cSordariom	o_Hypocreales	f_Nectriaceae	gGibbe	sintric
14	omycota	ycetes			rella	ans
SV 18	pZyg omycota	cMortierell omycotina_cl s_Incertae_se dis	oMortierellales	fMortierellace ae	gMorti erella	NA
SV 24	p_Basi diomyco ta	cTremello mycetes	oTremellales	fTremellales_ fam_Incertae_se dis	g_Crypt ococcus	saeriu s
SV 26	p_Basi diomyco ta	c_Pucciniom ycetes	oPucciniales	f_Pucciniaceae	gPucci nia	sstriif ormis
SV 27	p_Basi diomyco ta	cTremello mycetes	oCystofilobasi diales	fCystofilobasi diaceae	gGueh omyces	spullu lans
SV 28	p_Asc omycota	cSordariom ycetes	o_Sordariales	f_Chaetomiace ae	g_Chaet omium	NA
SV 39	p_Asc omycota	cDothideo mycetes	o_Capnodiales	fMycosphaere llaceae	gMyco sphaerella	s_tassia na
SV 48	p_Asc omycota	c_Sordariom ycetes	oHypocreales	fNectriaceae	gFusari um	ssolan i
SV 60	p_Asc omycota	c_Leotiomy cetes	oErysiphales	fErysiphaceae	g_Blum eria	s_gram inis
SV 63	p_Asc omycota	cSordariom ycetes	oHypocreales	fHypocreales_ fam_Incertae_se dis	gStach ybotrys	schart arum
SV 66	p_Asc omycota	c_Sordariom ycetes	oHypocreales	fNectriaceae	g_Fusari um	s_oxys porum
SV 71	p_Asc omycota	cSordariom ycetes	oXylariales	f_Xylariales_fa m_Incertae_sedi s	gMicro dochium	s_bolle yi
SV 75	p_Zyg omycota	cMortierell omycotina_cl s_Incertae_se dis	oMortierellales	fMortierellace ae	gMorti erella	spoly gonia
SV 84	p_Asc omycota	cSordariom ycetes	oHypocreales	fNectriaceae	gGibbe rella	stricin cta
SV 85	p_Asc omycota	cDothideo mycetes	oPleosporales	f_Cucurbitariac eae	gPyren ochaetops is	s_lepto spora
SV 86	p_Basi diomyco ta	cAgaricom ycetes	o_Cantharellale s	f_Ceratobasidia ceae	gThana tephorus	s_cucu meris

Appendix Table 3 Core fungal taxa among all tissue types.

SV 104	p_Basi diomvco	c_Tremello mycetes	o_Cystofilobasi diales	f_Cystofilobasi diaceae	g_Cysto filobasidi	s_mace rans
10.	ta				um	1.0110
SV	p_Asc	cDothideo	oPleosporales	fPleosporacea	gAltern	NA
106	omycota	mycetes		e	aria	
SV	p_Basi	c_Tremello	o_Filobasidiales	fFilobasidiace	gFiloba	smagn
134	ta	mycetes		ae	sidium	um
SV	p_Basi	cTremello	o_Tremellales	fTremellales_	g_Crypt	s_victo
141	diomyco	mycetes		fam_Incertae_se	ococcus	riae
CN /	ta	D (1:1	D1 1	dis	D' 1	1
SV	p_Asc	c_Dothideo	o_Pleosporales	f_Pleosporacea	g_Bipol	s_eleus
144 SV	n Asc	nivcetes	o Pleosporales	f Pleosporales	NA	NA
160	omvcota	wvcetes		fam Incertae s		INA
100	omyeota	mjeetes		edis		
SV	p_Asc	c_Sordariom	oHypocreales	fNectriaceae	g_Gibbe	s_tricin
198	omycota	ycetes			rella	cta
SV	p_Basi	cAgaricom	oAgaricales	fAgaricaceae	g_Copri	s_silvat
223	diomyco	ycetes			nus	icus
GV	ta	- D-41-1	- D11	£ D1	- A 14	
5V 251	p_Asc	cDotnideo	oPieosporales	fPieosporacea	g_Altern	s_meta
231	omycota	Inyectes		C	alla	ca
SV	p Asc	c Sordariom	o Xylariales	f Xylariales fa	g Mono	s nival
256	omycota	ycetes		m_Incertae_sedi	graphella	is
				S		
SV	p_Basi	c_Ustilagino	o_Malasseziales	fMalasseziace	g_Malas	s_restri
287	diomyco	mycotina_cls		ae	sezia	cta
	la	_incertae_sed				
SV	n Asc	c Dothideo	o Pleosporales	f Leptosphaeri	g Lepto	s scler
298	omycota	mycetes		aceae	sphaeria	otioides
SV	p_Asc	c_Dothideo	oPleosporales	fPleosporacea	g_Altern	NA
412	omycota	mycetes		e	aria	
SV	p_Basi	cTremello	o_Cystofilobasi	fCystofilobasi	g_Cysto	s_mace
456	diomyco	mycetes	diales	diaceae	tilobasidi	rans
SV	la n Asc	a Dothideo	o Pleosporales	f Pleasporação	um a Chala	s allins
740	omvcota	mycetes		e	stospora	oidea
SV	p Asc	c Dothideo	o Pleosporales	f Pleosporacea	g Altern	s alter
784	omycota	mycetes		e	aria	nata
SV	p_Basi	c_Ustilagino	o_Ustilaginales	f_Ustilaginacea	gUstila	shord
971	diomyco	mycetes		e	go	ei
	ta					

SV 990	p_Asc omycota	cDothideo mycetes	oDothideales	fDothioraceae	g_Aureo basidium	ssubgl aciale
SV 112 5	p_Asc omycota	cDothideo mycetes	oDothideales	fDothioraceae	gAureo basidium	NA
SV 129 9	p_Asc omycota	cDothideo mycetes	oDothideales	fDothioraceae	gAureo basidium	ssubgl aciale
SV 130 1	p_Basi diomyco ta	cTremello mycetes	oTremellales	fBulleribasidi aceae	gVishn iacozyma	s_carne scens
SV 206 8	p_Asc omycota	c_Dothideo mycetes	oPleosporales	f_Leptosphaeri aceae	gNeose tophoma	NA

Appendix Table 4 Core fungal taxa among all representative wheat and wild wheat relative genomes (A, B, D, AB, and ABD).

SV	Phylum	Class	Order	Family	Genus	Species
SV 9	p_Asco mycota	c_Pezizomyc otina_cls_Ince rtae_sedis	o_Pezizomycotin a_ord_Incertae_se dis	f_Pezizomycot ina_fam_Incerta e_sedis	g_Ga msia	s_simp lex
SV 11	p_Zygo mycota	cMortierell omycotina_cls _Incertae_sedi s	oMortierellales	fMortierellac eae	gMor tierella	smin utissima
SV 12	pChytr idiomyco ta	c_Chytridio mycetes	oOlpidiales	f_Olpidiaceae	gOlpi dium	s_bras sicae
SV 14	p_Asco mycota	cSordariom ycetes	o_Hypocreales	f_Nectriaceae	g_Gib berella	sintri cans
SV 16	p_Asco mycota	cSordariom ycetes	oSordariales	f_Chaetomiace ae	g_Cha etomiu m	NA
SV 18	pZygo mycota	cMortierell omycotina_cls _Incertae_sedi s	oMortierellales	fMortierellac eae	gMor tierella	NA
SV 19	p_Asco mycota	c_Pezizomyc etes	o_Pezizales	fPyronematac eae	NA	NA
SV 20	pChytr idiomyco ta	c_Chytridio mycetes	oOlpidiales	f_Olpidiaceae	g_Olpi dium	s_bras sicae
SV 21	p_Asco mycota	cDothideo mycetes	oPleosporales	fSporormiace ae	gSpor ormiella	NA
SV 22	p_Zygo mycota	c_Mortierell omycotina_cls _Incertae_sedi s	oMortierellales	fMortierellac eae	gMor tierella	selon gata
SV 24	p_Basid iomycota	cTremellom ycetes	oTremellales	fTremellales_ fam_Incertae_se dis	g_Cry ptococc us	saeriu s
SV 25	p_Zygo mycota	c_Mortierell omycotina_cls _Incertae_sedi s	oMortierellales	fMortierellac eae	gMor tierella	selon gata
SV 26	p_Basid iomycota	c_Pucciniom ycetes	o_Pucciniales	f_Pucciniaceae	gPuc cinia	sstriif ormis

