SUITABILITY OF BASINS TO WEATHER MODIFICATION AND STATISTICAL EVALUATION OF ATTAINMENT

Interim Report for Period July 1, 1968 December 31, 1969

Prepared for: Bureau of Reclamation Office of Atmospheric Water Resources Denver, Colorado

PROJECT SKYWATER

Under Contract No. 14-06-D-6597

by Dr. H. J. Morel-Seytoux
Associate Professor of Civil Engineering
January 10, 1970

HYDROLOGY PROGRAM
COLORADO STATE UNIVERSITY
Fort Collins, Colorado

ABSTRACT

The objective of the ongoing research is to develop definite mathematical techniques to evaluate or predict the hydrologic results of actual or hypothetical atmospheric water resources programs.

Work performed to date has yielded very positive results. Three different techniques utilizing runoff show that the chances of significant evaluation of the Colorado River Basin Pilot Project for the planned four or five years of operations are very high.

TABLE OF CONTENTS

	Page
A	INTRODUCTION . 1
B	OBJECTIVES AND MAJOR RESULTS OF PROGRAM 1
C	WORK DIVISIONS AND RELATION TO OBJECTIVES 5
D	DAILY RUNOFF AS A TEST VARIABLE 6
E	OPTIMAL GROUPING OF BASINS 7
F	MULTIPLE TARGET-CONTROL TEST 9
G	HYDROLOGIC DATA SYSTEM 12
H	CONCLUSIONS . 12
I	WORK PLANNED FOR PERIOD, JANUARY 1, 1970 JUNE 30, 1971
J	REFERENCES . 15
Figure 1	General configuration of and location of gages within the Upper Basin of the Colorado River 33
Figure 2	General configuration of and location of gages within the Colorado River Basin Pilot Project area .
Figure 3	Minimum number of years needed for evaluation for combinations of two through six sub-basins out of 14 in the Upper Basin of the Colorado River . . . 10
Table 1	Number of years required for the detection of a 10% increase in the means at the 95% level.
Table 2	Optimal combinations of gages for various group sizes in the Upper Basin of the Colorado River .
Table 3	Minimum number of years to detect the increase of 10% in runoff means using canonical variables.

A. INTRODUCTION

The purpose of this report is:

1. To summarize the activities sponsored by the Bureau of Reclamation, Office of Atmospheric Water Resources, in the Hydrology Program of the Civil Engineering Department of Colorado State University, for the period July 1, 1968 to December 31, 1969.
2. To focus attention on the major results that may help the Bureau in planning future programs,
3. To document in detail the various aspects of the work done, and
4. To briefly state the work planned for the next period, January 1, 1970 to June 30, 1971.

B. OBJECTIVES AND MAJOR RESULTS OF PROGRAM

The Colorado State University Hydrology Program has two clearly defined objectives. They are the development of definite techniques to:

1. determine the hydrologic suitability of regions considered for precipitation management and,
2. evaluate the results of future programs in general and of the Colorado River Basin Pilot Project [1,2] in particular.

Work performed has yielded very positive results. Three different techniques utilizing runoff show that the chances of significant evaluation of the pilot programs for the planned four or five years of operation are very high. Assuming that a uniform 10% increase in winter precipitation is induced by the precipitation management program, it was
found that 3 and 6 years of operations for the Northern* and Southern areas respectively (see Figures 1 and 2) would be necessary for evaluation at the 95% significance level and 50% power. However, past experiments in these areas indicate that if 10% is a reasonable estimate for the Northern area, a 30% increase is more likely for the Southern area [3]. In addition, the operations in these areas will most probably be randomized on a $60-40$ basis. Under these conditions adjustment of the previously quoted numbers 3 and 6 years leads to the results that 9 and 3 years would rather be needed. This means that for a five years plan of operations the chances of obtaining significance in the Southern area are very good, i.e., much better than 50%. On the other hand the corresponding chances in the Northern area are much less than 50%.

These results suggest from a strict water resources evaluation point of view that randomized operations be conducted in the South and non-randomized ones be conducted in the North.

[^0][^1]

Fig. 1. General configuration of and location of gages within the Upper Basin of the Colorado River

C. WORK DIVISIONS AND RELATION TO OBJECTIVES

The major effort of the program focused on the development of techniques of evaluation. Results from a prior contract (4) indicated that years needed for evaluation would be in the range of 10 years (assuming a uniform 10% increase in runoff). The results were based on a target-control test for individual basins, using seasonal runoff as a test variable and for basins in the Upper Colorado River Basin. It seemed almost natural to investigate extensions of the method. Several extensions were possible.

One of the first ideas to come to mind concerns the test variable: seasonal runoff. With that variable the sample size is the same as the number of years of experiments. Could not daily runoff be used? A priori it would tremendously increase the sample size, a prime determinant factor in the efficiency of a statistical test. It turned out that the improvement was not as high as anticipated but the results indicate that the method reduces the number of years on the average by a factor of three (5) which is of course a result of high practical significance.

Again the work done during the prior contract (4) considered evaluation for individual basins. Would not the efficiency of evaluation be increased by considering a group of basins? Because within a large region there are many sub-basins this led to the next question: how does one select, say, 6 basins out of 15 to insure positive results in a minimum amount of time? What weight should be given to each individual basin within the combination? Fundamentally the low efficiency of the two-sample tests is due to the high natural variability of runoff. A procedure was developed (6) to select a combination of basins with minimal variation. Application of the technique has indicated that

3 and 6 years for the Northern and Southern areas respectively would be needed (assuming a uniform 10% increase in winter precipitation). Finally a direct extension was carried. Retaining seasonal flow as a test variable and the concept of a target and control, the new procedure considers the multiple targets and controls case. The value of this technique lies primarily in its realistic character for evaluation of large scale operational programs.

Subsidiarily another division of effort was pursued. It is concerned with the design and implementation of a computerized and efficient data system.

In the following sections the achievements of each work division are reviewed.

D. DAILY RUNOFF AS A TEST VARIABLE

Daily runoff would a priori seem to be a better variable for evaluation than seasonal runoff because so many more observations are available per year. Unfortunately sequential observations of daily flow are not independent. To utilize this variable in the target control conditional Student's t-test, only independent observations can be used. To obtain a proper set of independent daily runoff observations the stochastic structure of daily runoff has to be established. Studies of many high elevation stations in Colorado have shown that (1) independence could only be secured during the rising limb of the hydrograph, and (2) that a lag time of 20 days between observations was required during that period. That lag is the same for all the stations in Colorado, and seems also valid for California's high elevation stations. The correlation coefficient between target and control is always lower for daily
runoff than for seasonal runoff. This is a negative result. Nevertheless the efficiency of the target-control test is improved on the average by a factor of three. Sample of results is shown in Table 1. (The complete results are given in Appendix 2).

One area of future worthwhile investigation lies in the development of a test that does not require independent observations. With such a test the full potential of daily runoff might be realized.

E. OPTIMAL GROUPING OF BASINS

The problem of selection of basins for evaluation can be formulated as follows:

Given a large region consisting of N (say 12) basins and the fact that only a smaller number of them, n (say 5) can be used for evaluation for economic reasons, what is the best way to select them to insure minimal time evaluation?

It has been shown previously (4) that in the case of evaluation using a single basin (case $\mathrm{n}=1$) the basin to be selected should be the one with minimum value of the ratio C / E where C is the runoff coefficient of variation and E the expected percentage increase.

Indeed, the pilot project areas involve many sub-basins within their boundaries. In this case, it is advisable to choose a favorable combination of sub-basins for evaluation. For this purpose, a new variable Q^{*} is constructed by a linear combination of n runoff variables, $Q_{i}(i=1,2, \ldots, n)$, i.e.,

$$
\begin{equation*}
Q^{*}=\alpha_{1} Q_{1}+\alpha_{2} Q_{2}+\ldots+\alpha_{n} Q_{n}=\sum_{i=1}^{n} \alpha_{i} Q_{i} \tag{1}
\end{equation*}
$$

TABLE 1

NUMBER OF YEARS REQUIRED FOR THE DETECTION OF A 10% INCREASE IN THE MEANS AT THE 95% LEVEL

6 months: March-August
4 months: April-July
G.T. means greater than.

Where Q_{i} is the runoff from an individual sub-basin. Much freedom is gained from a combination of runoff variables from various basins such as (1) compared to the use of a single basin runoff. The freedom gained is twofold. First, there is freedom gained in the process of selecting n basins among many. For example, where there are 15 ways of selecting one basin out of 15 , there are 3003 ways of selecting five basins out of 15 . Second, there is freedom gained in the process of selection of the parameters α_{i} once n sub-basins have been chosen.

The procedure is to minimize the C / E ratio of the combination subject to a few constraints of a hydrologic nature. The constraints require that the expectation of the random variable Q^{*} be the mean of the total runoff for the group of n basins, and that the expected increase of the mean of Q^{*} be that of the total runoff for the group of n basins.

The efficiency of the procedure is illustrated in Figure 3 and in Table 2. (The complete results are given in Appendix 3).

One area of future worthwhile investigation lies in the determination of the reliability of the calculated number of years. Whereas this number decreases with the size of the combination, its reliability also decreases. In a certain sense an optimal size must exist at which the additional decrease in the calculated number of years is not worth the added variability and therefore risk.

F. MULTIPLE TARGET-CONTROL TEST

The advantage of such test using seasonal flow lies primarily in its realistic character. There are indeed many targets and many controls in large regions such as the pilot project area. Truthfully there are too

Fig. 3. Minimum number of years needed for evaluation for combinations of two through six sub-basins out of 14 in the Upper Basin of the Colorado River

TABLE 2
OPTIMAL COMBINATIONS OF GAGES FOR VARIOUS GROUP
SIZES IN THE UPPER BASIN OF THE COLORADO RIVER

Number of Sub-basins in Combination	CSU ID	Name	Weight Factor α	Number of Years Needed for Evaluation
1	1850000	Stillwater Creek above Lake Grandby	1.0	17
2	1800900	Strawberry Creek near Grandby	1.0	32
	1850000	Stillwater Creek above Lake Grandby	1.0	32
3	1762500	East Fork Troublesome Creek near Troublesome	-2.38	
	1804500	Vasquez Creek near Winter Park	. 59	8.2
	1930000	North Inlet at Grand Lake	2.39	
4	1762500	East Fork Troublesome Creek near Troublesome	-1.83	
	1801800	Meadow Creek near Tabernash	-4.00	6.0
	1804500	Vasquez Creek near Winter Park	. 14	
	1930000	North Inlet at Grand Lake	3.10	
5	1762500	East Fork Troublesome Creek near Troublesome	-3.60	
	1801800	Meadow Creek near Tabernash	-6.99	
	1804500	Vasquez Creek near Winter Park	2.67	3.8
	1810000	Willow Creek near Winter Park	. 34	
	1930000	North Inlet at Grand Lake	4.15	
6	1762500	East Fork Troublesome Creek near Troublesome	-3.37	
	1801800	Meadow Creek near Tabernash	-5.45	
	1801816	Ranch Creek near Frazer	-2.31	2.9
	1804500	Vasquez Creek near Winter Park	3.60	
	1810000	Willow Creek below Willow Creek Reservoir	. 07	
	1930000	North Inlet at Grand Lake	4.51	

many. Again the real problem in the selection of several targets and controls among many possible candidates. Two techniques were investigated and applied for that purpose: principal components and canonical variables analysis. For minimal time evaluation the latter is more effective. Table 3 illustrates the results. It shows that for purpose of evaluation a pair of combinations, the optimal pair, is more effective than several but it is not as representative. (The complete results are given in Appendix 4).

One area of worthwhile future investigation lies in a study of the sensitivity of the results to fluctuations in various parameters.

G. HYDROLOGIC DATA SYSTEM

The effort was a continuation of a previous contract work. Daily runoff data were added in a limited way to the system. Also a data collection work was initiated for the headwaters of the Rio Grande and tributaries. The additional collection is limited to stations within the state of Colorado.

H. CONCLUSIONS

The work effort was rather rewarding. Several techniques of evaluation have shown their value and their applicability. They show that a positive hydrologic evaluation can be achieved for the Colorado River Basin Pilot Project within the planned four or five years of experiments with a high probability.

Work remains to be done to ensure complete rigor in the new procedures, to test their general applicability and sensitivity. These techniques

TABLE 3
MINIMUM NUMBER OF YEARS TO DETECT THE INCREASE OF
10 PERCENT IN RUNOFF MEANS USING CANONICAL VARIABLES

Type	No. of canonical variables in target	No. of canonical variables in control	Value of $\underline{\mu}^{\prime} \underline{v}^{-1} \underline{\mu}$	τ^{2}	Minimum number of years to detect the increase, N^{*}	Remarks
$\mathrm{N}-\mathrm{CN}-4$	1	1	5.037	5.468	3	The minimum value of N^{*} is obtained from the larger of $N^{*}=\tau^{2} \underline{\mu}^{\prime} \underline{V}^{-1} \underline{\mu}$ or $N^{*}=k+1$ where k
	2	2	5.197	7.640	5	
	3	3	5.198	9.646	7	
	4	4	5.368	11.655	9	
N-CN-6	1	1	5.877	5.468	3	
	2	2	6.040	7.640	5	is the total number of variables in both target and control.
	3	3	6.060	9.646	7	
	4	4	6.124	11.655		
S-CS-4	1	1	1.271	5.468	5	
	2	2	1.305	7.640	6	
	3	3	1.388	9.646	7	
	4	4	1.581	11.655	9	
S-CS-6	1	1	1.423	5.468	4	
	2	2	1.465	7.640	6	
	3	3	1.690	9.646	7	
	4	4	1.752	11.655	9	

were developed in parallel and independently. Better results can probably be achieved by integrating them into a single technique.
I. WORK PLANNED FOR PERIOD JANUARY 1, 1970 - JUNE 30, 1971

In a meeting with Mr. P. Hurley and Mr. D. James of the Office of Atmospheric Water Resources, on October 23, 1969 a work plan for the second half of the contract period was discussed. This work plan calls for:
a. Careful selection of fairly large rivers, within the San Juan Mountains area (Colorado River Basin Pilot Project area) to be used for evaluation, e.g. Piedra, San Juan, Animas, Tomichi, etc.
b. Gathering of all pertinent hydrologic information on these watersheds.
c. Application of all evaluation techniques developed under the contract to these rivers and determination of tables of probability of attainment of statistical significance as a function of the parameters (e.g. 4 or 5 years of operation, 5, 10...30, 35% increase in runoff, etc.)
d. Study of the effect of basin geometry and other characteristics on the evaluation techniques.
e. Documentation of the recommended technique of evaluation in a step by step procedure readily usuable by the contractors of the evaluation.

J. REFERENCES

1. Bureau of Reclamation, U. S. Dept. of the Interior, "Reclamation to conduct Project Skywater Program in Colorado Rockies this winter," September 22, 1968, pamphlet.
2. Bureau of Reclamation, U. S. Dept. of the Interior, "Scientific Review Plans and Design of the Colorado River Basin Pilot Project with Appendix: Design Changes and Decisions" Proceedings: Skywater Conference V, liebruary 1969, Denver, Colo.
3. Bureau of Reclamation, U. S. Dept. of Interior, "Installation and Operation of an Opportunity Recognition and Cloud Seeding System for Operational Weather Modification Research in Colorado," Lolorado River Basin Pilot Project, Atmospheric Water Resources Program, Uctober 1969.
4. Morel-Seytoux, 11. J., "Suitability of Basins to Weather Modification and Statistical Evaluation of Attainment," Final report for the Bureau of Reclamation, Hydrology Program, Colorado State University, Fort Collins, Colorado, 1967, Part 1, 62 p.
5. Dumas, A. J. and Morel-Seytoux, H. J., "Statistical Discrimination of Change in Daily Runoff," Colorado State University Hydrology Paper No. 34, August 1969.
6. Nakamiche H. and More1-Seytoux, H. J., "Suitability of the Upper Colorado River Basin for Precipitation Management," Colorado State University Hydrology Paper No. 36, October 1969.
7. Nimmannit V. and Morel-Seytoux, H. J., "Multivariate Analysis of Hydrologic Changes." Colorado State University Hydrology Paper, No. 37, November 1969.

