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ABSTRACT

AN INVESTIGATION OF THE NOVIKOV–VESELOV EQUATION: NEW

SOLUTIONS, STABILITY AND IMPLICATIONS FOR THE INVERSE SCATTERING

TRANSFORM

Integrable systems in two spatial dimensions have received far less attention by schol-

ars than their one–dimensional counterparts. In this dissertation the Novikov–Veselov

(NV) equation, a (2+1)–dimensional integrable system that is a generalization of the fa-

mous Korteweg de–Vreis (KdV) equation is investigated. New traveling wave solutions to

the NV equation are presented along with an analysis of the stability of certain types of

soliton solutions to transverse perturbations. To facilitate the investigation of the qualita-

tive nature of various types of solutions, including solitons and their stability under trans-

verse perturbations, a version of a pseudo-spectral numerical method introduced by Feng

[J. Comput. Phys., 153(2), 1999] is developed. With this fast numerical solver some

conjectures related to the inverse scattering method for the NV equation are also examined.

The scattering transform for the NV equation is the same as the scattering transform used to

solve the inverse conductivity problem, a problem useful in medical applications and seis-

mic imaging. However, recent developments have shed light on the nature of the long-term

behavior of certain types of solutions to the NV equation that cannot be investigated using

the inverse scattering method. The numerical method developed here is used to research

these exciting new developments.
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1. INTRODUCTION

Mathematicians have a zeal for finding solutions to differential equations, equations that

involve unknown functions and the derivatives of the unknown functions. Linear differ-

ential equations have been studied for hundreds of years and there exists a great base of

knowledge regarding how to solve them. However, a greater challenge is to find solutions

to Nonlinear Partial Differential Equations (NLPDE). It is a struggle because there are very

few general methods for finding solutions. In fact, until the early 1970’s, there were almost

no general methods for solving NLPDE.

NLPDE are also of great practical and theoretical interest to mathematicians, physicists,

and any scientist hoping to be able to both solve complex equations and model interesting

and possibly chaotic physical phenomena. While all differential equations are simple ap-

proximations to observed phenomena, linear differential equations are generally a more

simplistic approximation than nonlinear differential equations.

An important subset of NLPDE are those equations with soliton solutions, solutions

that can be characterized by their rather counter–intuitive behavior. The fundamental char-

acteristic of solitons is their stability. When solitons pass through each other, they retain

their identity after the interaction. This is in contrast to one’s everyday experience. We do

not expect to see waves on the ocean crash into each other violently and come out of the

interaction unchanged. But, this is exactly what soliton waves do, and indeed, it is seen

most famously in water waves.

The first recognized soliton was observed by the Scottish naval engineer John Scott-

Russell in 1834. While observing the motion of a boat in a narrow channel he observed

what he called a “Wave of Translation.” His key observation was that this wave “continued



its course along the channel apparently without change of form or diminution of speed.”

Besides Russell, not much work was done on this until 1895 when Korteweg and De-Vries

derived an equation [38] to model this phenomena, which is known as the Korteweg De-

Vries equation (KdV):

ut + 6uux + uxxx = 0. (1.0.1)

The canonical traveling wave solution to the KdV [1] is

u(x, t) =
c
2

sech2

[√
c

2
(x− ct− a)

]

where c and a are constants.

The development of the soliton, and soliton theory, was cited by Griffiths [73] in a

discussion of mathematics as we entered the new millennium: “One of the most remark-

able achievements of mathematics of the latter half of the 20th century is the theory of

solitons...” In particular, this quote refers to the inverse scattering method (ISM), a gen-

eralization of Fourier transforms to NLPDE that was developed while studying soliton

equations.

Soliton NLPDE are often referred to as integrable systems because of their solvability

by the ISM. The ISM was originally developed by Gardner, Greene, Kruskal and Muira

[27] in 1967 in an effort to solve the Korteweg De–Vries (KdV) equation, the most famous

soliton equation.

This was a tremendous breakthrough in nonlinear mathematics, and the field developed

quickly. The landmark accomplishments began with Peter Lax suggesting there are more

equations like KdV in 1968 [45]. After that, there was the impressive discovery of the

integrability of the nonlinear Schrödinger equations by Zakharov and Shabat in 1972 [74].

The most notable accomplishment was the general outline of the ISM by Ablowitz, Kaup,

Newell, and Segur (AKNS) in 1974 [2].

The ISM is a very powerful method for solving nonlinear PDE’s because it turns a
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nonlinear PDE into a system of decoupled linear ordinary differential equations through

transformations called inverse scattering transformations. AKNS generalized this method

to a class of nonlinear equations that included the KdV equation, the Sine-Gordon equation

and the nonlinear Schrödinger equation. If an inverse scattering transformation exists for

a given NLPDE, the equation is said to be integrable. It is conjectured that NLPDE have

inverse scattering transformations if and only if the PDE admits soliton solutions. All of the

results mentioned so far are for (1+1)-dimensional equations, that is, equations that have

one spatial dimension and one temporal dimension. The study of soliton equations has led

to deep mathematical and physical results since the late 1960’s but the extensions of these

results to multidimensional soliton equations came post 1970.

The first widely studied (2 + 1)–dimensional soliton equation was the Kadomtsev-

Petviashvili equation (KP) [34], derived in 1970,

(ut + uux + uxxx)y + λuyy = 0, λ = ±1. (1.0.2)

Kadomtsev and Petviashvili were considering the problem of the stability of solitons of the

KdV equation with respect to transverse perturbations, and in this context they derived a

two-dimensional generalization of the KdV equation that became known as the KP equa-

tion.

The equation of interest in this work is the Novikov–Veselov (NV) equation, another (2

+ 1)–dimensional generalization of the KdV equation first discussed in the periodic setting

by Novikov and Veselov [54, 55] in 1984. It was very recently proved (2012) that the NV

equation is an integrable system [43, 56]. Solving the NV equation using the ISM was first

discussed in 1987 [12] for a certain class of initial values and has been generalized further

by Mueller et. al. [43, 42]. The NV equation was originally stated as a D-bar equation for

u(z, t) with z = x+ iy ∈ C,

3



ut = ∂3u+ ∂3u+ 3∂(uν) + 3∂(uν), (1.0.3)

∂ν = ∂u, (1.0.4)

with ∂ = 1
2
(∂x + i∂y) and ∂ = 1

2
(∂x − i∂y). If we consider real solutions, u(t) ∈ R

for all t, and let ν(x, y, t) = v(x, y, t) + iw(x, y, t), the NV equation has an equivalent

representation in (x, y)-space,

0 = 4ut + uxxx − 3uxyy − 3(uv)x − 3(uw)y, (1.0.5)

ux = vx − wy, (1.0.6)

uy = −wx − vy. (1.0.7)

While the KP equation is derived by looking at transverse perturbations to the KdV

equation, the NV equation is derived algebraically from a Lax triple, which will be dis-

cussed later, and from this point of view is considered the most natural generalization of

the KdV equation [10]. There are other (2+1)–dimensional generalizations of KdV, most

notably the Nizhnik–Novikov–Veselov (NNV) equation,

0 = ut + auxxx + buyyy − 3a(uv)x − 3b(uw)y, (1.0.8)

ux = vy, (1.0.9)

uy = wx. (1.0.10)

Equations 1.0.8 – 1.0.10 are very similar to the NV equation and have applications such as

a model for an incompressible fluid [20].

The goal of this dissertation is to help increase the general knowledge of (2+1) soliton

equations by presenting various results related to the NV equation.

Particular attention will be paid to four areas: new traveling wave solutions, a numeri-
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cal solver, stability of soliton solutions, and numerical experiments relating to conjectures

regarding the relationship between certain types of soliton solutions and the ISM.

First, new traveling wave solutions were derived by applying the extended mapping

approach, a general method that extends separation of variables to NLPDE. Some new

multisoliton solutions were also derived using Hirota’s method that will enable investiga-

tion into the stability of multisoliton solutions. Using the extended tanh–function method

some traveling wave solutions with finite time blow–up were also derived.

Next, we show soliton solutions to (1.0.5) – (1.0.7) are unstable to long wavelength

transverse perturbations and verify these results numerically. A numerical solver has been

developed to detail this result and investigate the long term behavior of the perturbed soli-

tons. This is the first application of a spectral numerical method to a system of nonlinear

PDE’s. To approximate the growth rate of the instability as a function of the wave vector

of the perturbation, a different numerical scheme was created and implemented.

Lastly, some conjectures concerning the inverse scattering method are investigated us-

ing the numerical scheme developed here. As will be discussed in detail in Chapter 6, an

important class of functions that is used as initial data to solve the Cauchy problem for the

NV equation is called functions of conductivity-type. In Chapter 6, evolutions of initial data

of conductivity-type are compared to evolutions of functions that are not of conductivity

type in an effort to elucidate some conjectures regarding the existence of solitons (of non-

plane wave type). The results presented here can lead to future paths of research including

multisoliton stability and stability of all types of perturbations, not simply transverse ones.

In this thesis I show the existence of various types of soliton solutions to the NV equa-

tion, and develop methods to help find soliton solutions that may be of use in the develop-

ment of the ISM for the NV equation. I perform an analytical stability analysis for plane

wave soliton solutions of KdV type of the NV equation. The nature of the instability is

examined using numerical methods.

The numerical code developed in this thesis is used in conjunction with the pre-existing

5



numerical implementation of the ISM to investigate the validity of more general sets of

initial conditions than those introduced in [42] and [43]. In particular, I consider initial

conditions of non conductivity-type that are rapidly decaying and computed their evolutions

and have found strong numerical evidence of soliton solutions, supporting the conjecture

of their existence, explained in Chapter 6.

The work in this dissertation is significant because it is the first thorough study of soliton

solutions to the NV equation, an important equation because it is a soliton equation that is a

system of PDE’s and it is a generalization of KdV. The numerical spectral method presented

here is the first implementation for a NLPDE system. There is no study of soliton stability

for NV in the literature, and this work applies the K-method to a NLDPE system (NV). It

provides visual insight into the nature of solutions through numerical computations, and

it provides a means to study conjectures about the integrability of NV and the ISM. We

compute the evolution by the ISM and check if it agrees with the results of the numerical

code for the NV equation evolutions developed in this thesis.
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2. CURRENT KNOWLEDGE OF THE NOVIKOV–VESELOV

EQUATION

2.1 Dispersion, Nonlinearity and a Lax Representation

Solitons form when there is a ‘balance’ between nonlinearity and dispersion. In general,

one would expect waves in a nonlinear system to become incoherent in the sense that the

nonlinearity would cause shocks and waves to break. Moreover, the higher order derivative

terms of odd order bigger than three will cause dispersion, which, for a linear equation, has

the effect of pulling waves apart. Even order derivatives cause dissipation, a phenomena not

considered here. A soliton wave can be characterized by three properties [17]; They are of

permanent form, they are localized within a region and they can interact with other solitons,

and emerge from the collision unchanged, except for a phase shift. Figure (2.1) is a graph

of the evolution of a two–soliton solution to the KdV equation and shows the interaction

of two solitons where the phase shift can be seen after the collision. This amazing balance

between dispersion and nonlinearity was found in many applications, but it was the work

done at Los Alamos National Laboratory in the 1950’s that catapulted the KdV equation

and solitons to high level of interest.

In 1955, Enrico Fermi’s team at Los Alamos began looking at the equipartition of en-

ergy in a lattice that modeled atomic interaction using vibrating strings [26]. They added

small nonlinear terms between the atoms and simulated the dynamics numerically. This

setup yielded a curious result. The expectation was that there would be a thermalization

of the energy, that there would be an ergodic end state. But, what they found was that the

energy states became periodic, a totally unexpected result. The model they built can be



Fig. 2.1: Two–soliton interaction for the KdV equation

reduced to the KdV equation, and thus contains soliton solutions. The solitons were prop-

agating the energy periodically. These permanent waves of translation would not allow for

thermalization. This problem is now known as the Fermi-Pasta-Ulam (FPU) problem and

was the genesis of contemporary soliton research.

Another milestone occurred in the late 1960’s when the KdV equation was found to

have an infinite number of conserved quantities. This observation drew a considerable

amount of attention and research into NLPDE and soliton equations. This result was codi-

fied in 1968 with Peter Lax’s publication deriving the conservation laws for the KdV equa-

tion using an algebraic formalism. To do this, let the evolution equation be written as

ut = K(u) where K is the nonlinear operator. Let the function u be in a closed (under the

evolution of u(t)) space, and associate with it a self-adjoint operator L in a suitable Hilbert

space, u → Lu such that the following holds: If u changes with t subject to the equation

ut = K(u) the operator L(t) remains unitary equivalent as it changes with t. If this is the

case, then the eigenvalues of L are the integrals, or conserved quantities, of u.

The unitary equivalence of L means there is a one-parameter family of operators U(t)

such that the quantity U(t)−1L(t)U(t) is independent of t. A one-parameter family of

unitary operators satisfies the differential equation Ut = BU where B is an antisymmetric

8



operator. Using these facts, we see that

Lt = [B,L]

where [·, ·] is the commutator. If one has the operator L, then it is a simple game to find B.

The drawback is that the relationship between u and L is not obvious. In the case of the

KdV equation, L is the Schrödinger operator,

L = D2 +
1

6
u.

Once we have the operators, we can find the eigenvalues, and the conserved quantities

follow.

The NV equation (1.0.3) has a operator representation, called an L-A-B triple or a

Shabat representation, that generalizes the derivation of the KdV equation to two spatial

dimensions. From this point of view the NV equation is a more natural generalization of

the KdV than the Kadomtsev-Petviashvili equation [10]. For clarity, the KP equation is

presented as equation (2.1.1),

(ut + uux + uxxx)y + λuyy = 0, λ = ±1. (2.1.1)

Whereas the KP equation is derived from from physical considerations consistent with

KdV, the NV is a natural algebraic generalization of KdV. We can ask the question, ‘what

would be a (2 + 1) generalization of the Lax pair?’ The answer is the L-A-B triple,

L = ∂∂ + u, A = ∂3 + ∂
3

+ v∂ + w∂, B = ∂v + ∂w. (2.1.2)

It can be shown then that

[L,A+ ∂t] = BL

9



if and only if u is a solution to the NV equation,

ut = ∂3u+ ∂
3
u+ 3∂(uν) + 3∂(uν) (2.1.3)

∂ν(x, y, t) = ∂u(x, y, t) (2.1.4)

where

∂ =
1

2

(
d

dx
− i d

dy

)
, ∂ =

1

2

(
d

dx
+ i

d

dy

)
, and ν = v + iw.

Recovering KdV via the L-A-B triple

Using (2.1.2) we can recover the KdV equation. Assume the functions in question are only

functions of x and t. Then we can ignore the y-derivative operators in the L−A−B triple

above. We find the following

0 = [L,A+ ∂t]−BL =
(
−uxxx

4
− ut −

wux
2
− vux

2
− wxu

2
− vxu

2

)
(2.1.5)

+

(
vxx
8

+
wxx
8
− 3

4
uxx

)
∂

∂x

+

(
vx
8

+
wx
8
− 3

4
ux

)
∂2

∂x2

The last two coefficients must be zero to make the operator multiplicative, i.e.

6ux = vx + wx

and upon integrating we have

6u = v + w + φ(t)

where φ is a function of time alone. Using this we find

0 = [L,A+ ∂t]−BL

10



if and only if

ut = −1

4
uxxx − 3uux. (2.1.6)

A trivial change of variables transforms (2.1.6) to the classic form of the KdV equation,

ut = −uxxx − 6uux.