SV	p_Basid	c_Tremellom	o_Cystofilobasid	f_Cystofilobasi	g_Gue	s_pull
27	iomycota	ycetes	iales	diaceae	homyce	ulans
	_				S	
SV	p Asco	c Sordariom	o Sordariales	f Chaetomiace	g Cha	NA
28	mycota	ycetes		ae	etomiu	
					m	
SV	p Basid	c Tremellom	o Tremellales	f Tremellales	g Cry	s aeriu
31	iomycota	ycetes		fam Incertae se	ptococc	s
	_			dis	us	
SV	p Asco	c Sordariom	o Microascales	f Microascace	NA	NA
32	mycota	ycetes		ae		
SV	p_Chytr	c_Chytridio	o_Olpidiales	f_Olpidiaceae	g_Olpi	s_bras
34	idiomyco	mycetes			dium	sicae
	ta					
SV	p_Asco	c_Sordariom	o_Sordariales	f_Chaetomiace	NA	NA
35	mycota	ycetes		ae		
SV	p_Chytr	c_Chytridio	o_Chytridiales	f_Chytridiacea	NA	NA
38	idiomyco	mycetes		e		
	ta					
SV	p_Asco	cDothideo	o_Capnodiales	f_Mycosphaer	gMyc	s_tassi
39	mycota	mycetes		ellaceae	osphaer	ana
					ella	
SV	p_Asco	cSordariom	o_Microascales	f_Microascace	g_Sce	s_proli
40	mycota	ycetes		ae	dospori	ficans
					um	
SV	pAsco	cSordariom	o_Hypocreomyc	f_Plectosphaer	gGib	snigr
41	mycota	ycetes	etidae_ord_Incerta	ellaceae	ellulops	escens
			e_sedis		is	
SV	n Basid	c Agaricom	o Agaricales	f Psathyrellace	σ Psat	s nana
42	iomycota	vcetes		ae	byrella	eoloides
SV	n Asco	c Sordariom	o Hypocreales	f Nectriaceae	g Fusa	s brasi
43	mvcota	vcetes			rium	liense
SV	n Chytr	c Chytridio	o Rhizophlyctid	f Rhizophlycti	g Rhiz	NA
44	idiomyco	mycetes	ales	daceae	ophlycti	1,11
	ta			uuoouo	s	
SV	n Asco	c Sordariom	o Hypocreales	f Nectriaceae	g Fusi	NA
45	mycota	vcetes			colla	
SV	p Asco	c Sordariom	o Sordariales	f Chaetomiace	g Tric	s aspe
47	mycota	vcetes		ae	hocladi	rum
	,				um	
SV	p Asco	c Sordariom	o Hypocreales	f Nectriaceae	g Fusa	s sola
48	mycota	vcetes			rium	ni
SV	p Asco	c Sordariom	o Hypocreales	f Nectriaceae	g Fusa	s sola
49	mycota	ycetes	J F		rium	ni

SV 52	p_Chytr idiomyco ta	c_Chytridio mycetes	oChytridiales	fChytridiacea e	NA	NA
SV 54	p_Asco mycota	cSordariom ycetes	oMicroascales	fMicroascace ae	NA	NA
SV 56	p_Chytr idiomyco ta	cChytridio mycetes	oOlpidiales	f_Olpidiaceae	gOlpi dium	s_bras sicae
SV 57	p_Zygo mycota	cMortierell omycotina_cls _Incertae_sedi s	oMortierellales	fMortierellac eae	gMor tierella	salpin a
SV 58	pAsco mycota	cSordariom ycetes	oXylariales	fXylariales_f am_Incertae_se dis	gMon ographe lla	scucu merina
SV 59	p_Asco mycota	cSordariom ycetes	oHypocreales	fNectriaceae	gNect ria	sram ulariae
SV 60	p_Asco mycota	c_Leotiomyc etes	oErysiphales	f_Erysiphaceae	g_Blu meria	sgra minis
SV 61	p_Basid iomycota	c_Agaricom ycetes	oTrechisporales	f_Hydnodonta ceae	gSub ulicysti dium	sperl ongispo rum
SV 62	p_Asco mycota	c_Leotiomyc etes	oThelebolales	fThelebolacea e	gThel ebolus	s_glob osus
SV 63	p_Asco mycota	cSordariom ycetes	oHypocreales	fHypocreales _fam_Incertae_s edis	gStac hybotry s	schart arum
SV 66	p_Asco mycota	cSordariom ycetes	oHypocreales	f_Nectriaceae	gFusa rium	soxys porum
SV 67	p_Zygo mycota	cMortierell omycotina_cls _Incertae_sedi s	oMortierellales	fMortierellac eae	gMor tierella	sindo hii
SV 68	pAsco mycota	cSordariom ycetes	oMicroascales	fMicroascace ae	NA	NA
SV 71	pAsco mycota	cSordariom ycetes	oXylariales	fXylariales_f am_Incertae_se dis	g_Mic rodochi um	sbolle yi
SV 73	p_Asco mycota	cSordariom ycetes	oHypocreales	fHypocreales _fam_Incertae_s edis	g_Acr emoniu m	spersi cinum
SV 75	p_Zygo mycota	c_Mortierell omycotina_cls _Incertae_sedi s	oMortierellales	fMortierellac eae	gMor tierella	spoly gonia

SV	p_Asco	c_Pezizomyc	o_Pezizomycotin	f_Pezizomycot	g_Cili	NA
/8	mycota	otina_cls_ince	a_ord_Incertae_se	ina_fam_Incerta	ophora	
SV 80	p_Zygo mycota	cMortierell omycotina_cls _Incertae_sedi s	o_Mortierellales	fMortierellac eae	gMor tierella	salpin a
SV 81	p_Asco mvcota	cSordariom vcetes	oHypocreales	f_Bionectriace ae	g_Nect riopsis	s_leca nodes
SV 84	p_Asco mycota	cSordariom ycetes	oHypocreales	fNectriaceae	gGib berella	strici ncta
SV 85	p_Asco mycota	cDothideo mycetes	oPleosporales	f_Cucurbitaria ceae	gPyre nochaet opsis	s_lepto spora
SV 86	p_Basid iomycota	cAgaricom ycetes	oCantharellales	f_Ceratobasidi aceae	gTha natepho rus	s_cucu meris
SV 87	p_Zygo mycota	c_Mortierell omycotina_cls _Incertae_sedi s	oMortierellales	fMortierellac eae	gMor tierella	sexig ua
SV 89	pAsco mycota	cSordariom ycetes	oMicroascales	fMicroascace ae	NA	NA
SV 91	p_Asco mycota	c_Pezizomyc etes	o_Pezizales	fPyronematac eae	g_Chei lymenia	NA
SV 92	p_Asco mycota	cSordariom ycetes	oSordariales	f_Lasiosphaeri aceae	gPod ospora	smult ipilosa
SV 94	p_Zygo mycota	c_Mortierell omycotina_cls _Incertae_sedi s	oMortierellales	fMortierellac eae	gMor tierella	NA
SV 96	pZygo mycota	cMortierell omycotina_cls _Incertae_sedi s	oMortierellales	fMortierellac eae	gMor tierella	s_alpin a
SV 102	pAsco mycota	cSordariom ycetes	oXylariales	fXylariales_f am_Incertae_se dis	gMon osporas cus	NA
SV 104	pBasid iomycota	cTremellom ycetes	oCystofilobasid iales	fCystofilobasi diaceae	gCyst ofilobas idium	smac erans
SV 106	pAsco mycota	cDothideo mycetes	oPleosporales	fPleosporacea e	gAlte rnaria	NA

SV 108	p_Chytr idiomyco	c_Chytridio mycetes	o_Olpidiales	f_Olpidiaceae	g_Olpi dium	s_bras sicae
	ta					
SV 110	p_Basid iomycota	cTremellom ycetes	oTremellales	fTremellales_ fam_Incertae_se dis	g_Cry ptococc us	saeriu s
SV 114	pAsco mycota	c_Pezizomyc otina_cls_Ince rtae_sedis	o_Pezizomycotin a_ord_Incertae_se dis	f_Pezizomycot ina_fam_Incerta e_sedis	gGa msia	ssimp lex
SV 115	p_Asco mycota	cSordariom ycetes	oSordariales	f_Chaetomiace ae	NA	NA
SV 117	p_Asco mycota	c_Eurotiomy cetes	o_Eurotiales	fTrichocomac eae	g_Peni cillium	s_jens enii
SV 118	p_Zygo mycota	cMortierell omycotina_cls _Incertae_sedi s	oMortierellales	fMortierellac eae	gMor tierella	shyali na
SV 121	pAsco mycota	cSordariom ycetes	oHypocreales	fHypocreales _fam_Incertae_s edis	gStac hybotry s	seleg ans
SV 122	p_Asco mycota	cSordariom ycetes	oMicroascales	fMicroascace ae	gPith oascus	NA
SV 125	pChytr idiomyco ta	c_Chytridio mycetes	oSpizellomycet ales	fSpizellomyc etaceae	g_Spiz ellomyc es	NA
SV 126	p_Asco mycota	c_Pezizomyc otina_cls_Ince rtae_sedis	o_Pezizomycotin a_ord_Incertae_se dis	f_Pezizomycot ina_fam_Incerta e_sedis	gCili ophora	NA
SV 128	p_Asco mycota	cSordariom ycetes	oHypocreales	fNectriaceae	g_Bisi fusariu m	sdime rum
SV 130	pChytr idiomyco ta	cChytridio mycetes	oSpizellomycet ales	fSpizellomyc etaceae	gSpiz ellomyc es	spseu dodicho tomus
SV 134	p_Basid iomycota	cTremellom ycetes	oFilobasidiales	fFilobasidiace ae	gFilo basidiu m	smag num
SV 135	p_Asco mycota	cSordariom ycetes	o_Hypocreales	fHypocreales _fam_Incertae_s edis	g_Acr emoniu m	s_alter natum
SV 139	p_Asco mycota	c_Pezizomyc otina_cls_Ince rtae_sedis	o_Pezizomycotin a_ord_Incertae_se dis	f_Pezizomycot ina_fam_Incerta e_sedis	gSeto phoma	sterre stris
SV 140	p_Asco mycota	cSordariom ycetes	o_Hypocreales	fNectriaceae	gFusa rium	ssola ni