Appendix 1
PERSONNEL

PERSONNEL

1. Dr. Hubert J. Morel-Seytoux, Associate Professor of Civil Engineering, Principal Investigator for the duration of the contract (July 1, 1968 - June 30, 1971).
2. Mr. Andre J. Dumas, M.S. graduate of Colorado State University, Civil Engineering Department. Mr. Dumas was responsible for the study of statistical discrimination of change in daily runoff (July 1, 1968 - January 31, 1969).
3. Mr. Hiroshi Nakamichi, M.S. graduate of Colorado State University, Civil Engineering Department. Mr. Nakamichi was responsible for the study of suitability of the Upper Colorado River Basin for Precipitation Management (July 1, 1968 - August 31, 1969).
4. Dr. Viboon Nimmannit, Ph.D. graduate of Colorado State University, Civil Engineering Department. Dr. Nimmannit was responsible for the study of regional discrimination of change in runoff (July 1 , 1968 - September 30, 1969).
5. Dr. Richard L. Brustkern, Ph.D. graduate of Colorado State University, Civil Engineering Department. Research Associate. Dr. Brustkern is responsible for the Hydrologic Data System (January 1, 1970 June 30, 1970).
6. Dr. Mike Behbehani, Ph.D. graduate of Colorado State University, Department of Physiology and Biophysics. Research Associate Dr. Behbehani is responsible for the computer operations (Jan. 1, 1970 - June 30, 1970).
7. Mr. Jungkeun Sonu, graduate student (January 1, 1970 - June 30, 1971).

Appendix 2

STATISTICAL DISCRIMINATION OF CHANGE IN DAILY RUNOFF

STATISTICAL DISCRIMINATION OF CHANGE IN DAILY RUNOFF by

Andre J. Dumas and Hubert J. Morel-Seytoux

August 1969

HYDROLOGY PAPERS COLORADO STATE UNIVERSITY Fort Collins, Colorado

Several departments at Colorado State University have substantial research and graduate programs oriented to hydrology. These Hydrology Papers are intended to communicate in a fast way the current results of this research to the specialists interested in these activities. The papers will supply most of the background research data and results. Shorter versions will usually be published in the appropriate scientific and professional journals, or presented at national or international scientific and professional meetings and published in the proceedings of these meetings.

This research is part of a research project supported by the U.S. Department of Interior, Bureau of Reclamation, Office of Atmospheric Water Resources at Colorado State University with H. J. Morel-Seytoux as principal investigator, under contract numbered BR 14-06-D-6597.

EDITORIAL BOARD
Dr. Arthur T. Corey, Professor, Agricultural Engineering Department
Dr. Robert E. Dils, Professor, College of Forestry and Natural Resources
Dr. Vujica Yevjevich, Professor, Civil Engineering Department

by
 Andre J. Dumas

and
Hubert J. Morel-Seytoux

HYDROLOGY PAPERS
COLORADO STATE UNIVERSITY
FORT COLLINS, COLORADO 80521

ACKNOWLEDGMENTS

The present paper is based primarily upon Mr. Andre J. Dumas' Master of Science Thesis in the Department of Civil Engineering, Colorado State University entitled, "Detection of a Change in Watershed Response by a Stochastic Analysis of Daily Streamflows." The work was supported by the U.S. Bureau of Reclamation, Contract numbered BR $14-06-\mathrm{D}-6597$, whose help is gratefully acknowledged.

The U.S. Geological Survey, Water Resources Division, Automatic Data Processing Unit, supplied the daily flow data. Their gracious cooperation is acknowledged.

RELATION OF HYDROLOGY PAPER NO. 34 TO RESEARCH PROGRAM:
"HYDROLOGY OF WEATHER MODIFICATION"

The present study is part of a more comprehensive project which has as one of its objectives the development of methods of evaluation of atmospheric water resources programs. Correlatively the application of the methods to a variety of basins forms a basis for selection of suitable watersheds, basins or regions.

Several approaches are possible and are pursued. This report discusses one of them. Two other approaches will be discussed in forthcoming papers with tentative titles, "Suitability of the Upper Colorado River Basin for Precipitation Management" and "Multivariate Discrimination of Change in Seasonal Runoff."

TABLE OF CONTENTS

Chapter Page
Abstract vii
I Introduction 1
1.1 Water resources planning 1
1.2 Evaluation of atmospheric water resouces attainments 1
II
The Target-Control Conditional Student's t-Test 3
2.1 An optimization problem in detection 3
2.2 Target-control conditional Student's t-test 3
III
Streamflow Data Used for Study 6
3.1 Physiography and location 6
3.2 Availability of records 6
3.3 Virginity of the flows and accuracy of the measurements 6
3.4 Correlation target-control 6
IV The Stochastic Structure of Daily Flow 9
4.1 The naive approach 9
4.2 Standardization of daily streamflows 9
$V \quad$ Data Processing and Analysis 15
5.1 Characteristics of the daily flow time series 15
5.2 Autocorrelation analysis 15
5.3 Selection of a sequence of independent daily flows 16
5.4 Target control correlation 16
VI Detection of the Suspected Change in Runoff 22
6.1 Model for the effects of seeding 22
6.2 Generation of the seeded data 22
6.3 Results of the Student-t Test 23
VII Conclusions 25
List of Symbols 26
References 27
Appendix 1 28
Appendix 2 29

Figure		Page
1	Target control regression lines before and after seeding operations	4
2	Locations of the selected stations in the Upper Colorado River Basin	6
3	Characteristics of the daily flow random function $Q(t)$	10-12
4	An illustration of $r(k)$ versus time for Station 12 and different values of k.	13
5	An illustration of $r(k)$ versus k, for a given day and at a given station	15
6	Correlogram: $\overline{\mathrm{R}(\mathrm{k})}$ versus k	19-20
Table		
1	Expected Number of Years to Detect a 10% Increase at the 95% Level of Significance for a Few Pairs of Target-Control Stations in the Upper Colorado River Basin	2
2	Description of the Stations Selected .	7
3	Target-Control Correlation on the Basis of Seasonal Flows.	8
4	Length and Availability of Historical Record for Daily Flows	8
5	Correspondence Between Calendar Year Date, Water Year Date and Day Index	13-14
6-a	An Illustration of the Results for $R(k)$ Versus lag K, for the 21 Years of Records	16-17
6-b	Autocorrelation $R(k)$ Values of its Mean $\overline{R(k)}$ and of its Variance $\operatorname{Var}[\mathrm{R}(\mathrm{k})]$ versus k	18
7	Target-Control Correlation on the Basis of Daily Flows .	20-21
8	Results of the Student t-Test for the Detection of a 10% Increase in the "Daily Means"	23
9	Number of Years Required for the Detection of a 10% Increase in the Means at the 95\% Level	24

Abstract

The purpose of this study was the development of a technique for rapid detection of the occurrence of a suspected hydrologic change in high mountain watersheds. A method has been developed that uses a sequence of independent daily flows.

This procedure is superior to previous ones based on seasonal or yearly flows. The results of this investigation show the use of daily, instead of seasonal flow, data in a Student t-test reduces the number of necessary years of data for detection by an average of five in 14 out of the 20 cases studied, or by an average of three for the 20 cases. All of the cases come from the Upper Colorado River Basin. The study is particularly relevant to the planned cloud seeding operations of the Bureau of Reclamation in high elevation areas of the Colorado Rocky Mountains.

The statistical procedure of detection relies on the Target Control concept and the application of a conditional Student t-test, a test of the difference between the adjusted means obtained by the regression lines between Target and Control for the seeded and non-seeded periods.

Andre J. Dumas* and Hubert J. Morel-Seytoux**

Chapter I

INTRODUCTION

1.1 Water resources planning. The increasing demand, and in some parts of the world the desperate need for water, has almost inevitably led men in positions of responsibility to be concerned with the problem of water shortage in particular and of water resources in general [1]. Planning of water resources had, until the relatively recent past, been confined primarily to the task of redistribution in space and time of the naturally available water, or to the task of better utilization and reutilization. It is only recently that the idea [2] of increasing the water supply beyond the natural yield of the hydrologic cycle has started to be realized. At present at least two engineered means of increasing the water supply seem to hold promise for the near future: ocean water desalination [3] and precipitation management [4].

The water situation is particularly critical in the Colorado River Basin. The Colorado River system is the largest in the United States that flows mainly through lands with a chronic water deficiency for cultivation of crops [5]. The average specific (or unit) yield of the Lower Colorado River Basin is only 0.3 inches, the lowest yield in the United States for a drainage area of this size [5]. (Unit yield is the depth, in inches, of the cumulative volume of flow during a given period, in this instance a year, when volume is spread uniformly over the whole watershed.) The Upper Colorado River Basin does not yield much better, 2.2 inches. It outranks only a few basins, the Rio Grande and the Missouri basins, but it is far below the Mississippi's 10 inches and the Columbia's 16 inches. Since the $1940^{\prime} \mathrm{s}$, the basin's population has increased rapidly with an accompanying growth in demand on the region's water resources for irrigation, industrial and domestic uses [6]. Over the decade from 1951 to 1960 , the population of the five states comprising the Upper Colorado River Basin has increased by 40 percent, while over the same period the population of the nation as a whole has increased by only 20 percent [7]. Population projections and the associated water demands indicate a need for actual importation of approximately 3 million acre-feet annually by the year 2080 [8]. Development of the vast oil-shale resources alone would require an additional 1 million acre-feet by the year 2000, assuming a daily oil production of four million barrels [5,8]. "This amount of water simply is not there now." [8] Although "the Colorado Basin is closer than most other basins in the United States to utilizing the last drop of available water for man's needs."[5]

Of course there are alternatives to importation to meet these demands: better utilization, reutilization, desalination and precipitation management. Prohibition by Congress to undertake studies of importation schemes for the next ten years emphasizes the serious need for considering the alternatives. Desalination in the Upper Colorado River Basin appears largely unfeasible at present. The lowest quoted cost estimate suggests water in southern California may cost $\$ 35$ per acre-foot at the source, with storage, transport, and delivery costs additional [5], and of course it is uphill all the way! Within 400 miles from the source it is estimated the cost would have risen to $\$ 120$ [8]. On the other hand the cost of water produced by cloud seeding winter storms, from ground-based silver iodide nuclei generators, is estimated at roughly $\$ 2$ per acrefoot, and under full scale operations it is estimated an average additional 1.9 million acre-feet would appear annually in the rivers [9]. The potential economic and quantitative significance of precipitation management is now reasonably well established.
1.2 Evaluation of atmospheric water resources attaimments. Successful water resources management in this field requires techniques for detection and measurement of the increase in water yield induced by weather modification. The main difficulties in this evaluation are caused by (a) the natural variability of hydrologic variables which exceeds the expected range of the increase induced by man, and (b) the inaccuracy of the discharge measurements. Simple statistical tests have been developed [10]. They have not proven very sensitive and, as a result, require long periods of observations, prior to and during seeding operations, in order to give satisfactory test results. Furthermore, these tests are insensitive when experiments are performed during a dry period of annual stream flow sequences. Therefore, more sophisticated techniques were needed. The target control concept was introduced, and different tests were devised [10], including a Chi-square test and a Student-t test. In a recent study [11], a targetcontrol Chi-square test was applied to the mean annual or mean seasonal flows of some rivers and it was shown the number of years M (or sample size) necessary to detect, at the 95% level of significance and 50% power a given percentage h of increase in the yearly or seasonal flows was:

$$
\begin{equation*}
M=4\left(1-\rho^{2}\right) \frac{C_{V, T}^{2}}{h^{2}} \tag{1}
\end{equation*}
$$

[^2]where ρ is the correlation coefficient between the target and the control watersheds, and $C_{v, T}$ is the coefficient of variation of the target watershed. Calculations were performed for a few stations in the Upper Colorado Basin to get an idea of what could be expected if seeding operations were conducted in the area. In particular the expected number of years to detect a 10%
increase was calculated [11]. The results are shown in Table 1. The results are encouraging though still too high. The best results, 4 and 6 , have to be discounted largely because of the proximity of the target and control and the resulting quasi-impossibility to prevent contamination. What then can be done to reduce the number of years needed to obtain significance?

TABLE 1
EXPECTED NUMBER OF YEARS TO DETECT A 10% INCREASE AT THE 95% LEVEL OF SIGNIFICANCE FOR A FEW PAIRS OF TARGET-CONTROL STATIONS IN THE UPPER COLORADO RIVER BASIN, BASED ON SEASONAL RUNOFF

| | TARGET | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

There are several avenues open to answer this fundamental question. One avenue is to improve the test to which the data are subjected. It was not promising. Another avenue consists of grouping observations in some favorable manner for several targets, or better, for several targets and controls. Both avenues are presently being pursued. The last avenue, which is the subject of this study, looks for an optimal test variable, given the test, i.e., a single target-control conditional Student's t-test [11].

First one must answer the following question: which variable, annual, seasonal, monthly or daily runoff, is a better detector? Theoretically this question has been answered, in general and the daily runoff variable is the most promising. The basic underlying idea is that the shorter the time interval --by which the time series of river streamflow is divided into a discrete time series--the more information one will derive. (Daily flow is defined in
this study as the average daily runoff at a section of river, the averaging being done either from a continuous record of an automatic recorder or from river stage measurements taken at representative time intervals to make interpolation and averaging consistent.) From a practical point of view, however, it is not so clear cut because the power of the detection procedure depends not only on the sample size, but also on the variability of the runoff (which increases as the unit of time decreases), the magnitude of the measurement error, the degree of correlation between the variable in the watershed of interest and a control watershed, the physical nature of the suspected cause of the change in runoff, and the magnitude of the resulting effect. The purpose of this study was to initiate a preliminary investigation of the practical value of daily runoff for evaluation. The qualified conclusion of the study is that, indeed, it has practical merit.

Chapter II

THE TARGET-CONTROL CONDITIONAL STUDENT'S t-TEST

2.1 An optimization problem in detection. The problem of early detection of a change in watershed runoff received impetus as controversy characterized the field of weather modification. Early weather modification experiments were conducted without much care for the statistical design of the experiments. In an early stage of a new science this oversight is understandable. What purpose is it to draw tables of the number of years for significance at a given level versus all possible hypothetical percentage increases, if even the order of magnitude of that increase is totally unknown? The availability of the table would not have affected the decision to proceed with the experiments. On the other hand, once the order of magnitude of the increase is known, the table becomes crucial. It is crucial because the percentage increase in runoff turns out to be small, on the order of 10%. Careful inspection of the table becomes a requirement in the design of new experiments. It may lead to a variety of questions; e.g., will it be possible to show significance at say the 90% level within the contemplated five years of experiments? If not, can significance be attained by shifting the experiments to a different location? If not...well, how good was the table in the first place?

At this point it is necessary to state clearly the objective of a method of detection. For different objectives different methods will be required. Ideally one wants to find the technique that will permit one to ascertain, in the minimum amount of time, that an identified cause, e.g., cloud seeding, has affected a selected measure of watershed response at a chosen significance level. Once that technique has been found, it becomes possible to calculate the number of years needed for significance at a given power. (The power is the probability that significance will be attained within this number of years.) This number of years depends on several parameters, the chosen significance level, the chosen power, the degree of certainty of identification of the cause (i.e., is cloud seeding really responsible for the detected change?), the selected response (e.g., hourly precipitation, monthly runoff), the characteristics of the watershed (i.e., the nature of the transfer function between cause and effect), and the magnitude of the change in watershed response. Ideally one would like to find the technique for which the calculated number of years is minimum for all possible values of the previously listed parameters.... It cannot be done.....Even less ambitious optimization problems cannot receive a general solution. A technique will be optimal for a certain range of parameters but not for others [12]. One is therefore forced to limit the original ambition to a more realizable level. Besides, the optimization problem will not present itself usually in this unconstrained form. The detection scheme must be compatible with a variety of restraints of diverse nature. For example, from a statistical point of view the target-control pair Dolores-Hermosa (line 3 of Table 1) would be ideal. However, the accuracy of targeting with ground-based generator is not sufficiently developed to permit such a close control.

Short of overall optimization one must settle for suboptimization. Of course once this step is taken,
and there is no other choice, there is an infinite variety of possible options. As discussed in the Introduction there are several avenues for research. In the present study the following suboptimization problem was considered. Given that the cause of a suspected change has been identified (be it cloud seeding, timber cuts, etc.)--that its effect can be measured as runoff, that the statistical technique to which the data will be subjected is the single targetcontrol conditional Student's t-test--what is the optimal test variable, seasonal or daily runoff? This is the problem.

