
DISSERTATION

JOINT SHAPE AND MOTION ESTIMATION FROM ECHO-BASED SENSOR DATA

Submitted by

Samuel J. Pine

Department of Mathematics

In partial fulfillment of the requirements

For the Degree of Doctor of Philosophy

Colorado State University

Fort Collins, Colorado

Fall 2018

Doctoral Committee:

Advisor: Margaret Cheney

Daniel Bates
Bailey Fosdick
Chris Peterson

This work is licensed under a Creative Commons CC0 1.0 Universal Public Domain Dedication

License: https://creativecommons.org/publicdomain/zero/1.0/

ABSTRACT

JOINT SHAPE AND MOTION ESTIMATION FROM ECHO-BASED SENSOR DATA

Given a set of time-series data collected from echo-based ranging sensors, we study the prob-

lem of jointly estimating the shape and motion of the target under observation when the sensor

positions are also unknown. Using an approach first described by Stuff et al. [1], we model the

target as a point configuration in Euclidean space and estimate geometric invariants of the configu-

ration. The geometric invariants allow us to estimate the target shape, from which we can estimate

the motion of the target relative to the sensor position. This work will unify the various geometric-

invariant based shape and motion estimation literature under a common framework, and extend

that framework to include results for passive, bistatic sensor systems.

ii

ACKNOWLEDGEMENTS

In writing this thesis, I have received unwavering support from a number of sources. Most

specific to the work presented here, I thank my advisor, Margaret Cheney, for her guidance toward

interesting problems and her persistent advocacy for myself, her other students, and for graduate

students in general. Through her, I met a new group of colleagues at Matrix Research. Thank

you all for your knowledge, experience, and support, and thank you for providing the context and

motivation to pursue this problem. I am grateful to the Air Force Research Lab for funding various

aspects of this work.

Even when this work took a clear turn away from Dr.Cheney’s field of expertise, she provided

valuable advice and aided me in my search for answers. Some of that advice led me to my other

committee members. Many of the ideas contained here started as a conversation with either Dan

Bates or Chris Peterson, both of whom were happy to answer my questions and provide helpful

suggestions as I stumbled my way through the unfamiliar territory of this problem. Thanks to both

of them for fruitful discussions, as well as their excitement to share other interesting mathematics

with me. Thanks also to Bailey Fosdick, for agreeing to participate on my committee despite her

many new and exciting obligations as a parent.

Finally, thank you to my friends and family. I have no way to measure the laughter, the com-

panionship, and the love they have shown me. They made no direct contributions to this thesis, but

there is no doubt that I would not have completed it without their support.

iii

DEDICATION

To my parents,

who always wanted better for their children.

iv

TABLE OF CONTENTS

ABSTRACT . ii
ACKNOWLEDGEMENTS . iii
DEDICATION . iv
LIST OF TABLES . vii
LIST OF FIGURES . viii

Chapter 1 Introduction . 1
1.1 A Brief Introduction to SAR . 1

1.1.1 Electromagnetic Wave Propagation . 2
1.1.2 A Model for SAR . 3
1.1.3 An Imaging Operator . 6

1.2 A Short History of Shape and Motion Estimation 8
1.2.1 Motion-Only Estimation . 9
1.2.2 Joint Shape and Motion Estimation . 10

1.3 Shape and Motion Estimation Techniques 14
1.3.1 Affine Invariants Estimation . 15
1.3.2 Euclidean Invariants Estimation . 16
1.3.3 Monostatic Far-Field Case . 19
1.3.4 Monostatic Near-Field Case . 21
1.3.5 Bistatic Far-Field Case . 24

1.4 Related Techniques . 25
1.4.1 Interferometric Developments . 25
1.4.2 Image Factorization . 25
1.4.3 Low-Rank Subspace Decomposition 26

Chapter 2 A Polynomial Systems Approach . 27
2.1 Expression as a Polynomial System . 27

2.1.1 Ellipse Constraints . 28
2.1.2 Alternative System . 29
2.1.3 Attempted Numerical Solution with Bertini 30

Chapter 3 A Variety-Fitting Approach . 33
3.1 Monostatic, Near-Field Case . 35

3.1.1 Derivation of 2D Monostatic Near-Field Variety 35
3.1.2 Estimation of Geometric Invariants in 2D 37

3.2 Invariant Equation Discovery . 42
3.2.1 Recovering the Monostatic Near-Field Invariant 42

3.3 Discovering a Bistatic Near-Field Invariant 46
3.3.1 Elimination via Gröbner Basis Computation 48
3.3.2 Elimination via Resultants . 52

3.4 Improvements to the Resultant Computation 60

v

3.4.1 Determination of Resultant Degree . 60
3.4.2 Dixon Matrix Reduction . 63

Chapter 4 A Solution for the Passive Case . 67
4.1 An Invariant Equation for Passive SAR 67

4.1.1 Geometric Invariant Discovery . 67
4.1.2 General Invariant Equation . 70
4.1.3 Computing Affine Invariants . 72
4.1.4 Computing Euclidean Invariants . 78

4.2 Numerical Results . 80
4.2.1 Computing Affine Invariants . 81
4.2.2 Computing Euclidean Invariants . 82

4.3 Further Work . 84

Bibliography . 86

Appendix A Conventions . 92
A.1 Symbol Reference . 92
A.2 Fourier Transform . 93

Appendix B Approximations . 94
B.1 Born Approximation . 94
B.2 Far-Field Approximation . 95

vi

LIST OF TABLES

1.1 State of the search for invariants of radar data . 13

3.1 Dimension of BNF variety for various N . 50

4.1 Convergence results for PNF affine invariant estimation 84
4.2 Results for PNF Euclidean invariant estimation . 85

vii

LIST OF FIGURES

3.1 A generic 2D TDOA configuration . 34
3.2 Generic 2D monostatic configuration . 35
3.3 Generic 2D monostatic configuration, sensor contained in scatterers 36
3.4 Image of a range map for N = 3 . 40
3.5 Dixon matrices for the BNF system . 59
3.6 Full-rank submatrices for the BNF system . 60
3.7 Input file for a standard run of Bertini . 62
3.8 Bertini output for projection . 62

4.1 Approximate rank objective function . 76
4.2 Illustration of rank objective function . 83

B.1 Illustration of far-field approximation . 96

viii

Chapter 1

Introduction

1.1 A Brief Introduction to SAR

In a process similar to the echolocation of bats and dolphins, echo-based sensors can locate

objects by propagating a signal through the ambient medium and listening for echoes. The time

it takes the signal to travel through the medium, reflect off an object, and return to the sensor is

proportional to the total distance travelled by the signal. Bats instinctively use this, for example, to

estimate the relative location of flying insects. When we mimic this behavior using radio waves,

we call the process RAdio Detection And Ranging, or just RADAR. This acronym has become so

pervasive that we treat the acronym as a proper noun and neglect any fancy capitalization.

Though range finding remains the primary function of radar devices, the technology has taken

on a number of other applications over its lifetime, including imaging [2]. Radar enjoys the capa-

bility to operate day or night, and thanks to the relatively long wavelengths of radio waves, radar

systems are resistant to the effects of fog, smoke, and sand; they can even be used to image through

cover including foliage and buildings. These characteristics give radar advantages over other op-

tical imaging systems, and invite a large variety of applications. For example, radar is widely used

for collision avoidance and navigation in air traffic control, as well as in the speed-monitoring

radar used by police. Satellites equipped with radar systems monitor land movement, oil spills,

and land use in agriculture. Military radar systems detect and recognize hostile vehicles, and assist

in directing weapons to the desired target. Ground-penetrating radars are useful for guessing the

composition of the Earth’s crust, and we are all familiar with the weather radar that has become

the primary tool of meteorologists.

1

1.1.1 Electromagnetic Wave Propagation

The electromagnetic waves used by radar systems are described by Maxwell’s equations,

∇× E = −∂B
∂t

(1.1a)

∇× B = µ(J + ǫ
∂E
∂t

) (1.1b)

∇ · (ǫE) = ρ (1.1c)

∇ · (µB) = 0, (1.1d)

where E(t,x) is the electric field, B(t,x) is the magnetic field, J (t,x) is the electric current

density, ρ is the total electric charge, and the quantities µ, ǫ are the permeability and permittivity

of the medium through which the waves propagate. If we take our ambient medium to be dry air

and approximate this with the properties of free space, we can simplify Maxwell’s equations with

the constants J = ρ = 0 and set µ = µ0, ǫ = ǫ0. Take the curl of equation (1.1a) and combine this

with equation (1.1b) to find

∇× (∇× E) = −µ0ǫ0
∂2E
∂t2

.

Then, use the convenient vector identity,

∇× (∇× E) = ∇ (∇ · E)−∇2E ,

to produce

∇2E − µ0ǫ0
∂2E
∂t2

= 0. (1.2)

The speed of light in free space is related to the permittivity and permeability by c−2
0 = µ0ǫ0, so

that we can see that each component of the electric field satisfies the scalar wave equation,

(
∇2 − c−2

0 ∂2
t

)
E(t,x) = 0. (1.3)

2

The propagation speed of an electromagnetic wave depends on the medium through which it trav-

els, so to incorporate scattering from targets we modify the wave equation to include a spatially-

dependent wave speed,
(
∇2 − c−2(x)∂2

t

)
E(t,x) = 0. (1.4)

Scattering is the result of perturbations in wave speed, so it is common to define the reflectivity

function V (x) = c−2
0 − c−2(x), with the understanding that this is not an entirely accurate model

for electromagnetic scattering [2]. In truth, this model characterizes acoustic wave scattering. By

reducing Maxwell’s equations to the scalar wave equation in each component, we suppress some

of the more complicated interactions of the electric field, the magnetic field, and the current density

at the interface of materials.

1.1.2 A Model for SAR

In radar applications, it is convenient to think of the total electric field, E tot as the superposition

of an incident field, E in, and the scattered field, E sc. The incident field is the field radiated by our

antenna into free space, and so will satisfy the free space wave equation in (1.3). We expect this

field to be incident on some collection of objects, thus the naming convention. Some of the energy

from the incident field will scatter from those objects and return to the sensor as the scattered

electric field. With the superposition property of waves we can define the scattered field as the

total field minus the incident field, E tot = E in + E sc. As a result, the full problem to be solved is

(
∇2 − c−2(x)∂2

t

)
E tot(t,x) = j(t,x) (1.5a)

(
∇2 − c−2

0 ∂2
t

)
E in(t,x) = j(t,x), (1.5b)

where j(t,x) is the source term for the wave equation. We assume that the only power input comes

from our antenna, so that J (t,x) = j(t,x) models the current density on the antenna.

We can introduce the reflectivity function, V (x) = c−2
0 − c−2(x), into the system (1.5) by

taking the difference of the two equations,

3

(
∇2 − c−2

0 ∂2
t

)
E sc(t,x) = −V (x)∂2

t E tot. (1.6)

The goal of this radar imaging approach is to recover V from measurements of the scattered field.

Objects in the scene will have different electromagnetic properties than the background, and so we

can distinguish the location, shape, and orientation of these objects by forming an image of the

scene’s reflectivity.

We can solve the partial differential equation in (1.6) for E sc by convolving the right hand side

with the outgoing Green’s function,

g(t,x) =
δ(t− c−1

0 |x|)
4π |x| . (1.7)

The result is the Lippmann-Schwinger integral equation [2],

E sc(t,x) =

∫ ∫

g(t− τ,x− z)V (z)∂2
τE tot(τ, z) dτ dz. (1.8)

The Lippmann-Schwinger equation is slightly nicer in the frequency domain, so define the

Fourier-transform of E to be

E(ω) =

∫

eiωtE(t) dt. (1.9)

Here, we use ν to denote frequency; the abbreviation ω = 2πν is commonly called the angular

frequency. Additionally, we will let k = c−1
0 ω be the wavenumber. Then (1.8) takes the form

Esc(ω,x) = −
∫

G(ω,x− z)V (z)ω2E tot(ω, z) dz, (1.10)

where

G(ω,x− z) =
eik|x|

4π |x| (1.11)

is the Fourier transform of the Green’s function g. Both V and E are unknowns, so reconstructing

V given sampled values of Esc is a nonlinear inverse problem. It is common to linearize this

4

problem by making the Born approximation, which amounts to replacing the total electric field

with the incident electric field. While the Born approximation greatly simplifies the problem at

hand, it does not take into account the effects of multiple scattering. In some cases, this can result

in poor reconstructions of the scene reflectivity. See appendix B.1 for more discussion on the Born

approximation.

Assuming we can estimate the current density on our antenna, we can solve equation (1.5b)

for the incident electric field by convolving with the outgoing Green’s function. In the frequency

domain, the PDE takes the form

(∇2 + k2)E in(ω,x) = J(ω,x− x0), (1.12)

when we center the antenna at x0. Then we can solve for E in,

E in(ω,x) =

∫
eik|x−y|

4π |x− y|J(ω,y − x0) dy. (1.13)

Now, it follows from (1.10) that the Born-approximated scattered field (denoted by the subscript)

is

Esc
B (ω,x) = −

∫
eik|x−z|

4π |x− z|ω
2E in(ω, z)V (z) dz. (1.14)

If we assume for simplicity that our transmit and receive antennas are the same, then we can collect

data at the location x0,

Esc
B (ω,x0) =

∫

e2ik|x0−z|A(ω,x0, z)V (z) dz, (1.15)

where we have grouped the effects of the incident field, the geometric spreading factor (4π |x− z|)−1,

and the dependence on the chosen waveform into A. If our antenna is moving, it is more appropri-

ate to parameterize the antenna position with γ(s), so we replace x0, obtaining

Esc
B (ω, s) =

∫

e2ik|γ(s)−z|A(ω, s, z)V (z) dz. (1.16)

5

Since the speed of light is so much greater than the speed of the antenna and objects we might care

to image, it is common in radar applications to use separate variables to denote slow time and fast

time. For example, we think of t as a useful measure of the time it takes for an EM wave to travel

to a target and back to the receiver, and s will be in units more suited to measuring the amount of

time it takes our antenna to move a few meters.

1.1.3 An Imaging Operator

The data model we describe in (1.16) can be written as an operator on the reflectivity function,

η(ω, s) = F [V](ω, s). (1.17)

Here we use η instead of Esc
B , to note that the actual data collected is slightly different than Esc

B due

to matched filtering. To isolate V , we want to be able to invert the operator F . One strategy is to

find the adjoint operator to F , and modify that map to approximate the inverse, in the spirit of the

inverse radon transform [2]. We can define the Hermitian inner products

〈g,H〉ω,s =
∫

g(ω, s)H∗(ω, s) dω ds, (1.18)

〈G, h〉z =
∫

G(z)h∗(z) dz, (1.19)

so that the adjoint we seek is the operator F † defined by

〈g, Fh〉ω,s = 〈F †g, h〉z (1.20)

for all g(ω, s) and h(z). Using our definition of F from (1.17), we want F † such that

∫

f(ω, s)η∗(ω, s) dω ds =

∫

(F †f)(x)V ∗(z) dz. (1.21)

It follows that

6

∫ (∫

f(ω, s)e−2ik|γ(s)−z|A∗(ω, s, z) dω ds

)

V ∗(z) dz =

∫

(F †f)(x)V ∗(z) dz, (1.22)

so that our adjoint is

F †g(z) =

∫

e−2ik|γ(s)−z|A∗(ω, s, z)g(ω, s) dω ds. (1.23)

Then we can define an approximate inverse operator of the form

B[η] =

∫

e−2ik|γ(s)−z|Q(ω, s, z)η(ω, s) dω ds. (1.24)

This operator is sometimes referred to as a filtered backprojection operator, and has a similar

physical interpretation to the backprojection operator defined for the Radon transform. The exact

specification of the filter Q is not important for this exposition, but we do note that the antenna

position, γ(s), is necessary for construction of the imaging operator in (1.24). When we know the

position of the platform relative to the scene, we can reconstruct a reasonable image of the scene,

I(z) = B[η], up to the resolution of the system.

Typically, the resolution of a radar image is restricted by the antenna aperture, which is related

to the physical size of the antenna. If we return to equation (1.16), we can infer that this would

be the case. Notice that we measure the scattered field at each position x0, corresponding to an

element of the antenna, and that each measurement is actually the inner product of V (z) with some

function fx(z) = e2ik|x−z|A(ω,x, z). Each distinct inner product gives us more information about

the reflectivity function V . Similarly, collecting data from a moving antenna amounts to measuring

the inner product of V with the functions fs(z) = e2ik|γ(s)−z|A(ω, s, z). In this case, the antenna

is said to sweep out a synthetic aperture, resulting in the term synthetic aperture radar (SAR). As

mentioned before, knowledge of the position of the antenna relative to the scene is essential for

producing an image. If estimates of γ(s) are poor, our filter will be mismatched to the data and the

resulting SAR image will be blurred [3]. Since the SAR imaging scheme depends on measuring the

7

scattered electric field over time, any unaccounted motion from poor GPS measurements, moving

objects in the scene, etc., will degrade the image quality.

Though the SAR image reconstruction scheme depends only on the relative motion of the an-

tenna to the target, the field is commonly divided into two modes. Synthetic aperture radar, or SAR,

refers to a moving radar platform imaging a static target. In this case, the target is usually some

region on the ground or ocean (called the scene) and the antenna is attached to a plane or satellite

flying over the region. The other mode is Inverse synthetic aperture radar or ISAR. This mode

refers to a stationary radar platform and a moving target; for example, ISAR is used for imaging

moving airplanes, satellites, ships, and spacecraft. Observing a moving target from a stationary

platform is mathematically equivalent to viewing a stationary target from a moving platform (or

even a moving target and a moving platform), so we rarely note the distinction between the two

problems for our derivations.

1.2 A Short History of Shape and Motion Estimation

In SAR imaging applications, any unknown motion between the radar platform and the target

will blur the constructed image, analogous to the blurring we see in long-exposure cameras. The

unknown motion might be due to inexact measurements of the radar platform’s position by the

onboard GPS and inertial measurement unit, or it could be the result of a moving vehicle in an

otherwise stationary scene. While there exist specialized radar systems for separating moving

targets from background clutter, these moving target indicator (MTI) systems are not adapted for

operating on available SAR data [4, 5]. Further, the need to make flying radar units as light and

inexpensive as possible makes it desirable to reduce the amount of specialized hardware present on

each unit. Improved signal processing algorithms may allow us to estimate the relative positions

of the radar platform and target without expensive hardware additions, or can aid in regularizing

the noisy measurements of existing hardware [3].

8

1.2.1 Motion-Only Estimation

There are a number of techniques for forming focused images of moving targets from SAR

data, all with varying levels of effectiveness. The most common approach is to form one or more

initial images of the target, and then estimate the relative motion of the target from the blurred

images. One then focuses the images by adjusting the imaging operator with the motion estimate.

As far back as 1967, Brown noted the complications arising from the interaction of the trans-

mitted signal and a rotating target. The resolution of a radar system depends on a number of factors,

including the bandwidth and duration of the transmitted signal. We often quantify the resolution in

terms of the range resolution and the angular resolution. If we have two targets near each other in

space, the range resolution is the smallest range difference such that we can separate the two ob-

jects. Similarly, the angular resolution is the minimum angle difference such that we can separate

two objects at the same range. Together, the range and angular resolutions define a polar grid of

resolution cells around the radar platform. Brown explained that the current Fourier-transform sig-

nal processing techniques result in poor image quality when we integrate over a slow time window

long enough that target points move from one resolution cell to another [6]. Walker then provided

a technique to partially compensate for target points that move across resolution cells with his po-

lar storage format for range-Doppler data [7]. His approach worked well for slowly translating,

rotating targets, as it was designed for imaging other planets from Earth. Since the rotation rate is

both uniform and possible to estimate, this problem is less complex than for a target with erratic

motion.

