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ABSTRACT

RESOURCE ALLOCATION FOR SPACE DOMAIN AWARENESS AND SYNTHETIC

APERTURE RADAR

In this thesis, we will address two resource allocation problems. For each of these problems,

the objective will be to make use of the resources in an optimal way. We will consider the Space

Domain Awareness (SDA) sensor tasking problem as well as the Synthetic Aperture Radar (SAR)

flight path planning problem.

We will first present a new objective function for the problem of Space Domain Awareness

resource allocation (SDARA) as well as a novel algorithm to maximize this new objective func-

tion. This SDARA problem aims to maximize the total number of targets seen while minimizing

resource costs. These resources, namely the optical sensors, are assumed to be heterogeneous and

have different associated tasking costs.

The novel algorithm, called the “block greedy” algorithm, provides an approximate regional

maximum of this objective function in a tractable amount of time. The block greedy algorithm is

a hybrid of the weapon-target-assignment and greedy algorithms. This algorithm will be shown to

outperform common algorithms used in solving the SDARA problem.

Second, we will present an approach to create an optimal SAR flight path by varying the vehi-

cle’s heading, pitch, and antenna steering angles. An optimal flight path is one in which the scene

coverage and resolution are maximized. We will utilize the data-collection manifold as a tool to

measure scene resolution. We will then add a scene coverage consideration to build an objective

function in which we can plan an optimal flight path for an aircraft.

After this, we will consider many extensions and applications of using this objective function.

These include adding a signal-to-noise ratio (SNR) consideration to SAR flight path planning.

Additionally, we will extend this objective function to include multiple unmanned aerial vehicle
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(UAVs) for optimal flight paths for a SAR system. We will use our objective function to optimally

plan flight paths for multiple UAVs.
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Chapter 1

Introduction

Resource allocation problems have to do with assigning resources to tasks in a manner that

optimizes the goals of that application. Resource allocation problems appear in many applications,

including Space Domain Awareness (SDA) sensor tasking, Synthetic Aperture Radar (SAR) flight

path planning for aircrafts and unmanned aerial vehicles (UAV) [11], and broadly the traveling

salesperson problem (TSP). In this thesis, we will primarily examine the problems of SDA sensor

tasking and SAR flight path planning. Both of these problems have important applications for

government and industry work.

1.1 Outline

First, we will start with the history of SDA. We will cover an extensive literature review of our

SDA resource allocation problem. This literature review will include algorithms used to solve the

SDA sensor tasking problem. We will show that the new algorithm in Section 2.3 has not been

implemented for this problem.

After this, we will discuss the history of SAR. This will be followed by an extensive literature

review of the SAR flight path problem with a single aircraft, as well as with multiple UAVs. We

will show that the presented SAR flight path planning work has not been done before.

In Chapter 2, we will begin by covering background material on space domain awareness. We

will discuss the specific SDA sensor tasking problem that is the first project in this dissertation.

The various coordinate systems used in SDA applications will be discussed. Additionally, we will

discuss factors involved in calculating an object’s SNR.

After this, we will dive into the SDA sensor tasking problem. We will formulate our objective

function, along with our constraints. We will list common algorithms used to solve the SDA sensor

tasking problem and outline the algorithms we implemented.
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From there, we will describe the block greedy algorithm. We will cover the pros and cons of

using this algorithm and compare it with the algorithms previously implemented. We will then per-

form an extensive analysis of all of the algorithms implemented. We will compare various features

of the algorithms and show that the block greedy algorithm outperforms all of these algorithms.

Finally, we will end Chapter 2 by summarizing our results for the SDA sensor tasking problem.

In Chapter 3, we will begin by covering an overview of synthetic aperture radar (SAR). After

this, we will describe in detail our flight path planning problem. We will first cover our extension

of the work done in Dr. Scott Altrichter’s thesis [10]. Dr. Altrichter developed an objective

function with which to maximize SAR image resolution as well as scene coverage. He used the

3D components of the data-collection manifold to build this objective function.

In his thesis, Dr. Altrichter optimized the aircraft’s flight path with respect to the aircraft’s

heading and pitch. We first modify his objective function by only using the 2D components of the

data-collection manifold. After this, we extend this work by maximizing the objective function

with respect to the aircraft’s heading, pitch, and steering angles. Lastly, we extend Dr. Altrichter’s

optimization process by implementing a greedy algorithm.

We will compare the result from optimizing the objective function with other SAR modes.

Stripmap, spotlight, and circular are all common SAR modes. We compare these with the flight

path generated from the objective function. We show that the optimized flight path outperforms

the other common flight paths.

In Chapter 4 we discuss extensions and application of the formulated objective function. We

begin by adding an SNR component to the objective function in order to model a more real-life

scenario. We also include a target or target scene priority of visitation.

Lastly, in Chapter 5 we implement additional optimization algorithms for our objective func-

tion. In Chapter 3, we use a greedy algorithm to maximize the objective function. In Chapter 5, we

also consider a random search algorithm and genetic algorithm to maximize the objective function.

We compare the results of all of these algorithms to determine the genetic algorithm works best for

this problem. Chapter 5 ends by detailing conclusions and proposed future work for this problem.
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1.1.1 Thesis Contributions

The contributions of this dissertation include the following items:

• In the Space Domain Awareness sensor tasking problem:

– Developed a new objective function by incorporating multiple, heterogeneous sensors

with different tasking costs

– Added real-life constraints to the objective function

– Computed the complexity of brute-force computing the globally optimal solution

– Developed the ‘Block Greedy’ algorithm

– Implemented five optimization algorithms and compared their performance

– Presented and published a paper at the Advanced Maui Optical and Space Surveillance

Technologies Conference (AMOS), titled, ‘A Regional Greedy Algorithm for Space

Domain Awareness Resource Allocation’

• In the Synthetic Aperture Radar flight path planning problem:

– Modified Dr. Scott Altrichter’s objective function to include only the 2D data-collection

manifold information

– Added the steering angles as arguments to maximize the objective function, thus max-

imizing the objective function with respect to the aircraft’s heading, pitch, and steering

– Added real-life constraints to the objective function

– Quantified the way in which an aircraft’s flight path impacts SNR

– Added the effect of SNR to the objective function

– Added a priority of visitation to specific targets or target scenes

– Modified the objective function to generate optimal flight paths for multiple UAVs

– Implemented a total of three optimization algorithms and compared their performance
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– Submitted a portion of this work for publication in the IEEE Transactions on Aerospace

and Electronic Systems journal, titled, ‘Synthetic Aperture Radar Flight Path Optimiza-

tion for Resolution and Coverage’. Additional authors on this paper include Dr. Scott

Altrichter and Dr. Margaret Cheney.

1.2 Space Domain Awareness

1.2.1 History of SDA

The first satellite, Sputnik, was launched into space by the Soviet Union on October 4, 1957

[12]. Since then, thousands of more satellites have been launched into space. By 2019, there were

over 2,500 active satellites in orbit [1]. Below is a graph of the number of satellites launched into

space per year since 1957 through 2019.

Figure 1.1: Number of satellites launched from 1957 to 2019. [1]

The first half of the 20th century saw the race to space. In the second half of the 20th century,

that race was won. A man was put on the moon, and many other countries successfully launched

their own satellites into space. There are currently around 6,000 total satellites in space (including

those that are inactive). [1].
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Space Domain Awareness (SDA) has to do with tracking and observing resident space objects

(RSOs). These RSOs consist of any human-made object in orbit. In addition to satellites, other

RSOs include space debris. Space debris is any human-made object in orbit that no longer func-

tions. Space debris may range from no longer functional spacecraft to fragmentation from rocket

bodies or spacecraft.

It is estimated that current space debris consists of 34,000 objects greater than 10 cm, 900,000

objects from 1 cm to 10 cm, and 128 million objects from 1 mm to 1 cm [1]. Space debris of any

size poses a threat to the safety of operational spacecrafts. Thus, it is imperative to track space

debris as well as spacecrafts.

With the increase of satellites in space, space debris also increases. Given the total population

of RSOs, it is crucial that these are observed and tracked. As more objects are launched into space,

this need is ever-increasing.

1.2.2 Literature Review

Before presenting our work in the area of SDA sensor tasking, we will summarize our literature

review of the subject. The objective function used in the following work is an extension of Frueh’s

objective function [13]. In this objective function, the sensor costs are not considered, whereas we

consider these costs in our objective function. Additionally, we consider additional constraints to

further create a realistic scenario.

There are other applications of resource allocation problems that have considered the cost of

tasking resources [14]. However, these have not been considered in the SDA sensor tasking prob-

lem. Cost has been implicitly considered by maximizing general sensor use, however the assump-

tion has been that all sensors have the same tasking cost. In the following work, we consider the

cost of heterogeneous sensors. We assume that each sensor has a unique cost associated with its

tasking.

Some have formulated the sensor tasking problem as deterministic but subject to uncertainty

due to weather and ad hoc collections [15]. Others have formulated this problem based on posi-
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tion/velocity estimates and covariances [16]. We will not consider uncertainties such as these in

our work as this leads in a direction different from our problem.

There have been many algorithmic approaches to solving the SDA sensor tasking problem.

Although there has been some work done in machine learning to approach this problem [17],

we will focus on more traditional optimization methods. Common optimization methods include

simple greedy algorithms, weapon-target-assignment algorithms [18], and genetic algorithms [19]

[20].

We will describe a regional greedy algorithm, called the “block greedy" algorithm [21]. This

algorithm is innovative in the area of SDA sensor tasking. We will compare the block greedy

algorithm with a simple greedy algorithm, weapon-target-assignment algorithm, random search

algorithm, and genetic algorithm.

1.3 Synthetic Aperture Radar

1.3.1 History of SAR

Radar was a crucial tool used for target detection during World War II. It was not until 1951

that Synthetic Aperture Radar (SAR) was invented by Carl Wiley [22]. Up until that point in time,

in order to maintain decent image resolution, exceedingly large antennas were needed. Wiley

discovered a way to overcome this problem by using the motion of the antenna to synthesize a

larger antenna. Thus, an antenna small enough to fit on an aircraft could be used. In 1954 Wiley

patented his idea as “Simultaneous Buildup Doppler". This idea he patented would later be called

Synthetic Aperture Radar (SAR).

Since then, SAR has been used in many applications. SAR has found its way into areas such

as satellite and remote sensing [23]. SAR can be used to record the Earth’s surface deformation.

SAR has even been used in remote sensing of wildfires. Since its creation, SAR has become an

instrumental tool used in a plethora of fields.
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Synthetic Aperture Radar imaging consists of forming images of the ground from an aircraft

or satellite. It uses electromagnetic wavelengths longer than optical or laser wavelengths. Radio

waves range from around 1 mm to 100 km [24].

Most optical imaging systems require an external source of light, whereas SAR provides its

own illumination. Additionally, optical imaging is greatly affected by deterrents such as fog, rain,

or snow, whereas SAR is much less affected. Synthetic Aperture Radar imaging works regardless

of weather or time of day. This makes SAR an appealing system for imaging.

The motion of the SAR vehicle allows us to synthesize a larger antenna than is actually used.

In doing this, better resolution is achieved. We are able to further maximize image resolution, as

well as scene coverage, by varying the SAR aircraft flight path.

1.3.2 Literature Review

Optimizing a SAR flight path using a single aircraft is a fairly new area of research. Some

applications include 3D reconstruction using bistatic SAR [25], environmental monitoring, and

disaster warning [26]. In our application of SAR flight path planning we will maximize scene

resolution and coverage. We will then extend this to planning flight paths for multiple UAVs.

The use of SAR for a single UAV has been studied in [27] [28] [29]. In [30], a flight path is

planned for a UAV in order to see a specific target or set of targets. Resolution is important, but it

is not a parameter that is maximized. Additionally, in [27], a 2D flight path is planned for a UAV.

Here, the goal is to cover a multi-region area.

In Altrichter’s thesis [10], he proves that the surface area of the data-collection manifold (DCM)

is directly related to the image resolution at a point. In order to define an objective function

to maximize scene coverage and resolution, the manifold contributions for each point target are

summed. This function is maximized with regard to the aircraft’s heading and pitch angles, thus

creating a 3D optimal flight path.

None of the above papers describe a flight path planning method like the one performed by

Dr. Altrichter. We have further extended the work [10] by optimizing the objective function with
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respect to the aircraft’s steering angles. Additionally, we have extended this work by adding a

weighting option for targets that have a higher priority to visit. We also have added an SNR

consideration to the objective function.

In Section 4.3 we extend this work to multiple, mono-static UAVs. Unmanned aerial vehicles

are the way of the future. There are many benefits of using UAVs for SAR, including the safety of

military personnel, UAV maneuverability, the low cost of UAVs, and the capability to recover after

the loss of a UAV. If we have access to multiple UAVs and some become inactive, we are still able

to collect data from the remaining UAVs. Additionally, multiple UAVs are able to collect more

data at one time than a single aircraft.

Flight path planning with multiple UAVs for SAR application has been briefly studied [31].

However, the goals of these current studies is to either maximize scene coverage [30] or resolution

[32]. In this thesis, we maximize both scene coverage and resolution. We will use an extension of

the objective function formulated in [10] in order to accomplish this.
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Chapter 2

Space Domain Awareness Sensor Tasking

The entirety of the work presented in this chapter was funded by Ball Aerospace.

2.1 Background

Recall, Space Domain Awareness (SDA) has to do with tracking and observing resident space

objects (RSOs). In SDA, often multiple sensors are used in order to observe and track RSOs. We

will assume all of the sensors in this problem are optical. These sensors may be homogeneous or

heterogeneous. Either way, depending on factors such as the constraints of each sensor, the cost to

use each sensor, the number of available targets for each sensor, etc., it may be more cost-effective

to task sensors unevenly. For instance, if one sensor is able to collect more images than a different

sensor, that first sensor may be used more often. The resources in this resource allocation problem

are the fields of view of the sensors.

2.1.1 Goals

With the rise in resident space objects (RSOs), SDA has become imperative. We are currently

limited in the number of resources to observe RSOs. Thus, we want to use as few resources

as possible. The problem of SDA sensor tasking aims to maximize the total number of RSOs

detected, while also minimizing observer costs. We optimally allocate our resources in order to

accomplish these objectives.

