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ABSTRACT OF DISSERTATION

DISAGGREGATION OF PRECIPITATION RECORDS

This investigation is related to temporal disaggregation of

precipitation records. The objective is to formulate algorithms to

disaggregate precipitation defined at a given time scale into

precipitation of smaller time scales, assuming that a certain

mechanism or stochastic process originates the precipitation process.

The disaggregation algorithm should preserve the additivity property

and the sample statistical properties at several aggregation levels.

Disaggregation algorithms were developed for two models which

belong to the class of continuous time point processes: Poisson White

Noise (PWN) and Neyman-Scott White Noise (NSWN). Precipitation

arrivals are controlled by a counting process and storm activity is

represented by instantaneous amounts of precipitation (White Noise

terms). Algorithms were tested using simulated samples and data

collected at four precipitation stations in Colorado.

The PWN model is the easiest and formulation of the

disaggregation model was successful. The algorithm is based on the

distribution of the number of arrivals (N) conditional on the total

precipitation in the time interval (Y) , the distribution of the White

Noise terms conditional on N and Y, and the distribution of the

arrival times conditional on N. Its application to disaggregate

precipitation is limited due to its lacl; of serial correlation.



However, PWN disaggregation model performs well on PWN simulated

samples.

The NSWN is more complex. Required distributions are the same as

for the PWN model. Formulation of a disaggregation algorithm was

based on theoretical and empirical results. A procedure for model

parameters estimation based on weighted least squares was implemented.

This procedure reduces the number of estimation failures as compared

to method of moments. NSWN disaggregation model performed well on

simulated and recorded samples given that parameters used are similar

to those controlling the process at the disaggregation scale.

The main shortcoming is the incompatibility of parameter

estimates at different aggregation levels. This renders the

disaggregation model of limited application. Examination of variation

of parameter estimates with the aggregation scale suggests the

existence of a region where estimated values appear to be compatible.

Finally, it is shown that the use of information at a nearby

precipitation station with similar precipitation regime may improve

parameter values to use in disaggregation.

Luis Guillermo Cadavid

Civil Engineering Department
Colorado State University
Fort Collins, CO 80523
Summer 1991
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Chapter 1

INTRODUCTION

1.1 General

It is difficult to find today, some publication in hydrology or

water resources where the importance of precipitation is not stressed

or at least suggested. The role that precipitation plays in the

hydrological cycle as a continuous process is well established, as one

of the main variables driving many other processes, like evaporation,

infiltration, surface runoff and streamflow. Many authors emphasize

the requirement of detailed spatial and time precipitation records in

order to adequately describe, on a physical basis, many of these

processes.

Examples of the use of precipitation records in different

theoretical and applied problems are abundant in the literature. It

has been realized that description of different processes in hydrology

require precipitation records at different spatial and time

resolutions, since those processes occur at different temporal and

spatial scales of the precipitation process. For instance, analysis

of infiltration using physically based models requires point rainfall

data at a resolution of minutes, while drought related problems may

require records spanning over decades, perhaps in a monthly or larger

time scale, and covering entire geographical regions (Berndtsson and

Niemczynowicz, 1988). Giambelluca (1987) points out how the use of



monthly precipitation values in monthly water balance models may lead

to large errors in the estimation of monthly evapotranspiration and

groundwater recharge.

In the field of water resources systems planning, management and

operation, precipitation can not be forgotten if realistic and optimal

solutions are expected. Reservoir operation problems may require an

adequate forecast of precipitation as an indicator of future water

availability. Also, the daily operation of irrigation systems in

agriculture may require daily precipitation data as input.

When detailed design for water conveyance structures is required

and no discharge records are available, design discharge hydrographs

are often obtained via continuous simulation, requiring as input

adequate precipitation events.

The process of precipitation as it evolves in nature is not the

same as that recorded in gauging stations. Precipitation is a space-

time phenomenon and its complete description requires knowledge of the

intensity field at any time and at any point in space. It is

customary to define the intensity field as a non negative stochastic

process indexed by space and time coordinates. Its description

corresponds to a mixture of theories like random fields , atmospheric

sciences, thermodynamics and hydrology, among others.

The intermittence of the intensity process has posed important

difficulties in the description of precipitation. If it were possible

to record or describe the intensity process in continuous fashion,

many important features like storm duration, storm arrival time, total

yield per storm and spatial and temporal distribution of intensity

could be obtained directly.



However, the recorded precipitation process is usually composed

of cumulative amounts of precipitation over disjoint intervals of

time. This aggregation process lumps together many of the important

characteristics previously mentioned. In most practical cases, it is

common to find precipitation records available at hourly or daily

scales, from which values at larger scales can be obtained by the

simple operation of aggregation. Unfortunately, precipitation records

for scales smaller than the day or the hour are scarce and it is not

easy nor simple to apply the inverse operation of disaggregation.

Even if continuous traces are available at one site, it may be

difficult to translate these into computer data (digitize, in computer

terminology) . In regard to spatial variation, radar imagery is

helpful in some instances. However, recording and storing a large

amount of echoes in the Plan Position Indicator might become a

formidable task, as cumbersome as that posed by continuous recording.

This constraint further imposes the use of discrete or aggregated

precipitation series.

As stated previously, the study of several hydrologic processes

require precipitation data at a level of aggregation shorter than the

resolution provided by the available sample. Unfortunately,

precipitation data is usually, at most, in the form of hourly values.

Besides, high resolution data is unwieldy to handle and store. One of

the techniques called to solve, at least partially, some of the

problems described above is precipitation modeling in general and

precipitation disaggregation in the absence of short sampling interval

precipitation records.



Moss and Lins (1988) describe an expanded program aimed to assess

the hydrologic implications of climatic changes. The program is

divided in three parts, one of them being the research element,

^ibhin the research component, model development plays a very

important role, for general atmospheric circulation models, basin or

catchment hydrologic models and stochastic models. Within the

stochastic class of models, areal and temporal disaggregation models

are viewed as important tools to link general circulation models to

basin or catchment hydrologic models.

1.2 Precipitation disaggregation problem

Disaggregation techniques are almost as old as the first models

for streamflow generation and they appear due to the necessity to

obtain hydrologic traces with a better resolution than those

originally recorded or simulated. The objective of any disaggregation

scheme is to provide such resolution while preserving statistical

properties at more than one aggregation level (Salas et al., 1985).

An additional condition has been imposed, in some cases, on

disaggregation models, although this is not explicitly stated in the

definitions given in the literature: Added disaggregated values must

reproduce the original values. Disaggregation techniques provide

additional information in the sense that they show probable

distributions of the process within the original aggregation scale.

A similar working definition is adopted here for precipitation

disaggregation. Given a recorded historical precipitation trace and

an. assumed underlying stochastic process governing precipitation

formation, the objective in the disaggregation operation is to obtain

precipitation data at a finer time resolution, in such a way that



properties of the underlying process, sample trace, in terms of

recorded amounts, and observed statistics at several temporal levels

are all preserved. All these are desirable properties for the

disaggregation process.

Examination of streamflow disaggregation models, for example the

Valencia-Schaake model (Salas et al. 1985), shows a similar working

definition. The basic assumption is that all variables follow a

multinormal distribution at different aggregation levels. If

correlations are preserved normality is preserved.

Streamflow disaggregation models are difficult, if not

impossible, to apply to short sampling interval precipitation records.

First, they do not incorporate intermittence of the process. Second,

they are not built to preserve the type of correlation found in short

sampling interval precipitation records.

The focus in this research is on temporal precipitation

disaggregation. One could equally think of spatial rainfall

disaggregation, i. e., how to break an average value of precipitation

over a large area into values corresponding to smaller areal portions.

However, the problem of spatial disaggregation is not considered part

of this research.

1.3 Objectives

The overall objective of the present research is to develop

improved techniques for disaggregation of precipitation samples into

higher resolution series, in which the intermittence property is

present, such as daily, hourly, or fraction of the hour series.

In order to accomplish this overall objective, four intermediate

obiectives are formulated:



1. A review of the actual state of the art in precipitation

modeling, and the position of that state in relation to the

formulation of precipitation disaggregation schemes. The

accomplishment of this objective will allow selection of

models for the disaggregation problem.

2. Development of precipitation disaggregation models which could

be used for different aggregation and disaggregation scales,

under the presence of different mechanisms generating

precipitation and under the presence of the two most common

forms of precipitation in the U. S.: rain and snow. These

models should be able to reproduce important characteristics

observed at the aggregation and disaggregation scales.

3. Test and assessment of the performance and applicability of

the developed models using precipitation data recorded in

stations located in the state of Colorado, for different

temporal measurement scales, and simulated series drawn from

the selected models.

4. Presentation of conclusions and recommendations to guide

future research in the field of precipitation disaggregation.

Analysis of developed models is based on moments and

corresponding sample estimates up to the third order, including

correlograms , for the amount of precipitation in a given time

interval. The probability distribution function for this random

variable is also analyzed.



1.4 Report organization

Chapter 2 is dedicated to review the state of the art in

precipitation modeling and precipitation disaggregation. This review

allowed the selection of Vi^ite Noise point process models as a first

approach to the problem of precipitation disaggregation.

Chapter 3 deals with examination of precipitation records for

gauging stations in the state of Colorado, in particular the ones to

be used in testing the models. Main seasonal statistics are estimated

and characteristics of the precipitation process are examined, such as

periodicity and clustering. The role of the aggregation scale on

estimated statistics is also investigated.

Chapters 4 and 6 are dedicated to the review of the basic models

selected to formulate disaggregation procedures. Models are

presented, their properties are derived and estimation of parameters

is developed. Parameters are estimated for simulated traces and for

the recording precipitation stations used in this study.

In chapters 5 and 7 disaggregation models are developed based on

results presented in the chapters 4 and 6. Required distributions are

derived and disaggregation algorithms are outlined. Models are

tested, both on simulated and recorded precipitation traces.

Due to space limitations, many derivations are not included in

the text. The reader is referred to a longer version of the report

for this research (Cadavid et al, 1991). Also, a large amount of

computer code was developed as part of this research. No computer

program listings or manuals are presented in this report. These

materials can be requested from the Hydrology and Water Resources

Program, Civil Engineering Department, at Colorado State University.



Chapter 2

LITERATURE REVIEW

2.1 Introduction

This chapter is devoted to review the current state of the art in

precipitation modeling. It is segmented into four parts. The first

one covers the broad area of precipitation modeling. In the second

section, the topic of precipitation disaggregation is surveyed.

Third, but not less important, some publications and articles on

recent trends in the theory of stochastic point processes are listed.

Finally, the chapter is closed with the selection of models for the

development of this research.

This chapter fulfills the first objective described in Chapter 1.

Besides, it is expected that it will serve future research in the area

of precipitation modeling, in collection and review of existing

literature. In this regard, key publications are pointed out.

2.2 Precipitation modeling

^fter scanning the available literature, several trends emerge

in regard to precipitation modeling (Waymire and Gupta, 1981a),

although in some instances they are not well differentiated and in

other cases a mixture of them is used. Approaches based on the

application of thermodynamics and fluid mechanics to precipitation

generating mechanisms in the atmosphere form the first category.

Although this approach just begins, some encouraging results have been



obtained. Georgakakos and Bras (1984a, 1984b) use cloud physics to

formulate a physically based precipitation model, for which they

report satisfactory results.

Precipitation modeling has been enhanced by the observation of

regularities present in different precipitation formations, such as

cyclonic thunderstorms, air mass thuderstorms and frontal

thunderstorms. An example of this type of application is given by

Amorocho and Wu (1977). The observed regularities are: subsynoptic

areas, large mesoscale areas (LMSA), small mesoscale areas (SMSA),

clusters of convective cells and convective cells (Corotis, 1976;

Amorocho and Wu, 1977; Waymire and Gupta, 1981a). The enumeration

order corresponds to areal extension, in such a way that subsynoptic

areas cover larger areas than LMSA, and so on. Besides, the larger

the area the lower the mean precipitation intensity and the longer the

time they last. For instance, LMSA's are of the order of 1000 to

2
10000 km lasting for several hours, while convective cells cover

2
around 5 km and last from 1 to about 30 minutes. For convective

cells, developing, mature and dissipating stages are important

concepts used in precipitation modeling in regard to time and space

distribution of intensity. Downward and upward currents of moist air

formed during these three stages are responsible for clustering of

cells in time and space (regeneration of cells) , which at the same

time is the mechanism responsible for the large serial correlation

observed in short sampling interval precipitation records. In many

cases, the lower intensity enclosing smaller formations is called

"background noise or background precipitation" (Garcia-Bartual and

Marco, 1987). All these regularities are more or less present in all



formations and their analysis has been facilitated by the use of

satellite and radar imagery.

Space-time or multidimensional modeling of precipitation is

accomplished when some of the aforementioned regularities are

reproduced using the theory of random fields. Examples are found in

Bras and Rodriguez-Iturbe (1976), Waymire et al. (1984), Bell (1987),

Rodriguez-Iturbe and Eagleson (1987), Eagleson et al. (1987),

Sivapalan and Wood (1987), Islam et al. (1988), Jacobs et al. (1988),

among others.

At this point, special mention is made of the articles by Wajanire

and Gupta (1981a, 1981b, 1981c), where the state of the art in

stochastic modeling of precipitation up to 1980 is reviewed, important

mathematical concepts and tools related to the theory of point

processes are summarized (probability generating functional), and

examples of application of these tools to some hydrologic processes

are presented. This series is highly recommended in regard to

applications of the theory of point processes in hydrology.

As previously stated, many of the processes used to describe the

stochastic nature of precipitation belong to the theory of point

processes. In this regard, Foufoula-Georgiou and Lettenmaier (1987)

point out two alternatives for modeling precipitation using stochastic

processes. In the first approach, the sequence of dry and rainy

periods is described using discrete point process theory. In the

second approach, an underlying continuous time process governing

precipitation formation is assumed and estimation is performed based

on observations of the integrated process over certain time inteirvals.

Examples are; Cox processes (doubly stochastic), Neyman-Scott cluster

processes, Bartlett-Lewis cluster processes, renewal processes, Markov



processes and Poisson processes. Models with Polsson arrivals have

been used in hydrology for quite some decades now (Todorovic and

Yevjevich, 1969). Neyman-Scott processes, although introduced to

rainfall modeling since the 60's (Le Cam, 1961), did not develop

popularity until the middle 70's (Kavvas and Delleur, 1975, 1981).

The Neyman-Scott process was initially formulated to describe the

distribution of galaxies in space (Neyman and Scott, 1952). The

Bartlett-Lewis process was introduced as an alternative to the Neyman-

Scott Rectangular Pulse Model by Rodriguez-Iturbe et al. (1987a).

Within the general class of multidimensional models for

precipitation, a special set has developed most of the attention,

called temporal precipitation models. In these models, spatial

variability is not considered and time evolution of the intensity

process at one point is studied. The models cited in the literature

are: Poisson White Noise Model (PWN), Poisson Rectangular Pulse model

(PRP), Neyman-Scott White Noise model (NSWN), Neyman-Scott Rectangular

Pulse model (NSRP), and Bartlett-Lewis Rectangular Pulse model (BLRP)

(Rodriguez-Iturbe et al. ,1984; Rodriguez-Iturbe 1986; Rodriguez-

Iturbe et al., 1987). An excellent review of the NSWN model is

presented by Foufoula-Georgiou and Guttorp (1986).

Temporal precipitation models exhibit two components. The first

component, also known as counting process, models the arrival in time

of precipitation events and dry periods duration. The second one

describes internal characteristics, like precipitation amounts,

intensities and storm durations. For the first component, Poisson

processes, Neyman-Scott and Bartlett-Lewis clustering processes are

used. For modeling internal characteristics either instantaneous

amounts or volumes of precipitation, known as white noise terms, or



random intensities constant over a random durations, known as

rectangular pulses, are used. Rodriguez-Iturbe et al. (1987a) add

noise or jitter to the rectangular pulse. For a presentation and

review of white noise models and rectangular pulse models the reader

is referred to Rodriguez-1turbe et al. (1984), Rodriguez - Iturbe

(1986) , Foufoula-Georgiou and Guttorp (1986), Rodriguez-Iturbe et al.

(1987a) and Rodriguez-Iturbe et al. (1987b).

It must be noted that the term White Noise as used in this

research is somewhat different from the term used in time series

analysis. Here, White Noise terms belong to a sequence of identically

and independently distributed random variables, following a common

distribution, not necessarily the Normal distribution.

Neyman-Scott and Bartlett-Lewis processes were introduced in

order to simulate cell clustering as described before. Arrival times

of cluster centers follow a Poisson process. Around each cluster

cfinter, a random cluster size (number of cluster members) and cluster

members locations are generated, representing cell activity. For

example, in the Neyman-Scott process, cluster size is assumed to be

geometric (Kawas and Delleur 1975, 1981: Ramirez and Bras, 1982,

1985) or Poisson (Rodriguez-Iturbe et al., 1984), while cluster

members are located to the right of the the cluster center according

to an exponential distribution. On the other hand, the Bartlett-Lewis

process uses a finite renewal chain to simulate cluster

characteristics.

The Poissonian models, PWN and PRP, have been recognized as poor

due to their inability to properly describe the correlation structure

present in precipitation records. For example, PWN model lacks

correlation, while the PRP model generates a Markovian correlation by



means of a finite probability of the same pulse covering two different

disjoint time intervals.

In the family of cluster models correlation is reproduced by a

finite probability of cluster members, belonging to the same cluster

center, to fall in disjoint time intervals.

One of the advantages of temporal precipitation models is the

physical meaning attached to the parameters of the models. In regard

to cluster models, Foufoula-Georgiou and Guttorp (1986) show that

selection of the distribution of the cluster size, geometric or

Poisson, may result in different estimates for some properties of the

process, questioning therefore the physical interpretation of

parameters.

In the continuous point process formulation precipitation

intensity is described first as a function of time. From this, the

cumulative rainfall or average intensity process for non overlapping

time intervals is obtained and its second order properties are

derived. The estimation of parameters is usually done by method of

moments, equating population moments to their sample counterpart

values.

In doubly stochastic processes (Cox processes) some of the

parameters controlling occurrences are considered samples from a

different unobservable stochastic process. For instance. Smith and

Karr (1985) use a Poisson arrival model with the rate being sampled

from a two state Markov process. Also, Entekhabi et al. (1989)

modified the NSRP model by considering the parameter of the

exponential distribution controlling pulse duration as a random

variable.



A lot of research effort has been invested in temporal

precipitation modeling in the last years, although there are still

controversies and unsolved questions about the applicability of these

models. One of the most covered topics in the literature is the

compatibility of models at different temporal aggregation levels or

scales (Rodriguez-Iturbe et al., 1984; Foufoula-Georgiou and Guttorp,

1986; Rodriguez-Iturbe et al., 1987b; Obeysekera et al., 1987; Liu and

Salas, 1988). This compatibility refers to the fact that parameters

estimated at different temporal scales are different and to the fact

that correlation structure is not preserved at scales different from

that in which parameters were estimated. This issue has led to the

problem of temporal scale and self-similarity for the precipitation

processes (Rodriguez-Iturbe, 1986; Kedem and Chiu, 1987), which has

been investigated trough concepts like scale of fluctuation and

variance ratio (Obeysekera et al., 1987).

A second topic analyzed in the literature, in regard to temporal

precipitation models, is estimation of parameters by moments and

maximum likelihood methods (Smith and Karr, 1985; Foufoula-Georgiou

and Guttorp, 1986; Obeysekera et al., 1987; Smith, 1987; Liu and

Salas, 1988). However, important problems are still encountered.

Method of moments poses problems of existence and numerical

convergence. Maximum likelihood is practically impossible in most of

the cases. Guttorp (1986) and Foufoula-Georgiou and Guttorp (1986)

present an innovative estimation procedure, based on binary series

formed from occurrence times in the precipitation sample, ignoring

amounts of precipitation in the interval. With these sample series,

they formulate moment and maximum likelihood estimation techniques. A

different approach is used by Kawas and Delleur (1975, 1981) and



Ramirez and Bras (1982, 1985). They fit the theoretical spectrum of

counts and the log-survivor function of the Neyman-Scott process to

the respective sample estimates.

Foufoula-Georgiou and Guttorp (1986) present an excellent review

of the Neyman Scott White Noise model for precipitation. One of

their conclusions, that the model is scale dependent or time scale

inconsistent, is not new and was previously detected by other authors

(Rodriguez-Iturbe et al., 1984). They recommend that any NSWN model

fitted to precipitation records at a given aggregation level should

not be extrapolated to other scales. Their stronger conclusion is

that the NSWN model does not provide an adequate representation of

precipitation generating mechanisms, and therefore no physical meaning

can be attached to model parameters. Summarizing, they consider the

model descriptive and time dependent, with no predictive ability.

The last approach in precipitation modeling summarized here uses

tools developed for time series analysis. In this approach, it is

assumed that means and covariances are sufficient to describe temporal

and spatial variation of the process. A first order Markov chain is

the most used type of model. However, this is valid only for Gaussian

fields and poor performance has been reported (Georgakakos and Bras,

1984a and 1984b; Foufoula-Georgiou and Lettenmaier, 1987) when these

models are applied to short sampling interval precipitation modeling.

An example of this approach is found in Raudkivi and Lawgon (1974) .

Chang et al. (1984) used discrete ARMA models (DARMA) to describe

daily precipitation in Indiana.

As stated before, not all authors follow a continuous description

of the precipitation intensity field in order to model precipitation.

For example, many start directly with the discrete process specified



at given aggregation scales. There are advocates for both types of

approaches. In the later approach, works by Roldan and Woolhiser

(1982), Woolhiser and Roldan (1982), Guttorp (1986), Foufoula-Georgiou

and Lettenraaier (1987) and Smith (1987) are cited. Alternating

Renewal, Binary, Markov, Markov Renewal and Markov Bernoulli processes

are used in this theoretical setting. The main point sustained by

some of these authors is the inadequacy of the conversion of a

continuous process into a discrete process, which may result in

misleading inferences in regard to precipitation clustering.

Without regard to which approach is used, some authors model

internal characteristics of the rainfall process, others work on

external properties, while others consider both. An innovative idea,

in regard to internal characteristics, is introduced by Garcia-Bartual

and Marco (1987). They consider a temporal rainfall model in which

intensity within the storm follows a Gamma function with its maximum

value and total storm yield treated as random variables. These type

of exponential decaying laws are not usually included in temporal

rainfall models, but they often appear in spatial representations. An

additional example of the investigation of internal characteristics is

given by Nguyen and Rousselle (1981), where the time distribution of

hourly precipitation is in^'estigated.

Waymire and Gupta (1981a) attribute the lack of unified approach

to model precipitation to two main reasons. The first is given by the

nature of rainfall itself, which is not unique. Despite the

aforementioned observed regularities, precipitation in different

regions of the globe or at different locations in a large geographic

area behaves differently. A similar consideration is valid for

different time scales. The second one stems from the diversity of



mathematical tools used in rainfall modeling. This is the reason for

which they attempt to form a common and general theoretical backgroxand

(Waymire and Gupta, 1981b).

A last point is emphasized in regard to stochastic modeling of

precipitation. Complete description of any stochastic processes

requires specification of all its finite dimensional joint

distribution functions. However, except for very few cases in the

reviewed literature, this important requirement is not met due to the

difficulties that it poses.

2.3 Precipitation disaggregation models

The first feature found in the literature about precipitation

disaggregation models is that they are scarce. The opposite is true

for streamflow modeling, where a lot of attention has been given to

this topic and adequate models have been formulated.

The first short sampling interval rainfall disaggregation scheme

presented here was introduced in the literature by Woolhiser and

Osborn (1985a). The cumulative rainfall process for a given storm is

described by means of ten rescaled incremental dimensionless rainfall

depths. The process is made dimensionless after dividing by the total

storm depth and rescaled once the dimensionless increment in each

interval is divided by the total dimensionless depth between the

beginning of the current interval and the end of the storm. Although

time is made also dimensionless, this is masked in by working with ten

intervals. It is noted that rescaled increments for two consecutive

intervals are not independent, which is accounted for by means of

linear dependence between the expected value of the next rescaled

increment and the same quantity in the current interval. The marginal



distribution for the rescaled increment in the the first interval is

assumed to be Beta, and so are the distributions for the remaining

increments conditional on the increment value in the previous

interval.

As described, the model has a total of 26 parameters. The number

of parameters is reduced after some of them are regressed on the index

ordering the intervals. Parameters are estimated using maximum

likelihood. The model is applied and tested using precipitation data

for a gauging station in Arizona. Tests are performed on the basis of

the likelihood ratio test and the Akaike Information Criteria.

Dependence of model parameters on amount and duration of storms,

reproduction of frequencies for observed intensities and preservation

of internal correlations are investigated. The general conclusion is

that model structure provides an acceptable approximation for svimmer

thunderstorm rainfall in the area where it is tested.

In a subsequent publication (Woolhiser and Osborn, 1985b)

seasonal and regional effects on the model are investigated. Tests

are performed by examining the impact of model parameters on peak

runoff frequency distributions. The conclusion, conditional on the

data used, is that the model requires seasonal and regional

differentiation of parameters.

A more complete disaggregation scheme is later discussed by

Woolhiser and Econopouly (1986) and completed by Hershenhorn and

Woolhiser (1987). In this case, beginning with daily amounts of rain,

a model is proposed to obtain within the day magnitudes for the number

of storms, amount, duration and arrival time for each storm. They



report how simulated sequences compare well with observed values.

Storms obtained are further disaggregated by using the previously

described model.

Although the described models constitute an important attempt to

set up a procedure to disaggregate rainfall, they are not completely

satisfactory. In general, the models are heavy, they lack simplicity

in structure, estimation and application. Many of the working

hypotheses and assumptions do not have a physical appealing meaning.

Apparently, many transformations on the original data are required to

obtain good results. Another shortcoming is the lack of flexibility

in the number of intervals. If this number were increased, the number

of parameters would increase by a factor of three.

A second disaggregation model was developed by Ormsbee (1989).

It is completely empirical in the sense that rainfall is disaggregated

by assuming linear similarity between within hour rainfall

distribution and the hourly counterpart. Comparison is performed in

terms of runoff quantities obtained by means of continuous simulation,

for both recorded and disaggregated traces of rainfall. Although the

model is simple and does not require large amounts of data or

computation time, it lacks, as the previous case, physical basis.

As a last reference, Giambelluca and Oki (1987) used a 10-state

seasonal first order Markov chain to disaggregate monthly rainfall

values into daily values. Dimensionless values of daily precipitation

were obtained simulating, with the Markov chain, the transition from

the current state to the following day state. Once the process is in

a given state, the dimensionless amount of rain in that state is

obtained by sampling from seasonal Weibull distributions previously



fitted to the dimensionless data. Monthly amounts of precipitation

are preserved after daily simulated dimensionless amounts are

multiplied by the corresponding monthly value.

2.4 Point processes theory

This section is not tutorial neither complete in reference to

publications related to the theory of point processes. It is intended

to point out publications which were found useful in the development

bhis research. In this sense, it is based on the personal

experience of the author.

The first recommended text (Taylor and Karlin, 1984) is basic and

introductory for the general theory of stochastic processes. It

presents in a clear form the basics of Poisson and renewal processes.

For a more formal presentation of the theory of Poisson

processes, the reader is referred to Parzen (1964). Many variations

of this process are presented and specially important to the Poisson

Rectangular Pulse model is the extension of the filtered Poisson

process to stochastic response functions.

The introduction of cluster processes can be reviewed in the

articles by Neyman and Scott (1952), Neyman and Scott (1958), Le Cam

(1961) and Moyal (1962). As mentioned before, Le Cam (1961) was the

first to apply cluster processes to the study of precipitation.

However, the reader must be warned that these articles are highly

technical, directed mostly to the statistical community.

An important tool, developed parallel to the theory of cluster

processes, is the probability generating functional for a random

measure, as an extension of the probability generating function for an

integer valued random variable. In regard to this, the reader is



referred to Moyal (1962), Vere-Jones (1968), Westcott (1972) and Daley

and Vere-Jones (1972). As before, the publications listed above are

highly technical. In regard to the theory of point process and the

probability generating functional applied to stochastic processes in

hydrology, the reader is encouraged to review and follow the series of

three articles published by Waymire and Gupta (1981a, 1981b and

1981c). Kawas and Delleur (1975) and Ramirez and Bras (1982) also

present examples of application of the probability generating

functional to precipitation modeling. In other areas of geophysics,

Vere-Jones (1970) describes modeling of earthquake occurrences using

clustering processes. Finally, concepts about interarrival times

specification of point processes are found in Lawrance (1972).

Although most of the publications referred above are highly

technical, the text by Cox and Isham (1980) was very helpful in

understanding many of the concepts and derivations related to the

theory of point processes. It is highly recommended to review this

text after the basics of the theory of stochastic processes have been

covered (Taylor and Karlin, 1984; Parzen, 1964).

2.5 Selection of models for disaggregation process formulation

Given the actual state of the art in precipitation modeling, some

of the approaches related above could be used in order to formulate

temporal disaggregation schemes. Approaches considering spatial

variation are eliminated at once since spatial disaggregation is not

one of the objectives of this research.

The approach based on the theory of point processes could be

extremely useful, specially in the part dealing with temporal rainfall

modeling. However two important shortcomings emerge, which have been



discussed previously. The first one is given by the incompatibility

of temporal rainfall models at different aggregation scales. If

disaggregation models were to be built from temporal rainfall models,

doubts would arise about the basic requirements, the preservation of

the underlying stochastic process and its parameters. The second

difficulty stems directly from the formulation of the models. They do

not specify all possible finite joint probability distribution

functions, either for the intensity or the aggregated process. Since

disaggregation involves addition up to recorded values, herculean

tasks could be faced by following this approach. Temporal rainfall

models have not been formulated with the purpose of disaggregation.

The approach based on time series analysis would be worthy to

try. Traditional approaches, like autoregressive moving average

models, have to be abandoned and more sophisticated tools such as

DARMA or Alternating Renewal Markov models, should be tried.

Finally, the rainfall disaggregation models describe in this

chapter do not show feasibility of further improvement.

Despite the aforementioned shortcomings for the point process

approach and specially for temporal rainfall models, it was decided to

adopt four models as the bases for the formulation of precipitation

disaggregation m.odels in this research: Poisson White Noise, Poisson

Rectangular Pulse, Neyman-Scott White Noise and Neyman-Scott

Rectangular Pulse. Unfortunately, during the development of this

research, it was impossible to derive some of the required

distributions for Rectangular Pulse type models and they were

abandoned.



The followed procedure started with the simplest model, Poisson

White Noise precipitation process. From there, the investigation

proceeded to the Neyman-Scott White Noise model. After reviewing

Chapters 4 to 6, the reader will be aware of the degree of difficulty

attained in this step.

The use of approaches based on discrete point processes and based

on time series analysis were left as material for further research.

They could have been also selected. However, it is precisely the

continuous formulation of temporal precipitation models what makes

them so attractive to work the problem of precipitation

disaggregation.



Chapter 3

ANALYSIS OF PRECIPITATION RECORDS

3.1 Introduction

This chapter describes the data used in the present study as well

as the criteria used to select four gauging stations from larger sets

of available information. Methods of estimation of seasonal

statistics are presented, along with the corresponding results at

different temporal aggregation levels. Some analysis is done in

regard to the behavior of estimated statistics at different

aggregation levels.

3.2 Data description and selection of gauging stations

Two large sets of precipitation data were available to select the

gauging stations used in the development of this research. In the

first set, composed of 39 precipitation recording stations located in

northeastern Colorado, the basic information is given as hourly

amounts of precipitation, recorded to a precision of 0.01 inches

(in.), with recording periods ranging from 3 to 36 years. Part of

this set was previously used by Obeysekera et al. (1986) and Liu and

Salas (1988). The second set is composed of amounts of precipitation

recorded every 5 minutes (min.) to a precision of 0.01 in., for 22

stations located also in northeastern Colorado (Liu and Salas, 1988).

For this set of stations, the recording period is 5 years.



Due to the objectives stated for this study and the detail

required in the analysis of precipitation information, it was

impossible to work with 61 gauging stations. Therefore, a criteria

was adopted to select four of them, two from the hourly data set and

two from the 5 min. data set. The criteria is based on the type of

records found in precipitation samples: zero or positive values,

precipitation traces smaller than 0.01 in. and missing values.