It is a much restricted problem in appearance but an important practical one. This assertion is validated by the conclusion of the study. Without the benefit of the conclusion it could nevertheless be inferred a priori from the following heuristic reasoning. In the limited number of cases for which formulae are actually available to calculate the number of years, this number is inversely proportional to the number of data per year. Using daily flow versus a four-months seasonal flow could therefore bring a reduction by two orders of magnitude. One expects a greater variance for daily flow. Because the number of years is proportional to this variance, one expects a reduction in the potential gain from using daily flow. Similarly the expected decrease in the coefficient of correlation between target and control will further limit the gain. It is difficult to believe these effects could completely wipe out a gain of 100! However, the most severe limitation will come from the choice of the test itself. It is therefore important to discuss this test and the assumptions underlying its derivation. This is the purpose of the next section.

One might ask, "Why not use a better test?" The answer to this question is two-fold: if there is one, it is well hidden in the literature, and second it is fairly evident, from experience, that sophistication in statistical techniques reaches rapidly a point of diminishing returns unless paralleled with judicious selection of variables to be tested and a thorough knowledge of the particular local hydrologic conditions. Again this point is justified by the conclusion of the present study.
2.2 Target-control conditional Student's t-test. The goal of weather modification experiments is to increase the runoff in the watershed, and it is logical to postulate the null [12] hypothesis:
H_{o} : There is no change in mean runoff due to the weather modification experiments. This will be tested against the alternative [12] hypothesis
H_{a} : There is a change in mean runoff caused by man's weather modification experiments. If the art of weather modification is advanced enough the possibility of a decrease need not be considered and a one-tailed [12] test is implied. If not, a twotailed [12] test is implied.

The level of significance α which is the probability of rejecting a true hypothesis, will be either 5% or 1%.

The target-control concept uses the relationship existing between the streamflows, from a treated or target watershed, to those from an adjacent and untreated watershed; the latter serving as a control to the previous watershed, since its flows are not affected by the cloud seeding operations. Additional information from the control watershed can be used to discriminate a change in the target watershed behavior. In other words, it makes the target look as though it has an effective coefficient of variation much smaller than its actual one. The larger the coefficient of correlation between target and control the smaller the apparent coefficient of variation of the target. This concept assumes:
(a) The target and control streamflows are highly correlated.
(b) The control watershed is sufficiently far from the target watershed to preclude contamination, but close enough to provide a high correlation.
(c) The target streamflow observations are independent.

With (x) being the series of independent flows for the control and (y) the corresponding series for the target, a bivariate normal distribution is assumed for the foint series (x, y) for the non-seeded period. The seeded period will provide two new sets of observations (ξ) and (η); (ξ) and (n) being the sets of independent flow values, respectively, for the control and the target. It is assumed that the coefficient of correlation ρ between target and control has not changed during the seeded period, and that the joint series (ξ, η) has also a bivariate normal distribution.

When the above conditions are satisfied, any significant difference in streamflow, taking into account the relation between the two watersheds, beyond that associated with a natural variation can be attributed to cloud seeding effects.

Because variances of the target and control variables and their coefficient of correlation are assumed unaffected by seeding, the two regression lines, one for the sample before seeding, one for the sample after seeding, are parallel (see Fig. 1). Then, the null hypothesis is that the two populations have the same regression line, that is, the difference in ordinates at the origin $A B$ is not significantly different from zero. It should be noted that whether or not the control mean has changed under seeded conditions will not affect the test.

The null hypothesis can be formulated in this way: the adjusted means of the two populations, $\bar{y}_{x_{0}}$ and $\bar{\eta}_{x_{0}}$ at $x=\xi=x_{0}$, are equal, whatever the value of x_{0}. The adjusted means are:
for the non-seeded period, $\bar{y}_{x_{0}}=\bar{y}-\bar{\hbar}(x-\bar{x})$, and
for the seeded period, $\bar{n}_{x_{0}}=\bar{n}-\bar{\hbar}(\xi-\bar{\xi})$.
Where \bar{b} is the weighted average regression coefficient:

$$
\bar{b}=\frac{\sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)+\sum_{j=1}^{M}\left(\xi_{j}-\bar{\xi}\right)\left(\eta_{j}-\bar{n}\right)}{\sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}+\sum_{j=1}^{M}\left(\xi_{j}-\bar{\xi}\right)^{2}} .
$$

Fig. 1 Target control regression lines before and after seeding operations

The difference $A B$ is:

$$
\bar{y}_{x_{0}}-\bar{n}_{x_{0}}=\bar{y}-\bar{n}-\bar{b}(\bar{x}-\bar{\xi})
$$

AB is a linear combination of three independent observations $\bar{y}, \bar{\pi}, \bar{b}$ with population means μ_{y}, μ_{η}, B and variances $\frac{\sigma^{2}}{N}, \frac{\sigma^{2}}{M}, \frac{\sigma^{2}}{\sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}+\sum_{i=1}^{M}\left(\xi_{i}-\bar{\xi}\right)^{2}}$
respectively. Then $A B$ has a normal distribution with mean $\mu_{y}-\mu_{\eta}-\beta(\bar{x}-\bar{\xi})$ and variance

$$
\sigma^{2}\left[\frac{1}{N}+\frac{1}{M}+\frac{(\bar{x}-\bar{\xi})^{2}}{\sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}+\sum_{i=1}^{M}\left(\xi_{i}-\bar{\xi}\right)^{2}}\right]
$$

where σ^{2} is the common variance of the arrays.
Under the null hypothesis, $H_{0}: \mu_{y}-\mu_{\eta}=\beta(\bar{x}-\bar{\xi})$, the statistic

$$
\begin{equation*}
t_{0}=\frac{\bar{y}-\bar{n}-\overline{(\bar{x}-\bar{\xi})}}{s\left[\frac{1}{N}+\frac{1}{M}+\frac{(\bar{x}-\bar{\xi})^{2}}{\sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}+\sum_{j=1}^{M}\left(\xi_{j}-\bar{\xi}\right)^{2}}\right]^{\frac{1}{2}}} \tag{2}
\end{equation*}
$$

where s^{2} is the unbiased estimate of the common variance of the arrays:
$s^{2}=(1-r) \frac{\left[\sum_{i=1}^{N}\left(y_{i}-\bar{y}\right)^{2}+\sum_{j=1}^{M}\left(n_{j}-\bar{n}\right)^{2}\right]}{N+M-3}$
$r^{2}=\frac{\left[\sum_{i=1}^{N}\left(x_{1}-\bar{x}\right)\left(y_{i}-\bar{y}\right)+\sum_{j=1}^{M}\left(\xi_{j}-\bar{\xi}\right)\left(n_{j}-\bar{n}\right)\right]^{2}}{\left[\sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}+\sum_{j=1}^{M}\left(\xi_{j}-\bar{\xi}\right)\right]\left[\sum_{i=1}^{N}\left(y_{i}-\bar{y}\right)^{2}+\sum_{j=1}^{M}\left(n_{j}-\bar{n}\right)^{2}\right]}$
follows Student's t distribution with ($N+M-3$) degrees of freedom [13].

On the basis of the data, t_{o} can be computed; a subroutine has been written for this purpose [14], and it performs a one- or two-tailed test by comparison of t_{o} with a table of the Student's t distribution as a function of the number of degrees of freedom.

Chapter III

STREAMFLOW DATA USED FOR STUDY

All streamgage stations used in this study are located in the Upper Colorado River Basin within the State of Colorado. The target and control watersheds must satisfy some criteria as closely as possible. These conditions, which form the basis for the selection of the watersheds, are now discussed.
3.1 Physiography and location. The statistical investigation of weather modification attainments as presented in this paper were undertaken in connection with a project of the Bureau of Reclamation, Office of Atmospheric Water Resources. A pilot project to increase winter precipitation over high elevation watersheds in two areas of the Upper Colorado River Basin [15] is to be initiated in 1969.

The watersheds selected for this study are located in the Upper Colorado River Basin and have elevations as near as possible to the 9,000 feet level--a level determined [9] as a requirement to start a nucleation process in cloud seeding experiments. The majority of the selected stations are about 7,000 feet high.

No restriction was imposed on the size of the drainage area. Watersheds of more than 100 square miles are preferred because they are more likely to provide a more representative response to a man-made increase in precipitation.
3.2 Availability of records. A rather sizable number of data is required when working with daily flows; therefore, the computations were handled by the CDC 6400 computer at Colorado State University. Because better and fast processing of data can be done on magnetic tapes, watersheds with available data on these tapes were selected. Selection of thirty-one stations in the Upper Colorado River Basin from a U.S. Geological Survey tape was based on the accuracy of historical records.
3.3 Virginity of the flows and accuracy of the measurements. Most of the rivers of the Colorado River Basin have been subjected at one time or another, to some kind of human intervention, regulation or diversion. For the purpose of detection of an increase due to artificial precipitation, virginity of the flow is strongly required because man-made diversions or regulations by dams often far exceed the range of the expected increase due to cloud seeding and are not often consistent in time and in quantities from year to year.

Streamflows affected by Transmountain Diversions were excluded because such diversions generally involve important quantities of water, and the data required for corrections were not available.

Streamflows with upstream regulation or transbasin diversions were excluded except where the dams causing the regulation are small or the diversions are made for irrigation of very small acreages. Streamflows with intrabasin diversion for irrigation were accepted if the size of the irrigated area was small.

For the spring season the United States Geological Survey considers the accuracy of the discharge measurements as good.
3.4 Correlation target-control. A high correlation between target and control watersheds daily flows is desirable for the purpose of this study. To discriminate among the stations before starting the study of the daily flows, the correlation between target an control was estimated using seasonal flow, i.e., water yield from March to August.

On the basis of these criteria, 10 stations were selected (see Table 2, 3 and 4 and Fig. 2.

Fig. 2 Location of the selected stations in the Upper Colorado River Basin

TABLE 2
DESCRIPTION OF THE STATIONS SELECTED

Identification			$\begin{aligned} & \text { Elevation } \\ & \mathrm{ft} . \end{aligned}$	$\begin{gathered} \text { Drainage } \\ \text { area } \\ \text { sq. mi. } \\ \hline \end{gathered}$	Length of record year	Transmountain diversion	Upstream regulation	Transbasin diversion	Intrabasin diversion*
Tape	$\begin{gathered} \hline \text { USGS } \\ \text { no. } \end{gathered}$	$\begin{aligned} & \text { CSU } \\ & \text { no. } \end{aligned}$							
12	9.0825	1592140	6400	225	25	None	None	None	irrig. for 2050 ac.b.
16	9.0975	1425625	6920	139	39	None	None	$\begin{aligned} & \text { to irrig. } \\ & 280 . \mathrm{ac} \text {. } \end{aligned}$	irrig. for 1300 ac. a.
17	9.1045	1420800	7400	7	20	None	small dam	None	None
18	9.1050	1420000	4800	604	21	None	small dams	None	$\begin{aligned} & \text { irrig. for } \\ & 25000 \text { ac. a. } \end{aligned}$
19	9.1125	1378100	8008	295	38	None	None	None	irrig. for 7400 ac. a.
21	9.1190	1377200	7628	1020	20	None	None	None	irrig. for 24000 ac. a.
22	9.1245	1375400	7827	338	23	None	None	None	irrig, for 24000 ac. a.
25	9.1345	1373020	7160	35	20	None	small dam	None	small irrig. no data
26	9.1435	1371810	6500	39	40	None	small dam	small- no data	small irrig. no data
30	9.1665	1277200	6924	556	48	None	None	None	irrig. 2000 ac. b.

*irrig. means irrigation; ac, a. means acres above station; ac. b. means acres below station.

STATION DESCRIPTIONS

Identification			Name
Tape no.	$\begin{aligned} & \text { USGS } \\ & \text { no. } \end{aligned}$	$\begin{aligned} & \text { CSU } \\ & \text { no. } \end{aligned}$	
12	9.0825	1592140	Crystal River near Redstone, Colorado
16	0.0975	1425625	Buzzard Creek near Collbran, Colorado
17	9.1045	1420800	Mesa Creek near Mesa, Colorado
18	9.1050	1420000	Plateau Creek near Cameo, Colorado
19	9.1125	1378100	East River at Almont, Colorado
21	9.1190	1377200	Tomichi Creek at Gunnison, Colorado
22	9.1245	1375400	Lake Fork at Gateview, Colorado
25	9.1345	1373020	Leroux Creek near Cedaredge, Colorado
26	9.1435	1371810	Surface Creek at Cedaredge, Colorado
30	9.1665	1277200	Dolores River at Dolores, Colorado

TABLE 3
TARGET-CONTROL CORRELATION ON THE BASIS OF SEASONAL FLOWS

Identi- fication	12	16	17	18	19	21	22	25	26	
12										
16	0.771									
17	0.625	0.889								
18	0.728	0.969	0.892							
19	0.94	0.629	0.515	0.618						
21	0.825	0.829	0.715	0.811	0.862					
22	0.807	0.866	0.736	0.832	0.792	0.878				
25	0.88	0.852	0.822	0.838	0.771	0.766	0.795			
26	0.776	0.876	0.836	0.833	0.659	0.765	0.827	0.92		
30	0.785	0.854	0.889	0.877	0.694	0.848	0.914	0.803	0.872	

TABLE 4
LENGTH AND AVAILABILITY OF HISTORICAL RECORD FOR DAILY FLOWS

Station	12	16	17	18	19	21	22	25	26	30

Year

THE STOCHASTIC STRUCTURE OF DAILY FLOW

4.1 The naive approach. It might be summarily inferred that the use of daily runoff instead of seasonal runoff in the application of the test would only entail a larger amount of data processing. However, this quick extrapolation is erroneous for two reasons:
(1) The daily flow observations for different days of the year come from different statistical populations, and
(2) From day to day the flow values are highly correlated.

For these two reasons the straight application of the test to daily runoff for every day of the season and on face value would violate the assumptions of the derivation of the test and invalidate the results of the test. Assertion (1) is demonstrated in Fig. 3. The expected value $P(t)$, or more rigorously its estimate, $\hat{P}(t)$, of the daily flow, $Q(t)$, varies from one date to another. In this study the time variable t takes only discrete integer values, with $t=1$ corresponding to the first day of the water year, i.e. October 1st, and $t=365$ to September 30. For convenience a table of correspondence between calendar dates and values of t is given (Table 5). The sets of Fig. 3 show that the standard deviation also varies considerably from day to day. In these figures, the coefficient of variation (ratio of standard deviation over mean) is also given.

Assertion (2) is also clearly supported in Fig. 4 which shows the autocorrelation values, $r(k)$, for all dates of the year and for various lags.
4.2 Standardization of daily streamflows. To overcome difficulty (1), i.e., the fact that daily flow observations for different dates of the year come from different statistical populations, it is necessary to perform a transformation on the daily flow values. Hopefully the transformed data will belong to the same population. If $Q(t)$ denotes the daily flow for date t, $P(t)$ its expected value, $\hat{P}(t)$ the estimate of $P(t)$, $S(t)$ and $\hat{S}(t)$ the standard deviation and its estimate, then the annual observation of $Q(t), Q_{i}(t)$ can be standardized by the transformation:

$$
\begin{equation*}
q_{i}(t)=\frac{Q_{i}(t)-\hat{p}(t)}{\hat{S}(t)} \tag{3}
\end{equation*}
$$

with i being an index referring to the year,

$$
\hat{P}(t)=\frac{1}{n} \sum_{i=1}^{n} Q_{i}(t) \quad \text { for any given } t
$$

where n is the number of years with available records, and

$$
\hat{S}^{2}(t)=\frac{1}{n-1} \sum_{i=1}^{n}\left[Q_{i}(t)-\hat{P}(t)\right]^{2} \text { for any given } t
$$

The standardized daily runoff variable:

$$
\begin{equation*}
q(t)=\frac{Q(t)-\hat{P}(t)}{\hat{S}(t)} \tag{4}
\end{equation*}
$$

is approximately normal if $Q(t)$ is normally distributed, with expected value approximately zero and variance approximately unity. For the historical period of record the sample estimate of the expected value of $q(t)$ is exactly zero and the estimate of the variance is exactly one, from the very definition of $q(t)$.