In order to optimally allocate resources for the SDA sensor tasking problem, we create a sched-

ule of observers that consists of tasks to be completed over some time interval. Generally, one task

will be assigned to each observer per time window.

Most formulations of the SDA sensor tasking problem do not consider heterogeneous sensors

with varying sensor costs. We will address this real-life scenario. We will consider heterogeneous

sensors that are GEO, LEO, and Earth-based.
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There are many algorithms currently used to solve the SDA sensor tasking problem. In this

thesis, we examine these algorithms along with a novel algorithm we created for this application.

We will call this novel algorithm the “block greedy" algorithm. After implementing the traditional

algorithms for the SDA sensor tasking problem, we are able to compare them to the block greedy

algorithm.

This block greedy algorithm is a hybrid algorithm that combines the simple, local greedy al-

gorithm with the regional weapon-target-assignment algorithm. This hybrid algorithm has been

named the block greedy algorithm since it looks across some “block" of time windows. We look

at the traditional approaches to the SDA sensor tasking problem and show how the hybrid block

greedy approach outperforms these approaches.

In constructing our problem, we make the following assumptions:

1. We know the observers’ exact positions.

2. We know the position of the objects we want to detect.

3. These objects propagate at the same velocity the Earth rotates. Thus, the position of these

objects relative to the Earth remain constant.

4. The probability of detecting an object is normally distributed. This will be computed using

the cumulative distribution function (cdf) of a normal distribution.

2.1.2 Definitions

Before we go further, we must first define some common terminology in SDA applications. For

our SDA application, we will primarily be concerned with objects in a geosynchronous equatorial

orbit (GEO) and a low Earth orbit (LEO). The GEO-belt is located at an altitude of about 36,000

km and the LEO belt is located at an altitude between 160 km and 2,000 km [2]. The belt in

between the GEO- and LEO-belts is called the Medium Earth Orbit (MEO).

We consider observers that lie in the GEO-belt, LEO-belt, or ground. The targets we observe

lie in the GEO-belt. Below is a figure of these orbit regimes:
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Figure 2.1: Popular Orbit Regimes. Low Earth Orbit (LEO) is shown in blue, Medium Earth Orbit (MEO)

is in red, and Geosynchronous Orbit (GEO) is in yellow [2].

Around 55% of all active satellites lie in LEO, including the International Space Station [2]. It

takes a satellite in LEO around 90 minutes to 2 hours to complete an orbit. Some satellites in this

orbit pass over the Earth’s poles, as shown in figure 2.1. This is called a polar orbit.

Only about 10% of all active satellites lie in MEO. This is largely due to the Van Allen belts.

The Van Allen belts trap charge from solar winds and cosmic rays. This charge can interfere or

damage satellite electronics.

The remaining 35% of active satellites lie in GEO. Most of these satellites orbit above the

Earth’s equator. These are called geostationary since they appear in the same part of the sky from

any place on Earth. Since satellites in GEO do not move with respect to the Earth, their orbit is

exactly one day.

Two-line element sets (TLE) are data sets that contain information on the position of an ob-

ject. Given a time, a TLE will be able to describe an object’s position and velocity with relative

accuracy. Due to perturbations in orbit propagation, there are various models to compute position

and velocity from a TLE.

As a note, determining the exact position and velocity of a space-propagating object is difficult.

There are many factors involved in the propagation of an object in space. This problem is one of

dynamical systems and is an entire field of study by itself. Hence, we will not address the effects

of perturbations in orbit propagation. Instead, we will assume that we know the exact position and

velocity of our orbiting objects by using the SGP4 propagation model [33].
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2.1.3 Coordinate Systems

On Earth, we typically describe a position or location in terms of latitude, longitude, and alti-

tude. When objects are space-based, we typically use different coordinate systems. The two main

coordinate systems we will use are the Earth-Centered, Earth-Fixed coordinate system (ECEF)

and the Earth-Centered Inertial coordinate system (ECI). Below is a table summarizing the main

coordinate systems:

Figure 2.2: Coordinate Systems Summary [3]

The origin of ECEF coordinates is located at the center of mass of the Earth. As its name

suggests, this coordinate system is Earth fixed and rotates with respect to the stars. The coordinates
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are generally written as right ascension, α, and declination, δ, coordinate pairs, (α, δ). Below is a

figure of the Earth in ECEF coordinates:

Figure 2.3: ECEF Coordinates [4]

Similar to the ECEF coordinate frame, the ECI coordinate frame has its origin at the center

of mass of the Earth. However, this coordinate frame remains fixed with respect to the stars and

rotates with respect to the Earth. Figure 2.4 describes a side-by-side comparison of ECI and ECEF

coordinate systems:
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Figure 2.4: ECI and ECEF Coordinate Systems [5]

In figure 2.4, γ represents the vernal equinox. The vernal equinox is the place where the Sun

crosses the celestial equator. The celestial equator lies on the same plane as the Earth’s equator.

In this figure, the Earth rotates while γ remains fixed. On the left, in the ECEF coordinate

frame, the x, y, and z axes rotate along with the Earth so they remain fixed with respect to the

Earth. On the right, in the ECI coordinate frame, the Earth rotates, but x, y, and z remain fixed

with respect to γ.

2.2 Resource Allocation for Space Domain Awareness

Space domain awareness resource allocation (SDARA) has gained much interest over the last

few years. Given the rapid growth of resident space objects (RSOs), this is no surprise. With

over 34,000 RSOs greater than 10 cm [1] and only a small fraction of that number of observers,

allocating observer resources is imperative.

The resources in this SDARA problem are the fields of view of space domain awareness (SDA)

sensors observing targets. The goal of SDA sensor tasking is to maximize the total number of

14



targets observed while also minimizing resource costs and target revisit time. This is done by

constructing an objective function and optimizing this against various constraints.

Current objective function formulations of this SDA problem do not address the different costs

associated with tasking heterogeneous sensors [16] [17]. With the growing number of RSOs and

limited availability of observers, it is imperative that resource costs be minimized. Given the

variation in possible observers, it is crucial to also consider the tasking cost of each observer.

This thesis presents a new objective function for the SDA sensor tasking problem that considers

GEO, LEO, and ground-based optical sensors all at once. For this purpose, targets primarily consist

of objects in the GEO-belt. This objective function considers the unique cost of moving the look

angle of each observer as well as the cost of storing images in each observer.

Additionally, a novel algorithm to maximize this new objective function is discussed. This

will be compared with other common algorithms used to optimize common SDA sensor tasking

objective functions. It will be shown that this new algorithm outperforms the other algorithms in

maximizing this objective function.

In order to allocate resources, we will create a schedule of tasks for each observer. This sched-

ule will consist of a look angle for each observer at each time window. Tasks include slewing to that

look angle and collecting images of targets that satisfy the specified constraints. We will choose

the task for each observer at each time that maximizes the number of targets seen and minimizes

target revisit time.

2.2.1 Schedule Generation

Resources are allocated by creating an optimal schedule for observers. A schedule is comprised

of tasks for each observer at each time window over some time interval. This time interval is

discretized into time windows. A task consists of slew and/or collect commands. The collect

command schedules specific targets to be imaged during the given time window.

The general term for the system that schedules tasks will be called a “scheduler” for the re-

mainder of this thesis. To create a schedule, the scheduler assigns tasks to each observer for each
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time window. Algorithms will be implemented in the scheduler in order to create approximate

optimal schedules for observers.

To generate a schedule, a search area is first discretized into voxels. For simplicity, a target is

assumed to be the center of each voxel. Observers are then tasked to slew and/or collect images of

targets. This process continues over all time windows until a schedule is generated [21].

Figure 2.5: Schedule Generation

In figure 2.6, the search space lies in the GEO-belt. This space is discretized to voxels. The

center of each voxel is a target. These targets are represented as the red spheres in this figure.

Figure 2.6: Discretized Geo-Belt Space [6]
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In order to create an optimal schedule, each task is assigned a score. Factors in this score

include a target’s priority of visitation, a target’s probability of detection, and observer costs. Ad-

ditionally, there are constraints that must be considered for a target to be tasked. These include

the following: a target must be within an observer’s field of view, a target must lie outside of the

Earth’s umbra, the Earth must not block a target from an observer, and a target’s SNR must be

greater than or equal to an observer’s SNR threshold.

Additional constraints to task an observer include the following: an observer’s memory must

not be full, it must be able to slew to the given position within the given time window, and the task

score must be above the observer’s score threshold.

2.2.2 Components of Objective Function

We will first define each piece of the objective function. After this, we will put the pieces

together to define the full objective function and constraints.

The priority of visiting a target n ∈ N, denoted µn : R → R, is a function of time and can

be determined in a variety of ways. For the results to follow, the priority of visiting a target is a

linear function of time. In the linear example, the more time that passes since a target was visited,

the higher priority of visitation that target has. In addition to a linear priority of visitation, the

scheduler can set a constant priority of visitation or a user defined priority of visitation. Once a

target is visited, its priority is reset. This is a function of the current time, t ∈ R, and the last time

the target was visited, tn ∈ R.

Each target has a probability of being detected by each observer. This is modeled by the cu-

mulative distribution function (cdf) of a normal distribution. Each observer has an SNR threshold

in order to detect a target. If a target’s SNR value is lower than an observer’s SNR threshold, it

will be undetectable by the observer. Thus, the probability of detecting a target is a function of the

target’s SNR and the observer’s SNR threshold. This is defined below:

pns (rns, hs) = 0.5

(
1.0 + erf

(
rns − hs√

2

))
, (2.1)
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where pns is the probability of observer s ∈ N detecting target n, rns : R7 → R is the SNR of

target n received by observer s, and hs ∈ R is the SNR threshold for observer s.

The SNR of a target is a function of time, observer position, and target position. Observer

position is computed using a SGP4 propagator [33]. The SGP4 propagator takes inputs of time

and observer two-line element set (TLE). Thus, pns : R6 → R is dependent on observer SNR

threshold, time, observer TLE, and target position (since target position is ∈ R3).

Each observer has a cost associated with tasking it to various objectives. One of these costs

is the cost of storing images, is : R2 → R. This function takes inputs of the number of images

currently stored, as, and the buffer size, bs. The cost of storing a specific image is found by

determining how much storage space remains. It should be noted that observer costs are negative

and added to the objective function to eliminate ambiguity.

The other observer cost we will consider is the cost of an observer slewing to a specified

position. The cost of slewing is called the pointing score, ps : R7 → R. This takes inputs of the

cost of minimal gimbal movement, gs ∈ R, the new position, ~xstk ∈ R3, and current position,

~ys ∈ R3. Again, this cost is negative and added to the objective function.

As mentioned, these costs vary per observer. This is done to create more realistic tasking

scenarios, as real-life observers have different tasking costs. Depending on observer costs, it may

be more beneficial to task some observers more often than others.

The scheduler has real-life constraints in order to schedule a target. The target must be in an

observer’s field of view, not blocked by the Earth, outside the Earth’s umbra, have a high enough

SNR, an observer must have available storage space, an observer must be able to slew in the time

window, and the task score must be above the score threshold.

Each observer has an associated field of view (FOV) and a field of regard. An observer’s FOV

is the volume an observer can see at a fixed orientation. Its field of regard is the total volume an

observer is capable of viewing if accounting for its movement. Below is a 2-dimensional example

of this, where each grid represents an observer’s possible FOV, the blue circles represent targets of

interest:
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Field of Regard︷ ︸︸ ︷

(−90◦,−10◦) (90◦,−10◦)

(−90◦, 10◦) (90◦, 10◦)

= Object in orbit

Figure 2.7: Field of View and Field of Regard

As we increase an observer’s field of view, more targets are seen. This is shown in figure

2.8. These observers lie in the same location in the GEO-belt. Their field of views were 1.5-deg,

3.0-deg, and 5.0-deg. Note: The rise in score at the end is due to all targets being seen once and

beginning to revisit previously seen targets.
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Figure 2.8: Varying Observer Field of View

Each observer has an SNR threshold, hs ∈ R, at which it can see a target. If the received SNR

from a target to an observer, rns, is lower than the observer’s threshold, the target will not be seen

by that observer at that time. Figure 2.9 shows how changing an observer’s SNR threshold varies

the targets that get scheduled.

In figure 2.9, the upper right corners in each figure is a magnified view of the observer’s field

of view (FOV) at the given time. The white spheres in the FOV box are a close up view of the

scheduled targets. These are the same as the white spheres represented in the GEO-belt. The red

spheres in the belt around the Earth (in the GEO-belt) are the remaining targets in the search space.

These targets are being observed by a GEO observer, which is represented by the green sphere.

As the distance between an observer and target decreases, the SNR value between the two

increases. As the distance between an observer and target increases, the SNR value between the

two decreases. As we increase the SNR minimum threshold, we are able to see fewer targets. On

the left figure below, the observable scheduled targets lie closer to the observer, due to their higher

SNR values. As we decrease the SNR minimum threshold, we are able to see more targets. On
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Figure 2.9: Left: SNR threshold of 20, Right: SNR threshold of 5 [6]

the right figure below, the sensor is able to see more targets. The observable targets can be further

away from the observer since the SNR minimum threshold decreased.

If a target lies within the Earth’s umbra, [~ustart, ~uend] ∈ R3×2, it will not be seen. Similarly, if

the Earth lies between a target and an observer, the observer will not see that target at that time.

The gimbal of each observer has a unique moving speed, and thus a cost to move it. The slew

time constraint only allows an observer to slew to a given position if it can move there within the

time window. Additionally, each observer has a unique image storing capacity. If an observer’s

storage is full, it cannot schedule tasks to be collected.

Each observer has a score threshold such that a task will not be scheduled if its score is below

the score threshold. This is formulated by the following:

[
Nts−1∑

n=0

pnsµn

]
+ ps + is > hs, (2.2)

where, Nts ∈ N is the number of available targets for observer s at time t. Additionally, pns is the

probability that observer s will detect target n, µn is the priority of visiting target n, ps is the cost

to point observer s, is is the cost of storing an image in observer s, and hs is the score threshold for

observer s. Equation (2.2) is calculated for each observer s and each time window w(t). A time

window w(t) is a time with an index t that determines which time window is being observed.