Dispersion, Phase Velocity and Group Velocity

The dispersion relation is the relation that gives the frequency as a function of the wave

vector k = (k1, k2). To find the dispersion relation, we consider the linear NV equation,

ut = −1

4
uxxx +

3

4
uxyy ≡ −Au. (2.1.7)

Consider plane wave solutions of the form u(x, y, t) = ek1x+k2y−ωt. Substituting this plane

wave solution into equation (2.1.7), we find the dispersion relation for NV is

ω = −1

4
k3

1 +
3

4
k1k

2
2. (2.1.8)
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Fig. 2.2: Two views of the dispersion relation ω(k) for the NV equation

The phase velocity cp, gives the velocity of the wavefronts of the sinusoidal mode [16],

11



is defined by cp = ω(k)
|k|2 (k1, k2) and for the NV equation is

cp =
k3

1 − 3k1k
2
2

4(k2
1 + k2

2)3/2
< k1, k2 > . (2.1.9)

Having established the dispersion relation ω(k) and the phase velocity cp for the NV

equation, we turn our attention to the group velocity. The group velocity is a vector defined

componentwise as [69]

Cj(k, x, t) =
∂ω

∂kj
.

The group velocity gives the velocity of the wave packet, that is, a group of waves with

nearly the same length 2π/|k|. The group velocity for NV is

cg ≡ ∇ω =
3

4

〈
−k2

1 + k2
2, 2k1k2

〉
.

The magnitudes of the phase velocity is |cp| = 1
4|k|2 (k3

1 − 3k1k
2
2) and the magnitude of the

group velocity is |cg| = 3
4
|k|2. Thus, the group velocity is bounded below by 0, and the

sign of the phase velocity depends on sgn(k3
1 − 3k1k

2
2).

2.1.1 Symmetries and Scaling

We would like to find how scaling of the dependent and independent variables change the

NV equation. For this effort let us first consider the D-bar equation presented in equation

(1.0.4),

∂ν = ∂u.

Replace the function ν with r by

r(x, y, t) = γν(αt, βx, βy).

12



Then

∂

∂x
r(x, y, t) = βγ

∂

∂x
ν(αt, βx, βy) (2.1.10)

∂

∂y
r(x, y, t) = βγ

∂

∂y
ν(αt, βx, βy) (2.1.11)

Similarly, let

s(x, y, t) = γu(αt, βx, βy).

With these choices of scalings the D-bar equation (1.0.4) remains unchanged,

∂ν = ∂u ⇐⇒ ∂r = ∂s.

Now, we examine the main equation as presented in equation (1.0.5). For what follows

let us define ~r as ~r(x, y, t) = r1(x, y, t)+ir2(x, y, t).We find the following transformations,

d

dt
s(x, y, t) = αγ

d

dt
u(αt, βx, βy),

∂3

∂x3
s(x, y, t) = β3γ

∂3

∂x3
u(αt, βx, βy),

∂3

∂x∂y2
s(x, y, t) = β3γ

∂3

∂x∂y2
u(αt, βx, βy),

∂

∂x
(uv) +

∂

∂y
(uw) = γ2β

(
∂

∂x
(sr1) +

∂

∂y
(sr2)

)

Assuming u and ~z is a solution to the NV equation (1.0.5), we find

4ut = −uxxx + 3uxyy + 3(uv)x + 3(uy)y

=⇒ 4

αγ
st = − 1

β3γ
sxxx +

3

β3γ
sxyy +

3

βγ2
(sr1)x +

3

βγ2
(sr2)y.

Multiplying by αγ leads to

4st = − α

β3
sxxx +

3α

β3
sxyy +

3α

βγ
((sr1)x + (sr2)y) . (2.1.12)
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The table below shows the possible sign conventions possible for each term of the right

hand side of equation (2.1.12).

α β γ Signs in (2.1.12)

+ + + - + +

- - + - + +

- + + + - -

+ - + + - -

+ + - - + -

- - - - + -

- + - + - +

+ - - + - +

We conclude:

1. There is a fixed ratio of -3 of the coefficients of the linear spatial terms, and

2. Any other coefficient is possible by proper rescaling of independent and dependent

variables.

We also consider under what rotations the Novikov-Veselov is invariant. Recall the NV

equation

ut = −∂3u− ∂3u+ 3∂(uν) + 3∂(uν), (2.1.13)

∂ν = ∂u. (2.1.14)

If u is real at time t0, then

ūt = −∂3u− ∂3u+ 3∂(uν) + 3∂(uν),

= −∂3
u− ∂3u+ 3∂(uν) + 3∂(uν),

= ut,
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thus
d

dt
Imu =

1

2i
(ut − ūt) = 0,

and so u remains real.

To consider rotations let

x = x′ cos(θ)− y′ sin(θ) (2.1.15)

y = x′ sin(θ) + y′ cos(θ). (2.1.16)

Then

∂

∂x
=

∂

∂x′
cos(θ)− ∂

∂y′
sin(θ) (2.1.17)

∂

∂y
=

∂

∂x′
sin(θ) +

∂

∂y′
cos(θ) (2.1.18)

and so

∂z =
∂

∂x
− i ∂

∂y
= (cos θ − i sin θ)

∂

∂x′
− (sin θ + i cos θ)

∂

∂y′

= e−iθ
(
∂

∂x′
− i ∂

∂y′

)
,

i.e. ∂z = eiθ∂z′ . The operator ∂z is the same as the operator ∂ defined in Chapter 1,

however, in order to make the rotations clearer we needed to introduce the notation ∂z.

Equation (2.1.13) becomes

ut = eiθ∂z′(ν
′u) + eiθ∂z′(ν ′u)− e−3iθ∂

3

z′u− e−3iθ∂3
z′u (2.1.19)

where ν ′ = e−iθν. The auxiliary equation becomes

eiθ∂z′ν = eiθ∂z′u
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or

∂z′ν
′ = e−3iθ∂z′u

so we have invariant solutions under rotations of 2π/3 and 4π/3. This shows that if a

solution to the NV equation has this symmetry, it must be preserved under the evolution. It

does not mean that all solutions will display this type of symmetry.

2.1.2 Conservation Laws for the NV equation

Recently, it was shown the NV equation (1.0.3) can be solved using the inverse scattering

method of Ablowitz, Newall, Kaup and Segur for a certain class of initial data [56]. In order

to present the conservation laws we need to recall some ideas from the inverse scattering

method.

The scattering data, or scattering transform t : C→ C of u is defined by

t(k) =

∫
R2

eikxu(x)ψ(x, k)dx (2.1.20)

where we are using the notation x = x1 + ix2 and k = k1 + ik2. The function ψ is the

exponentially growing solution of the Schrödinger equation

(−∆ + u)ψ(·, k) = 0 (2.1.21)

as established by Faddeev [21] and Nachman [52] with asymptotic behavior ψ(x, k) ∼ eikx

in the sense that

e−ikxψ(x, k)− 1 ∈ Lp̃ ∩ L∞(R2) for fixed k ∈ C \ 0, where 1/p̃ = 1/p− 1/2.

(2.1.22)

Thus, we seek solutions of the form ψ = µ(x, t; k)eikx where µ has the asymptotic behavior

16



µ ≈ 1 for large |k|. The evolution of t is then given by

t(k, τ) = m(k, τ)t(k, 0), (2.1.23)

where m(k, τ) = exp(iτ(k3 + k
3
)).

Under suitable assumptions on u, the Schrödinger potential u can be recovered using

the D-bar method of Beals and Coifman [6] and Nachman [52]. There are many results in

the literature concerning this scattering transform but the one of interest to us is the result

of Nachman [52]. Nachman solved the inverse problem of determining the Schrödinger

potential in equation (2.1.21) from knowledge of the Dirichlet–to–Nuemann map. This

work was in the context of the inverse conductivity problem. In his constructive proof, he

needed to determine a class of potentials for which there were no exceptional points. That

is, points at which there fails to be a unique solution of equation (2.1.21). He proved that

this class is potentials of conductivity–type. In chapter 6, this is discussed and numerical

results are presented concerning evolutions of conductivity–type and non conductivity–type

potentials.

We can derive a set of conservation laws for the NV equation by using an expansion

method. Expand the function µ(x, k) as a series

µ(x, k) = 1 +
∞∑
j=1

aj(x)

kj
. (2.1.24)

Substitute equation (2.1.24) into (−∆ − 4ik∂ + u)(µ − 1) = −u and solve the resulting

system for the coefficients aj ,

−
∞∑
j=1

∆aj(x)

kj
−
∞∑
j=1

4i∂aj(x)

kj−1
+ u

∞∑
j=1

aj(x)

kj
= −u. (2.1.25)

We find

a1 =
1

4i
∂
−1
u.
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A recursion formula can then be derived,

aj+1 =
1

4i
∂
−1 (−4∂∂aj + uaj

)
= i∂aj +

1

4i
∂
−1

(uaj). (2.1.26)

Substituting the series (2.1.25) into (2.1.26) yields an infinite set of conserved quanti-

ties. The first three are presented here:

I0 =

∫
R2

u(x)dx,

I1 =

∫
R2

u(x)(∂
−1
u)(x)dx,

I2 =

∫
R2

(
1

3
u(x)v(x)− 1

4
∂
−1

(u∂
−1
u)(x)

)
dx.

We define

(∂
−1
u)(x) =

1

π

∫
R2

u(y)dy

x− y

where x = x1 + ix2 and y = y1 + iy2.

While the NV equation represents a natural generalization of the widely applicable

KdV equation, there is no known derivation of the full equation from physical principles.

The dispersionless NV equation has been shown to have applications in hydrodynamics

[11], nonlinear optics [37, 36], and as a model for the propagation of light in the limit of

geometrical optics through a particular class of nonlinear media [37]. In particular, the

dispersionless NV equation is derived from Maxwells equations in the context of nonlinear

media with a Cole-Cole dependence of the dielectric function and the magnetic permeabil-

ity on frequency. They assume the medium is anisotropic and consider the propagation

of monochromatic (single frequency, time harmonic) electromagnetic waves with high fre-

quency.
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3. CLOSED–FORM SOLUTIONS TO THE NOVIKOV–VESELOV

EQUATION

There are various powerful methods to find solutions of nonlinear evolution equations,

most notably the inverse scattering method mentioned in the introduction. However, the

inverse scattering method is not readily useful for finding closed-form solutions to the NV

equation. This is due to the complicated functions involved and that only recently has it

been shown that the NV equation is solvable by the inverse scattering method [56, 43].

In this chapter we will apply other methods to the NV equation that have produced new

and interesting solutions for other (2+1) evolution equations such as the KP equation, the

ZK equation and the NNV equation. The methods presented here include Hirota’s method,

the extended tanh–function method, and the extended mapping approach (EMA). There are

some general themes that tie these methods together.

The first theme is the idea of using expansion methods. Most, if not all, soliton equa-

tions admit traveling waves solutions that involve the hyperbolic secant function, which can

be written in terms of the hyperbolic tangent function. Moreover, the hyperbolic tangent

function is a solution to the Riccati equation, φ′ = l0 +φ2, for l0 < 0 for certain initial con-

ditions. The ubiquity of the hyperbolic functions as traveling wave solutions naturally lead

to the idea of expansion methods for solving soliton equations. There are many other mod-

ern methods including the F -expansion method [67], the Jacobi elliptic function method

[71], general perturbation methods, Backlund transformations, the tanh–function method

[41] and the Exp-function method [9] to name just a few. Because of the vast number of

‘different’ solution methods, a common criticism is that some of them are equivalent, or at



least find the same solutions.

Recently, in an excellent paper [39], these criticisms were expunged in an effort to eluci-

date some common errors researchers make when looking for new traveling-wave solutions

to nonlinear partial differential equations. Alas, the NV equation is well under-studied, and

at the time of this publication the only solutions in the literature are the solutions from the

inverse scattering transform [42, 43, 44, 55], the classic hyperbolic secant and cnoidal solu-

tions [53], and rational solutions derived using Darboux transformations that lead to finite

time blow–up [59]. This chapter presents a vast number of new, and qualitatively different,

traveling wave solutions to the NV equation.

3.1 Traveling Wave Solutions to the NV Equation

We seek solutions with arguments of one variable of the form θ := k1x + k2y − ct. Here,

k1, k2 and c are constants. The parameter c is referred to as the wave speed and k1 and k2

are the dispersive components of the wave vector.

For example, the KdV equation ut − 6uux + uxxx = 0, can be parametrized by letting

the argument be θ = x − ct and let u(x, t) = f(θ). This reduces the partial differential

equation to an ordinary differential equation,

− cf ′ − 6ff ′ + f ′′′ = 0. (3.1.1)

The solution to (3.1.1) critically depends on the constants of integration. If we assume the

wave has the asymptotic behavior that f, f ′, f ′′ → 0 as |θ| → ∞ the solution is

f(θ) = −1

2
c sech2

(
1

2

√
c(θ − θ0)

)

for any constants c ≥ 0 and θ0.

Dropping the assumption that the solution f and its derivatives decay to 0 in the limit,
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one obtains the classic cnoidal solutions. These are periodic waves whose appearance are

similar to a squared sinusoid. For the sake of brevity the cnoidal solutions to the KdV will

not be presented. It is worth noting the cnoidal solutions to the NV equation are derived in

[53]. Referring to equation (3.1.11) below we can find cnoidal solutions to the NV equation

in terms of the Jacobi Elliptic function in the same manner outlined in Drazin [16]. Even

though these are important solutions historically, there are no new results concerning these

solutions in this work, and so the derivation and presentation of these important solutions

are omitted.

Theorem 3.1.1. If u := u(θ, ct), θ := k1x+ k2y, then any solution to the NV equation is a

solution to a KdV-type equation ( ′ denotes ∂/∂θ),

4

κ
ut = −u′′′ + 6uu′

k2
1 + k2

2

where κ = k3
1 − 3k1k

2
2 is the linear dispersion relation. In particular, if k2 = 0 and k1 = 1

we recover a one-dimensional KdV-type soliton solution,

u = −2 c sech2
(√

c(x− ct+ x0)
)
.

Proof. Define u, v and w to be functions of θ and relabel the solutions as f, g and h, re-

spectively,

u(x, y, t) = f(θ),

v(x, y, t) = g(θ),

w(x, y, t) = h(θ).
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The NV equation and its auxiliary equations become

0 = −4cf ′ + k3
1f
′′′ − 3k1k

2
2f
′′′ − 3k1(fg)′ − 3k2(fh)′, (3.1.2)

k1f
′ = k1g

′ − k2h
′, (3.1.3)

k2f
′ = −k2g

′ − k1h
′ (3.1.4)

Equations (3.1.2) – (3.1.4) can be integrated,

0 = −4cf + k3
1f
′′ − 3k1k

2
2f
′′ − 3k1(fg)− 3k2(fh) +D, (3.1.5)

k1f = k1g − k2h+ C2, (3.1.6)

k2f = −k2g − k1h+ C3, (3.1.7)

and now equations (3.1.6) and (3.1.7) can be solved for g and h in terms of f ,

g =
k2

1 − k2
2

k2
1 + k2

2

f +D1 (3.1.8)

h = − 2k1k2

k2
1 + k2

2

f +D2. (3.1.9)

Substituting equations (3.1.8) and (3.1.9) into (3.1.5) we find

0 = −f(4c+ 3k1D1 + 3k2D2) + (k3
1 − 3k1k

2
2)f ′′ − 3f 2

(
k3

1 − 3k1k
2
2

k2
1 + k2

2

)
+D. (3.1.10)

Define A = 4c + 3k1D1 + 3k2D2, B = k3
1 − 3k1k

2
2 and C = k2

1 + k2
2 and we have the

simplified ODE

0 = −Af +Bf ′′ − 3B

C
f 2 +D. (3.1.11)

Multiplying equation (3.1.11) by f ′, integrating and after relabeling the constants, we
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have
1

2
(f ′)2 = Cf 3 +Bf 2 +Df + E. (3.1.12)

This is very close to the KdV solution presented in Drazin [16] on pg. 13. The remainder

of this section follows the analysis presented there but applied to the NV equation.

If we impose the boundary conditions that f, f ′, f ′′, g, h → 0 as |θ| → ∞ then the

constants of integration D and E must be zero (along with D1 and D2 from above) and

equation (3.1.12) becomes
1

2
(f ′)2 = Cf 3 +Bf 2 (3.1.13)

which upon solving for f ′ gives

f ′ =
df

dθ
=⇒ dθ =

df

f ′

and so

θ =

∫
df

f ′
=

1√
2

∫
df

f
√
Cf +B

.