To pool together and use the daily flows for different t, as elements of one and the same population, the series must be "stationary." In hydrologic investigation, it is generally considered sufficient to have wide-sense stationarity. Wide-sense stationarity is defined by the following two equations where $E[$] denotes the expected value:

$$
\mathrm{E}[\mathrm{q}(\mathrm{t})]=\text { Constant }
$$

$\operatorname{Cov}\left[q\left(t_{1}\right) q\left(t_{2}\right)\right]=C\left(t_{2}-t_{1}\right)$: a function of $\left(t_{2}-t_{1}\right)=k$
From the very definition of $q(t)$ the first condition is met and the second condition is met for $t_{1}=t_{2}$.
It remains to verify that the second condition is met for various lag values. The dependence of a given day t_{1} with another day t_{2} can be measured by the correlation coefficient r, computed over the two samples of n elements of the populations of the daily flow for these two given days:

$$
\hat{r}(k)=\frac{\hat{\operatorname{cov}}\left[q\left(t_{1}\right), q\left(t_{2}\right)\right]}{\left[\hat{\operatorname{Var}}\left[q\left(t_{1}\right)\right] \hat{\operatorname{Var}}\left[q\left(t_{2}\right)\right]\right]^{\frac{1}{2}}}
$$

with $k=\left(t_{2}-t_{1}\right)$.
By the nature of the standardization procedure this expression reduces [16] to the simpler form:

$$
\begin{equation*}
\hat{r}(k)=\frac{1}{n} \sum_{i=1}^{n} q_{i}\left(t_{1}\right) q_{i}\left(t_{2}\right) \tag{5}
\end{equation*}
$$

The computation of $r(k)$ was performed for different values of t_{2} and $k ; t_{2}$ varying from 1 to 365 and k from 1 to 37 . Analysis of the results points to the following:
(a) For a given value of $k, r(k)$ varies significantly for different t_{2}, that is, from day to day, and the assumption, $r(k)$ depends only on $k=t_{2}^{-t}{ }_{1}$, cannot be considered as valid throughout the whole year. In other words, the standardization did not yield stationarity in the wide sense.
(b) For a given day $\left(t_{2}\right), r(k)$ decreases and tends toward zero, as k increases.

However, it is possible to consider that the coefficient of correlation, depends only on k for some period of the year (see Fig. 4). This period is the spring season, more precisely it extends from March to June.

For the spring season it is legitimate to consider that the conditions of stationarity in the wide sense are met. It is then possible to consider, as is usually done [17], that the mathematical expectation of both $q\left(t_{1}\right)$ and $q\left(t_{1}\right) q\left(t_{2}\right)$--obtained by averaging over an ensemble of realizations of the time series--can be replaced by the time averages of the same quantities over one realization. The advantage of this procedure is to permit the use of a sample of larger size. Proper application also requires that correlation between ordinates of the random function $q(t)$, taken at different instants of time, should decrease with sufficient rapidity, since it is only in this case that one realization with respect to time can be approximately considered as a set of several independent realizations, and that the difference between means obtained by these two methods vanish. This latter condition is accepted on the basis of the results found for $r(k)$.

The serial correlation coefficient $R_{i}(k)$ for a given realization i, that is for a given year i can be computed. Again by the nature of the standardization procedure [16] the expression is simple:

Characteristics of the daily flow random function $Q(t)$, for Station 12 -- Crystal River near Redstone, Colorado
$P(t)$: Expectation of $Q(t)$
$S(t)$: Standard deviation of $Q(t)$
$C V(t)$: Coefficient of variation of $Q(t)$

$$
\begin{equation*}
R_{i}(k)=\frac{1}{\beta-\alpha} \sum_{t=\alpha}^{\beta} q_{i}(t) q_{i}(t-k) \tag{6}
\end{equation*}
$$

In eq. (6) α and β are the indexes of the days which respectively begin and end the considered spring period. For a station with n years of historical records, n values for $R(k)$ can be computed for every value of k. If all the realizations have been obtained under identical conditions, it is suggested [18] that each of them should be analyzed by the method indicated above. Then the estimated values of the mathematical expectations and correlation functions should be averaged over all the realizations.

The average of the $R_{i}(k)$ over all realizations i is:

$$
\begin{equation*}
\bar{R}(k)=\frac{1}{n} \sum_{i=1}^{n} R_{i}(k) \tag{7}
\end{equation*}
$$

Based on the correlograms, i.e., graphs of $\bar{R}(k)$ versus k , it is possible to determine a minimum lag beyond which the standardized daily flows can be considered as independent. The resulting series of spaced standardized daily flows then satisfies the conditions of applicability of the target-control test.

Characteristics of the daily flow random function $Q(t)$, for Station 16 -- Buzzard Creek near Collbran, Colorado $P(t)$: Expectation of $Q(t)$
$S(t)$: Standard deviation of $Q(t)$
$C V(t)$: Coefficient of variation of $Q(t)$

Characteristics of the daily flow random function $Q(t)$, for Station 17 -- Mesa Creek near Mesa, Colorado
$P(t)$: Expectation of $Q(t)$
$S(t)$: Standard deviation of $Q(t)$
$C V(t)$: Coefficient of variation of $Q(t)$

Characteristics of the daily flow random function $Q(t)$, for Station 19 -- East River at Almont, Colorado
$P(t)$: Expectation of $Q(t)$
$S(t)$: Standard deviation of $Q(t)$
$C V(t)$: Coefficient of variation of $Q(t)$

Characteristics of the daily flow random function $Q(t)$, for Station 18 -- Plateau Creek near Cameo, Colorado
$P(t)$: Expectation of $Q(t)$
$S(t)$: Standard deviation of $Q(t)$
$C V(t)$: Coefficient of variation of $Q(t)$

Characteristics of the daily flow random function $Q(t)$ for Station 21 -- Tomichi Creek at Gunnison, Colorado
$P(t)$: Expectation of $Q(t)$
$S(t)$: Standard deviation of $Q(t)$
$C V(t)$: Coefficient of variation of $Q(t)$

Figure 3 (continued)

Characteristics of the daily flow random function $Q(t)$, for Station 22 -- Lake Fork at Gateview, Colorado
$P(t)$: Expectation of $Q(t)$
$S(t)$: Standard deviation of $Q(t)$
$C V(t)$: Coefficient of variation of $Q(t)$

Characteristics of the daily flow random function $Q(t)$, for Station 26 -- Surface Creek at Cedaredge, Colorado
$P(t)$: Expectation of $Q(t)$
$S(t)$: Standard deviation of $Q(t)$
$C V(t)$: Coefficient of variation of $Q(t)$

Characteristics of the daily flow random function $Q(t)$, for Station 25 -- Leroux Creek near Cedaredge, Colorado
$P(t)$: Expectation of $Q(t)$
$S(t)$: Standard deviation of $Q(t)$
$C V(t)$: Coefficient of variation of $Q(t)$

Characteristics of the daily flow random function $Q(t)$, for Station 30 --Dolores River at Dolores, Colorado
$P(t)$: Expectation of $Q(t)$
$S(t)$: Standard deviation of $Q(t)$
$C V(t)$: Coefficient of variation of $Q(t)$

Figure 3 (continued)

Figure 4 An illustration of $r(k)$ versus time for Station 12 and different values of k
$-r(k)$ has not been computed and has been set up equal to zero for the first k days of the water year

TABLE 5
CORRESPONDENCE BETWEEN CALENDAR YEAR DATE, WATER YEAR DATE AND DAY INDEX

Oct. Water Year Date	$\begin{aligned} & \text { Day } \\ & \text { Index } \end{aligned}$	Nov. Water Year Date	$\begin{gathered} \text { Day } \\ \text { Index } \end{gathered}$	Dec. Water Year Date	$\begin{gathered} \text { Day } \\ \text { Index } \end{gathered}$	Jan. Water Year Date	$\begin{gathered} \text { Day } \\ \text { Index } \end{gathered}$	Feb. Water Year Date	$\begin{aligned} & \text { Day } \\ & \text { Index } \end{aligned}$	MARCH Water Year Date	$\begin{aligned} & \text { Day } \\ & \text { Index } \end{aligned}$
1-1	1	2-1	32	3-1	62	4-1	93	5-1	124	6-1	152
1-2	2	2-2	33	3-2	63	4-2	94	5-2	125	6-2	153
1-3	3	2-3	34	3-3	64	4-3	95	5-3	126	6-3	154
1-4	4	2.4	35	3-4	65	4-4	96	5-4	127	6-4	155
1-5	5	2-5	36	3-5	66	4-5	97	5-5	128	6-5	156
1-6	6	2-6	37	3-6	67	4-6	98	5-6	129	6-6	157
1-7	7	2-7	38	3-7	68	4-7	99	5-7	130	6-7	158
1-8	8	2-8	39	3-8	69	4-8	100	5-8	131	6-8	159
1-9	9	2-9	40	3-9	70	4-9	101	5-9	132	6-9	160
1-10	10	2-10	41	3-10	71	4-10	102	5-10	133	6-10	161
1-11	11	2-11	42	3-11	72	4-11	103	5-11	134	6-11	162
1-12	12	2-12	43	3-12	73	4-12	104	5-12	135	6-12	163
1-13	13	2-13	44	3-13	74	4-13	105	5-13	136	6-13	164
1-14	14	2-14	45	3-14	75	4-14	106	5-14	137	6-14	165
1-15	15	2-15	46	3-15	76	4-15	107	5-15	138	6-15	166
1-16	16	2-16	47	3-16	77	4-16	108	5-16	139	6-16	167
1-17	17	2-17	48	3-17	78	4-17	109	5-17	140	6-17	168
1-18	18	2-18	49	3-18	79	4-18	110	5-18	141	6-18	169
1-19	19	2-19	50	3-19	80	4-19	111	5-19	142	6-19	170
1-20	20	2-20	51	3-20	81	4-20	112	5-20	143	6-20	171
1-21	21	2-21	52	3-21	82	4-21	113	5-21	144	6-21	172
1-22	22	2-22	53	3-22	83	4-22	114	5-22	145	6-22	173
1-23	23	2-23	54	3-23	84	4-23	115	5-23	146	6-23	174
1-24	24	2-24	55	3-24	85	4-24	116	5-24	147	6-24	175
1-25	25	2-25	56	3-25	86	4-25	117	5-25	148	6-25	176
1-26	26	2-26	57	3-26	87	4-26	118	5-26	149	6-26	177
1-27	27	2-27	58	3-27	88	4-27	119	5-27	150	6-27	178
1-28	28	2-28	59	3-28	89	4-28	120	5-28	151	6-28	179
1-29	29	2-29	60	3-29	90	4-29	121	5-29	---	6-29	180
1-30	30	2-30	61	3-30	91	4-30	122	5-30	---	6-30	181
1-31	31	2-31	--	3-31	92	4-31	123	5-31	--	6-31	182

TABLE 5 (continued)
CORRESPONDENCE BETWEEN CALENDAR YEAR DATE, WATER YEAR DATE AND DAY INDEX

April Water Year	Day Index	May Water Year Date	Day Index	June Water Year Date	Day Index	July Water Year Date	Day Index	Aug. Water Year Date	Day Index	Sept. Water Year Date	Day Index
7-1	183	8-1	213	9-1	244	10-1	274	11-1	305		336
7-2	184	8-2	214	9-2	245	10-2	275	11-2	306	$12-2$	337
7-3	185	8-3	215	$9-3$	246	$10-3$	276	$11-3$	307	12-3	338
7-4	186	8-4	216	$9-4$	247	$10-4$	277	11-4	308	12-4	339
7-5	187	8-5	217	$9-5$	248	$10-5$	278	11-5	309	12-5	340
7-6	188	8-6	218	$9-6$	249	$10-6$	279	11-6	310	12-6	341
7-7	189	$8-7$	219	$9-7$	250	$10-7$	280	11-7	311	12-7	342
7-8	190	$8-8$	220	$9-8$	251	$10-8$	281	11-8	312	12-8	343
7-9	191	$8-9$	221	$9-9$	252	$10-9$	282	$11-9$	313	12-9	344
$7-10$	192	$8-10$	222	$9-10$	253	$10-10$	283	$11-10$	314	12-10	345
7-11	193	$8-11$	223	$9-11$	254	$10-11$	284	$11-11$	315	$12-11$	346
$7-12$	194	$8-12$	224	$9-12$	255	$10-12$	285	$11-12$	316	$12-12$	347
$7-13$	195	$8-13$	225	$9-13$	256	$10-13$	286	$11-13$	317	12-13	348
7-14	196	$8-14$	226	$9-14$	257	$10-14$	287	$11-14$	318	12-14	349
$7-15$	197	$8-15$	227	$9-15$	258	$10-15$	288	$11-15$	319	12-15	350
7-16	198	$8-16$	228	$9-16$	259	$10-16$	289	$11-16$	320	$12-16$	351
$7-17$	199	$8-17$	229	$9-17$	260	$10-17$	290	$11-17$	321	12-17	352
$7-18$	200	$8-18$	230	$9-18$	261	$10-18$	291	$11-18$	322	12-18	353
$7-19$	201	$8-19$	231	$9-19$	262	$10-19$	292	$11-19$	323	$12-19$	354
$7-20$	202	$8-20$	232	$9-20$	263	$10-20$	293	$11-20$	324	$12-20$	355
$7-21$	203	$8-21$	233	$9-21$	264	$10-21$	294	$11-21$	325	$12-21$	356
$7-22$	204	$8-22$	234	$9-22$	265	$10-22$	295	$11-22$	326	12-22	357
$7-23$	205	$8-23$	235	$9-23$	266	$10-23$	296	$11-23$	327	$12-23$	358
$7-24$	206	$8-24$	236	$9-24$	267	$10-24$	297	$11-24$	328	12-24	359
$7-25$	207	$8-25$	237	$9-25$	268	$10-25$	298	$11-25$	329	$12-25$	360
$7-26$	208	$8-26$	238	$9-26$	269	$10-26$	299	$11-26$	330	$12-26$	361
$7-27$	209	$8-27$	239	$9-27$	270	$10-27$	300	$11-27$	331	12-27	362
$7-28$	210	$8-28$	240	9-28	271	10-28	301	11-28	332	12-28	363
$7-29$	211	$8-29$	241	9-29	272	$10-29$	302	11-29	333	12-29	364
$7-30$	212	$8-30$	242	$9-30$	273	$10-30$	303	$11-30$	334	12-30	365
7-31		8-31	243	9-31		10-31	304	11-31	335		

The statistical techniques described in Chapter IV will be applied to the 10 watersheds selected in Chapter III.
5.1 Characteristics of the daily flow time series. The mean $\hat{\mathrm{P}}(\mathrm{t})$ and the standard deviation $\hat{\mathrm{S}}(\mathrm{t})$ for a given day (t) were computed for every day and for every station. Sets in Fig. 3 show the results for $\hat{P}(t)$ and $\hat{S}(t)$ plotted as a function of t for each station. All the watersheds have hydrographs very similar in shape. They show a rise in $\hat{\mathbf{P}}(t)$ and $\hat{S}(t)$ during the spring season corresponding to the snowmelt with a decline beginning in June and ending in August which leads to a slowly decreasing or steady flow of small amplitude for the winter season. It corresponds to the time when the watershed is covered with snow and the stream is ice-packed. The coefficients of variation
for a given day $C_{V}(t)=\frac{\hat{S}(t)}{\hat{P}(t)}$ were computed and plotted against t. They show a period of low values from January to June which coincides with the rising limb of the hydrograph. This period of the rising limb, which for other reasons will be selected as the period of study, is also the period with relatively smaller C_{v}. This constitutes a definite advantage for the purpose of detection.
5.2 Autocorrelation analysis. The autocorrelation $r(k)$ for the 10 stations was computed for every day and for different values of k varying from 1 to 37. The results are shown on Figs. 4 and 5 for stations 12 and 30.

Figure 5 An illustration of $r(k)$ versus k, for a given day and at a given station

Figure 4 shows that $r(k)$ tends to be independent of the days t for the period: March 19th $(t=170)$ to June 30th $(t=273)$.

On the basis of this new period, during which the conditions of stationarity are satisfied $R(k)$ was computed for every year (the results of this computation are shown for Station 18 in Table 6-a) then its mean $\bar{R}(k)$ and its variance $\operatorname{var}[R(k)]$ (see Table $6-b$). This was done for k varying from 1 to 34 by using the formulas described in Chapter IV, where $\alpha=170$ and $\beta=273$. Sets in Fig. 6 show the plot of $\overline{R(k)}$ versus k.