SV 141	p_Basid iomycota	cTremellom ycetes	oTremellales	fTremellales_ fam_Incertae_se dis	g_Cry ptococc	svicto riae
SV 144	p_Asco mycota	c_Dothideo mycetes	o_Pleosporales	f_Pleosporacea e	g_Bip olaris	s_eleu sines
SV 148	pAsco mycota	cSordariom ycetes	oSordariales	f_Lasiosphaeri aceae	gPod ospora	sdim orpha
SV 150	pAsco mycota	c_Leotiomyc etes	oHelotiales	fHelotiales_fa m_Incertae_sedi s	gTetr acladiu m	NA
SV 151	pAsco mycota	c_Eurotiomy cetes	o_Chaetothyriale s	f_Herpotrichiel laceae	gExo phiala	sequi na
SV 152	p_Asco mycota	c_Eurotiomy cetes	o_Eurotiales	fTrichocomac eae	g_Peni cillium	saethi opicum
SV 153	pAsco mycota	cSordariom ycetes	oSordariales	fChaetomiace ae	g_Cha etomiu m	s_gran de
SV 154	p_Asco mycota	cSordariom ycetes	oMicroascales	fMicroascace ae	gMic roascus	s_brev icaulis
SV 155	pZygo mycota	cMortierell omycotina_cls _Incertae_sedi s	oMortierellales	fMortierellac eae	gMor tierella	santar ctica
SV 158	p_Basid iomycota	cTremellom ycetes	oCystofilobasid iales	fCystofilobasi diales_fam_Ince rtae_sedis	gMra kiella	saqua tica
SV 160	p_Asco mycota	cDothideo mycetes	oPleosporales	fPleosporales _fam_Incertae_s edis	NA	NA
SV 164	p_Asco mycota	cSordariom ycetes	oMagnaporthal es	fMagnaportha ceae	g_Gae umanno myces	NA
SV 169	pAsco mycota	c_Pezizomyc otina_cls_Ince rtae_sedis	o_Pezizomycotin a_ord_Incertae_se dis	f_Pezizomycot ina_fam_Incerta e_sedis	gSeto phoma	sterre stris
SV 171	pAsco mycota	c_Eurotiomy cetes	o_Eurotiales	fTrichocomac eae	g_Peni cillium	schry sogenu m
SV 172	p_Zygo mycota	cMucoromy cotina_cls_Inc ertae_sedis	oMucorales	fMucoraceae	gActi nomuco r	seleg ans
SV 176	p_Asco mycota	c_Eurotiomy cetes	oOnygenales	fGymnoascac eae	gGy mnoasc us	sreess ii

SV 178	p_Asco mycota	c_Pezizomyc otina_cls_Ince rtae_sedis	o_Pezizomycotin a_ord_Incertae_se dis	f_Pezizomycot ina_fam_Incerta e sedis	gCili ophora	NA
SV 180	pAsco mycota	cSordariom ycetes	oSordariales	f_Lasiosphaeri aceae	g_Cerc ophora	ssam ala
SV 186	p_Basid iomycota	cAgaricom ycetes	oAgaricales	fBolbitiaceae	NA	NA
SV 188	pAsco mycota	c_Orbiliomy cetes	o_Orbiliales	f_Orbiliaceae	gArth robotrys	s_olig ospora
SV 189	p_Asco mycota	cSordariom ycetes	oHypocreales	fNectriaceae	gFusa rium	s_sola ni
SV 190	p_Asco mycota	c_Pezizomyc otina_cls_Ince rtae_sedis	o_Pezizomycotin a_ord_Incertae_se dis	f_Pezizomycot ina_fam_Incerta e_sedis	gCili ophora	NA
SV 191	pAsco mycota	c_Pezizomyc otina_cls_Ince rtae_sedis	o_Pezizomycotin a_ord_Incertae_se dis	f_Pezizomycot ina_fam_Incerta e_sedis	gGa msia	ssimp lex
SV 198	pAsco mycota	cSordariom ycetes	oHypocreales	fNectriaceae	gGib berella	strici ncta
SV 199	p_Basid iomycota	cAgaricom ycetes	o_Cantharellales	f_Ceratobasidi aceae	g_Cera tobasidi um	NA
SV 200	pAsco mycota	cSordariom ycetes	oHypocreales	fNectriaceae	gVol utella	NA
SV 209	pAsco mycota	c_Pezizomyc otina_cls_Ince rtae_sedis	o_Pezizomycotin a_ord_Incertae_se dis	f_Pezizomycot ina_fam_Incerta e_sedis	gCili ophora	NA
SV 211	pAsco mycota	cSordariom ycetes	oMicroascales	fMicroascace ae	gPith oascus	NA
SV 212	pAsco mycota	cDothideo mycetes	oPleosporales	f_Didymospha eriaceae	gRou ssoella	sinter media
SV 214	p_Basid iomycota	cAgaricom ycetes	oAgaricales	fPsathyrellace ae	g_Psat hyrella	spana eoloides
SV 217	pAsco mycota	c_Pezizomyc otina_cls_Ince rtae_sedis	o_Pezizomycotin a_ord_Incertae_se dis	f_Pezizomycot ina_fam_Incerta e_sedis	gCili ophora	NA
SV 220	p_Zygo mycota	cMucoromy cotina_cls_Inc ertae_sedis	oMucorales	fMucoraceae	g_Acti nomuco r	seleg ans
SV 221	p_Asco mycota	c_Pezizomyc otina_cls_Ince rtae_sedis	o_Pezizomycotin a_ord_Incertae_se dis	f_Pezizomycot ina_fam_Incerta e_sedis	gCili ophora	NA
SV 224	p_Chytr idiomyco ta	cChytridio mycetes	oRhizophlyctid ales	fRhizophlycti daceae	gRhiz ophlycti s	NA