Letting f = −B
C

sech2ψ yields the solution

u(x, y, t) = f(θ) = −B
C

sech2

(√
B√
2

(θ − θ0)

)
.

If k2 = 0 and k1 = 1 (which corresponds to θ = x−ct) our solution is the classic KdV-type

solution

u(x− ct) = −2c sech2
(√

c(x− ct+ x0)
)
.
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3.2 General Solution Methods

In this section we present new solutions to the NV equation using the extended tanh-

function method, Hirota’s method, and the extended mapping approach. The new solu-

tions presented here are traveling wave solutions and go beyond the hyperbolic secant and

cnoidal solutions to the NV equation. One method that was attempted but was not success-

ful was the multi-linear variable separation approach (MLVSA). Even though that work

was not fruitful it did inform the successful work using the extended mapping approach

and so is outlined briefly.

An application of Hirota’s method has proved very successful in finding multisoliton

solutions that can be useful for studying the stability of solitons. An interesting question is

whether instabilities are transfered from one soliton to another when they interact. Thus,

the existence of multisolitons proves important not only for heuristic reasons but also for

tangential research.

Lastly, two methods that generalize separation of variables are presented. The first,

the multi-linear variable separation approach, has not produced solutions yet. This work

is on-going and if successful should be very fruitful. However, the extended mapping

approach has produced many interesting and complex solutions with many more to come.

This method has proven quite effective.

Multisoliton Solutions

Since the NV equation is not linear, techniques such as Fourier transforms and superposi-

tion do not apply. However, there exists a notion of superposition of solutions for nonlinear

partial differential equations that admit soliton solutions. This allows for construction of

what are called multisoliton solutions, solutions that have more than one ‘wave of per-

manent form.’ We will describe a notion of superposition that allow for solutions with N

distinct soliton waves, and present a two–soliton solution. Note, however, that the method
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can be used to derive solutions with as many solitons as desired. Since the wave speed

is related to the amplitude, the solitons are guaranteed to interact and their spectacular

characteristics are easily seen.

Multisoliton solutions to the KdV equation can be found using the inverse scattering

transform (IST) [15], a method sometimes referred to as the nonlinear Fourier transform.

However, this computation can be difficult, and for the NV equation in particular, an initial

condition is needed which one may not have. There is another way to find multisoliton

solutions, Hirota’s bilinear method.

Following the pioneering work of Hirota [29], we can derive multisoliton solutions to

the NV equation using what is known as Hirota’s bilinear method. The main idea behind

Hirota’s bilinear method is that many nonlinear evolution equations can be reduced to a

bilinear form through a transformation involving the logarithm function. This allows for

another way to find multisoliton solutions different from those found by the ISM. However,

the transformations that give the bilinear form can be very hard to find.

As an example, consider the KdV equation,

ut − 6uux + uxxx = 0.

We want to find a transformation for u involving a function f such that f, fx, fxx, . . . → 0

as |x| → ∞. Let

u = −2
∂2

∂x2
log f. (3.2.1)

After substituting this into the KdV equation and a little manipulation involving an integra-

tion in x, we get

ffxt − fxft + ffxxxx − 4fxfxxx + 3f 2
xx = 0.

Now the problem is how to solve this bilinear form.
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Hirota introduced the bilinear operator, Dm
t D

n
x(a · b), defined by

Dm
t D

n
x(a · b) =

(
∂

∂t
− ∂

∂t′

)m(
∂

∂x
− ∂

∂x′

)n
a(x, t)b(x′, t′)

∣∣
x′=x,t′=t

.

Using Hirota’s operator, and the transformation (3.2.1), the KdV equation is represented by

Dx(Dt +D3
x)(f · f) = 0

The ansatz solution is that u is a sum of exponentials. Hirota’s method gives soliton

solutions as a sum of polynomials of exponentials. To generate a single soliton solution,

the sum is reduced to a single term. A two-soliton solution has two terms, a three-soliton

solution has three terms, etc. The number of terms kept is the number of solitons generated.

3.2.1 Solutions Using Hirota’s Method

Following the work in [68] we can find multisoliton solutions to NV using the Hirota bilin-

ear method. Assume u is a plane wave solution, that is, u(x, y, t) = ekx+ky−ct. This is done

in order to express the wave velocity c in terms of the dispersive coefficients. To make the

analysis easier we have set k1 = k2 = k.

Substituting the plane wave solution into the linear part of (2.1.7) we find

c = −k
3

2
.

Thus, u(x, y, t) = ekx+ky+ k3

2
t. The ansatz for f is

f(x, y, t) = 1 + Cekx+ky+ k3

2
t

where C is an arbitrary constant. The one-soliton solution can be defined by the transfor-
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mations

u = R (ln(f))xx (3.2.2)

v = R (ln(f))xy (3.2.3)

w = R (ln(f))yy (3.2.4)

The transformations (3.2.2) – (3.2.4) are Bäcklund-type transformations. When the

transformations are put into the NV system, we can algebraically solve for R. This is

algebraically intensive and is omitted. We find that R = 2. Thus,

u(x, y, t) = v(x, y, t) = w(x, y, t) =
2Ck2ek(2x+2y+k2t)/2

(1 + ek(2x+2y+k2t)/2)
2 (3.2.5)

is a soliton solution to the NV equation.

A two–soliton solution can be found if we redefine f to be

f(x, y, t) = 1 + eθ1 + eθ2 + a12e
θ1+θ2 (3.2.6)

where θi = kix+ kiy + 1
2
k3
i t, i = 1, 2.

Substituting the transformations (3.2.2) – (3.2.4) along with our new ansatz for f , equa-

tion (3.2.6), into the NV equation we are able to solve for a12 in terms of the wave numbers

k1 and k2

a12 =
(k1 − k2)2

(k1 + k2)2
.

This gives us a two–soliton solution
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u(x, y, t) =
2
(
k2

1e
θ1 + k2

2e
θ2 + (k1 − k2)2eθ1+θ2

)
1 + eθ1 + eθ2 + (k1−k2)2

(k1+k2)2
eθ1+θ2

−
2
(
k1e

θ1 + k2e
θ2 + (k1−k2)2

k1+k2
eθ1+θ2

)2

(
1 + eθ1 + eθ2 + (k1−k2)2

(k1+k2)2
eθ1+θ2

)2 . (3.2.7)

This method can be generalized to find N -soliton solutions. For example, to find a

three–soliton solution we use as the ansatz for f ,

f(x, y, t) = 1 + C1e
θ1 + C2e

θ2 + C3e
θ3 + C1C2a12e

θ1+θ2 + C1C3a13e
θ1+θ3

+ C2C3a23e
θ3+θ3 + C1C2C3b123e

θ1+θ2+θ3

Figure 3.1 shows the one–soliton solution derived above. Figure 3.2 shows the evolu-

tion of the two–soliton interaction, while Figure 3.3 shows the evolution and interaction of

the two–soliton solution from the a view perpendicular to the direction of propagation.

Fig. 3.1: One–soliton solution to the NV equation using Hirota’s method with parameters k = 3, t =
1, C = 1,
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Fig. 3.2: Evolution of 2-Soliton solution with k1 = 1, k2 = 2
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Fig. 3.3: Time snapshots of a two–soliton solution with choices k1 = 1, k2 = 2 from a view
perpendicular to the direction of motion
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3.2.2 Modified Extended Tanh–Function Method

Using the extended tanh–function method described in [18, 19] we find new multiple trav-

eling wave solutions to the NV equation. This is another expansion method, but this time

our expansion variable is allowed to have negative exponents. It broadens the number of

solutions by including more terms in its expansion methods than the original tanh–function

method.

In an effort to find more traveling wave solutions to the NV equation make the assump-

tion that

u(x, y, t) = u(θ),

v(x, y, t) = v(θ),

w(x, y, t) = w(θ)

where this time θ := k(x+ ly+λt). The NV equations and its auxiliary equations become

0 = 4kλu′ + k3u′′′ − 3k3l2u′′′ − 3k(uv)′ − 3kl(uw)′, (3.2.8)

0 = −ku′ + kv′ − lkw′, (3.2.9)

0 = lku′ + klv′ + kw′. (3.2.10)

In all three equations we can factor out a k, and integrating yields

0 = 4λu+ k2u′′ − 3k2l2u′′ − 3uv − 3luw, (3.2.11)

0 = −u+ v − lw, (3.2.12)

0 = lu+ lv + w. (3.2.13)
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Equations (3.2.12) – (3.2.13) can be solved for v and w in terms of u,

v = u
1− l2
1 + l2

, (3.2.14)

w = − 2ul

1 + l2
. (3.2.15)

Substituting equations (3.2.14) – (3.2.15) into equation (3.2.11) from above we have

0 = 4λu+ k2u′′ − 3k2l2u′′ − 3u2 1− 3l2

1 + l2
(3.2.16)

Now we can make our expansion assumption

u = a0 + a1z + a2z
2 + b1z

−1 + b2z
−2 (3.2.17)

where z satisfies the Riccati equation

d z

dθ
= b+ z2, z := z(θ). (3.2.18)

The solutions to equation (3.2.18) are

(a) If b < 0

z = −
√
−b tanh(

√
−bθ),

z = −
√
−b coth(

√
−bθ)

(b) If b = 0

z = −1/θ

(c) If b > 0

z =
√
b tan(

√
bθ),

z = −
√
b cot(

√
bθ)

Substituting the expansion (3.2.17) into (3.2.16) and using the Riccati equation, we can
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equate coefficients of z equal to 0 to get an algebraic system of equations

0 =9l2a2
2 − 3a2

2 − 12k2l2a2 − 18k2l4a2 + 6k2a2 (3.2.19)

0 =2k2b1b
2 − 6k2l4b1b

2 + 18l2b1b2 − 4k2l2b1b
2 − 6b1b2, (3.2.20)

0 =18l2a1a2 − 4k2l2a1 − 6a1a2 − 6k2l4a1 + 2k2a1 (3.2.21)

0 =− 18k2l4b2b
2 − 12k2l2b2b

2 + 9l2b2
2 − 3b2

2 + 6k2b2b
2 (3.2.22)

0 =− 4λa2 − 6a0a2 − 24k2l4a2b− 16k2l2a2b+ 18l2a0a2 − 3a2
1 + 8k2a2b

− 4λl2a2 + 9l2a2
1 (3.2.23)

0 =− 6b1a2 − 4k2l2a1b− 4λa1 − 4λl2a1 − 6k2l4a1b− 6a0a1 + 18l2b1a2

+ 2k2a1b+ 18l2a0a1 (3.2.24)

0 =18l2a1b2 − 4λl2b1 − 4k2l2b1b+ 18l2a0b1 − 6a0b1 − 4λb1 + 2k2b1b

− 6k2l4b1b− 6a1b2 (3.2.25)

0 =− 4λl2a0 + 2k2a2b
2 + 2k2b2 + 9l2a2

0 − 4k2l2b2 − 6a2b2 − 4λa0 − 3a2
0

+ 18l2a2b2 + 18l2a1b1 − 6k2l4a2b
2 − 6a1b1 − 4k2l2a2b

2 − 6k2l4b2 (3.2.26)

0 =8k2b2b− 4λl2b2 − 16k2l2b2b− 6a0b2 − 3b2
1 + 9l2b2

1 − 4λb2 − 24k2l4b2b

+ 18l2a0b2 (3.2.27)

Solving equations (3.2.19) – (3.2.27) we get a few nontrivial cases to consider:

Case1 :

a0 =
4λ(l2 + 1)

3(3l2 − 1)
, a1 = 0, a2 = 0, (3.2.28)

b = b, b1 = 0, b2 = 0 (3.2.29)
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Case2 :

a0 = −2λ(l2 + 1)

3(3l2 − 1)
, a1 = 0, a2 = 2k2l2 + 2k2, (3.2.30)

b = − λ

k2(3l2 − 1)
, b1 = 0, b2 = 0 (3.2.31)

Case3 :

a0 =
2λ(l2 + 1)

3l2 − 1
, a1 = 0, a2 = 2k2l2 + 2k2, (3.2.32)

b =
λ

k2(3l2 − 1)
, b1 = 0, b2 = 0 (3.2.33)

Case4 :

a0 =
2λ(l2 + 1)

3l2 − 1
, a1 = 0, a2 = 0, (3.2.34)

b =
λ

k2(3l2 − 1)
, b1 = 0, b2 =

2λ2(l2 + 1)

k2(3l2 − 1)2
(3.2.35)

Case5 :

a0 = −2λ(l2 + 1)

3(3l2 − 1)
, a1 = 0, a2 = 0, (3.2.36)

b = − λ

k2(3l2 − 1)
, b1 = 0, b2 =

2λ2(l2 + 1)

k2(3l2 − 1)2
(3.2.37)

Case6 :

a0 =
λ(l2 + 1)

3(3l2 − 1)
, a1 = 0, a2 = 2k2(l2 + 1), (3.2.38)

b = − λ

4k2(3l2 − 1)
, b1 = 0, b2 =

λ2(l2 + 1)

8k2(3l2 − 1)2
(3.2.39)
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Case7 :

a0 =
λ(l2 + 1)

3l2 − 1
, a1 = 0, a2 = 2k2(l2 + 1), (3.2.40)

b =
λ

4k2(3l2 − 1)
, b1 = 0, b2 =

λ2(l2 + 1)

8k2(3l2 − 1)2
(3.2.41)

For each case assume λ
3l2−1

> 0.

Case 2 We have b < 0. Then u becomes

u(x, y, t) = −2λ(l2 + 1)

3(3l2 − 1)

[
1− 3 tanh2

(
k(x+ ly − λt)

√
λ

k2(3l2 − 1)

)]
(3.2.42)

Case 3 We have b > 0. Then u becomes

u(x, y, t) =
2λ(l2 + 1)

3l2 − 1

[
1 + 3 tan2

(
k(x+ ly − λt)

√
λ

k2(3l2 − 1)

)]
(3.2.43)

Case 4 We have b > 0. Then u becomes

u(x, y, t) =
2λ(l2 + 1)

3l2 − 1

[
1 + cot2

(
k(x+ ly − λt)

√
λ

k2(3l2 − 1)

)]
(3.2.44)

Case 5 We have b < 0. Then u becomes

u(x, y, t) = −2

3

λ(l2 + 1)

3l2 − 1

[
1− 3 coth2

(
k(x+ ly − λt)

√
λ

k2(3l2 − 1)

)]
(3.2.45)
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Case 6 We have b < 0. Then u becomes

u(x, y, t) =
λ(l2 + 1)

6(3l2 − 1)

[
2 + 3 tanh2

(
k(x+ ly − λt)

√
λ

4k2(3l2 − 1)

)

+3 coth2

(
k(x+ ly − λt)

√
λ

4k2(3l2 − 1)

)]
(3.2.46)

Case 7 We have b > 0. Then u becomes

u(x, y, t) =
λ(l2 + 1)

2(3l2 − 1)

[
2 + tan2

(
k(x+ ly − λt)

√
λ

4k2(3l2 − 1)

)

+ cot2

(
k(x+ ly − λt)

√
λ

4k2(3l2 − 1)

)]
(3.2.47)

The only solution without singularities is Case 2, which is presented in figure (3.4).

Fig. 3.4: Case 2, with λ = 3, k = 4, l = 2, t = 0
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3.2.3 Multi–Linear Variable Separation Approach

Two techniques have been developed over the last two decades that enable one to generate

an infinite number of qualitatively different solutions beginning with arbitrary functions or

a seed solution. The first method is the multi-linear variable separation approach (MLVSA)

and the other is called the extended mapping approach (EMA). They both rely on expand-

ing the solutions in terms of functions that satisfy a Riccati equation. The solutions of

the particular Riccati equations are either sinusoidal, hyperbolic or rational, and thus lend

themselves to soliton equations. These methods seem to generate a universal formula for

an integrable NLPDE which to this point has been found for all integrable systems solved

in this manner [62, 61]. This formula is

u =
2(a1a2 − a3a0)pxqy

(a0 + a1p+ a2q + a3pq)2
(3.2.48)

where a0, a1, a2, and a3 are arbitrary constants and p(x, t) and q(y, t) are arbitrary func-

tions. This formula is a solution for many soliton PDE’s including KP, higher dimensional

Sine-Gordon, and Nizhnik-Novikov-Veselov (NNV) to name a few [62].