An attempt to verify the assumption that consecutive years are independent was made by computing the correlation coefficient between two consecutive years, each day being paired with the same day for the following year, that is, $R(k)$ was computed over two years with $\mathrm{k}=365$. It showed insignificant correlation.
5.3 Selection of a sequence of independent daily flows. On the basis of the various sets in Fig. 6, a lag common to the 10 stations was selected: $K=20$ days. For this lag $\bar{R}(k)$ is considered as nonsignificantly different from zero.

Lag $K=20$ yields a sample of seven independent daily flows values for the selected spring period, and for t equal respectively to: 153, 173, 193, 213, 233, 253 , and 273 which correspond respectively to March 2, 22 ; April 11; May 1, 20; and June 10, 30 . (As a side line it may be worthwhile to comment somewhat on this apparently highly wasteful procedure. Many daily runoff data are apparently not utilized. Appendix 1 shows that little or nothing would be gained by developing higher order models of the stochastic structure of daily flow for the purpose of detection.)
5.4 Target control correlation. The coefficient of correlation between the stations (one being considered as a target, the other as a control) was computed on the basis of the selected independent daily
flow series (Table 7). It was also calculated with other independent daily flow series corresponding to the day-index:

$$
t=150,170,190,210,230,250,270
$$

that is, for seven days each year corresponding to the dates: February 27; March 19; April 8, 28; May 18; June 7, 27.

As expected, the coefficients of correlation computed in these two manners were not found significantly different. These results are summarized in Table 7.

The results show that the correlations targetcontrol computed with the daily sequences are consistently lower than those computed with the seasonal flows (see Table 3). This is natural because, as the time interval over which the flow is averaged becomes shorter, the watersheds must have very close behaviors to be correlated. In other words, the seasonal flows of two rivers may be correlated, not because the behavior or the patterns of their daily streamflows are exactly the same, but because compensations occur throughout the season, which make their seasonal flows vary in the same way.

It is also interesting to note that two watersheds may be located very far from each other and still have a relatively strong correlation between their streamflows. This is true of stations 30 and 18 (correlation: 0.80) or 12 and 22 (correlation: 0.73). This is an encouraging result for weather modification detection purposes, because in seeding operations one does not want the control watershed to be contaminated.

Table 7-a shows:

1 pair of stations with correlation higher than 0.8 .
10 pairs of stations with correlation higher than 0.7.
25 pairs of stations with correlation higher than 0.6 .

TABLE 6-a AN ILLUSTRATION OF THE RESULTS FOR $R(k)$ VERSUS lag K, FOR THE 21 YEARS OF RECORDS ($\mathrm{M}=1,2, \ldots .21$) OF STATION 18
Results for $\overline{R(k)}$ versus K : (RBAR) and variance [$R(k)$]: VARR

Lag K:	1	2	3	4	5	6	7	8	9	10	11
$M=1$.89117	.79937	.72617	.67208	.62119	.52429	.39939	.32450	.23784	.18869	.10400
$M=2$.90524	.75891	.61607	.49990	.38523	.26144	.14073	.03643	-.03271	-.09594	-.11508
$M=3$.96603	.91948	.88975	.86393	.82367	.78994	.76262	.73106	.69323	.61876	.54268
$M=4$.92754	.81227	.71462	.62888	.55847	.49730	.44267	.39597	.36363	.31572	.24389
$M=5$.91464	.78240	.68440	.63731	.61105	.55869	.49321	.44984	.41670	.35221	.25898
$M=6$.93453	.84195	.75075	.66109	.59460	.51760	.43596	.36974	.32826	.28143	.23170
$M=7$.90636	.81200	.72884	.66020	.57004	.47908	.44629	.42808	.37459	.29908	.22691
$M=8$.96002	.88670	.81319	.75222	.71446	.68337	.65451	.61628	.56563	.51144	.46377
$M=9$.80001	.54861	.38941	.26301	.27640	.33259	.30671	.29953	.34472	.33942	.30106
$M=10$.89444	.74780	.62635	.55672	.55071	.56733	.57457	.54087	.51272	.51965	.52369
$M=11$.91035	.77985	.61044	.41922	.23922	.06886	-.05557	-.12137	-.15254	-.15905	-.13583
$M=12$.85875	.63606	.47568	.42163	.419355	.36431	.28297	.23562	.23465	.25437	.22512
$M=13$.81742	.57140	.48592	.45930	.40385	.34745	.30957	.27403	.26608	.29073	.30285
$M=14$.85671	.66483	.53293	.48257	.46408	.42905	.30189	.21606	.12727	.05396	-.02975
$M=15$.91943	.80444	.72939	.67484	.63542	.59070	.53643	.50372	.44925	.40649	.39105
$M=16$.88110	.68996	.50379	.35706	.26836	.24631	.27572	.28289	.25899	.18409	.08928
$M=17$.92126	.81891	.72869	.64028	.55918	.47548	.37984	.27726	.19115	.11774	.06340
$M=18$.91409	.79255	.69596	.62263	.58797	.53088	.43827	.33713	.22244	.15960	.15279
$M=19$.76101	.46935	.32371	.30880	.32115	.22494	.08901	-.02586	-.13716	-.23384	-.26185
$M=20$.74451	.38231	.11296	.04305	.05559	.05693	-.05124	-.18334	-.22566	-.20471	-.12980
$M=21$.98410	.96769	.95483	.94240	.92753	.90870	.88378	.85961	.84390	.81300	.79428
RBAR	.88922	.73747	.62352	.55082	.50392	.45025	.38321	.32610	.28014	.23871	.20205

Lag K:	12	13	14	15	16	17	18	19	20	21	22
M	. 02636	-. 05298	. 11246	. 17555	21631	2367	21471	7	-. 17608	17118	
H	-. 14165	-. 14931	-. 12890	-. 11556	-. 08837	-. 11351	-. 15021	-. 20035	-. 22111	-. 24113	-. 24307
M	. 47701	. 42241	. 37246	. 32038	. 27593	. 23933	. 19057	. 13539	. 09473	. 04852	. 01030
M	. 17563	. 11741	. 07364	. 06429	. 06240	. 04710	. 04054	. 05385	. 04356	. 00609	-. 03149
M	. 16670	. 11052	. 07568	. 03918	-. 02344	-. 08523	-. 13617	-. 17762	-. 19595	-. 20260	-. 22377
M	. 17652	. 10547	. 02440	-. 05971	-. 14344	-. 20901	-. 28521	-. 34905	-. 41825	-. 46985	-. 50766
M	. 19218	. 18114	. 14147	. 15510	. 17573	. 16488	. 17566	. 21600	. 29016	. 33224	. 32103
M	. 42606	. 40258	. 39406	. 39494	. 38655	. 35984	. 31645	. 27330	. 23205	. 21114	. 21862
$\mathrm{M}=9$. 20128	. 08378	. 02543	. 03021	. 04309	. 12469	. 13488	. 05396	. 01611	-. 02520	-. 06084
$M=10$. 50572	. 47316	. 41388	. 38973	. 39202	. 40856	. 40925	. 40038	. 39872	. 40453	. 43267
$\mathrm{M}=11$	-. 11441	-. 11157	-. 11898	-. 14492	-. 16614	-. 18693	-. 22743	-. 28529	-. 34666	-. 40023	-. 44431
$\mathrm{M}=12$. 19880	. 16743	. 16700	. 17591	. 16386	. 11321	. 06829	. 05003	. 01593	-. 01936	-. 10552
$\mathrm{M}=13$. 35424	. 37794	. 34807	. 26382	. 20896	. 18745	. 22802	. 28359	. 28647	. 27704	. 30786
$M=14$	-. 08456	-. 10815	-. 07705	-. 12534	-. 17395	-. 25583	-. 27164	-. 25830	-. 23933	-. 33090	-. 36186
$\mathrm{M}=15$. 36108	. 31680	. 27877	. 22587	. 17981	. 13642	. 12044	. 14705	. 11530	. 08606	. 06845
$M=16$	-. 02538	-. 11167	-. 14545	-. 14284	-. 10607	-. 05761	-. 01444	. 00593	-. 02569	. 03110	-. 04483
$\mathrm{M}=17$	-. 00086	-. 05334	-. 10133	-. 15232	-. 17031	-. 18037	-. 18620	-. 20469	-. 23685	-. 25430	-. 24794
$\mathrm{M}=18$. 16564	. 16915	. 13147	. 05379	. 02938	. 02810	. 04217	. 06041	. 06555	. 02513	-. 02745
$\mathrm{M}=19$	-. 25736	-. 28230	-. 33315	-. 37137	-. 33717	-. 28183	-. 22606	. 17636	-. 17232	-. 15776	-. 11343
$\mathrm{M}=20$	-. 06783	-. 03726	-. 04060	. 00874	. 06611	. 07374	. 04236	. 07578	. 22489	. 38648	. 39604
$\mathrm{M}=21$. 77954	. 75292	. 73226	. 71325	. 70172	. 66523	. 64098	. 61830	. 58369	$.54479{ }^{\prime}$. 49254
RBAR	. 16737	. 13210	. 10099	. 07370	. 06002	. 04483	. 03322	. 02526	. 01839	. 00384	-. 01059
VARR	06434	. 06436	. 06286	. 06282	06141	. 06036	. 05986	. 06200	. 0674	. 07811	. 08

Lag K:	23	24	25	26	27	28	29	30	31	32	33	34
M	. 10804	03683	02529	02356	02903	. 00436	. 05969	. 10778	. 09356	. 08006	. 08370	. 13270
$M=2$	-. 23624	-. 19732	-. 15065	-. 13812	-. 11788	-. 09185	-. 05961	-. 01285	. 05163	. 12691	. 20808	. 26414
$M=3$	-. 01373	-. 06279	-. 10501	-. 12037	-. 13134	-. 14957	-. 17320	-. 18814	-. 20201	-. 18903	-. 16157	-. 13156
M	-. 04119	-. 02889	. 01508	. 07105	. 11318	. 13426	. 14864	. 12587	. 04194	-. 06188	-. 15377	-. 20057
M	-. 24257	-. 28319	-. 30709	-. 27957	-. 23696	-. 22582	-. 21834	-. 20415	-. 20454	-. 20017	-. 18905	-. 18414
$M=6$	-. 53902	-. 55129	-. 55726	-. 56453	-. 56082	-. 54343	-. 51790	-. 48057	-. 45860	-. 44648	-. 41193	. 35784
M	. 34637	. 42083	. 48157	. 47979	. 46805	. 48627	. 47310	. 41858	. 30785	. 24187	. 22661	. 22485
$\mathrm{M}=8$. 23459	. 24496	. 24556	. 22116	. 18515	. 15648	. 14418	. 14746	. 13393	. 11851	. 08649	. 04930
$M=9$	-. 03173	-. 01543	-. 03343	-. 09158	-. 14039	-. 19874	-. 21377	-. 17641	-. 18764	-. 18630	-. 18250	-. 16438
$\mathrm{M}=10$. 48194	. 52955	. 54831	. 51110	. 45794	. 42513	. 35282	. 29284	. 23573	. 17705	. 13359	. 09802
$\mathrm{M}=11$	-. 45682	-. 47145	-. 48069	-. 45452	-. 41760	-. 37217	-. 29981	-. 22825	-. 14346	-. 07513	-. 03699	-. 00065
$M=12$	-. 15797	-. 14357	-. 06249	-. 01775	-. 03768	-. 03846	-. 05177	-. 07547	-. 09943	-. 11423	-. 12765	. 13546
$\mathrm{M}=13$. 27334	. 21477	. 18601	. 12114	. 10019	. 06256	. 00965	-. 05939	. 01626	. 09864	. 07083	. 03877
$\mathrm{M}=14$	-. 39652	-. 37531	-. 37206	-. 41332	-. 43387	-. 37049	-. 36523	-. 32191	-. 29357	-. 23012	-. 12634	-. 01203
$\mathrm{M}=15$. 02032	. 02047	. 05243	. 03950	. 05149	. 06863	. 03259	. 01678	. 00255	-. 03061	-. 05424	-. 12832
$\mathrm{M}=16$. 05825	. 08370	. 10762	. 12920	. 15651	. 17173	. 17819	. 16264	. 13891	. 10123	. 07441	. 05590
$\mathrm{M}=17$	-. 24362	-. 23663	-. 24090	-. 24043	-. 19223	-. 14693	-. 11568	-. 13541	-. 15880	-. 18174	-. 19746	-. 21038
$\mathrm{M}=18$	-. 06450	-. 06133	-. 03507	-. 01071	. 01300	-. 03005	-. 07322	-. 08353	-. 07979	-. 10426	-. 10644	-. 13817
$\mathrm{M}=19$	-. 06926	-. 04528	-. 00376	. 03137	. 12070	. 21749	. 32157	. 41385	. 43651	. 39275	. 38123	. 36663
$M=20$. 24779	. 05905	-. 03367	-. 07535	-. 07208	-. 05850	-. 03879	. 04298	. 03439	-. 05870	-. 14157	-. 16265
$\mathrm{M}=21$. 42125	. 31482	. 24370	. 17144	. 08468	. 00269	-. 07125	.11816	. 17381	-. 20034	-. 23270	-. 24164
RBAR	-. 02464	-. 02958	-. 02510	-. 03115	-. 02948	-. 02405	-. 02369	-. 01693	$-.02445$	-. 03533	-. 04082	. 03988
VARR	. 07954	. 07651	. 07812	. 07345	. 06726	. 06264	. 05829	. 05238	. 04434	. 03741	. 03487	. 03

Values of its Mean $\overline{R(k)}$ and of its Variance $\operatorname{Var}[R(k)]$ versus k