Unexpected movement by the target results in a mismatch between the image operator used

for reconstruction and the data. The mismatch is partially due to an unexpected phase adjustment

in the data, and many common approaches for focusing SAR images exploit phase adjustments

to compensate for unanticipated motion. In 1995, Fienup and Kowalczyk [8] devised a technique

that would detect the presence of a moving object directly from the blurring present in an image;

they reasoned that the most prominent phase errors will occur in regions of the image containing

a moving target. To locate regions with relatively large phase errors, they segment the image into

9

patches and use a phase-correction technique to automatically focus (autofocus) each region. Any

region that experiences a significantly large change in phase or increase in image sharpness is likely

to contain a moving object. Fienup refined this technique for his 2001 paper [4]. Barbarosa and

Scaglione [9] developed a similar approach, except that they estimate the phase errors in each patch

with customized version of phase-gradient autofocus. Another moving target detection approach,

developed by Moreira and Keydel [10], takes multiple SAR images formed over shorter integration

times (a smaller synthetic aperture), and cross-correlates the power spectra of adjacent images to

estimate the phase shift in the images. By modeling this phase shift as a quadratic function of the

tangential and radial velocity of the target, they can estimate the motion of the target.

In a pair of papers from the Environmental Research Institute of Michigan (ERIM), we start to

see the beginnings of the modern shape and motion estimation procedure. Werness et al. [11, 12]

describe a motion compenstation method based on tracking prominent points in the image. First,

a single prominent scatterer is located in range. The SAR data is then motion-compensated to

place this point at the center of the scene, and two more prominent scatterers are extracted from

the compensated data. With range estimates for the three scatterers, one can estimate the rotation

rate with relatively small error.

1.2.2 Joint Shape and Motion Estimation

We have briefly investigated methods that rely on some spatial invariance in the underlying

phase errors in a SAR image to generate a two-dimensional (2D) motion estimate (range and

cross-range) for the target. The problem is, the phase errors are actually the result of 3D motion by

the target. In order to reliably produce focused moving target images, it is necessary to estimate

the motion of the target in the full three-dimensional (3D) space.

1n 1994, researchers from ERIM issued an outline of a signal processing approach that would

make it possible to track any type of motion in two or three dimensions, requiring only the radar

data [1]. Given a set of range measurements for at least four scattering centers taken at geo-

metrically diverse viewing aspects, Stuff et al. claimed to be able to reconstruct the geometric

10

arrangement of the scatterers by exploiting invariants in the range data. They claimed that the

ranges from a radar to scattering centers on any rigid body must be constrained to a submanifold

of the space of possible range observations, and that this manifold then determines the arrange-

ment of the scattering centers up to rotation or reflection. With this arrangement, the motion of the

object can then be determined.

From this original paper, Stuff would go on to develop the approach in a series of follow-up

papers. The first of these appeared in 1999, and explained that there are functions on the range data

that are invariant to the motion of the object [13]. These functions map to quantities that depend

on the Euclidean invariants of the target, such as the fixed distances between scatterers, the angles

formed by the scatterer configuration, or the area contained by the scatterer configuration. Stuff

referred to these quantities as Euclidean invariants because they remain unchanged when isometries

of Euclidean space are applied to the scatterer configuration describing the target. As an example

of one such function, Stuff derives an invariant equation for far-field range data collected from a

generic target with four non-coplanar scattering centers using the properties of determinants. In a

subsequent paper [14], Stuff generalizes the invariant equation for far-field data to a target with N

scatterers, finding
N−1∑

i=1

N∑

j=i+1

ωij(ρi(t)− ρj(t))
2 = 1. (1.25)

Here, ρi(t) denotes the range to the ith scattering center at time t, and ωij are the geometric in-

variants of the target. This work would ultimately lead to Stuff’s dissertation [15], in which he de-

scribed the geometric invariant theory for monostatic, far-field range measurements and developed

statistical techniques for estimating the geometric invariants. A condensed version of the determin-

istic theory was published the year after, along with a numerical example with noisy range data and

some comments on the performance of the algorithm and potential problems in practice [16]. It

was also around this time that this shape and motion approach, along with its various subsystems,

was dubbed the 3D Motion And Geometric Information (3DMAGI) system.

Stuff et al. would publish another paper in 2004, detailing the image reconstruction process

for a moving vehicle [17]. In ISAR, the collected data define a surface in Fourier space, with the

11

motion of the object determining the size and shape of this surface. In the far-field, the imaging

operator (1.24) simplifies to the Fourier transform, and so the image formation process amounts

to taking a Fourier transform of the data. The data collection manifold is a 2D surface embedded

in 3D Fourier space, so that a simple 2D Fast Fourier Transform (FFT) is not enough to transform

the data. Instead, knowledge of the object motion allows Stuff to interpolate the data surface to

a uniform grid, and then utilize the 2D FFT. The National Ground Intelligence Center data was

collected from a scale model over a limited aperture, but even this indoor data set displayed the

difficulty of generating 3D images of non-cooperative moving targets.

Though the 3DMAGI approach was conceived as part of an effort to track moving objects in

SAR images, the approach naturally lends itself to automatic target recognition (ATR). Since the

reconstructed geometric invariants are independent of the target’s orientation and position, such

an ATR algorithm would avoid the extremely difficult problem of recognizing the same target

from different viewing angles. Additionally, the algorithm can extract geometric invariants for

previously unknown target shapes, giving the potential for an ATR system to learn new target

classifications. In his 2003 dissertation, Meyer explores the possibilities of a 3DMAGI-based ATR

system [18].

The development of the 3DMAGI system slowed for a time, to be revived in 2008 with a joint

paper from Ferrara, Jackson, and Stuff [19]. This paper used the 3DMAGI approach for motion

estimation, and then introduced a variant of the CLEAN algorithm which took advantage of a bet-

ter, Non-Uniform Fast Fourier Transform (NUFFT). Ferrara, Arnold, and Stuff would go on to

revise and simplify Stuff’s original geometric invariant approach [20]. The new approach elimi-

nates the need for any uniqueness constraints on the invariants, and essentially reduces the shape

and motion reconstruction process to two singular value decomposition (SVD) computations. In

the same year, Ferrara and Arnold identified an invariant functional on near-field radar data [3]. Up

to this point, all of the 3DMAGI literature was concerned with targets so far from the sensor that

the curvature of electromagnetic wave fronts could be ignored in the analysis (appendix B.2 elab-

orates on the far-field approximation). The new invariant functional allowed the 3DMAGI system

12

Table 1.1: The current solutions and partial solutions for each case are cited in the appropriate box. It is
unknown if a bistatic, near-field invariant exists.

Near-Field Far-Field
Monostatic [3] [20]

Passive ? [21]
Bistatic ? [21]

to accommodate near-field radar data collection, and naturally led to a new question: can we find

invariant functionals on radar data collected in other sensor configurations?

For shape and motion estimation purposes, there are four types of sensor configurations. Data is

either collected by a monostatic system, in which the signal transmitter and receiver are collocated,

or by a multistatic system, in which there are possibly multiple transmitters and receivers, not all

collocated. The simplest multistatic sensor configuration is a bistatic configuration, in which we

have one transmitter and one receiver, in different locations. Further, the sensors are either close

enough to the imaging target that we must account for the curvature of the EM waves in our range

model, or far enough away that we can ignore such curvature and model the system with plane

waves. The two cases are referred to as the near-field and the far-field, respectively. We can further

distinguish between multistatic cases based on the movement of the sensors. In some scenarios,

either the transmitter or receiver will remain fixed relative to the scene under interrogation. For

instance, a receiver may use the signal emitted by a television tower to image a patch of ground.

Such a data collection is referred to as passive, and so we will call the bistatic case with one fixed

sensor the passive case. A solution for the usual bistatic case would extend naturally to the general

multistatic case, and would also solve the passive bistatic case. A partial answer to our question

above came in 2013, when Arnold, Ferrara, and Parker found a relation that suffices to identify

the unknown motion of a target in the bistatic, far-field sensor configuration [21]. It is unknown,

however, whether such an invariant exists for bistatic, near-field radar data. The current state of the

search for invariants of the range data is summarized in Table 1.1.

13

1.3 Shape and Motion Estimation Techniques

Given a set of SAR data, suppose we wish to estimate the 3D shape and motion of a moving

target relative to the sensor. For each EM pulse transmitted, some portions of the target, such as

corners, spots with bare metal, etc., will be especially good at scattering the waves back toward

the receiver. It is possible to track the range of these prominent points at each time, so that the

prominent scatterers serve as a set of landmarks on the object. When these landmarks do not move

relative to each other, we say that the target is rigid. With this in mind, we model a generic target

with a point cloud of N targets, and we use shape to refer to the relative positions of the points. If d

is the dimension of our target (2D or 3D), let sn ∈ Rd be a column vector describing the Euclidean

coordinates of the nth scatterer when the target is centered at the origin. Grouping the coordinates

together gives the N × d shape matrix,

S =









sT1
...

sTN









, (1.26)

encoding the shape of our point cloud. For a 3D target, d = 3, we assume that the scattering centers

will be non-coplanar, so that S is full rank. Without loss of generality, we suppose that our sensor

is fixed at the origin and attribute all of the relative motion to the target. For a rigid target, this

means that the Euclidean coordinates of each of the scatterers at any time tl will be some rotated

and translated version of the original coordinate from S. We then model the position of the nth

scatterer at time tl with

xT
nl = sTnOl + τ T

l , (1.27)

where O(tl) = Ol ∈ SO(3) represents a rotation and τ (tl) = τ l ∈ Rd represents a translation.

We can concatenate the positions from each scatterer to form the N × 3 matrix

Xl = SOl + 1τ T
l , (1.28)

14

where 1 is the vector of ones. Now, suppose we measure the distance between the sensor and each

of the N scatterers in the point cloud at L distinct time instants. The range to the nth scatterer at

time l will be ρnl = ‖xnl‖, so that at the lth instant, we denote the vector of range measurements to

each scatterer as ρl ∈ RN . Concatenating these range vectors gives the N × L range data matrix,

R := [ρ1 . . .ρL]. (1.29)

The transpose, RT , is commonly used because each column of this matrix describes the entire

range history for a single scatterer. We sometimes refer to such a range history as a track, and call

RT the track matrix. Given the matrix R, our goal is to reconstruct the shape and motion of the

target relative to our sensor.

1.3.1 Affine Invariants Estimation

Ultimately, we are interested in recovering invariants of the target, such as the pairwise dis-

tances between scatterers, the angles between scatterers, or, equivalently, the full shape matrix S.

In the approaches detailed by Ferrara, Arnold, and Stuff [3, 20], however, we find an intermedi-

ate set of invariants that are sufficient for motion estimation in some cases. The matrix S can be

decomposed into the product of a unitary matrix V and an invertible matrix M ,

S = VM, (1.30)

where the columns of the matrix V describe an orthonormal basis for the range of S, and the

invertible matrix M contains all of the scaling information from S. We’ll see later that the current

shape estimation method generates a factorization of the matrix R to determine S and the target

motion, so that knowledge of the matrix V provides sufficient estimates of the target rotation. Since

this is the case, quantities that depend only on V are called affine invariants, whereas quantities

that depend on the full matrix S are Euclidean invariants.

15

To estimate affine invariants of the target from range data, we must first identify a mapping,

f : RN → RN on the range data such that f(ρl) ∈ range(S). With this mapping, we can write

f(ρl) = Scl. (1.31)

With some abuse of notation, let f(R) denote the function f applied to each column of R. Given

the singular value decomposition of f(R) = V AQT , it follows that range(V) ⊂ range(S), since

the left singular vectors of f(R) form an orthonormal basis for the span of the columns of f(R). If

rank(f(R)) = d, then range(V) = range(S), and we have found the full set of affine invariants.

Prior to the improvements made in 2009 [20], computation of the affine invariants was an important

step in enforcing uniqueness constraints on the Euclidean invariants, using the projection matrix

onto the range of S,

P := S(STS)−1ST = V V T , (1.32)

where the equivalence follows because V is an orthonormal basis for the columns of S.

1.3.2 Euclidean Invariants Estimation

Since S is full-rank, we can solve (1.31) for cl,

cl = (STS)−1STf(ρl), (1.33)

so that

cTl cl = f(ρl)
TS(STS)−2STf(ρl). (1.34)

The matrix Ω := S(STS)−2ST depends only on S, and we can solve (1.34) for the entries of Ω

given enough pairs of ‖cl‖2 and f(ρl). Note that the matrix Ω is unique only up to rotated versions

of S, since Ω = S(STS)−2ST = S(STS)−2ST , where S = SO and O ∈ O(3) is an arbitrary

rotation or reflection. While P = V V T is an affine invariant of the target, substituting S = VM

into the definition for Ω yields

16

Ω = S(STS)−2ST

= VM(MT V TV
︸ ︷︷ ︸

I

M)−2MTV T

= V MM−1
︸ ︷︷ ︸

I

(MT)−1M−1 (MT)−1MT

︸ ︷︷ ︸

I

V T

= V (MMT)−1V T .

(1.35)

The dependence of Ω on M implies that Ω is a Euclidean invariant of the target scatterer configu-

ration.

If we suppose that the symmetric matrix Ω has the singular value decomposition (SVD)

Ω = UΣUT , (1.36)

then the Moore-Penrose pseudo inverse of Ω has the property

Ω† = SST = UΣ−1UT . (1.37)

This suggests the factorization S = UΣ− 1

2 . Inputting this factorization to the definition of the

projection matrix (1.32) shows that

P = UUT , (1.38)

which implies UUT = V V T , or that U = VO, O ∈ O(3). Writing S = VOΣ− 1

2 and substituting

this into (1.34) gives

cTl cl = f(ρl)
TVOΣOTV Tf(ρl)

= bT
l OΣOTbl

= bT
l Wbl,

(1.39)

where bl = V Tf(ρl) and W = OΣOT . The bl are known, since we have V from the SVD of

f(R). There remain only six unknowns left to determine in the symmetric matrix W . Vectorizing

17

the matrix as w = [w11, w12, w13, w22, w23, w33]
T , we can rewrite (1.39) as

‖cl‖2 =
[

b21 2b1b2 2b1b3 b22 2b2b3 b23

]

w. (1.40)

Collecting these equations across all times tl, we can create the system

Zw = γ, (1.41)

where

Z =



















B1 ⊙ B1

2B1 ⊙ B2

2B1 ⊙ B3

B2 ⊙ B2

2B2 ⊙ B3

B3 ⊙ B3



















T

,γ =









‖c1‖2
...

‖cL‖2









. (1.42)

B1, B2, and B3 are the rows of the matrix B = V Tf(R), and ⊙ denotes element-wise multiplica-

tion (the Hadamard product). Note that if we write the SVD of f(R) = V AQT , then B = AQT so

that we can avoid an extra matrix multiplication in our computation by recycling the results of the

first SVD computation.

After solving for W , simply multiply to find Ω = VWV T . For our computations above, we

assumed that Ω = UΣUT ; one recovers this form by taking the SVD of VWV T , and generates a

shape exemplar with

S̃ = UΣ− 1

2 , (1.43)

along with its corresponding motion,

C̃ = Σ
1

2UTf(R). (1.44)

18

The matrix C̃ is composed of the columns cl. The specific interpretation of these vectors depends

on the radar configuration, but in general the matrix C̃ characterizes the motion of the target over

the viewing interval. In some cases, estimation of the scaling parameters in Σ is unstable, and so

we could instead consider a scaled, rotated shape exemplar consisting of only the affine invariants,

S̃a = V, (1.45)

along with its corresponding motion,

C̃a = V Tf(R). (1.46)

At this point, it is clear that the revised method presented by Ferrara, Arnold, and Stuff [20] is a

matrix factorization method, where the derivation of the function f and the estimation of Euclidean

invariants is the key to expanding this method to other radar configurations. We see that generating

our affine shape and motion estimates in (1.45), (1.46), amounts to taking the SVD of f(R) and

grouping the factors,

f(R) = V
︸︷︷︸

S̃a

AQT

︸︷︷︸

C̃a

= VOΣ− 1

2

︸ ︷︷ ︸

S̃

Σ
1

2OTAQT

︸ ︷︷ ︸

C̃

, (1.47)

and that the Euclidean shape and motion estimates in (1.43), (1.44), are rotated and scaled versions

of the affine shape and motion estimates. With this general outline of shape and motion estimation,

we can now define the specific mapping f for each radar configuration.

1.3.3 Monostatic Far-Field Case

In the monostatic, far-field case, we assume that the target is so far from the platform that EM

wavefronts are nearly planar in the region of the target. Given the scatterer positions at time l from

(1.28), the range to the nth scattering center is

ρnl = ‖xnl‖ =
√

(sTnOl + τ T)(OT
l sn + τ). (1.48)

19

Accepting the far-field approximation simplifies the model for the range to the nth scatterer at time

l to

ρnl ≈ sTnOlτ̂ l + ‖τ l‖, (1.49)

so that when we ignore the far-field approximation error, the full vector of range measurements to

each scatterer at time l is

ρl = SOlτ̂ l + ‖τ l‖1. (1.50)

τ̂ l denotes the unit vector in the direction of τ l. See appendix B.2 for more explanation of the far-

field approximation. Notice that ‖τ l‖ is independent of the scatterer number, so that subtracting

the mean of each range vector will remove the second term from (1.50). One way to implement

this subtraction is with the centering matrix,

C = IN −
1

N
11T . (1.51)

The column sums of S are zero by definition, so 1TS = 0, and the first term of (1.50) is unaffected

by the centering,

f(ρl) := Cρl = SOlτ̂ l. (1.52)

Notice that Cρl ∈ range(S), so we have found the desired mapping of the range data into

range(S). This mapping is advantageous in that it specifies the values of ‖cl‖2 from (1.34), since

it is natural to take cl = Olτ̂ l, and

cTl cl = τ̂ T
l OT

l Olτ̂ l

= τ̂ T
l τ̂ l

= 1.

(1.53)

20

1.3.4 Monostatic Near-Field Case

In the monostatic, near-field case, the mapping into range(S) is more complicated. Ferrara et

al. [3] found that column-wise differences of the squared range data fall in range(S) and described

the technique for solving for the invariants in W . Without the far-field assumption to simplify our

model for the range measurements, we have

ρ2nl = xT
nlxnl = ‖sTn‖2 + 2sTnOlτ l + ‖τ l‖2. (1.54)

Again, concatenating the range measurements over the N scatterers gives the vector

ρ2
l =









‖sT1 ‖2
...

‖sTN‖2









+ 2SOlτ l + ‖τ l‖21. (1.55)

In this case, ρ2
l denotes that each element of ρl is squared. Notice that the last term is once again

independent of scatterer number, and so can be removed by subtracting the mean from each pulse.

The result of applying the centering matrix, C, is

Cρ2
l =









‖sT1 ‖2 − 1
N

∑
‖si‖2

...

‖sTN‖2 − 1
N

∑ ‖si‖2









+ 2SOlτ l. (1.56)

Now, the first term of (1.56) is independent of time, tl, and can be removed by taking an inter-pulse

difference,

C(ρ2
l − ρ2

k) = 2S(Olτ l −Okτ k). (1.57)

The vector C(ρ2
l − ρ2

k) ∈ range(S) for any pair (l, k), and so we can define a mapping on R such

that the columns of g(R) are in the range of S,

g(R) = C(R⊙R)D. (1.58)

21

D ∈ RN×(L2) is a matrix encoding column-wise differences, e.g.

D =



















1 0 −1 1 . . . 0

−1 1 0 0 . . . 0

0 −1 1 −1 . . . 0

...
...

...
...

. . .
...