It is conjectured that possessing this universal formula is another sense of integrability.

The NV has not been solved in this way and another goal would be to derive this universal

formula for NV.

The multi–linear variable separation approach (MLVSA) was originally proposed in

1996 by Lou et. al. [47] to study the Davey-Stewartson (DS) equation. The method was

originally an extension of Hirota’s bilinear method. This method has already been used

to solve a large number of (2+1) nonlinear systems including the NNV equation [75], dis-

persive long-range system [61], the (3+1) Jimbo Miwa system [60], the Davey-Stewartson

system [47], the 2D Sine-Gordon equation and a (2+1)–dimensional (M+N) ANKS system

[46].

As work has progressed, this method of finding solutions has been credited as a “soliton
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factory” which can produce a variety of coherent nonlinear structures, such as dromion,

solitoff, curved line and surface soliton, soliton lattice, ring soliton, peakon, compacton,

foldon, chaotic soliton, fractal soliton, bubble soliton, tire soliton, ghost soliton, and so on,

and various soliton interaction modes, such as soliton fission and fusion, soliton reconnec-

tion and reflection [63, 48, 28].

Given a (2+1)-dimensional nonlinear system, F (u, ut, ux, uy, . . .) = 0, where u is a

function of x, y, and t, we outline the general algorithm for finding solutions using the

MLVSA. The first step is to multi-linearize the nonlinear system. Using Painleve analysis

we know the system can be written as

u = ũ(f, fx, . . .) + u0, (3.2.49)

where ũ is constructed by an expansion function f(x, y, t) and its derivatives with respect to

x, y, t, and u0 is a seed solution (possibly 0) remaining as arbitrary as possible. The function

ũ is essentially a Backlund transformation and has a homogeneous property, ũ(λf) =

λkũ(f) for a nonzero constant λ and integer k.

Substitution of (3.2.49) into our original system yields a multi-linearized system in f ,

F̃ (f, ft, fx, fy, . . .) = 0. (3.2.50)

which is homogeneous and k-linear for some k ∈ Z.

The second step is to make a variable separation assumption on f . This can be found

using the Darboux transformation [62], but it is generally some variant of

f = a0 + a1p+ a2q + Apq, (3.2.51)

where p = p(x, t), q = q(y, t) and a0, a1, a2 and A are constants. Substitution of (3.2.51)
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into (3.2.50) yields a new system

G(p, pt, px, . . . , q, qt, qy, . . .) = 0. (3.2.52)

Next, separate the functions p and q in (3.2.52),

G1(p, pt, px, . . .) = 0 and G2(q, qt, qx, . . .) = 0. (3.2.53)

The last step is to solve G1 and G2 for p and q. This last step is nontrivial, but, if possi-

ble, can yield many of the nonlinear structures cited above due to p and q being arbitrary.

Many variants on this algorithm exists, the most obvious being to try alternative forms

of (3.2.51).

For the NV equation we have found the correct Painleve transformation, and we will

either find a sufficient form of f or separate the system (3.2.53) using (3.2.51). The trans-

formations are

u = a(ln f)xx + c(ln f)yy + u0, (3.2.54)

v = a(ln f)xx − c(ln f)yy + v0, (3.2.55)

w = −2a(ln f)xy + w0, (3.2.56)

for constants a and c. Using (3.2.51) the NV equation becomes a 5-linear form in f with

65 terms and has yet to be solved. A successful method of finding arbitrary solutions for

the NV equation is the extended mapping approach and is presented next.

3.2.4 Extended Mapping Approach

The extended mapping approach (EMA) was presented formally by Zheng [77] and extends

results by Lou and Ni [72]. The method is designed to find mappings between nonlinear

PDE’s. Through this mapping more solutions could be found algebraically, similar to a
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Bäcklund transformation.

This work has led to a rather general result for finding solutions to soliton PDE’s. Given

a PDE, F (u,Du, . . .) = 0, where D refers to a derivative operator, assuming there exists

a universal formula (3.2.48) for the solution u(x, y, t), we can derive a family of such

formulas with no restrictions on ai and p and q, besides simple domain restrictions.

The extended mapping approach relies on expanding all quantities (u, v and w in the

case of NV) by

u(x, y, t) =
n∑
i=0

aiφ
i, (3.2.57)

v(x, y, t) =
m∑
i=0

biφ
i, (3.2.58)

w(x, y, t) =
k∑
i=0

ciφ
i. (3.2.59)

The function φ satisfies the Riccati equation

dφ

dR
= l0 + φ2, (3.2.60)

where R := R(x, y, t). The values of n,m and k are determined by balancing the highest-

order derivative terms with the nonlinear terms of the PDE. The method is described

nicely in [58]. The balancing method informs us that n = k = m = 2, and thus,

ai := ai(x, y, t), bi := bi(x, y, t), and ci := ci(x, y, t), (i = 0, 1, . . . , n) are arbitrary func-

tions and l0 is an arbitrary constant.

Substitute the expansions (3.2.57) - (3.2.59) into our original PDE and equate coeffi-

cients of the resulting polynomial in φ. For the NV equation this yields a system of thirteen

PDE’s. We need to solve this system for the coefficients ai, bi and ci. Once this is done

we have solutions for the original PDE. A key component to this method is that we have

control over R, and can therefore manipulate the resulting system. We follow the separa-
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tion most widely used, R(x, y, t) = p(x, t) + q(y, t). When using this separation technique

for R it is possible to generate a number of interesting coherent structures: ring solitons,

lump solitons, dark solitons, dromions, foldons and compact solitons to name a few. For

instance, many of these types of solutions were derived for the NNV equation [76], and it is

an ongoing task to find all of these solutions for the NV equation. In this work, we present

a number of new solutions for the NV equation that were found using the EMA including

breathers and bounded traveling wave solutions.

EMA Applied to the Real–Valued NV Equation

Recall the NV equation is given by

0 = 4ut + uxxx − 3uxyy − 3(uv)x − 3(uw)y,

ux = vx − wy, (3.2.61)

uy = −wx − vy.

Assume the solutions have the form

u =
n∑
i=1

aiφ
i, (3.2.62)

v =
m∑
i=1

biφ
i, (3.2.63)

w =
k∑
i=1

ciφ
i (3.2.64)

where φ = φ(R), R = R(x, y, t) and φ satisfies the Riccati equation

dφ

dR
= l0 + φ2. (3.2.65)

The reason for this choice of φ is because the solutions of the Riccati equation are traveling
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wave solutions

φ =



− tanh(R), l0 = −1

− coth(R), l0 = −1

tan(R), l0 = 1

− cot(R), l0 = 1

−R−1 l0 = 0

(3.2.66)

Using these relations in the NV equation and its auxiliary relations, by using Maple we get

the following system of partial differential equations

0 = −a0,x − a1Rxl0 + b0,x + b1Rxl0 − c0,y − c1Ryl0 (3.2.67)

0 = −a1,x − 2 a2Rxl0 + b1,x + 2 b2Rxl0 − c1,y − 2 c2Ryl0 (3.2.68)

0 = a0,y + a1Ryl0 + b0,y + b1Ryl0 + c0,x + c1Rxl0 (3.2.69)

0 = a1,y + 2 a2Ryl0 + b1,y + 2 b2Ryl0 + c1,x + 2 c2Rxl0 (3.2.70)

0 = a1Ry + a2,y + b1Ry + b2,y + c1Rx + c2,x (3.2.71)

0 = −a1Rx − a2,x + b1Rx + b2,x − c1Ry − c2,y (3.2.72)

0 = −72 a2R
2
yRx − 12 b2Rxa2 − 12 c2Rya2 + 24 a2R

3
x (3.2.73)

0 = −2 a2Rx + 2 b2Rx − 2 c2Ry (3.2.74)

0 = 2 a2Ry + 2 b2Ry + 2 c2Rx (3.2.75)

0 = −6 c2Rya0 − 3 a1,yc2 − 3 a2,xb1 − 3 c1,ya2 + 2 a2Rx,x,x − 6 b1Rxa1

− 3 b1,xa2 − 6 c1Rya1 − 3 a2,yc1 − 3 b2,xa1 − 6 a2,xRy,y

− 6 a1,xRy
2 − 12 a2,x,yRy + 6 a1,xRx

2 − 6 a2,y,yRx − 12 b2Rxl0a2 + 8 a2Rt

− 6 a2Rx,y,y + 6 a2,xRx,x − 6 a2Ryc0 − 6 b2Rxa0 − 6 a2Rxb0 − 12 a1RyRx,y

− 120 a2Ry
2Rxl0 − 3 c2,ya1 − 12 a1,yRyRx + 6 a1RxRx,x + 40 a2Rx

3l0

− 6 a1Ry,yRx − 3 a1,xb2 + 6 a2,x,xRx − 12 a2,yRx,y − 12 c2Ryl0a2 (3.2.76)
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0 = −18 a2,xRy
2 − 3 a2,yc2 − 3 c2,ya2 + 6 a1Rx

3 + 18 a2,xRx
2 − 36 a2,yRyRx

− 18 a2Ry,yRx − 36 a2RyRx,y − 18 a1Ry
2Rx + 18 a2RxRx,x − 9 b1Rxa2

− 9 b2Rxa1 − 9 c2Rya1 − 9 c1Rya2 − 3 b2,xa2 − 3 a2,xb2 (3.2.77)

0 = 24 a2,xRx
2l0 − 3 b1Rxa0 + 4 a2,t − 9 b2Rxl0a1 + 8 a1Rx

3l0 − 3 a1,xRy,y

+ a2,x,x,x − 3 a2,x,y,y − 3 c1Rya0 − 24 a2,xRy
2l0 − 6 a1,yRx,y − 24 a1Ry

2Rxl0

− 3 a1Ryc0 − 9 b1Rxl0a2 + 3 a1,xRx,x − 3 a1Rx,y,y − 6 a1,x,yRy − 3 c2,ya0 − 3 b2,xa0

− 3 b0,xa2 − 3 a1,yc1 − 3 a0,yc2 − 3 a0,xb2 − 3 a1,xb1 − 3 c0,ya2 − 3 a2,xb0 − 3 a2,yc0

− 3 c1,ya1 − 48 a2RyRx,yl0 + 3 a1,x,xRx + a1Rx,x,x + 24 a2RxRx,xl0 − 9 c2Ryl0a1

− 48 a2,yRyRxl0 + 4 a1Rt − 3 a1,y,yRx − 9 c1Ryl0a2 − 24 a2Ry,yRxl0 − 3 b1,xa1

− 3 a1Rxb0 (3.2.78)

0 = −6 a1Ry,yRxl0 + a1,x,x,x + 6 a1RxRx,xl0 + 4 a1,t − 3 a1,x,y,y − 6 b2Rxl0a0

− 12 a1,yRyRxl0 − 6 a2,xRy,yl0 − 12 a2,x,yRyl0 − 12 a1RyRx,yl0 − 12 a2,yRx,yl0

+ 2 a2Rx,x,xl0 + 6 a1,xRx
2l0 − 48 a2Ry

2Rxl0
2 − 6 a2,y,yRxl0 − 3 a0,yc1 − 3 a1,yc0

− 3 c0,ya1 − 3 b0,xa1 − 3 a0,xb1 − 3 b1,xa0 − 6 a2Ryl0c0 − 6 c2Ryl0a0 − 6 a1,xRy
2l0

+ 16 a2Rx
3l0

2 + 8 a2Rtl0 + 6 a2,x,xRxl0 − 6 a2Rxl0b0 − 6 a2Rx,y,yl0 − 3 c1,ya0

− 6 b1Rxl0a1 − 3 a1,xb0 − 6 c1Ryl0a1 + 6 a2,xRx,xl0 (3.2.79)

Assuming a2 6= 0, equations (3.2.73) – (3.2.75) can be solved algebraically for a2, b2, and
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c2. We find

a2 = 2R2
x + 2R2

y (3.2.80)

b2 = −2R2
y + 2R2

x (3.2.81)

c2 = −4RyRx. (3.2.82)

Substituting equations (3.2.80) – (3.2.82) into the PDE system we have reduced the number

of equations to ten, and we can now use equations (3.2.71), (3.2.72) and (3.2.77) to solve

for a1, b1 and c1.

a1 = 2Rxx + 2Ryy, (3.2.83)

b1 = 2Rxx − 2Ryy, (3.2.84)

c1 = −4Rxy. (3.2.85)

So far the general solutions for a0, b0 and c0 have been elusive. However, by choosing

specific R(x, y, t) the system becomes solvable using Maple. Many of these solutions will

be presented below. I have some conjectures for certain choices of R(x, y, t) that seem

to be consistent when solving using Maple. For instance, when we assume R(x, y, t) =

p(x) + q(y), a spatial separation and no t dependence, c0 = −4l0RxRy, but this is not

proven rigorously yet. A quick outline of some conjectures are given.

If we make the separation assumptionR(x, y, t) = p(x, t)+q(y, t) and attempt to solve

for a0, b0 and c0, we can say a few things that will aid in future work. Equations (3.2.69)

and (3.2.70) become

c0,y = −a0,x − 4pxl0qy,y + b0,x (3.2.86)

c0,x = −a0,y − 4px,xl0qy − b0,y (3.2.87)

Integrating equation (3.2.86) with respect to y and equation (3.2.87) with respect to x
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we find

c0 =

∫
(−a0,x + b0,x) dy − 4pxl0qy + F1(t, x) (3.2.88)

c0 =

∫
(−a0,y − b0,y) dx− 4pxl0qy + F2(t, y) (3.2.89)

where F1 and F2 are arbitrary functions from the integration. For the moment, let’s assume

these are 0. If c0 = −4l0pxqy we can conclude that

b0 − a0 = f1(t, y), and b0 + a0 = f2(t, x).

If this is the case, we conjecture

b0 =
f1 + f2

2
(3.2.90)

a0 =
f2 − f1

2
. (3.2.91)

This gives us structure on what a0 and b0 can look like. We should see this in any results

given by Maple.

Sech2 Solutions

If we let l0 = −1 and R(x, y, t) = x − t we have u(x, y, t) = a0 + 2 tanh2(x − t). This

particular choice of R allows the system to be solved by Maple and we find a solution is

a0(x, y, t) = −4− F (y),

b0(x, y, t) = F (y),

c0(x, y, t) = 0.
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Choosing F (y) = −2 we obtain

u(x, y, t) = −2 + 2 tanh2(x− t)

= −2sech2(x− t)

This is the solution found in section in on page 23 in section 3.1 with c = 1 and x0 = 0.

This also serves as evidence for the conjectures in equations (3.2.90) and (3.2.91) with

f1(t, y) = 2F (y) + 4 and f2(t, x) = −4, and we have c0 = 0 which is consistent with the

conjectures above.

Static Solutions

Here we consider some cases whereR(x, y, t) = p(x)+q(y). For example, letR(x, y, t) =

x+ y2 and l0 = −1. For this choice of R the coefficients a0, b0 and c0 are

a0(x, y, t) =
−1728y6 + (−96 + 1728C)y4 + (−40 + 288C)y2 − 36C + 5

432y4 − 36y2

b0(x, y, t) =
144y4 + (−12 + 432C)y2 − 36C + 5

36y2

c0(x, y, t) = 8y

with solutions

u(x, y, t) =
−1728y6 + (−96 + 1728C)y4 + (−40 + 288C)y2 − 36C + 5

432y4 − 36y2

− 4 tanh(x+ y2) + (2 + 8y) tanh2(x+ y2) (3.2.92)

v(x, y, t) =
144y4 + (−12 + 432C)y2 − 36C + 5

36y2

+ 4 tanh(x+ y2) + (2− 8y) tanh2(x+ y2) (3.2.93)

w(x, y, t) = 8y − 8y tanh2(x+ y2), (3.2.94)

46



where C is an arbitrary constant. There is a picture of the solution u with C = 1 in figure

3.5.