21



Ideally, revisit times are minimized as well as observer costs. As the score threshold increases,

so does the max revisit time. Additionally, as the score threshold increases, the observer utilization

and max score decrease. The max score is calculated as the sum of the scores of all scheduled

tasks. With a higher score threshold, fewer tasks are scheduled and hence the total max score

decreases. These results are seen figure 2.10.

Figure 2.10: Score Threshold

2.2.3 Mathematical Formulation

Recall, the main goal of this SDA resource allocation problem is to generate an optimal sched-

ule that maximizes the number of targets seen while minimizing resource costs and target revisit

time. A schedule consists of tasks for observers over some time interval. This time interval is

discretized into time windows. Tasks are then assigned to each observer for each time window.

Assigned tasks include slew and/or collect commands.
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In order to create an optimal schedule, each task is assigned a score. Factors in this score

include a target’s priority of visitation, a target’s probability of detection, and observer costs. Ad-

ditionally, there are constraints that must be considered for a target to be tasked.

We will define the following notations:

The set of feasible solutions is a set consisting of all possible schedule combinations. Each

possible schedule combination is one in which all constraints are satisfied, and each observer is

tasked for each time window. Note: an observer task does not have to include collecting targets.

There may be a case where the negative cost to the observer is more than the positive cost of

collecting those targets, resulting in a negative task score.
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A schedule is a set of looking directions for each observer for each time. A looking direction for

observer s and time t is defined by the vector ~xst ∈ R3. This is generalized so that any coordinate

system may be used. The looking directions are enumerated for each schedule. The kth schedule,

denoted as Xk, is defined below:

Xk = {~xstk : ∀ s ∈ [0, S − 1] , ∀t ∈ [0, T − 1]}. (2.3)

The set of all feasible solutions is the set of all possible schedules. This is denoted as F . These

are defined mathematically below:

F = {X0, X1, .., XM−1}, (2.4)

where M is the total number of possible schedules.

An optimal schedule is found by solving the following:

X∗ = maxXk∈F

T−1∑

t=0

S−1∑

s=0

[
Nts−1∑

n=0

pns (w(t), hs, tles, ~xn)µn (w(t))

]
+ ps (gs, ~xstk, ~ys) + is (as, bs)

(2.5)

s.t. arccos

(
~xn · ~xstk

||~xn|| ||~xstk||

)
≤ FOVs/2 (field of view) (2.6)

hs ≤ rn (SNR) (2.7)

~xn /∈ [~ustart, ~uend] (umbra) (2.8)

~epos 6= (1− λ)~spos + λ~xn, ∀λ ∈ [0, 1] (Earth blocking) (2.9)

ls(~xstk, ~ys) < tsize (slew time) (2.10)

as < bs (buffer space) (2.11)

[
N−1∑

n=0

pnsµn

]
+ ps + ns ≥ ds. (score threshold) (2.12)
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2.2.4 Dimensionality

This scheduling problem is highly dimensional. For instance, suppose we only considered

a single ground-based sensor observing GEO-based targets. This problem is fairly simple since

neither the sensor or targets move with respect to the Earth. Thus, the sensor could easily just scan

its field of regard in an ordered manor.

Now suppose we consider a single sensor in orbit observing the same targets. This adds some

complexity to the problem since the targets and sensor may be moving at different speeds. Thus,

there needs to be more thought given to the order in which the sensor scans its field of regard.

Perhaps there is a target within its field of regard at time t1, but not at time t2. In that case, the

sensor may want to ensure it sees that target at t1 and thus steers its gimbal intentionally.

To further complicate this problem, suppose we have multiple sensors in the same orbit. Now

target n may be seen by sensor s1 at time t1 but not at time t2. However, sensor s2 is able to see

this target at both times t1 and t2. In this scenario, it may be better for sensor s1 to look at targets

other than target n and let sensor s2 look at target n.

Our problem is even more complex than this. We consider multiple sensors in different orbits.

Each sensor has a different cost associated with performing the same task, thus adding additional

complexity.

To see this complexity mathematically, let Mst = the number of possible looking positions

for observer s at time t. The total number of possible schedules, call this M, is calculated by the

following:

M =
S−1∏

s=0

T−1∏

t=0

Mst, (2.13)

since for each observer s there are
∏T−1

t=0 Mst possible schedules. This is multiplied by all ob-

servers’ possible schedules to get all possible total schedules of all observers.

For demonstration, suppose there are 3 observers, 300 time windows, and 2 possible looking

positions for each observer at each time. This results in (2300)3 ≃ 8.452712× 10270 total possible
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schedules. Even if it only took 0.000001 seconds to generate a single schedule, it would take

approximately 2.678503× 10257 years to generate all possible schedules in this simple scenario.

In one of the simplest scenarios represented in the results to follow, there are 3 observers, 1440

time windows, and approximately 3 looking positions for each observer at each time. For this

example, M is too large for a standard computer to handle.

Consequently, there is no tractable way to brute-force compute the global optimum from (2.5).

Thus, the following algorithms are implemented in order to solve this: greedy, genetic, random

search, weapon-target-assignment, and block greedy. In all these algorithms, the constraints remain

the same as in (2.6) - (2.12).

2.2.5 Common Algorithms for SDA Sensor Tasking

The random search algorithm is the simplest of the algorithms implemented. In the random

search algorithm, a random schedule is generated. Its score is then calculated. If this score is

greater than or equal to a preset desired score, that schedule is chosen. If the score is lower than

the present desired score, a new schedule is generated. This process continues until a schedule is

generated with a high enough score. This algorithm is fast when the schedule score is set low.

The local greedy algorithm schedules the maximum task at each time window for each ob-

server [17] [18] [34]. It solves the following modified version of (2.5):

X∗ (s, t) = maxXk(s,t)∈X

[
N−1∑

n=0

pnsµn

]
+ ps + as, (2.14)

for all s ∈ [0, S − 1] , t ∈ [0, T − 1], where Xk(s, t) = ~xstk.

With this greedy algorithm, X∗ is a local optimum. Due to its simplicity, this algorithm runs

very quickly. The sacrifice for this quick run time is that this algorithm only guarantees a local

optimal solution.

The goal of the weapon-target-assignment algorithm (WTA) is to maximize damage by

weapons to targets [18]. The dynamic problem determines which targets survived after previous
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rounds. It then assigns and fires a subset of the remaining weapons with an objective of minimizing

the total expected value of surviving targets at end of final stage.

For the SDA tasking problem, the objects to be observed are analogous to the targets and

the observers’ looking positions available are analogous to the weapons. Only one “weapon" is

deployed at a time. Multiple “targets" may be engaged by each “weapon". This algorithm breaks

the time interval into groups of time windows. It finds all possible combinations of schedules for

each time group and chooses the highest scoring schedule. This is formulated below:

X∗(t, c) = maxXk(t,c)∈X

t+c−1∑

t=0

S−1∑

s=0

[
N−1∑

n=0

pnsµn

]
+ ps + as, (2.15)

for all s ∈ [0, S − 1] , t ∈ [0, T − 1], and c = number of time windows of observation.

Here,Xk(t, c) = {~xst0k : ∀t0 ∈ [t, t+c−1], ∀s ∈ [0, S−1]}. As c approaches the total number

of time windows, X∗ approaches the global optimum. If c is less than the total number of time

windows, X∗ is a regional optimum. Due to its complexity, this is the slowest running algorithm

of the five implemented algorithms.

Genetic algorithms are commonly used in high dimensional problems [35]. Because of this,

it has been used in the SDA sensor tasking problem [19] [20]. Although genetic algorithms have

been shown to be effective for these types of problems, there is not precise way to determine how

close to the optimal solution this algorithm gets.

The genetic algorithm uses the following processes: initialize, crossover, and mutate popula-

tion. A member of a population consists of a possible schedule. In an example with 3 observers

and 2 time windows (in the actual simulation there are hundreds of time windows), a schedule

consists of the following:

Figure 2.11: kth Schedule
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An initial population of size N is randomly created. From the initial population, random mem-

ber pairs are chosen to crossover. Often these member pairs will be chosen with a weighted factor

in order to choose higher scoring members.

The crossover step is completed by randomly selecting pieces of random length of the sched-

uled pairs. This is done until a new population of size N is created. This process is shown by

the following, with random member pairs population A and population B creating new member

population C:

Figure 2.12: Crossover

After this, the new population schedules are mutated. This is done by choosing a random length

segment of the schedule and exchanging it with a random length of another schedule. Mutation is

shown by the following:

Figure 2.13: Mutation

28



This entire process is repeated for M generations. After these M generations, the highest

scoring schedule is chosen as the approximate optimal schedule.

The genetic algorithm is not the slowest or fastest algorithm, nor does it generate the lowest

or highest scoring schedules. This algorithm is a common approach in solving the SDA sensor

tasking problem. Hence, it is a valuable metric for comparison.

2.3 Block Greedy Algorithm

Finally, the novel block greedy algorithm is a hybrid of the WTA and greedy algorithms,

with some additional features. This new algorithm produces an approximately regional optimal

schedule and runs in a tractable amount of time. The block greedy algorithm has not before been

proposed or implemented in work on the SDA sensor tasking problem.

Like the WTA algorithm, the block greedy algorithm considers multiple time windows at once.

This group of time windows is called a “time block”, hence the name “block greedy”. Instead of

computing the score of every possible schedule combination over this time block as in the WTA,

the score for each task at each time window is computed. This is like the local greedy algorithm.

However, in the local greedy algorithm, tasks are considered in temporal order. In the block greedy

algorithm, tasks are considered without regard to temporal order.

In addition to the mentioned similarities to the greedy and WTA algorithms, the block greedy

algorithm has added features. After each task is scheduled, all task scores are reset. This is a key

component of the block greedy algorithm. This score reset allows the highest priority tasks to be

scheduled first and incrementally schedules lower priority tasks. These lower priority tasks become

higher priority tasks as more time passes before they are scheduled. Ultimately, this results in a

higher scoring schedule.

To create a schedule using the block greedy algorithm, the score for each task in each time win-

dow is calculated for all time windows in each time block. The highest scoring task is scheduled.

After this, the priority of visitation is reset for all visited targets. The scores for the tasks across
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the time block are recalculated and the new highest scoring task is scheduled. This continues until

all observers have been tasked for each time window in the time block.

Figure 2.14: Block Greedy Algorithm

This is formulated mathematically below:

X∗(s, [t, t+ c− 1]) = maxXk(s,[t,t+c−1]))∈X

[
N−1∑

n=0

pnsµn

]
+ ps + as, (2.16)

where, Xk(s, [t, t+ c− 1]) = {~xst0k : ∀t0 ∈ [t, t+ c− 1], ∀s ∈ 0, S − 1} and c = number of time

windows in time block.

The block greedy algorithm is not much slower than the local greedy algorithm and much faster

than the WTA. Additionally, the block greedy algorithm generates a higher schedule score than all

other implemented algorithms.

2.3.1 Results

In the following simulations, our search space consists of volumes in the GEO-belt. We vox-

elize this volume and assume the center of each voxel to be a target. In order to ensure that entire

volume is viewed, each voxel in the volume is generated to be at least as small as the minimum

field of view of the observers.
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We use the Python function that uses the Simplified General Perturbations (SGP4) propagator

[33] to calculate observer propagation. This function accounts for real-life effects of perturbation

on object propagation. Each of our observers has a TLE associated with it. This TLE is used as

an input to the SGP4 function to calculate its propagation in time. We will assume this function

outputs an observer’s exact position.

In a real-life scenario, targets do not lie evenly on a voxelized grid as our simulated targets do.

However, since we assume we know the exact positions of our targets, our algorithms run the same

as they would if the target positions were randomly distributed across the search volume. Hence,

our targets are generated in this way for simplicity.

Recall, equation (2.5) considers multiple, heterogeneous sensors. Each sensor can have differ-

ent costs associated with tasking it. Thus, a higher schedule score may be generated by unevenly

tasking sensors. Below is an example of the observer utilization of three heterogeneous sensors in

a 24-hour schedule:

Figure 2.15: Observer Utilization Percent
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In this example, the Earth-based sensor has the lowest reward to cost ratio to task, while the

LEO-based sensor has the highest. This means the difference between the positive score and

negative resource costs are the most positive in the LEO-based sensor case.

The block greedy algorithm was presented as a new algorithm to solve equation (2.5). This is

compared with the traditional greedy algorithm, the WTA algorithm, the genetic algorithm, and

a random search algorithm. The block greedy algorithm is shown to overall outperform all other

compared methods. It runs faster than almost all the algorithms and generates the highest score.

Figure 2.16 is a chart of total schedule scores per algorithm. A schedule score is computed by

adding all task scores in a schedule. The figure below was generated with 970 synthesized targets,

3 observers, over 24-hours with 60 second time windows. The block greedy algorithm had 30 time

window blocks. Due to the incredibly slow run time of the WTA algorithm, even at 2 time window

blocks, this was run with a single time window block. As expected, the block greedy algorithm

generates the highest scoring schedule, while the random search algorithm generates the lowest.

Figure 2.16: Total Schedule Score by Algorithm
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Although this schedule was run for a 24-hour interval, most algorithms were able to see all

targets after a much shorter time. Figure 2.17 shows the amount of time each algorithm took to see

all objects. Additionally, a lower max revisit time is preferable. This is analyzed below as well. In

the following results, the WTA algorithm was run with a 2 time window block and there were 366

synthesized targets.

Figure 2.17: Time to See All Targets and Max Revisit Times Per Algorithm

The greedy and WTA algorithms were able to see all targets in the shortest amount of time.

They also had the two shortest max revisit times. However, the block greedy algorithm was able

to see all objects in just 2.7% more time. Additionally, the block greedy algorithm had only 3.5%

slower max revisit time than the greedy algorithm. The max revisit time was only calculated once

all targets were visited twice. Hence, the random search and genetic algorithms were not able to

see all targets twice in this time interval.

In terms of run time, the random search algorithm was the fastest. Given the results above,

the random search algorithm performed the worst outside of this factor. The next fastest algorithm

was the local greedy algorithm. The slowest algorithm was the WTA, as expected. The block

greedy runs only 3 times slower than the local greedy algorithm nearly 22 times faster than the

WTA algorithm.
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Figure 2.18: Run Time Per Algorithm

Altogether, the block greedy has a much higher max score than all other algorithms compared.