0 0 0 0 . . . −1

0 0 0 0 . . . 1



















. (1.59)

The mapping given in (1.58) is sufficient for identifying the left singular vector matrix, V ,

from our procedure for estimating invariants, but it is not clear how to compute the magnitude of

(Olτ l −Okτ k) so that we can solve for W in (1.39). To alleviate this difficulty, we define

m =









‖sT1 ‖2 − 1
N

∑ ‖si‖2
...

‖sTN‖2 − 1
N

∑
‖si‖2









(1.60)

and rewrite (1.56) as

f(ρl) :=
1

2

(
Cρ2

l −m
)
= SOlτ l. (1.61)

When we choose cl = Olτ l and insert these expressions into (1.39), we have

‖τ l‖2 =
1

4
(Cρ2

l −m)TVWV T (Cρ2
l −m)

=
1

4
(bl − u)TW (bl − u)

=
1

4

(
bT
l Wbl − 2uTWbl + uTWu

)
,

(1.62)

where bl = V TCρ2
l and u = V Tm. We have no way of estimating ‖τ l‖2, but we do know

1

N
1Tρ2

l = ‖τ l‖2 +
1

N

∑

‖si‖2, (1.63)

22

so that

‖τ l‖2 − ‖τ k‖2 =
1

N
1T (ρ2

l − ρ2
k). (1.64)

Define ηlk :=
1
N
1T (ρ2

l − ρ2
k), and plug equation (1.62) into (1.64) to find

4ηlk = bT
l Wbl − bT

kWbk − 2(bl − bk)
TWu. (1.65)

As before, we will expand the symmetric matrix W as w = [w11, w12, w13, w22, w23, w33]
T . In this

case, however, we must also solve for the invariants in z := Wu, and so we combine the equations

for each of the
(
L

2

)
combinations of pulses from (1.65) into the system

A






w

z




 = 4















η12

...

ηlk

...

η(L−1)L















. (1.66)

Each row of the matrix A corresponds to one pair of pulses, so we define the rows to be

Alk =

[

alk11 alk12 alk13 alk22 alk23 alk33 alk1 alk2 alk3

]

, (1.67)

where

alk11 = b21(tl)− b21(tk) alk12 = 2(b1(tl)b2(tl)− b1(tk)b2(tk)) alk1 = 2(b1(tk)− b1(tl))

alk22 = b22(tl)− b22(tk) alk13 = 2(b1(tl)b3(tl)− b1(tk)b3(tk)) alk2 = 2(b2(tk)− b2(tl))

alk33 = b23(tl)− b23(tk) alk23 = 2(b2(tl)b3(tl)− b2(tk)b3(tk)) alk3 = 2(b3(tk)− b3(tl))

and we have used the notation bl = [b1(tl), b2(tl), b3(tl)]
T . Once the invariants in w are known

from solving (1.66), we can solve for a shape representative as described in Section 1.3.2.

23

1.3.5 Bistatic Far-Field Case

Invariants for bistatic sensor systems are not as well understood; in fact, it is not known whether

any geometric invariant equations exist for bistatic range measurements. For the far-field case,

however, Arnold et al. [21] describe a technique for identifying the affine invariants.

In this scenario, we have one transmitter and one receiver. Without loss of generality, we can

orient our coordinate system so that the transmitter and receiver both lie on the x-axis, at positions

−α and α, and the target position is given by (1.28), as before. With this setup, the bistatic range

to the nth scatterer at time l is

ρnl = ‖xln +αl‖+ ‖xln −αl‖. (1.68)

To apply the far-field approximation, we first substitute our model for xnl from (1.27), and define

γtl = τ l+αl, γrl = τ l−αl. Note that, in the far-field, the distance between the scattering centers

is much smaller than the distance from the scattering centers to the sensors, so that ‖Olsn‖ ≪

‖γtl‖, ‖Olsn‖ ≪ ‖γrl‖. Our approximation follows,

ρnl = ‖Olsn + τ l +αl‖+ ‖Olsn + τ l −αl‖

= ‖Olsn + γtl‖+ ‖Olsn + γrl‖

≈ sTnOT
l (γ̂tl + γ̂rl) + ‖γtl‖+ ‖γrl‖.

(1.69)

As in the other cases, we can concatenate the range measurements together to form a vector of

ranges at time l,

ρl = SOT (γ̂tl + γ̂rl) + (‖γtl‖+ ‖γrl‖)1, (1.70)

and apply the centering matrix, C,

f(ρl) := Cρl = SOT (γ̂tl + γ̂rl). (1.71)

24

f(ρl) is in range(S), so that we can approximate the affine invariants of S. If we have estimates

for cl = ‖γ̂tl + γ̂rl‖, we can compute Euclidean invariants of the target just as we did for the

monostatic, far-field case. Without these estimates, however, this method will not suffice to find

the Euclidean invariants of the target.

1.4 Related Techniques

1.4.1 Interferometric Developments

Following the approaches discussed in section 1.2, some radar engineers recognized that 2D

imaging is insufficient, and instead exploited the phase of the returning wave to identify the 3D

shape and motion of the target. In 2009, Mayhan [22] described a technique that allowed him to

develop 3D images of a target by comparing the phase differences between two nearly-identical 2D

images. The difference in phase between the two "snapshots" gives enough information to estimate

the height of the scattering centers out of the range-doppler plane. Then in 2014, Martorella et

al. [23] used the multi-channel CLEAN technique to extract phase measurements relative to two

orthogonal baselines to jointly estimate the target rotation and the height of the scattering centers

out of the imaging plane.

1.4.2 Image Factorization

With the improvements made to the 3DMAGI approach in 2009 [20], Ferrara et al. noticed

an interesting similarity to an approach from electro-optical imaging. Given a sequence of images

from a traditional camera, Tomasi and Kanade [24] describe a factorization method for recovering

the scene geometry and the camera motion. Aside from the apparent difference in sensor type, the

approach utilizes more constraints than are possible in the radar case. Each image produced by a

camera is a 2D orthographic projection of the 3D scene, and naturally contains more information

than the 1D range measurements produced by a radar; this allows the optical factorization algo-

rithm to operate with few images and fewer tracked features than in the radar case. Otherwise, the

25

two approaches similarly compute the shape and motion of a target by factorizing a data matrix

with respect to constraints on the distribution of scaling factors.

Within the field of computer vision, the problem of reconstructing the 3D shape of a station-

ary scene from a set a projective measurements is called the Structure from Motion (SfM) prob-

lem [25]. The majority of the SfM literature considers only the 2D projective measurements pro-

duced by optical cameras, but our 1D range measurements are also projective measurements with

appropriate model assumptions (see section 1.3.3). In this way, our problem is a close analogue to

the SfM problem.

1.4.3 Low-Rank Subspace Decomposition

In real applications, the collected range data will be noisy and often incomplete. Naturally, we

cannot view a 3D target from every angle with a single sensor. Scattering centers on the side of the

target opposite from the sensor will be invisible to the radar system, so that at any time we only see

a fraction of the scattering centers on an object. This self-shadowing, along with other undesirable

effects, mean that the range data matrix, R, will often have empty or wildly inaccurate entries. Ad-

ditionally, the sensor cannot distinguish between scattering centers that belong to target and those

that do not, so that some of the tracks in R are range measurements to other targets in the scene.

Arnold et al. [21] address this problem with the Low-rank Affinity Matrix Estimation (LAME)

algorithm, which separates the scatterers by assuming that the motion of each target is necessarily

low-rank. Following the example of other Low-Rank Representation (LRR) approaches, LAME

factors the data into a clean dictionary matrix, A, and a low-rank coefficient matrix, C, so that

RT ≈ A = AC. The entries of C are then used to group the tracks into probable targets, and the

matrix A serves as a cleaner, complete version of the track matrix to be used in shape and motion

estimation.

26

Chapter 2

A Polynomial Systems Approach

In section 1.3, we outlined the current best practice in joint shape and motion estimation. The

approaches there identified transformations on the data that simplified the shape and motion re-

construction process to a pair of matrix factorizations. If we could find a similar transformation

on the bistatic, near-field (BNF) data to linearize the shape and motion estimation problem, we

would be able to replicate the outlined approaches. Finding such a transformation has proven non-

trivial. Instead of identifying such a transformation, we can describe a polynomial system relating

the bistatic range measurements, the target shape, and the target motion, and attempt to solve the

non-linear system of equations directly.

2.1 Expression as a Polynomial System

Suppose we have a rigid target, defined by a point cloud with N points. As in section 1.3, we

encode the shape of the point cloud as a centered configuration matrix,

S =









sT1
...

sTN









. (2.1)

In this format, S ∈ RN×3, and each row of S is the position vector for a single point in Euclidean

space. Since we have assumed that the point cloud is centered, we have 1TS = 0T .

At each time tl, the target’s position is a rotated and translated version of S,

Xl = SOl + 1τ T
l . (2.2)

Ol ∈ SO(3) is a time-dependent rotation, and τ l ∈ R3 represents a time-dependent translation.

Suppose that there are two sensors, fixed at the positions αl = [αl, 0, 0] and −αl. For bistatic

27

sensor arrangements, we only measure the sum of ranges

ρnl = ‖xnl +αl‖
︸ ︷︷ ︸

transmitter to scatterer

+ ‖xnl −αl‖,
︸ ︷︷ ︸

scatterer to receiver

(2.3)

and possibly the distance between the sensors, 2αl.

2.1.1 Ellipse Constraints

For each point n and time l, suppose we know the distance between the sensors, 2αl, and the

bistatic range to the scatterers, ρnl. This knowledge uniquely defines an ellipsoid on which the

scatterers must lie. The foci of the ellipsoid are αl and −αl; the major axis (x-axis) of the ellipse

has length 2a, and the remaining axes have length 2b, where

a2nl =
1

4
ρ2nl,

b2nl = a2nl − α2
l .

(2.4)

To see this, take an arbitrary point x = (x1, x2, x3). The sum of distances from αl to x and from x

to −αl is the bistatic range to x,

ρ =
√

(x1 − α)2 + x2
2 + x2

3 +
√

(x1 + α)2 + x2
2 + x2

3 (2.5)

Substitute the relation ρ = 2a, and we can manipulate the equation to find

1 =
x2
1

a2
+

x2
2

a2 − α2
+

x2
3

a2 − α2
. (2.6)

This holds for each scatterer at each time instant, so we have the system of equations

1 = xT
nl









1
a2
nl

0 0

0 1
b2
nl

0

0 0 1
b2
nl









xnl ∀n = 1 . . . N ; l = 1 . . . L. (2.7)

28

Now, substitute xT
nl = sTnOl + τ T

l , and let

Σnl =









anl 0 0

0 bnl 0

0 0 bnl









, (2.8)

So that we have the system for all n and l,

1 = (OT
l sn + τ l)

TΣ−2
nl (OT

l sn + τ l), (2.9)

with the additional constraints,

OT
l Ol = I ∀l = 1 . . . L,

1TS = 0T .

(2.10)

2.1.2 Alternative System

Starting with (2.9), we can define

cnl ≡ Σ−1
nl (OT

l sn + τ l), (2.11)

so that 1 = cTnlcnl. Then

OT
l sn + τ l = Σnlcnl

=⇒ sn = OlΣnlcnl −Olτ l

=⇒ sm − sn = Ol(Σmlcml − Σnlcnl)

=⇒ (sm − sn)
T (sm − sn)

︸ ︷︷ ︸

independent of l

= cTmlΣ
2
mlcml − 2cTnlΣnlΣmlcml + cTnlΣ

2
nlcnl.

(2.12)

The vector (sm − sn)
T (sm − sn) is the squared distance between scatterer m and scatterer n, so

this quantity is fixed (but still unknown). We introduce the notation,

29

d2mn = (sm − sn)
T (sm − sn), (2.13)

and note that the angles formed by any three scatterers are also fixed, so that we could generate

N
(
N−1
2

)
more equations for each unknown of the form (sm − sn)

T (sp − sn), and then add further

constraints between the unknowns based on geometric relations between the angles defined by the

scatterers and the squared distances between scatterers.

If we write cnl = [xnl, ynl, znl]
T , then we can expand and simplify (2.12) as

(amlxml − anlxnl)
2 + (bmlyml − bnlynl)

2 + (bmlzml − bnlznl)
2 − d2mn = 0 ∀m 6= n, (2.14)

Along with the unit-length constraints, ‖cnl‖2 = 1, these equations describe a system of L
(
N

2

)
+

NL equations and
(
N

2

)
+3NL variables for the 3D case. If we instead consider the 2D case, we can

drop the third coordinate from all of our computations so that we only have
(
N

2

)
+ 2NL variables.

In either case, we would like to avoid positive-dimensional solution components, and so we do not

want our system to be underdetermined. To have more equations than variables for the 2D and 3D

case, we require,

L

(
N

2

)

+NL ≥
(
N

2

)

+ 2NL =⇒ (N − 3)(L− 1) ≥ 2 (2.15)

L

(
N

2

)

+NL ≥
(
N

2

)

+ 3NL =⇒ (N − 5)(L− 1) ≥ 4, (2.16)

respectively. It follows that we must track N ≥ 4 scatterers in the 2D case, and N ≥ 6 scatterers

in the 3D case.

2.1.3 Attempted Numerical Solution with Bertini

Now, we can attempt to directly solve the system

0 = (amlxml − anlxnl)
2 + (bmlyml − bnlynl)

2 + (bmlzml − bnlznl)
2 − d2mn ∀m 6= n

1 = x2
nl + y2nl + z2nl ∀n, l.

(2.17)

30

Instead of solving the system exactly, we will use the Numerical Algebraic Geometry (NAG)

software program, Bertini [26].

Bertini uses a process called homotopy continuation to identify the solutions to our input sys-

tem. Suppose our system is defined by

f(z) :=









f1(z1, . . . , zN)

...

fN(z1, . . . , zN)









= 0, (2.18)

and suppose we know the solutions to another system, g(z) = 0. Then we can define a homotopy

between the two systems,

h(z, s) = sg(z) + (1− s)f(z). (2.19)

For s = 1, h(z, 1) = g(z), and for s = 0, h(z, 0) = f(z). The key to this process is that

the solutions of h(z, s) vary continuously in s, so that we have paths connecting the solutions of

f to the solutions of g. Additionally, the paths will not intersect with probability one [27]. The

combination of these facts allows Bertini to track the solutions of g (the start points) to the solutions

of f (the endpoints) using a combination of predictor-corrector methods. Put over-simply, we use

Euler’s method to move along the path from s = 1 to s = 0, alternated with Newton’s method

steps included to correct the predictions back to the path. Some problems arise with solutions

coinciding or even diverging to infinity, but Bertini handles these with specialized approaches,

called endgames, that are managed adaptively.

Since we must have a known set of start points, Bertini’s first task is to estimate the number

of paths necessary to capture all of the solutions of the input system, and generate a system with

at least that many solutions. The simplest method, total degree homotopy, simply uses the roots

of unity as starting points (keep in mind that Bertini solves polynomials over C). If the input

system f has degree di for fi, then the total degree of f is D = d1 · · · dN , and so Bertini uses

the solutions to the system gi(z) = zdii − 1 as the start points. As an example, suppose we run

a 2D example with N = 4, L = 3. We have 30 quadratic equations in 30 variables, so that

31

running a total degree homotopy would involve tracking 230 = 1, 073, 741, 824 paths. This makes

the total degree homotopy infeasible given our resources. Other homotopy methods are available

in Bertini, including the multihomogeneous homotopy and equation-by-equation solution methods

like regeneration. The multihomogeneous homotopy allows us to decrease the necessary size of our

start system, saving on computation time by taking advantage of sparsity in our polynomial system.

Regeneration allows us to solve the full system of equations in intermediate steps, essentially

allowing us to introduce one polynomial at a time. In some cases, this can automatically reveal

structure in the system of equations, and greatly increase the computation speed [27].

To date, we are unable to compute the solution to (2.17). Even with our simplest possible

example, with N = 4, L = 3 in 2D, the computational resources necessary are infeasible. There

is still some hope, however, that we may be able to reformulate the polynomial system to run in a

reasonable amount of time. With one proof-of-concept run, we should be able to extend the results

to any new system with the same N and L. Sometimes normally occurring systems have fewer

solutions than are predicted by the start system of our homotopy. If we can solve one example of

this system, Bertini has another tool, called parameter homotopy, which will allow us to deform the

solutions for the old set of parameters into the solution set for the new set of parameters. Suppose

we have the set of solutions Zi, to the system

f(z) :=









f1(z; ai)

...

fN(z; ai)









= 0, (2.20)

with the vector of parameters ai. Then we can track paths from the solution Zi to the solutions to

the same system with parameters aj . The parameter homotopy works in much the same way as

the conventional homotopy, with some additional guarantees. If we originally solved our system

for general parameter values ai, then the number of solutions in any Zj must necessarily be less

than or equal to the number of solutions in Zi. This means we need only track one path for each

solution in Zi, which greatly reduces computation time.

32

Chapter 3

A Variety-Fitting Approach

At the conception of 3DMAGI, Stuff et al. [1] realized that the far-field approximated range

data from a sensor falls on a submanifold of the space of possible range observations, and in

subsequent papers [13–15] they would even go on to write invariant equations that the range data

must satisfy. Though it was not framed in the language of algebraic geometry at the time, the

monostatic, far-field invariant equations define an algebraic variety in the range space. Unwittingly,

the monostatic, near-field invariant equation for 3 scatterers in 2D would appear in a paper [28]

motivated by the Time Of Arrival (TOA) problem.

In their 2017 paper, Campagnoni et al. consider the algebraic structure of monostatic range

measurements from a transmitter to three fixed receivers. Given three receivers with known posi-

tions m1,m2,m3 ∈ R2, and a transmitter, with unknown position, x ∈ R2, they call the displace-

ment vector from receiver to transmitter di(x) := x −mi, so that the Euclidean distance from x

to mi is di(x) := ‖di(x)‖. Then dij := mi −mj is the displacement vector from mi to mj . The

system 





d1(x) = T1

d2(x) = T2

d3(x) = T3

(3.1)

defines a map, T 3 : R
2 → R3, which takes the transmitter position as input and outputs the range

measurements to each of the receivers. It follows that the image of T3 contains every possible

combination of the range measurements T1, T2, T3. To reflect this, we will call (3.1) the range map

of the scatterer configuration. Compagnoni et al. show that the image of T3 is contained in a real

algebraic surface. Further, they show that this variety is actually a known degree-four surface,

called a Kummer surface, with parameters directly related to the configuration of receivers. They

expressed the surface as

33

Figure 3.1: A generic configuration of receivers m1,m2,m3 and transmitter x.

0 = d232T 4
1 + d231T 4

2 + d221T 4
3

− 2dT
32d31T 2

1 T 2
2 − 2dT

32d21T 2
1 T 2

3 − 2dT
31d21T 2

2 T 2
3

− 2dT
32d31d

2
21T 2

3 − 2dT
32d21d

2
31T 2

2 − 2dT
31d21d

2
32T 2

1

+ d221d
2
31d

2
32,

(3.2)

from which we can see that the possible set of range measurements is determined by the squared

distances between the receivers and the inner products of the displacement vectors. From this

observation, it is clear that the image of T3 is determined by the configuration of receivers. This

connection between the image of T3 and the configuration of receivers is a multiple of the invariant

equation given in (1.62), section 1.3.4.

In this chapter, we will reframe the earlier method as a technique for estimating geometric

invariants of a scatterer configuration by finding the variety of best fit that describes a sample of

range data. We begin with a simpler presentation of the derivation for the monostatic, near-field

variety given in (3.2), and then describe how knowledge of this variety allows us to recover geo-

metric invariants from sampled range data. We then describe techniques for discovering geometric

invariant equations for other scatterer configurations, including the bistatic, near-field case.

34

Figure 3.2: A generic configuration of scattering centers s1, s2, s3 and radar platform, x.