Unfortunately, in the original samples, precipitation traces smaller

than 0.01 in. and missing values were recorded using the same negative

value. Therefore, it was impossible to differentiate these and

necessary to catalog all of them as missing data. Consequently, the

criteria adopted was to select stations, within each set, with the

longest recorded period, with the minimum number of missing data and

with the maximum number of positive recorded values. Table 3.1 gives

some characteristics for the selected precipitation stations and

Figure 3.1 shows the location of these stations in Colorado. Note how

for 5 min. stations the amount of missing data, approximately 30%, is

relatively more important than for hourly data, where this amount does

not exceed 3.7%. Spatial location was not considered in the selection

of the stations. The temporal measurement scale, denoted by T in

Table 3.1, is defined as the period of time over which cumulative or

average amounts of precipitation are recorded. It is always given in

minutes. In the sequel, the adjective temporal will be omitted, since

this research does not deal with spatial aggregation or averaging, and

precipitation will be understood as cumulative amounts over a given

interval.



Table 3,1 Main characteristics for the precipitation recording
stations used in the study.

Code Name Latitude Longitude Elevation Period of
North West (ft.) Record

52220 Denver Wsfo Ap 39°45' 104°52'
53579 Greenland 9 SE 39°06' 104°44'
ISGC2 Idaho Springs 39°41' 105°30'
WRDC2 Ward 40°02' 105°32'

1948-1983

1948-1983

1983-1987

1983-1987

T  Sample Number of
(min.) Size Positive Zero Missing

Values Values Values

Denver Wsfo Ap 60
Greenland 9 SE 60

Idaho Springs 5
Ward 5

T: Measurement scale

315576

315576

526176

526176

13213

10799

6377

7562

297153

293099

366726

358684

5210

11678

153073

159930

• • CIttet and Towns

^ Proclpitstion Recording Station

Fort Collins

NF.W MEXICO I OKLAHOMA

40 to 120KIU>METI«S

Figure 3.1 Location for the precipitation recording stations used in
the study.



3.3 Estimation of sample properties

So far, features such as censored and missing data have been

detected in the precipitation samples. Besides of these properties,

many authors have identified periodicity, both diurnal and seasonal,

as important characteristics of precipitation samples (Obeysekera et

al. 1987). Diurnal periodicity appears for stations in Colorado

during summer months, where the frequency of afternoon or evening

thunderstorms of convective type is larger than for the rest of the

day. On the other hand, for winter months, precipitation events of

the frontal mass type tend to be evenly distributed along the day.

Seasonal periodicity appears due to the presence of different

mechanisms controlling precipitation formation during different

seasons of the year.

The traditional approach used to take into account seasonal

periodicity is by dividing the year in seasons and considering that

the process is stationary and homogeneous within each season. Some

authors suggest to account for diurnal periodicity by using models

which parameters change within the day. However, this suggestion has

not been developed yet, and it will not be examined in this research

either.

For processing precipitation data two of the four characteristics

®^^litied above were considered: seasonal periodicity and missing

values. Diurnal periodicity was neglected and precipitation amounts

were treated as if they were recorded continuously in the interval

[0,+«>). In order to account for seasonal periodicity, the year was

Partitioned in 12 seasons, which coincide with the 12 calendar months.

The treatment of missing data in the estimation of statistics will be

clarified in the following paragraphs.



The aggregation scale, denoted by T , is the period of time over

which cumulative amounts of precipitation are computed. In this work,

the aggregation scale is always an integer multiple of the measurement

scale, indicating that an integer number of recorded precipitation

values have been added to obtain the aggregated value.

The monthly statistics estimated for each station were: mean,

standard deviation, skewness coefficient, kurtosis coefficient and

correlogram. The expressions used are based on Salas et al. (1985),

Assume that for a given measurement or aggregation scale, the sample

is represented as i=l,..,N, r-1, . . ,NS and k=l, . . ,NT( r) , where

N is the total number of years in the sample, NS is the number of

seasons in the year and NT(r) is the number of periods of length T or

'^3 season r. Also, let MT(r) be the sample size available for

estimation of statistics in season r, computed as;

N NT(r)
MT(r) = 2 S I (y. )

i-1 k-1 [0.")'^i,r,k^
(3.1)

where I^(y) is the indicator function and it takes the value of one if

y is contained in the set A. Equation (3.1) assumes that missing data

are coded as negative values, in which cases the indicator function

takes the value of zero.

—  A

Mean, , standard deviation, , skewness, g^, and kurtosis, k ,

for season r are estimated \ising:

,  N NT(r)
S  2 y. ,

MT(r) i=l k=l
(3.2)

r  N NT(r), _ . Z-,

'' I- MT(r)-l i-1 k"l ] J
2. 1/2



MT(r)

[MT(r)-l][MT(r)-2]S-

N NT(7-), _

['i.rX''r] <3.4)

MT(r)

[MT(r)-l][MT(r)-2][MT(r)-3]S^

N NT(r),

S  2 y. , - Y (3.:
i-1 k=l T)

Although it is not explicitly stated, in eqs. (3.2) to (3.5) missing

values are skipped in the summations.

The sample autocorrelation coefficient of lag k for season r is

obtained according to the following set of expressions:

N NT(r)-k
MX' (r) - 2 S . (v ) I Cv

i-1 j-1 [0,«.)^yi,r,j+k^
N NT(r)-kf ,,4 ^ r
2  S f y. 1f y - 1

r (k)_ i-1 j-1 ^ Jl^i.^.j+k r J
MT'(r)

(3.6)

(3.7)

(1) , N NT(0-k
2  2 y. .

MT'(t) i=l j=l

^(2) „ 1 I
S  2 y.

MT'(r) i-1 j-k

•- MT'(r)-l i-1 j-1

2-, 1/2

(2) r 1 N NT(r).
>r " 2 2 y.

L  MX' (r)-l i=l j=k

(2) >1 2-1 1/2

(3.8)

(3.9)

(3.10)

(3.11)

Equation (3.7) has been written in such a way that cross products

between the last k values in the season for year i and the first k

values in the same season for year i+1 are not included, so that

introduction of false correlation is avoided. Therefore, in order to



preserve the boundaries for r (k) (± 1.0), means and standard
T

deviations are computed using the first or last NT(r)-k values in the

samples within each season. As a final observation, the lag to use in

eq. (3.7) should not exceed the number of sample values in a given

month NT(r).

As shown in eq. (3.6), for correlation computations, any missing

value in one of the series causes the elimination of the corresponding

term in the other series. Those values are also eliminated for

computation of means and standard deviations.

In addition to the statistics listed above, sample probability

distribution functions (pdf) for the amount of precipitation in a

given time interval were also estimated for each month. The

estimation procedure selected is described in Salas et al. (1987), and

referred to as frequency analysis for grouped data. Although

censorship of precipitation samples was not taken into account, the

pdf for the amount of precipitation in a given time interval is still

T  Tcomposed of a discrete part, p , and a continuous part, g(y) , and can

be written for month r as:

=* Pq s(y)'' «^<y)(0,co) (3.12)

In the first indicator in (3.12), the set corresponds to a singleton,

while for the second one, it corresponds to the positive real numbers.

excluding zero.

The estimator for the probability of zero precipitation in any

time interval for month r is

,  N NT(r^

^  ̂ ^{0)^yirk>
MT(t) i=l k=l

(3.13)

The number of class intervals, n^, for estimation of g(y) is

computed as:



N NT(r)

(3.14)

n^- 1.5 + 3.322 Log[NP(r)] (3.15)

where NP(t) is the number of positive precipitation values available

for month r.

The maximum and minimum values, v and v . , among those
-^max •'mm °

positive in the sample, are computed next. The class interval length,

Ay, is given by:

Ay - (y - y • )/(n - 1)
■' ^'max •'mm ' ̂ c '

Class marks, y^, n=l, . . ,n^, are computed according to:
(3.16)

y,- y . + Ay/2
•'1 •^min ■"

(3.17)

y = y ,-l- Ay, for n=2, . . ,n
■'n ■'n-1 •'' ' ' c

(3.18)

Finally, an estimate of 6(7^^) is computed as
N  NT(r)

g(yn)'
MT(r) Ay i=l k=l ^^n ^n'

As before, missing values are not considered in the computations.

3.4 Computation of aggregated samples

The derivation of samples for a given aggregation scale T , from
di

the sample given at a measurement scale T, is accomplished by adding

recorded precipitation values for an integer number of periods of

length T. In the sequel, this integer number of periods will be known

as scale ratio, will be denoted by R and it is simply

R = T / T
a'

(3.20)

The aggregated sample, denoted as x. . , i—1, .. ,N, r—1,.. ,NS and
^^ IJ

j=l,.. ,NT(r)/R, is computed from the recorded sample using



jR
c. ."- 2 y. 1

k-(j-l)R+l
(3.21)

In principle, missing values are skipped in the summation in eq.

(3.21). Since this study is related to precipitation modeling, any

attempt to fill in missing data, previously to fitting any model, is

worthless. It was decided to declare an aggregated value as missing

only when all of the R values in that period were missing. Otherwise,

the aggregated value was made equal to the summation of the non

missing values.

Seasonal statistics for the aggregated series are obtained using

the procedure described in Section 3.3, replacing NT(t) by NT(t)/R and

3.5 Results for monthly statistics

For the four gauging stations selected in this study, monthly

statistics were estimated for a total of ten samples. Four of these

samples correspond to the recorded process and six to aggregated

series. For hourly samples, daily and monthly samples were derived,

while for 5 min. samples, hourly series were obtained. Some results

are given in Tables 3.2 to 3.5 and in Figures 3.2 to 3.13. Additional

plots for correlograms and sample probability distribution functions

are given along the text as required (Cadavid et al., 1991). For the

monthly cases, the aggregation scale is the product of the number of

days in the month times the number of minutes in one day. Also, for

these cases, a different notation, r^(k), has been adopted for the

sample autocorrelation function, since these coefficients now



Table 3.2 Monthly statistics for precipitation at Denver Wsfo Ap station.

T • 60 min.

r^<l) r^(2)

0.0006801

0.0009086

0.0017654

0.0024694

0.0034961

0.0024015

0.0024328

0.0019180

0.0015379

0.0012549

0.0011448

0.0007904

0.0049772

0.0061519

0.0099400

0.0155213

0.0228363

0.0218696

0.0291912

0 0255126

0.0167423

0.0102260

0.0074182

0.0060122

205.62

175.27

149.03

224.28

960.54

591.11

768.34

1204.05

1990,73

644.42

134.50

254.63

0.71691

0.68910

0.75612

0.69156

0.47548

0.44566

0.20808

0.22711

0.2927/

0,59933

0.72793

0.75781

0.57100

0.50174

0.57768

0.51496

0.33986

0.26083

0.07550

0.08915

0.22636

0.42638

0.56389

0.62583

0.9665131

0.9611395

0.9355223
0.9359616

0.9294167

0.9604574

0.9688556

0.9/336/7

0.9669833

0.9653524

0.9580052

0.9661213

1 0.5060000 0.3790173 0.904 2.878 •0.00869 0.14110 0.0
2 0.6157143 0.4367412 0.545 2.745 0.25003 -0.08628 0.0
3 1.3134286 0.8419618 1.883 8.584 -0.12137 0.01647 0.0
4 1.7771429 1.0148068 0.737 3.248 -0.03522 -0.02657 0.0
5 2.5997143 1.7250737 0.608 3.319 0.30198 0.28168 0.0
6 1.7282857 1.3159530 0.722 2.679 0.01442 -0.03789 0.0
7 1.8100000 1.2566154 1.690 7.067 0.11701 0 03277 0.0
8 1.4263889 1.2045513 1.855 7.748 -0 07728 0.05448 0.0
9 1.1422222 1.0664524 1.340 5.030 -0.02473 0.13738 0.0
10 0.9336111 0.9066678 1.746 6.619 0.02527 0.03813 0.0
11 0.8238889 0.5279409 1.442 5.955 -0.18474 -0.16777 0.0
12 0.5877778 0.5962411 2.387 9.532 0.07146 0.06738 0.0

T - 1440 Bin.

0.0163226

0.0218061

0.0423687

0.0592381

0.0836618

0.0576095

0.0583871

0.0460125
0.0380741

0.0301165
0.0274630

0.0189606

0.0649583

0.0774986

0.1380392

0.2117069

0.2654400

0.2112194

0.1849830

0.1671292

0.1419492

0.1197811

0.0927824

0.0894527

0.13211

0.08530

0.15227

0.05288

0.18217

0.17241

0.11189

0.22378

0.19281

0.21452

0.18084

0.08562

0.01616

•0.03051

■0.04510
•0.03717
0.01565
0.02770
0.05657
0.02164
0.02931

•0.01881
0.04898
•0.01674

0.8101382
0.8030612
0.7161290
0.7123810
0.6599078
0.7038095
0.7059908
0.7204301
0.7972222
0.8422939
0.8166667
0.8252688



TAble 3.5 Hor.thly starlsclcs for precipitation at Greenland 9 SE station

T - 60 nln.

r (1) r (2)

0.0004928

0.0007259

0.0015395

0.0018894

0.0030465

0.0027236

0.0037136

0.0033891

0.0013185

0.0008649

0.0009577

0.0006582

0.0044552

0.0054339

0.0099860

0.0125486

0.0200147

0.0246846

0.0360284

0 0344460

0.0144451

0.0078730

0.0078314

0.0060834

273.15

192.91

111.68

152.05

375.71

643.61

1165.90

619.05

1186.13

237.73

238.79

260.91

0.33363

0.40728

0.45365

0.47697

0.35303

0.29861

0.23827

0.30741

0.28296

0.46125

0.45557

0.40307

0.27145

0.33988

0.42059

0.36627

0.25007

0.16409

0.07237

0.08667

0.14386

0.36387

0.37100

0.38676

0.9775606

0.9666269

0.9506144

0.9506627

0.9457752

0.9637932

0.9549006

0.9636665

0.9755950

0.9776705

0.9701135

0.9753730

0.3645714

0.4900000

1.1382857

1.3360000

2.2457143

1.8848571

2.6979412

2.4433333

0.9354286

0.6369444

0.6848571

0.4877778

0.2134499

0.2522371

0.9897608

1.0023977
1.4521126

1.2380354

1.2714291

1.5453063

0.7166029

0.7045721

0.6563732

0.5287295

0.21843

0.12694

-0.09511

0.16796

0.30838

0.06357

-0.02839

-0.09509

-0.10763

0.16115

0.19474

0.01980

T — 1440 mln.

0.0117821

0.0173953

0.0367867

0.0446609

0.0725092

0.0651877

0.0887137
0.0811439

0.0313902
0.0205835
0.0256286
0.0157348

0.0411307

0.0542382

0.1214637

0.1446564

0.1973372

0.1919705

0.2392607

0.2389898

0.1095939

0.0872723

0.0860681

0.0753473

0.16647

0.06205

0.19350

0.14886

0.20096

0.17734

0.08858

0.07041

0.19753

0.22611

0.22821

0.11814

0.00790

0.01618

0.02297

0.03833

0.01673

0.06068

0.02712

0.08758

0.05199

0.01867

0.00680

0.01567

0.8707295

0.8396323

0.7516159

0.7507163

0.7047970

0.7490119

0.6411992

0.6955720

0.8341323

0.8850987

0.8561905

0.8682796



Table 3.4 Monthly statistics for precipitation at Idaho Springs
station

T - 5 min.

(in.) (in.)

k  r (1) r (2)
T  T T

0.0002547

0.0004874

0.0001207

0.0001601

0.0000822

0.0001633

0.0002498

0.0003329

0.0002406

0.0000463

0.0003904

0.0002762

0.0017737

0.0025347

0.0011477

0.0013659

0.0010367

0.0019787

0.0033656

0.0040560

0.0106349

0.0010781

0.0021816

0.0016558

10.75

5.95

10.67

10.52

15.88

19.91

27.24

28.57

108.54

61.40

6.78

6.14

230.70

43.28

147.29

162.91

338.30

561.77

1034.59

1263.63

9784.89

5890.69

64.27

45.55

0.25269

0.58621

0.18445

0.39180

0.33658

0.49601

0.65573

0.71317

0.38566

0.26773

0.45688

0.04178

0.28805

0.67938

0.19485

0.37793

0.27216

0.41441

0.47055

0.55197

0.20153

0.19383

0.51587

0.09343

0.9763262

0.9595122

0.9884593

0.9850894

0.9928228

0.9894793

0.9876537

0.9838920

0.9919039

0.9964561

0.9651364

0.9725571

T = 60 min.
a

(in.) (in.)

^  r^(l) r^(2)

0.0029778

0.0057225

0.0014121

0.0018825

0.0009501

0.0018804

0.0029266

0.0038999

0.0028188

0.0005410

0.0046043

0.0032535

0.0117532

0.0243752

0.0064867

0.0103056

0.0061687

0.0135363

0.0242398

0.0313368

0.0572481

0.0053664

0.0184925

0.0094797

16.54

6.78

8.99

8.08

10.91

11.95

18.76

20.25

42.27

18.23

6.05

4.24

413.55

56.66

113.32

80.41

151.83

198.54

487.92

609.54

1960.46

420.30

48.21

28.41

0.68238

0.91200

0.56301

0.71492

0.47899

0.38086

0.20179

0.37593

0.02574

0.14537

0.82507

0.86863

0.46113

0.84436

0.33660

0.55227

0.37325

0.16050

0.07064

0.17952

0.00407

0.06379

0.74022

0.78902

0.8161616

0.8483771

0.9095806

0.9337776

0.9519339

0.9566295

0.9458863

0.9434683

0.9688958

0.9771767

0.8841348

0.8563171



Table 3.5 Monthly statistics for precipitation at Ward station
T - 5 min.

(in.) (in.)

r^(l) r^(2)

0.0000385

0.0004028

0.0001135

0.0004434

0.0005960

0.0003732

0.0004041

0.0003497

0.0001740

0.0002562

0.0002516

0.0000583

0.0006341

0.0020769

0.0010923

0.0026457

0.0044361

0.0071452

0.0045374

0.0040986

0.0021773

0.0027001

0.0016431

0.0007704

17.11

6.26

10.18

8.30

35.18

89.74

26.37

29.15

56.97

62.18

7.09

13.42

314.64

74.20

118.60

100.11

2516.50

7890.23

994.17

1452.18

5920.69

6629.07

62.44

188.50

0.06578

0.24581

0.17474

0.66053

0.51198

0.41144

0.71801

0.60646

0.33908

0.34337

0.32006

0.05710

0.08122

0.34073

0.23815

0.67333

0.50135

0.43298

0.50466

0.43882

0.34074

0.20862

0.39202

0.13137

0.9962441

0.9613895

0.9889755

0.9653969

0.9581723

0.9802281

0.9801361

0.9825144

0.9865223

0.9786616

0.9759543

0.9942347

60 min.

(in.) (in.)

^(2)

0.0004526

0.0047368

0.0013295

0.0052206

0.0069025

0.0042637

0.0045426

0.0040410

0.0020361

0.0029912

0.0029719

0.0006888

0.0031995

0.0154022

0.0067778

0.0254079

0.0336450

0.0405869

0.0306026

0.0273778

0.0142049

0.0167944

0.0126769

0.0043308

15.35

5.08

7.19

8.27

12.29

30.37

14.25

11.84

16.71

12.13

6.83

9.02

381.89

36.39

66.87

94.18

232.29

1182.87

270.17

178.04

389.55

215.78

62.00

106.12

0.60738

0.83079

0.65276

0.74068

0.36646

0.37341

0.21736

0.26094

0.25090

0.42226

0.83306

0.70860

0.34696

0.73155

0.49714

0.59026

0.21879

0.05208

0.13811

0.20547

0.16666

0.29327

0.67408

0.58794

0.9671533

0.8404344

0.9405303

0.9074394

0.8760991

0.9271396

0.9203840

0.9266996

0.9372303

0.9140351

0.8941219

0.9623548
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Figure 3.3 Monthly statistics for Greenland 9 SE station, for T-60 rain.
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express linear dependence between consecutive seasonal values and not

between values within the season, as is the case for smaller

aggregation scales.

The information presented in tables and graphs confirms the

periodic behavior for the adopted monthly partition and for the

analyzed precipitation recording stations, although this periodicity

is stronger at the measurement level and tends to disappear on certain

statistics at larger aggregation scales, like for skewness and

correlation coefficients going from hourly to daily scales. In most

of the cases, summer or transition summer months exhibit smaller

correlation than other months, presenting also larger amounts of

precipitation and larger variability. This behavior is expected for

summer convective storms in Colorado. A large departure from this

behavior is observed for Idaho Springs and Ward stations, for T— 5

min., for which correlation tends to increase for summer months.

Also observe how in some cases estimated lag-1 correlation coefficient

is larger for T-5 min. than for T^=60 min.. This point will be

discussed in a larger extent in the next section. Finally, note how

larger sample variability for computed statistics is suggested in

samples for 5 min. and for the corresponding derived hourly samples.

For correlograms presented in Figures 3.10 to 3.13 a common

characteristic is highlighted. All of them tend to be of the

exponential type.

3.6 Effect of the aggregation operation on sample statistics

In the previous section, the question of the behavior of sample

statistics with changes in the aggregation level was posed. The

analysis presented try to answer this question, both at the estimation



and population level. Derivations for the results given in this

section are lengthy and therefore a detailed presentation is not

possible.

Assume that the sample series at the measurement scale is denoted

i"l,..,m, k=l, . . , n, where n is the number of intervals of

length T in the aggregation period and m is the number of aggregation

periods. The aggregated series x^, i=l,..,m, is obtained as
n

(3.22)

The subscript for the season has been eliminated, indicating that

values are observed sequentially for the indices i and k, i.e.,

yi+X,l taken after y. In the following presentation no missing
data are considered in the series and biased estimators are used in

computing statistics.

Statistics under consideration are means, variances and

correlation functions. The general question is how these statistics

are related for two different aggregation levels.

Using moment estimators, mean and variance for the original

—  2
series Y and S^, are given by;

i-1 k=l
(3.23)

1  f y y 2 -2 12  2 y - mn Y
mn ^ i-1 k-1 J

(3.24)

To obtain the covariance of lag j, it is necessary to consider if

j  is a multiple or not of the aggregation period length n. With this

in mind, let:

e - int(j/n) (3.25)



d - j/n - e
(3.26)

In words, e represents the closest integer less than or equal to

j/n and d is the fractional part of j/n. Based on the values taken by

e and d, the covariance of lag j for the original series, denoted by
A

TyO)' obtained using one of the following expressions

r(j) - S ' S [ y. - Y ] f y. - Y 1
mn-j i«l k=l'- J ^ i+c,k J

for d=0 and e>0 (3.27)

Yv(j)
^  r m-e (c+l)n-j r -I f -

:j itl tl M i^i+^.k+j-en- YJ
m-e-l n

i=l k=>(e+l)n-j+l ( ̂i+e+l.k-(e+l)n-j" ]
for d?^0 and e>0 (3.28)

From eq. (3.27), is obtained after making e=0.

Using the transformation in (3.22), the mean for the aggregated

series, X, is:

X - n Y (3.29)

In order to obtain the variance, S„, one proceeds from the basic
A.

estimator

sj = i 2 [ X 1 ^ 1 2 [2 k" n Y 1 ^
^  m i=l^ ^ J m i=ll^ k=l i

and the final result for is;
A

2  2n Sj + 1
ra

- n-1

2

L k-1
(mn-k) 7Y(k)

n-1 m-1 n

2  2 2

k=l i=l f=n+l-k
(s'l+l.J.-n+k- [yi.i- ̂ ) ]



If the correlation coefficient of lag j for the original series ,

j )' estimated using

"  7Y(j)/SY

and the standardized original series, z. , , is defined as
1, k

(3.31)

^,k" ̂^i.k - (3.32)
2then Sjj can be written in terms of the sample autocorrelation function

for the original series in the following way

o  or o r n-12  2f 2 rSx=SYjn+_ S (mn-k)rY(k)-
^  m L k=l

n-1 ra-1 n

2  2 S

k-1 i-1 i--n+l-k
^i+l,i-n+k ^ (3.33)

The estimated covariance of lag S for the aggregated series,
A

7jj(5), is defined as

or after using eq. (3.22)

2  f y. , - Y 1 2 f y. c V- Y 1 1
m-S i-l^ k=l'' J k=l^ 1+5,k J J

Letting

^ = n 5

n(5-l)+l

^2" n(5+l)-1

the former equation becomes

(3.34)

(3.35)

(3.36)

7x(^) =
^  r 5-1 m-6 i-Wi+l/- - ) r - 1

r? L f-l Ll I ,k+n-i+a;,-r ^ J [ ̂j+^.k ' ̂ J

A  Wj ni-5 n-i+5^ _ r
(mn-5) 7 (5) +2 2 2 Y- vi -Y y

i-=5+l j=l k-1 ( J L ,j +6,k+i- 9



In the above equation, B is a lag for the covariance in the

original series. The remaining terms stand for cross products, for

lags i, i=Ki)^, . . , 9-1 and i=^+l,..,«2.

After additional covariance terms for the original series are

introduced, the final result for the covariance of lag S for the

aggregated series is

7x(5)
M  r n5+n-l A

S) - E (mn-i) 7 (i) -
m-5 ■- i=n5-n+l

n5-l m-5+1 n5-i r —"I f

LnS-n+l j-l k=l i J [ ^2+S-l,
=n5-n+1

(mn-i) y^(i)

k+i-n5+n

nS+n-l m-5-1 n
E  S E
i=n5+l j-l k—n5+n-i+l

Equation (3.37) transform into (3.30) for 5-0.

Using eq. (3.32) and defining the sample autocorrelation function

for the aggregated series, r^(5), in the same way as in (3.31), eq.
(3.37) is modified and presented as

rx(5) l._L [s
1-5 ,2 L i

n5+n-l

■=n5 - n+1
(mn-i) -

n5-l m-5+1 n5-i
2  E E z. . z - i- T . , . ^
i-n5-n+l j-l k-1 J+5-l,k+i-n5+n
n5+n-l m-5-1 n
2  2j 2i-n5+l j-l k-n5+n-i+l ^j+5+1,k+i-n5- (3.38)

In the following paragraphs, similar results will be given for

the population case. Assume that Y. . represents an stationary
i.J ^ ^

stochastic process, with j—l, . . ,n, where n is the length of the



aggregation period, and i is an element of the positive integers.

Mean, variance and covariance function will be denoted as and

•) . respectively for the original process. The objective here is

to derive mean, variance and covariance function for the aggregated

process, obtained as

X.= S Y. .

' j=-.l
The mean is given by the simple relation

(3.39)

(3.40)

The variance of the aggregated process is easy to obtain using

expected value theory. An intermediate result is

2  n-1 n
n cr + 2 S S

k-1 j-k+1
7Y(j-k)

which becomes

n a + 2 S (n-k) 7„(k)
k=l ^

(3.41)

2 r ^ + 2 S (n-k) p^(X) (3.42)

where is the population autocorrelation function for the

original process.

A similar procedure is followed in order to obtain the covariance

of lag S for the aggregated process denoted by 7„(5). The first

important result is

n  n

7y(5) =2 E 7.y.(n5+j-k)
k=l j-1 ^

which, after some manipulation, becomes

n-1 fy^(S) - n 7y(n5) + S ̂ (n-j) 7Y(n5+j) + 7Y(n5-j) J (3.43)

In terms of autoconrelation functions, ecj. (3,43) becomes



Py^(S) n p^(x\S) + S ̂ (n-j) p^(r\S+2) + pY(n5-j)jj (3.44)

No analytical derivations are obtained here for the probability

distribution function for the amount of precipitation in a given time

interval. However, it is important to mention that the pdf at a

larger aggregation scale is the convolution of the pdf at the

measurement scale. Also, as the aggregation scale increases, the

probability of zero precipitation must decrease.

At this point, it is possible to present some analysis on the

behavior of sample statistics at the measurement and aggregation

scales. Figures 3.14 to 3.17 show the ratio between some statistics

estimated at the aggregation level scale and the same statistics at

the measurement level. No plots of this type are provided for monthly

and daily aggregation scales, although results were similar.

The mean is the statistic with the best behavior, since in all

cases the ratio is very close to the aggregation period length, number

of days in the month for monthly and daily aggregation scales, 24 for

daily and hourly samples and 12 for hourly and 5 min. samples. This

oehavior is shown in eqs. (3.29) and (3.40). Small discrepancies are

due to the fact that the number of periods with missing data in the

sggi^egated series is not an integer multiple of the number of missing

periods in the measured series. For example, as stated before, if

five missing hourly values are present in a given day, the value for

that day is not declared missing, but made equal to the sum of the

remaining 19 values.

In the analysis of standard deviations and correlation functions,

eqs. (3.33), (3.38), (3.42) and (3.44) show that the behavior of these
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is highly dependent on the second order properties of the original

series or process, as expected, in the form of linear combinations.

Furthermore, it is not possible to establish a one to one relationship

between the correlation for the aggregated series at a given lag and

the same lag in the measured series. From eqs. (3.33) and (3.42), it

is most probable to obtain an increase in the variance when the

aggregation period increases, given the positive correlation usually

present in short sampling interval precipitation data. For all the

cases analyzed here, as shown in Figures 3.14 to 3.17, the result was

an increase in the standard deviation and consequently in the

variance.

The behavior of the sample autocorrelation function is even more

difficult to predict than the behavior of the population counterpart,

due to the presence of the three summations of cross products in eq.

(3.38). Also observe, in eqs. (3.38) and (3.44), the ratio of

variances at the two temporal scales. If the ratio is small, as was

the case, one should expect a decrease in the population and sample

autocorrelation functions when a larger aggregation scale is used. In

fact, analysis of empirical data and common sense show that the larger

the measurement time interval the less correlated precipitation data

should be. Tables 3.2 to 3.5 and Figures 3.10 to 3.17 show that in

fact a decrease in correlation was obtained from hourly to daily data,

but for some months an increase was obtained from 5 min. to hourly

samples. Equations (3.38) and (3.44) do not inhibit this increase.

Islam et. al. (1988) report an increase in correlation from the hourly

to the daily level, due to diurnal periodicity.

Figures 3.16 and 3.17 show that increase in correlation appears

in months where snow precipitation is dominant or at least present.



This type of storm, frontal mass, tends to last longer, with low

precipitation intensity, as opposite to summer thunderstorms, with

short duration and high intensity. if iti the average, storms last

longer than 1 hr. , an increase in correlation from 5 min. to hourly

values is highly probable, since at the hourly level positive values

will be paired with positive values. In the summer months case, if

the average storm lasts less than 1 hr., at the hourly level positive

values will be paired with zero values, and a decrease in correlation

will be obtained.

To further illustrate the preceeding point, assume 5 min. records

are available with each positive value followed by a zero value and

the zero value followed by another positive value, and so on. Using

eq (3.27), the lag-1 correlation coefficient for this sample can be

shown to be

ryd) - - yVSy (3.45)

When an hourly series is derived from the former, all values in the

new sample will be positive, and the resulting lag-1 correlation

coefficient r^(l) will be, almost surely, larger than the one given in

eq. (3.45).

Although the above hypotheses require further testing, they were

accepted as adequate explanations for the present case. This yields

the conclusion that correlation in precipitation records is highly

controlled by the mean storm duration and by the way values are

distributed in time, i.e., the so called precipitation clustering.

Another important issue which affects computation of statistics

is the inclusion or not of zero values in the estimation procedure.

It was not possible to find strong mathematical or analytical



in favor of ono or tlie otlior motliod. If zoro valuss wer©

eliminated systematically from the samples, the distribution of the

amount of precipitation would be truncated, generating a shift to the

right of the raw moments, starting with the mean. Variance could be

larger or smaller. Correlations are more difficult to analyze, since

these involve the joint distribution of the amount of precipitation in

two disjoint intervals. However, elimination of zero values would

decrease appreciably sample sizes available for correlation

estimation.

In order to clarify the preceeding point, a simulation for an

AR(1) process was performed, where the number of zeros in the data was

increased from 0 to 90% in increments of 10%. Zero values were

uniformly located within the sample. Results from the simulation show

that as the number of zeros increases, mean, variance and

autocorrelation functions decrease, while skewness and kurtosis

increase.

Derivation of properties for the precipitation models used in

this study do not differentiate between zero and positive states of

the process. In view of this and the preceeding arguments, it was

decided to keep zero precipitation values in the samples, as the most

logical way to estimate statistics and model parameters.

A final word on estimated statistics. Skewness, kurtosis and

probability of zero values behaved as expected, i.e., the tendency in

them was to decrease with an increase in the measurement scale.