It successfully reduces resource costs efficiently. It runs only 3 times slower than the local greedy

algorithm for 30 time windows in a block. What is sacrificed in run time using the block greedy

algorithm is gained in its higher schedule score.

2.3.2 Conclusion

A robust space domain awareness scheduler has been created with realistic sensor tasking sce-

narios. This scheduler functions with real-life constraints such as only considering targets within

observers’ field of view, outside of the Earth’s umbra, not blocked by the Earth, and with high

enough SNR. This scheduler is capable of handling multiple, heterogeneous observers at once and

creating an approximate optimal schedule for all observers.

This scheduler considers the unique tasking cost of each observer. It computes the costs of

both storing images and slewing for each observer. Not only does this scheduler maximize the

total number of targets seen, it also minimizes the total cost of tasking the available observers.
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Five algorithms have been implemented in the SDA scheduler. Four of these algorithms are

common approaches used in solving the SDA observer tasking problem. These algorithms generate

a worse schedule than the block greedy algorithm.

The block greedy algorithm borrows speed from the greedy algorithm and optimality from

the WTA. When analyzed, it is found that the block greedy outperforms the other implemented

algorithms. It consistently produces a higher scoring schedule and runs in a tractable amount of

time.

In summary, this work thus not only introduces a new, more realistic objective function for-

mulation for the SDA resource allocation problem, but also creates a better algorithm for tasking

resources. This new SDA resource allocator both optimizes the total number of targets to be visited

and successfully minimizes resource costs.
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Chapter 3

Flight Path Planning for SAR

3.1 Background

3.1.1 Goals

The goal of the SAR Flight Path Planning problem is to maximize image resolution and scene

coverage by creating an optimal flight path. This work will be an extension of Dr. Scott Altrichter’s

PhD thesis titled “Flight Path Optimization for Resolution and Coverage in Synthetic Aperture

Radar" [10].

In his thesis, Dr. Altrichter formulates an objective function for the purpose of optimizing

image resolution and scene coverage by varying an aircraft’s flight path. His objective function

is derived from the 3-dimensional data-collection manifold. He describes a single, mono-static

aircraft SAR scenario.

In this thesis, we will first modify this objective function to use only the first two components

of the data-collection manifold since these are the primary components with which we are con-

cerned. We will compare the results of this objective function with common SAR modes including

stripmap, spotlight, and circular SAR.

Additionally, in Dr. Altrichter’s thesis, the flight path is only optimized against the aircraft’s

heading and pitch. We will extend this work by also optimizing against the aircraft’s antenna

steering angles.

In the next chapter, we will show the flexibility of this objective function by adding many real-

istic features. These include an SNR consideration and a priority of targets or targets scenes. Ad-

ditionally, we will extend the formulated objective function to flight path planning of mono-static,

multiple unmanned aerial vehicles (UAVs). Lastly, we will implement additional optimization

algorithms with the objective function and compare their performance.

First, the following assumptions will be made in solving this problem:
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1. We assume we know the locations of the targets to be observed.

2. We assume the target scene is flat. Thus, targets lie on the xy−plane.

3. For simplicity, we assume the antenna is rectangular planar.

4. Lastly, we assume the antenna footprint is an ellipse.

3.1.2 Synthetic Aperture Radar Derivation

In a standard SAR system, an antenna is mounted on an aircraft or satellite. This SAR system

transmits radio waves to a scene. These radio waves are reflected by the scene and the scattered

waves are received, usually on the same antenna. From this, mathematical procedures are used to

recover the scene and form an image [7].

Synthetic Aperture Radar deals with microwaves which are a type of electromagnetic wave.

Hence, the waves used in SAR are governed by Maxwell’s equations (for a derivation of Maxwell’s

equations, see Appendix B).

Let E(t,x) be the electric field, B(t,x) be the magnetic induction field, D(t,x) be the electric

displacement field, H(t,x) be the magnetic intensity field, ρ(t,x) be the charge density, and

J (t,x) be the current density. Then Maxwell’s equations in the time domain are defined below:

∇× E = −∂B
∂t

(3.1)

∇×H = J +
∂D

∂t
(3.2)

∇ ·D = ρ (3.3)

∇ ·B = 0 (3.4)

From Maxwell’s equations, we will derive the inhomogeneous wave equation for the electric

field E. First, we will note that, in free space, ρ(t,x) = 0. We will also note the following

constitutive relations [7]:

D = ǫ0E (3.5)
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B = µ0H (3.6)

Additionally, in free space, ∇ ·D = 0. Thus, ǫ0∇ · E = 0. This will be useful later.

Now, we will take the curl of (3.1). This leads to the following:

∇×∇× E = ∇×
(
−∂B
∂t

)

∇(∇ · E)−∇2
E = ∇×

(
−∂µ0H

∂t

)

−∇2
E = −µ0∇×

(
∂H

∂t

)

∇2
E = µ0

(
∂(∇×H)

∂t

)

= µ0

(
∂

∂t

(
J +

∂D

∂t

))

= µ0ǫ0
∂2E

∂t2
+ µ0

∂J

∂t

(3.7)

=⇒ (∇2 − µ0ǫ0
∂2

∂t
)E(t,x) = µ0

∂J

∂t
. (3.8)

The term µ0
∂J
∂t

gets quite complicated when predicting what J arises on an object from an

impinging wave. From here on out, we will denote this term as s(t,x). This is a source term that

involves the electric field and the magnetic field [36]. Now we have the following inhomogeneous

wave equation in the time domain:

(∇2 − µ0ǫ0
∂2

∂t
)E(t,x) = s(t,x). (3.9)

It will be useful to work in the frequency domain for the remainder of this derivation. In

order to transform equation (3.9) from the time domain to the frequency domain, we will use the

inverse Fourier Transform (IFT). The forward and inverse Fourier Transforms are defined below,

respectively:

f(t) = F{F (ω)} =
1

2π

∫
e−iωtF (ω)dω (3.10)
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F (ω) = F−1{f(t)} =

∫
eiωtf(t)dt (3.11)

Equation (3.9) in the time domain is the inhomogeneous Helmholtz equation for the electric field

E. This is defined as the following:

(∇2 + k2)E(k,x) = S, (3.12)

where S is the inverse Fourier Transform of s, c is the wave propagation speed in a vacuum, and

k = ω/c is the wavenumber. In the following, we only consider one component E of the electric

fields.

The outgoing Green’s function is important in solving the Helmholtz equation with an arbitrary

source term. First, define the Green’s function as the following:

G(ω,x) =
eik|x|

4π|x| ; it satisfies (∇2 + k2)G = −δ. (3.13)

The Helmholtz equation with an arbitrary source term is represented as

(∇2 + k2)E(x) = S(x). (3.14)

Thus, the Green’s function allows us to obtain the following outgoing solution:

E(x) = −
∫
G(x− y)S(y)dy. (3.15)

Now S can be broken up into two pieces. Define Sin as proportional to the current density on

the antenna, while Ssc denotes the piece that models the scattering object. Thus, S = Sin + Ssc.

Consequently, Etot = Ein + Esc. Here, Esc denotes the scattered field, which is due to scattering

from the object. Additionally, Ein is the incident field. This satisfies the wave equation for a

prescribed Sin.
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The target’s response to an incidence field is represented as Ssc. Using the scalar model for

Ssc, we have

Ssc(x) = −V (x)Etot(x). (3.16)

The reflectivity function is denoted as V . The reflectivity function represents the scene we wish to

recover. Substituting (3.16) into (3.15), we obtain the Lippmann-Schwinger integral:

Esc(x) =

∫
G(x− y)V (y)Etot(y)dy. (3.17)

Finally, we will use the Born approximation. The Born approximation is a useful tool in imag-

ing problems because it makes the problem linear. The Born approximation is found by replacing

Etot in the Lippmann-Schwinger integral with Ein. As a result, the Born approximated scattered

field is

Esc
B (x) =

∫
G(x−y)V (y)Ein(y)dy =

∫
eik|x−y|

4π|x− y|V (y)
eik|y−x0|

4π|y − x0|F (ω, x̂− x0)dy (3.18)

where F denotes the Fourier transform of the current density on the antenna.

Assuming the transmitting antenna and the receiving antenna are in the same location, the

received signal is then modeled by

SB(ω) =

∫
e2ik|x

0−y|A(ω,x,y)V (y)dy. (3.19)

Here, A includes the geometrical spreading factors, transmitted waveform, and antenna beam pat-

terns.

In SAR, the antenna is moving. Thus, instead of representing the location of the antenna as

x0, we will denote it as γ(s), where s represents time. Aircraft motion is on a different time scale

from wave propagation. These time scales are generally referred to as slow time and fast time,

respectively. Thus, s is the slow time. Then the received signal becomes:

40



D(ω, s) = f [V ](ω, s) :=

∫
e2ik|γ(s)−y|A(ω, s,y)V (y)dy (3.20)

where f [V ](ω, s) denotes the forward map from V to the data.

In order to recover the image, V , we will use the following imaging operator [7], where Q is a

filter to be determined:

I(y) = B[D](y) :=

∫
e−2ik|γ(s)−y|Q(ω, s,y)D(ω, s)dωds. (3.21)

Now we will analyze the image to determine its quality. In this process, we will choose Q.

Equation (3.21) describes how we process data. By substituting (3.20) into (3.21), we get the

following:

I(y) =

∫ ∫
e−2ik(|Rs,y |−|Rs,x|)Q(ω, s,y)A(ω, s,x)dωdsV (x)dx, (3.22)

where Rs,z = γ(s)− y. In order to create our image analysis, we will define the following:

K(z,x) :=

∫
e−2ik(|Rs,y |−|Rs,x|)Q(ω, s,y)A(ω, s,x)dωds. (3.23)

Equation (3.23) is called the Point Spread Function (PSF). The PSF describes how a point

in a scene appears in an image. In order to perfectly recover V , the PSF must be equal to the

δ−function, below:

δ(z − x) ∝
∫
ei(z−x)·ξdξ. (3.24)

However, in reality the PSF does not exactly equal the δ−function. The closer the PSF is to the

δ−function, the better the resolution. Thus, we will choose a Q that results in a PSF that is as close

as possible to the δ−function [7]. The PSF determines image resolution. We show in Appendix C

that the PSF can be expressed as an integral of the form eq. (3.24) where the integration is over a

set called the data-collection manifold. This set thus determines the resolution.
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3.1.3 Types of SAR Systems

Some of the most common SAR systems include Spotlight, Circular, and Stripmap. These

each have unique benefits. Depending on the goals and constraints of the SAR mission, it may be

better to use one type over the other.

In spotlight SAR, the origin of coordinates is placed at the center of the illuminated scene. The

radar is focused on that location throughout the entire flight path. The aircraft flies along a straight

path while the antenna is steered to illuminate that specific region in the scene. Because of this

feature, spotlight SAR provides a greater scene resolution than stripmap SAR.

Figure 3.1: Spotlight SAR [7]

In stripmap SAR, the aircraft again flies along a straight path. Here, the antenna viewing

direction is fixed relative to the platform. Because of this, stripmap SAR provides better scene

coverage than spotlight SAR.
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Figure 3.2: Stripmap SAR [8]

An additional SAR mode to consider is circular SAR. In circular SAR, the platform flies in a

circular path around the target scene with the antenna steered towards a specific target or part of a

target scene. The benefit of this SAR mode is that it can obtain data over a 360 degree azimuthal

range [37].

Figure 3.3: Circular SAR path [9]

The main benefit of spotlight SAR and circular SAR is image resolution. The main benefit of

stripmap SAR is scene coverage.
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3.2 SAR Flight Path Planning

Two key components in Synthetic Aperture Radar (SAR) are image resolution and scene cover-

age. To improve SAR image resolution, one may increase the bandwidth of the system (frequency

diversity) or increase the range of aspect angles to view the target (geometric diversity). In most

applications, the radar must operate within a fixed and specified frequency band, so increasing the

frequency diversity is not feasible [38].

Thus, to improve target resolution one must use geometric diversity. This exploits the motion

of the antenna platform and/or steering of the antenna as a way to increase the range of aspect

angles to view the target [39, 40]. The formulas that determine resolution in these dimensions are

well-known and widely used [7, 40–46].

To use geometric diversity to maximize scene coverage and image resolution, one may fly

around the target scene of interest in a non-straight path and steer the radar antenna towards the de-

sired targets. By using geometric diversity to improve target resolution, one encounters a trade-off

with scene coverage and image resolution [43]. This is best shown in the comparison of stripmap

SAR, spotlight SAR, and circular SAR.

In stripmap SAR, the platform moves along a straight path with the antenna fixed to broadside.

This illuminates a continuous swath on the ground parallel to the flight path. Ultimately, the

angular aperture for targets in the swath is limited by the beamwidth of the physical antenna [46].

In circular SAR, the platform flies in a circular path with the antenna steered toward a particular

area of the target scene. In spotlight SAR, the platform flies along a linear path and the antenna

is steered toward a particular area of the target scene. In both circular and spotlight SAR, angular

aperture is increased for the illuminated area [44, 46, 47].

There are many other SAR modes such as scan SAR, spotdwell SAR, and arbitrary stripmap

SAR, interferometric wide swath (IW), extra wide swath (EW), wave (WV), along with oth-

ers [48, 49]. However, we will primarily compare our results with the stripmap, spotlight, and

circular SAR modes as these are the most similar to our objective.

The majority of this section is devoted to developing a mathematical tool that considers both
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target resolution and scene coverage. This tool involves the data-collection manifold (DCM) whose

volume corresponds inversely to the image resolution at a point [7]. Adding together these man-

ifold contributions for each observed target gives us an objective function that is determined by

resolution and scene coverage. We then use this function as a way to determine optimal flight

paths that exploit geometric diversity for desired resolution and scene coverage objectives.

3.2.1 Data-Collection Manifold

In order to construct an objective function to maximize scene coverage and image resolution,

we will start with the data-collection manifold. Data is collected from a target when it lies in a

sensor’s antenna footprint. This collection of data is called the data-collection manifold (DCM).