3.1 Monostatic, Near-Field Case

In their papers, Compagnoni et al. consider the problem of locating a transmitter, given the

positions of multiple receivers and the range from each receiver to the transmitter. The problem

we have in mind is more complicated, but with some re-labelling we can see how the two are

connected. Instead of considering receivers m1,m2,m3, suppose we have scattering centers at

positions s1, s2, s3 ∈ R2 and a radar platform at x ∈ R2. In our problem, we can still measure

the range from x to each of the scatterers, but the positions of each of the scatterers, as well as

the position of the radar platform, are unknown. We first must estimate the geometric invariant

parameters in (3.2), after which we may either use the approach explained by Compagnoni [28],

or the original 3DMAGI approach to estimate the transmitter position.

3.1.1 Derivation of 2D Monostatic Near-Field Variety

For this derivation, we assume that the three scattering centers s1, s2, s3 are not collinear. For

convenience, we place the receiver on the interior of the triangle formed by the scatterers, and label

the angles ϕ1, ϕ2, and ϕ3, and side lengths a, b, c, as shown in Figure 3.3. The following approach is

only one of many possible constructions, as this figure has been studied in many different contexts.

In his paper studying the set of points at rational distance from the vertices of the triangle, Berry

35

Figure 3.3: A generic configuration of scattering centers s1, s2, s3, but with the radar platform contained
within the triangle formed by the three receivers.

notes that the relation in (3.5) was discovered sometime in the last century [29]. We will follow

the geometric approach presented by Bottema [30], for its cleanliness and accessibility.

First, note that ϕ1 + ϕ2 + ϕ3 = 2π, so that cos(ϕ1 + ϕ2 + ϕ3) = 1. Using angle addition

formulas, we have

cos(ϕ1 + ϕ2 + ϕ3) = cos2(ϕ1) + cos2(ϕ2) + cos2(ϕ3)− 2 cos(ϕ1) cos(ϕ2) cos(ϕ3), (3.3)

so that

0 = 1 + 2 cos(ϕ1) cos(ϕ2) cos(ϕ3)− cos2(ϕ1)− cos2(ϕ2)− cos2(ϕ3). (3.4)

By the law of cosines, we have

cos(ϕ1) =
−b2 + ρ21 + ρ23

2ρ1ρ3
, cos(ϕ2) =

−a2 + ρ22 + ρ23
2ρ2ρ3

, cos(ϕ3) =
−c2 + ρ21 + ρ22

2ρ1ρ2
.

Inserting these relations into (3.4) and reducing the resulting right hand side leads to

36

0 = a2ρ41 + b2ρ42 + c2ρ43 + a2b2c2

+ (−a2 − b2 + c2)ρ21ρ
2
2 + (−a2 + b2 − c2)ρ21ρ

2
3 + (a2 − b2 − c2)ρ22ρ

2
3

+ a2(a2 − b2 − c2)ρ21 + b2(−a2 + b2 − c2)ρ22 + c2(−a2 − b2 + c2)ρ23.

(3.5)

Note that since cos(2π − ϕ) = cos(ϕ), equation (3.5) is true even when the radar platform is not

within the triangle defined by the scatterer positions.

Assuming a, b, c > 0, (3.5) describes an algebraic variety (see section 3.2) which contains the

image of the range map from (3.1). We can show that this variety is the “smallest" such variety, in

the sense that any other variety containing the image of the range map will also contain the variety

defined by (3.5). Before we go into detail on this, we will describe how one might use (3.5) to

estimate the geometric invariants a, b, and c.

3.1.2 Estimation of Geometric Invariants in 2D

In general, we will want to estimate geometric invariants for targets with N scattering centers,

where it’s very likely that N > 3. In this section, we will develop the procedure for estimating geo-

metric invariants for triangular targets (N = 3), and then argue that this approach is fundamentally

the same as that detailed in section 1.3.4.

Suppose that we have range measurements taken from L distinct radar platform positions,

{xl}Ll=1. This amounts to sampling L points from the image of the map T3, where we denote the

lth point as ρl = [ρ1(xl) ρ2(xl) ρ3(xl)]
T .

Before proceeding, we will rescale the parameters in (3.5) for stability by dividing through by

a2b2c2. The resulting equation is

−1 = b−2c−2ρ41 + a−2c−2ρ42 + a−2b−2ρ43

+ (abc)−2(−a2 − b2 + c2)ρ21ρ
2
2 + (abc)−2(−a2 + b2 − c2)ρ21ρ

2
3

+ (abc)−2(a2 − b2 − c2)ρ22ρ
2
3 + (bc)−2(a2 − b2 − c2)ρ21

+ (ac)−2(−a2 + b2 − c2)ρ22 + (ab)−2(−a2 − b2 + c2)ρ23.

(3.6)

37

From the lth set of range measurements, form the vector

rTl =

[

ρ41 ρ42 ρ43 ρ21ρ
2
2 ρ21ρ

2
3 ρ22ρ

2
3 ρ21 ρ22 ρ23

]

, (3.7)

where we have suppressed the range measurements’ dependence on xl. By the relation (3.6), we

know that rl satisfies

rTl q = −1, (3.8)

where

q =





























b−2c−2

a−2c−2

a−2b−2

(abc)−2(−a2 − b2 + c2)

(abc)−2(−a2 + b2 − c2)

(abc)−2(a2 − b2 − c2)

(bc)−2(a2 − b2 − c2)

(ac)−2(−a2 + b2 − c2)

(ab)−2(−a2 − b2 + c2)





























(3.9)

is the vector of coefficients which correspond to unknown, fixed lengths in the scatterer configura-

tion. Concatenate the vectors rTl to form the matrix

R =









rT1
...

rTL









, (3.10)

so that the solution to

Rq = −1 (3.11)

contains geometric information about the scatterer configuration. From the solution q, we can

extract the squared distances between the sides of the receivers according to the relations

38

a4 =
q1
q2q3

, b4 =
q2
q1q3

, c4 =
q3
q1q2

. (3.12)

In practice, L ≫ 8, so that the system (3.11) is overdetermined. Unfortunately, the range

measurements will be noisy and this system usually will not have a solution. Instead, we will find

the coefficients q that best fit the system of equations in the least-squares sense. More formally,

we will take q∗ to be our vector of invariants, where

q∗ = arg min
q
‖ − 1−Rq‖2. (3.13)

The unique minimizer to this problem is well-known,

q∗ = −(RTR)−1RT1. (3.14)

In this way, our approach is analogous to the classic linear least squares problem, except that we

are estimating the parameters of a variety rather than the coefficients of a function, as suggested in

Figure 3.4. Thus, we name this approach the variety-fitting technique.

To improve the solution quality, we can augment the matrix R with some extra constraints

describing the relationships between physical parameters. The parameters must satisfy the rela-

tionships

q1 − q2 − q3 − q6 = 0 (3.15)

−q1 + q2 − q3 − q5 = 0 (3.16)

−q1 − q2 + q3 − q4 = 0 (3.17)

Including these constraints in R amounts to enforcing the law of cosines on each angle in the

triangle defined by the scattering centers.

To see how this technique is equivalent to the approach from section 1.3.4, recall the original

form of (3.5). We can write this in matrix form as

39

(a) An example image of a range map (b) Noisy sampled data from the image of a range map

Figure 3.4: (a) The set of points in the image of the range map associated with N = 3, s1 = [1, 0], s2 =
[0, 1], s3 = [0, 0]. In (b), we have the image of the same range map overlaid with noisy range data sampled
from the target. By tuning the parameters a, b, c to fit (3.5) to the noisy data, we can estimate the target
shape.

0 = (ρ2)TAρ2 +
1

2
bTρ2 + a2b2c2, (3.18)

where we define

A =









a2 −1
2
(c2 − a2 − b2) −1

2
(b2 − a2 − c2)

−1
2
(c2 − a2 − b2) b2 −1

2
(a2 − b2 − c2)

−1
2
(b2 − a2 − c2) −1

2
(a2 − b2 − c2) c2









,

b =









a2(a2 − b2 − c2)

b2(b2 − a2 − c2)

c2(c2 − a2 − b2)









.

(3.19)

Define the differencing matrix D as

D =









0 1 −1

−1 0 1

1 −1 0









, (3.20)

40

and recall that S denotes the matrix of scatterer positions. We can then write

A = DSSTDT .

From here, it is easy to show with a computer algebra system that

A = DSSTDT = 3[det(STS)]S(STS)−2ST = 3[det(STS)]Ω, (3.21)

and that the other terms in (3.18) are multiples of terms from (1.62), our original geometric invari-

ant equation for the monostatic, near-field case, section 1.3.4. Further, the relations in (3.15) are

equivalent to previous conditions,

1

3det(STS)
A1 = Ω1 = 0. (3.22)

Compared to the two-step process for estimating geometric invariants in section 1.3.4, the poten-

tially large number of unknowns in our variety-fitting approach makes it less stable than the original

technique. In this case, however, we see that we can recover the original invariant equation with

alternative means.

Previous attempts at defining geometric invariant equations for the bistatic, near-field case have

involved searching over equations defined in terms of matrices, either by hand manipulation or by

least-squares fitting to synthetic data over various non-linear terms. In the following sections, we

will attempt to search for a polynomial geometric invariant equation using the tools of elimination

theory. The framework developed there will give us a means to identify polynomial invariant

equations for the BNF case, even if the resulting equation may not be convenient to express with

matrices.

41

3.2 Invariant Equation Discovery

To use the approach in chapter 3.1 for other radar scenarios, we must discover new geomet-

ric invariant equations for the bistatic cases. In this chapter, we will investigate the existence of

geometric invariant equations from an algebro-geometric point of view, and attempt to adapt the

techniques of elimination theory to create an effective means for generating new geometric invari-

ant equations. To introduce this approach, we first show that we can recover the invariant equation

described by Compagnoni et al. [28] for the monostatic, near-field case.

3.2.1 Recovering the Monostatic Near-Field Invariant

For simplicity, first suppose we have a target with N = 3 scattering centers in 2D, so that the

configuration matrix of scatterers is S ∈ R3×2. Here, we attribute all motion to our receiver and

assume that the scattering centers are fixed. Let x(tl) = (x, y) be the time-dependent position of

the radar platform. Without loss of generality, we assume that the centroid of the 3 scatterers is the

origin of our coordinate system. Let

S =









x1 y1

x2 y2

−(x1 + x2) −(y1 + y2)









. (3.23)

This model for S contains an unnecessary degree of freedom, in that we have fixed the center of

our coordinate system with respect to S, but we have not picked a standard orientation. We could

do so by allowing s1 to be the origin and forcing s2 to be along the x-axis. For now, we leave

the extra rotation in the system because it is easier to recognize the relationship between the final

result and our previous expressions for the MNF variety. We can write a system of polynomials

that encodes the geometric relationships in our model,

42

f1 := (x− x1)
2 + (y − y1)

2 − ρ21

f2 := (x− x2)
2 + (y − y2)

2 − ρ22

f3 := (x+ (x1 + x2))
2 + (y + (y1 + y2))

2 − ρ23

(3.24)

where ρi is the monostatic distance to the ith scatterer. Each of these polynomials is an element of

the ring

C[x, y, x1, x2, y1, y2, ρ1, ρ2, ρ3], (3.25)

and the affine variety associated with this set of polynomials is the set

V (f1, f2, f3) = {(x, . . . , ρ3) : fi(x, . . . , ρ3) = 0 ∀i}

In other words, V (f1, f2, f3) is the set of solutions to the system in (3.24) when we set each fi = 0.

If we correctly specified the polynomials in our system, then the affine variety will contain all

of the potential combinations of sensor positions and target geometries. For our particular inverse

problem, we can measure the ranges, ρ1, ρ2, ρ3, and we would like to determine geometric informa-

tion about the target configuration matrix variables, x1, x2, y1, y2. To find an implicit relationship

between only these variables, we can take the system defined in (3.24), and attempt to eliminate

variables until only ρ1, ρ2, ρ3, the x’s and the y’s remain. Geometrically, this means we want to

project the set V (f1, f2, f3) down to a smaller space with variables,

[

x1 x2 y1 y2 ρ1 ρ2 ρ3

]

∈ R7,

and find polynomials that describe the smallest set containing the projected variety.

To accomplish this, we first define the ideal generated by the polynomials in (3.24) to be

I = 〈f1, f2, f3〉 :=
{

3∑

i=1

hifi : hi ∈ C[x, . . . , ρ3]

}

. (3.26)

43

In some sense, the ideal is the natural generalization of a subspace; instead of restricting ourselves

to linear combinations of the generator polynomials, {f1, f2, f3}, the ideal contains polynomial

combinations of the generators. Sometimes we may refer to I ⊂ C[x, . . . , ρ3] as the set of polyno-

mial consequences of the polynomials in (3.24). Ideals and varieties are closely connected in that,

if an ideal is generated by two distinct sets of polynomials, then the varieties associated with each

of the generating sets are the same [31]. In other words, if

〈f1, . . . , fs〉 = 〈g1, . . . , gt〉

then

V (f1, . . . , fs) = V (g1, . . . , gt).

If we think of the sets {f1, . . . , fs}, {g1, . . . gt} as bases of an ideal, then this proposition says

that the variety associated with an ideal is independent of the chosen basis. We can use this to our

advantage by finding a basis for our ideal, I , that is convenient for carrying out variable elimination.

The most commonly used bases are called Gröbner bases.

We make no attempt to describe all the known properties of Gröbner bases, and instead we

note that Gröbner bases are computed with Buchberger’s algorithm, the generalization of Gaussian

elimination to polynomial systems. In Gaussian elimination, we choose a term ordering for our

linear expressions and perform a pivoting operation to eliminate terms according to that ordering.

The result is a triangular basis for the set of linear expressions. Buchberger’s algorithm applies

to general polynomials, in which the terms are monomials. As such, the term ordering is a more

subtle issue. For the purposes of variable elimination, it is necessary to compute a basis with

respect to a chosen lexicographic ordering(lex). The resulting Gröbner basis will reflect the choice

of ordering. To see this, consider the following example.

Example. Let Iex be the ideal generated by

44

x2 + y + z − 1,

x+ y2 + z − 1,

x+ y + z2 − 1.

Then a Gröbner basis for Iex with lexicographic order x > y > z is

g1 = x+ y + z2 − 1,

g2 = y2 − y − z2 + z,

g3 = 2yz2 + z4 − z2,

g4 = z6 − 4z4 + 4z3 − z2.

Notice that g1 includes all three variables, g2 and g3 include only y and z, and g4 depends only on

z. The elimination of variables from successive basis polynomials is not a coincidence, and we can

use this property to compute our polynomial elimination.

Proposition 1. Let I ⊂ k[x1, . . . , xn] be an ideal and let G be a Gröbner basis of I with respect

to lex order where x1 > · · · > xn. Then the set

Gl = G ∩ k[xl+1, . . . , xn]

is a Gröbner basis of the lth elimination ideal, Il.

This reduces the problem of eliminating variables from (3.24) to the problem of computing a

Gröbner basis. Once we have a Gröbner basis for (3.24), the subset of polynomials in the basis

that depend only on ρ1, ρ2, ρ3, the xi’s and the yi’s form a Gröbner basis for the set of geometric

invariant equations.

Using the software Singular [32] to compute a Gröbner basis for (3.24), we find that the

desired elimination ideal is generated by a single polynomial,

45

G ∩ C[x1, x2, y1, y2, ρ1, ρ2, ρ3] = 〈g1〉, (3.27)

where the exact expression for g1 is suppressed due to its length.

If we included all possible geometric relations in system (3.24), we can conclude that the

elimination ideal contains all possible polynomial invariant equations for the monostatic, near-

field case. We could solve for the squared pair-wise differences between scatterers, given data for

ρ1, ρ2, and ρ3, as we did in section 3.1.2. This approach will be insufficient for cases with more

scatterers (N > 3), as we will be forced to generate new invariant polynomials for each case, and

the complexity of the polynomial invariants increases with the number of scatterers. Instead, the

polynomial g1 can be rewritten in the quadratic form,

3(ρ2 −m)TDSSTDT (ρ2 −m)− 4det(STS)1T (ρ2 −m) = 0, (3.28)

where D is a column-differencing matrix,

D =









0 −1 1

1 0 −1

−1 1 0









. (3.29)

From this, we can see that (3.28) is a multiple of (1.62), the equation found by Ferrara et al. [3],

for N = 3, and is equivalent to (3.5) found in section 3.1.1.

3.3 Discovering a Bistatic Near-Field Invariant

Now, suppose we have a target with N scattering centers in dimension d, so that the config-

uration matrix is S ∈ RN×d. Again, we attribute all motion to our receiver and assume that the

scattering centers are fixed. Let xr(tl) = (xr, yr) be the time-dependent position of the receiver,

and let xt(tl) = (xt, yt) be the position of the transmitter. Without loss of generality, we can fix

the s1 to be the origin, and let s2 be on the first coordinate axis. Then

46

S =















0 0

x2 0

x3 y3
...

...

xN yN















. (3.30)

Again, we can write a system of polynomials that encodes the geometric relationships in our model,

f1 := t1 + r1 − ρ1

...

fN := tN + rN − ρN

fN+1 := x2
t + y2t − t21 f2N+1 := x2

r + y2r − r21

fN+2 := (xt − x2)
2 + y2t − t22 f2N+2 := (xr − x2)

2 + y2r − r22

fN+3 := (xt − x3)
2 + (yt − y3)

2 − t23 f2N+3 := (xr − x3)
2 + (yr − y3)

2 − r23

...

f2N := (xt − xN)
2 + (yt − yN)

2 − t2N f3N := (xr − xN)
2 + (yr − yN)

2 − r2N ,

(3.31)

where ri is the one-way distance from the receiver to the ith scatterer, ti is the one-way distance

from the transmitter to the ith scatterer, and ρi is the bistatic distance to the ith scatterer. Each of

these polynomials is an element of the ring

C[xr, yr, xt, yt, x2, . . . , xN , y3, . . . , yN , t1, . . . , tN , r1, . . . , rN , ρ1, . . . , ρN], (3.32)

and the affine variety associated with this set of polynomials is the set

V (f1, . . . , f3N) = {(xr, . . . , ρN) : fi(xr, . . . , ρN) = 0 ∀i}.

47

3.3.1 Elimination via Gröbner Basis Computation

As before, we attempted to compute a Gröbner basis of the ideal, I , generated by this set of

polynomials. Buchberger’s algorithm, however, is computationally expensive, and dependent on

the ordering we impose on the monomial terms of our polynomials. A well-known heuristic is that

degree reverse lexicographic ordering (degrevlex) is typically the fastest; for this example, we can

compute a basis almost instantly with this monomial ordering. Unfortunately, computing a basis

with respect to this ordering does not necessarily eliminate variables from the polynomial basis.

Direct computation of the Gröbner basis with Buchberger’s algorithm in Singular is so slow

that our initial attempt with N = 5 took more than four weeks before we were forced terminate

the computation without success.

Even if our computation had terminated in a reasonable amount of time, it may have returned a

trivial answer. For example, compute a Gröbner basis, G, for I with N = 3, and you find that the

elimination ideal is not helpful,

G ∩ C[x2, . . . , xN , y3, . . . , yN , r1, . . . , rN , ρ1, . . . , ρN] = 〈0〉. (3.33)

In this case, the only polynomial in our ideal is the zero polynomial. Before we commit time

and resources to an expensive elimination ideal computation, it would be helpful to know if the

computation will result in the zero ideal. As such, we will first investigate the existence of a BNF

invariant equation with Gröbner bases.

To address the problem of existence, we must consider whether the subset of variables, U =

{x2, . . . , xN , y3, . . . , yN , ρ1, . . . , ρN}, is an independent set. In other words, we want to know if

I ∩ C[U] = 〈0〉. (3.34)

This question is closely tied to the dimension of the variety, V (f1, . . . , f3N), by the following

corollaries from Cox et al. [31],

48

Corollary 1. Let V ⊂ kn be an affine variety. Then the dimension of V is equal to the largest

integer r for which there exist r variables xi1 , . . . , xi1r such that I(V) ∩ k[xi1 , . . . , xi1r] = 〈0〉.