Fig. 3.5: A static solution to the NV equation

The solutions for a0, b0 and c0 are consistent with the conjectures in the previous section

if we do not assume F1 and F2 are 0. Notice that −4l0pxqy = −4(−1)(1)(2y) = 8y = c0.

Breather

Breather solutions are solutions that have a respiratory action, that is, a periodic motion in

time that resembles breathing. Let R(x, y, t) = 1 + x + y2 + 4 cos(t) and l0 = −1. With

this choice of R and l0 we obtain breather solutions:

u(x, y, t) =
−1728y6 + (−96 + 1728C)y4 + (−40 + 288C)y2 − 36C + 5

432y4 − 36y2

− 4 tanh(1 + x+ y2 + 4 cos t) + (2 + 8y2) tanh2(1 + x+ y2 + 4 cos t)

(3.2.95)

v(x, y, t) =
−192 sin(t)y2 + 144y4 + (−12 + 432C)y2 − 36C + 5

36y2

+ 4 tanh(1 + x+ y2 + 4 cos t) + (2− 8y2) tanh2(1 + x+ y2 + 4 cos t)

(3.2.96)

w(x, y, t) = 8y − 8y tanh2(1 + x+ y2 + 4 cos t). (3.2.97)
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Again, notice that −4l0pxqy = 8y = c0 which again affirms the conjecture that c0 =

−4l0pxqy. Several time snapshots are shown in Figure (3.6):

Fig. 3.6: Time snapshots of a breather solution derived using the EMA.
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Multisolitons

Let R(x, y, t) = x+ y − t. The resulting solution for u(x, y, t) is

u(x, y, t) =
3 cosh2(1 + y − x+ t)− 12

3 cosh2(1 + y − x+ t)
+ 4 tanh2(−x− y + t). (3.2.98)

The result is the classic two–soliton interaction
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Fig. 3.7: Two Views of the two–soliton solution derived using the EMA. Left: Interacting solitons,
Right: Contour view of the same interaction

Bounded Solutions

Let l0 = 0. This is the case where we may be able to derive peakons, foldons, and com-

pactons [76], if they exist. An example of a bounded solution is given for R(x, y, t) =

y2 − x+ et. The solution for u(x, y, t) is

u(x, y, t) =
192y4 + 20y2 − 3

48y4 − 4y2
− 4

y2 − x+ et
+

−8y2 + 2

(y2 − x+ et)2

v(x, y, t) = −4et

3
− 1− 12y2

y2
+

4

y2 − x+ et
+

−8y2 + 2

(y2 − x+ et)2

w(x, y, t) =
8y

(y2 − x+ et)2
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Note here that c0 = 0 which again confirms the conjecture that c0(x, y, t) = −4l0pxqy since

l0 = 0 in this case. For choices of R(x, y, t) that Maple can solve for a0, b0, and c0 there

has not been a c0 that contradicts the conjecture c0(x, y, t) = −4l0pxqy.

Away from the singularities, u→ 4 as t→∞. A simple modification onR,R(x, y, t) =

y2 − x2 + et + 3 yields a solution that goes to 0 in the limit,

u(x, y, t) =
8x2 + 8y2

(y2 − x2 + et + 3)2
.

So far, I have not been able to find solutions that are bounded or decay to 0 in all

directions that do not have singularities. A major goal is to find closed–form solutions of

the NV equation that are of conductivity-type, and this will be pursued further in the future.

Movies and still pictures of everything discussed in this work can be found at my web-

site: http://www.math.colostate.edu/˜croke/Research/
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4. A NUMERICAL SOLVER FOR THE NV EQUATION

4.1 A Pseudo–Spectral Method for Solving (2+1) Nonlinear Wave

Equations

To verify analytical results presented in this dissertation and in order to help with conjec-

tures involving the inverse scattering transform, a numerical solution to the NV equation

was developed that is based on a general scheme created by Feng et. al. [22]. A semi-

implicit numerical solver was already in existence [44] that uses finite differences in the

spatial variables, Crank-Nicolson in time, and fast Fourier transforms for the auxiliary D-

bar equation. However, the finite difference solver is slow compared to this spectral solver

and requires more computational memory allocation.

In [3] Allen applied the method of Feng et.al. to the KP equation in order to investigate

the stability of soliton solutions. Here, a numerical solution to the Cauchy problem for

(1.0.5) – (1.0.7) is presented and is used in two capacities: to study the stability of soliton

solutions to the NV equation, and to help with conjectures involving the evolution of initial

data that are of non conductivity-type.

The original idea was considered in 1999 [22] and is applicable to many wave equations

but this is the first implementation for a NLPDE system. We are restricting ourselves to

a finite spatial domain with periodic boundary conditions where the periodic domain is

Ω = [0,Wx] × [0,Wy]. Our computational domain must be sufficiently large to avoid

reflections from the boundaries. This chapter will describe the spectral method, while its

applications and uses will be in subsequent chapters.

The idea is to use the fast Fourier transform (FFT) and the discrete Fourier transform



(DFT) to compute the spatial evolution and a three–level difference scheme to advance the

solution in time. For the linear terms, a free parameter θ is used, and for the nonlinear

terms a leapfrog scheme is used. This is in contrast to the finite difference scheme, which

uses an implicit finite-difference method in the spatial variables, and only takes advantage

of the FFT for equation (1.0.3), the auxiliary D-bar equation. The main advantage of the

spectral method is that it avoids solving nonlinear algebraic equations and avoids memory

intensive operations such as LU decomposition.

The method can be summarized by first making the following definitions. Assume the

intervals for x and y are both equidiscretized, x0 = 0, x1 = ∆x, x2 = 2∆x, . . . , xL−1 =

(L− 1)∆x where ∆x = Wx/L, and y0 = 0, y1 = ∆y, y2 = 2∆y, . . . , yM−1 = (M − 1)∆y

where ∆y = Wy/M . The parameters L and M should both be powers of 2 in order to

use the FFT. The grid points are (xl, ym) = (l∆x,m∆y) where l ∈ {0, . . . , L − 1} and

m ∈ {0, . . . ,M−1}. We denote the solution at time t and point (xl, ym) as ul,m(t). Let the

corresponding spectral variables be denoted by ξp = 2πp/Wx and ηq = 2πq/Wy, where

p ∈ {−L/2, . . . ,−1, 0, 1, . . . , L/2}, and q ∈ {−M/2, . . . ,−1, 0, 1, . . . ,M/2}. The DFT

and its inverse are given by

ûp,q = F [ul,m] =
L−1∑
l=0

M−1∑
m=0

ul,me
−i(ξpxl+ηqym) (4.1.1)

ul,m = F−1[ûp,q] =
1

LM

L/2−1∑
p=−L/2

M/2−1∑
q=−M/2

ûp,qe
i(ξpxl+ηqym) (4.1.2)

4.2 Implementing the Spectral Method for the NV Equation

Using equations (4.1.1) and (4.1.2) we find that the Fourier transform of the system (1.0.5)

– (1.0.7) is
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0 = 4ût +
(
3iξη2 − iξ3

)
û− 3iξF [(uv)]− 3iηF [(uw)], (4.2.1)

ξû = ξv̂ − ηŵ, (4.2.2)

ηû = −ηv̂ − νŵ. (4.2.3)

Equations (4.2.2) and (4.2.3) can be solved in terms of û

ŵ =
−2ηξ

η2 + ξ2
û (4.2.4)

v̂ =
ξ2 − η2

ξ2 + η2
û (4.2.5)

For the time integration we use a symmetric three-level difference method for the linear

terms, and a leapfrog method for the nonlinear terms. The idea here is to treat the linear

terms implicitly, while treating the nonlinear terms explicitly. We advance the nonlinear

terms in time only by previous time levels. We do this by solving for w and v in terms of

u at previous time steps and then solving the main equation. At this point we introduce

superscripts on all functions that are evolving in time. For example, let the nth time step

of ul,m be denoted as unl,m. Taking the inverse Fourier transform of equations (4.2.4) and

(4.2.5), the nth time step is given by

wn =
−2ηξ

η2 + ξ2
F−1ûn (4.2.6)

vn =
ξ2 − η2

ξ2 + η2
F−1ûn. (4.2.7)
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The time evolution of equations (4.2.1) – (4.2.3) is given by the following

0 = 4
ûn+1 − ûn−1

2∆t
+
(
3iξη2 − iξ3

) (
θ(ûn+1 + ûn−1) + (1− 2θ)ûn

)
−

− 3iξF [(unvn)]− 3iηF [(unwn)] (4.2.8)

ŵn =
−2ηξ

η2 + ξ2
ûn (4.2.9)

v̂n =
ξ2 − η2

ξ2 + η2
ûn (4.2.10)

In this semi-implicit scheme two FFT’s are needed for each time step. Solving for ûn+1

we have

ûn+1 =
2∆t

4 + 2∆t θ(3iξη2 − iξ3)

(
3iξF [(unvn)] + 3iηF [(unwn)]− (4.2.11)

−
(
3iξη2 − iξ3

) (
(1− 2θ)ûn + θûn−1

) )
+

4

4 + 2∆t θ(3iξη2 − iξ3)
ûn−1

As one can see from this formula, if we know the previous two time steps, we can

compute the solution at the present time step. This has the advantage that there is not an

extra computational step at every time step as there is with the Crank-Nicolson method.

However, because there are three time steps, two initial approximation are needed.

This extra initial condition is attained by manually time stepping the given initial con-

dition. If uIC1(x, y, 0) is the initial condition we would like to evolve numerically, we

compute uIC2(x, y, 0− dt) where dt is our time step. For example, later we show the evo-

lution of the solution u(x, y, t) = −2sech2(x− t). To use the pseudo–spectral method we

have as input uIC1(x, y, 0) = −2sech2x and uIC2(x, y, t) = −2sech2(x− dt).

The next section will address the issue of numerical stability. As in Feng et. al. we

employ a linear numerical stability analysis to get necessary conditions for stability.
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4.2.1 Linear Numerical Stability Analysis

To gain insight into the stability of the spectral method, a linear stability analysis is un-

dertaken. To proceed we approximate the function u with a constant α = |u|max in the

nonlinear terms. The relevance of a stability analysis for a fundamentally different system

can certainly be questioned. After all, a nonlinear system is quite different from a linear

one. However, this issue was addressed by the authors in [22], in the context of stability of

a spectral scheme for the KP and ZK equations,

“Although a linearized stability analysis is not sufficient for proving stability

and convergence of the corresponding nonlinear schemes, the obtained stability

conditions are often sufficient in practice.”

The authors argue that their linear stability analysis for the KP and ZK equations are vali-

dated by numerical results. I humbly defer to their arguments as validation for the similar

analysis done here for the NV equation. To begin, let ω = ξ(3η2 − ξ2) be the linear dis-

persion relation given in terms of the spectral parameters. We can use definitions (4.2.6) –

(4.2.7) to linearize equation (4.2.8) and rewrite (4.2.8) as

0 =
ûn+1 − ûn−1

(1/2)∆t
+ iω

(
θ(ûn+1 + ûn−1) + (1− 2θ)ûn

)
+

3iαω

ξ2 + η2
ûn (4.2.12)

where α = |u|max. This leads to the characteristic polynomial

φNV (z) = b1z
2 + b2z − b1 (4.2.13)
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where

b1 = [1 + (1/2)i∆tωθ], (4.2.14)

b2 =
i∆t ω

2

[
(1− 2θ) +

3α

ξ2 + η2

]
. (4.2.15)

Let β1,2 = (−b2 ±
√
b2

2 + 4|b1|2)/2b1 be the two distinct zeros of the characteristic

polynomial φNV (z). To avoid instability we need that both |β1| ≤ 1 and |β2| ≤ 1. However,

β1β2 =
(−b2 +

√
b2

2 − 4b1b1)(−b2 −
√
b2

2 − 4b1b1)

4b2
1

=
b2

2 − (b2
2 − 4b1b1)

4b2
1

=
4b1b1

4b2
1

=
b1

b1

and so |β1β2| = 1 it follows |β1| = |β2| = 1. Since the roots of equation (4.2.13) are on

the unit circle the numerical method is stable, or conservative. Therefore, it is required that

b2
2 + 4|b1|2 > 0. We compute

b2
2 + 4|b1|2 = −1

4
(∆t)2ω2

[
(1− 2θ) +

3α

ξ2 + η2

]2

+ 4

(
1 +

1

4
(∆t)2ω2θ2

)
= (∆t)2ω2

(
(θ − (1/4))− 1

4

6α(1− 2θ)

η2 + ξ2
− 1

4

(
3α

η2 + ξ2

)2
)

+ 4.

Let γ = 3α
η2+ξ2

. Using that 1− 2θ = −2(θ − (1/4)) + 1/2 we now have
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b2
2 + 4|b1|2 = (∆t)2ω2(θ − (1/4))

(
1 + γ − 1

4

γ

θ − (1/4)
− 1

4(θ − (1/4))
γ2

)
+ 4

(4.2.16)

Recall that γ > 0, and so a necessary condition that this quantity is positive is θ > 1/4.

Equation (4.2.16) is linear in θ and thus is monotonic in θ. Analysis done by a collabo-

rator, Andreas Strahel, has already shown 1/4 < θ < 1. So, in terms of theta, the maximum

that equation (4.2.16) can be is at when θ is at its maximum, θ = 1. For the analysis here,

we can assume θ = 1. This will lead to an estimate for ∆t.

b2
2 + 4|b1|2 = −1

4
(∆t)2ω2

[
−1 +

3α

ξ2 + η2

]2

+ 4

(
1 +

1

4
(∆t)2ω2

)
= (∆t)2ω2

(
−
[
−1 +

3α

ξ2 + η2

]2

+ 4

)
+ 16

= (∆t)2ω2

(
−
[

1− 6α

ξ2 + η2
+ 9

(
α

ξ2 + η2

)2
]

+ 4

)
+ 16

= (∆t)2ω2

(
3 +

6α

ξ2 + η2
− 9

(
α

ξ2 + η2

)2
)

+ 16

= 3(∆t)2ω2

((
1 +

α

ξ2 + η2

)2

− 4

(
α

ξ2 + η2

)2
)

+ 16 > 0 (4.2.17)

A sufficient condition to satisfy (4.2.17) is

∆t <
2√
3

ξ2
max + η2

max

αω
(4.2.18)

Recall that ω = ξ(3η2 − ξ2). For simplicity let’s assume ∆x = ∆y and ξ = η. Then

inequality (4.2.17) becomes
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∆t <
2√
3

2ξ2
max

αξmax(2ξ2
max)

=
2√
3

1

αξmax
=

1

π
√

3

∆x

|u|max
(4.2.19)

We have proved the following theorem,

Theorem 4.2.1. For the linear periodic initial value problem

0 = 4ut + uxxx − 3uxyy − 3(uα)x − 3(uα)y, (x, y)× t ∈ Ω× R,

u(x, y, 0) = u0(x, y), (x, y) ∈ Ω,

u(x, y, t) = u(x+Wx, y, t), (x, y)× t ∈ R3,

u(x, y, t) = u(x, y +Wy, t), (x, y)× t ∈ R3,

where Ω = [0,Wx]× [0,Wy], α ∈ R+, the spectral scheme

0 =
ûn+1 − ûn−1

(1/2)∆t
+ iω

(
θ(ûn+1 + ûn−1) + (1− 2θ)ûn

)
+

3iαω

ξ2 + η2
ûn

is conservative and stable provided that θ > 1/4 and ∆t ≤ 1
π
√

3
∆x
|u|max .

4.2.2 Preservation of the L2 Norm for the Linear NV Equation

Recall from chapter 3, the linear NV equation, equation (2.1.7), is

ut = −1

4
uxxx +

3

4
uyyx ≡ −Au (4.2.20)

Defining the inner product as

< u, v >=

∫ ∫
u(x, y, t)v(x, y, t)dA,
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we see

<
∂3

∂x3
u, v > =

∫ ∫
∂3

∂x3
u(x, y, t)v(x, y, t)dA

= −
∫ ∫

u(x, y, t)
∂3

∂x3
v(x, y, t)dA.

A similar calculation shows

< Au, v >= − < u,Av > .