The shape of the data-collection manifold is determined by the frequencies transmitted and the

line-of-sight from the antenna to the target point z. This is defined below [10]:

Ωz =

{
ξ =

2ω

c
R̂s,z : ω ∈ [ωmin, ωmax], z ∈ antenna footprint

}
, (3.25)

where R̂s,z = ̂γ(s)− z is the unit line-of-sight vector from the antenna to the target. The parame-

ters that vary are ω and s. Refer to Appendix C for a derivation of the DCM.

We see that for a target illuminated by the antenna, the DCM associated with that target is de-

termined by the angular aperture and the transmitted bandwidth. The PSF is the Fourier transform

of the DCM. Thus, we want the DCM to be large in order to make the support of the main peak of

the PSF small. In radar imaging, the resolution of the image is determined by the PSF. For a more

detailed proof of this, see [7].

When considering resolution as governed by the point-spread function, we see that in the cross-

range direction, resolution is improved with longer observation times. Longer observation times

mean that we can observe the target over a larger angular aperture. This is often called the integra-

tion angle [46].
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Ideally, in stripmap SAR, we would like to have the widest possible antenna beamwidth to

increase the length of time that we view a target. This, however, decreases antenna gain and

decreases target detection in noise.

The data-collection manifold determines the point-spread function, and we know that the res-

olution of an image is determined by the point-spread function. In the following sections, we will

develop the data-collection manifold as a measure for quantifying attainable resolution. This can

then be used as a tool for mission planning and data-collection.

3.2.2 Objective Function

In the previous section, we demonstrated how the data-collection manifold (DCM) determines

the point-spread function (PSF) and thus the resolution of a target. The dimensions of the manifold

are determined by the bandwidth of the system and the aspect angles at which the sensor views the

target [7, 46].

It is our goal to quantify the size of the manifold in some way. This allows us to use that quan-

tity as a measure for the attainable resolution for a target. In this section, we will follow the steps

outlined in [10] by developing a technique for calculating the surface area of the data-collection

manifold associated with a target z. The surface area will then give us a measure for analyzing

target resolution information.

A. DCM as a parameterized surface

The process of building the objective function in Sections 3.2.2A and 3.2.2B and the parameter

definitions in Section 3.2.2C were developed by Dr. Scott Altrichter [10]. In his work, he derived

the objective using the 3D data-collection manifold. These steps below are a variation from his

work in that we will only consider the 2D components of the data-collection manifold. For a

derivation of the objective function using the 3D components of the data-collection manifold, see

Appendix D.
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We will begin by defining the DCM as a parametrized space. With the parameter space de-

fined by angular frequency ω and slow-time s, the data-collection manifold associated with that

parameter space is a surface given by the following:

ξ(ω, s) =
2ω

c
R̂s,z (3.26)

= [ξ1(ω, s), ξ2(ω, s)], (3.27)

where ξ1 and ξ2 are the x and y coordinates in frequency space. It should be noted that in most

SAR scenarios, we only care about the horizontal image resolution. Thus, we will only consider

the ξ1 and ξ2 components in ξ. If considering the vertical resolution were also important, we

would include the ξ3 component of ξ as in [10]. Below is a figure of this parametrization in all

three components of the DCM:

Figure 3.4: Parameter Space and Corresponding DCM [10]

With the target placed at the origin, it is convenient to write these coordinates in terms of

azimuthal and elevation angles. These angles potentially change with each transmit time, so we

write these as functions of the slow-time variable, θ(s) and ψ(s), respectively. The parameterized
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surface can now be defined as the following:

ξ(ω, s) =
2ω

c
[cos θ(s) cosψ(s), sin θ(s) cosψ(s)] (3.28)

for ω ∈ [ωmin, ωmax] and s ∈ [si, sf ], where [ωmin, ωmax] is the bandwidth and [si, sf ] is the observa-

tion interval [25]. The angles θ and ψ are defined as the following for a target z:

θz = arctan

(
y − γ2(s)

x− γ1(s)

)

ψz = arctan

(
γ3(s)

Lz

)

Lz =
√
(x− γ1)2 + (y − γ2)2), (3.29)

where x and y are the coordinates for target z and the flight path at time s is γ(s), where γ(s) =

[γ1(s), γ2(s), γ3(s)].

B. DCM surface area and volume

Using multivariable calculus tools, we will now formulate an expression for the surface area

of the data-collection manifold associated with a point z. This surface area will be a tool for

measuring the resolution of a single target. In order to also consider scene coverage, we will

integrate over all targets, leaving us with a volume for the DCM.

We begin by using (3.28) as the parameterized representation of the DCM. From this, we can

calculate the partial derivatives with respect to our two parameters, ω and s. We will denote these

partial derivatives as ξω and ξs, respectively.

These are the following:

ξω(ω, s) =

[
∂ξ1
∂ω

,
∂ξ2
∂ω

]
(3.30)
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ξs(ω, s) =

[
∂ξ1
∂s

,
∂ξ2
∂s

]
, (3.31)

where

∂ξ1
∂ω

=
2

c
cos θ(s) cosψ(s) (3.32)

∂ξ2
∂ω

=
2

c
sin θ(s) cosψ(s) (3.33)

∂ξ1
∂s

=
2ω

c
(−θ′(s) sin θ(s) cosψ(s)− ψ′(s) cos θ(s) sinψ(s)) (3.34)

∂ξ2
∂s

=
2ω

c
(θ′(s) cos θ(s) cosψ(s)− ψ′(s) sin θ(s) sinψ(s)). (3.35)

The expression for a surface element of the DCM can be found by computing the magnitude

of the cross product of ξω and ξs. This is found by computing the following:

||ξω × ξs|| =

∣∣∣∣∣∣∣

∂ξ1
∂ω

∂ξ2
∂ω

∂ξ1
∂s

∂ξ2
∂s

∣∣∣∣∣∣∣

=

(
∂ξ1
∂ω

)(
∂ξ2
∂s

)
−
(
∂ξ2
∂ω

)(
∂ξ1
∂s

)

=
4ω

c2

∣∣∣∣
∂θ

∂s

∣∣∣∣ cos
2 ψ(s).

(3.36)

With the calculated surface element, we can formulate an expression for the surface area of the

DCM at the target location z. This is given by the following

A(Ωz) =

∫ sf

si

∫ ωmax

ωmin

||ξω × ξs||dωds (3.37)

=

∫ sf

si

∫ ωmax

ωmin

4ω

c2

∣∣∣∣
∂θ

∂s

∣∣∣∣ cos
2 ψ(s)ds (3.38)

=
4

c2
· 1
2
(ω2

max − ω2
min)

∫ sf

si

∣∣∣∣
∂θ

∂s

∣∣∣∣ cos
2 ψ(s)ds (3.39)

= 2(k2max − k2min)

∫ sf

si

∣∣∣∣
∂θ

∂s

∣∣∣∣ cos
2 ψ(s)ds, (3.40)

where in the last line, kmax = ωmax/c and kmin = ωmin/c.

49



As mentioned previously, (3.40) measures the resolution for a single target, z. Maximizing this

will lead to better resolution. We also want to maximize scene coverage, so we will integrate this

over all targets. Our final objective function that we want to maximize is the following:

V = 2(k2max − k2min)

∫

Z

∫ sf

si

∣∣∣∣
∂θz
∂s

∣∣∣∣ cos
2 ψz(s)dsdz, ∀z ∈ Z, (3.41)

where Z denotes the set of target positions. Here, all targets have an equal weight associated with

them. If desired, we are able to change this weight so as to emphasize more important targets.

C. Optimization parameters

The parameters we use to maximize (3.41) are an aircraft’s heading (η), pitch (λ), and steering

angles (βLOS and φB). The heading and pitch will directly influence θ and ψ that appear in (3.41).

First, the aircraft’s heading and pitch are defined recursively as the following for time sn+1:

η(sn+1) = η(sn) + ∆η(sn) (3.42)

λ(sn+1) = λ(sn) + ∆λ(sn). (3.43)

The flight path, γ(s), is then parametrized by the following:

γ1(sn+1) = ∆s sin η(sn) cosλ(sn) + γ1(sn)

γ2(sn+1) = ∆s cos η(sn) cosλ(sn) + γ2(sn)

γ3(sn+1) = ∆s sinλ(sn) + γ3(sn),

(3.44)

where, ∆s is the distance between transmit times and η and λ are the aircraft’s heading and pitch at

time s. Finally, ψz and θz in eq. (3.41) are defined in eq. (3.29). Thus, we can see that an aircraft’s

heading and pitch directly influence the objective function.

In order to understand how the antenna steering angles impact the scene coverage and resolu-

tion, we will consider the geometry of the problem, seen in figure 3.5. The steering angles will

primarily affect the antenna footprint, which will in turn affect the objective function by deter-
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mining over which targets to integrate. The two steering angles we will consider are the elevation

angle, called βLOS , and the boresight angle, called φB. The minor axes of the antenna footprint

Figure 3.5: Scene Geometry

ellipse are determined by φB − φdy and φB + φdy, where φdy is the antenna divergence angle. The

major axes of the antenna footprint ellipse are determined by βLOS − φdz and βLOS + φdz, where

φdz is also antenna divergence. Below are figures illustrating the geometry of φdy and φdz.

Figure 3.6: Left: Scene Geometry from Above, Right: Scene Geometry from Side
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We are able to vary both βLOS and φB in order to better maximize (3.41) which leads to maxi-

mizing scene coverage and resolution.

3.2.3 Constraints

We added a number of constraints to our problem in order to make it more realistic. First, we

constrained our heading and pitch in order to mirror the capabilities of an actual aircraft. Addi-

tionally, we restricted our flight path to a minimum and maximum height.

Other practical considerations are the amount the steering angles are allowed to move. In order

to avoid left-right artifacts, the antenna must remain side-looking. Thus, we add this constraint to

our problem.

Lastly, in order for a target DCM to contribute to the objective function, it must lie within the

antenna footprint. We assume the antenna footprint is an ellipse, and thus it follows the standard

equation for ellipses. Specifically, a target lies within an antenna footprint if the following quantity

is satisfied:

(
x− cx
a

)2

+

(
y − cy
b

)2

≤ 1, (3.45)

where (x, y) is the location of the target, a and b are the radii of the antenna footprint ellipse,

(cx, cy) is the center of the antenna footprint ellipse, and φB is defined in figure 3.5.

In the case of spotlight and circular SAR, the antenna is steered towards the center of the target

scene. Thus, we know (cx, cy) since this is the center of the target scene. Then we compute a by

the following, with h = the aircraft height:

a = (xmax − xmin)/2, (3.46)
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where

xmax = h[tan(βLOS + φdz)] (3.47)

xmin = h[tan(βLOS − φdz)], (3.48)

with βLOS and φdz defined in figures 3.5 and 3.6. We compute b by the following:

b = Rcenter tan(φdy), (3.49)

where φdy is defined in figure 3.6 and Rcenter is the distance from the aircraft to (cx, cy, 0).

In stripmap SAR, βLOS is constant and φB = 0. In the optimized flight path, βLOS and φB are

two of the optimization parameters that we vary. In spotlight and circular SAR, βLOS and φB are

steered towards the center of the scene. For spotlight and circular SAR, we compute these in the

following way:

βLOS = arccos

(
h

Rcenter

)
(3.50)

φB = arctan

( |cy − y|
|cx − x|

)
. (3.51)

After computing the major and minor axis of the antenna footprint ellipses, the ellipses are

rotated so that the major axis lies along the line of sight. This follows the process defined in [50].

Then the DCM of each target that lies within the antenna footprint is included in the objective

function. All targets lying outside of the antenna footprints do not contribute to the objective

function.

3.3 Results

It is common to define a flight path by its waypoints, namely discrete locations through which

an aircraft flies. Our objective function will be used to optimize these waypoints in order to create

an optimal flight path. Since we are transmitting pulses at the pulse repetition frequency (PRF)
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rate between these waypoints, this can be thought of as interpolating between waypoints with

transmitted pulses. At each waypoint, we will allow the aircraft to change its heading, pitch, and

steering angles. In Section 3.2.2C, we defined a way to parametrize the flight path. This is what

we use to compute the following results.

We will compare the results from spotlight, stripmap, and circular SAR scenarios against a

varied flight path scenario found from optimizing the objective function. We will assume the

following parameters:

• There are 100 targets evenly spread over the target scene.

• The flight path is 50000 meters long.

• There are 50 way points.

• The targets are points on the xy−plane.

• The center of the target scene is located at [7500, 0, 0].

• The bandwidth is [200, 800] MHz.

A greedy algorithm was used to maximize the objective function. A greedy algorithm for this

problem looks at each waypoint, calculates the objective function for each possible heading, pitch,

and steering angles (4-tuple), chooses the 4-tuple that scores the highest, then repeats for the next

waypoint.

Here, a random 4-tuple is chosen if the objective function is zero for all possible 4-tuples at a

given waypoint. This situation will occur if the aircraft is unable to see any targets for any 4-tuple

at that waypoint.

In order to maintain consistency with the previous SDA resource allocation problem terminol-

ogy, an optimal flight path will consist of an assigned task at each waypoint that maximizes the

objective function. A task will consist of a heading, pitch, and steering angles 4-tuple. Below is
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pseudo-code for this algorithm:

Result: Optimal Flight Path

generate all potential tasks;

for waypoints do

compute objective function with tasks;

if at least one objective function value > 0 then

choose task with highest objective function value;

else

choose random task;

end

end

return greedy path;

Algorithm Greedy Algorithm

In all of the figures below, the flight path is in blue, the antenna footprints are represented by

ellipses, and the targets are represented as the black dots. Additionally, the aerial view of the target

scene with the antenna footprints for each of these flight types are shown in figures 3.8, 3.10, 3.12,

3.14.

In both the stripmap and spotlight modes, the aircraft flies in a straight path. In the stripmap

case, the antenna remains fixed with respect to the aircraft. In the spotlight case, the antenna is

steered towards the center of the target scene. The flight paths for these can be seen in figure 3.7

and Fig 3.9. It should be noted that the full flight path in these figures is not shown for scale

purposes. Additionally, the asymmetry in the antenna footprints in figure 3.10 is due to the flight

path not being centered around y = 0.
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Figure 3.7: Stripmap mode flight path and corresponding footprints

Figure 3.8: Antenna footprints in stripmap mode
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Figure 3.9: Spotlight mode flight path and corresponding footprints

Figure 3.10: Antenna footprints in spotlight mode

In circular SAR, the aircraft flies in a circular path and steers the antenna to the center of the

scene. This can be seen in figure 3.12. There is slight asymmetry in the antenna footprints in 3.12.