Corollary 2. Let k be an algebraically closed field and let V ⊂ kn be an affine variety. Then the

dimension of V is the largest dimension of a subspace H ⊂ kn for which a projection of V onto H

is Zariski dense.

The first corollary tells us that the dimension of our variety gives us a constraint on how many

variables we can remove from the system; if the dimension of our affine variety is r, then any subset

of variables U with size |U | ≥ r + 1 will necessarily produce an elimination ideal strictly smaller

than the zero ideal. The second corollary gives us a way to think about the elimination process from

a geometric point of view. Elimination of variables is equivalent to finding an ideal corresponding

to a projected version of our variety, V . For example, suppose we have V (h1, . . . , hM) ⊂ CN and

we wish to eliminate the last N − r variables. V is the solution set of hi(x1, . . . , xN) = 0 for all i,

and we can project these points down to a subspace spanned by the first r variables via a mapping

π(x1, . . . , xr, xr+1, . . . , xN) = (x1, . . . , xr). The resulting set of points is contained in a affine

variety, π(V) ⊂ Vr ⊂ Cr, which has an associated ideal, I(Vr) ⊂ C[x1, . . . , xr]. If the smallest

variety containing π(V) is the entire space Cr, then we say that π(V) is Zariski dense in Cr. Note

that the ideal corresponding to Vr = Cr is the zero ideal. It follows from the second corollary that

we will find a non-trivial ideal if we project V onto a subspace with dimension r + 1, where r is

the dimension of V .

Fortunately, we can compute the dimension of our variety associated with (3.31) as long as

we can compute any Gröbner basis of the ideal I = 〈f1, . . . , f3N〉. Singular contains a fast

implementation of this algorithm. For various N , we compute a Gröbner basis of I using degree

reverse lexicographic ordering, and then compute the dimension of the variety V (f1, . . . , f3N). A

summary of the results are in Table 3.1.

From Table 3.1, we can see that the smallest N for which dim(V) < |U | is N = 5 for the 2D

case, and N = 7 for the 3D case. From this, we can conclude that the elimination ideal satisfies

49

Table 3.1: Results of Singular computations for various numbers of scatterers, N . U is the desired set of
variables remaining after elimination and V denotes the variety defined by (3.31); for a non-trivial invariant
to exist, we require dim(V) < |U |.

d = 2 Total # Vars dim(V) Desired |U |
N = 3 16 7 6
N = 4 21 9 9
N = 5 26 11 12

d = 3 Total # Vars dim(V) Desired |U |
N = 5 30 15 14
N = 6 36 18 18
N = 7 42 21 22

IU := I ∩ C[U] ⊂ 〈0〉 (3.35)

for N = 5, d = 2 and N = 7, d = 3. Since the elimination ideal is a strict subset of 〈0〉, we can

conclude that IU contains a non-trivial polynomial relationship in the variables from U .

Now that we know N = 5, d = 2 is the smallest non-trivial example, we transition to the task

of computing a polynomial in the elimination ideal. Computing the elimination ideal may be more

efficient if we first reduce the system by hand. One easy simplification is to note that

0 = ρ4n − 2ρ2n(t
2
n + r2n) + (t2n − r2n)

2, (3.36)

and substitute the equations for tn and rn into this modified expression to find the reduced system,

50

f1 = ρ41 − 2ρ21(x
2
r + y2r + x2

t + y2t) + (x2
r + y2r − x2

t − y2t)
2

f2 = ρ42 − 2ρ22((xr − x2)
2 + y2r + (xt − x2)

2 + y2t) + ((xr − x2)
2 + y2r − (xt − x2)

2 − y2t)
2

f3 = ρ43 − 2ρ23((xr − x3)
2 + (yr − y3)

2 + (xt − x3)
2 + (yt − y3)

2)

+ ((xr − x3)
2 + (yr − y3)

2 − (xt − x3)
2 − (yt − y3)

2)2

...

fN = ρ4N − 2ρ2N((xr − xN)
2 + (yr − yN)

2 + (xt − xN)
2 + (yt − yN)

2)

+ ((xr − xN)
2 + (yr − yN)

2 − (xt − xN)
2 − (yt − yN)

2)2.

(3.37)

Even though we have eliminated the ti and ri variables in (3.37), it may still be less efficient to use

this system. To investigate this, we will name (3.31) the “full" system, and (3.37) the “reduced"

system, and apply our methods to both systems.

Improved Gröbner Basis Computations

The most user-friendly approach to eliminating variables from our systems is to use the built

in eliminate command in Singular. The command computes a Gröbner basis with respect

to lexicographic order, and then removes polynomials from the basis that depend on variables not

contained in the desired set, U .

When a Gröbner basis is easy to compute with respect to one ordering, as in our problem, we

gain access to other techniques for accelerating the computation of the elimination ideal. In our

case, we can compute dG, a basis with respect to degrevlex, relatively quickly. From here, we

have options. Given dG, we can compute the Hilbert function of our ideal and use this to perform

Hilbert-driven elimination, or we can attempt to convert dG to a lexicographic basis using a Gröb-

ner basis conversion algorithm. The Hilbert function of an ideal encodes important information

about the ideal, and in this case it provides a set of variable weights that we can use to reorder

our monomial terms to speed up the Gröbner basis computation. This process is usually referred

to as Hilbert-driven elimination. The second technique involves iteratively modifying the mono-

mial term ordering of a known Gröbner basis to translate the basis into a lexicographic basis. The

51

process "walks" a path from the known ordering to the desired ordering, and so the algorithm is

generally called a Gröber walk. We will not attempt to describe these techniques in detail here, but

instead refer the reader to Cox et al. [31] for more background on the Hilbert function and further

references for the Gröbner walk algorithm [33–35]. Singular provides implementations of both

algorithms. In the end, both methods fail to compute the desired lexicographic Gröbner basis for

either start system within a reasonable amount of time.

One final technique, called Faugére’s F4 algorithm, computes a Gröbner basis using fast linear

algebra techniques to improve on Buchberger’s algorithm. This algorithm is not as well supported

as the currently implemented versions of the Buchberger algorithm, but is known to be extremely

fast for some problems [36]. The software program MAGMA [37] contains an efficient implementa-

tion of this algorithm by Allan Steel. Unfortunately, a trial run with this algorithm also failed after

two weeks.

3.3.2 Elimination via Resultants

While a lexicographic basis for the ideal defined by (3.31) would make it possible for us to char-

acterize all the geometric invariant equations of our system, we may be able to to find a non-trivial

invariant equation by generating a single polynomial in the desired elimination ideal. With this in

mind, we can avoid the expensive polynomial divisions required by the Gröbner basis computation

algorithms by computing resultants of the polynomials in (3.31), instead.

Resultants are an efficient way to decide whether two polynomials share a common factor, but

they have the added benefit that the resultant of two polynomials is always an element of the first

elimination ideal [31]. For example, if we have two polynomials f, g ∈ k[x, y], then the resultant of

f(x, y) and g(x, y), denoted Res(f, g, x), will always be in 〈f, g〉∩k[y]. As a consequence, we can

use resultants to eliminate variables from a system without performing any polynomial division.

The interested reader will find a good introduction to resultants and their theoretical implications

for elimination in Cox et al. [31].

52

Unfortunately, pair-wise resultants can also be extremely expensive to compute if the number

of monomial terms in our polynomials is large. To see why this might be, note that resultants are

usually computed as the determinant of the Sylvester matrix of two polynomials. Given

f = a0x
l + · · ·+ al a0 6= 0

g = b0x
m + · · ·+ bm b0 6= 0,

the Sylvester matrix of f and g with respect to x is the (l +m)× (l +m) matrix

Syl(f, g, x) =



















a0 b0

a1
. . . b1

. . .

... a0
... b0

al a1 bm b1

. . .
...

. . .
...

al bm



















, (3.38)

and

Res(f, g, x) = det(Syl(f, g, x)). (3.39)

The computational complexity of the determinant scales poorly (O((l + m)3) in the number of

operations for the straight-forward approach) with the size of the matrix, so if there are a large

number of monomial terms, the determinant computation will be expensive. Furthermore, elimi-

nating multiple variables from our system will require many resultant computations. Suppose we

want to eliminate x and y from the MNF polynomials,

f1 := x2 + y2 − ρ21

f2 := (x− x2)
2 + y2 − ρ22

f3 := (x− x3)
2 + (y − y3)

2 − ρ23.

(3.40)

53

To first eliminate x, we would compute

g1 := Res(f1, f2, x)

g2 := Res(f1, f3, x),
(3.41)

and then eliminate y by computing

h := Res(g1, g2, y). (3.42)

In this case, we had 3 equations and 2 variables to eliminate, for a total of 3 resultant computations.

For the BNF problem, we have, at best, 5 equations with 4 variables to eliminate for a total of

4 + 3 + 2 + 1 = 10 resultant computations. This does not seem to be that bad, until we consider

that the number of monomials explodes as the computations proceed. For example, f1, f2 and f3

have 3, 5, and 7 distinct terms. g1 and g2 have 7 and 16 terms. The final polynomial, h, has 125

distinct monomial terms. Attempts to apply this naive method of round-robin elimination with

resultants failed for both the reduced and full BNF system.

Extended Dixon Resultant (Projector)

In 1909, Dixon reported a method [38] for simultaneously eliminating two variables from three

generic, bidegree polynomials based on Cayley’s formulation [39] of Bezout’s efficient method

for computing the resultant for two univariate polynomials. Unfortunately, most algebraic and

geometric problems include polynomials that are not generic, and so the original method was not

widely applicable. Dixon mentioned that the technique generalized to n+1, n-degree polynomials

in n variables, but in practice, the Dixon matrix is often singular, and sometimes is not even square.

In 1994, Kapur et al. resolved this issue by proving that it is sufficient to consider a full-rank

submatrix of the original Dixon matrix [40].

Cayley’s method for computing the resultant of two polynomials, f1, f2 in one variable, x,

involves computing what is now called the Dixon polynomial,

54

δ(x, α) :=
1

(x− α)

∣
∣
∣
∣
∣
∣
∣

f1(x) f2(x)

f1(α) f2(α)

∣
∣
∣
∣
∣
∣
∣

, (3.43)

where α is a dummy variable. Setting x = α would make the determinant in (3.43) vanish, so we

have included (x − α)−1 to cancel that factor. Notice that every common zero of f1(x) and f2(x)

is a zero of δ(x, α), regardless of the value of α. This means that, at a common zero of f1 and f2,

all the coefficients of the various powers of α must be zero. This gives a set of equations,

D















1

x

x2

...

xd−1















=















0

0

0

...

0















, (3.44)

where D is a matrix of coefficients, and d is the maximum power of x appearing in f1, f2. If a

common solution to f1, f2 exists, there must be a non-trivial solution to (3.44). This implies that

the vanishing of the determinant of D is a necessary condition for f1 and f2 to share a common

solution. Cayley was the first to show that the vanishing of the determinant of D is a necessary

condition for f1, f2 to share a nontrivial common zero. The matrix D is called the Dixon matrix,

and its determinant is the Dixon resultant.

Example. Let

f(x) := (x− 1)(x− b) = x2 − (b+ 1)x+ b

g(x) := (x− 2)(x− 3)(x− 4) = x3 − 9x2 + 26x− 24

(3.45)

Then the Dixon polynomial is

55

δ(x, α) =
1

x− α

∣
∣
∣
∣
∣
∣
∣

x2 − (b+ 1)x+ b x3 − 9x2 + 26x− 24

α2 − (b+ 1)α + b α3 − 9α2 + 26α− 24

∣
∣
∣
∣
∣
∣
∣

= −bx2 + (9b− 24)x− 2b+ 24

+
(
(b+ 1)x2 + (17− 10b)x+ (9b− 24)

)
α

+
(
−x2 + (b+ 1)x− b

)
α2

From this, we know that each of the coefficients of the powers of α must be zero,

α0 : −2b+ 24 + (9b− 24)x− bx2 = 0

α1 : (9b− 24) + (17− 10b)x+ (b+ 1)x2 = 0

α2 : −b+ (b+ 1)x− x2 = 0,

and so we can construct the Dixon matrix,

D =









24− 2b 9b− 24 −b

9b− 24 17− 10b b+ 1

−b b+ 1 −1









,

and find that the Dixon resultant is

det(D) = 144− 156b+ 54b2 − 6b3 = −6(b− 2)(b− 3)(b− 4). (3.46)

Notice that the Dixon resultant captured the fact that the system (3.45) can have a common zero

if and only if b = 2, 3, 4. In this case, we have an extraneous factor of −6 in addition to the

usual resultant of f and g. For the more general Dixon resultant with n polynomials, these extra

factors can be expressions in terms of the parameters, which makes them a nuisance. This is

because the Dixon resultant actually belongs to a more general set of objects known as projection

operators. Let A = Q[a1, . . . , am], where the ai are parameters, and construct a set of n + 1

polynomials, P , in the ring with coefficients from A, A[x1, . . . , xn]. Any non-zero polynomial in

56

A that vanishes for all the values of the parameters a1, . . . , am for which the polynomials in P

must have a common zero is a projection operator. The resultant of a polynomial system P must

divide all of the projection operators, and so in that sense the resultant is the minimal projection

operator [41]. To make this distinction, from now on we will refer to the Dixon resultant as the

Dixon projector, and reserve the word resultant for the minimal projection operator. Any projection

operator would be suitable for the least-squares fitting approach we have in mind, but the resultant

is the simplest (lowest degree) polynomial relation among the parameters and so will likely be the

optimal choice for computational efficiency and numerical stability as we proceed.

Dixon’s generalization to the case with n+1 polynomials in n variables is straightforward. For

a system P = f1, . . . , fn+1 in the ring k[x1, . . . , xn], define

∇(x1, . . . , xn, α1, . . . , αn) =















f1(x1, x2, . . . , xn) . . . fn+1(x1, x2, . . . , xn)

f1(α1, x2, . . . , xn) . . . fn+1(α1, x2, . . . , xn)

f1(α1, α2, . . . , xn) . . . fn+1(α1, α2, . . . , xn)

...
. . .

...

f1(α1, α2, . . . , αn) . . . fn+1(α1, α2, . . . , αn)















. (3.47)

∇ is divisible by each (xi − αi), so we define the multivariate Dixon polynomial to be

δ(x1, . . . , xn, α1, . . . , αn) =
∇(x1, . . . , xn, α1, . . . , αn)

(x1 − α1) · · · (xn − αn)
. (3.48)

Again, any common zero of P will make δ = 0, regardless of the values of the αi, and so the

coefficients of the monomials in αi · · ·αn will all vanish. This creates a system of s equations,

with s equal to the number of monomials in the α variables present. We can express the system as

57

D





























1

x1

...

xn

x2
1

x1x2

x2
2

...
∏

i x
d(i)
i





























=















0

0

0

...

0















, (3.49)

where D is a matrix of coefficients. Any non-trivial solution to the system P implies that (3.49)

has a non-trivial solution, so that the determinant of D must vanish. As before, D is the Dixon

matrix and its determinant is the Dixon polynomial.

Dixon’s original derivation accounted for generic, n-degree polynomials, for which this method

was guaranteed to succeed. For general polynomial systems, however, the Dixon matrix may be

singular for any choice of parameters. In fact, it may not even be square. In these cases, the

determinant provides no information about the solutions of the original system of equations. This

was the primary shortcoming of Dixon’s method, until Kapur et al. resolved the issue by showing

that it is sufficient to consider a full-rank submatrix of the Dixon matrix [40]. In further works, they

make progress towards characterizing the extraneous factors in the Dixon resultant and compare

the computation of the Dixon resultant to other popular elimination techniques [41–45]. Currently,

we are using an implementation of these improved resultant methods by Manfred Minimair [46]

in the software program Maple [47] to compute the Dixon resultant of both the full and reduced

BNF systems.

For the system (3.31), the resulting Dixon matrix has dimension 268× 268, and has rank 177.

Further, there exists a symmetric 177×177 full-rank submatrix with some apparent block structure.

In Figure 3.5, we include a graphical representation of the Dixon matrices generated by Minimair’s

58

(a) Maple Dixon Matrix (b) Fermat Dixon Matrix

Figure 3.5: The Dixon matrices generated by Maple (left) and Fermat (right). Here, we have substituted
values for each of the free variables and plotted the resulting matrix of numerical values. The matrix gen-
erated by Fermat is equivalent to a permutation of the rows and columns of the Maple-generated matrix.
Both matrices are symmetric and hollow (the diagonal entries are all zero).

DR package for Maple [46], and Lewis’ EDF code for his language, Fermat [48]. We should

note that the matrix generated by Fermat is equivalent to a permutation of the rows and columns

of the Maple-generated matrix.

Despite the sparsity of these matrices and the exploitation of clever early detection of factors

(EDF) heuristics [46,49], the computation of the determinant of the 177× 177 submatrix was still

too expensive to compute on the 512 GB of shared memory available (CSU math department’s

tx1), even when we substitute numerical values for most of the parameters. It is clear that further

simplifications of the system, or a more efficient technique, are required to extract the resultant of

(3.31).

59

(a) Maple Dixon Submatrix (b) Fermat Dixon Submatrix

Figure 3.6: Full-rank submatrices extracted from the Dixon matrices generated by Maple (left) and
Fermat (right). Here, we have substituted values for each of the free variables and plotted the resulting
matrix of numerical values. In this case, we are able to extract submatrices which are symmetric.

3.4 Improvements to the Resultant Computation

Given the difficulty of computing the desired resultant of (3.31), it is clear that further simplifi-

cations are necessary to reduce the time and memory required. In this section, we explore methods

for reducing the overall computational expense of obtaining the desired resultant.

3.4.1 Determination of Resultant Degree

With the large number of extraneous terms that could potentially appear in the Dixon projector,

it is useful to have some criteria for distinguishing the true resultant from extraneous terms in the

projector. One helpful piece of information is the degree of the resultant polynomial.

Two important pieces of information will allow us to determine the degree of the resultant from

the system (3.31). First, we know from Table 3.1 that the variety associated to our elimination ideal

is 11-dimensional, in the 12 dimensional space. If we choose a particular target shape, then the 7

shape parameters x2, . . . , x5, y3, . . . , y5 are fixed and we are really considering a 4D variety in 5D

space (the remaining variables are ρ1, . . . ,ρ5). A manifold or algebraic variety with dimension

60

n − 1 in an n-dimensional space is a hypersurface, and these objects have special properties. In

particular, every hypersurface is (at least locally) defined by a single implicit equation, so that the

ideal associated to our variety is generated by a single polynomial (a principal ideal). Since the

resultant divides every projection operator, the resultant must be the generator of our ideal. Next,

the degree of a hypersurface is the same as the degree of its defining equation [31], so that we can

determine the degree of the resultant by computing the degree of the associated variety.

