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ABSTRACT OF DISSERTATION
DISPERSION IN GROUNDWATER FLOW SYSTEMS

A fundamental flow equation for a mixture of miscible fluids
was derived by combining the law of conservation of mass, Darcy's
law, and an equation of state describing the pressure-volume-
temperature-concentration relationship. The result is an equation
involving two dependent variables, pressure and concentration.

A relationship for determining concentration was derived by
expressing a continuity equation for the dispersed tracer. The
problem was formulated on a microscopic basis and averaged over a
cross-sectional area of the porous medium to give a macroscopic
convective-dispersion equation. The resulting coefficient of dis-
persion was a second rank tensor.

The two resulting differential equations are solved numeri-
cally on the digital computer. An implicit numerical technique was
used to solve the flow equation for pressure and the method of charac-
teristics with a tensor transformation was used to solve the con-
vective-dispersion equation. The results from the flow equation were
used in solving the convective-dispersion equation and the results
from the convective-dispersion equation were then used to resolve the
flow equation.

The proposed computer simulator successfully solved the longi-

tudinal dispersion problem and the longitudinal and lateral



dispersion problem. Using the tensor transformation, problems of
longitudinal and lateral dispersion were successfully solved in a
rotated coordinate system.

The computer simulator was used to solve the salt-water in-
trusion problem. The numerical results for the fresh water head
in the aquifer closely matched those obtained analytically. Also,
the numerical results for the location of the fresh-salt interface

were good except in the region of the wedge toe.

Donald Lee Reddell

Agricultural Engineering Department
Colorado State University

Fort Collins, Colorado 80521
December, 1969
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Chapter 1

INTRODUCTION

A. Description of Problem

The rapid growth of the world's population is placing an increas-
ing demand upon fresh water supplies. This has resulted in ground-
water becoming an important source of water supply in many regions,
and the use of aquifers as operating reservoirs is becoming more
common. Efficient use of aquifers as reservoirs will require an
understanding of the water quality problems created by sea-water
intrusion into coastal aquifers, recharge of surface water into
aquifers, underground waste disposal, and infiltration of pollutants
from surface sources into aquifers.

Since pollutants, wastes, and recharge waters are normally mis-
cible with the native groundwater, an understanding of the mechanics
of miscible fluid displacement is necessary for the analysis of
groundwater quality problems. Studies indicate that the mixing of
miscible fluids in a porous medium is dependent upon the magnitude
and distribution of flow velocities within the porous medium and upon
the geometry of the porous structure. This mixing is greater than
can be accounted for by molecular diffusion and has been named dis-
persion by Scheidegger (1954).

The dispersion process can be described by a form of the con-
vective-diffusion equation in which a coefficient of dispersion

replaces the standard coefficient of diffusion. Initial efforts at



analyzing dispersion used a scalar dispersion coefficient. However,
the work of de Josselin de Jong (1958) indicated the dispersion co-
efficient is not a scalar, and he introduced the use of longitudinal
(parallel to flow direction) and lateral (perpendicular to flow
direction) dispersion coefficients. Bear (1961a) and

Scheidegger (1961) oroposed that the dispersion coefficient is a
symmetric second order tensor formed from the contraction of a fourth
order tensor which depends on the porous medium and a second order
tensor which is a function of the flow.

Many basic studies have been conducted to explain the physical
laws of the dispersion process. These studies have resulted in ana-
lytical solutions to simple flow problems with simple boundary con-
ditions. Also, some approximate solutions have been developed for
radial and source-sink flow fields. However, no analytical solutions
have been obtained which will be adequate for describing groundwater
quality problems on an aquifer wide basis. Moreover, the complexity
of the general differential equations describing dispersion is such
that it is unlikely that analytical solutions will be developed in
the near future.

Because of the inadequate techniques in analytical solutions and
the recent advances in numerical and computer technology, an interest
in using a computer simulation to describe the dispersion process has
developed. Garder et. al. (1964) used the method of characteristics
(also referred to as "particle in cell" technique) to numerically

solve the dispersion equation. However, they did not consider the



tensorial nature of the dispersion coefficient for multidimensional
flows.

Shamir and Harleman (1966) transformed the cartesian form of the
convective-dispersion equation into $-9 coordinates, where $ is a
potential function and q3 is a stream function. This technique
properly considers the tensorial nature of the dispersion coeffi-

cient, but presents problems with unsteady nonuniform flow.

B. Purposes and Objectives

The literature indicates very little work toward application of
basic dispersion results to field problems. Practical problems in-
volve complex flow geometries in anisotropic and nonhomogeneous
media with complicated boundary conditions. A computer simulation
of the dispersion process should handle unsteady nonuniform flow prob-
lems and, in addition, consider the tensorial nature of the dispersion
coefficient.

The objectives of this dissertation are:

(1). Develop a computer simulation for the mass transport of a
fluid miscible with the native groundwater. The theory
will be developed for three-dimensional, nonhomogeneous,
unsteady flow fields, with density and viscosity varia-
tions between the two fluids. However, only two-dimen-
sional flow problems in an isotropic medium using a
conservative fluid will be run in the computer simulator.

(2). Develop a numerical tensor transformation which considers
the tensorial nature of the dispersion coefficient in a

cartesian coordinate system.



C. Methods of Investigation

The techniques of investigation are directed toward use of the
computer as a model simulator. No laboratory experimental techniques
are used. The differential equations describing the miscible dis-
placement process are developed and written in finite difference
form. An implicit numerical technique is used to solve the flow
equation and the method of characteristics with a tensor transforma-
tion is used to solve the convective-dispersion equation. The
results from the flow equation are used in solving the dispersion
equation and the results of the dispersion equation are then used to
solve the flow equation again. This procedure has been referred to
as a "leap-frog" technique, and will be explained in detail in
Chapter 1IV.

The validity of the coﬁputer simulation is tested on some
simple problems fof which exact or approximate analytical solutions
are available. Also, the more complex case of dispersion along an

intruded salt-water wedge is considered.



Chapter 11
PREVIOUS WORK

Slichter (1905) injected a salt solution into a well and ob-
served the time of arrival at a nearby observation well. He ob-
served that the salt did not arrive at the observation well as a
slug, but instead the salt concentration gradually increased with
time to some maximum value. Since Slichter's work, many investi-
gations have been made on the flow of miscible fluids in porous
media. These investigations are divided into the following four
categories for discussion purposes: (A) theoretical investiga-
tions, (B) analytical investigations, (C) experimental studies,

and (D) numerical simulation.

A. Theoretical Investigations

The theoretical investigations have been oriented towards devel-
oping a basic understanding of the dispersion phenomena. These
studies attempt to define the dispersion coefficient in terms of
medium properties, fluid properties, and the fluid velocity.

Dispersion and diffusion may be visualized by the injection of
a slug of dye into a fluid flowing through a porous medium as shown
in Figure 2-1. The center of the slug will travel along the column
axis (r=o) with the average fluid velocity, V5. As time, £, in-
creases, the slug will increase in size and mix with the surrounding
native fluid to form concentration profiles in both the X;and r-

directions. This variation in concentration, C , is created by both
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Figure 2-1. Schematic column and typical concentration profiles

for a slug injection. [After Hoopes and Harleman
(1965)]

dispersion and diffusion. Diffusion is a direct result of thermal
motion of the individual fluid molecules and takes place under the
influence of a concentration gradient. Dispersion in porous media
is a mechanical or convective mixing process which is the result of
individual fluid particles traveling at variable velocities through
irregular shaped pores and along tortuous microscopic pathlines.
Dispersion results in a variation of concentration similar to

that created by diffusion. However, dispersion is the result of



convective mixing on a microscopic scale; not of a concentration
gradient. Because of the difficulty in describing the boundary condi-
tions for flow through porous media on a microscopic scale, a macro-
scopic model is used. When using the macroscopic model, dispersion

is assumed to be proportional to the concentration gradient. A
detailed description of the transition from a microscopic to a macro-
scopic model is given in Section B of Appendix B.

To investigate the dispersion process, many porous media models
have been used. Perhaps one of the simplest models is a bundle of
capillaries. Taylor (1953, 1954) investigated the displacement of a
fluid from a straight capillary tube of radius, I , by another fluid
miscible with the first. His results indicated that the tracer was
dispersed relative to a plane moving with velocity, V , exactly as

in a Fickian diffusion process, but with a diffusion coefficient,

D= 57| s (2-1)

where IL is the molecular diffusion coefficient. Aris (1956)
generalized Taylor's results by considering a bundle of capillary

tubes and obtained an effective diffusion coefficient,
% &
- r Vv _
D“DJ"LTDd , (2-2)

where T is a coefficient depending on the shape of the capillary
tube's cross-section. Ananthakrishnan et. al. (1965) investigated
the range of applicability of equation 2-2.

Another theoretical approach is to develop a statistical model

of the microscopic motion of marked fluid particles and to average



these motions to obtain a macroscopic description of dispersion.
Scheidegger (1954) neglected molecular diffusion and used the theory
of a random walk extended to three dimensions. However, he assumed
that the probability for a particle to move a given distance was the
same for all directions. This lead to a dispersion coefficient that
has the same value in all directions, and has subsequently been
proven wrong.

De Josselin de Jong (1958) also used a statistical approach and
was probably the first to develop a model which defined the disper-
sion coefficient as an anisotropic quantity. His model was con-
structed of interconnected straight channels oriented at random but
uniformly distributed in all directions. The final result was a
concentration profile described by a three-dimensional normal dis-
tribution in which longitudinal dispersion was greater than trans-
verse dispersion. The concept of longitudinal and transverse dis-
persion has been verified experimentally [de Josselin de Jong (1958);
Bear (1961b)].

Saffman (1959, 1960) used a statistical approach similar to
de Josselin de Jong (1958). However, Saffman introduced molecular
diffusion into his model and studied the relationship between mechan-
ical dispersion and molecular diffusion. Saffman's first model (1959)
assumed dispersion was large compared to molecular diffusion.
Saffman's second model (1960) was for the case where molecular diffu-
sion and dispersion are of the same order of magnitude.

Other statistical models have been investigated by

Danckwerts (1953), Beran (1955), Rifai et. al. (1956), and Day (1956).



Scheidegger (1957) developed two theoretical models which yielded,
D~V (2-3)
for one model, and
2
D~V (2-4)

for the other model. Equation 2-4 represents a model where enough
residence time exists in each flow channel for molecular sideways
diffusion to cause complete mixing between invading and original
fluids. Equation 2-3 represents a model in which no mass is allowed
to be transferred from one streamline to another by molecular
diffusion. As shall be seen, experimental evidence indicates that
equation 2-3 comes closer to physical reality. Scheidegger (1960)
summarized much of the statistical work done prior to 1960.

Using the results of de Josselin de Jong's work (1958),
Bear (1961a) developed an expression for the dispersivity tensor in
terms of the average distance traveled by the tracer in the medium.
Bear implied that the dispersion coefficient, I%} » Was a second rank
tensor linear in the components of the velocity. Scheidegger (1961)

suggested by induction that:

- Vin Vi "
Di}—" Ei,j.mn V ) (Z 5)
where Gfté”‘" is the coefficient of dispersivity, which is a

porous medium property, and \L Vi//\/ is a tensor which repre-
sents the linear influence of velocity. Scheidegger concluded that

the coefficient of dispersivity was a fourth rank tensor with 81
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components; but due to certain symmetry properties, contains only 36
independent components in the general case of an anisotropic medium.
In isotropic media, there are only two dispersivity constants.

Recent work by Poreh (1965), showed from physical and dimensional

reasoning that the tensor form of the coefficient of dispersion is
Li _Fs. v RE vy (2-6)
-Dd ) Zij 2 :DJ LYy )

where d=pore size parameter, §£}- = kronecker delta, V/ VJ- is a
tensor representing the linear influence of velocity, and F: and f;
are even functions of VJ/_'DJ and VJ/JV" , the Peclet and

Reynolds numbers, respectively. Bear and Bachmat (1967) also showed

the dispersion coefficient, D to be a function of the Peclet

t.a.’
number.

Several investigators, including Scheidegger (1961) and
de Josselin de Jong and Bossen (1961), have suggested that the dis-
persion of a tracer in fluid flow through saturated homogeneous

porous media can be described by the differential equation,

St ax[ 7 ax = ¥el (2-7)

where C 1is the tracer concentration, T is time, b@ is the compo-
nent of the velocity vector in a cartesian coordinate system, and
X, (i=12,3) is the cartesian space coordinates. The double
summation convention of tensor notation is implied in the use of
equation 2-7. Bachmat and Bear (1964) gave the dispersion equation

in curvilinear coordinates consisting of streamlines and equipoten-

tials ( $-J coordinates). Bear and Bachmat (1967) used basic
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fluid flow equations which are averaged over a representative volume
element of porous media to yield the equation of motion and the
equation of dispersion.

Perkins and Johnston (1963) gave a good summary of diffusion
and dispersion in porous media. A more recent and more detailed
summary of the theory of dispersion in porous media was given by

Bear et. al. (1968, Chapter 11).

B. Analytical Solutions

Most dispersion problems have a direct analogy with heat flow.
For this reason, a good reference for analytical solutions is
Carslaw and Jaeger (1959) or Crank (1956). Some of the more impor-
tant analytical solutions are discussed below.

Longitudinal Dispersion-- A semi-infinite column ( X5>0 ) of

homogeneous and isotropic porous media with a plane source maintained
at X;=0 is shown in Figure 2-2. The flow is maintained at a con-
stant specific discharge, %., in the Xjydirection. For an isotrop-
ic media, the axes of the dispersivity tensor is assumed to coincide

with the velocity vector. Thus, equation 2-7 reduces to

2

Cc -nadc _ , 2C "
S=Dor ~ Ve, (2-8)

where ll_ is the longitudinal dispersion coefficient. Initial and

boundary conditions are given by,
Co,t)=C, ; tzo

Cx;00 =0 ; X320
Ce,)=0 ;, tZz0 . (2-9)
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Figure 2-2. Schematic sketch of longitudinal dispersion column
setup.

Ogata and Banks (1961) used Laplace Transforms to obtain the solution,

y 3)” (5% +Vt)] (2-10)

where €rfc(w)=|—erf(«w) . Ogata and Banks showed that the second

—%=—-erf(-—-’——-"--x Vt)—!—ep(

term in equation 2-10 may be neglected in most cases. For instance,
if _DL< 0.002 V;X; a maximum error of less than three percent is

introduced by neglecting the second term. Therefore, unless the
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region close to the source is considered, an approximate solution

to equations 2-8 and 2-9 is

&=zl (537)] 2 1)

Ogata (1961, 1964a) gave a solution in integral form to the
problem where a slug of radius "a" is injected at X3=0. This prob-
lem must consider both longitudinal dispersion and transverse dis-
persion. Using his solutions, Ogata (1964a) developed experimental
procedures for determining both D, and ])r

In many physical problems, the tracer being used may react with
the solid matrix of the porous medium. Depending on the reaction,
the tracer may be adsorbed to the matrix or additional tracer may be
produced. To handle such cases, a production term dependent on the
concentration is added to equation 2-8. Using varying functional
relationships for the production term, solutions to this problem
have been obtained by Ogata (1964b), Banks and Jerasate (1962),
Banks and Ali (1964), and Lapidus and Amundson (1952). A closely
related problem is that of radioactive decay of a tracer.
Bear et. al. (1968, p. 347) gave the solution to equations 2-8 and
2-9 where the tracer continuously undergoes radioactive decay. Coats
and Smith (1964) investigated the effects of dead-end pore volume on
dispersion and gave several solutions to the simple diffusion model
characterized by equation 2-8.

Longitudinal and Lateral Dispersion--If a rectangular column

(0=x;€k, , o£Xx,2 A, ) is used and a tracer source is main-

tained over a portion of the input area ( O < X, < ) as shown in
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Figure 2-3, then both longitudinal and lateral dispersion will occur.
Assuming a homogeneous and isotropic medium with unidirectional flow

in the X&-direction and aq//ax,'= O , equation 2-7 becomes,

ac _ 1 BC 36 _ i PcC i
ot ~Doge T e ~Vagx - (212)
c=C C=C
Cz0 C=0
[N }X =] —>
T4 - FJ3— 4~ %

-

Cftimit of

Tracer Spread
at t=t,.

¥
V= 1/¢
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Vo e e Aot ol e AT A BT TP

o+
i
o+

I

/

-
=
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Figure 2-3. Schematic sketch of longitudinal and lateral dispversion
column setun.
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The initial and boundarv conditions are given by:
C(X;,0,t) =C, ; 0<X<hk ; tZo0

C(x,,0,t) =0 5 h<X,cl, ; tZo

)
2

X,
C(Xz)ogt) = Bounded

C(XZ)XJ) O):O ' o&Xzé,?Z J _Xj 0 ., (2_}3)

p)

A series solution to equations 2-12 and 2-13 was given by Bruch and
Street (1967). Harleman and Rumer (1963) gave the following approxi-

mate steady state solution to equations 2-12 and 2-13,

& i 1 Xo— A
= — erf :
c e c[z '_—'_’D,XJ/V_,,] ; (2-14)

In their work on waste-water recharge and dispersion, Hoopes and

Harleman (1965, 1967a, 1967b) have developed several approximate
solutions to the radial dispersion problem. Raimondi et. al. (1959)
also gave an approximate solution to the radial dispersion problem.
Esmail and Kimbler (1967) gave a solution which allows for alternate

injection and nroduction.
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Dagan (1967) gave an analytical solution for dispersion in a
nonhomogeneous porous column. Using the Laplace Transform, Shamir
and Harleman (1966, 1967) developed analytical solutions for longi-
tudinal and lateral dispersion in layered porous media. Bear and
Todd (1960, pp. 27-33) gave some analysis of the unsteady flow prob-
lem. Banks and Jerasate (1962) allowed the coefficient of disper-
sion to vary with time, and solved the problem by introducing a dif-

ferent time scale.

C. Experimental Results

Much of the experimental work has attempted to establish rela-
tionships so that the dispersion coefficients may be calculated from
media and fluid properties. As was pointed out in Section A, theo-
retical models indicate that the dispersion coefficient is a second
rank tensor. Experiments of de Josselin de Jong (1958), Bear (1961b)
and Bear and Todd (1960) tend to confirm this concept. Scheidegger's
work (1961) indicated that for homogeneous and isotropic media,
the dispersion tensor reduces to two independent terms: (1) the
longitudinal dispersion coefficient, 1{ , and (2) the lateral dis-
persion coefficient, I%_ :

Most of the experimental determinations of the longitudinal dis-
persion coefficient used equations 2-10 or 2-11 as a basis for analy-

sis. Ebach and White (1958) performed experiments on a wide range
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of particle sizes, shapes, and Reynolds numbers. They empirically

postulated that for Reynolds numbers, X < [00O

8,
4%%7 = cL,( lﬁfL (2-15)

where V =fluid velocity, d =particle size of the porous media,
and 4/ =kinematic viscosity. The experimentally determined co-
efficient o, is strongly dependent on the porous medium while .5,
is dependent on flow regime. However, evidence exists (Adam, 1966)
that lﬂ is also dependent on medium properties. Experimenters

have found a large variation in the values of <% and zi . A large
percentage of this variation may be attributed to experimental
techniques; especially the different methods for measuring concen-
tration.

Harleman and Rumer (1963) found (,=0.66 and .&,=1.2 while
Hoopes and Harleman (1965) found o,=1.70 and zﬂ =1.2. Ebach and
White (1958) found o, =1.92 and xﬂ =1.06. Experimental results
for longitudinal dispersion were given by Banks and Ali (1964),
Blackwell (1962), Cairns and Prausnitz (1960), Carberry and
Bretton (1958), Simpson (1969), and many others.

Equation 2-15 prompted investigators of lateral dispersion to

fit their experimental data to the form,
D A
o _ OL2<__V_9|___ . (2-16)
v v

Harleman and Rumer (1963) found ,=0.036 and .£g=0.?. Hoopes and

Harleman (1965) found 05=0.11 and _Z%=O.?. Lateral dispersion has
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been investigated by Simpson (1962), Blackwell (1962), Grane and
Gardner (1961), van der Poel (1962), and Li and Lai (1966).
Harleman et. al. (1963) were able to correlate the longitudi-
nal dispersion coefficient with permeability,
% = a(E)"
v T

= o(.3 3 (2‘»’7)

where fL is the permeability with units of L_2 . Harleman et. al.
found ©¢3=54 for spheres and 88 for sand with ;4; =1.2 for both
media. Hoopes and Harleman (1965) found results similar to

equation 2-17, with o, dependent upon the media. Rumer (1962) in-
vestigated longitudinal dispersion and the effects of unsteady flow
on the dispersion coefficient. Simpson (1969) investigated the
effects of turbulent flow on the longitudinal dispersion coefficient,
and Hoopes and Harleman (1967a) showed the dispersion coefficient
along streamlines to be the same for both uniform and nonuniform flow
at the same velocity.

The effects of molecular diffusion on the above Reynolds number
type relationships has been debated in the literature. Relationships
such as equations 2-15, 2-16, and 2-17 would appear to be invalid
for all ranges of Reynolds numbers. Biggar and Nielsen (1960) gave
a very lucid account of the effects of molecular diffusion on disper-
sion. They proved that molecular diffusion is very important at
small flow velocities, when the medium consists of a natural soil
skeleton instead of washed sands or glass beads, and for unsaturated
flow. They hypothesized that the presence of dead-end pores (a charac-

teristic of the soil) is highly important in determining the effects
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of molecular diffusion on the total dispersion process. Coats and
Smith (1964) also treated the dead-end pore problem.

Bear et. al. (1968, pp. 332-335) stated that the dispersion co-
efficient depends on the flow pattern (e.g. velocity), Peclet num-
ber ( Vc%/iﬂg ), and on some fundamental medium characteristics.
A plot of IZW/EL Vs, U@@Z is broken up into five regions and
characteristics of each region are discussed by Bear.

Adam (1966) used dimensional analysis and experimental results
to determine the effects of anisotropic porous media on the disper-
sion tensor. Adam argued that experimental evidence indicating the
dispersion coefficient is nonlinear in the velocity (i.e. exponent
of velocity is different than one) 1is incompatable with equation 2-3
proposed by Scheidegger (1961) and Bear (1961a). However, List and
Brooks (1967) analyzed numerous experimental results and were
critical of the velocity power law relationships.

From these various investigations the conclusion is reached that
the dispersion coefficient is indeed a tensor of rank two; but an
adequate relationship has not been developed for describing the phe-
nomenon over a large range of flow parameters. Much more theoretical
work is needed in this area.

A study of dispersion using the concept of similitude has been
done by very few people. Raats and Scotter (1968) considered geomet-
rically similar media and sought the conditions for dynamic similarity.
Bachmat (1967) investigated the criteria for similitude of the dis-

persion phenomena in homogeneous and isotropic porous media.
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Heller (1963) also presented a good discussion on scaling of flows
in porous mediums.

Few results from field experiments are available. Harnaz and
Bear (1964) presented results of laboratory and field tests on under-
ground storage operations with a single recharging well and with
two wells, one recharging and one pumping. Lau et. al. (1957)
performed some field tests to evaluate various tracers, and found
the chloride ion to be the best. Field oriented laboratory experi-
ments have been conducted by Hoopes and Harleman (1965, 1967b) on
wastewater recharge and by Rumer and Harleman (1963) on salt-water
intrusion along coastal aquifers. Esmail and Kimbler (1967)
investigated the effects of gravity segregation and dispersion on the

problem of storing fresh water in saline aquifers.

D. Numerical Solutions

Because of the difficulty in obtaining analytical solutions to
groundwater flow problems, many investigators are now using numerical
solutions. Numerical solutions of immiscible flow problems have met
with more success than miscible flow problems. Much work remains
to be done on developing satisfactory numerical techniques for the
dispersion problem.

lany of the reservoir simulation techniques involving immiscible
fluids have been developed in the petroleum industry. Douglas,
Peaceman, and Rachford (1959) employed an alternating-direction-im-
plicit procedure (ADIP) to solve a two-dimensional, two-phase, incom-
pressible flow model. Blair and Peaceman (1963) extended this to

include the effects of compressibility. Larkin (1964) used the
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alternating-direction-explicit-procedure (ADEP). Quon et. al.
(1965, 1966) also used ADEP in a reservoir simulator. Coats and
Terhune (1966) and Carter (1967) compared the ADIP and ADEP tech-
niques. Bjordammen and Coats (1967) compared alternating direction
and successive overrelaxation techniques for the simulation of two-
and three-dimensional, two-phase flow reservoirs. Other reservoir
simulators have been described by Dougherty and Mitchell (1964),
Fagin and Stewart (1966), and Breitenbach, Thurnau, and
van Poollen (1968 a, b, and c).

Digital computer simulators in the groundwater field have not
been as widely developed as in the petroleum industry.
Bittinger et. al. (1967), Tyson and Weber (1964), and Chun, Weber,
and Mido (1964) have presented some information on reservoir simula-
tion in the groundwater industry. The above mentioned works are
Jjust a few of the ones which have been developed in the last few
years on reservoir simulation using numerical analysis and digital
computers.

The problem of miscible flow has not been treated as extensive-
1y numerically as the immiscible flow problem. Peaceman and
Rachford (1962) presented a centered-in-time and centered-in-distance
equation combined with a "transfer of overshoot" procedure which was
demonstrated to work well in one dimension. However, subsequent
testing has shown that for multidimensional displacement their method
involved a numerical dispersion of the same order of magnitude as the

physical dispersion.
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Garder, Peaceman and Pozzi (1964) used the method of charac-
teristics to improve the numerical solution to the miscible flow
problem, but did not consider the dispersion coefficient as a tensor.

Their numerical technique is discussed in detail in Chapter IV.

Stone and Brian (1963) made a thorough analysis of a numerical
scheme to solve the one-dimensional dispersion equation. They used
three adjacent grids at two time levels, and assigned arbitrary
weighting coefficients to the convective and time terms. They then
proposed an iterative scheme with three cycles per time step to im-
prove the solution. No consideration was given to the effects of
changes in viscosity or density.

Hoopes and Harleman (1965) used an explicit finite difference
scheme to obtain a solution for the problem of radial flow from a
well. By neglecting lateral dispersion, they also obtained a solu-
tion to a two-well problem. The size of the grid spacing and time
increment were restricted for the explicit scheme because of a
stability criterion. This presented some problems because of large
amounts of required computer time.

Shamir and Harleman (1966) used a very ingenious concept in their
numerical technique. First they wrote the dispersion equation in
terms of the stream function and potential function (i.e. in terms
of @ and \P coordinates). They noted that the velocity is every-
where tangential to the streamlines, and thus their equation was one
dimensional in the convective term. They then used the Stone and
Brian (1963) numerical technique for one-dimensional flow and handled

the lateral dispersion with an ADIP technique. If the major axis of
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the dispersion tensor coincides with the velocity vector, then Shamir
and Harleman's technique will consider the dispersion coefficient as
a tensor. However, their scheme doe not consider the effects of
density or viscosity changes; nor does it consider unsteady flow
except in the few cases where the streamlines do not change position
with time.

Nelson (1965) described a computer program for predicting waste
transport in groundwater. The program generated permeability infor-
mation and stream functions using a potential map with a small
amount of permeability information. However, he considered a

"piston type" flow and neglected dispersion entirely.

Summary--In summary, the following results are important to the
present study:

(1) The dispersion coefficient is an anisotropic quantity and
must be treated as a second rank tensor.

(2) The dispersion coefficient is linearly related to the
components of velocity as given by equation 2-5.

(3) The analytical solution to the longitudinal dispersion
problem is given by equation 2-10.

(4) An approximate steady state solution to the longitudinal
and lateral dispersion problem is given by equation 2-14.

(5) The longitudinal and lateral dispersion coefficients can
be obtained from the empirical relationships given by
equations 2-15, 2-16, and 2-17.

(6) Numerical solutions to the problem of miscible displacement

in porous media have proven to be difficult. The numerical
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techniques of Stone and Brian (1963), Garder et. al. (1964),
and Shamir and Harleman (1966) appear to be the most

successful.



CHAPTER III
DEVELOPMENT OF MATHEMATICAL MODEL

When working with miscible fluid displacement, the conservation
of mass for each component present in the system is required. In
this study, only two components are considered, a conservative tracer
and the native groundwater. Therefore, two equations of mass conser-
vation are required to describe the system considered here. One of
these equations will be for the combined masses of both components
(i.e. total mass = tracer mass + native groundwater mass ). The other

equation is for the mass of the tracer.

A. General Flow Equation

A fundamental flow equation for the mixture of two miscible
fluids is derived by combining the conservation of mass equation for
the mixture, Darcy's law, and an equation of state describing the
pressure-volume-temperature-concentration relationship. A linear egua-
tion relating change in porosity and change in pressure is also used.
The result is an equation involving two dependent variables, pressure
and tracer concentration. A detailed development of this equation is
given in Appendix A. Using shorthand tensor notation, the final

equation may be written as:

S 2k (4 +rr 38 o -

- 3P 9C "
= LPAV(B+C) 55 + 2 4AVEZ +40 (3-1)
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where  AX (i=],2,3) =dimensions of volume element---L,
AA. (t=1,2,3) =cross sectional area of element
perpgndicular to X; (ie. A4 = AX, AXs)

t =time---T,
AV=AX, AX, AX =volume of element---L3,

X;(i=1,2,3) =cartesian coordinate system (Xj,X2,X3)
o] |

_P =total fluid density---ML~3 or FT2L-4,

a£*_=abso ute permeability in X-direction
[ S . L

=viscosity of fluid mixture—--FTL'z,
=pressure of fluid mixture-—-FL'z,

=acceleration of gravity---LT‘z.

S0 0 \k

=elevation of volume element above
datum---L,

Cp =porosity---dimensionless,

B =fluid compressibi]ity---LzF'],

C_=fqrmation compressibility factor---

ol =proportionality factor relating con-
centration and density---dimensionless,

C =mass Eoncentration of tracer—--ML'3 or
FTEL T,

./z =mas§ densit¥ of produced fluid---
ML=3 or FT4L -4, and

QA =rate of fluid production---L37-1,

_~ =reference value of density---ML=3 oy FT2L-4

¢0 =reference value of porosity---dimensionless
To obtain equation 3-1 in its present form the following assump-

tions have been made: (1) Darcy's law is applicable, (2) single
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phase flow, (3) isothermal flow, (4) a linear relationship between
change in porosity and change in pressure, (5) size of volume ele-

ment does not vary with time, and (6) a linear relationship between
density, pressure, and concentration.

The flow of groundwater through an aquifer is used in this study,
and the validity of Darcy's law presents no serious obstacles. For
problems in the nonlinear flow regime, additional terms involving the
gradient of pressure raised to some power would be needed in equation
3-1. Should a multiphase problem be considered, then equations of the
form of equation 3-1 would need to be developed for each phase and the
saturation, , would be different than one. The assumption of iso-
thermal flow eliminates having to consider the density in equation 3-1
as a function of temperature, and considering the size of the volume
element invariant with time permits the elimination of
from equation 3-1. The use of a linear relationship between "change
in porosity"-"change in pressure" and density-pressure-concentration

is discussed in Section III-C.