Recall, we assumed we had a rectangular antenna. This asymmetry is due to this assumption.
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Figure 3.11: Circular SAR flight path and corresponding footprints

Figure 3.12: Antenna footprints in circular mode
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Lastly, the optimized flight path and corresponding footprints are shown in figures 3.13 and

3.14. We see that the aircraft flies around the scene, but not in a circular path. The path generated

flies in the best way to maximize scene coverage and image resolution.

Figure 3.13: Optimized flight path with corresponding footprints

Figure 3.14: Antenna footprints in optimized flight path
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The objective function values and percent of targets seen for each flight path are shown in

figures 3.15 and 3.16, respectively. We see that the optimized flight path obtained the highest

objective function value of all the other flight paths and was able to see all of the targets in the

target scene.

Figure 3.15: Flight Path Performance
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Figure 3.16: Percent of Targets Seen

These results are consistent with what we know about these stripmap, spotlight, and circular

SAR modes. Namely, stripmap SAR tends towards better scene coverage than circular SAR and

sometimes spotlight SAR. Spotlight SAR and circular SAR tend toward better resolution than

stripmap SAR.

With the optimized flight path, the objective function obtained the highest value. Additionally,

the aircraft was able to see all of the targets, whereas the circular scenario was not able to do this.

Thus, this flight path is better than those generated in the stripmap, spotlight, and circular SAR

scenarios.

This flight path accurately maximizes both scene coverage and image resolution. Our goal was

to find a tool for finding the balance between maximizing scene coverage and image resolution.

We can see from our generated flight path that this is what we accomplished.
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3.3.1 Conclusion

In this chapter, we discussed a mathematical tool that takes both target resolution and scene

coverage into consideration [10]. We began by looking at the data set determined by the data-

collection manifold. It was noticed that the size of this manifold was directly related to the attain-

able resolution for a target. We followed the process developed by Dr. Scott Altrichter to create a

formula for calculating the surface area of this manifold which quantifies the resolution for a point

target.

After this, we looked at the scene geometry. By looking at the antenna footprint and antenna

steering, we could quantify scene coverage. Combining these two developments into a single

objective function gave us a tool that quantifies the trade-off between resolution and coverage. The

main difference from Dr. Altrichter’s work here is that we considered the 2D components of the

DCM, instead of the 3D components.

We extended Dr. Altrichter’s work by optimizing the objective function with respect to the

aircraft’s steering angles as well as its heading and pitch. We compared the results of this generated

flight path with other common SAR flight paths. We showed that we were able to generate a better

flight path than traditional SAR methods by maximizing the objective function.

It should be noted that we restricted the pitch rate so as to ensure the aircraft did not fly indefi-

nitely upward. Without this restriction, the aircraft will fly upward in order to increase the antenna

footprint and generate a high objective function value. The further the aircraft is from the targets,

the more likely it is to have a low SNR value. More detailed consideration of this effect on SNR is

addressed in Section 4.1.

We needed to determine a simple and general way to parameterize a flight path in order to

exploit this objective function. In Section 3.2.2C, we defined a recursive generator that relied upon

changing pitch and heading angles at each step of the path to direct the aircraft to the next step of

the path [10]. This formulation presented us with parameters that we could adjust to yield different

paths and different objective values.
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With the objective function defined, we were able to use the objective function as a way to

determine optimal flight paths. Not only did we optimize for an aircraft’s heading and pitch, we

were also able to optimize for the aircraft’s antenna steering angles. The simulations demonstrated

that this objective function can be used to define flight paths that provide more scene coverage and

resolution than in traditional SAR modes.

This lays the foundation for much future study. The objective function not only quantifies the

trade-off between target resolution and scene coverage, but also provides a flexible tool that allows

us to determine flight paths in a wide range of scenarios.

In the next chapter, we show the versatility of the objective function. We start by considering

the effects of SNR on our objective function. We then add a priority to visit specific targets or target

scenes. We also develop an extension of the objective function to plan flight paths for multiple

unmanned aerial vehicles (UAVs). Lastly, we implement two additional optimization algorithms

to our objective function and compare the results.
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Chapter 4

Flight Path Planning Extensions and Applications

In this chapter, we will show the flexibility of our approach in planning an optimal SAR flight

path. We will start by adding an SNR consideration. Backscattered power decays as 1/R4. Thus,

the further from the target scene the aircraft flies, the lower the SNR. We will compare various

modifications to the objective function that account for the SNR per target.

We will also observe how the flight path changes when we add a priority to see specific targets.

In addition to this, we will add a target scene with a higher priority. We will see that the flight path

is modified to see the higher priority targets in both of these cases.

After this, we will show how this objective function may be used to plan flights for multiple

vehicles. We will specifically implement this for multiple UAVs. We will start by generating flight

paths for two UAVs. This formulation may be extended to an arbitrary number of UAVs.

Lastly, we will implement additional algorithms in order to maximize the objective function.

We will compare the flight path resulting from using the greedy algorithm of Chapter 3 with a

genetic algorithm and a random search algorithm.

Ultimately, we will show that this formulated objective function may easily be modified for

various applications and extensions. The specific applications and extensions we will describe are

only a few of the plethora of possibilities we can explore with this objective function.

4.1 SNR Effects on Flight Path

4.1.1 SNR Overview

Recall our objective function:

V = 2(k2max − k2min)

∫

Z

∫ sf

si

∣∣∣∣
∂θz
∂s

∣∣∣∣ cos
2 ψz(s)dsdz, ∀z ∈ Z. (4.1)
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With the integral over the targets in the antenna footprint, the aircraft had a tendency to fly

very far upward. In doing this, the antenna footprint was large and contained many, or all, possible

targets. However, since backscattered power decays as 1/R4, SNR decreases as the aircraft flies

further from a target scene. Thus, we want to penalize the aircraft from flying indefinitely upward.

We will determine how exactly to create this penalizing factor by starting with the equation for

SNR for a general SAR scenario. The derivation of this, by Armin W. Doerry, is detailed in [51].

Doerry defines the SAR SNR equation as the following:

SNRimage =

(
PavgG

2
Aλ

3ρyσ0,ref
2(4π)3R3vx(kTFN)awr

)(
1

LradarLatmos

)[
awrawa

LrLa

] [
f

fref

]n
. (4.2)

According to Doerry, the terms in the brackets are usually nearly unity. Thus, we will assume they

are equal to 1. Then we are left with the following equation for SNR:

SNRimage =

(
PavgG

2
Aλ

3ρyσ0,ref
2(4π)3R3vx(kTFN)awr

)(
1

LradarLatmos

)
, (4.3)

where we have the following definitions:
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Definitions

Pavg average signal power

GA transmitter antenna gain factor

λ wavelength

ρy range resolution

σ0,ref target Radar Cross Section (m2 )

R range vector from target to antenna (m)

vx platform velocity (m/s), horizontal and orthogonal to the target direction

k Boltzmann’s constant = 1.38× 10−23 J/K

T nominal scene noise temperature ≈ 290 K

FN system noise factor for the receiver

awr azimuth impulse response broadening factor ≈ 1.2

Lradar microwave transmission loss factor due to miscellaneous sources

Latmos microwave transmission loss factor due to atmospheric sources

Now we will examine each element in equation (4.3) to determine which elements have a dependency

on the flight path.

• Signal power: This does not rely on the flight path, this will be the same regardless of the flight path.

• Wavelength: This will remain the same regardless of the flight path.

• Transmitter antenna gain: The equation for the transmitter antenna gain factor is the following:

GA =
4πAe

λ2
=

4πηapAA

λ2
, (4.4)

where Ae is the effective antenna aperture, AA is the physical area of the aperture, and ηap is the

aperture efficiency [51]. The aperture efficiency is approximately 0.5. Since the physical area of

the aperture remains constant throughout the flight path, the transmitter antenna gain factor will not

change with the flight path.
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• Range resolution: This depends on the bandwidth which does not depend on the flight path.

• Radar cross section: We will assume all targets are the same and are point sources, so we will

assume the target RCS will not change with respect to the aircraft’s flight path.

• Range vector: This will depend on the flight path.

• Platform velocity: This will change with respect the aircraft’s steering angles and flight path. We

will define this as the following:

vx = v sin(θ), (4.5)

where v is the velocity of the aircraft and θ is the angle between the velocity vector and the look

direction.

• Boltzmann’s constant: This is constant by definition.

• Nominal scene noise temperature: This is assumed to be constant (approximately 290 K).

• System noise factor for the receiver: This will not be dependent on the aircraft’s flight path.

• Azimuth impulse response broadening factor: The is assumed to be constant (approximately 1.2).

• Microwave transmission loss: We will ignore this factor due to both the atmospheric and miscella-

neous sources.

4.1.2 Incorporating into Objective Function

Based on this analysis, the aircraft’s flight path only affects the range vector and platform velocity. Thus,

in order to account for SNR in our flight path planning, we need only consider the range vector and platform

velocity components.

The platform velocity only appears when we use steering angles. First we will ignore the platform

velocity and focus on the range. We will later add the platform velocity into our objective function.

The range appears in equation (4.3) as 1/R3. Thus, we will modify our objective function by a factor of

1/R3. We will look at how the flight path varies when we both multiply the objective function by this factor

and when we add this factor to the objective function.
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The two modified objective functions we will test are below:

V = 2(k2max − k2min)

∫

Z

C

R3
z

∫ sf

si

∣∣∣∣
∂θz
∂s

∣∣∣∣ cos
2 ψz(s)dsdz, ∀z ∈ Z (4.6)

V = 2(k2max − k2min)

∫

Z

(∫ sf

si

∣∣∣∣
∂θz
∂s

∣∣∣∣ cos
2 ψz(s)ds+

C

R3
z

)
dz, ∀z ∈ Z, (4.7)

where Rz is the range to target z and C is a constant.

After we test these objective functions, we will add the platform velocity consideration. Namely, we

will also test the following objective functions:

V = 2(k2max − k2min)

∫

Z

C

vxR3
z

∫ sf

si

∣∣∣∣
∂θz
∂s

∣∣∣∣ cos
2 ψz(s)dsdz, ∀z ∈ Z (4.8)

V = 2(k2max − k2min)

∫

Z

(∫ sf

si

∣∣∣∣
∂θz
∂s

∣∣∣∣ cos
2 ψz(s)ds+

C

vxR3
z

)
dz, ∀z ∈ Z. (4.9)

In order for C to maintain correct units, we first will perform dimensional analysis on equations (4.7)

and (4.9). First, the term
∫ sf
si

∣∣∂θz
∂s

∣∣ cos2 ψz(s)ds is dimensionless. The term 1
R3

z
has dimensions 1

length3

and the term 1
vxR3

z
has dimensions 1

length

time
length3

= time
length4 . Thus, in equation (4.7), C has dimensions of

length3. In equation (4.9), C has dimensions of length4

time
. In this context, length = meters and time =

seconds. Thus, C has units of either m3 in (4.7) or m4

s
in (4.9).

It should be noted the objective function is dimensionless and thus unit-free. In order to ensure the

objective function is dimensionless in equations (4.6) - (4.9), the units of C in equations (4.6) and (4.8) are

m3 and m4

s
, respectively.

For comparison, the following figures represent a flight path from using the original objective function,

equation (4.1). The objective function value was 7311.64 in this scenario.
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Figure 4.1: Flight path and targets

Figure 4.2: Flight path, targets, and antenna footprints
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4.1.3 Results from (4.6)

The following are results from applying equation (4.6). The objective function in this scenario was small

since R was large. The objective function value was 6.12e× 10−8.

Figure 4.3: Flight path and targets

Figure 4.4: Flight path, targets, and antenna footprints
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4.1.4 Results from (4.7)

Next, figures 4.5 and 4.6 are results from using equation (4.7) as the objective function with different

constant values, C.

Figure 4.5: Flight path and targets with C = 1m3, objective function value is 7311.64

Figure 4.6: Flight path, targets, and antenna footprints with C = 1m3, objective function value is 7311.64
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Since 1/R3 is such a small value, the objective function value barely changes until C ≈ 1 × 109 m3.

This is shown in figures 4.7 - 4.12:

Figure 4.7: Flight path and targets with C = 1× 109 m3, objective function value is 7317.12

Figure 4.8: Flight path, targets, and antenna footprints with C = 1 × 109 m3, objective function value is

7317.12
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Figure 4.9: Flight path and targets with C = 1× 1010 m3, objective function value is 7193.37

Figure 4.10: Flight path, targets, and antenna footprints with C = 1× 1010 m3, objective function value is

7193.37

When equation (4.7) is optimized, the flight path is not affected until C is a very large value. At

C ≥ 4 × 1010 m3, all the flight paths look nearly the same. This is due to the size of the remaining terms

of the objective function. Thus, the objective function is dominated by the C/R3 term and resolution is no

longer a leading factor in the objective function. Since one of our main goals with the objective function is
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Figure 4.11: Flight path and targets with C = 4× 1010 m3, objective function value is 7939.82

Figure 4.12: Flight path, targets, and antenna footprints with C = 4× 1010 m3, objective function value is

7939.82

to maximize resolution, we will ensure that C ≤ 4× 1010 m3. In both cases, the flight path tends to a lower

flight path. This is what we expected - the SNR is higher the closer the antenna is to the target scene.
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4.1.5 Results from (4.8)

Now we will look at results from using equation (4.8) as the objective function, shown in figures 4.13

and 4.14.

Figure 4.13: Flight path and targets with an objective function value of 4.21× 10−8

Figure 4.14: Flight path, targets, and antenna footprints with an objective function value of 4.21× 10−8

4.1.6 Results from (4.9)

Lastly, the results from using equation (4.9) are seen in figures (4.15) - (4.17):
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Figure 4.15: Flight path and targets with C = 1 m4

s
, objective function value is 7311.64

Figure 4.16: Flight path, targets, and antenna footprints with C = 1 m4

s
, objective function value is 7311.64

Once again, the flight path does not change very much until after C is very large, shown in figures 4.17

and 4.18.