Using that d
dt
u = −Au,

d

dt
||u(t)||2L2

=
d

dt
< u, u >

= − < Au, u > − < u,Au >

= − < Au, u > + < Au, u >

= 0

and so

||u(t)||L2 = ||u(t, ·, ·)||L2 = constant.

In particular, for traveling wave solutions the L2 norm should be preserved.

4.2.3 Numerical Simulations of Soliton Initial Conditions

In this section the results from numerical computations are presented for the traveling wave

solution u(x, y, t) = −2 sech2(x − t). All work was done in Matlab using the built-in

routines FFT, IFFT, and ODE45. In chapter 6 the spectral scheme will be applied in the

context of exploring conjectures related to the ISM for the NV equation. It will also be used

when investigating transversely perturbed initial conditions to study stability in chapter 5

In figure (4.1) the L2 norm of the numerically solution was computed for a sequence
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of time steps and is seen to be extremely stable. In table (4.1) some statistics regarding the

norm are presented. The maximum deviation from the norm for t ∈ [0, 10] is 0.0176 and

the maximum deviation from the norm for t ∈ [0, 40] is 0.0323. Note that the scale of the

vertical axis is very small in figure (4.1) and so the graph appears to be space filling.

Figures (4.2) and (4.3) compare the numerically computed evolution of u0(x, y, t) =

−2csech2(x− ct) to the initial condition, u0(x, y, 0). To compute these images, a 128x128

mesh was created on the grid (x, y) ∈ ([0, 40], [0, 20]) with dt = 0.01.

t=10 t = 40
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Fig. 4.1: Left: ||u(t)||L2 , with time ranging 0 ≤ t ≤ 10, Right: ||u(t)||L2 , with time ranging
0 ≤ t ≤ 40

Time Mean Min Max
t = 10 14.9746 14.9586 14.9905
t = 40 14.9754 14.9431 15.0071

Tab. 4.1: Statistics of the norms computed in Figure 4.1
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Fig. 4.2: Three views comparing the initial condition u0 and its numerical evolution at t = 10.
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Fig. 4.3: Three views comparing the initial condition u0 and its numerical evolution at t = 40.
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5. INSTABILITY OF TRAVELING–WAVE SOLUTIONS OF THE NV

EQUATION TO TRANSVERSE PERTURBATIONS

5.1 Introduction

In physical settings, verifying whether a wave exists or not can be quite simple. If you

observe the wave or disturbance, it exists. For example, soliton solutions to the KdV equa-

tions certainly exist because we see them in many applications such as water waves, fiber

optics and the Fermi–Pasta–Ulam problem. However, if a certain type of wave is not seen,

it may still exist. It can simply mean that if the wave exists, it may not exist long enough

to be detected.

For this reason the study of stability of solutions becomes important. If the wave is

shown to be unstable it should not appear in applications or in a laboratory setting [57]. A

question that can be asked is how is the wave unstable, that is, what type of disturbances

cause the wave to disappear. In many applications there are perturbations acting trans-

versely on a wave. This type of perturbation is one that occurs frequently in water waves,

gravity waves, and plasmas [57, 5].

The problem of transverse stability has been studied for many of the classic soliton

equations including the KP equation [33, 5, 3, 14], the Boussinesq equation [5], the ZK

equation [4, 23, 31, 30], and most notably, the KdV equation [34]. In fact, Kadomstev

& Petviashvili were considering the problem of the instability of the KdV equation to

transverse perturbations when they derived the celebrated KP equation.

In order to understand the stability of one-dimensional soliton solutions of the NV equa-

tion we will carry out a linear stability analysis by considering sinusoidal perturbations



with wavevector perpendicular to the direction of propagation. In order to make conclu-

sions about the stability of soliton solutions, as well as approximate the growth rate, the

method chosen is the one developed by Rowlands, Infeld and Allen [32, 4].

Due to the complicated boundary conditions, we employ a geometric optics limit based

on a scheme that assumes the nonlinear wave undergoes a long-wavelength perturbation.

Thus, if the wave vector of the perturbation is k, we assume k << K where K is the wave

vector of the solution. This type of investigation is called the K-expansion method.

To my knowledge, with the exception of the work of Bradley [13], this is the only

known use of this method for a soliton system. In [13] equations are derived to model

small amplitude, long waves traveling over the surface of a thin current-carrying metal

film. His system can be reduced to the dimensionless form

ut − 4ux +∇2ux +
1

2
uux = −1

2
(Ψxux + Ψyuy) ,

∇2Ψ = ux.

In [13] is was necessary to use a multiscale perturbation technique, a much more inten-

sive and technical method than an ordinary perturbation method, to prove the instability

of transverse perturbations and to find an approximation to the linear growth rate of the

instability.

In [32], the authors conjecture that to do a linear stability analysis using the K-expansion

method, a regular perturbation analysis is consistent only if the equation is an integrable

system. If a multiscale analysis is necessary, the equation is not integrable. The ZK equa-

tion and Bradley equations are not integrable, and the ordinary perturbation analysis fails

[4, 13]. So far this conjecture holds true for the KP and Boussinesq equations [5]. The re-

sults contained here back up their claim by showing only an ordinary perturbation analysis

is needed for the NV equation.
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5.1.1 History of the K–Expansion Method

As the ubiquity of the KdV equation in physical applications became apparent, the question

of the stability of its wave solutions became important. The first application where this was

addressed was in water waves. In [7] Benjamin showed all soliton solutions to KdV are

stable in the shallow water limit. However, in the deep water limit h/λ → ∞, where h

is the water depth and λ is the wavelength, Brooke-Benjamin and Feir [8] showed small

amplitude solutions to be unstable by using expansion methods.

Answering the question of stability was next addressed using Lagrangian’s and Hamil-

tonians by Whitham [70]. Whitham employed an averaging method that relies on Floquet’s

theorem, a theorem that relies on integrating over the period of a wave. If the wave is a soli-

ton, the wavelength is taken to infinity after the integration has occurred. Infeld and Row-

lands argue that this does not take into account the algebraic secular terms and can miss

certain regimes of instability. For instance, the question of stability of one-dimensional

nonlinear structures in the KP equation to two-dimensional perturbations was ‘solved’ by

Kuznetsov et. al. [40]. However, the growth rates for certain limiting cases were not com-

pleted and were only tractable through numerical techniques. Infeld and Rowlands for-

malized a method to better handle the limiting cases missed for the KP equation. They

eventually completed Kuznetsov’s analysis [33] using the K-expansion method described

here.

In the K-expansion method, the first step is make transformations so the solution that

is being investigated becomes stationary in the system. This generally requires an affine

transformation. The equation is then linearized around this stationary solution. Next, take

perturbed quantities to be of the form f(x)ei(kx−Ωt) where f has wavelength equal to the

solution u. Lastly, at each wavelength k, remove the secular terms. This is a consistency

condition. At this step the approximations for the growth rate are revealed.

There are some advantages to the K-expansion method that make it a very practical

method with which to study stability. The first is that it can be used when no Lagrangian
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exists and when there are insufficient conservation laws to describe the system. This makes

it ideal for use in the NV equation since the conservation laws are not easily calculated.

The K-expansion method also works on non–integrable systems such as the ZK equation.

Lastly, it does not necessarily rely on periodicity of the solutions or periodicity of boundary

conditions.

To circumvent using Floquet’s theorem, Allen and Rowlands suggested [4] replacing

Floquet’s theorem with a condition on the asymptotics of the solutions in the space vari-

ables. Their suggestion was to enforce the boundary condition that the full solution must

agree with the asymptotic solution at each order of K.

5.2 The Direct K–Method Applied to the NV Equation

5.2.1 Setting up the NV System for Analysis

We will work with the NV system in the form

0 = 4ut + uxxx − 3uxyy − 3(uv)x − 3(uw)y, (5.2.1)

ux = vx − wy, (5.2.2)

uy = −wx − vy. (5.2.3)

If the functions u, v and w are not dependent on y the NV equations (5.2.1) – (5.2.3) reduce

to a KdV-type equation and admits soliton solutions of the form

u(x, y, t) = −2 c sech2(
√

c(x− ct)), (5.2.4)

v(x, y, t) = −2 c sech2(
√

c(x− ct)), (5.2.5)

w(x, y, t) = 0. (5.2.6)

In order to investigate its stability we transform to a coordinate system that moves along
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with the soliton by letting

(x, y, t) 7→
(
x+ t√
c
,
y√
c
,
t

c3/2

)
,

u 7→ cu, v 7→ cv, w 7→ cw.

and the resulting system is

0 = 4ut − 4ux + uxxx − 3uxyy − 3(uv)x − 3(uw)y, (5.2.7)

ux = vx − wy, (5.2.8)

uy = −wx − vy, (5.2.9)

with stationary soliton solutions

u0(x) = −2 sech2x, (5.2.10)

v0(x) = −2 sech2x, (5.2.11)

w0(x) = 0. (5.2.12)

We now apply a sinusoidal perturbation with wavevector perpendicular to the direction

of propagation. Add the perturbation to our stationary solutions (5.2.10) – (5.2.12),

u(x, y, t) = u0(x) + εf(x)eiky+γt, (5.2.13)

v(x, y, t) = v0(x) + εg(x)eiky+γt, (5.2.14)

w(x, y, t) = εh(x)eiky+γt. (5.2.15)

Substituting equations (5.2.13) - (5.2.15) into (5.2.7) – (5.2.9) and assuming ε << k we
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can neglect 2nd order and higher terms in f, g and h. Our system becomes (′ denotes d/dx)

0 = 4γf − 4f ′ + f ′′′ + 3k2f ′ − 3(u0g)′ − 3(v0f)′ − 3iku0h (5.2.16)

f ′ = g′ − ikh, (5.2.17)

ikf = −igk − h′. (5.2.18)

We find that there are two stable and bounded solutions to equation (5.2.16) – (5.2.18), one

for k = 0 and one for k = 1. That is, for γ = 0 (no growth) we find two solutions, one

corresponding to k = 0 and one for k = 1

k = 0, γ = 0,


f(x) = sech2x tanhx

g(x) = sech2x tanhx

h(x) = 0

(5.2.19)

k = 1, γ = 0,


f(x) = sech3 x

g(x) = −sechx tanh2 x

h(x) = −isechx tanh x

(5.2.20)

Thus, we expect instability for 0 < k < 1. We investigate this numerically and analytically.

5.2.2 Perturbation Analysis, k = 0

The analysis that follows is a linear approximation to the growth rate. We now assume k

small and expand our quantities in k
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γ = γ1k + γ2k
2 + . . . , (5.2.21)

f = f0 + kf1 + k2f2 + . . . (5.2.22)

g = g0 + kg1 + k2g2 + . . . (5.2.23)

h = h0 + kh1 + k2h2 + . . . (5.2.24)

The task now is to substitute equations (5.2.21) – (5.2.24) into equations (5.2.16) –

(5.2.18) and solve the resulting system of equations by setting each coefficient of k equal

to 0.

In order to help verify our results we have developed a numerical approximation to γ

based on the algorithms previously developed in [4, 50, 51]. The asymptotic assumption is

that as |x| → ∞, the perturbation functions f, g, and h all go to their geometrical optics

limit.

For large |x|, since u0, v0 → 0 as |x| → ∞, the system (5.2.16)–(5.2.18) reduces to

0 = 4γf − 4f ′ + f ′′′ + 3k2f ′ (5.2.25)

f ′ = g′ − ikh, (5.2.26)

ikf = −igk − h′. (5.2.27)

Equation (5.2.25) can be rewritten as

0 = f ′′′ − (4− 3k2)f ′ + 4γf.

This is a 3rd order, constant coefficient differential equation and can be solved in the usual

manner. The three solutions are ep1x, e−p2x and ep3x where pi > 0 for i = 1, 2, 3. For small

k and γ we find p1 = 2 − γ
2
, p2 = 2 + γ

2
, and p3 = γ, and so the zeroth order asymptotic
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solution should go to e−2x as x→∞ and either e2x or e0 as x→ −∞.

Assuming x large and positive, equations (5.2.26) and (5.2.27) reduce to

−p2e
−p2x = g′ − ikh, (5.2.28)

ike−p2x = −igk − h′ (5.2.29)

which, if we take the derivative of (5.2.28) and solve for h′, we can use equation (5.2.29)

to solve for g. We then obtain

g′′ − k2g = e−p2x(p2
2 + k2)

with solution

g(x) = c1e
−kx + c2e

kx +
p2

2 + k2

p2
2 − k2

e−p2x. (5.2.30)

Similarly, we find for h,

h(x) = d1e
−kx + d2e

kx +
2p2ik

p2
2 − k2

e−p2x. (5.2.31)

In order to have g and h decay to zero as |x| → 0 we must have that c1 = d1 = c2 = d2 = 0.

Solving the Zero Order System

Substituting equations (5.2.21) – (5.2.24) into equations (5.2.16) – (5.2.18) and setting the

coefficients of the zero order term in k equal to 0, we obtain the following system,
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0 = −4f ′0 + f ′′′0 − 3(u0g0)′ − 3(v0f0)′ (5.2.32)

f ′0 = g′0, (5.2.33)

0 = h′0 (5.2.34)

We know that v0 = u0, and we are assuming all of our perturbed quantities are 0 in the

limit. Therefore, we conclude h0 = 0 and f0 = g0 and equation (5.2.32) becomes

0 = −4f ′0 + f ′′′0 − 6(u0f0)′,

or

d

dx
Lf0 = 0, (5.2.35)

where

L := −4 +
d2

dx2
− 6u0.

The solution to (5.2.35) is given by [4]

f0 = sech2x tanhx+B0Ψ + C0ξ, (5.2.36)

where

ξ =
1

4
(3xsech2x tanhx− 3sech2x+ 1)

Ψ =
1

4
cosh2 x− 5

2
ξ.

Since f0 → 0 in the limit, we must have that B0 and C0 are 0, and so

f0 = sech2x tanhx.
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In general,

L−1R(x) = φ0(x)

∫ ∫
R(x′′)φ0(x′′)dx′′

φ2
0(x′)

dx′ modφ0(x) (5.2.37)

for any function R(x) that decays to 0 as x → ∞. The modφ0(x) operation is to remove

any extra φ0 terms that may appear from the integration. These terms are unnecessary

because they are the solution to the homogeneous problem Lφ0 = 0.

Solving the First Order System

Going back to the expanded system (5.2.16) – (5.2.18), we set the coefficients of the first

order term in k equal to 0, and obtain the following system,

0 = 4γ1f0 − 4f ′1 + f ′′′1 − 3(u0g1)′ − 3(v0f1)′ (5.2.38)

f ′1 = g′1, (5.2.39)

2f0 = ih′1 (5.2.40)

Now, using v0 = u0 and that f1 = g1 we have

d

dx
Lf1 = −4γ1f0,=⇒ Lf1 = 2γ1sech2x+ C1. (5.2.41)

The solution to (5.2.41) is

f1(x) = −1

2
γ1(xf0 − sech2x) + C1ξ.

where ξ = 3xsech2x tanhx−3sech2x+1. As before, equating C1 to 0 results in a solution

f1 that vanishes at infinity. Note that γ1 has yet to be determined. Using equation (5.2.40)
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to solve for h1(x), the results for the first order system are

f1(x) = −1

2
γ1(xf0 − sech2x) (5.2.42)

g1(x) = −1

2
γ1(xf0 − sech2x) (5.2.43)

h1(x) = isech2x. (5.2.44)

Solving the Second Order System

Collecting the coefficients of k2 and setting them equal to 0 yields the following system,

0 = 4(γ1f1 + γ2f0)− 4f ′2 + f ′′′2 + 3f ′0 − 3(u0g2)′ − 3(u0f2)′ − 3iu0h1 (5.2.45)

f ′2 − g′2 = −ih1, (5.2.46)

2i(f0 + kf1) = −(h1 + kh2)′. (5.2.47)

Equation (5.2.46) allows us to solve for g2 in terms of f2 and h1. The function h1 is

given in equation (5.2.44) and so integrating equation (5.2.46) shows g2 = f2−tanh x+C.