Station		2		16		17		8		9		21		22		25		26		30
Lag K days	R(k)	$\operatorname{Var}(\mathrm{R})$	R(k)	$\operatorname{Var}(\mathrm{R})$	$\overline{\mathrm{R}}$ (k)	$\operatorname{Var}(\mathrm{R})$	$\overline{\mathrm{R}(\mathrm{k})}$	$\operatorname{Var}(\mathrm{R})$	$\overline{\mathrm{R}(\mathrm{k})}$	$\operatorname{Var}(\mathrm{R})$	$\overline{\mathrm{R}(\mathrm{k})}$	$\operatorname{Var}(\mathrm{R})$	$\overline{\mathrm{R}}(\mathrm{k})$	$\operatorname{Var}(\mathrm{R})$						
1	. 931	. 0006	. 912	. 002	. 924	. 0014	. 889	. 004	. 940	. 0008	. 954	. 0006	. 927	. 001	. 916	. 001	. 897	. 003	. 923	. 002
2	. 809	. 0037	. 786	. 013	. 823	. 008	. 737	. 021	. 842	. 005	. 869	. 004	. 793	. 009	. 795	. 008	. 775	. 008	. 806	. 009
3	. 689	. 008	. 679	. 026	. 739	. 017	. 623	. 038	. 742	. 012	. 785	. 011	. 661	. 019	. 694	. 018	. 661	. 018	. 699	. 020
4	. 584	. 011	. 602	. 033	. 670	. 025	. 551	. 043	. 652	. 020	. 710	. 019	. 550	. 025	. 613	. 027	. 568	. 027	. 607	. 030
5	. 490	. 001	. 545	. 034	. 607	. 033	. 504	. 042	. 573	. 028	. 645	. 026	. 450	. 030	. 545	. 036	. 492	. 037	. 531	. 037
6	. 404	. 015	. 489	. 038	. 540	. 042	. 450	. 046	. 502	. 035	. 585	. 032	. 360	. 035	. 479	. 047	. 433	. 046	. 466	. 042
7	. 330	. 020	. 427	. 046	. 474	. 049	. 383	. 056	. 439	. 040	. 534	. 035	. 286	. 039	. 413	. 058	. 377	. 058	. 407	. 046
8	. 272	. 024	. 369	. 053	. 416	. 053	. 326	. 067	. 385	. 045	. 493	. 037	. 227	. 046	. 354	. 067	. 327	. 069	. 355	. 049
9	. 224	. 027	. 320	. 059	. 368	. 059	. 280	. 072	. 336	. 048	.456	. 036	.178	. 051	. 305	. 072	. 284	. 076	.310	. 052
10	. 180	. 029	. 282	. 064	. 325	. 061	. 239	. 072	. 290	. 054	.422	. 037	. 135	. 051	. 264	. 070	. 248	. 080	. 271	. 054
11	. 138	. 028	. 250	. 065	. 288	. 066	. 202	. 067	. 245	. 059	. 384	. 041	. 101	. 048	. 229	. 063	. 220	. 081	. 238	. 055
12	. 100	. 028	. 219	. 064	. 251	. 070	. 167	. 064	. 206	. 065	. 345	. 047	. 073	. 047	. 196	. 060	. 189	. 085	. 209	. 055
13	. 059	. 031	. 191	. 063	. 215	. 072	. 132	. 064	. 171	. 069	. 302	. 056	. 054	. 046	. 163	. 059	.161	. 090	. 182	. 057
14	. 021	. 034	. 166	. 063	. 186	. 072	. 101	. 063	.137	. 069	. 259	. 065	. 040	. 046	. 135	. 059	. 136	. 099	. 158	. 059
15	-. 011	. 036	. 146	. 063	. 163	. 071	. 074	. 063	. 107	. 067	. 220	. 075	. 029	. 046	. 113	. 061	. 117	. 107	. 136	. 061
16	-. 040	. 033	. 121	. 064	. 141	. 071	. 060	. 061	. 080	. 063	. 184	. 085	. 016	. 047	. 102	. 063	. 100	.113	. 112	. 063
17	-. 064	. 030	. 100	. 066	. 123	. 068	. 045	. 060	. 053	. 061	. 152	. 094	-. 002	. 046	. 092	. 066	. 086	. 115	. 089	. 064
18	-. 088	. 029	. 087	. 065	. 106	. 065	. 033	. 060	. 030	. 059	. 125	. 101	-. 021	. 046	. 081	. 068	. 075	. 112	. 064	. 066
19	-. 110	. 031	. 079	. 059	. 089	. 064	. 025	. 062	. 010	. 061	. 093	. 109	-. 042	. 047	. 069	. 070	. 065	. 108	. 041	. 070
20	-. 134	. 036	. 066	. 054	. 071	. 064	. 018	. 067	-. 009	. 061	. 061	. 113	-. 063	. 046	. 056	. 071	. 054	.100	. 019	. 074
21	-. 164	. 039	. 049	. 052	. 055	. 066	. 004	. 078	-. 030	. 062	. 030	. 114	-. 083	. 043	. 045	. 073	. 045	. 092	-. 001	. 075
22	-. 190	. 042	. 032	. 050	. 043	. 068	-. 010	. 082	-. 051	. 061	. 009	. 114	-. 098	. 039	. 034	. 076	. 038	. 087	-. 014	. 074
23	-. 202	. 042	. 020	. 048	. 031	. 070	-. 025	. 079	-. 067	. 060	-. 006	. 117	-. 108	. 036	. 027	. 080	. 031	. 084	-. 023	. 072
24	-. 201	. 044	. 017	. 045	. 020	. 069	-. 029	. 076	-. 077	. 060	-. 018	. 124	-. 116	. 034	. 035	. 079	. 031	. 082	-. 023	. 071
25	-. 196	. 048	. 019	. 043	. 015	. 067	-. 025	. 078	-. 084	. 060	-. 030	. 130	-. 121	. 035	. 044	. 080	. 031	. 080	-. 032	. 071
26	-. 193	. 051	. 022	. 042	. 013	. 061	-. 031	. 073	-. 091	. 060	-. 043	. 134	-. 125	. 037	. 050	. 081	. 031	. 077	-. 037	. 071
27	-. 187	. 055	. 024	. 042	. 016	. 057	-. 029	. 067	-. 100	. 058	-. 056	. 137	-. 127	. 038	. 053	. 080	. 029	. 076	-. 041	. 070
28	-. 181	. 059	. 024	. 044	. 020	. 053	-. 024	. 062	-. 111	. 057	-. 068	. 139	-. 125	. 039	. 057	. 079	. 025	. 078	-. 044	. 069
29	-. 178	. 062	. 016	. 046	. 019	. 051	-. 024	. 058	-. 121	. 056	-. 077	. 139	-. 119	. 038	. 062	. 075	. 024	. 081	-. 045	. 068
30	-. 174	. 060	. 007	. 046	. 018	. 050	-. 017	. 052	-. 129	. 055	-. 080	. 137	-. 113	. 036	. 061	. 072	. 027	. 086	-. 041	. 068
31	. .171	. 057	-. 001	. 048	. 011	. 050	-. 024	. 044	-. 134	. 052	-. 077	.136	-. 110	. 034	. 048	. 065	. 021	. 088	-. 032	. 070
32	-. 162	. 053.	-. 008	. 052	. 006	. 052	-. 035	. 037	-. 141	. 052	-. 071	. 131	-. 114	. 033	. 031	. 059	. 019	. 087	-. 028	. 070
33	-. 155	. 051	-. 012	. 056	. 002	. 055	-. 041	. 035	-. 143	. 053	-. 063	. 123	-. 113	. 033	. 016	. 054	. 013	. 085	-. 022	. 072
34	-. 152	. 048	-. 016	. 063	-. 004	. 059	-. 040	. 034	-. 142	. 054	-. 060	. 118	-. 109	. 034	-. 002	. 053	. 002	. 084	-. 016	. 074

Correlogram: $\overline{R(k)}$ versus k for station 12

Correlogram: $\overline{R(k)}$ versus k for station 17

Correlogram: $\overline{R(k)}$ versus k for station 19

Correlogram: $\overline{R(k)}$ versus k for station 16

Correlogram: $\overline{R(k)}$ versus k for station 18

Correlogram: $\overline{R(k)}$ versus k for station 21

Figure 6

Correlogram: $\overline{\mathrm{R}(k)}$ versus k for station 22

Correlogram: $\overline{R(k)}$ versus k for station 25

Correlogram: $\overline{\mathrm{R}(\mathrm{k})}$ versus k for station 30

Figure 6 (continued)

TABLE 7
TARGET-CONTROL CORRELATION ON THE BASIS OF DAILY FLOWS
[a] Computed with the series $t: 153,173,193,213,233,253,273$

Identification	12	16	17	18	19	21	22	25	26	30
12										
16	.566									
17	.393	.523								
18	.710	.806	.549							
19	.798	.627	.431	.637						
21	.618	.674	.470	.732	.644					
22	.730	.553	.385	.576	.761	.676				
25	.632	.560	.550	.629	.614	.510	.489			
26	.495	.621	.508	.602	.502	.503	.433	.616		
30	.701	.666	.552	.796	.677	.722	.720	.667	.541	

TABLE 7 (continued)
TARGET-CONTROL CORRELATION ON THE BASIS OF DAILY FLOWS
[b] Computed with the series $t: 150,170,190,210,230,250,270$

Identification	12	16	17	18	19	21	22	25	26	30
12										
16	. 615									
17	. 463	. 557								
18	. 696	. 808	. 471							
19	. 740	. 625	. 503	. 598						
21	. 563	. 623	. 408	. 604	. 557					
22	. 712	. 620	. 463	. 625	. 737	. 590				
25	. 641	. 656	. 641	. 658	. 683	. 436	. 592			
26	. 352	. 641	. 582	. 646	. 498	. 495	. 511	. 618		
30	. 668	. 659	. 599	. 727	. 604	. 681	. 697	. 680	.547	

DETECTION OF THE SUSPECTED CHANGE IN RUNOFF

In summary the theoretical analysis of the previous chapters and its application to actual records of daily runoffs at several gage stations have shown that by considering a set of days, whose adjacent elements are lagged by $K=20$ days, v independent standardized values of daily flow can be selected within each year, more precisely within each spring season. The lag of 20 days is common to all investigated stations. In other words a random function is selected whose v ordinates are statistically independent; each ordinate being a random variable with zero mean and unit variance whose distribution is approximately normal.

Therefore, these v ordinates can be considered as v independent values of the same normally distributed random variable y. Then in n years of historical records there are $N=v n$ independent values of a random variable y whose probability distribution is the standard normal distribution.

During the period of the suspected change the actual daily runoff observations for the corresponding dates provide a new sequence. One suspects that this sequence belongs to a different statistical population than the previous or historical one.

If this is the case and if the new set of data is standardized, according to eq. (4), where the estimates of $P(t)$ and $S(t)$ are the ones obtained based solely on the historical records, the new (historically) standardized daily flow sequence will no longer have zero mean and unit variance. The application of the targetcontrol test will tell whether the change is significant or not. If data are available, grinding the answer from the programmed test subroutine is all that is left to do. On the other hand, if experiments are contemplated for the future and data therefore are not yet available, the required duration of the experiments can be inferred from a randomly generated sequence of daily flows. Of course, the data generation implies a model of what is likely to happen, based on an understanding of the physical phenomena and available experimental evidence.
6.1 Model for the effects of seeding. In the following it is assumed:
(a) Cloud seeding operations increase the values of the streamflows, and, more precisely, they increase the mean daily values $P(t)$.
(b) They do not affect the variance $S^{2}(t)$ of the daily flows.
(c) The relative increase, h, due to artificial precipitation is independent of time at least throughout the spring season (March to June).

These assumptions are more likely to be correct for cloud seeding operations taking place in winter above watersheds of high elevations--these operations attempt to increase the snowpack and only affect the streamflow during the melting season. The Bureau of Reclamation's pilot project in the Upper Colorado River Basin fits this category.

With the above assumptions, a value of daily flow $Q^{*}(t)$, affected by cloud seeding experiments, would have the form:

$$
Q^{*}(t)=(1+h) P(t)+S(t) y(t)
$$

where h is the relative increase in the mean daily value due to cloud seeding. The historical standardization of $Q^{*}(t)$ will give $n(t)$:

$$
n(t)=\frac{Q^{*}(t)-\hat{P}(t)}{\hat{S}(t)}=h \frac{\hat{P}(t)}{\hat{S}(t)}+y(t)
$$

where $y(t)$ would be the standardized value of $Q^{*}(t)$ if no increase h, due to cloud seeding, had happened. It follows that $y(t)$ is normally distributed with mean zero and variance unity and we have for a given t :
$E[n(t)]=E\left[h \frac{\hat{P}(t)}{\hat{S}(t)}\right]$, different from zero if h is different from zero.

It is assumed that artificial precipitation has not increased the statistical dependence between daily flows, and that adjacent daily flows, separated by the previously selected lag time k, can be considered as independent. Then, for m years of seeding experiments, $M=m v$ independent values of a random variable, η can be selected, whose distribution is assumed to
be normal with mean: $\mathrm{E}\left[\mathrm{h} \frac{\hat{\mathrm{P}}(\mathrm{t})}{\hat{\mathrm{S}}(\mathrm{t})}\right]$, where t can take v values. It should be noted that if $h \frac{\hat{\mathrm{P}}(\mathrm{t})}{\hat{S}(t)}$ is constant for any of the t for the selected n values, then $\operatorname{var}[n]=\operatorname{var}[y] \approx 1$. The fluctuation of $h \frac{\hat{p}(t)}{\hat{S}(t)}$ with t, being small during the spring season, it can be assumed without much error that $\operatorname{var}[n]=\operatorname{var}[y]$.

6.2 Generation of seeded data. Monte Carlo

Method. According to the general model for the seeded period, the variable for the control watersheds is $\xi(t)$ and is normally distributed with mean zero and variance unity. The variable for the target watershed is $\eta^{*}(t)$ such that:

$$
n *(t)=n(t)+h \frac{\hat{p}(t)}{\hat{S}(t)}
$$

and $n(t)$ is correlated to $\xi(t)$ by the regression line obtained for the non-seeded period:

$$
n(t)=b \xi(t)+\varepsilon(t)
$$

where b is the estimate of the slope of the regression line and $\varepsilon(t)$ is the random deviation of $n(t)$ about its estimate by the regression line. The joint distribution of (n, ξ) being assumed bivariate normal, $\varepsilon(t)$ is
normally distributed around zero with variance ($1-\rho^{2}$) $\operatorname{var}[n(t)]$ where ρ is the correlation coefficient between ξ and n, then:

$$
n^{*}(t)=b \xi(t)+\varepsilon(t)+h \frac{\hat{\mathrm{P}}(\mathrm{t})}{\hat{\mathrm{S}}(\mathrm{t})}
$$

To generate data, p and b must be calculated for the pair of considered watersheds. Then independent random values are drawn
(a) For $\xi(t)$ from a normal population with mean zero and variance unity.
(b) For $\varepsilon(t)$ from a normal population with mean zero and variance $\left(1-\rho^{2}\right)$.

This was done with the computer CDC 6400 at the University. A subprogram, "Function Ranf" has been written by the University computer center to generate random numbers between 0 and 1 , with a uniform density. (The procedure for transformation of this uniform density onto a normal one is described in Appendix 2.)
6.3 Results of the Student-t Test. According to the formulas and derivations given previously, the test was performed for the 10 pairs of stations with correlation coefficient larger than 0.70 . For the seeded period the number of years was increased from 1 to 20 until significance at the 95% level (corresponding to a two-tailed test) was reached.

Results are also given for some stations at the 98% and 99% level for a two-tailed test, and at the 95\% level for a one-tailed test. The results show (Table 8):
(a) Almost identical results are obtained by
using a one-tailed test and a two-tailed test at the 95\% level.
(b) Sometimes the same pair of watersheds shows very different results when their status of target and control is permuted. For example: Pair $16-18$, with 16 as a target, required one year to show significance but pair 16-18, with 18 as a target, required more than 20 years. This could be because station 18 may not be suitable for a target. According to the way that data for the seeded period were generated, a watershed is suitable as a target if the ratios $\frac{P(t)}{S(t)}$ are large, for the seven selected days, in other words if the $C_{v}(t)=\frac{S(t)}{P(t)}$ are small. The coefficients of variation $C_{v}(t)$ were in fact smaller for station 16 than for station 18 , but their ratios were much smaller than $\sqrt{20}$, which is the square root of the ratio of the required number of years for significance. Therefore, the differences in the coefficients of variation is not sufficient to explain the difference in the required number of years for significance. A more likely explanation lies in the paucity of the generated random data. In each case only one sequence of data was generated. Therefore, no power value can be attributed to the calculated number of years. It should be also noted from Table 2 that station 18 has probably the least reliable record of all.
(c) The consistency of the results for station 30, paired successively with a different control, is an encouraging result. It was somewhat expected, since the correlation coefficients between station 30 and these control watersheds are of the same order of magnitude. On the other hand, station 12, used as a target successively with a different control, shows great inconsistencies.

TABLE 8
RESULTS OF THE STUDENT t TEST FOR THE DETECTION OF A 10% INCREASE IN THE "DAILY MEANS"

G.T. means greater than

No attempt was made to transform the data prior to the application of the test, because the Student-t test has been shown [11] to be "robust." In other words, the fact that the joint bivariate distribution of the target and control population may not be normal does not affect the test significantly. To sum up the results:

Twelve stations among 20 required five years or less for detection at the 95% level and seven of them required five years or less for detection at the 9% level.

Only six stations among 20 required 10 years or more for detection at the 95% level.

On the basis of the following formula derived from a Chi-square test:

$$
M=4\left(1-\rho^{2}\right) \frac{c_{v, T}^{2}}{h^{2}} \text { (already given in Chapter } I \text {), }
$$

and using seasonal flows as variables, the number of years M required to detect a $h=10 \%$ increase in the mean seasonal flows at the 95% level and 50% power was computed. Computations were made by using the correlation coefficient p between target and control for the six month period (March-August), and the coefficient of variation of the target $C_{V, T}$ for the six month period, then for the four month period (April-July). Results are shown in Table 9.

For 15 stations among 20, the use of daily flows reduced the number of years required for detection in a very significant manner (by an average factor of five over 14 studied cases).

For only three stations out of 20 the use of daily flows was found to be a disadvantage.