B. Dispersion Equation

A convective-dispersion equation may be obtained by combining the
conservation of mass equation for the tracer, Fick's law, and an
equation of state. A detailed derivation of this equation is given

in Appendix B. The general dispersion equation is given by:

3% (pAVC) = f-)(—a[(DLJ-kDT.)cpAAL%]AXL -

d 'ig

— B (CV, $24)8X - C, 4, (3-2)
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where 1}-=dispersion coefficient which is a second rank
tensor---L271-1,

IL =molecular diffusion coefficient---L2T"1,

7:-=porous medium "tortuosity" factor which is also a
second rank tensor---dimensionless,

V. =seepage velocity (flow rate per unit pore area)
of fluid mixture in ¢tk direction---LT7!,

C, =concentration of tracer in produced fluid---ML=3 or
FT2L-4, and

all other terms are as described previously.

Assumptions necessary to obtain equation 3-2 are: (1) diffu-
sion is described by Fick's law, (2) the convective mixing called
dispersion is proportional to the concentration gradient, and
(3) single-phase flow exists. The double summation convention of
tensors is implied in the use of equation 3-2.

The use of Fick's law to describe diffusion means that a dilute
solution is being used. In addition, any diffusion due to temper-
ature gradients or velocity gradients is disregarded. Assuming that
dispersion is proportional to a concentration gradient is discussed
in Appendix B. For multi-phase flow, equations similar to equation 3-2
must be written for each phase.

Because of the numerical technique to be used in solving the
dispersion equation, an alternate form of equation 3-2 is desirable.

This is achieved by chaining out the derivatives of concentration
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as is shown in detail by equations B-31 thru B-40 of Appendix B.

The final result is,

5% = = P4, fjﬁac) X, [ D ¢an 5% 3% ]_‘

o
_\/L“g% .= CCP"C)W ) (3-3)
where
D= D+ - (3-4)

The fluid compressibility effects on concentration are neglected

in developing equation 3-3.

C. Auxiliary Equations

Because of the interrelationship among several of the param-
eters in equations 3-1 and 3-3, the following auxiliary equations
are needed in the mathematical model. The components of the
seepage velocity for the fluid mixture may be obtained from Darcy's

law, and are given by

V;: = — ;} ﬁ— —i—/’g ahb 5 i=42,3, (3-3)

The relationship between the porosity of the porous medium

and the fluid pressure is assumed to be,
o=¢,[1+cC.(P-R)] | (3-6)

where q% =original porosity---dimensionless, and

P, =original fluid pressure---FL=2.
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The density of the fluid mixture is assumed to be a Tinear function

of the fluid pressure and tracer concentration,

ﬁ:/g —t—.ﬁ/f,j(P*fg)’f‘d(C*Ca) ) (3—7)

where ./f =original fluid density---ML"3 or FT2L"4, and

C

o

=original tracer concentration---ML=3 or FTZL'4.

Also, the viscosity is assumed to be a linear function of the

concentration,

M= M, + ) (C-C,) (3-8

J

2

where 4, =original viscosity---FTL™“, and

,& =proportionality factor relating concentration and
viscosity---dimensionless.

The use of equations 3-6, 3-7, and 3-8 are assumptions.
Equation 3-6 has been used in the petroleum industry with success
[Breitenbach et. al (1968b)]. Depending upon the fluids used,
relationships other than those given by equations 3-7 and 3-8 may
be desirable. For the example problems in this study, salt water
and fresh water are used as the two fluids, and the linear relation-

ships of equations 3-7 and 3-8 are believed to be adequate.

D. Dispersion Coefficients

Equation 3-3 and the corresponding finite-difference equations
of Chapter IV are developed in a general way so that any value may
be used for the nine components of the dispersion tensor. However,
the use of a functional relationship is desirable which will give

the values of all nine components in a systematic manner.
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Assuming an isotropic porous medium, the "tortuosity" tensor,

71- » is given by

Jgg = T*sa&' 3 (3-9

¢
where '7ﬂ.=tortuosity factor---dimensionless, and

:%§=kronecker delta.

Thus, the nine components of the diffusion tensor are,

DJT ='DJ—';2=‘DJI;3=DJT (3-104)

1

and
DT,=DT,=DT,=DT,=DT,=DT.=0 . (3-int)

Scheidegger (1961) gave the relationship,

Via M
— m Vin _
'Dij» ez’.a’mn V b) (3 H)
where Efiémn=the dispersivity of the medium, a fourth rank
tensor---L,

Vm, Vi =the components of velocity in the m and n
directions, respectively---LT-1, and

V =magnitude of the ve]ocity»-~LT"].
For an isotropic media, Scheidegger shows that the

dispersivities reduce to only two terms, € and €, , with

éd-d.d.ok - 61
eud..ﬂﬁ = 62

Eol.ﬁdﬁ = 72_ (é.'héz.)
Edﬁ,ﬁd. = VZ. (6:_62)
all other 6)52 O . | (3_’2)
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The Tongitudinal and transverse dispersion coefficients are related

to the dispersivities by

D.=€V (3-/34)

and

D=¢gV . (3-134)

Expanding equation 3-11, introducing equations 3-12 and 3-13, and
adding the diffusion tensor given by equation 3-10, the following

functional relationship for the nine components of the hydrodynamic

dispersion coefficient are obtained:

Dj=D ¢ + D%k + D Mg +D T,

= VV’+DLY'1—@— +D, L2+ T

b]

B 4D LE4DT

(3-14)
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Other functional relationships for obtaining the components of the
hydrodynamic dispersion tensor are given by Bear et. al. (1968),

Poreh (1965), and List and Brooks (1967).



CHAPTER 1V
DEVELOPMENT OF COMPUTER SIMULATOR

The computer simulation of the miscible displacement problem
will be developed by writing the finite difference form for each
of the equations given in Chapter III. Because of limited funds
available for analysis, the computer simulator is developed for a
two-dimensional vertical flow problem. Finite difference equations
and stability criteria for the three dimensional problem are given

in Appendices C, D, and E.

A. Finite Difference Form of Two-Dimensional Flow Equation

An implicit, centered-in-space finite difference scheme is used
to approximate the time and space derivatives of equation 3-1. This
scheme is developed in detail in Appendix C for the three-dimensional
problem. The two-dimensional finite difference equation has the form

T+l — e ]

+P +/ZN1E,£-I_

xz G) if” 3

T oo+ L4l - = _t#l +
4Nj E‘”J“- +/€| erp‘: *‘ +’€JN

i gl

— [N, + AN+ BN BN + Py (Cr y +8, )] Py =

SaCnsthg) ot . wsa(CEa-CTL) . (20
e 9.3 LA "J‘ﬁ Lk LA i

~[C£TN g ahg + (TN g 4hy, + (£5) Ny, gAhy, +

+ () Nygah] (4-1)
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Here L and £ indicate the grid row and grid column respectively,
and t indicates time level. The coefficients /;;t ; Ni , and
Ahi are given as equation C-7 of Appendix C.

A rectangular grid system is superimposed onto the region of
interest, and equation 4-1 written for each grid. The dimensions
of the grids, AX, , and AX3 , are assumed to be constant over the
entire region. Variable dimensional grids may be used, but a
change in the coefficients, fJ;f , 1s necessary. The coefficients.

f:f and Nxf , are held constant during each time step. Ap-
proximation of the original non-linear equation is obtained by ad-
justing the values of ,/f;t and FJ;f after each computation. If
the change in /?‘:t and N,,f is small during each AT, this proce-
dure will produce acceptable results.

The change in concentration with respect to time on the right
hand side of equation 4-1 is calculated using the change in concen-
tration from the previous time step, A&f;. If the change in con-
centration during each At is small, this will also produce acceptable
results. If necessary, an iteration between the solution of the flow
equation and the dispersion equation can improve this approximation.

If the rectangular grid system has m-rows and h-columns, then
there will be mn grids. Since equation 4-1 contains unknown pres-
sures from each of the four adjacent grids plus an unknown pressure

for the grid in question, the result of writing equation 4-1 for all
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grids is a set of mn simultaneous algebraic equations. This set

may be written in matrix form as
[A] [P] = Lrhs) (4-2)

where [A] is a mn by mn matrix containing the coefficients of
pressure, LP] is a mn column vector containing the unknown pres-
sures, and [rhs] is a mn column vector containing all the factors

on the right hand side of equation 4-1.

B. Finite Difference Form of Two-Dimensional Dispersion Equation

The numerical solution of the multi-dimensional dispersion
equation (equation 3-3) has been a difficult problem. Therefore,
some background material may be helpful in understanding the tech-
nique used in this study. If the convective terms and production

term of equation 3-3 are neglected, the resulting equation is

= W
ac T QAR (S0 X [DLJCPML ax] . (4-3)

This equation is a second order partial differential equation of
parabolic type (heat flow equation) and is of the same form as
equation 3-1. A dispersion equation of this type could be solved in
the same way as the flow equation given in equations 4-1 and 4-2.

This particular type of equation has been successfully solved numeri-

cally many times.
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Now suppose that the dispersion and production terms of

equation 3-3 are neglected. Then the resulting equation is

aC

ac  _ i
5% t Vi3, =0 (4-4)

J

which is a first order partial differential equation of hyperbolic
type and has been treated numerically with some success in one
dimension. However, extension to two or more dimensions has proven
difficult. Usually one of two things happens: (1) the numerical

solution develops oscillations or (2) it becomes smeared by "arti-

ficial dispersion" resulting from the numerical process. Thus, when
convection and dispersion are considered simultaneously, this "arti-
ficial dispersion" may dominate the Tow physical dispersion which

characterizes miscible displacement.

If convection and dispersion are neglected, then a change in

concentration can be caused by the production term,
ac &« )
ot + (CP“C) 4>AV "‘0. (4‘ 5_)

Although not immediately obvious, the production term may be written
as [(CP*C)/AXJ[éV(¢AA‘;)] or [(CP—C)/AXJ Vo
where b} is the velocity of the production fluid. This term is
analogous to the convective terms of equation 4-4, and therefore
shall be analyzed in a manner similar to the convective terms. In
general, the production term will be a discrete function, and will be
introduced through boundary conditions of the problem.

In problems of miscible displacement, the amount of dispersion is

usually very small, and this makes the convective-dispersion equation
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almost of the hyperbolic type shown in equation 4-4.

Garder et. al. (1964) recognized this and developed a numerical
technique for solving the convective-dispersion equation based on
the method of characteristics. They assume that the dispersion

terms are given functions of X, Xz) X5, and T, i.e.

QJAA/(;-oﬂC) ax; [Dﬂ ‘a—,{] =ttt . @6

Neglecting the production term momentarily, and substituting

equation 4-6 into equation 3-3 gives

aC 9Cc _ )
=% T V, Ik = T x58) - (4-7)

Garder et. al. (1964) show that a nonhomogeneous equation with the

form of equation 4-7 has characteristic curves
X=X(t) , X,=X,@), X3=X;(t), and C=C() , (4-8)

where t is an arbitrary curve parameter which in this case is time.
These characteristic curves are the solutions to the ordinary
differential equations,

dX, _ dXa _ dX3 _
'QQ: =V, ) :;E%'ﬂ V& > d€ T LG )

and

dc
e f(x,)xzjx%t) ; (4-9)

The concentration, C, is not a constant on these characteristic curves.
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The basis of the method of characteristics is that given solu-
tions to equation 4-9, a solution to the original partial differential
equation (equation 4-7) may be produced by following the characteris-
tic curves. The requirement of following the characteristic curves
is achieved numerically by introducing a set of moving points in
addition to the normal grid system. Each of the moving points is
assigned a concentration, which varies with time. At each time in-
terval, the moving points in a two-dimensional system are relocated

using a finite difference form given by,

t+l t t+l
X, =X  +at V, 8 (4-10)
R 2 b}
and
t+1 t T+l
X5, =X, T AL VT (4-11)

where t+/ is the new time level, t is the old time level, AT is
the time increment, )(,f and XJ, are the coordinates of the {# moving
point, while \ﬁp and k@j are the velocities of the £ moving
point in the X- and j}»directions.

Each cell in the grid system is assigned a concentration equal
to the average of the concentrations of the moving points located in-
side the cell at time t+/ . The concentration of the cell and each
moving point inside the cell is then modified for dispersion by
solving Jt;ﬂJt =‘F(XU Xa,Xz,t) using an explicit, centered-in-

space finite difference equation. This equation is developed in
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detail in Appendix D for the three-dimensional problem. The

two-dimensional form is
t+ tt+a t+a t+a t+4
Ci,i - C'?,i- +E (CLH £ ) Exx ( - :.-.: ,&) +

£ S Corme oy Bl W (P ot

t+a ++A ++A

+Gxx (C LA+ CLHJ B+1 Cf-, 8-1 - .L-H ‘_;) .

++aA f+d t+A t+A
(Cu#.ﬂ :.,[-Hd- C; 8- _Ci—l,-l-l) *

t+A t+4 t+A f'hﬁ
(Cu-: 4T C’LH)& - Ci—g £+ L 1 J‘.) "
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Here ([ and 4 indicate grid rows and grid columns respectively, t+l

is the new time level and t+4 1is a time level somewhere between

E:t &2

t and t+/ . The coefficients x.x, and x x; are given

as equations D-19 of Appendix D.
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C. Finite Difference Form of Velocity Equation

In the method of characteristics described above, a determi-
nation of the seepage velocity is necessary for relocating the
moving points during each time step. To accomplish this, a grid

and its four adjacent grids are used as shown in Figure 4-1.

i,4-

L—f);& ¢, b E.+{,£

i, A+

Figure 4-1. Grid system used to develop a finite difference
equation for the seepage velocity.

The flow equation (equation 4-2) is solved for the pressures at
time level t+/ . These pressures are assigned to the centers of
each of the grids. Using these pressures and Darcy's law, a value
for the seepage velocity at the contact between two grids may be
calculated. Thus, a finite difference form of the horizontal seep-

age velocity at (+ )z, £ could be written as

+

(W, = - o), [ (Bt )

hivy, 4 _
+(/3)i+%z,£( ‘ ’A)r/a )] (4-13)

11
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where all symbols are as previously defined. The horizontal

seepage velocity at b+?EJ-£‘ could also be written as

t+! i:-H

P'H L+,
(V)j; _(/HP ,,H,g[( LJ&Ax/zf ") T

+(Pg)iy g (it *Ai"%a_i_)] NN

By continuity, equations 4-13 and 4-14 should give the same value for

t+l
(\4)a+va ) . Thus, upon adding the two equations, cancelling

£+l
like terms, and rearranging, a weighted value of (\/)L*_yé 4

is obtained in the form,

(v)tﬂ "-Z (ﬁ ) ('ﬁx:)w! [
i+, 4 AX[ (,}1) (4)/“) w) + (‘ﬁx,) (‘ﬁ/a)u-l 5]

Hn‘

+!£ :&) * [f?) ”2484 (hml h l)] (4'!5)

t+1
In a similar manner, the vertical seepage velocity, ) A .

may be written as

- ~2(h ) (B [
(% 4*& AX [(ﬁ ) (¢’/‘5()£)£ + (ixj),,;,i (gb’”)f?afﬂ]

Bl =10+, g Chog= b )j ()
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Using equations 4-15 and 4-16, the seepage velocities at each

interface of a grid is calculated as shown in Figure 4-2. A seep-

J, ( \é)f);’_ Y2
vtn
v )ff;,L, I_l’ ___,(V,)::;) 4
\é;-H

Figure 4-2. Schematic sketch showing relation of seepage velocity
at moving point to the seepage velocity calculated at
the interface between grids.

age velocity must be assigned to each moving point within the grid
based on the value of the seepage velocities at the interfaces. A
linear interpolation is used in making this assignment. For in-

stance, the velocity components of the moving point in the grid of

Figure 4-2 are given by,

t+1 ttl X, — (X,)., £+
\/lf = (\/!)"_%?,i oo £ AXI L /Z;é‘_[(v’)i-%)i 5
1+l
= \/.')£+y2/£ (4_)’?)
and
41 tr Xy —(X3); 4y, t+1
V' = (%) 1y ot [ LI WA

i+
= (V) grn ] , (4-18)
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D. Boundary Conditions

Appropriate boundary conditions due to geologic and hydrologic
influences must be used in conjunction with equations 4-2, 4-10,
4-11, 4-12, 4-17, and 4-18 to obtain a solution. These conditions
take the form of (a) no-flow boundaries, (b) hydraulic boundaries
at ground surfaces, (c) groundwater underflow boundaries, and
(d) known tracer concentrations maintained at certain boundaries.

No-flow boundaries are simulated by assigning a permeability
of zero, a longitudinal dispersion coefficient of zero, and a trans-
verse dispersion coefficient of zero to the grids located along
the boundary. With such a simulation, the coefficients A&f 5

E"i‘e , and G

are automatically set equal to zero. The one exception that has

+

xfx- , as given in Appendix C and Appendix D,
L/
to be treated separately is the case where grid (i, 4) and one of

the adjacent grids are both no-flow boundaries (see Figure 4-1).

In this case the coefficients N;f ’ x:vi , and G}fxa, will
become 0/0 which is indefinite. An "IF" statement in the computer
program can effectively take care of this one situation and set the
appropriate coefficients equal to zero if this situation should ever
occur.

Hydraulic boundaries at the ground surface are most commonly
encountered in the form of a direct connection between a groundwater
aquifer and a river or lake, and are simulated by programming a time-
varying or constant water pressure in the approoriate grids. If the
known pressure boundary is encountered in grid ( ( ,4), then the co-

efficients of the pressures in the adjacent grids are set equal to
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zero, the coefficient of the pressure in grid ([ ,4) is set equal to
one, and the right hand side of equation 4-1 is set equal to the known
pressure value. The resulting equation is

t
Fi‘gl = known value. (4-19)
7

In case the known pressure boundary is encountered in one of the grids
adjacent to grid (; ,4), then the appropriate coefficient 4611 Aﬂi
is multiplied by the known pressure and transferred to the right hand
side column vector of equation 4-2. The corresponding element of the
coefficient matrix, [A] is then set equal to zero.

Groundwater underflow boundaries occur when only a portion of an
aquifer is being studied. This boundary condition may be simulated in
many ways, but perhaps the simplest is to project the pressure gradi-
ent and concentration gradient across the boundary and calculate the
rate of underflow using these projected gradients.

Boundary conditions for known tracer concentrations must be
specified also. These conditions are handled in this simulation by
the moving points. As fluid Teaves the model, moving points with
their corresponding concentration values are removed from the system.
As fluid enters the model, moving points with the appropriate bound-
ary concentrations are added to the system.

The boundary conditions described above are the only ones con-
sidered in this simulation. Other boundary conditions such as those
associated with a leaky aquifer or radioactive decay of a tracer may
be encountered. Appropriate additions to the computer program would

be required.
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E. Description of the Computer Program

The computer simulation was programmed in Fortran IV for
the CDC 6400 Computer at the Colorado State University Computer
Center. A flow chart of the program is shown in Appendix F, and
a reprint of the program used in solving the salt-water intrusion
problem is given in Appendix G.

The MAIN program accepts the input data and governs the
sequence of operations to be performed. Subroutine INICON assigns
a uniform distribution of "moving" points to each grid along with
the initial value of concentration assigned to each point. Sub-
routine READIN reads in or assigns appropriate values to all phys-
ical quantities such as permeability, porosity, viscosity, etc. All
of the initial values are then printed out using subroutine INIPRT
and subroutine MATROP.

Because of the large amount of computer storage required, auxil-
iary storage in the form of a scratch tape is used. The locations
and concentrations of the moving points are stored in common with
the coefficient matrix used in solving the pressure equation. Since
the location and concentration of the moving points must not be
destroyed, they are written onto the scratch tape each time before
the pressure equation is solved and then read back afterwards. This
was done by subroutines, WRTAPE and RDTAPE which are systems routines
developed at the CSU Computer Center. They allow for reading or
writing on the tape while the program continues to execute.

Subroutine MATSOL sets up the coefficient matrix, [A] , and the

right hand side column vector, [rhs], for solving the pressure
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equation. This subroutine, as is presently written, may take care
of two types of boundary conditions: (1) a constant pressure
boundary and (2) a no-flow boundary. Other boundary conditions
besides these may easily be added to the program. MATSOL checks
the boundary conditions and makes the appropriate changes in [A]
and [rhs]

To solve the set of equations set up by MATSOL, the solution
of a set of simultaneous equations is required. A general numeri-
cal solution should offer several solution techniques such as Gauss
elimination, successive overrelaxation (SOR), or iterative alter-
nating direction implicit procedure (ADIPIT). For a review of these
techniques, the reader is referred to Breitenbach et. al. (1968b).

Gauss elimination is by far the most reliable numerical method
one can choose for solving the matrix given by equation 4-2. How-
ever, the volume of computation required by Gauss elimination for a
large matrix can result in large amounts of computer time. In such
cases, ADIPIT or SOR may prove to be more efficient with time. For
the computer simulator developed herein, Gauss elimination was chosen.

If the matrix, [A], were written out, the resulting matrix is

found to be a band matrix with five diagonals of the form,
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Computer storage is not necessary for the matrix elements above and
below the band. Thus, having a minimum band width is desirable. An
appropriate choice of the grid numbering pattern can reduce the
total width of the band. Another important feature is that the num-
ber of rows participating in the upper triangularization for each
column is quite limited. Thurnau (1963) developed an algorithm
called BANDSOLVE which makes use of these characteristics in solving
a five diagonal band matrix.

In this computer simulator, subroutine BSOLVE makes use of the
BANDSOLVE algorithm to solve the matrix equation, equation 4-2, by
Gauss elimination. This subroutine allows for row interchange to
combat round-off error. The oniy problem encountered in using this
technique to solve the matrix equation was that of large amounts
of computer storage. As an example, a grid network with the dimen-
sions of 10 grids by 25 grids has 250 equations and requires 5250
words of computer storage for BSOLVE. In contrast, a 20 grid by
25 grid network has 500 equations and requires 20,500 words of com-
puter storage for BSOLVE. For large problems, external storage
would be necessary on many computers.

After solving for the new pressures, the storage taken up by
subroutine BSOLVE is available for other uses. Therefore, the
coordinates and concentrations of the moving points are read from
the scratch tape and placed in the storage locations previously
occupied by BSOLVE.

Subroutine VELOCY calculates the velocities at each grid inter-

face by use of equations 4-15 and 4-16. This routine also calculates
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the longitudinal and lateral dispersion coefficients using a
velocity power relationship of the form of equations 2-15 and 2-16.
With values for the dispersion coefficients and velocity components,
equation 3-14 is used to calculate the components of the dispersion
tensor.

Subroutine MOVPT uses the velocities calculated in VELOCY and
equations 4-17 and 4-18 to obtain the velocity components of each
moving point. Each point is then moved to a new location by use
of equations 4-10 and 4-11. A section of this subroutine determines
which of the points has moved out of the model. These points are
tagged and introduced at an inflow boundary with the appropriate
boundary concentration. Of all the subroutines developed for this
simulator, MOVPT is probably the least general. At the present time,
minor changes in the program must be made when boundary conditions
are changed to allow for the proper removal and reintroduction of
the moving points. After each point has been moved to a new location,
the average concentration of each grid is calculated by arithmeti-
cally averaging the concentrations of the "moving points" located in
the grid.

With the average concentrations of each grid determined, sub-
routine DISP uses equation 4-12 to determine the change in concen-
tration due to dispersion. The end result is the concentration of
each grid at time t+a4t. To conclude a time step, a mass balance
of the system is calculated and appropriate changes in density,
viscosity, and porosity are made using equations 3-6, 3-7, and 3-8.

A test for print out is made and the program returns to subroutine



50

MATSOL where the pressure equation is resolved and the entire

process repeated for the next time step.

F. Validity of Computer Simulator

A discussion of the validity of the proposed computer simulator
is needed at this point. No rigorous proof of the stability and
convergence of the overall simulator is available. Thus, the
performance of the program in solving problems will be used as a
major test of validity. A discussion of this performance is pre-
sented in Chapter V. However, some confidence can be gained by
analyzing the individual parts of the simulator for stability and
convergence.

The pressure equation is solved using equation 4-1 as the finite
difference form. This is an implicit, centered-in-space difference
scheme with variable coefficients. No general stability criteria
for the variable coefficient difference equation has yet been devel-
oped. Although not giving a rigorous proof, Richtmyer (1957, p. 72)
gave the argument that the stability conditions for the constant
coefficient problem must be satisfied at every point in the domain of
the difference equation for the variable coefficient difference
equation to be stable. Smith (1965) and Richtmyer (1957) both showed
that the implicit difference scheme with constant coefficients is
unconditionally stable and convergent. Thus, using the heuristic
argument of Richtmyer, it may be concluded that equation 4-1 is

stable for any value of AX, AX;, and AT .
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The change in concentration due to dispersion is given by
equation 4-12, and is an explicit centered-in-space finite differ-
ence equation. In general, explicit difference schemes have stabil-
ity criterion, and equation 4-12 is no exception. The stability
criterion for a constant coefficient explicit difference form
involving 826/8)(,2 , QZC/EX; , and 52'6/3)(; may be found
in Smith (1965) or Richtmyer (1957). However, equation 4-12 also
contains the cross-derivative 8°C 3X, dX; and a stability analysis
of the equation was necessary. The stability analysis was done by
a Fourier series approach for both the three-dimensional and two-
dimensional problems. This analysis is given in detail in Appendix E.
In summary, the stability of equation 4-12,is assured if

DT >o (4-20)

1] J

D, >0, 4-21)

* - F

40/D5 > (DI+D)), (4-22)

and
wD) At wDpAt o | (4-23)
(ax) + (axyy — 2 2

*.
and _Dﬂ are the components of the

where ])’IL _D;;) D'*

" ) 13
dispersion tensor, At is the temporal increment, AXf and AX; are the
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spatial increments and c¢)=ijfaﬁijﬁl-atq) . The stability of the
three-dimensional equation is given as equation E-40 of Appendix E.
If equation 3-14 is used to obtain D), 5 D, 3 D),
and J%:_ , then equations 4-20, 4-21, and 4-22 are satisfied auto-
matically. Thus, equation 4-23 is the only stability criterion of
any importance to the problem being considered here.
A theoretical development of the convergence of the overall
"method of characteristics" scheme used to solve the dispersion
equation has not been successful. If the stability criterion of

equation 4-23 is not satisfied, then the numerical solution "blows

up". Some convergence tests made by running problems with known

solutions are given in the next chapter.



CHAPTER V
RESULTS AND DISCUSSION

Because of the difficulty in obtaining theoretical criteria
for the validity of the numerical simulator, experience with actual
problems is a necessity. The numerical solution of the pressure
equation has been done successfully many times, and will not be the
subject of detailed review in this study. However, the solution of
the dispersion equation by the "method of characteristics" (MOC)
has not been so widely studied; especially using the tensor relation-
ships developed in Chapter IV. Therefore, the numerical solution of
the dispersion equation is the object of most of the following

results and discussion.

A. Longitudinal Dispersion in Steady, Uniform, One-Dimensional Flow

If the results of known analytical solutions can be reproduced,
a great deal of confidence in the numerical solution can be gained.
An analytical solution to the one dimensional problem with a step
input of the tracer as a boundary condition is available. This solu-
tion was given as equation 2-10. The first test of the MOC will be
to see how well it solves the one dimensional problem.

Garder et. al. (1964) showed that accurate solutions of one-dimen-
sional problems can be obtained by the MOC over a wide range of
values of the dispersion coefficient, including zero. They also showed
that the moving points do not need to be uniformly spaced, and that

increasing the number of moving points beyond two points per grid did
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not significantly improve the accuracy of the solution. A run was
made using the data of Garder et. al. (1964), and the results are
shown in Figure 5-1.

No theoretical determination of the error has been made for
the method of characteristics. For purposes of this study, an esti-
mate of the error between the numerical and analytical solution is
given by

Et) = Max. }Ci(t) . C:(f)' > (5-1)

I£i4n

where E@is the error at a particular time level, L is the grid
number, A is the number of grids being used, C;(¢) is the numerical
value of concentration in the ith grid, and C:(*) is the analytical
value of concentration for the ith grid. Other measures of error,
such as a least squares approach, could be used. However, from a
computing standpoint, equation 5-1 is the easiest to determine and
will give the relative merits of the numerical technique.

To show the effect of grid size on the error, several runs using
different values for the spatial increment were made. The results
of these runs are summarized in Figure 5-2. The error for the MOC
behaves very strangely, and does not seem to necessarily get smaller
with smaller grid size. This erratic behavior of the error is be-
lieved to be caused by the method of calculating the average grid
concentration and the relative positions of the moving points inside
the grid. This problem will be discussed in detail in Section C of

this chapter.
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Some indication of the nature of the erratic behavior of the
error shown in Figure 5-2 can be obtained by devising a particular
grid dimension, velocity, time increment, and moving point location
so that even though the moving points have moved they have the same
relative positions in the grid at each time step. Using E}O.IO cm/sec
and At=2 secs, each point will move 0.2 cm each time step. If a grid
dimension of 0.4 cm is chosen and two points per grid are used, then
the distance between each moving point is 0.2 cm. Thus, at each time
step, a moving point just takes the position of the point in front
of it at the old time level, and all points are located in the same
relative position in every grid. This concept is carried over when
4, 6, 8, or 16 points per grid are used.

The results of runs using the above concept are shown in
Figure 5-3. The fact that the results for 2,4,6,8, and 16 points are
the same in Figure 5-3 is not just graphical. The computer results
were the same to all significant figures printed out. These results
offer two possible conclusions. The first possible conclusion is
that a relationship between the three parameters, velocity, time
increment, and distance between moving points, has an effect on the
error of solution. The second possible conclusion is that using an
arithmetic mean to determine the average concentration of each grid
is improper. Some type of weighted average may be more appropriate.
These possible conclusions will be explored in detail in the
following pages.

The results from using one point per grid (Figure 5-4) also

indicated an interesting phenomenon that was noticeable on other runs.
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When using one point per grid, there is 0.4 cm between each moving
point. Since the points only move 0.2 cm per time step, two time
steps are needed for a point to move across a grid. Thus, the con-
centration of the one point determines the concentration of the

grid for two time steps. In effect, the grid concentration is not
changed due to convection. Every even time step gives accurate
results using one point per grid, while each odd time step will give
poor results, with the front lagging behind the actual front as
shown in Figure 5-4. This produces a "jerky" effect in the accuracy
of the solution which is undoubtedly some of the reason for the
erratic behavior of the error shown in Figure 5-2. _A different
method for calculating the average grid concentration appears to be
needed. When sufficient points per grid are used to provide a pro-
per average grid concentration, then the MOC yields good results for

the one-dimensional problem.