An additional point, considered before, is the comparison of

correlation functions at two different levels of aggregation, for

example T and T . In order to solve this, assume the existence of an
a

underlying stochastic process, {X(t), -« < t < +«), defining evolution



of precipitation intensity with time. The amount of precipitation in

the kth interval of length T, Y, , is

(k-l)T
X(t)dt (3.46)

and the average amount of precipitation in the same interval, is

(3.47)

The process X(t) is not observed. Either or are recorded.

Note that can be interpreted as an estimate of X(t) located at the

time t=kT - T/2.

It can be shown (Parzen, 1964) that the covariance for the

cumulative amount of precipitation, y^(.), is related to the

covariance of the intensity process, , -°o < r < as

T p (5+l)T

loi 7j^(s-r) ds dr (3.48)

The covariance for the average process, f is

y^(^S) = 7y(5)/T^ (3.49)

Equations (3.48) and (3.49) show that population autocorrelation

functions for the aggregated and the averaged process, ^nd

are the same.

P^(S) - y^(S)/y^(0) " 7y(fi)/7Y(0) (3.50)

The argument is as follows. In the samples, y. , for the
1, K

measurement scale T, and x. for the aggregated series T , two
8i

different correlograms were estimated. If j and 8 denote lags, then

'^Y^j ̂ plotted against T(j-.5) and r^(5) plotted against T^(6-.5) are
both estimates of the continuous correlogram Py(r), < t < +<*>, for



the intensity process. This allows comparison of correlograms

estimated at two different aggregation levels. In fact, this is the

way correlograms presented in Figures 3.10 to 3.13 were plotted.

3.7 Clustering of precipitation data

Clustering for precipitation records could be defined as the

process by which precipitation events arrive at a point in space

following a non uniform rate in time. Once a storm has arrived, the

probability of other storms arriving close to this is higher than if

the state were dry at that time.

As argued before, clustering is responsible for the correlation

structure present in precipitation records (Waymire and Gupta, 1981a,

1981b, 1981c). Figures 3.18 to 3.21 present examples of precipitation

events recorded in the gauging stations used in this study, where the

process of clustering is easily observed.
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Figure 3.18 Recorded hourly precipitation at Denver Wsfo Ap station, between

1949/05/05/01 and 1949/06/04/24.
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Figure 3.19 Recorded hourly precipitation at Greenland 9 SE station, between

1969/10/01/01 and 1969/10/31/24.
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Figure 3.20 Recorded 5 min. precipitation at Idaho Springs station, between

1984/02/12/00 and 1984/02/14/13 (Negative values are missing).
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Figure 3.21 Recorded 5 min. precipitation at Ward station, between

1984/04/20/00 and 1984/04/22/13 (Negative values are missing).



Chapter 4

POISSON WHITE NOISE MODEL FOR PRECIPITATION

4.1 Introduction

In this chapter, a brief review of the Poisson White Noise (PWN)

model for precipitation is presented. The model is described and

derivation of its main properties is outlined. Two particular cases

are presented, when the White Noise terms are exponential and gamma

distributed, respectively. Method of moments is used to estimate

model parameters for the four precipitation recording stations used in

the study.

4.2 Model description

Figure 4.1 gives an schematic representation of the PWN model for

precipitation. Following other authors (Waymire and Gupta, 1981a;

Rodriguez - Iturbe et al., 1984), the process is described as follows:

Precipitation events arrive in time according to an homogeneous

Poisson process of rate A, the arrival times being denoted by T^. A

second random variable, Uj^, is associated to each arrival, giving

instantaneous amount or volume of precipitation. The sequence (Uj^i

k=l,2..} is formed by independent random variables and they are

assumed independent of the arrival times. They follow the same

distribution denoted by fjj(u). Therefore, in the PWN process for

precipitation the arrival component is Poissonian and internal

properties of precipitation are modeled using White Noise terms.



Figure 4.1 Schematic representation of the Poisson White Noise
precipitation process.

It must be emphasized that the term White Noise as used here is not

limited to the Normal distribution.

The Poisson process is a popular model in the literature on

stochastic process, mainly because most of its properties are simply

derived, but it has also been shown to be, in some cases, an adequate

model for the occurrence of events in space and time. In particular,

the model described above as PWN is presented by some authors as

Compound Poisson process (Parzen, 1964; Taylor and Karlin, 1984;

Waymire and Gupta, 1981a). The simplicity in deriving the properties

of a Poisson process stems from the fact that the random variables

representing the number of occurrences in disjoint intervals are

independent and identically distributed, following a Poisson

distribution with intensity X. Parameters in the model are X and the

parameters indexing the distribution fy(u).



Let N(0,t) represent the Poisson counting process, i.e., the

number of precipitation bursts in the interval from 0 to t. The

precipitation intensity at time t, X(t), is defined by means of

X(t) dt - U(t) dN(t), t2:0 (4.1)

where dN(t) represents the increments of the counting process and is

computed as

dN(t) - N(0,t+dt) - N(0,t) (4.2)

This increment is one if an arrival talces place in dt. Otherwise is

zero.

The instantaneous precipitation intensity process is not

observed. Cumulative amounts of precipitation over time intervals of

length T (measurement scale) are recorded. Therefore, properties of

the process must be estimated from samples composed of these amounts.

In order to obtain an expression for the cumulative amount of

precipitation in the kth interval of length T, Yj^, one starts with the

cumulative amount of precipitation in the interval (0,t), denoted as

Ny(t), and given by

- J :X(s)ds (4.3)

Using eq. (4.1) and given that the PWN process has no multiplicities.

(Section 6.2), eq, (4.3) becomes

N(0,t)

Nu(t) - 2 ̂ (4.4)

with Uq=0. Equation (4.4) is the definition of a Compound Poisson

process. From this, Yj^ is obtained as:

Y^- Ny(kT) - N^(kT-T) (4.5)

The following expressions are equivalent to (4.5):

N(0,kT) N(0,kT-T) N(0,kT)
2  U. - S U, , Y, - S U, , and

i-=N(0,kT-T) ^



Note that an arbitrary Yj^ can be expressed as
N(T)

2  U.

i-=0 ^
(4.6)

where N(T) now denotes the number of occurrences in an interval of

length T and it has a Poisson distribution with parameter AT, i.e.,

fN(T)(") " exp(-AT) (AT)" / n! (4.7)

Following a similar argument in the opposite direction, one can

show that is also given by

XYj^ . J ̂ X(t)dt
(4.8)

Properties for the cumulative amounts of precipitation are

obtained from (4.6). An alternate way to proceed is to use eqs. (4.1)

and (4.8), after properties for the precipitation intensity process

are derived. However, the last approach will not be used here.

4.3 Properties of the PWN precipitation process

Proceeding from eq. (4.6), the mean for Yj^, is computed as
r N(T) CO p n(T)

Lo J ■ to H to j
Since the White Noise terms are independent among themselves and

independent from the counting process, finally becomes

My" ̂  (4.9)

where E[U] is the mean of the White Noise distribution fy(u).

Using a similar approach for the second raw moment for Y, , the
k

variance for the amount of precipitation in the interval of length T,
2

tXy, is shown to be

= A T ( aj + j
2

where is the variance of the White Noise terms

(4.10)



The covariance of lag 5 between Yj^ and . denoted by 7y(6), is

given by

r N(T) N(T)
,(5) - E S U, E U, -

L i-0 ^ j-0 J J
The first summation refers to the interval k and the second to the

interval k+5. However, in the first summation, all random variables

are independent from those appearing in the second summation, since

they refer to different time intervals, and therefore

y^iS) - 0

and consequently

P^(S) - 0

(4.11)

(4.12)

where p^(.S) represents the population autocorrelation function for the

cumulative amounts of precipitation. A stronger proof of the result

in eq. (4.11) is obtained using the definition for given in (4.5)

and the second order properties for Ny(t), which are very similar to

those corresponding to Yj^:

e[ Ny(t) j - A t E(U]

Var[ Ny(t) ] - A t [ oj + e2[uj J

Cov( Ny(t^) Ny(t2) ] - A Min [ t^,t2 ) ( 4 ]

Therefore, any Compound Poisson process exhibits correlation different

from zero as long as time intervals overlap.

From eq. (4.6), Yj^ takes the value of zero only when N(T) is

zero. Besides, if the positive part is conditioned on N(T), the

marginal distribution for Yj^ can be written as

^Y^^^~^N(T)^®^^{0) + ( ̂_^^Y|N(T)-n^y^^N(T)^"^)^(0,«)^y^ (4.13)



The distribution of the amount of precipitation, conditional on a

given number of arrivals in the interval, is the nth convolution of

the distribution of the White Noise terms

^Y|N(T)-n(y) - f,! (y)

fu^^(y) - fyCy) and f^"\y) = | f^""^\y-2)fy(z)dz
and therefore fyCy) becomes

^Y(y)"^N(T)(n)i{0}(y^ +
f 00

or, after using the Poisson distribution.

t^(y)-e>.p<-AT)I|(,,(y) + [ s ]l (y) (4.15)
ri=l n! J \ /

forms for eqs. (4.13) to (4.15) are presented by

Waymire and Gupta (1981a). Following the same technique outlined

above, the moment generating function for Y^, . can be shown to

be of the form

"y*"' - = "s ("> fN(T)<"'
n-1 n ^ '

(4.16)

where m^ (x) is the moment generating function for the sum of n White
n

n

Noise terms, S = E U.. Again, using the Poisson distribution for the
i=l ^

number of occurrences in the interval of length T, eq. (4.16) becomes

m,^(x) - exp(-AT) + S m (x)^^P^
n=l n

(4.17)

4.4 Exponential case

Developments presented in the preceeding section did not require

any assumptions on the distribution of the White Noise terms.

However, this type of assumption is required if parameter estimation



or more complicated operations, like computation of distributions, are

desired.

In this section, results are presented for the case when the

White Noise terms are independently and identically distributed

according to an exponential distribution with parameter n

fy(u) - fi exp(-/iu)I^Q _^^(u) (4.18)

Equation (4.18) does not allow negative values for the random variable

U. This constraint is required as long as the process under analysis

is positive valued.

The parameter in (4.18), fi, has dimensions 1/length, in this case

1/in. . Mean and variance for the exponential distribution (Mood et

al.,1974) are

E[U] - l//i

2  1/2

From eqs. (4.9) and (4.10), mean and variance for the amount of

precipitation in a time interval of length T are:

My- ̂ T/4

2  22AT//i^

(4.19)

(4.20)

Given that the random variables U^,i=l,..,n, are iid exp(/i),

their sum, S^, is gamma distributed with shape parameter n and scale

parameter fx (Mood et al., 1974). Using this result in (4.15), the

distribution for becomes

f (y)-exp(-AT)I (y) + e^P(-My-AT) ( ̂ (ATpy) 1
^  ' y n=l , ..2 ^



Similarly, from eq. (4.16), the moment generating function for Yj^
is given by:

iiIyCx) - exp[ATx/(/i-x) ] (4.22)

Although the moment generating function has a nice closed solution,

the case is not the same for the probability distribution function.

4.5 Gamma case

Assume the White Noise terms in the PWN model are independently

and identically distribute following a Gamma distribution with scale

parameter fi and shape parameter r (^>0, r>0) . The distribution of U

is of the form

f„(u) - 1(0,,) (") (4.23)

Again, n has dimensions 1/length and r is dimensionless. Mean and

variance for the distribution are (Mood et al., 1974)

E[U] - r/fi

The gamma case collapses into the exponential case when r=l.

Taking the two proceeding equations to (4.9) and (4.10), mean and

variance for Yj^ for the gamma case become

XTr/n

a^- ATr (r+l)/^^

(4.24)

(4.25)

Given that the random variables i-l,..,n, are iid Gamma(;i,r),

their sum, S^, is also gamma distributed with scale parameter n and



shape parameter nr. Under this condition, the probability

distribution function for takes the form

fyCy) =exp (- AT) I (y) f ̂  j ^6)
y  n=l r(nr) n! J

and the moment generating function for Y^, from eq. (4.17), becomes

m^Cx) - exp AT [ 1^ JL j 1 ] } (4.27)
/i-X

When the White Noise terms in the PWN model are considered as

Gamma distributed, three parameters, A, /i and r, must be estimated in

order to define the model. If method of moments were to be used, as

ib will, mean and variance would not be sufficient to perform the

estimation. An additional property is required and the one selected

here is the skewness coefficient for the amount of precipitation in a

time interval of length T, denoted by g^, and defined as

3 'V 4 4 ]'' 4
The second raw moment for is obtained from eqs. (4.24) and (4.25)

e[ j - ATr (ATr+r+1) /
The third raw moment is computed from the moment generating function

Yj^, eq. (4.27), using (Mood et al., 1974)

^<1
V7hich, after performing differentiations and evaluations, becomes

Y^ ] - ATr j^(ATr+r+l)^+ (ATr+r+1) + ATr^j /
Replacing expressions for the raw moments in the definition for the

the skewness, the final result for gY is

g^- (r+2) [ATr(r+l)]'^/^ (4.28)
A nice result, obtained from the proceeding derivation, shows

that the third centered moment for Yj^, for the gamma case, is given by

^  ̂Y ATr (r+l)(r+2) / p



Using mathematical induction, it is possible to show that

following relationship holds for the ith centered moment for Y

^[( ]^1 - " (r+i)//i\ i>2
-I

(4.29)

4.6 Parameter estimation by method of moments

Method of moments is used here to estimate parameters for the PWN

model, for both the exponential and the gamma cases. In this method,

sample estimated statistics are equated to the population counterparts

and model parameters are obtained by solving the resulting set of

equations. Equations (4.21) and (4.26) suggest the use of maximum

likelihood estimators, since amounts of precipitation in disjoint

intervals are independent. However, the infinite summations in the

continuous part of the distribution makes this estimation technique

cumbersome to develop and apply.

In Chapter 3, statistics for the four precipitation gauging

stations were estimated, for different aggregation scales for each

sample, the smallest of them being the measurement scale. To account

for seasonal periodicity, samples were divided in calendar months.

The month was denoted by the index r. In order to keep this partition

the estimation of parameters, the same index is attached to the

parameters. The reader must remember that mean, standard deviation

^  Aand skewness were denoted respectively by and , while, in

general, measurement scale was denoted by T.

For the exponential case, eqs. (4.19) and (4.20) provide moment

estimators for che model, given by

H - 2Y /
T  T ' T (4.30)



X-Yfjt / T
r  r T (4.31)

Similar results are obtained for the gamma case using eqs.

(4.24), (4.25) and (4.28)

K - / S,

^ - (2 - <f>^) / (4>^ - 1) (4.33)

Y  > r + 1

r  T r

p - A T r / Y
T  r T ' T

(4.34)

(4.35)

In eq. (4.32), is an intermediate variable for estimation. For the
A

estimated parameters to have physical meaning, r^ must be positive.

From eq. (4.33) this happens when ̂  is between 1.0 and 2 0
T

4.7 Results for estimated parameters

Tables 4.1 to 4.4 give estimated parameters for the PWN

precipitation model, using the method of moments, for both the

exponential and the gamma case, for different temporal aggregation

levels. Statistics used in the estimation process are listed in

Tables 3.2 to 3.5.

The first feature observed in Tables 4.1 to 4.4 is the presence

of negative parameter estimated values for some months in the gamma

case, when the constraint in <f>^ is violated. Although these values

are listed for sake of completeness, the corresponding models can not

be used. The fact that the PWN gamma model may yield negative



Table 4.1 Estimated parameters for the PWN model for Denver Wsfo Ap station,
for different temporal aggregation levels.

Exponential model Gamma model

r "t A
r

r
r

A
f

(1/in.) (1/min.) <l/ln.) (1/mln.)

X 10'^ X 10'^

1 54.90761 0.622377 0.52854 41.96426 0.899959 1.654218
2 48.01580 0.727119 0.54489 37.08950 1.030779 1.647296
3 35.73554 1.051458 0.25292 22.38687 2.604371 1.798135
4 20.50053 0.843733 0.05298 10.79328 8.385223 1.949689
5 13.40794 0.781258 -0.57238 2.86672 •0.291832 3.338551
£ 10.04224 0.401940 •0.13556 4.34042 -1.281463 2.156829
7 5.70995 0.231519 0.02736 2.93310 4.346263 1.973365
8 5.89344 0.188393 -0.16414 2.46303 -0.479663 2.196380
9 11.32981 0.299843 -0.56292 2.47602 •0.116401 3.287913
10 24.00090 0.501978 -0.22520 9.29794 -0.863524 2.290656
11 41.60662 0.793854 0.81768 37.81382 0.882356 1.550151
12 43.73308 0.576110 0.30140 28.45721 1.243764 1.768400

Exponential model

(lain.) (1/in.) (1/nin.)

Gamma model

1 A46A0

2 40320

3 44640

4 43200

5 44640

6 43200

7 44640

8 44640

9 43200

10 44640

11 44640

12 44640

7.044699

6.455961

3.705541

3.451323

1.747190

1.996019

2.292470

1.966153

2.008619

2.271431

5.911912

3.306734

0.079852

0.098587

0.109027

0.141979

0.101751

0.079854

0.092951

0.062824

0.053108

0.047505

0.109112
0.043540

3.82567

-5.32749

-0.48365

2.43154

-12.9844

-20.2754

-0.30288

•0.16413

1.29797

0.25315

-0.20006

-0.26036

(1/ln.)

16.99770

-13.96900

0.95667

5.92167

-10.46953

-19.23704

0.79905

0.82172

2.30787

1.42323

2.36458

1.22288

(1/min.)

0.050362

0.040040

-0.058193

0.100184

0.046957

0.037957

•0.106962

-0.159971

0.047012

0.117579

-0.218136

-0.061842

T - 1440 min.

Exponential model model

r
"r A

T
r
r

A

X
T *r

(1/ln.) (1/min.) (1/in.) (1/min.)

X 10'^ X 10'^

1 7.736598 0.087695 0.16494 4.506323 0.309693 1.858415
2 7.261398 0.109960 0.49621 5.432290 0.165780 1.668355
3 4.447032 0.130843 -0.44512 1.233772 -0.081556 2.802209
4 2.643389 0.108742 -0.26112 0.976563 -0.153842 2.353414
5 2.380463 0.138631 0.16066 1.381459 0.500749 1.861575

6 2.582596 0.103320 -0.09393 1.169996 -0.498284 2.103677
7 3.412583 0.138368 0.63277 2.785984 0.178519 1.612455
8 3.294588 0.105272 0.39843 2.303632 0.184743 1.715085
9 3.779146 0.099921 0.69368 3.200333 0.121984 1.590430
10 4.198149 0.087801 0.56641 3.288005 0.121407 1.638403
11 6.380383 0.121683 1.29677 7.327145 0.107759 1.435393
12 4.739092 0.062400 -0.44969 1.303965 -0.038174 2.817184



Table «.2 Eetlnated parameters for the PWN model for Greenland 9 SE station
for different temporal aggregation levels.

T- 60 mln.

ExpoTientlal nodel Gamma model Exponential model Gamma model

(l/in.) (1/min.) (l/in.) (1/min.)

. ,n-3

(Bin.) (1/ln.) (1/min.) (l/in.) (1/Bin.)

„ ,0-3

49.65537

49.16810

30.87639

23.99735

15.21013

8.93966

5.72183

5.71264

12.63772

27.90714

31.23062

35.57092

0.407836

0.594852

0.792236

0.755676

0.772294

0.405801

0.354143

0.322678

0.277714

0.402281

0.498492

0.390213

0.61506

0.55294

1.11993

0,67690

-0.16333

-0.21396
-0.43194

-0.06348
-0.29917

1.13068

0.70250

0.78761

40.09809

38.17764

32.72786

20.12058

6.36293

3.51343

1.62517

2.67498

4.42844

29.73059

26.58502

31.79349

0.535462

0.835322
0.749818

0.936027

-1.978053

-0.745372

-0.232871

-2.379960
-0.325280

0.379034

0.604047

0.442825

1.619173

1.643938

1.471714

1.596338

2.395215

2.272213

2.760384

2.067790

2.426881

1.469333

1.587372

1.559405

1 44640

2 40320

3 44640

4 43200

5 44640

6 43200

7 44640

8 44640

9 43200

10 44640

11 44640

12 44640

16.00371
15.40310

2.32392

2.65923

2.13002
2.45947

3.33794

2.04637
3.64320
2.56614

3.17928
3.48967

0.130701

0.187190

0.059258

0.082239

0.107155

0.107309

0.201737

0.112006

0.078887

0.036614

0.048775

0.038131

-2.24995

0.62937

-0.36572

-25.4197

1.23330

1.69499

-79.5268

0.69241

5.18524

-0.16486

0.68168

-0.21192

-10.002

12.549

0.737

-32.469

2.379

3.314

-131.058

1.732

11.267

1.072

2.673

1.375

0.036305

0.242306

-0.051382
0.039502

0.097020
0.035309

0.099600
0.136884

0.047050

-0.092733

0.060164

-0.070894

T - 1440 min.

Exponential model Gamma model

(l/ln.) (1/min.)

- ,n-3

(l/in.) (1/min.)

,„-3

1 13.92901 0.113967 0.99902 13.92222 0.114023 1.500243
2 11.82636 0.142863 1.59882 15.36732 0.116109 1.384789
3 4.98687 0.127396 -0.23514 1.90/13 -0.20/192 2.307430
4 4.26857 0.132387 •0.39288 1.29575 -0.102283 2.647142
5 3.72396 0.187514 -0.03819 1.79086 -2.360834 2.039713
6 3.53775 0.160151 0.42198 2.51531 0.269836 1.703243
7 3.09940 0.190944 -0.23629 1.18352 -0.308562 2.309402
8 2.84137 0.160110 0.02707 1.45914 3.037529 1.973644
9 5.22699 0.113941 0.43294 3.74498 0.188561 1.697865
10 5.40501 0.077259 0.61238 4.35747 0.101711 1.620199
11 6.16346 0.097710 0.66126 5.11955 0.122737 1.601953
12 5.54314 0.060569 •0.33100 1.85417 -0.061203 2.494780



Table 4.3 Estimated parameters for the PWN model for Idaho Springs
station, for different temporal aggregation levels.

T= 5 min.

Exponential model Gamma model

(1/in.) (1/min.) (1/in.) (1/min.)

X 10

161.9192

151.7268

183.2654

171.6261

152.9662

83.4173

44.1060

40.4714

4.25460

79.6696

164.0550

201.4827

8.248169

14.79033

4.424027

5.495474

2.514765

2.724409

2.203534

2.694583

0.204731

0.737740

12.80942

11.12991

0.84061

5.89838

7.19410

3.29916

2.85652

0.55529

-0.02131

-0.25633

-0.31298

-0.38912

3.69096

41.7633

149.015

523.335

750.847

368.924

294.959

64.869

21.583

15.049

1.462

24.334

384.788

4308.037

9.030121

8.648928

2.519489

3.580593

1.697562

3.815364

-50.57838

-3.908651

-0.224692

-0.579083

8.139949

5.698203

1.543296

1.144961

1.122039

1.232603

1.259301

1.642968

2.021783

2.344694

2.455577

2.636993

1.213175

1.023384

T = 60 min.
a

Exponential model Gamma model

(1/in.) (1/min.) (1/in.) (1/min.)

43.11349

19.26280

67.11936

35.45017

49.93580

20.52486

9.96174

7.94281

1.72017

37.57172

26.92789

72.40884

2.139722

1.837189

1.579654

1.112249

0.790733

0.643249

0.485900

0.516269

0.080813

0.338771

2.066401

3.926369

-0.68647

0.68984

0.04469

1.10423

0.46885

0.51539

■0.20941
-0.34209
-0.07536
0.19287
0.97264
1.19075

6.75850
16.27550
35.05956
37.29761
36.67401
15.55163

3.93782
2.61283
0.79527

22.40916
26.55951
79.31493

-0.488612
2.250204
18.46208
1.059757
1.238642
0.945659

-0.917200
-0.496443
-0.495751
1.047607
2.095465
3.611877

4.189577
1.591772
1.957218
1.475233
1.680806
1.659893
2.264879
2.519964
2.081505
1.838311
1.506934
1.456464





estimated parameter values is a strong shortcoming and a disadvantage

when compared to the exponential case.

Although no plots are presented for estimated parameter values ,

it is easy to verify that they exhibit seasonal periodicity. In some

cases, periodicity observed at the measurement scale is preserved at

larger aggregation scales, but in other cases the shape of the

seasonal curve is different. For instance, for Denver Wsfo Ap
A

station, the parameter in the exponential distribution, tends to

be smaller for summer months, for the three aggregation scales used

with this station. In the same station, the rate of arrival for the
A

exponential case, , shows the same periodic behavior for hourly and

monthly aggregation scales, but for T —1440 min. no periodic behavior

is detected. On the other hand, for Greenland 9 SE station, the rate
A

of arrival for the exponential model, A^, tends to be smaller for

Slimmer months for the hourly aggregation scale, but larger in the same

months for the remaining T values. Despite these discrepancies, the

general trend in the periodic behavior is to decrease the rate of

arrivals and to increase the mean of the White Noise distribution for

.summer months. This observation agrees with the periodic behavior of

sample statistics described in Chapter 3.

Due to the relative large number of failures of the gamma case in

estimating parameters, any comparison with the exponential case is

difficult. However, in most of the cases, the shape parameter in the
A

gamma distribution, r^, tend to be smaller than 1.0, indicating that a

distribution similar to the exponential, but with a steeper decaying

shape, would be more adequate for White Noise description. Fewer

estimated r values larger than 1.0 tend to suggest the use of



distributions with a single maximum. This point was not investigated

further.

Tables 4.1 to 4.4 are examples of one of the main shortcomings

found in the application of the PWN model to precipitation samples.

Parameter estimates are different at different aggregation levels. In

the exponential case the general tendency in the arrival rate, A , is
T

to decrease with an increase in the aggregation level. The same

behavior is observed for the parameter in the exponential

distribution. As the aggregation scale increases, the model is

recognizing a smaller number of arrivals and generating instantaneous

bursts of precipitation with a larger mean value.

An explanation for this behavior is found in the statistics used

to estimate parameters. As the aggregation scale increases, more

information is lumped together and less information is conveyed by the

statistics included in the estimation process.

As a last point allowing judgment about the two cases of the PWN

precipitation model analyzed here. Figures 4.2 to 4.4 compare sample

and PWN computed sample probability distribution functions for the

amount of precipitation. In using eqs. (4.21) and (4.26), infinite

summations were approximated by computing terms until the last one was

smaller than a given tolerance.

In the figures, in general, the exponential case tends to perform

better than the gamma model, providing, in some cases, an adequate fit

to the sample pdf. However, the model is not able to reproduce

observed high frequencies for small values of precipitation. Also,

comparison of both cases, where gamma estimation was possible, shows

no appreciable benefit in using the gamma model, i.e., by introducing

a third parameter in the PWN precipitation model.
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Figure 4.2 Historical and PWN computed probability distribution
functions for the amount of precipitation, for Denver Wsfo
Ap station, for months 06 and 07 and for 1440 min. .
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Figure 4.3 Historical and PWN computed probability distribution
functions for the amount of precipitation, for Greenland 9
SE station, for months 05 and 08 and for T - month.
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Figure 4.4 Historical and PWN computed probability distribution
functions for the amount of precipitation, for Idaho
Springs station, for months 02 and 07 and for T — 60 min. .



Chapter 5

POISSON WHITE NOISE DISAGGREGATION MODEL FOR PRECIPITATION

5.1 Introduction

In this chapter, a precipitation disaggregation model based on

the Poisson White Noise (PWN) model is derived. First, model

structure is described, followed by the derivation of the required

distributions. Next, the PWN disaggregation algorithm is described.

Finally, the model is tested and applied to some months for the

precipitation recording stations used in this study. The derived

disaggregation model will be referred to as PWND model.

5.2 Disaggregation model structure

As stated in Chapter 1, an underlying stochastic processes

controlling precipitation occurrence in time is assumed. The

information available is this stochastic process and the recorded

amounts of precipitation for a given aggregation scalef^T^. Given a
disaggregation scale T^, of which T^ is an integer multiple, the idea

is to obcain some realization of cumulative amounts of precipitation

at the temporal level T^ which preserve the recorded amounts of

precipitation and the underlying stochastic process.

The first step is to simulate the number of arrivals in the

interval of length T , conditional on the recorded amount of
Q.

precipitation. Given the number of arrivals, the amount of

precipitation must be partitioned into White Noise values which add up



to the initial amount. Next, the arrival times for the White Noise

terms are simulated. Finally, addition of the White Noise values over

disjoint intervals of length generates the required disaggregated

precipitation amounts.

In order to perform disaggregation as described above, and given

that a PWN process controls precipitation formation, the following

distributions are required:

- Distribution of the number of occurrences in an interval of

length T, N(T), given the recorded precipitation in that

interval, Y:

^N(T) ^ • • • •
- Distribution of the ith White Noise term, U^, conditional on Y,

conditional on N(T) and conditional on i-1 previous simulated

White Noise terms U. , :
-1-1

^TI I /"V M/'T\ TT N i""l,..,n'u^|(Y,N(T),U^_^)^''i^' ""i

- Joint distribution of the arrival times in the interval of

length T, T^, conditional on N(T):

\|n(T)^V
To alleviate notation, the subscript in the temporal scale has

been dropped. Also, underlined characters denote vectors and the

index for each vector stands for its dimension.

5.3 Distribution of N(T) conditional on Y

The distribution of the number of occurrences in a time interval

of length T, conditional on the precipitation recorded in the same

interval, is computed using the definition for conditional

distributions



^N(T)|Y^"^ - ̂N(T),Y^"'y^ / ^1.2,..}^"^ (^.l)
The distribution in the numerator of eq. (5.1) is the joint

distribution of the number of occurrences and the total precipitation.

The star (*) indicates that distributions admit only positive values

for the random variables.

Marginal distributions for the number of occurrences and the

cumulative amount of precipitation in a time interval of length T were

presented in Chapter 4 and denoted as fjj^^^(n) and f^(y) respectively.

Given that positive precipitation is recorded in the interval, the

truncated marginal distributions for N(T) and Y are:

^N(T)^"^ |(n) / ^{1,2,..)

" 1 - f„L(0)

(5.2)

(5.3)

where, as stated previously, denotes the nth convolution of

the distribution of the white noise terms fy(.), i.e. , the

distribution of

S - 2 U. (54)n  r C5.4)

Using again the definition for conditional distributions,

^Y|N(T)^y^ " ̂N(T),Y^'^'y^ / ̂N(T)^"^ ^(O,co)(y^
and taking into account that (Section 4.3)

^YiN(T)-n^y^ "
equation (5.1) is transformed into

%(T)|Y^"> " f fN(T)("^ ^ / 4^y^ ^1,2,..)^''^
which, after using eqs. (5.2) and (5.3), gives the final general form

for the required distribution



^{1,2,..)^''^ (5.5)

When the White Noise terms are identically and independently

distributed according to an exponential distribution with parameter p,

ip>0) and the Poisson distribution is used for the number of

occurrences in the interval of length T, eq. (5.5) simplifies to

^N(T)Iy^"^
n(AT/:y)"/(n!)^

E k(AT;iy)V(k!)^
k=l

^(1,2,..)^"^ (5.6)

Similarly, when the Gamma distribution with shape parameter r and

scale parameter p is used for the White Noise terms, eq. (5.5) becomes

%(T) |y^"^
[AT(/iy)'']"/[(n!)r(nr)]

E  [AT(My)MV[(k!)r(kr)]
k=l

^(1,2,.. (5.7)

5.4 Distribution of U^, conditional on Y, N(T) and ^

The objective in this section is to derive the distribution of

the ith White Noise term, U^, given the recorded precipitation in the

interval of length T, given N(T) and given that i-1 previous White

Noise terms, U., j-l,..,i-l, have taken values u., j-l,..,i-l. Since

N(T) has the value n and Y was recorded as y, then y represents the

addition of n White Noise terms. Therefore, the following equivalent

notation is adopted to indicate that n is implicit in the expression

for the required distribution:

'uJ(Y,N(T),U^_j^)^''i^ " ̂UJ(Y,U^_^)^''i(u,), i-l,..,n-l (5.8)

and by definition



The required distribution is computed starting from the

definition for conditional distributions

or

\|(Y.U._^)^''i^ " ̂U.,Y^%'y^ / ̂U._^,Y^%-l'y^
The joint distribution of the vector with i White Noise terms and

the total amount of precipitation is obtained as

ftOO f*00

<5.10)

where the integration is performed n-i-1 times, starting with u , and
n-1

ending with

The first required distribution, f (u ,,y), is obtained
u^_l,Y -n-i

from fy • which is the joint distribution of the White Noise
—n

terms, using the transformation technique (Mood et al., 1974);

T,Y^^-l'y^ ~ 1*^1 (5.11)
—n-1' -n

where |j| is the absolute value of the Jacobian of the transformation.

