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ABSTRACT OF DISSERTATION 

DISPERSION IN GROUNDWATER FLOW SYSTEMS 

A fundamental flow equation for a mixture of miscible fluids 

was derived by combining the law of conservation of mass, Darcy's 

law, and an equation of state describing the pressure-volume-

temperature-concentration relationship. The result is an equation 

involving two dependent variables, pressure and concentration. 

A relationship for determining concentration was derived by 

expressing a continuity equation for the dispersed tracer. The 

problem was formulated on a microscopic basis and averaged over a 

cross-sectional area of the porous medium to give a macroscopic 

convective-dispersion equation. The resulting coefficient of dis-

persion was a second rank tensor. 

The two resulting differential equations are solved numeri-

cally on the digital computer. An implicit numerical technique was 

used to solve the flow equation for pressure and the method of charac-

teristics with a tensor transformation was used to solve the con-

vective-dispersion equation. The results from the flow equation were 

used in solving the convective-dispersion equation and the results 

from the convective-dispersion equation were then used to resolve the 

flow equation. 

The proposed computer simulator successfully solved the longi-

tudinal dispersion problem and the longitudinal and lateral 
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dispersion problem. Using the tensor transformation, problems of 

longitudinal and lateral dispersion were successfully solved in a 

rotated coordinate system. 

The computer simulator was used to solve the salt-water in-

trusion problem. The numerical results for the fresh water head 

in the aquifer closely matched those obtained analytically. Also, 

the numerical results for the location of the fresh-salt interface 

were good except in the region of the wedge toe. 

Donald Lee Reddell 
Agricultural Engineering Department 
Colorado State University 
Fort Collihs, Colorado 80521 
December, 1969 
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Chapter I 

INTRODUCTION 

A. Description of Problem 

The rapid growth of the world's population is placing an increas-

ing demand upon fresh water supplies. This has resulted in ground-

water becoming an important source of water supply in many regions, 

and the use of aquifers as operating reservoirs is becoming more 

common. Efficient use of aquifers as reservoirs will require an 

understanding of the water quality problems created by sea-water 

intrusion into coastal aquifers, recharge of surface water into 

aquifers, underground waste disposal, and infiltration of pollutants 

from surface sources into aquifers. 

Since pollutants, wastes, and recharge waters are normally mis-

cible with the native groundwater, an understanding of the mechanics 

of miscible fluid displacement is necessary for the analysis of 

groundwater quality problems. Studies indicate that the mixing of 

miscible fluids in a porous medium is dependent upon the magnitude 

and distribution of flow velocities within the porous medium and upon 

the geometry of the porous structure. This mixing is greater than 

can be accounted for by molecular diffusion and has been named dis-

persion by Scheidegger (1954). 

The dispersion process can be described by a form of the con-

vective-diffusion equation in which a coefficient of dispersion 

replaces the standard coefficient of diffusion. Initial efforts at 
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analyzing dispersion used a scalar dispersion coefficient. However, 

the work of de Josselin de Jong (1958) indicated the dispersion co-

efficient is not a scalar, and he introduced the use of longitudinal 

(parallel to flow direction) and lateral (perpendicular to flow 

direction) dispersion coefficients. Bear (1961a) and 

Scheidegger (1961) proposed that the dispersion coefficient is a 

symmetric second order tensor formed from the contraction of a fourth 

order tensor which depends on the porous medium and a second order 

tensor which is a function of the flow. 

Many basic studies have been conducted to explain the physical 

laws of the dispersion process. These studies have resulted in ana-

lytical solutions to simple flow problems with simple boundary con-

ditions. Also, some approximate solutions have been developed for 

radial and source-sink flow fields. However, no analytical solutions 

have been obtained which will be adequate for describing groundwater 

quality problems on an aquifer wide basis. Moreover, the complexity 

of the general differential equations describing dispersion is such 

that it is unlikely that analytical solutions will be developed in 

the near future. 

Because of the inadequate techniques in analytical solutions and 

the recent advances in numerical and computer technology, an interest 

in using a computer simulation to describe the dispersion process has 

developed. Garder et. al. (1964) used the method of characteristics 

(also referred to as "particle in cell" technique) to numerically 

solve the dispersion equation. However, they did not consider the 



3 

tensorial nature of the dispersion coefficient for multidimensional 

flows. 

Shamir and Harleman {1966) transformed the cartesian form of the 

convective-dispersion equation into 4>-p coordinates, where ip is a 

potential function and p is a stream function. This technique 

properly considers the tensorial nature of the dispersion coeffi-

cient, but presents problems with unsteady nonuniform flow. 

B. Purposes and Objectives 

The literature indicates very little work toward application of 

basic dispersion results to field problems. Practical problems in-

volve complex flow geometries in anisotropic and nonhomogeneous 

media with complicated boundary conditions. A computer simulation 

of the dispersion process should handle unsteady nonuniform flow prob-

lems and, in addition, consider the tensorial nature of the dispersion 

coefficient. 

The objectives of this dissertation are: 

{l). Develop a computer simulation for the mass transport of a 

fluid miscible with the native groundwater. The theory 

will be developed for three-dimensional, nonhomogeneous, 

unsteady flow fields, with density and viscosity varia-

tions between the two fluids. However, only two-dimen-

sional flow problems in an isotropic medium using a 

conservative fluid will be run in the computer simulator. 

(2). Develop a numerical tensor transformation which considers 

the tensorial nature of the dispersion coefficient in a 

cartesian coordinate system. 
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C. Methods of Investigation 

The techniques of investigation are directed toward use of the 

computer as a model simulator. No laboratory experimental techniques 

are used. The differential equations describing the miscible dis-

placement process are developed and written in finite difference 

form. An implicit numerical technique is used to solve the flow 

equation and the method of characteristics with a tensor transforma-

tion is used to solve the convective-dispersion equation. The 

results from the flow equation are used in solving the dispersion 

equation and the results of the di spersion equation are then used to 

solve the flow equation again. This procedure has been referred to 

as a "leap-frog 11 technique, and will be explained in detail in 

Chapter IV. 

The validity of the computer simulation is tested on some 

simple problems for which exact or approximate analytical solutions 

are available. Also, the more complex case of dispersion along an 

intruded salt-water wedge is considered. 



Chapter II 

PREVIOUS WORK 

Slichter (1905) injected a salt solution into a well and ob-

served the time of arrival at a nearby observation well. He ob-

served that the salt did not arrive at the observation well as a 

slug, but instead the salt concentration gradually increased with 

time to some maximum value. Since Slichter's work, many investi-

gations have been made on the flow of miscible fluids in porous 

media. These investigations are divided into the following four 

categories for discussion purposes: (A) theoretical investiga-

tions, (B) analytical investigations, (C) experimental studies, 

and (D) numerical simulation. 

A. Theoretical Investigations 

The theoretical investigations have been oriented towards devel-

oping a basic understanding of the dispersion phenomena. These 

studies attempt to define the dispersion coefficient in terms of 

medium properties, fluid properties, and the fluid velocity. 

Dispersion and diffusion may be visualized by the injection of 

a slug of dye into a fluid flowing through a porous medium as shown 

in Figure 2-1. The center of the slug will travel along the column 

axis (r=o) with the average fluid velocity, V3 • As time, -t, in-

creases, the slug will increase in size and mix with the surrounding 

native fluid to form concentration profiles in both the X3 and r -
directions. This variation in concentration, C, is created by both 
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t == t, 

Figure 2-1. Schematic column and typical concentration profiles 
for a slug injection. [After Hoopes and Harleman 
(1965)] 

dispersion and diffusion. Diffusion is a direct result of thermal 

motion of the individual fluid molecules and takes place under the 

influence of a concentration gradient. Dispersion in porous media 

is a mechanical or convective mixing process which is the result of 

individual fluid particles traveling at variable velocities through 

irregular shaped pores and along tortuous microscopic pathlines. 

Dispersion results in a variation of concentration similar to 

that created by diffusion. However, dispersion is the result of 
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convective mixing on a microscopic scale; not of a concentration 

gradient. Because of the difficulty in describing the boundary condi-

tions for flow through porous media on a microscopic scale, a macro-

scopic model is used. When using the macroscopic model, dispersion 

is assumed to be proportional to the concentration gradient. A 

detailed description of the transition from a microscopic to a macro-

scopic model is given in Section B of Appendix B. 

To investigate the dispersion process, many porous media models 

have been used. Perhaps one of the simplest models is a bundle of 

capillaries. Taylor (1953, 1954) investigated the displacement of a 

fluid from a straight capillary tube of radius, r, by another fluid 

miscible with the first. His results indicated that the tracer was 

dispersed relative to a plane moving with velocity, V, exactly as 

in a Fickian diffusion process, but with a diffusion coefficient, 

z. 2. D = r v (2-/) 
4-8 .Del 

where Dd is the molecular diffusion coefficient. Aris (1956) 

generalized Taylor's results by considering a bundle of capillary 

tubes and obtained an effective diffusion coefficient, 

2. z. 
D= D + Y_o,c 

J .Del (2-2) 

where '"tis a coefficient depending on the shape of the capillary 

tube's cross-section. Ananthakrishnan et. al. (1965) investigated 

the range of applicability of equation 2-2. 

Another theoretical approach is to develop a statistical model 

of the microscopic motion of marked fluid particles and to average 
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these motions to obtain a macroscopic description of dispersion. 

Scheidegger (1954) neglected molecular diffusion and used the theory 

of a random walk extended to three dimensions. However, he assumed 

that the probability for a particle to move a given distance was the 

same for all directions . This lead to a dispersion coefficient that 

has the same value in all directions, and has subsequently been 

proven wrong. 

De Josselin de Jong (1958) also used a statistical approach and 

was probably the first to develop a model which defined the disper-

sion coefficient as an anisotropic quantity. His model was con-

structed of interconnected straight channels oriented at random but 

uniformly distributed in all directions. The final result was a 

concentration profile described by a three-dimensional normal dis-

tribution in which longitudinal dispersion was greater than trans-

verse dispersion. The concept of longitudinal and transverse dis-

persion has been verified experimentally [de Josselin de Jong (1958); 

Bear (196lb)]. 

Saffman (1959, 1960) used a statistical approach similar to 

de Josselin de Jong (1958). However, Saffman introduced molecular 

diffusion into his model and studied the relationship between mechan-

ical dispersion and molecular diffusion. Saffman 1 s first model (1959) 

assumed dispersion was large compared to molecular diffusion. 

Saffman 1 s second model (1960) was for the case where molecular diffu-

sion and dispersion are of the same order of magnitude. 

Other statistical models have been investigated by 

Danckwerts (1953), Beran (1955), Rifai et. al. (1956), and Day (1956). 
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Scheidegger (1957) developed two theoretical models which yielded, 

D~ V (2-3) 

for one model, and 

(2. - 4) 

for the other model. Equation 2-4 represents a model where enough 

residence time exists in each flow channel for molecular sideways 

diffusion to cause complete mixing between invading and original 

fluids. Equation 2-3 represents a model in which no mass is allowed 

to be transferred from one streamline to another by molecular 

diffusion. As shall be seen, experimental evidence indicates that 

equation 2-3 comes closer to physical reality. Scheidegger (1960) 

surrmarized much of the statistical work done prior to 1960. 

Using the results of de Josselin de Jong's work (1958), 

Bear (1961a) developed an expression for the dispersivity tensor in 

terms of the average distance traveled by the tracer in the medium. 

Bear implied that the dispersion coefficient, Dii , was a second rank 

tensor linear in the components of the velocity. Scheidegger (1961) 

suggested by induction that: 

D - = E. v..,vv" 
Lj t}mn 

(Z-5) 

where E i.jmn is the coefficient of dispersivity, which is a 

porous medium property' and v"' v,./ V is a tensor which repre-

sents the linear influence of velocity. Scheidegger concluded that 

the coefficient of dispersivity was a fourth rank tensor with 81 



10 

components; but due to certain syrmietry properties, contains only 36 

independent components in the general case of an anisotropic medium. 

In isotropic media, there are only two dispersivity constants. 

Recent work by Poreh {1965), showed from physical and dimensional 

reasoning that the tensor form of the coefficient of dispersion is 

D. . I 2 -· F c:: F (.-Q...) Jt = J dij + Z l>,i ½ Vj ) 
(2-6) 

where d=pore size parameter, aij=kronecker delta, ½Vj is a 

tensor representing the linear influence of velocity, and F, and G. 
are even functi ans of V J/J)c/ and V d/ ,V- , the Peclet and 

Reynolds numbers, respectively. Bear and Bachmat {1967} also showed 

the dispersion coefficient, J)ij , to be a function of the Peclet 

number. 

Several investigators, including Scheidegger {1961} and 

de Josselin de Jong and Bossen {1961), have suggested that the dis-

persion of a tracer in fluid flow through saturated homogeneous 

porous media can be described by the differential equation, 

) 

where C is the tracer concentration, t is time, 

(2- 7) 

V: is the compo-1. 

nent of the velocity vector in a cartesian coordinate system, and 

is the cartesian space coordinates. The double 

summation convention of tensor notation is implied in the use of 

equation 2-7. Bachmat and Bear (1964) gave the dispersion equation 

in curvilinear coordinates consisting of streamlines and equipoten-

tials ( p- p coordinates). Bear and Bachmat (1967) used basic 
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fluid flow equations which are averaged over a representative volume 

element of porous media to yield the equation of motion and the 

equation of dispersion. 

Perkins and Johnston (1963) gave a good sunmary of diffusion 

and dispersion in porous media. A more recent and more detailed 

sunvnary of the theory of dispersion in porous media was given by 

Bear et. al. (1968, Chapter 11). 

B. Analytical Solutions 

Most dispersion problems have a direct analogy with heat flow. 

For this reason, a good reference for analytical solutions is 

Carslaw and Jaeger (1959) or Crank (1956). Some of the more impor-

tant analytical solutions are discussed below. 

Longitudinal Dispersion-- A semi-infinite column ( X3 >O ) of 

homogeneous and isotropic porous media with a plane source maintained 

at X3 =0 is shown in Figure 2-2. The flow is maintained at a con-

stant specific discharge, i , in the X3 di recti on. For an i sotrop-

i c media, the axes of the dispersivity tensor is assumed to coincide 

with the velocity vector. Thus, equation 2-7 reduces to 
2. K- D d C c)C ot: - L a? - ¼ ax 

3 3 
) 

(2-8) 

where .DL is the longitudinal dispersion coefficient. Initial and 

boundary conditions are given by, 

Cco)t) = C0 J 
tzo 

C (X3,o) = o ) 
X3 ZO 

C(o0) t) == o ) t "ZO . (z-1) 
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Figure 2-2. Schematic sketch of longitudinal dispersion column 
setup. 

Ogata and Banks (1961) used Laplace Transforms to obtain the solution, 

c __ 1 [ ( x,-¼t-) (v3x3) +- ( X;, + ¼t ~l 
c., - 2 erfc 2..1/J)'-t' + exp ])L er,c 2..1/1)1.. t')j J (2- Io) 

where erfc (Lt)=/- erf(u.) . Ogata and Banks showed that the second 

term in equation 2-10 may be neglected in most cases. For instance, 

if .DL < 0. 002 ½X3 a maximum error of less than three percent is 

introduced by neglecting the second term. Therefore, unless the 
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region close to the source is considered, an approximate solution 

to equations 2-8 and 2-9 is 

(2- 11) 

Ogata (1961, 1964a) gave a solution in integral form to the 

problem where a slug of radius "a" is injected at X3 =o. This prob-

lem must consider both longitudinal dispersion and transverse dis-

persion. Using his solutions, Ogata (1964a) developed experimental 

procedures for determining both .D,. and D, . 
In many physical problems, the tracer being used may react with 

the solid matrix of the porous medium. Depending on the reaction, 

the tracer may be adsorbed to the matrix or additional tracer may be 

produced. To handle such cases, a production term dependent on the 

concentration is added to equation 2-8. Using varying functional 

relationships for the production term, solutions to this problem 

have been obtained by Ogata (1964b), Banks and Jerasate (1962), 

Banks and Ali (1964), and Lapidus and Amundson (1952). A closely 

related problem is that of radioactive decay of a tracer. 

Bear et. al. (1968, p. 347) gave the solution to equations 2-8 and 

2-9 where the tracer continuously undergoes radioactive decay. Coats 

and Smith (1964) investigated the effects of dead-end pore volume on 

dispersion and gave several soluti ons to the simple diffu sion model 

characterized by equation 2-8. 

Longitudinal and Lateral Disoersion--If a rectangular column 

( O ~X3 ~_Q 3 J O X2 J.z. ) is used and a tracer source is main-

tained over a portion of the input area ( O X2 ~!- ) as shown in 
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Figure 2-3, then both longitudinal and lateral dispersion will occur. 

Assuming a homogeneous and isotropic medium with unidirectional flow 

in the X3-direction and ac/ o.X 1 = 0 , equation 2-7 becomes, 

a ':12.,- ':12.c ac 
0 = DL a x2 + 1\ ,x2 - v3 0 X 

'3 2 3 
(2- /2) 

I 

i.2 i, \ 
2. I 

\ 
I 

C=O I 

,, --
J3 zi~~t of 

j Tracer Spread 
at t=t,. 

j O' 
V.3=-- ii~ 

<t 
V3= j/cp 

-t=o t=t I 

X3 X.3 

Figure 2-3. Schematic sketch of longitudinal and lateral disoersion 
column setuo. 
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The initial and boundary conditions are given b_v : 

C (Xz) o} t) =C 0 _} 
o X.2 ~,k .J ~zo 

Cc x.2) o) t) = o t L..X2.L,t_ J 
--t 7 0 

J 

dC (D,iX:J) t2 
ox~ = 0 j f'70 

acc.ez,.,¾t2 
oX2 

= 0 j -t / 0 

C (XZ) -t) = Bouncled 

C C X2 > X3 > o) = o j Q~Xz L ,,t ) 
_X3 '"?0. (2- /3) 

A series solution to equations 2-12 and 2-13 was given by Bruch and 

Street (1967). Harleman and Rumer (1963) gave the following approxi-

mate steady state solution to equations 2-12 and 2-13, 

(2- 14) 

In their work on waste-water recharge and dispersion, Hoopes and 

Harleman (1965, 1967a, 1967b) have developed several approximate 

solutions to the radial dispersion problem. Raimondi et. al. (1959) 

also gave an approximate solution to the radial dispersion problem. 

Esmail and Kimbler (1967) gave a solution which allows for alternate 

injection and oroduction. 
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Dagan (1967) gave an analytical solution for dispersion in a 

nonhomogeneous porous column. Using the Laplace Transform, Shamir 

and Harleman (1966, 1967) developed analytical solutions for longi-

tudinal and lateral dispersion in layered porous media. Bear and 

Todd (1960, pp. 27-33) gave some analysis of the unsteady flow prob-

lem. Banks and Jerasate (1962) allowed the coefficient of disper-

sion to vary with time, and solved the problem by introducing a dif-

ferent time scale. 

C. Experimental Results 

Much of the experimental work has attempted to establish rela-

tionships so that the dispersion coefficients may be calculated from 

media and fluid properties. As was pointed out in Section A, theo-

retical models indicate that the dispersion coefficient is a second 

rank tensor. Experiments of de Josselin de Jong (1958), Bear (1961b) 

and Bear and Todd (1960) tend to confirm this concept. Scheidegger's 

work (1961) indicated that for homogeneous and isotropic media, 

the dispersion tensor reduces to two independent terms: (1) the 

longitudinal dispersion coefficient, DL, and (2) the lateral dis-

persion coefficient, Dr . 
Most of the experimental determinations of the longitudinal dis-

persion coefficient used equations 2-10 or 2-11 as a basis for analy-

sis. Ebach and White (1958) performed experiments on a wide range 
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of particle sizes, shapes, and Reynolds numbers. They empirically 

postulated that for Reynolds numbers, 7R < IO O , 

, (2- 15) 

where V =fluid velocity, d =particle size of the porous media, 

and ~=kinematic viscosity. The experimentally detennined co-

efficient cx.1 is strongly dependent on the porous medium while 

is dependent on flow regime. However, evidence exists (Adam, 1966) 

that .L3, is also dependent on medium properties. Experimenters 

have found a large variation in the va 1 ues of oL1 and LJ, . A 1 arge 

percentage of this variation may be attributed to experimental 

techniques; especially the different methods for measuring concen-

tration. 

Harleman and Rumer (1963) found d.1=0.66 and .,,81 =1.2 while 

Hoopes and Harleman (1965) found Ol,=1.70 and =1.2. Ebach and 

White (1958) found ex, =l .92 and ,.,,8, =l .06. Experimental results 

for longitudinal dispersion were given by Banks and Ali (1964), 

Blackwell (l9q2), Cairns and Prausnitz (1960), Carberry and 

Bretton (1958), Simpson (1969), and many others. 

Equation 2-15 prompted investigators of lateral dispersion to 

fit their experimental data to the form, 

Harleman and Rumer (1963) found ~=0.036 and 

Harleman (1965) found ol2=0 . ll and 4=0.7. 

(Z- /6) 

"'4=0.7. Hoopes and 

Lateral dispersion has 
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been investigated by Simpson (1962), Blackwell (1962), Grane and 

Gardner (1961), van der Poel (1962), and Li and Lai (1966). 

Harleman et. al. (1963) were able to correlate the longitudi-

nal dispersion coefficient with permeability, 

1l__ = o- ( V "11i} ),IJ3 
3 r ) (2-17) 

a L2. where J& is the permeability with units of Harleman et. al. 

found ()(3 =54 for spheres and 88 for sand with 4 =1.2 for both 

media. Hoopes and Harleman (1965) found results similar to 

equation 2-17, with ()(..3 dependent upon the media. Rumer (1962) in-

vestigated longitudinal dispersion and the effects of unsteady flow 

on the dispersion coefficient. Simpson (1969) investigated the 

effects of turbulent flow on the longitudinal dispersion coefficient, 

and Hoopes and Harleman (1967a) showed the dispersion coefficient 

along streamlines to be the same for both uniform and nonuniform flow 

at the same velocity. 

The effects of molecular diffusion on the above Reynolds number 

type relationships has been debated in the literature. Relationships 

such as equations 2-15, 2-16, and 2-17 would appear to be invalid 

for all ranges of Reynolds numbers . Biggar and Nielsen (1960) gave 

a very lucid account of the effects of molecular diffusion on disper-

sion. They proved that molecular diffusion is very important at 

small flow velocities, when the medium consists of a natural soil 

skeleton instead of washed sands or glass beads, and for unsaturated 

flow. They hypothesized that the presence of dead-end pores (a charac-

teristic of the soil) is highly important in determining the effects 
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of molecular diffusion on the total dispersion process. Coats and 

Smith (1964) also treated the dead-end pore problem. 

Bear et. al. (1968, pp. 332-335) stated that the dispersion co-

efficient depends on the flow pattern (e.g. velocity), Peclet num-

ber ( V d/ ])d ) , and on some fundamental medium characteristics. 

A p 1 ot of DL /JJJ vs. VJ/.J1 is broken up into five regi ans and 

characteristics of each region are discussed by Bear. 

Adam (1966) used dimensional analysis and experimental results 

to determine the effects of anisotropic porous media on the disper-

sion tensor. Adam argued that experimental evidence indicating the 

dispersion coefficient is nonlinear in the velocity (i.e. exponent 

of velocity is different than one) is incompatable with equation 2-3 

proposed by Scheidegger (1961) and Bear (1961a). However, List and 

Brooks (1967) analyzed numerous experimental results and were 

critical of the velocity power law relationships. 

From these various investigations the conclusion is reached that 

the dispersion coefficient is indeed a tensor of rank two; but an 

adequate relationship has not been developed for describing the phe-

nomenon over a large range of flow parameters. Much more theoretical 

work is needed in this area. 

A study of dispersion using the concept of similitude has been 

done by very few people. Raats and Scatter (1968) considered geomet-

rically similar media and sought the conditions for dynamic similarity. 

Bachmat (1967) investigated the criteria for similitude of the dis-

persion phenomena in homogeneous and isotropic porous media. 
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Heller (1963) also presented a good discussion on scaling of flows 

in porous mediums. 

Few results from field experiments are available. Harpaz and 

Bear (1964) presented results of laboratory and field tests on under-

ground storage operations with a single recharging well and with 

two wells, one recharging and one pumping. Lau et. al. (1957) 

performed some field tests to evaluate various tracers, and found 

the chloride ion to be the best. Field oriented laboratory experi-

ments have been conducted by Hoopes and Harleman (1965, 1967b) on 

wastewater recharge and by Rumer and Harleman (1963) on salt-water 

intrusion along coastal aquifers. Esmail and Kimbler (1967) 

investigated the effects of gravity segregation and dispersion on the 

problem of storing fresh water in saline aquifers. 

D. Numerical Solutions 

Because of the difficulty in obtaining analytical solutions to 

groundwater flow problems, many investigators are now using numerical 

solutions. Numerical solutions of immiscible flow problems have met 

with more success than miscible flow problems. Much work remains 

to be done on developing satisfactory numerical techniques for the 

dispersion problem. 

Many of the reservoir simulation techniques involving immiscible 

fluids have been developed in the petroleum industry. Douglas, 

Peaceman, and Rachford (1959) employed an alternating-direction-im-

plicit procedure (.'\DIP) to solve a two-dimensional, two-phase, incom-

pressible flow model. Blair and Peaceman (1963) extended this to 

include the effects of compressibility . Larkin (1964) used the 
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alternating-direction-explicit-procedure (ADEP). Quon et. al . 

(1965, 1966) also used ADEP in a reservoir simulator. Coats and 

Terhune (1966) and Carter (1967) compared the ADIP and ADEP tech-

niques. Bjordammen and Coats (1967) compared alternating direction 

and successive overrelaxation techniques for the simulation of two-

and three-dimensional, two-phase flow reservoirs. Other reservoir 

simulators have been described by Dougherty and Mitchell (1964), 

Fagin and Stewart (1966), and Breitenbach, Thurnau, and 

van Poollen (1968 a, b, and c). 

Digital computer simulators in the groundwater field have not 

been as widely developed as in the petroleum industry. 

Bittinger et. al. (1967), Tyson and Weber (1964), and Chun, Weber, 

and Mido (1964) have presented some information on reservoir simula-

tion in the groundwater industry. The above mentioned works are 

just a few of the ones which have been developed in the last few 

years on reservoir simulation using numerical analysis and digital 

computers. 

The problem of miscible flow has not been treated as extensive-

ly numerically as the immiscible flow prob~em. Peaceman and 

Rachford (1962) presented a centered-in-time and centered-in-distance 

equation combined with a "transfer of overshoot" procedure which was 

demonstrated to work well in one dimension. However, subsequent 

testing has shown that for multidimensional displacement their method 

involved a numerical dispersion of the same order of magnitude as the 

physical dispersion. 
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Garder, Peaceman and Pozzi (1964) used the method of charac-

teristics to improve the numerical solution to the miscible flow 

problem, but did not consider the dispersion coefficient as a tensor. 

Their numerical technique is discussed in detail in Chapter IV. 

Stone and Brian (1963) made a thorough analysis of a numerical 

scheme to solve the one-dimensional dispersion equation. They used 

three adjacent grids at two time levels, and assigned arbitrary 

weighting coefficients to the convective and time terms. They then 

proposed an iterative scheme with three cycles per time step to im-

prove the solution. No consideration was given to the effects of 

changes in viscosity or density. 

Hoopes and Harleman (1965) used an explicit finite difference 

scheme to obtain a solution for the problem of radial flow from a 

well. By neglecting lateral dispersion, they also obtained a solu-

tion to a two-well problem. The size of the grid spacing and time 

increment were restricted for the explicit scheme because of a 

stability criterion. This presented some problems because of large 

amounts of required computer time. 

Shamir and Harleman (1966) used a very ingenious concept in their 

numerical technique. First they wrote the dispersion equation in 

terms of the stream function and potential function (i.e. in terms 

of p and t coordinates). They noted that the velocity is every-

where tangential to the streamlines, and thus their equation was one 

dimensional in the convective term. They then used the Stone and 

Brian (1963) numerical technique for one-dimensional flow and handled 

the lateral dispersion with an ADIP technique. If the major axis of 
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the dispersion tensor coincides with the velocity vector, then Shamir 

and Harleman's technique will consider the dispersion coefficient as 

a tensor. However, their scheme doe not consider the effects of 

density or viscosity changes; nor does it consider unsteady flow 

except in the few cases where the streamlines do not change position 

with time. 

Nelson (1965) described a computer program for predicting waste 

transport in groundwater . The program generated permeability infor-

mation and stream functions using a potential map with a small 

amount of permeability information. However, he considered a 
11 piston type 11 flow and neglected dispersion entirely. 

Summary--In summary, the following results are important to the 

present study: 

(1) The dispersion coefficient is an anisotropic quantity and 

must be treated as a second rank tensor. 

(2) The dispersion coefficient is linearly related to the 

components of velocity as given by equation 2-5. 

(3) The analytical solution to the longitudinal dispersion 

problem is given by equation 2-10. 

(4) An approximate steady state solution to the longitudinal 

and lateral dispersion problem is given by equation 2-14 . 

(5) The longitudinal and lateral dispersion coefficients can 

be obtained from the empirical relationships given by 

equations 2-15, 2-16, and 2-17. 

(6) Numerical solutions to the problem of miscible displacement 

in porous media have proven to be difficult. The numerical 
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techniques of Stone and Brian (1963), Garder et. al. (1964), 

and Shamir and Harleman (1966) appear to be the most 

successful. 



CHAPTER II I 

DEVELOPMENT OF MATHEMATICAL MODEL 

When working with miscible fluid displacement, the conservation 

of mass for each component present in the system is required. In 

this study, only two components are considered, a conservative tracer 

and the native groundwater. Therefore, two equations of mass conser-

vation are required to describe the system considered here. One of 

these equations will be for the combined masses of both componen t s 

(i.e. total mass= tracer mass+ native groundwater mass ). The other 

equation is for the mass of the tracer. 