B. Longitudinal and Lateral Dispersion in Steady, Uniform, One-
Dimensional Flow

In the previous section, the MOC was shown to be capable of

giving good results for the one-dimensional dispersion problem.

The extension of this analysis to the slightly more difficult prob-
lem of two dimensional dispersion is the next logical step. A rec-
tangular region, 0€X;<X; and 0 = Xzé/??_ is considered in which
the flow is along the Xj-axis with a steady, uniform seepage veloc-
ity, yg. A fluid of concentration, C,, is injected over a portion
of the input boundary (0 <X, <4~ ), while the remaining portion of

the boundary ( L=< X, €4, ) is injected with a fluid of zero
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concentration. A schematic of this particular problem is shown in
the upper right hand corner of Figure 5-6.

The differential equation and boundary conditions for this prob-
lem were given as equations 2-12 and 2-13. When the input concentra-
tion at X3=0 is maintained for a long time, the concentration distri-
bution will approach a steady state. Harleman and Rumer (1963)
neglected the Tongitudinal dispersion term in the differential equation
and solved the steady state problem. Neglecting the longitudinal
dispersion is valid because SZC)/QX;lis very small at steady state.

Their approximate solution for the steady state case was

£

- L ey clj-zgi::ﬁ;‘ ‘] x g
r = VDI (5-2)

The numerical solution of this problem using the MOC was com-
pared with the solution given by equation 5-2. Data for this run
are: 25 x 20 grids on 0=X;<10 cm and 0= X,<4 cm, \;=0.10 cm/sec,
D =0.01 cm?/sec, _IL=0.001 cn?/sec, points per grid = 4,
AX3=O.4 cm, AX,=0.2 cm, ,ﬁ=2.2 cm, and At=2.0 sec. As was done
for the one dimensional problem, the computer program bypassed the
solutions of the pressure equation and velocity equation. Steady
state conditions were achieved at about 200 seconds, or after about
100 time steps. The computer time required to solve the dispersion
equation for this problem was about 0.55 secs/time step. The step
input of concentration was handled numerically by letting C/2;=1.0
for X,<k, C/,=0.5 for X,=4, and C/f,, =0.0 for X, 74

The numerical solution provided the transient concentration

distribution, but no check of its accuracy was made since equation 5-2
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is for steady state. However, if D_is small and /- is large, the
concentration distribution at X,=0 is not affected by lateral dis-
persion, and the transient concentration profile along X2=0 should
be the same as for the one-dimensional dispersion case. This was
found to be true for this run as shown in Figure 5-5.

The numerical results at steady state (t=200 secs) are compared
with the approximate analytical solution (equation 5-2) in
Figures 5-6 and 5-7. The accuracy of the results appear to be quite
good except for the area close to X5=0. This should be expected
since the assumption of 62ty/ BIX;L =0 in the analytical solution is
not valid in this area. Some of this discrepancy may also be the
result of the very steep concentration profile in the X,-direction
for the area close to X=0. Although not tried, smaller grid dimen-
sions in the X,-direction might improve the results. Figure 5-7
gives the longitudinal concentration distribution at steady state
for various values of X,. The small curvature of the lines in
Figure 5-7 compared with the curvature shown in Figure 5-6 lends
support to the assumption that 326/9 X; = 0 at steady
state.

The MOC appears to be capable of solving problems of longitudi-
nal and lateral dispersion with as much ease as it did longitudinal
dispersion alone. No problems with "overshoot" occurred and no

numerical smearing was noticed.

C. Numerical Solutions Using the Tensor Concept of Dispersion

One of the primary objectives of this work is to consider the

dispersion coefficient as a tensor and evaluate the importance of
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using the tensor concept. To be perfectly rigorous, the dispersion
coefficient was treated as a tensor in the previous two sections.
However, in those instances the axes of the dispersion tensor was
oriented parallel to the coordinate axes X,» X,»> and X3 . This
resulted in the coefficients ]2: 3 l)x- g D 4 I)* 4 D* , and

12 31 13 32
JZZ all being zero, and _D?; Il, lZ:=lL,, and I¥:= l;. Thus,
the previous analysis was reduced to working with Tongitudinal and
lateral dispersion.

In an isotropic medium, experimental results indicate that the
dispersion tensor is oriented so that longitudinal dispersion is
parallel to the velocity vector and lateral dispersion is perpendic-
ular to the velocity vector. Thus, if the velocity vector is
oriented at some angle to the coordinate axes, then the dispersion
tensor is also at some angle to the coordinate axes. In the original
paper by Garder et. al. (1964), it was assumed that the velocity
vector was essentially parallel to the .&—axis. However, in most
complex groundwater flow situations the velocity vector will not be
parallel to the coordinate axes, but will be constantly changing
direction at different locations in the system.

The general dispersion equation (equation 3-3) and the tensor
transformation equations (equation 3-14) were derived and written in
finite difference form so that assuming the velocity vector parallel
to one of the coordinate axis is not necessary. Thus, any type of
complex flow system may be analyzed using the proposed numerical

simulator.
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No analytical solutions are available for a multidimensional
flow problem involving the proposed tensor transformations. To check
the numerical simulation, the problems described in Sections A and B
were made two-dimensional by orienting the coordinate axes at some
angle to the flow vector. Solving these problems in the rotated
coordinate system forces the use of the tensor transformation and
numerical scheme. However, the physics of the problem have not been
changed, and the resulting answers should be the same as those
obtained in Sections A and B.

After some preliminary calculations, the coordinate axes were
rotated so that an angle of 45° existed between the velocity vector
and the coordinate axes. The derivation of the stability criteria
in Appendix E influenced the decision for using 45°. This is be-
cause at increments of T/4, 3T/4, 5T7/4, and 77/4 the off diagonal
B e g«

d DF t
21 13 23 an 32 are at a

tensor components D),
maximum. Thus, the maximum influence of the tensor transformation
would occur when the angle between the velocity vector and the coor-
dinate axes was given by hm/4 (n=1,3,5,7...). Figure 5-8 is a
schematic sketch of the proposed numerical scheme.

The one detail about the proposed scheme for testing the numeri-
cal tensor transformation that may provide trouble is the boundary
conditions. As seen in Figure 5-8, the straight boundaries of the
original column will be approximated by a series of rectangles or
squares in the rotated column. As AX:and AXQ become very small,

a better approximation of the boundary conditions can be obtained.

In the computer runs, the results along the boundary grids were not
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Figure 5-8. Schematic sketch of coordinate axes rotation used for
comparing numerical tensor transformation with known
analytical solutions.
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as accurate as they should be. However, moving away from the bound-
ary only a small distance, the results were found to be consistent
with the analytical solutions.

Longitudinal Dispersion--The first computer runs using the

tensor transformation were made for the longitudinal dispersion prob-
lem discussed in Section A. Three different runs were made, and the
data for these runs are shown in Table 5-1 as runs number T-1, T-2,
and T-3. As can be seen from the data, lateral as well as longitudi-
nal dispersion was allowed to take place. However, a fluid of con-
centration (}4;=1.0 was injected across the entire interface

o X2 A, . This should result in 30/3){;0, and elimina-
tion of lateral dispersion. Thus, an effective test of the numerical
approximation for Bg/bﬂi and agyG;x; JX; is provided.

The computer time required to solve this problem was approxi-
mately 0.50 sec/time step for the 20 x 20 grid network and approxi-
mately 1.25 sec/time step for the 38 x 38 grid network. This is the
time required to solve only the dispersion equation since the solu-
tions of the pressure equation and velocity equation were bypassed
for these runs. Thus, increasing the number of grids by a factor of
3.6 resulted in increasing the computer time by a factor of 2.5.

The results for Run T-1, in which equation 3-14 was used for the
tensor transformation, are shown in Figure 5-9. For comparison, the
analytical solution determined from equation 2-10 is given. As can
be seen, the results are quite good. No problems with "overshoot"
occurred for this case. For )3//Jg 70.9 , some error is notice-

able on the 0.92 pore volume injected curve. This is because the
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TABLE 5-1. Data for computer runs made to verify numerical simula-
tion and tensor transformation of dispersion problem.

At XS MK, Vs vV, v’ No. of Tensor
Run (sec) (cm (cﬁ3 (cm/sec) (cm/sec) (cm/sec)Points Transfor-
per Grid mation

used

=1 1.5 0.2 0.2 .071 .07 0.10 2 yes
T-2 1.5 0.2 0.2 071 .071 0.10 2 no
T-3 2.0 0.4 0.4 .071 .071 0.10 2 yes
T-4 2.0 0.4 0.4 071 .071 0.10 4 yes
T-5 1.5 0.2 0.2 .071 .07 0.10 2 yes
T-6 1.5 0.2 0.2 071 .071 0.10 2 yes
T-7 1.5 0.2 0.2 .071 .071 0.10 2 no
T-8 1.5 0.2 0.2 .071 .071 0.10 2 yes
TABLE V-1. Continued.
Run gg%dgfin Gﬂ?&sogn D, Dr ig ‘gz 4

Xs- X~ (cm®/sec) (cm?/sec) (cm) (cm)  (cm)

Direction Direction

T-1 38 38 0.01 0.003 6.509 4.245 4.245
T-2 38 38 0.01 0.003 6.509 4.245 4.245
T-3 20 20 0.01 0.001 5.66 5.66 5.66
T-4 20 20 0.01 0.001 7.358 3.962 1.981
T-5 38 38 0.01 0.001 6.509 4.245 2.122
T-6 38 38 0.01 0.003 6.509 4.245 2.122
T-7 38 38 0.01 0.003 6.509 4.245 2.122
T-8 38 38 .01 0.003 6.509 4.245 2.122
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boundary condition of the analytical solution has been violated.
The analytical solution is for a semi-infinite column; not a finite
column. Thus, the end effects of the column became noticeable.

Also shown on Figure 5-9 are the results of Run T-2 in which the
tensor transformation was not used. For this case, I¥f= D,,

D:2= D, and _D::= D 0. This means that the dispersion tensor
was assumed to be oriented parallel to the rotated coordinate axes
rather than the velocity vector. The results of Run T-2 indicate
that by not using the tensor transformation, an error results in the
numerical solution. The run without the tensor transformation gives
a steeper concentration distribution curve than the analytical solu-
tion. Although not tried, the use of a larger value for ) should
move the curve for Run T-2 nearer the analytical solution.

Although the error created by disregarding the tensor trans-
formation is discernible, this is the maximum error that will occur.
As the coordinate axes are rotated from the present 45° to either
0° or 90°, the two solutions given by Run T-1 and Run T-2 will gradu-
ally approach each other. Thus, in many practical problems, the
error in determining the dispersion coefficient will probably result
in greater errors than that created by neglecting the tensor trans-
formation. However, the tensor transformation required very little
more computer time, and did result in a more accurate solution.

Figure 5-10 shows the lateral concentration distribution for
Runs T-1 and T-2 after injecting 0.46 pore volumes of fluid. The
data along X;/UL =0.5 correspond to those shown in Figure 5-9 for

\éfyéf;=0.46. Again, the numerical results using the tensor
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transformation are more accurate than those without the transforma-
tion. As was surmised earlier, approximating the straight boundary
of the column with a square grid (see Figure 5-8) has resulted in a
larger error along the boundary. The numerical results for any
value of )(_,,/,f_’3 were generally the same to three decimal places for
0.3= X, /4 = o0.7.

The no-flow boundary condition in Run T-1 was approximated
numerically by setting the dispersion coefficients equal to zero for
all grids along the boundary. Another way to treat the no-flow
boundary is to use a reflective boundary condition. Run T-3 was
made with a reflective boundary condition along ﬁ%/};=0 and a
boundary condition with the dispersion coefficients equal to zero
along Xﬁ/ﬁﬁ_=].0. As can be seen in Figure 5-11, the use of the
reflective boundary condition apparently reduces the amount of error.
The reflective boundary condition improves the results because the
finite difference equation for the cross derivative 3%%/Q9X3 X,
involves using a "nine-star" grid pattern (see Figure D-1, Appendix D)
instead of the usual "five-star" grid pattern. This means that the
derivative of concentration in the boundary grid has an influence
further into the media. This influence is more adequately accounted
for by the reflective boundary condition.

Longitudinal and Lateral Dispersion--With the set up shown in

Figure 5-8, the Tongitudinal and lateral dispersion problem dis-
cussed in Section B was solved in the rotated coordinate system using
the tensor transformation relationships. In these runs, fluid with

a concentration of 94;=1.0 was injected over the interval
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0< X, < 4, and fluid with a concentration of C/(,=0.0 was
injected over the interval < X, £/,. Runs T-4, T-5, T-6,
T-7, and T-8 were made to study the effects of the tensor trans-
formation when both longitudinal and Tateral dispersion take place.
The data for these runs are given in Table 5-1.

The first run in this series (Run T-4) was made with ‘A.K; and
£1X£ equal to 0.4 cm. The results from this run yielded more error
than was tolerable. An example of this error is shown in Figure 5-12

after 2.3 pore volumes had been injected. This was assumed to be
approximately at steady state. Since the results of Run T-4 are
smooth and display no anomalies, the error was presumed to be the
result of using large spatial dimensions in the region of the steep
concentration profile along X,=.4.

To check this hypothesis, Run T-5 was made using AX_;and AX;
equal to 0.2 cm. The results were much better as shown in Figure 5-12,
but are still not accurate enough. The spatial dimensions could have
been decreased more, and a more accurate solution would probably have
been obtained. However, Run T-5 required the use of a 38 x 38 grid
system or a 40 x 40 grid system when the boundary grids are included.
This is 1600 grids and 3200 moving points. The computer program for
this problem required about 25,200 words of computer storage. This
was near the available computer storage, and decreasing the spatial
dimensions further was not attemnted.

Since the very sharp concentration front along XZ=A§ appears
to be causing the problem, then increasing the width of the dispersed

zone might help. With this in mind, Run T-6 was made with
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,Iy=0.003 cmzlsec instead of ,Dr=0.001 cm2/sec. The results of
this run are shown in Figure 5-13, and they are much improved.
Except for the area near the inflow boundary ( X%/{j;410.3) where
the analytical solution is not good, the results compare favorably
with the approximate analytical solution given by equation 5-2.

Run T-7 was then made using the same data as Run T-6, except
the tensor transformation equations were not used. These results
are shown in Figure 5-14, and do not match the analytical solution.
Figures 5-15, 5-16, and 5-17 give a comparison of the lateral con-
centration distributions for Runs T-6 and T-7 at various values
of Xg/{f; . Run T-7, using no tensor transformation, shows a
flatter concentration distribution than the analytical solution.

Figures 5-15, 5-16, and 5-17 do not show any "overshoot" or
"undershoot". However, "overshoot" and "undershoot" did occur;
but was generally restricted to the third or fourth decimal place.
This small significance resulted in no noticeable "overshoot" in
the graphical presentation. The use of the "nine-star" grid pattern
to estimate the cross-derivative 926//9Aé dX3 is believed to be
the source of this small amount of "overshoot". However, the magni-
tude of the "overshoot" (]0'3 to 10'4) is much smaller than the
overall error (10’2), and is not considered to be a major detriment
to the numerical scheme.

A more serious obstacle to the success of the numerical scheme
appears to be the moving points. In Section A, a lag in the con-
centration profile for longitudinal dispersion was noticed when the

same points remained inside a grid throughout a time step. This
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resulted in a "jerky" movement of the concentration front as was
shown in Figure 5-4 for the case of one point per grid. In other
words, the accuracy of the numerical scheme appears to be dependent
upon the time increment selected for a given grid size.

The problem with the "jerky" frontal movement was also notice-
able in the two-dimensional dispersion problem where two points per
grid were used. The results for Run T-6 shown in Figures 5-13,
5-15, 5-16, and 5-17 are after injecting for 150 seconds and are
quite good. However, Figure 5-18 shows the results for Run T-6 at
120 seconds and at 180 seconds. These results are obviously not
as good as those for 150 seconds. Thus, the accuracy of the numer-
ical solution apparently depends on which time level is chosen to
print out the results. The results for Run T-4, in which four
points per grid were used, did not show this apparent accuracy
dependence on time. As is seen in Figure 5-19, the results of
Run T-4 are approximately the same for t=120 seconds, t=150 seconds,
and t=180 seconds.

A conclusion which might be deduced from the above observations
is that the number of points per grid does have an effect on the
accuracy of the results. However, the use of hand calculations to
move the points from location to location indicated that the rela-
tive position of the moving points in a particular grid at a given
time level influences the results more than the number of points.
Figures 5-20a, b, and c illustrate an example of this hypothesis.
In Figure 5-20a, two points are centrally located in the grid, and

points in the adjacent grids are located as shown. A1l points above
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the diagonal are assigned a concentration of zero, and all points
below the diagonal are assigned a concentration of one. No disper-
sion is allowed to take place. Under this setup, the average con-
centration assigned to the grid would be (1.0 + 0.0)/2=0.5.

Now suppose that the velocity vector is oriented parallel to
the diagonal, and that the magnitude of the velocity and time incre-
ment are such that at the next time step the points are located in
the grid as shown in Figure 5-20b. Even though two points are still
in the grid they are positioned along the right side of the grid
and both are above the diagonal. For this case, the average concen-
tration assigned to the grid is (C.0 + 0.0)/2=0.0. Thus, by going
from one time step to the next, the concentration has changed from
0.5 to 0.0.

To carry the case to an even further extreme, suppose the
magnitude of the velocity and time increment are such that at the
next time step the points are located as shown in Figure 5-20c. The
two points in this instance are located very close to the left side
of the grid and are below the diagonal. Thus, the average grid
concentration is (1.0 + 1.0)/2=1.0.

Three completely different answers were obtained at three
different time levels depending on how the points were positioned
in the grid. Obviously all three answers cannot be right. The
correct answer is, of course, 0.5 which was given by the point loca-
tions in Figure 5-20a. The phenomenon depicted in Figures 5-20a, b,

and c is exactly the phenomenon encountered in Run T-6 in which



89

distorted values were obtained at certain time Tevels and accurate
results were given at other time levels.

The phenomenon discussed above could be reduced to a toler-
able level by increasing the number of moving points per grid. This
is indicated by the fact that Run T-4 with four points per grid did
not show an accuracy dependence on time. However, perhaps the key
to the problem is not increasing the number of points, but deter-
mining the average concentration by another method. A weighted
averaging scheme might help things considerably.

Run T-8 was made with all data exactly 1ike Run T-6 except that
area was used as a weighting factor. The average concentration was

calculated by

h

C = mrap 2 Ci 04 ) (5=3)

= AX; AX; -

where C 1is the average concentration, sz.« and AX_; are the
spatial dimensions of the grid, C& is the concentration of the ith
moving point, AA; is the "area of influence" of the ith moving point,
and é AA; = AX; AX; . The concept of an "area of
influence" is schematically shown in Figure 5-20d. Using such a
concept, points 1, 7, 8, and 9 will have some influence on the
average grid concentration while the influence of points 1 and 2

has been diminished. The results for Run T-8 using the weighted
average are shown in Figure 5-21 after 120 seconds, 150 seconds,

and 180 seconds. These results are much improved over those of

Run T-6 shown in Figure 5-18.
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The conclusion that must be reached here is that the method
of calculating the average grid concentration is an important factor
in the numerical scheme. If some type of weighted average is not
used, then a sufficient number of moving points must be used to
guarantee a reasonable estimate of the average. Although
Garder et. al. (1964) concluded that two points per grid gave
sufficient accuracy, the results obtained in this study indicate
the number of points per grid may need to be greater than two. The
exact number needed is unknown, and would appear to be dependent on
the nature of the problem being considered.

If an adequate scheme for weighting the concentration can be
developed, then a smaller number of points per grid may be used.
Using an "area of influence" as a weighting function gave good
results for the problem considered here where a uniform, steady
velocity field was used. The numerical problems encountered in
determining an "area of influence" for each point in a non-uniform,
unsteady flow field appear to be numerous. Other weighting schemes,
besides area, which could easily be calculated for the non-uniform,
unsteady case might prove to be adequate. This problem is left to

future thought and research.

D. Dispersion Along Equilibrium Salt-Water Wedge

In Sections A, B, and C, the numerical simulation of the dis-
persion equation and the tensor transformation of the dispersion co-
efficient was compared with known analytical solutions. However,

the total simulator using both the dispersion equation and the flow
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equation have not been used. A problem which seems favorable to this
type of analysis is the salt water intrusion problem. Rumer and
Harleman (1963) used a laboratory model of a two-dimensional con-
fined aquifer to investigate convection and dispersion along a salt-
water wedge. Columbus (1965) used a Hele-Shaw model to investigate
sea-water intrusion in an unconfined model neglecting dispersion. Be-
cause Rumer and Harleman's (1963) data contained information on the
value of the dispersion coefficients, a computer run was made using
the data from one of their laboratory runs.

The equilibrium salt water wedge, when subjected to the steady
flow of fresh water to the ocean, will develop a transition zone.
Using Darcy's law and the Dupuit-Forchheimer approximation, the spe-
cific discharge of fresh-water per unit width of ocean front, 1; s

can be written as
. i dh
f=kgm - ik

in which K=hydraulic conductivity, 4 is the distance between the top
*

of the aquifer and the wedge interface, and h is the piezometric

head (Figure 5-22). The medium is assumed to be homogeneous, isotrop-

ic, and no mixing occurs at the interface.
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Figure 5-22. Equilibrium wedge in a confined aquifer.

The condition of equal pressures in the salt water and the

fresh water at each point along the interface yields

A
%':: '323}1 - QEZ'g ) (5-5)

where /ﬁ and /g are the densities of fresh and salt-water, respec-

tively, and A/”=,f—a/i . Substituting equation 5-5 into equation 5-4

gives
. 3 <5
¥ A5 F | E=tEl X 2 (5"6)
Integrating and solving for L:',
i ] 2T 4 ! A
h =V——%§— 5 +32 +5 4, (s-7)
-

The constant of integration, B, can be obtained by using the value
*

of h at X,=0. Henry (1959) showed that the outcrop opening

( Y at X,=0) was given by,

P

_ 074l .
Yxeg —&K i - ( 5-8)
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Substituting equation 5-8 into equation 5-5 gives

ot § 4 ¢

h(X,=0J = K /i (5__‘7)

n 2
Using equation 5-9 in equation 5-7, gives B = (0.741 }/K)

Thus, the piezometric head is given by,

— = i3 1
PR (HE) 45 o

Substituting equation 5-10 in equation 5-5, gives the equation for

the interface,

2]

7 :1/}%%5 Xt (%}/;) . (5 1))

Although the static interface between fresh and salt water will be
subjected to dispersion, Rumer and Harleman (1963) showed that the
position of the mean isoclor (C =0.5) is adequatelv predicted by
equation 5-11.

Rumer and Harleman (1963) gave the following information for
their Run No. N-2: §'=0.0733 em?/sec, 4//4 =0.006, K =0.835 cm/sec,
porous medium = plastic spheres, and median grain diameter =0.965 mm,
A computer run was made using Rumer and Harleman's information, plus
some additional data required by the numerical simulator. The data
used in the computer run are: 4x,=6.0 cm, AX,=6.0 cm, At=500 sec,
A-9.885 x 107%m?, $=0.39, /4 =1.000, /7 =1.006, 4/=0.006, A= .0116

poise, fluid compressibility =0.0, rock compressibility =0.0, A=0.0,

o =0.006, grid dimensions = 12 x 27, depth of aguifer = 60 cm, length
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of aquifer = 156 cm, £ = 33 cm, '%;=0.0736 cmé/sec, moving points
per grid = 2, and the acceleration of gravity = 980 cm/sec?. 1In

addition to these data, the dispersion coefficients were assumed to

be given by
D7 Wi 4 .
> _0_55(—_/%(——) (5-12)
and ,
DA Y P ;
= 0.036(-—/;—(-——) (5-13)

The reason for using equations 5-12 and 5-13 is that Harleman and
Rumer (1963) determined these relationships for the same medium
(plastic spheres) used by Rumer and Harleman (1963) in their study
of sea water intrusion.

The computer run was made for 60 time steps or about 8.33 hours.
Whether this was long enough for the wedge to reach equilibrium is
unknown. The concentrations were not changing very rapidly, and the
toe of the wedge was moving very slowly. Therefore, the wedge was
assumed to be in equilibrium. The computer time required for solving
both the flow equation and dispersion equation for this 12 x 27 grid
network was about 3.4 sec per time step.

Fluid enters the model at X = 156 cm and leaves the model at X,=0.
No fluid flows across X,=0 and X,=60 cm. Thus, the boundary condi-
tions are given by

P
24,

+/023—h =0 at X,=0

Iy and X, =60 cm (5-14)

J
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Peo,x,) = Poo) =/ gL h(ox) — h(sd)] at X=0, (19
and

Puss,x,) = PUse,0) =4 a[ h(ox)-h(eo)] at x=is6cm.

(5-16)
P(o,@is assumed to arbitrary and was taken to be 29,576.40
dynes/cm? for this run. f3(156Jq) was maintained at the necessary
level to cause a fresh water flow of 3?=0.0733 cm?/sec.

The boundary conditions given by equations 5-14 and 5-16 are
believed to be adequate. However, the boundary condition given by
equation 5-15 is subject to some suspicion. The actual physical
boundary condition where the fresh water discharges into the ocean
is very difficult to describe numerically. The computer run indi-
cated that some recirculation of fluid took place along this bound-
ary. If the simulator should be used to study the salt-water intru-
sion problem in detail, additional work on describing this boundary
condition will be necessary.

A comparison of the fresh water head calculated numerically and
by equation 5-10 is shown in Figure 5-23. The comparison shows that
the numerical results and those by equation 5-10 are very close except
for the region close to the ocean front. This would be the region
affected most by the use of the Dupuit-Forchheimer assumptions. Also,

this region is probably affected by the boundary condition given in

equation 5-15.
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Figure 5-24 shows a comparison of the mean concentration line
( Q/CO=0.50) calculated numerically and the interface location
obtained from equation 5-11. These results are good except in the
vicinity of the wedge toe. Several factors may be contributing to
this error. First, the numerical results may not be completely at
a steady state. However, the 60 time steps computed required 205
seconds of computer time. The concentration changes taking place
were slow enough so that large amounts of computer time would be
required to carry the solution to a real steady state. The present
grant for computer usage would not allow such large amounts of
computer time. Thus, runs of longer duration were not made.

Another factor which proved a limitation on this problem can be
seen in Figure 5-25. The concentration profiles are extremely steep.
In fact, the profile is so steep that the grid concentrations ob-
tained from the computer were generally either C72;=1.0 or Cy@;=0.0.
Very few grids had a value for C/to between these two extremes.

Thus, a large amount of interpolation was required to determine the
line C/C, =0.5. To alleviate this problem, smaller spatial dimen-
sions are needed which will require more computer storage. This will
necessitate making changes in the program for more extensive use of
auxiliary storage (i.e. tape).

Another problem is that of having the moving points heavily
weighted to one side of the grid. This problem was discussed in
Section C, and the use of a weighted average using the "area of in-
fluence" as a weighting factor proved successful. However, the un-

steady, nonuniform flow field encountered in the salt-water wedge
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makes the determination of an "area of influence" difficult. Using
more moving points per grid than the two used in this run would prob-
ably help this problem.

The computer program indicates that a small amount of salt water
flow (approximately 0.008 cmzfsec) occurred in the salt water wedge.
This would have the effect of moving the wedge toe toward the ocean;
although not by enough to account for all the discrepancy shown in
Figure 5-24.

Another factor which might have effected the location of the
interface is the boundary condition given by equation 5-15 to approxi-
mate the ocean front. The computer results indicated that some recir-
culation of fluid was occurring along the two grids adjacent to the
ocean.

To investigate all of the above effects on the numerical solu-
tion would require additional computer funding. Such funds are not
presently available. This should be made the object of some future

research proposal.



CHAPTER VI
SUMMARY AND CONCLUSIONS

A three-dimensional fundamental flow equation for a mixture of
miscible fluids flowing through a groundwater aquifer was derived.
Also, a three dimensional convective-dispersion equation describing
the movement of a tracer miscible with the groundwater was derived.
Finite difference forms of these two equations were developed, but
because of insufficient computer funds the three dimensional equa-
tions were never used.

A computer program using the two-dimensional finite difference
equations was developed and tested with success on problems with
known analytical solutions. Assuming an isotropic medium, a tensor
transformation for the dispersion process was tested extensively.
Because the numerical simulation of the tensor transformation in-
volves the cross-derivatives of concentration, new stability crite-
rion were developed for the explicit finite difference scheme used

to solve for dispersion.

A. Evaluation of Numerical Simulator

The results of this work will allow the study of numerous mis-
cible displacement problems in complex groundwater flow fields. The
numerical simulator can be used for steady or unsteady flow, homo-

geneous or non-homogeneous aquifers, isotropic or anisotropic media,
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constant densities or varying densities, and constant viscosities

or varying viscosities. The use of the proposed simulator has

resulted in the following:

a.

The one-dimensional flow problem with longitudinal dis-
persion Ean be handled without any difficulty, and ex-
cellent results were obtained. No "overshoot" or numer-
ical smearing was noticeable.

The one-dimensional flow problem with both Tongitudinal
and lateral dispersion can be handled satisfactorily.

No "overshoot" or numerical smearing were observed. Small
spatial dimensions are required along a sharp concentra-
tion front to adequately describe the front.

Working with a rotated coordinate system, the proposed
numerical simulation for the tensor transformation of the
dispersion process was successful. The use of the "nine-
star" finite-difference pattern to describe 3€?/4i% x>
was sufficient except along noflow boundaries. The use of
a reflective boundary condition instead of setting the dis-
persion coefficient equal to zero helped alleviate this
problem.

Garder et. al. (1964) concluded that the method of charac-
teristics numerical scheme for dispersion would give good
answers for as few as two points per grid. The results of
this work indicate that the points per grid may need to be

greater than two. The exact number needed is unknown, and
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would appear to be dependent on the nature of the problem

being considered.

e. The method of calculating the average grid concentration

proved to be an important factor in the numerical scheme.
If an arithmetic average of the points located in a grid at
a particular time level is used, then more points than two
per grid may be necessary to obtain an adequate average.. A
weighted average using the "area of influence" for each
point was proposed and proven effective for a steady, uni-
form flow field. Calculation of an "area of influence" is

difficult for an unsteady, nonuniform flow field.

f. The numerical simulator was used to solve the salt-water
intrusion problem. The numerical results for the fresh
water head in the aquifer matched closely those obtained
analytically. The numerical results for the location of
the fresh-salt interface were good except in the region of
the wedge toe. Insufficient funds prevented exploring the
effects of smaller spatial dimensions and a larger number

The efficiency of the numerical scheme would seem to make it use-

ful as a practical tool. However, large amounts of computer time will
be required because the numerical solution must be carried out from
the initial condition to the required time by increments of AL .