In summary, we used the expression for SAR SNR in [51] to incorporate the effect of SNR in our

objective function. We looked at multiple ways to incorporate this term in our objective function. All the
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Figure 4.17: Flight path and targets with C = 4× 1010 m4

s
, objective function value is 7925.74

Figure 4.18: Flight path, targets, and antenna footprints with C = 4× 1010 m4

s
, objective function value is

7925.74

objective functions that include SNR result in flight paths with limited altitude. This is what we hoped to

accomplish by adding this term.
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Once we determined the SNR term needed for this scenario, including it in the objective function was

quite simple. This is just one example of the versatility of this objective function. Next, we will see that it is

straightforward to add a weighting term to various targets in a target scene or multiple target scenes.

4.2 Adding Target Priority

In a realistic scenario, some targets will be more important to visit than others. We will add a priority of

visitation function to the objective function in the following way:

V = 2(k2max − k2min)

∫

Z

p(z)

∫ sf

si

∣∣∣∣
∂θz
∂s

∣∣∣∣ cos
2 ψz(s)dsdz, ∀z ∈ Z, (4.10)

where p(z) is the priority of visiting target z. As in the SDA scheduling problem, this priority function may

be set in various ways. We can make this a function of time since the target was last seen. This may be set

as a constant value. There is much flexibility in this definition.

First, we examine the results from setting only a few targets at a higher priority than the rest. In figure

4.20, the three magenta targets on the top left corner had a constant and equal priority greater than the

constant and equal priorities of the black targets.

In figure 4.19, all of the targets have an equal and constant priority of visitation. In the equally weighted

target scene, the antenna footprints gravitate towards the center of the target scene to see the most targets for

as long as possible. This is to maximize coverage and resolution per target equally.

In contrast, when the three corner targets are weighted heavier, the antenna footprints are steered towards

the heavier weighted targets. This is to maximize the resolution of those specific targets more than the rest

of the targets.

In addition to prioritizing individual targets, it may also be important to prioritize an entire target scene

over another target scene. In figure 4.21, the targets in the magenta target scene have a heavier weight than

the targets in the black target scene.

We can see that when the aircraft starts its flight in the middle of the scenes, it flies around the heavier

weighted target scene.

This modification to our objective function has many benefits. This allows us to focus on a particular

target or patch of targets more than the remaining targets. Additionally, every target may have its own
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Figure 4.19: Antenna footprints with equal target priority

Figure 4.20: Antenna footprints with three weighted targets, colored magenta
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Figure 4.21: Two target scenes. Magenta targets are weighted heavier than black targets.

unique weight to it, thus allowing one to look at higher priority targets and gradually look at lower and

lower priority targets.
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4.3 Multiple Vehicle Path

The last extension to the objective function that we will pursue is adding an application to unmanned

aerial vehicles (UAVs). UAVs have existed since before manned aircraft [52]. Their potential military

combat application was realized in the two World Wars. By the Vietnam War, the interest in UAVs turned to

surveillance and stealth. Today, UAVs are still used for military purposes. They are also used for applications

such as archaeology, filmmaking, search and rescue, and scientfic research, along with a plethora of other

applications.

Since the purpose of SAR is imaging, UAV imaging applications are pertinent. One application is

stitching together images taken from multiple UAVs [53] to create one large image. This provides the

ability to search a greater region of interest. Another application is the ability to generate 3-dimensional

images using multiple images taken from UAVs.

In SAR, we have monostatic and multistatic sensors. With a multistatic sensor, the transmitter and

receiver are in different locations. With a monostatic sensor, the transmitter and receiver are in the same

location. In the work presented here, we will use monostatic sensors.

Below we use the objective function formulated in the previous sections to plan an optimal flight path

for multiple UAVs. The optimization process will find the optimal waypoints for the UAVs to pass through.

Using UAVs in this scenario allow for greater maneuverability than in the previous sections where we only

considered a single, traditional aircraft. In the next section, we will use the work completed in the previous

sections to optimize against each UAVs heading, pitch, and antenna steering angles.

4.3.1 Mathematical Formulation

We use equation (4.1) in order to build an objective function for optimizing the flight paths of multiple

UAVs. We will modify the objective function in the following way:

V = 2(k2max − k2min)
∑

U

∫

Z

∫ sf

si

∣∣∣∣
∂θz,u
∂s

∣∣∣∣ cos
2 ψz,u(s)dsdz, ∀z ∈ Z, ∀u ∈ U , (4.11)

where U is the set of UAVs and the subscript u refers to each UAV. This modification to the objective

function assumes that data can be combined coherently. This requires accurate synchronization of timing

systems.
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Below are results from multiplying the objective function by 1/R3, where the blue and green ellipses

are the corresponding antenna footprints of the blue and green UAVs:

Figure 4.22: Two UAVs’ flight paths

Figure 4.23: Antenna footprints of UAVs.
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In a scenario with two target scenes, we get the following flight paths:

Figure 4.24: Greedy flight path

Figure 4.25: Antenna footprints from greedy flight path

83



In these examples presented, we can see how versatile this objective function is. We are able to use it

as a framework for various scenarios. By making slight modifications to the objective function, we can add

a higher priority of seeing specific targets or target scenes. This is a realistic concern for many scenarios.

It is likely that in a given scenario, some targets or target scenes are more important to observe than others.

When we added a target or target scene priority, we see from the results that the aircraft flies or steers its

antenna more heavily towards those targets or target scenes.

We were also able to add an SNR consideration to the objective function by either adding or multiplying

the SNR term to the objective function. Considering SNR in a SAR scenario is an important real-life

concern. Without this consideration, the aircraft tends to a higher altitude in order to increase the antenna

footprint. However, realistically, as the range from the target increases, the backscattered power decreases.

Thus, incorporating SNR into the objective function is crucial.

Additionally, by again making a slight modification to the objective function, we were able to plan a

flight path for multiple vehicles. This is especially beneficial to a scenario with multiple UAVs. We looked at

scenarios with a single target scene and multiple target scenes. In both of these cases, the objective function

was able to plan flight paths for both UAVs.

We have only begun to touch upon all of the possibilities with this objective function. Given its versatil-

ity, this objective function provides the foundation to many other avenues. By making various modifications,

it may be used in an abundance of applications.

84



Chapter 5

Additional Algorithms

One factor that limits the quality of the flight path is the algorithm used to maximize the objective

function. The optimization algorithm implemented in the results of Chapter 4 is the same as in Chapter 3.

This is a simple greedy algorithm. This only chooses the next best place for the aircraft to fly and steering

angles to point. It does not consider any future possibilities. Consequently, there are cases where the flight

path gets “stuck". Namely, the path can end up in a position where it can only fly lower than the specified

height constraint.

Additionally, it can be seen from some of the figures in Chapter 4 that there are some parts of the

flight path that do not see any targets. This is also due to the algorithm not being able to predict future

possibilities. It simply chooses the next best position and steering angles. From some of these positions and

steering angles, there is no way for the aircraft to see a target.

The current greedy algorithm works well most of the time. However, there are drawbacks to using

this algorithm. Ultimately, we want to use an algorithm that considers future possibilities when it assigns

a specific flight position and steering angles. Thus, we implement some additional algorithms in order to

better optimize the flight path.

We used some of the same scheduling algorithms as in Chapter 2 with the Space Domain Awareness

sensor tasking problem. Namely, in addition to the already implemented greedy algorithm, we implement a

random search algorithm and a genetic algorithm. For all of the algorithms implemented, we use all of the

same constraints outlined in Section 3.2.3.

5.1 Block Greedy and WTA Algorithms

We did not implement a weapon-target-assignment (WTA) algorithm. Recall, this algorithm is per-

formed by finding all possible options for the aircraft to move and steer its antenna across a designated

block of waypoints. For more detail on this algorithm, see Chapter 2. In Chapter 2, we saw that this algo-

rithm was extremely computationally intensive. It performed well in terms of generating a good schedule.

However, the trade off between optimality and run time with this algorithm made it less than desirable. Be-
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low is pseudo-code of this algorithm:

Result: Regionally Optimal Flight Path

define waypoint block size;

for (waypoints / block size) do

for waypoint blocks do

find all possible tasks per waypoint

end

compute every combination of tasks for waypoint block;

choose highest scoring combination block;

end

return WTA path;

Algorithm Weapon-Target-Assignment Algorithm

The complexity of this algorithm lies at the line ‘compute every combination of tasks for waypoint

block’. For example, let mw, nw, pw, qw be the number of possible headings, pitches, and steering angles

for waypoint w. Then the total possible combination of flight paths is the following:

total paths =
∏

w

mwnwpwqw. (5.1)

Suppose there are 20 possibilities of each heading, pitch, and steering angles for each waypoint. Also

suppose there are 50 waypoints. Then there would be (204)50 ≈ 1.606938× 10260 total possible paths. As

in Chapter 2, this is too many possibilities to compute the global optimum by brute force.

In the WTA algorithm, we break this into smaller pieces so that instead of computing this combination

over 50 waypoints, we compute this over a smaller block of waypoints. However, even breaking this into

smaller waypoint blocks for the WTA algorithm is highly computational. Thus, we did not apply this

algorithm for this application.

Additionally, we did not implement a block greedy algorithm in this case. In the block greedy algorithm

in Chapter 2, we computed the possible look angles for each sensor at each time window in the time window

blocks, as opposed to computing the possible combination of look angles for each sensor across that time

window block. In the SDA case, we knew the location of the sensor at each time based on formulas for
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propagation. Thus, we knew how many targets the sensors would see for each look angle for each time.

This was important since we scheduled sensor look angles out of temporal order. We chose the highest

scoring look angle for each sensor out of order of time in each time block.

In the flight path case, we could compute all possible headings, pitches, and steering angles for each

waypoint in a block of waypoints. However, without knowing what the previous position of the aircraft is,

we will not know where the next heading and pitch places the aircraft. Thus, we will not know which targets

or how many targets it is able to see using that heading, pitch, and steering angles. Without knowing this,

we will not know which heading, pitch, and steering angles produces the highest score. So we will not know

which to schedule out of order of the flight path waypoints.

Recall the following description of the block greedy algorithm:

Figure 5.1: Block Greedy Algorithm

In this case, the tasks consist of 4-tuples of headings, pitches, and steering angles. In order to schedule

the highest scoring task, we need to know where the aircraft is so we know how many targets lie in its

antenna footprint. However, without knowing where the aircraft was at the previous time, we have no way

of knowing where the 4-tuple will place the aircraft. Thus, we have no way of knowing what targets the

aircraft is able to see and are not able to compute the highest scoring task out of flight path order.

In the next sections, we will compare a genetic algorithm and random search algorithm with our existing

greedy algorithm. We used the objective function for all of these algorithms along with the constraints
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detailed in Section 3.2.3. Since each of these algorithms contain a random component, we ran each of these

algorithms multiple times to detect the overall trend. In the figures, we show the best flight generated after

running the algorithms multiple times. When we compare the score and number of targets seen for each

algorithm, we compare the averages of these values from these multiple runs.

5.2 Greedy Algorithm

The greedy algorithm implemented here is the same algorithm described in Section 3.3. The best flight

path generated after these multiple runs with the greedy algorithm is shown in figures 5.2 and 5.3.

Figure 5.2: Greedy flight path
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Figure 5.3: Antenna footprints from greedy flight path

5.3 Random Search

In the random search algorithm, at each waypoint, this algorithm randomly chooses each UAV’s next

heading, pitch, and steering angles. The pseudo-code for this algorithm is below:

Result: Random Flight Path

initialize empty path;

for waypoints do

choose random set of heading, pitch, steering angles;

compute aircraft position resulting from random set;

add aircraft position to waypoint;

end

return random path;

Algorithm Random Search Algorithm

This algorithm was run many times. Figures 5.4 and 5.5 show the highest scoring schedule after these

runs. Since this algorithm is entirely random, figures 5.6 and 5.7 show an additional assortment of these

random algorithm runs.
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Recall, the randomly chosen parameters are the aircraft’s heading, pitch, and steering angles. We can

see in these figures that none of the flights or antenna footprints look the same. It should be noted that all of

these parameters are constrained to realistic aircraft movements. Thus, the flights appear relatively smooth.

Figure 5.4: Randomly generated flight paths for two UAVs

Figure 5.5: Corresponding antenna footprints
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Figure 5.6: An assortment of randomly generated flight paths
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Figure 5.7: The corresponding footprints of the flight paths in the figure above
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5.4 Genetic Algorithm

After implementing a random search algorithm, we looked at a genetic algorithm. This algorithm be-

haves the same way as in Chapter 2. Recall from Chapter 2, the genetic algorithm consists of the following

steps: initialize population, crossover for each generation, and mutate for each generation. The pseudo-code

for this algorithm is below:

Result: Genetic Flight Path

generate initial population;

for generations do

crossover population;

mutate population;

end

path = max crossed and mutated population;

return genetic path;

Algorithm Genetic Algorithm

In this scenario, a population consists of a set of heading, pitch, and steering angles for each waypoint.

The first step in the genetic algorithm is to randomly choose n populations to initialize. After this, we

crossover and mutate this population for m generations.

In order to perform the crossover step, random population pairs are generated until each population in

a pair satisfies a specific amount of fitness. Namely, the scores of the populations must be greater than a

set threshold. Once a satisfactory population pair is chosen, they crossover to form a new population. This

is done by randomly choosing waypoints or waypoint groups from each population pair to use in the new

population until the new population has a heading, pitch, and steering angle for each waypoint.

After the crossover step, a given percent of waypoints are mutated. This is done by randomly selecting

these waypoints to be mutated. We randomly select a set of heading, pitch, and steering angles to replace

the existing heading, pitch, and steering angles.

After repeating the crossover and mutated steps over the m generations, we choose the highest scoring

path from the latest population set. See Chapter 2 for more detail on the genetic algorithm.

Figures 5.8 and 5.9 are results from using the genetic algorithm.
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Figure 5.8: Flight produced from a genetic algorithm.

Figure 5.9: Antenna footprints from genetic algorithm generated flight path.