A. General Flow Equation 

A fundamental flow equation for the mixture of two miscible 

fluids is derived by combining the conservation of mass equation for 

the mixture, Darcy's law, and an equation of state describing the 

pressure-volume-temperature-concentration relationship. A linear equa-

tion relating change in porosity and change in pressure is also used. 

The result is an equation involving two dependent variables, pressure 

and tracer concentration. A detailed development of this equati on is 

given in Appendix A. Using shorthand tensor notation, the final 

equation may be written as: 

(3-/) 
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.6Xi.(i.=/.)2)3) =dimensions of volume element---L, 

.6Ai:U=l1 Z1 3) =cross sectional area _of element ) 
perp2ndi cul ar to ,\_ ( 1.. e. L\A1 =- b.X2. LlX 3 
---L , 

t =time---T, 

L1V==L1X, LlX2. ..1X3 =volume of element---L3, 

X~(L=~Z1 3) =cartesian coordinate system (X1,X2,X3) 
---L, 

.? =total fluid dens i ty---ML -3 or FT2L - 4, 

.Jx. =abso~ute permeability in Xrdirection 
i. ---L , 

ft. =viscosity of fluid mixture---FTL-2, 

P =pressure of fluid mixture---FL-2, 

=acceleration of gravity---LT-2. 

h =elevation of volume element above 
datum---L, 

¢ =porosity---dimensionless, 

.L3 =fluid compressibility---L2F-l, 

CF=r~~~,:ion compressibility factor---

d. =proportionality factor relating con-
centration and density---dimensionless, 

C =mass concentration of tracer---ML-3 or 
FTi::'.L- 4 , 

.;:;, =mass density of produced fluid---
ML-3 or FT2 L -4, and 

Q__ =rate of fluid production---L3r- 1. 
=reference value of density---ML-3 or FT2L-4 

¢0 =reference value of porosity---dimensionless 

To obtain equation 3-1 in its present form the following assump-

tions have been made: (l) Darcy's law is applicable, (2) single 
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phase flow, (3) isothennal flow, (4) a linear relationship between 

change in porosity and change in pressure, (5) size of volume ele-

ment does not vary with time, and (6) a linear relationship between 

density, pressure, and concentration. 

The flow of groundwater through an aquifer is used in this study, 

and the validity of Darcy's law presents no serious obstacles. For 

problems in the nonlinear flow regime, additional tenns involving the 

gradient of pressure raised to some power would be needed in equation 

3-1. Should a multiphase problem be considered, then equations of the 

fonn of equation 3-1 would need to be developed for each phase and the 

saturation, , would be different than one. The assumption of iso-

thermal flow eliminates having to consider the density in equation 3-1 

as a function of temperature, and considering the size of the volume 

element invariant with time permits the elimination of 

from equation 3-1. The use of a linear relationship between "change 

in porosity 11
-

11 change in pressure" and density-pressure-concentration 

is discussed in Section III-C. 

B. Dispersion Equation 

A convective-dispersion equation may be obtained by combining the 

conservation of mass equation for the tracer, Fick's law, and an 

equation of state. A detailed derivation of this equation is given 

in Appendix B. The general dispersion equation is given by: 

,/1; C <I> ~v c) = Jxi [ ( ])iJ + 1,) 1 t1A~ ~~j] !)Xi 

- fx. ( C ½_ 1 LlAi) /)X~ - C P fl :, 
L 

(3-2) 
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Dij =dispersion coefficient which is a second rank 
tensor---L2T-l, 

.Dd =molecular diffusion coefficient---L2T-1, 

l"Zi =porous medium 11 tortuosity 11 factor which is also a 
second rank tensor---dimensionless, 

½ =seepage velocity (flow rate per unit pore area) 
of fluid mixture in ~1;1, direction---LT-1, 

Cp=concentration of tracer in produced fluid---ML-3 or 
FT2L-4, and 

all other terms are as described previously. 

Assumptions necessary to obtain equation 3-2 are: (1) diffu-

sion is described by Fick's law, (2) the convective mixing called 

dispersion is proportional to the concentration gradient, and 

(3) single-phase flow exists. The double summation convention of 

tensors is implied in the use of equation 3-2. 

The use of Fick's law to describe diffusion means that a dilute 

solution is being used. In addition, any diffusion due to temper-

ature gradients or velocity gradients is disregarded. Assuming that 

dispersion is proportional to a concentration gradient is discussed 

in Appendix B. For multi-phase flow, equations similar to equation 3-2 

must be written for each phase. 

Because of the numerical technique to be used in solving the 

dispersion equation, an alternate form of equation 3-2 is desirable. 

This is achieved by chaining out the derivatives of concentration 



29 

as is shown in detail by equations B-31 thru B-40 of Appendix B. 

The final result is, 

oC 
at q> ~A;_ ~-o(c) ;txi [ ]): tp JAL ~~J] -

dC ) Q_ - ½ ax;. - C cp-c </).t1V .> 
(3-3) 

where 

(3-4) 

The fluid compressibility effects on concentration are neglected 

in developing equation 3-3. 

C. Auxiliary Equations 

Because of the interrelationship among several of the param-

eters in equations 3-1 and 3-3, the following auxiliary equations 

are needed in the mathematical model. The components of the 

seepage velocity for the fluid mi xture may be obtained from Darcy's 

law, and are given by 

) 

The relationship between the porosity of the porous medium 

and the fluid pressure is assumed to be, 

) 

where ~o =original porosity---dimensionless, and 

Po =original fluid pressure---FL-2. 

(3-5) 

(3-6) 
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The density of the fluid mixture is assumed to be a linear function 

of the fluid pressure and tracer concentration, 

f= ./: --t- _.i.J;(P-1;,) +d-.(C-C) ) 

where ./; =original fluid density---ML-3 or FT2L-4, and 

C
0 

=original tracer concentration---ML-3 or FT2L-4. 

Also, the viscosity is assumed to be a linear function of the 

concentration, 

) 

where A 0 =original viscosity---FTL- 2, and 

,..,{ =proportionality factor relating concentration and 
viscosity---dimensionless. 

The use of equations 3-6, 3-7, and 3-8 are assumptions. 

(3-7) 

(3-8) 

Equation 3-6 has been used in the petroleum industry with success 

[Breitenbach et. al (1968b)]. Depending upon the fluids used, 

relationships other than those given by equations 3-7 and 3-8 may 

be desirable. For the example problems in this study, salt water 

and fresh water are used as the two fluids, and the linear relation-

ships of equations 3-7 and 3-8 are believed to be adequate. 

D. Dispersion Coefficients 

Equation 3-3 and the corresponding finite-difference equations 

of Chapter IV are developed in a general way so that any value may 

be used for the nine components of the dispersion tensor. However, 

the use of a functional relationship is desirable which will give 

the values of all nine components in a systematic manner. 
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Assuming an isotropic porous medium, the 11 tortuosity 11 tensor, 

~J , is given by 

where 

T. =T$. .. ~J l~ ) 

T =tortuosity factor---dimensionless, and 

~ij. =k ronecker delta. 

Thus, the nine components of the diffusion tensor are, 

and 

(3-7) 

[3- /Oa,) 

(3-/0J,.) · 

Scheidegger (1961) gave the relationship, 

) 
(3-11) 

where E: i 1 m n =the di spers i vi ty of the medium, a fourth rank 
tensor---L, 

VmJVn =the components of velocity in them and n 
directions, respectively---LT-1, and 

V =magnitude of the velocity---Lr-1 • 

For an isotropic media, Scheidegger shows that the 

dispersivities reduce to only two terms, c, and c.2 , with 

f.d,.,J.d,.d,. = c, 
E"'-d-..i..8 c2 
E°".i o-.i Y2. Cc, - t:.2.) 
E,1,..,8.,8o1.. = 1/2. Cc, - c2 ) 

all other f. ) s = 0 (3-12) 
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The longitudinal and transverse dispersion coefficients are related 

to the dispersivities by 

( 3-/3a,) 

and 

(3-/3t) 

Expanding equation 3-11, introducing equations 3-12 and 3-13, and 

adding the diffusion tensor given by equation 3-10, the following 

functional relationship for the nine components of the hydrodynamic 

dispersion coefficient are obtained: 

])* = D v, v, + n Vz. v, + D ¼ v.3 D T 
,, L v' j)T v2. T v2. + d , 

D* """ 21 = D,2. = V, V2. v2-

D;, = n,: = c Il - DT) v, Jr 
) 

) 

(3- /4) 
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Other functional relationships for obtaining the components of the 

hydrodynamic dispersion tensor are given by Bear et. al. (1968), 

Poreh (1965), and List and Brooks (1967). 



CHAPTER IV 

DEVELOPMENT OF COMPUTER SIMULATOR 

The computer simulation of the miscible displacement problem 

will be developed by writing the finite difference form for each 

of the equations given in Chapter III. Because of limited funds 

available for analysis, the computer simulator is developed for a 

two-dimensional vertical flow problem. Finite difference equations 

and stability criteria for the three dimensional problem are given 

in Appendices C, D, and E. 

A. Finite Difference Form of Two-Dimensional Flow Equation 

An implicit, centered-in-space finite difference scheme is used 

to approximate the time and space derivatives of equation 3-1. This 

scheme is developed in detail in Appendix C for the three-dimensional 

problem. The two-dimensional finite difference equation has the form 

(4-1) 
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Here L and J., indicate the grid row and grid co 1 umn respectively, 

and -f; indicates time level. The coefficients 
-t-

L\ h- are given as equation C-7 of Appendix C. 
)(i. 

+ 
fx~, .. 

-t-

N ; . , and .. 

A rectangular grid system is superimposed onto the region of 

interest, and equation 4-1 written for each grid. The dimensions 

of the grids, 11X, , and ti X 3 , are assumed to be constant over the 

entire region. Variable dimensional grids may be used, but a 
+ 

change in the coefficients, N; , is necessary. The coefficients. 
I, 

.0 I -t-.r~ and N - , are held constant during each time step. Ap-x.: Xi. 

proximation of the original non-linear equation is obtained by ad-
+ 

justing the values of ./;_- and .. 
+ + 

the change in ~: and Nx~ is .. .. 

+ Nx~ after each computation. If .. 
sma 11 during each 11-t, this proce-

dure will produce acceptable results. 

The change in concentration with respect to time on the right 

hand side of equation 4-1 is calculated using the change in concen-

tration from the previous time step, L1t0 • If the change in con-

centration during each L:itis small, this will also produce acceptable 

results. If necessary, an iteration between the solution of the flow 

equation and the dispersion equation can improve this approximation. 

If the rectangular grid system has m-rows and n-columns, then 

there will be mn grids. Since equation 4-1 contains unknown pres-

sures from each of the four adjacent grids plus an unknown pressure 

for the grid in question, the result of writing equation 4-1 for all 
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grids is a set of tnn simultaneous algebraic equations. This set 

may be written in matrix form as 

[A] [P] = [rhs] ) 
(4-2) 

where [A] is a n-in by rnn matrix containing the coefficients of 

pressure, [PJ is a trin column vector containing the unknown pres-

sures, and [rJ,5] is a mn column vector containing all the factors 

on the right hand side of equation 4-1. 

B. Finite Difference Form of Two-Dimensional Dispersion Equation 

The numerical solution of the multi-dimensional dispersion 

equation (equation 3-3) has been a difficult problem. Therefore, 

some background material may be helpful in understanding the tech-

nique used in this study. If the convective terms and production 

term of equation 3-3 are neglected, the resulting equation is 

(4-3) 

This equation is a second order partial differential equation of 

parabolic type (heat flow equation) and is of the same form as 

equation 3-1. A dispersion equation of this type could be solved in 

the same way as the flow equation given in equations 4-1 and 4-2. 

This particular type of equation has been successfully solved numeri-

cally many times. 
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Now suppose that the dispersion and production terms of 

equation 3-3 are neglected. Then the resulting equation is 

) 
(4-4) 

which is a first order partial differential equation of hyperbolic 

type and has been treated numerically with some success in one 

dimension. However, extension to two or more dimensions has proven 

difficult. Usually one of two things happens: (l) the numerical 

solution develops oscillations or (2) it becomes smeared by "arti-

ficial dispersion" resulting from the numerical process. Thus, when 

convection and dispersion are considered simultaneously, this "arti-

ficial dispersion" may dominate the low physical dispersion which 

characterizes miscible displacement. 

If convection and dispersion are neglected, then a change in 

concentration can be caused by the production term, 

(4-s) 

Although not immediately obvious, the production term may be written 

as [(cp-c)jLlxJ[ o/(1~AJ] or [(cp-c)jllX;.] Vp 
where Vp is the velocity of the production fluid. This term is 

analogous to the convective terms of equation 4-4, and therefore 

shall be analyzed in a manner similar to the convective terms. In 

general, the production term will be a discrete function, and will be 

introduced through boundary conditions of the problem. 

In problems of miscible displacement, the amount of dispersion is 

usually very small, and this makes the convective-dispersion equation 
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almost of the hyperbolic type shown in equation 4-4. 

Garder et. al. (1964) recognized this and developed a numerical 

technique for solving the convective-dispersion equation based on 

the method of characteristics. They assume that the dispersion 

terms are given functions of X, J X2.; X3 , and -t, i.e. 

Neglecting the production term momentarily, and substituting 

equation 4-6 into equation 3-3 gives 

(4-6) 

(4-7) 

Garder et. al. (1964) show that a nonhomogeneous equation with the 

form of equation 4-7 has characteristic curves 

(4--f) 

where-tis an arbitrary curve parameter which in this case is time. 

These characteristic curves are the solutions to the ordinary 

differential equations, 

and 

dX, = V d-t- , 

de 
dt 

The concentration, C, is not a constant on these characteristic curves. 
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The basis of the method of characteristics is that given solu-

tions to equation 4-9, a solution to the original partial differential 

equation {equation 4-7) may be produced by following the characteris-

tic curves. The requirement of following the characteristic curves 

is achieved numerically by introducing a set of moving points in 

addition to the normal grid system. Each of the moving points is 

assigned a concentration, which varies with time. At each time in-

terval, the moving points in a two-dimensional system are relocated 

using a finite difference form given by, 

t+I t v.-t+I X = X, + lit I ,e .e ,, (4-/!J) 

and 

xt+I = X -t -t+I + Llt ½£ J 31 3,q 
(4- 11) 

where t+J is the new time level, t is the old time level, b.-t- is 

the time increment, 

point, while v,, 
X, and x3 are the coordinates of the}tl, moving 

'.f '.e 

and V3A are the velocities of the ith moving 

point in the X,- and X3 -di recti ons . 

Each cell in the grid system is assigned a concentration equal 

to the average of the concentrations of the moving points located in-

side the cell at time ~Tl . The concentration of the cell and each 

moving point inside the cell is then modified for dispersion by 

solving dc/Jt =fcx,/ Xz, XJJ t) using an explicit, centered-in-

space finite difference equation . This equation is developed in 
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detail in Appendix D for the three-dimensional problem. The 

two-dimensional form is 

- -t+A f+A _ t+-A _ ~+A ) + 
- GJ( X ( Ci-I !+1 + Ci l+J Ci. A-1 C L-IJ J.-1 

I 3 ) ) ) 

-G- (ct+A + ct-·r.A -ct+A 
X X '+/ I i+IJ J.-J i-1, -1.. :J I L .I-,,_ ., 

(4- /2) 

Here L and i indicate grid rows and grid columns respectively, t+-1 

is the new time level and t+4 is a time level somewhere between 

t and t + I • The coefficients E ± and G :t are given Xi. X, X;, Xj 

as equations D-19 of Appendix D. 
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C. Finite Difference Fonn of Velocity Equation 

In the method of characteristics described above, a determi-

nation of the seepage velocity is necessary for relocating the 

moving points during each time step. To accomplish this, a grid 

and its four adjacent grids are used as shown in Figure 4-1. 

i, -l-1 J 

i,-/ I,, 
) i,J ! i+~ -l 

~JJ,+1 

Figure 4-1. Grid system used to develop a finite difference 
equation for the seepage velocity. 

The flow equation (equation 4-2) is solved for the pressures at 

time level t+/ . These pressures are assigned to the centers of 

each of the grids. Using these pressures and Darcy's law, a value 

for the seepage velocity at the contact between two grids may be 

calculated. Thus, a finite difference form of the horizontal seep-

age velocity at i+ 1/z.1 -/;., could be written as 

(4--13) 
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where all symbols are as p~evinusly defined. The horizontal 

seepage velocity at i, + 1/z. J -! could a 1 so be written as 

tt-1 tt-1 

(V /+-' = -(~) [ ( ~+~t - Pi+-½,,!) + 
I L+'/2~/J. fit/> i+~.J AX,/2. 

(4-/4) 

By continuity, equations 4-13 and 4-14 should give the same value for 

(v) -tt-/ 
. Thus, upon adding the two equations, cancelling 

I it- 1/z.J l t:~J 
like terms, and rearranging, a weighted value of (V,)i+-½/l 
is obtained in the form, 

(4-15) 

In a similar manner, the vertical seepage velocity, 

may be written as 

\/, t+I 
( 3) I..; I.+½. 

(4-11,) 
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Using equations 4-15 and 4-16, the seepage velocities at each 

interface of a grid is calculated as shown in Figure 4-2. A seep-

Figure 4-2. Schematic sketch showing relation of seepage velocity 
at moving point to the seepage velocity calculated at 
the interface between grids. 

age velocity must be assigned to each moving point within the grid 

based on the value of the seepage velocities at the interfaces. A 

linear interpolation is used in making this assignment. For in-

stance, the velocity components of the moving point in the grid of 

Figure 4-2 are given by, 

X,i - (X,)i-½.t [( V )-t+1 -
"X > I '- ½ A L..\ I L Z1 Tl, 

(4-J7) 
and 

( 4-18) 
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D. Boundary Conditions 

Appropriate boundary conditions due to geologic and hydrologic 

influences must be used in conjunction with equations 4-2, 4-10, 

4-11, 4-12, 4-17, and 4-18 to obtain a solution. These conditions 

take the form of (a) no-flow boundaries, (b) hydraulic boundaries 

at ground surfaces, (c) groundwater underflow boundaries, and 

(d) known tracer concentrations maintained at certain boundaries. 

No-flow boundaries are simulated by assigning a permeability 

of zero, a longitudinal dispersion coefficient of zero, and a trans-

verse dispersion coefficient of zero to the grids located along 

the boundary. With such a simulation, the coefficients N± 
xi. 

£± 
x.x . 

• L 

, and 
+ Gx~ x- , as given in Appendix 
< ;J 

C and Appendix D, 

are automatically set equal to zero. The one exception that has 

to be treated separately is the case where grid (~I) and one of 

the adjacent grids are both no-flow boundaries (see Figure 4-1) . 
+ r G In this case the coefficients N- E - and wi 11 X;_ ' X,,Xi ' X,.Xj 

become 0/0 which is indefinite. An 11 IF 11 statement in the computer 

program can effectively take care of this one situation and set the 

appropriate coefficients equal to zero if this situation should ever 

occur. 

Hydraulic boundaries at the ground surface are most commonly 

encountered in the form of a direct connection between a groundwater 

aquifer and a river or lake, and are simulated by programming a time-

varying or constant water pressure in the appropriate grids. If the 

known pressure boundary is encountered in grid ( , l), then the co-

efficients of the pressures in the adjacent grids are set equal to 
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zero, the coefficient of the pressure in grid ( L ,.,f) is set equal to 

one, and the right hand side of equation 4-1 is set equal to the known 

pressure value. The resulting equation is 

Pt+1 
= known value. 

ill 
( 4--11) 

In case the known pressure boundary is encountered in one of the grids 

adjacent to grid ( i, ,Ii-), then the appropriate coefficient _ _1(!:. N1 
X X· L L 

is multiplied by the known pressure and transferred to the right hand 

side column vector of equation 4-2. The corresponding element of the 

coefficient matrix, [A] is then set equal to zero. 

Groundwater underflow boundaries occur when only a portion of an 

aquifer is being studied. This boundary condition may be simulated in 

many ways, but perhaps the simplest is to project the pressure gradi-

ent and concentration gradient across the boundary and calculate the 

rate of underflow using these projected gradients. 

Boundary conditions for known tracer concentrations must be 

specified also. These conditions are handled in this simulation by 

the moving points. As fluid leaves the model, moving points with 

their corresponding concentration values are removed from the system. 

As fluid enters the model, moving points with the appropriate bound-

ary concentrations are added to the system. 

The boundary conditions described above are the only ones con-

sidered in this simulation. Other boundary conditions such as those 

associated with a leaky aquifer or radioactive decay of a tracer may 

be encountered. Appropriate additions to the computer program would 

be required . 
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E. Description of the Computer Program 

The computer simulation was progranmed in Fortran IV for 

the CDC 6400 Computer at the Colorado State University Computer 

Center. A flow chart of the program is shown in Appendix F, and 

a reprint of the program used in solving the salt-water intrusion 

problem is given in Appendix G. 

The MAIN program accepts the input data and governs the 

sequence of operations to be performed. Subroutine INIC0N assigns 

a uniform distribution of "moving" points to each grid along with 

the initial value of concentrati on assigned to each point. Sub-

routine READIN reads in or assigns appropriate values to all phys-

ical quantities such as permeability, porosity, viscosity, etc. All 

of the initial values are then printed out using subroutine INIPRT 

and subroutine MATR0P. 

Because uf the large amount of computer storage required, auxil-

iary storage in the form of a scratch tape is used. The locations 

and concentrations of the moving points are stored in common with 

the coefficient matrix used in solving the pressure equation. Since 

the location and concentration of the moving points must not be 

destroyed, they are written onto the scratch tape each time before 

the pressure equation is solved and then read back afterwards. This 

was done by subroutines, WRTAPE and RDTAPE which are systems routines 

developed at the CSU Computer Center. They allow for reading or 

writing on the tape while the program continues to execute. 

Subroutine MATS0L sets up the coefficient matrix, [A], and the 

right hand side column vector, [rhs], for solving the pressure 
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equation. This subroutine, as is presently written, may take care 

of two types of boundary conditions; (1) a constant pressure 

boundary and (2) a no-flow boundary. Other boundary conditions 

besides these may easily be added to the program. MATSOL checks 

the boundary conditions and makes the appropriate changes in [A] 

and [i-1,,s] 

To solve the set of equations set up by MATSOL, the solution 

of a set of simultaneous equations is required. A general numeri-

cal solution should offer several solution techniques such as Gauss 

elimination, successive overrelaxation (SOR), or iterative alter-

nating direction implicit procedure (ADIPIT). For a review of these 

techniques, the reader is referred to Breitenbach et. al. (1968b). 

Gauss elimination is by far the most reliable numerical method 

one can choose for solving the matrix given by equation 4-2. How-

ever, the volume of computation required by Gauss elimination for a 

large matrix can result in large amounts of computer time. In such 

cases, ADIPIT or SOR may prove to be more efficient with time. For 

the computer simulator developed herein, Gauss elimination was chosen . 

If the matrix, [A], were written out, the resulting matrix is 

found to be a band matrix with five diagona l s of the form, 

- 0-

- 0-
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Computer storage is not necessary for the matrix elements above and 

below the band. Thus, having a minimum band width is desirable. An 

appropriate choice of the grid numbering pattern can reduce the 

total width of the band. Another important feature is that the num-

ber of rows participating in the upper triangularization for each 

column is quite limited. Thurnau (1963) developed an algorithm 

called BANDS0LVE which makes use of these characteristics in solving 

a five diagonal band matrix. 

In this computer simulator, subroutine BS0LVE makes use of the 

BANDS0LVE algorithm to solve the matrix equation, equation 4-2, by 

Gauss elimination. This subroutine allows for row interchange to 

combat round-off error. The oniy problem encountered in using this 

technique to solve the matrix equation was that of large amounts 

of computer storage. As an example, a grid network with the dimen-

sions of 10 grids by 25 grids has 250 equations and requires 5250 

words of computer storage for BS0LVE. In contrast, a 20 grid by 

25 grid network has 500 equations and requires 20,500 words of com-

puter storage for BS0LVE . For large problems, external storage 

would be necessary on many computers . 

After solving for the new pressures, the storage taken up by 

subroutine BS0LVE is available for other uses. Therefore, the 

coordinates and concentrations of the moving points are read from 

the scratch tape and placed in the storage locations previously 

occupied by BS0LVE. 

Subroutine VEL0CY calculates the velocities at each grid inter-

face by use of equations 4-15 and 4- 16 . This routine also calculates 
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the longitudinal and lateral dispersion coefficients using a 

velocity power relationship of the form of equations 2-15 and 2-16. 

With values for the dispersion coefficients and velocity components, 

equation 3-14 is used to calculate the components of the dispersion 

tensor. 

Subroutine MOVPT uses the velocities calculated in VELOCY and 

equations 4-17 and 4-18 to obtain the velocity components of each 

moving point. Each point is then moved to a new location by use 

of equations 4-10 and 4-11. A section of this subroutine determines 

which of the points has moved out of the model. These points are 

tagged and introduced at an inflow boundary with the appropriate 

boundary concentration. Of all the subroutines developed for this 

simulator, MOVPT is probably the least general. At the present time, 

minor changes in the program must be made when boundary conditions 

are changed to allow for the proper removal and reintroduction of 

the moving points. After each point has been moved to a new location, 

the average concentration of each grid is calculated by arithmeti-

cally averaging the concentrations of the "moving points" located in 

the grid. 

With the average concentrations of each grid determined, sub-

routine DISP uses equation 4-12 to determine the change in concen-

tration due to dispersion. The end result is the concentration of 

each grid at time it-At. To conclude a time step, a mass balance 

of the system is calculated and appropriate changes in density, 

viscosity, and porosity are made using equations 3-6, 3-7, and 3-8. 

A test for print out is made and the program returns to subroutine 
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MATSOL where the pressure equation is resolved and the entire 

process repeated for the next time step. 

F. Validity of Computer Simulator 

A discussion of the validity of the proposed computer simulator 

is needed at this point. No rigorous proof of the stability and 

convergence of the overall simulator is available. Thus, the 

performance of the program in solving problems will be used as a 

major test of validity. A discussion of this performance is pre-

sented in Chapter V. However, some confidence can be gained by 

analyzing the individual parts of the simulator for stability and 

convergence. 

The pressure equation is solved using equation 4-1 as the finite 

difference form. This is an implicit, centered-in-space difference 

scheme with variable coefficients. No general stability criteria 

for the variable coefficient difference equation has yet been devel-

oped. Although not giving a rigorous proof, Richtmyer (1957, p. 72) 

gave the argument that the stability conditions for the constant 

coefficient problem must be satisfied at every point in the domain of 

the difference equation for the variable coefficient difference 

equation to be stable. Smith (1965) and Richtmyer (1957) both showed 

that the implicit difference scheme with constant coefficients is 

unconditionally stable and convergent. Thus, using the heuristic 

argument of Richtmyer, it may be concluded that equation 4-1 is 

stable for any value of LIX,, L1X3 , and L!.-t. 
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The change in concentration due to dispersion is given by 

equation 4-12, and is an explicit centered-in-space finite differ-

ence equation. In general, explicit difference schemes have stabil-

ity criterion, and equation 4-12 is no exception. The stability 

criterion for a constant coefficient explicit difference form 

involving -,/c/ax,2 
, clc/ ax:, and a~/ax: may be found 

in Smith (1965) or Richtmyer (1957). However, equation 4-12 also 

contains the cross-derivative ayax, JX3 and a stability analysis 

of the equation was necessary. The stability analysis was done by 

a Fourier series approach for both the three-dimensional and two-

dimensional problems. This analysis is given in detail in Appendix E. 

In su1TDTiary, the stability of equation 4-12 1is assured if 

.D~ > 0 
// J 

D~ 0 
33 /' > (4--2 t) 

(4-22) 

and 
;t-

wlJ/1 t:.t 
(AX,)2- ) 

( 4-23) 

and _D
31 

are the components of the 

dispersion tensor, llt is the temporal increment, AX, and A~ are the 
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spatial increments and w= ~(/- cJ..C) . The stability of the 

three-dimensional equation is given as equation E-40 of Appendix E. 
* * ,jf-If equation 3-14 is used to obtain D,, J ]):n J .D13 > 

* and ])31 , then equations 4-20, 4-21, and 4-22 are satisfied auto-

matically. Thus, equation 4-23 is the only stability criterion of 

any importance to the problem being considered here. 

A theoretical development of the convergence of the overall 

"method of characteristics" scheme used to solve the dispersion 

equation has not been successful. If the stability criterion of 

equation 4-23 is not satisfied, then the numerical solution "blows 

up 11
• Some convergence tests made by running problems with known 

solutions are given in the next chapter. 



CHAPTER V 

RESULTS AND DISCUSSION 

Because of the difficulty in obtaining theoretical criteria 

for the validity of the numerical simulator, experience with actual 

problems is a necessity. The numerical solution of the pressure 

equation has been done successfully many times, and will not be the 

subject of detailed review in this study. However, the solution of 

the dispersion equation by the 11 method of characteristics 11 (MOC) 

has not been so widely studied; especially using the tensor relation-

ships developed in Chapter IV. Therefore, the numerical solution of 

the dispersion equation is the object of most of the following 

results and discussion. 

A. Longitudinal Dispersion in Steady, Uniform, One-Dimensional Flow 

If the results of known analytical solutions can be reproduced, 

a great deal of confidence in the numerical solution can be gained. 

An analytical solution to the one dimensional problem with a step 

input of the tracer as a boundary condition is available. This solu-

tion was given as equation 2-10. The first test of the MOC will be 

to see how well it solves the one dimensional problem. 

Garder et. al. (1964) showed that accurate solutions of one-dimen-

sional problems can be obtained by the MOC over a wide range of 

values of the dispersion coefficient, including zero. They also showed 

that the moving points do not need to be uniformly spaced, and that 

increasing the number of moving points beyond two points per grid did 
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not significantly improve the accuracy of the solution. A run was 

made using the data of Garder et. al . (1964}, and the results are 

shown in Figure 5-1. 