In order to obtain |j|, the following transformation and inverse

transformation are defined

Transformation

U., i-l,..,n-]

Y - S U. + U

i-1 ^ "

Inverse Transformation

U.- U., i=l,..,n-l
1 1

U - Y - S U.

"  i-1 ̂

(5.12)

The Jacobian of the transformation is the determinant of an n x n

matrix formed with the partial derivatives of the original variables

with respect to the transformed variables, or



3u. au au

Jik" 5— isksn-l; J - lskin-1; J - "auj^ dxx^ ay

where j is the generic element of the matrix. Therefore, according

to (5.12), the elements of the matrix are

Jii" jik° l^k<n, i^^k; -1, l<k<n-l
so that the matrix in the Jacobian becomes

1  0 0 ... 0 0 ■

0  1 0 ... 0 0

0  0 1 ... 0 0

0  0 0 1 0

L -1 -1 -1 ...-1 1 .

Using cofactors, it is easy to show that J-1 and therefore

|J| - 1 (5.13)

The next step required to expand eq. (5.11) is to obtain the

joint distribution of n-1 White Noise terms. Since these are iid as

^(0,®) (5.14)

Replacing eqs. (5.12) to (5.14) in (5.11) gives the following result

—n-1' ( ".1^ ^(0,co) )

'u( y ] \o,«) ( y - ] (5.15)

The set of inequalities defined by the indicator functions

n-1

0 < u. < ®, i-1, ..,n-l; 0<y-2 u, <«>
^  k=l ̂

is equivalent to the set

i-1

0<u^<y; 0<u. <y-S u, , i=2, . . ,n ; 0 < y <
^  ̂ k-1

so that eq. (5.15) becomes



—n-1'

r

I Li ■( y - S ) <"k' ]
J-1 J

^u( y - ] 1(0,-)
To simplify notation, let

(5.16)

R^= y - S u
^  j-1 ̂

(5.17)

Ri- y

Then, eq. (5.16) can be written as

^  ̂(0,<*>) (5-18)
After using eq. (5.18) in (5.10), the joint distribution of

and Y becomes

The most inner integral in (5.19) is solved as

R  R

fu<>*„-l) fo»n) ""n-r %<%-!> V\-l %-l' ""n-l

f^2)/R N
^ n-1^ (5.20)

i.e. , the integral represents the distribution function for the sum of

two White Noise terms evaluated at R

Using the result in (5.20), the second most inner integral in

(5.19) is



(5.21)

which is the three fold convolution for the common distribution of the

White Noise evaluated at R „.
n-2

Now, assuming that the jth most inner integral is

pR . pR . ..r n-j r n-j+l

Jq -"o

.(j+1)(R .)
^-2

(5.22)

it can be shown that the j+lst inner integral is

pR . , pR . pR . p n -1 >

^(j+2) .
^ n-j-1^ (5.23)

In conclusion, it has been shown, using mathematical induction,

that the multiple integral in eq. (5.19) is the n-i fold convolution

of the distribution of the White Noise terms evaluated at

Therefore, eq. (5.19) turns into

Taking eq. (5.24) to eq. (5.9), the required distribution is

finally obtained as

\|(Y.U..^)(V - W — —; ^(0,R.)^^i^



Equation (5.25) corresponds to a probability distribution

function: First, it is positive for all values of u^, since all

involved terms are densities and consequently positive. Second, due

to convolution properties, it integrates up to one. Equation (5.25)

is also valid for i-1:

u^Iy'^ 1(Uf) - fu(uj^) f^"'^^(y-u^) / f^"^(y) I(0,y)^''l^ (5.26)

When the White Noise terms follow the exponential distribution

with parameter n, is gamma distributed with scale parameter and

shape parameter n:

fg (s) = f^"\s)
(n-D!

s  ' exp(-/is) I^Q^^^(s) (5.27)

Making the appropriate replacements in (5.25), f^ j y )^^i^

the exponential case becomes

1* ̂  ""1-1 1

In particular, for 1-1

fu,|CY)(V - <y - ^0,y)<V (5.29)

The cumulative distribution function (cdf) for eq. (5.28) is

^Ui|(Y.U._^)^''i^"
'i"-'- ( h- "1)

Assume a value 0<F^<1, is assigned to the cdf given in (5.30).

The corresponding quantile is obtained by means of

u^= R^- ^ 1 - F^ j j
Equation (5.31) facilitates simulation procedures.

(5.31)

When the White Noise terms follow a gamma distribution with scale

parameter /x and shape parameter r, is also gamma with parameters

and nr



fg (S) - 4">(S)
r(nr)

s^^'-^expC-zis) 1(0,„)<®)
Replacement of eq. (5.32) in (5.25) yields to

CR N[(n-i)r-l]r[(n-i+l)r] r-1 ^^i" ̂ i>

[(n-i+l)r-l] ^0,R,)^"i^

,  (R.-
:-l 1 1

[(n-i+l)r-l] ^(0,Ri)^''i^
i

(5.33)

where B(.,,) is the Beta function. According to this expression,

has a Beta distribution with parameters r and (n-i)r. For 1—1,

eq. (5.33) turns into

^1'^ B(r,(n-l)r) ^

,  ,[(n-l)r-l]
1  r-1 <y - ^i)

^1 ^CO v') ̂ ^1^ (5.34)n-l)r) ^ (nr-1) ^

The cumulative distribution function for the pdf given in (5.33)

is the incomplete Beta function and therefore it has to be computed

using numerical integration. Also, for simulation purposes, the

inversion of the cdf has to be done numerically. In this sense,

introduction of a third parameter in the PWND model complicates its

operation.

5.5 Distribution of T conditional on N(T)
■~n ^ '

Due to the independence of the number of arrivals in disjoint

intervals for the Poisson process, arrival times are well studied in

the literature. The result presented here is for the distribution of

the arrival times conditional on the number of arrivals in the

interval taking a value n. In this case, the joint distribution of



the arrival times is the same as the joint distribution of n order

statistics drawn from a uniform (0,T) population (Taylor and Karl in,

1984). The distribution is

^T„|N(T)^V ° ^t^,t3)^^2^- - -^(t^_^,T)^V (5.35)

Therefore, for simulation purposes, the n arrival times are sampled

from a uniform (0,T) distribution.

5.6 Disaggregation model algorithm

In order to operate the PV7ND model, information must be provided

about aggregation and disaggregation scales, type of model

(exponential or gamma), model parameters and recorded precipitation

sample. Since a monthly seasonal partition was adopted for the

precipitation recording stations, the model operates on the sample for

a given month.

The ratio between aggregation and disaggregation scales is

R- T /T ,
a' d

and the result must be an integer number. The aggregated or recorded

sample is denoted by y., i=l,..,N , and the disaggregated series is
L  Q.

denoted by yf, j=l, . . ,RN , where N is the total sample size,
J  a a

collection of all years, available for the specific month at the

aggregation scale.

To disaggregate the ith recorded precipitation value y^^, the

model proceeds as follows:

-  If y^^— 0, the value is disaggregated into zero values:

y^- 0, j-(R-l)i+l,..,Ri



- If is missing (y^<0), make the disaggregated series, y^,
equal to a negative value representing missing data, for j from

(R-l)i+l up to Ri.

- If y^ is positive, the algorithm operates in the following way:

1. Sample a value for N(T ), n, conditional on y. , from the
^  1.

distributions given in eqs. (5.6) or (5.7), according to

the type of model selected.

2. If n-1, make u^- y^. Otherwise, sample n-1 White Noise

values from the distributions defined by eqs. (5.31) or

(5.33) and (5.17), depending on the type of model. The

last White Noise value is computed as

n-1

u - y. - S u,

3. Sample n random values uniform in the interval (0,T ) and
Sl

denote them by t^, the prime indicating that they are not

ranked.

4. The sequence of ordered pairs ((i-l)T^+t^,u^), k-l,..,n,

is a sample realization of the process in the interval

((i-l)T , IT ), which preserves the PWN process and the
di di

recorded amounts of precipitation. From this sequence,

disaggregated values are computed using the expression

The description given here for the disaggregation procedure is

rather short. Details on approximation and inversion of the

distributions in (5.6), (5.7) and (5.33) are skipped for reasons of

space.



5.7 Testing the PWND model

The procedures and results presented in this section are not

intended as exact statistical tests of hypothesis on the PWND model.

They are oriented to asses the goodness in operating the PWND model

and its performance when the underlying process controlling

precipitation formation is a PWN process.

In order to achieve this objective, two different simulations of

a PWN precipitation process were carried out, for the exponential and

gamma cases respectively, the first one corresponding to estimated

parameters for month 05 of the Denver Wsfo Ap station and the second

one to estimated parameters for month 12 of the Idaho Springs station,

both parameter sets for T^—60 min. . Simulations represent samples

drawn from a stationary processes, since the same parameters were used

for every month in the year. The number of years in each simulation

was 33. In the sequel, they will be referred to as simulations 1 and

2. Parameter values used in the simulations are given in Tables 5.1

and 5.2.

Results from both simulations were hourly samples of

precipitation. Daily series were obtained by aggregation of hourly

values. Monthly statistics were computed using the procedures

described in Chapter 3. As expected, no significant correlation was

observed in the simulated samples at any of the aggregation scales.

Based on the proper monthly statistics, model parameters were

estimated for two different aggregation levels, hourly and daily,

using moment estimators (Section 4.6). Although this chapter is not

related directly to parameter estimation. Tables 5.1 and 5.2 present

some indicators for estimation results, based on samples of size 12.



Table 5.1 Summary of results for parameters estimated from PWN
simulated precipitation series, for simulation 1
(Exponential case) and different aggregation levels.

Parameter: A, Units: 1/min. x 10 , Population Value: 0.78125

Mean

Standard Deviation

Maximum

Minimum

T=60 min.

0.78957

0.02837

0.83145

0.73808

T -1440 min.
a

0.79063

0.03458

0.84653

0.73063

Parameter: Units: 1/in., Population Value: 13.40794

Mean

Standard Deviation

Maximum

Minimum

T=60 min.

13.48279

0.501162

14.22012

12.51807

T —1440 min.
a

13.51175

0.814282

14.85350

12.27014

Tables 5.1 and 5.2 give surprising results, in the sense that

parameter estimates appear more consistent, through different

aggregation scales, than parameters estimated for the precipitation

stations did. Furthermore, moment estimators seem to provide adequate

values for the parameters, regardless of the aggregation scale.

However, a larger sample variability is observed as the aggregation

scale increases. Also, parameter estimates for the gamma model tend

to be less consistent and more variable than in the exponential case.

A possible explanation for the difference between results in simulated

and historical series is that the former are samples from a truly PV?N

process, while the later are not. This explanation may appear more

than evident. Surprisingly, the reader will realize in Section 6.9

that the case is not the same for the Neyman-Scott White Noise model.

In order to verify PWND model performance, two months were

selected from each one of the simulated series and daily values



Table 5,2 Summary of results for parameters estimated from PWN
simulated precipitation series, for simulation 2 (Gamma
case) and different aggregation levels.

Parameter: X, Units: 1/min. x 10* , Population Value: 3.61187

Mean

Standard Deviation

Maximum

Minimum

T=60 min.

3.17540

0.11853

3.36662

2.98010

T -1440 min.
a

3.52911

0.71693

5.52492

2.59786

Parameter: fi, Units: 1/in., Population Value: 79.31493

Mean

Standard Deviation

Maximum

Minimum

T-60 min.

86.43762

4.599321

94.52680

76.84243

T —1440 min.
a

80.57882

19.10057

125.2309

46.13704

Parameter: r, Population Value: 1.19075

Mean

Standard Deviation

Maximum

Minimum

T—60 min.

1.46497

0.12649

1.70840

1.20237

T -1440 min.
a

1.32111

0.53968

2.60646

0.44657

disaggregated into hourly values, using parameters estimated at the

daily level. For simulation 1, months 04 and 07 were chosen, while

for simulation 2 the model was applied to months 02 and 12. For the

disaggregated series, monthly statistics were computed using the

procedures presented in Chapter 3. Comparison of statistics for

simulated and disaggregated hourly series is presented in Table 5.3.

Results shown in Table 5.3 allow the conclusion that the

disaggregation algorithm was well designed. Even more, given that the

underlying process is PWN, the disaggregation model has the ability to

preserve all the statistics listed in Table 5.3. However, the lack of

serial correlation, the major shortcoming in PWN type models, is also



Table 5.3 Coaparison of statistics for PVN slaulated and disaggregated series*
for sinuXation 1 (Exponential Case) and simulation 2 (Ganuaa Case).

T - 1440.0 Bin., T.- 60.0 min., R - 24
a  a

T - 1440.0 min., T.- 60.0 min., R - 24
a  a

Historic Exponential Model Month T Historic Gamma ModelMonth r

Y X 10*^ (in.) Y. X 10'^ (in.)3.6670 3.6670 3.2322 3.2322

S  X 10'^ (in.) S  X 10'^ (in.)23.8306 24.1452 9.5453 9.6261

10.0379 9.5573 4.1722 4.2837

r (1) 0.00396 0.00454 r (1) 0.00469 0.00435

0.95558 0.95641 0.84730 0.84657

1538

0.61

N2 of positive values
Maximum value (in.)

5028

0.14

5052

0.14

of positive values
Maximum value (in.)

1567

0.65

Y X 10'^ (in.) 3.4949 3.4949 Y X 10 (in.) 3.2063 3.2063

S  X 10'^ (in.) 21.899322.4358 S  x 10 (in.) 9.4227 9.5508

9.7469 10.3187 4.1168 4.1072

0.00408 0.00508 r (1) 0.00634 0.00503r (1)

0.95617 0.95575 0.84529 0.85245

of positive values 5640 5379No of positive values 1598
Maximum value (in.) 0.80

1613

0.76

Maximum value (in.) 0.12 0.15



present in Table 5.3. The only statistic preserved exactly is the

mean, since cumulative amounts of precipitation are also preserved

exactly.

5.8 Application of the PWND model to historical precipitation samples

In order to formulate final conclusions on the applicability of

the PWND model to historical samples, disaggregation was performed on

some months for each one of the precipitation recording stations used

in this study, for different combinations of aggregation and

disaggregation scales. Table 5.4 gives a summary of months, models

and temporal scales used for each one of the recording stations. As

before for the simulations, disaggregation was performed with

parameters estimated at the aggregation scale T^.

Table 5.4 Description of historical samples for application of the
PWND model.

Month Model typesStation

(mm.)(min.)

Denver Wsfo Ap
Denver Wsfo Ap
Denver Wsfo Ap
Denver Wsfo Ap
Denver Wsfo Ap
Denver Wsfo Ap
Greenland 9 SE

Greenland 9 SE

Greenland 9 SE

Greenland 9 SE

Greenland 9 SE

Greenland 9 SE

Idaho Springs
Idaho Springs
Idaho Springs
Ward

Ward

Ward

Exponential 1440

Exponential, Gamma 1440

Exponential, Gamma 1440

Exponential, Gamma 43200

Exponential, Gamma 43200

Exponential 44640

Exponential 1440

Exponential 1440

Exponential, Gamma 1440

Exponential, Gamma 44640

Exponential, Gamma 44640

Exponential 44640

Exponential, Gamma 60

Exponential 60

Exponential 60

Exponential, Gamma 60

Exponential 60

Exponential, Gamma 60



For some of the months selected to test the disaggregation model,

probability distribution functions for the amount of precipitation

were presented in Figures 4.2 to 4.4. Again, these provide

information on how good the PWN model fits the data at the aggregation

scale.

After the disaggregation model was run for the samples listed in

Table 5.4, monthly statistics were computed for the resulting

disaggregated series. Comparison of results is given in Tables 5.5 to

5.10 in the same form as Table 5.3 did for the simulation runs.

Examination of Tables 5.5 to 5.10 yields the conclusion that the

PWND model is not suitable for disaggregating precipitation series in

any of the stations or scales considered. There is no suggestion of

preservation of any other statistic different from the mean. The

disaggregation model tends to produce larger standard deviations,

skewness coefficients and probabilities of zero precipitation than

those observed in historical samples. Also, the model does not

reproduce the number of positive values, yielding generally a smaller

value. Consequently, the continuous part in the pdf of the amount of

precipitation is not reproduced either, as exemplified in Figures 5.1

to 5.3. In regard to the maximum precipitation value observed in the

samples, the PWND model produces larger values, indicating how

aggregated amounts are not partitioned into amounts similar to the

historical ones. Good performance of the model is not even achieved

for disaggregation of monthly precipitation series into daily

precipitation series. As before for the simulation results, the PWND

model does not produce any serial correlation.



107

Table 5.5 Comparison of statistics for historical and PWN
disaggregated hourly series, for Denver Wsfo Ap station.

T - 1440.0 min., T,=60.0 min., R - 24

Exponential
Model

Historic Gamma

Model

Month r: 06

-3
2.40042.4015Y X 10 (in.)

-3
41.4074S  X 10 (in.) 21.8696

31.249719.6415

-0.003370.44566r (1)

0.987220.96046

No of positive values
Maximum value (in.)
No of missing values
Month T: 07

996

1.11

732

322

2.06

720

-3
2.43282.4328Y X 10 (in.)

T

2.4328

38.563937.032829.1912S  X 10 (in.)
T

25.763624.512923.6784

-0.002350.006080.20808r (1)

0.986980.986900.96886

339

2.05

744

341

1.73

744

No of positive values
Maximum value (in.)
No of missing values
Month T: 11

811

1.59

744

-3 1.14431.14431.1448Y X 10 (in.)

-3 19.390918.63467.4182S  X 10 (in.)

24.900022.970710.0448

-0.003490.000850.72793r/1)

0.992050.991780.95801

206

0.95

0

1088

0.18

12

213

0.75

0

No of positive values
Maximum value (in.)
No of missing values
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Table 5.6 Comparison of statistics for historical and PWN
disaggregated daily series, for Denver Wsfo Ap station.

T - Month, T -1440.0 min

Historic Exponential
Model

Gamma

Model

Month r: 04, R=24

-2
Y X 10 (in.) 5.9238 5.9238 5.9238

-1
X 10 (in.) 2.1171 1.8643 1.8895

8.4107 5.5635 4.1088

r (1) 0.05288 0.00620 -0.03856

0.71238 0.80476 0.86190

No of positive values
Maximum value (in.)
No of missing values
Month T: 06, R-30

302

3.25

30

205

2.47

30

145

1.67

30

Y X 10 (in.) 5.7610 5.7610

-1
S  X 10 (in.) 2.1122 2.4589

7.7129 5.8060

r (1) 0.17241 -0.00182

0.70381 0.90285

No of positive values
Maximiun value (in.)
No of missing values
Month T; 07, R-31

311

3.16

30

102

2.56

30

-2
Y x 10 (in.) 5.8387 5.8387

-1
X 10 ' (in.) 1.8498 2.2656

5.1086 6.5337

r (1) 0.11189 -0.04680

0.869120.70599

No of positive values
Maximum value (in.)
No of missing values

319

2.05

31

142

3.45

31
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Table 5,7 Comparison of statistics for historical and PWN
disaggregated hourly series, for Greenland 9 SE station.

T_- 1440.0 min., T,-60.0 min., R - 24

Historic Exponential
Model

Gamma

Model

Month T: 05

-3
X 10 (in.) 3.0465 3.0213

-3
S  X 10 (in.) 20.0147 40.7665

14.4219 25.3294

r (1) 0.35303 -0.00067

0.94578 0.98658

No of positive values
Maximum value (in.)
No of missing values
Month r: 07

1399

0.85

984

349

2.54

768

X 10 (in.) 3.7136 3.6964

S  X 10 (in.) 36.0284 49.3419

26.7805 28.6486

r (1) 0.23827 -0.00546

0.95490 0.98388

No of positive values
Maximum value (in.)
No of missing values
Month T: 09

1114

2.24

2083

400

3.07

1968

-3
Y X 10 - (in.)
T

1.30791.3185 1.3079

-3
S  X 10 (in.) 22.314214.4451 22.4741

28.877826.5882 30.1860

-0.00322r/l) 0.28296 0.00328

0.992250.97560 0.99249

No of positive values
Maximum value (in.)
No of missing values

194

1.36

888

606

0.96

1089

188

1.36

888
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Table 5.8 Comparison of statistics for historical and PWN
disaggregated daily series, for Greenland 9 SE station.

T = Month, T,=1440.0 min.
a  d

Historic Exponential
Model

Gamma

Model

Month r: 05, R=31

-2
Y X 10 " (in.)
T

7.2509 7.2509 7.2509

-1
S  X 10 (in.) 1.9734 2.6009 2.6575

5.5512 5.2121Sr 4.9862

r (1) 0.20096 0.05231 0.00367

0.70480 0.86544 0.87373

No of positive values
Maximum value (in.)
No of missing values
Month r: 08, R=31

320

2.78

32

146

2.79

31

137

2.24

31

Y X 10 ' (in.) 8.1144 8.1144 8.1144

S  X 10 (in.) 2.3899 2.6973 2.8467

5.8129 5.1149 6.0698

r (1) 0.07741 0.00452 0.01293

0.69557 0.84498 0.83243

No of positive values
Maximum value (in.)
No of missing values
Month t: 10, R=31

330

2.85

32

173

3.01

31

187

3.67

31

Y X 10 - (in.) 2.0584 2.0547

-1
S  X 10 (in.)
T

0.8727 1.2283

6.8695 8.1569Sr

r^(l) 0.22611 0.03047

0.88510 0.94713

No of positive values
Maximum value (in.)
No of missint values

128

1.14

2

59

1.74

0
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Table 5.9 Comparison of statistics for historical and PWN
disaggregated 5 min. series, for Idaho Springs station.

T - 50.0 min., T.=5.0 min., R - 12

Historic Exponential
Model

Gamma

Model

Month r: 02

X 10 ' (in.) 0.4874 0.4769 0.4769

-3
S  X 10 (in.)
r

7.13542.5347 7.1029

23.99565.95432 23.9832

0.58320 -0.00256 0.00180

0.98707 0.986990.95951

No of positive values
Maximum value (in.) 0
No of missing values
Month r: 07

349

0.32

13332

351

0.32

13332

1069

0.03

13917

Y X 10 (in.)
T

0.2498 0.2439

-0
S  X 10 (in.)
r

3.3656 7.0335

65.014827.2398

r (1) 0.65573 0.00120

0.98765 0.99544

No of positive values
Maximum value (in.)
No of missing values
Month T: 09

524

0.19

2198

198

0.81

1176

Y^ X 10 (in.) 0.23490.2406

-3
S  X 10 - (in.) 10.6349 16.541

108.540 146.34

0.000200.38566

0.99190 0.99741

No of positive values
Maximum value (in.)
No of missing values

80

2.71

12336

244

1.49

13062
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Table 5.10 Comparison of statistics for historical and PWN
disaggregated 5 min. series, for Ward station.

60.0 min., T,-5.0 min., R — 12

Exponential
Model

Historic Gamma

Model

Month T: 04

-3
y X 10 ' (in.) 0.4434 0.4350 0.4350

7.4109X 10 (in.) 2.6457 7.2811

29.26578.30228 28.9615Sr

0.006080.66053 0.00134

0.99200 0.992000.96540

222

0.44

15456

No of positive values
Maximum value (in.)
No of missing values
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0.58
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No of positive values
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No of missinE values
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Figure 5.1 Sample probability distribution functions for hourly
historical and PWN disaggregated precipitation series, for
Denver Wsfo Ap station, for months 06 and 07.
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Figure 5.2 Sample probability distribution functions for daily
historical and PWN disaggregated precipitation series, for
Greenland 9 SE station, for months 05 and 08.
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Figure 5.3 Sample probability distribution functions for 5 min.
historical and PWN disaggregated precipitation series, for
Idaho Springs station, for months 02 and 07.



As a last point, no benefit is obtained when the ganrnia model is

used, in comparison to the exponential case, at least in regard to

precipitation records. Furthermore, introduction of the gamma model

seems to make preservation worse as compared to the exponential case.

Two reasons are found explaining the bad performance of the PWND

model. First, as sustained by many authors, the PWN model does not

reproduce precipitation generating mechanisms, for the range of

temporal scales considered here. For example, Poisson processes do

not represent adequately the arrival in time of precipitation events.

They lack the property of clustering, responsible for the type of

correlation observed in precipitation records. Also, the use of White

Noise terms does not appear realistic in regard to storm activity.

The second reason, already discussed in Chapter 4, is the lack of

consistency for parameters estimated at different aggregation scales.

This violates the condition of preservation, or uniqueness, of the

stochastic process controlling precipitation formation.

Parameter values estimated at the aggregation scale cause the

distribution of the number of arrivals to be mostly concentrated in

one or two arrivals. Therefore, when the PWND model is operated, a

small number of arrivals in the interval is simulated. If the

operation of the model were done with parameters similar to those

obtained at the disaggregation scale, a larger number of occurrences

would be generated and the model would be in a better position to

reproduce correlation. However, a serious shortcoming still remains

in the uniform distribution for the arrival times.

Additional research could have been attempted in order to improve

parameter estimation, like maximum likelihood or use of different



statistics. However, this was not considered worth trying given the

lack of correlation in the model.

The PWND model could be used to disaggregate monthly

precipitation series to daily or weekly series, given that low

correlation is expected at these temporal scales. However, as shown

before, the model does not preserve other statistics and for this

reason this option does not appear feasible.

The evidence presented renders the PWN and PWND models doubtful

for their application to precipitation records. However, three points

validate the development and presentation of the models. First, given

that the PWN model is easy to handle, it allowed the general

formulation of the disaggregation procedure to be applied further in

this research. Second, some of the theoretical results obtained for

the PWND model are applicable to any model having White Noise terms.

Finally, it has been shown that given that the underlying process

belongs to the Poissonian family, the models perform excellently.

They can be applied in hydrology other areas of science, for processes

which evolve in time or space with independent increments.



Chapter 6

NEYMAN-SCOTT WHITE NOISE MODEL FOR PRECIPITATION

6.1 Introduction

The outline of this chapter is, in a certain extent, similar to

Chapter 4, where the PWN model for precipitation was presented. The

Neyman-Scott White Noise (NSWN) model for precipitation is described

and some of its main properties are presented. However, a larger

degree of difficulty is found in the analytical treatment of the NSWN

model, and some approximations are needed. Two different

methodologies are used to estimate model parameters, both of them

based on method of moments, although one of them is an extension of

approaches presented by other authors.

Most of the properties related to the NSWN precipitation process

are presented as results. Detailed derivations for some of them are

given in Cadavid et al. (1991).

6.2 Model description

In the past, several authors have used Neyman-Scott (NS) type

processes to model occurrence of precipitation in time. The first one

was Le Cam (1961), followed by Kawas and Delleur (1975). In the

80's, this type of models have been analyzed in more depth. The works

by Waymire and Gupta (1981a, 1981b, 1981c), Rodriguez-Iturbe et al.

(1984), Foufoula-Georgiou and Guttorp (1986) and Obeysekera et al.



(1987) are cited among others. For a more detailed account of the

literature available in NS processes the reader is referred to

Chapter 2.

It is important to emphasize that NS processes are used to model

the arrival of precipitation in time. They belong to a larger class

of processes, known as cluster processes or Moyal processes (Ramirez

and Bras, 1982). Internal characteristics of precipitation, like cell

activity, can be modeled in any suitable way, like for example using

White Noise terms or rectangular pulses. In fact, these two

approaches are the most popular in the literature. This chapter deals

exclusively with Neyman-Scott White Noise (NSWN) models for

precipitation.

In the evolution of the NS cluster process along time, a primary

or first level process triggers the arrival of cluster centers. Given

that a cluster has arrived, a second level process generates the

cluster size or number of cluster members and their location with

respect to the cluster center.

Most of the NS cluster processes related in the literature rest

on two basic assumptions. First, they are stationary in the sense

that the process of cluster centers is stationary and the clusters,

relative to their center, are independent and identically distributed.

The second hypothesis states that cluster centers arrive according to

a Poisson process with constant intensity. For this reason they are

also known as stationary Poisson cluster processes. Examples of these

are the NS process and the Bartlett-Lewis process (Cox and Isham,

1980).

When the NSWN process is used as a model for precipitation,

arrival of cluster centers correspond to the arrival of precipitation



generating mechanisms. The occurrence of a storm, associated with a

cluster center, is the second level of the process and is formed by a

given number of precipitation bursts (cluster size), which are located

to the right of the cluster center according to a common distance

distribution. Each precipitation burst carries a random amount or

volume of instantaneous precipitation, known as White Noise term,

independent of the remaining variables in the process.

The assumptions and descriptions given before summarize into the

so called structural postulates of the process (Ramirez and Bras,

1982) , which also describe completely the NSWN precipitation process

(Figure 6.1):

1. Precipitation occurs in clusters in the time domain.

2. Cluster centers arrive in time according to a Poisson process

with rate X. This process is denoted by Nj^(t) .

3. A cluster arriving at time T^ is characterized by the cluster

size, denoted by N2(.|Tj^), and by the time of occurrence of

each cluster members with respect to the cluster center T, . ,
K I J

j=l,..,N2(.|T*).
4. Cluster sizes are mutually independent and identically

distributed and also independent from other variables in the

process, following a common distribution f^ (m).
2

5. For any cluster, the times of occurrence of events within the

cluster are independent and identically distributed according

to a common distribution f.j,(t) . The same assumption applies

to the White Noise terms associated with each event, denoted

by j, j-1, . . , N2 ( . 1 Tj^) , following a common distribution

fyCu).
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Figure 6.1 Schematic representation of the Neyman-Scott White Noise
precipitation process.

In order to keep the assumption of stationarity, none of the

distributions mentioned above is indexed by the arrival times of the

*primary process Tj^. Also, note in Figure 6.1, the possibility of

cluster overlap. Finally, as before for the PWN model. White Noise

terms are not limited to follow a Normal distribution.

The instantaneous precipitation intensity, X(t), is given by

X(t) dt = U(t) dN(t) (6.1)

where dN(t) represents the increments in the NS counting process. The

NS counting process, for a given subset I of the real line, is defined

N(I) - J N2(l|t) dN^(t) (6.2)



N(I) - 2 N,(I|T)
T  element of N, (.)
n  1^ '

1 ^ "^C
T ) is the number of cluster members with center at T

«- n n

falling in the interval I.

The interval from (0,t) is a subset of the real line. Strictly

speaking, the number of occurrences in this interval should be written

as N((0,t)). However, the notation N(t) will be adopted here, as far

as the lower limit in the interval is zero.

Orderliness is an important concept associated to the theory of

point processes (Cox and Isham, 1980) . A counting process N(t) is

said to be orderly if for a small 5

P[N(t,t+5) > 1] - 0(S) (6.4)

where 0(5) is a magnitude such that

Lim^ ̂  - 0
5-0 5

The condition given in (6.4) practically excludes the possibility of

multiple simultaneous occurrences, i.e., more than one point located

in the same time instant. However, a process without multiple

simultaneous occurrences is strictly defined by the condition

P[N({t)) > 1] - 0

where (t) is a set consisting of a singleton in the real line.

(6.5)

Before further clarification is given for (6.4) and (6.5), it is

important to define when a process is simply stationary (Cox and

Isham, 1980). Given an arbitrary interval I, the counting process

N(.) is simply stationary if the distribution of N(I) is invariant

under translation of the interval I. For a simply stationary process.

the intensity is defined as

p - Lim^
5-0 5

(6.6)



so that the mean E[N(I)], if finite, is proportional to the Lebesgue

measure |l| (length, area, volume) of I

E[N(I)] - p|l| (6.7)

For example, the Poisson process discussed in Chapter 4 is simply

stationary and its intensity is precisely A. In eqs. (6.6) and (6.7),

any dependence of p on time is redundant, since these apply to simply

stationary processes.