Recall that, given the variety, V , defined by (3.31), the variety defined by the elimination ideal,

VU is the Zariski closure of the projection of V to the subspace defined by the remaining variables

in the set U = {x2, . . . , xN , y3, . . . , yN , ρ1, . . . , ρN}. Bertini includes a specialized homotopy type

for tracking points through these types of projections, and the result is that Bertini can compute a

number of useful quantities related to the problem of elimination of variables. We will not cover

the details of such procedures here, but the interested reader should consult the companion book

for Bertini [27] and the literature cited therein. To determine the degree of the variety VU , we first

initiate a standard run of Bertini with the input file in Figure 3.7. The Bertini run successfully

completes, and confirms that dim V = 4. The output also informs us that V has one irreducible

component, of degree 1024. To compute the projection to VU , we change the track type in the

input file to 5 and define the desired projection in a supplementary file, projection. Running

Bertini again outputs the information in Figure 3.8. We can see from the output that the projected

set is still a hypersurface; it has dimension 4 in a 5D space. The fiber of a point y under the map

f is the set of points f−1(y). In this case, Fiber refers to the set of points on the original variety

which map to a generic point in the projected set. Notice that the dimension of the fiber is 0, so

that only isolated points map to the same point under the projection. This is useful because, though

Bertini states that the degree of VU is 80, the degree of each fiber is 2. This tells us that exactly

two isolated points mapped to the same point, so that every root in the polynomial associated to

this variety is of multiplicity 2. This suggests that the resultant polynomial is actually a degree

40 polynomial, squared. In other words, the ideal associated to VU is 〈r(ρ1, . . . , ρ5)2〉, where r

61

% bnfDegree.input

CONFIG

TrackType:1;

END;

INPUT

function f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f11,f12,f13,f14,f15;

variable_group p1,p2,p3,p4,p5,t1,t2,t3,t4,t5,r1,r2,r3,r4,r5,xt,yt,x,y;

constant x2,x3,x4,x5,y3,y4,y5;

x2 = 2; x3 = 3; x4 = 1; x5 = -1;

y3 = 1; y4 = 2; y5 = 1.5;

f1 = xt^2 + yt^2 - t1^2;

f2 = (xt-x2)^2 + yt^2 - t2^2;

f3 = (xt-x3)^2 + (yt-y3)^2 - t3^2;

f4 = (xt-x4)^2 + (yt-y4)^2 - t4^2;

f5 = (xt-x5)^2 + (yt-y5)^2 - t5^2;

f6 = x^2 + y^2 - r1^2;

f7 = (x-x2)^2 + y^2 - r2^2;

f8 = (x-x3)^2 + (y-y3)^2 - r3^2;

f9 = (x-x4)^2 + (y-y4)^2 - r4^2;

f10 = (x-x5)^2 + (y-y5)^2 - r5^2;

f11 = t1 + r1 - p1;

f12 = t2 + r2 - p2;

f13 = t3 + r3 - p3;

f14 = t4 + r4 - p4;

f15 = t5 + r5 - p5;

END;

Figure 3.7: Input file for a standard run of Bertini. This file contains the system from (3.31) with “random"
parameters chosen for the shape variables.

Dimensions

Projection: 4

Fiber: 0

Degrees

Projection: 80

Fiber: 2

Figure 3.8: The output from our Bertini run projecting the variety V down to VU . Notice that the fiber of
the projection map has degree 2.

62

is degree 40. The ideal 〈r(ρ1, . . . , ρ5)〉 corresponds to the same variety, so that knowledge of the

degree 40 polynomial is sufficient for our purposes.

3.4.2 Dixon Matrix Reduction

For some implicitization problems, it is possible to further reduce the size of the Dixon matrix

prior to computing the Dixon projector. Consider the system,

x = t3 + t4 t23 = t21 + t22

y = t1t2 t24 = (t1 − 1)2 + (t2 − 1)2

z = t3t4,

(3.50)

where we have the free parameters t1, t2, and we would like to eliminate t1, t2, t3, and t4 to find

an implicit representation in x, y, and z. A full-rank submatrix of the Dixon matrix generated by

Fermat for this system is

























−2y 0 0 0 0 0 0 −2z + 2y 0 0 2x 0 0 z z − 2 −x

0 2y z + 2 −2y 0 0 0 0 0 0 −2 0 0 −x 0 1

0 0 −x 0 0 0 0 0 0 0 0 0 0 1 1 0

0 0 z −2z 0 0 0 2x 0 0 −2 0 0 0 −x 1

−z + 2 0 0 0 −z 0 x 0 −2x 0 0 2z − 2y 0 0 2 0

0 −z − 2 −2 0 x 2y −1 0 2 0 0 0 0 0 0 0

−1 x 0 0 −1 0 0 0 0 0 0 0 0 0 0 0

x −z 0 0 0 2z −1 0 2 0 0 −2x 0 0 0 0

−2 0 0 0 0 0 0 −2 x −z 0 −z + 2 0 0 0 0

0 2 0 2 0 −z − 2 0 0 −1 x 0 0 0 0 0 0

0 0 0 0 0 x 0 0 0 −1 0 −1 0 0 0 0

0 0 0 0 0 −z 0 0 −1 0 0 x 0 0 0 0

0 0 0 0 0 0 0 z − 2 0 0 −x 2y z 0 2 0

0 0 −2 z + 2 0 −2y 0 0 0 0 1 0 −x 0 0 0

0 0 0 −x 0 0 0 1 0 0 0 0 1 0 0 0

0 0 0 z 0 0 0 −x 0 0 1 0 0 0 0 0

























. (3.51)

This matrix is 16× 16, with 74 non-zero entries. The associated Dixon resultant is

r(x, y, z) = 16x4z2 − 32x2z2 + 16z2 + 64x2yz − 64yz − 8x6z + 24x4z

− 32x2z + 32z + 64y2 − 16x4y + 32x2y − 64y + x8 − 4x6

+ 8x4 − 16x2 + 16,

(3.52)

63

but the Dixon projector d(x, y, z) contains extraneous terms,

d(x, y, z) = Cr(x, y, z)2, (3.53)

where C is a scalar. Following the results by Chtcherba et al. [50], we are guaranteed that the

resultant appears as a factor in the determinant of the chosen full-rank submatrix, (3.51). In this

case, however, an even smaller submatrix of the Dixon matrix contains the resultant as a factor. If

we keep only rows 5, 6, 9, 10, 11, 12, 13, 14, 15, and 16, along with columns 3, 4, 6, 8, 9, 10, 11,

12, 13, and 15 from (3.51), then the resulting submatrix is only 10× 10, with 36 non-zero entries,
































0 0 0 0 −2 ∗ x 0 0 2 ∗ z − 2 ∗ y 0 2

−2 0 2 ∗ y 0 2 0 0 0 0 0

0 0 0 −2 x −z 0 −z + 2 0 0

0 2 −z − 2 0 −1 x 0 0 0 0

0 0 x 0 0 −1 0 −1 0 0

0 0 −z 0 −1 0 0 x 0 0

0 0 0 z − 2 0 0 −x 2 ∗ y z 2

−2 z + 2 −2 ∗ y 0 0 0 1 0 −x 0

0 −x 0 1 0 0 0 0 1 0

0 z 0 −x 0 0 1 0 0 0
































. (3.54)

The determinant of this submatrix is exactly 4r(x, y, z). Solving a linear system with Gaussian

elimination is O(n3) even for matrices with floating point entries; for matrices with symbolic

entries, exact division will not be possible at every stage, and so the intermediate expressions can

grow very large. Gaussian elimination over the integers experiences a similar phenomenon, for

which the worst-case complexity is exponential [51]. We can safely assume that any reduction

in the dimension or number of non-zero entries in our essential submatrix will greatly reduce the

64

effort necessary to extract the resultant. We now investigate the possibility of identifying such a

submatrix of an arbitrary Dixon matrix.

Suppose that we have a polynomial system with m+1 equations,P ⊂ Q[p1, . . . , pm][x1, . . . , xn],

with parameters pi to be eliminated. For convenience, we will write a point in the domain of the

polynomials in P as z = (p,x) = (p1, . . . , pm, x1, . . . , xn). Further suppose that we have suc-

cessfully generated a Dixon matrix and identified the usual full-rank submatrix as described by

Kapur, Saxena, and Yang (KSY) [40]. Call this submatrix M . The entries of M are polynomials in

Q[x1, . . . , xn], so denote the evaluation of M at a point x as M(x). As described in section 3.3.2,

the determinant of M contains the resultant, r(x), as a factor.

Lemma 1. Given a point z∗ = (p∗,x∗) ∈ V (P), M(x∗) is singular.

Proof. Let z∗ ∈ V (P) so that r(x∗) = 0. The determinant of M necessarily contains the resul-

tant of P as a factor, so that det(M(x∗)) =
∑

k qk(x
∗)r(x∗) = 0, where the qk are extraneous

polynomial factors.

Similarly, any matrix containing the resultant as a factor of its determinant will be singular

when evaluated at x∗. On the other hand, for a randomly selected z = (p,x) /∈ V (P), M(x) will

almost certainly be full rank. To see this, consider that det(M(x)) = ΠN
k=1gk(x), where each gk

represents one of N factors in the Dixon projector. We have chosen M to be a full-rank submatrix

with the KSY approach [40], so that we are guaranteed gk 6= 0 ∀k. The set of solutions for each

gk(x) = 0, V (gk), has codimension at least 1, and so is a set of measure zero with respect to the

usual Lesbesgue measure on Cn. Finite unions of sets of measure zero are still of measure zero,

so that ∪N
k=1V (gk) is of measure zero. M(x) is rank deficient for exactly the points in ∪N

k=1V (gk),

so that the probability of choosing x ∈ Cn such that M(x) is full rank is 1. This suggests criteria

by which we can identify a submatrix of M that almost certainly contains the desired resultant as

a factor of its determinant.

Lemma 2. Let x∗ ∈ V (P), let x ∈ Cn be selected at random, and let Mk be a submatrix of M . If

rank(Mk(x)) > rank(Mk(x
∗)), then det(Mk) contains the desired resultant as a factor.

65

To find the smallest such submatrix, one would apply the criteria of Lemma 2 to every possible

submatrix of M . In practice, the rank computation is expensive enough that it is not feasible to

investigate every possible submatrix. Instead, we settle for an iterative procedure by which we

investigate only submatrices with one fewer column and row than M , and repeat until no smaller

submatrix can be found. It was by this procedure that we discovered the submatrix (3.54). An

alternate version of this process would iterate through the entries of M , setting each to 0, checking

the rank condition of Lemma 2, and restoring the entry if the condition is not met.

For the Dixon matrix associated to the bistatic, near-field system (3.31), the full-rank submatrix,

M , is 177 × 177, with 7692 non-zero entries. After running many trials of our Dixon matrix

reduction procedure, the smallest submatrix we could extract was 173 × 173, with 7176 non-

zero entries. This reduction, while helpful, is not enough to make the computation of the Dixon

projector feasible.

66

Chapter 4

A Solution for the Passive Case

4.1 An Invariant Equation for Passive SAR

Some radar systems do not require the user to actively transmit a signal. These passive radar

systems process reflected energy from non-cooperative sources of illumination, such as the signals

broadcast by television and radio towers. Since the transmitter and receiver are not colocated, this

type of passive radar system is a specific case of bistatic radar. For ground-imaging applications

using the signals from a stationary transmitter such as a radio tower, we can model the scenario as

a bistatic, near-field radar with the transmitter location fixed relative to the scattering centers in the

scene.

4.1.1 Geometric Invariant Discovery

For simplicity, first suppose we have a target with N = 3 scattering centers in 2D, so that the

configuration matrix is S ∈ R3×2. In contrast to our exposition in section 1.3, we attribute all

motion to our receiver and assume that the scattering centers and the transmitter are fixed. Let

xr(tl) = (xr, yr) be the time-dependent position of the receiver, and let xt = (xt, yt) be the fixed

position of the transmitter. Without loss of generality, we can fix the s1 to be the origin, and let s2

be on the first coordinate axis. Then

S =









0 0

x2 0

x3 y3









. (4.1)

Finally, let a, b, and c be the distances between the scatterers in S. With these, we can write a

system of polynomials that encodes the geometric relationships in our model,

67

f1 := t1 + r1 − ρ1 f7 := (x3 − x2)
2 + y23 − a2

f2 := t2 + r2 − ρ2 f8 := x2
3 + y23 − b2

f3 := t3 + r3 − ρ3 f9 := x2
2 − c2

f4 := x2
t + y2t − t21 f10 := x2

r + y2r − r21

f5 := (xt − x2)
2 + y2t − t22 f11 := (xr − x2)

2 + y2r − r22

f6 := (xt − x3)
2 + (yt − y3)

2 − t23 f12 := (xr − x3)
2 + (yr − y3)

2 − r23,

(4.2)

where ri is the one-way distance from the receiver to the ith scatterer, ti is the one-way distance

from the transmitter to the ith scatterer, and ρi is the bistatic distance to the ith scatterer. Each of

these polynomials is an element of the ring

R[xr, yr, xt, yt, x2, x3, y3, t1, t2, t3, r1, r2, r3, a, b, c, ρ1, ρ2, ρ3], (4.3)

and the affine variety associated with this set of polynomials is the set

V (f1, . . . , f12) = {(xr, . . . , ρ3) : fi(xr, . . . , ρ3) = 0 ∀i}

In other words, V (f1, . . . , f12) is the set of solutions to the system in (4.2) when we set each fi = 0.

If we correctly specified the polynomials in our system, then the affine variety will contain all of

the potential combinations of sensor positions and target geometries. For our particular inverse

problem, we can measure the bistatic ranges, ρ1, ρ2, ρ3, and we would like to determine geomet-

ric information about the target configuration matrix, a, b, and c. To find an implicit relationship

between only these variables, we would take the system defined in (4.2), and attempt to eliminate

variables until only ρ1, ρ2, ρ3, a, b, and c remain. As noted in section 3.2, this elimination will re-

sult in the ideal generated by 0. With this in mind, we return to our assumption that the transmitter

location is fixed relative to the scattering center locations. This implies that the variables t1, t2, and

t3 are all constant, even though they are unknown. If we consider these values as geometric invari-

68

ants to be estimated, we are interested in finding a polynomial relationship between the variables

ρ1, ρ2, ρ3, a, b, c, t1, t2, and t3. Following the same elimination procedure, we find

G ∩ R[t1, t2, t3, a, b, c, ρ1, ρ2, ρ3] = 〈g1〉, (4.4)

where

g1 := a2ρ41 + b2ρ42 + c2ρ43 − 4a2t1ρ
3
1 − 4b2t2ρ

3
2 − 4c2t3ρ

3
3

− (a2 + b2 − c2)ρ21ρ
2
2 − (a2 − b2 + c2)ρ21ρ

2
3 + (a2 − b2 − c2)ρ22ρ

2
3

+ 2(a2 + b2 − c2)t1ρ1ρ
2
2 + 2(a2 − b2 + c2)t1ρ1ρ

2
3

+ 2(a2 + b2 − c2)t2ρ
2
1ρ2 − 2(a2 − b2 − c2)t2ρ2ρ

2
3

+ 2(a2 − b2 + c2)t3ρ
2
1ρ3 − 2(a2 − b2 − c2)t3ρ

2
2ρ3

+ (a2(a2 − b2 − c2)− (a2 + b2 + c2)t22 − (a2 − b2 + c2)t23 + 6a2t21)ρ
2
1

+ (b2(−a2 + b2 − c2)− (a2 + b2 − c2)t21 + (a2 − b2 + c2)t23 + 6b2t22)ρ
2
2

+ (c2(−a2 − b2 + c2)− (a2 − b2 + c2)t21 + (a2 − b2 − c2)t22 + 6c2t23)ρ
2
3

− 4(a2 + b2 − c2)t1t2ρ1ρ2 − 4(a2 − b2 + c2)t1t3ρ1ρ3 + 4(a2 − b2 − c2)t2t3ρ2ρ3

+ 2(a2(−a2 + b2 + c2) + (a2 + b2 − c2)t22 + (a2 − b2 + c2)t23 − 2a2t31)t1ρ1

+ 2(b2(a2 − b2 + c2) + (a2 + b2 − c2)t21 − (a2 − b2 − c2)t23 − 2b2t22)t2ρ2

+ 2(c2(a2 + b2 − c2) + (a2 − b2 + c2)t21 − (a2 − b2 − c2)t22 − 2c2t23)t3ρ3.

(4.5)

If we included all possible geometric relations in system (4.2), we can conclude that g1 generates

the ideal containing all possible polynomial invariant equations for the bistatic, near-field case in

which the transmitter location is fixed. We could solve for the pairwise squared distances, a2, b2

and c2, given data for ρ1, ρ2, and ρ3, as we did in section 3.1.2. This approach will be insufficient

for cases with more scatterers (N > 3), as we will be forced to generate new polynomials for

each case, and the complexity of the polynomial invariants increases with the number of scatterers.

Additionally, the polynomial invariants are distinct for the 2D and 3D cases. In the 3D case, it is

69

unlikely that we will be able to extract pairwise distances between scattering centers without an

additional non-linear solve, and so an approach in which we construct a shape representative as we

did in section 3.1.2 is undesirable. Instead, we will take the form of this invariant as inspiration

and attempt to find a matrix expression analogous to (1.62), the MNF invariant equation described

by Ferrara et al. [3].

4.1.2 General Invariant Equation

As before, suppose we encode the positions of our scattering centers in the centered configu-

ration matrix, S ∈ RN×d, where N is the number of scatterers and d is the dimension of the target

(either 2 or 3). Let t ∈ RN be the vector of fixed distances between the transmitter and each of the

scattering centers, and let ρl be the vector of bistatic ranges to each of the scatterers measured by

the receiver. Model the relative motion of the target to the receiver as before, with time-dependent

rotation Ol and time-dependent translation τ . Then the one-way distance to the nth scatterer from

the receiver at time l is

ρnl − tn = ‖snOl + τ l1
T‖. (4.6)

If we square each entry and concatenate the results, we have

(ρl − t)2 =









‖sT1 ‖2
...

‖sTN‖2









︸ ︷︷ ︸

m

+2SOlτ l + ‖τ l‖21, (4.7)

where (ρl − t)2 = (ρl − t) ⊙ (ρl − t) denotes the entry-wise squaring operation, and ⊙ is the

entry-wise product. As we did in section 1.3.4, we can apply the centering matrix,

C = I − 1

N
11T , (4.8)

and expand the squared quantity to find

70

C(ρ2
l − 2t⊙ ρl + t2 −m) = 2SOlτ l. (4.9)

Now, we can take the pulse-wise difference,

C(ρ2
l − ρ2

k)− 2Ct⊙ (ρl − ρk) = 2S(Olτ l −Okτ k). (4.10)

The product t⊙ (ρl − ρk) = T (ρl − ρk), where

T =









t1 0 0

0 t2 0

0 0 t3









, (4.11)

so that, if we can determine the matrix T , we can determine the affine invariants of S with the

relation

C(ρ2
l − ρ2

k)− 2CT (ρl − ρk) = 2S(Olτ l −Okτ k). (4.12)

Returning to (4.9), we can multiply by ST on both sides,

STC(ρ2
l − 2Tρl + t2 −m) = 2STSOlτ l. (4.13)

Since S is rank d, the matrix STS ∈ Rd×d is full rank, and we can invert the matrix to find

(STS)−1STC(ρ2
l − 2Tρl + t2 −m) = 2Olτ l. (4.14)

It follows that

4‖τ l‖2 =(ρ2
l − 2Tρl + t2 −m)TCT S(STS)−2ST

︸ ︷︷ ︸

Ω

C(ρ2
l − 2Tρl + t2 −m)

=(ρ2
l)

TΩρ2
l − 4ρT

l TΩρ
2
l + 2(ρ2

l)
TΩ(t2 −m) + 4ρT

l TΩTρl

− 4ρT
l Ω(t

2 −m) + (t2 −m)TΩ(t2 −m),

(4.15)

71

and we could take the pulse-wise difference to find

4(‖τ l‖2 − ‖τ k‖2) =(ρ2
l − ρ2

k)
TΩ(ρ2

l − ρ2
k)− 4(ρl − ρk)

TTΩ(ρ2
l − ρ2

k)

+ 2(ρ2
l − ρ2

k)
TΩ(t2 −m) + 4(ρl − ρk)

TTΩT (ρl − ρk)

− 4(ρl − ρk)
TΩ(t2 −m).