No theoretical detennination of the error has been made for 

the method of characteristics. For purposes of this study, an esti-

mate of the error between the numerical and analytical solution is 

given by 

) (s-1) 

where f(t)is the error at a particular time level, Lis the grid 

number, h is the number of grids being used, C" (t) is the numeri ca 1 
* value of concentration in the ith grid, and Cz (t) is the analytical 

value of concentration for the Lth grid. Other measures of error, 

such as a least squares approach, could be used. However, from a 

computing standpoint, equation 5-1 is the easiest to determine and 

will give the relative merits of the numerical technique. 

To show the effect of grid size on the error, several runs using 

different values for the spatial increment were made . The results 

of these runs are surrmarized in Figure 5-2. The error for the MOC 

behaves very strangely, and does not seem to necessarily get smaller 

with smaller grid size. This erratic behavior of the error is be-

lieved to be caused by the method of calculating the average grid 

concentration and the relative positions of the moving points inside 

the grid. This problem will be discussed in detail in Section C of 

this chapter. 
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Some indication of the nature of the erratic behavior of the 

error shown in Figure 5-2 can be obtained by devising a particular 

grid dimension, velocity, time increment, and moving point location 

so that even though the moving points have moved they have the same 

relative positions in the grid at each time step. Using ~=0.10 cm/sec 

and At=2 secs, each point will move 0.2 cm each time step. If a grid 

dimension of 0.4 cm is chosen and two points per grid are used, then 

the distance between each moving point is 0.2 cm. Thus, at each time 

step, a moving point just takes the position of the point in front 

of it at the old time level, and all points are located in the same 

relative position in every grid. This concept is carried over when 

4, 6, 8, or 16 points per grid are used. 

The results of runs using the above concept are shown in 

Figure 5-3. The fact that the results for 2,4,6,8, and 16 points are 

the same in Figure 5-3 is not just graphical. The computer results 

were the same to all significant figures printed out. These results 

offer two possible conclusions. The first possible conclusion is 

that a relationship between the three parameters, velocity, time 

increment, and distance between moving points, has an effect on the 

error of solution. The second possible conclusion is that using an 

arithmetic mean to determine the average concentration of each grid 

is improper. Some type of weighted average may be more appropriate. 

These possible conclusions will be explored in detail in the 

following pages. 

The results from using one point per grid (Figure 5-4) also 

indicated an interesting phenomenon that was noticeable on other runs. 
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When using one point per grid, there is 0.4 cm between each moving 

point. Since the points only move 0.2 cm per time step, two time 

steps are needed for a point to move across a grid. Thus, the con-

centration of the one point determines the concentration of the 

grid for two time steps. In effect, the grid concentration is not 

changed due to convection. Every even time step gives accurate 

results using one point per grid, while each odd time step will give 

poor results, with the front lagging behind the actual front as 

shown in Figure 5-4. This produces a 11 jerky11 effect in the accuracy 

of the solution which is undoubtedly some of the reason for the 

erratic behavior of the error shown in Figure 5-2. A different 

method for calculating the average grid concentration appears to be 

needed. When sufficient points per grid are used to provide a pro-

per average grid concentration, then the MOC yields good results for 

the one-dimensional problem. 

B. Longitudinal and Lateral Dispersion in Steady, Uniform, One-
Dimensional Flow 

In the previous section, the MOC was shown to be capable of 

giving good results for the one-dimensional dispersion problem. 

The extension of this analysis to the slightly more difficult prob-

lem of two dimensional dispersion is the next logical step. A rec-

tangular region, O~X3 ~,R3 and O X2 J.2. is considered in which 

the flow is along the X3-axis with a steady, uniform seepage veloc-

ity,½,- A fluid of concentration, C0 , is injected over a portion 

of the input boundary (0 ~x2 s.,f,- ), while the remaining portion of 

the boundary ( .k--=== X2. '=: 12. ) is injected with a fluid of zero 
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concentration. A schematic of this particular problem is shown in 

the upper right hand corner of Figure 5-6. 

The differential equation and boundary conditions for this prob-

lem were given as equations 2-12 and 2-13. When the input concentra-

tion at x3=o is maintained for a long time, the concentration distri-

bution will approach a steady state. Harleman and Rumer (1963) 

neglected the longitudinal dispersion term in the differential equation 

and solved the steady state problem. Neglecting the longitudinal 

dispersion is valid because a2cjax: is very small at steady state . 

Their approximate solution for- the steady state case was 

(S- 2) 

The numerical solution of this problem using the MOC was com-

pared with the solution given by equation 5-2. Data for this run 

are: 25 x 20 grids on 0~X3 ~10 cm and 0~X2 ~4 cm, ½,=0.10 cm/sec, 

.D~ =0.01 cm2/sec, .DT=0.001 cm2/sec, points per grid= 4, 

4X3 =0 . 4 cm, .LJX2. =0.2 cm, $=2 . 2 cm, and L1t=2.0 sec . As was done 

for the one dimensional problem, the computer program bypassed the 

solutions of the pressure equation and velocity equation. Steady 

state conditions were achieved at about 200 seconds, or after about 

100 time steps. The computer time required to solve the dispersion 

equation for this problem was about 0.55 secs/time step. The step 

input of concentration was handled numerically by letting Cjc0 =l.0 
for X24, C/C0 =0.5 for X2 ::::.Jr, and Cjc 0 =0.0 for X2. 7}r. 

The numerical solution provided the transient concentration 

distribution, but no check of its accuracy was made since equation 5-2 
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is for steady state. However, if 1)
7 

is small and 1r is large, the 

concentration distribution at X2 =O is not affected by lateral dis-

persion, and the transient concentration profile along Xz=O should 

be the same as for the one-dimensional dispersion case. This was 

found to be true for this run as shown in Figure 5-5. 

The numerical results at steady state (t=2OO secs) are compared 

with the approximate analytical solution (equation 5-2) in 

Figures 5-6 and 5-7. The accuracy of the results appear to be quite 

good except for the area close to X3 =0. This should be expected 

since the assumption of ·(le/ ox;- =O in the analytical soluti on is 

not valid in this area. Some of this discrepancy may also be the 

result of the very steep concentration profile in the Xz-direction 

for the area close to X3=0. Although not tried, smaller grid dimen-

sions in the .X2-direction might improve the results. Figure 5-7 

gives the longitudinal concentration distribution at steady state 

for various values of Xz. · The small curvature of the lines in 

Figure 5-7 compared with the curvature shown in Figure 5-6 lends 

support to the assumption that d2
C / 1.1 x/ :::::::: O at steady 

state. 

The MOC appears to be capable of solving problems of longitudi-

nal and lateral dispersion with as much ease as it did longitudinal 

dispersion alone. No problems with 11 overshoot 11 occurred and no 

numerical smearing was noticed. 

C. Numerical Solutions Using the Tensor Concept of Dispersion 

One of the primary objectives of this work is to consider the 

dispersion coefficient as a tensor and evaluate the importance of 
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Figure 5-6. Comparison of numerical and approximate analytical solution 
for the one-dimensional flow, two-dimensional dispersion 
problem at steady state concentration. 
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using the tensor concept. To be perfectly rigorous, the dispersion 

coefficient was treated as a tensor in the previous two sections. 

However, in those instances the axes of the dispersion tensor was 

oriented para 11 e 1 to the coordinate axes X,, X2., and X3 • This 
* ])* -JI-- * D* resulted in the coefficients ])
21 

, ,2. , .D
3

, , D,
3 

, 32 , and 
])

:If- ¼ it- -A--
~3 all being zero, and])=]),])_=]), and])_= D_. Thus, 
, II L. ZZ T 33 T 

the previous analysis was reduced to working with longitudinal and 

lateral dispersion. 

In an isotropic medium, experimental results indicate that the 

dispersion tensor is oriented so that longitudinal dispersion is 

parallel to the velocity vector and lateral dispersion is perpendic-

ular to the velocity vector. Thus, if the velocity vector is 

oriented at some angle to the coordinate axes, then the dispersion 

tensor is also at some angle to the coordinate axes. In the original 

paper by Garder et. al. (1964), it was assumed that the velocity 

vector was essentially parallel to the X,-axis. However, in most 

complex groundwater flow situations the velocity vector will not be 

parallel to the coordinate axes, but will be constantly changing 

direction at different locations in the system. 

The general dispersion equation {equation 3-3) and the tensor 

transformation equations (equation 3-14) were derived and written in 

finite difference form so that assuming the velocity vector parallel 

to one of the coordinate axis is not necessary. Thus, any type of 

complex flow system may be analyzed using the proposed numerical 

simulator. 
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No analytical solutions are available for a multidimensional 

flow problem involving the proposed tensor transformations. To check 

the numerical simulation, the problems described in Sections A and B 

were made two-dimensional by orienting the coordinate axes at some 

angle to the flow vector. Solving these problems in the rotated 

coordinate system forces the use of the tensor transformation and 

numerical scheme. However, the physics of the problem have not been 

changed, and the resulting answers should be the same as those 

obtained in Sections A and B. 

After some preliminary calculations, the coordinate axes were 

rotated so that an angle of 45° existed between the velocity vector 

and the coordinate axes. The derivation of the stability criteria 

in Appendix E influenced the decision for using 45°. This is be-

cause at increments of Tr/4, 3TT/4, 51T/4, and 71T/4 the off diagonal 
!t" ])* :r ;f-tensor components 1),2 , 11, , ])31 , 13 , .D

23 
and ])n are at a 

maximum. Thus, the maximum influence of the tensor transformation 

would occur when the angle between the velocity vector and the coor-

dinate axes was given by nrr/4- (n=l,3,5,7 ... ). Figure 5-8 is a 

schematic sketch of the proposed numerical scheme. 

The one detail about the proposed scheme for testing the numeri-

cal tensor transformation that may provide trouble is the boundary 

conditions. As seen in Figure 5-8, the straight boundaries of the 

original column will be approximated by a series of rectangles or 
/ I 

squares in the rotated column. As .LlXz and /2X3 become very small, 

a better approximation of the boundary conditions can be obtained. 

In the computer runs, the results along the boundary grids were not 
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as accurate as they should be. However, moving away from the bound-

ary only a small distance, the results were found to be consistent 

with the analytical solutions. 

Longitudinal Dispersion--The first computer runs using the 

tensor transformation were made for the longitudinal dispersion prob-

lem discussed in Section A. Three different runs were made, and the 

data for these runs are shown in Table 5-1 as runs number T-1, T-2, 

and T-3. As can be seen from the data, lateral as well as longitudi-

nal dispersion was allowed to take place. However, a fluid of con-

centration C/t;=l.0 was injected across the entire interface 

0~ X2 !::. .12. This should result in JCj!JX2.=0, and elimina-

tion of lateral dispersion. Thus, an effective test of the numerical 

approximation for Jc/Jx; and Jcj;;,x; ax; is provided. 

The computer time required to solve this problem was approxi-

mately 0.50 sec/time step for the 20 x 20 grid network and approxi-

mately 1.25 sec/time step for the 38 x 38 grid network. This is the 

time required to solve only the dispersion equation since the solu-

tions of the pressure equation and velocity equation were bypassed 

for these runs. Thus, increasing the number of grids by a factor of 

3.6 resulted in increasing the computer time by a factor of 2.5. 

The results for Run T-1, in which equation 3-14 was used for the 

tensor transformation, are shown in Figure 5-9. For comparison, the 

analytical solution detennined from equation 2-10 is given. As can 

be seen, the results are quite good. No problems with "overshoot" 

occurred for this case. For X3 j)3 70.'f, some error is notice-

able on the 0.92 pore volume injected curve. This is because the 
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TABLE 5-1. Data for computer runs made to verify numerical simula-

I tion and tensor transformation of dispersion problem. 

I Ll t- L1X' ..1A~ v' V{ V' No. of Tensor 
(cml 

3 Run (sec) (cm) (cm/sec) (cm/sec) (cm/sec) Points Trans for-

I 
per Grid mation 

used 

T-1 1.5 0.2 0.2 .071 .071 0. l 0 2 yes 

T-2 1.5 0.2 0.2 .071 .071 0.10 2 no 

T-3 2.0 0.4 0.4 .071 .071 0.10 2 yes 

T-4 2.0 0.4 0.4 .071 .071 0.10 4 yes 

T-5 1.5 0.2 0.2 .071 .071 0.10 2 yes 

T-6 1.5 0.2 0.2 .071 .071 0.10 2 yes 

T-7 1.5 0.2 0.2 .071 .071 0. 10 2 no 

T-8 1.5 0.2 0.2 .071 .071 0.10 2 yes 

TABLE V-1. Continued. 

I No. of No. of 
.DL. ])r }J -el- .t Run Grids in Grids in x;- x'- (cm2/sec) (cm2/sec) (cm) (cm) (cm) 

I Direction Direction 

T-1 38 38 0.01 0.003 6.509 4.245 4.245 

T-2 38 38 0.01 0.003 6.509 4.245 4.245 

T-3 20 20 0.01 0.001 5.66 5.66 5.66 

T-4 20 20 0.01 0.001 7.358 3.962 1. 981 

T-5 38 38 0.01 0.001 6.509 4.245 2 .122 

T-6 38 38 0.01 0.003 6.509 4.245 2 .122 

T-7 38 38 0.01 0.003 6.509 4.245 2 .122 

T-8 38 38 0.01 0.003 6.509 4.245 2 .122 
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boundary condition of the analytical solution has been violated. 

The analytical solution is for a semi-infinite column; not a finite 

column. Thus, the end effects of the column became noticeable. 

Also shown on Figure 5-9 are the results of Run T-2 in which the 
¼ 

tensor transformation was not used. For this case, D,, = ])L, 
* * D22=])7 , and D,
2 

= ])~, =O. This means that the dispersion tensor 

was assumed to be oriented parallel to the rotated coordinate axes 

rather than the velocity vector. The results of Run T-2 indicate 

that by not using the tensor transformation, an error results in the 

numerical solution. The run without the tensor transformation gives 

a steeper concentration distribution curve than the analytical solu-

tion. Although not tried, the use of a larger value for~ should 

move the curve for Run T-2 nearer the analytical solution. 

Although the error created by disregarding the tensor trans-

formation is discernible, this is the maximum error that will occur. 

As the coordinate axes are rotated from the present 45° to either 

o0 or 90°, the two solutions given by Run T-1 and Run T-2 will gradu-

ally approach each other. Thus, in many practical problems, the 

error in determining the dispersion coefficient will probably result 

in greater errors than that created by neglecting the tensor trans-

formation. However, the tensor transformation required very little 

more computer time, and did result in a more accurate solution. 

Figure 5-10 shows the lateral concentration distribution for 

Runs T-1 and T-2 after injecting 0.46 pore volumes of fluid. The 

data along Xz/1, =0.5 correspond to those shown in Figure 5-9 for 

½t/)3 =0.46. Again, the numerical results using the tensor 
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transformation are more accurate than those without the transforma-

tion. As was surmised earlier, approximating the straight boundary 

of the column with a square grid (see Figure 5-8) has resulted in a 

larger error along the boundary. The numerical results for any 

va 1 ue of X3 /,'3 were genera 1 ly the same to three decima 1 p 1 aces for 

o . 3 X2. / .Ji L.. o . 7 • 

The no-flow boundary condition in Run T-1 was approximated 

numerically by setting the dispersion coefficients equal to zero for 

all grids along the boundary. Another way to treat the no-flow 

boundary is to use a reflective boundary condition. Run T-3 was 

made with a reflective boundary condition along -t..//z =O and a 

boundary condition with the dispersion coefficients equal to zero 

along X~/lz =1.0. As can be seen in Figure 5-11, the use of the 

reflective boundary condition apparently reduces the amount of error. 

The reflective boundary condition improves the results because the 

finite difference equation for the cross derivative 02.c/ JX3 dXil 

involves using a 11 nine-star 11 grid pattern (see Figure D-1, Appendix D) 

instead of the usual 11 five-star 11 grid pattern. This means that the 

derivative of concentration in the boundary grid has an influence 

further into the media. This influence is more adequately accounted 

for by the reflective boundary condition. 

Longitudinal and Lateral Dispersion--With the set up shown in 

Figure 5-8, the longitudinal and lateral dispersion problem dis-

cussed in Section B was solved in the rotated coordinate system using 

the tensor transformation relationships. In these runs, fluid with 

a concentration of ejcb =1.0 was injected over the interval 
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Run T-3 after 0.46 pore volumes have been injected. 
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o~ X2 ~Jr, and fluid with a concentration of G/¼ =O. O was 

injected over the interval .Jr L. X2 ~)2.. Runs T-4, T-5, T-6, 

T-7, and T-8 were made to study the effects of the tensor trans-

formation when both longitudinal and lateral dispersion take place. 

The data for these runs are given in Table 5-1. 
I 

The first run in this series (Run T-4) was made with .L\XJ and 
I 4X2 equal to 0.4 cm. The results from this run yielded more error 

than was tolerable. An examole of this error is shown in Figure 5-12 

after 2.3 pore volumes had been injected. This was assumed to be 

approximately at steady state. Since the results of Run T-4 are 

smooth and display no anomalies, the error was presumed to be the 

result of using large spatial dimensions in the region of the steep 

concentration profile along X,=.J. 
Ax I A '12./ To check this hypothesis, Run T-5 was made using and .t.lA 

equal to 0.2 cm. The results were much better as shown in Figure 5-12, 

but are still not accurate enough. The spatial dimensions could have 

been decreased more, and a more accurate solution would probably have 

been obtained. However, Run T-5 required the use of a 38 x 38 grid 

system or a 40 x 40 grid system when the boundary grids are included . 

This is 1600 grids and 3200 moving points. The computer program for 

this problem required about 25,200 words of computer storage. This 

was near the available computer storage, and decreasing the spatial 

dimensions further was not attempted. 

Since the very sharp concentration front along X2 =k appears 

to be causing the problem, then increasing the width of the dispersed 

zone might help. With this in mind, Run T-6 was made with 
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] 7 =0.003 cm2/sec instead of .Dr=0.001 cm2/sec. The results of 

this run are shown in Figure 5-13, and they are much improved. 

Except for the area near the inflow boundary ( X3 j)3 ..t:::..0.3) where 

the analytical solution is not good, the results compare favorably 

with the approximate analytical solution given by equation 5-2. 

Run T-7 was then made using the same data as Run T-6, except 

the tensor transformation equations were not used. These results 

are shown in Figure 5-14, and do not match the analytical solution. 

Figures 5-15, 5-16, and 5-17 give a comparison of the lateral con-

centration distributions for Runs T-6 and T-7 at various values 

of X3j)3 • Run T-7, using no tensor transformation, shows a 

flatter concentration distribution than the analytical solution. 

Figures 5-15, 5-16, and 5-17 do not show any 11 overshoot 11 or 

"undershoot". However, "overshoot" and 11 undershoot 11 did occur; 

but was generally restricted to the third or fourth decimal place. 

This small significance resulted in no noticeable 11 overshoot 11 in 

the graphical presentation. The use of the 11 nine-star 11 grid pattern 

to estimate the cross-derivative a2cjax2 JX3 is believed to be 

the source of this small amount of "overshoot". However, the magni-

tude of the "overshoot" (10-3 to 10-4) is much smaller than the 

overall error (10- 2), and is not considered to be a major detriment 

to the numerical scheme. 

A more serious obstacle to the success of the numerical scheme 

appears to be the moving points. In Section A, a lag in the con-

centration profile for longitudinal dispersion was noticed when the 

same points remained inside a grid throughout a time step. This 
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resulted in a "jerky" movement of the concentration front as was 

shown in Figure 5-4 for the case of one point per grid. In other 

words, the accuracy of the numerical scheme appears to be dependent 

upon the time increment selected for a given grid size. 

The problem with the "jerky" frontal movement was also notice-

able in the two-dimensional dispersion problem where two points per 

grid were used. The results for Run T-6 shown in Figures 5-13, 

5-15, 5-16, and 5-17 are after injecting for 150 seconds and are 

quite good. However, Figure 5-18 shows the results for Run T-6 at 

120 seconds and at 180 seconds. These results are obviously not 

as good as those for 150 seconds. Thus, the accuracy of the numer-

ical solution apparently depends on which time level is chosen to 

print out the results. The results for Run T-4, in which four 

points per grid were used, did not show this apparent accuracy 

dependence on time. As is seen in Figure 5-19, the results of 

Run T-4 are approximately the same for t=l20 seconds, t=l50 seconds, 

and t=l80 seconds. 

A conclusion which might be deduced from the above observations 

is that the number of points per grid does have an effect on the 

accuracy of the results. However, the use of hand calculations to 

move the points from location to location indicated that the rela-

tive position of the moving points in a particular grid at a given 

time level influences the results more than the number of points. 

Figures 5-20a, b, and c illustrate an example of this hypothesis. 

In Figure 5-20a, two points are centrally located in the grid, and 

points in the adjacent grids are located as shown. All points above 
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the diagonal are assigned a concentration of zero, and all points 

below the diagonal are assigned a concentration of one. No disper-

sion is allowed to take place. Under this setup, the average con-

centration assigned to the grid would be {1.0 + 0.0)/2=0.5. 

Now suppose that the velocity vector is oriented parallel to 

the diagonal, and that the magnitude of the velocity and time incre-

ment are such that at the next time step the points are located in 

the grid as shown in Figure 5-20b. Even though two points are still 

in the grid they are positioned along the right side of the grid 

and both are above the diagonal. For this case, the average concen-

tration assi-gned to the grid is {G.O + 0.0)/2=0.0. Thus, by going 

from one time step to the next, the concentration has changed from 

0.5 to 0.0. 

To carry the case to an even further extreme, suppose the 

magnitude of the velocity and time increment are such that at the 

next time step the points are located as shown in Figure 5-20c. The 

two points in this instance are located very close to the left side 

of the grid and are below the diagonal. Thus, the average grid 

concentration is (1.0 + 1.0)/2=1.0. 

Three completely different answers were obtained at three 

different time levels depending on how the points were positioned 

in the grid. Obviously all three answers cannot be right. The 

correct answer is, of course, 0.5 which was given by the point loca-

tions in Figure 5-20a. The phenomenon depicted in Figures 5-20a, b, 

and c is exactly the phenomenon encountered in Run T-6 in which 
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distorted values were obtained at certain time levels and accurate 

results were given at other time levels. 

The phenomenon discussed above could be reduced to a toler-

able level by increasing the number of moving points per grid. This 

is indicated by the fact that Run T-4 with four points per grid did 

not show an accuracy dependence on time. However, perhaps the key 

to the problem is not increasing the number of points, but deter-

mining the average concentration by another method. A weighted 

averaging scheme might help things considerably. 

Run T-8 was made with all data exactly like Run T-6 except that 

area was used as a weighting factor. The average concentration was 

calculated by 

C ) 
(S--3) 

where C is the average concentration, I I LiX2. and LlX3 are the 

spatial dimensions of the grid, Ci is the concentration of the ith 

moving point, LlAi is the "area 
I I and AAi. = L1 X2. ..6X3 

L=I 

of i nfl uence 11 of the ith moving point, 

The concept of an "area of 

influence" is schematically shown in Figure 5-20d. Using such a 

concept, points 1, 7, 8, and 9 will have some influence on the 

average grid concentration while the influence of points 1 and 2 

has been diminished. The results for Run T-8 using the weighted 

average are shown in Figure 5-21 after 120 seconds, 150 seconds, 

and 180 seconds. These results are much improved over those of 

Run T-6 shown in Figure 5-18. 
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Figure 5-21. Numerical results for Run T-8 at different time levels . 
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The conclusion that must be reached here is that the method 

of calculating the average grid concentration is an important factor 

in the numerical scheme. If some type of weighted average is not 

used, then a sufficient number of moving points must be used to 

guarantee a reasonable estimate of the average. Although 

Garder et. al. (1964) concluded that two points per grid gave 

sufficient accuracy, the results obtained in this study indicate 

the number of points per grid may need to be greater than two. The 

exact number needed is unknown, and would appear to be dependent on 

the nature of the problem being considered. 

If an adequate scheme for weighting the concentration can be 

developed, then a smaller number of points per grid may be used. 

Using an "area of influence" as a weighting function gave good 

results for the problem considered here where a uniform, steady 

velocity field was used. The numerical problems encountered in 

determining an "area of influence" for each point in a non-uniform, 

unsteady flow field appear to be numerous. Other weighting schemes, 

besides area, which could easily be calculated for the non-uniform, 

unsteady case might prove to be adequate. This problem is left to 

future thought and research. 

D. Dispersion Along Equilibrium Salt-Water Wedge 

In Sections A, B, and C, the numerical simulation of the dis-

persion equation and the tensor transformation of the dispersion co-

efficient was compared with known analytical solutions. However, 

the total simulator using both the dispersion equation and the flow 
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equation have not been used. A problem which seems favorable to this 

type of analysis is the salt water intrusion problem. Rumer and 

Harleman (1963) used a laboratory model of a two-dimensional con-

fined aquifer to investigate convection and dispersion along a salt-

water wedge. Columbus (1965) used a Hele-Shaw model to investigate 

sea-water intrusion in an unconfined model neglecting dispersion. Be-

cause Rumer and Harleman's (1963) data contained information on the 

value of the dispersion coefficients, a computer run was made using 

the data from one of their laboratory runs. 

The equilibrium salt water wedge, when subjected to the steady 

flow of fresh water to the ocean, will develop a transition zone. 

Using Darcy's law and the Dupuit-Forchheimer approximation, the spe-

cific discharge of fresh-water per unit width of ocean front, l , 
can be written as 

) 
(S-4) 

in which K=hydraulic conductivity, 'cf is the distance between the top 
• of the aquifer and the wedge interface, and h is the piezometric 

head (Figure 5-22). The medium is assumed to be homogeneous, isotrop-

ic, and no mixing occurs at the interface. 
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-
X, l J-!--~~------------ -----1 

Oc.edt1 

Figure 5-22. Equilibrium wedge in a confined aquifer. 

The condition of equal pressures in the salt water and the 

fresh water at each point along the interface yields 

(s-s) 

where .I;. and /s are the densities of fresh and salt-water, respec-

tively, and ~.l=/s-./;. Substituting equation 5-5 into equation 5-4 

gives 

(S-6) 

JI--
Integrating and solving for h , 

(s-7) 

The constant of integration, B, can be obtained by using the value 

of h at X, =O. Henry ( 1959) showed that the outcrop opening 

( !Jat X,=O) was given by, 

0 . 741 1 
KA~ 

f, 

( s-s) 
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Substituting equation 5-8 into equation 5-5 gives 

hf- _ 0.74-lj + .,/; f. 
(x

1
=0) - K 

Using equation 5-9 in equation 5-7, gives B = ( o. 74-/ J / K.) 2 

Thus, the piezometric head is given by, 

+1 f, . 
/f 

( s--1) 

(S-!O) 

Substituting equation 5-10 in equation 5-5, gives the equation for 

the interface, 

(s-11) 

Although the static interface between fresh and salt water will be 

subjected to dispersion, Rumer and Harleman (1963) showed that the 

position of the mean isoclor (C=0.5) is adequately predicted by 

equation 5-11. 

Rumer and Harleman (1963) gave the following information for 

their Run No. N-2: J=0.0733 cm2/sec, A~,1: =0.006, K =0.835 cm/sec, 

porous medium= plastic spheres, and median grain diameter =0.965 mm. 

A computer run was made using Rumer and Harleman's information, plus 

some additional data required by the numerical simulator. The data 

used in the computer run are: LiX,=6.0 cm, .t.~=6.0 cm, .Li:t=500 sec, 

f=9.885 x ,o-6cm2, </>=0.39, ./j. =1.000,/4=1.006, ..1f=0.006,A= .0116 

poise,fluid compressibility =0.0, rock compressibility =0.0, )=0.0, 

cx.=0.006, grid dimensions= 12 x 27, depth of aquifer= 60 cm, length 
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of aquifer= 156 cm, fi = 33 cm, f =0.0736 cm2/sec, moving points 

per grid= 2, and the acceleration of gravity= 980 cm/sec2. In 

addition to these data, the dispersion coefficients were assumed to 

be given by 

= o.66(v1/f2 (5"-12) 

and 

(5-13) 

The reason for using equations 5-12 and 5-13 is that Harleman and 

Rumer (1963) determined these relationships for the same medium 

(plastic spheres) used by Rumer and Harleman (1963) in their study 

of sea water intrusion. 

The computer run was made for 60 time steps or about 8.33 hours. 

Whether this was long enough for the wedge to reach equilibrium is 

unknown. The concentrations were not changing very rapidly, and the 

toe of the wedge was moving very slowly. Therefore, the wedge was 

assumed to be in equilibrium. The computer time required for solving 

both the flow equation and dispersion equation for this 12 x 27 grid 

network was about 3.4 sec per time step. 

Fluid enters the model at X,= 156 cm and leaves the model at X,=O. 
No fluid flows across X2 =0 and X2 =60 cm. Thus, the boundary condi-

tions are given by 

0 a:t X;. = o 
d.nd X;. = 60 cm ) (S-14) 
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and 

PcoJ9)is assumed to arbitrary and was taken to be 2~,576.40 

dynes/cm2 for this run. P (JS6Jo) was maintained at the necessary 

level to cause a fresh water flow of J=0.0733 cm2/sec. 

The boundary conditions given by equations 5-14 and 5-16 are 

believed to be adequate. However, the boundary condition given by 

equation 5-15 is subject to some suspicion. The actual physical 

boundary condition where the fresh water discharges into the ocean 

is very difficult to describe numerically. The computer run indi-

cated that some recirculation of fluid took place along this bound-

ary. If the simulator should be used to study the salt-water intru-

sion problem in detail, additional work on describing this boundary 

condition will be necessary. 

A comparison of the fresh water head calculated numerically and 

by equation 5-10 is shown in Figure 5-23. The comparison shows that 

the numerical results and those by equation 5-10 are very close except 

for the region close to the ocean front. This would be the region 

affected most by the use of the Dupuit-Forchheimer assumptions. Also, 

this region is probably affected by the boundary condition given in 

equation 5-15. 
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Figure 5-24 shows a comparison of the mean concentration line 

( C/C0 =0.50) calculated numerically and the interface location 

obtained from equation 5-11 . These results are good except in the 

vicinity of the wedge toe. Several factors may be contributing to 

this error. First, the numerical results may not be completely at 

a steady state. However, the 60 time steps computed required 205 

seconds of computer time. The concentration changes taking place 

were slow enough so that large amounts of computer time would be 

required to carry the solution to a real steady state. The present 

grant for computer usage would not allow such large amounts of 

computer time. Thus, runs of longer duration were not made. 