Due to the asymptotic boundary conditions, C = 1 and g2 = f2 − tanhx + 1. From this

equation (5.2.45) becomes

0 = 4(γ1f1 + γ2f0)− 4f ′2 + f ′′′2 − 6(u0f2)′ + 3f ′0 + 3(u0(tanh x− 1))′ − 3iu0h1

Rewriting this in terms of the operator L and recalling that h1 = isech2x, we have

d

dx
Lf2 = −4(γ1f1 + γ2f0)− 3f ′0 − 3(u0(tanh x− 1))′ − 3u0sech2x
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and after integrating

Lf2 = (4− γ2
1) tanhx− γ2

1xsech2x+ (2γ2 − 6)sech2x

+ 5sech2x tanhx+ C2. (5.2.48)

The solution to equation (5.2.48) is

f2 =

(
1

2
− γ1

2

8

)
sinhx coshx+

(
1

2
− γ1

2

8

)
tanh x+

+
1

8
γ1

2x2 tanhx sech2 x− 1

4
γ1

2xsech2x+ (2γ2 − 6)x tanhx sech2 x

+ (−2 γ2 + 6) sech2 x+

(
5γ1

2

64
+

1

48

)
tanhx sech2 x.

Both the tanhx term and the sinhx coshx term are divergent and they need to disappear

to continue the analysis. In order to preserve the boundary condition that f2 → 0 as x→∞

let γ2
1 = 4. This makes both terms vanish and we are left with

f2 =
1

2
x2 tanhx sech2 x− xsech2x+ (2γ2 − 6)x tanhx sech2 x

+ (−2 γ2 + 6) sech2 x+
1

3
tanhx sech2 x,

g2 = f2 − tanhx+ 1,

h2 = −i
(
xsech2 x+ tanh x− 1

)
.

This has the desired asymptotic behavior, that is, f2, g2, h2 → 0 as x→∞. At this point it

should be noted that the growth rate is shown to be positive and so the soliton is unstable to

transverse perturbations. The analysis will continue to find a better approximation to the

growth rate.
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Solving the Third Order System

Collecting the coefficients of k3 and setting them equal to 0 gives

0 = 3f ′1 − 3iu0h2 − 3(u0g3)′ − 3(u0f3)′ − 4f ′3 + f ′′′3 + 4f0γ3 + 4f1γ2 + 4f2γ1 (5.2.49)

g′3 = f ′3 + ih2 (5.2.50)

h′3 = −ig2 − if2. (5.2.51)

Integrating equation (5.2.50) results in a solution for g3,

g3 = f3 +

∫
xsech2 x+ tanh x− 1dx

= f3 + x(tanh x− 1) + C3

where it is necessary for C3 = 0 in order to preserve the asymptotics. Since f2 and g2 have

already been calculated, we can integrate equation (5.2.51) and we now have the solutions

for h3 and g3.

Using the solution for g3(x) (notice h3 is not needed here), equation (5.2.49) becomes

d

dx
Lf3 = (12γ2 − 36) sech2 x−

(
17

3
+ 4γ3

)
sech2 x tanhx+ 15xsech2 x tanh2 x

− x sech2 − 4x2 sech2 x tanh x+ (36− 12γ2) xsech2 x tanhx,

and upon integration,

Lf3 = (6γ2 − 18) tanh x+

(
1

3
+ 2γ3

)
sech2 x− 5x tanhxsech2x

+ 2x2sech2x+ (6γ2 − 18) (xsech2x).
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Applying L−1 we find

f3 =
3

12
(6γ2 − 18) sinh x cosh x+

1

4

(
1

3
+ 2γ3

)
sech2x tanhx(cothx− x)

sech2x tanhx

(
−x

3

6
+

1

2
x2 coth x+

x

4
− coth x

4

)
+ (6γ2 − 18)

(
1

8
tanh x− 15

192
sech2 x tanh x

)
+

+ (6γ2 − 18) sech2x tanhx

(
−x

2

8
+

1

4
x cothx

)
.

The only divergent terms are the sinh x cosh x and the tanh x terms. Both of these can be

eliminated by letting

γ2 = 3.

We already established that the soliton solution was unstable to transverse perturba-

tions, but now we also have a quadratic approximation to the growth rate,

γ = 2k + 3k2 +O(k3).

5.2.3 Perturbation Analysis, k = 1

We need a transformation for k near 1 so that we can apply the same analysis as was done

for k = 0. Let k̄ = 1 − k so that k2 = 1 − 2k̄ + k̄2. Now, we can expand about k̄ in

equations (5.2.16) – (5.2.18). The NV system becomes

0 = 4γf − f ′ + f ′′′ − 6k̄f ′ + 3k̄2f ′ − 3(u0g)′ − 3(u0f)′ − 3i(1− k̄)u0h (5.2.52)

0 = g′ − f ′ − i(1− k̄)h, (5.2.53)

0 = i(1− k̄)f + ig(1− k̄) + h′. (5.2.54)
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Using equations (5.2.52) – (5.2.54) the zero order terms in k are collected and equated

to 0. The zeroth order equation is

0 = −f ′0 + f ′′′0 − 3(u0g0)′ − 3(u0f0)′ − 3iu0h0, (5.2.55)

f ′0 = g′0 − ih0, (5.2.56)

if0 = −ig0 − h′0. (5.2.57)

Unlike the zero order case for k = 0, we are not able to reduce the zero order system for

k = 1 to a single equation involving only one of the unknown functions. So far, a general

solution to this system has been elusive. Various computer algebra software packages have

also failed. However, the zeroth order equation is identical to the original perturbed system

(5.2.16) – (5.2.18) with k = 1 and γ = 0 and so a solution is

f0 = a sech3 x,

g0 = −a sechx tanh2 x,

h0 = −ai sechx tanh x.

In order to proceed with the analysis, a general solution must be found. These efforts

are ongoing. However, we can make a few observations. The zero order system can be

written in terms of multiplicative operators,

0 =
d

dx
Lf0 +

d

dx
Gg0 +Hh0, (5.2.58)

g′0 − ih0 − f ′0 = 0, (5.2.59)

ig0 + if0 + h′0 = 0, (5.2.60)

77



where

L := −1 +
d2

dx2
− 3u0, (5.2.61)

G := −3u0, (5.2.62)

H := −3iu0. (5.2.63)

One can show this is the homogeneous system for all orders of k̄. What this means is

at each order of k̄ we get this same system with inhomogeneities. Thus, if we solve the

zero order system, we can solve this system we can solve all higher orders and find an

approximation to the growth rate.

5.3 Numerical Estimation of the Growth Rate γ

Using the system (5.2.16) – (5.2.18) and the asymptotics developed on page 69 we find a

numerical approximation to the growth rate γ. The algorithm was based on the algorithms

developed in [4, 51]. Using Matlab’s ODE45, the system is solved for a fixed k, and then

refined by approximating a better γ. Once this γ is settled upon, the next k uses the previous

γ as a starting point.

In order to use Matlab’s ODE solver, we need boundary conditions and so we use the

asymptotics developed earlier. Since the asymptotic behavior is ambiguous for x → −∞

we use the boundary condition at x → ∞. Since f(x) → e−p2x as x → ∞ we choose

f(x) = e−p2x as our initial condition. Recall p2 = 2 + γ/2. When implemented on the
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domain [x0, xf ], we take

f(xf ) = e−p2xf ,

f ′(xf ) = −p2e
−p2xf ,

f ′′(xf ) = p2
2e
−p2xf ,

g(xf ) =
p2

2 + k2

p2
2 − k2

e−p2xf ,

h(xf ) =
2p2ik

p2
2 − k2

e−p2xf ,

as our initial conditions. To begin the algorithm, choose k near 0 and the first guess for γ

will be γ = 2k + 3k2. Then, for each k refine the approximation for γ.

For the results presented here, the domain for k ∈ [0, 1] was partitioned with 100 points.

The jth element of k is denoted by kj = j/100, where j = 1, 2, . . . 100. Let γlj be the lth

approximation of γ for a fixed kj . Let f lk be the numerically computed value of f(x0)

for the lth iteration of γ and kj . Recall, x0 is the left hand endpoint of the domain of

integration. Essentially, this method refines k and γ by trying to match the numerically

calculated asymptotic behavior of f with the asymptotic behavior calculated analytically at

x = x0.

For each kj , we compute γj iteratively. To obtain γl+1
j , the previous approximation γlj

is perturbed randomly by a small increment, usually between 2% - 5%. Then, the value

f l+1
k is calculated numerically. If |f l+1

k | < |f ik| for all i ∈ {1, 2, . . . , l}, then γl+1
j is kept

as the best l + 1 approximation for γj . Otherwise, the integration is attempted again for a

newly perturbed γl+1
j .

Many tests were run on the various parameters mentioned above to achieve the best

graph for γ as a function of k. We first tested the percent of perturbation of γ, the left and

right hand endpoints of integration (x0 and xf ), the parameter j, which is the partition on k,

and l, the number of γ tested per k. When testing the parameter l, it was found that if l is too

large, the integration resulted in a trivial graph. The other tests were very stable in the sense
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that small changes in the parameters caused small changes the graph. Movies of these tests

can be found at my website. http://www.math.colostate.edu/˜croke/Research/research.html
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Fig. 5.1: Numerical Approximation for the Growth Rate γ

The graph of γ(k) is presented in Figure 5.1. The bump seen in the bottom left hand

corner is believed to be numerical error. The algorithm described above was used to re-

produce the results shown in [4] for the ZK equation. The graphs I produced for the ZK

equation matched the results in [4] but also sometimes contained bumps near the left and

right hand values of k as seen in Figure 5.1.
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5.4 Numerical Results Concerning the Instabilities of Soliton Solutions

to the NV Equation

To investigate the instabilities of the NV equation with initial condition uIC(x, y, 0) =

−2 sech2(x), we consider a transversely perturbed initial condition and compute its evolu-

tion numerically using the methods of chapter 4. We choose ε to be a small number andWy

be the length of the domain over which y is being computed. For the figures that follow,

the spatial grid was x ∈ [0, 50] and y ∈ [0, 100]. We define

up(x, y, 0) =

(
1− ε cos

(
2π

Wy

y

))
(−2 sech2x). (5.4.1)

A typical value for ε is 0.01, giving a maximum of a 1% perturbation. Figure 5.2 shows

the profile of the initial condition uIC , and Figure 5.3 shows the profile of the pertburbed

initial condition, uP .

Fig. 5.2: Sech2 Initial Condition Fig. 5.3: Perturbed Sech2 Initial Condition

Figure 5.4 shows up at t = 0 from an angle that shows the profile both laterally and

transversely. The resulting evolution propagates uneventfully until it shows blow–up at

approximately t = 30.48 time units as can be seen in Figure 5.5. A singularity forms where

the maximum (in amplitude) was located in the initial condition up(x, y, 0). This happens

regardless of time step or grid size. Figure 5.6 shows a top view of the perturbed soliton at

t = 30.48.

It remains a conjecture as to whether the feature in Figures 5.5 and 5.6 is an artifact of
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the numerical solution or if these solutions have finite time blow–up. In [59] it was shown

that there exists solutions to the NV equation that have finite time blow–up. Their analysis

relies on the binary Darboux transformation established in [49]. Using this method they

construct rational solutions that decay to 0 as r →∞, where r =
√
x2 + y2, but have finite

time blow–up for t ≥ 29/12. However, the singularities that are forming in Figures 5.5 and

5.6 change when the computational parameters change. For example, if the spatial grid is

changed to y ∈ [0, 50], the blow–up occurs at t ≈ 16.4. If the time step changes, the time

of blow–up also changes, though not as drastically. From the numerical evidence it seems

probable that what we are seeing here is numerical blow–up.

In an effort to further investigate the perturbed solutions, the permissible amplitude

was restricted, and the resulting evolution was observed. The perturbed soliton breaks into

other coherent lumps at a time t = t∗ ≈ 30.48. For t ≥ t∗ these new structures have been

observed to continue to propagate undisturbed. This same behavior is seen in perturbed

solutions to both the KP and ZK equations [24, 25]. For instance, in the pictures that

follow, the amplitude was capped at -5. At each step, if the amplitude was less than -5, the

value was reset to -5, otherwise it was left alone. The resulting evolution from performing

this “capping” is seen in Figures 5.7 and 5.8. The four taller structures are stable and

propagate as far as the numerical solver will take them.

Figures (5.9) – (5.18) show time snapshots the evolution of the perturbed soliton for

t = 5, 10, 15, 20, 25, 30, 35, 40, 45, 50. Imposing a maximum on the amplitude gives rise to

other coherent structures. The “capping” may be giving us the long–term behavior of the

perturbed solitons, but the integrity of this result has not yet been determined.

82



Fi
g.

5.
4:

In
iti

al
C

on
di

tio
n,
u
p
(x
,y
,0
)
=
−
2

se
ch

2
(x
)

83



Fi
g.

5.
5:

Pe
rt

ur
be

d
IC

,u
p
(x
,y
,t
)

at
t
=

30
.4
8.

84



x

y
Pe

rtu
rb

ed
 s

ol
ut

io
n 

at
 t 

=3
0.

48
1

5
10

15
20

25
30

35
40

45

102030405060708090

Fi
g.

5.
6:

C
on

to
ur

V
ie

w
of
u
p
(x
,y
,t
)

at
t=

30
.4

8

85



Fig. 5.7: uP (x, y, 70) with restricted amplitude throughout the evolution “capped” at -5.

Perturbed sech2 solution at t =70

50 100 150 200 250

20

40

60

80

100

120

Fig. 5.8: uP (x, y, 70) with restricted amplitude throughout the evolution “capped” at -5, contour
view.
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Fig. 5.9: Contour view, t = 5 with amplitude cap-
ping.

Fig. 5.10: Contour view, t = 10 with amplitude
capping.

Fig. 5.11: Contour view, t = 15 with amplitude
capping.

Fig. 5.12: Contour view, t = 20 with amplitude
capping.
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Fig. 5.13: Contour view, t = 25 with amplitude
capping.

Fig. 5.14: Contour view, t = 30 with amplitude
capping.

Fig. 5.15: Contour view, t = 35 with amplitude
capping.

Fig. 5.16: Contour view, t = 40 with amplitude
capping.
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Fig. 5.17: Contour view, t = 45 with amplitude
capping.

Fig. 5.18: Contour view, t = 50 with amplitude
capping.
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6. THE INVERSE SCATTERING METHOD FOR THE NV EQUATION

6.1 Numerical Verification of Recent Results Concerning the ISM for the

NV Equation

Until very recently, the validity of the inverse scattering method for the NV equation had

not been proven rigorously. A small presentation of previous results regarding the ISM for

the NV equation is necessary to understand the usefulness of the numerical tests presented

in this chapter.

Much of the material presented in section 6.1 has been taken from [42, 43, 44] unless

otherwise cited. In order to stay consistent with the notation in the literature, we now use q

to denote solutions to the NV equation instead of u. We begin with an important definition:

Definition 6.1.1. A compactly supported potential q ∈ C∞0 (R2) is of conductivity type if

q = γ−1/2∆γ1/2 for some real-valued γ ∈ C2(R2) satisfying γ(x) ≥ c > 0 for all x ∈ Ω

and γ(x) ≡ 1 for all x ∈ R2 \ Ω.

Recall the D-bar formulation of the NV equation, now stated with the function q instead

of u,

qt = ∂3q + ∂3q + 3∂(qν) + 3∂(qν), (6.1.1)

∂ν = ∂q, (6.1.2)

The study of equations (6.1.1) and (6.1.2) in the non-periodic setting via the inverse

scattering method was initiated by Novikov and Veselov in [12] and continued by Tsai



[64, 65, 66]. They presented the following formal inverse scattering scheme for solving the

Cauchy problem for (6.1.1) and (6.1.2):

-t0(k) tτ (k)
mτ := exp(iτ(k3 + k

3
))·

6

?

QT

q0(z)

T
6

?

Q

qIS
τ (z)

-
nonlinear evolution (6.1.1)–(6.1.2)

qNV
τ (z), (6.1.3)

where T and Q stand for the direct and inverse nonlinear Fourier transform, respectively.