TABLE 9

NUMBER OF YEARS REQUIRED FOR THE DETECTION OF A 10% INCREASE IN THE MEANS AT THE 95% LEVEL

Identification Target Control		Correlation coefficient with		Target coefficient of variation		Number of years for significance using		
		Daily	Seasonal	4 months	6 months	flows	flows	flows
		flows	flows	period	period	M4 (yr)	M6 (yr)	$\mathrm{Md}(\mathrm{yr})$
12	18	. 710	. 728	. 246	. 255	11	12	5
12	19	. 798	. 940	. 246	. 255	3	3	G.T. 20
12	22	. 730	. 807	. 246	. 255	8	9	3
12	30	. 701	. 785	. 246	. 255	8	10	10
16	18	. 806	. 969	. 515	. 504	6	6	1
18	12	. 710	. 728	. 575	. 537	62	54	5
18	16	. 806	. 969	. 575	. 537	8	7	G.T. 20
18	21	. 732	. 811	. 575	. 537	45	39	G.T. 20
18	30	. 796	. 877	. 575	. 537	30	27	3
19	12	. 798	. 940	. 313	. 312	4	4	1
19	22	. 761	. 792	. 313	. 312	15	14	
21	18	. 732	. 811	. 572	. 510	45	35	1
21	30	. 722	. 848	. 572	. 510	37	29	10
22	12	. 730	. 807	. 338	. 326	16	15	2
22	19	. 761	. 792	. 338	. 326	17	16	G.T. 20
22	30	. 720	. 914	. 338	. 326	8	7	8
30	12	. 701	. 785	. 428	. 413	28	26	6
30	18	. 796	. 877	. 428	. 413	17	16	4
30	21	. 722	. 848	. 428	. 413	20	19	4
30	22	. 720	. 914	. 428	. 413	12	11	4

[^3]
Chapter VII

CONCLUSIONS

1. The standardization of the daily streamflows time-series did not provide stationarity in the wide sense, except for the spring period.
2. The watersheds under study had nearly identical hydrologic features, particularly the same hydrographs; as a result very similar correlograms were found for every station. The study was made possible because all the watersheds had the same stochastic structure, which made it possible to select sequences of independent daily flow values at dates and intervals common to every station.
3. The daily flow time-series show strong auto correlation. Accordingly, only seven days with independent flow values per year could be selected.
4. The correlation between target and control watersheds, computed on the basis of the independent daily flow sequence, was found to be lower than the one computed on the basis of the corresponding seasonal flow. It was also found to be a good tool to select watersheds having the same hydrologic behavior.
5. The application of a Target-Control Student t-test shows that the use of daily flow as a variable instead of seasonal flow, by increasing the size of the sample, tends to reduce significantly the number of years required to detect a 10% increase in the mean flow at the 95% confidence level.

The most desirable properties that characterize the methods of statistical evaluation are applicability, generality, and power.

Applicability and generality remain open questions since this study considered only the case of winter seeding operations above high elevation watersheds. It is felt the method presented in this paper can be extended to different types of basins as long as they are hydrologically homogeneous, and can be used, not only for evaluation of weather modification, but also for the detection of changes in watershed responses, as long as the effects of such changes are changes in the mean flows, leaving the variance unchanged. For instance, effects of forest fires, land slides, and even urbanization could be investigated in a similar manner.

The sharp power of detection seems to be the best quality of the method. No conclusion can be reached for a particular pair of target-control watersheds as to the value of daily versus seasonal flow for minimal time evaluation because only one sequence of data was generated per pair. On the other hand the ensemble of the results shows rather clearly that the potential value of daily runoff as a detector of change in watershed response is high. The factor of reduction from its use averages three for the 20 cases studied. It is highly significant, and fully justifies additional more complete and more refined studies.

LIST OF SYMBOLS

Symbol	Description
$Q(t)$	Random function whose values are the daily flow values
P (t)	"Mean for a given day," i.e., mean daily value of $Q(t)$
$S(t)$	Standard deviation of $Q(t)$ for a given t
$q_{i}(t)$	Standardized daily flow values
t	Index referring to a day within a given year
i	Index referring to a year
n	Number of years of historical record for the non-seeded period
m	Number of years of record for the seeded period
N	Number of data or sample size for the non-seeded period
M	Number of data or sample size for the seeded period
y	Series of independent standardized daily flows for the non-seeded period of the target
η	Series of independent standardized daily flows for the seeded period of the target
x	Series of independent standardized daily flows for the non-seeded period of the control
ξ	Series of independent standardized daily flows for the seeded period of the control
Q* (t)	Daily flow values affected by seeding operations
$r_{k}(t)$	Correlation coefficient between day t and day $t-k$
$\mathrm{R}_{i}(\mathrm{k})$	Serial correlation coefficient for lag k and for year i
$\overline{\mathrm{R}}(\mathrm{k})$	Average of $R_{i}(k)$ over n realizations
p	Target-control correlation coefficient
v	Number of independent daily flow values for the spring season
b	Slope of the regression between target and control
,	The "hat" over a symbol means: we are considering the sample estimate of a given parameter
*	The "star" next to a symbol means: suspected to come from a different population than in the past.

REFERENCES

1. Plan to develop technology for increasing water yield from atmospheric sources: Office of Atmospheric Water Resources, Bureau of Reclamation, United States Department of the Interior, November 1966.
2. Gilman, Donald L.; Hibbs, James R.; and Paul L. Laskin; Weather and climate modification: U.S. Weather Bureau, July 10, 1965.
3. Saline water conversion, 1963 report: United Stated Department of the Interior, Office of Saline Water.
4. Weather and climate modification, 1966 report: The National Academy of Sciences - National Research Council.
5. Committee on Water of the National Research Council, "Water and Choice in the Colorado River Basin," National Academy of Sciences, Publication 1689, 107 pp., Washington, D.C., 1968.
6. Marlatt, W. and Rieh1, H., "Precipitation Regimes Over the Upper Colorado River," Journal of Geophysical Research, Vol. 68, No. 24, pp. 6477-6458, December 1963.
7. Golze, A. R., "Reclamation in the United States," the Caxton Printers, Ltd., Caldwell, Idaho, 1961.
8. Smith, L.W., "Western States Water Augmentation Concept," 1968, Federation of Rocky Mountain States Inc. Suite 203/1390 Logan Street, Denver, Colorado 80203, 37 pp.
9. Hurley, Patrick A., "Augmenting Colorado River by Weather Modification," Journal of the Irrigation and Drainage Division, ASCE, Vol. 94, No. IR4, Proc. Paper 6271, December, 1968, pp. 363-380.
10. Markovic, R.D.,"Statistical Evaluation of Weather Modification Attainments," Hydrology Paper No. 16, Colorado State University, Fort Collins, Colorado, November 1966, 44 pp.
11. More1-Seytoux, H.J., Final report for FY 1966 and 1967. Project SKYWATER. Hydrology Program Report No. CER68-69HJM5, Part 1, "Suitability of Basins to Weather Modification and Statistical Evaluation of Attainment," Colorado State University, July 1968.
12. Mood, Alexander M. and Graybil1, Franklin A., "Introduction to the Theory of Statistics," McGraw-Hill, 1963, 443 pp .
13. Brownlee, K.A.,"Statistical Theory and Methodology in Science and Engineering," New York, John Wiley and Sons, Inc., 1961, 570 pp .
14. Morel-Seytoux, H.J., "Suitability of Basins to Weather Modification and Statistical Evaluation of Attainment," Final Report to the Bureau of Reclamation for FY 1966 and 1967, Part 4, 30 pp. Colorado State University, Fort Collins, Colorado, July 1, 1968.
15. "Reclamation to Conduct Project SKYWATER Program in Colorado Rockies this Winter," U.S. Department of Interior, Bureau of Reclamation, Office of Chief Engineer, Denver Federal Center, News Release September 22, 1968.
16. Dumas, Andre J., "Detection of a Change in Watershed Response by a Stochastic Analysis of Daily Streamflows," Master of Science Thesis, Colorado State University, December 1968, CET68-69AJD25, 79 pp.
17. Papoulis, A.,"Probability, Random Variables and Stochastic Processes,"McGraw-Hill, 1965, 583 pp.
18. Sveshnikov, A. A., "Applied Methods of the Theory of Random Functions," Pergamon Press, Chapter IV, pp. 225-242.
19. Quimpo, R. G., "Stochastic Model of Daily River Flow Sequences," Hydrology Paper No. 18, Colorado State University, Fort Collins, Colorado, February 1967.
20. Roesner, L. A., and Yevjevich, V. M., "Mathematical Models for Time Series of Monthly Precipitation and Monthly Runoff," Hydrology Paper No. 15, Colorado State University, Fort Collins, Colorado, October 1966.
21. World Meteorological Organization, Technical Note No. 71. W.M.O. No. 178TP88, pp. 62-63.
22. Box, G.E.P., and Muller, M.E., "A Note on the Generation of Random Normal Deviates," Annuals of Mathematical Statistics, Vol. 29, 1958, pp. 610611.

APPENDIX 1

Fitting Markov I Model

The asymptotic behavior of the correlograms suggests the daily flow series could be fitted by a first order linear autoregressive scheme (or Markov first order linear model).

In this model, the correlogram of $y(t)$ can be represented by

$$
R(k)=a^{k}
$$

and the autoregressive scheme is given by:

$$
y(t)=a y(t-1)+\varepsilon(t)
$$

where $\varepsilon(t)$ is independent of $y(t-1, y(t-2) \ldots$ and of the other $\varepsilon^{t} s$. Then a could be estimated either by
(1) taking $a=R_{1}$ (empirical value of the first autocorrelation coefficient)
(2) fitting a function $R(k)=a^{k}$ to the empirical correlogram and estimating the value of a by the method of least square, which could be done by linearizing the exponential function before minimizing the sum of the squared differences. Criterion or a test for goodness of fit then can be used to determine how well the Markov I model will apply $[19,20]$.

If such a model would fit well enough, it can be seen that using the series $\varepsilon(t)$ for the purpose of weather modification detection will yield a very large sample, since the E^{\prime} s are independent. How would the series $\varepsilon(t)$ be affected by artificial precipitation? For the non-seeded period:

$$
\varepsilon(t)=y(t)-a y(t-1)
$$

and $E(t)$ has a mean equal to zero and a variance:

$$
\operatorname{var}[\varepsilon(t)]=(1-a)^{2} \operatorname{var}[y(t)]=1-a^{2}
$$

For the seeded period:

$$
\varepsilon^{*}(t)=y(t)-a y(t-1)+h\left(\frac{P(t)}{S(t)}-a \frac{P(t-1)}{S(t-1)}\right)
$$

If we compare the series $\varepsilon(t)$ with the series $y(t)$ involving seven data points per year, we find:
(a) The expectation of $\varepsilon^{*}(t)$ is roughly (1-a)
times the expectation of $\eta(t)$,
(b) The standard deviation of $\epsilon^{*}(t)$ is $\sqrt{1-a^{2}}$ times the deviation of $y(t)$,
(c) For $\varepsilon(t)$ the number of data points per year is $g=14.7$ times the one for the series $y(t)$.

We shall assume that the correlation between target and control on the basis of the $\varepsilon(t)$ is the same as the one on the basis of the $y(t)$. In fact it is likely to be much smaller. Denoting the number of necessary years for detection by the series $\varepsilon(t)$ and $y(t)$
respectively by M_{ε} and M_{y} and (\sim) being the symbol of proportionality, we have

$$
\begin{aligned}
& \frac{M_{\varepsilon}}{M_{y}} \sim \frac{t_{95, \varepsilon}}{t_{95, y}} \cdot \frac{\sqrt{1-a^{2}}}{(1-a) \sqrt{g}} \\
& \frac{M_{\varepsilon}}{M_{y}} \sim \frac{t_{95,}}{t_{95, y}} \cdot \sqrt{\frac{1+a}{(1-a) g}} .
\end{aligned}
$$

The number of degrees of freedom for $t_{95, \varepsilon}$ will be roughly g times the one for the $t_{95, y}$. But since the latter is already a large number, the ratio

$$
\frac{t_{95, \mathrm{\varepsilon}}}{\mathrm{t}_{95, \mathrm{y}}}
$$

will be very close to one.
With two stations with n years of historical records and five years of seeded period we would have:

$$
\frac{t_{95, \varepsilon}}{t_{95, y}} \approx .99 .
$$

Taking $a=0.9$, we would find:

$$
\frac{M_{\varepsilon}}{M_{y}} \approx .99 \times 1.14=1.13 .
$$

Taking $\mathrm{a}=0.95$, we would find:

$$
\frac{M^{M}}{M_{y}} \simeq .99 \times 1.64=1.62
$$

Fitting the Markov I model would give values of (a) between 0.9 and 0.95 , but in any case it would hardly improve the detection possibilities, whereas it would complicate and greatly expand the computations.

It is interesting to note that in the case where the Markov I model describes well our variable, v, the number of independent days during a $G=103$ days period, is given by [21]:

$$
v=\frac{G}{1+\frac{2 a}{1-a}\left(1-\frac{1}{G} \frac{1-a^{G}}{1-a}\right)} .
$$

With $a=0.9$ and $G=103$ we find: $v=6$ days, which is the number of independent days we selected for the 103 days period. (The seventh day is outside this interval for which the conditions of stationarity are met.)

The purpose of this Appendix is to describe a method [22] to generate random numbers from a normal population with high accuracy and favorable speed for the computer.

Let U_{1} and U_{2} be the independent random variables from the same rectangular density $f\left(U_{1}, U_{2}\right)=1$, on the interval $[0,1]$ and consider the random variables defined by:

$$
\begin{aligned}
& \mathrm{X}_{1}=\left(-2 \log _{\mathrm{e}} \mathrm{U}_{1}\right)^{\frac{1}{2}} \operatorname{Cos} 2 \pi \mathrm{U}_{2}=g_{1}\left(\mathrm{U}_{1}, \mathrm{U}_{2}\right) \\
& \mathrm{X}_{2}=\left(-2 \log _{\mathrm{e}} \mathrm{U}_{1}\right)^{\frac{1}{2}} \operatorname{Sin} 2 \pi \mathrm{U}_{2}=g_{2}\left(\mathrm{U}_{1}, \mathrm{U}_{2}\right)
\end{aligned}
$$

We then have:

$$
\begin{aligned}
& \mathrm{U}_{1}=\mathrm{e} \frac{-\left(\mathrm{x}_{1}^{2}+\mathrm{x}_{2}^{2}\right)}{2}=\mathrm{h}_{1}\left(\mathrm{X}_{1}, \mathrm{x}_{2}\right) \\
& \mathrm{U}_{2}=-\frac{1}{2 \pi} \arctan \frac{\mathrm{X}_{2}}{\mathrm{X}_{1}}=\mathrm{h}_{2}\left(\mathrm{X}_{1}, \mathrm{x}_{2}\right) .
\end{aligned}
$$

And then we have:

$$
\mathrm{P}\left(\mathrm{a} \leq \mathrm{U}_{1}<\mathrm{b}, \mathrm{c} \leq \mathrm{U}_{2}<\mathrm{d}\right)=\int_{\mathrm{a}}^{\mathrm{b}} \int_{\mathrm{c}}^{\mathrm{d}} \mathrm{f}\left(\mathrm{U}_{1}, \mathrm{U}_{2}\right) \mathrm{du}_{1} \mathrm{du}_{2}
$$

$=\iint_{(S)} f\left[h_{1}\left(x_{1}, x_{2}\right), h_{2}\left(x_{1}, x_{2}\right)\right]|J| d x_{1} d x_{2}$
where (S) is the domain of the x_{1}, x_{2} plane into which the rectangle ($\mathrm{a} \leq \mathrm{U}_{1}<\mathrm{b}, \mathrm{c} \leq \mathrm{U}_{2}<\mathrm{d}$) is mapped by the transformation, and

$$
J=\left|\begin{array}{cc}
\partial h_{1} / \partial x_{1} & \partial h_{1} / \partial x_{2} \\
\partial h_{2} / \partial x_{1} & \partial h_{2} / \partial x_{2}
\end{array}\right|
$$

The density function of the joint distribution for $\left(x_{1}, x_{2}\right)$ is $\psi\left(x_{1}, x_{2}\right) ; \psi\left(x_{1}, x_{2}\right)=f\left[h_{1}\left(x_{1}, x_{2}\right)\right.$,
$\left.h_{2}\left(x_{1}, x_{2}\right)\right]|J|=|J|$, since $f[]=1$; and we find

$$
\begin{aligned}
\psi\left(x_{1}, x_{2}\right)=|J|=\frac{1}{2 \pi} e^{\frac{-\left(x_{1}^{2}+x_{2}^{2}\right)}{2}} & =\frac{1}{\sqrt{2 \pi}} e^{\frac{-x_{1}^{2}}{2}} \frac{1}{\sqrt{2 \pi}} e^{\frac{-x_{2}^{2}}{2}} \\
& =\psi\left(x_{1}\right) \psi\left(x_{2}\right)
\end{aligned}
$$

x_{1} and x_{2} are a pair of independent random variables from the same normal population with mean zero and unit variance.