Another magnitude associated to orderliness is the occurrence

parameter (Cox and Isham, 1980), defined as

5^0 6

(6.8)

The intensity of the processes, as defined in (6.6), applies to

any kind of process, not necessarily orderly, since it includes

multiple simultaneous occurrences. On the other hand, the occurrence

parameter does not consider multiplicities, since it represents the

rate or intensity of the process of instants at which points occur

(Cox and Isham, 1980).

An important theorem, known as Korolyouk's theorem (Cox and

Isham, 1980), is presented here as a result. It states that v < p

with V p only when the process has no multiple occurrences.

Similarly, Dobrushin's lemma (Cox and Isham, 1980), states that if a

process is simply stationary with finite intensity p, then orderliness

is equivalent to no multiple occurrences and p can be computed, in

addition to eq. (6.8), by one of the following ways:

p " V - E[N(1)]

Lim/tN(^) 1]
5-0 5

(6.9)



For the NS counting process the property of orderliness is

evident, given that it evolves on a continuous space (time) and the

distance distribution for the cluster members, f,j,(t), corresponds to a

continuous random variable. Also, as it will be clear later in the

text, the NS process is simply stationary, has finite intensity p and

therefore has no multiple occurrences. Under these assumptions (Cox

and Isham, 1980), the process is viewed as one where the random

variable dN(t) or N(t,t+5) takes values zero or one with

probabilities:

P[N(t,t+«)-l] - + 0(6)

P[N(t,t+6)>l] - 0(6)

P[N(t,t+6)-0] - 1 - pS + 0(6)

(6.10)

It can be shown that the intensity for the NS process is given by

p -= A E[N2(.)] (6.11)

where the conditioning of the secondary process on the arrival times

of the primary process has been removed, due to the process being

stationary and clusters sizes being independently and identically

distributed. Note, based also on the stationarity of the process,

that the sequence of times of cluster members, with respect to the

cluster center, can be denoted as , j-1, . . , N2 ( . ) • The same

consideration applies to the White Noise terms.

As stated before, the precipitation intensity process is never

measured. Instead, cumulative amounts of precipitation over disjoint

time intervals are recorded and is over this sample that estimation is

performed. Given that the NS counting process is stationary, the

c\.imulative amount of precipitation in any interval of length T is

given by



Y,- S U. (6.12)
^  i-0 ^

where N(T) represents the NS counting process in the interval (0,T).

The reasoning for eq. (6.12) is similar to the one presented for the

PWN model. In order to derive properties for Yj^, properties for the

random variable N(T) must be derived first. This topic will be

covered in the next sections.

Before proceeding with the derivation of properties for N(T), it

is important to bring into attention the fact that different

distributions for the cluster size N2(.) are lised in the literature.

For example, Kawas and Delleur (1975, 1981) and Ramirez and Bras

(1982, 1985) assume a geometric distribution, while Rodriguez-Iturbe

et al. (1984) use the Poisson distribution. Foufoula-Georgiou and

Guttorp (1986) state that the selection of this distribution has been

based on mathematical considerations, although it drastically affects

estimated parameters for the model and derived properties for the

precipitation process.

6.3 Probability generating functional and probability generating
function

The probability generating functional (pgfl) for a random measure

is seen by many authors (Cox and Isham, 1980; Waymire and Gupta,

1981b) as an extension of the concept of jirobability generating

function (pgf) for a random vector.

Assume a space H where a point or counting process N(.) is

evolving. The pgfl for the point process, denoted as G[^], is defined



- e[^ exp ^ J Ln[^(t)] ciN(t) j j
for arbitrary real-valued functions ^(t) defined on H, satisfying

0 < ̂ (t) < 1, for all t element of H

^(t) =1 , for all t not an element of H

(6.14)

Note that the argument for the pgfl is the function |(.). A complete

justification of the form of the pgfl is given in Cox and Isham (1980)

and Waymire and Gupta (1981b). Cadavid et al. (1991) reproduce that

justification.

The pgfl for any point process can be expressed also as (Cox and

Isham, 1980; Waymire and Gupta, 1981b)

Gia - E n ?(T.) (6.15)

element of N(.)

where in this case, denotes arrival times for the counting process

N(.). The point process in (6.15) admits multiple simultaneous

occurrences at a point T^.

For example, for an homogeneous Poisson process with rate X, the

pgfl is given by (Cox and Isham, 1980; Waymire and Gupta, 1981b)

G[^] - exp J U - ?(t)] dt j- (6.16)

A very simple proof of this result is found in the references given

above.

The pgfl for the a cluster process in two levels, not necessarily

the NS process, is given by (Waymire and Gupta, 1981b)

- G^[G^[^]] (6.17)

where G2[^] is the pgfl for a.cluster and G^[ ] is the pgfl for the

primary process.

Since in the NS process cluster centers follow a Poisson process

with rate X, eq. (6.16) in (6.17) yields



G[a - exp - A J 1 - G^[^(^t)] dt ]• (6.18)

where the space H has been replaced by the real line. According to

eq. (6.18), clusters arriving at any time can generate members located

to the left of the cluster center.

The pgfl for a given cluster having center in t, t as specified

in eq. (6.18), is

G2t^(t)] - e[^ exp ^ I Ln[^(v)] dN2(v|t) j j
It can be shown that this expression is equivalent to (Cadavid et al.,

1991)

N2(.)
G2[at)] - e[ n ^ ?(t+T^) ]

The conditionality of the cluster size on the arrival of cluster

centers has been removed, since they are independent. Note the

appearance of t+T^^, the occurrence time for a cluster member measured

from -<*>.

Let fj^ (m) — g^ be the probability distribution function for the

cluster size. Then

®  r ® n
G2[at)] -E gmE n at+T.)

m-=l 1-1 -•

where m has been constrained to take values greater or equal than 1.

Since the times T^ are independently and identically distributed as

f.p(t), it follows from the previous equation

- S g„ n e[ ]
râ l i=-l ^



G2[^(t)] - S Sin [ [ ?(t+v) f™(v) dv 1
ni=l V J .00 J

and finally

G2[^(t)] " % [ J ^(t+v) f^(v) dv j (6.19)

where gj. (.) is the probability generating function (pgf) for the
2

cluster size distribution.

Replacing (6.19) in eq. (6.18), the pgfl for the NS process

becomes

G[^]=exp { - A I [ 1 [ i
A less elaborated proof for this result is presented by Ramirez and

Bras (1982).

Let N(t^) be the NS counting process for an interval (0,t^). The

objective is to obtain the probability generating function (pgf) for

N(tj^), g(z), from the pgfl for the NS process given in eq. (6.20),

which is defined as

g(z) - S z"" f . .(n)
n-0

with |z| < 1,

To obtain g(z) , take |(.) to be of the form (Ramirez and Bras,

1982)

C(t+v) - 1 - (1 - z) ^.^j(t+v) (6.21)

Under this selection, G[^] becomes g(z), with |z| < 1. It is easy to

verify that ̂ (t+v), as defined in (6.21), takes the following values

^(t+v) - z for 0 < t+v < t^ or -t < v ̂  t^^- t

$(t+v) » 1 for -® < t+v <Oor-oo<v<-t (6.22)



^(t+v) - 1 for t^< t+v < 00 or t < v < oo

and therefore, the most inner integral in eq. (6.20) becomes

-+00

^(t+v) f,j,(v) dv - 1 - (l-z)p^(t)
J -CO

)l(t) = J ̂
Jq

f,j,(x-t)dx (6.23)

where a new variable of integration, x—t+v, has been introduced. The

term pj^(t) is the probability that a cluster with center in t will

have a member falling in the interval (0,t^).

Finally, the pgf of N(t^) is obtained as (Ramirez and Bras, 1982)

g(z)-exp { ■ ^ [ ̂ " ^
The upper limit in the integral was changed to t^^, since the evolution

of the process is being considered up to that time.

Following a similar development and choosing the function f(t+v)

to be of the form

C(t+v) - 1 - S (1 - z ) I ,
i-1 ^ ^'^i-l-'^i^

(t+v) (6.25)

it can be shown that the multivariate pgf for the random vector

[N(0,t^) ,N(t^,t2) , . . ,N(tj^_^,t^)] , specifying the counting process in

disjoint intervals (0, t^) , (t^, t2) , . . , (t^_^, t^^) . is of the form

g(Zj^,Z2, . . ,z^)=exp { " ̂  J ̂  " %2[^ ' ̂ ̂(i-Zi)Pi(t)jjdt j- (6.26)
with Cq-O and Pjj^(t) defined as

ft .

.,(t, - J ■ f,j,(x-t)dx (6.27)

Results in eqs. (6.25) to (6.27) were taken from Ramirez and Bras

(1982).



As mentioned previously, two different distributions have been

used in the literature for the cluster size. Geometric and Poisson.

The NS process with geometric distribution for the cluster size will

be presented here, since it is the one used in this study. It was not

possible to find an analytical closed solution for the pgf for the

Poisson case.

At this point, the distribution for the cluster members location,

with respect to cluster centers, is introduced as the exponential

distribution with parameter a (a>0)

f.j,(t) - a exp(-at) (6.28)

This distribution does not allow points falling to the left of the

cluster center.

From (6.28), the term pj^(t), defined in (6.23), is given by

(Cadavid et al., 1991)

p^(t) - ̂(tj^)exp(at)I^_^ Q^(t) + ̂(t]^-t)I^Q^^.^j(t)

with ̂ (t) defined in general as

^(t) - l-exp(-at)

(6.29)

(6.30)

In words, ^(t) represents the cdf for the exponential distribution

with parameter a.

Similarly, it is possible to show that p^(t), defined in (6.27)

for i>2, is of the form (Cadavid et al., 1991)

Pi(t) -* [exp(-at^_^)-exp(-atj^)]exp(at) I^__^ ^ ̂ (t)

(6.31)

The geometric distribution with parameter p, for the cluster

size, is written as (Parzen, 1964)



- pd-p) 1,1 2,..!<»>

and its pgf is

gjg (y) - ——. |yl 1, q=i-p
2  1 - qy

Using (6.33) in (6.24) (Cadavid et al., 1991)

(6.32)

(6.33)

A(1-2)

g(3) - -P f 1 f P 1 (6.34)
^  p+q(l-z) J L p+q(l-z)<^(tj^) -■

The derivation for the following result in Cadavid et al. (1991),

for the pgf of the random vector [N(tQ,tj^) ,N(t^ ^>2)^ '

the first interval and for the second, with |zj^| ^1 and IZ2I ^ 1:

g(Zj^,Z2) = exp

a q p+q((l-z^)+(z^-Z2)exp[-a(t^-tQ)]-(l-Z2)exp[-0!(t2-tQ)]}

A(l-z^)(t^-tQ) A(l-Z2)(t2-t^)
p+q(l-z^) p+q(l-Z2) Qq[p+q(l-Zj^)]

p+q(l-z^)+q{ (Zj^-Z2)-(l-Z2)exp[-a(t2-t^) ])
p+q{(l-z^)+(z^-Z2)exp[-a(t^-tQ)]-(l-Z2)exp[-a (t2-tQ)])

aq[p+q(l-Z2^] p+q(l-Z2){
J  }l-exp[ -Q:(t2-t^) ] )

(6.35)

It is possible to find a general form for the pgf of the random

vector [N(0 , tj^) , N( t^ , t2) , . . ,N(t^_^, tj^) ] (Cadavid et al., 1991), with
the components in z - [z^,Z2, . . ,Zj^] |z^| < 1, i-1 k, associated to
each one of the intervals:

j - q{exp[-Q(t^_^-tj)]-exp[-a(tj^-tj)] )
(6.36)

q exp[-a(t^-t^_^)]



(z) - exp| A [ Ln(p) - Lnf p + S 8. n(l-z-) 1
^  '-aq g^q I ^ J

'  T.n J-l+l

a q i=l 1-qz^
p+S 8 Al-z )
j=i+l ^

P  1 ^ <i-^i><'^i-"^i-i) 1 1
a q 1-qZj^ p i=l 1-qz^. ^

(6.37)

with tp-O.

6.4 Properties of the NS point process

The role of the probability generating function in regard to the

NS point process and other point processes is evident from the

expressions given below. First, the second order properties for the

process are (Ramirez and Bras, 1982):

E(N(t^)l I ,.i
dz

(6.38)

Var(N(t.)) - ̂S(z) ̂  d^s(^) . I" dg(z) ̂  I (6.39)

Cov[N(0,t^),N(t^_^ tj^)] -
3 g(z^,Zj^)

3z,az, ^l"^k"^
1  k

9g(Zl,Zk^• Og(Z

^>7

9g(Zi,Zk)
Z.-Z, -1 J
1  k 3z,

(6.40)

Equation (6.40) gives the covariance for the random variables counting

arrivals in the intervals (0,t^) and (tj^ I'^k^'



The factorial moment of order r for N(tj^), r>0 and r integer, is

defined as (Mood et al., 1974)

V] ]
and they are related to the pgf g(z) by

d'^'^^gCz)

(6.41)

(6.42)

This result can be derived from the basic definition of the pgf g(z).

Equation (6.38) is a particular case of (6.42) for r-0.

The finite dimensional pdf for the counting process is (Ramirez

and Bras, 1982)

P[N(t©, ti)""j 11 N( ti, t2)=j 21 • * ' 1'

j +j +..+j,

Ji' Jl J2_ Jk ^a  z^a Z2..a z^
Z2-..-z^'

(6.43)

and for the univariate case

^  .. I d g(z)
^N(t )^"^ " ^

l-* n! . n
dz

(6.44)

The use of eqs. (6.34) and (6.35) in (6.38) to (6.40) would

produce results for the second order properties of the NS process,

when the cluster size distribution is geometric. However, obtaining

the derivatives of eqs. (6.24) and (6.26), the last for k-=2, will

yield more general results, since in those expressions no particular

distributions have been assumed. The reader can review the details of

the derivations in Ramirez and Bras (1982) :

E[N(t^)] - A E[N2(.)] t^



Var(N(t^)) - A '[e[N2^(.)-N2(.)]J ^ p^(t)^dt+E[N2(.)]tJ (6.46)

Cov[N(0,t^),N(t^_^ tj^)].A E[N2^(.)-N2(.)]p^ p^(t)pj^(t)dt (6.47)
- 00

Introducing in eqs. (6.46) and (6.47) the exponential

distribution with parameter a and using eqs. (6.29) and (6.31) for

P2^(t) and Pj^(t), the following set of expressions are obtained

(Cadavid et al., 1991)

Var(N(t^)) - AE[N2^(.)]t^ - t (.) .)
a

(6.48)

Cov[N(0.t3^),N(tj^_^ t^)]- A E[N2^(.)-N2(.)]«5(t3^)
'  2a

{exp[-a(tj^_^-t^)]-exp[-a(tj^-tj^)] ) (6.49)

When the geometric distribution with parameter p is introduced

(Parzen, 1964)

E[N2(.)] - 1/p

E[N2^(.)] - (2 - p)/p2
(6.50)

eqs. (6.45), (6.48) and (6.49) transform into the following second

order properties for the NS process with geometric cluster sizes

(Cadavid et al. ,1991):

E[N(t^)] - At^/p

Var(N(
A(2-p)t^ 2Aa

t.)) - - ^(t )
o  o

(6.52)



Cov[N(0,t^).N(t^_^ [(Aq)/(Qp2)] ̂ (t^)

{exp[-Q(tj^_^-t^) ] -exp[-a(tj^-tj^)] ) (6.53)

6.5 Marginal probability distribution function for N(t^)

The marginal probability distribution function for the number of

occurrences in the interval (O.t^) is, at least theoretically, defined

by the relationship in (6.44). Its application requires computation

of the derivatives of g(z) as given in (6.34). For the determination

of this distribution, full distributional assximptions are used, both

for cluster size and for cluster members location with respect to the

cluster center. As will be shown later, computing derivatives for eq.

(6.34) is a formidable task, since no law of formation was obtained

for those derivatives. For this reason, no general results, similar

to eqs. (6.45) to (6.47), are given in this section.

Equation (6.34) is written in the following way

f  ̂ A(l-Z)t., ■»g(z) - exp r Ln P - ^ ^ ^ 1
a[p+q(l-z)] p+q(l-z)^(tj^) p+q(l-z) ■'

Making z=0 in eq. (6.54), one obtains

^N(t^)^°> - [ -
q exp(-at.

(6.54)

(6.55)

Ramirez and Bras (1982) arrive to eq. (6.55) starting from the more

general form given in (6.24).

In order to obtain ^(1), the first derivative of (6.54) with

respect to z must be computed. The following result is obtained

directly from eq. (6.54)

dg(z) A(l-z) q'^(t3^)
a[p+q(l-z)] p+q(l-z)<^(t^)



L, P . 1
a[p+q(l-z)l2 p+q(l-.)#(tp J

(6.56)

and making z-0 in (6.56)

q exp(-Qtj^)

qi^(tj^)

q exp(-at^)
- p Ln

1-q exp(-at-T ̂  "Pq ] } (6.57)

To obtain larger order derivatives for g(z), it is convenient to

simplify notation in eq. (6.54) by rewriting it as

g(z) - exp[Af(z)] (6.58)

with

1-Z D (l"Z)t-f(z) - Ln P - I (6.59)
a(l-qz) p+q<^(t.j^) (1-z) 1-qz

Note that f(l)=0 and therefore g(l)=l as expected.

Derivatives of order n for g(z) and f(z), evaluated at z-0, will

be denoted as

and

Based on eq. (6.58), derivatives of order up to five for g(z),

evaluated at z-0, are

g(0) = exp[Af(0)] (6.60)

- A g(0) ̂ (6.61)

- A g(0) [ + A
dz^ dz^

df(0)
(6.62)



<i\(0) J g(0) f + X dtw ̂  ,3 f dfw 1 3 ]
^  . 3 . 2 dz ^ d:^ J J

d^g(O) A g(0) { + X [ 4 f£W ̂  3 ^ d^f(O) j 2 j

+ 6 X^ ^ df(0) j 2 ̂  j3 df(0) j 4 j. (6.64)

d^g(O) A£(0) { + A r 5 + 10 ]
^  - S ^ h A.Z 9 J3  2

dz dz

^2 1^ d^f(O) ^ df(0) j 2 ̂  ̂ 5 j- d^f(O) j 2 df(0) j ̂

^3 d^f(O) ^ df(0) j 3 j- df(0) j 5 J.
(6.65)

For this research, derivatives of this tjrpe were computed manually up

to degree 11. They were checked and extended to 20 using a symbolic

mathematics software package. The final result for the nth

derivative of g(z), evaluated at zero, for n>3, is

d"g(0) r  n-2 . r n,l f l+ig(0) ( " + s xA s C , , f n
■■ . n 1-1 A j_i n.i.J 1 i;.i

► X"-! ( ̂  ) " }

i+1 "^kd ''f(O)

(6.66)

The most exterior summation represents powers of A. Each power of A

is multiplied by a second summation with ra . terms . Each term is
n, 1

formed by a coefficient j and by the product of i+1 derivatives
of f(z) , evaluated at zero, the order of these derivatives being



represented by The collection of integer numbers { ,^21 ■ • . '

is called here a sequence and has the property

2  i, - n

k-i"
(6.67)

The reader can verify this formulation with eqs. (6.63) to (6.65).

Values of for given n and i, can be equal among themselves,

generating powers of the derivatives of f(z).

The derivatives of f(z) evaluated at zero were investigated using

the same symbolic mathematics package mentioned before. Taylor series

expansion of f(z) around z=0 was done and the following law of

formation was obtained for n>2

d"f(0)

a  ̂ q ^ t) '

^(tf) ^ 1 ^ f ^ 1
P+q<^(t^) p+qi^(t^) i-1 i ^ p+qi^(tj^) ^ q i+1 ■' (6.68)

From eq. (6.59), for n=0.

a  p+q(^(tj^)
and for n-1

df(0) 2[.£(
rv ri ^

p+q-^Ctj^) ^  -|

^ ^ p+q<^(t^) J

(6.69)

(6.70)

In regard to eq. (6.66), it was not possible to formulate laws of

formations for m ., C . . and i, . To solve the problem, with then,i' n,i,j k

mathematical package mentioned before, values were obtained and

printed out. They were stored in a computer file, so that eq. (6.66)

can be used to produce numerical results n between 3 and 20. For n

values from 0 to 2, eqs. (6.60) to (6.62) are used.



Table 6.1 gives values for m for n from 3 to 20, while Table
n, 1.

6.2 gives sequences and coefficients for n from 3 to 11. The amount

of data required to compute 20 derivatives for g(z), evaluated at z—0,

is evident from both tables. Sequences and coefficients for n from 13

to 20 are given in Cadavid et al. ( 1991).

Table 6.1 Number of terms m . for each power A , to evaluate
n, 1 ^

derivatives of order n for g(z) at z=0, from n-3 to n=20.

n / i; 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Total

5  5 3 2 1

7  6 5 3 2

8  9 7 5 3 2 1

10 11 10 7 5 3 2

6 12 15 13 11 7 5 3 2 1

6 14 18 18 14 11 7 5 3 2

7 16 23 23 20 15 11 7 5 3

7 19 27 30 26 21 15 11 7 5

8 21 34 37 35 28 22 15 11 7

8 24 39 47 44 38 29 22 15 11

7 16 23 23 20 15 11 7 5 3 2 1

7 19 27 30 26 21 15 11 7 5 3 2 1

8 21 34 37 35 28 22 15 11 7 5 3 2

8 24 39 47 44 38 29 22 15 11 7 5 3

9 27 47 57 58 49 40 30 22 15 11 7 5

9 30 54 70 71 65 52 41 30 22 15 11 7

10 33 64 84 90 82 70 54 42 30 22 15 11

The procedure to compute f^^^ x (n) , n-0,..,20, given parameters
iN V.

values for A, p (q=l-p) and a is as follows. Using eqs. (6.68) to

(6.70), compute derivatives of f(z) evaluated at z—0. With these

values, eqs. (6.60), (6.61), (6.62) and (6.66) will give derivatives

for g(z) at z-O. Finally, eq. (6.44) will provide the required

probabilities.



Table 6.2 Sequences ii|^. and coefficients j bo evaluate

derivatives of order n for g(z) at z-0, for n from 3 Co 11.

n  i j <--Sequence k-1,.. ,l+l-->

2  1

1 1 1

1 1 1

2  1 1

1 1 1 1

2  2

1 1 1

2  1 1

2  2 1

1 1 1 1
2  1 1 1

1 1 1 1 1

1 1 1
2  1 1
3  1 1

2  2 1
2  2 2

1 1 1 1
2  1 1 1
2  2 1 1

n  1 J <--Sequence 1^, k-1,..,l+l-->

8 5 1 3 1 1 1 1 1 "
8 5 2 2 2 1 1 1 1
8 6 1 2 1 1 1 1 1 1
9  1 1 8 1
9  1 2 7 2
9  1 3 6 3
9  1 4 5 4

9  2 1 7 1 1
9  2 2 6 2 1
9  2 3 5 3 1
9  2 4 4 4 1
9  2 5 5 2 2
9  2 6 4 3 2

9  2 7 3 3 3
9  3 1 6 1 1 1
9  3 2 5 2 1 1
9  3 3 4 3 1 1
9  3 4 4 2 2 1
9  3 5 3 3 2 1

9  3 6 3 2 2 2
9 4 1 5 1 1 1 1
9 4 2 4 2 1 1 1
9 4 3 3 3 1 1 1

9 4 4 3 2 2 1 1
9 4 5 2 2 2 2 1
9 5 1 4 1 1 1 1 1
9 5 2 3 2 1 1 1 1
9 5 3 2 2 2 1 1 1
9 6 1 3 1 1 1 1 1 1
9 6 2 2 2 1 1 1 1 1
9 7 1 2 1 1 1 1 1 1 1
10 1 1 9 1

10 1 2 8 2

10 1 3 7 3

10 1 4 6 4

10 1 5 5 5

10 2 1 8 1 1

10 2 2 7 2 1
10 2 3 6 3 1
10 2 4 5 4 1
10 2 5 6 2 2
10 2 6 5 3 2
10 2 7 4 4 2
10 2 8 4 3 3
10 3 1 7 1 1 1
10 3 2 6 2 1 1
10 3 3 5 3 1 1
10 3 4 4 4 1 1

10 3 5 5 2 2 1
10 3 6 4 3 2 1
10 3 7 4 2 2 2
10 3 8 3 3 3 1



n  1 J <--Sequence i. , k-1,.,

9  3 3

1 6 1

2  5 2

3  4 3

4 4 2

5  3 3

6  3 2

7  2 2

1 5 1

2  4 2

3  3 3

4  3 2

5  2 2

1 4 1

2  3 2

3  2 2

1 3 1

2  2 2

1  2 1

1  10 1

2  9 2

3  8 3

4  7 4

5  6 5

1 9 1

2  8 2

3  7 3

4  6 4

5  5 5

6  7 2

7  6 3

8  5 4

9  4 4

10 5 3

1 8 1

2  7 2

3  6 3

4  5 4

5  6 2

6  5 3

7  4 3

8  3 3
9  4 4

10 5 2

11 4 3

1 7 1
2  6 2
3  5 3
4 4 4

5  5 2
6  4 3
7  3 3

1 1 1
1 1 1

1 1 1

1 1 1

2  1 1
2  1 1
3  1 1

n  1 J Sequence k-l,..,i+l

3  2 2

2  2 2

2  2 2

1 1 1

2  1 1

3  1 1

2  2 1

3  2 1

2  2 2

2  2 2

1 1 1

2  1 1

3  1 1

2  2 1

2  2 2

1 1 1

2  1 1

2  2 1

1 1 1

2  1 1

1 1 1



The reader is invited to verify the following results for n-2 and

n—3, using the procedure outlined before

^N^t " — exp(-At
^1^ 2q

1-q exp(-Q!tj^)
+ 2apqt^+

q exp(-Qt^)

[1-q exp(-at^)]'
[3q-2-(2q-l)q exp(-Qt^)]

.  r 1-q exp(-at^)
+ 1 p Ln +

1-q exp(-at^)
+ apt

%(t E 1^ l-* 6a ^ 1-q exp(-at^) J

-6pq^ Ln p  , 21  + 6apq t^ +
1-q exp(-atj^) 1-q exp(-at^)

r  3[2-
6q-

L  1-

3[2-q-q exp(-atj^)] [3-2q-q exp(-at^) ]^(t^) -i

1-q exp(-at-) .. 2
1  [1-q exp(-atj^)]

q^(t,)
_ 2pq Ln L + 2apqt^ +

1-q exp(-at^) 1-q exp(-at^)

r  [2-q-q exp(-at^)] t ^ r
2q- i_ N _ p Ln _

1-q exp(-atj^) J ^ i q exp(-atj^)
+ aptj^ +

q^(tj^)

_ -j _ p Ln 1 + apt^ +
2 ^ 1-q exp(-at^)

1-q exp(-atj^) }'}

(6.71)

(6.72)



6.6 Factorial moments for the NS process

Factorial moments up to order 3 for the NS process will be needed

later to derive properties of the NSWN model. The relationship

between factorial moments and the pgf was defined in eq. (6.42).

Factorial moment of order zero is the mean of the process . In

order to obtain factorial moments of order 1, 2 and 3, derivatives of

the pgf must be computed and evaluated at 1. Equations (6.60) to

(6.63) can be used for this purpose, changing the evaluation at z=0

for evaluation at z=l.

Following the same approach as that described for the derivatives

of f(z) evaluated at zero, the law of formation found for the

derivatives of this function at z=l, for n>2, is;

d"f(l) n!q"'^
[at,- S

n-1 ^(t.,)^
(6.73)

For n—1, the expression is

df(l) *^1
(6.74)

Using eqs. (6.73) and (6.74) in the corresponding derivatives for

g(z), evaluated at z=l, and introducing full distributional

assumptions, the required factorial moments are (Cadavid et al., 1991)

_A.. [2q(at^-^(t^))+Aat^^]
ap^

(6.75)

M*2j- a {3q2[2(Qt^-.^(t^))-.^(tj^)2] + 6At^q(at^-.^(tj^))+ A^at^^^} (6.76)
orp^

*  A 3JL {24q-'(at^-.^(tj^)- _ [ (Qt^-.^(tj^))

(3at^-^(t^))-at^^(t^)^]+ 12A^t^^q(at^-^(tj^))+ A^at^^'^) (6.77)



6.7 Properties of the NSWN precipitation process

Equation (6.12) gives the cumulative amount of precipitation for

the NSWN model, for any interval of length T. Some of the moments for

will be derived in this section, as well as its marginal

distribution. Some of the properties are presented in the most

general way possible, so that they can be used with other variations

of the model, for example, with the cluster size following a Polsson

distribution (Rodriguez-Iturbe et al., 1984). Distributional

assumptions are introduced one at a time.

The White Noise terms are assumed independently and identically

2
distributed as fy(u), with mean E(U] and variance Their common

distribution will be assumed to be the exponential distribution with

parameter n (Mood et al., 1974), so that

E(U] - l//i (6.78)

2  1/2o^J' I/H (6.79)

As before for the PWN model, fi has units 1/length, 1/in. in this case.

Although the gamma distribution was considered with the PWN

model, it will not be used here. First, a high level of complication

has been already obtained for the NSWN model for precipitation.

Second, this distribution did not improve the P^TN model performance in

any way and similar results should be expected for the NSWN model.

Following similar procedures as those presented for the PWN

precipitation process in Section 4.3, the meaii for Yj^, Py, is given by

My- E(N(T)] E[U] - A E[N2(.)1 T EfU] (6.80)

based on eq. (6.45). When the geometric distribution for the cluster

size is introduced, eq. (6.80) becomes



at E[U] / p (6.81)

according to eqs. (6.50). Finally, using the exponential distribution

for the Uhite Noise terms

at / (hp) (6.82)

The main step in computing the variance of Yj^ is conditioning its

second raw moment on the counting process. After doing this and

performing algebraic manipulations (Cadavid et al., 1991)

E(Yj^^] - E[N(T)] EfU^] + M* E^(U] (6.83)

- E[N(T)] + Var(N(T)) E^[U]

Replacing in this expression eqs. (6.45) and (6.48)

Oy - AE(N2(.)]Tay+AE^[U](E(N2^(.)]T-E(N2(.)(N2(.)-l)]^(T)/oc) (6.84)
Using eqs. (6.50) in (6.84), the variance of Y, for the cluster size

following a geometric distribution is

4 - — ^ E^(U1( ^ ^ T - ^(T)) (6.85)
p  " 2 2

P  «P

Finally, using the exponential distribution for the White Noise

(6.85)

element in the model, eq. (6.85) becomes

4- 2A (aT - q^(T)] / (apV) (6.86)

As shovm for the PWN model, the covariance of lag 6 for the

amount of precipitation in disjoint time intervals is (6>1)

r N(T) M(T) T-| r

7y(«) - E S u s U - h
L i_0 ^ i-0 J '

with M(T) representing N(5T,(5+l)T). This case is different to the

PWN model in the sense that N(T) and M(T) are dependent. The expected

value in the above equation is computed as

r N(T) M(T) f r N(T) M(T) >

4 U J-O "j J ■'"(T),H(T) { 4 Lo J-0 J >



where the most external expectation is taken over the Joint pdf for

N(T) and M(T), Since the White Noise terms are independent, the

previous equation becomes

r N(T) M(T) r

r N(T) M(T) 1 , r 1
:  E U E U -E [U] E N(T) M(T)
L i-0 j-0 J J L -I

and therefore

1^(S) - E^[U]Cov{N(0.T).N(6T,(fi+l)T)] (6.87)
Using the result in (6.49) in eq. (6,87)

7y(5)- E^(U] a E[N2^(.)-N2(.)]^(T)2exp(-QT(6-l)]/(2oc) (6.88)
Introducing the geometric distribution for N2(.)

7y(«) - E^(U] Aq ^(T)2exp[-aT(5-l)l/(«p2) (6.89)
Finally, when the White Noise terms are exponential with parameter 1/n

7^(5) - Aq ^(T)2exp[-aT(6-l)]/(apV) (6.90)

Based on eqs. (6.90) and (6.86), when full distributional

assiomptions are in use, the autocorrelation function of lag S for the

amount of precipitation in disjoint intervals of length T, for the

NSWN model, is given by

p (S) - q^(T)^exp[-aT(g-l)l ^ (6.91)
2(aT-q^(T)]

The autocorrelation function for the NSWN model is controlled by

two parameters, p and a, which are parameters for the NS arrival

process, with no influence from the instantaneous amounts of

precipitation. It represents a Markovian process (Foufoula-Georglou

and Guttorp, 1986). Finally, the autocorrelation function in (6.91)



is based on the possibility of a given cluster having members in two

disjoint time intervals.