SV 225	p_Asco mycota	c_Sordariom vcetes	o_Sordariales	f_Chaetomiace ae	gTric hocladi	s_aspe rum
	5	5			um	
SV	p_Asco	c_Leotiomyc	o_Helotiales	fHelotiales_fa	g_Tetr	s_setig
227	mycota	etes		m_Incertae_sedi s	acladiu m	erum
SV	p_Asco	c_Sordariom	o_Sordariales	f_Lasiosphaeri	g_Schi	s_inae
228	mycota	ycetes		aceae	zotheciu m	quale
SV	p_Asco	c_Pezizomyc	o_Pezizales	fPyronematac	g_Geo	NA
230	mycota	etes		eae	pyxis	
SV	p_Asco	c_Sordariom	o_Hypocreales	f_Bionectriace	gClo	s_rose
237	mycota	ycetes		ae	nostach	a
~~~					ys	
SV	pAsco	c_Pezizomyc	o_Pezizomycotin	f_Pezizomycot	g_Cılı	NA
240	mycota	otina_cls_Ince rtae_sedis	a_ord_Incertae_se dis	ina_fam_Incerta e_sedis	ophora	
SV	p_Asco	cDothideo	o_Pleosporales	f_Pleosporales	NA	NA
241	mycota	mycetes		_fam_Incertae_s		
				edis		
SV	p_Asco	cDothideo	o_Pleosporales	f_Pleosporacea	g_Alte	s_terri
243	mycota	mycetes		e	rnaria	cola
SV	p_Asco	c_Sordariom	o_Sordariales	f_Lasiosphaeri	g_Schi	s_inae
247	mycota	ycetes		aceae	zotheciu	quale
					m	
SV	p_Asco	c_Eurotiomy	o_Onygenales	f_Onygenacea	g_Chr	spseu
250	mycota	cetes		e	ysosporı	domerd
<u>OV</u>		D.(1.1		C D1	um	arium
SV 251	p_Asco	cDothideo	o_Pleosporales	f_Pleosporacea	g_Alte	s_meta
251	mycota	mycetes		e	rnaria	ion
SV	n Asco	c Sordariom	o Yularialas	f Vylarialas f	a Mon	s nival
256	p_Asco mycota	vcetes	0_Aylallales	am Incertae se	ographe	s_invai
230	mycota	yeeles		dis	lla	15
SV	n Asco	c Pezizomyc	o Pezizales	f Ascobolacea	NA	NA
261	mycota	etes		e e	- 14 -	- 14 -
SV	p Asco	c Pezizomvc	o Pezizomvcotin	f Pezizomvcot	g Cili	NA
263	mycota	otina cls Ince	a ord Incertae se	ina fam Incerta	ophora	
		rtae_sedis	dis	e_sedis		
SV	p_Asco	c_Pezizomyc	o_Pezizomycotin	fPezizomycot	g_Cili	NA
264	mycota	otina_cls_Ince	a_ord_Incertae_se	ina_fam_Incerta	ophora	
		rtae_sedis	dis	e_sedis		
SV	p_Basid	cAgaricom	oAgaricales	fAgaricaceae	gCop	ssilva
265	iomycota	ycetes			rinus	ticus

SV 270	p_Chytr	c_Chytridio	o_Spizellomycet	fSpizellomyc	gPow	NA
270	ta	mycetes	ales	etaceae	ellomyc	
SV	p_Asco	c_Leotiomyc	o_Helotiales	fHelotiales_fa	g_Tetr	s_setig
278	mycota	etes		m_Incertae_sedi s	acladiu m	erum
SV 282	p_Asco	c_Eurotiomy	o_Eurotiales	fTrichocomac	g_Peni	s_aura
283	mycota	cetes		eae	cillium	eum
SV 297	p_Basid	c_Ustilagino	oMalasseziales	fMalasseziace	g_Mal	s_restr
287	lomycota	Incertae_sedis		ae	assezia	Icta
SV 288	p_Asco mycota	cSordariom ycetes	oHypocreales	fNectriaceae	gFusa rium	NA
SV 293	p_Asco mvcota	c_Eurotiomy cetes	o_Eurotiales	fTrichocomac eae	g_Peni cillium	schry sogenu
						m
SV 208	p_Asco	cDothideo	o_Pleosporales	f_Leptosphaeri	g_Lept	s_scler
298	Illycola	inycetes		accac	a	otionues
SV	p_Asco	c_Eurotiomy	o_Onygenales	f_Onygenacea	g_Chr	s_lobat
311	mycota	cetes		e	um	um
SV 212	p_Asco	c_Sordariom	o_Xylariales	f_Xylariales_f	gMon	NA
313	mycota	ycetes		dis	osporas cus	
SV	p_Asco	cSordariom	oHypocreales	fHypocreales	gMyr	s_rorid
326	mycota	ycetes		fam_Incertae_s edis	otheciu m	um
SV	p_Asco	cDothideo	o_Pleosporales	f_Phaeosphaeri	g_Oph	NA
332	mycota	mycetes		aceae	iosphaer ella	
SV	p_Asco	c_Pezizomyc	o_Pezizomycotin	f_Pezizomycot	g_Cili	NA
334	mycota	otina_cls_Ince rtae_sedis	a_ord_Incertae_se	ina_fam_Incerta e_sedis	ophora	
SV	p_Asco	c_Sordariom	o_Hypocreales	fHypocreales	gStac	s_eleg
337	mycota	ycetes		_fam_Incertae_s edis	hybotry s	ans
SV	p_Asco	cDothideo	oPleosporales	fSporormiace	NA	NA
345	mycota	mycetes		ae	~	
SV 348	p_Basid	c_Tremellom	o_Tremellales	t_Tremellales_ fam_Incertae_se	g_Cry	s_aeriu
5-10	iomycota	,		dis	us	5

SV 261	p_Asco	c_Pezizomyc	o_Pezizomycotin	f_Pezizomycot	g_Cili	NA
501	mycota	rtae sedis	dis	e sedis	opnora	
SV 369	p_Chytr idiomyco ta	c_Chytridio mycetes	oChytridiales	f_Chytridiacea e	NA	NA
SV 377	p_Basid iomycota	cAgaricom ycetes	o_Corticiales	f_Corticiaceae	gWai tea	s_circi nata
SV 379	pAsco mycota	c_Leotiomyc etes	o_Leotiomycetes _ord_Incertae_sed is	fMyxotrichac eae	g_Oidi odendro n	scere ale
SV 397	pAsco mycota	c_Sordariom ycetes	oHypocreales	fHypocreales _fam_Incertae_s edis	NA	NA
SV 402	p_Zygo mycota	cMucoromy cotina_cls_Inc ertae_sedis	o fPleosporales		gMuc or	srace mosus
SV 412	p_Asco mycota	cDothideo mycetes	oPleosporales	Pleosporales f_Pleosporacea e		NA
SV 426	p_Chytr idiomyco ta	cChytridio mycetes	oSpizellomycet ales	fSpizellomyc etaceae	g_Pow ellomyc es	shirtu s
SV 449	p_Asco mycota	c_Pezizomyc otina_cls_Ince rtae_sedis	o_Pezizomycotin a_ord_Incertae_se dis	f_Pezizomycot ina_fam_Incerta e_sedis	gCili ophora	NA
SV 453	p_Zygo mycota	cMucoromy cotina_cls_Inc ertae_sedis	oMucorales	fMucoraceae	gMuc or	shiem alis
SV 455	p_Basid iomycota	cTremellom ycetes	oCystofilobasid iales	fCystofilobasi diaceae	g_Gue homyce s	spull ulans
SV 456	p_Basid iomycota	cTremellom ycetes	o_Cystofilobasid iales	fCystofilobasi diaceae	g_Cyst ofilobas idium	s_mac erans
SV 457	pAsco mycota	c_Pezizomyc otina_cls_Ince rtae_sedis	o_Pezizomycotin a_ord_Incertae_se dis	f_Pezizomycot ina_fam_Incerta e_sedis	g_Och roconis	s_tsha wytscha e
SV 459	p_Asco mycota	cSordariom ycetes	oSordariales	f_Lasiosphaeri aceae	NA	NA
SV 463	p_Asco mycota	c_Pezizomyc etes	o_Pezizales	fPyronematac eae	g_Scut ellinia	s_scut ellata
SV 466	p_Asco mycota	c_Eurotiomy cetes	oOnygenales	fGymnoascac eae	gGy mnoasc us	NA

SV	p_Asco	cDothideo	o_Pleosporales	fPleosporales	g_Peri	s_macr
4′/0	mycota	mycetes		_fam_Incertae_s	conia	ospinos
SV	n Asco	c Sordariom	o Microascales	f Microascace	σ Mic	a s sene
497	mycota	vcetes		ae	roascus	galensis
SV	p_Basid	c_Tremellom	o_Cystofilobasid	f_Cystofilobasi	g_Cyst	s_mac
502	iomycota	ycetes	iales	diaceae	ofilobas	erans
				0	idium	
SV 506	p_Asco	c_Eurotiomy	o_Eurotiales	f_Trichocomac	g_Asp	NA
500 SV	mycola	celes	o Pleosporales	f Corvnespora	erginus g Cor	NΛ
508	pAsco mvcota	mycetes		scaceae	vnespor	INA
200	myeota	ingectes		Seuceuc	a	
SV	p_Asco	cDothideo	oPleosporales	fSporormiace	g_Preu	sflana
513	mycota	mycetes		ae	ssia	ganii
SV	p_Asco	c_Eurotiomy	o_Onygenales	f_Onygenacea	gChr	spseu
514	mycota	cetes		e	ysospori	domerd
		Q 1 .	0 1 1		um	arium
SV 533	p_Asco	c_Sordariom	o_Sordariales	f_Chaetomiace	NA	NA
SV	n Basid	c Microbotr	o Sporidiobolale	f Sporidiobola	σ Rho	s ferul
536	iomycota	yomycetes	s	les fam Incerta	dotorula	ica
	5	5 5		e_sedis		
SV	pAsco	c_Eurotiomy	o_Eurotiales	fTrichocomac	gPeni	s_aethi
539	mycota	cetes		eae	cillium	opicum
SV 555	p_Zygo	cMortierell	o_Mortierellales	fMortierellac	g_Mor	NA
333	mycota	Incertae sedi		eae	tierena	
		s				
SV	p_Zygo	cMucoromy	o_Mucorales	fMucoraceae	g_Muc	NA
559	mycota	cotina_cls_Inc			or	
		ertae_sedis				
SV	p_Asco	cPezizomyc	o_Pezizales	fPyronematac	g_Geo	NA
564	mycota	etes		eae	pyxis	
SV	p_Asco	c_Sordariom	o_Sordariomycet	f_Sordariomyc	g_Sav	s_ligni
567	mycota	ycetes	Idae_ord_Incertae	etidae_fam_Ince	oryella	cola
			_seais	rtae_sedis		
SV	p_Asco	cSordariom	o_Sordariales	f_Chaetomiace	gCha	NA
588	mycota	ycetes		ae	etomiu	
SV	$n \Lambda saa$	c Dothidoo	o Pleosnoralas	f Pleosnoralas	m g Durc	e infla
597	p_Asco mycota	mycetes		fam Incertae s	<u>g_</u> ryie nochaet	s rescenti
				edis	a	ae

SV	p_Asco	cSordariom	oHypocreales	fHypocreales	g_Acr	s_stro
616	mycota	ycetes		_fam_Incertae_s	emoniu	maticu
				edis	m	m
SV	p_Asco	c_Sordariom	o_Hypocreales	fHypocreacea	g_Tric	sbarb
619	mycota	ycetes		e	hoderm	atum
OV	D 1		0 41 11 1		a TI	
5V 641	p_Basia	c_Agaricom	o_Cantharellales		g_1na	s_cucu
041	lonnycota	yceles		aceae	rus	IIICIIS
SV	p Asco	c Eurotiomy	o Arachnomycet	f Arachnomyc	g Ara	NA
657	mycota	cetes	ales	etaceae	chnomy	
					ces	
SV	p_Asco	c_Eurotiomy	o_Onygenales	f_Onygenacea	g_Chr	s_lobat
666	mycota	cetes		e	ysospori	um
~~~				2 2	um	
SV	p_Asco	c_Eurotiomy	o_Onygenales	fGymnoascac	gGy	s_reess
688	mycota	cetes		eae	mnoasc	11
SV	n Asco	c Pezizomyc	o Pezizales	f Pyronematac	US NA	NΛ
703	mvcota	etes		eae	1111	1 1 1 1
SV	p Asco	c Sordariom	o Hypocreales	f Clavicipitace	g Met	s mar
724	mycota	ycetes	J1	ae	arhiziu	quandii
					m	
SV	p_Zygo	c_Zoopagom	o_Zoopagales	f_Piptocephali	gSyn	NA
726	mycota	ycotina_cls_In		daceae	cephalis	
		certae_sedis				
SV	p_Asco	cSordariom	o_Sordariomycet	f_Glomerellac	g_Coll	NA
739	mycota	ycetes	idae_ord_Incertae	eae	etotrich	
			_sedis		um	
SV	p Asco	c Sordariom	o Microascales	f Halosphaeria	g Rem	s stell
746	mycota	ycetes		ceae	ispora	ata
SV	p Basid	c Tremellom	o Cystofilobasid	f Cystofilobasi	g Cyst	s mac
765	iomycota	ycetes	iales	diaceae	ofilobas	erans
					idium	
SV	p_Asco	cSordariom	o_Hypocreales	f_Nectriaceae	gMac	s_lepto
819	mycota	ycetes			roconia	sphaeria
	A	T 4	TT 1 4° 1	C II 1 1		e
SV 076	p_Asco	c_Leotiomyc	oHelotiales	t_Hyaloscypha	NA	NA
0/0	mycota	CIUS				~ ·
SV 017	p_Asco	cDothideo	o_Pleosporales	t_Lophiostoma	g_Acr	s_fici
917	mycota	mycetes		taceae	ocalym	
					ma	