Another factor which proved a limitation on this problem can be 

seen in Figure 5-25. The concentration profiles are extremely steep. 

In fact, the profile is so steep that the grid concentrations ob-

tained from the computer were generally either C/c0 =l.O or C/C0 =0.0. 

Very few grids had a value for C/c0 between these two extremes . 

Thus, a large amount of interpolation was required to determine the 

line C/Co =0.5. To alleviate this problem, smaller spatial dimen-

sions are needed which will require more computer storage. This will 

necessitate making changes in the program for more extensive use of 

auxiliary storage (i.e. tape). 

Another problem is that of having the moving points heavily 

weighted to one side of the grid. This problem was discussed in 

Section C, and the use of a weighted average using the "area of in-

fluence" as a weighting factor proved successful. However, the un-

steady, nonuniform flow field encountered in the salt-water wedge 
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makes the determination of an "area of influence" difficult. Using 

more moving points per grid than the two used in this run would prob-

ably help this problem. 

The computer program indicates that a small amount of salt water 

flow (approximately 0.008 cm2/sec) occurred in the salt water wedge. 

This would have the effect of moving the wedge toe toward the ocean; 

although not by enough to account for all the discrepancy shown in 

Figure 5-24. 

Another factor which might have effected the location of the 

interface is the boundary condition given by equation 5-15 to approxi-

mate the ocean front. The computer results indicated that some recir-

culation of fluid was occurring along the two grids adjacent to the 

ocean. 

To investigate all of the above effects on the numerical solu-

tion would require additional computer funding. Such funds are not 

presently available. This should be made the object of some f uture 

research proposal. 
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CHAPTER VI 

SUMMARY AND CONCLUSIONS 

A three-dimensional fundamental flow equation for a mixture of 

miscible fluids flowing through a groundwater aquifer was derived. 

Also, a three dimensional convective-dispersion equation describing 

the movement of a tracer miscible with the groundwater was derived. 

Finite difference forms of these two equations were developed, but 

because of insufficient computer funds the three dimensional equa-

tions were never used. 

A computer program using the two-dimensional finite difference 

equations was developed and tested with success on problems with 

known analytical solutions. Assuming an isotropic medium, a tensor 

transformation for the dispersion process was tested extensively. 

Because the numerical simulation of the tensor transformation in-

volves the cross-derivatives of concentration, new stability crite-

rion were developed for the explicit finite difference scheme used 

to solve for dispersion. 

A. Evaluation of Numerical Simulator 

The results of this work will allow the study of numerous mis-

cible displacement problems in complex groundwater flow fields. The 

numerical simulator can be used for steady or unsteady flow, homo-

geneous or non-homogeneous aquifers, isotropic or anisotropic media, 



103 

constant densities or varying densities, and constant viscosities 

or varying viscosities. The use of the proposed simulator has 

resulted in the following: 

a. The one-dimensional flow problem with longitudinal dis-

persion can be handled without any difficulty, and ex-

cellent results were obtained. No 11 overshoot 11 or numer-

ical smearing was noticeable. 

b. The one-dimensional flow problem with both longitudinal 

and lateral dispersion can be handled sati sfactorily. 

No 11 overshoot11 or numerical smearing were observed. Small 

spatial dimensions are required along a sharp concentra-

tion front to adequately describe the front. 

c. Working with a rotated coordinate system, the proposed 

numerical simulation for the tensor transformation of the 

dispersion process was successful. The use of the 11 nine-

star11 finite-difference pattern to describe 'J
2cj;;x, J.X2 

was sufficient except along noflow boundaries. The use of 

a reflective boundary condi tion i nstead of setting the dis-

persion coefficient equal to zero helped alleviate this 

problem. 

d. Garder et. al. (1964) concluded that the method of charac-

teristics numerical scheme for dispersion would give good 

answers for as few as two points per grid. The results of 

this work indicate that the points per grid may need to be 

greater than two. The exact number needed is unknown, and 
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would appear to be dependent on the nature of the problem 

being considered. 

e. The method of calculating the average grid concentration 

proved to be an important factor in the numerical scheme. 

If an arithmetic average of the points located in a grid at 

a particular time level is used, then more points than two 

per grid may be necessary to obtain an adequate average .. A 

weighted average using the "area of influence" for each 

point was proposed and proven effective for a steady, uni-

form flow field. Calculation of an 11 area of influence 11 is 

difficult for an unsteady, nonuniform flow field. 
f. The numerical simulator was used to solve the salt-water 

intrusion problem. The numerical results for the fresh 

water head in the aquifer matched closely those obtained 

analytically. The numerical results for the location of 

the fresh-salt interface were good except in the region of 

the wedge toe. Insufficient funds prevented exploring the 

effects of smaller spatial dimensions and a larger number 

The efficiency of the numeri cal scheme would seem to make it use-

ful as a practical tool. However, large amounts of computer time will 

be required because the numerical solution must be carried out from 

the initial condition to the required time by increments of A-t. 

Most practical problems will also require the use of large amounts of 

~omputer storage. Thus, the present program will need to be modified 

so that more extensove use of external comnuter storage can be made. 
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B. Suggestions for Future Work 

Subjects not covered, or not covered adequately, in this study 

are: 

a. The investigation of a weighting technique, other than the 

"area of influence", which could be used to determine the 

average grid concentration for an unsteady, nonuniform fl O'ri 

field. 

b. A method whereby the pressure equation is solved for larger 

spatial and temporal increments than the dispersion equation. 

c. The effect of smaller spatial increments, more points per 

grid, and different boundary conditions on the salt-water 

intrusion problem. 

d. A study of dispersion in layered and nonhomogeneous porous 

media. 

e. A study of dispersion in anisotropic media. Some method 

of determining the pri nciple axes of the dispersion tensor 

would be required. After this is determined, the solution 

would be much the same as that already presented . 

f. The simulator should be used to solve an actual field problem . 

C. Observations 

The results of this work would indicate that hydrodynamic dis -

persion in a homogeneous and isotropic media is a valid and reproduc-

ible phenomenon. However, the actual significance of the dispersion 

process may be questioned because of the smallness of the dispersed 

zone when compared to the overall model dimensions. The conclusion 
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that dispersion is not worth worrying about except for the most 

noxious pollutants and radioisotopes would seem to be warranted. 

However, field tests at Berkeley by Lau, et. al. (1957, 1958) 

showed that the dispersion constants resulting from a pumping test 

were from 20 to 30 meters compared to less than 1 mm in the labora-

tory. This is a change of 3 orders of magnitude. Other field work 

in transport phenomena indicates that the dispersed zone is signif-

icant in real aquifers. An obvious conclusion is that mixing pro-

cesses not involved in laboratory models and homogeneous and iso-

tropic media are present in aquifers. This extra mixing process 

would appear to be the result of nonhomogeneous and anisotropic 

media which characterize real aquifers. 

The reason for the above observations are that the results of 

this study show a significant, but not overwhelming, difference 

between solutions with and without the tensor transformation. Many 

people may easily conclude that using the tensor transformation is 

not worth the effort. If the real aquifer magnifies the error 

between solutions with and without the tensor transformation as much 

as it does the dispersed zone, then a significant error may occur 

in the solution of field problems. 

This work is a first step in developing a numerical solution 

for miscible displacement which makes use of the tensorial nature 

of the dispersion process. Until work in real aquifers indicates 

otherwise, the numerical simulator should maintain the capability of 

treating the dispersion process as a tensor. The work on this project 
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needs to continue with a study of the dispersion process in a 

nonhomogeneous aquifer. 
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APPENDIX A 

DERIVATION OF THE 
FUNDAMENTAL FLOW EQUATION 

A fundamental flow equation for a displacement process involving 

miscible fluids can be derived by combining the law of conservation of 

mass, Darcy's law, and an equation of state describing the pressure-

volume-temperature-concentration relationship. The result is an equa-

tion involving two dependent variables, pressure and concentration. 

A. Continuity Equation 

An important relationship in fluid flow is the principle of con-

servation of mass. This principle is a statement of material balance 

with respect to a volume element fixed in space, and may be simply 

stated as: 

(Rate of Mass Inflow) - (Rate of Mass Outflow)= 

(Rate of Change of nass Inside Volume Element). 

Applying this principle to the volume element shown in Figure A-1 

results in 

M -M +M -M +M -M == x-~ Xf-~ X - x+AX,1. x - .e.x., J + 4 x., 
1,2. 1 z. 2.z 1.-r J 2.. '.1z 

where M M M = rate of mass inflow across faces x,- tlX,~ 
.(-4X, } X _AXL / )'._4)(3 d /~ 

1 T l. --r J z::- Xi. -.4¥0_ , an X3 - Ay/L respectively, 

M M AA = rate of mass outfl O'IJ across faces x, +-..:1¼ x + 4.r, > x -,. .ah I r,x f -<1x., 
, -;: 2. -;:- 1 J z:- .X.1...+.,jX,./ .2..• and X1 -t-.4X;V2.. respectively, 

Mvi:-= mass contained inside the volume element, 
and 

hip = a mass source or sink term which is oositi ve 
positive when a sink and negative when 
a source. 
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Figure A-1. Volume element of a porous medium used for develop-
ing continuity equation. 

Applying a Taylor series expansion about the point ( X,, X.z, ~) of 

Figure A-1 gives: 

M M JM.-1', LlX, + _I /·Mx (LU,)2.- ... 
x,- A:, = x, - dx., 2.. z t a x,2. 2. J 

dft\, L\X, lM 2 

MX AX,= MX + + d XL ( Ll.X0 + ... ) 
JJ., 2. 2. I JX.z. Z ,f 7 I I 

JMx.z. AX.z lM z 

Mx.z. +- ,1xz. = M)(z + + d XL ( LlX.z) + ... J 

ax2.. 2 2..! dX.2. 2. 
z. 

M - d !Vl..x3 ,1);3 
x1 + ~ J - l>\J -t- J X3 2.. -t- 2.1 

(i/l1x,3 ( LiX3')2.. + ... 
;;xJ z. (A-2.) 
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Neglecting second order tenns and higher, the following relationships 

are obtained from equation A-2: 

(A-3) 

Substituting equation A-3 into equation A-1 gives: 

;)M "'M dh1 1 M __ x, l\v+~AX +~Ax --~-M dX, .£.I", ;}.X2. .u 2. J.X3 LJ 3 - 'J-t P • 
(A-4) 

Each one of the mass flow rate components may be expressed in 

tenns of the fluid density, the dimensions of the volume element, and 

the volume flux. Thus, 

and 

where 

Mx, = .,,P Cf, L'iX2 Ll.X 3 .) 

Mx1. = / CJ-2. .AX, Ll X3 J 

M X:, = _JJ l 3 L1 x, A Xi. J 

M VE = ./ 1 s LIX, AX.z. .LlX3) 

Mp = /,, ()_ ) 
f =mass density of the solution, 

( A-Sa.) 

(A- s 1,) 

(A -Sc) 

(A-5d.) 

(A-Se) 

'J,, J 12..1 o/p =componen!s of. the vo 1 ume flux in the .X, - , .Xz. - , 
and .x.,-d, rect, ons, 

¢ =porosity of the medium, 

5 =saturation of fluid, 
3 -I 

Q_ =production term vii t h uni ts of L T , and 

./ji =mass dens i ty of oroduct i on f l uid . 
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Substituting equation A-5 into equation A-4 gives: 

(A-6) 

B. Fundamental Flow Equation 

To develop the flow equation, an expression for the volume 

flux terms is required. Darcy's law is assumed to be applicable 

for this flow situation and the axes of the cartesian coordinate 

system ( X,, Xz, X
3

) are assumed to coincide with the ·axes of the 

permeability tensor. Thus, the volume flux terms are given by: 

where 

- - lx, Ir (..E.i!.. + L) Ell) 1, - A a X, / if d X, J 

= - -t)(z, '--,.(_El: + .,,P. ~) C/z A ax2 3- ax2 ; 

<l = _ /i.x, J,,.(_ll_ + .f' ~) 
IP A oX3 j d.X:, , 

,A-x ; 4,. > Ix =absolute permeability in the X,-.) Xz-; and 
' 'J. 

3 directions respectively, 

lt- =relative permeability to fluid, 

CA· 7) 

X -., 

A =viscosity of fluid at reservoir conditions, 

P =fluid pressure, 

<j} =acceleration of gravity, and 

h =the elevation of the volume element above an 
arbitrary datum which is perpendicular to the 
direction of gravity. 
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After substituting equation A-7 into equation A-6, the results are 

J [/>.J.x~/Jr-( JP LY Jh) J t- dXz. A ctXz. + /d' JX2 t1X,AX3 L1Xz + 

-t 2- [_;>lx,Rr-( JP + / J;,., ),6x Llx]Llx 
dX3 A JX3 g dX3 1 2 3 

= ;t (./rps t1X, LlXL LU3) + /,, {1_ 

Multi-phase flow requires the development of an equation 

similar to equation A-8 for each phase being considered. Such 

equations have been developed for three-phase flow by 

Breitenbach et. al. (1968b). The derivation being developed here 

is to be used in a single-phase flow simulator in which 5= I and 

-J,,. = I . Thus, equation A-8 reduces to 

( 4-8) 

(,4-CJ) 

The ri ght hand side of equation A-9 contains the porosity;¢, 

which is assumed to be a linear fun ction of pressure given by 

) 
(A-10) 

where Cr i s the . formation compressi bility fa ctor, <A i s the original 
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value of porosity, and is the original value of pressure. The 

density, ? , varies with .X,, .X2 , ~, and t, and is dependent upon 

pressure, P , concentration, C , and temperature, T. Assuming 

isothermal conditions, the effects of temperature may be neglected 

and an equation of state of the following form is assumed: 

(A-11) 

where...8is the fluid compressibility, c/... is a proportionality factor 

re 1 a ting concentration and density, and the subscript ( o ) refers to 

the original value of the variable. 

Differentiating equation A-10 with respect to -f: gives 

CA -12.) 

Likewise, differentiating equation A-11 with respect to -t gives 

CA-13) 

Expanding the right hand side of equation A-9, introducing 

equations A-12 and A-13, and assuming that the size of the volume 

element ( AV= AX, AX2 LlX3 ) does not change with time gives 

(A-14) 
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Substituting equations A-10 and A-11 into equation A-14 gives 

+ C o1- (C -c.,) ] J P + ,,1, [ J 
F /o d t o- 'fo LLY, .4.Xz LIX3 +-

(A-ls) 

Si nee CF and fi are of the same order of magnitude ( Ji6 in most 

cases), then 2.CF.fi(P-1;) L.L. /0- 6 for small pressure 

changes and can be neglected. For small concentration changes, 

CFcJ.. (c-C.,) <( <-- Jo- 6 
• Also, the term CF(P-f'o)'-'-} 

for small pressure changes. Thus, for small pressure and concentra-

tion changes, equation A-15 may be approximated by 

Substituting equation A-16 into equation A-9 and using shorthand 

tensor notation gives 

where i =l ,2,3 is a cartesian coordinate system ( X,, ~, --t,), 

L1A: =cross sectional area perpendicular to flux i,, and 

LlV=volume of volume element, AX, AXz.AX3 • 

(IJ· lb) 

(A-rr) 
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Equation A-17 is the fundamental flow equation for the saturated 

flow of a solution containing a miscible tracer, and will be re-

ferred to as the flow equation. 
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APPENDIX B 

DERIVATION OF THE DISPERSION EQUATION 

To solve the flow equation (equation A-17), a relationship for 

detennining the concentration C is needed. This relationship may be 

obtained by expressing a continuity equation for the dispersing trac-

er. The problem is fonnulated on a microscopic basis and then aver-

aged over a cross-sectional area of the porous medium to give the 

desired macroscopic equation of dispersion. 

Two different size elements , a fluid element and a representa-

tive volume element, are used in this analysis. A fluid element with 

very small dimensions is used inside the pores of the porous medium 

for the microscopic analysis. A representative volume element of the 

porous medium is defined as the smallest volume around a point such 

that adding an infinitesimal volume has a negligible effect on the 

va1ues of medium properties such as porosity. The representative 

volume element is used in the macroscopic analysis and contains both 

medium and fluid. 

A. Continuity Equation for the Tracer 

The continuity equation for the tracer is given as: 

(Rate of Mass Inflow of Tracer) -

(Rate of Mass Outflow of Tracer)= 

(Rate of Change of Tracer Mass Inside Volume Element). 

When applied to a representative volume element of porous media with 
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the dimensions of .LlX,, .LLX.z., and.LL\'3 , as sho1tm in Figure 8-1, the 

results are 

(B-1) 

=Rate of mass inflow of tracer across 
faces x,-*, Xi. - ..c.¾, and X3 - ..o'¾-
respectively, 

(Mt{+~).Mt)x+~/Mt-1+~ =Rate of mass outflow of tracer across 
'2. z " 2. facesx,+~,x2 +.t..x¼ , andx_,+AX~.2. 

respectively, 

Mtv£=Mass of tracer contained inside the 
volume element, and 

Mtp=Mass source or sink term for the 
tracer which is positive when a sink 
and negative when a source. 

J...-_ _, !. Mi-P 
(M) 

t X, _ .1>.X, Z. _.____• 
(Mjx,+AX, 

2-

Figure 8-1. Volume element of a porous medium used to develop 
continuity equation for tracer in miscible fluid 
flow. 
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Expanding each one of the mass flow rate terms in a Taylor 

series about the point ( x,J J.z.) X3 ) gives 

(M ) ( ) ;) (M ) ..1.x, + 21_, /- (:;>: (A
2
X)z.- ... ; 

t )I - L>.)/,,/_ = Mt X - d X + )( 
I /2. I I I I 

The tracer mass flow rates may be expressed in terms of the 

tracer mass flux, the dimensions of the volume element, and the porous 

medium properties, i.e. 

CB-JQJ 

.) C:B-31) 

(.l- 3 c) 



and 

where 

131 

Mt:VE CB-3d) 

(B-3e) 

C =average tracer concentration in the volume ele-
ment, mass of tracer per volume of solution, 

T"' T* J.,. . fl t . X .J, >..;2..> 3 =macroscop1c tracer mass ux componen s in ,- , 
X.i.-, and X

3
-directions respectively. 

f =porosity, 

S =saturation of phase containing tracer, 
3 _, 

Q. =production term with uni ts of L T , and 

Cp=tracer concentration of production fluid. 
}f- }I- -JI-In equation B-3, the mass flux components, , , and J'3 , are 

defined as the mass flow rate per unit pore area. The reason for 

choosing a flux per unit pore area is because the microscopic fluid 

elements will be averaged over a cross-section of the volume element 
-t- ,t .,. 

to yield J; , :J.z , and :J3 • Since fluid elements only exist in 

the pores, the result is a flux in terms of the pore area rather than 

gross area. 

Substituting equations B-3 and B-2 into equations B-1, neglect-

ing the second order terms in equation B-2, and using tensor notation 

gives 

(B-4-) 

where i.. =l ,2 ,3 corresponds to X!J X2.; and X3 , coordinates, and 

4Ar=cross -sectional area oeroendicular to mass flux component>J.,~ 
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B. Determining the Tracer Mass Flux Components,~ 
,. 

To accomplish this portion of the derivation, the microscopic 

mass flux equations are developed and then averaged over a cross-

sectional area of the representative volume element to give a statis-

tically meaningful macroscopi c mass flux equation. 

Microscopic Analysis- -For a fluid element inside a pore of the 

porous medium, the diffusive mass flux of the tracer with respect to 
I\ 

the volumetric velocity, V , is given by Fick 1 s first law (Bird, 

Stewart and Lightfoot, 1960): 

(B-s) 

-where J = diffusive mass flux of the tracer, 
.,, 
C = concentration of tracer in fluid element, -I\ vr= velocity of the tracer in fluid element with respect 

to a fixed coordinate system, -\/=volumetric velocity of fluid element, and 

11= coefficient of molecular diffus i on. 

A fluid element in a porous media must follow a tortuous path 

as it moves thru the pores . Let a tortuous path of length drr be 

depicted as shown in Figure B-2. The diffusive mass flux term 

may be written as 
..., 

...., cJ C 
J = - ])d c:Jtr' (.B-6) -The determination of J" as a funct i on of the difference in 

concentration between the ends of the tortuous pat h and the direct 

di stance between the ends i s desirab le . Thus, equation B-6 may be 

expressed as 

(B -7) 
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x, 

Figure B-2. Tortuous path of fluid element. 

-., 
The diffusive mass flux, :J, does not have to be in the direction of 

Jq/dE because the tortuous path varies in direction from point to -point. Projecting 0 as given in equation B-7 onto the f-direction 

(the axis of the tortuous path) results in 

= I J) . }11 I UJS 0 _) (B-t) 

where /J} = magnitude of f , 
Jij/ = magnitude of unit vector in &"-direction, - -0 = angle between J"" and le , and 

CosB= ~rr . 
Substituting equation B-7 into equation B-8 gives 

The components of 1' in the Xi. C i. =~ 3_) coordinate sys tern are given by 

:r i (13-1~ 
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/{/ = magnitude of Ye , 
}ix .. /= magnitude of unit vector in xi - direction, 

0 = angle beb-1een and 

Cos&= JX;./df . 

-I xi. , and 

Substituting equation 8-9 into equation B-10 yields 

3y the definition of a total derivative, 

Equations B-11 and B-12 combine to give 

T - - D &JL)z Jxi, Jx;. Jc 
i - d ( c/ er d , cJ 6 a .xi 1 

( Jj'-;i) 

CB-12.) 

CB-13) 

where the double summation convention of tensor notation has been 

is analogous 

to the reciprocal of a term commonly referred to as tortuosity, and 

is a tensor of rank two which 11 defl ects II or 11 twi s ts II the gradient of 

concentration to form a new vector oriented in a different direction. 

By definition, let 

" = ( d!)2. dx. l!J 1";J - d rr d S d e . (JJ -14) 

Substituting equations 8-13 and B-14 into equation B-5, the following 

form of Fick's law for describing diffusion on a microscopic scale in 

a porous medium is obtained: 
A 

" JI I\ II I\ c)C 
C \.I = C V - _D T . '"'X . t-, t. d '-J o J 

CB -15) 
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Macroscopic Analysis-The objective here is to obtain a relation-
,1-

ship for the components, , of the tracer mass flux vector corres-

ponding to the representative volume element shown in Figure B-1. 

Equation B-15 gives the tracer mass flux for a fluid element in a 

pore of the representative volume element. Since the cross-sectional 

area, .AAi , of the representative volume element is perpendicular to 

the tracer mass flux component~ ~,1-. the total mass flowing thru this 

cross section is just the sum from all the fluid elements located in 

AA · , i.e. L 

J ac (J-16) (Total tracer mass) . = Jcv. JA. - ])T. ax- clAi .) 
L L ' d ,,, J 

(/.SAA;.) (jSAA;.) 

where dA- = L 
the area of the fluid element parallel to -1A-l The 

* tracer mass flux) J;J for the representative volume element may be 

expressed as 

*- (Tota 1 tracer mass h 
Ji - ¢ S 11A;, J 

(13-JT) 

where <f 5 .1Ai: is the total pore area through which the fluid moves. 

Substituting equation B-16 into equation B-17 gives 

(B-JJ) 

To evaluate the terms of equation B-18, the following definitions 

ar2 made: 
,., 0 

C=C-tC 

) CB-!'/) 
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A 

in which C, V-, and T . . are the actual values of the variable at 
L LJ 

a point; C , Vi , and 77,,/ are the averaged values of the variables 
0 O O 

over the cross-secti ona 1 area, LJAi ; and C , Vi , and ~;j repre-

sent the deviations of the variables at a point from the cross-sec-

tional averages. By definition, the spatial average of the variables 
0 0 O 

C , V. , and T . over the cross-sectional area, LlAl,. , is zero 
L LJ o -0-

( i.e., C = 'V- = T . . = o ) . Using equation 8-19 in equation B-18 
l '-J 

gives 

+S V- C dA - + 1, L 

(B-2U 

But by definition of the mean, equation B-21 is 

T * = C V. + C \/-,. I. L 

o o o ]) dC + C ½ + C v~ - d T;j axj 

(B-22) 



137 

The following observations are made: 
0 0 C '~'-. , and Ti.J. are zero. 1. As previously noted, , v 

2. The average of a derivative is equal to the derivative 

of the average [Kells (1950), page 78]. Thus, 

( a c / J x 3) = ( a cj a Xa) = o 

3. Medium properties and fluid properties are assumed to 

be uncorrelated. Thus, 

tj ( 'Jc/ JXj) = D 

With the above observations, equation B-22 reduces to 

(.B-23) 

Thus, the averaged mass flux of the tracer over a cross-

sectional area of the representative volume element is composed of 

three different flux terms. The first is a flux, CV· /., 
, due to 

convection with the average velocity of the fluid. The second is a 
0 0 

flux, C V-I, , which will be called the dispersive flux and is 

the result of microscopic spatial variations in velocity and con-

centration. 

diffusion. 

The third is a flux, ]) T -
J 't} 

ac 
JX,j , due to molecular 

Disoersive Mass Flux-In order to use equation B-23, some 

relation between 
O 0 

C V-I, and C has to be postulated. By analogy 
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with Fick's first law of mass transport, the following relationship 

is assumed: 

( ~-24-) 

v1here J\ is ca 11 ed the dispersion coefficient of mass transport in 

porous media. The dispersion coefficient, ])P, is not a physical 

property characteristic of a given fluid; but depends on position, 

direction, velocity of flow, and the type of porous material. 

Making such a postulation as equation B-24 is not without some 

foundation. For years, the theory of turbulent flow has used an anal-

ogy with Newton's law of viscosity to approximate the Reynold's 

stresses. Also, experimental evidence tends to match the approxi-

mation used in equation B-24 . 

Experimental evidence also indicates that ]JP is not isotropic, 

but that transverse dispersion may occur and is less than dispersion 

in the longitudinal direction. Using a statistical approach, 

de Josselin de Jong (1958) determined analytically that longitudinal 

dispersion is larger than the transverse dispersion. His result is 

approximately a normal distribution of concentration in three dimen-

sions. 

Because longitudinal and transverse dispersion are different 

and must be invariant under a coordinate transformation, J)P must be 

treated as a tensor. By definition 
0 0 

C V. i is a vector or tensor of 

rank l . Also by definition Jc/ ';)Xi is a vector or tensor of rank 1. 

Thus, equation B-24 is of the form 

(Tensor of Rank l) = -(Tensor of Rank 1._) (Tensor of Rank l), 
(JJ-25) 
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Since .DP is an anisotropic 1uantity, then the fonn of equation 8-25 

indicates that the multiplication must be that of finding the inner 

product of two tensors and that J)P must be a tensor of rank 2. Thus, 

equation 8-24 may be written as 

(JJ-26) 

Introducing equation B-26 into equation 8-23 gives 

* D dC JC J = CV. - .. -ix - ])., T . '"\.x 
L (, LJ (7 J a I..J U 'J Cs-27) 

C. Dispersion Equation 

The results of the flux determination given in equation 8-27 

are now introduced into equation B-4 to yield 

- tx.. ( C vi 1 s 11A;,)4Xi, - cp Q_ . (JJ-2K) 
l, 

Equation 8-28 is the general form of the dispersion equation. How-

ever, since equation B-28 is to be solved numerically by the method 

of characteristics, a different form is required. Let the disper-

sive and molecular flux terms be denoted by J)]), and rewrite 

equation B-28 as 

: t( <l 5 AX, iiX2 X3 c) = ])]) - d;;_ (CV,·¢ 5 AAi: )Llxi 

- cp a.... (B-2V 
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The volume flux of a fluid flowing through a porous medium may be 

expressed as 

) 
(B-3o) 

where ji is the volume flux in the it1, direction. Using equation 8-30 

in equation 8-29 and chaining out the derivatives of concentration 

results in 

.I)]) Cp Q_ 

C AX, L\X2 Ll-!, 

( B-31) 

From Appendix A, equation A-6 for the flow equation is 

Chaining out the derivatives of density in equation B-32 gives 

(:B-3i) 
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The left hand sides of equations B-31 and B-33 are equal. Thus, the 

right hand sides must be equal also, i.e. 

])]) 

(B-34-) 

Collecting like terms gives 

- q.(3S:. - £ a/>)-
IJL a.x- ..P -ax-L /.. 

CB-3.5) 

Differentiating equation A-11 of Appendix A, the following relation-

ships are obtained: 

and 

CB-361) 

Substituting equation B-36 into equation B-35 and collecting like 

terms gives 

¢s(!-~) ;~ 

(B-37) 
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where j;. is given by equation B-30. 

equation B-37 becomes 

(
J>- ci--C) 

Upon division by Q>S .J 

ac ( ) ( J)]) ) V d C 
3-t = /-o1-C tp5 L1X,AX2 AX.1 - i J);, 

(J-3!) 

If the volume element is completely saturated, i.e. 5; I , then 

_ _ (c -c) & ~c.,B f.JP . ..ll:.) ½ ax. p r/J4-X,A1iLJx~ + ./-d.C l ~t- + ½ d.x,; • 

CB-3'!) 
Equation 8-39 is a form of the dispersion equation containing 

two dependent variables, pressure and concentration, just as in the 

fundamental fl ow equation. .1\ssumi ng that the terms of equation B-39 

containing pressure and comDressibility may be neglected, results in 

JC _,,o d [ Jc ] Tt = ¢; L:.Ai. (./'- cJ.c) c>X, (JJij + 41.;) rj; .AA;_ d Xj 

- V, ~;, - ( Cp - C )(¢ AK, fx, AXJ (:i- 4-!} 

Equation B- 40 shall be called the dispersion equation. 
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APPENDIX C 

DEVELOPMENT OF FINITE DIFFERENCE 
EQUATIONS FOR THE FLOW EQUATION 

Since the same flow equation will be solved for all grids, a 

finite difference equation can be developed by considering a central 

grid ( i, , j, l) and the six irrnnediately adjacent grids as shown in 

Figure C-1. The general form of the flow equation given by 

equation A-17 may be rearranged into the following form for develop-

ing the finite difference equation: 

J 

where Xi. ( i=tz..,3 ) indicates a cartesian coordinate system. 

i-~;.,i / i.+~"j.) .. 
/ 

., ., 
/ ., 

( c-!) 