In summary, we have implemented a greedy, random search, and genetic algorithm on this flight path

planning problem. In figure 5.10, we see how these algorithms compare based on the objective function

score achieved. As we can see from this result, the genetic algorithm has the highest objective function

score. Thus, it generates the best flight path out of all of the algorithms implemented.
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Figure 5.10: Objective function score by algorithm

5.5 Conclusion and Future Work

In Chapter 3, we followed the logic from Altrichter [10] to develop an innovative objective function

to maximize image resolution and scene coverage. The results from this objective function were compared

with the results from common SAR flight paths. Namely, we compared our flight path with a stripmap mode,

spotlight mode, and circular mode. Ultimately, the flight generated from the objective function outperformed

the other flight paths.

We then extended this work by first optimizing against the aircraft’s antenna steering angles in addi-

tion to its heading and pitch. This created a more realistic flight path planning scenario and generated a

more robust SAR flight path planning ability. We were able to obtain a higher objective function value by

optimizing against these additional parameters.

In Chapter 4, we explored many applications and extensions that may be extrapolated from our formu-

lated objective function. We first added an SNR consideration to our flight path. We were able to include

this in our objective function. This kept our aircraft from flying indefinitely upward.

After this, we added target priority and target scene priority. As we expected, this led to a flight path

that focused specifically on higher priority targets or target scenes. This added an ideal flexibility to how we

searched an area.
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We then used our objective function to generate flight paths for multiple vehicles. We specifically

looked at flight path planning for a collection of multiple, mono-static UAVs. The objective function was

instrumental in creating an optimal flight path for multiple UAVs. This work could be useful to flight path

planners for platforms carrying SAR systems.

Lastly, in Chapter 5, we analyzed the outcome of maximizing the objective function using various opti-

mization algorithms. In Chapters 3 and 4, we used a greedy algorithm to maximize the objective function.

In this chapter, we also implemented a random search algorithm and a genetic algorithm. Ultimately, we

found that the genetic algorithm produced the best flight path out of all of the algorithms we implemented.

We explored many extensions and applications of using this objective function. There are many more

possibilities. Some future work may include creating a more robust flight path for UAVs. As the scenario

becomes more realistic, more constraints must be considered. Some additional considerations may be to

keep the UAVs from flying into each other’s antenna beams. In most of the scenarios we tested, the UAVs

looked at different targets so this concern was not applicable. However, there are many situations in which

this is an important consideration. It may also be important to ensure the UAVs fly a certain distance apart.

These modifications are all possible given the flexibility of our current framework.

Additional future work with UAVs might include gathering 3D information on a target scene. In order

to generate a flight path that considers this 3D information, we may modify the objective function to include

the 3D component of the data-collection manifold. See Appendix D for a derivation of the objective function

using the 3D component of the data-collection manifold.

Ultimately, this objective function has been found to be incredibly versatile. We have shown many

possible extensions and applications for this objective function. These are just a few of many possibilities.

This objective function opens many avenues for future research.
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Appendix A

Erf Function

The erf function is the error function. The error function is defined as the following:

erf(z) =
2√
π

∫ z

0
exp(−t2)dt. (A.1)

Figure A.1: Erf Function
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Appendix B

Maxwell’s Equations Derivation

(The following work is a combined effort of Naomi Owens-Fahrner and Colin Roberts, with refer-

ences [54] [55] [56] [57] [58])

The equations we want to derive are the following:

Gauss’ Law for Electric Fields: ∇ ·E =
ρ

ǫ0

Gauss’ Law for Magnetic Fields: ∇ ·B = 0

Faraday’s Law: ∇×E = −∂B
∂t

Ampere’s Law: ∇×B = µ0

(
J+ ǫ0

∂E

∂t

)
.

We can see that Faraday’s Law and Ampere’s Law describe the coupling between the electric field E and

magnetic field B fields. Both of Gauss’ Laws describe the nature of the sources for the two fields.

B.1 Derivation

To derive the following equations, we pose some physical requirements on the nature of these fields.

First, we claim that these fields are sourced from charges q and the motion of these charges. We also require

that these fields are additive in the sense that the field produced by a charge q permeates space without the

knowledge that another charge exists or not. This is to say, for example, that if we have a charge q1 that

generates an electric field E1 and a charge q2 that generates a field E2 that the resulting field is given by

E = E1 +E2.

The same quality holds true for magnetic fields and for distributions of charges. This allows us to consider

the case with a single charge as we can superimpose the solutions for a collection of charges later on. Given

this, we expect our equations to be linear.
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These equations were not originally derived. Instead, they were formulated to match results from exper-

imentation. One particular observation is that there is no fundamental source for the magnetic field. In other

words, we have charges that create sources for electric fields, but there is no notion of a “magnetic charge."

Often, we say that there are no magnetic monopoles.

It is important to remember that these are dynamical equations and charges do influence motion of other

charges. One must state whether charges are to be fixed in place or are free to move. An example would be

a fixed nucleus of an atom and an orbiting electron.

B.1.1 Gauss’ Law for Electric Fields

Fix a charge q in R3. We can enclose this charge with an arbitrary closed surface S. This charge creates

a field at all points in space which we can measure indirectly by measuring the flux ΦE of this field through

our surface.

Figure B.1: A helpful picture to keep in mind for Gauss’ law.

From experiment, it was observed that the total flux through S is proportional to the charge enclosed.

Thus we can write

ΦE =

∫∫

S

E · n̂dS = kq.

If the charge was located on the exterior to S, then the total flux through S would be zero. This means, we

care only about the distribution of charges inside S and thus if we instead had a charge distribution ρ(x)

contained inside S we could write

q =

∫∫∫

V

ρ(x)dV.

With the relationship that S = ∂Ω, we can apply the divergence theorem to arrive at

∫∫∫

V

∇ ·EdV = k

∫∫∫

V

ρdV.
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Since this was true for our arbitrary surface S (and so an arbitrary region Ω), we must have that

∇ ·E = kρ.

From experiment, it turns out that k = 1
ǫ0

where ǫ0 is the permittivity of free space. It seems that charges

are fundamentally a source (or possibly sink) for electric field. The equation above is describing the outflow

of a field that is based on the charge.

B.1.2 Gauss’ Law for Magnetic Fields

This law seems to be more of a physical postulate. In fact, it is one that some physicists are still

trying to find counterexamples to! Since we believe there are no fundamental magnetic charges (magnetic

monopoles), we perform the exact argument as before but ρ must be identically zero. Hence,

∇ ·B = 0.

B.1.3 Faraday’s Law

Through experimentation, Faraday noticed that changing the magnetic flux in a circuit produced an

electromotive force (EMF). The EMF in an electric circuit is the electric potential between two points. This

is measured in volts, so we will call the EMF V . Faraday described his observation by

V = −dΦB

dt
(B.1)

where ΦB represents the magnetic flux. Now we will derive the various pieces in order to better describe

(1).

The magnetic flux is the amount of B passing through an arbitrary surface normal to B. We will call this

surface S. In other words,

ΦB =

∫∫

S

(B · n)dS (B.2)

This gives us information about the right hand side of the equation. For the left side of the equation, we

need to determine the EMF. Since the EMF is the electric potential between two points, the total EMF is the
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sum of the E field times the path between the points. We can write this by

V =

∫

C

E · tdL, (B.3)

where t is the unit tangent vector to our curve C. Using Stoke’s Theorem,

V =

∫∫

S

(∇× E) · ndS. (B.4)

Substituting equations (2) and (4) into equation (1), we get

∫∫

S

(
∇× E +

∂B

∂t

)
· ndS = 0. (B.5)

Since we have an integral over a finite area equalling zero, the integrand also equals zero. Thus we have

∇× E +
∂B

∂t
= 0. (B.6)

This in turn yields Faraday’s Law. Namely,

∇× E = −∂B

∂t
. (B.7)

B.1.4 Ampere’s Law

Again, through experimentation, Maxwell proposed that the strength of the magnetic field is propor-

tional to the electric current, I . Specifically, the amount of magnetic field along a loop surrounding a wire

with current I will be given by ∫

C

B · tdL = µ0I.

We can then use Stokes’ theorem to arrive at

µ0I =

∫∫

S

(∇×B) · ndS

where S is an arbitrary area bounded by the closed loop C.
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Current I can be found by looking at the flux of the current density J through our surface S. That is to

say,

µ0I = µ0

∫∫

S

J · ndS.

Given this, we would arrive at

∫∫

S

(∇×B+ µ0J) · dS = 0.

Since S is arbitrary, we can safely say that

∇×B = µ0J. (B.8)

However, this is not the exact equation we wanted. It turns out, by observation, Ampere noticed that the

magnetic field from a capacitor in an AC circuit would vary. Current was not passing through the capacitor,

but the plates were charging. Thus, he realized that the changing charge (and therefore a changing electric

field) must also affect the magnetic field.

Recall that current is also the change in charge over time

I = −∂q
∂t
.

This leads us to ∫∫

S

J · ndS = −
∫∫∫

Ω

∂ρ

∂t
dV.

The divergence theorem then yields

∫∫∫

V

(∇ · J)dV = −
∫∫∫

V

∂ρ

∂t
dV.

Our S was chosen arbitrarily, and so Ω is as well. Therefore

∇ · J = −∂ρ
∂t
.
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From previous work, we have

ρ = ǫ0(∇ ·E)

and thus

∇ · J = −ǫ0
(
∇ · ∂E

∂t

)
.

Now, the cross product u× v = w will always be orthogonal to both u and v. In particular, we have

∇ · (∇×B) = 0.

Applying this to (8) shows us that we are missing a term! We must actually have that

∇×B = µ0

(
J+ ǫ0

∂E

∂t

)
,

so that the cross product identity shown above always holds.

B.1.5 Boundary Conditions

The fields generated from charges and currents permeate all of space. With that, we do not expect to

assign boundary conditions on a given spatial domain. Instead, we impose charge densities and current

densities and the resulting fields can be computed from there. These densities can vary over time but the

fields that arise exist at all points in space. This is all to say that we work on Ω = R3.
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Appendix C

Data-Collection Manifold Derivation

We will follow the the data-collection manifold derivation in [7,10]. In the phase of equation (3.23), we

apply a change of variables and we get the first term of the Taylor expansion as the following:

2k(|Rs,z| − |Rs,x|) = (z − x) · 2ω
c
R̂s,z. (C.1)

Applying the Stolt change of variables, we obtain

(s, ω) −→ ξ =
2ω

c
R̂s,z, (C.2)

which gives us the PSF with the desired phase:

K(z,x) =

∫
ei(z−x)·ξQ(ξ, z)A(ω(ξ), s(ξ),x)

∣∣∣∣
∂(s, ω)

∂ξ

∣∣∣∣ dξ. (C.3)

We choose a filter Q such that eq. (C.3) is as close to the δ-function as possible. Then (C.3) becomes

the following:

∫

Ωz

ei(z−x)ξdξ, (C.4)

where the data-collection manifold is given by (3.25).
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Appendix D

Objective Function using 3D DCM

The following derivation comes from Dr. Scott Altrichter’s PhD Dissertation [10]. If we consider the

DCM with the vertical component, we get the following parametrization:

ξ(ω, s) = [ξ1, ξ2, ξ3]

=
2ω

c
[cos θ(s) cosψ(s), sin θ(s) cosψ(s), sinψ(s)],

(D.1)

for ω ∈ [ωmin, ωmax] and s ∈ [si, sf ].

We use multivariable calculus tools in order to find the surface element of the data-collection manifold

associated with each target z. This is found by computing the magnitude of the cross product of ξω and ξs

ξω × ξs =

∣∣∣∣∣∣∣∣∣∣

î ĵ k̂

∂ξ1
∂ω

∂ξ2
∂ω

∂ξ3
∂ω

∂ξ1
∂s

∂ξ2
∂s

∂ξ3
∂s

∣∣∣∣∣∣∣∣∣∣

=

(
∂ξ2
∂ω

∂ξ3
∂s

− ∂ξ3
∂ω

∂ξ2
∂s

)
î

−
(
∂ξ1
∂ω

∂ξ3
∂s

− ∂ξ3
∂ω

∂ξ1
∂s

)
ĵ

+

(
∂ξ1
∂ω

∂ξ2
∂s

− ∂ξ2
∂ω

∂ξ1
∂s

)
k̂

(D.2)

⇒ ||ξω × ξs|| =

√(
∂(ξ2, ξ3)

∂(ω, s)

)2

+

(
∂(ξ1, ξ3)

∂(ω, s)

)2

+

(
∂(ξ1, ξ2)

∂(ω, s)

)2

=
4ω

c2

√
(ψ′(s))2 + (θ′(s))2 cos2(ψ(s)).

(D.3)

Now, in order to formulate an expression for the surface area of the DCM at target z, we compute the

following:
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A(Ω) =

∫ sf

si

∫ ωmax

ωmin

||ξω × ξs||dωds

= 2(k2max − k2min)

∫ sf

si

√
(ψ′(s))2 + (θ′(s))2 cos2(ψ(s))ds.

(D.4)

Finally, in order to consider all target DCM, we integrate over all targets within the aircraft’s antenna

footprint. We are left with the following objective function:

V = 2(k2max − k2min)

∫

Z

∫ sf

si

√
(ψ′(s))2 + (θ′(s))2 cos2(ψ(s))dsdz, ∀z ∈ Z. (D.5)
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List of Abbreviations

• CDF = Cumulative Distribution Function

• DCM = Data-Collection Manifold

• ECEF = Earth Centered Earth Fixed

• ECI = Earth Centered Inertial coordinate frames

• EW = Extra Wide Swath

• FOV = Field of View

• GEO = Geosynchronous Earth orbit

• IFT = Inverse Fourier Transform

• IOD = In Orbit Demonstration

• IW = Interferometric Wide Swath

• LEO = Low Earth Orbit

• MEO = Medium Earth Orbit

• PRF = Pulse Repetition Frequency

• PSF = Point Spread Function

• RSO = Resident Space Object

• SAR = Synthetic Aperture Radar

• SDA = Space Domain Awareness

• SDARA = Space Domain Awareness Resource Allocation

• SNR = Signal-to-Noise Ratio

• TLE = Two-line Element Set
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• TSP = Traveling Salesperson Problem

• UAV = Unmanned Aerial Vehicle

• WTA = Weapon-Target-Assignment Algorithm
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