SV	p_Asco	cSordariom	o_Hypocreales	f_Cordycipitac	g_Bea	NA
100	mycota	ycetes		eae	uveria	
9						
SV	pAsco	cSordariom	oHypocreales	f_Bionectriace	gHyd	sfung
106	mycota	ycetes		ae	ropisph	icola
5					aera	
SV	p_Asco	c_Sordariom	o_Magnaporthal	f_Magnaportha	g_Mag	NA
131	mycota	ycetes	es	ceae	naporth	
4					e	
SV	p_Asco	c_Sordariom	o_Hypocreales	f_Nectriaceae	g_Gib	s_pulic
134	mycota	ycetes			berella	aris
4	-					
SV	p Asco	c Pezizomyc	o Pezizomycotin	f Pezizomycot	g Och	NA
140	mycota	otina cls Ince	a ord Incertae se	ina fam Incerta	roconis	
6		rtae_sedis	dis	e_sedis		

SV	Kingdom	Phylum	Class	Order	Family	Genus	Species
SV	k_Archae	p_Cren	c_Thau	oNitrosos	fNitroso	gCandida	s_SCA1
20	а	archaeot	marchae	phaerales	sphaeracea	tus	145
		a	ota		e	Nıtrosospha	
SV	k Archae	n Cren	c Thau	o Nitrosos	f Nitroso	era g Candida	c .
15	Alchac	archaeot	marchae	<u>phaerales</u>	sphaeracea	<u>g_</u> Canulua tus	s
10	u	a	ota	philotules	e	Nitrosospha	
						era	
SV	k_Bacteri	p_Acid	c_Solib	o_Solibact	f	g	s
519	a	obacteri	acteres	erales			
	1	a					
SV	k_Bacteri	p_Acid	c Acid	o_1111-15	1 <u>1</u>	g	S
864	a	obacteri	obacteri				
SV	k Bacteri	n Acid	c [Chl	0 RB41	f Ellin60	σ	S
68	a Bueterr	obacteri	oracidob	0_10011	75	B	5
		a	acteria				
SV	k_Bacteri	p_Acti	c_Rubr	oRubroba	fRubrob	gRubroba	S
355	a	nobacter	obacteri	cterales	acteraceae	cter	
~~~		ia	a				
SV 5(2	k_Bacteri	p_Acti	c_Rubr	oRubroba	fRubrob	gRubroba	S
562	a	nobacter	obacteri	cterales	acteraceae	cter	
SV	k Bacteri	n Acti	c Ther	o Solirubr	f	σ	S
304	a Buttern	nobacter	moleoph	obacterales		8	<u> </u>
		ia	ilia				
SV	k_Bacteri	p_Acti	c_Ther	o_Solirubr	f	g	s
173	a	nobacter	moleoph	obacterales			
<b></b>	1	ia	ilia	<u> </u>			
SV 425	k_Bacteri	p_Acti	c1her	o_Solirubr	1	g	S
425	a	nobacter	ilia	obacterales			
SV	k Bacteri	p Acti	c Ther	o Solirubr	f	g	S
135	a Bueten	nobacter	moleoph	obacterales		8	<u> </u>
		ia	ilia				
SV	k_Bacteri	p_Acti	c_Ther	o_Gaiellal	f_Gaiella	g	s
45	a	nobacter	moleoph	es	ceae		
CL	1	18	ilia	<u> </u>	C C · 11		
SV 56	K_Bacter1	p_Acti	c1her	o_Gaiellal	t_Gaiella	g	s
30	a	ia	ilia	es	ceae		
		1u	mu				

Appendix Table 5 Core bacterial taxa among all tissue types.

SV	k_Bacteri	p_Acti	c_Ther	o_Gaiellal	f_Gaiella	g	S
42	a	nobacter	moleoph	es	ceae		
		ia	ilia				
SV	k_Bacteri	p_Acti	cTher	o_Gaiellal	f_Gaiella	g	S
126	a	nobacter	moleoph	es	ceae		
		ia	ilia				
SV	k_Bacteri	p_Acti	c_Ther	o_Gaiellal	fGaiella	g	s
28	a	nobacter	moleoph	es	ceae		
		ia	ilia				
SV	k_Bacteri	p_Acti	cAcid	o_Acidimi	f	g	S
257	a	nobacter	imicrobi	crobiales			
		ia	ia				
SV	k_Bacteri	p_Acti	cAcid	o_Acidimi	f	g	s
192	a	nobacter	imicrobi	crobiales			
0		ia	ia				
SV	k_Bacteri	p_Acti	c_Acti	o_Actino	fNocard	gNocardi	S
147	а	nobacter	nobacter	mycetales	ioidaceae	oides	
		ia	ia				
SV	k_Bacteri	p_Acti	cActi	o_Actino	fGlyco	gGlycom	NA
82	a	nobacter	nobacter	mycetales	mycetacea	yces	
		ia	ia		e		
SV	k_Bacteri	p_Acti	cActi	o_Actino	fStrepto	g_Strepto	smirab
441	a	nobacter	nobacter	mycetales	mycetacea	myces	ilis
		ia	ia		e		
SV	k_Bacteri	p_Acti	c_Acti	o_Actino	fMicroc	NA	NA
69	a	nobacter	nobacter	mycetales	occaceae		
~~~		1a	18		0.05		
SV	k_Bacter1	p_Acti	c_Acti	o_Actino	fMicroc	g_Arthrob	NA
17	a	nobacter	nobacter	mycetales	occaceae	acter	
		1a	18				
SV	k_Bacter1	p_Acti	c_Acti	o_Actino	fMicrob	g_Microba	NA
136	a	nobacter	nobacter	mycetales	acteriaceae	cterium	
	1 5	1a	18	·			
SV	k_Bacteri	p_Acti	c_Acti	o_Actino	fMicrob	gAgromy	s
48	a	nobacter	nobacter	mycetales	acteriaceae	ces	
		18	18	A / *			
5V 70	K_Bacteri	p_Acti	c_Acti	o_Actino	IMicrob	g_Agromy	S
/9	a	nobacter	nobacter	mycetales	acteriaceae	ces	
CV/	lr Destart			a A atim-	f Descrit	a Deserter	
3V 127	кыасteri	p_ACU	c_ACU	o_Actino		gPromicr	S
13/	a	nobacter	nobacter	mycetales	romonosp	omonospora	
CV/	lr Destari	là n Asti		a Actina	f Dramin	a Callulat	
5 V	KBacteri	p_Acti nobestar	c_ACII	0_Actino		g_Cellulos	s
509	a	nobacter	nobacter	mycetales	romonosp	microbium	
		la	ia		oraceae		