Figure C-1. Central grid and six adjacent grids with the sub-
scripting used in the finite difference equations. 

Because of the syrrrnetry of the spatial derivatives in 

equation C-1, only a detailed descriotion of the finite difference 
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equation in the X,-direction will be given. Analogous equations 

for the Xiand Xj-directions may be easily developed. Looking at a 

point on the boundary between grids i.1i.1 l and i+~J~ i , the tenns 

( JPjax,). , . , and ( 'Jhj;;x,). ,, . , are approximated by: 
L+Yz.JJ.J,Z, ffl.. 

p . . ' - p . . J. 
t+I, a- I L lJ d/ "R-

..6. X, ) 
( c-2a.) 

and 

(C-2 J.) 

Likewise, for a point on the boundary between grids ( :J..1 1- and 

i-1 -i 1J. I OJ 

p . . I - p . A 
d) i2 i-J.J ; 1 1t 

AX, J 

and 

The X,-component of the left hand side of equation C-1 may be 

approximated by: 

(c-31,.) 

(c-4-) 
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Introducing equations C-2 and C-3 into equation C-4 gives 

Cc-s) 

In developing equations C-2 thru C-5, the grid dimensions,.&X,, AX2 , 

and AX., , are assumed to be constant. This is just a matter of 

convenience. Allowing the grid dimensions to vary spatially can be 

accomplished without great difficulty. 

The coefficients of the form [ ( lx,AX1- LlX.J-1/ A. ], . .,.~.i.;i are 

calculated using the harmonic mean concept: 

(c-6) 
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Using equation C-6, the following definitions are made: 

(c- 71,) 

(C-7c) 

Cc-71) 

(c-1e) 

(C-lf) 



148 

-{.,_ = o.s (//+,Jjj/l + /Ji,,J~A) 
./{ = o. s- ( _;:_,, i, 1 r /,.,,j.J ,J 

-r == {) . 5 ( J;_ -1-f/ ./_ + _. l) 
l. :Id J .lo.171. 

/;- = 0. S ( ./j -i-J II -f- /£ ~- ') z. .Id .IR, JOJ 

/;T = 0. 5 ( ..; i+-1 f- /l -1· A) 
'3 .Id/ ".l'.J 

~- = o.s(.P . . , -r / . ,) 
'J t,.J;j/ 11..-1 '.1J.1 ,z 

11 h: = ( h;, +~ J~ J - hi .. , ) 
I 

L1 h; = ( h,.-~i.1' - ;,".!;~,) 
.t1h;2 = ( hid-t~, - h ~i J,) 
A h;

2 
= ( h '-.,j-'l/J - h,, 11 ,) 

L1h-r =(h - ., -Ji .. ,) 
X:, ,.,;; 71/.+I L_,J1 'R, 

,d h~ = ( hL~i,,-1 -h,,iJ i) 

(c-13) 

(c.-7 h) 

(c-Ti.) 
( c-7 j) 
( C-7-J.) 
(c-71) 

(c-?1n) 

(c-7 n) 
(c-7 p) 

(c-71) 
(C-7 r) 
(c- 7 s) 

Using the notation of equations C-7 and substituting difference 

approximations for all pressure and elevation derivatives, the left 

hand side of equation C-1 may be written as: 

+- ({+)2-N/ J Ah;, + (~,-)
2 »x: ! Ahx~ + (-{:)

2 _A/2: 1 Ah: f-

+ ({_)z Iv,,: J Ah~ + C/;/)2 N; tJ t1 h{ + {/;3-f;vx; J Ah~ . 
cc-8) 
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The right hand side of equation C-1 contains derivatives with 

respect to time. The derivatives of pressure with respect to time 

will be represented by an implicit finite difference form: 

pt+' - pt:. 
ijjjl,. L.JJ.1l 

ht: (c-9) 

The derivatives of concentration with respect to time will be 

approximated from the previous, not the present, time interval: 

ac 
Ji: ) 

(c-10) 

where ~t0 is the time increment used in the preceding time step. 

Combining equations C-9 and C-10, the right hand side of equation C-1 

becomes: 

t'hS = 

(C - / i) 

An implicit finite difference representation of equations C-1 

may be obtained by combining equations C-8 and C-11 to give: 

+ 



I 
I 
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G
_,P,(1 ) [ +)2. + + Jt)2. - -+ "'AX AX AX - - t - (./;, Nx, 1 Llh,., + ( x, N.f, j Ah,., -t-

I Z. '.J L.1J.1P.. 

The analogous implicit finite difference scheme for the two-

dimensional vertical flow problem may be formulated by allowing no 

flow to take place across grids in the X2 direction, i.e. d_¼~ ::.oand 

ohjJX2. ==- O . The fl ow in the X,- and X_,- di rec ti ons wi 11 be in terms of 

fl ow per unit width, i.e. AX
2 

= / . Under these conditions, 

equation C-12 reduces to: 

All coefficients in equation C-13 are calculated from equation C-7 

with i1X2 ==- I for a 11 grids. 
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APPENDIX D 

DEVELOPMENT OF FINITE DIFFERENCE 
EQUATION FOR THE DISPERSION EQUATION 

A numerical solution to the dispersion equation will be 

obtained by using the method of characteristics. The dispersion 

equation was given by equation B-40, and is reproduced here in the 

form: 

( 1) ~,) 

where W = .,,.P and ~- c,.C , 
,l(. ]) .. D .. + ]), T. 

'-J 'J t:t lJ 

Following the development of Garder et. al. (1964), the se~ond 

order terms of equation D-1 are regarded as given functions of X, t XLt 

X3 , and --t--. and equation D-1 treated as a first-order equation. 

Such an equation will then have four characteristic curves which are 

the solutions to the following ordinary differential equation: 

and 

de -dt - w --

Jx, v. 
dt = ' 

clX2. :: V 
d t z. 

JX3 = V. Jt 3 

J 

) 

) 

<j;All;_ 
J [ * ;}C ] 

JX~ ])ii ip AA: JX; 

CP-z) 

(])-3) 

(])-4-) 

CP-s) 
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A fifth characteristic curve could be written for the production tenn, 

(Cp-c) ( a/tP ..1x, AX2.AX3 ) • However, the production term will be 

treated as a boundary condition of the moving points described below . 

In addition to the usual division of the flow region into a grid 

system, a set of moving points is introduced into this numerical soiu~ 

tion. Each one of the moving points has associated with it a concen-

tration, which varies with time. Within each time interval, the moving 

points are relocated using the finite difference equations, 

tfl -t I/ t-+I X,i -= X,1 + At v,1 J 

t+i xt t+I (JJ -7) X2 = + llt Vi.e ) A ZJ 

and 

t+1 t t+I CJ)~g) x31 = x3_; + .1t ) '2 

where -t+I is the new time level and tis the old time level . Each 

cell in the grid system is assigned a concentration equal to the 

average of the concentrations of the moving points located inside 

the eel l at time -t; + I The concentration of the cell is then 

modified for dispersion by solving the explicit form of 

equation D-5. 

Because of symmetry only a detailed description of the finite 

difference form of equation D-5 in the x, -direction will be given. 

Expanding the x,-derivative on the right hand side of equation 0-5 gives 
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As can be seen, equation D-9 involves the cross deri~dtives of the 

concentration. Also, there are six more second order terms in 

equation D-5 in addition to the three given in equation 0-9, i.e. 
L[ ] and _g__ [ ] aX2 JX3 · 

To develop a finite difference form of equation 0-9, consider 

the cell (L, J, J.) as shown in Figure D-1, and the 18 indicated 

adjacent cells. The spatial derivatives at a point on the boundary 

between cells (i.-'iJJ,) and (i+~j.1l) may be approximated by 

c . · j c.-~ t.t-~ J,1 TL - '.1 li Jll, 

AX, J 
()-/()a.) 

J 
(]) -lb),) 

(])-I/Jc) 
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i, i-1 /J.-1 J "J 

i-1 j -A-1 J I i,J~-1.-t i+~ 3)~1 
I 

I 
/ 

I' I i,j+;l-1 

i-1 i-1 '- i..1J-l.1/L k;:_,, .I / 

J 

i-~ -J.1 1 ~iv i+-~jJ ! 
I 

I 

I 

. J ) ilj+~ l A l-~J°+t I 
I 

I 
I 

1,,dAt1v 
) 

i-~ j)+t I i+~ i.1l+-1 
'1i.1 l.+ 1 

':,,i+~ l.+1 

Figure D-1. Three-dimensional grid system with subscripting used to 
develop the finite difference form of the dispersion 
equation. 
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Using a linear interpolation scheme, 

c. A,== ci..,J+1.,J. t- C;,+~i_t1., Ii. (])-J/Q.) 
t+J/2 > j+~ 2- .) 

Ci.+½) -i-~ l 
ci..,J-~ A + ci.+'-1 ~--~ -4. CP-JJ.t) 2- ..) 

C·-i +c. l 
C i.+'/2) .1; j+, 

LJJ; t-1 L+1Ji_l +__!__ (])-/Jc.) 
2. ) 

Ci+~J i.1 i-1 
C· . J + C . . A L_,;J.I -/ L+~-Jl, -/ (J) -JJJ) 2... 

In writing equations 0-10 and 0-11, all spatial increments, 

fJX,, .LlX2 , and ../J.X 3 , are assumed to be equal. This is in 

keeping with the finite difference grid system proposed in Chapter IV, 

and the problems that are solved in Chapter V. 

Substituting equations 0-11 into equations D-10 gives 

) CJJ-12c0 

0 -12)) 

(1>-12c) 
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Similarly, for a point on the boundary between cells ( i, j, I) 
and (i-1 ,J·,!), the spatial derivatives are 

C .. D 
l...i;JJ'1-

AX, ) 
(])-J3a.) 

(D-13,l) 

Now using a central finite difference scheme, equation D-9 may be 

(J)-14) 
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Introducing equations D-12 and 0-13 into equation 0-14 gives 

-t- (~;t/JAXL.&x:J}_-f-1/4 ., Ci, ·r1,,+ci+~i+~!-ci/J._&,-c,+-I ·_, -
4AX, AX.z_ 

_ (P,:rpll.Xz_ 4~)1.-½,;",I. (ci,,1·+~,+ci.-~;"t~-i - cid-~,-(---~l'" l.1~ + 
4AX, AXz.. 

+- CJ~: r)J Ali AX3J+½ J l ( Ci.,,:1~ /it, +(r~i//J.+1-C ~;;~J-1-[t"+t i ~-~J ..,,,_ 
4-..1x, AX3 

_ ( 11: t/J l,Xl A~)i-½, i.,J (cl,,~ J.+i +-Ci-~;~,.,.,- C;_/;)~ "--1- l i-~ ; ·, JJ-,) 
• 

4AX, AX3 
CP-1.V 

Coefficients of the form ( D,; I AX2. AX3) . . 1 will be 
L+½; d.l fl, 

calculated using the harmonic mean, i.e.: 

(]J-Jt) 
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Thus, the coefficients of concentration in equation D-15 are of the 

form 

w1.1 ;
1 
J.( JJ,~ ¢,1x1- 1JX1)+½,;·,J 

2.. ¢ . . i .JXL 4.X.3 (.t1X,) 
•1 :J1 fl-

(LJ~)z.[ C (j; "JJ/Jj/ l + ( ¢ D,: )l·+~ J~ il 
(])- ri) 

In a completely analogous development to that used in 

equations D-10 thru D-16, the X.z:derivative and X3-derivative on 

the right hand side of equation D-5 may be obtained. In obtaining 

the X2 - derivative, a central difference scheme using the points 

('-Jj+-'lz1 j) and (L~ -;"-½,1 -1) is used, while the X3 derivative 

uses the points ( i.) j J /l +- ½) and (i.,;;j; J-½) . An explicit 

form of the left hand side of equation D-5 is 

t-f-J -t 
C · · a - [ . · 

l.1,J,1 l.1 ;}j R, (JJ -18) 
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To simplify notation the following definitions are made: 

' 

f+ = 2 ( w P,:)l~il ( 4> D/ X+~;_; J .At-
(])-J<J a.) 

x,x, (L1x,/- [ { ¢A7)l.1J~l -t- CtPD,~)L+1J ~-J J;_] ) 

E = 
2 ( w ],~ )L~J_~ '- ( ¢ ]),: )L-~ ;}~ It A -t-

x,x, (JX, f [ ( rp D,,~) i i J +- ( t/J J>,,~) . 1 . ~1 ) (P-l9J) 
J .J l-.1-JJ 

T 2 ( w ]Jl:),JjJJ lJJ D~) . . J At 
Ex x. = (, f~ 

( LlX2f [ (t/J ])L;)i_ j -J + {/> ])2:);_ . 1 Ji 
J (])-11 c) 

L L 

J / J)-t.J 

t- = 
2 (w})z:)L.1J.1l ( J])z:)L~i-tA A-t 

CJJ-11 cl.) 
X2 Xz.. (,1x1./ [ { ¢ ])2:) ;_JjJ i f ( r/J ])2! );1 

,;'-~ ,1.] ) 

£-,.- - 2 ( w .DJ;)i.Jj_.J i ( JJ:;)L~ll J+1 4-t-
J3X; - (iiX3f[ (¢]):;)l~,lJ + ( ¢~: )l~;)~J-tl] ) 

CJ-19 e) 

l 
I 

- 2 ( w ~:)l~J~ J { ¢ A;)l.1J~J-1 ,4-t 
E = (])-!CJ f) 

X3X3 [llX)z_ [ C ¢ ~;) . J_ + ( ¢ ])3;) ;;~J-1] ) 
L./;h 

F.,. = ( w_P,:) i.Jj.JJ ( ~:)i+~.i J_ }lt- CJ>-1~ d) 
x,x2. 2Jjx,..1x2-[ (1JJ,:)sa.Jl + (~]),;)l+~;j.JA] 

) 

F = 
( w lJ,: J,iJ ( rjJ A:) L-~j,,' j t-- (P-1? J,) 

I 
x, X2 2 4X, 4Xz_ [ ( (/> ~: )i.JjJJ_ + ( ¢ ~: )i-,.Jj.Jl] 

) 

I 
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+ G X = z. I 

(])-)'! ;,) 

fx-x = 
z. I 

) (])-J'J.,f) 

C1>-1~ n,) 

-
Gxx = .J I 

(])-11 n) 
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) 

(])-l1r) 
J 

(J>-/'j ...t) 

Using equation D-18, the notation of equations 0-19, and substitut-

ing difference approximations for all concentration derivatives, 

the explicit form of equation D-5 becomes: 
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The analogous explicit finite difference equation for the two-

dimensional dispersion equation may be obtained by allowing no flow 

to take place across grids in the X2.-direction, i.e. (JcjJX2 ) =o . 

The flow in the ~-and X3 -directions will be for a unit width of the 

model ( ..4X~ =/ ). Under these conditions, the two dimensional 

form of equation D-20 is: 

(JJ-2i) 

The coefficients in equation D-21 are calculated using the definitions 

given in equation D-19 with A~=/. 
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APPENDIX E 

STABILITY ANALYSIS FOR DISPERSION EQUATION 

A. Method of Determining Stability 

The explicit finite difference form of the dispersion equation 

(equation D-2O) has a stability criterion attached to its use. To 

examine the stability of this equation, the linear form of 

equation D-2O with constant coefficients will be used, i.e.: 

(E-1) 

The method used for the stability analysis is that of a Fourier 

series developed by von Neumann and discussed by O'Brien et. al. (1951) 
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and Smith (1960, p. 102). This technique expresses an initial line of 

errors in terms of a finite Fourier series, and considers the growth 

of a function that reduces to this series for i= o by a 'variables 

separable' method. The errors at the nodes of the grid system for 

i= o, 0~ X.1 NAX1 0 = Xz =:. MAX2 , and O L. X3 LLJ~ 

are denoted by EP a 7j where f = 1 ,2, ... N ; = 1 ,2, ... M ; 
.) ;J 

R = l ,2, ... L ; N = the number of grids in the X,-di recti on; M = the 

number of grids in the X£direction; and L = the number of grids in 

the ~3 di recti on. 

The MNL equations, 

~NL 

Ee~H = f Ah e~f [;, ( 1;, P Ax, -t ch &Ax:z + R M3)] 

(E-z) 

are sufficient to determine the MNL unknowns A,.1 A21 -

uniquely, thus demonstrating that an arbitrary distribution of initial 

errors can be expressed in the complex exponential form. In 
Y>7T /0 h1T h7r 

equation E-2, :::: /VAX, ) "';, :::: M AX.,2. ) t"' = LAX3 

and i = ..;-::.p_ Equation E-1 is a linear finite difference equation 

and separate solutions are additive. Thus, only an analysis of the 

error propagation in a single term of the series is necessary. This 

makes Ah a constant and can be neglected. As -t increases, a solution 

of the finite difference equation is wanted such that it reduces to 

exp[i('f'PAX, t-C"o.AX2.--r tRAX3 )] when t = 5 At=o. Thus, 

it is assumed that 
- 5 

E _5 
- _- e.xp[i ( If x, +t Xi,+ o~)+J.t] =exp[i{ tffAJ., f-:ZiMi+l~4X.J)] e J 

P.1 a.,, IS 

(E-3) 
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where C = exr (). /J t) , and A is a complex constant. Note that 

equation E-3 reduces to exp{i(lf?A~t-C0.LJXz.f-'tR.t1J13 )] when 
s S =O, which is the desired result. Also, the error, £_ - p J will ,:_,tJ..,,n 

not increase as -t increases provided 

I£ I z I {E-4-) 

B. Stability function For Three Dimensional Dispersion Equation 
.s 

Since the error £- - - satisfies the same finite differ-P_,a.1R 
r ence equation as C- . , , then equation E-1 may be written in L.1 ).,1L .s 

terms of £- - - For example, the first few terms of P.,, 11_, R 

equation E-1 would look like 

sf1 J wJ{At( .s s £_ - - = £_ - - -t CA \I )z. £ - - j- E - -
I'., 61.115 I'., "-' /11 i r~ R P -? tl.1 I? 

-2 e! __ ) t- ··· 
P., • 

Substituting equation E-3 for the values of 

equation E-5 may be written as 

5-tl 

exp [i. ( 1/'P AX, t[0-4X1- t-{if L1X3 )] £ :::: 

.5 
f_ - -

/>_, .a.., R 

s = exp [ i ( 'f ?LJX, -t- r: ii 4X.,_ f- 'J K L1X3 J] £ +-

(E-s) 

w 1),~ At [ [ . ( f> _ _ )] L s + c.axJ2. exp t f(i5+-i).4X,+i,o0..4X,_+1R.1J.~ -t-

+ ex?[ i. ( 'f("i>-i)AX1 +(;a LiX2. -t- (if A~)] e, s -

- 2 e Xf [ l ( 'Ip fl X, T t a AX 2 N ff ,4 x)] t J f- . . 

(F-t) 
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Equation E-6 contains only the first three tenns and similar terms 

are implied for the other five terms of the equation. Note that 

equation E-6 sho\t/s a pattern of each tenn containing the factor 

exp [ i. { lf f AX, r (, b A .Yz. t 't R .tJX3 )} £ 5 
. Thus, if equation E-6 

were expanded in its complete form and divided thru by 

exp [ i. ( tf f 4~ +Ca, liXL t 'I RLJX3)] £~ , the following result would be 

obtained: 

I + 

+ wf£~t {m(i!A~)nx,(-i"5AX3 )-2 J + 

+- w (~t~~Jtt: { exp [i {_ /f 4X, -;-C .4X;)] +- exp[i. {- 'f AX,-tLlXz)]-

(f-7) 
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Noting that exp(it;) =Cos~+- i Sine, 

• 2.. 
and l = - I , equation E-7 becomes 

exr(-i.lJ) = Cose-isinB , 

{£-9) 

From trigonometric i den ti ti es, C tJ5 2B - J = - 2 .5 i;/-8 and 

. Thus, by letting 
f// .AX, 

a.-=- 2-

, and , equation E-8 may be 

written as 

t = /-

( £- q) 
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Thus, upon substituting equation E-9 into equation E-4, the 

stability of equation E-1 is assured if 

) 
(£-It>) 

where * 
F lU 1),1 At 2.. 

(a..l~d) =- (Ll.1\'J2. s,·n a s,·,,, 2_j,.. f-

w J>y; At- z. w (]),";,1--1- JJ1.t )1rt I ) 
+- C AXJf s,·,, J i- A~ 4Xi. l S,'11 ti c~$ a. s,-.., J. C~s J,. + 

w (~: +~7)Lrt 
-f- AX, L)X3 ( 5 in a Ct>.5 t:l. 5;,,d_ C1>.sJ) +-

(E-llj 

F ( ~~J) sha 11 be referred to as the stability function, and 

must satisfy equation E-10 for a 11 values of a.1 .l-..1 and J.. . To 

investigate the range of F(a1 _,b;d), an absolute maximum and minimum 

value of F(a.14.td) must be obtained. A necessary condition for a 

relative maximum or minimum to exist at a point is for the first 

partial derivatives of F to be zero when evaluated at the point 

(Taylor, 1955, p. 154). Taking the derivatives of equation E-11 and 

setting them equal to zero gives 

d J ( C#z.a. -_c1,.:./a)] = o .J (f-12) 
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(E-13) 

and 

I 

(E-14) 

By inspection, equations E-12, E-13, and E-14 are satisfied when 

.4,.;,a - Jr. = ~d = tJ1 -

~a - ~Ar= Gr:Ld -= a ..) 

Co:za - ~lr-==~cl=o -
J 

L-t:J:Z a - ~_,£. - 4,acJ = 0 - - ..J 

Ct,.:t, d = o . ( E-;s) 
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There are other solutions to equations E-12, E-13, and E-14 

which shall be discussed later. At the present time, an investi-

gation of the points given by equation E-15 for an absolute maxi-

mum and minimum shall be undertaken. Substituting equations E-15 

into equation E-11 gives 

0) 

1 w "1>i/° At w])J~ LlC tu.lJ:; 4t 
F c~IA = ¼r./J. =- ee,,-J-=t>.) = {4x,Y- 1- (4.X)Jl. + (A-t)z. • 

(E-1&) 
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If the coefficients w 1).-1 ]) * ])!'
3 

and .4t are 
J JIJ .l2J ., 

positive, then from equation E-16 F(a.1 lr.1d) has a minimum 

value of zero at _,a...;,_, a. == J, ::: cA. = o and 
. l f IA/ 1>,/' Lrt w JtA t- LV 1).1~ 4 -t- at the a maximum va ue o (L1X,)2 +- (LIXJi. -t- (AX3)z.. 

points where ~a..= eor:r.k == ~d =O 

To investigate the sufficiency conditions for a local maxi-

mum and minimum, equation E-11 is expanded in a Taylor's series 

about the ~oint of interest, i.e. 

+ Cd- cl) t ] F ( c1) - + 2..
1 
! L 

a..) t.) J 

( a - ii) }a. + ct -.l-) iJ,. +(j.-cl) Jo1] 2 

F {9:, j,_,J),) _ _ _ + 
r a..,,,/,.1 

+ higher order terms, ( £-17) 

where a.1),. and dare the values of the variables Jr and J at 

the point of interest. By hypothesis, the points at a maximum or 

minimum value of F ( a,; l-.1 J) have 

(£-Ii) 
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Hence, equation E-17 may be written as 
2 
i 

1 
2. J F 

F c a
1 

J J - F c ii/ 1./ J J -= -:z ( a -a ) ;; fl- 1,, J +-

-J- higher order terms. ( £-JCJ) 

In the neighborhood of the point ( a1 --½d ), the principal part of 

the right hand side of equation E-19 is composed of second order 

terms, which may be written in a quadratic matrix form (Wylie, 

1966, Chapter 11) as 

F ( a, -1,, d) - F ( a J,J) = ½ · /I ( a- ii) ( J.-J) (pt -j) /I• 

;/FI. 
d a1. ~J.J;J 

a'F / 
c).0- d.b 'ii.1 Z.1 J 

d lF I 
aa.&J ~~;I ( a-a) 

;,'F j ;}'Fl d
1

F I. 
a at Ji/ a_,~J J.,tJcJ. a Z ;r • c -t--t) I 

/ ., 
I 

J'F I J'F I J'FI 
I 

ct1-1J I ao. Jd - i l cJA/iJd ~dz. ii l J 
tl_, '.I ' .I / I 

I 

( E-10) 
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Equation E-20 is of the general matrix form [Y] = [X'] [A] [X] 
where [A] is a synmetric matrix and [X] is a column vector. In this 

notation, [A] is the matrix of the quadratic fonn and is positive-or 

negative-definite, semidefinite, or indefinite according to the 

nature of [ Y] . 
By the definition of positive-or negative-definite and maximum 

or minimum values, the following results may be deduced [Wylie (1966. 

Chapter 11)]. If F(~~d)- F(~{J) is negative for all sufficiently 

small values of (a.-ii.) , r.J,--l-) , and (d-;J.) which are not 

all zero, then F{~J;d)- F[a;.:£JJ is negative-definite and the 

point ( J../ J) is a local maximum. If F(a.1~d)-F(ii.1I../J) 
is positive for all sufficiently small values of (a.-ii) , ().-J), 
and (ol-J) which are not all zero, then 

is positive definite and the point (~ l-.1J) is a ,local minimum. 

The point (ii.1 l-.) J) is neither a maximum nor a minimum if 

F (a_,~ d) - F [ a .1 l.1 ;J) is sometimes pas i ti ve and sometimes 

negative in the neighborhood of the point (a.1 I./ J) , and this 

is the case if the quadratic form is indefinite. If the quadratic 

form is semidefinite, then no decision about the nature of the point 

( o.1 I-.1 J) may be deduced and a consideration of the higher order 

terms of the Taylor's series would be necessary. 
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From Wylie (1966, p. 468), a necessary and sufficient condi-

tion that the real quadratic form, [.x7J [A] [X] , be 

positive-definite (or negative-definite) is that the quantities 

cLd J a,,/ ) I a,, a,z. ; . . . I a,, -· · a,,, j dJ cA.aJ- . .... . 
a_l.l all. ) a a 

n1 · · • nn 

(E-2. J 
all be positive (or for negative-definite to alternate in sign, 

with J,d- / a.,,( negative), where a,,> a.,z.; · · · j ahn are 

the elements of matrix [A] . Applying the above discussion and 

equation E-21 to equation E-20, the following conclusions may be 

obtained: 

If 

J 
(f-lZ) 

C'F /F a'F JJ/ a a_ L i)j,.'- - ( i)a (}1,- ii_J i, ;r >o (E-23) 
) 

and 

[ ;/F Jz.F ;;lF J2.F J~F ;;2.F 
Jo...,_ c)4z. ;) J.z + 2 Ja... Jk r)...l-;JtA (}.Ct c)c/. 

~,.F )2- ;/F 
- ( d-0.. JJ J4L 

Jl.F )
2 

c}l.F 
- ( JkJc/ ;) a.2. -

( d°F f ~'F J j 
- c1a. ;Ji,- dJ.2. _ - - /' 0 

a../.t.,ol. .) (E-l~ 

then equation E-20 is positive-definite and the point (<X..1k.1 d-) 

is a relative minimum. If equation E-22 is negative, equation E-23 
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is positive, and equation E-24 is negative, then equation E-20 is 

negative-definite and the point ( a.
1 

)r.1 d) is a relative maximum. 

Taking the second partial derivatives of equation E-11 gives 

i1.F . 2w]);; At: ( 
dt,'-2· = (AX

3
)z ~\J.-.a:.,,. 7...J)-

4-w (:P,; + ])3;) A 1:_ 
AX, LlX3 ha. ~ll ~J 4-.rJ -

4 w (]) z: t J):i. )11t 
..1.x~AX.3 Jr l d JJ (E-2.s-c) 

(E-2SJ) 
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From equation E-16, a candidate for a minimum value of F is the 

point where a. = .k =-~ d ::: 0 

to evaluate equations E-25 gives: 

. Using this ~oint 

,4-
2 lU ]),, A t:-

( AX,) z. .) 

W (]),;-;- ])z:)At 
AX, AX~ J 

w (]),: i- )~ 
4X, .4 X3 J 

w { ))2 : + ))3 : )At-
AX2 A 6 

(E-2/, a.) 

(E-2', c) 

(E-2/,d) 

(E-26 e) 

{E-26 f) 
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Using equations E-22, E-23, E-24, and E-26, the points where 

~a.. -== £,,, ,/, =~d=o will be a minimum if the following condi-

tions hold: 

and 
3-;Jt ;1t Jt 3 

g w ~I J)Z2- ]).J3 .4 t 
(A-",/ (4XJz: (4~) 2 

J 
( E- z7a) 

z. z. 2. 
I.A) CI>,z. +- ])L,) ,LJ -t 

{.4X,)l. [LJ.X;,Y J (E-27).) 

+ 2 u!cP,: 1-J>t )CJJ,;-+ JJ/J{J)2 : 1-»J:Ji'J·t:3 _ 
(.&X,)2. (AXJz. (~ .X3 ) 2 

>O (E-27c) 

Noting that At, .4X1 , A,·t, A.X3 , andlU are all positive, then 

equation E-27 reduces to 

]),, / 0 
J 

(E-2.'9 p__) 

( E-z.1 /,) 
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The third inequality of equation E-28 may be written as 

The first two inequalities of equation E-28 are a subset of those 

required by the third inequality, i.e. 

.) 

_) 

J 

(E-Jaa.) 