Although eq. (6.91) represents a Markovian process, it is

possible to show that it generates lag-1 and lag-2 autocorrelation

coefficients satisfying the following constraints

p^{2) < p^il)

[l-p^(2)/p^a)]'

2[Ln(p^(l)/p^{2)) - l+p^i2)/p^(l)]
Pyd) > 0

These constraints define the same feasible region as that

presented by Obeysekera et al., (1987) for the NSWN model with

Poissonian cluster size, which is a subset of the feasible region for

an ARMA (1,1) model.

The skewness coefficient of Yj^, denoted g^, is computed using the

general expression

(6.92)

It can be shown that the third raw moment for is given by (Cadavid

et al., 1991)

E[Y^] - E[N(T)] E[U^] + 3 E[U^] E[U] + M*2jE^[U] (6.93)
Note the link between the raw moments of Yj^ (eqs. (6.83) and (6.93))

*

and the factorial moments for the counting process .

Replacing eqs. (6.93) and (6.83) in (6.92), using eqs. (6.75) and

(6.76) for the factorial moments, dividing by the standard deviation

to the power of three and taking into account that for the exponential

distribution with parameter ft

E[U^] - i! /

the skewness coefficient for Yj^ becomes

(6.94)



_  3 qt2(aT-^(T))(l+p)-q^(T)2]+2ap^T
(6.95)

23/2 ̂ 1/2 {aT-q^(T)]^'^^

The next property is the kurtosis coefficient for the amount of

precipitation in the time interval of length T, k, defined as

« - [ e[ < ] - '"'yE[ ] + 64e[ ] - 34 ) / 4 (6.96)
The derivation of the fourth raw moment for Yj^ is given in

Cadavid et al., (1991). The result is

E[Y^] - E(N(T)] E[U^] 4- (AE[U^] + 3E^IU^]) +

6M*2j E[U^1 E^fU] + m|3j E^(U) (6.97)

Performing all the operations indicated in eqs. (6.96) and (6.97) and

using eqs. (6.75) to (6.77), (6.86) and (6.94), the resulting

expression for k is

K - a{3q(aT-^(T))[q(2+4p+AT-A^(T)/o)+2p(AT+3p)]-q^^(T)^{3(l+2p)

-2q^(T)]+3ap^T(AT+2p))/U(oT-q^(T))^) (6.98)

The last property to be considered for the amount of

precipitation in an interval of length T is its marginal pdf. Given

that Yj^ for the NSWN model is a compound process, fy(y) is written as

^Y^^^~^N(T) ^(y) ̂ n(T)^"^ ]^(0,®)^^^
Analytical expressions for fjj^3,^(n) were computed for n from 0 to 3.

For n between 4 and 20, exact numerical values can be obtained. For n

beyond 20 no results are available. Later in this chapter, an

empirical method for extrapolating fjj^yj(n) will be presented. This

is needed to approximate fy^y^ other required distributions.

Meanwhile, the only possible step is to replace the distribution of



the sum of n independent White Noise terms by a gamma distribution

with scale parameter y, and shape parameter n, giving the result

(n-lji! (6-99)

6.8 Parameter estimation by method of moments

In order to estimate parameters, p, a and y, for the NSWN

model, four moment properties for the amount precipitation, among

those presented before, must be chosen. They are equated to sample

estimates and the set is solved for the parameters. In principle, any

four properties could be used. The traditional method includes mean,

variance and correlation coefficients of lag 1 and 2. Other lags

could be selected as well. However, this would produce a correlation

function passing exactly through those two lags, ignoring for example

lag-1, and this may not be a convenient situation.

If maximum likelihood estimation was out of reach for the PWN

model, the argument is much stronger for the NSWN model, in which the

degree of complication is larger. In the NSWN model, amounts of

precipitation in disjoint intervals are not independent. Besides, up

to this point, the pdf for the amount of precipitation in the NSWN

model has been approximated and no judgement has been presented about

the goodness of that approximation.

The reader may recall, from Chapter 2, the maximum likelihood

estimator used by Foufoula-Georgiou and Guttorp (1986), based on

binary series of occurrences derived from precipitation samples. This

estimation procedure is not used here, based mainly on two

considerations. First, the primary objective of this research is not



examination of parameter estimation methods. Second, since the

beginning, all computations have been oriented to moment estimation.

As a final observation, Obeysekera et al. (1987) suggest the use

of a moment estimator based on sample lag-1 correlation coefficients

estimated at two different temporal scales, but they also conclude

that this estimator is inferior to the traditional method. Besides,

being the main objective of this research disaggregation of

precipitation records, one should try to keep estimation procedures at

only one aggregation level.

In conclusion, as a first attempt, the traditional method of

moments will be used here. From eqs. (6.82), (6.86) and (6.91) for

6-1 and 6-2, and recalling that

^(T) - l-exp(-aT): q=l-p

moment estimators for the monthly parameters for the NSWN model are;

a^- Ln(r^(l)/r^(2))/T (6.100)

l-2r (l)a T
T  T

[l-exp(-a^T)][l-exp(-a^T)+2r^(l)]
(6.101)

2Y^{a^T-(l-p^)[l-exp(-a^)])/(a^p^T Sp (6.102)

A  A A

A - Y p /i /T
r  T^T T '

(6.103)

where the index t stands for the monthly partition adopted for the

precipitation recording stations used in this study.

Equations (6.100) to (6.103) are constrained. First, if r^(l) or
A

r^(2) are negative, is not defined. Also, if r^(2) is larger than
A  A

r^(l), is negative. For p^, eq. (6.101) may yield negative values.



the case being the same for and , depending on sample statistics

and previously estimated parameters for the model. A failure is

produced whenever one of the above constraints is violated.

6.9 Results for parameters estimated by method of moments.

The first data set to which the method of moments was applied is

a simulated sample of a NSWN process, representing 49 years worth of

data. The simulation, referred to as simulation 1, was obtained with

the set of parameters listed in Table 6.3, which correspond to values

estimated using optimization techniques (Sections 6.10 and 6.11) for

the Denver Wsfo Ap station, for T=60 min., month 05. Although the

process of simulation is continuous, the highest resolution sample

obtained was hourly. Larger aggregation scale samples were obtained

from the hourly simulated data.

Monthly statistics were estimated for simulation 1 at two

aggregation levels, T=60 min. and T -1440 min. . From these,

parameters were estimated using eqs. (6.100) to (6.103). Table 6.3

gives a summary of results for estimated parameters and Figures 6.2

and 6.3 present theoretical and estimated correlograms. Plotted

correlograms verify the goodness of the simulation algorithm, as well

as estimation procedures discussed in Chapter 3.

In regard to Figures 6.2 and 6.3 it is important to mention that

correlograms estimated from simulated samples were observed to be

similar to the counterparts for recorded precipitation samples, in

terms of shapes, values and sample variability. Sample variability in

the correlogram for T^—1440 min. is evident. In this sense, one can

state that the NSWN model provides an adequate description of the



Table 6.3 Summary of results for parameters estimated from NSWN
simulated precipitation series, using method of moments,
for simulation 1, for different aggregation levels.

Parameter: A, Units: 1/min. x 10 , Population Value: 0.10232

Mean

Standard Deviation

Maximum

Minimum

Number of failures

T-60 min.

0.10261

0.02714

0.14203

0.05941

0

T -1440 min.
a

0.09077

0.00763

0.09663

0.07765

5

Parameter: p. Population Value: 0.07208

Mean

Standard Deviation

Maximum

Minimum

Number of failures

T-60 min.

0.07223

0.00180

0.09858

0.04703

0

T -1440 min.
a

0.24722

0.08931

0.37038

0.13761

5

Parameter: a. Units: 1/min. x 10 , Population Value: 0.22100

Mean

Standard Deviation

Maximum

Minimum

Number of failures

T-60 min.

0.22997

0.07134

0.38353

0.13783

0

T =1440 min.
a

0.16274

0.06001

0.26678

0.09766

3

Parameter: n, Units: 1/in., Population Value: 24.36232

Mean

Standard Deviation

Maximum

Minimum

Number of failures

T=60 min.

23.9924

1.05575

26.2089

22.7070

0

T =1440 min.
a

7.00805

2.39853

9.90631

3.97527

5

precipitation process. However, in many other cases the NSWN model

was not able to fit a given correlogram.

Two observations are in order in regard to Table 6.3. Method of

moments did not present any failure for T—50 min. , but the number of

failures increased to 5 out of 12 for T —1440 min. . Again,
a



0.4- □  THEORETICRL
o  nVERRGE
A  ESTIMflTED

A A IS

0  2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48
ERG K

Figure 6.2 Theoretical and estimated correlograms for NSWN simulated process,

for simulation 1, for T-60 min..



Figure 6.3 Theoretical and estimated correlograms for NSWN simulated proce

for simulation 1, for T-1440 min..



incompatibility of the model at different temporal scales is evident

in Table 6.3, since parameter estimates are not the same in terms of

mean values.

Method of moments was also applied to the precipitation recording

stations used in this study, for two different aggregation levels for

each station. Results are given in Tables 6.4 to 6.7, in the order in

which parameters are estimated using eqs. (6.100) to (6.103). In each

table, whenever is required, observations are presented on the reason

producing estimation failures.

Tables 6.4 to 6.7 show how method of moments tends to perform

better when the level of aggregation is the hour. The number of

failures increases appreciably for T-5 min. and T^-1440 min. For the

hourly case, annual periodicity is observed, in such a way that

parameter estimates increase for summer or summer transition months.

This means that during summer months, storms are more frequent, with

smaller number of cluster members, located closer to the cluster

center, with each member producing a larger precipitation yield, as

compared to winter months, when storms are predominantly of larger

duration and lower intensity. These characteristics agrees with the

observed precipitation behavior in Colorado.

One could attempt to apply moment estimators to monthly

precipitation data. Two reasons inhibit this application. First, the

sample correlation available for monthly data is from month to month

and not within the season. Second, inclusion skewness and kurtosis in

the estimation procedure makes solution of equations heavy and

difficult to obtain.



Table 6.4 Estimated parameters for the NSWN model for Denver Wsfo Ap
station, for different temporal aggregation levels, using
method of moments.

T=60 min.

Observations

(1/min.) (1/in.) (1/min.)

0.03793

0.05288

0.04486

0.04914

0.05597

0.08928

0.16897

0.15585

0.04288

0.05675

0.04256

0.03189

0.020899

0.025276

0.013351

0.025294

0.094360

0.118514

0.371362

0.341402

0.182538

0.049054

0.018782

0.014515

326.727

313.127

361.300

126.317

32.7854

26.9073

9.30086

9.87705

17.3309

94.9364

296.940

310.525

0.07736

0.11981

0.14194

0.13150

0.18026

0.12764

0.14005

0.10779

0.08372

0.09740

0.10641

0.05938

T—1440 min.

Observations

(1/min.) (1/in.) (1/min.)

X 10

0.14591 0.44608 13.3305 0.67404

0.17045

0.12698

0.04736

0.16223

0.13082

0.23476

0.36565

0.57017

0.14315

0.30558

7.25019 0.99123

5.00631 0.73234

4.12029

15.3899

8.50132

0.95255

0.70394

0.68687

Correlation negative
Correlation negative
Correlation negative

Correlation negative
Correlation negative
Correlation negative



Table 6.5 Estimated parameters for the NSWN model for Greenland 9 SE
station, for different temporal aggregation levels, using
method of moments.

T=50 min.

Observations

(1/min.) (1/in.) (1/min.)

0.03438

0.03015

0.01261

0.04401

0.05747

0.09979

0.19860

0.21101

0.11274

0.03952

0.03422

0.06884

0.13495

0.09141

0.03889

0.08481

0.16331

0.24240

0.30461

0.18670

0.26360

0.08594

0.08104

0.02799

80.33567

90.82454

59.03361

55.36718

27.22535

15.85714

11.15179

16.48421

22.28655

60.47824

65.22412

60.73068

0.089042

0.100455

0.058902

0.147885

0.225754

0.174484

0.210256

0.173846

0.129106

0.074920

0.084373

0.018651

T=1440 min.

Observations

(1/min.) (1/in.) (1/min.)

0.07448 0.42892 5.358821 0.104050

0.08220 0.65302 3.780899 0.152116

0.09270 0.36766

0.17320 0.10240

0.24398

9.254666 0.074172

35.35516 0.051751

Correlation

Correlation

Correlation

Correlation

Correlation

o negative

negative
negative
negative
negative
negative

p negative
Correlation negative



Table 6.6 Estimated parameters for the NSWN model for Idaho Springs
station, for different temporal aggregation levels, using
method of moments.

T-=5 min.

Observations

(1/min.) (1/in.) (1/min.)

0.00721

0.04249

0.03595

0.06637

0.05125

0.12980

0.06460

0.02588

0.13575

0.06285

0.03312

0.02149

0.16036

0.22786

286.664

249.462

188.790

235.957

257.648

10.1437

118.933

0.23754

0.55672

0.38754

0.39043

0.36860

0.07828

0.25094

a negative
a negative
a negative

a negative
a negative

1=60 mm

Observations

(1/min.) (1/in.) (1/min.)

X 10

0.06532

0.01284

0.08573

0.04302

0.04157

0.14402

0.17494

0.12317

0.30740

0.13728

0.01809

0.01602

0.02332

0.00157

0.05746

0.02114

0.08171

0.15120

0.38133

0.16535

0.87375

0.49910

0.00666

0.00373

354.9704

478.7013

307.3935

230.2212

114.4487

58.60070

16.11613

19.69441

1.855267

49.58866

237.0252

973.7752

0.41076

0.07178

0.41569

0.15268

0.14809

0.27768

0.29976

0.21166

0.07616

0.22316

0.12123

0.19676



Table 6.7 Estimated parameters for the NSWN model for Ward station,
for different temporal aggregation levels, using method of
moments.

1=5 min.

Observations

(1/min.) (1/in.) (1/min.)

0.04196 0.00956 125.977 0.01435

0.70520 0.01680 400.508 0.05439
0.64710 0.04676 165.258 0.05405

0.99659 0.19198 133.125 0.13096

a negative
a negative
a negative
a negative

a negative

a negative

a negative
a negative

1=60 mm.

Observations

(1/min.) (in.) (1/min.)

0.09332

0.02120

0.04539

0.03783

0.08596

0.32832

0.07558

0.03983

0.06818

0.06075

0.03529

0.03111

0.03473

0.00647

0.03405

0.01697

0.17412

0.32353

0.20115

0.26999

0.12367

0.00442

0.02135

664.156

413.858

262.477

114.891

24.8478

0.17401

0.21145

0.19805

0.16967

0.49772

13.6774 0.33502

15.5153 0.21019

29.9649 0.27454

45.5581 0.28088

859.603 0.18827

368.989 0.09044

p negative



6.10 Estimation of parameters using Weighted Least Squares method

The method of moments, as presented in the previous section,

exhibits serious shortcomings, due mainly to the small amount of

information used by the method. For example, in cases when

correlations of lag 1 or 2 are negative, coefficients for other lags

could be used to obtain model parameters. Also, when negative

estimated values for are produced, due to r^(2) being larger than

more information on the trend of the correlogram could produce

feasible estimated parameter values. A partially increasing

correlogram with the lag could be the result of sample variability,

and this variability is not included in the traditional moment

estimation procedure.

The objective of this section is to design a parameter estimation

procedure for the NSWN model, based on moment properties, which

includes more information on those properties and which has the

ability to include, at least in a subjective fashion, some type of

indicator about sample variability. Perhaps the method will be

consistent for different aggregation scales.

The technique selected is based on weighted least squares (WLS) .

Denote model properties, for a given month, by where i denotes a

given property and r is the month. Properties are functions of model

parameters, according to eqs. (6.82), (6.86), (6.91), (6.95) and

(6.98). The problem statement is

.P, .a .At, 1=1

(6.104)

T  ' T T"^T

subject to: A^> 0 ; 1 > p^> 0; a^> 0; 0



where z is the objective function, is the monthly estimated

property and is a weighting factor. The solution to this

minimization problem will yield estimates for model parameters. A

very similar approach is used by Islam et al. (1988) in order to

estimate parameters for a space-time model for cumulative

precipitation. Burlando (1989) uses a very similar methodology to

estimate parameters for NS type precipitation models.

The index i indicates model properties as follows: i-1, mean;

i—2, variance; i—3, coefficient of skewness; i—4, coefficient of

kurtosis; i-=5,..,n, correlation coefficients of lag i-4. The

configuration of the objective function, eq. (6.104), is defined by

the user, starting by the number of terms n, which must be greater or

equal than 5. In the next step, the user selects which of the first

four properties are included in the objective function.

The weights w^^ are defined according to two different methods.

In the first, weights for all properties are equal, so that the

solution to the minimization problem will be the same as that obtained

without weights. In the second method, the user defines weights (Wj^<

1.0) for the first four properties to be included in the model. If

one of the first four properties is not included, the corresponding

weight is made equal to zero. The remaining weights, for the

correlation coefficients, are computed in such a way that all weights

add up to 1.0 and in such way that they decrease with the lag,

according to an inverse law. The following expressions are obtained

for computation of weights associated to correlation coefficients:

w^- a/i, i>;5 (6.105)



4  n

a - (S w ) / [1 - S (1/i)]
i-1 ^ i-1

(6.106)

The last term in eq. (6.104) is an indicator function for the ith

estimated property. If this is negative, model property and

associated weight are eliminated from the estimation procedure.

The fundamental assumption is that definition of the number of

terms in the objective function and weights provides the estimation

procedure with subjective information about sample variability on

estimated model properties. Also, by having the possibility to define

and redefine objective function configurations, the user is able to

avoid unfeasible parameter estimates violating the constraints given

in eq. (6.104).

The estimation procedure described above was translated into a

FORTRAN 77 computer code. The numerical algorithm used to solve the

optimization problem is known as downhill simplex method in

multidimensions (Press et al., 1986). No major details on the

minimization algorithm are given here, except to highlight some of its

characteristics. First, the algorithm is unconstrained, despite the

constraints appearing in eq. (6.104). The algorithm used by Islam et

al. (1988) is also unconstrained, although Burlando (1989) uses a

constrained method. A great deal of difficulty was experienced in the

implementation of constrained algorithms and the method mentioned

above performed very well. A very limited number of runs, 1% or less,

gave failure due to unfeasible parameter values. For a given

optimization run, the algorithm converges when the difference between

two consecutive objective function evaluations is smaller than a given

tolerance. After that, the same optimization run is reinitialized in

the neighborhood of the previous solution. The final solution is



obtained when optimal parameter values for two different

initializations are as close as a given tolerance. This last feature

gives a larger guarantee of the solution being at a global maximum.

Although it was stated in Chapter 1 that no computer codes are

listed or described in this report, a brief account is given in the

following. The computer program is interactive in most of the

information required, specially for objective function configuration.

The program provides the user with on-screen plots for historical and

fitted correlograms. By having access to a plot of the historical

correlogram, the user is able to decide on the number of terms in the

objective function and to observe the degree of scatter of the

historical correlogram. For a given set of estimated properties, the

program allows up to nine optimization runs and one of them could be

reserved for moment estimation, as described in Section 6.8. From one

run to another, number of terms and weighting method in the objective

function can be changed. The user decides on parameters to enter the

optimization process and to which of them fixed values are given.

Finally, with a summary of results for all optimization runs, provided

on screen by the program, the user decides on final estimated

parameter values for a given set of estimated properties.

It is recommended to include at least mean and variance in the

objective function. As shown before, correlation coefficients depend

on p and a . Mean and variance include the four parameters.
T  T ^

Although the problem, as formulated, includes skewness and kurtosis,

no success was obtained in performing optimization with these two

model properties. They systematically yielded negative estimated

parameter values. For this reason, along with those presented for the



method of moments, optimal estimation technique was not applied to

precipitation data aggregated to the monthly level, for the recording

stations used in this study.

6.11 Results for parameters estimated using Weighted Least Squares
method

As explained before for the method of moments, the first data set

to which the WLS technique was applied corresponds to simulation 1, as

described in Section 6.9. A summary of results is given in Table 6.8.

Similar comments, as those presented for Table 6.3, are in order here.

There are failures in the estimation procedure for T„=1440 min. ,
^  a

although these are reduced from 5 to 2. Second, the incompatibility

of the model at different time scales is still present and therefore

WLS does not solve this problem. A more detailed comparison of the

two estimation procedures is given in Section 6.12.

In the next step, WLS was applied to the precipitation recording

stations used in this study, for two different aggregation levels for

each station. Results are given in Tables 6.9 to 6.12. A similar

analysis, as that presented for moment estimates, is valid for the

results in Tables 6.9 to 6.12, in regard to annual periodicity. Since

the set of results here is more complete, in terms of aggregation

scale, than it was for the method of moments, one concludes that the

same periodic behavior is kept at both aggregation scales. The

complementary role of for the two estimation methods is present in

Tables 6.9 to 6.12.

Results presented in Tables 6.9 to 6.12 confirm once again the

incompatibility of the model at different temporal scales. In

general, the trend of estimated parameters with the aggregation scale



Table 6.8 Summary of results for parameters estimated from NSWN
simulated precipitation series using WLS method, for
simulation 1, for different aggregation levels.

Parameter: A, Units: 1/min. x 10 , Population Value: 0.10232

Mean

Standard Deviation

Maximum

Minimum

Number of failures

T-60 min.

0.09882

0.00824

0.11065

0.08685

0

T =1440 min.
a

0.09230

0.01081

0.10181

0.06353

2

Parameter: Population Value: 0.07208

Mean

Standard Deviation

Maximum

Minimum

Number of failures

1=60 min.

0.07071

0.00719

0.08636

0.06004

0

T =1440 min.
a

0.33588

0.15635

0.60586

0.13763

2

Parameter: a, Units: 1/min. x 10 , Population Value: 0.22100

Mean

Standard Deviation

Maximum

Minimum

Number of failures

T=60 min.

0.21657

0.01899

0.24136

0.18186

0

T =1440 min.
a

0.11346

0.06201

0.19613

0.01442

2

Parameter: /i, Units: 1/in. , Population Value: 24.36232

Mean

Standard Deviation

Maximum

Minimum

Nximber of failures

T=60 min.

23.8279

1.51525

25.7049

20.9650

0

T =1440 min.
a

5.94845

3.19751

11.0966

2.45725

2



Table 6.9 Estimated parameters for the NSWN model for Denver Wsfo Ap
station, for different temporal aggregation levels, using
WLS method.

T=60 min.

(1/min.)

X 10

(1/min.) (1/in.)

Moment estimates?

0.07173

0.08983

0.09706

0.09475

0.10232

0.09591

0.13272

0.10273

0.08694

0.06450

0.08312

0.05224

0.01776

0.02275

0.02080

0.02273

0.07208

0.15116

0.37747

0.42671

0.20246

0.05546

0.02919

0.01358

0.03548

0.03697

0.02560

0.03257

0.02210

0.03692

0.13490

0.08048

0.03952

0.02719

0.02979

0.02751

356.401

260.750

158.563

101.301

24.3623

15.8523

8.67127

7.53120

16.2271

55.5995

158.231

292.150

T -1440 min
a

Moment estimates?

(1/min.) (1/min.) (1/in.)

0.67404

0.52107

0.94172

0.85741

0.99123

0.73234

0.95255

0.70394

0.68687

0.56785

0.54823

0.43754

0.44608

0.42530

0.45162

0.72958

0.23476

0.36565

0.57017

0.14315

0.30558

0.32587

0.35254

0.61646

0.14591

0.01249

0.10660

0.03564

0.17045

0.12698

0.04736

0.16223

0.13082

0.10203

0.02345

0.03624

13.3305

8.09060

7.08708

2.85678

7.25019

5.00631

4.12029

15.3899

8.50132

8.33183

8.15397

5.39038



Table 6.10 Estimated parameters for the NSWN model for Greenland 9 SE
station, for different temporal aggregation levels, using
WLS method.

T-60 min.

Moment estimates?

(1/min.) (1/min.) (1/in.)

0.08904

0.10045

0.09129

0.10516

0.16210

0.15437

0.20116

0.17174

0.11855

0.05444

0.07375

0.04810

0.13495

0.09141

0.05409

0.07000

0.11666

0.26902

0.40974

0.27600

0.30920

0.08006

0.06634

0.06081

0.03438

0.03015

0.02253

0.02610

0.03790

0.05672

0.11011

0.15800

0.06431

0.02087

0.03096

0.02320

80.3357

90.8245

65.7821

47.7075

27.3657

12.6412

7.93233

11.0162

17.4471

47.1704

69.6402

72.0987

T=60 mm.

Moment estimates?

(1/min.) (1/min.) (l/in.)

0.03682

0.06501

0.07622

0.08066

0.10405

0.15211

0.12553

0.07417

0.05175

0.04522

0.26535

0.36284

0.46914

0.31808

0.42892

0.65302

0.70344

0.36766

0.10240

0.56988

0.01153

0.03832

0.03239

0.02573

0.07448

0.08220

0.04666

0.09270

0.17320

0.08132

16.9616

7.01383

5.23848

5.03605

5.35882

3.78090

3.16697

9.25467

35.3552

7.26181



Table 6.11 Estimated parameters for the NSWN model for Idaho Springs
station, for different temporal aggregation levels, using
WLS method.

T=5 min.

Moment estimates?

(1/min.) (1/min.) (1/in.)

X 10

0.16418

0.06003

0.36977

0.12339

0.20010

0.35633

0.38819

0.30084

0.07828

0.25094

0.11688

0.01474

0.00142

0.06877

0.01426

0.06335

0.06600

0.06049

0.03030

0.16036

0.22786

0.00478

0.00210

0.00106

0.00643

0.00334

0.00701

0.02911

0.05376

0.03557

0.12980

0.06460

0.00175

218.637

432.556

222.743

270.194

192.121

165.306

128.452

149.125

10.1437

118.933

313.195

T=60 mm.

Moment estimates?

(1/min.) (1/min.) (1/in.)

X 10

0.11376

0.06155

0.31796

0.06565

0.12311

0.25678

0.29976

0.21166

0.07616

0.22316

0.12123

0.03828

0.02270

0.00193

0.07977

0.01589

0.07449

0.22345

0.38133

0.16535

0.87375

0.49910

0.00666

0.00305

0.01061

0.01077

0.04838

0.01505

0.03109

0.08953

0.17494

0.12317

0.30740

0.13728

0.01809

0.00225

100.991

335.112

169.370

131.646

104.375

36.6672

16.1161

19.6944

1.85527

49.5887

237.025

231.220



Table 6.12 Estimated parameters for the NSWN model for Ward station,
for different temporal aggregation levels, using WLS
method.

1=5 min.

Moment estimates?

(1/min.) (1/min.) (1/in.)

0.11184

0.21883

0.18197

0.11714

0.66511

0.27984

0.54393

0.31758

0.44569

0.27012

0.11087

0.05489

0.06897

0.00923

0.03250

0.00436

0.05063

0.13884

0.01680

0.04452

0.09902

0.06096

0.00748

0.02092

0.02971

0.02154

0.04009

0.02448

0.18009

0.60244

0.70520

0.28310

0.35504

0.06043

0.01756

0.01248

210.611

294.386

246.652

303.154

110.208

27.0031

400.508

101.997

129.333

86.4765

294.705

225.078

T-60 min

Moment estimates?

(1/min.) (1/min.) (1/in.)

0.11979

0.19124

0.18002

0.09455

0.45728

0.20873

0.33502

0.41447

0.21553

0.21506

0.11516

0.08603

0.07508

0.01087

0.02488

0.01674

0.16347

0.17979

0.32353

0.26557

0.23946

0.08576

0.00725

0.02726

0.04080

0.01737

0.04294

0.01771

0.07477

0.24207

0.07558

0.19848

0.03535

0.04701

0.01941

0.02703

211.516

222.789

326.609

64.9193

24.3165

16.3376

13.6774

23.1732

26.5230

50.2992

320.881

274.901



is as follows: and /i decrease with an increase in the
A

temporal scale, although the variation in A is mild. On the other
A

hand, is subject to a steep increase. The same type of behavior

can be observed in Table 6.4 for the means of the estimated

parameters.

6.12 Comparison of estimation methods

In the previous sections, two different estimation methods have

been used to obtain parameters for the NSWN precipitation model.

Although they both are based on moment properties of the process, the

first one was named method of moments and the second one Weighted

Least Squares (WLS).

The first point of comparison is given in Table 6.13, where

biases, root mean square errors (RMSE) and number of failures are

given for simulation 1 of the NSWN precipitation process. In deriving

these indicators, a total of 12 sample points, minus number of

failures, were used for each parameter. Table 6.13 is illustrated

further by Figures 6.4 and 6.5, where estimation results for each

parameter have been plotted, along with average and population values.

Note that for the parameter associated to the distribution of the

VJhite Noise terms, the inverse value is plotted.

For T=60 min., method of moments performs better in terms of

bias, while WLS does in terms of RMSE. For T -1440 min. , method of
a

moments appears superior. However, WLS reduces considerably the

number of failures in estimation. WLS incorporates information not

used by the method of moments and since this information carries

larger sample variability, one should expect, as it happened, a larger



Table 6.13 Bias, Root Mean Square Error (RMSE) and number of failures
for parameters estimated for NSWN simulation 1, for two
different temporal scales

T=60 min.

Parameter Method of Moments

Bias RMSE

WLS

Fail Bias RMSE Fail

X (1/min.) 2.87x10"' 2.60x10"^ 0 -3.50x10' 8.64x10"® 0

2.46x10" 1.71x10"^ 0 -1.38x10" 7.02x10"^ 0

a (1/min.) 8.97x10"^ 6.89x10"^ 0 4.43x10"^ 1.87x10"^ 0

fi (1/in.) -3.69x10 1.08 5.34x10 1.55

T—1440 min

Parameter Method of Moments

Bias RMSE

WLS

FailFail Bias RMSE

A (1/min.) 1.15x10"^ 1.35x10"^ 5

p  -1.75x10"^ 1.94x10"^ 5

a (1/min.) 5.83x10"^ 8.12x10"^ 3

M (1/in.) -1.73x10^ 1.34x10^ 5

1.00x10"^ 1.43x10"^ 2

-2.64x10"^ 3.30x10"^ 2

1.08x10"^ 1.23x10"^ 2

-1.84x10^ 1.70x10^ 2
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Figure 6.4 Estimation results for NSwN process simulation 1, for T- 60 min.

(MOM: method of moments, OPT: weighted least squares method).





variability on parameter estimates. The ability of WLS to increase

the nximber of feasible solutions is also seen when simulation and

historical results are lumped together. When method of moments is

used, 33 out of 120 cases gave failure. WLS reduced this number to 5.

Two additional simulations of the NSWN precipitation process were

obtained, in this case with periodic monthly parameters. They are not

used often in this report, since they gave similar results to

simulation 1. They are mentioned because some of the figures

presented later belong to these simulations. They will be referred to

as simulation 2 and 3. Simulation 2 is based on monthly parameters

estimated for Greenland 9 SE station at the hourly level, while

simulation 3 corresponds to parameters for Idaho Springs station,

obtained for 5 min. measurement scale. Simulation 2 has 49 years,

while simulation 3 is made of 5 years. An important result for the

simulations, both periodic and not periodic, is that they are similar

to historical samples, in terms of monthly statistics, especially

correlograms and their variability.

Some of the properties of the WLS estimation procedure are

illustrated in Figures 6.6 to 6.11. The upper plot in Figure 6.6

shows a case in which method of moments and WLS produce similar

results, while in the lower plot WLS performs better than method of

moments. Figure 6.7 shows a typical estimated correlogram for T =60
a

min., with large sample variability, for simulation 2, and the benefit

in using decreasing weights. Figure 6.8 illustrates the use of the

different weighting methods, along with change in the number of terms

to include in the objective function. Figure 6.9 shows the type of

correlograms fitted using WLS when method of moments does not work.

Figure 6.10 gives examples of fitted correlograms using WLS technique
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Figure 6.6 Historical and fitted correlograms for NSWN simulation 2,
for T=60 min. . for months 11 and 12.
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Figure 6.7 Role of weighting method on fitted correlograms (T -1440
min. , simulation 2).
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Figure 6.8 Role of weighting methods and number of terms in the

objective function on fitted correlograms (T—5 min. ,
simulation 3): IW-1, weights are constant; IW-2, weights
decrease with lag; NP: number of terms in objective
function.
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Figure 6.10 Historical and NSWN fitted correlograms (V7LS), for Idaho
Springs station, for months 01 and 02, for T—5 min. .
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Figure 6.11 Historical and NSWN fitted correlograms (moment), for
Greenland 9 SE station, for months 01 and 02, for T^SO



when method of moments fails, due to a partially increasing

correlogram with the lag. Finally, Figure 6.11 is an advocate of the

method of moments, since in this case method of moments works better

than WLS.