SV	k_Bacteri	p_Acti	c_Acti	o_Actino	f_Cellulo	g_Cellulo	NA
522	а	nobacter	nobacter	mycetales	monadace	monas	
		ia	ia		ae		
SV	k_Bacteri	p_Acti	c_Acti	o_Actino	f_Intrasp	g_Phycico	s
44	a	nobacter	nobacter	mycetales	orangiacea	ccus	
		ia	ia		e		
SV	k_Bacteri	p_Acti	c_Acti	o_Actino	fNocard	g_Rhodoc	sfascia
565	a	nobacter	nobacter	mycetales	ıaceae	occus	ns
	1	12	12	·			274
SV	k_Bacteri	p_Acti	c_Acti	o_Actino	f_Actinos	NA	NA
111	a	nobacter	nobacter	mycetales	ynnematac		
CV	1. Destari	la n Deet	la Crita	a Catanha	eae f Criterik	~ Dredah	
5V 712	K_Bacteri	p_Bact	c_Cyto	o_Cytopna	I_Cytoph	g_Dyadob	s
/12	a	eroldele	pnagia	gales	agaceae	acter	
SV	k Paatari	s n Poot	a Cuto	o Cytopha	f Cytoph	a	0
25 25		pDaci	c_Cylu nhagia	oCytopiia		g	s
23	a	ciolucie	pilagia	gales	agaeeae		
SV	k Bacteri	n Bact	c Cyto	o Cytopha	f Cytoph	σ	S
24	a Bueterr	eroidete	phagia	gales	agaceae	5	5
	u	S	pingin	Bares	agueeue		
SV	k Bacteri	p Bact	c Flav	o Flavoba	f Flavob	g Flavoba	s succin
134	a	eroidete	obacterii	cteriales	acteriaceae	cterium	icans
		S	a				
SV	k Bacteri	p Bact	c Flav	o Flavoba	f Flavob	g Flavoba	s succin
825	a	eroidete	obacterii	cteriales	acteriaceae	cterium	icans
		S	а				
SV	k_Bacteri	p_Bact	c_Flav	oFlavoba	fFlavob	gFlavoba	ssuccin
30	a	eroidete	obacterii	cteriales	acteriaceae	cterium	icans
		S	a				
SV	k_Bacteri	p_Bact	c_[Sap	o_[Sapros	f_Chitino	gNiabella	S
293	a	eroidete	rospirae]	pirales]	phagaceae		
~~~		S	~	~			
SV	k_Bacter1	p_Bact	c_Sphi	o_Sphingo	fSphing	g_Pedobac	NA
149	a	eroidete	ngobact	bacteriales	obacteriac	ter	
3 GV	1 D ( '	S D (		G 1 .	eae	D 1 1	
SV 107	K_Bacteri	p_Bact	c_Sphi	o_Sphingo	ISphing	g_Pedobac	s
19/	a	eroidete	arija	Dacternales	obacteriac	lei	
SV	k Baotari	s n Chlo	c Thar	0 1G20	f	σ	c
96		p roflevi	momier	<u>KF_CM45</u>	<b>1</b>	5 <u> </u>	°
	u	TUTICAL	obia	111-010173			
SV	k Bacteri	n Chlo	c Ther	o_JG30-	f	σ	S
344	a	roflexi	momicr	KF-CM45	<b>^</b>	D	<u> </u>
			obia				

SV	k_Bacteri	p_Chlo	c_Anae	oSBR103	f_A4b	g	S
120	a	roflexi	rolineae	1			
6							
SV	k_Bacteri	pChlo	c_Anae	o_SBR103	f_A4b	g	S
960	a	roflexi	rolineae	1			
SV	k_Bacteri	p_Chlo	c_TK1	omle1-48	f	g	S
228	а	roflexi	7				
SV	k_Bacteri	pChlo	cGitt-	o	f	g	s
34	а	roflexi	GS-136				
SV	k_Bacteri	p_Chlo	c_Ellin	o	f	g	s
21	a	roflexi	6529				
SV	k_Bacteri	p_Chlo	c_Ellin	o	f	g	S
104	а	roflexi	6529				
SV	k_Bacteri	p_Chlo	c_Ellin	o	f	g	s
295	a	roflexi	6529				
SV	k_Bacteri	p_Chlo	c_Ellin	o	f	g	S
801	а	roflexi	6529				
SV	k_Bacteri	pFirm	c_Bacil	o_Bacillal	fAlicycl	g_Alicyclo	s
139	a	icutes	li	es	obacillace	bacillus	
					ae		
SV	k_Bacteri	p_Firm	c_Bacil	o_Bacillal	fPaenib	g_Paeniba	s
11	а	icutes	li	es	acillaceae	cillus	
SV	k_Bacteri	p_Firm	c_Bacil	o_Bacillal	f_Bacilla	g_Bacillus	sflexus
185	a	icutes	li	es	ceae		
SV	k_Bacteri	pFirm	c_Bacil	o_Bacillal	f_Planoc	g_Paenisp	S
321	a	icutes	li	es	occaceae	orosarcina	
SV	k_Bacteri	pFirm	c_Bacil	o_Bacillal	f_Planoc	NA	NA
172	a	icutes	li	es	occaceae		
SV	k_Bacteri	pFirm	c_Bacil	o_Bacillal	f_Bacilla	NA	NA
261	a	icutes	li	es	ceae		
SV	k_Bacteri	pNitr	c_Nitro	o_Nitrospi	fNitrosp	gNitrospi	S
66	a	ospirae	spira	rales	iraceae	ra	
SV	k_Bacteri	pPlan	c_Phyc	o_Phycisp	f	g	S
452	a	ctomyce	isphaera	haerales			
		tes	e				
SV	k_Bacteri	pPlan	cPlan	o_Pirellula	fPirellul	g	S
470	a	ctomyce	ctomyce	les	aceae		
		tes	tia				
SV	k_Bacteri	pPlan	cPlan	o_Pirellula	fPirellul	g	s
202	a	ctomyce	ctomyce	les	aceae		
6		tes	tia				
SV	k_Bacteri	pPlan	cPlan	o_Plancto	fPlancto	g_Plancto	S
655	a	ctomyce	ctomyce	mycetales	mycetacea	myces	
		tes	tia		e		

SV	k_Bacteri	p_Prot	c_Delt	oMyxoco	f	g	S
103	a	eobacter	aproteob	ccales			
3		ia	acteria				
SV	k_Bacteri	p_Prot	c_Delt	oMyxoco	fPolyan	g_Sorangi	s_cellul
72	a	eobacter	aproteob	ccales	giaceae	um	osum
		ia	acteria				
SV	k_Bacteri	p_Prot	c_Delt	oMyxoco	fNannoc	gNannoc	sexede
111	a	eobacter	aproteob	ccales	ystaceae	ystis	ns
7		ia	acteria				
SV	k_Bacteri	p_Prot	cAlph	o_Cauloba	f_Caulob	gMycopla	s
714	a	eobacter	aproteob	cterales	acteraceae	na	
		ia	acteria				
SV	k_Bacteri	p_Prot	cAlph	o_Cauloba	fCaulob	NA	NA
629	a	eobacter	aproteob	cterales	acteraceae		
		18	acteria				
SV	k_Bacter1	p_Prot	c_Alph	oRhizobi	f_Hypho	g_Devosia	S
390	a	eobacter	aproteob	ales	microbiace		
	1	1a	acteria	D1 ' 1 '	ae		
SV	k_Bacteri	p_Prot	c_Alph	oRhizobi	fHypho	gDevosia	s
835	a	eobacter	aproteob	ales	microbiace		
av	1 D ( '	1a	acteria	0.1.	ae		
SV 200	K_Bacteri	p_Prot	cAlph	oSphingo	IErythro	g	s
306	a	eobacter	aproteob	monadales	bacteracea		
CV	1. Destari	la n Drot		o Cabingo	e f Easthac	NT A	NT A
3V 75	K_Bacteri	p_Prot	cAlph	oSpningo	IErythro	INA	INA
15	a	io	aproteou	monadates	Dacteracea		
SV	k Bacteri	n Prot		o Phodos	f Rhodos	a Skorman	c.
86		p_110t	aproteob	0_Rilouos	nirillaceae	<u>g</u> _Skerman	s
80	a	ia	acteria	primarcs	piimaceae	Clia	
SV	k Bacteri	n Prot	c Alph	o Rhodos	f Rhodos	σ	S
232	a Ductori	eobacter	aproteob	nirillales	nirillaceae	· 5	5
	u	ia	acteria	primares	primaceae		
SV	k Bacteri	p Prot	c Gam	o Xantho	f Sinoba	g	S
51	a	eobacter	maprote	monadales	cteraceae	8	~
		ia	obacteri				
			а				
SV	k_Bacteri	p_Prot	c_Gam	o_Pseudo	f_Pseudo	g_Pseudo	NA
256	a	eobacter	maprote	monadales	monadace	monas	
		ia	obacteri		ae		
			а				
SV	k_Bacteri	p_Prot	c_Beta	o_Burkhol	f_Oxalob	gJanthino	s