(£-Jo,,/,.) 

(£-Joe) 

(£-J()d) 

(E-Joe) 
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From equation E-16, the candidate for the maximum value of F 

was the points where Cb4-- a. -= Jr = C1!J4 c:I = O 

ting equations E-25 at these points gives: 

,,_ 
- 2. 4,1l),, Llt-

{A~,) z. .) 

n-
- 2 w .P.zz. At-

(AX2.) z. .J 

- 2.. l-U JJ_n 4 -t-
( 4 X3) 2. _) 

-W(J>,; + J>/ )Ai: 
AX, AX2 J 

- w(JJ,t 1-]),~)~ 

Evalua-

(E-3/o..) 

(E-JIJ.) 

(.e-31 c.) 

(E-JJJ) 

.A.X1 AX3 J (£-JI e) 

- w (»z: -r l?,: )At 
AX2 .4.X3 

(£-]} f) 

Comparing equations E-26 and E-31, it is seen that all elements of 

equation E-31 are just the negative value of the elements in 

equation E-26. Since the inequalities of equation E-30 will assure 

that the elements of equation E-26 form a positive-definite matrix, 

then equation E-30 will also assure that the elements of equation E-31 

form a negative-definite matrix. Thus, when the inequalities of 

equation E-30 are satisfied, the points ~a.=~ l,.= ~J. = o 
and qy.i (). = ),,. = d = O are assured to be minimum and 

maximum values respectively of F ( a...1 d) 
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Although not shown here, each of the remaining six points of 

equation E-15 results in an indefinite quadratic matrix when the 

inequalities of equation E-30 are used. Thus, each of these points 

are saddle points of F ( a.1 ol) 
tremes of the function. 

, and are not relative ex-

There still remains the possibility of solutions to 

equations E-12, E-13, and E-14 besides those given by equation E-15. 

Using the trigonometric identity .£... ze ::: 2 e e 
and solving equation E-12 for 2 0- gives 

P."' ~) ( ,,_ + })i,, · I 
2t.t = - 2.J)/' AX l-tr ~2a 

JI l. 

- ( ]),: 1-])_t) A~, . d 
2 ]).* .AX 2 c,:zla. • 

II 
lE-32) 

In a similar manner, equation E-14 is solved for 2.J , i . e. 

(~; +-JJ;!) A):, I 
.;i- 2.a. C1):2. Za 

2 ~J AX, 

{E-33) 

Substituting equation E-33 into equation E-32 gives 

. AX, 2k z.a., [c D_~ -;-]/,-) 
..4,..,, za. == .LIX [4-J>.* ]~ - (lJ.*1-J>.*)r--za. c,,,;zd 13 3

' 
Z. II 33 I J JI '-V'C 

(E-34) 
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Substituting equation E-32 into equation E-33 gives 

_ AX3 2.),. 2.J [c P.)t +-]) *) 
2J = 4X [4J>.:k-])-1t-(])-if--1--])_:l")z4Jtt-Za ~zJ ,3 J' 

l It 33 l:J JI 

(E-35) 

Now then, a substitution of equations E-34 and E-35 into equation E-13 

gives 

(E-J6) 

Although equation E-36 is not in an explicit form yet, it is easily 

observed that equation E-36 is almost of the same form as the third 

inequality of equation E-28. In fact since 

there is no way in which equation E-36 may be satisfied if 

equations E-28 (or equations E-30) hold. 

From this analysis it may be concluded that if equations E-30 are 

valid, then F(a..1 .k1 d) has only one minimum value located at the 

points ~a::. ~Ar== cJ -= o , and from equation E-16, 

Abso 1 ute Min. F ( o..J J) = o ( £-3?) 
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Also, F C 4/ d) has only one maximum value located at the 

points Ct.,-<2 a.::: 4J-'1k = ~d-=O, and from equation E-16: 

wP,/At wA:L1t- w])3;LJ.t 
Absolute Max. F(1 ~J)-= (.<1.X,).z. +- (L1A'1./- +- {4%3 )2 • (£-3,V 

Combining equations E-37, E-38, and E-10 results in: 

(E-JV 

In summary, stability of equation E-1 is assured for any a, Jr , and 

J.. if: 

70 
) 

CE-4oa) 

(E-4ol,.) 

(E-4t>c.) 

(£-4-t> e) 

(£-4of) 
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C. Stability Function For Two Dimensional Dispersion Equation 

The linear, constant coefficient, explicit differencP. form 

of the two dimensional dispersion equation has the following form : 

( E-4t) 

s 
Designating the error in the two di mens i ona 1 space region as.,1 fr.,i ..1 

and approximating it in a manner similar to that of equation E-3 

gives 
-s s 

E_ -
~R 

- e Xf [ i ( tf f5 A~ + l K AX3 ) ] [, (E-42.) 

In a manner analogous to that used in developing equations E-5, 

E-6, E-7, E-8, and E-9, the amplification factor is given by 

(E-43) 
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Substituting equation E-43 into equation E- 4, the stability 

of equation E-41 is assured if 

(£-44) 

where 

(E-4s) 

The necessary condition for a maximum or minimum value of F(a.1d) is 

for the first partial derivatives of F to vanish at the point of 

local extreme, i.e. 

-;JF -- -c)a 

2 w .J{J.4· t-
( 4 X1 / a Ltr-Za + 

w (.D,: + .P.,;) 4 t-
+ 4X, AX3 J Ctr-td { ~-:/a -,£,. ~) = ()J 

(E-47) 
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By inspection, equations E-46 and E-47 are satisfied when 

ct=~ J=o ) <E-48'u) 

~a= Ccr-z-d = o J ( l-411-) 

~a - ~d:=o {f-4-9 cJ - _) 

~c.:l = ~cl::::o (E-4fd) 

Disregarding other possible solutions of equations E-46 and 

E-47 at the prl:!sent time, the values of f [tA.1d) at the points 

suggested by equation E-48 become 

F ( t:c= h J -= o) 0 .J 
-jl 

F(~a= ~d =o) 
U,) 1>33 Ar - {4X

3
)2. - J 

F (Ce-d-a.=~d=o) 
wY,t ..d--t - l.tiXJi. -

.J 

(..,V ])} .4 't w ])3: ..1 t-
( 4 X, / -j- (4X3)2 

If the coefficients W J I>,; J ])3 ;- , and .4 t- are 

(f-49a) 

CE-H.J) 

(E-4-'lc) 

(E- 4q)) 

positive. then F(ei_,d) has a mi nii:1um value of zero at ( a=~ J = o) 

and a maximum value of U,IJJ/: At: w at the points where 
(LIX,) 2 i-

C,o-<t. a_= Ct,a c) = O 
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A two variable analysis of the sufficiency conditions, 

analogous to equations E-17, E-18, E-19, and E-20, leads to the 

following quadratic form: 

F C1 J) - F Ca,;J) = ½ · )/ {a-a) cJ-JJ II· 
(a-a) 

( .t-J) 

From equation E-21, it is concluded that if 

.J 

and 

(E-St>) 

(f-.n) 

(£-S2.) 

then equation E-50 is positive-definite and the point ( a../;J ) is 
a relative minimum. If equation E-51 is negative and equation E-52 

is positive, then equation E-50 is negative-definite and the point 

( li..1 d ) is a relative maximum. 
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Taking the second partial derivative of FC~d) gives 

-;)lF 2wJJ.*At-
& a 2. -= (_4.;,y· ( 2. a. - h 2. a) 

4 l,c,) CJ>,: -t-~{)At-
.dX, A.X3 hd ~J a Cp,L~ {E-S.JV 

2 w ]>3~ At: 
= (_..:1X_,)~ ( Ctr,z 2.j -~\I) -

and 

4 lv ( JJ/j -t- ])J;) LJ t: 
A X1 .4X3 a. a -a,:... d ~j J (E-SJJ.) 

{E-S3c) 

r} 'Z.pl _ 2 LU~; .Llt:-Hhen ( a = d = o); then z. - z. 
J a. .a,;,,, a.=~ d = 0 l A.XJ .) 

From equations E-51 and E-52, the points ( .,a.:.,.._ a. = d = 0 ) 

are a relative minimum if 

and 
4JJ.-='°j)r > (J) ;t- ll ;t-)2... 

II 33 13 -j-~/ (£-SLJ~) 
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v1hen (C(r-t. ct= Cr,,d.-d ::.o), then 

From equations E-51 and E-52, the points (~ c:t = Ctr-;!.c/ =o) 
are a relative maximum if the inequalities of equation E-54 hold. 

Thus, when the inequalities of equation E-54 are satisfied, the points 

( o.. -=- d = D ) and ( a == J. = 0) a re 

assured to be a minimum and maximum values respectively of F(~d). 

The remaining two points of equation E-48, (~ tl= C-tr-zd = D) 

and(c,y.i, a=~ d =O), result in an indefinite quadratic 

matrix when the inequalities of equation E-54 are used. There-

fore, each of these two points are saddle points of F(~c/). 

The possibility of other solutions to equations E-46 and E-47 

still exists. Solving the two equations simultaneously gives 

and (E-5Sa) 

( J),;-,- j):J:) ( l. , ) 

4X, A X3 a ~a Cr:J=r--d- 2clJ. 
{ E-Ss-./r) 

Multiplying equation E-55a by E-55b gives 

{E-Sl,) 
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where the trigonometric identity 

has been used. If equation E-54 holds, then there is no way for 

equation E-56 to be vali d because / 2tf zJ. j L I. 
Therefore, all the points of relative extreme are included in 

equation E-48. 

From this analysis, F (a/d) has only one minimum va 1 ue 1 o-

cated at the point (~a ::::~ cl. -=o) , and the 

Absolute Min. F ( = 0. (£-.fl) 

Also, F{a/ d) has only one maximum value located at the point 
( a.~ d = o) , and the 

{E-ss) 

Combining equations E-57, E-58, and E-44 results in: 

(E-S-9) 

In summary, the stability of equation E-41 is assured for any (a/cl) 

if 

i'i .¼ .A --t W_v" 
( .1.x, f (E-b!Jc) 
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FLOW CHART OF PROGRAM 

Start 

Read Data 

Call INICON to initialize the 
coordinates and concentration of 

each moving point 

Call READIN to read in physical 
data for problem such as permeability, 
porosity, viscosity, initial pressures, 

and boundary pressures. 

Call INIPRT to print out all 
of the initial information 

Call STORAG to compute initial 
mass storage of each 

miscible fluid in system 

Calculate the number of 
time steps to be used 

Call IOWAIT to test if operation 
on scratch tape is completed 

Call BACKF to backspace scratch tape 

Call MATSOL to set up matrix for the flow equation 
and then solve the matrix by Gauss elimination for 

pressure at the new time level 
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yes 

No Print out 
Pressures 

Call RDTAPE to read coordinates and 
concentration of moving points from scratch tape 

Call VELOCY to calculate velocities at each grid 
interface, the longitudinal and lateral dispers1on 

coefficients, and the components 
of the dispersion tensor 

Test for completion of tape reading 
operation and backspace tape 

Call MOVPT to determine the velocity of each point and move the 
point to a new location. Points moving out of system are 
located and re-entered at an appropriate inflow boundary. 

The average concentration of each grid 
is determined from the points located in each rid. 

Call DISP to calculate the change 
in concentration due to dispersion. 

The average grid concentration and each 
moving point are corrected for this dispersion 

Call WRTAPE to write coordinates and concentration 
of moving points on scratch tape. 

Correct porosity, viscosity, and density 
for changes in pressure and concentration 
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No 

yes 

Print out 
Velocities, Components 
of Dispersion Tensor, 

and average grid 
concentration 

Calculate a mass balance 
of each miscible fluid 

Has Total 
Number of 

time steps 
been exceeded? 
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*FORfRAN OA/0,/nq 

C 

PHOGl'lAM '-1AI~ 
lJ I ME 1,i SI :)N F < I 12 , 2 7 l , PO R I l 2 , 2 7) , H I 1 2 , 2 7l , P I 1 2 , ;, 7l , P T I 1 2 t 2 71 • 

l PP I 12 • 2 7 l • P '.H I l 2, 2 7 l , RHO ( 12, 2 7 I , VIS I 12 • 2 7 l , JI 12, 2 7 l , C AVG I 12 t 2 7) • 
2CAvGP ( 12,27) ,OELC I 12,27) ,SUMC I 12,271 ,COUNT I 12,271 ,01 l ( 12,27), 
1022 I 12 • 2 71 , ) 12 ( 1c!,27l , V X ( 12, 2R I , V Z I l 3,271 , C CM AT ( 550 0 I , X I 14% I , 
4z < 14~6, , c < 1496, , CMA TR v 1 2~0, 21 > , c~ < 2so 1 , H 1 1 24 > , ZR 1 1241 , c~ 1 124 > , 
5XB21241,Zd2(24),C82(24) 

COMMON DELT,ST,FwTOP,QELX,OELZ,FK,POR,H,P,PT,PP,RHO,vJS,cJ,~HnP, 
lCAVG,CAVGP,)£Lc,G,ijETA,ALPHA,GAMMA,RC0MP,SU~C,COuNT,Oll,D22,D12• 
2vx,vZ,N~nCNT,XRltZHl,CBl,x~2,z~2,CB2•CC~AT 

EUUIVALENCE (CCMATlll ,POT(l) ,X(I) ,CM4TRx<l) 1, ICCMAT(l4971,Z(ll 1, 
l lC~MAT (2993) ,CI l l), (CO~AT (5251 l tCR I 1 l I 

c;;**************************************************************•••••;; 
c..!_*•**lH; l'IAil-4 PR:)GRAM IS THE CONTROL PROGRA"'! AND DIRECTS TiiE SEQU!:NCE** 
C***** - OF OPEQATJONS FOR SOLVINr, THE FLOW EQUATION hNO DISPE~StON*** 
C***** EQuATIJN. APPROPRIATE SU8QOUTINES ARE CAL~E~ AS NEEDED TO** 
C***** MAKE T~E NECESSARY CALCULATIONSo THEP~OGHAM OESCRIRED HERE** 
C***** IS FOR A Twfi DIMENSIONAL VERTICAL FLOW PQUBLEMo ***•• 
C•*•*•NR = NUMRER OF RUWS ••••• 
C**•*•NC = NUMBER OF COLUMNS ••••• 
C••··· NOTE T~AT THE ~UMBER OF ROwS,NR• SHOuL~ ALwAVS BE EQUAL***** 
C***** TO QR ~ESS THAN THE NUMBfR OF C0LUMNS,~C. ***** 
C*****NA = ROiN DI~ENSlo~ OF THE REDUCE!) coEFFICIE~T MATRIX USED IN ***** 
C***** GAJSS ELIMINATION, ***** 
C**•*•NB = COLUMN DIMENSION OF THE REDUCED COE~FICIENT MAT~lX USED IN** 
C**•*• GAUSS ELIM1N4TION. ***** 
C•*•*•OELT = TIME INCREME~T (SEC.> ***** 
C**•*•ST = TOTAL TIME OF ANALYSIS (SEC,1 ***** 
c••·••FWTOP = PRI~T our CONTROL. F~TOP SHOULD ALwAYS BE A MULTIPLE***•* 
C****** . OF OELT, ***** 
C**•••DELX a SPATIAL lNCHEMENT IN THE X-DlRECTlDN (FTol ***** 
c••·••OELZ = SPATIAL INCREMENT IN THE z,DIHECTlON (FT,) ••••• 
C****•FK = PERMlA3lLJTY (SQ.FTo) ***** 
C****•POk = POROSITY ***** 
C•*•**H = ELEVATIJN Af CENTER OF GRID IFTol ***** 
C*****~ = PRESSURE AT CENTER Of GRID FOR INITIAL TI~E LfVEL (LBS, PER** 
C***** SY. FT.I ***** 
C*****PT = PRESSU~~ AT CE~TER Of GRID AT PRESENT TIME LEVEL (LBS, PER** 
C***** SQ, FT• j •••o• 
C••o••PP=PRESSURE AT CENTER OF GRID AT PREVIOJS TIME LEVEL IL~S, PFR *** c••••• s~. FT,> ***** 
c 0 ••••P01 = PJTENTIAL AT CENTER OF GRID (FTol ***** 
C••••oRHO: DENSITY or FLUID (SLUGS PEQ CUdlC FOOT) •••oo 
C*****HHOP = DENSITY OF PRODIICE.D FluJr) ISLUGS PER CI.IHIC FOOT> ** .. ** 
C••••itVlS: VISCOSITY 0~ FLUID (L~F.-SEC, PER sw. FT.I ***** 
c••·••u = ~RODUCTION liRM (CUBIC FEET PER SEc.> ***** 
C*****CAVG = AVERAGE CONCENTRATION OF TRACER ISLU~S P£~ CUrlo FTol ***** 
C*****CAVGP=AVERA3E CONCENTRATION FROM PREVIOJS TIMF STFP. ***** 
C**•*•UELC= CrlANG~ IN CONCENTRATION [)'JE TO DISPERStnN 0 . ***** 
c••·••G ACCELERATJnN ' of GRAVITY IFT. PER s~. SEC., ***** 
C*****tiEIA = FLUD CoMPRESStAILITY (Silo FTo PER L3ol ***** 
C**•*•RCOMP = RUC< COMPRESSJATLITV (SQo FT, PEH L3ol ***** 
C•*•*•ALl-'HA = CONSTANf RELATING llF.NSIT1' TO COr-.JCENTRtdl1J~1 ***** 
C*****GAMMA = CONSTANT RELATING VISCOSITY TO CUNCENTkATtUN. ***** 
C•*•*•STOR =TOTA.MASS STORAGE OF AR(A (5LlJG~l ***** 
C****•wHIA~E: SU~~OUT1~t Tn ~MlfE JNFORMATlo~ ON A TAPFo THI5 IS A*** 
c••••• - SYSTEMS PROGQA~ nF THE csu co~PUTE~ cE~T~M. ••••• 
C*****MDIAPE : SU~R011Tlr-.iE To REAL> l~IFOQ"'ATION F~o~ 4 TAPE.. THIS IS A *** 
C***** SYSTEMS PoOGRA~ OF THE CSU COMPUTE~ - CE~Tf~. ***** 
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C*****CCMAf: OUM~Y ARHAY Tn BE USED AV DJFFEqE~l VAMIAALES AT OtFFEP•** 
C***** ENT LO:ATI0N5 THROUGHOUT PROGRAM A~U SJBo~OGQA~S. ***** 
Cll•******************************************************************~t 
C 

READ 15•121 NR,NC,NPX,NPZ 
READ 15,21 )ELX•UELZ,ALPrlA 
NA=(~H-2)*(~C-2) -
NH=l~*NRl•3 
MA~:1"R• l 
M=MAA•l 
NAA::NC•l 
N=NAA•l 
AM= ,'1 
AN="-1 
Nf'l: ;"Pl*NH 
NP2:NPX*NC 
NWUCNT=l3*N~*NC*NPX*NPZ)+600 
TIME=o.o 
CALL INICON INRtNCtNPt,NP2,NPX,NPZl 
CALL REAOIN INRtNC,NA,NBl 
DO 20 I:at,N~ 
00 20 J:},N: 
POTll,J)::I PT(JtJ)/(J-h-1nll,Jl*Gll+H(ltJI 

20 CONTINUE 
CALL INIPRT INAtNC,NA,N81 
CALL STQAAG INR,NC,NA,NB,STOA,AD01 
wRlTE 16,~I STOKtA O() 
STOAl=STnR 
STOAP=STOA 
AL>DI::AflD 
ADOP=ADD 
S\ilSO=o.o 
SQTQ:sQ • O 
LOOPUL=ST/Df;LT 
PCNT=l.O 
UO 8 lLAST=l•LnUPUL 
TIME=TIME+DEL T 
UO 50 l=l,N~ 
IJO 50 J:sl,NC 
PP(I,Jl=PTlltJl 

50 CONTINUE 
CALL IOwAIT <l,NSTAT,NWOSl 
CALL t3ACKF I l I 
CALL MATSOL INA•NC,NAtN~I 
IFIPCNT.EQ.:w1nPl GO rn J 
GO Tu 22 

3 wRlTE lb.101 TIME 
CA(L MATAOP INRtNC,PT) 
00 21 I=l•N~ 
L>O 21 J:l,N: 
POl<l,J):(PTIItJl/lAHOll,Jl*Gll•H<I,JI 

i?l CONTINUE 
WM!TE (f>dll TIME 
CALL MAlRnP l~A•NC,POTl 

?2 CALL ~DTAPE 11,l,},CCMAT(l)tNwOCNf) 
IC="IC•l 
IR=NH+l 
CALL VELOCY <~A,NC,IR,ICl 
CALL lOwAIT 11.NSTATtN~DSI 
CALL f:3ACKF I 1 l 
CALL MOVPT(~Q,NC,NPl,NP?,NPX,NPZl 
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CALL wRTAPE <1,1,1,cc"1AT(J),NwDCNTl 
CALL DISP l~R,~C,~Pl,NP2,NPX,'IJPll 
00 60 I=toN~ 
00 f':,\) J=l•N: 
PUk(l,Jl:PO~<I,Jl•lleO•CRCoMP•CPTII,Jl-PP!I,JIII) 
MHO(l,J)=RHJII,Jl•<3ETA•RHu(I,J)*(PTll,JI-P~(t,J))) • (ALPHA•ccAVS( 

lltJI-CAllr.P(I,Jlll 
lllS(ltJl=VIS(l,Jl•IGAM~A•1cAIIG(l,Jl•CAIIGP<{, J) l) 

F-0 CONT lNiJE 
lF(PCNT,f Q,•WTnP) GO TO b5 
60 TO 23 

b':> wMlTE (6,141 TIME 
CALL "'1Arnnp <l2•2Fh11X> 
wkITE U-.l~l TJME 
CALL MATROP 11,,c7,11z1 
wRlTE l!>,16! TIMI:. 
CALL MATROP l~R,NC,Dlll 
wRlTE 16,171 TfMt:: 
CALL MATROP (NRtNC•D22) 
wRl TE 16, 18> 1 IME 
CALL MATROP INRtNC,Dl2l 
wRlTE <6,19> Til'1t. 
CALL MATROP INR,~C,CAVGPl 
wRiTE lb,25) TIMt. 
CALL MATROP INR•NC,CAIIG) 
wRlTE tb,lOOl (XB}lll,I=l,NPl) 
wRlTE 16,1001 (Zdllll,J::l,NPll 
wR1TE 16,lOOl (Cd}ll),I::l,NPl) 
wM°ITE 16,lOOl (X~21ll,[=1,NP1> 
wM'I'TE 16,1001 (Zd2<Il,I=l,NPll 
wR°ITt: 16,1001 (Ctj2(J),J::l,NP1) 

100 FORMAT llX,l2Fl0oJl 
PCNT=o.o 

2J CALL MSAL ('IJR,NCtNA,NB,ST0Rl,AOOl,STO~P,ADD~~sYSo,SQTO,Tl"'1£) 
PCNT=PC1'jT•l,0 

8 CONTINUE 
2 FOkMAT <3Fl0,3l 
9 fOMMAT <lHO,lOX,9HSTOPAGE ::,FJ0,3,10~•16HTRAC E~ STORAGE =•FlOe3 

10 FOl-<MAT llti0,47X,~6H'IJEw PRESSURE MAP ILBSo PER SQ, FT,l AT TJ11.1E = , 
lflO.~,lH /l 

11 fOMMAT (lti0,52Xt34HNEw P0TENTJAL ~AP <FT,l AT TlM F: = ,FlOe2,11"1 /l 
12 F'OMMAT 141101 
JJ FOkMAT (lti ,15F8e3l 
14 ~OkMAT(lH0,~2X,20HX•VF:L0CITY AT TTME =,Fl0,2,1~ /I 
1~ ~OMMAT(lH0,52X,2UHZ•VELDCITY AT TIME =,Fl0,2,tti /l 
lb FOMMATllHO,j2X,llHUll AT TIME =,Fl0,2,lM /) 
17 FOMMATl1H0,52X,1JHU22 AT TIME =,Fl0,2tlM /) 
lM F0hMAT(lH0,~2X,lJHD12 AT TIME =,Fl0,2tlM /l 
)9 F0kMAT<lH0,~2X,lSMCAVr,P AT Tl~E =,Fl0,2,1M /) 
?.~ ~0kMAT(l~0,52X,l~HCAVG AT TIME =,Fl0,2,lH /) 

E.Nli 
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SUt,ROU TI NE I NTCOJlr -( IIIR, NC ,-NPl -,~-.--,wx, 1'@11--
D I MENS I ON F<ll2t271,POR(l2,271,H(l2•271,P(l2~271,PT(l2,271t 

1--PP <12, 271 ,P-JT ff2t271 tRHOl 12,27> ,VIS (17,271 ,Q < 12,21> tCAVGU2,27> • 
2CAVGP<l2,271,DELCC12,271,SUMC<l2,271•COUNT(l2,27>,011<12,271, 
3022(12,271,012(12,271,VX(l2,28),VZ(ll,271,CCMAT(5500l,X(l4961• -----
4ZCi496>,C<l4961•CMATRX(250,21),CR(2501tXBll24)•ZB1(241,CB1(241, 
SXBZ(24>,lB21"241•CB2{24) - - - - - -

COMMON DELT,ST,FwTOP,oELX,oELZ,FK,POR,H,P,PT,PP,RHO,VIS,Q,RHOP, 
- l""<;~V-G tCAVG"l>, JELt• G-,BETA, ALPHA, GA-MMA ,ifC0MPtSll-'4t, CO"UNT • 01 l • 022,012 • 
2vx,vZ,NwOCNTtXBl,ZBl,CBl,XB2,ZB2,CB2•CCMAT -~~-~-c--c- - ---

EQUIVALENCE (CCMAT( 11 ,POT (1) ,x ( 1) ,CMATRX ( l> >, - (CCMAT ( 14971 ,z ( 11 I, 
l(f~MAT(29931tC(ll), (CCMAT(52SJ),CR(l)) 

c--•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••·· t•••--THIS SIJBROLit1r,fE oe>TERMtN£S THE INITIAL. -x-~z . ~001:roJNATES OF THE **•• 
C••••• MOVING POINTS ANO ASSIGNS AN INITIAL. CONCENTRATION TO EACH•• 
C••••• · OF THE POINTS. THE MOVING POINTS ARE UNIFORMLY OISTRIAUTED•• 
C•*•** THROUG~OUT THE GRID SYSTEM, INCLUDING TH£ BOUNDARY GRIDS,**** 
C•••hX •X•COORDI'IA-TE OF MOVING POINT. _, - - - - - - -•-•••• 
C•••••Z • Z•COORDINATE OF MOVING POINT. ***** 

- CHih-C •- --C-O"NCENT RA'ti ON OF MOV f NG PO I NT• ***** 
c••·••NPX. NUMBER OF MOVING POINTS PER GRIO IN X•DIREcTION, ••••• 
C•••••NPZ • NUMBER OF MOVING POINTS PER GRID IN Z•OIRECTION. ***** c••··· NOTE T~AT NPx•NPZ IS THE TOTAL NUMBER OF MOVtNG POINTS PER••· CT•---.-.---GRTifTNiffAL.LY-.-- - - - - -- ---- ***** 
C**•*•PX • FL.OATl~G POINT DESIGNATION OF NPX. ••••• 

- C••·•-•--Pz -- - ,1.:.oAll~G -POlNf DESIGNATION OF NPr. -- - -- - - • •••• 
C•••••NPl • NUMBER OF MOVING POINTS IN VERTICAL. DIMENSION OF MODEL.***•• · 
C•••••NPi • NUMBER OF MOVING POINTS IN HORIZONTAL DtMENSION OF MODEL,*•* C••••• - NOTE T~AT NPl•NP2 IS THE TOTAL NUMBER OF MOVING POINTS tN *** C••••• THE MODEL INITIALLY• ~- ••••• 
C•••••SUMC • SUMMATION OF CONCENTRATION OF MOVING POINTS IN A GRID,**** 

----C-••·••C00NT • A COUNT OF THE NUMBER OF- MOVING Pot~~s IN A GRID. • •••• 
C*****CAVG a AVERAGE CONCENTRATION OF TRACER (SLUGS PER CUB, FTel> ***** 
C***** AND IS DETERMINED BY SUMC/COUNT, ***** 
C•••••OEL.C •CHANGE IN CONCENTRATION DUE TO DISPERSlON, __ !**** _ 
c••·••LOG,NOG,oOG,XD = INCREMENTING FACTORS USED IN DO LOOP, ••••• 
C•••••Nli,Nl2 • ROW NUMBER AND COLUMN NUMBER OF GRtD IN WHICH POINT IS•• 
C••••• 1.0CATED, ***** c--•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••·· 
C•••••XBltZBl,CBl • COORDINATES AND CONCENTRATIONS OF BOUNDARY MOVJNG •• 
C***** . _POINTS _ALONG_X•O-'----- ______ ____ __ __ ___ ***** 
C•••••XB2,ZB2,CB2 • COORDINATES AND CONCENTRATIONS OF BOUNDARY MOVJNG ** 
C***** POINTS ALONG X• MODEL LENGTH, ••••• C - -- -----·--·-- -

REWIND 1 - ---- ~-~----------- - ---- ---~ --- --- - --·--LO(;:l•N?l 
NOG•O 

-PX•NPX 
PZ•NPZ 
DO 67 l•l•N~ 

- --~0~0~ 67 J•l•NC 
SUMC(l,J)=O,O 
COUNT (I ,J>•O,O ____________ ------ --·----------- -

6 7 OELC <I , J > • 0 • 0 
_ __ DO -l___q__~_N.e.z_____ __ ___ ___ __ _ __ _ _____ _ 