Most practical problems will also require the use of large amounts of
computer storage. Thus, the present program will need to be modified

so that more extensove use of external compnuter storage can be made.
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Subjects not covered, or not covered adequately, in this study

The investigation of a weighting technique, other than the
"area of influence", which could be used to determine the

average grid concentration for an unsteady, nonuniform flow

A method whereby the pressure equation is solved for larger
spatial and temporal increments than the dispersion equation.
The effect of smaller spatial increments, more points per

grid, and different boundary conditions on the salt-water

A study of dispersion in layered and nonhomogeneous porous

A study of dispersion in anisotropic media. Some method
of determining the principle axes of the dispersion tensor
would be required. After this is determined, the solution
would be much the same as that already presented.

The simulator should be used to solve an actual field problem.

B. Suggestions for Future Work
are:
field.
intrusion problem.
media.
C. Observations

The results of this work would indicate that hydrodynamic dis-

persion in a homogeneous and isotropic media is a valid and reproduc-

ible phenomenon. However, the actual significance of the dispersion

process may be questioned because of the smallness of the dispersed

zone when compared to the overall model dimensions. The conclusion
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that dispersion is not worth worrying about except for the most
noxious pollutants and radioisotopes would seem to be warranted.

However, field tests at Berkeley by Lau, et. al. (1957, 1958)
showed that the dispersion constants resulting from a pumping test
were from 20 to 30 meters compared to less than 1 mm in the labora-
tory. This is a change of 3 orders of magnitude. Other field work
in transport phenomena indicates that the dispersed zone is signif-
icant in real aquifers. An obvious conclusion is that mixing pro-
cesses not involved in laboratory models and homogeneous and iso-
tropic media are present in aquifers. This extra mixing process
would appear to be the result of nonhomogeneous and anisotropic
media which characterize real aquifers.

The reason for the above observations are that the results of
this study show a significant, but not overwhelming, difference
between solutions with and without the tensor transformation. Many
people may easily conclude that using the tensor transformation is
not worth the effort. If the real aquifer magnifies the error
between solutions with and without the tensor transformation as much
as it does the dispersed zone, then a significant error may occur
in the solution of field problems.

This work is a first step in developing a numerical solution
for miscible displacement which makes use of the tensorial nature
of the dispersion process. Until work in real aquifers indicates

otherwise, the numerical simulator should maintain the capability of

treating the dispersion process as a tensor. The work on this project
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needs to continue with a study of the dispersion process in a

nonhomogeneous aquifer.
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APPENDIX A

DERIVATION OF THE
FUNDAMENTAL FLOW EQUATION
A fundamental flow equation for a displacement process involving
miscible fluids can be derived by combining the law of conservation of
mass, Darcy's law, and an equation of state describing the pressure-
volume-temperature-concentration relationship. The result is an equa-

tion involving two dependent variables, pressure and concentration.

A. Continuity Equation

An important relationship in fluid flow is the principle of con-
servation of mass. This principle is a statement of material balance
with respect to a volume element fixed in space, and may be simply
stated as:

(Rate of Mass Inflow) - (Rate of Mass Outflow) =
(Rate of Change of !Mass Inside Volume Element).

Applying this principle to the volume element shown in Figure A-1

results in
aMVE
M -M +M _'_M +M ~M ax, = +Mp
T R T ML s B
where ) - )Mx . ,M a5 rate of mass inflow across faces x,- 4%,
RO A x,-an, o, and x4k, respectively,

i) Mypan My 5 rate of mass outflow across facss X, +2%%
S T BtER X, + 4k, 5 and X, + 44Xy, respectively,

M .= mass contained inside the volume element,
and

Mp = a mass source or sink term which is positive
positive when a sink and negative when
a source.



]
: p/ /
> ! . ——-’M AX
M. - JICAIT.D) I
/ A
x ]
MJ,_ ¥ “_:_i l
M, - ok

Figure A-1. Volume element of a norous medium used for develop-
ing continuity equation.

Applying a Taylor series expansion about the point (X, J;,zg) of

Figure A-1 gives:

. IMx, AX, i QM, AX)
Mx,_a% =M~ Sx =z * Ax: ( -
AMy, AX M 2
M ar, =M — e e 2 L 20 x2 (_é 3
1,-2% X, I, 2 2! ax; \ 2
2
My, AX My, sax;\*
b g2+ A
M = IM, AX, " 0 IM rax
u.{'% X, A, 2 21 axt\ 2 J
IMy, Ax, [ My, A)cg)z
My, 2, = M, X, 2 Ly IX? ( 2 ’
. IMy, AXs | Iy [ A%V
M:,f-"-"z".é_ij ﬁj‘){} 2 21 9/\'} ( 2/ t
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Neglecting second order terms and higher, the following relationships

are obtained from equation A-2:

oM,

fo..e.g.:-_Mx,,Lﬁz’& - 3/, ax, )
I My,

M.xz..A_X;_sz+£!z = T X AXZ J

2 <
o My
— = == - X (A'jJ
Aﬂh-'?éé ‘AA{s*f;? 04 AXs

Substituting equation A-3 into equation A-1 gives:

M, My, oM, _ oM, _ )
5% AX,+~§}:AX2+*3X;"M3-“ JF M. (A-4)

Each one of the mass flow rate components may be expressed in

terms of the fluid density, the dimensions of the volume element, and

the volume flux. Thus,

My =g, AX, A5 (A-5a)

M, =/ g, AX 4% (A-54)

M, =7 g, A% 4%, , (A-5¢)

M, =P ¢S ax Ax, Ax,, (A-54)
and

M= 0 (A-5¢)
where ~ =mass density of the solution,

=components of the volume flux in the X-, X,-,
3'”32)%3 and X;-directions,

¢ =porosity of the medium,
S =saturation of fluid,
3
@ =production term with units of L.T'i and

/5 =mass density of oroduction fluid.
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Substituting equation A-5 into equation A-4 gives:

3%: (/o % %MJ)AX. + 39;;(/’3,2 A, Ax,) AX; 5%3 (/’53 Ax,sz)AXf

= -%(ﬁgbsm,mz Ax,)ﬂf;a : (4-6)

B. Fundamental Flow Equation

To develop the flow equation, an expression for the volume
flux terms is required. Darcy's law is assumed to be applicable
for this flow situation and the axes of the cartesian coordinate
system ( X , X, X;) are assumed to coincide with the axes of the

permeability tensor. Thus, the volume flux terms are given by:

‘ﬁ'x ‘£-r 3P dh
% == (‘5}7*/"93}:) p
. ‘ﬁ)‘zﬁr BP ah
.= ~ "4 (asz’/O?_é-Yz )
ﬁxzir 3P 9”]
%=~ " 4 (8X3+/03‘ 3_/_‘{;)9 (A-7)

where ,&,)lx )ﬁxfabsolute permeability in the X-, X~ and X;-
S directions respectively,

ﬂ} =relative permeability to fluid,

A =viscosity of fluid at reservoir conditions,
P =fluid pressure,

?.=acce1eration of gravity, and
h =the elevation of the volume element above an

arbitrary datum which is perpendicular to the
direction of gravity.
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After substituting equation A-7 into eguation A-6, the results are

[/%3 4.

+f’ )Angx, AX, +
/%, 3./ 2P 2h
-L*(3£ +/@"5a)A&A{JA@ i

[
+§‘9;,-3[/0—{‘1«é j;; +./g )Ax M]Ax =

"%(/‘%5 2% 4x, zu,) F S0 ( 4-8)

Multi-phase flow requires the development of an equation
similar to equation A-8 for each phase being considered. Such
equations have been developed for three-phase flow by
Breitenbach et. al. (1968b). The derivation being developed here

is to be used in a single-phase flow simulator in which $=/ and

‘ﬁ,_E/ . Thus, equation A-8 reduces to
X, dh
"57’["—'_'/“ 9X /0; 3X,JAX2AX3JAX' -+
2 [Lh.
+9X2 57 (ax +/° 9X )Ax A)(;]AX +

Ph, 1 op ]
+ ax,[”‘“" o T35 )Ax oy, |Ax, +

%(/’¢ Ax,axzz.lx,) + HE . (4-9)

The right hand side of equation A-9 contains the porosity, ¢,

which is assumed to be a linear function of pressure given by
p=¢[1+c(r-p) | (4-10)

where Q;is the formation compressibility factor, gﬁ is the original
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value of porosity, and Iﬂ is the original value of pressure. The
density, /, varies with Xs Xy X, and T, and is dependent upon
pressure, P, concentration, C, and temperature, 7. Assuming
isothermal conditions, the effects of temperature may be neglected

and an equation of state of the following form is assumed:
S= L+ BE(P-R) +alc-cC) | (4-11)

where 4 is the fluid compressibility, oL is a proportionality factor
relating concentration and density, and the subscript (o) refers to
the original value of the variable.

Differentiating equation A-10 with respect to Z gives
a¢ =C. 425 ; (4-12)
Likewise, differentiating equation A-11 with respect to 1 gives
——’f:ﬂ/j—c—g—g +0L%% ) (4-13)

Expanding the right hand side of equation A-9, introducing
equations A-12 and A-13, and assuming that the size of the volume

element (4V= 4X, AX, AX;) does not change with time gives

ths = ax, ax, ax, (P4 C. -/-/;t’ﬁ) Qt o

+ ok AX AX, AX; —3% : (A-14)



125

Substituting equations A-10 and A-11 into equation A-14 gives

rhs = /2 @ Ax Ax, ax,[C.+20. B(P-B) + B+

s P
+ Cp "L(Cff‘”)] gt “+- otggm;zl,rzmj[u-

+ Cx CP-ﬁ)—g‘% . (A-15)

Since C; and 4 are of the same order of magnitude ( 16% in most
cases), then 2C. B(P-B) << e for small pressure
changes and can be neglected. For small concentration changes,
C,a (C-C,) << /07% . Also, the term C-(P-B)<<]

for small pressure changes. Thus, for small pressure and concentra-

tion changes, equation A-15 may be approximated by

P
rhs = L ¢ ax ax, ax, (C. +.8) —g? + o paxay, A{,—g-% : (4-18)

Substituting equation A-16 into equation A-9 and using shorthand
tensor notation gives

[/’AA 4,

""/03‘ aﬁ )]‘“

= LP AV (B+C +/A4.
¢ ( +F) ai‘ + o ¢A_V-;-&_ P (A-,‘?)

where ¢t =1,2,3 is a cartesian coordinate system (,&,,Q,Ag),
AA&=cross sectional area perpendicular to flux 3&, and

AV'=volume of volume element, AX,AX; AX; .
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Equation A-17 is the fundamental flow equation for the saturated
flow of a solution containing a miscible tracer, and will be re-

ferred to as the flow equation.



APPENDIX B
DERIVATION OF THE DISPERSION EQUATION



128

APPENDIX B

DERIVATION OF THE DISPERSION EQUATION

To solve the flow equation (equation A-17), a relationship for
determining the concentration C is needed. This relationship may be
obtained by expressing a continuity equation for the dispersing trac-
er. The problem is formulated on a microscopic basis and then aver-
aged over a cross-sectional area of the porous medium to give the
desired macroscopic equation of dispersion.

Two different size elements , a fluid element and a representa-
tive volume element, are used in this analysis. A fluid element with
very small dimensions is used inside the pores of the porous medium
for the microscopic analysis. A representative volume element of the
porous medium is defined as the smallest volume around a point such
that adding an infinitesimal volume has a negligible effect on the
values of medium properties such as porosity. The representative
volume element is used in the macroscopic analysis and contains both

medium and fluid.

A. Continuity Equation for the Tracer

The continuity equation for the tracer is given as:
(Rate of Mass Inflow of Tracer) -
(Rate of Mass Outflow of Tracer) =
(Rate of Change of Tracer Mass Inside Volume Element).

When applied to a representative volume element of porous media with
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the dimensions of 44,, AX,, and 4X;, as shown in Figure B-1, the

results are

(Mt)xli-ﬁ%: N (Mt))(,+_"_&x_f + (Mt)x,_-e%ﬁ e (Mf)x,'f-e% +
+ (M - (M) = 2 5 (B-1)
f)xJ_A__;_l & x,.,;.fﬁ_’g s J+ o
where W) M) ¢ =Rate of mass 1nf10w of tracer across
S M*)"rf'? faces x,- X,=2%4, and X5 - 4%,
respect1ve1y,

M) ay, (M t) " M,) .y =Rate of mass outflow of tracer across
g + 5 ! %+22  faces X+, X, +8%4 , and X, + 4%/,
respectively,

M, e =Mass of tracer contained inside the
volume element, and

M,p=Mass source or sink term for the
tracer which is positive when a sink
and negative when a source.

|* -
[ —7 =
M), ' /] w
x,u ol _Zz_-____ » : ” e (M*)x PY AX,
o I e
Zr
(Mthz + 4% '

(Mf}x_,—éé,

Figure B-1. Volume element of a porous medium used to develop
continuity equation for tracer in miscible fluid
flow.



Expanding each one of the mass flow rate terms in a Taylor

series about the point (X, X,

M), _ay, = (M), —
(M, an, =MD, —

(M), s = M), —

My pon = M), +

(m)

and

= (M\‘.')X; + 3y

o A%
(/Mf)xJ g = (m, )x_, - 573(”1*),‘;3’
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X;) gives

| LM ( zzvjz_

A}(,
(M ) + 37 21 J/\’f'

E 2
Dy My L SNy (Ma -
X, =" * ax; \2

21

-

(M) Ax3 ‘f‘EL a(Mf), (AX)

M)y, (M .

a A.X, -L
ax M2 T 21 T ax?

(MJ N 3)(1

l a(M,e),, (Ax)1_

xa +_,_ Q(M)X‘(A)r)_}_

The tracer mass flow rates may be expressed in terms of the

tracer mass flux, the dimensions of the volume element, and the porous

medium properties, i.e.

I

*
L ¢S ax Ax,

*
T ¢ 5ax A%,

T,'¢ S AX AX,

(B-32)
(B-34)

(B-3c)
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M,,, = ¢S Ax A AX C (B-34)
and

M, =Ca | (B-3e)
where C =average tracer concentration in the volume ele-

ment, mass of tracer per volume of solution,

x * ¥ ’ .
J;)QE'JJ;=macroscop1c tracer mass flux components in X, -,
X,-» and X-directions respectively.

¢ =porosity,

S =saturation of phase containing tracer,

@ =production term with units of 2”7, and

C,=tracer concentration of production fluid.
In equation B-3, the mass flux components, J:*, JZt and J;T, are
| defined as the mass flow rate per unit pore area. The reason for
choosing a flux per unit pore area is because the microscopic fluid
elements will be averaged over a cross-section of the volume element
to yield :L+, J;*, and J;#. Since fluid elements only exist in
the pores, the result is a flux in terms of the pore area rather than
gross area.

Substituting equations B-3 and B-2 into equations B-1, neglect-

ing the second order terms in equation B-2, and using tensor notation

gives
j%(J}*¢5 4"&)“; = _3_95@5 AX Ax, AX, C) -6Q , (B-9

where ([ =1,2,3 corresponds to X, X, and X;, coordinates, and

' . *
AA=cross-sectional area perpendicular to mass flux component,J;.
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B. Determining the Tracer Mass Flux Components, JI*

To accomplish this portion of the derivation, the microscopic
mass flux equations are developed and then averaged over a Cross-
sectional area of the representative volume element to give a statis-
tically meaningful macroscopic mass flux equation.

Microscopic Analysis--For a fluid element inside a pore of the

porous medium, the diffusive mass flux of the tracer with respect to
A
the volumetric velocity, V , is given by Fick's first law (Bird,

Stewart and Lightfoot, 1960):

T=28(V-V)=-D grad &, (5-9)
where Ef = diffusive mass flux of the tracer,
6 = concentration of tracer in fluid element,
EZ= ve]oci?y of the Fracer in fluid element with respect
to a fixed coordinate system,

V = volumetric velocity of fluid element, and
Il= coefficient of molecular diffusion.
A fluid element in a porous media must follow a tortuous path
as it moves thru the pores. Let a tortuous path of length do~ be
depicted as shown in Figure B-2. The diffusive mass flux term

may be written as

3

T =-pi= (3-6)

—

The determination of J as a function of the difference in
concentration between the ends of the tortuous path and the direct

distance between the ends is desirable. Thus, equation B-£ may be

expressed as

(91N

2 d
i :__Dd jé- ;%3 5 CB'?)
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Figure B-2. Tortuous path of fluid element.

The diffusive mass flux, 5?, does not have to be in the direction of
aff—%!b' because the tortuous path varies in direction from point to
point. Projecting 5: as given in equation B-7 onto the £-direction
(the axis of the tortuous path) results in

J;'—“ !f} JTE?’J Cos & (B-8)

where 'fﬂ = magnitude of f 3
jié
€@ = angle between Fij and IE, and

Cos 6= ﬂﬁja’.

Substituting equation B-7 into equation B-8 gives

magnitude of unit vector in £ -direction,

2 ]
3 =-1, (5£) —‘jg— . (3-9)

The components of J. in the Xitizjgé) coordinate system are given by

J:: }JE/};‘}:/ Cos & (]5’_/&9
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vthere L%/ = magnitude of 3& s
}th = magnitude of unit vector in x.-direction,
—,
@ = angle between q; and )X, , and

Cos 6 = dxi/e),f :
Substituting equation B-9 into equation B-10 yields

dE dx dC

E=-D(3%) J¢ 3% - (B-1)
3y the definition of a total derivative,
dE _ 92 dx. .. 26 dx . 9E dx
JE 2% df. @ Sn. WE © ak dE ” (8-12)

Equations B-11 and B-12 combine to give

3 dE V¥ JX. dx ol
I‘"Q(M df dE aX; > (3-13)

where the double summation convention of tensor notation has been
invoked. The term (o‘ f/dﬂ)z (J,\’,-/Jf) (J{,'/e/ £) is analogous
to the reciprocal of a term commonly referred to as tortuosity, and
is a tensor of rank two which "deflects" or "twists" the gradient of
concentration to form a new vector oriented in a different direction.

By definition, let

2
- = (JE) 2 X :

Substituting equations B-13 and B-14 into equation B-5, the following
form of Fick's law for describing diffusion on a microscopic scale in

a porous medium is obtained:

A A A A A aC
Cv,=¢CV =D, T ;- (3-15)
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Macroscopic Analysis-The objective here is to obtain a relation-

ship for the components, 31#', of the tracer mass flux vector corres-
ponding to the reoresentative volume element shown in Figure B-1.
Equation B-15 gives the tracer mass flux for a fluid element in a
pore of the representative volume element. Since the cross-sectional
area, 4A; , of the representative volume element is perpendicular to
the tracer mass flux component | J:*; the total mass flowing thru this

cross section is just the sum from all the fluid elements located in
AAL E] 1'.8.
A A A aa
(Total tracer mass), = jc V. d4; “‘f}g T; 3%; d4; (3-16)
(ps44;) (§s544)
where dA. = the area of the fluid element parallel to AA; . The

*
tracer mass flux, J;, for the representative volume element may be

expressed as

«_ (Total tracer mass);

Ji = 95 AA; ) (B-17)

where ¢S5 AA; is the total pore area through which the fluid moves.

Substituting equation B-16 into equation B-17 gives

($s84) (psa4;)

To evaluate the terms of eauation B-18, the following definitions

are made:

I

C +
V

¢

o
+
+ 7,

TR R

Gt (B-19)
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A

in which C , C&, and T.. are the actual values of the variable at

td

a point; C, V, , and 723- are the averaged values of the variables

o o a
over the cross-sectional area, AA; ; and C , V;, and 71; repre-

sent the deviations of the variables at a noint from the cross-sec-

tional averages. By definition, the spatial average of the variables

o

C . O; , and 77

L]

over the cross-sectional area, A4, , is zero

{ 1.8, € = =V, = 725“ © ). Using equation B-19 in equation B-18

L

gives

J; = ¢>sﬁ,4;[ ) certrurn n ~

(ps4h;)
jl;(T.H;J.) (”C) JA] . (B -29)

Expanding terms in equation B-20 gives

T = 4,53&[ f cV, dA, + j C V. dA, +j V. C JA; +
(

$544;) ($s544;) ($544,)
L ac _Q_ -
+] o an =07, 88 aa, - BT, 5 4
(¢54A.) (¢s44) ($544;)
» c B ac
IJ% T;ox; dA jPJ T ox J’qe.] . (3-2)
(45 44,) (¢544;)

T =CV,+cV. +CV. +¢v. -DT. 355 —
L LJ 5
_ 2¢ _ e Eld
DT ax — DT ox; DT o - (B2
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The following observations are made:

1. As previously noted,-E?, ﬁa , and i}; are zero.

2. The average of a derivative is eaual to the derivative
of the average [Kells (1950), page 78]. Thus,
(9¢8/a%;) = (a8/ax;) =0

3. Medium properties and fluid properties are assumed to
_tlg‘,_llncorr‘_(ajated. Thus, (70:; g—i; = _fzg- (96/9/\’;) =
T, (3¢/ax;) = 0.

With the above observations, equation B-22 reduces to

_ 29 _ JIC
J=cv.+cVv, - DT, 3%,

(B-23)
Thus, the averaged mass flux of the tracer over a cross-
sectional area of the representative volume element is composed of
three different flux terms. The first is a flux, CV, , due to
convection with the average velocity of the fluid. The second is a

o )

flux, C V; » which will be called the dispersive flux and is

the result of microscopic spatial variations in velocity and con-

aC
centration. The third is a flux, D, /.. —=—=. , due to molecular
d Ty IXg
diffusion.

Dispersive Mass Flux-In order to use equation B-23, some

o

relation between C Vﬁ and (G has to be postulated. By analogy
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with Fick's first law of mass transnort, the following relationship

is assumed:

SV, = =D, gi : (B-24)
where_IL is called the dispersion coefficient of mass transport in
porous media. The dispersion coefficient, IL , is not a physical
property characteristic of a given fluid; but depends on position,
direction, velocity of flow, and the type of porous material.

Making such a postulation as equation B-24 is not without some
foundation. For years, the theory of turbulent flow has used an anal-
ogy with Newton's law of viscosity to approximate the Reynold's
stresses. Also, experimental evidence tends to match the approxi-
mation used in equation B-24.

Experimental evidence also indicates that J, is not isotropic,
but that transverse dispersion may occur and is less than dispersion
in the longitudinal direction. Using a statistical approach,
de Josselin de Jong (1958) determined analytically that longitudinal
dispersion is larger than the transverse dispersion. His result is
approximately a normal distribution of concentration in three dimen-
sions.

Because longitudinal and transverse dispersion are different

and must be invariant under a coordinate transformation, IL must be

e o

treated as a tensor. By definition C V- is a vector or tensor of

rank 1. Also by definition 99/9X£ is a vector or tensor of rank 1.

Thus, equation B-24 is of the form

(Tensor of Rank 1) = -(Tensor of Rank ?) (Tensor of Rank 1).

(B-2%)
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Since I%,is an anisotropic quantity, then the form of equation B-25
indicates that the multiplication must be that of finding the inner
product of two tensors and that _f} must be a tensor of rank 2. Thus,

equation B-24 may be written as

T ac _
CV. = - igoaXj - (3-26)

Introducing equation B-26 into equation B-23 gives

* ooy -], a
J; - CV‘- 'D"J QXJ‘ —'dezj BXJ' ” (B_ZT)

C. Dispersion Equation

The results of the flux determination given in equation B-27

are now introduced into equation B-4 to yield

3 dC
S5 (95 ax ax, 4%, ) = ;%E }:(D£J+DJ7EJJ ax; ¢S MJA)(£ -

B 5%(:(5 V, pS Ak )ax, —C, Q. (B-28)

Equation B-28 is the general form of the dispersion equation. How-
ever, since equation B-28 is to be solved numerically by the method
of characteristics, a different form is required. Let the disper-
sive and molecular flux terms be denoted by_DJ), and rewrite

equation B-28 as

5%:((?’541 Ax, 4%, €) = DD — ﬁ,—;(c V.S AA; ) DX, -

—-C8 . (B-29)
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The volume flux of a fluid flowing through a porous medium may be

expressed as
q. =V, ¢S (B-30)

where ?} is the volume flux in the (¢4 direction. Using equation B-30

in equation B-29 and chaining out the derivatives of concentration

results in

I S - 9 .
AX AX, AX, [axi(?;ﬂ'qa)ma T 34 (¢54x Ax, AX:)J =

- DD ¢S 3c _FidC _Cp A
4x,4X,

(B-3)

T C AX AX, AX, C 9t C ax C ax

]

From Appendix A, equation A-6 for the flow equation is

j}(ﬁﬁimi)% =-2(Ppsayaran)-La. (332

Chaining out the derivatives of density in equation B-32 gives

e isnnal o
Ax A)LM, [3%1 (% 44,)4x; + §?(¢5AX, AXAAXB,)] =

— _ 953X _F9r 4 &
=% 5f P ax T Faanax, - F3I
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The left hand sides of equations B-31 and B-33 are equal. Thus, the

right hand sides must be equal also, i.e.

_$53f 3.9 4/ _ A& _ DD
L ot S ax, P oax, ax,Ak, ~ C AX, AX, AXy
_i‘_s__’%g._iiﬁﬁ_&_@.-_.. (_3-34_)
cC 2 C aX; C AX AX,AX,

Collecting like terms gives

oc _ c a3~ . ____ _c 3~
¢5(—a_t 7 ot/ T ax aszx_, ~Fi(3 » 3x;
‘{ P _p AX, AX, AXz

Differentiating equation A-11 of Appendix A, the following relation-

ships are obtained:

2. _ 9P 3¢

3/\1"_‘ = jf a. + oLy c;/\' D) (3—3542)
and

a7 .. 2P aC -3 L

e BLEr o2 . (B-364)

Substituting equation B-36 into equation B-35 and collecting like

terms gives

ic — DD TS
4375(/‘%5‘)'5? T AX AX,AX 3(’ ﬁ X;
A A
~(c,— ’559)4“&41, +cﬁf (p5 25 + 4. %), (330
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S—oC
where tﬁ, is given by equation B-30. Upon division by ¢5(

equation B-37 becomes

(f’-ac) (@5 4X szax_,)

o 2cFh P
__(CP—C)fﬁ_sAX,AXZAXJ * /’-ac(at +V£ﬂ¢-) . (339

If the volume element is completely saturated, i.e. S=/ , then

5% = /‘-otc)(gbﬂﬂ) [(D;;'*DJEMME%

7 8C e A LCh 3P
ViaX‘- (C” C)gbq)r,a,gax, +/-—dC ai-'H/ th)-

(B-39)

Equation B-39 is a form of the dispersion equation containing

two dependent variables, pressure and concentration, just as in the
fundamental flow equation. Assuming that the terms of equation B-39

containing pressure and comoressibility may be neglected, results in

ac  _ N 3
Dt T paA(f-40) BX [@i.i 2% )d}‘d’qt IX; ]

3C a
-V B (C;—-C;)(éEZ};:EE;:Z};:) 4 (3-40)

Equation B-40 shall be called the dispersion equation.
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APPENDIX C

DEVELOPMENT OF FINITE DIFFERENCE
EQUATIONS FOR THE FLOW EQUATION
Since the same flow equation will be solved for all grids, a
finite difference equation can be developed by considering a central
grid (i ,y4 ,4) and the six immediately adjacent grids as shown in
Figure C-1. The general form of the flow equation given by
equation A-17 may be rearranged into the following form for develop-

ing the finite difference equation:

/013': AA; h _
¢AXAXA@ A, [ ,‘ﬁ/%-&&)]ﬂ% =
A
:/oa(CF Tﬁ)%‘i +¢--4XA-_X.A_X 3 CC"‘J)

where X; ((=/2 3 ) indicates a cartesian coordinate system.

L4, 4

~

——-- +X,

‘E"; 5; 3 £ E""");J}‘

X3 X,

i3, At

Figure C-1. Central grid and six adjacent grids with the sub-
scripting used in the finite difference equations.

Because of the symmetry of the spatial derivatives in

equation C-1, only a detailed descrintion of the finite difference
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equation in the X,-direction will be given. Analogous equations
for the X;and Xxydirections may be easily developed. Looking at a

point on the boundary between grids i, 4 and ¢+ 4, £ , the terms

kY, ; ;
( /34’)”/ and (ah/a,t’,)”yz;;_) 4 are approximated by
Pansb— P
= 'irg, 4 L1d )
(9 " :‘.‘f‘y AX, ) (C 2(1)
and
..9— f.f‘f ;1‘ - EJ J‘;A
( ax) - AX, : (c-2.4)
2)3)

Likewise, for a point on the boundary between grids ¢ 4, 4  and

t'ﬂ)‘) ;}i e
2P L Pa= B
(5’)‘:)5-5'2,;;,& - Ax 5 (¢c-32)
and
( 2 = h‘}d}ﬁ — ;’5-5;;}.
QX, L-/ﬁ J,J. A)(, . 66'34’;)

The X, -component of the Teft hand side of equation C-1 may be

approximated by:

4, At,
(M)x,: (454,\';1)(.4 ),2£ {[/ - ax

P Ax, Ax
h %804 ( AP
+/g ax)Ju/z A 5y T

+/355 )],

b, 4 A . (c-4)
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Introducing equations C-2 and C-3 into equation C-4 gives

4, 43,
o, = Gty o (P24, 0|

Ps'+5 ) £ - f’; j é + (/a;) A"*iJ}ﬁ Lt }'JQJ}LJ —

i+, 5,4 AX,

h&" -'}":.'—1 ]
+{ﬁ”b%$i l@ﬁAX.diil} : (-9

In developing equations C-2 thru C-5, the grid dimensions,4X,, 4x,,
and AX,;, are assumed to be constant. This is just a matter of
convenience. Allowing the grid dimensions to vary spatially can be
accomplished without great difficulty.