WLS is adopted as the standard method for this study.. Despite

the fact that method of moments seems to exhibit smaller bias and, in

some cases, smaller variability on estimated parameters, optimal

estimation technique is viewed as a smoothing tool, which tends to fit

closer correlograms to the sample counterpart, uses more information,

is able to take into account sample variability in the historical

statistics and exhibits, consequently, a larger rate of success.

However, results presented above show that method of moments is useful

in many cases, and for this reason it has been built as an option

within the WLS procedure. Both methods are complementary and they

must be used in conjunction.

6.13 Extrapolation of the marginal distribution for N(T)

In Section 6.5 a procedure to compute the marginal pdf of the

number of occurrences in a time interval of length T for the NS

process was described. However, this procedure is limited to values

of the random variable between 0 and 20.

When parameter estimates obtained in Section 6.11 are used, it

is possible to approximate, using (n) , n from 0 to 20, mean and

variance of the number of occurrences in a time interval of length T.

These approximations can be compared to the exact values obtained by

means of eqs. (6.51) and (6.52).

The procedure described above was applied to all samples

available for this research, precipitation recording stations and NSWN



simulations. It was observed that biases in E[N(T)] and Var(N(T))

were large enough, approximately 40%, especially for large aggregation

scales (60 rain, and 1440 min.), as to require some improvement in the

number of terms for which (n) could be computed. It was decided

to formulate and test some models to extrapolate the distribution of

N(T) beyond 20.

Two models were considered. The first one is empirical and it

was chosen after examination of many plots of Ln[ (n) ] versus n.

The model is of the form

^N(T)^"^ - exp[-(An + Bn + C)] (6.107)

where B is an exponent and A, B and C are model coefficients. The

purpose of 6 is to mimic some slight curvature observed in the plots

of Ln[ (n) ] versus n. Coefficients A, B and C, for a given value

of B, are computed using standard linear regression techniques, after

eq. (6.107) is transformed to the logarithmic space.

In order to estimate coefficients in the empirical model, besides

of defining the value of B, one must choose the number of points, n^,

to enter the regression procedure. It is important to clarify that

the purpose of (6.107) is to approximate the tail of the distribution,

and therefore the points are counted backwards from the last point,

n=20. For example, if 15 points were to be used to estimate

coefficients, these would be from n=6 to n=20.

Several regression runs were made with values of n^ ranging from

3 to 20 and values of B ranging from 0.01 to 2.00. After examination

of all runs, for recorded and simulated data, it was decided that

9=0.05 and i^p"l^ provided an adequate fit for all cases. The goodness

of fit was judged by the multiple correlation coefficient and by the

standard error or standard deviation of residuals. These two



indicators are computed for the transformed data. A third indicator,

called standard error in the original space, was used to measure the

standard deviation of the residuals for untransformed data. Multiple

correlations coefficients were in all cases very close to 1.0, within

the 5th or 6th decimal place.

Although attempts were made in order to find an optimal value for

6, using least square theory, results showed that such estimate tends

to either 0.0 or 1.0, but at these points expressions used for

coefficient computations become indeterminate. Furthermore, the

empirical model in (6.107) was always superior to its linear version,

obtained by making 8=0.0.

Once the model in eq. (6.107) is defined, fjj^.^^(n) is

extrapolated up to a value n^, in such a way that the bias in the

variance of N(T) is smaller than a given tolerance an that ^'^m^

is smaller than another tolerance value. Bias in Var(N(T)) dominates

bias in E[N(T)]. Next, values of f^^^^(n) computed according to

(6.107), for n between 21 and n , are rescaled in such way that the
m

following condition is met:

%(T)^"> - 1-°

The second model tested is probabilistic and it represents the

binomial negative distribution with parameters p an r (Mood et al.,

1974). Assuming that N(T) follows this model

where 0<p<l and r>0. Note that r is a real number. The coefficient

in front of eq. (6.108) is an extension of the binomial coefficient

for integer numbers and is computed as



[  ̂ \n+r-l-i)
^  n! i-0

(6.109)

Mean and variance for the negative binomial distribution are

E[N(T)] - r(l-p)/p (6.110)

Var(N(T)) - r(l-p)/p' (6.111)

Using computed values for E[N(T)] and Var(N(T)) with eqs. (6.51) and

(6.52), parameters r and p are obtained from eqs. (6.110) and (6.111).

The same extrapolation procedure as that described for the empirical

model is used with the negative binomial model.

The basis for selecting the negative binomial model as an option

rests on two points. First, it is a true discrete marginal pdf.

Second, it resembles some of the features present in the empirical

model, like an exponential tail.

In order to compare both models, same indicators as those used

for the empirical model were determined for the binomial model:

correlation coefficient and standard errors in the transformed and

untransformed spaces. Biases for mean and variance of N(T) were also

computed for both models after extrapolation,. Finally, the ratio

between fj^^.j,^(21) and fj^^.j,^(20) was obtained. This ratio is expected

to be less than 1.0.

The negative binomial model dominated in terms of biases. In

terms of regression indicators, the empirical model performed better

than the negative binomial model. These results were expected, since

they represent the way in which each model is fitted. However, for

the ratio of probabilities evaluated at 21 and 20, the negative

binomial model failed several times to give values smaller than 1.0.



14.0-

A  A

LEGEND

□  COMPUTED
o  EXTRnPOLniED
A  SIMULRTEii

0  4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80
NUMBER or EVENTS (N)

Figure 6.12 Example of computed, empirically extrapolated and simulated

distributions for the N(T) in the NS process, for A-0.00009475

1/min. , p—0.02273, a—0.03257 1/min. and T=60 min. .



On the basis of this analysis, the empirical model was selected as the

one to be used to extrapolate the pdf of the number of epics In the

Interval of length T for the NS process. Figure 6.12 reinforces this

conclusion, where examples of computed, empirically extrapolated and

simulated distributions are plotted In the transformed space.

The empirical model was tested by computing the distribution of

the number of occurrences, the distribution of the total amount of

precipitation In the Interval and the distribution of the number of

epics conditional on the total amount of precipitation, for all the

data sets, recorded and simulated, available for this Investigation.

All distributions behaved well. Substantial changes are Introduced In

the last two distributions when the empirical extrapolation model Is

used.

As given before for the PV7N model, a last point Is presented here

to judge the goodness of fit of the NSWN precipitation model to the

precipitation data used In this study. Figures 6.13 and 6.14 give

examples of sample and computed pdf for the amount of precipitation

for some months In the precipitation recording stations, for the

aggregation scale. The theoretical pdf for the amount of

precipitation Is computed by means of eq. (6.99). In general,

observed fits are good. Similar results were obtained for simulated

samples.
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Chapter 7

NEYMAN-SCOTT WHITE NOISE DISAGGREGATION MODEL FOR PRECIPITATION

7.1 Introduction

Based on the results given in Chapter 6, a Neyman-Scott White

Noise Disaggregation (NSWND) model for precipitation is developed in

this chapter. The outline is similar to Chapter 5, based on the

consideration that both models, Poisson White Noise and Neyman-Scott

White Noise, can be expressed as compound processes. Disaggregation

procedure and disaggregation model structure are the same, the same

type of distributions are required and therefore notation is the same,

as compared to the PWN disaggregation model. The difference stems

from the fact that both models are controlled by different counting

processes. In this regard, the reader is invited to review Sections

5.1 and 5.2, where the disaggregation procedure is described and model

structure is presented.

In this chapter, the required distributions for the NSWND model

are presented. The disaggregation algorithm is explained. The model

is tested using samples drawn from a NSWN process and the data for the

precipitation recording stations used in this study. Finally, some

alternatives are explored in order to improve model performance.

The NSWND model developed in this chapter is not unique. It is

entirely based on the. univariate distribution for the number of

occurrences in a time interval of length T. Different models could be

obtained if the history of the process up to a given time is



considered, for example, the blvariate distribution for the number of

occurrences in two consecutive disjoint time intervals. So far, the

reader must be aware of the difficulties encountered with the

distribution of the number of occurrences in the interval of length T.

These difficulties would be increased enormously if the mentioned

characteristics were to be included in a different NSWND model. In

this sense, new light must be added to the analytical treatment of the

NS process.

7.2 Distribution of N(T) conditional on Y

The distribution of the number of occurrences in a time interval

of length T, conditional on the precipitation recorded in the same

interval, is obtained from eq. (5.5)

^N(T) ^{1,2, (7.1)

where, for this case, N(T) is the Neyman-Scott (NS) counting process

and fy'^^ (.) is the n fold convolution of the common distribution of
the White Noise terms. Since no general analytical expressions are

available for fjj^.j,^(n), the next feasible step in eq. (7.1) is to

replace the convolution by a gamma distribution with scale parameter

and shape parameter n, under the assumption that White Noise terms are

independently and identically distributed following an exponential

distribution with parameter n. The final result is

^N(T)|y^"^
(n-1)! y ^N(T)^'^^ j

(1,2,..)
(7.2)

k=l (k-1)!



In order to compute the distribution in (7.2), values for are

obtained using the procedure described in Section 6.13, which includes

the empirical extrapolation model.

7.3 Distribution of conditional on Y, N(T) and

The objective in this section is to present the distribution of

the ith White Noise term, U^, given the recorded precipitation in the

interval of length T, Y, given N(T), and given that i-1 previous White

Noise terms, , j=l,..,i-l, have taken values u^, j=l,..,i-l. This

distribution was already derived in Section 5.4. The general result,

when the White Noise terms are independently and identically

distributed as f^^(u) , is given in eq. (5.25)

4"" "<"1+1'
^U,|<Y,U, - W '(0,Rp<"l>
1  1-J.

(7.3)

with

R.= y - 2 u.

(7.4)

R^-y

For i-1, eq. (7.3) simplifies to

When the White Noise terms follow the exponential distribution

with parameter /i, the following set of expressions is obtained

n-i-1 , „ n-i

^U.|(Y,U. ,)(V - <^i-V / ̂  ^(0,R,)<^
1'^ -1-1 t

(u,) (7.6)

f„jY<"l' - <5- - / y""' l(0,y)<"l> (7.7)



f R.- u. 1
\|(Y,U T
1  i-1 _ n-i

(7.8)

V ̂i" [ ^ ^ - ^i) ] (7.9)

where F^ is a value assigned to the cdf, 0<Fj^l and ecj. (7.9) gives

the corresponding quantile. As before for the PWND model, eq. (7.9)

facilitates simulation procedures.

7.4 Distribution of T conditional on N(T)
■~n

Finding the distribution of the vector of arrival times T in the
—n

interval (0,T), conditional on n arrivals in the same interval, was an

easy task for the PWND model. However, for the NSWND model this

distribution is far from easy to find. No solution is provided for

this problem in the literature reviewed for this research.

The approach followed here to find the distribution of T is
~n

based on the one-to-one relationship between the counting

specification and the arrival times specification for a point process.

Analytical derivations were carried out successfully for n—1 and n=2.

For n—3, although a result was obtained for the joint pdf of , it

was considered too long and too difficult to verify and complete it to

the required distributions. For n<2, complete results are presented

and used in the NSWND model. For n=3, the result is presented for

sake of completeness. In order to provide arrivals times for n>3,

simulation and sampling procedures were designed and tested.

Derivations for the joint distributions of T for different n
■■ —n

values are lengthy. Details are given In Cadavid et al. (1991) . The

general procedure is described in the following paragraph.



vector of random variables

representing arrival times in the interval (0,T). Let t -
~n

[ti,t_,..,t ] be another vector such that 0<ti< t_< < t < T
^  1 2 n ■

In general, the joint pdf for is obtained via the operation (Taylor

and Karlin, 1984)

I  N(T)^-^^ ° {
^  At^.At2,...At^^ 0 ^ At^At^-.At^ (n)

p|^ N(0,t^)-0, N(tj^,t^+At^)=l, N(t^+Atj^,t2)=0, . . ,

N^Vl. N(t^+At^.T)=0 ] } (7.10)

In order to clarify eq. (7.10), let the event within brackets be

denoted by A. This event involves a total of 2n+l intervals. The key

step in the derivation of (7.10) is to realize that the joint

probability of A and N(T)=n is precisely the probability of A.

The term P[A] is computed from the joint probability generating

function for 2n+l intervals, using the results given in eqs. (6.36)

and (6.37), with k=2n+l and and the relationship defined by eq.

(6.43). In this last expression, care must be exercised in taking the

derivatives, a total of n, for those Zj associated with intervals
having one arrival.

The distribution of Tj^ , conditional on one arrival in the

interval (0,T), is

T^|N(T)-.l^h^
^  r aq exp(-Qtj^) apq exp [-a(T-1^) ]

1-q exp(-aT) 1-q exp[-a(T-tj^) ]

] ̂(0,T)^^1^ (7.11)



H _ q'^(T) ^ p"l - P Ln ^ + apT (7.12)
I-q exp(-QT) 1-q exp(-aT)

Recall that <^(T)= l-exp(-QT) and q=l-p. It is easy to verify how for

p—1 (Poisson process) eq. (7.11) collapses into the uniform

distribution in (0,T), as expected. Integration of eq. (7.11) yields

the cdf for T,

1-q exp(-at^)

1  r )
|N(T)—l^^l^ ^ ■—— - p Lnri|N(T) 1 1 I exp(-aT) 1-q exp(-at^)

^ '"'"=1 ] \0,T]<"=1>
For simulation purposes eq. (7.13) has to be inverted numerically.

The probability distribution function of T2 , conditional on two
arrivals in the interval (0,1), is

%\ N(T)=2^%^ " {
2 2 22  I a q exp[-a(t^+t2)] a pq exp[-Q(t2-t^)]

2  [1-q exp(-aT)]^ {1-q exp[-a(T-t^)]}^
[- q exp(-Qrt.) pq exp [-q(T-t. ) ]

Ao n +
i=l 1-q exp(-aT) 1-q exp[-a(T-1^) ]

^ ] } ^(0,t2)^h^ ^(t^,T)^^2^ (7.14)

H2 - j -2pq Ln ^ + 2QpqT -t-
1-q exp(-QT)

q^(T) [3q-2-(2q-l)q exp(-QT)]
[1-q exp(-aT)]'

^ [ P Ln i
/V L

-q exp(-aT) q<^(T)

1-q exp(-QT)
+ opT (7.15)



The cumulative distribution function for T2, conditional on N(T) being

2, is given in Cadavid et al., (1991).

The marginal pdf for T^^ is computed as

fT
^T^l N(T)=2^^1^ ^12! N(T)=2^-2^ ^^^2

and the final result is

^T^l N(T)=2^h^ " S~ {
22  j aq exp(-Qt^)[exp(-Qt^)-exp(-aT)]

^(T-t^)

[1-q exp(-aT)]

r q[exp(-at^)-exp(-aT)]- qiexp

(1-q exp[-a(T-t^)]}'

1-q exp[-a(T-t.,) ]
+ p Ln

-  r-q exp(-aT)

q exp(-at^)1  r q exp(,-Q
«P(T-t )

1-q exp (-

pq exp[-a(T-t.,)] >

+ P r I/Q T)^^l^1-q exp[-«(T-t^)] -■ J ^ (7.16)

From eq. (7.16), the marginal cdf for T^, conditional on two
arrivals in the interval, is

^T^l N(T)-2^^
2  /- q <^(t^) [l-2exp(-aT)+exp(-at^) ]

pq Ln 1-q exp(-aT)

2[l-q exp(-aT)]'

p q exp(-aT) [exp(atj^)-1]
1-q exp[-a(T-t^) ] [1-q exp(-aT) ] {1-q exp[-a(T-1^^) ] }

X  r+apqt, -t- -t- p Ln
2a '-1-q exp(-aT) 1-

+ aptj^ j J- I(o,T]^h^ ^(T,a.)^^l^

1-q exp(-aT)

q exp[-Q(T-t^)]

(7.17)



The distribution of T2 conditional on T^, both random variables

conditional on N(T)=2, is given by the expression

^12! [Tj^,N(T)=2]^^2^ ° ̂T2|N(T)=2^%^ / |N(T)=2
Replacing eqs. (7.14) and (7.15) in (7.18) and integrating gives the

following result for the cdf of T2 conditional on and conditional

on N(T)=2

'T2I [T^,N(T)=2]^^2^ "
2  T^l N(T)-2(tj^) ̂

oq exp(-Qtj^) [exp(-atj^) -exp(-at2) ]

[1-q exp(-aT)]^

r q[exp(-at^)-exp(-at2)]r qiexp(.-ac ;-exp(.-ac„;j
A  + p L

apq(^(t2-t^)

{1-q exp[-a(T-tj^) ]}'

1-q exp[-a(t2-t^)]1-q exp [-a(, t--1^ ; J
n ^ ^ +

1-q exp(-aT) p

q exp(-at^) pq exp[-a(T-t^)]

-q exp(-aT) 1-q exp[-a(T-t^)]

Hq exp(.-ac., ) p
Lh-_

1-q exp(-aT) 1-

] } ̂(t^,T]^^2^ ^(T,®)^^2^ (7.19)

The procedure to simulate T^ and T2, when N(T)=2, is as follows.

First, with a given value of the cdf, invert eq. (7.17) to obtain t^.

Second, with t^ and a different value for the cdf, inversion of eq.

(7.19) gives t2. Numerical methods must be used to invert eqs. (7.17)

and (7.19).

Finally, the pdf for T^, conditional on N(T)=3, is given here as

an incomplete result, since it was impossible to verify it and derive

the conditional and marginal distributions required for simulation.

The resxilt is



f  ̂ A ^N(T)(°> r q exp[-a(t^+t2+t3)]
%l "(T)-3<i3' - - j—— 1 — —— +

[1-q exp(-aT)]

2pq o
2 3 exp[-a(t2-t^) ] exp[ ]

{1-q exp[-a(T-tj^)]}'

q exp(-Qt^)

L-q exp(-QT)

pq exp[-a(T-t^)]

1-q exp[-Q(T-t^)]

a q exp[-a(t2+t3)]

[1-q exp(-aT)]"

a pq exp[-a(t3-t„)] n q exp(-at„)
+ Aa 1_ -I-

{1-q exp[-a(T-t2)])2 exp(-aT)

pq exp[-a(T-t2)]

1-q exp[-Q(T-t2)]

a q exp[-a(t^+t3)]

[1-q exp(-aT)]^

a pq exp[-a(t3-t^) ] r q expC-at^)
r

+ Aa

(1-q exp[-a(T-t^)]]' -I L 1.q exp(-aT)

pq exp[-aCT-tj) ] -i r a q exp [-a(t^+t2) ]

1-, exp(.a(I.t3)J ""J I- [1., exp(.«T)l2
Q pq exp[-a(t2-t^)]

(l-q exp[-a(T-tj^) ] )'

pq exp[-a(T-tJ]

1  9 ^ r q
-t- A a n _

J  i=l >- 1-

q  exp(-at^)

q exp(-aT)

1-q exp[-a(T-t^)]
.  1 \
+ P f- r, ̂  1 - J ^(0,T)^^l^^(t^,T)^'^2^^(t2,T)^*^3^ (7.20)

Figures 7.1 to 7.3 give examples of the cumulative distribution

functions represented by eqs. (7.13), (7.17) and (7.19).

The terms and H2 given before in eqs. (7.12) and (7.15) are

directly related to f^^3,^(n), for n=l and n=2. Note the presence of
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Figure 7.1 Example of the cdf for the first arrival time, conditional on one

arrival in the interval, for p=0.730, a=0.000356 1/min. and T—1440

min. .
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Figure 7.2 Example of the cdf for the first arrival time, conditional on two

arrivals in the interval, for A=0.000086 1/min, p-0.730, q-0.000355

1/min. and T-1440 min. .
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Figure 7.3 Example of the cdf for the second arrival time, conditional on two

arrivals in the interval, for A-0.000086 1/min, p-0.730, q-0.000356

1/min. , T-1440 min. and ti-400 min. .



(^-20). This is the reason for which

analytical expressions for these probabilities, for n from 0 to 3,

were given in Section 6.5.

7.5 Simulation and sampling of arrival times

During the operation of the NSWND model it may happen that more

than two arrival times are required in any interval of length T.

However, from the results presented in the previous section, any

attempt to derive more general distributions for the arrival times

does not seem feasible. In order to solve this problem, simulation

and sampling algorithms for arrival times were designed. They are

described in the following paragraphs.

To simulate arrival times, values for the NSWN model parameters,

A, p and a, are required. Also, the aggregation scale T is required.
Si

The simulation algorithm proceeds as follows:

1. Let the arrival time for the last cluster center be denoted as

*  . . *Initially, t^ is made equal to zero.

2. Sample an interarrival time, for the cluster arrival

process, from an exponential distribution with parameter A.

^  i'CThe arrival time for the kth cluster center is l^^k"

3. Sample the kth cluster size value, n2(k), from the geometric

distribution with parameter p.

4. Draw a total of n2(k) relative cluster member locations from

the exponential distribution with parameter a. Denote them by

\,j' ■
5. A subsample of size n2(k) of arrival times for the NS process

is computed as

tj- t^+ tj^^j , j-1, . . ,n2(k)



Steps 1 to 5 are repeated for as many values of k as required.

In the final step of the simulation, all subsamples are assembled in a

common vector. This vector is ranked from smallest to largest. Then,

the vector becomes a sample of arrival times for the NS process. A

generic element of this vector is denoted by t^^, i-1,..., n^, where n^

is the total number of arrival times.

The number of intervals of length T^ in the vector of arrival

times is

n - int
a

where int (.) is the integer part operator. An additional vector of

length n^ is created. A generic element of this vector, ij, gives the

number of arrival times in the jth interval.

With the information provided by the simulation, the algorithm to

draw n arrival times in the interval (0,T), n>3, works in the

following way;

1. If the jth interval has n arrivals (ij—n), the arrival times

to use in the disaggregation process are:

t^- t|^- (j-l)Tg, for all such that (j-l)T^< tj^< jT^

After this, make that the same interval is not used

twice.

2. If no interval with n arrival times is found, two empirical

options are available. In the first one, n arrival times are

drawn from a uniform population in the interval (0,T^). In

the second option, the sample of arrival times is split and

rescaled. A uniform number t in the interval -2n-l^
s

is drawn and n consecutive arrival times, greater than r^, are



selected. Draw a second uniform number, r^, in the interval

(t ,,t ). The required arrival times are computed as
n -n-i n -n
s  s

t, - T
k  o

r r
f  o

T^, for all tj^ such that t^< tj^<

The uniform sampling defined in step 2 is, in a certain extent,

justified by the linear shape of the distributions presented in

Figures 7.1 to 7.3.

7.6 Disaggregation model algorithm

In order to operate the NSWND model, the following information

must be provided: aggregation and disaggregation scales, model

parameters, definition of the empirical model to extrapolate the

distribution of the number of occurrences, recorded precipitation

sample, seeds for generation of random numbers, tolerances and number

of iterations for numerical solution of equations, and sampling method

for arrival times. As before for the PWND model, the NSWND model is

operated on the sample for a given month.

The ratio between aggregation and disaggregation scales is

R- T /T .
a  d

and the result must be an integer number. The aggregated or recorded

sample is denoted by y., i-l,..,N , and the disaggregated series is
X  3L

denoted by yf, j''l,..,RN , where N is the total sample size,
J  a a

collection of all years, available for the specific month at the

aggregation scale.

Before proceeding to disaggregate of values, the following

operations are performed in the order given: computation of the

coefficients in the empirical extrapolation model, computation and



extrapolation of the pdf for the number of occurrences in the

interval, and simulation of arrival times for the NS process.

To disaggregate the ith recorded precipitation value y^, the

model proceeds as follows:

- If 0, the value is disaggregated into zero values:

yj= 0. j=-(R-l)i+l, . . ,Ri

- If yj^ is missing (y^<0) , make the disaggregated series, yf,
equal to a negative value representing missing data, for j from

(R-l)i+l up to Ri.

-  If y^ is positive, the algorithm operates in the following way:

1. Sample a value for N(T ), n, conditional on y., from the
di 1.

distributions given in eq. (7.2).

2. If n=l, make u^= y^. Otherwise, sample n-1 White Noise

values from the distribution defined by eqs. (7.4) and

(7.9). The last White Noise value is

u - y. - S u,

3. If n=l, use eq. (7.13) to generate one arrival time. If

n"2 , eqs. (7.17) and (7.19) are used to sample two

arrival times. For n>3, use the sampling algorithm

described in Section 7.5 Arrival times in (0, T^) are

denoted by t,^.

4. The sequence of ordered pairs ((i-l)T^+t^,Uj^) , k=l,..,n,

is a sample realization of the process in the interval

((i-l)T , iT ), which preserves the NSWN process and the
S. 3.

recorded amounts of precipitation. From this sequence,

disaggregated values are computed using the expression



7.7 Testing the NSWND model

As explained before for the PWND model, the procedures and

results presented in this section are not intended as exact

statistical tests of hypothesis for the NSWND model. They are

oriented to asses the goodness in model operation and its performance,

when the underlying process controlling precipitation formation is a

NSWN process.

In the first trial, the NSWND model was applied systematically to

all months comprising simulation 1, as described in Section 6.9, to

disaggregate from daily values (T^=1440 min.) to hourly values (T^-60

min.). Disaggregaticn runs were made with parameters estimated at the

aggregation scale using the weighted least squares (WLS) method.

The first part of the analysis is focused on correlogram

reproduction. Figure 7.4 presents plots of the theoretical

correlogram for simulation 1, computed using eq. (6.91), with

parameter values given in Table 6.3, and the sample correlograms

estimated from disaggregated series. For these last series, the

average correlogram is also plotted. According to Figure 7.4, results

are far from good.

Since one of the problems observed in this study and reported in

the literature is the incompatibility of the model at different

temporal scales, it was decided to obtain new disaggregated samples

for NSWN simulation 1, with parameters estimated at the disaggregation

scale (T^=60 min.), using the WLS technique. Figure 7.5 compares

theoretical and sample correlograms for the disaggregated series.

Improvement of results is outstanding, as shown in Figures 7.4 and
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Figure 7.4 Theoretical and estimated correlograms for NSWN disaggregated

series, for simulation 1, using parameters estimated at T -1440
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Figure 7.5 Theoretical and estimated correlograms for NSWN disaggregated

precipitation series, for simulation 1, using parameters estimated

at T-60 min..



In a third attempt, the same disaggregation procedure was

followed using population parameters, values for which are given in

Table 6.3. Figure 7.6 presents the corresponding results. Although a

slight improvement is obtained, bias in the estimated correlograms,

similar to that appearing in Figure 7.5, is still present.

Several of the assumptions made for NSWND model development were

investigated as possible causes for the bias present in Figures 7.5

and 7.6, by making additional disaggregation runs, all of them with

population parameters for simulation 1. In the first step, the

exponent 9 and the number of points n^ defining the empirical

extrapolation model for the pdf of the number of occurrences were

changed. No improvement was produced.

The next step consisted in testing the methodologies used to draw

arrival times, when the required number is not available in the

simulated sample. In fact. Figure 7.6 was obtained with samples

disaggregated by splitting and rescaling. Results for uniform

sampling are given in Figure 7.7. Comparison of both figures does not

show any improvement. Therefore, no differentiation will be made on

these two methodologies in the sequel.

A possible explanation for the bias in the correlogram is in the

concept of cluster. Although the disaggregation model has been built

around a clustering process, the model itself does not recognize the

presence of a cluster. In other words, when working on a given

interval, the model ignores the state of the process in previous and

future intervals. As stated before, developing a model including this

feature, given the current state of the art, would represent enormous

difficulties. A second possible explanation is in the simulation of

arrival times. However, since no theoretical results are available
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Figure 7.6 Theoretical and estimated correlograms for NSWN disaggregated

precipitation series, for simulation 1, using population parameters

(Sampling by splitting and rescaling).
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Figure 7.7 Theoretical and estimated correlograms for NSWN disaggregated

precipitation series, for simulation 1, using population parameters

(Uniform sampling)



for the joint distribution of 3 or more of these times, this statement

must be left as hypothetical. Therefore, it is accepted that the

model, as built, is yielding its maximum, as in Figures 7.6 and 7.7,

and no further improvement appears feasible at this point.

In order to complete the performance analysis for the NSWND

model. Table 7.1 gives a summary for statistics estimated for the

different disaggregated samples for simulation 1. In this table,

population values and statistics estimated from the original series

are also presented. These two sets confirm the goodness of the

simulation procedure, as mentioned in Section 6.9. Note the perfect

agreement in the mean, which is the only statistic preserved exactly

by the disaggregation algorithm. No preservation is obtained with

parameters estimated at T -1440 min.. However, when parameters
a

estimated at T-60 min. or population parameters are use, the degree of

preservation improves appreciably, with reduction in the standard

deviation for sample statistics. Adequate preservation of statistics

is detected up to order 3. Kurtosis is not preserved at all by the

disaggregation model.

The forced conclusion in this section is that the NSWND model

performs well, as long as disaggregation runs are made with parameter

values similar to those controlling the process at the disaggregation

scale. As stated by Foufoula-Georgiou and Guttorp (1986), the NSWN

model is scale dependent. However, this result is different from the

one obtained for the PWND model. The PWND model performed well when

the underlying process was PWN. For the NSWND model, even though the

underlying process is NSWN, no good performance is obtained with

estimation at any temporal aggregation level.



Table 7.1 Summary of statistics estimated from NSWN simulation 1
disaggregated hourly precipitation series, for different
choices of parameters to use in the disaggregation.

Sample

(in.) (in.)

0.34960 0.22836 10.43 594.00 0.41200 0.36084

0.35392 0.23282 10.50 154.93 0.41533 0.36222

0.02605 0.01149 0.734 28.72 0.02024 0.02527

0.39782 0.25636 12.17 228.40 0.44968 0.39318

0.31718 0.22013 9.86 134.24 0.36854 0.31939

Mean 0.35392 0.39443 17.90 485.47 0.08912 0.06839

St. Dev. 0.02514 0.07700 4.57 307.62 0.07693 0.06050

Max. 0.39782 0.50882 26.96 1236.9 0.20789 0.15147

Min. 0.31718 0.28156 11.57 167.45 -0.00193 0.00069

4

Mean

St. Dev.

Max.

Min.

0.35392 0.23640 11.93 262.69 0.37010 0.32834

0.02605 0.01473 2.97 208.88 0.04783 0.03994

0.39782 0.26481 18.4 773.84 0.43727 0.37933

0.31718 0.21710 9.22 111.81 0.29259 0.24475

Mean 0.35392 0.23295 11.00 186.62 0.39432 0.33806
St. Dev. 0.02605 0.01640 1.74 92.312 0.01892 0.01873

Max. 0.39782 0.27416 14.71 397.23 0.41922 0.38336
Min. 0.31718 0.21475 9.71 127.53 0.35846 0.31293

Samples 1: Population
2: Sample simulated series
3; Disaggregated series with parameters estimated at T^=

1440 min.

4: Disaggregated series with parameters estimated at T= 60
min.

5: Disaggregated series with population parameters



7.8 Application of the NSWND model to historical precipitation
samples

In order to further investigate the applicability of the NSWND

model, disaggregation was performed on a total of 22 months for the

precipitation recording stations used in this study. Table 7.2 gives

a summary of months and temporal scales used. Disaggregation for the

precipitation stations was performed with parameters obtained at the

aggregation scale using the WLS method. Tables 7.3 to 7.6 compare

historical monthly statistics with those estimated from disaggregated

series, for the four precipitation recording stations.

Table 7.2 Description of historical samples for application of the
NSWND model.

Station Months

(mm.) (mm.)

Denver Wsfo Ap
Greenland 9 SE

Idaho Springs
Ward

03,06,07,08,11
01,06,07,08,09,10
02,06,07,08,11
04,06,07,08,11,12

Results presented in Tables 7.3 to 7.6 are discouraging. Only in

a few months an acceptable preservation of statistics is observed:

Denver Wsfo Ap station, month 08; Greenland 9 SE station, month 10;

Idaho Springs station, months 02 and 11; Ward station, months 11 and

12. For the remaining months, qualitatively speaking, results are not

very different from those obtained with the PWND model. Occasionally,

preservation of isolated statistics, within certain months, is

detected.