OOOaJ•l 
XD•CDELX/PXl*Co,S+DOG> 
IF(XO~LT.156.0) Yo•SQRT(39.99•(156,0•Xo1•220.o> 

_ _j_fJ ~Q .. .G.t..115.6,J) L_ Yl)_!..O.__a__O_ _ _ -- --- __ 
14 LO~•LOG•NPl 



NOG=NOG•NPl 
DO 10 l=LOG,NOG 
DOu=l•L:>G 
ll~l=IDELZ/?Zl•<0.5•DOG> 
X(l)=XD 

202 

It=:<Z<I>.LToYOl C(J):O,O 
IFIZII>.GE,YDl C(Jl=0.10 
Nl!=Zlll/DE~Z•l•O 
Nl~=X!Jl/DE~X•l•O 
SUMCINI1,Nl2l=5UMCINI1,NI2l•C!ll 
COUNT(Nll,Nl2l:CUUNT(Nll•Nl2l•l•O 

lO CONTINUE 
C****•FROM HERE T•RU STATEME~T 2, A BUFFER ZONE OF 200 ~OVING POINTS*** 
C***** IS CRE4TEO FoR USE IN INJECTlt-.JG AT l"JF1,.0- BQtJNOARY CONO- **** 
C***** ITIONS. - ***** 

AL~NX=(NC*D~LXl•lso.o 
ALtNZ=INR*DELZilc.o 
LOG:tNPl•NP2l•l . 
NOG:tNPl*NP2l•200 
UO 2 l=LOG,~OG 
Xlll=ALENX 
llll=ALENZ 
CC°i):0.10 

2 CONTINUE 
CALL wRTAPE 11,1,1,CCMAT(l),NwDCNT) 
XD=tuELX/PXl•o.s 
UO 12 l=l•N.>l 
DO1;;:l•l 
ZBl!ll=IDELZ/PZl*(OeS+OOGl 
XB!!Il•XO 
CBl!I>=o.o 

12 CONTINUE 
LOG:(NPl•IN?2•1ll+l 
NOG:NPl*NP2 
OOG:NP2•1 
XD=(UELX/PXl*IOoS+uOGl 
DO 13 l=LOG,NOG 
DO1.,:J•L0G 
J=l•LOG•l 
ZB~!Jl=IOELZIPZl*<O•S•DOGl 
XB2(Jl=XO 
Cl3i(Jl=O,l0 

13 CONTINUE 
DO 1 l=l,NR 
DO l J::l,NC 
IFICOUNTtl,Jl.EQ,O.Ol COUNf(l,Jl=l,O 
CAVGII,J>=SJMCtl,Jl/COUNT!I,Jl 
CAVGPll,Jl=:AVAli,Jl 

l RHOtl,J>=l.O•ALPHA*CAVG!l,Jl 
CALL IO~AIT 11,NSTAT,NwOS> 
CALL BACKF I l) 
RElurm 
ENO 



C 
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SU~ROUTINE ~EAOIN (NR, NC, NA, N8) 
DIME~SION F<ll2t27l,POR(l2,27>,H(l2,27>,P(l2,l7),PT(l2t27lt 

lPP(l2,27>,PJT(l2t?7l,RHO(12,27)tVIS<l2,27)t!(l2t271,CAVG(l2,?7), 
2CAVGP(l2,27l,DELC(l2,27ltSUMC(l2,?.71tCOJNT(l2•27),O11(12,27>, 
3D22(12,2il~Jl2(l~t271,VX(l2,28),Vl(13~271,CCMAT(5~00l,X(l496)t 
4l(l4~6>,C<l496)tCMATRX(250,21)tCR(250>,x~l(24)tZA1(241,CB1(24lt 
SX~c(24>,Z~2<24ltCB2<241 

COMMON DELT,ST,FwTOP,oELX,ufLZ,FK,POR,H,P,PT,PP,RHOtVIS,Q,~HoP, 
1CAVG,CAVGP,JELC~G,BETA,ALPHA,GAMMA,RC0MP~SU~C,C0UNT,Dllt022,Dl2t 
2vx,vZ,NwOCNT,XBltZBl,C8ltX~2,ZB2,C82tCCMAT 

E~UIVALENCE ICCM~T<l>,POT(l)tX(ll,CMATRX(lll, (CCMAT(l497l,Z(lll, 
l(C~MAT(2993),C(l>), (CCMAT(5251>,CR(l)l 

Ct~•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••tt 
C•••••THlS SUBROUTINE ~EADS tN THE PHYSICAL DATA ~EEOEO TO SOLVE THE••• 
C••••• . PRORLE~. ••••• 
c••·••P<l,J) GREATER THAN 100,000 INDICATES CONSTANT PRFSSURE ijOUNnARV.• c~~••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••t 
C 

HEAD (Stll JELTt ST, FwTOP 
HEAD (5,)1 ~•BETA,RCOMP,ALPHA,RHOP,r,AMMA 
H1SNR• l 
IC=NC•l 
UO 10 J:t,NC 
t-K<1,J1:o.o 

10 FK(NR,J)=o.o 
DO 11 I =2 ,I~ 
DO 11 J=l•NC 

11 FKII,Jl•0.000009885 
DO 12 l•l•N~ 
DO 12 J•l,NC 
PO~ll,J):0.39 
VIS(I,J):0.0116 

12 (,l(l,Jl=O,O 
H(i,1>=&9.o 
P(l,1>=1299~3.Rl;I 
1-1<i,NCl=69 0 0 
Pll,NC):129576 0 40 
DO lJ 1=2,N~ 
H(l,ll=H<l•l•l>•OELZ 
H(l,~Cl=H(l•l,NCl•DELZ 
P(l,NC):P(l•l,NCl+(RHOlltNC)*A•DELZ> 

13 P(l,ll=Pll•l,ll•IRHO(I,ll•G•DELZ> 
DO 14 Jz2,1: 
Pll,J):2Q57b,4 
H(i,Jl=69o0 
00 - 14 I: 2 • N 
H(l,Jl=H<l•l,J)•OELZ 

14 Pll,J):P(l•l•J>+(RHO(J,Jl•G•DELZl 
00 4 l=l,NR 
DO 4 J=l,NC 
IFIPll,Jl oLTolOOOOOoOl PT(I,J):P(I,JI 
IFIPII,J>.GTolOOOoO.O) PT(I,J):P(I,Jl•lOOOOO.o 

4 CONTINUE 
RE ILJRN 

1 FOR~AT <JF10o3l 
3 FO~.~AT (6Fl0.3> 

FO~MAT 1Ello4,Ell 0 4,FA.3,4Fl0 0 3) 
E.NL) 
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SU~ROUTINE lNlP~T (NR, NC, NA, NB! 
0 I ME,-4S I ON f < ( 12, 2 7 l , POR ( 12, 2 7 l , -1 ( 12, l 7 l , I-' ( 12, :> 7 l , PT ( 12,?. 7 l , 

1PP(l2,271 ,P:>T(l2•?7l ,RH0(12,27l ,VTS<l2,27l ,J(12,?7l ,CAVG(12,?71, 
?.CAVGP!l2,27l•DELC<l2,27l•SUMC(l2,271tCOuNT(l2,27l,Oll!12,27l, 
3022(12,27> ,)12(12,27> ,11x<12,201 •\/l(}3,27) ,CCMAT(s~OO) ,X(}496), 
4l ( 1496 I , C ( 1496 l tC"IA TRY ( 250, 21) , CR ( 250 l , xtH ( 24 l , Z~ 1 ( 24 I ,CIH ( 24 l , 
5X82(24l,lB2124ltC82124l 

COMMON DELT,ST,FwTOP,oELX,oELZ,FK,PO~,H.1-',PT,PP,RHO,VlS,Q,~HOP, 
lCAIIG,CA11GP,)ELC,G,8ETA,ALPHA,GA~MA,RCOMPtSU~C,COUNT,Dll,D22,Dl2, 
2vx,vZ,NwDCNTtX8ltZ~l,CBltXd2tZB2,CB2tCCMAT 

EYUIVALENCE <CcMAT(ll,POT(l)tX(lltCMAT~X(l)l, (Cc~AT(l497ltZ(lll, 
1 <C~111AT (29931 ,C < 1 i l, <CCMAT (5251) ,CR ( l l I 

cit•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••tt 
C•••••THlS SUBROUTINF. WRITES OUT ALL OF THE INITIAL DATA BY USE OF••••• 
C••••• SUBROUTINE ~ATROP. ••••• 
C-l•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••tt 
C 

wRlTE <6,1) 
wRlT£ !6,21 NR, NC, NA, NH 
wRiTE <&,31 DELT, ST, f~TOP 
wRiTE 16,41 DELX, DELZ 
WRlTE !6,5) Gt A~PHA,RHOP 
WRiTE !6,6) BETA, RCOMP,GAMMA 
WRiTE !6,71 
CALL MATRO!-' (NR• NC, FKl 
WRITE 16,81 
CALL MATROP (NA, NC, PORl 
wRilE <6,9> 
CALL MATROP (NRt NC, H) 
WRITE (6,101 
CALL MATROP (NR, NC, PT) 
WRITE (6,11) 
CALL MATROP (~R, NC, POT) 
wlHTE !6,121 
CALL MATROP (NR, NC, RHO) 
wRiTE (6,131 
CALL MATROP (NR, NC, VIS! 
wRiTE (6,141 
CAL~ MATROP (NR, NC, Q) 
wRiTE 16,151 
CA~L MATROP (NR, NC, CAVGI 
wRiTE !6tl6l 
CALL MATROP (NA, NC, nELC> 
REluRN 

l ~OkMAT C\Hlt36X•57H*••·····••TWO-DIME~SJUNA~ VERTICAL fLOw PQOBLE~ 
1••········ //) 2 fOkMAT (lHOtlSHROw DIMENSION =,14,lOX,lBHCO~u~N OTMENSION =,T4, 
llOXtl9HCMAT~X DIMENSIONS =,l4,lXt2HBYtlX•I4l 

3 FORMAT (lH0,12HDELTA-TIME =,FlO,J,lX•~HSECS,,lOX,lbHTOTAL ~UN TIME 
l =,Fl0,3,1X,5HSEC5,,1ox,l9HPRtNT our CONTRO~ :,ftn,3) 

4 fORMAT <1Ho,9HnELTA•X =,F10,J,1x,JHFT,,1ox,9HnELrA-Z =,F10,3,1x, 
131-it-T, I 

5 FOkMAT (lHO,l7HACc. OF GRAvITy =,Fl0,3,1~,l6HFT. PER SQ, SEc.,1ox, 
17HALPHA =,F10.3,1ox,21HPR00. FL tJID ot~SJTY =,Flo.,,1•,11HSLU~ PEA 
2cu~. FT, 1 · 

b fOkMAT llHO•lJHFLulD COMP. =,Fl0.3,lXolSH5Qo FT, PER L8.,lOX,12HQJ 
IC~ COMP, :,Fl0,3,1x,1sHSW, FT, PER L8,,}0X,7HGAMMA =,F}0,3 > 

7 F0k!l1AT (}H0,52Xt27HPERMEAijJLITY MAP (SQ. FT,), /l 
8 FOMMAT (lH0,58X,l]HPOROSITY MAP. /) 
9 fOkMAT (1H0,52X•~SHGRJD ELEVATION MAP (Fl,>, /) 
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10 FOHMAT (1H0,45Xt40HINITIAL PRESSURE MAP (LBS. PE~ SQ. FT.>. /) 
11 FOkMAT (}H0,51X•28HINITIAL POTENTIA~ MAP (FT,>, /) 
12 FOHMAT <lH0,45X•~lHINtTIAL DENSITY MAP (SLU3 PER CUBIC FTolo /) 
13 FO~MAT (1H0,4JX•~SH1NITIAL VISCOSITY MAP (L~~-SEC • PER SQ, FT,),/) 
14 FO~MAT <1H0,46Xt37HPROD~CTION MAP (CUBIC FEET PER SEC.> • /) 
15 FOkMAT <1H0,41X•~8HINITIAL CONCENTRATION MA? <SLUG PER CUBIC FOOT) 

1. /) 
16 FOkMAT (1H0,41X,49HCHANGE IN CONCENTRATION ~AO (SLUG PER CUBIC FT, 

1). /) 
ENU 



C 
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SU~ROUTINE ~ATROP (~R, ~C, R) 
DIME~SION B(NR,NY>• A(l2) 

Cll••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••*II 
c••·••THIS su,ROUTINE ORGANJZES THE ll\llTIAL OATA OR l~E ~ESULTS INTO••·· 
c••··· A SUITA8LE FOR~ FOR PRJNTOuT. • •••• 
Cll•••••••••••••••••••••***********•••••••••••••••••••••******••••••••tl 
C 

DO 11 I::1tN:,12 
IN"'l/ 12 
DO 9 J=l,NR 
1Fl!IN•ll*l2oLE•NCI 1,3 

l DO 2 JJ=ltl2 
JJJ=IN*l2•JJ 

2 A(jJ>=8(J,JJJI 
GO TO 6 

3 LL=NC•l2•1N 
DO 4 JJ=l,L;. 
JJJ=IN*l2•JJ 

'+ A(JJ)sB(J,JJJ) 
LL=LL•l 
DO 5 JJ=LL,12 

s AlJJ>=o.o 
6 IF . (All>.LT.OoOOll GO TO 14 

IF llN> 7,7,8 
7 111R1TE 16,12> 1AlIIl,II=1'12>tJ 

GO TO 9 
8 wRlTE (6.121 IAIIJ),IT=l•l2h 11\1 

GO TO 9 
14 IFIIN> 15•15•16 
15 ~RI.TE 16ol71 IAIIJl,II=1'12>t J 

GO TO 9 
16 wRITE 16ol7> (A(It>,II=ltl2>, 11\1 

9 CONTINUE 
IFINCoLE.<1~•1>•121 11,10 

10 wRlTE 16,13) 
11 CONTINUE 

RETU~N 
12 FORMAT llH •l2El0 0 3,14> 
13 FORMAT llHO,//l 
17 FORMAT llH •l2El0.3,l4) 

ENU 
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SUbROUTINE STOAAG (NR,NCtNA,N8,5TOR,ADDl 
OIME 1'4SION F<<l2t27l ,POR(l2,i?7) ,P'i(l2,27l ,P<l2,?7l ,PT<l2,27l, 

1Pf-'(l2,27l ,P'.H(l2•27l ,AHO(l2t27l ,VJS(l2,27> ,Q(12t27l ,CA\/G(12,?7), 
2<;~vGPH2t27) •OEl...¢(12,27> ,SUMC<l2,2J) •COuNT<l2,27> ,Dll <12,27) • 
3022(12,27> dl2<12,27l ,V><<l2,2Bl ,11Z<13,27l ,CC"4AT(5c;OOl tX(t49f,), 
f+l ( lt+96 l , C ( 1496) , CMA T RX ( 250, 21 l , CR ( 250 l , Xd l ( 24) t bH ( 24) , Oil ( 24) , 
SX8i<24l,ZB2(24)tCB2(24l 

COMMON DELT,ST,FWTOP,DELX,oELZ,FK,POR,H,P,PT,PP,RHO,vJs,Q,~HOP, 
lCAVG,CAvGP,)ELc,G,BETA,ALPHA,GAMMA,RCOMPtSU~C,COUNT,Dllt022,Dl2, 
2v><,vl,NwDCNTtXBl•Z61,CBl,)(~2,ZB2,CB2,CCMAT 

£(.IUI VALENCE (CCMAT ( l) ,POT ( l l ,X ( l > tCMATRx ( l l), (CCMAT ( 1497) ,z ! 1 l l, 
l(C~MAT<2993l,C<lil, (CCMAT(525ll,CR!lll 

C 
c-,•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••1i 
C•••••THlS SUBROUTINE COMPUTES THE MASS STORAGE FOR TrlE TOTAL AREA.•••• 
C•••••STOR=TOT~L ~ASS STORAGE OF AREA <SLUGS> ••••• 
C•••••ADD = TRACE~ MASS STORAGE OF AREA (SLJGS>. ••••• 
c--•••••••••••••••••••i•••••••••••••••••••••••••••••••••••••••••••••••~-c 

NC1=r'4C•l 
NRl=NR•l 
AO_O=O, 0 
STOR=O.O 
DO 1 L:i:2,NCl 
DO l K:i:2,NRl 
STOR=<loO•DELX•DELl•POR(K,Ll*AHO(K,Lll•STOR 
ADD=<l.o•DE~x•oELZ•PoR(KtL)•CAVG(K,Lll•ADD 

l CONHNUE 
RElURN 
ENO 



C 
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SU~ROUTINE ~ATSUL (NR,NCtNA,NRl 
DIME,-.,SION F<ll2tc7l ,POR(l2,27) ,1-1(12,27> ,.-<12,:,7) ,PT(J2,?7l, 

1PP(l2,27l ,P)T(J2t:>7l ,RH0(12,27l tVIS<l2,27l ,J<12t27l ,CAVG<l2,:>7>, 
2CAVGP(l2,271,DELt~l2,27l,SUMC(l2•27ltCOJNT(l2,27>,Ull(12,27l, 
302~(12,27>,)l2<12,27l,VX(l2,28l,VZ<l3,27l,CCMAT(5~00l,X(l•~6l• 
l+Z ( !4~6) ,CI H96 l , CMA TRX 12':>0, 21 l , CR 1250 l , Xti 1 < 24 l , ZR 1 ( ?4) , OH ( 24) , 
5X8~<2•>,ZB2124ltC82(24l 

COMMON DELT,Sr,F-TOP,oELX,oELZ,FK,POR,H,P,PT,PP,RHO•Vl S-1,~HOP, 
l CAVG, CAVGP, JELC ;u, HE TA, AI.PHA, GAM"1A, RCOMP, SU'4C ,COlJN T, 011 ,n22, Dl 2 • 
2vx,vz,NwOCNT,~AltZ81,CAl,Xd2tZB2,C82•CC~AT 

1:.1.1u1 VALENCE <CcMAT < 1 l ,POT ( 1 l ,x < l l ,C"1ATRX (} l l, (C(A4AT ( 1497) ,z < l l l, 
l(~~MAT<2993l,C(li>, <CC'4AT(52Sll,CR(lll 

c--•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••--
c•••••TH1s SUBROUTINE SETS UP THE COEFFICIENT MAT~fl( ANn THE RIG~T ••••• 
C**•*• HANO SIDE COLUMN VECTOR. ••••• 
C•••••THE COEFFICIENTS A~E COMPUTED BY THE FUN~TION~ PARAM, RHOA'4, ••••• 
C••••• AND ELVAM, ••••• 
C•••••THE ~ATRIX l8TAINED 1-lAS ALL OF THE LO~ER LEFT HAND AND UPPER••••• 
c••··· RIGHT ~ANn ZERO ELEMENTS ELIMINATED• ••••• 
C•••••CMATRX s ELEMENTS OF COEFFICIENT MATRIX ••••• 
c••·••c~ = ELEMENTS OF RIGHT HANu SIDE COLUMN VECTOR ••••• 
c--•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••-· 
C 

PA~AM(AFKltAFK2•APOR,AOELS,AMUl•AMU2>=<2~0*AFKl*AFK2l/(APOR*ADELS• 
}AOELS*(A"1Ul•AF~2•AMU2•AFKlll 
RH•AM(ARHO}tARH02):0,5*(AAHOl+AQH02) 
ELVA"1(Arll•A~2l:AH}•AH2 
DO 1 J:l,NB 
00 1 I•l,NA 

l CMATRX<I,J>=O,o 
Nl=O 
NCl=NC•l 
NRl=1~A•l 
IB=NH•2 
IM=Id•l 
IC=I"1•1 
ID=2•Id•l 
DO 12 J:2,N::l 
DO ll I=2•N~l 
NT=NT•l 
CIHNTl=O.l) 
If<F~(l,J).~Q.OoO) ll,22 

22 lF(P<l,JloG~.10000000) 11,2 
2 JA=l 

JD=I 
CMATRX(~T, ll=AHOAM(RHO( JA,J•ll,AHO(l,J>)•~AQAM(~~( JA,J•l)o 

lFKIJtJl,POR<I,JltOELX,VIS< JA,J-11,VlS<I•Jl) 
CMATMX(r\jfol31=AH0AM(RHO(I-l, Jl,RHO<l,J))*?ARA'4(~K(l•l, J>, 

1 F K ( I • J > , POR < I t J l , DEL Z, VIS < 1 • 1 , J l , VIS < l , J l l 
CMATRX(NT•I:>=RH04M(RHO(l+lt Jl,RHO<I,J)l•~~RA~(FK(l+l, Jl, 

HK (It J > , POR < I , J l t DEL Z, VIS ( I• 1, JI , VIS ( I t J l ) 
CMATMX(NT,I)>=RHOAM(RHO( JO,J+}),RHO<I,J>)•~~RA~(~K( JD,J•l), 

1F1dJ,Jl,POR(I,.il,oELX,VJS( JO,J+ll,vlS(ItJ)) 
C**•*•TH~ F0LL0wl~G 5TATE~ENTS (THR U 101 TRANSFER COEFFICIENTS, 0000• 
c 0 •••• ~01.TIµ~JEa dY RE5PECT!VE PQESSUAE T£RMt TU ATGHT HANO oo•o• C••o•o SIDE CJLUMN VECTOR FOR KNOwN BOUNDARY C~NDTTIONS 0 •••oo 

JF(PIJA,J•ll,GE,lOOOoo.o> 3,4 
3 CR(NT):CR(NTl-(CMAlRX(NTt l)•PT( JA,J-lll•(3*CMAfPX( NT, J)OQ~QAM 

\(RHO( JA,J•l),RHV(l,J>)•ELVAM(H( JA,J•lltH(l,Jll) 
CMAT~X(~T,l~l=CM~TRX(NTtlM)-CMATRX(NTt }) 
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CMATRX(NT• 11=0•0 
4 IF(P(l•l,J).Gf.lOoooo.o, 5,6 
S CR(NTl=CR(NTl•(CMATRXCNT,IBl*PT<l•lt J)l•(3*CMATPXCNT,I8l*RHOA~ 

lCRHOCl•lt Jl,RHO(I,J))*ELVAM(HCl•l• JltH(ltJlll 
CMAntx ( NT tl'i) =CMA"fRl< ( NT ,li'4j -Ci4A TRX (NT' t g) 
CMATRX(NT•l3l=O•O . 

6 IF(P(l•l,JI.GE,looooo.o> 1.a 
7 CRINTl=CR(NTl•(CMATRX(NTtlCl*PTCI•l• J)l•<3*CMATPX(NT,1Cl*PHOA~ 
l(RHO(l•l, Jl,RHO<l•Jll*ELVAMCHCI•l• J>•H<l,Jlll 
CMATHX(NTtJ~>=cMATRX(NT,I~)-CMATPX(NT,Ic> 
CMATRX(NT•IC>=o.o 

8 IF(PIJO,J•lloGE•l00000.01 9,lo 
9 CRINTl=CRINTl•!CMATRX(NTtIDl*PTC JO,J•lll•C3*CMATRX(NT,IO)*RH0A~ 

l(RHOI JD•J•lltRHO(ltJ)l*ELVAM(H( Jo,J+l)tH(l,Jl)> 
CMATHX(NT,I~l=CMATRX(NT,IM)•CMATRX(NT,ID) 
CMATRX(NT,J))=o,u 

10 CMiTHX<Nt•I~l=C~iTRX(NT,l~)•(CMATRX(NT,)l+C~ATRX(NT,JBl+CMATRX(NT, 
lIC>•CMATRXCNT•IDl+((RHO(l,J)*(RCOMP•ijEfAll/DELT)) 
DELCCP=CAVGCl,Jl~CAVGPll•J> 
CRINTl=CRCNTl•((~HOCl,Jl*(RCOMP+~ETAl*PTll•Jl)/DEL!l+((ALPHA•DELC 

ICP l IDELTl+((RHOP*QCI,J))/CPOR(l,Jl*DELX*DELZ>>•<G*CMAT~XCNT,l>* 
2RHO~~IRHOCJA,J•ll,RHO(ItJl)*ELVAM(H(~A~J•J)1H(ltJ)l)•lG*C~ATRX(~Tt 
31Bl•RHOAMIR~OCI•l,Jl,RHOII•J>l*ELVAMIH(I•l,Jl,H(I•J>)l•CG*CMATRX( 
4NTtlCl•RHOA~(RHOII+l,Jl,RHQ(l,Jll*ELVAM(H(l•l,Jl,H(l•Jll)•(G*CMATR 
5X(NT,IDl*RHJA~(RHO(JD,J•ll,RHO(T,J))*£LVAM(~(JD,J•lltH(l,J))) 

GO TO 12 
11 CMATRX(NT•l~>=l•O 

C.R ~_r•.IJ.J..:;?t (1 t J) 
12 CONTiNUE 

CALL BSOLVE (CMATRX,NA,N6,CR) 
NT=O 
DO lJ J:2 ,N:;l 
DO 13 1=2,N~l 
NT="IT•l 

13 PTII,Jl•CRINTl 
RE!URN 
£ND 
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SU~ROUTINE 3S0LVE <C,N,~•Vl 
OlMENSJON CCN,MltVCN) 
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c--•••************************************************••••••••••••••••--
c•••~•THlS SUBROUTINE SOLVE~ THt MATRIX SET u~ IN MATSoL BY GAUSS ***** 
C***** .. tLIMlN~TION; ***** 
c--•••****************************************************************•-c 

LR=(M .. ll/2 
DO 2 L•l,LR 
lM=Lf~•L• 1 
DO 2 I=l,IM 
DO 1 J=2,M 

l CCL,J•l>=C<~•J> 
KN=N•L 
K.M=M-1 
C(L,M)=o.o 

2 C(KN•l,KM•l>=o.o 
LR=LR•l 
IM=N•l 
DO 10 l=l,1"1 
NPIV=l 
LS=l •-1 
DO 3 L=LStL~ 
IF (ABSICCL,llloGToAB~IC(NPIV,1))) NPJV:L 

3 CONTINUE 
IF (,"PlV,LEol> bt4 

4 00 5 J•l,M 
TEMP=Cll,Jl 
C ( 1, JI= CI NP IV, ,J) 

5.C(NPIV,J>=TEMI-' . 
TEMP•VII) 
V ( 1): V P.lP 1 V) 
V(NPIVl=TEM" 

6 V(l)=Vlll/CII,1> 
UO 7 J:2,M 

7 CCl,J>=CII,Jl/C(l,11 
UO 9 L=L.S•L~ 
Tt:MP=CIL.,ll 
v<~>=V(~l•TE"1P*V(J) 
00 8 J=2,M 

8 CCL,J•l):Cl~•J>•TEMP*C(ltJ) 
9 c<L, .. 11=0.o 

IF (LRoLToNl u~=LR•l 
10 CONTINUE 

V(N):V(N)/CIN,t) 
JM•2 
DO 12 I= 1 • I "1 
L=N•l 
DO 11 J=2•J"I 
~M=L•J 

11 V(L)=V(~)•C(L,Jl*V(KM-1) 
If . (JMoLToMI JM=JM•l 

12 CONTINUE 
RElURN 
£NU 



C 
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su~~OUTINE VELOCY (~R,~C,I~,IC) 
DlME 0-ISION F< ( 12,27> tPOR( 12,27> ,H( 12,27) ,P (12,271 ,PT ( 12,27), 

1PP(l2,27> ,P:>T (t2t;)7) ,RH0(12,27) ,VIS(l2,;?7) ,J(12,27) ,CAVG(l2,;>7l, 
?CAVGP ( 12, 21> , DEL.C ( 12, 27) , SUMC I l;?, 27 l , COUNT ( 12 • 27) , I) 11 ( 12, 2 7 > , 
3D22(12,27),)12(12,27),VX(l2,2B),VZl13t27>,CCM4T(5~00),Xll496>• 
4l ( 1496> ,C < H96) ,C!4ATRx 12so,21 > ,CR(2SO> ,xth (24> ,lAt (24l ,CBl C?.4), 
5XB2(24l,Z~2(24)tC82(24l 

COMMON DELT,ST,F•TOP,oELX,l)EL7,FK,PO~,H,P,PT,PP,RH0,VIS,Q,~HnP, 
lCAVG,CAVGP,)ELc,G,AETA,ALPHA,GAMMA,RC0MP,SU~C.COu~T,O}lt022,nl2t 
2vx,vz,N-DCNT,XAltZ81,CBl,Xij2,ZB2,C82•CCMAT 

EwUIVALENCE (CCM~T(l),POTll),X(ll,CMATRX(l)>, (CCMAT(l497l,Zllll, 
l (CCMATl2993l ,C:(li°), (CCMAT(5251) ,CR(ll l 

c--••• .. •• ......................................................... _.• .. ••••••••••••• ......... __ 
c•• .... •THlS SUdROUTINE CALCULATES THE SEEPAGE VELOCITIES AT EACH GRID••· .. 
C .. •••.. INTERFACl,THE LONGITUDINAL ANO LATEAAL DISPERSION COEFF- .... .. c•••*.. ICIENTS ARE DETERMINED FOR EACH GRJI) USI~G A VELOCITY PnwER .. .. c••··.. RELATIJNSHlP, ANO THE COMPONENTS OF THE oISPERSIONfENSOR ARE• c••··· DETERMINED ~v USING THE APPROPRIATE TRANSFORMATIONS, ..... . c••• .... vx = VEL.OClTV IN X•DIRECTioN. .. .... .. 
c .. •·••VZ = VEL.OCITY JN Z-DIRECTioN. .. .... . 
C•••••OifF a DIFFJSION COEFFICIENT ....... . 
C•••••TORT a TORTJOSJfY, .... ••• c••·• .. OlA = MEDIA~ GRAIN SIZE DIAMETER, ••••• 
C•••••VXX =X•VELOClTY AT CENTER OF GRIUo ••• .. • 
C .... •••vZL = Z•VELJCITY AT CENTER OF GRID, ••* .. * 
C .. *•••DL.: L.O~GITJDINAL DISPERSION COEFFICIENT, ....... 
C .... •••DT: LATERA~ DISPERSION COEFFICIENT. ••• .. • c .. -.-... ~E = REVNOL.JS 111UMBER, · 0 • 0• 
c••·••o11,022,012 = coMpo~ENTS OF THE OISPERSJON COF.FfJclENT TE~SOR, .. .. c--•• ........................................................................................ __ 
C 

DO 10 I=l•N~ 
DO 9 J=2,NC 
IF(FKii,J),:'.Q,o,o.oR.FK(l,J-1).EQ,0,0) GO TO· q 
006:((•2,0)*FK(ltJ>•FK(I,J-l))/IOELX•<FK(l,J•ll*pOR(I,Jl .. VIS!l,J)• 

lFK(I•J>•POR(I,J•l)•v1sc1,J-l))) 
V X (I, J l =DOG• I (PT (I, J) •PT ( I , J• l l ) • 0 0 S*G .. ( RHO ( I , J l +RHO ( I , J• 1) l .. 

l(H<J,Jl•Hll,J•lll) . 
GO TO 9 . 