The coefficients of the form [(fx;AX; A’YJJ/A]‘}%;;é are

calculated using the harmonic mean concept:

£, ax, Axs 2ax,ax, (), (B, 4
—51—--—-—-—-—-— = Jd)£ 4 X
“ +%, JJA /a"ﬂ’}‘- (‘5‘: Jm;j,l ¥ 'z("*i a4 (ﬁx') ig A

(c-6)
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Using equation C-6, the following definitions are made:

“j 3
K, = (mlu( o &,:;A(ﬁ)

P2 (&x, Eid ( Jx,)",_ga',é
- (¢°)w‘,£ (a1) [’“a‘,a; 4 (ﬁ,‘,);w) 4 Ay (B J@d

N- 2(3%)1 74 (£ )—l LA
s, (¢)L;£(Ax,)[l(‘;,&(£ SWVL -.,};Jui,‘,)%é:ﬁ] "

N-J- Z(A‘ )ug (i-‘z Lgry A
4 (’:6)&;1 (ax,) ['“ v,k (JX) i d T4 nd (ﬁ'ﬁ)‘li}i] ’

N_. 2 (‘ﬁx,)‘ i (ﬁx,), 414
% (¢)%£(sz)[’a¢;£(£ J;;ré-f o544 (ﬂx z;i]

A\

N* 2(}1' ‘;l (£X3)¢;A+/
% (M;J (AXJJL/L(&J,; (;5 )r:ar T :.; ,aﬂ(f& L) 4]

-

N, = Z(ﬁ")*ii (i‘s)uﬁf
S (g0 WT[ A0 ), g+ A h () 4]

(c-74)

(c-7¢)

(c-Td)

(c-7¢)

(c-7%)
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L= o5 (Luih +Poid) (c-79
A =05 (A, a’;#- + L-J;;‘) (c-7h)
/;:_' 0.5 (£, jo, 4 ',,,: ) (-72)
Sa “05(;;,,&1“/;,4) (c74)
A =05(/ 3,k T a4 (c-74)
4,_‘05(/0,1,+/f4 ) (c-74)
Ahx,: U"'wa’,a{ ;’5,1;4) (¢-7m)
by = (}""5;}1 ~hisa) (c-7n)
AAI =Chigma=hijg) (c7 P
hy =Chija=hia) (c-7 ¢)
"U",; i ;,,1',,4) (c-7 1)

4 hﬂh :Uh,,,;_; L) ) (753)

Using the notation of equations C-7 and substituting difference
approximations for all pressure and elevation derivatives, the left

hand side of equation C-1 may be written as:

+ o+

s T4 M P, iid TN Fopg +

d

Bho= LN, : Ping
+/:N L;’i-,*/N{’ ‘JJ'H /ﬁJ JF‘)?JA)' -
-'(/f_*N,T +4 Ny 1—/,‘?z +/° N +/’ N, +/° N, ) i d
FCET N g ahy + (BN gahy + () K g 4 +

+()fz)/\/ g4h, +(/)/v 34}, +(/§3) s G Ahy,
(c-8)
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The right hand side of equation C-1 contains derivatives with
respect to time. The derivatives of pressure with respect to time

will be represented by an implicit finite difference form:

t+l T
.,Qﬁ. —_ P‘.'Jjaé — P"dei
it = T aE - (c-9)

The derivatives of concentration with respect to time will be

approximated from the previous, not the present, time interval:

t il
3¢ _ Cyip-Ciiy i
It yroa > ke-tel

where At, is the time increment used in the preceding time step.

Combining equations C-9 and C-10, the right hand side of equation C-1

becomes:
_ Ba (Cer By ptr R4t
ths = % e w2 P;,,;;,é i At P"“ F
t
oi;,4(Cij = -’-M‘) e M (c~11)
At, (8, Ax Ak, A%,), . 4

An implicit finite difference representation of equations C-1

may be obtained by combining equations C-8 and C-11 to give:
+ o+t 7+ = = ot
LWy By + A N, P,” + LN, P i ,,(;N,,z/z.);._bé+

+ t#! t+1 Ve - - + o F
1_/?3 Nx P‘-ﬁ#” A3 NXJ P Jl ['/’(: Nx’ +/f'f A{f, +-/;a- NXA *

I - - . t+/
+’/fz Nx; 1-/‘?:/\/,: f/jr; N)‘a T s (/0) ‘ e té,)‘ vich ] Fw' ) =

e By +8)iys pt ok (€5 ——C.t.'is)

EJ;/
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_________J?& +\2 .+ + o N
+(¢u,4xz%). A *[(/?, ) My 9 A, +(4) Ny g Ahs, +

o "Jﬁ;

+ (A Wy g bt + (ALY Ny, 90hy + (SN 2. 8h,, +
¥ (/;,")Zﬂ/g; Ah,;] . (c-12)

The analogous implicit finite difference scheme for the two-
dimensional vertical flow problem may be formulated by allowing no
flow to take place across grids in the X;-direction, i.e. 9%,\320 and
oh/3x, =0 . The flow in the X-and X-directions will be in terms of
flow per unit width, i.e. Ax,=/ . Under these conditions,

equation C-12 reduces to:

* b A i s gt ot -ry- ptt
/? Ny ﬁw,,& L /i M F::’-;;é * /f:; NX; Fi, 21 47;; Nb }iﬁ-: n

! ]

T S - . J
__[./f*ﬂ;‘ + /4 N -)-/i: My, 1_/;’ Nx, _}_(/f)hé_gicfu@ij Ffj _

! ! ! 1

: £-)
0@4((39; = Cé,.é) 3

e (}?)‘A& (CF 7".3)&!’4 Pt;é +
L At,

At

[

/2 & B i . s o o
T (&AX, A‘X_})jvk """[(fi) MJ 911}”‘; 1_(‘)?;) A{r’ 3Ah{, +

AN gah + (AN gahy | (c-13)

A1l coefficients in equation C-13 are calculated from equation C-7

with Ax,=/ for all grids.
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APPENDIX D

DEVELOPMENT OF FINITE DIFFERENCE
EQUATION FOR THE DISPERSION EQUATION

A numerical solution to the dispersion equation will be
obtained by using the method of characteristics. The dispersion

equation was given by equation B-40, and is reproduced here in the

form: 3¢ S
CF ¢AA 'M [‘D ¢A/){_ 2% } —V 34 i
— - T -]
(c,~C) Sy AN A%, > (D-1)
“'——i—.—-
where o = g ol and
X
L = 12; + 0,7

Following the development of Garder et. al. (1964), the second
order terms of equation D-1 are regarded as given functions of X 5 X,;
X; , and £+, and equation D-1 treated as a first-order equation.
Such an equation will then have four characteristic curves which are

the solutions to the following ordinary differential equation:

d X,

P - v{ 3 (D"Z)

dX; _

TES (2-3)
X

jég— V, (-4

and

*j‘% = 45A4 . [D bas; 55 g;r ; (D-3)
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A fifth characteristic curve could be written for the production term,
(o) (9/45 AX, AX, AX;) . However, the production term will be
treated as a boundary condition of the moving points described below.
In addition to the usual division of the flow region into a grid
system, a set of moving points is introduced into this numerical solu-
tion. Each one of the moving points has associated with it a concen-
tration, which varies with time. Within each time interval, the moving

points are relocated using the finite difference equations,

! t+]
X =X+ A6V, (2-¢)
t+1 + t+!
Xop = X, + 0t V" (D-7)
and
4! ¢ T+
Xop =X + 8%V (D-8)

where *+/ 1is the new time level and + is the old time level. Each
cell in the grid system is assigned a concentration equal to the
average of the concentrations of the moving points Tocated inside
the cell at time + +/1 . The concentration of the cell is then
modified for dispersion by solving the explicit form of
equation D-5.

Because of symmetry only a detailed description of the finite
difference form of equation D-5 in the X, -direction will be given.

Expanding the X, -derivative on the right hand side of equation D-5 gives
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- w 2 [p* BE - a¢
* oL
+D, 454,\;:3,!35*%] . (0-7)

As can be seen, equation D-9 involves the cross derivatives of the
concentration. Also, there are six more second order terms in
equation D-5 in addition to the three given in equation D-9, i.e.
Sl 1w &[]
To develop a finite difference form of equation D-9, consider
the ce11(t s 4 , £ ) as shown in Figure D-1, and the 18 indicated
adjacent cells. The spatial derivatives at a point on the boundary

between cells (¢, é) and (it} 4, 2) may be approximated by

(Q/T; i+, 5,4 N A%, ’ (-D—foa)
ac Corm iy b= Cispe 5,4
oC - Vi "I JL
( 24X, l’-""%z)jiﬁ 24X, J (-D ) )
( rla = Conjar™ Cirn g b (D-10¢c)

N3/ ivty 5,4 24X,
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& 3"'} -1

iy 4, 41| Gyt |iv) g 4
4
’

i, 5+, A-1

&b, 4 '5'

g1, A i, 4-1,4 /
237y 237" y L-H;-J,l
:;/ ity g, A
/!
/!

i,z A+

il g, B¢ / i+ g, %

4“4, B+

gty A4

Figure D-1. Three-dimensional grid system with subscripting used to
develop the finite difference form of the dispersion
equation.
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Using a Tinear interpolation scheme,

Cn-rzaéﬁ,ﬁ. = C‘;éﬂl .’-?_CG!J‘{” £ > (D-Jla)
oy = Cth FCmsid o)
Cz#z&,g, b~ = by ; Ciosgide 5 (D-11¢)
Cf-'#ﬁﬂ',l-f = s +2_C“+H} = (D-11d)

In writing equations D-10 and D-11, all spatial increments,

AX, , AX,,and AXz , are assumed to be equal. This is in
keeping with the finite difference grid system proposed in Chapter IV,
and the problems that are solved in Chapter V.

Substituting equations D-11 into equations D-10 gives

(.@.9) = Conat ~Cond (D-122)

an i+y2};‘)£ AX" )

() = CoiatCinind ~Cogul Congnd 0
3X; (%, 5,4 4- AX, J

(__Q_Q_ o Cﬂ;d; b T Ct'ﬂ,.:', A+ HC% i-ldciﬂé, 4-1 (D—}zc)
9X3 L'.’,ysz'J" 4‘ AXJ
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Similarly, for a point on the boundary between cells (¢ 59 s £)

and (i-1 ,4,4), the spatial derivatives are

oc = Cpgg Fbrypsry

(QX, 2,54 y? ) (D-13a)

(_Q_Q_) - C‘JH‘ 2 +Ct-l L3+, A~ C ﬁ_ (- ’;1"":34 (D-UJ)
9X "/2,’;& 4- AXZ' ’

( ¢ ) . CoidntCositn ™ Cgda™Corg it (-13¢)
F)A %, b 44X .

Now using a central finite difference scheme, equation D-9 may be

written as

aC
w (—D:¢sz AXJ 3}: )i-.t’.é 7 £
(}'hs)x = (—-——-—-—'—") L L S
) 69, 4

9 a1, 4%, ax

ac
¢4x AXJ QX;)L /‘z ; { ('sz ¢Ax A/Y 312.)&1"4);‘)" i

4X, AX,
* 3C aC

. (D, ¢ Ax, 41, 3,_)5_% it D, 4x, AY, ax,)mfz, i 4
AX AX,

» aC
(DA 55 )inia
A%

-14)
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Introducing equations D-12 and D-13 into equation D-14 gives

(rhs), = (——{i—)———) (2, ¢4% AX3)£+».1‘A_CC*'*5:;£“C'-'J;}JQ -
X, ¢AX2AX3{,JJJ£ (A/TJ)Z

sas @f ¢AXZAX3)£-5/2);', y (Ca;d}r___g L=l 3'44) £
(ax)®

¥
+ (‘sz g% 4 X3)£Hé,‘ﬁ (Cc};'ﬂ, T C£+5 ithh Cé 14 “Ci s :'-54} -
4AX AX,

x - -
. (D g 4"3);—&, 5.4 (Cw‘w, 47Cey, It A Cé,;'—& # Cz'—;:% ﬁ)
4 AX, AX,

+

> = e
+ (Dg é A, AXJ)H.%J:’} v} (Ci,d; £+1 +C¢,‘+§jj 4+ 55};',}-;‘ CHI, j:, 4*J N
44X, AXs

* - ==
__(-Dfs ¢AXZ‘AXJ)£‘_%'M_£14(C1;4 ﬁ,c;?c-czlg;‘)Aﬂ Cfl,;;.ﬁ—} Lz’-g;‘)ﬁ-})

4 4% ALK,
(- 13
Coefficients of the form (D,M AXy AX;). 4 will be
H—y,) gj
calculated using the harmonic mean, i.e.:
¥
(56 41,41, 2.(422), .4 (3.4 2 11, (3

K22 (é-p,:)w/ﬁ A (¢§Dj [+, A
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Thus, the coefficients of concentration in equation D-15 are of the

form
#
W, a(Ooman)y, ., 2P BP s
b1 an an, (axy (Y[ (8D, 4+ (4D, )5 4]

(D-17)

In a completely analogous development to that used in
equations D-10 thru D-16, the X,-derivative and X;-derivative on
the right hand side of equation D-5 may be obtained. In obtaining
the X,-derivative, a central difference scheme using the points

(i j+%, 4) and (¢ 4-2, 4) s used, while the )-derivative
uses the points (.E} 3, 1&-}-22) and (L;,;') f-—’/,z) . An explicit
form of the left hand side of equation D-5 is

t+/ t
g By B
_J___ = v 3d, 1454& - (_D-]f)

Jt At
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To simplify notation the following definitions are made:

o Z(WD):é (¢ :.+*:£‘At

EIX i &
¥ (AX,) [ (46/2;);“;,}. +(¢ -”)If‘bjjléj ’ o
E_‘ -—.g.(wD) M‘D})u:é
XX (AX) [ (¢D*)£J£_}_(¢Di)“? ,LT ) (D-194)
i (W-D:: b (&D‘u At
E:x - Ltk (D-19¢)

@l 630,07 02D, 5d]

_ Z(WDzU;,,;é (¢ Dj)z,:‘-ﬂ’df
3 (Ml)z[ (¢D.:)4M + (4D ), ;.“5] ) (D-19d)

o 2(why), . 4 (8D1), . 4,4
v (Axs)z[ (‘b'DJj),,‘J;;{ T <¢2°j)b;b Jﬁ] ’

- ( = *:é (é-p:s'_z){’;,)é,
[(W_%,) AT (¢ 2, L,;g_,] , @194

£ («D)i 58 ($DL)i, ;2 4%
%, 24X, sz[ (4 ]2:)% ) F ( M:)m, " J

(D-19e)

(»-193)

bUD* Gbp,: &) AT
(W) (8D, 4 .

-
Hde ZAXJ/\’[(@DM,)g.;J (452:)“3,5]
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(w.pzj:)a,g}}_ (¢ Dz:r-)f)g.ﬂj £ At

=~ (2-192)
200, a5, [ (BD}) ;4 F (‘Wz;)z,;'ﬂ,ﬂ ’
(tz’:)é,:r)i (49]%:');‘,_,‘4,15 i (319 3)
* ;
24k sz[ (dJD:),;,M * (4!’17;;)4;-,;&] ’
(W‘D;)J:'A prf:: ‘.H:’!At
,;L ”* 3 (D-}?f)
2 AX, AX}[ (dJ D)s ).a_'/;;,{ a (&DB 5*&?}1{]
wD} ), ; S
( )"”’& Ub )L 2, ) (D-194)

2 A, AXJ[ (;él),:)g,,;,e_ 7 (&.D; a-;;}l]

WD), ; 7)o de AF
( IJ;J_ (45-D31) ,;,f: ; (.D-ﬁm)
2 AX A)rj[ (&—D_y){);‘)é T (.?DJJ z)gﬁ&ﬂ]

(wD, )i (8275447
* *
24X 4)43[ (¢, )z,;;,é_ + (4.0, z,g;,a-;]

> (@)

(sz:)z,,;é (d)pz;‘)é,jui A
zaxza,\g[ (dJD;)gﬁ,-ﬂ; +($D] g;né? ’

(D-19 2)

(W_Dz’;){.,;.ji (éﬁz:;)g),‘_,;é At
2 A%, AA}[ (461)2:)4;'/{ 7 (¢}z:)i,j-5£7 ’

(2-19 2)
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(o v, 8 (4’]9;; Lj, A+ Az

+ _ - (D-19 1)
HXJXZ 2.4%, AX, [ (¢ D_;z)a;;',z i (Cbp_-,:)g);') ﬁﬁ] )
A
i )&.‘l£ ( L34 (D-19 <)

ot 24x, AX3[ (ﬁ.D.,Z) 3,4 s (¢D32)¢: 4- l]

Using equation D-18, the notation of equations D-19, and substitut-
ing difference approximations for all concentration derivatives,

the explicit form of equation D-5 becomes:

L+

C.

9,4 - C::M- * X,X.(c'—” L,;,;Q) x,x,( ,;M— -'-w;,.iy_

+‘EI,, (C,;ﬂﬁ ¢;,4) il (CJ;J—Cz; li) B
- st +
T Ex;r, (C:ﬂ} 4 C:J} i‘) a Z:’".?"f_a (C‘Ji/)!‘ C{:JJIJ ’é") 7

+ . + 2= . o _
+hn (Cé,;'ﬂ,l L Ci**b;’%»é cz',:'-/,d Cim 7-) at)

- r+ o

—FX,X (C L9+, A +L ~»';-HA C,;:-i,é C -1 »),-A) L
2 T v .
7 F;ﬂn (Cc‘+5 Cwa;w, 4 5&—&;;1-4 —-55*9 s#L4 )

t t +
4 + Cr.'f-l, g-1,4 B Cf-'-{, 2,4 B Cc‘-—i,;'—l, i) L
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r t z Z
GX;XJ (C‘;:f) 4+ Ca! 7 A% Ci/:) 4+ Con, 3/ J')

- + s % 2
- Gx,,[, (C‘."'u@; 74+;+£4;;;,£+/ - C:.', 2,4/ - 6*’:“‘5 2, ’J‘/) 3

¥ t t ¥ L3
T GX_,X, (Ca'ﬂ,g“) £+}+ Ci*g;‘,i N cr.?-:, ;', 4#)‘6 (=) J;A)

- + * +
ASX:(CEH;J;:J +Cf*‘b.?}£'f_ Ci“b?}i_ C" L9, 4- ’)+
t b -2
¥ [ﬁ.«. L9, A Cc',;’ﬁ, A+ Cc;:',‘é-a_ Cb};’*b .é-f) i

f
"H (C,;ufﬂ Ca:i*’ Cwn“ ‘-‘r‘?‘fj-/‘
’ Hxﬂz (Cf-};'% " C-’-L:'HJ ' CLL?'—L £+1 ‘}7'-{: *‘) B

- & I3 s %

-H, ., (C

XX\ A " C‘.) A1 “i g4 e Cc‘, g-1,%-1) -
(D-20)
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The analogous explicit finite difference equation for the two-
dimensional dispersion equation may be obtained by allowing no flow
to take place across grids in the X-direction, i.e. (3¢/aX,) =0 .
The flow in the X-and X,-directions will be for a unit width of the
model ( 4X,=/ ). Under these conditions, the two dimensional

form of equation D-20 is:

f

C "‘[} (¢ LH; Cl) fxz(c i~ Ji) L
+ + t - + z
EXJXJ(CQJ+/- 661) - [X,a{, (Cz',.{ - Cé}J’f) L

3 3 %= t &
Gxxj (Cz.;. anT Covydo™ Cigy™ C¢'+z, £—/) s

s B + - +
N GX,X_, (CJ-JJJH+ Ca’,Jﬁ B £L;J-/ B C.f,'..JJ 4-1 ) ca

o - ;o &
* 6 XX, ( C&H ey, Cz'-}-gl 6[-5 ﬁv‘-)ﬂ Cr.'-.f,zé ) .

% =

o GXX (C.m % +Cc+/ 4-/ C.«.'-f,;i ~Lopy 14) C
(D-2))

The coefficients in equation D-21 are calculated using the definitions

given in equation D-19 with 4X,=/.



APPENDIX E
STABILITY ANALYSIS FOR DISPERSION EQUATION



166

APPENDIX E

STABILITY ANALYSIS FOR DISPERSION EQUATION

A. Method of Determining Stability

The explicit finite difference form of the dispersion equation
(equation D-20) has a stability criterion attached to its use. To
examine the stability of this equation, the Tinear form of

equation D-20 with constant coefficients will be used, i.e.:

C"J?;J_FC‘EJI-‘F (AX)"(CL'H 1*6—!;4 ZC);)A') _}_

7 (-A);)l (C":J;"*LJ [ ‘.Jil'ﬂé B ZC‘J;&; Ca

w]%:.dt + + >
i (4ax,)* (Cz,,;b; 7 Cz,,',,!-; —Z 5;;;;,4 ) T

w (Drrp)at ; &+ + z +
F-AX% 4%, ( iry g+, 3 Cf-'*b J-1,4 Ca’*:« a-14 Ca‘-g,,;'*{,é) ¥
w (D3 +D})ot , + % & ¥
44X AX; ( i+, B s CL"'L;) 41 [f:*‘/:;/" 5‘&9')4*’)
w (Ds3 -"-'P?:)Af( t gF  Lpt % )
4-4%, AX; Lt £+/+ L,g-l, A-1 C.«_‘J gL d-1 S50 8417 -
(£-1)

The method used for the stability analysis is that of a Fourier

series developed by von Neumann and discussed by 0'Brien et. al. (1951)
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and Smith (1960, p. 102). This technique expresses an initial line of
errors in terms of a finite Fourier series, and considers the growth
of a function that reduces to this series for £=0 by a 'variables
separable' method. The errors at the nodes of the grid system for
t=0, OLX, 2NAXY, ., O=ZX;<MAX, ,and O 2 X, < L Ay,
are denoted by E“@E where P= Vo2 oV 35 A = 1,2,...M 3
R=1,2,...L 3 N = the number of grids in the X-direction; M= the
number of grids in the X;direction; and L = the number of grids in
the Xjdirection.

The MNL equations,

MHNL

735,3 ;A BXP[ (§Pax,+C Aax,+ ) ﬁﬂ,)]
(£-2)
are sufficient to determine the MWL unknowns A, Ao 250 B

uniquely, thus demonstrating that an arbitrary distribution of initial

errors can be expressed in the comp]ex exponential form. In

= NI - _ hTr
’7‘:1 T NA4X, ) Ch /MAA’,_ ) Xh T LAX3

and (=Y-1", Equation E-1 is a Tinear finite difference equation

equation E-2,

and separate solutions are additive. Thus, only an analysis of the
error propagation in a single term of the series is necessary. This
makes‘Ah a constant and can be neglected. As T increases, a solution
of the finite difference equation is wanted such that it reduces to

exP[L'( ‘)"ﬁ‘dx, +6aax,+ XEAXJJJ when 7 =35 4t=0. Thus,

it is assumed that

5 B B N 3
E@ 2 E: cxP[z' (¥x +6X,+ zrx_,,)ﬂﬂ — exp[é(y»,m, +6 4 Axlﬁﬁaxj)] 2)

(£-3)
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where E = Gxp t{/(zﬂf/\ , and A is a complex constant. Note that
equation E-3 reduces to EXP[Z(%FA{, ffﬁﬁl‘zf'b’EAX_,)J when

- S

S =0, which is the desired result. Also, the error, £-

52 F 0 will

not increase as T increases provided
[E] <1 _ (£-4)

B. Stability Function For Three Dimensional Dispersion Equation

3
Since the error Eﬁé B satisfies the same finite differ-
< 4
ence equation as Cf:'i , then equation E-1 may be written in
3- A s
terms of f;g 7 . For example, the first few terms of

equation E-1 would look like

Substituting equation E-3 for the values of £

equation E-5 may be written as
exp[i( ¥Pax +ER4x, + YR AY,)] EEH-—*
= exp [ L (¥P2x, FCaan+¥FAK)] 55_7'—
-+ %%%lzé {rfxp[z(sb(ﬁﬂ)nx,+£§Axl+zf§z1,\3)]£5_j—
+ ex,o[z (¢ (F-Dax, + 6 ﬁAXzf-A’EA)rj)] £ gl

Z&xp[z(?’agﬁkf -chQ_AA’z%D'FAXj)]E? ; g
(£-¢)
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Equation E-6 contains only the first three terms and similar terms
are implied for the other five terms of the equation. Note that
equation £-6 shows a pattern of each term containing the factor
CXP[JZ(’PFAX, +FC LAY, + 3'7?»4/\'3)]55 . Thus, if equation E-6
were expanded in its complete form and divided thru by

C’x,o[zj (‘f’ﬁA{,-ﬁé’éﬁA)’L?‘“é’gﬁXJ}]f; » the following result would be

obtained:

Drat : :
g = f %}E exp(L¥ax) + exp(-L pax,) "2} &

wD? At )
‘—‘—”ijz exp(iCax,) +exp(<iCax) HZ} *

w2t
+ Ty Len(iran) rexr(-ivan)-2] +

* . p*¥ist _ '
- % { exp[c(ax+£an)] + expli(- rax-Gan)-

—exp[i(¥ax, —g,axzﬂ = exP[ L(=¥ax, +£sz)]} 1+

* & + i
" Ww(pz;f’ji { exp[c(#ax +¥ax )] + exe[L (- tax-yax)]-

— exp[i (Pax-yax)] - exp i (-¥ax +XA).3)]} ;i

#* x > ‘
= @‘ij’ilid {w[ [(Cax, 7Y ax)] rern[i(-Car-yax)] -

— expli(Car,~vax,)] - expli(-Eax 54*3)_7} : (£-7)
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Noting that exp(i#) = Cose+ [ sine, exp(-i8)= Cose—Lsins |

2
and L = —/ , equation E-7 becomes

2w D] ar 2w} 4t
£ =1+ T (2x) (Cos(mz,) v}] ¢ T (axn)? [CaS(é"AJ) }J-f-

2wl At WCD,:L+D:)A7&£
* (A)’_,) [505(14"3) “’] - AX, A,
+_;{J,,)At
.5“,(‘/'.4,?) Sin C‘:AJ’;)] AA’ AX;3 [5”:{.’}"&):) 5.-'))()’4%;)]—'
*
w(l%_,
From trigonometric identities, Cos 26 -/ = =2 sin’p and
AX,
Sin 28 = 2 S;nb Co56 . Thus, by letting @ = ¢/2_ s
4= _é’__{;_{& ,and o = .X_iiv:’- , equation E-8 may be
written as
* ¥
_ 4w, AT .5 4wlb,, AL Y
E=1- "tagy Sn'a (ax) 7"
4'W'D.;;At .2 4&/ (-D;a f-sz )A
(_A,\;)‘ Sin 0( AX A,lr (5»:41 Los a Sin L c’asj.)—
e 2% AX Sina Cosa sind cosd] —

#* +
4w (D, +D,,) At
- 23);2 Aj;j (5:'11 y e as,lr simdl Cos a’) ’

(£-9)
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Thus, upon substituting equation E-9 into equation E-4, the

stability of equation E-1 is assured if

0= Fla Ld) < /2 3 (£ -10)
where #* #*
wbD, At wld,, At
Flabd) = “ragyr sin®a + —ayp Smd +
what w (D) + D))t
- CJA—:XJ)Z' 5"""2‘{ a AX, 4!2 (S;Ha Cos a Sind Cos ,é)‘f
(D3 +D}) a2
AX,A/\;; (5:}16{ cs6sa sind Q;,sé{) 7=
L w(DirD2)at

AX, 4K (5ind cosd sind Coso/) ‘ (£-1))

F (a4d) shall be referred to as the stability function, and
must satisfy equation E-10 for all values of a, /frJ and 4 . To

investigate the range of f’(q,éag, an absolute maximum and minimum

value of F(d,l;.aa must be obtained. A necessary condition for a
| relative maximum or minimum to exist at a point is for the first
partial derivatives of F to be zero when evaluated at the point

(Taylor, 1955, p. 154). Taking the derivatives of equation E-11 and

setting them equal to zero gives

aF - 2awdlat . w(DI+D])at
3a T (ax)> ~2=a coea T B ANy L =
w(2;+3,))At
2in {r Cot A (f;mzaa,-~ﬁz;qaa,17 i -ﬁ*__EZEEEifﬁgﬂﬂff

dond coed (r’a —%Za)] = OJ (£-12)
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8% = 2UBadt | | oy 4 HRLEADIE )
24 a ara (wetd~asl)] + W@zijff,éﬂ[
45d ted (ex™h-0324)] =0 | (£-13)
S DwERc)s YL,
g 2 a cea (g2®d- 4.;%0]+ ey 1 )AL A?Ejt[
di b aed (el =asxi)]=0 (£-14)

By inspection, equations E-12, E-13, and E-14 are satisfied when
PRI SR
Lnad = Gpadr = tind =0,
L 4 = 2 b= Ced =Y,

2ra = Cp2 = 4)14{:.6’)

Coz a 4—«;.1—:4»-;0(:%

(oz A

|l

don 4 = Gozd =0,
Gea= 4 = 2.d=0,

(pea = Ce A

Il

ed =0 . (£-15)
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There are other solutions to equations E-12, E-13, and E-14
which shall be discussed later. At the present time, an investi-
gation of the points given by equation E-15 for an absolute maxi-
mum and minimum shall be undertaken. Substituting equations E-15

into equation E-11 gives
Flenazsad=2nd=0) = O,

w DX at
Flewa=ced-=snd=0) = (Ax%)% >

w Dy 2t
F(A»;\Q:AL'—.J:C&GA’:D): (-‘23;(3)2_ 5

* #+
wD,, At  wD,; At
Flana= aed = cmd=0) = (ax,)* (AX)* O

w_D,,*AZ"
Floca=guad=2nd=0)= ~(ap ,

_ wj)’,*zl_f_' W_D;:-f_?—
Flaea= wed=2nd=0)= e ¥ 7 (ax) >

wi At wDpE 4t
Flaea= end= wed=0)= —o) T ~(ary o

_ w D)2t wp;jdt wl%i“f
Flasaz aod = aed=o)- axy T Ty T T any?

(E-It)
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j_
If the coefficients W, D,,*: sz) D;;

and 47 are
positive, then from equation E-16  F (&, 4, 4)  has a minimum

value of zero at AL a = sn b = 25 d =0 and
wdXat  wI At wD], At

(ax)y* T Taxy T Tan>t
points where Gea = Coe b = q=d =0

a maximum value of at the
To investigate the sufficiency conditions for a local maxi-
mum and minimum, equation E-11 is expanded in a Taylor's series

about the noint of interest, i.e.

Flabd)=F(a,r,1)+] (a-&);‘% * (,&—,Z);,% 7

z,4,

+d-d) Z ] F(a,/r,af/ o+

2
(2-2) % + (2B 5 +i-T) 50 ] F(%J)/_z .

+ higher order terms, (E-)?)

where cT.) A and Iare the values of the variables a, 4 and A at
the point of interest. By hypothesis, the points at a maximum or

minimum value of F(a, ,LJJ) have

ﬁf} “__«25/ _éf/ _, Pl
oa a_v'z;z 916‘—‘— 2 == >
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Hence, equation E-17 may be written as

_ 2 3F
Fa4d)— F(a,4,4) == (a-a) aa‘ja—/;ﬂ;rj‘_

2D F Nz dF
+42_—();_,(,)2—9-IZ}E£J+ L td-d) ad”/—); b .
e B
OF
+(a-‘é) (0“&7) da dd EJ‘ZJI L
oy F
s = ) a4 I
+ (4B (d-d) Bxad| 5 3
4 higher order terms. (£-19)

In the neighborhood of the point ( a,4, A ). the principal part of
the right hand side of equation E-19 is composed of second order
terms, which may be written in a quadratic matrix form (Wylie,

1966, Chapter 11) as

Flasag) -Flain)=2%Jws D i

a‘F/ a‘F/ azﬁ/

2a* iLd 2a dt 51 d dadd aLd (a-a)
__élff_:_} 2% F 32/-‘/ 3

Padlls I Uz 30  oAdMsr |’ (4-4)
9ZF) ﬁ/ Q‘F/ |
saddzzy Mg rr 557 (d-d) |

f
( £-20)
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Equation E-20 is of the general matrix form [ Y] =[X"][A][X] .
where [A] is a symmetric matrix and [X] is a column vector. In this
notation, [A] is the matrix of the quadratic form and is positive-or
negative-definite, semidefinite, or indefinite according to the
nature of [ Y] .