(4.16)

Additionally, we could substitute the relation

N‖τ l‖2 = 1Tρ2
l − 21TTρ+ 1T (t2 −m) (4.17)

to express (4.15) as

0 =(ρ2
l − 2Tρl + t2 +m)TΩ(ρ2

l − 2Tρl + t2 +m)

− 4

N
1T (ρ2

l − 2Tρl + t2 +m).
(4.18)

Given the one-way distances to the transmitter, t, (4.18) is the geometric invariant equation relating

the range measurements to the configuration of scatterers. With this information, we can now

develop a scheme for estimating the target configuration, S, by first estimating t.

4.1.3 Computing Affine Invariants

Given the vector of one-way distances between the transmitter and each of the N scattering

centers, (4.12) will allow us to compute the range of S. To see this, first rewrite (4.12) as

C(R2 − 2TR)D = 2SY D, (4.19)

where R ∈ RN×L is the matrix of bistatic ranges,

R =

[

ρ1 ρ2 . . . ρL

]

, (4.20)

R2 = R⊙R is the matrix of squared ranges,

72

Y =

[

O1τ 1 O2τ 2 . . . OLτL

]

, (4.21)

and right multiplication by D corresponds to taking pairwise differences of column vectors. From

(4.19), we know that each column of C(R2 − 2TR)D is an element of range(S). We can then

compute the SVD of C(R2 − 2TR)D = V ΣUT , and the columns of V will be an orthonormal

basis for range(S). Unfortunately, the diagonal matrix T is unknown, and so we must first estimate

the entries of T prior to the affine invariant estimation step.

For convenience, we will think of the matrix C(R2−2TR)D as parameterized by the diagonal

matrix T , and we will call the true matrix of one-way distances T ∗. To estimate T ∗, first notice that

rank(C(R2 − 2T ∗R)D) = rank(S) = d, where d is the dimension of the target (usually d = 3).

In general, both R2 and R are rank-N , so that generic choices of T will not satisfy this property.

The matrix C = I − 1
N
11T projects out the one-dimensional subspace spanned by the vector 1,

and so multiplication by C decreases the rank of a matrix by at most 1. Similarly, the null space

of DT is spanned by 1, so that if a matrix A is rank N , then rank(CAD) ≥ N − 1. It follows that

rank(R2 − 2T ∗R) is either 3 or 4. Since we suspect that T ∗ is the only matrix to satisfy such a

low-rank condition, we attempt to find T ∗ as the solution to the minimization problem,

minimize rank(R2 − 2TR)

subject to ti > 0 ∀i.
(4.22)

As stated, however, this problem is impractical. The problem of minimizing the rank of a matrix

is NP-hard [52], since rank(·) is a discontinuous, non-convex function of the entries of a matrix.

In practice, it is common to minimize a new objective function, which is a convex relaxation of

rank(·). For a positive semi-definite matrix A, it is common to minimize the nuclear norm,

‖A‖∗ := tr(
√
ATA) =

∑

i=1

σi(A)

73

in place of rank(A), where tr(·) is the trace operation, and σi(A) is the ith singular value of

A. In some situations, the minimum of the nuclear norm objective function is identical to the

minimum-rank solution [53–55]. Since rank(A) = rank(ATA) = rank(AAT) and AAT is positive

semi-definite for any choice of A, we can approximate the solution to our original problem with

minimize f(T) := tr
(
(R2 − 2TR)(R2 − 2TR)T

)

subject to ti > 0 ∀i.
(4.23)

Since this new objective function is convex and differentiable, we can solve the minimization

problem exactly. First, we simplify the objective function by rewriting it in terms of vectors. Let

δ(A) denote the diagonal of A, reshaped as a vector, and recall that t = δ(T). Then

f(T) = tr(R2(R2)T − 2TR(R2)T − 2R2RTT + 4TRRTT)

= δ(R2(R2)T)T1− 4δ(R2RT)T t+ 4δ(RRT)T (t⊙ t).

(4.24)

The gradient is then

∇tf = −4δ(R2RT) + 8δ(RRT)⊙ t, (4.25)

and so if we let a = δ(R2RT) and b = δ(RRT), we have an extremely simple, closed-form

solution to (4.23) given by

ti =
ai
2bi

. (4.26)

While the trace is a useful heuristic in many applications, we find that the solution to (4.23)

is not a sufficiently accurate approximation to the solution of the original problem in (4.22). As

inspiration for a new objective function, we note that tr(AT (AAT)−1A) = r for a matrix A ∈

Rr×M with rank(A) = r. The matrix AAT is not invertible if A is not full-rank, and so we cannot

use this function directly as a proxy for rank(·). Instead, we follow the analysis by Zhao [56] and

define

φǫ(A) := tr(AT (AAT + ǫI)−1A). (4.27)

74

Adding the term ǫI means that AAT + ǫI is full rank for ǫ 6= 0, so that (AAT + ǫI)−1 exists.

Further, φǫ(A) has the desirable property that limǫ→0 φǫ(A) = rank(A). To see this, suppose A has

the SVD A = UΣV T . Then

φǫ(A) = tr(AT (AAT + ǫI)−1A)

= tr(V ΣUT (UΣ2UT + ǫI)−1UΣV T)

= tr(UT (UT (Σ2 + ǫI)U)−1UΣ)

= tr((Σ2 + ǫI)−1Σ2)

=
r∑

k=1

σ2
k(A)

σ2
k(A) + ǫ

.

(4.28)

For a fixed ǫ > 0, this objective function is still non-convex, but it is a differentiable function of

the entries in A. This suggests a graduated optimization problem, in which we alternately reduce

ǫ and minimize φǫ(A) with a local minimization technique. To illustrate the convergence of φǫ(A)

to rank(A), we have included a plot of φǫ(A) for various values of ǫ in Figure 4.1. Zhao did not

take a graduated minimization approach in his paper; he chose instead to reformulate the problem

as a bi-level, semi-definite programming problem [56]. Because we are interested in minimizing

the rank of

Z(T) = R2 − 2TR, (4.29)

where T is diagonal, our problem is reduced in complexity to a global minimization problem over

RN , where T is N × N . To make use of local minimization techniques, we require the gradient,

which we can compute one partial at a time. Let A(T) = Z(T)Z(T)T , then

∂tiφǫ(A) = tr(∂ti [(A+ ǫI)−1A])

= tr(∂ti [(A+ ǫI)−1]A+ (A+ ǫI)−1∂ti [A])

= tr(−(A+ ǫI)−1∂ti [A](A+ ǫI)−1A+ (A+ ǫI)−1∂ti [A])

= tr
(
(A+ ǫI)−1∂ti [A](I − (A+ ǫI)−1A)

)
,

(4.30)

75

Figure 4.1: A plot of φǫ(A), where A(t) is 2 × 2 diagonal matrix with diagonal [1, (t − 1)(t − 1.5)].
For t = 1 and t = 1.5, rank(A(t)) = 1. Otherwise, rank(A(t)) = 2. We can see that as ǫ → 0, φǫ more
closely approximates rank. In practice, greater values of ǫ provide a smoothing effect to the objective, which
decreases the chance that local minimization techniques will converge before reaching the global minimum.

where

∂tiA = ∂ti [(R
2 − 2TR)(R2 − 2TR)T]

= ∂ti [R
2(R2)T − 2TR(R2)T − 2R2RTT + 4TRRTT]

= −2EiR(R2)T − 2R2RTEi + 4(EiRRTT + TRRTEi).

(4.31)

Here, we’ve used Ei to represent the diagonal matrix with 1 in the ith entry of the diagonal and

zeros elsewhere. The gradient is sufficient for many local minimization routines, but the Hessian

of φǫ(A) is not too difficult to compute, and gives us access to a wider range of minimization

algorithms. For simplicity, let M = (A+ ǫI)−1. The Hessian is given entry-wise by

∂tj∂tiφǫ(A) = ∂tj tr (M∂ti [A](I −MA))

= tr
(
M

(
∂tj∂ti [A]− 2∂ti [A]M∂tj [A]

)
(I −MA)

)
,

(4.32)

where

76

∂tj∂ti [A] = ∂tj
[
−2EiR(R2)T − 2R2RTEi + 4(EiRRTT + TRRTEi)

]

= 4EjRRTEi + 4EiRRTEj.

(4.33)

Psuedocode describing the graduated optimization problem for estimating T ∗ is included in

Algorithm 1. Any local minimization procedure can be used in place of FINDLOCALMIN. In

Section 4.2, we include accuracy results for estimating T ∗ using both an implementation of the

Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm, as well as an implementation of Newton’s

method.

Algorithm 1 Estimate the one-way distances from target to transmitter, T ∗.

function ESTIMATET(R,numIters)
T0 ← MINNUCLEARNORM(R)
ǫ← 1.0
for k = 0 : numIters do

ǫ← 2−kǫ
Tk ← FINDLOCALMIN(∇Tφǫ, Tk−1)

end for

return Tk

end function

function MINNUCLEARNORM(R)
a← δ(R2RT)
b← δ(RRT)
for i = 1 : N do

T [i, i]← 2a[i]b[i]−1

end for

end function

Once we have computed T , our estimate of T ∗, we compute the affine invariants of S according

to (4.19) by finding the singular value decomposition of the left hand side,

V ΣU = C(R2 − 2TR)D. (4.34)

As in Section 1.3.1, we have found an orthonormal basis for the columns of S.

77

4.1.4 Computing Euclidean Invariants

Given that we have reliable estimates of the affine invariants, V , and the one-way distances

from the scattering centers to the transmitter, T , it is possible to estimate the affine invariants of S

according to the usual process in Section 1.3.2. Reorganize the terms of (4.18),

4

N
1T (ρ2

l − 2Tρ+ t2
︸ ︷︷ ︸

r2
l

) =(ρ2
l − 2Tρ+ t2 −m)TΩ(ρ2

l − 2Tρ+ t2 −m) +
4

N
1Tm

4

N
1T r2l =(r2l −m)TΩ(r2l −m) +

4

N
1Tm,

(4.35)

where r2l = ρ2
l − 2Tρ+ t2 is known for each pulse, and define bl = V T r2l . We have now reduced

the passive, bistatic, near-field case to the monostatic, near-field case, for which we have described

the solution in Section 1.3.4.

The approach described in Section 1.3.4 constructs a non-linear least-squares (NLLS) problem

whose solution describes the Euclidean invariants of the target, but then linearizes this problem by

introducing extra variables in 1.66. It is possible to solve the NLLS problem without introducing

extra variables. Starting from the reduced invariant equation,

4

N
1T r2l = (bl − V Tm)TW−1(bl − V Tm) +

4

N
1Tm, (4.36)

where W−1 = V ′ΩV = OΣ−2OT is a 3× 3 symmetric matrix, as in Section 1.3.4. Note that

m =









‖sT1 ‖2
...

‖sTN‖2









= diag(STS) = diag(VWV T), (4.37)

so that we can express m in terms of the parameters in W . W has exactly 6 free parameters, so

that our NLLS problem is a global optimization problem over R6. Let

78

W :=









w1 w4 w5

w4 w2 w6

w5 w6 w3









, (4.38)

and we can expand m as

m =

[

v2
1 v2

2 v2
3 2v1 ⊙ v2 2v1 ⊙ v3 2v2 ⊙ v3

]

︸ ︷︷ ︸

A

w, (4.39)

where w :=

[

w1 w2 w3 w4 w5 w6

]T

, and vi is column i of V , the matrix of affine invari-

ants. We can now express (4.36) in terms of the parameters in W ,

4

N
1T r2l = (bl − V TAw)TW−1(bl − V TAw) +

4

N
1TAw, (4.40)

To solve the NLLS problem directly, we minimize the objective

f(w) :=
1

2
‖r(w)‖2, (4.41)

where r(w) is the residual, defined element-wise by

rl(w) := (bl − V TAw)TW−1(bl − V TAw) +
4

N
1TAw − 4

N
1T r2l . (4.42)

We will also require the Jacobian of r,

∂wi
rl(x) =− 2(V TAei)

TW−1(bl − V TAw)

+ (bl − V TAw)T∂wi
(W−1)(bl − V TAw)

+
4

N
1TAei,

(4.43)

where ei is the ith standard basis vector and

79

∂wi
(W−1) = −W−1∂wi

(W)W−1. (4.44)

To use a second-order method, we will also require the Hessian of f ,

Hf(w) = ΣL
l=1rl(w)∇2r(w), (4.45)

where ∇2r(w) is given entry-wise by

∂wi
∂wj

rl(w) =− 2(V TAei)
TW−1(bl − V TAw)

− 2(V TAej)
TW−1(bl − V TAw)

+ (bl − V TAw)T∂wi
∂wj(W

−1)(bl − V TAw)

+ 2(V TAej)
TW−1(V TAej),

(4.46)

where

∂wi
∂wj

(W−1) = W−1
(
∂wi

(W)W−1∂wj
(W) + ∂wj

(W)W−1∂wi
(W)

)
W−1. (4.47)

Given an initial value for w, we then minimize f with any iterative minimization technique. For

this work, we use a fast NLLS solver supplied by Rutherford Appleton Laboratories [57, 58]. In

Section 4.2.2, we discuss the accuracy of the shape representative constructed using this approach,

as compared to the usual linear least-squares approach.

4.2 Numerical Results

In Section 4.1.3, we presented a novel approach for estimating the affine invariants of a target

given data collected in in the passive, bistatic, near-field sensor modality. Following that, in Sec-

tion 4.1.4, we presented the accompanying procedure for estimating the Euclidean invariants of the

target. Now, we will investigate the effectiveness of those algorithms with numerical testing.

80

4.2.1 Computing Affine Invariants

As a first step, we generate synthetic range data on which to test Algorithm 1. For each trial,

we construct a shape matrix, S, with N = 10 scatterers by randomly selecting the 3D coordinates

of each scatterer, and then translating the shape so that its centroid coincides with the origin of our

coordinate system. We then randomly select the transmitter position coordinates, xt, along with

a set of L = 300 receiver position coordinates, xr(l). L corresponds to the collective number of

pulses measured by all receivers. At one extreme, we could have a single moving receiver take all

300 measurements, and at the other extreme would be an array of 300 receivers each taking a single

measurement. For each receiver coordinate, the passive, BNF distance to a scatterer is simply the

distance from the transmitter to scatter, plus the distance from the scatterer to the receiver for each

l = 1, . . . , L,

ρnl = ‖sn − xt‖+ ‖sn − xr(l)‖. (4.48)

Using this to construct the N × L matrix of range measurements, R, we have synthetic range

measurements to a target with N scatterers. In the julia script, estimateTtrial.jl, we

have implemented Algorithm 1 using both Newton’s method and the Broyden-Fletcher-Goldfarb-

Shanno (BFGS) algorithm and listed the convergence results in Table 4.1. Also included in this

table are the results of the algorithm when various levels of Gaussian noise are added to the range

measurements prior to estimation of the invariant. For these trials, the amplitude of the noise is

described in terms of the variance in the range measurements, and is tuned with the multiplicative

factor α according to

ampnoise = α−1σ2(R).

Let T ∗ be the diagonal matrix of exact one-way measurements from transmitter to scatterers, and

let V ∗ be an orthonormal basis for the columns of S. To quantify the error in the invariant estimates,

we measure the error in the one-way distances with the usual Euclidean two norm on RN , ‖T −

T ∗‖22 =
∑N

i ((tii − t∗ii)
2). The matrices V and V ∗ both represent subspaces of dimension 3 in RN ,

and so are members of the Grassmannian G(3, N), which is the set of 3-dimensional subspaces

81

of an N -dimensional vector space. To measure the error in V , we use the geodesic distance on

G(3, N). If θ1, θ2, θ3 are the principal angles between the subspaces defined by V and V ∗, then the

geodesic distance is

dgeo(V, V
∗) :=

√

θ21 + θ22 + θ23. (4.49)

We can see in Table 4.1 that the quality of invariants estimated by the current technique degrades

quickly as the noise amplitude increases. This is because the additive matrix of Gaussian white

noise, E, is almost always full-rank, so that the number of significant eigenvalues of A(T) + E

increases with the noise amplitude. It follows that the global minimum of φǫ (A(T) + E) will

not necessarily coincide with T ∗. Modifications to this technique would account for noisy range

measurements, and could perform a joint minimization over the space of possible T and E. To

derive an effective approach for use with a real system, one would need to identify an accurate

model for the noise present in the range measurements.

4.2.2 Computing Euclidean Invariants

Given accurate estimates of T , we now investigate the numerical performance of the Euclidean

invariant estimation processes. For the following trials, we generated synthetic data as in Sec-

tion 4.2.1, estimated the affine invariants, V , and then applied either the linear least-squares (LLS)

approach described in Section 1.3.4, or the full non-linear least-squares (NLLS) approach de-

scribed in Section 4.1.4. The NLLS implementation leverages a fast, Fortran-based NLLS

solver, RALfit [57, 58], for which we have written a julia interface. In each trial, we solve for

w using the LLS approach, and then refine the estimate by passing it as the starting point to the

NLLS method. Table 4.2 summarizes the results. To quantify the error in our Euclidean invariants,

we compute a shape representative, S, as in Section 1.3.2 and compare it to the true target shape,

S∗. To account for arbitrary rotations and reflections on the shape estimate, we first solve the or-

thogonal Procruste’s problem for S and S∗, and then take the Frobenius norm of the result. The

final error measurement is

dpro(S, S
∗) = min

O
‖SO − S∗‖F , (4.50)

82

(a) Rank objective, ǫ = 1.0 (b) Rank objective, ǫ = 0.1

(c) Rank objective, ǫ = 0.01 (d) Rank objective, ǫ = 0.001

Figure 4.2: These plots illustrate the values of the approximate rank objective function, φǫ(A(T)), where
N = 4. We vary t1, t2 and fix the remaining ti. The optimal value for (t1, t2) is indicated in red. As ǫ

decreases from top-left to bottom-right, we can see that the blue region shrinks around the global minimum.

83

Table 4.1: This table summarizes the mean performance of Algorithm 1 over 50 trials, using two different
local minimization techniques. Error in T is measured with the usual two norm on R

10, and error in the
subspace estimate, V , is measured with the geodesic distance on G(3, 10), defined in (4.49). For each set
of trials, we used an initial value of ǫ = 1.0 and set numIters = 4. We should note that the initial choice
of ǫ, as well as the number of iterations performed, can influence the accuracy of this technique. Further, it
is not necessary to reduce ǫ by a factor of two in every iteration; smaller reductions in ǫ are beneficial, but
increase the number of iterations required.

Local Min. Technique Number Converged Mean Error in T Mean Error in V

BFGS 49 1.67258e-7 2.68492e-8
Newton 43 9.48078e-8 2.32872e-8

α = 100

BFGS 45 0.023001 0.0022071
Newton 35 0.024127 0.0021673

α = 50

BFGS 48 0.084055 0.0052336
Newton 30 0.127339 0.0103484

α = 25

BFGS 44 0.297952 0.0132395
Newton 43 0.290028 0.0132577

α = 10

BFGS 45 2.892260 0.1251810
Newton 50 3.393770 0.1991010

where ‖·‖F denotes the Frobenius norm andO ∈ O(3) is an arbitrary rotation or reflection. We can

see that both the LLS and NLLS solution are nearly identical, so that the reduced computational

complexity of the LLS method makes it the preferred method for estimating Euclidean invariants.

4.3 Further Work

The bistatic results in this chapter are limited in two primary respects. First, the invariant

equation (4.18) only applies for bistatic scenarios in which either the receiver or the transmitter

is stationary. Second, the affine invariant estimation step for the passive, near-field case is not

well-adapted to noisy range measurements. The second concern could be addressed by studying

84

Table 4.2: This table summarizes the mean performance of our Euclidean invariant estimation algorithms
over 50 trials, with N = 10, L = 300. Error in the Euclidean invariants is measured according to (4.50).
From this side-by-side comparison, we can see that both methods are robust to white noise on the range
tracks, but that the Euclidean invariant estimates generated by each technique are nearly identical.