Table 7,3 Comparison of statistics for historical and NSWN
disaggregated hourly series, for Denver Wsfo Ap station.

T = 1440.0 min., T,= 60.0 min., R=24

Month T:

X 10 (in.)

X 10'^ (in.)

r,(l)

No of positive values
Maximum value (in.)
No of missing values

Month T:

X 10 (in.)

S  X 10'^ (in.)
r

r (1)
r ̂  '

No of positive values
Maximum value (in.)
No of missing values

Month r:

Y X 10"^ (in.)
T

X 10'^ (in.)

g-

r/1)

No of positive values
Maximum value (in.)
No of missinE values

Historic Model

03

1.7654 1.7654

Historic Model

06

2.4015 2.4004

9.9400 20.8690 21.8696 29.2218

10.1243 18.9587 19.6414 21.7464

0.75611 0.02398 0.44566 0.06938

0.93552 0.98413 0.96046 0.98222

1679 413 996 448

0.27 0.89 1.11 1.51

744 744 732 720

07 08

2.4328 2.4328 1.9180 1.9172

29.1912 32.8376 25.5126 18.1306

23.6784 20.4192 29.2155 18.2313

0.20808 0.00435 0.22711 0.22099

0.96886 0.98556 0.97337 0.97372

811 376 713 704

1.59 1.42 1.55 0.89

744 744 12 0

11

1.1448 1.1443

7.4128 16.1538

10.0448 21.0141

0.72793 0.00254

0.95601 0.98978

1088 265

0.18 0.70

12 0



Table 7.4 Comparison of statistics for historical and NSWN
disaggregated hourly series, for Greenland 9 SE station.

T = 1440.0 min., T,— 60.0 min., R=24

Historic ModelHistoric Model

Month r; 01 06

-3
Y X 10 (in.)
T

2.7236 2.71620.4928 0.4909

-3
24.6846 32.7559S  X 10 (in.)

r
4.4552 7.7273

14.6383 25.1824 20.5936 18.8968

0.33363 0.00356 0.29861 0.01147r (1)

0.97756 0.99300 0.96379 0.98526

358

1.20

1632

No of positive values
Maximum value (in.)
No of missing values

581

0.10

892

182

0.47

792

877

1.08

1698

08Month T: 07

3.3891 3.3810Y X 10 (in.) 3.7136 3.6964

-3
36.0284 41.8252 34.4460 44.7681S  X 10 (in.)

T

26.7805 20.4987 21.0165 23.9666

0.23827 0.06284 0.30741 0.02149r (1)

0.95490 0.98122 0.96367 0.98551

377

2.67

768

No of positive values
Maximum value (in.)
No of missi.ng values

1114

2.24

2083

466

2.23

1968

943

1.58

830

10Month r: 09

-3
0.85760.8649Y X 10 (in.)

T
1.3185 1.3079

-3
8.414314.4451 17.5244 7.8730S  X 10 (in.)

r

26.5882 25.1378 13.3750 14.9211

0.28296 0.05227 0.46125 0.26717r (1)

0.97560 0.98837 0.97767 0.98175

488

0.30

48

592

0.29

272

No of positive values
Maximvim value (in.)
No of missine values

606

0.96

1089

291

1.18

888



Table 7.5 Comparison of statistics for historical and NSWN
disaggregated 5 min. series, for Idaho Springs station.

T =• 60.0 min., T,- 5.0 min., R-12

Historic Model Historic Model

Month T 02 06

-3
Y X 10 (in.)
T

0.4874 0.4769 0.1633 0.1567

-3
S  X 10 (in.) 2.5347 2.7972 1.9787 3.0526

5.9543 7.6663 19.9078 30.5880

r (1) 0.58321 0.51282 0.49601 0.03034

0.95951 0.96447 0.98948 0.99494

No of positive values
Maximum value (in.)
No of missing values

391

0.09

6035

196

0.19

4464

1069

0.03

13917

959

0.05

13332

08Month r: 07

0.2439 0.3329 0.3250Y X 10 (in.)
r

0.2589

5.4438 4.0560 6.0065X 10 - (in.) 3.3356

27.2398 44.0213 28.5674 28.7941

0.65573 0.12074 0.71317 0.11390r (1)

0.98765 0.99462 0.98389 0.99322

494

0.28

13972

213

0.29

13224

No of positive values
Maximum value (in.)
No of missing values

524

0.19

2198

234

0.51

1176

Month T: 11

Y^ X 10 (in.) 0.3904 0.3837

S  X 10 (in.)
T

2.54172.1816

6.7794 8.6837

0.45688 0.31757

0.96514 0.97195

1086

0.05

12050

889

0.06

11508

No of positive values
Maximum value (in.)
No of missinR values



Table 7.6 Comparison
disaggregated

T = 60.

of statistics for historical and NSWN

5 min. series, for Ward station.
0 min., T^= 5.0 min., R=12

Historic Model Historic Model

Month T: 0604

-3
Y X 10 ' (in.)
r

0.4434 0.4350 0.3732 0.3553

S  X 10 (in.) 2.6457 4.2293 7.1452 6.6769

.3023 14.2457 89.7420 41.7037

r (1) 0.66053 0.17750 0.41144 0.33532

0.96540 0.98288 0.98023 0.99207

No of positive values
Maximvim value (in.)
No of missing values

942

0.07

15977

475

0.14

15456

586

0.94

13562

247

0.61

12072

Month r 0807

-3
0.4041 0.3786 0.3497 0.3368Y X 10 (in.)

T

S  X lO'-^ (in.)
r

4.5347 7.1870 4.0986 5.7660

26.3664 35.4589 29.1518 27.7817

0.71801 0.06131 0.60646 0.08684

0.98014 0.99219 0.98251 0.99180

259

0.32

13044

532

0.31

14215

No of positive values
Maximum value (in.)
No of missing values

791

0.23

4819

332

0.54

2136

12Month r: 11

Y X 10 (in.)
r

0.2516 0.2477 0.0583 0.0574

1.6431 1.8343 0.7704 0.8550S  X 10 (in.)
T

7.0898 9.0486 13.4217 17.3165

0.32006 0.29825 0.05710 0.06854^(1)

0.97595 0.97922 0.99423 0.99499

150

0.03

14676

683

0.04

10332

170

0.02

15153

No of positive values
Maximum value (in.)
No of missinE values

778

0.04

10845



In general, the NSWND model tends to produce standard deviation,

skewness coefficient and probability of zero precipitation larger than

those estimated from historical samples. Lag-1 correlation

coefficient is usually smaller. Operationally speaking, parameters in

the model force the distribution of the number of occurrences.

conditional on precipitation in the interval, to be mostly

concentrated on the first three points (n=l, 2, and 3). The model

draws small sample values for N(T), causing the behavior of statistics

described before. For example, not a sufficient number of arrival

times is generated to preserve correlation. Further evidence of this

is found in the small number of positive occurrences and in the

maximum precipitation value being larger than the historical one.

Figures 7.8 to 7.11 complement results given in Tables 7.3 to

7.6. They show estimated correlograms and probability distribution

functions for the amount of precipitation, for some of the months. In

a few of them, as stated before, adequate preservation is observed for

shapes and values. However, in most of them, results are quite bad.

In the case of probability distribution functions, the model does not

reproduce large observed frequencies for small precipitation values.

As stated before, the NSWN model provides an adequate

representation of the precipitation process for some of the months in

the recorded samples. However, for other cases the NSWN model does

not fit the correlogram or estimated values for the parameters do not

exist. Under the assumption that the NSWN model fits the monthly

samples (Figures 6.13 and 6.14), incompatibility of model parameter

estimates at different temporal scales is found to be the reason for

the poor performance of the model. As shown in Section 7.6, the model

could generate adequate disaggregated series, resembling the
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Figure 7.8 Correlograms and sample probability distribution functions for

hourly historic and NSWN disaggregated precipitation series, for

Denver Wsfo Ap station, for months 03 and 08 (T^—60 min.)
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Figure 7.9 Correlograms and sample probability distribution functions for

hourly historic and NSWN disaggregated precipitation series, for

Greenland 9 SE station, for months 07 and 08 (Tj-60 min.)
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Figure 7.10 Correlograms and sample probability distribution functions for 5

min. historic and NSWN disaggregated precipitation series, for

Idaho Springs station, for months 02 and 08 (Tj~5 min.).
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Figure 7.11 Correlograms and sample probability distribution functions for 5

min. historic and NSWN di.saggregated precipitation series, for Ward
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historical ones, as long as parameters are similar to those obtained

at the disaggregation scale. Examination of Tables 5.9 to 6.11 show

that this same conclusion is valid for historical samples. For those

monthly samples where the disaggregation model performed fairly good,

parameter estimates at the aggregation and disaggregation scales tend

to be similar. Therefore, an alternative to improve NSWND model

applicability to historical precipitation samples is to improve

parameter estimation. In this regard, further analysis is given in

the closing sections of this chapter.

An important point is the impossibility to link bad performance

of the disaggregation model to the months to which disaggregation was

applied. This issue arises from the literature on temporal

precipitation models, where these models are mainly applied to summer

or summer transition months. In general, different seasons were

covered in the estimation and disaggregation processes. Results

suggest that the model tends to perform better for winter or winter

transition months. This is considered a sample result explained by

the similarity in parameter estimates. To the knowledge of the

author, there is no statistical evidence in this investigation to

differentiate models for different months or seasons, beyond the

seasonal partition adopted.

In Chapter 3 , a discussion on sample statistics variability and

dependence on aggregation scale was presented. Correlograms were

shown to be quite different at the aggregation and disaggregation

levels. For this reason, not only the adequacy of the NSWN model and

the model structure but the statistics used to estimate parameters

must be held responsible for the kind of results obtained here.



Perhaps, the use of more consistent statistics and larger information

in the samples could yield better results.

7.9 Variation of parameter estimates with the aggregation scale

Given that the observed precipitation process is well described

by the NSWN model, the reason for the bad performance of the model is

the use of parameter values which are not similar to those estimated

at the disaggregation scale. Figures 7.12 and 7.13 show the

variation of estimated parameter values with the aggregation scale for

NSWN simulation 1, for the method of moments and the WLS method.

Figures 7.14 and 7.15 present similar results for Denver Wsfo Ap

station and Greenland 9 SE station, respectively, for the WLS method.

Note that in Figures 7.12 to 7.15 the inverse of the parameter in the

exponential distribution for the White Noise terms, fi, is plotted

instead of the parameter itself. Also, plots in Figures 7.12 and 7.13

represent samples from the same population, since simulation 1 was

drawn from a stationary process, while Figures 7.14 and 7.15 are for

monthly estimated values. In all cases the scales considered were 60,

120, 240, 360, 720 and 1440 min.. No plots of this type were obtained

for samples at 5 min. measurement scale.

Although this point was not further investigated, Figures 7.12 to

7.15 show how the largest variability (around mean value) for

estimated parameter values appears for the smallest considered

aggregation scale. This behavior is more marked for A and a,

parameters which depend directly on the temporal scale T. Working

with eqs. (6.100) to (6.103), it is possible to show that p and p

depend on T only through variation of sample statistics with T, i.e.,

T does not appear in the expression used to compute those parameters.
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Figure 7.12 Variation of estimated parameter values with the aggregation scale

for NSWN simulation 1 (Method of moments).
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Figure 7.13 Variation of estimated parameter values with the aggregation scale

for NSWN simulation 1 (WLS method).
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Figure 7.14 Variation of monthly estimated parameter values for the NSWN model

with the aggregation scale, for Denver Wsfo Ap station (WLS method).
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Figure 7.15 Variation of monthly estimated parameter values for the NSWN model

with the aggregation scale, for Greenland 9 SE station (WLS method)



Plots presented in Figures 7.12 to 7.15 agree in the trend of

variation of estimated parameters with the aggregation scale. For A

and a, estimated values tend to decrease with the aggregation scale.

For p and 1/n, estimated values increase with the aggregation scale.

In terms of model performance, these trends translate in the model

recognizing a smaller number of storms, with a smaller number of

cluster members, located farther from the cluster center, each member

yielding a larger instantaneous amount of precipitation, as the

aggregation scale increases.

Plots derived for simulation 1 show that the variation of the

cluster arrival rate is uniform for the range of aggregation scales

investigated. The remaining parameters, p, a and /x, are characterized

by a moderate variation followed by a steep increase or decrease.

Although similar observations can be drawn from the plots for the two

precipitation recording stations, care must be exercised in the sense

that Figures 7.14 and 7.15 present seasonal estimated parameter

values.

Although parameter estimation has not been one of the main

objectives in this research, the course of the investigation has been

forced in this direction. No further analysis is given here in regard

to variation of parameter estimates with the aggregation scale, due

mainly to space and time limitations. However, an important feature

is observed in Figures 7.12 and 7.13. The existence of a region in

the temporal scale domain where estimated parameter values appear

highly consistent. For example, for simulation 1, this region could

be between 60 and 360 min.. The existence of the same region appears

feasible for the precipitation recording stations, as seen in Figures

7.14 and 7.15. Further investigation of this issue, using a more



complete set of simulated and recorded precipitation data and a wider

range of aggregation scales, could generate a stronger basis for the

applicability of the NSWN model and its corresponding disaggregation

version and a better definition of the trends described above. For

instance, the parameter in the geometric distribution, p, is expected

to increase asymptotically to 1.0, as the aggregation scale increases.

7.10 Improvement of parameter estimates using information at another
station

The last point examined in this research, in order to improve

parameter estimation, is based on the plots presented in the previous

section, where the trend of variation of estimated values with the

aggregation scale is shown to maintain a similar shape for simulations

and precipitation recording stations. Assume that disaggregation of

precipitation records is required at a station, called the problem

station, with records available at the aggregation scale. At the

same time, at a nearby station or at a station with a similar

precipitation regime, called the satellite station, records are

available at both the aggregation and disaggregation scales, T and
Qi

T^, respectively. Monthly statistics are computed and parameters for

the NSWN model are estimated using for example the WLS method, for the
A  A

three samples defined above. Let ̂ p(T) and ^g(T) denote any of the

parameters in the NSWN model estimated at a given aggregation scale

for the problem and satellite stations, respectively. It is assumed

that parameters to use in the disaggregation process at the problem

station can be obtained using the following simple linear scheme



In words, eq. (7.21) states that ratios of estimated values at the

aggregation and disaggregation scales are the same at both stations

for a given parameter.

The procedure described above was applied to a given month for

each one of the precipitation recording stations used in the study.

These months were selected from the ones used previously. Table 7.7

gives problem and satellite stations, months and aggregation and

disaggregation scales used in the disaggregation process.

Table 7.7 Description of historical samples for application of the
NSWND model using information at another station.

Problem Satellite Month

(min.) (min.)

Denver Wsfo Ap
Greenland 9 SE

Idaho Springs
Ward

Greenland 9 SE

Denver Wsfo Ap
Ward

Idaho Springs

144

144

6

6

Table 7.8 lists parameter values included in the disaggregation

process, computed according to eq. (7.21), with estimated values given

for every month and every station in Tables 6.9 to 6.12.

Table 7.8 Parameter values for application of the NSWND model using
information at another station.

Station Month X

(1/min.)
a

(1/min.) (1/in.)

Denver Wsfo Ap
Greenland 9 SE

Idaho Springs
Ward

0.10865

0.13626

0.16218

0.17772

0.22934

0.17731

0.02772

0.01521

0.96697

0.21657

1.75685

0.39336

11.8096

16.9685

86.6855

423.999



The disaggregation process was applied as described before.

Table 7.9 compares statistics for historical and NSWND disaggregated

series and Figures 7.16 to 7.19 present correlograms and sample

probability distribution functions for the same samples.

Table 7.9 Comparison of statistics for historical and NSWN
disaggregated hourly series, for some months of the
precipitation recording stations, when disaggregation is
performed using information at a nearby station.

Denver Wsfo Ap
Historic Model

Greenland 9 SE

Historic Model

Month T;

2.7236 2.71622.4015 2.4004

S  X 10 (in.) 24.6846 20.698021.8696 25.9850

18.3861 20.5936 12.595819.6414

0.29861 0.21842r,(l) 0.44566 0.40695

0.966650.963790.96046 0.97880

877

1.08

1698

810

0.81

1632

No of positive values
Maximiun value (in.)
No of missing values

996

1.11

732

534

1.05

720

Ward

Historic

Idaho Springs
Historic Model Model

04Month r: 08

-3
0.4434 0.4350Y X 10 (in.)

r
0.3329 0.3250

S  X 10*^ (in.) 3.33114.0560 3.8925 2.6457

10.53138.302328.5674 22.2482

0.361000.66053r (1) 0.71317 0.40425

0.976140.98389 0.98689 0.96540

662

0.08

15456

412

0.20

13224

942

0.07

15977

No of positive values
Maximum value (in.)

No of missing values

494

0.28

13972



HISTORIC
NSWNDM

O • - G- • -n -.

CZ] HIST. MASS AT ZERO
□  HIST. CONTINUOUS

E3 NSNNDM MASS AT ZERO
o  NSNNDM CONTINUOUS

HOURLY PRECIPITATION (IN. )

Correlogram and sample probability distribution function
for hourly historic and NSWN disaggregated precipitation
series, for Denver Wsfo Ap station, for month 06,
obtained using information at Greenland 9 SE station
(T,=60 min.)-



LEGEND

□  HISTORIC
o  NSNNDM

LEGEND

ra HIST. MASS RT ZERO
□  HIST. CONTINUOUS

0X3 NSNNDM MASS AT ZERO
o  NSNNDM CONTINUOUS

0.2 G

HOURLY PRECIPITATION (IN. )

Figure 7.17 Correlogram and sample probability distribution function
for hourly historic and NSWN disaggregated precipitation
series, for Greenland 9 SE station, for month 06,
obtained using information at Denver Wsfo Ap station
(T^=60 min.).
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Figure 7.18 Correlogram and sample probability distribution function
for 5 min. historic and NSWN disaggregated precipitation
series, for Idaho Springs station, for month 08, obtained
using information at Ward station T^=5 min.).
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Figure 7.19 Correlogram and sample probability distribution function
for 5 min. historic and NSWN disaggregated precipitation
series, for Ward station, for month 04, obtained using
information at Idaho Springs station (Tj=5 min.).



Values given in Table 7.9, when compared to values listed in

Tables 7.3 to 7.6 for the corresponding months, show that a good

improvement in disaggregation results is obtained when parameters to

use in the disaggregation process are corrected according to eq.

(7.21). Similar conclusions are drawn from Figures 7.16 to 7.19.

Note that improvement of results is obtained for the four months in

the four precipitation stations.

Although the technique illustrated above appears highly

promising, the following points must be brought into attention.

First, it is completely empirical. More complex versions of the

scheme in eq. (7.21) could be investigated. Second, the definition of

nearby stations is not clear so far and it does not follow a sound

criteria. As stated in Chapter 3, spatial location was not considered

in the selection of the precipitation recording stations. Spatial

correlation between them is unknown and the way in which they were

paired before obeys more to the stations having the same measurement

scales than having high correlation or similar precipitation regimes.

These two points could be attacked by formulation and use of space-

time models and more in depth analysis of similarities and spatial

correlation between stations.



Chapter 8

CONCLUSIONS AND RECOMMENDATIONS

8.1 Summary

This research has dealt with dlsaggregation of precipitation

records taken at short sampling inteirvals. These records are defined

as precipitation samples where intermittence is present. The need for

precipitation disaggregation algorithms is real in the sense that

investigation of certain hydrology processes, the study of some water

resources related problems and the solution of design problems may

require, in many instances, precipitation samples at a finer

resolution than those available or recorded. High resolution

precipitation records are scarce, costly and time consuming to

process, store and maintain.

Survey of the current state of the art in precipitation modeling

shows that only a few models have been built to perform

disaggregation. These models are empirical and they have not been

used in practice. Within the reviewed literature, two classes of

models appear suitable for formulation of disaggregation algorithms:

point process models and time series models. Within the first class,

continuous and discrete formulations are distinguished. The class of

point process evolving in continuous time is selected for this

investigation. Initially, four models are adopted: Poisson White

Noise (PWN), Poisson Rectangular Pulse (PRP), Neyman-Scott White Noise

(NSWN) and Neyman-Scott Rectangular Pulse (NSRP).



The working definition for disaggregation considers a stochastic

process governing precipitation intensity formation and a given

recorded sample. The idea is to produce precipitation samples at a

finer temporal scale which preserve the stochastic process, recorded

amounts of precipitation and statistical properties at two or more

temporal scales.

The general approach adopted in this research started with the

simplest model (PWN model) and work toward more complicated

formulations. However, tremendous difficulties were faced in the

analytical derivation of some of the required distributions to

formulate disaggregation methods based on Rectangular Pulse type

models. Therefore, the set of models analyzed in this study was

reduced to PWN and NSWN models.

Four precipitation recording stations located in Colorado were

selected to test the disaggregation models. A monthly partition was

adopted to account for within the year periodicity. For the four

stations, monthly statistics up to the fourth order, including

correlograras, were estimated at different temporal aggregation levels.

Sample probability distribution functions for the amount of

precipitation were considered also. The role of the aggregation scale

on estimated statistics, specially the correlogram, was investigated.

Results show that clustering and monthly periodicity are important

characteristics found in precipitation samples.

In order to perform disaggregation as defined above, and given

the selected models, distributions are required for the following

random variables, conditional on the recorded amount of precipitation

in a given time interval: number of occurrences. White Noise terms and

arrival times.



The PWN model is the simplest. Derivation of properties and

distributions is relatively easy, given the independence between

occurrences in disjoint time intervals for the Poisson process. An

important limitation of the model is the lack of serial correlation

for the amount of precipitation. Assuming that the PWN model

describes the recorded precipitation process, a second shortcoming is

given by the incompatibility of the model at different aggregation

scales, in the sense that parameter values estimated at different

aggregation scales are significantly different.

The NSWN model is based on a clustering stochastic process to

specify the arrival of precipitation in time. The degree of

complication in derivations is increased considerably as compared to

the PWN model. The distribution for the number of events in a given

interval is derived up to 20 occurrences. For larger number of

arrivals, an empirical model is proposed and tested. Traditional

method of moments is used to estimate model parameters. This method

usually gives a large number of estimation failures, specially for

large aggregation scales, and shows incompatibility in parameter

estimates. A second method is implemented based on moment properties

of the process and numerical minimization. The Weighted Least Squares

(WLS) method uses more information than method of moments and accounts

for sample variability or scattering of properties included in the

objective function. The main contribution of this method is a

decrease in the number of failures. However, the price paid is larger

variability in parameter estimates. This last method does not solve

the problem of model incompatibility in parameter estimates at

different aggregation scales.



From the analytical point of view, the formulation of a

disaggregation algorithm is successful for the Neyman-Scott White

Noise model. However, a major difficulty is found in the derivation

of the distribution of arrival times, conditional on a given number of

occurrences in the interval. The problem is solved for one and two

arrivals. For larger number of occurrences, simulation and sampling

algorithms are implemented and tested. The disaggregation model is

tested on NSWN simulated series and on monthly samples for the four

precipitation recording stations. Model incompatibility at different

temporal scales inhibits good performance of the model. However,

analysis of the variation of parameter estimates with the aggregation

scale suggests the existence of a feasible region for application of

the NSWN model, where parameter estimates appear highly compatible.

Furthermore, use of precipitation information at a nearby station is

shown to be a promising alternative to improve parameter estimation.

The information at the other station is in the form of variation of

parameter estimated values with the temporal scale.

8.2 Conclusions

The conclusions given bellow pertain to the Poisson White Noise

(PWN) and the Neyman-Scott White Noise (NSWN) models. Conclusions are

presented for the model itself and for the disaggregation algorithm

derived from each model. Finally, some general conclusions are given.

1. From theoretical and practical points of view, the PWN model

is not suitable for description of the precipitation process.



This conclusion is based on its lack of serial correlation and

in the incompatibility of the model at different aggregation

scales.

2. The PWN model played an important analytical role in this

investigation. It was helpful in devising the disaggregation

algorithm. Some of the analytical results obtained for the

PWN model can be directly applied to any model with White

Noise elements, especially the Neyman-Scott White Noise model.

3. The PWN model with exponential White Noise terms performed

very well when applied to PWN simulated series, both in

estimation of parameters and disaggregation of samples. In

this sense, the model is recommended for its use in other

fields of hydrology or other areas of science, for which the

Poissonian assumption can be sustained. No improvement was

found in treating the White Noise terms as gamma distributed.

4. The NSWN model is conceptually sound, at least in regard to

modeling precipitation arrivals. Derivation of properties and

distributions for the NSWN model was difficult and in some

cases no analytical solutions were found. The model is

complex, specially in regard to its application to

precipitation disaggregation.

5. The incompatibility of parameter estimates for the NSWN model

at different temporal aggregation scales makes it of limited

application in precipitation modeling. However, for a given



scale, with parameters estimated at that scale, the model is

adequate for description of the precipitation process and its

use is recommended, for instance, for simulation purposes.

For this particular scale, the NSWN model is able to reproduce

the type of correlation found in precipitation records. This

conclusion is based on the observation that sample statistics,

specially correlograms, behaved similarly for NSWN simulated

series and recorded precipitation samples.

6. The disaggregation version of the NSWN model performed well as

long as parameter values used were similar to the ones

estimated at the disaggregation scale. This behavior was

observed for both simulated and recorded precipitation

samples. Given the above requirement, the model has the

ability to reproduce sample precipitation statistics up to the

third degree, including correlograms, for the aggregation and

disaggregation scales. Preservation of sample probability

distribution functions was also observed. In this sense, the

NSWND model is considered a good model and a contribution to

precipitation disaggregation.

7. Analysis of the variation of estimated parameters with the

aggregation scale for the NSWN model suggested the existence

of a region in the temporal scale domain where the NSWN model

appears compatible. This region could be a feasible region

for application of the model. However, this point requires

further investigation.



8. In regard to parameter values to be used in NSWN precipitation

disaggregation process, the inclusion of information at a

nearby station or at a station with a similar precipitation

regime has been shown to improve results. As before, this

issue needs additional investigation.

9. The Weighted Least Squares method implemented in this research

decreases the number of estimation failures as compared to the

traditional method of moments, for the NSWN model. Method of

moments complements the optimal estimation technique and they

should be used in this way. The Weighted Least Squares method

performed well for two of the reasons that motivated its

development: use of more information and subjective

incorporation of sample variability or scattering of

statistics in the estimation procedure. In this sense, the

use of the Weighted Least Squares method makes the NSWN model

applicable to more precipitation samples in a wider range of

temporal scales.

10. Incompatibility of model parameters was observed for the NSWN

model for simulated and precipitation samples. Therefore, the

incompatibility is generated by the model itself, by the

statistics used in the estimation process and by the amount of

aggregation present in the samples and in the statistics.

The general conclusion, found in almost every study of this type,

is that the problem of precipitation disaggregation has not been

exhausted or solved completely. This research provides additional
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explora£ion. Results are not completely satisfactory, although under

certain circumstances, the developed disaggregation models have been

shown to perform well. Important contributions have been given in the

analytical description and practical application of the Neyman-Scott

process.

Introduction of the NSWN model generates correlations by means of

clustering. The use of White Noise terras remains unrealistic. In

this sense, one should not expect the NSWN model to be universal,

fitting any precipitation regime. Many cases shown in this report

exemplify good and bad fits. Goodness of fit is usually measured

through reproduction of correlation at one or several temporal scales.

When the NSWN fits well a recorded precipitation sample, the

disaggregation version performs properly conditional on the use of

parameter values similar to those estimated at the disaggregation

scale.

The PWN and NSWN models were applied to limited ranges of temporal

scales. The PWN model was applied from 5 min. to monthly scales.

Attempts of disaggregation from monthly to daily values were based

mainly on the observed lack of correlation at these two temporal

scales. The NSWN model was not applied to the monthly case since

correlation is required for parameter estimation. Applications for

the NSWN model were constrained to the range 5 min. to 1 day.

The PWN and NSWN models belong to the class of temporal

precipitation models, which include the temporal scale as a variable

to represent the process. However, as shown above, practical

considerations impose a range of application on the temporal scale.

Further constraints are found when model parameters are estimated.

These may not exist or if they exist incompatibility may arise from



loss of information as samples are aggregated or from poor fit of the

model to precipitation samples.

Investigation of the variation of parameter estimates with the

temporal scale for the NSWN model has suggested the existence of the

feasible region in the temporal domain where parameter estimates

appear compatible. It seems reasonable to expect the feasible region

to be smaller than the limited range of application of the model.

In addition to the above concepts, there is a component of

impossibility in precipitation modeling (Smith, 1990). As aggregation

proceeds, from no model and with no method of estimation can one

accurately extract the underlying precipitation process, as defined

and used in this investigation. As mentioned earlier, for example, it

is not possible to obtain reasonable NSWN parameter estimates from

precipitation samples aggregated to a monthly level.

8.3 Recommendations

The recommendations given here arise from the whole examination

of this research. Investigation of precipitation modeling and

disaggregation of precipitation in particular must be continued.

Consideration should be given to disaggregation procedures based on

Discrete Autoregressive Moving Average (DARMA) models, discrete point

processes theory and more causal or Black Box type models.

Analytical improvement of the Neyman-Scott White Noise

disaggregation model does not seem feasible given the current state of

the art. If this model and in general temporal precipitation models

continue to be used, priority must be given to the topics of parameter

estimation, model compatibility and feasible region in the temporal

scale domain for model application. Modified estimation approaches



could include the probability of zero precipitation as an additional

property. New estimation approaches could try to fit the theoretical

pdf for the amount of precipitation to its sample counterpart. In

regard to estimation techniques, additional research is required in

relation to sample variability.

As shown before, the investigation of variation of parameter

estimates with the aggregation scale has the potential to improve

results. As a first point, results presented in this research should

be expanded to include more simulations, more precipitation recorded

data and a wider range of aggregation scales. This will verify the

existence of the feasible region in the temporal scale domain for

application of the NSWN model. Success in the first point could

direct the research toward the investigation, using NSWN simulated

samples, of dimensionless curves showing the variation of parameter

estimated values with aggregation scale and their possible use in

parameter estimation and precipitation disaggregation. Parameters

with dimensions 1/time could be made dimensionless by multiplying by

the aggregation scale. A major difficulty will be posed by the

parameter indexing the distribution of the White Noise terms, since

this will be dependent on dimensions. These curves must be indexed by

population parameters and sample size.

In order to apply disaggregation models, estimation of parameters

in this research has been kept at the aggregation scale, without using

information at other precipitation recording stations. However, it

has been shown that use of precipitation information at a nearby

station or at a station with similar precipitation regime could

generate better results. As stated before, tests performed in this

research did not go beyond pairing stations according to the



measurement scale. Necessarily, in order to expand this point, a

space-time formulation of the process would be required, which would

pose large difficulties. Topics to investigate would include the

spatial correlation values required to improve parameter estimation

and formulation of joint estimation of parameters for two or more

stations.

The variation of parameter estimates with the aggregation scale

presented in this research justified the use of a simple linear scheme

to correct parameter values to be used in the NSWND model. In this

sense, the investigation of more complex schemes could be coupled to

some of the recommendations given before.

Disaggregation algorithms developed in this research are

applicable to long samples of recorded precipitation, although nothing

inhibits their application to isolated precipitation storms. An event

based Neyman-Scott White Noise disaggregation model could be

implemented assuming that it is possible to isolate clusters or storms

in the precipitation record. The isolation is subjective.

Distributions for the following random variables would be required:

total precipitation depth or total yield per storm, storm duration,

cluster size (number of White Noise terms) conditional on the total

cluster yield, kth White Noise term conditional on the cluster size,

on k-1 previous White Noise terms and on the total amount of

precipitation in the cluster. For example, location times for the

White Noise terms with respect to the cluster center arrival time are

the order statistics of an exponential distribution.

Traditional method of moments when applied to temporal

precipitation models is characterized by a large number of estimation

failures. Extension of the Weighted Least Squares method to other



models for which estimation is based on fitting sample correlograms

could expand the applicability of these models. Candidate models for

this are: Poisson Rectangular Pulse, Neyman-Scott Rectangular Pulse

and Barttlet-Lewis Rectangular pulse. Within this same line of

research, a systematic investigation of the variation of parameter

estimates with the aggregation scale would allow the verification and

extension of the concept of feasible region for model application to

these other models,
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