By the definition of positive-or negative-definite and maximum
or minimum values, the following results may be deduced [Wylie (1966.
Chapter 11)]. If F(a,4,d)- F(é;f/aa is negative for all sufficiently
small values of (a-a) , (b-4) ,and (Ad-A) which are not
all zero, then F(a,%a’)” F(EJ,Z:;J) is negative-definite and the
point ( a, },—} d) is a local maximum. If F(aj.t;d)—F(é'jl;])
is positive for all sufficiently small values of (a-a) , (,L-Z) >
and (A-J) which are not all zero, then F(@‘&jd)"F(EJI/ f)

is positive definite and the point (E/ ,Z/J) is a local minimum.

The point (&, 4, d) is neither a maximum nor a minimum if
Fla,4,d)- F(a,4,4) is sometimes positive and sometimes

negative in the neighborhood of the point (&, ,Z) 0_(-) , and this

is the case if the quadratic form is indefinite. If the quadratic

form is semidefinite, then no decision about the nature of the point
(a,4,d) may be deduced and a consideration of the higher order

terms of the Taylor's series would be necessary.
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From Wylie (1966, p. 468), a necessary and sufficient condi-
tion that the real quadratic form, [XT [/U [X] » be

positive-definite (or negative-definite) is that the quantities

dt|a,[ oé-f/a” e /) P i

a"—n‘ a?.?.
(£-21)
all be positive (or for negative-definite to alternate in sign,
with a(d'}d,,/ negative), where A, , A,;, "~ ", Apy are
the elements of matrix [)4] . Applying the above discussion and

equation E-21 to equation E-20, the following conclusions may be

obtained:
If ,
3 F
Ba"/— 24 70 ) (£-22)
QZF JIF azF )"‘j
s Ty == | ey v - 2O (£-23)
{30. 24 (éac?,(r il 5
and
JE °F aF oy - 3
i a4 A T2 Daod "0r3d Fadd =
3F_\:I'F 2F \2 3
—\daadd/) 34>~ (Maq’ Aar
DF 2 3*F
Py B 7 3
(c?aa/, EP S LT 2 3 (F-29)

then equation E-20 is positive-definite and the point (a,};,;t)

is a relative minimum. If equation E-22 is negative, equation E-23
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is positive, and equation E-24 is negative, then equation E-20 is

negative-definite and the point (ci}, :ﬁj j) is a relative maximum.

Taking the second partial derivatives of equation E-11 gives

2

dF

Ja>

IF.

YA

F. _
L

J*F

Jadl .

_ 2wDlat

(ary: (Ge'a-2a) -

4w (D, +Dy) AL
AX, 4X, 22t aed 2ia pea —

_ 4w By D)) at ,
AX, 24, 2nd coed 4na ea , (Fsa)

szD;At &
~any (ee’d-2L7L) -

4w (D] +D,)8E |
- AX, AX,  Lma Gea 2k e 4 —

4w (D), + D0 ) At
N ok Ads 23 d ud 2nd ek (F251)

2wD, At Z .
(AXa)z ( (910(_'-4--1 0{)“
4w (DF+D,) At
- AX, AX3 LA pea 4»;.0(404/—

4w (D) + D, )at
= I "’jx,_;xj"&;\} e b 2l d axd, (£25¢)

w(DI+D,)) At . R
=T AN (o’ t- 2220 ) (e2'a -2 aJ)
(£-254)

w (D} + D, )AL 5
;x, j:i)(j (@z‘/—&;’"xl (Cﬂ a *d-;la)J
(£-25¢€)
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J°F w (D5 +D,0)at ,
3434 T ax,  (ed'd- hd)(@z/-mé).

(F-25F)

From equation E-16, a candidate for a minimum value of F is the
point where doa = b =god =0 . Using this ooint

to evaluate equations E-25 gives:

QZF . Z_W-D,:‘-At
aﬂz Ma-‘—ﬁl-:#-kd:p - (AX,)L 5 (E"-Zéﬂ)

*
2w, AT
2 "’&;a:%i:&_’hdza- (AXZJ?. P Cf—lé/&)

. .Zt@»)%i,dt
dz/*‘-iﬁ:%'z:é‘;d:o— (A)(j)" ) (f'zéc)

_ W(D,f 2
_ P P AX, AX, ) (£-24d)

w (DT +,D’F)Af

‘;J//-h- a=dsds . Sud=b

w (_DZ: # D;:)Ai*

= . (Fauf
7 B < )
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Using equations E-22, E-23, E-24, and E-26, the points where

Ly a = 25 fp=45d=0 will be a minimum if the following condi-

tions hold:
2wD At
“*“?:52:;2” Z 0 ; (5*274)
4w DD at”  w(Du¥D,) AE
(4% (4%,)° (2% (an ) > (E24)
and
T o W ¥ 3 3
§w D, D, D, At 26 (DI + D7 )(DT+ D)D) af
(4%)" (4%,)% (4x,)’ (ax)* (4x)* (4ax)* -

2 3
207D (D+D)]) at 247D +D} )ar’
(4x)* (4ax)* (44)" Ux)* (a1 ) (ax)*

2 WJ.D_;; ('Dz:- 7‘_-'Dz:.")"ltg
(4x)F (4007 (aKx)*

> . (E—.Z?(_')

Noting that 4%, 4X, 4X,, 4X; , and W are all positive, then

equation E-27 reduces to
#

Dn Ly 0 ) (E"Zé’ a)
2
437 > (D)+1,)) (£-2¢4)

40,0, 0, + (3 +2)(07+0)(D+D)) —
—D (DR =D (B0 ) - B (D)0} T0 (e
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The third inequality of equation E-28 may be written as

DD -] + D, DD -(0)+20)) +
+ 2 [2)0) -(p)+n))"] +

F[ 27070+ (D142 (33D +D0)] Zo.
(£-29)

The first two inequalities of equation E-28 are a subset of those

required by the third inequality, i.e.

#* * *

) W, D, 70 5 (£-30a)
DN ME G WS N I (£-304)
3D, >(D,+0} ’ : (E-35¢)
'R >+2l) (£-30)

F >

"D D) DD+ (D D). (Fase)
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From equation E-16, the candidate for the maximum value of F

was the points where ceea = Coe 4= Coed =0 . Evalua-

ting equations E-25 at these points gives:

*F _ —2wD At

O | aa= e d= toed=s (ax)* (£-3/a)
OF —-ztu;Qf}dt

94"2@«m tad= cmd=0 (ar)* (£-314)
_Qifi/ B <L DE A¥

24" ceaz cud=tmd=0 (A%)* (£-31¢)
2°F _ —w®f+ D))t
Ja o4 tea= ped= toed=0 AX, AX, ) (E-314)
_af_/ _ —w(d) D)o )
DA fyrg = are = =d=p 4X, A, ) (£-31e

5%F - —w(%;fﬂf)ﬁt 8}
O fen= Ged= toed=0 4Y, 4%, e

Comparing equations E-26 and E-31, it is seen that all elements of
equation E-31 are just the negative value of the elements in

equation E-26. Since the inequalities of equation E-30 will assure
that the elements of equation E-26 form a positive-definite matrix,
then equation E-30 will also assure that the elements of equation E-31
form a negative-definite matrix. Thus, when the inequalities of
equation E-30 are satisfied, the points 2o a= 2w .d= 2nd =0

and cpea = e b= cped =0 are assured to be minimum and

maximum values respectively of F (a, 4, g()
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Although not shown here, each of the remaining six points of
equation E-15 results in an indefinite quadratic matrix when the
inequalities of equation E-30 are used. Thus, each of these points
are saddle points of  F(a, 4, J) , and are not relative ex-
tremes of the function.

There still remains the possibility of solutions to
equations E-12, E-13, and E-14 besides those given by equation E-15.
Using the trigonometric identity Lo 26 = 2 256 cpe 6 ,
and solving equation E-12 for .25 2a gives

_ Q@i +n)) an

Low 2a = ax, 2n2d cpp2a —

2pf
(27 +2;) Ax .
- _"_j_fii-)_ AX; 2n2d az2a (£-32)
In a similar manner, equation E-14 is solved for .2 24 , i.e.
. (25 +2)D Ak
MZAZ—‘“—Z_%;- aX, JN\ZQCMZA—
* #*
(—Dzs'f"paz) AXJ_
Ll i win il Ge 2 (F-33
,Z_D;_., AX, )

Substituting equation E-33 into equation E-32 gives

_ AX, @n 2k 22 [ p*LD*
4n28 = gy T4 DF DY — (D3+D)) ceta cﬁzdl_( :+3,)

(D;H):) (e 2d — zD;(D,:H?:)J , (£-34)
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Substituting equation E-32 into equation E-33 gives

Ady 2in2 4 coe 24 ¥ *
- & - D, +2,
4 2d = B TG e [T

(D7 +D ) epaea — 2D (D) +D3:')] , (£-35)

Now then, a substitution of equations E-34 and E-35 into equation E-13

gives

4D DID D (D) +D]) creta te2d = D) (D] 4D]) duta eutd-
=27 +DL) teed ezt + (B#D)(D]+D))

(O + D) ezd weza oe2d=0. (£-38)

Although equation E-36 is not in an explicit form yet, it is easily
observed that equation E-36 is almost of the same form as the third
inequality of equation E-28. In fact since [Ge&| </ ;
there is no way in which equation E-36 may be satisfied if
equations E-28 (or equations E-30) hold.

From this analysis it may be concluded that if equations E-30 are
valid, then F:(a,,Q,d) has only one minimum value located at the

points do,a= 245 f = 2.d=0 , and from equation E-16,

Absolute Min. F(aj%d)——-o (£-37)
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Mso, F( a, 4, d) has only one maximum value located at the
points G2 a = Cosz/r = szzdiﬂ, and from equation E-16:

what  whjat wDyy 4t
Absolute Max. F(q, Ld)= “ax) (aX4)* axy . WESg)

Combining equations E-37, E-38, and E-10 results in:

¥ F ¥
wb, AT w D, AT W‘DZ-? At ;
0 Fla44) = axy 7T (an )t ey = %, (£-39

In summary, stability of equation E-1 is assured for any a , A, and

d if:

D:‘,' D:,' ﬂ,: 70 (£-404)
207 > () :*.Q,*)z 3 (£-90.4)
20> O+ (£-402)
DDl > (D.+2)) ) (£-404)

DS RID; >0, +3) (3 +0))(D;+D,),  (£-oe)

¥ wdlat wDTar
WALy T LT 4k (F-40F)
4x) 1x) (4X;) "
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C. Stability Function For Two Dimensional Dispersion Equation

The Tinear, constant coefficient, explicit difference form

of the two dimensional dispersion equation has the following form:

i+l L2 wh At ¢z 4
chl ¢, 4 (ax,)* (Cifg,l FC ! ;&— 26&,;& ) =
M{jbizﬂt

w(Ds+D)at, + + % -
s TG, 208 _
AKX, AX (Cc'ﬁ, 471 L:'Af, P [ﬁ; b1 [a.'-.; 4 +;)-

( F-41)

3
Designating the error in the two dimensional space region aﬁjjf}ﬁ:)
and approximating it in a manner similar to that of equation E-3

gives

3

23
[Ej = t?xp[.i(%f’zl/\;‘fJEAX_?)]g ) (5"42_)

In a manner analogous to that used in developing equations E-5,

E-6, E-7, E-8, and E-9, the amplification factor is given by

gwp/at . qwdiar
E: - “—W Lna — LA/Y)Z Y 0{ e
! .

gw (D) +D,)) 4t
T anax, (@ma tea aidaxd) . (£-43)
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Substituting equation E-43 into equation E-4, the stability

of equation E-41 is assured if

oL Flad) e ¥ (F-44)
where
w XAt wD,] At
F(a,d)= W@la # ““Tjj}:jf 254 +
w (D,]+D, )4t
+ AX, ;X, o & Cd 2 d c:ova/) . ()

The necessary condition for a maximum or minimum value of Frégci) is
for the first nartial derivatives of F to vanish at the point of
local extreme, i.e.
2w At

(4%)* <=4 Gaa 1

w(&jf},ﬁ)df ) N N
ax, a1, endad(ada-2a) =0, (£4)

BE .
24~

o *
F _ 2wl At
Sd T (any: 2md wed
“%Qf*;g‘{g

Ak A4, <aa Qva(@mad—é;.y):d (£-47)




188

By inspection, equations E-46 and E-47 are satisfied when

2nazan =0 (£-484)
dra = G=d=0 ( £-494)
Gea = 2od=0 (E-48¢)
Cozea = Ged =0 . (F-454)

Disregarding other possible solutions of equations E-46 and
E-47 at the present time, the values of F(ad) at the points

suggested by equation E-48 become

F(J,.;‘a:é_;a":co) =0 (F-49a)
‘ oorlbg,dir
F(2naz= a=d =0) = ax)* (F-444)
w PF At
F(Ceaz=2nd=0)= oy (E-49¢)
wDiat  wD]at
F{@wa::@wdiq): ‘722? +'jaﬁsi_ (E-494)

- -
If the coefficients w, D" D.5 , and a¢ are

positive, then Flad) has a minimum value of zero at (a-n a=2nd=0)

: * At B3 ot
and a maximum value of %22 ﬁz Mons
(ax) (Aa%)

Cod A = Cozd = O

at the points where
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A two variable analysis of the sufficiency conditions,
analogous to equations E-17, E-18, E-19, and E-20, leads to the

following quadratic form:

Flad) - Flad) = ’/z.” (a-a) (J'J)U'

3t 2°F
aa‘/@; m}a}j (a#a)
| kA x 73
e od 44 E’Z" : ‘ (£-50)
From equation E-21, it is concluded that if
9'F
Ja’ }aj L (E-1)
and
3 9'F
— E-52
{ 2a° 2d* (aaad)} ~g70) : )
aJ

then equation E-50 is positive-definite and the point (&, d ) is
a relative minimum. If equation E-51 is negative and equation E-52
is positive, then equation E-50 is negative-definite and the point

(a,d ) is a relative maximum.
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Taking the second partial derivative of F(@d) gives

2'F _ 2wpiat

7 @X)" (Cyzza“&;za) e
4w (B +D7)At

aX, AXs Jf%dcaeaf.«z«;.aaw-a)

(E—.i'.?q)

O  2wD At
7= T any (@'d —2id) —
4w (DF+D)) At
- AX, AX, dna Gea ond o=d | (F-531)

and

2°F _ w (D] +Dp])at

Jadd ~ Zx, ax,  ('d —4-;,2!)(%%-4;,@.
(5536)

. . i _ 2wlhraAr

When (2o a = = th = & e

( a L d 0)) en Qaz}ha:%d:o CAX;_)A)
_aff_} . 2WJ)Z§M 9F w(d D)4t
z — 2 —— = —---—--—-—-——"'

o4 dnaz tnd=p LAA’-;) 7 da Lm Q= Bond=b 2L Ay

From equations E-51 and E-52, the points ( sma=grd =0 )

are a relative minimum if

-Dn P —D33 Z 0 (£-52a)
and

417;;@; (D, T,D ) . (£-544)
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C b _ zewdiat
when  (Coa = Gpad=0), then Jp* enazandzo (ar)>
pr| _zesiet  ye | _-wolala
9"‘1}4—%“&‘“&:: Caxy ,and Jadd|, . 445 ax, Ak -

From equations E-51 and E-52, the points (Goz @ = aed =0)

are a relative maximum if the inequalities of equation E-54 hold.

Thus, when the inequalities of equation E-54 are satisfied, the points

(oa=end=0) and ( cpe a= cped =0) are

assured to be a minimum and maximum values respectively of fr(cyatl
The remaining two points of equation E-48, (¢na= cp2d = D)

and (@2 a= 24 Jd =0) , result in an indefinite quadratic

matrix when the inequalities of equation E-54 are used. There-

fore, each of these two points are saddle points of ;?(q,qﬁl

The possibility of other solutions to equations E-46 and E-47

still exists. Solving the two equations simultaneously gives

207 (BB .

?315? Ao lpgad — Ax, AX; 4dn\a/ca¢¢{ (évz,aAﬂﬁz;fﬁg%
and (f-fﬁ'a)
2 (D3+Dy) . m B
Gy 2nd wd = Tgry, wma dea(emld- o).

(£-5514)

Multiplying equation E-55a by E-55b gives

2
+2, Djj = (17,;%-)3;) =24 G224 (F-58)
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where the trigonometric identity GO -2 T =z 28

has been used. If equation E-54 holds, then there is no way for

equation E-56 to be valid because ’ Cpd 2a fpzz.o’-l = 1.

Therefore, all the points of relative extreme are included in

equation E-438.

From this analysis, F(ajd) has only one minimum value lo-

cated at the point (2x»a =2 A :o) , and the

Absolute Min. F (a,d) = 0.

(£-57)

Also, F(aj d) has only one maximum value located at the point

(toe @ = Cped =0 ) » and the

wDlAt  wDXar
o s — 7
Absolute Max. F(ajd)* (4ax)* {ax)"

Combining equations E-57, E-58, and E-44 results in:

*
w_D,fFAt W'D.?J At

e e <)
= F(a/d) = (A/Y,)z A (A)‘;.)Z /2.

(£-58)

(F-59)

In summary, the stability of equation E-41 is assured for any (a/d)

if
42" >, +2])

{JJDH*AE . WJ).?.? AZ -
(A"(;;'L (dX_;)z - -

(£-bba)

(£-604)

(£-460 c)
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FLOW CHART OF PROGRAM

Start

[Read Data]

Call INICON to initialize the
coordinates and concentration of
each moving point

Call READIN to read in physical
data for problem such as permeability,
porosity, viscosity, initial pressures,

and boundary pressures.

I

Call INIPRT to print out all
of the initial information

Call STORAG to compute initial
mass storage of each
miscible fluid in system

Calculate the number of
time steps to be used

Call IOWAIT to test if operation
on scratch tape is completed

Call BACKF to backspace scratch tape

Call MATSOL to set up matrix for the flow equation
and then solve the matrix by Gauss elimination for
pressure at the new time level

|
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ye

S

Print out
Pressures

Call RDTAPE to read coordinates and
concentration of moving points from scratch tape

]

Call VELOCY to calculate velocities at each grid
interface, the Tongitudinal and lateral dispersion
coefficients, and the components

of the dispersion tensor

Test for completi
operation and

on of tape reading
backspace tape

Call MOVPT to determine the velocity of each point and move the

point to a new location. Points moving out of system are

located and re-entered at an appropriate inflow boundary.
The average concentration of each grid

is determined from the points located in each grid.

Call DISP to calculate the change
in concentration due to dispersion.

The average grid concentration and each
moving point are corrected for this dispersion

Call WRTAPE to write coordinates and concentration
of moving points on scratch tape.

Correct porositﬁ;mdﬁscosity, and density
for changes in pressure and concentration

|
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Is yes
CNT equal
F”t¥>//
Print out

Velocities, Components
No of Dispersion Tensor,
and average grid

concentration

Calculate a mass balance
of each miscible fluid

Has Total
Number of

time steps
been exceeded?

@No
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#FORTRAN nR/NS /69

PRUGRAM MATYN

DIMENSION FC(12927) 9POR(12427) 9H(12+27) P (12427) 40T (12027) s
1PP(12427)sPOT(12927) 3RHO(12+27) 9VIS(12927)92(12927) 9CAVG(12927) s
2CAVGptlzo271cDELC{lE'?7)oSuMC{l?-E?)'COJNTIlZcEYi001111?!3710
3028(12'271'letlétzri'vl(lzneaiovZ(13'2TI-CCM&T(SSOU)‘thﬁgﬁ}-
42(1#96),Ci1ﬁ961vCMATHlthO;21)iCR{250)ulﬂl(Z#);ZRlIZQ}QCHI(QQI.
5XBc (24)+7821(24)+CB2(24)

COMMON DELToST4FWTOPSNELXsUELZ sFKsPORsH P 4PT4PPyRHOVISsQ9RHNP
1CAVGCAVGP 4 IELCYGIBETAsALPHA s GAMMA 3 RCOMP 9 SUUMC s COUNT 9011902240120
2VX9VZaNWNCNT+XR19ZB]1+CB1sXB29782+CB21CCUAT

EQUIVALENCE (CCMAT(1)9POT(1)9X (1) +CMATRX(1))y (CCMAT(1497)4Z(1)),
1(CCMAT(2993)+C(l)) s (CCMAT(5251)sCR(1))

C
o R g R g g g o g g e T T T e

Coeass[HE MAIN PRIGRAM IS THE CONTROL PROGRAM AND DIRECTS THE SEQUFNCE##

Ca#uun OF OPERATIUNS FOR SOLVING THE FLOW EQUATION AND DISPERSTON®a#
Cosuny EQUATIONs APPROPRIATE SURQOUTINES ARE CALLED AS NEEDED TO ##
Covain MAKE THE NECESSARY CALCULATIONSes THEPROGRAM DESCRIREN HERE#®
Cavpay IS FOR A TwO DIMENSIONAL VERTICAL FLOW PRUBLFM, it
Ce##a#eNR = NUMRER OF RUWS waten
Ca#aunC = NUMBER OF CULUMNS wudan
Co#nta NOTE THAT THE NUMBER OF ROWS+NRs SHOULD ALWAYS BE EQUAL ###au
Coduity TO OR _ESS THAN THE NUMBFR OF COLUMNS.NC, #abue
Ce#ea®aNA = ROw DIMENSION OF THE REDUCED COEFFICIENT MATRIX USED IN #edus
Castnen GAUSS ELIMINATION, ot o
Ce#ateNB = COLUMN DIMENSION OF THE REDUCED COEFFICIENT MATRIX USED IN ##
Ceuasn GAUSS ELIMINATION, el o
Cas#useDELT = TIME INCREMENT (SEC,) ainbenkel
Ce#auaST = TOTAL TIME OF ANALYSIS (SEC,) #dan
CoouveFWlIOP = PRINT nUT CONTROL, FWTOP SHOULD ALWAYS BF A MULTIPLF ##tas
Coeptawn OF DELT. LA AR
CH#aaaDELX = SPATIAL INCREMENT IN THE X#DIRECTION (FT,) reien
Cova#aDELZ = SPATIAL INCREMENT IN THE Z#DIRECTION (FTs) Al A
Cos#udeFK = PERMEASILITY (SQ.FT.) #obuy
Cu#auuPON = POROSITY aue 0w
CosastaHd = ELEVATION AT CENTER OF GRID (FT,) wataw
Co##aeap = PRESSURZI AT CENTER OF GRID FOR INITIAL TIME LFVEL (LHSe PER ##
Cudpdy SQe FTa) #ebon
Co##a®apP] = PRESSURL AT CENTER OF GRID AT PRESENT TIME LEVEL (LBSes PER ##
Cuttave SQs FTs) wHBgn
Co#ndaPP=PRESSURE AT CENTER OF GRID AT PREVIOUS TIMF LEVEL (LHSe PFR #a#
Custusy SWe FTa) dadod A
C##auaPOl = POTENTIAL AT CENTER OF GRID (FT.) sudas
Ce#a#aRHO = DENSITY OF FLUID (SLUGS PER CUuBIC FnoT) wabhan
Co#a#aRHOP = DENSITY OF PRONDUCED FLUIN (SLUGS PER Cuslc FoOT) wEbey
Cuvasuav]ISz VISCOSITY OF FLUTD (LBF.=SECe PER Suw, FT,) vabpe
Ce#ava = PRODUCTION TERM (CcUBIC FEET PER SEC.) hodan
Cos#enuCAVG = AVERAGE CONCENTRATION OF TRACER (SLUGS PER CURe FTe) wosas
Co#asCAVGP=AVERASE CUNCENTRATION FROM PREVIOJUS TIMF STEP, endan
CewadsELC= CHANGEZ IN CONCENTRATION DUE TO DISPERSINN, wedos
CesusaG = ACCELERATINON JOF GRAVITY (FT. PER SW. SFC.) #adan
Co#asagElA = FLUID COMPRESSIRILITY (SQe FTe PER (3.) taban
Co##peaRCOMP = ROCK COMPRESSIBILITY (S0« FTe PFR [ 3,) haaibaaded
CatasualPHA = CONSTANT RELATING DFNSITY TO CONCENTRATINN watsn
CoeasaGAMMA = CONSTANT RELATING VISCOSITY TO CONCENTHATTUN. hafiudad
CesadaSTOR = TNTA. MASS STORAGE OF ARFA (SLJGS) #uden
CeonsawRIAPE = SUIRQUTINE Tn WRITE INFORMATION ON A TAPFe THIS [S A ®as
Catata SYSTEMS PROGRAM nF THE CSU COMPUTER CENTEKR, Subun

CovusarDIAPE = SU3RDNTINE To READ INFORMATION FR0OYM A TaPE. THIS [S A ®ae
Cooaoy SYSTEMS PROGRAM nF THE CSU COMPUTER CENTFH,. sedan
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CestaaaCCMAT = DUMMY ARRAY Tn BE ysEp 8y DIFFEQENT vARIARLES AT DIFFER=a®
Castutn ENT LOCATIUNS THROUGHOUT PROGRAM ANU SJRPROGRAMS,. shuwe
o 2 R R L R L T T Y g g g G T G R R R G g gy S
(o
READ (5412) NRyNCyNPX4NPZ
READ (542) JELXSUELZyALPHA
NA= (NR=2)# (NC=?)
NB=(2#NR) =3
MAA=zR=]
ME=MAA=]
NAA=NC=1
NENAA=]
AMSy
AN=N
NPl=NPZeNR
NPZ2=NPX#NC
NWUCNT = (I#NI#NCENPX#NPZ) +600
TIME’OOO
CALL INICON (NRINCeNP]1sNP24NPXsNP7)
CALL READIN (NRsNCsNAyNB)
DO 20 T=]eNR
U0 20 J=1eNZ
POT(Ted)=( PT(Is )/ (RHN(T s ) ®#G))eH(TsJ)
20 CONTINUE
CALL INIPRT (MRsNCsNA4NB)
CALL STORAG (NReNCsNAGNBsSTOR,ADD)
WRITE (6+9) STOR.ADD
STORI=STNR
STORP=STNR
ADDI=ANDD
ADDP=ADD
SWS0=0,0
S@To=0.0
LOOPUL=ST/ZDELT
PCNT=1,0
DO 8 ILAST=1ls+LDVPUL
TIMESTIMESDELT
DO 50 I=1eNR
DO 50 J=1eNC
PP{Isd)=pT (I o)
50 CONTINUE
CALL INDWAIT (1+NSTAT+MWDS)
CALL BACKF (1)
CALL MATSOL (NRsNCsNANB)
IFtchTQEiJ.:wInPI‘ GO 1™Th 3
60 TL 22
3 wRITE (6410) TIME
CALL MATROP (NRINCsPT)
D0 21 I=1eNR
DO 21 J=1wNC
POT(Lo)=(PT(TeJ)Z(RHN(T o)) #G) ) +H(Tsd)
21 CONTINUE
WRITE (6hs11) TIME
CALL MATHNP (NReNCPOT)
22 CALL RDTAPE (lels19+CCMAT(1)«NwDCNT)
IC=NCe ]
IR=NR+ 1
CALL VELDCY (NReNCeIR,IC)
CALL INDWAIT (1+NSTAT.MWwDS)
CALL BACkF (1)
CALL MOVPT(NR«NCaNPLsNPP NP XeNPZ)
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65

100

200

CALL WRTaAPE (1el919CCMAT (1) yNWDCNT)

CALL DISP (NRyNCINP] ¢NP2sNPXgNPZ)

VO 60 I=]1enNR

DO KO J=1eNZ

POR(LeJ)=P0(T4Jd) 8 (140s (RCOMPB(PT([9J)=PP(1sJ))))

RHO (1o J)=RHI (T4 J) ¢ (BETA®RHU (T4 ) #(PT(Is ) =P2(TsJ))) s (ALPHA® (CAVG(
119J)=CAVGP (IsJ)))
VIS(Ie)=VIS(I+J) ¢ (GAMMA® (CAVA(TeJ)=CAVGP (TsJ)))

CONTINUE

IF (PCNT,FQ.FWTNP) GD TN 65

60 TO 23

wHITE (6+14)
CALL MATROP
WHITE (6415)
CALL MATROP
WRITE (6416)
CALL MATROP
wRITE (6417)
CALL MATROP
WRITE (6418)
CALL MATROP
WRITE (6419)
CALL MATROP
WRITE (6425)
CALL MATROP

TIME
(1292RsvX)
TIME
(13927sv2)
TIME
(NRsNCsD11)
TIME
(NRaNCeD22)
1IME
(NReNC+D12)
TIME
(NRYNCoeCAYGP)
TIML
(NRYNCCAVG)

wRITE
WR1TE
WRITE
wRITE
WwRITE

(6100) (XB1(I)eI=1lenPl)

(6+100) (Z81(1)s1=1aNP1)

(6+100) (CB1(I)sI=lenPl)

(6+100) (XB2(I)sl=lenPl)

ITE (651000 (Z82(1)4I=1lynP1)

WRITE (64100) (Co2(1)yI1=lsnP1)

FORMAT (1X912F10.3)

PCNT=0,0

CALL MBAL (NRyNCaNAINBySTORIsADDIISTORPADDP3SESO.SQATOs TIME)
PCNT=PCNT*1.0

CONTINUE

FORMAT (3F10.3)

FORMAT (1HO«10X99HSTORAGE =4F10+3+10Xs16HTRACFR STORAGE =3F1he3 )
FORMAT (1HO+47X946HNEW PRESSURE MAP (LBSe PER SQ, FTs) AT TIME =
1F10.291H /)

FOKMAT (1H0+52X934HNEw POTENTIAL MAP
FORMAT (4110)

FORMAT (1H +15F8,3)

FORMAT (1H0 932X+ 20HX=VFELOCITY AT TIME =4Fl0.2+1H4 /)
FOKMAT (1HU 932X 2UHZ=VELOCITY AT TIME =sFl0.241H /)
FORMAT (1H0 932X 134011 AT TIME =,Fl0,2e1l4 /)
FORMAT (1HO 932X+ 13HU22 AT TIME =4Fl0.2914 /)
FORMAT (1H0 932X s 13HD12 AT TIME =4Fl0,291H /)
FORMAT (1H0 932X ¢ 19HCAVGP AT TIME =4F10.2414 /)
FORMAT (1HU 32X 4 14HCAVG AT [IME 34F10e2s1H /)

ENU

(FTe) AT TIMF = 4sFl0e2¢1H /)
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SUBROUTINE INICON (NRyNCsNP1sNP2sNPXsNPZ)

DIMENSION F<(12927)sPOR(12427)sH(12+2T)sP(12427)4PT(12+27)»
1IPP(12+27)sPOT(1292T7) sRHO(12927) sVIS(12927)+Q(12027) 9CAVG(12+27) s
2CAVGP(12+27) sDELC(12927) sSUMC(12+27) COUNT(12427)9011(12927)
3022(12+27)9312(12927) 9VX(12928) +VZ(13427) 4CCMAT(5500) 9 X (1496) »
4Z(1496) ¢C(1696) sCMATRX (250921) 1CR(250) 9XB1(24) 9ZB1 (24) yCBL1(24) »
5XB2(24)+2B2(24)9CB2(24)

COMMON DELTeSToFWTOPYDELX9DELZsFKsPORsHoPyPT4PPyRHOeVISsQeRHOP
1CAVGsCAVGP+ JELC?GoBETAsALPHA » GAMMA yRCOMP » SUMC s COUNT»D119D229D129

_ 2VXeyVZoNWDCNTeXBl9ZB1,CB1l9sXB29ZB2+CB2+CCMAT R S

EQUIVALENCE (CCMAT(1),POT(1)sX(1)sCMATRX(1))s (CCMAT(1497)4Z(1)),

1(CCMAT (2993)+C(1))s (CCMAT(5251)+CR(1))

c
C--Qf.."..QQiili.l...."Iﬁ.*.lQ.li}illI.I’""6*.!.9.!.'.Q'i..l..l!...-
Cosa®aTHIS SUBROUTINE DETERMINES THE INITIAL x=Z COORDINATES OF THE ##ew

_ Ce#ada MOVING POINTS AND ASSIGNS AN INITIAL CONCENTRATION TO EACH e#
Cidada OF THE POINTS, THE MOVING POINTS ARE UNIFORMLY DISTRIRUTED®##
Conana THROUGHOUT THE GRID SYSTEMs INCLUDING THE BOUNDARY GRIDS,##se
Ce#nsax =xX«COORDINATE OF MOVING POINT, AL

__ Ce#sweZ = Z«COORDINATE OF MOVING POINT. bbbl
Cewas#aC & CONCENTRATION OF MOVING POINT, seten
Ce#uaaNPX 3= NUMBER OF MOVING POINTS PER GRID IN X=DIRECTION. oot
Ce##w®uNPZ 3 NUMBER OF MOVING POINTS PER GRID IN Z=DIRECTION. dudas
Cununs NOTE THAT NPX®NPZ IS THE TOTAL NUMBER OF MOVING POINTS PER®sew
Cheunn GRID INITIALLY. ) oetan
CotasapPX = FLOATING POINT DESIGNATION OF NPX. hadadubated
CavanwPZ = FLOATING POINT DESIGNATION OF NPZ, (LT

Co#usuNPl = NUMBER OF MOVING POINTS IN VERTICAL DIMENSION OF MODEL,####a

CanunaNPZ = NUMBER OF MOVING POINTS IN HORIZONTAL DIMENSION OF MODFEL.%e#

_ Cuenns NOTE THAT NP1#NP2 IS THE TOTAL NUMBER OF MOVING POINTS [N ®e#
Caduwa THE MODEL INITIALLY. snden
~ Cewa#aSUMC = SUMMATION OF CONCENTRATION OF MOVING POINTS IN A GRID, #®e#
C##s%sCOUNT = A COUNT OF THE NUMBER OF MOVING POINTS IN A GRID, ansan
CH#®waeCAVG = AVERAGE CONCENTRATION OF TRACER (SLUGS PER CUBs FTs)) #8%as
Coonve AND IS DETERMINED BY SUMC/COUNT. e
Ce®w®#DELC =CHANGE IN CONCENTRATION DUE TO DISPERSIONs su000
Cenu#ul 0GyNOGIDOGIXD = INCREMENTING FACTORS USED IN DO |_OOP, *udan
Cé#ataNIloNI2 = ROW NUMBER AND COLUMN NUMBER OF GRID IN WHICH POINT ISes
Covans LOCATED, 2L

c—-Q.if"‘..iIil.l0""....QOIi'.O.G.iI’I.l.l..‘ii...l.l."..Ql'.l‘.'...