8 VX(I,J>=o.o 
9 CONTINUE 

VX(I,l)av>Ul,2) 
VX(J,IC):VX(l,~C) 

10 CONTINUE 
00 20 J:},NC 
00 l~ 1=2,N~ 
IF(FK(l,Jl.::Q.o,o.oR.FK(l•l,J).EQ,0,0) GO TO 18 
UOG:((•2 0 0l*FK(l1J)*FK(l•l,Jl)/(DELZ•(FK<I•l,Jl*PORII,Jl .. Vls1I,Jl• 

lFK(J,Jl .. POR(l•ltJ)*Vl~(l•l,J))) 
V Z ( I • J l =OOG * ( (PT ( I• J l -t-> T ( I -1 , J l > + 0 • 5 .. G .. I RHO I I , J) • RHO ( I• 1 , J l l • 

I<H(J,Jl•!-ill•l, .Jlll -
uO TO 19 

}lj lll(I,J>=o.o 
19 CONTINUE 

VZ(l,J)=VZ12,Jl 
IIZ(IR,Jl:Vl(N~,Jl 

;,o CONTI NiJE 
uitF=o.o 
TOkT=0,5 
UlA:0.09F,5 



DO 30 I=loN~ 
DO 30 J:1,N:: 
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VXX:VXll,Jl•0.5*1VX(l,Jl•VX(J,J+lll 
VZl=vZ<I,Jl•O.S*IVZ<I,Jl•Vl(l+l,JI) 
VELX=VxxiivH 
vELZ=VZZ•VZl 
lFIVELXoE~.o.o.ANDoVELZoEU 0 0.nl GO TO 21 
VEL:SQRT(VELX+VELZl 
RE=(VEL*DIA*RHO<I,Jll/VIS<I,Jl 
DL=Oo66•1VIS<l,J)/RrlO(I,J)J*RE**l,2 
ul=0.036•<vIS(JtJ)/RH0(I,J))*RE**0.7 
Ollll•Jl=IO~*VXX*VXXl/(VEL•VELl•IDT*VZZ*VZZl/(VlL•VELl+OIFF•TORT 
02i!l,Jl:IDT*VXX*VXXl/(VEL•VELl•(DL*VZl•VZZl/CVEL*VELl+OIFF•TORT 
D1£11,J):(()L-nTi•vxx•vZl)/(VEL*VELl 
GO TO 25 

21 Dll<I,Jl:O.O 
D22<1,Jl:O.O 
01211,Jl=OoO 

25 SUMCII,J>=o.o 
COUNT(I,J>=o.o 
CAVGPII,Jl=::AVGll,Jl 

30 CONTINUE; 
REIURN 
ENU 



C 
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SU~ROUTINE ~OIIPT (NRtNC,NPltNP2tNPX,NPZ) 
L>IME •~SION F~ ( l2t27) ,P<HU 12,27> ,11 ( 12,27) ,P < 12,;,7) ,PT< 12,27> t 

l PP < 12 t 2 7 l • P :>T ( 12, 2 7) , RHO ( 12, 2 7) , VIS ( 12, 2 7) , .J ( 1 2,271 , CA VG < 12, ;;> 7) , 
4C~~GP!}2,27l,DELC(l2,27>•SUMC(l2•?-7l•CO~NT<l2,27),011<12,27>, 
3D22(12,27l ,)12(12,27> ,VX(l2,2B) ,I/Z!l3,27> ,CCMAT(5c;OO) ,X!l496l, 
t+Z ( 14~6 l , C < HQ6) , Ct.tA TRX ( 250, 21 l , C1H 250) , Xti l ( 24) , Zli 1 ( 24) , CFH < 24) , 
5XBc(24) ,Ztl2(24l ,CB2!24) 

COMMON DELT,Sl,FWTOP,oELX,oELZ,fK,POR,H,P,PT,PP,RHO,VIS,Q,RHoP, 
lCAVG,CAVGP,)ELc,G,RETA,ALPHA,GAMMA,RCOMP,SU~c.cou~T,Dll•U22,D12, 
2vx,vZ,NwDCNT,XBl•Z~l,CRl,Xti2tZB2,CB2•CCMAT 

EuUJIIALENCE (CCM~T(l) ,POT(l) ,X(l) ,CMATRx (1)), (CCMAT(l497l ,Z(l> >, 
l (C~MAT <2993) ,CI u:), (CCMAT (5251> ,CR ( 1)) 

c--•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••--
c•••••TH1s SUBROUTINE CORRECTS THE CONCENT~ATION JF EACH MOVING POJNT••· 
c••··· fOR THE EFF~cTs OF UISPERSION IN THE PREVIOU~ TIME STEP***** 
C**••• !THIS LOGICALLY 5HOULU HAVE BEEN DONE AT T~E END Of TrlE ••••• c••··· P~EVIOJS TIME STF.P BUT FOR PROGRAMMING E~FictENCY WAS ***** c••··· DELAYE~>. ALSO, THE VELOCITY OF EACH POI~T IS DETERMINEn •••• c••··· AND THE Pol~T MOVED ACCORDINGLY, POINTS MOVJNG OUT OF THE*** 
C***** MODEL ARE LOCATED AND RE•ENTERED AT AN APPROPRIATE INFLOW••• 
C•*•*• BOJNUA~Y, A RECORD OF SUMC ANO COUNT IS MAINTAINED AND CAVG•• C**••• IS R~CALCtJLATED F'lR EACH GRID, -
c••·••vxx,vzz = IIELOCITY COMPONENTS OF MOVING ~OI'IIT. •• 
c--•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••--c 

PX=NPX 
PZ=Nt->Z 
ALl:.NX=:JELX•'IIC 
ALE.NZ=DEL. Z• 'IIR 
AblSX=DEL.Xl"X 
ADlSl=DELZl?Z 
DO ·s I=l ,NPl 
Nll=ZBl (I)/)ELZ•l,O 
Nl2:XBl(ll/)ELx•l,O 
ALL.:;H 2• l 
V X X::i: I/ X (NI 1 t '11 l 2 l - ( ( ( XB l ( I) - ( ALL •l)EL X l ) /DEL X l * ( V )( (NT l, NI 2) -V X ( N 11 t 

lNlc•l> l > 
IF<11XX,GT,O,O> XBl !l)=XBl<I>•<UELT*VXX) 
Nll=lB2<tl/JELZ•l,O 
Nl2=XB2(ll/JEL.X•l.o 
ALL=,~12•1 
VXX:VX!Nll,'1112l•(((X82(J)-(ALL*DELX))/DELXl•(vX(NTl,N12)-IIX(~Il, 

}Nlc•l>>> 
IF(11XX0LT,O,O> X~211):X82(I)•<DFLT•VXXl 

5 CONTINUE 
NECK=l 
JECK=l 
MECK=O 
L0b=(NPl•Nl'2)+200 
IJO -20 I=l ,L:>G 
Nll:llll/DELZ•l,0 
Nl2:X(I)/OE~X•l•V 
IF(NI2,GT,N:l GO TO loo 
AL=Nil-1 
ALL=•H2-1 
C(l>=CII>•D:LC!Nlt,NI21 
VXX:VX(Nll,'1112)-((IXlt)-IALL*OELXl)/UELxl•!VX(Nl},Nl2l-VX(~IltN12• 

l ll)) 
VZL=IIZ(Ntl,'III2>-((!ZIT)-!AL*DELZll/DELZ)•<vZ(Nll,Nl2l-VZINll+l,'IIJ2 

l) )) 
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lf(VX(Nll•Nl2).EQ.o.o.AND,vxx,LT.o,o> Gn TO 40 
uo ro 41 

40 ALL=Nl2•l 
DISTA=X<Il•IALL*DELX) 
OfSTti=ABS fOEL T•liXX) 
IFIDISTA,uT.DIST~) VXX:(•DISTA•O.Oll/DELT 

41 IF<vX(Nll•Nl2•lleEQ•O.OeANo.vxx.GT.Oe0l GO TO 42 
GO TO 43 

42 ALL:1il2 
OlSTA=IALL*DELXl•Xll) 
01sr~=Aas·1otI T•Vxx, 
lF(OISTA,GT.DISTd) VXX=(DISTA•O.Oll/DELT 

43 IF<vZ<Nil•Nl2).EQ,O.O.AND.vZZ.LT,o.o> GO TO 44 
GO TO 45 

44 ALL:1" I l • l 
OISTA=Z<Il•(ALL*DELZl 
DISTB=ABS(OELT•VZZI 
IF<DISTA,GT.DIST8> VZZ=<•DISTA•O.Ol)/OELT 

45 IFIVZINil•l,NI2leEQ,O,OeANUeVZZ,GT.Oe0l Go To 46 
GO TO 52 

4& ALLarH l 
DISTAa<ALL*)ELZl•71Il 
DISTB=ABSIDELT•VZZl 
IF<DISTA.GT.DISTBl VZ7=<UISTA•O.Oll/0ELT 

52 Zll>=Zlll•DELT•VZZ 
X(~)=X<ll•OELT•Vxx 

loo IF{Xll>,LT.ALENXoAND.711),LTeALENZl GO TO 12 
lf(X(Il.GE.ALENX) r,o TO 80 
GO TO 12 

RO IF<MECK.EQ.2) GO TO 12 
l~IMECK,EQ,ll GO TO 75 

70 lFIX~l(NECKleGE•AOISXl GO TO 72 
JECKaJECK•l 
NECKaNECK•l 
IF1 r::fECK.LEe'lPll GO To 70 
lF(JECK,GT,'lPll ~OTO 74 
JECK=l 
NECK=l 
GO - TO 70 

72 XBl(NECK)=X3l(NECKl•ADISX 
X(i)=XBl (NECl<I 
Z(l)=Z81 (NECI<) 
C (1) =C IH < NEC1() 
IF<NECK.LTe'lPi) GO TO 11 
NECK=l . 
GO TO 12 

74 NECK=l 
JECK=l 
MttK=l 

75 015T=ALENX•X821N£CK) 
IFIDIST.GE.ADISXI GO Tn 76 
JECK:JECK•l 
NECK=NECK•l 
IFl ,iECK.L,E,'lPll GO TO 75 
lF(JECK,GT,'lPll l:iO TO 77 
Jl:CK=l 
NECK=l 
GO TO 75 

7& X82(NECKl=X32(NECKl•AnISX 
X(l)=XA2(NECK) 
l(l>=ZB2<NECKI 
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C(ll=CB2<NECKI 
IF(NECK.LT.~Pl) GO ro 11 
NECK=l 
60 TO 12 

77 NECK=l 
JECK=l 
MECK=2 
GO - TO 12 

ll N~CK=NECK•l 
12 Nl!=Z<I)/DE~l•l•O 

NI2:X(Il/DE~X•l•O 
IF(NI2.GT.NC) GO TO 20 
IF(NI2.EQ.NC) c<I>=o.10 
SUMC<NI1,Nl21=5UMC(Nll,Nl21•C<ll 
COUNT(Nll,Nl2l:CUUNT(Nll•NI21•1 • 0 

20 c;:ONTINVE 
DO 30 I=l•N~ 
DO 30 J=l,NC 
lF(COUNT<l,JI.EQ•O•O> COUNT<I,Jl=l.O 

30 C~VG(l,J>=SJMC(ltJI/COUNT(J,J) 
RElURN 
ENU 
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SU~ROUTINE )ISP (NR,NC,NPl,NP?,NPX,NPll 
0 I ME•\IS ION f < < l?, 271 , PnR ( 12, 27 I , H ( 12, 2 7 I , P < 12,:, 71 , PT (12,271 , 

l PP <l 2 • 2 7 I • P J T ( 12, 71 , RHO ( 12, 2 7 l , I/ IS < 12, 2 7 I , :.I ( 1 2, 27 l , C AVG ( 12,;, 7l , 
2CAvGi-> ( 12 • 2 71 , DE:LC < 12, ?71 , SUMC ( 12, 27 l , COUNT ( 12, 2 7 I , I) 11 ( 12, 2 7 l , 
3D22 ( 12 • 2 71 •) 12 ( 12, 2 7) , V X ( 12, 28 I , V Z (13 • 271 , CCMA T ( S,0 0 I , X ( l lt96 l t 
42 ( l lt96 I , C < 11+96 l , CMA TR)( ( 250, 21 I , CR ( 250 I , XB l I 24 l , lB 1 1241 , CB l 124 l , 
Sll.821241 ,Zfi2124l ,CB2<24l 

COMMON OELT,jT,fwTOP,nELX,uELZ,FK,POR,H,P,PT,PP,RHO,VIS,Q,RHoP, 
}CAVG,CAVGP,JELc,G,BETA,ALPHA,GA~MA,RCOMP,SU~C.COuNT,011,022,012, 
2vx,vz,N-DCNT,XBltZBl,Cij},x~2,zB2,CB2•CCMAT 

EuUIVALENCE ICCMATlll,POlllltXlll•CMATRX(}II, (CCMAT(l4971,Z<lll, 
l <C~MAT 129931 ,C < l) I, (CCMAT 15251 I ,CR< 1 I I 

C•••••••••••••••••••••••••••••••••••••••••••••••••••••••**************•• 
C••·••THIS SUoROUTINF. CALCULATES THE CHANGE IN CO\ICENTRATtnN OUE rn **** c••··· . DISPERSION, CAVG IS THEN CORRECTED fDR ,~IS nlSPERSION EfECT• 
C••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
C 

MR=NR•l 
MC=NC•l 
l)O 47 1=2•M~ 
DO 47 J:s2tM: 
~=RHO<t,JI/IRHO(l,Jl•(ALPHA•CAVG)I 
lflDllll,J•ll,EQ•O•O•OR,Dll<I,Jl,EQ.OeOI GO Tn 31 
DCXXA=((2,0*w•pOHct,J+l)*OELT•DlllI,Jl*DlllI,J•l))/(DELX•OELX* 

llPOH<I,Jl*Dll<t•Jl•POR(l,J+Il•Dll<I•J•l)lll*<CAI/G(l,J•l>•CAVr,(l,J 211 . 
GO TO 32 

ll DCXXA=o.o 
32 IflDll(l,J-11,EY,o.o.oR.Dll(I,J).EQ.O,OI GO TO 33 

DCXXB=<12.o•~•pOR(I,J-l)*DELT•D11<1,J>•ol1<I,J•l11/(DELX•OELX* 
llPOR<I,Jl*DlllttJl•POR(ltJ-ll•Dll<t,J•l)lll*<CAVG<l,Jl•CAl/~(TtJ•l 
211 

GO TO 34 
33 DCXXB=o.o 
34 lF([)22(I•ltJl.F:l.l,o.o.nR.022<I,JI.EQ,O,O) GO Tn 3c; 

DCYVC=l(2,0•w•pOR(I•l,J)*l)ELT•D22(I,Jl*D22(I•l•J>)l(DELZ*t'lEL7* 
l(PORll,J1*0221ItJ)+POP<l•l,Jl•D22<l•l•J>lll*(CAVG(l+l,Jl•CAVG<l,J 
2)) 

GO TO 3b 
35 DCYYC=o.o 
36 lf1Dl21I•l,Jl,EQ.o.o.oA.D22(1,Jl,EQ.O.O) GO Tn 37 

DCYY0=<<2.o•w•~OK(l•l,Jl*DELT•o22<1,J>•o2211-1,J))l(DELZ•DEL7* 
llP0Rll,Jl*D22(ItJ)+POP(l-1,Jl•022(1-l•Jl)l)*(CAVG(l,J)•CAVG<l-l•J 
211 

GO TO 3b 
37 DCYyl):Q,O 
38 lf(Dl21I,J+}).El.l.o.o.nR.Ulc(l,J).EQ,U,O) GO Tn 39 

DCXYA=(1w•PJ~IT•J•ll*DELT•o121I,Jl*D12<I•J+}))/(2,0•0ELX•l)EL7* 
1(~0RIIoJ)*D12<y,J)+POP<l•J•ll*Ol2(I,J•l)lll*<C~VG<l•l•Jl+CAV~(I+l, 
2J•l>-CAI/G(l•l,Jl•CAVG(I-l,J•lll 

GO TO 40 
19 DCXYA=o.o 
40 lf(Ol2<I,J-ll.EQ,o,o.oR.Ul2(1,J),EQ,0,0I Gn Tn 41 

ucx rn= < < w*P J~ < t • J-1 l *DEL T•u 12 < T, JI •o 12 t I• J- 1 l l / < 2. o•nEL X•OEL 7* 
11P0Rll,J>*D12tT•Jl•POp(J,J-ll•Dl21J,J•l)lll*(CAVGll•l•Jl+CAV~(l+l, 
2J•ll-CAVG(l • l,Jl•CAVG(I•l,J-lll 

GO TU 42 
41 UCXYti=o.o 
42 If<Dl2<I•l•J>.Fl.l,o.o.nR,Ul2(1,Jl.EQ.O.Q) GO TO 43 

uCYXC=< (w•~:1~<1•~tJl*nELT•o121I,Jl*Ol2(J+] ,J) )/(2.o•nELX•uEL7• 
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l(PUR<l,J>*Dl2<J,J)+POR(l+l,J)*Dl21J+ltJ)l)l*(CAV~(l,J+l)+CAVAll•t, 
2J•ll•CAVGll•l,J•ll•CAVG(l,J-lll 

GO TO 44 
4J DCHC=o.o 
44 lf(Dl2(1-l,J),EQ,o,o.oR.Dl211,J).EQ.0,0) GO Tn 4, 

OCYXO=llw*P)R(J•~,Jl*OELT*Ol2(1,Jl*Ol2<I•I,Jlll(?,0*DELX*OEL1* 
l (PO~(l,Jl*012<J,Jl•POR(l•l,Jl*Dl2<I•l•Jll)l*(CAVG(l,J•ll+CAvr.1l•l• 
2J•ll-CAVGII,J-tl•CAVG(I-l,J-lll 

GO TO 46 
45 DCYXl)=O,O 
46 DELCll,J>=DCXXA•DCXXij+llCYYC•DCYYD•DCXYA•UCXYB+UCYXC•DCYXU 
47 COIIITINUE 

DO 4d Iz},N~ 
DO 41:! J:}1N:: 
CAVG(l,Jl=CAVG(ltJl+DELCII,Jl 

48 CONT 1 Nl/E 
REIURN 
ENU 
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SU~ROUTINE ~BAL (NR,NC,NA,NB,STORl,ADDI,STO~P,AOOP,SQSO,SQTO,ll~El 
DIMENSION F~<l2t27>,POR(12,27),H(l2•27>,P<l2,~7>,PT(l2,27l, 

1PP(l2,27>,PJT<l2t27l,RH0(12,27),VIS(l2,27),Q(]2t27l,CAVG(l2,?7>, 
2CAVGPl12,27l,OELC(l2,27),SUMC(l2,27ltCOUNT(l2,27l,D1111Zt~7), 
3D22(iz;z-71-;)i2t i2~27) ;v>< ( 12,28) ,vz < 13t27; ,CCM4T (SC,00) ,>< I 1496), 
4Ztl496l ,Cll<t96> ,CMATRx <250,21) ,CR(250l ,>eBl <24> •ZRJ <241 ,C81 (2'+>, 
5XBit24>,ZB2<24>•C~2(24) 

COMMON DELT,ST,FwTOP,oEL><,uELZ,FK,PO~,H,P,PT,PP,RHO,VIS,Q,RHoP, 
lCAVG,CAVGP,JELC,G,HETA,ALPHA,GAMMA,RCOMP,SU~C,COUMT,DlltD22,Dl2• 
2V~!Vl,NwOCNT,>CijltlBl,CBl,X~2,ZB2,C82•CCMAT 

EUUIVALENCE ICCMATll),POl(l),)((l),CMATRX(l>>, (CCMAT(l497l,Zlll>, 
1 (C~MAT 12993) ,c ( l l), ICCMAT (52'51) ,CR ( 1) l 

c-•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••~••••••••--
c•••••THis SU8ROUT1NE COMPUTES THE ~ASS BALANCE FOR r~E SOLUTE ANO •••• 
C••••• . THE TRACERo ••••• 

-~~··························•·*••····································--c 
CALL STORAG (NR,NC,NA,NB,STOR,AOD) 
UTO=OoO 
c.,So=o.o 
110Lu=o.o 
lR=NR-f 
IC=NC•l 
DO 47 1=2,I~ 
Ql=DELZ•vx,1,21•t1FK(t,1>•pOR(I,2>•v1s11,2>•FKII,2>•POR(Itl)•VIS( 

}I,lll/(FK!I,l>•VlS<l,2)+FK<I,2>•VIS<l•ll)) 
VOL.U-VOL.ll•Ql 
Q2·=oELZ-VX (1,1'-lc> • ( (Fl( (I, IC) •PoR I l•NCl •vis I I ,Nt> •Ft<I I ,NcH•?dR I l, le> 

1•v1s11,1c>)l(FK(l,IC>•v1s11,Nc>•FK(I • NC)*VIS(t•lC))) 
IF(Ql.GT.o.o> QS6:0ELT•Ql•RHO(l,l)+QS0 
IF(Qc.LT.o.o) Q5U=•DELT~Q2•RHO(I,~C)•QSO 
IFIQl.LT.O.Ol QS0=DELT•Ql•RH0(1,2)+QSO 
IFIQ2oGT.O.Ol QSO=•OELT*Q2•RHOII,1Cl•QSO 
rncYI ~GT• 0~ 0) QTO:QTO•De'.L f•Ql ~CAI/G < l • 1 l 
lF(Q2.LToOoOl QTU:QTO•DELT•Q2~CAVG(I,~C> 
IFIQloLT.O.O) QTO=QTO•DELT•Ql•CAVG(lt2) 

47 1FIQ2.GT.O.Ol QTO=QTO-DELT•Q2•CAVG(I,IC> 
CQ~AL.=QSO-STOR+SToRP 
CfijAL=QTO•AJD•ADL)p 
SQSQ:SQSO+QSO 
SQlQ-SQTO•QfO 
SQ8A1.=SQSO•STOR•STORI 
SlijAL=SQTO•ADO+AUOl 
STORP=STOR 
ADUP=AOD 
~RITE (bo222> C08AL,SQBAL,CTBAL,STBAL,TIME 

222 FORMAT(lH ,9x,7HCQ8AL =,Elo.3,8X,7HSQ8A1. -,Eln.3,AX,7HCTRAL :,Elo. 
13t8X,7HSTBA~ =,Eio.3,8X,6HTIME =,Fl5o4 ) 
PT(1,1>=<10o0733/VOLU)*(PT(l,1>•PT(ltNC)))+~T!ltNCI 
Pll,1>=100000.0+pfll,ll 
l)Q 60 1:2,N~ 
PT<I•l>=PT<I-1,l>•<RHOII,1>•G•UELZ> 
~<1,1>-PT<I,l>•looooo.o 

60 CONTINUE 
REI URN 
END 
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APPENDIX H 

LI ST OF SYMBOLS 

Symbol Definition 

Ah Fourier coefficients 

[A] Square coefficient matrix 

ct... Coefficient in stability analysis equal to ~!'' 
lr Width of injected tracer along input boundary 

--t- Coefficient in stability analysis equal to 

C Mass concentration of tracer 

C
0 

Reference concentration 

C Maximum concentration .... ,. 
CF Formation compressibility factor 

C, Mass concentration of tracer in produced fluid 
"' C Concentration of tracer in fluid element 

0 
C Deviation of concentration at a point from cross-

sectional average 

.DP Dispersion coefficient .,. 
]).. Total dispersion coefficient ~J 

J) Effective diffusion coefficient 

Molecular diffusion coefficient 

])_. . Dispersion coefficient, a second rank tensor LJ 

])L Longitudinal dispersion coefficient 

])T Transverse (or lateral) dispersion coefficient 

Units 

L 

FT2L-4 

FT2L-4 

FT2L-4 

L 2F-l 

FT2L-4 

FT2L-4 

FT2L-4 

L 2T-l 

L2T-l 

L2r-1 

L2r-l 

L 2T-l 

L2T-l 

L2T-l 
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LIST OF SYMBOLS (continued) 

Symbol Definition 

Pore size parameter 

J Coefficient in stability analysis equal to 

.s £ __ -
1:,6? R 

.J 

E:t:. 
JC. X · 

• L 

Aquifer thickness 

Error at node of grid (~i~tn)at time level s.at 

Coefficients for finite difference scheme and 
defined by equations D-19 

£ o~ f{t) Error between numerical and analytical solutions 

F± Coefficients for finite difference scheme and 
x;_i/ defined by equations D-19 

F, Even function of Peclet number 

Fi Even function of Reynolds number 

GT Coefficients for finite difference scheme and 
x,xj defined by equations 0-19 

Gravitational acceleration 

Ht Coefficients for finite difference scheme and 
Xd- defined by equations D-19 

Piezometric head 

Elevation above datum 

( i.1 -It Subscript used to denote row and columns of finite 
difference grid 

LJ Subscript used to denote tensor where iand j =l ,2,3 

Tracer mass flux components averaged over cross 
section of volume element (relative to pore area) 

J,JJ21 J; Diffusive mass flux components in fluid element 

K Hydraulic conductivity 

J.r Relative permeability to fluid 

Units 

L 

L 

L 

L 

FTL-3 

FTL-3 

Lr1 



222 

LIST OF SYMBOLS ( continued) 

Symbol Definition 

J.~ . Permeabi 1 i ty in x.-di recti on 
L L 

L Number of grids in ~-direction 

Length of sea-water wedge 

Length in X-, x-, and .x,-directions 
I Z ., 

Total Mass Flow Rate 

M Number of grids in Xi.- di rec ti on 

Mv£ Mass of volume element 

M, Mass flow rate of source or sink 

Mt Mass flow rate of tracer 

Mtv£ Tracer mass in volume element 

Mtp Tracer mass flow rate of source or sink 

m 

:t ii~. 
' 

N 

h 

Number of rows in matrix 

Coefficients calculated for the finite difference 
scheme and defined in equations C-7 

Number of grids in x,-direction 

Number of columns in matrix 

P Fluid pressure 

Reference pressure 

[ P] Column vector 

Rate of fluid production 

Fresh-water flow rate per unit width of ocean front 

Volume flux 

Reynolds number 

Radius 

Units 
L2 

L 

FL-1T2 

FL-1T 

FL-1T 

FL-1T2 

FL-1T 

L 
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LIST OF SYMBOLS (continued) 

Symbol Definition 

[~h~J Column vector 

5 
'T7 

T 
T . 

'J 
... 
T. -LJ 

0 

T. 
'J 

t 

t-tl 

t-1 

V, v.J J 'I 

V 

v 
, 0 , 

V, I{ 11.J -., I 

Saturation of fluid 

Temperature 

Tortuosity 

Tortuosity factor, a second rank tensor 

Tortuosity on microscopic scale, a second 
rank tensor 

Deviation of tortuosity at a point from 
cross-sectional average 

Time 

New time level 

Previous time level 

Time level between i and i+I 

Seepage velocity components (flow per unit pore 
area) 

Seepage velocity of production fluid 

Magnitude of velocity vector 

Velocity of fluid element 

Velocity of tracer in fluid element 

Deviation of velocity at a point from cross-
sectional average 

V,
1

,Vz..t,V,../ Velocity components of)t~moving point 

' I I XL Y Rotated cartesian coordinates I J "] 

X, )X;i../1 Coordinates of ltJ.. moving point 
'J ,. -:.t 

Units 

T 

T 

T 

T 

LT-1 

LT-l 

LT-l 

LT-l 

LT-1 
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LIST OF SYMBOLS (continued) 

Symbol Definition 

1 Thickness of fresh-water flow 

cJ.- Factor relating concentration and density 
J3 Fluid compressibility 

Ax,'1 Ax;
1
4xj Grid dimensions in rotated coo rd i na tes 

AX,
1 

AXl
1

4X3 Dimensions of volume element 

AA,, AA-!I .AA1 Cross-secti ona 1 area of vo 1 ume e 1 ement 
perpendicular to x,, )L, and ..x3 directions 
(i.e. AA,= A.X.z. A."3) 

..1V 

./rt 

Ato 

,1.,P 

6., 

Gz. 

Volume of volume element (s1V= .ax, "-"J. AX3) 

Coefficient in finite difference equation defined 
in equation C-7 

Time increment 

Time increment in previous time step 

Difference in density,.!;-/+ 

Longitudinal dispersivity 

Lateral dispersivity 

6,;m~ Coefficient of dispersivity, a fourth rank tensor 

er Length of tortuous tube 

$ Shortest distance between ends of tortuous tube 

Amplification factor in stability analysis 

Height of ocean above top of aquifer 

Coefficient for finite difference equation defined 
in equation C-7 

__/) Fluid density 

.,/; Reference density 

Units 

L 

T 

T 

FT2L-4 

L 

L 

L 

L 

L 

L 
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LIST OF SYMBOLS (continued) 

Symbol Definition 

/4 Fresh water density 

Salt water density 

Density of produced fluid 

tP Porosity 

¢0 Reference porosity 

ft Viscosity 

Ao Reference viscosity 

Kinematic viscosity 

w 

Kronecker delta 

Factor relating viscosity and concentration 

Capillary tube coefficient 
/ Factor defined by ~-o-C 

Coefficient equal to 

Coefficient equal to 
y h~ 
0~ Coefficient equal to~ 

f Potential function 

P Stream function 

erf Error function 

erfc Complimentary error function 

Uni ts 
FT2L-4 

FT2L-4 

FT2L-4 

FTL- 2 

FTL-2 

L2rl 
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