169	a	eobacter	proteoba	deriales	acteraceae	bacterium	
		ia	cteria				

SV 12	k_Bacteri a	p_Prot eobacter ia	c_Beta proteoba cteria	o_Burkhol deriales	f_Oxalob acteraceae	gJanthino bacterium	s
SV 333	k_Bacteri a	p_Prot eobacter ia	c_Beta proteoba cteria	o_Burkhol deriales	f_Coma monadace ae	NA	NA

**Appendix Table 6** Core bacterial taxa among representatives from all wheat genomes in this study (A, B, D, AB, and ABD).

SV	Kingdom	Phylum	Class	Order	Family	Genus	Speices
SV	k_Archa	p_Crena	cThau	o_Nitroso	fNitrosos	g_Cand	s
15	ea	rchaeota	marchaeot	sphaerales	phaeraceae	idatus	
			а			Nitrosos	
						phaera	
SV	k_Archa	p_Crena	cThau	o_Nitroso	fNitrosos	g_Cand	s_SCA1
20	ea	rchaeota	marchaeot	sphaerales	phaeraceae	idatus	145
			а			Nitrosos	
						phaera	
SV	k_Archa	p_Crena	cThau	oNitroso	fNitrosos	gCand	s
63	ea	rchaeota	marchaeot	sphaerales	phaeraceae	idatus	
			а			Nitrosos	
						phaera	
SV	k_Bacter	p_Bacte	c_[Sapro	o_[Sapros	f_Chitinop	g	s
9	ia	roidetes	spirae]	pirales]	hagaceae		
SV	k_Bacter	p_Acido	c_[Chlor	oRB41	f	g	s
10	ia	bacteria	acidobact				
			eria				
SV	k_Bacter	pFirmi	c_Bacilli	o_Bacillal	f_Paenibac	g_Paeni	s
11	1a	cutes		es	ıllaceae	bacıllus	
SV	k_Bacter	p_Prote	c_Betapr	o_Burkhol	f_Oxaloba	g_Janth	S
12	1a	obacteria	oteobacter	deriales	cteraceae	inobacter	
CI I	1	1	18		0	lum	
SV	k_Bacter	p_Acido	c_Acido	0_1111-15	f	g	s
13	1a	bacteria	bacteria-6		C		
SV	k_Bacter	p_Gem	c_Gemm	o	1	g	s
16	1a	matimon	-1				
CV	l. Destan	adetes	a Astina	a Astina	f Mianaaa	~ Anthr	
5V 17	K_Bacter	p_Actin	cActino	0_Actino		<u>g</u> Artnr	INA
	la la Dester				<u>c</u>	obacter	-
3 V 1 0	KBacter	p_Acido	c_Acido	0_1111-13	1	g	s
10 SV	la la Dester	Dacterra n Broto	Dacterra-0	o Vontho	f Sinchast	a Storo	0
3 V 10	K Dacter	pPiole	cGailini	0Allulo		g_Stero	s
19	la	obacteria	aproteoua	monauales	eraceae	Iuobacter	
SV	k Bacter	n Chlor	c Fllin6	0	f	σ	c
21		oflexi	529	Ŭ	·	D	<u> </u>
SV	k Bacter	p Acido	c Acido	o iii1-15	f RB40	g	S
23	ia	bacteria	bacteria-6			0	)
SV	k Bacter	p Bacte	c Cytop	o Cvtoph	f Cytopha	g	S
24	ia	roidetes	hagia	agales	gaceae	<u> </u>	
SV	k Bacter	p Bacte	c Cvtop	o Cvtoph	f Cytopha	g	S
25	ia	roidetes	hagia	agales	gaceae		

SV	k_Bacter	p_Actin	c_Actino	o_Actino	f_Streptom	NA	NA
27	ia	obacteria	bacteria	mycetales	ycetaceae		
SV	k_Bacter	pActin	cTherm	o_Gaiellal	fGaiellace	g	s
28	ia	obacteria	oleophilia	es	ae		
SV	k_Bacter	p_Bacte	cFlavo	oFlavoba	fFlavobac	gFlav	ssuccin
30	ia	roidetes	bacteriia	cteriales	teriaceae	obacteriu	icans
						m	
SV	k_Bacter	pAcido	cAcido	oiii1-15	fmb2424	g	S
31	ia	bacteria	bacteria-6				
SV	k_Bacter	p_Acido	cAcido	oiii1-15	f	g	S
33	ia	bacteria	bacteria-6				
SV	k_Bacter	p_Bacte	cCytop	o_Cytoph	f_Cytopha	gAdha	S
35	ia	roidetes	hagia	agales	gaceae	eribacter	
SV	k_Bacter	p_Acido	c_[Chlor	oRB41	f_Ellin607	g	S
37	ia	bacteria	acidobact		5		
			eria]				
SV	k_Bacter	p_Bacte	c_[Sapro	o_[Sapros	fChitinop	g	s
38	ia	roidetes	spirae]	pirales]	hagaceae		
SV	k_Bacter	pAcido	cAcido	oiii1-15	f	g	s
39	ia	bacteria	bacteria-6				
SV	k_Bacter	pPlanc	c_Phycis	oWD210	f	g	s
40	ia	tomycete	phaerae	1			
		S					
SV	k_Bacter	p_Prote	cGamm	oThiotric	f_Piscirick	g	s
41	ia	obacteria	aproteoba	hales	ettsiaceae		
~~			cteria	~			
SV	k_Bacter	p_Actin	c_Therm	o_Gaiellal	f_Gaiellace	g	S
42	18	obacteria	oleophilia	es	ae		
SV	k_Bacter	p_Actin	cActino	o_Actino	fGeoderm	g	s
43	18	obacteria	bacteria	mycetales	atophilaceae	DI	
SV	k_Bacter	p_Actin	cActino	o_Actino	f_Intraspor	gPhyc	s
44	1a 1- D (	obacteria	oacteria	mycetales	anglaceae	ICOCCUS	
SV	к_Bacter	p_Actin	$c_1$ herm	o_Gaiellal	I_Gaiellace	g	s
45	1a 1- D (	obacteria		es	ae	- 01'	
SV	K_Bacter	p_Prote	c_Alpha	o_Sphingo	ISphingo	g_Sphi	INA
46	18	obacteria	proteobac	monadales	monadaceae	ngomona	
CV/	1, D4-	· • • • • • • •		<b>A</b> <i>et</i> ::: -	£ M:1.	S A	
5V 40	кыасter	p_Actin	cACUNO	0_ACUNO		g_Agro	s
48 SV	là Ir Destar	obacteria	Dacteria	inycetales	f Symtemial	myces	
5V	кыасter	p_prote	c_Deltap	oSyntrop	iSyntroph	g	s
32	Id	obacteria	rio	novacterate	obacteracea		
SV	lz Daator	n Aaida	11a	S 0 iii1 15	с f	α	
5V 52	к Dacter	p_Acido	cAcido	0_1111-15	1	g	s
33	ia	Dacteria	vaciena-o				

SV	k_Bacter	p_Prote	c_Gamm	o_Xantho	f_Xanthom	g_Aren	S
54	ia	obacteria	aproteoba cteria	monadales	onadaceae	imonas	
SV	k Bacter	p Prote	c Gamm	o Xantho	f Xanthom	g Ther	S
59	ia	obacteria	aproteoba	monadales	onadaceae	momona	
			cteria			S	
SV	k_Bacter	p_Acido	c_Acido	0	f	g	S
60 SV	1a Ir Destar	bacteria	bacteria-5	a :::1 15	£	~	-
5 V 65	K_Bacter	p_Acido bacteria	c_Acido bacteria_6	0_1111-15	1	g	s
SV	k Bacter	n Acido	c [Chlor	o RB41	f Ellin607	σ	S
68	ia	bacteria	acidobact		5	š	5
00	14	ouverna	eria]				
SV	k_Bacter	p_Actin	c_Actino	o_Actino	fMicroco	NA	NA
69	ia	obacteria	bacteria	mycetales	ccaceae		
SV	k_Bacter	pFirmi	c_Bacilli	o_Bacillal	fPaenibac	gPaeni	s
70	ia	cutes		es	illaceae	bacillus	
SV	k_Bacter	p_Acido	c_iii1-8	o_DS-18	f	g	s
74 CV	1a	bacteria	A 1 1	0.1:	C E (1 1		NT A
SV 75	k_Bacter	p_Prote	c_Alpha	o_Sphingo	f_Erythrob	NA	NA
15	la	obacteria	proteodac	monadales	acteraceae		
SV	k Bacter	n Actin	c Actino	o Actino	f Glycomy	σ Glyc	NA
82	ia Bueter	obacteria	bacteria	mycetales	cetaceae	omyces	1 17 1
SV	k Bacter	p Acido	c Acido	o iii1-15	f	g	S