CeenuaxBleZB1oCBl = COORDINATES AND CONCENTRATIONS OF ROUNDARY MOVING #®

Criane: POINTS ALONG X=0, T bl
CavuunxB2yZB2+CB2 = COORDINATES AND CONCENTRATIONS OF ROUNDARY MOVING ®#
Coveen POINTS ALONG XSMODEL LENGTH. - RERSY
C

REWIND 1} s —

LOG=1le=NP]

NOG=0

PXENPX

PZ=NPZ

DO 67 I=]1sNR

D0 67 J=1sNC

SUMC(I+J)=0,0

COUNT(I9J)=040

67 DELC(I+J)=0.0
D0 10 J=1sNP2
00G=J=]

_ XD=(DELX/PX)*(0e5+D0G) o
IF(XDeLT2156,0) YD=SQRT(39,99#(156,0=XD)*220,0)
IF‘ID eGT+156.0) YD=0,0

14 LOG=L0OG*NP1




202

NOG=NOGeNP ]
DO 10 I=L0GsNOG
DO0LG=1=L0G
ZU1)=S(DELZ/PZ) % (0,54D0G)
x(1l)=xD
IF(Z(I).LTeYD) C(1I)=0,0
IF(Z(1),GE.YD) C(I)=0,10
NIl=Z(1)/DEL,Z%1.0
NIZ2=X(T)/DELX+140
SUMCINI14NI2)=SUMCINI1sNI2)+C(I)
COUNT(NI1sNI2)=CUUNT(NI1INIZ2)+140
10 CONTINUE
Co#uesuFROM HERE THRU STATEMENT 24 A BUFFER ZONE OF 200 MOVING POINTS #aw
Castuon IS CREATED FOR USE IN INJECTING AT INFLOW BO!NDARY COND=- ##aw
Costusn ITIONS,. a¥ek
ALENX= (NCHDELX) *15040
ALENZ=(NR®*DELZ) /2,0
LOL= (NP1&#NP2) +]
NOG= (NPl1#NP2) +200
V0 2 I=L0GsNOG
X(l)=ALENX
Z(1)=ALENZ
C{I_J=0.1[J
2 CONTINUE
CALL WRTAPE (1lsl9o19CCMATI(]1) +NWDCNT)
XD=(DELX/PX)#0,5
DO 12 I=1+n21
D0G=]=]
ZBl(1)=(DELZ/PZ)#*(0.5+D0G)
X8l (I)=xD
CBl(I)=0,0
12 CONTINUE
LOG=(NP1# (N22=1)) el
NOG=NP] #NP2
DO0G=NP2 =]
AD=(DELX/PX)#(0s5+00G)
DO 13 I=LOGsNOG
DOG=1=L06
J=1=L0G+]
ZB2(J)=(DELZ/PZ)%#(05+DDG)
XBZ(J)=XD
CBE(J)=0,10
13 CONTINUE
DO 1 I=1,eNR
DO 1 JslaeNC
IF (COUNT(I9J) 4EQeDa0) COUNT(I4J)=1,0
CAVGUIwJ)=SUMC(Ie ) /COUNT(Is )
CAVGP (1+4J)=CAVG (L)
1 RHO(Is+J)=1,0+A PHARCAVG(Is)
CALL IOWAIT (1eNSTATsNnWDS)
CALL BACKF (1)
RETURN
END
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SUBROUTINE READIN (NRy NCs» NA, NB)

OIMENSION F<(12927) sPOR(12427)9H(12927) 4P (12427)4PT(12927) s
lPP(12o27l-PJT!IZQ??JoRHD(]EvZ?)ovIS(lauz?lo!(l?oa??-CﬁVthZ-?Tlv
2CAVGP (12427) 9DELC(12927) sSUMC (12+27) 2COUNT(12+27)s011(12+27) s
3026{12'271.312t12.a?l.vxtlz-aa)'uzt13.271.ccuart5=on).xt1496)-
4&(1496l-Ct16961oCMhTRX(ZSOczlioCR{250}.:51(241'231124)oCBltaalc
5XB2(24)+78B2(24)9CB2(24)

COMMON DELTsSToFWTOPIDELXsDELZ 9FKePORsHsPsPT 3PP sRHOsVISe0Q9RHNAPy
1CAVGsCAVGP s JELC9G9BETA3ALPHA s GAMMA yRCOMP s SUMC COUNTsD119022eD1209
2VXsVZyNWNCNT 9XBl9ZB14CR1aXB29ZB29CR29CCMAT

EWUIVALENCE (CCMAT(1)4POT(1)oX (1) 9CMATRX (1)) s (CCMAT(1497)97(1)),
1(C§H4T1299310C(1{}! (CCMAT (5251)4CR (1))

C

C?Fﬂﬂﬂ‘?‘*“'ﬂ'#*Q&G#lﬂi.06GlGQﬁi{HHHFiHH}ﬁ4IHHI-l46.QiGQ*"l.!o&il!‘.iﬁl’.ﬂ’&l;g
Co#udaTHIS SUBROUTINE READS IN THE PHYSICAL DATA NEFVED TO SOLVE THE #uw
Cotpitn PRORLEMV,. LA 22T
Ca#edup (lyJ) GREATER THAN 1009000 INDICATES CONSTANT PRFSSURE ROUNNARY , &
C##ﬁ#ﬁﬁi&ﬁi»ulh&#Q“Gnliﬁiﬁi##Q*Oﬂl!ﬂiﬁ&l&.l!ﬁb*ailiﬁiﬁiutii.n010liilolgg
c

READ (S541) DJDELTe STy FwTUP

READ (S5+3) 3+BETAsRCOMP 9 ALPHA 4RHOP s GAMMA

IRENR=]

IC=NC=]

VO 10 J=1eNC

FKileJ)=0.0

10 FK(NReJ)=0,0
DO 11 I=2.1IR
DO 11 J=1leNZ
11 FK(I+J)=0,0000098R5

DO 12 I=1sNR

DO 12 J=]1eNC

POK(I+J)=0.39

VIS(IsJ)=0.0116

12 Wlled)=0,0

H(ly1)=69.0

Pt!ol)=129993.98

H(lsNC)=69,0

P(lyNC)=129576,40

DO 13 I=2eNR

Hi{lsl)=r(I=1s]1)=0FL7

H{LIyNC)=H(I=14NC) =DEL7?

P{lenNC)=P(I=1eNC) ¢ (RHNO(TIINC)®GH*DELZ)

13 P(lyl)=P(I=le1)*(RHO(TI4]1)®#G#DFLZ)

DO 14 JU=2+1C

PllyJ)=29575,4

H(1yJ)=69,0

DO 14 I=2eNR

HilyJ)=H(I=1sJ)=DELZ

14 P(Lled)sSP(I=10J)*+(RHO(TsJ) #GRDELZ)

DO 4 I=]1,4NR

DO 4 J=1.eNC

IF(P(IsJ)elTel0000040) PT([sJ)=P(sJ)

IF(P(I14J).GT4100000,0) PT(I, JY=P(14J)=100000,0

4 CONTINUE
RETURN
FORMAT (3F10.3)
FORMAT (6F10.3)
FORMAT (Elle%9F11,44FR,354F10,3)
END

U oW
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SUBROUTINE INIPRT (NRs NCs NA, NB)

DIMENSION F<(12927) sPOR(12427)sH4(1242T7) 9P (12+27)4PT(12+27)
IPP(12427)4POT(12927) yRHO(12927) s VIS(12927) e d(12+27) 3CAVG(12:2T7) s
2CAVGP (12+27) sDELC(12927) 9SUMC(12927) sCOUNT (124271 4011(12427) 4
3D22(12+27)0012(12427)9vX(12928)sVZ(13927) 4CCMAT(S500) 9X(1696) »
42(1496)43C(1496) 9CMATRY (250,421)+CR(250) oxB1(24)9ZR] (24) +CBL(24) s
5XB2(26)+2B2(24)9CB21(24)

COMMON DELToSToFWTOPsNELXsDEL7 sFKePORIHaP 4PTsPPsRHOsVISsQeIHOP
1CAVGyCAVGP 4 JELC9G,BETAyALPHA s GAMMA yRCOMP » SUMC ,COUNT D] 1902240120
2VXsVZeNWDCNTeXB197ZB1sCBlsX8297B2+CB29CCMAT

EWUIVALENCE (CCMAT(1)4POT(1)9X(1)sCMATRX(1))s (CCMATI(149T7)9Z(1)),
1(CCMAT (2993)+C1)) s (CCMAT(5251)+CR(1))

C##iDi0iiu#nﬁbi&&&»lii&ll&&&#**#ﬁ&ﬂ»ﬁﬂﬂﬂnGOﬂ#&G#ulaniluunlnouniiluinaﬂtt
Ce#usnlHIS SUBROUTINE WRITES OUT ALL OF THE INITIAL DATA BY USE OF ¢asus
Cotnis SUBROUTINE MATROP. LT
o8 T g R R R g g e e

C

WRITE (6,41)

WRITE (642) NRy NCy» NAe NH
WRITE (643) DELTy STy FwTOP
WRITE (6+4) DELXs DEL7Z
WRITE (645) Gy ALPHA4RHOP
WRITE (646) BETAy RCOMP,GAMMA
WRITE (647)

CALL MATROP (NRs NCe FK)
WRITE (64B)

CALL MATROP (NRs NCy POR)
WRITE (649)

CALL MATROP (NRs NCs H)
WRITE (6410)

CALL MATROP (NRs NCs PT)
WRITE (6911)

CALL MATROP (NRs NCy PNT)
WRITE (6,12)

CALL MATROP (NRs NCs RHO)
WRITE (6413)

CALL MATROP (NRs NCs VIS)
WRITE (6414)

CALL MATROP (NRs NCy Q)
WRITE (6415)

CALL MATROP (NRs NCs CAVG)
WRITE (6416)

CALL MATROP (NRs NCs DELC)
RETURN

1 FOKMAT (1H1936XsS5TH #aaBdsasrTWO-DIMENSTIONAL VERTTICAL FLOW PROBLEM
[HuBnBansne //)

2 FORMAT (1HOs15HROW DIMENSION =414410Xs1BHCOLUMN DTMENSION =,T74,
110X9 J9HCMATIX DIMENSIONS =4144]1X92HRY 01X 114)

3 FORMAT (IHOs12HDELTA=TIME =24F10+391X95HSECSes10Xs16HTOTAL RUN TIME
1 =9F1043¢1XeSHSECS,910Xs19HPRINT OyT CONTROL =9F1ne3)

4 FORMAT (1HQOsOHNELTA=X =9F10e391Xs3HFTev]0X9IHNELTA=Z S9F]10e39]1Xs
13HFT. )

S FOKMAT (1HO+17HACC, OF GRAVITY =4F104391X416HFT, PER SQ, SEC,s10X,
17HALPHA =9sF10¢3910Xe21HPROD. FLUIN DENSTITY =4F10,391%9]17THSLUG PER
2CuUs, FT, )

6 FORMAT (1HOe13HFLUID COMP, =¢F1043+1Xs15HSQa FT, PER LBoe910X,y124R0
1CK COMP, =4F10,391X915HSU, FT, PER LBss]1UXs7HGAMMA =sF]0,3 )

7 FOKMAT (1H052X927HPERMEABILITY MAP (S5Q, FTel), /)

B FORMAT (1H0+58%s13HPOROSITY MAP, /)

9 FORMAT (1H0+52x925HGRID ELEVATION MAP (FT,)e /)



10 FORMAT
11 FORMAT
12 FORMAT
13 FORMAT
14 FORMAT
15 FORMAT
l1e /)
16 FOKMAT
1)e /)
END
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(1HO+45X9s40HINITIAL PRESSURE MAP (LBS. PER S0s FTo)e /)
(IHO+S1X9+28HINITIAL POTENTIAL MAP (FTe)e /)
(1HO+45X9 4 HINTTIAL DENSITY MAP (SLU3 PER CUBIC FTele /)

(1HO 943X s4SHINTTIAL VISCOSITY MAP (LB3+=SEC. PER SQs FTea)e/)
(1HO»46X 9 3THPRODUCTION MAP (CUBIC FEET PER SECe)s /)

(1HO+41X94BHINTTIAL CONCENTRATION MAP (SLUG PER CuBIC FOOT)

(1H0941X949HCHANGE [N CONCENTRATION MAP (SLUG PER CUBIC FT,
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SUBROUTINE YMATROP (NR, NCs R)

DIMENSION BINRsNCYy A(12)
E##uoloﬁﬁoo.nt*ubwuonwioGuaoﬁﬁaﬁ»cﬁnﬁnau&nnolﬁnuolonnﬁuoiwﬁbobiotiuoﬁu;:
CrtudsTHIS SUSROUTINE ORGANTZES THE INITIAL DATA DR THE RESULTS INTO##&n
Cotuty a SUITABLE FORM FOR PRINTOUT. wadae
of 2 2 22 s S T 2 2 A Ry ey e T T e T T S A R T L

6
DO 11 I=1enNCyl2
InN=]/12
DO 9 J=1.NR
IFC(IN®])®#12LFEeNC) 143
1 DO 2 Ju=1+12
JIJ=IN#]12+ )
2 AlJUI=B(JeJJdd)
GO 17O B
3 LL=NC=]1281IN
DO & JJ=lelLe
JJdJ=sInNe12+J]
4 ALJI)I=B(JrJJIJ)
LLSLL+]
D0 5 JJ=LLel2
5 AlJJ)=0,0
6 IF (A(1),LT«0.001) GO TO 14
IF (IN) 74748
7 WRITE (6412) (ACID)sII=1912)9J
60 70 9
B WRITE (6412) (A(IT)sIT=19012)s IN
GO TO 9
14 IFCIN) 16415016
15 WRITE (6417) (A(IT)eII=1912)s J
60 TO 9
16 WRITE (6417) (A(IT)sII=10l12)s IN
9 CONTINUE
IFINCALE, (IN*1)#*12) 11410
10 WRITE (6413)
11 CONTINUE
RETURN
12 FORMAT (1H +12€10,3+14)
13 FORMAT (1HOe/7)
17 FORMAT (1H +12E10.3+14)
END
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SUBROUTINE STORAG (NRsNCsNAsNBsSTORsADD)

DIMENSION FX(12927)sPOR(12427)sH(1292T)sP(12+27),4PT(12+27) s
1PP(12427)4POT(12927) yRHO(12927) s VIS(12927)eW(12927) 9CAVG(12+27)
2CAVGP (12+27) oDELC(12927) #SUMC(12927)9COUNT(1242T7)+D11(12+27)
3022(12+27)9312(12+27) 9VX(12928)9VZ(13927) 4CCMAT(5500) #X(1496)
42(1496) +C(1496) 9CMATRX(250921)9CR(250) 9XB1(24)9ZR1(24)9CRL(24)
SXB2(24) +ZB2(24)9CB2(24)

COMMON DELTsSToFWTOPSDELX9DELZ 9FKsPORIHsPyPT4PPsRHOIVISeQ@eRHOP
1CAVGsCAVGP+JELCYGyBETAsALPHA y GAMMA 4RCOMP s SUMC 4 COUNTsD11eD224D129
2VXsvZyNWDCNTeXBl9ZB1,CBl9XH22ZB2sCB29CCMAT

EQUIVALENCE (CCMAT(1)oPOT(1)sX(1)9sCMATRX (1)) s (CCMAT(1697)97(1)),
1 (CCMAT(2993)+C(1))s (CCMAT(5251)sCR(1))

C

oF E 22 2 s T T L T Y e L Y Ry
Ce#neaTHIS SUBROUTINE COMPUTES THE MASS STORAGE FOR TrfF TOTAL AREA, ##aw
Ce#auuSTOR=TOTAL YASS STORAGE OF AREA (SLUGS) it
Ce#asaADD = TRACER MASS STORAGE OF AREA (SLUGS). LA AL
c#ﬁﬁﬂ-ﬁﬂ'iﬂ*ﬂﬂliﬁﬁi#ﬂli.‘.’###ﬁ##iiiﬂl*ﬂ-ﬂbliiliﬂﬂtﬁdIli*&[#bﬂ'#ﬁﬂiﬂ'ba&&':ﬁ
C

NCl=nNC=]

NR1l=NR=1

ADDSO o 0

STOR=0,0

DO 1 L=24NC1

DO 1 K=32,NR1

STOR=(1,0%DELX#DELZ#POR(K4L) #RHO (KyL) ) *STOR

ADU=(]1,0%DELX#DELZ¥POR(KsL)#CAVG (KoL) ) +ALD

1 CONTINUE

RETURN

END
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SUBROUTINE VMATSOL (NR¢NCsNAsNR)

DIMENSION FA(12+27)+POR(L12427)sH(12927) 4P (1252T)4PT(12327) s
1pp(12.£7).Pnrtla,ar).n30t12.27:.v15(12-27).a(mecz?l-CAVGlleoﬂ?!v
2CAVGP (12427) sDELC(12927) 9SUMC(12+27) sCOUNT (12427)4011(12427)
302£{12027)c)lZ(lZoE?)'v1112-28)valI3.27!cCuantﬁﬁﬂﬂi.xtl¢96l'
42(1696) «C(1496) sCMATRY (250421) sCR(250) sXB1(24) 9281 (24) +CR1(24) s
SXB2(24) ¢ZB2(24) sCB2(24)

COMMON DELT+STeFWTOPsDELXsDELZ sFKsPORsHsP 4P T3PPIRHO VIS~ 2eRHOP o
1CAVGeCAVGP ¢ JELCo54BETAyALPHA  GAMMA s RCOMP 3 SUMC 4 COUNT 4D]114D224D12¢
2VX9aVZeNWNCNT9XBl9ZB14CR19X52+ZB2+CB29CCUAT

EWUIVALENCE (CCMAT(1)4POT(1)eX(1)sCMATRX(1))y (CCMAT(1497)97Z(1)),

¢ 1(CCMAT(2993)9C(1) )y (CCMAT(5251)+CRI(1))
C--Giliﬁii#iqli&lollﬁﬁiilﬂ-ﬁi#O*#ﬁﬁlﬂ#ﬁﬁ&&l&##ﬁﬁi-illlﬂfD#Gliiﬁ*ll&ﬂ-lﬂﬂ”ﬂf--
Ce#aeaTHIS SUBROUTINF SETS uP THE COEFFICIENT MATRIX AND THE RIGHT #edasa

Ca#pay HAND SINDE COLUMN VECTOR. Retan
CenaaaTHE COEFFICIENTS ARE COMPUTED BY THE FUNCTIONS PARAM, RHOAM, #atss
CHupis AND ELVAM, LTI Y
CevustaTHE YATRIX OBTAINED HAS ALL OF THE LOWER LEFT HAND AND UPPER a#nbas
Caitney RIGHT +4AND ZERD ELEMENTS ELIMINATEDS LAt L
CosdusaCMATRX = ELEMENTS OF COEFFICIENT MATRIX Lisd L
Co#uaaCR = ELEMENTS OF RIGHT HANY SIDE COLUMN VECTOR oo g

(o R R A L T R L S R R 0 R S R R R P PP T e
o

PARAM(AFK] +AFK29APORs ADELSsAMUL v AMUZ) = (2« 0#AFK 1 #AFK2) / (APOR#ADELS®
1ADELS® (AMUL®AFK2+AMU2#AFK]))
RHOAM (ARHO1+ARHD2) =0+5% (ARHO1+ ARHO2)
ELVAM(AHA] 9A42) =AH] =AHD
DO 1 J=1+NB
DO 1 I=1.NA

1 CMATRX(I+J)=0.0
NT=Q
NCl=nNC=]
NRIzWR=]
IB=NR=?
IM=18e]
IC=1Me]
ID=2#In+]
DO 12 J=2sNC1
DO 12 I=2+N21
NT=NTe]
CRINT)=0,0
IFIFK(TIed) aZQe0De0) 11422

22 IF‘p(IOJ' oGE.lOOUOU.O) 11!2

2 JA=1
Jo=]
CMATRX (NTo 1)=RH0AM(RHO( JAsJ=1) sRHO (14 J) ) #2ARAM(FK( JAs =1),
1FK(IeJ) oPOR(TI 9} 9DELXsVIS( JAsJ=1)4VISI(TsY))
CMATRX (NTeI3)=RHOAM(RHN(I=19 J)sRHO(I+J) ) #PARAM(FK(T=1s J),
LFK(TeJ) oPOR(TI o) 9DELZoVIS(I=1s J)oVIS(T9J))
CMATRX(NTIC)=RHOAMIRHO(I+]1s  J)sRHO(I 9 J) ) #PARAM(FK(Te1ls J),
1FK(T9J) oPOR(T9J) sDELZWVIS(Iely J)sVIS(I0J))
CMATRX(NT# D) =RHOAM(RHO( JDeJ+1) sRHO (T ) ) #2aRAM(FK( JDsJ*])
1FK(T9J) oPOR(T o)) sDELX VIS JDeJ+1) s VIS(To )

Ce#avaTHE FOLLOWING STATEMENTS (THRU 10) TRANSFER COEFFTICIENTS, veesy
Cudtadn MULTIPLIED ©Y RESPECTIVE PRESSURE TERMs TUO RTGHT HAND #ubno
Covuds SIDE COLUMN VECTOR FOR KNOWN BOUNDARY CANDITIONS, vudao

IF(P(JAsJ=1) «GE100000.,0) 344

3 CRINT)=CRI(NT)=(CMATRX(NTs 1)#PT( JAsJ=1))= (538 MATOX(NT, 1)4QH0AM
1IRAD( JAeJd=1)sRHU([ e J) ) RELVAM(HI JAsJ=1)eH(I41)))
CMATRX (NTaTM)=CMATRX (NToIM)=CMATRX(NTs 1)
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CMATRX (NTe 1)=0+0
4 IF(P(I=14J)¢GF.100000,0) S46
5 CRINT)=CR(NT)=(CMATRX(NToIB)*PT(I=1s J))=(G#CMATRX (NTy[3) #RHOAM

L(RHO(I=1s J)sRHO(LsJ))®ELVAM(H(I=1s J)sH(IsJ)))

CMATRX (NToI¥)=CMATRX (NT 9 IM) =CMATRX (NT+18)

CMATRX(NT+I3)=040

6 IF(P(I+14J)eGE,100000.0) 7,8
7 CRINT)=CR(NT)=(CMATRX(NTSIC)#PT(I+1s J))=(53#CMATRX(NTsIC)#RHOAM
1(RHO(Iels J)sRHO(T s J))#ELVAM(H(TI*1s J)eH(Is.)))