Solution Type No Noise α = 100 α = 50 α = 25 α = 1

LLS 1.34443e-15 3.35177e-4 7.1002e-4 1.37775e-3 5.30153e-2
NLLS 1.45124e-15 3.35177e-4 7.1002e-4 1.37775e-3 5.41893e-2

the nature of the errors in range tracks provided to the algorithm, and then compensating for those

errors by adding extra parameters to the minimization problem. This would increase the cost of

invariant estimation, but could improve the robustness of the method to measurement error. The

first limitation is the more difficult to address. To solve this problem, one would need to finish the

derivation started in Chapter 3 for the bistatic, near-field invariant equation. This could involve

advancing the state-of-the-art in elimination of variables from polynomial systems, or perhaps

our particular system has some structure that would simplify the elimination process. It is also

possible that the problem could be solved with more computing power, but it is difficult assess

the necessary scope of those computing resources. While difficult, addressing the first concern

would eliminate the second concern, as the bistatic, near-field invariant equation would also apply

to passive, bistatic range data. This would be very exciting, as this discovery would complete

our knowledge of geometric invariant equations for all sensor configurations and geometries, and

theoretically enable the existence of a new class of geolocation algorithms.

85

Bibliography

[1] M. A. Stuff, R. C. Sullivan, Jr., B. J. Thelen, and S. A. Werness, “Automated two- and three-

dimensional, fine-resolution radar imaging of rigid targets with arbitrary unknown motion,”

1994.

[2] M. Cheney and B. Borden, Fundamentals of Radar Imaging. Society for Industrial and

Applied Mathematics, 2009.

[3] M. Ferrara and G. Arnold, “Shape and motion estimation from near-field echo-based sensor

data,” SIAM Journal of Imaging Sciences, vol. 2, no. 2, 2009.

[4] J. R. Fienup, “Detecting moving targets in SAR imagery by focusing,” IEEE Transactions on

Aerospace and Electronic Systems, vol. 37, pp. 794–809, July 2001.

[5] C. Baker, Jr, “Moving target indicator radar,” Oct. 29 1957. US Patent 2,811,715.

[6] W. M. Brown, “Synthetic aperture radar,” IEEE Transactions on Aerospace and Electronic

Systems, vol. AES-3, pp. 217–229, March 1967.

[7] J. L. Walker, “Range-doppler imaging of rotating objects,” IEEE Transactions on Aerospace

and Electronic Systems, vol. AES-16, pp. 23–52, Jan 1980.

[8] J. R. Fienup and A. Kowalczyk, “Detecting moving targets in SAR imagery by using a phase-

error correction algorithm,” in Proceedings of SPIE, vol. 2487, pp. 17–21, 1995.

[9] S. Barbarossa and A. Scaglione, “Autofocusing of SAR images based on the product high-

order ambiguity function,” IEE Proceedings - Radar, Sonar and Navigation, vol. 145,

pp. 269–273, Oct 1998.

[10] J. R. Moreira and W. Keydel, “A new MTI-SAR approach using the reflectivity displacement

method,” IEEE Transactions on Geoscience and Remote Sensing, vol. 33, pp. 1238–1244,

Sep 1995.

86

[11] S. A. Werness, M. A. Stuff, and J. R. Fienup, “Two-dimensional imaging of moving targets

in SAR data,” in 1990 Conference Record Twenty-Fourth Asilomar Conference on Signals,

Systems and Computers, 1990., vol. 1, pp. 16–, Oct 1990.

[12] S. A. S. Werness, W. G. Carrara, L. S. Joyce, and D. B. Franczak, “Moving target imaging

algorithm for SAR data,” IEEE Transactions on Aerospace and Electronic Systems, vol. 26,

pp. 57–67, Jan 1990.

[13] M. A. Stuff, “Three-dimensional analysis of moving target radar signals: methods and impli-

cations for ATR and feature-aided tracking,” 1999.

[14] M. A. Stuff, “Three-dimensional invariants of moving targets,” 2000.

[15] M. Stuff, Derivation and Estimation of Euclidean Invariants of Far Field Range Data. PhD

thesis, University of Michigan, 2002.

[16] M. A. Stuff, P. Sanchez, and M. Biancalana, “Extraction of three-dimensional motion and

geometric invariants from range dependent signals,” Multidimensional Syst. Signal Process.,

vol. 14, pp. 161–181, Jan. 2003.

[17] M. Stuff, M. Biancalana, G. Arnold, and J. Garbarino, “Imaging moving objects in 3D from

single aperture synthetic aperture radar,” in Proceedings of the 2004 IEEE Radar Conference

(IEEE Cat. No.04CH37509), pp. 94–98, April 2004.

[18] G. J. Meyer, Classification of Radar Targets Using Invariant Features. PhD thesis, Air Force

Institute of Technology, April 2003.

[19] M. Ferrara, J. Jackson, and M. Stuff, “Three-dimensional sparse-aperature moving-target

imaging,” SPIE Proceedings, vol. 6970, April 2008.

[20] M. Ferrara, G. Arnold, and M. Stuff, “Shape and motion reconstruction from 3D-to-1D ortho-

graphically projected data via object-image relations,” IEEE Transactions on Pattern Analysis

and Machine Intelligence, vol. 31, pp. 1906–1912, Oct 2009.

87

[21] G. Arnold, M. Ferrara, and J. T. Parker, “Multiple-object shape and motion reconstruction

with missing radar data,” Proc. SPIE, vol. 8746, pp. 87460G–87460G–15, 2013.

[22] J. Mayhan, “Phase-enhanced 3D snapshot ISAR imaging and interferometric SAR,” MIT

Lincoln Labs, 2009.

[23] M. Martorella, D. Stagliano, F. Salvetti, and N. Battisti, “3D interferometric ISAR imaging

of noncooperative targets,” IEEE Transactions on Aerospace and Electronic Systems, vol. 50,

pp. 3102–3114, October 2014.

[24] C. Tomasi and T. Kanade, “Shape and motion from image streams under orthography: a

factorization method,” International Journal of Computer Vision, vol. 9, pp. 137–154, Nov

1992.

[25] O. Özyesil, V. Voroninski, R. Basri, and A. Singer, “A survey on structure from motion,”

CoRR, vol. abs/1701.08493, 2017.

[26] D. Bates, J. Hauenstein, A. Sommese, and C. Wampler, “Bertini: Software for numerical

algebraic geometry.” Available at betini.nd.edu.

[27] D. J. Bates, J. D. Hauenstein, A. J. Sommese, and C. W. Wampler, Numerically solving

polynomial systems with Bertini, vol. 25. SIAM, 2013.

[28] M. Compagnoni, R. Notari, A. A. Ruggiu, F. Antonacci, and A. Sarti, “The algebro-geometric

study of range maps,” Journal of Nonlinear Science, vol. 27, pp. 99–157, Feb 2017.

[29] T. Berry, “Points at rational distance from the vertices of a triangle,” Acta Arithmetica, vol. 62,

no. 4, pp. 391–398, 1992.

[30] O. Bottema, R. Erne, and R. Hartshorne, Topics in Elementary Geometry. Mathematics and

Statistics, Springer New York, 2008.

[31] D. Cox, J. Little, and D. O’Shea, Ideals, varieties, and algorithms, vol. 3. Springer, 1992.

88

[32] W. Decker, G.-M. Greuel, G. Pfister, and H. Schönemann, “SINGULAR 4-1-0 — A computer

algebra system for polynomial computations.” http://www.singular.uni-kl.de, 2016.

[33] S. Collart, M. Kalkbrener, and D. Mall, “Converting bases with the Gröbner walk,” Journal

of Symbolic Computation, vol. 24, no. 3-4, pp. 465–469, 1997.

[34] Q.-N. Tran, “A fast algorithm for Gröbner basis conversion and its applications,” Journal of

Symbolic Computation, vol. 30, no. 4, pp. 451–467, 2000.

[35] Q.-N. Tran, “Efficient Groebner walk conversion for implicitization of geometric objects,”

Computer Aided Geometric Design, vol. 21, no. 9, pp. 837–857, 2004.

[36] A. Steel, “Gröbner basis timings page.” http://magma.maths.usyd.edu.au/~allan/gb/, 2004.

[37] W. Bosma, J. Cannon, and C. Playoust, “The Magma algebra system. I. The user language,”

J. Symbolic Comput., vol. 24, no. 3-4, pp. 235–265, 1997. Computational algebra and number

theory (London, 1993).

[38] A. L. Dixon, “The eliminant of three quantics in two independent variables,” Proceedings of

the London Mathematical Society, vol. 2, no. 1, pp. 49–69, 1909.

[39] A. Cayley, “On the theory of elimination,” Cambridge and Dublin Math. J, vol. 3, pp. 116–

120, 1848.

[40] D. Kapur, T. Saxena, and L. Yang, “Algebraic and geometric reasoning using Dixon resul-

tants,” in Proceedings of the international symposium on Symbolic and algebraic computa-

tion, pp. 99–107, ACM, 1994.

[41] D. Kapur and T. Saxena, “Extraneous factors in the Dixon resultant formulation,” in Proceed-

ings of the 1997 international symposium on Symbolic and algebraic computation, pp. 141–

148, ACM, 1997.

[42] D. Kapur, “Algorithmic elimination methods,” in Tutorial Notes, Intl. Symp. on Symbolic and

Algebraic Computation (ISSAC), Montreal, 1995.

89

[43] D. Kapur, Y. N. Lakshman, and T. Saxena, “Computing invariants using elimination meth-

ods,” in Proceedings of International Symposium on Computer Vision - ISCV, pp. 97–102,

Nov 1995.

[44] D. Kapur, “Automated geometric reasoning: Dixon resultants, Gröbner bases, and charac-

teristic sets,” in Automated Deduction in Geometry (D. Wang, ed.), (Berlin, Heidelberg),

pp. 1–36, Springer Berlin Heidelberg, 1997.

[45] A. D. Chtcherba and D. Kapur, “Constructing Sylvester-type resultant matrices using the

Dixon formulation,” Journal of Symbolic Computation, vol. 38, no. 1, pp. 777–814, 2004.

[46] M. Minimair, “Computing the Dixon Resultant with the Maple package DR,” in Applications

of Computer Algebra (I. S. Kotsireas and E. Martínez-Moro, eds.), pp. 273–287, Springer

International Publishing, 2017.

[47] Toronto: Maplesoft, a division of Waterloo Maple Inc., Maple 2015, 2005-2015.

[48] R. H. Lewis, “Fermat computer algebra system,” 2008.

[49] R. H. Lewis, “Dixon-EDF: The premier method for solution of parametric polynomial sys-

tems,” in Special Sessions in Applications of Computer Algebra, pp. 237–256, Springer, 2015.

[50] A. D. Chtcherba and D. Kapur, “Conditions for determinantal formula for resultant of a poly-

nomial system,” in Proceedings of the 2006 international symposium on Symbolic and alge-

braic computation, pp. 55–62, ACM, 2006.

[51] X. G. Fang and G. Havas, “On the worst-case complexity of integer Gaussian elimination,” in

Proceedings of the 1997 international symposium on Symbolic and algebraic computation,

pp. 28–31, ACM, 1997.

[52] B. K. Natarajan, “Sparse approximate solutions to linear systems,” SIAM journal on comput-

ing, vol. 24, no. 2, pp. 227–234, 1995.

90

[53] M. Fazel, Matrix rank minimization with applications. PhD thesis, PhD thesis, Stanford

University, 2002.

[54] B. Recht, M. Fazel, and P. A. Parrilo, “Guaranteed minimum-rank solutions of linear matrix

equations via nuclear norm minimization,” SIAM review, vol. 52, no. 3, pp. 471–501, 2010.

[55] B. Recht, W. Xu, and B. Hassibi, “Null space conditions and thresholds for rank minimiza-

tion,” Mathematical programming, vol. 127, no. 1, pp. 175–202, 2011.

[56] Y.-B. Zhao, “An approximation theory of matrix rank minimization and its application to

quadratic equations,” Linear Algebra and its Applications, vol. 437, no. 1, pp. 77–93, 2012.

[57] N. Gould, T. Rees, and J. Scott, “A higher order method for solving nonlinear least-squares

problems,” tech. rep., Technical Report RAL-P-2017-010, STFC Rutherford Appleton Labo-

ratory, 2017.

[58] N. Gould, T. Rees, and J. Scott, “Convergence and evaluation-complexity analysis of a regu-

larized tensor-Newton method for solving nonlinear least-squares problems,” tech. rep., Tech-

nical Report RAL-P-2017-009, STFC Rutherford Appleton Laboratory, 2017.

[59] M. Born, “Zur quantenmechanik der stoßvorgänge,” Zeitschrift für Physik, vol. 37, pp. 863–

867, Dec 1926.

91

Appendix A

Conventions

Since the engineering and mathematics communities often differ in common notations, here is

a guide to the conventions followed in this work.

A.1 Symbol Reference

Symbol Meaning Section Defined

:= equal by definition

i =
√
−1 imaginary unit

ν frequency 1.1

ω = 2πν spatial frequency 1.1

k = c−1
0 ω angular wavenumber 1.1

c0 speed of light in free space 1.1

E time-dependent electric field 1.1

E frequency-dependent electric field 1.1

∂t partial derivative with respect to t 1.1

∇2 Laplacian operator 1.1

sn target centered coordinate of nth scatterer 1.3

S configuration/shape matrix 1.3

xnl position of nth scatterer at time l 1.3

Xl target position at time l 1.3

ρnl range to nth scatterer at time l. 1.3,1.3.3,1.3.5

ρl vector of ranges at time l 1.3,1.3.3,1.3.5

R range data matrix, or track matrix 1.3

92

A.2 Fourier Transform

There are different conventions for the Fourier transform, each of which is convenient in some

situation. In this work, we will follow the conventions

F (ν) =

∫

e2πiνtf(t) dt (A.1)

f(t) =

∫

e−2πiνtF (ν) dν, (A.2)

where F (ν) is the Fourier transform of the function f(t). We sometimes use the spatial frequency

for convenience, in which case we denote the transforms with

F (ω) =

∫

eiωtf(t) dt (A.3)

f(t) =
1

2π

∫

e−iωtF (ω) dω. (A.4)

93

Appendix B

Approximations

B.1 Born Approximation

Consider the Lippmann-Schwinger (LS) equation in the Fourier domain:

Esc(ω,x) = −
∫

G(ω,x− z)V (z)ω2E tot(ω, z) dz. (1.10 revisited)

Recall that E tot = E in + Esc, so that we can add the incident field to both sides and rewrite the LS

equation in terms of operators,

E tot + GVE tot = E in, (B.1)

with G representing convolution with G and V denoting multiplication by the reflectivity func-

tion, V . If possible, we would solve (B.1) with E tot = (I + GV)−1E in. This form suggests the

Neumann series, a generalization of the geometric series. As in the geometric series (1 + z)−1 =
∑∞

n=0(−1)n−1zn, we can write

E tot = E in − GVE in + (GV)2E in − (GV)3E in + · · · . (B.2)

The Neumann series converges when the operator norm ‖GV‖ < 1, which we can interpret to

mean that GV is somehow small; it is common to refer to the convergence of this series as a

weak-scattering assumption [2].

The Neumann series also has an interesting physical interpretation. The function G(x − z)

describes the propagation of the EM wave from z to x, and V (z) describes the reflectivity of the

scatterer at z. Together, we see that each application of GV describes the wave propagation from

a single scattering event. With this in mind, we can see that the Neumann series in (B.2) is the

incident field, plus singly-reflected waves (GV term), plus twice-reflected waves ((GV)2 term), etc.

94

The Born approximation [59] involves truncating the Neumann series so that we consider only the

effects of singly-reflected waves. The resulting model is

E tot = E in − GVE in, (B.3)

from which we can now subtract the incident field and replace GV to find

Esc = −
∫

eik|x−z|

4π |x− z|V (z)ω2E in dz (B.4)

B.2 Far-Field Approximation

In reality, wavefronts emitted from our antenna will be curved. If we imagine an antenna

composed of a single point, the wavefronts will be spheres propagating outward from the point.

In 2D, the wavefronts will be circles. This means that when we measure the range to a point in

space with a radar system, our measurement is an estimate of the Euclidean distance between the

point-antenna and the point-scatterer on the target. Suppose our antenna is centered at the origin,

our target is centered on the point x, and our measurement comes from scatterer at point y relative

to the target center, as in Figure B.1. Relative to the sensor, the scatterer is then at position x+ y,

so that the range is the distance from the sensor to the scatterer,

‖x+ y‖ =
√

(x+ y)T (x+ y)

=
√

‖x‖2 + 2xTy + ‖y‖2

= ‖x‖
√

1 +

(

2
x̂Ty

‖x‖ +
‖y‖2
‖x‖2

)

,

(B.5)

where we define x̂ = x
‖x‖

to be the unit vector in the direction of x, the target centroid. In the

far-field, ‖x‖ ≫ ‖y‖ since the distance from the sensor to the target centroid is much greater than

the distance from the target centroid to the scatterer. This allows us to use the Taylor expansion
√
1 + z = 1 + z

2
+ z2

8
+ · · · to approximate the range with

95

(a) Near Field (b) Far Field

Figure B.1: When the distance between scatterers is small compared to the distance from the target to
the emitter, we approximate the circular wavefronts with parallel planes. We can see that this is a poor
approximation in the near field, but that the accuracy improves as the wavefront curvature in the region near
the object decreases.

‖x+ y‖ = ‖x‖
[

1 +

(
x̂Ty

‖x‖ +
‖y‖2
2‖x‖2

)

+
1

2

(
x̂Ty

‖x‖ +
‖y‖2
2‖x‖2

)2

+ · · ·
]

≈ ‖x‖+ x̂Ty,

(B.6)

where we have dropped terms containing powers of x̂Ty

‖x‖
and ‖y‖2

‖x‖2
. This approximation is extremely

useful when it is valid, as it linearizes the range measurements. In radar applications, the combi-

nation of the Born approximation and the far-field approximation simplifies the imaging operator

in (1.24) to a Fourier transform. For more information, see the book by Cheney et al. [2].

96

	Abstract
	Acknowledgements
	Dedication
	List of Tables
	List of Figures
	Introduction
	A Brief Introduction to SAR
	Electromagnetic Wave Propagation
	A Model for SAR
	An Imaging Operator

	A Short History of Shape and Motion Estimation
	Motion-Only Estimation
	Joint Shape and Motion Estimation

	Shape and Motion Estimation Techniques
	Affine Invariants Estimation
	Euclidean Invariants Estimation
	Monostatic Far-Field Case
	Monostatic Near-Field Case
	Bistatic Far-Field Case

	Related Techniques
	Interferometric Developments
	Image Factorization
	Low-Rank Subspace Decomposition

	A Polynomial Systems Approach
	Expression as a Polynomial System
	Ellipse Constraints
	Alternative System
	Attempted Numerical Solution with Bertini

	A Variety-Fitting Approach
	Monostatic, Near-Field Case
	Derivation of 2D Monostatic Near-Field Variety
	Estimation of Geometric Invariants in 2D

	Invariant Equation Discovery
	Recovering the Monostatic Near-Field Invariant

	Discovering a Bistatic Near-Field Invariant
	Elimination via Gröbner Basis Computation
	Elimination via Resultants

	Improvements to the Resultant Computation
	Determination of Resultant Degree
	Dixon Matrix Reduction

	A Solution for the Passive Case
	An Invariant Equation for Passive SAR
	Geometric Invariant Discovery
	General Invariant Equation
	Computing Affine Invariants
	Computing Euclidean Invariants

	Numerical Results
	Computing Affine Invariants
	Computing Euclidean Invariants

	Further Work

	Bibliography
	Conventions
	Symbol Reference
	Fourier Transform

	Approximations
	Born Approximation
	Far-Field Approximation