84	ia	bacteria	bacteria-6				
SV	k_Bacter	p_Prote	cGamm	o_Xantho	f_Sinobact	g	s
85	ia	obacteria	aproteoba	monadales	eraceae		
<u>a</u> rr	1		cteria	<b>D1 1</b>	0 D1 1	<b>C1</b>	
SV	k_Bacter	p_Prote	c_Alpha	oRhodos	fRhodosp	g_Sker	s
86	1a	obacteria	proteobac	pirillales	Irillaceae	manella	
SV	k Bacter	n WS3	c PRR-	o Sedime	f	σ	S
87	ia Bueter	P	$\frac{12}{12}$	nt-1	·	5	5
SV	k Bacter	p Planc	c OM19	o CL500-	f	g	S
89	ia	tomycete	0	15			
		S					
SV	k_Bacter	p_Prote	c_Gamm	o_Xantho	f_Xanthom	NA	NA
90	1a	obacteria	aproteoba	monadales	onadaceae		
CV	lr Dootor	n Acida	cteria	o DD41	f	a	0
01	KDacter	p_Acido bacteria	c_[Unior acidobact	υΚΒ41	1	g	<u>s</u>
	10	Jaciella	erial				
SV	k Bacter	p Bacte	c Cytop	o Cvtoph	f Cvtopha	g	S
93	ia	roidetes	hagia	agales	gaceae		

SV 99	k_Bacter ia	p_Chlor oflexi	cS085	0	f	g	S
SV 10 0	k_Bacter ia	p_Planc tomycete s	cOM19 0	oagg27	f	g	S
SV 10 5	k_Bacter ia	p_Bacte roidetes	cFlavo bacteriia	o_Flavoba cteriales	fFlavobac teriaceae	g_Flav obacteriu m	NA
SV 10 6	k_Bacter ia	p_Prote obacteria	c_Betapr oteobacter ia	o_Burkhol deriales	f_Alcalige naceae	g	S
SV 12 4	k_Bacter ia	pFibro bacteres	cFibrob acteria	o258ds1 0	f	g	S
SV 12 9	k_Bacter ia	p_Prote obacteria	cGamm aproteoba cteria	o_Xantho monadales	f_Xanthom onadaceae	g_Lyso bacter	NA
SV 13 6	k_Bacter ia	pActin obacteria	cActino bacteria	oActino mycetales	fMicroba cteriaceae	g_Micr obacteriu m	NA
SV 14 7	k_Bacter ia	pActin obacteria	cActino bacteria	oActino mycetales	fNocardio idaceae	gNoca rdioides	S
SV 15 5	k_Bacter ia	p_Planc tomycete s	cPhycis phaerae	oWD210 1	f	g	S
SV 16 4	k_Bacter ia	pNitro spirae	cNitros pira	oNitrospi rales	f_0319- 6A21	g	S
SV 17 3	k_Bacter ia	p_Actin obacteria	cTherm oleophilia	oSolirubr obacterales	f	g	S
SV 17 6	k_Bacter ia	pActin obacteria	cAcidi microbiia	oAcidimi crobiales	f_C111	g	S
SV 18 0	k_Bacter ia	pActin obacteria	cTherm oleophilia	oSolirubr obacterales	fSolirubro bacteraceae	g	S
SV 18 5	k_Bacter ia	pFirmi cutes	c_Bacilli	o_Bacillal es	f_Bacillace ae	g_Bacil lus	sflexus
SV 18 8	k_Bacter ia	p_Bacte roidetes	c_[Sapro spirae]	o_[Sapros pirales]	fChitinop hagaceae	g	S

SV	k_Bacter	p_Prote	c_Betapr	o_Burkhol	f_Comamo	NA	NA
19 1	ia	obacteria	oteobacter	deriales	nadaceae		
SV	k Bacter	p Prote	c Gamm	o Xantho	f Xanthom	g Lyso	S
19	ia	obacteria	aproteoba	monadales	onadaceae	bacter	
9			cteria				
SV	k_Bacter	p_Bacte	c_Cytop	o_Cytoph	f_Cytopha	g	S
20	1a	roidetes	hagia	agales	gaceae		
3 SV	k Bacter	n Gem	0	0	f	σ	0
$\frac{3}{20}$		p_0em matimon	Ľ	0	1	g	s
4	14	adetes					
SV	k Bacter	p Prote	c Alpha	o Rhodos	f Rhodosp	g	S
23	ia	obacteria	proteobac	pirillales	irillaceae		
2			teria				
SV	k_Bacter	p_Actin	c_Actino	o_Microc	f	g	s
24	18	obacteria	bacteria	occales			
4 SV	k Bacter	n Acido	c Acido	o iii1-15	f RB40	σ	s
26	ia	bacteria	bacteria-6	0111 15		5	5
5							
SV	k_Bacter	p_Chlor	c_TK17	omle1-48	f	g	S
27	ia	oflexi					
1	1		G		-		
SV	k_Bacter	p_Gem	c_Gemm	o	<u>f</u>	g	S
6	la	naumon	tes				
SV	k Bacter	n Bacte	c [Sapro	o [Sapros	f Chitinop	g	S
37	ia	roidetes	spirae]	pirales]	hagaceae	0	
0					U		
SV	k_Bacter	p_Prote	cAlpha	oRhizobi	fRhizobia	NA	NA
40	ia	obacteria	proteobac	ales	ceae		
8	1 D (	0	teria		C		
	K_Bacter	p_Gem	c_Gemm	0	I	g	S
43	la	adetes	-5				

## **Appendix Figures**







Appendix Figure 2 Overall sequencing depth prior to pruning in a) bacteria and b) fungi.



Seq. Depth by Tissue and Season peltoidesligu Ae.tauschii BulkSoil T.aestivum T.urartu coccumaegil jidumdicocc urgidumduru occummone 15 10 5 0. 1.1 15 10 5 count 0 15 10 5 a data ta al, ea 0 15 10 5 0 030@00@000 030@00@000 030@00@000 030@00@000 030@00@000 030@00@000 030@00@000 030@00@000 030@00@000 030@00@000 030@00@000 030@00@000 030@00@000 030@00@000 030@00@000 030@00@000 030@00@000 030@00@000 030@00@000 030@00@000 030@00@000 030@00@000 030@00@000 030@00@000 030@00@000 030@00@000 030@00@000 030@00@000 030@00@000 030@00@000 030@00@000 030@00@000 030@00@000 030@00@000 030@00@000 030@00@000 030@00@000 030@00@000 030@00@000 030@00@000 030@00@000 030@00@000 030@00@000 030@00@000 030@00@000 030@00@000 030@00@000 030@00@000 030@00@00 TotalReads b) Seq. Depth by Tissue and Season eltoides lig Ae. tauschi . aestivum occum aeg occum mor idum dicoc ırgidum du T. urartu T. urartu NA 15 10 5 0. 15 10 5 count 0

BulkSoil

Leaf

Rhizosphere

Root

Bulk Soil

Leaf







Appendix Figure 4 Histograms of taxa prevalence (number of copies) in each sample for a) bacteria and b) fungi.

150

131

a)




b)







**Appendix Figure 5** Violin plots of the most highly represented bacterial phylum, Proteobacteria, faceted by a) plant species, b) plant genotype, c) planting season, d) treatment, and e) tissue type (respectively). These visualizations of abundance data indicate that microbial taxa are similarly distributed among all independent variables except by tissue type.



a)



b)







**Appendix Figure 6** Violin plots of the most highly represented fungal phylum, Ascomycota, faceted by a) plant species, b) plant genotype, c) planting season, d) treatment, and e) tissue type (respectively). These visualizations of abundance data indicate that microbial taxa are similarly distributed among all independent variables except by tissue type.