CMATRX(NT 9 IM)=CMATRX(NTyIM)=CMATRX(NTsIC)

CMATRX(NT+IC)=0.0

8 IF(P(JDsJ+1)GE«L00000.,0) 9410
9 CRUNT)=CRINT)=(CMATRX (NT2ID)*PT( JDsJ*1)) = (G#CMATRX(NT3IN) #RHOAM
1(RHO( JDeJ*1) sRHO (19 J) ) #ELVAM(H( JDsJ*1) eH(Is.0)))

CMATRX (NToI¥)=CMATRX (NT9IM)=CMATRX (NT+ID)

CMATRX (NT#IJ)=0s0

10 CMATRX (NTsIM)=CMATRX(NTIM)=(CMATRX(NT21) ¢CMATRX (NTIB) +CMATRX (NT
1IC) «CMATRX(NTID) ¢ ((RHO(I4J)# (RCOMP+BETA) ) /DELT))

DELCCP=CAVG(I+J)=CAVGP(IsJ)

CRINT)=CRINT) = ((RHO(I¢J)®(RCOMP+BETA) ®*PT(14J))/DELT) ¢ ( (ALPHA®DELC
1CP ) /DELT)*((RHOP#Q(19J) )/ (POR(IsJ) ®DELXH#DELZ) )= (GHCMATRX (NTol)®
2RHOAM (RHO (JAoJ=1) yRHO (T4 J) ) #ELVAMIH (JAs J=1) sH( Lo ) ) ) = (G*CMATRX (NT»
31B) #RHOAM (R0 (I=19J) yRHO (T4 J) Y RELVAMIH(I=19J) sH(T9J)) ) = (G*CMATRX (
4NT2IC)®RHOAM(RHO (T4l ) yRHO(T5J) ) #ELVAM(H(I¢]4J) yH(I+J)) ) =(GECMATR
SX(NT+I0)#RHIAM(RHND(JUDyJs1) yRHO(TsJ) ) PELVAM(A(JDs Jol) sH(IsJ)))

GO TO 12

11 CMATRX(NTeIM)=]1e0

CRINT)=PT(1sJ)

12 CONTINUE

C?LL BSOLVE (CMATQXsNA+NBCR)

NT=0

DO 13 Js24NZ)

DO 13 I=2sN31

NT=NTe]

13 PT(IsJ)=CRINT)

RETURN

END
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SUBROUTINE 3SOLVE (CeNeMsV)
DIMENSION C(NgM) sV (N)
C
c--&tlili{t.lGQG&GGllli.’iﬂl!iliil*ﬂ-oil#i&#iﬁlQC!II'GI.Illi.!l.ilﬂ.ﬁ#ﬁiﬁ,-
CeeasaTHIS SUBROUTINE SOLVES THE MATRIX SET UP IN MATSOL RY GAUSS ###ss
Cavave ELIMINATION, #uton
C--'il*.*O&l*.Q.6bb.-ﬂ"’ﬂ'.II{l#&‘&ﬂ#ﬁ#lﬁ#!-I-GﬂQﬁﬁﬂ'l-I.ill'&*.**iﬁi....'.i_..
C
LR=(M=]) s2
DO 2 L=1sLR
IMS_ R= ]
DO 2 I=1,IM
DO 1 J=24M
1 ClLyJ=1)=C(Led)
KNSN=L
KM=M=1
ClLeM)=0,0
2 CIAN+14KM*]1)=0,0
LR=LRe]
IMsN=]
DO 10 I=1s1Iv
NPIv=1
LS=1¢1
D0 3 L=LSsLR
IF (ABS(C(Ls1)) eGT+ABSICI(NPIV41))) NPIV=L
3 CONTINUE
IF (NPIVL,LE.I) bys
4 V0 5 J=]lM
TEMP=C(I,4J)
CllsyJ)=CINPIVs.))
5 CINPIVyJ)=TEMP
TEMP=V (])
vil)zv(NPIV)
VINPIV)=TEM?
6 VII)av(I)/C(Is1)
DO 7 J=2.M
7T Clled)=CtIedd/CclIsl)
DO 9 L=LSsLR
TEMP=C(Lel)
VIL)ISV (L) =TEMPRV(])
DO B8 J=2.M
8 ClLyJd=1)=ClLeJ)=TEMPEC (1 9J)
9 ClLeyM)=0,0
IF (LR.LTeN) LR=LR#*]
10 CONTINUE
VIN)SVINYI/CINeT)
JM=2
DO 12 I=1eIv
L=N=]
DO 11 J=2eJv
KM=+
11 vIL)=VIL)=ClLed) ®V(KM=])
IF (UM LT M) JM=JMe]
12 CONTINUE
RETURN
END
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SUHBROUTINE VELOCY (NR4NCelIReIC)

DIMENSION F<(12927)9POR(12,27)sH(12+2T)sP(12427)40T(12927) s
1PP(12+27)4POT(12927) sRHD(1227) sVIS(12927)s@(12927) 2CAVB(12527) s
?CAvGPtlzoerlnDELCtlzoa?l.SUHCt12.271oCOuNTt12.271,01|(12-2?!.
3022(12+27)9212(12927) yvX(1292B) sVZ(13027) 4CCMAT(5500) X (1696) s
4Z(1496)4C(1696) sCMATRX (250,21) sCR(250) o xB1 (24) 92R1(24) +CB1(26) s
5XB2(24)4+72B2(24)+CB82(24)

COMMON DELT+ST+FWTOPYDELXsDELZ sFKePORsHsP 4PT 40P sRHOsVISsNeRHNAP
1CAVGeCAVGP e JELC9G4RETAALPHA y GAMMA 4 RCOMP s SUMC 4 COUNT sN119D224N1 2
2VXsVZyNwDCNT 9XBl9ZB14CR19XB2+ZB29CB29CCMAT

EQUIVALENCE (CCMAT (1) oPOT (1) oX(1)9CMATRX (1)) s (CCMATI(1497)9Z(1)) s
1 (CCMAT(2993)4C(1))s (CCMAT(5251)+CRI(1))

c
C--ﬁé#biﬂDB&Qlﬁuélﬂﬁi.ilﬂilﬁﬂbﬁbﬂﬁﬂGQﬁﬂll&llﬁ#&ﬁo!ﬁnilii!ll.lltbiiﬁﬁib--
Co#u#aTHIS SU3ROUTINE CALCULATES THE SEEPAGE VELOCITIES AT EACH GRID###s

CHents INTERFACESTHE LONGITUDINAL AND LATERAL DISPERSION COEFF=~ tt#an
Casudy ICIENTS ARE DETERMINED FOR FACH GRTD USING A VELOCITY POWERu#®
Casuos RELATIONSHIPs AND THE COMPONENTS OF THE NISPFRSIONTENSOR ARE#
Catatn DETERMINED HBY USTING THE APPROPRIATE TRANSFORMATIONS, badinfided
Ce#avavX = VELOCITY IN X=DIRECTION. bobudinted ]
Co#a®avZ = VELOCITY IN Z=DIRECTION, o
CewawuDIFF = DIFFJSION COEFFICIENT LA LT
Ce#as#eTORT = TORTJOSITY, LTI
Ce#aveDIA = MENDIAN GRAIN SI7?E DIAMETER, it
Cowp#avXX =X-VELOCITY AT CENTER OF GRID. oot
Cow#uwevZ/ = Z=-yELOCITY AT CENTER OF GRID, aknbiiode
Ce®a®aDL = LONGITJOINAL DISPERSION COEFFICIENT. koot
Cowu#uDl = _ATERAL DISPFRSION COEFFICIENT, i
Co#a®#eRE = REYNOLDS NUMRFRs oot ot

Ce#u®up]11+022+D12 = COMPONENTS OF THE DISPERSTON COFFFICIENT TENSORe ®a#
C--{IﬂIiO&0l&Q#ﬂ&l&ll!l!l‘iuﬂﬁﬁﬁﬁiﬁﬁﬂﬂﬂi.ODula|'giﬁibiiilliililbiiodii-.
c
DO 10 I=1eNR
DO 9 J=24NC
IF‘FK(IOJ).EQCO!O.D“.FK(I!J’])nEQoﬂao’ GO Ta ]
DOG= ((=2,0) #FK (Lo I BFK (19 J=1)) Z(DELX®(FK(TsJ=1)#pOR(IsJ)2#VIS(IsJ)+
1FK(T o) #POR(TIsJ=1)#VIS(I9sJ=1)))
VX(TaJ)=NOGH ((PT(I9J)=PT(I4J=1))+0,5%G* (RHO(ToJ) +RHO(IsJ=1))#
1(H(IsJ)=H(TsJ=1)))
GO 10 9
8 VX(IsJ)=0.0
9 CONTINUE
VX(Isl)=vX(Is2)
VX(IeIC)=VvX(IenC)
10 CONTINUE
DO 20 J=1eNC
DO 19 I=2sNR
IF(FR(I9J) eZQe00040RaFK(I=19J)«EQs0,0) GO TO 18
DOG=((=2,0) #FK (Lo ) #FK(T=14J)) /(DELZ®(FK(I=140) #POR(TsJ) #VIS(IyJ)+
1IFK(T o)) #POR(I=19J) #VIS(I=14J)))
VZ(Ia ) =N0GH((PT(IsJ)=PT(1=19J))+0.5%G* (RHO(T+J) sRHO(I=14J) )
1(H(Tod) =4 (I=19.4)))
G0 TO 19
18 VZ(IeJd)=0,.0
19 CONTINUE
VZI(1ed)=vZ(24)
VZ(IReJ)2VZ (NRyJ)
20 CONTINUE
DIFF=0,0
TOKT=0,5
DIA=0,0945



21

25

30

212

DO 30 I=1enN?

DO 30 J=1eNC
VXX=VX(ToJd)=0e5% (VX (To )=VXI(TyJ+1))
VZL=VZ(T9J)=0.5%(VZ (s )=vZ(Taled))
VELX=vVXXaVXX

vELZ=vZZwvZl
IF{VELxcEU.O-O.“ND.VELZ.EU-O.“) GO TO 21
VEL=SQRT(VELXsVELZ)
RE=(VEL#*DIA®RHN(I4J)) /VIS(I+ D)
DL=0e66#(VIS{IyJ)/RHDO(TsJ) ) ®RES#®],2
U"0.0B&*(VISI1-J1/RHOII'J))*nE**D.?
D1L(Te )= (DL RVXX#VXX) / (VEL®VEL) « (DT#VZZ#VZZ) / (VEL®VEL) +DIFFaTORT
V22(1sJ)=(DTHVXX*YXX) / (VELRVEL) # (DL#VZZ8VZZ)/ (VEL#VEL) +DIFF&TORT
DI2CIed=COIL=NT)RVXX8YZZ) 7 (VEL®VEL)

GO 170 25

D1l1(Ied)=0,0

D22(1+J)=0,0

D12(I+J)1=0.0

SUMCI(IeJ)=0.0

COUNT(I+J)=0,0

CAVGP (I 4J)=CAVG(I,U)

CONTINUE

RETURN

ENUL



1
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3
4
5

1
2

1
C
C--"‘“
(o2 2% 24
Costawyn
Cedunes
Chtudn
Cutpty
Chtuey
Chetpna
Cirstiisn
Cevuvs
CH#ads
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SUBROUTINE MOVPT (NRGNCeNP]LsNP2sNPXeNPZ)

DIMENSION F<(12927)3PNR(12427)sH(12927)sP(12927)4PT(12+27)
PP(12+27)ePOT(12927) sRHO(12927) 9 VIS(1202T) ed(12927) 9CAVG(129727) s
CAVGP (12627) sDELC(12+27) sSUMC (12+27) 9COUNT (12427)sD11(12927)
D22(12+27)9)12(12427) 9VX(12928) sVZ (13927) 4CCMAT(5500) 9X (1496) »
Z(14696)4C(1496) 9CMATRX (250521) 9CR(250) 9xB) (24)9ZRB1(24) sCRL(24) s
XB2(24)¢7ZH2(24)9CB2(24)

COMMON DELTsST«FWTOPsDELXSDELZ sFKsPORsHsPsPT4PPsRHOsVISsQeRHNPy
CAVGeCAVGP s JELCYGoBETAyALPHA s GAMMA RCOMP s SUMC o COUNTsN1190D229D12s
VXsVZoNWDCNT9XBl9ZB149CB19XB82+7B24CB291CCMAT

EWUIVALENCE (CCMAT(1)4POT(1)eX(1)sCMATRX(1))y (CCMAT(1497)9Z (1)),
(CCMAT (2993)sC(1l)) (CCMAT(5251)+CR(1))

i#h#bl{&ﬂ-#ﬂ-ib.l&.oﬁiiﬂnﬂﬂn&nl!ﬂl*&ﬂﬁl&!ﬂtﬁ*nnﬂ..iloiﬂﬂﬂt!o‘iﬂtlnnla{--

THIS SUBROUTINE CORRECTS THE CONCENTRATION OF EACH MOVING POINT®a®
FOR THE EFFECTS OF DISPERSION IN THE PREVIOUS TIME STEP ##&us
(THIS LOGICALLY SHOULD HAVE BEEN DONE AT THE END OF THE #uw#as
PREVIOJS TIME STFP BUT FOR PROGRAMMING EFFICTENCY waAS #EBon
DELAYED), ALSOs THE VELOCITY OF EACH POINT IS DETERMINENn ®#se
AND THE PNINT MOVED ACCORDINGLYs PDINTS MOVING OUT OF THE #a®
MODEL ARE LUCATEN AND RE=-ENTERED AT AN APPROPRIATE INFLNW ®an
BOUNDARY. A RECORD OF SUMC AND COUNT IS MAINTAINED AND CAVG##
IS RECALCULATED FOR EACH GRID,

VXX9VZZ = VELOCITY COMPONENTS OF MOVING FOINT. wh

C--QI“Q'GQGIG'GGGG“‘!‘&."*.Q#**“##Q*GQ’ﬂlﬁ*.'iﬂ.‘“#.ﬁﬂﬂﬂiiﬁﬂiﬂ'!'ﬂ-ﬁﬁﬁﬂﬁﬁ.--

C

1

1
5

1
1

PX=NPX

PZ=NPZ

ALENXSDEL X#NC

ALENZ=DELZ#VR

ADISX=DELX/PX

AD1SZ=DELZ/?Z

DO 5 I=1.NP1

NIL1=ZB1(T)/JELZ*1,0

NIZ2=XB1(1)/JELX*1,0

ALL=iNI2=]

VXX=VX (NT1oNI2)=(((XB] (1) =(ALL#*DELX)) ZDELX) #(yX(NTLoNI2)=VX (NI
NIgel)))

IF(VXXaGTe0e0) XBI(I)=XBl(I)e (DELT®#VXX)

NILl=ZB2(1)/JELZ*1,0

NIZ2=XB2(1)/DELX*]l,0

ALL=nNI2=]

VXXz2VX(NI1oNI2)=(((XB2(I)=(ALL®OELX)) /DELX)®(VX(NTLyNI2)=VX(NI1s
NIZe]1)))

IF(VXXalLTe04s0) XB2(I)=XB2([)* (DFLT#VAX)

CONTINUE

NECKk=1

JECK=1

MECK=0

LOGL= (NP1 #NP2) +200

DO 20 I=1+LD6G

NIL=Z(I)/DELZ+140

NIZ=X(I)/DE_X+]ev

IFINI2.GT«NZ) GU TO o0

AL=NI1=1

ALL=nN]2=1

ClL)SC(I)*DELC(NI1aNIR)
VXXSVX(NTLeNIZ2)=(((X(T)=(ALL®DELX))/DELX) #(VX(NLI]4NI2)=VX (NI aNIDs
10
de:vZ(NIlcVIZ)-ttthTJ-IAL'DELZII/DELZ}“(UZ(NIloMI?)-vZ(NlloanIE
)))



40

41

42

43

44

45

46

52

lov

RO

70

72

T4

76

214

IF(VXINI19NI2) EQe0e04ANDVXXsLTo0,0) GO TO 40
GO TO 41

ALL=nN]IZ2=1

DISTASX(1)=(ALL®DELX)

DISTH=ABS (DELT#VXX)

IF(DISTA,GT.DISTB) VXX=(=DISTA+0,01)/DELT
IF(VX(NI1oNI2#+]1) «EQe0.0eANDeVXXaGTo0s0) GO TO 42
GO TO 43

ALL:NI 2

DISTA=(ALL#IELX) =X (])

DISTE8=A3S (DELT#VXX)

IF(DISTA,GT.DISTB) vXx=(DISTA=0,01)/DELT
IF(VZ(NI19NI2) sEQe0e0aANDeVZZ.LT«0.0) GD TO 44
GO TO &5

ALL=nN]l=]

DISTA=Z (1)=(ALL*DFLZ)

DISTB=ABS (DELTeVZZ)

IF(DISTA,GT«DISTB) VZZ=(=DISTA+0.01)7DELT
IF(VZINI1*1oNI2) aEQa0.0eANDeVZZsGTo0s0) GO TO 46
GO 10 82

ALL=nNI1

DISTA=(ALL®#IELZ)=7 (1)

DISTE=ABS (DELT®#VZZ)

IF(DISTA,GT.DISTB) VZZ=(VISTA=0.01)/DELT
Z(1)=SZ(I)+DELT®VZ?

X(L)=X(I)*DELT®VXX
IF(X(I)4LT+ALENXeAND,7(I) ,LT.ALENZ) GO TO 12
IF(X(1).GE.ALENX) GO TO 8¢

GO TO 12

IF (MECK,EQ,2) GO TO 1?2

IF(MECK.EQ.1) GO TO 75
IF(XB1(NECK)«GE«ADISX) GO TO 72
JECK=JECK+1

NECK=NECK* 1

IF (NECK.LE«.NP1) GN TO 70

IF(JECK.GT«NP1) 6O TO 74

JECK=]

NECK=1

GO 1O 70

KBl (NECK)=X31 (NECK) =ADTSX

X(1)=X8] (NECK)

Z(1)=2Z81 (NECK)

C(1)=CR1(NEZK)

IF INECK,LT.NPL) GO TO 11

NECK=1

GO TO 12

NECK=1

JECK=1

MECK=1

DIST=ALENX=XB2 (NECK)

IF(DIST.GE.ADISX) GD Tn 76

JECK=JECK+1

NECK=NECK+1

IF (NECK.LEsNP1) GO TO 75

IF(JECK.GT4NP1) 6O TO 77

JECK=]

NECK=]

GO TO 75

ABZ (NECK)=X32(NECK) #+ANTSX

X(1)=XB2 (NECK)

Z(1)=Z82 (NECK)



77

11
12

20

30

215

C(l)=CB2(NECK)

IF(NECK.LT«NP1) GO TO 11

NECK=1

60 70 12

NECK=1

JECK=]

MECK=2

GO TO 12

NECK=NECK+1

NIL=Z(I)/DELZ+]1s0
NIZ=X(1)/DELX+140

IF‘N[?.GT.NC' GO TO 20
IF(NI2.EQ.NC) clI)=0.10
SUMC(NI14NIZ2)=SUMCINI1eNI2)+C(I)
COUNT(NI1eNI2)=COUNT(NI1eNI2)+1.0
CONT INUE

DO 30 I=1eNR

DO 30 J=]sNC

IF (COUNT(I9J) eFEQe0e0) COUNT(I4J)=1,0
CAVGI(TI»)=SUMC(I9 ) /COUNT(IsJ)
RE1URN

END



c
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SUBROUTINE JISP (NReNCsNPLsNP2yNPXsNPZ)

DIMENSION FR(12927)ePNR(12427)sH(12927) 4P (12+27)4PT(12427)
IPP(12427)sPOT(12927) sRHO(12+27)aVIS(12927)93(12927)9CAVG(12427)»
2CAVGP (12+27) s0ELC(12527) sSUMC(12+27) sCOUNT (124271 s0D11(12927)
3D022(12+2719012(12927) yvX(12528) svZ(13927) +CCMAT(5500) 91X (1496}
aZ(149b).C(1496IoCMﬁTRt(ZBU.Zl)oCDI2501v:Bl{2¢)v£H|(24).Calt24)-
S5xB2(24) 47HB2(24)2CB2(24)

COMMON DELTe3ToFWTOPYDELXSUELZ sFKsPORsHP 4P T4PPyRHOsVISeNeRHOP,
1CAVGsCAVGP s JELC9G4BETAsALPHA s GAMMA 4 RCOMP 9 SUMC < COUNT e D1 190D22+D129
EUK'vZ-NunCNT.KHlvZBl'CHlcXUZoZBEuCBE-CCHQT

EWUIVALENCE (CCMAT(1)4POT(1)9X(1)sCMATRX(1)) s (CCMAT(1497)92(1)),
1 (CCMAT(2993)sC(1))s (CCMAT(5251)+CR(1))

o L L T T R R R R 8 R R S g e T g
Ce#ta#aTHIS SUSBROUTINE CALCULATES THE CHANGE IN CONCENTRATION DUE Tn ##uw

Cotasn DISPERSIONs CAVG IS THEN CORRECTED FOR THIS nISPERSION EFECT#
R L P T Ty 2 T T T TR R g PR R R TR g

C

MR=NR=]

MC=NC=1

DO 47 [=2+M3

DO &7 J=2eMC

W=RHO (14J) 7 (RHO(I4J) = (ALPHA®CAVG))

IF(D11(TeJ*1) eEQe0e0a0DRD11(I4J)eEQaD=0) GO TN 3}

DCAXA= ((2.0%w#POR(T9Je1) *OELT#D11 (1o J)*¥D11 (10 *1) )/ (DELXSOEL X®

1 (POR(T+J)®D11(T9J)¢POR(I9Je1)#D11(10J*1))) )8 (CAVG(LsJel)=CAVA(IvY
2))

60 TO 32
31 DCXXA=0,0 _
32 IF(D11(14J=1)eFQe0e0e0RaD11(14J)«EQeDa0) GO TD 33

DCXXB=( (2. 08woPOR (19 J=1) *DELT#D11(TsJ)#D11 (19 0"1)) 7/ (DELX#DELX®
llPOR(I-J)*Dll(I'J)¢POQ(IvJ-ll*011tIeJ-l)ll)'tCAVG(I.Ji-CAVGITvJ-l
2))

GO0 TO 34

33 DCXXB=0.0
34 IF“JZ?(I’].OJ]'-FQGGOOoﬂQoDZE(I‘JI.EQ.GO{” GO Tn 35

DCYYC=((2.0#WaPOR (Tl ) #DELT#D22 (1o J)#D22(1+10J) )/ (DELZ#DELT7®
1(POR(I+J)#D22(T9J) +POR(I+1,4J)#D22(1+19d))))R(CAVG(I+19J)=CAVG(Ts Y
2))

6O TO 38

35 DCYYC=0.0
36 IF(DE2(T=19J) eFQa0e0s0ReD22(14J) «EQeVs0) GO TN 37

DCYYD=((2.0#WH#ROR(T=14 ) #*DELT#D22 (10 J)¥D22(I=19J))/ (DELZ#DEL7#
1(POR(14J)#D22(T9J) +POR(I=1,4) 2022 (1=19J))) ) #*(CAVG(IeJ)=CAVG(T=10vJ
2))

GO 17O 38

37 UCYYD=0.,0
38 IF(D12(14J¢]1) sFWeNe0.0RV12(I,4J)«EQ,U.0) GO TN 39

DCXYﬂ=(fW*P3Q‘1*J*li'DELT*U12(IcJ)*Dle(T°J*l?)/l2.0°DELl*UEL?°
LIPOR(I« ) ¥D12(T9U)+POR(ToJel)#D12(T9J*1))))R(CAVG(L+10J)+CAVA(T+]
2J+1)=CAVG(I=1s ) =CAVG(I=19Je1))

GO TO 490

39 DCAYA=0,.0
60 LF(DI2(TsJ=1)sEQeDe04NRaL1IZ2(I4J)4EQ.0s0) GO TN &)

UCAYB= ((W®*PIR (T =1)#nELT@D12(T+0)#D12(T9J=1))/ (2, 08DELXRDELT7*
1(POR(I+J)®D12(T9J) *POR(T9J=1)8D12(1sJ=1)))) B(CAV;(Ia19J)+CAVA(IS],
2J=1)=CaAvG(I=1s J)=CAVG(I=1leU=1))

GO TU 42

4] DCXYB=0,0
42 IF(DI2(1+1eJ) eFWReNea0aNReVI2(14J)EQeD0) GO TD 43
UCYXC=((WBPDR(T*43 NHNELTHDI2(Te ) #N12(1+10J) )/ (2, 08NELXRDEL 7%
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1(POR(TI+J)%D12(19J)+POR(TI+1,J)2012(T+100))))#(CAVG(IeJ+1)sCAVAIT4],
2J+1)=CAVG(I+19J=]1)=CAVG(IsJ=1))
GO TO 46
43 DCYXC=0,0
46 IF(D12(T=1vJ)eFQe0e0eNReDI2(14J) «EQe040) GO TN 45
DCYXD=( (WRPIR(I=4oJ)HDELT#D12(1 o) ®DL2(T=10J))/ (2 0%DELX®DELZ®
1(POR(L+J)#D12(19J)+POR(I=1,J)#D12(I=10J))))®(CAVG(IoJdel)+CAVA(T=]0
2J%1)=CAVG (T o J=1)=CAVG(I=1yu=1))
GO TO 46
45 DCYXD=0.0
46 DELC(I4J)=DCXXA=DCXXB+NCYYC=DCYYD+DCAXYA=UCXYB&DCYXC=DCYXD)
47 CONTINUE
DO 48 I=]1sNR
DO 48 J=]eNC
CAVG(T4J)=CAVG(I9J) +DFLC(IN)
48 CONTINUE
RETURN
ENUD
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SUBROUTINE MBAL (NRyNCyNAyNBySTORIADDI+STORP,ADDP+SAS0+SATO, TIMF)

DIMENSION FX(12927)9POR(12427)9H(12027) 9P (12927)4PT(12927)
1PP(12+27)POT(12927) sRHO(12+27) sVIS(12927)eQ(12927) sCAVG(1242T) s
2CAVGP (124271 sDELC(12+27) sSUMC (12+27) sCOUNT(12427)4D11(12427)
3022(12+27)9012(12927) sVX(12928) sVZ(13927) yCCMAT(5500) 9X(1696) »
4Z2(1496) +C(1696) yCMATRX (250521) sCR(250) 9xB1 (24) 9ZR1 (24) yCRL(24) s
SXBZ2(264) 4782 (24)9CR2(24)

COMMON DELToSToFWTOPsDELX yUFELZ sFKsPORsHoP ¢PToPPsRHO VIS +QsRHOP s
1CAVGsCAVGP s JELCYG9BETAsALPHA s GAMMA s RCOMP s SUMC 4 COUMT 4D119D225D129
2VXIVLeNWDCNT oXB1l9ZB1loCBlo X829 7B29CR2+CCMAT

EWUIVALENCE (CCMAT(1)4POT(1)9X(1)9CMATRX(1))y (CCMAT(1497)9Z(1)),
1(CCMAT(2993)+C(1))s (CCMAT(5251)+CR(L1))

T Ty T T T TS T 2 P .
Co®aeuTHIS SUBROUTINE COMPUTES THE MASS BALANCE FOR THE SOLUTE AND ##us
Cedpaa THE TRACER. #atan
[ LT T T T ey

C

47

2eé

60

CALL STORAG (NRsNCsNA4NBsSTOR,ADD)

WT0=0.0

wS0=0,0

VOLU=0,.,0

IR=NR=]

IC=NC=]

DO 47 I=2+1I%

QI=DELZ®VX(I92) % ((FRK(Ts1)#POR(I1+2)#VIS(T92) ¢FK(I4P) #POR(I91)#VIS(
1Te1) ) Z(FK(Tol)#VIS(192)eFK(To2)aVIS(Iv1)))
vOLUsVOLU+Q1

Q2=DELZ®VX(TsNCI# ((FK(IsIC)#POR(IINC)#VIS(TIaNC) #+FKk (I 4NC)#POR(Is1()
I#VIS(IoIC))Z(FKULyIC)#VIS([oNC) *FK(TSNC)#VIS(ToIC)))
IF(leGT,040) QSO=DELT*QLl#RHO(Is1)+QSO

IF(Q2eLT40e0) QSU==DELTH*Q2#RHO(T4NC) *QSO
IF(QleLT4040) QSO=DELT#QL*#RHO(I+2)+QSO

IF(u2sGT,0.0) QSO==DELT#W2#RHDO(I+IC)*QSO
IF(QleGT,0e0) QNTU=QTO+DELT#Q1#CAVG(Is1])
IF(Q24LT40,0) QTUSQTO=DELT#Q2#CAVG(TI*NC)
IF(QlelLTo040) QTO=QTO+DELT#Ql#CAVG(Is2)
IF(Q24GT,040) QTO=QTO~DELT#Q2#CAVG(IsIC)
CUBAL=QS0=STOR+SToRP

CTBAL=QTO=AJD+ADLP

SESN0=5050+@S0

SUTO=SuTo+Qrl0

SUBAL=SQ0S0=~STOR*STORI

STHBAL=SQTO=ADD+AUDT

STORP=STOR

ADUP=ADD

WRITE (6+222) CUBALsSNHBAL+CTBALsSTBALTIME

FORMAT (1H 98Xs7THLQBAL =9E1043,8X97THSQBAL =4E10e3,RXs7THCTRAL =9E10.
13+8X9THSTBAL =4E1Ne39BXsBHTIME =,F15.4 )
PT(1e1)=((0e0733/VOLU)®(PT(1s1)=PT(LONC)))+2T(1sNC)
P(lsl)=100000.0*PT(191)

DO 60 I=24NR

PT(I+1)=PT(I=141)+(RHO(Is])#*GRDELZ)
P(Isl)=PT(I+1)¢100000,0

CONTINUE

RE I URN

END
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APPENDIX H
LIST OF SYMBOLS

Definition
Fourier coefficients

Square coefficient matrix

Y AX,

Coefficient in stability analysis equal to 5

Width of injected tracer along input boundary
Coefficient in stability analysis equal to -@—4}‘
Mass concentration of tracer

Reference concentration

Maximum concentration

Formation compressibility factor

Mass concentration of tracer in produced fluid
Concentration of tracer in fluid element

Deviation of concentration at a point from cross-
sectional average

Dispersion coefficient

Total dispersion coefficient

Effective diffusion coefficient

Molecular diffusion coefficient

Dispersion coefficient, a second rank tensor
Longitudinal dispersion coefficient

Transverse (or lateral) dispersion coefficient

Units

FréL4
FreL4
FreL4

[ 26-1
FT2L-4

Fré -4

FreL-4
L27-1
(271
L27-1
127)
(271
2771

L2T-1
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LIST OF SYMBOLS (continued)

Definition
Pore size parameter
Coefficient in stability analysis equal to _Z%gg
Aquifer thickness
Error at node of grid (7, g, R)at time level 354t

Coefficients for finite difference scheme and
defined by equations D-19

Error between numerical and analytical solutions

Coefficients for finite difference scheme and
defined by equations D-19

Even function of Peclet number
Even function of Reynolds number

Coefficients for finite difference scheme and
defined by equations D-19

Gravitational acceleration

Coefficients for finite difference scheme and
defined by equations D-19

Piezometric head
Elevation above datum

Subscript used to denote row and columns of finite
difference grid

Subscript used to denote tensor where ¢and 4 =1,2,3

Tracer mass flux components averaged over cross
section of volume element (relative to pore area)

Diffusive mass flux components in fluid element
Hydraulic conductivity

Relative permeability to fluid

Units

LT-2

FrL3
FTL-3
LT
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LIST OF SYMBOLS (continued)

Definition
Permeability in _%wdirection
Number of grids in X-direction
Length of sea-water wedge
Length in X-, x-, and x,-directions
Total Mass Flow Rate
Number of grids in X -direction
Mass of volume element
Mass flow rate of source or sink
Mass flow rate of tracer
Tracer mass in volume element
Tracer mass flow rate of source or sink
Number of rows in matrix

Coefficients calculated for the finite difference
scheme and defined in equations C-7

Number of grids in x-direction

Number of columns in matrix

Fluid pressure

Reference pressure

Column vector

Rate of fluid production

Fresh-water flow rate per unit width of ocean front
Volume flux

Reynolds number

Radius

Units

FL-IT

FL-172
FL-T
FL™IT

FL-172
FL-IT

1 37-1
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LIST OF SYMBOLS (continued)

Symbol Definition Units
[rhs]  Column vector
Saturation of fluid

Temperature

Tortuosity factor, a second rank tensor

S
!"'1
T Tortuosity
T
ﬁi, Tortuosity on microscopic scale, a second
tJ  rank tensor
]
T; Deviation of tortuosity at a point from
cross-sectional average

T Time T
#+/  New time level T
t-1 Previous time level T
t+a Time level between £ and %#+) T
V,V,, Seepage velocity components (flow per unit pore LT-1
area)
Ve Seepage velocity of production fluid LT"]
vV Magnitude of velocity vector LT']
v Velocity of fluid element Wi
‘1 Velocity of tracer in fluid element LT'T
Q}Q}@ Deviation of velocity at a point from cross- B
sectional average LT
\{!,%J,V;J Velocity components of f+h moving point i
X,%, X; Cartesian coordinates L
x,:x&:g,’ Rotated cartesian coordinates L

X,!,Xlﬂz\[} Coordinates of f#4 moving point L



Symbol
)
ok

B

’ f Fa
ax’ Ay ax;
AX, 4y, aX,

AA, LA, A4,

AV

*
Ay

L3

At

At,

4.

FON
-+

SN
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LIST OF SYMBOLS (continued)

Definition
Thickness of fresh-water flow
Factor relating concentration and density
Fluid compressibility
Grid dimensions in rotated coordinates
Dimensions of volume element
Cross-sectional area of volume element
perpendicular to X , X, , and x,; directions
(i.e. 44, =ax, ax)
Volume of volume element (4V=4ax ax, 4X;)

Coefficient in finite difference equation defined
in equation C-7

Time increment

Time increment in previous time step

Difference in density, zﬂ-,i

Longitudinal dispersivity

Lateral dispersivity

Coefficient of dispersivity, a fourth rank tensor
Length of tortuous tube

Shortest distance between ends of tortuous tube
Amplification factor in stability analysis

Height of ocean above top of aquifer

Coefficient for finite difference equation defined
in equation C-7

Fluid density

Reference density

FT2L

FToL”

4

4
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LIST OF SYMBOLS (continued)

Definition Units
Fresh water density FreL~4
Salt water density FroL-4
Density of produced fluid FTZL_4
Porosity
Reference porosity
Viscosity FTL=2
Reference viscosity FTL™2
Kinematic viscosity L21-1

Kronecker delta
Factor relating viscosity and concentration

Capillary tube coefficient

Factor defined by jZfé%E

Coefficient equal to fﬁ%

Coefficient equal to %?_

s s h1T
Coefficient equal to Lok

Potential function

Stream function

Error function

erfc Complimentary error function
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