Until a very recent result by Perry [56] it was not clear that one could use diagram (6.1.3)

to solve the Novikov-Veselov equation using the linear evolution of the scattering data tτ .

It was not clear if the following was true:

qNV
τ

?
= qIS

τ := Q(mτT (q0)). (6.1.4)

There was a question mark in formula (6.1.4) because of possible singularities in the scat-

tering data. (It is not known how to define the operatorQ for singular argument functions.)

Perry proved that equation (6.1.4) is true for a broad class of initial data q0 that includes

initial data of conductivity type.

First, we define the scattering transform and the operators T andQ in the context of the

inverse conductivity problem. For this we must begin with the existence of exponentially

growing solutions to the Schrödinger equation.

Let q ∈ Lp(R2) for some 1 < p < 2 and consider the Schrödinger equation

(−∆ + q)ψ( · , k) = 0 (6.1.5)

where k ∈ C\0 is a parameter. The existence of exponentially growing solutions of (6.1.5)
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with asymptotic behavior ψ(x, k) ∼ eikx in the sense that

e−ikxψ(x, k)− 1 ∈ Lp̃ ∩ L∞(R2) for fixed k ∈ C \ 0, where 1/p̃ = 1/p− 1/2

(6.1.6)

was established by Faddeev [21] and Nachman [52]. Points x = (x1, x2) in the plane will

be identified with x = x1 + ix2 ∈ C. So exp(ikx) = exp(i(k1 + ik2)(x1 + ix2)) with

k ∈ C and x ∈ R2. Defining µ(x, k) = e−ikxψ(x, k), µ satisfies the Lippmann-Schwinger

equation

µ = 1− gk ∗ (qµ) (6.1.7)

where gk is the Faddeev Green’s function satisfying

gk(x) :=
1

(2π)2

∫
R2

eix·ξ

ξ(ξ̄ + 2k)
dξ, (−∆− 4ik∂)gk = δ. (6.1.8)

Exponentially growing solutions do not necessarily exist for all k ∈ C. A point k is

called a non-exceptional point of q if there is a unique solution of (6.1.5) satisfying (6.1.6).

Otherwise k is called an exceptional point of q. If a potential q does not have exceptional

points, one can define the scattering map T : q 7→ t, taking the potential q to its scattering

transform t : C→ C defined by

t(k) =

∫
R2

eikxq(x)ψ(x, k)dx. (6.1.9)

Under suitable assumptions the potential q can be recovered from its scattering transform t

via the inverse scattering map Q : t 7→ q defined by

(Qt)(x) :=
i

π2
∂x

∫
C

t(k)

k
e−k(x)µ(x, k)dk, (6.1.10)

where x ∈ R2, dk denotes Lebesgue measure, and e−k(x) = e−i(kx+kx). The functions
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µ(x, k) in (6.1.10) are determined by solving the ∂ equation

∂kµ(x, k) =
t(k)

4πk
e−k(x)µ(x, k) (6.1.11)

with fixed x ∈ R2 and assuming large |k| asymptotics µ(x, ·)− 1 ∈ L∞ ∩ Lr(C) for some

2 < r < ∞. The maps T and Q are often called the direct and inverse nonlinear Fourier

transforms. Note also that a formula equivalent to (6.1.10) is given by Tsai in [66, formula

(2.4)].

Now consider a time variable τ ≥ 0, and the diagram (6.1.3). Nachman shows in [52]

that T q is well-defined for potentials of a conductivity type. In [42] the following extension

of Nachmans work is proven:

Theorem 6.1.1. Let q ∈ C∞0 (R2) be of conductivity type. Then q = QT q.

New properties of the inverse scattering map Q are also established in [42] through the

following theorem.

Theorem 6.1.2. Let t : C → C satisfy t(k)/k ∈ S(C) and t(k)/k ∈ S(C). Then the

function Qt : R2 → C given by (6.1.10) is well-defined and continuous. Furthermore,

|(Qt)(x)| ≤ C〈x〉−2. (6.1.12)

The smoothness results for k−1(T q)(k) and k
−1

(T q)(k) and Theorem 6.1.2 can be

used to show that the inverse scattering scheme (6.1.3) is well-defined for conductivity

type initial potentials:

Corollary. Let q ∈ C∞0 (R2) be of conductivity type. Fix a positive odd integer n, let τ ≥ 0

and define qτ : R2 → C by

qτ := Q(m(n)
τ T q).

Then qτ (x) is continuous in x and belongs to Lp(R2) for any 1 < p < 2.
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Note that there is no smallness assumption for the initial data in the Corollary.

The programs are already in place for computing solutions of the evolution equation by

the inverse scattering method. The algorithm is as follows.

1. Define an initial potential q0 of conductivity type and choose a sequence of evaluation

times τ0 = 0, τ1, . . . , τN = T .

2. Compute the bounded function µ0(x, k) from the Lippmann-Schwinger equation

(6.1.7).

3. Compute the scattering transform t0(k) from (6.1.9), by numerical quadrature.

For j = 1, . . . , N

4. Set tτj(k) = exp(iτj(k
3 + k̄3))t0 on a finite grid in the complex k-plane.

5. Solve the integral form of the D-bar equation (6.1.11) for µτj(x, k) by the solver

developed in [35] where

µτj(x, k) = 1 +
1

(2π)2

∫
R2

tτj(k
′)

(k − k′)k̄′ e−x(k
′)µτj(x, k

′)dk′1dk
′
2 (6.1.13)

6. Solve for qτj(x) from (6.1.10).

end

Recently, Perry [56] has proved that a solution to the modified Novikov–Veselov equa-

tion (mNV) with initial data of conductivity-type is a solution for the NV equation through a

Muira-type map originally defined by Bogdonov [10]. The mNV is in the Davey-Stewartson

hierarchy (DS II) and so it is shown that solutions to the DS II equation are solutions to the

NV equation, greatly broadening the class of initial data and classical solutions to the NV

equation.
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The mNV and NV equations are related via the Muira map

M(v) = 2∂v + |v|2 (6.1.14)

where the domain ofM is the set M = {v ∈ S(R2)|∂v = ∂v,
∫
v(z)dz = 0}. If u(t) is

a solution to the MNV equation and u ∈ M thenM(u(t)) solves the Cauchy problem for

NV with Cauchy data 2∂u0 + |u0|2.

6.1.1 Comparing Two Types of Numerical Evolutions of Solutions to the NV Equation

Three examples are given in [44] that test the ISM for the NV equation against the FD

difference method presented therein. Here, we choose to consider the second example, a

high contrast example with an initial condition with high amplitude. This example will

cause the nonlinear contribution to be strong in the evolution and therefore is a good test to

see how the numerical method handles the nonlinearity. The initial data is constructed as

follows.

Choose 0 < ρ < 1 and let Fρ ∈ C∞0 (R) for −ρ ≤ x ≤ ρ be given by

Fρ(x) := e
− 2(ρ2+x2)

(ρ+x)2(ρ−x)2 , (6.1.15)

and Fρ(x) = 0 for |x| > ρ. We define γ by

γ(z) := (αFρ(|z|) + 1)2, (6.1.16)

with ρ = 0.95, which gives a support of [−ρ, ρ] for γ and q0. The Schrödinger potential q0

outside the origin is given by

q0(z) :=
∆
√
γ(z)√
γ(z)

=
∆Fρ(|z|)

Fρ(|z|) + 1/α
. (6.1.17)

Note that γ ≡ 1 and q ≡ 0 for |z| ≥ ρ. In the paper [44] example 1 is when α = 25, and
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example 2 is for α = 59. Figure (6.1) shows the function defined by equation (6.1.17) from

two points of view. We will compare the ISM evolution and the spectral evolution using

these two points of view. Figures (6.2) – (6.4) compare the evolution at ten time steps,

t = 0.0001, 0.0002, . . . , 0.001, at angle slightly above the xy-plane. Figures (6.5) – (6.9)

compare the evolution at the same time steps for the contour plots and zoomed in for better

detail.

Fig. 6.1: The initial condition of conductivity type, equation (6.1.17)
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Fig. 6.2: Comparison of the Spectral Method with the ISM for times τ = 0.0001, 0.0002,
0.0003, 0.0004. Left: Spectral Method, Right: ISM
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Fig. 6.3: Comparison of the Spectral Method with the ISM for times τ = 0.0005, 0.0006,
0.0007, 0.0008. Left: Spectral Method, Right: ISM
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Fig. 6.4: Comparison of the Spectral Method with the ISM for times τ = 0.0009, 0.001. Left:
Spectral Method, Right: ISM
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Fig. 6.5: Comparison of the Spectral Method with the ISM for times τ = 0.0001, 0.0002, using
contour plots
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Fig. 6.6: Comparison of the Spectral Method with the ISM for times τ = 0.0003, 0.0004 using
contour plots
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Fig. 6.7: Comparison of the Spectral Method with the ISM for times τ = 0.0005, 0.0006, using
contour plots

102



q
0
 at t = 0.0007 using spectral method

y

x
1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

q
0
 at t = 0.0007 using ISM

y

x
1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

q
0
 at t = 0.0008 using spectral method

y

x
1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

q
0
 at t = 0.0008 using ISM

y

x
1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

Fig. 6.8: Comparison of the Spectral Method with the ISM for times τ = 0.0007, 0.0008 using
contour plots
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Fig. 6.9: Comparison of the Spectral Method with the ISM for times τ = 0.0009, 0.001 using
contour plots
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6.2 Numerical Experiments Regarding the Soliton Conjecture of the IST

for the NV Equation

The second set of computations presented in this chapter are experiments designed to in-

vestigate an important conjecture about soliton solutions to the NV equation.

It was shown in [52] that if q0 is of conductivity-type, then there are no exceptional

points in the scattering data:

Theorem 6.2.1. Let q be a real-valued function in Lpρ(R2), 1 < p < 2, ρ > 1. The

following are equivalent:

(a) q = (∆ψ0)/ψ0 for some ψ0 ∈ L∞(R2) with ψ0 ≥ c0 > 0 a.e.

(b) There are no exceptional points ξ ∈ C2 with ξ2 = 0 and the scattering transform

satisfies

|t(−2ξR, ξ)| ≤ c|ξ|ε

for some ε > 0 and all sufficiently small ξ = ξR + ξI in Υ.

Note that condition (a) is simply that q is of conductivity-type. This result was extended

later in [43] where it was shown that an evolved potential qτ will have no exceptional

points corresponding to it for radially symmetric initial conditions or initial conditions that

correspond to an evolved radially symmetric initial condition. The conjecture is that this

is true in general, that is, initial conditions that evolve under the NV equation that did not

begin with exceptional points will not have exceptional points at a later time.

Theorem (6.2.1) leaves open the possibility that the scattering transform t(k) could vi-

olate the decay condition (b) and that there could be other non-conductivity type potentials

with no exceptional points. This is true and was recently proven in [56] where it is shown

that there is a wider class of initial potentials that will not develop exceptional points. In

other words, Perry showed that the ISM holds for initial conditions including, but not re-

stricted to, conductivity-type.
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Now, for initial conditions q0 such that the ISM holds, the solution has a decay property

that qτ → 0 as τ → ∞. This, of course, will exclude soliton solutions. Therefore, soliton

solutions correspond to initial conditions where the ISM does not hold. Thus, we have the

following conjecture: Soliton solutions to the NV equation must correspond to initial data

q0 that has exceptional points.

As was proven in [43], the scattering transform is not well defined in this case, and so

the ISM cannot be used to help investigate this conjecture. Therefore, the spectral method

developed here can be used to test this conjecture. Indeed, using the spectral method, we

have an initial condition that is not of conductivity-type that leads to soliton behavior. Let

ε < 0 and φ(z) be a compactly supported function of the Schwartz class.

In a personal communication it has come to our attention that the following has been

proven. Potentials of the form

qNC = qCT + εφ(z), (6.2.1)

where ε < 0 and φ is a test function, have exceptional points. The expectation is then that

functions of the form (6.2.1) will produce solitonic behavior. We provide an example here.

Let ε = −5. We construct a function that is 1 in most of the support of the function of

conductivity type, and goes to 0 quickly near the unit disc. First, in order to build the test

function we need to define a smoothing function. Let

s(t) = 1− 10t3 + 15t4 − 6t5. (6.2.2)

The smoothing function s(t) has the properties that s(0) = 1 and s′(0) = s′′(0) = s(1) =

s′(1) = s′′(1) = 0. Now, we define a function σ : C→ C,

σ(z) =

 2 0 ≤ |z| ≤ 0.02,

1 + s
(
|z|−0.02

0.7

)
0.02 ≤ |z| ≤ 0.072

(6.2.3)
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The argument for s in the definition of σ is chosen in such a way so that it is between 1 and

0. We define the test function, T(t) as

T (z) =

 1 0 ≤ t ≤ 0.8,

s
(
|z|−0.8

0.1

)
0.8 ≤ t ≤ 0.9.

(6.2.4)

Our non-conductivity type potential is then

qNC(z) = σ(z) + εT (z). (6.2.5)

The initial condition described in equation (6.2.5) is seen in the top row of Figure (6.10).

As can be seen in the figures that follow, there are coherent structures that develop quite

quickly. They are extremely stable and keep their amplitude and general form from t = 0

through t = 0.5. At t ≈ 5.5 the evolution develops a singularity. It is believed this is

numerical blow–up though this has not been proven.
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Fig. 6.10: Evolution of equation (6.2.5), qNC , t=0,0.05,0.1
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Fig. 6.11: Evolution of equation (6.2.5), qNC , t=0.15,0.2,0.25
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Fig. 6.12: Evolution of equation (6.2.5), qNC , t=0.3,0.35,0.4
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7. CONCLUSIONS

The work presented here helps to give a fuller picture of the NV equation. The results are

novel to the soliton community because there are few results that deal with soliton systems,

or systems of NLPDE’s that have soliton solutions.

In this thesis I have shown the existence of various types of soliton solutions to the

NV equation, and developed methods to help find soliton solutions that are of use in the

development of the ISM for the NV equation. I performed an analytical stability analysis

for plane wave soliton solutions of KdV type of the NV equation.

To my knowledge this is the first numerical implementation of a spectral method

to a system of soliton NLPDE’s. Moving forward, there are a number of tasks that can be

done to give a more complete picture of the NV equation including extending the stability

results, applying the techniques here to more well known soliton equations, and investigat-

ing the long term behavior of the traveling wave solutions.

The stability analysis can be extended to perturbations at angles other than 90o and to

multisoliton solutions. Here, only small k and θ = π
2

were considered. Next, arbitrary k and

arbitrary θ could be considered. An interesting question involving multisoliton solutions is

what happens to perturbed solitons when they interact? It is possible that

unstable soliton + stable soliton = unstable soliton + unstable soliton

holds after interaction of the two solitons, a result observed for the ZK equation [31].

The numerical experiments have also lead to the observation that the solutions either

blow up, or lead to other coherent structures. If the amplitudes are restricted it is seen that



coherent lump structures appear at long times. It has been observed that the ZK equation,

under shorter wavelength perturbations, gives rise to cylindrical and spherical solitons [24,

25]. It would be interesting to see if the same phenomena occurs here.

The numerical code developed in this thesis was also used in conjunction with the pre-

existing numerical implementation of the ISM to investigate the validity of more general

sets of initial conditions than those introduced in [42] and [43]. In particular, I considered

initial conditions of non conductivity-type that are rapidly decaying and computed their

evolutions and have found strong numerical evidence of soliton solutions, supporting the

conjecture of their existence, explained in Chapter 6.

The work in this dissertation is significant because it is the first thorough study of soliton

solutions to the NV equation, an important equation because it is a soliton equation that is a

system of PDE’s and it is a generalization of KdV. There is no study of soliton stability for

NV in the literature, and this work applies the direct K-method to a NLDPE system (NV).

It has provided visual insight into the nature of solutions through numerical computations,

and it provides a means to study conjectures about the integrability of NV and the ISM. I

computed the evolution by the ISM and observed that it agrees to a high degree of accuracy

with the results of the numerical code for the NV equation evolutions developed in this

thesis.
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