In this way we can draw a set of values of $\xi(t)$ and another set of values that once multiplied by $\sqrt{1-p^{2}}$ will give a set of values for $\varepsilon(t)$.

A fortran program was written for this purpose for different pairs of station and for $h=10 \%$.

Key Words: Statistical discrimination, hydrologic change, daily runoff, precipitation management, evaluation
Abstract: The purpose of this study was the development of a technique for rapid detection of the occurrence of a suspected hydrologic change in high mountain watersheds. A method has been developed that uses a sequence of independent daily flows. This procedure is superior to previous ones based on seasonal or yearly flows. The results of this investigation show the use of daily, instead of seasonal flow, data in a Student t-test reduces the number of necessary years of data for detection by an average of five in 14 out of the 20 cases studied, or by an average of three for the 20 cases. All of the cases come from the Upper Colorado River Basin. The study is particularly relevant to the planned cloud seeding operations of the Bureau of Reclamation in high elevation areas of the Colorado Rocky Mountains. The statistical procedure of detection relies on the Target Control concept and the application of a conditional Student t-test, a test of the difference between the adjusted means obtained by the regression lines between Target and Control for the seeded and non-seeded periods.

References: Andre J. Dumas and Hubert J. Morel-Seytoux, Colorado State University Hydrology Paper No. 34 (August 1969) "Statistical Discrimination of Change in Daily Runoff."

Key Words: Statistical discrimination, hydrologic change, daily runoff, precipitation management, evaluation
Abstract: The purpose of this study was the development of a technique for rapid detection of the occurrence of a suspected hydrologic change in high mountain watersheds. A method has been developed that uses a sequence of independent dally flows. This procedure is superior to previous ones based on seasonal or yearly flows. The results of this investigation show the use of daily, instead of seasonal flow, data in a Student t-test reduces the number of necessary years of data for detection by an average of five in 14 out of the 20 cases studied, or by an average of three for the 20 cases. All of the cases come from the Upper Colorado River Basin. The study is particularly relevant to the planned cloud seeding operations of the Bureau of Reclamation in high elevation areas of the Colorado Rocky Mountains. The statistical procedure of detection relies on the Target Control concept and the application of a conditional Student t-test, a test of the difference between the adjusted means obtained by the regression lines between Target and Control for the seeded and non-seeded periods.

References: Andre J. Dumas and Hubert J. Morel-Seytoux, Colorado State University Hydrology Paper No. 34 (August 1969) "Statistical Discrimination of Change in Dafly Runoff."

Key Words: Statistical discrimination, hydrologic change, daily runoff, precipitation management, evaluation

Abstract: The purpose of this study was the development of a technique for rapid detection of the occurrence of a suspected hydrologic change in high mountain watersheds. A method has been developed that uses a sequence of independent dafly flows. This procedure is superior to previous ones based on seasonal or yearly flows. The results of this investigation show the use of daily, instead of seasonal flow, data in a Student t-test reduces the number of necessary years of data for detection by an average of five in 14 out of the 20 cases studied, or by an average of three for the 20 cases. All of the cases come from the Upper Colorado River Basin. The study is particularly relevant to the planned cloud seeding operations of the Bureau of Reclamation in high elevation areas of the Colorado Rocky Mountains. The statistical procedure of detection relies on the Target Control concept and the application of a conditional Student t-test, a test of the difference between the adjusted means obtained by the regression lines between Target and Control for the seeded and non-seeded periods.

References:
Andre J. Dumas and Hubert J. Morel-Seytoux, Colorado State University Hydrology Paper No. 34 (August 1969) "Statistical Discrimination of Change in Daily Runoff."

Colorado State University Hydrology Papers

No. 25 "An Experimental Rainfall-Runoff Facility," by W. T. Dickinson, M. E. Holland and G. L. Smith, September 1967.

No. 26 "The Investigation of Relationship Between Hydrologic Time Series and Sun Spot Numbers," by Ignacio Rodriguez-Iturbe and Vujica Yevjevich, April 1968.

No. 27 "Diffusion of Entrapped Gas From Porous Media," by Kenneth M. Adam and Arthur T. Corey, April 1968.

No. 28 "Sampling Bacteria in a Mountain Stream," by Samuel H. Kunkle and James R. Meimann, March 1968.

No. 29 "Estimating Design Floods from Extreme Rainfall," by Frederick C. Bell, July 1968.

No. 30 "Conservation of Ground Water by Gravel Mulches," by A. T. Corey and W. D. Kemper, May 1968.

No. 31 "Effects of Truncation on Dependence in Hydrologic Time Series," by Rezaul Karim Bhuiya and Vujica Yevjevich, November 1968.

No. 32 "Properties of Non-Homogeneous Hydrologic Series," by V. Yevjevich and R. I. Jeng, April 1969.

No. 33 "Runs of Precipitation Series," by Jose Llamas and M. M. Siddiqui, May 1969.

Colorado State University Fluid Mechanics Papers

No. 4 "Experiment on Wind Generated Waves on the Water Surface of a Laboratory Channel," by E. J. Plate and C. S. Yang, February 1966.

No. 5 "Investigations of the Thermally Stratified Boundary Layer," by E. J. Plate and C. W. Lin, February 1966.

No. 6 "Atmospheric Diffusion in the Earth's Boundary Layer--Diffusion in the Vertical Direction and Effects of the Thermal Stratification," by Shozo Ito, February 1966.

Colorado State University Hydraulics Papers

No. 1 "Design of Conveyance Channels in Alluvial Materials," by D. B. Simons, March 1966.

No. 2 "Diffusion of Slot Jets with Finite Orifice Length-Width Ratios," by V. Yevjevich, March 1966.

No. 3 "Dispersion of Mass in Open-Channel Flow," by William W. Sayre, February 1968.

Appendix 3

SUITABILITY OF THE UPPER COLORADO RIVER BASIN FOR PRECIPITATION MANAGEMENT

SUITABILITY OF THE UPPER COLORADO RIVER BASIN

 FOR PRECIPITATION MANAGEMENTby

Hiroshi Nakamichi and Hubert J. Morel-Seytoux

October 1969

HYDROLOGY PAPERS COLORADO STATE UNIVERSITY

Fort Collins, Colorado

Several departments at Colorado State University have substantial research and graduate programs oriented to hydrology. These Hydrology Papers are intended to communicate in a fast way the current results of this research to the specialists interested in these activities. The papers will supply most of the background research data and results. Shorter versions will usually be published in the appropriate scientific and professional journals, or presented at national or international scientific and professional meetings and published in the proceedings of these meetings.

This research is part of a research project supported by the U.S. Department of Interior, Bureau of Reclamation, Office of Atmospheric Water Resources at Colorado State University with Dr. H.J. Morel-Seytoux as principal investigator under contract numbered BR 14-06-D-6597.

EDITORIAL BOARD

Dr. Arthur T. Corey, Professor, Agricultural Engineering Department
Dr. Robert E. Dils, Professor, College of Forestry and Natural Resources
Dr. Vujica Yevjevich, Professor, Civil Engineering Department

SUITABILITY OF THE UPPER COLORADO RIVER BASIN FOR PRECIPITATION MANAGEMENT

by
Hiroshi Nakamichi
and
Hubert J. Morel-Seytoux

HYDROLOGY PAPERS
COLORADO STATE UNIVERSITY
FORT COLLINS, COLORADO 80521

ACKNOWLEDGMENTS

The present paper is based primarily upon Mr. Hiroshi Nakamichi's Master of Science Thesis in the Department of Civil Engineering, Colorado State Universtiy entitled, "Suitability of the Upper Colorado River Basin for Weather Modification." The work was supported by the U.S. Bureau of Reclamation, Contract numbered BR 14-06-D-6597, whose help is gratefully acknowledged.

RELATION OF HYDROLOGY PAPER NO. 36 TO RESEARCH PROGRAM:
"HYDROLOGY OF WEATHER MODIFICATION"
The present study is part of a more comprehensive project which has as one of its objectives the development of methods of evaluation of atmospheric water resources programs. Correlatively the application of the methods to a variety of basins forms a basis for selection of suitable watersheds, basins or regions.

Several approaches are possible and are pursued. One approach was the subject of a previous hydrology paper, No. 34 (see inside back cover for complete reference). Another approach will be discussed in a forthcoming paper entitled, "Regional Discrimination of Change in Runoff."
Chapter Page
AbstractI
Introduction 1

1. Water needs of the basin 1
2. Precipitation management program 1
3. Criteria of suitability 1
4. General plan of paper. 2
5. Select basic terms used in this study 2
II The Hydrologic and Historic Setting 3
6. The Upper Colorado River Basin 3
7. Precipitation management in the Upper Colorado River Basin 4
Suitability of Basins for Precipitation Management 14
8. Criteria of suitability of basins for precipitation management 14
9. Suitability of basins for optimal water yield. 14
10. Suitability of basins for evaluation. 15
Data Used For This Study. 17
11. Precipitation and runoff in the Upper Colorado River Basin 17
12. The accuracy of data measurements 17
13. Non-homogeneity and inconsistency of records 17
14. Filling missing data 17
VData Processing and Results.18
15. Mean winter precipitation and mean spring runoff 18
16. Relation between precipitation and runoff 18
17. Increase of runoff. 21
18. Number of years needed for evaluation 21
19. Optimized selection of basins in the pilot area 21
VI Conclusion 40
References 41
Appendix A 44
Appendix B 49
Figure Page
The Upper Colorado River Basin (after Upper Colorado River Commission [7]) . 3
The highly smoothed topography of the Upper Colorado River Basin (in units of 1000 's of feet). (After Rasmussen, J.L. [8]) 4
Annual and spring runoff at Lees Ferry, Arizona 5
Annual, winter, and monthly precipitation for some stations in the two pilot areas 5-7
Annual, spring, and monthly runoff for some stations in the two pilots areas. 8-12Pilot area$12-13$
Mean winter precipitation (in inches) 19
Mean spring runoff (in inches). 20
Expected increase in spring runoff due to a uniform 10% increase in winter precipitation (in inches) 22
Number of years needed for evaluation (based on the two-sample u-test) 23
Length of runoff records in the pilot area 25
Minimum number of years needed for evaluation for grouped basins in the pilot area $27-28$
Correlation coefficient, (r) between winter and spring precipitation 18
Station characteristics in the pilot area 24
Covariance matrix of spring runoff of stations in the pilot area 25
Optimal combinations of gages for various group sizes 26
10 best combinations of sub-basins in the San Juan Mountains 29-32
10 best combinations of sub-basins in the Upper Basin of the Colorado River $33-37$
Sensitivity of number of years for evaluation according to change of coefficients. 37-38
Sensitivity of number of years for evaluation according to change of covariance matrix 39

Abstract

The purpose of this study was the determination of suitable watersheds or combinations of watersheds for precipitation management programs in the Upper Colorado River Basin in general and for two special zones: the San Juan Mountains and the Upper Basin of the Colorado River.

The study shows that the introduction of optimal weight factors in the linear combination of runoff from several basins will reduce significantly the number of years necessary for evaluation of the operations. Assuming a uniform 10% increase in winter precipitation throughout the Upper Colorado River Basin, the calculations show that three years of operations would be needed in the Upper Basin of the Colorado versus six years in the San Juan mountains.

Hiroshi Nakamichi* and Hubert J. Morel-Seytoux**

Chapter I

INTRODUCTION

1. Water needs of the basin. The Colorado River system is the largest in the United States that flows mainly through lands having a chronic water deficiency for cultivation of crops [1]. Since the 1940's, the basin's population has increased rapidly with an accompanying growth in demand upon the region's water resources for irrigation, industrial, and domestic uses [2]. Over the decade from 1951 through 1960, the population of the five states comprising the Upper Colorado River Basin has increased by 40 percent, while over the same period the population of the nation as a whole has increased only by 20 percent [3].
2. Precipitation management program. In an effort to reduce the severity of these demands, an atmospheric water resource project is currently pursued by the United States Department of the Interior, Bureau of Reclamation, Office of Atmospheric Water Resources. The goal of this project is to induce more precipitation from the atmosphere by winter cloud seeding operations over certain high altitude watersheds in the Upper Colorado River Basin. In the past, there was some controversy as to whether man could economically increase precipitation in worthwhile amounts. There now exists evidence that this is possible at least in high mountain areas [4]. As of February 1969, plans of the Bureau of Reclamation called for a concentrated experimental effort in two pilot areas of the Upper Colorado River Basin, to start in the fall of 1969 [5]. This study was undertaken in connection with the Bureau's overall program in general and in connection with this pilot program in particular.***
3. Criteria of suitability. In the experimental or large-scale operational stage of the project, a site should be selected. At this point, one needs certain criteria in order to select suitable basins. These criteria should be considered both from a water resource and an evaluation standpoint [6]. The first standpoint requires a criterion of suitability for optimal water yield, and the second, a criterion of suitability for minimum time evaluation.

Ideally the criteria should be objective and simple. That is, they should be derived easily from available data rather than from theory. Though various aspects of research on cloud modification have been conducted sucessfully, it is still difficult to determine its quantitative effect. Indeed, one of the
purposes of the pilot project is to determine the exact magnitude of the increase in precipitation on a large areal scale. Following this experiment, it may be possible to isolate the major factors that determine the magnitude of the increase in precipitation. Once precipitation is induced, the increase in runoff, (ΔQ), caused by the increase of precipitation, ($\Delta \mathrm{P}$), is estimated by a statistical relationship between precipitation and runoff, $(Q=f(P))$, often used when forecasting runoff:

$$
\begin{equation*}
\Delta Q=(Q+\Delta Q)-Q=f(P+\Delta P)-f(P) . \tag{1}
\end{equation*}
$$

Marginal criteria are defined in order to determine the relative suitability of many potential basins for minimum time evaluation, even if the type of statistical test and the design of the experiment are not known [6]. One such criterion is derived from the "two-sample u-test."

The two-sample u-test is a test of the hypothesis that assumes that the mean of a statistical population (the values of annual runoff for a given basin over many years) has not changed significantly even though there were reasons to suspect it had. As the name implies, the application of the test requires the availability of two samples of data, one sample collected prior to the suspected change and one collected afterward. If the suspected change is real but small, the records of many years may be necessary to determine its significance. If the change is large and the spread of the distribution is narrow, only a few years may be required.

No statistical test is free of assumptions. The two-sample u-test assumes that only the mean of the population may have changed whereas the shape and the spread of the distribution have not. Assuming a normal distribution, the explicit expression [6] for the number of years, N, necessary to guarantee the statistical significance of the observed or expected increase at the 95 percent confidence level is given by:

$$
\begin{equation*}
N=\frac{(1.96)^{2} \times \sigma_{Q}^{2}}{(\Delta Q)^{2}}=\frac{3.84 \sigma_{Q}^{2}}{(\Delta Q)^{2}} \tag{2}
\end{equation*}
$$

[^4]where $\sigma_{Q}{ }^{2}$ is the standard deviation of runoff, and
$\Delta Q \quad$ is the increase in runoff.
One of the purposes of this study is to determine the relative suitability of individual basins within the Upper Colorado River Basin by calculating the expected increase in runoff for each, i.e., ΔQ, from equation (1) and the number of years needed for evaluation, i.e., N, from equation (2).

On the other hand, the pilot program involves many sub-basins within major ones. In this case, it is advisable to choose a favorable combination of subbasins for evaluation. For this purpose, a new variable, Q^{*}, is constructed by a linear combination of n runoff variables, $Q_{i}(i=1,2, \ldots, n)$, i.e.,

$$
\begin{equation*}
Q^{*}=\alpha_{1} Q_{1}+\alpha_{2} Q_{2}+\ldots+\alpha_{n} Q_{n}=\sum_{i=1}^{n} \alpha_{i} Q_{i} \tag{3}
\end{equation*}
$$

where Q_{i} is the runoff from an individual sub-basin. Much freedom is gained from a combination of runoff variables from various basins such as (3) compared to the use of a single basin runoff. The freedom gained is twofold. First, there is freedom gained in the process of selection of n basins among many. For example, where there are 15 ways of selecting one basin out of 15 , there are 3003 ways of selecting five basins out of 15. Second, there is freedom gained in the process of selection of the parameters α_{i} once n subbasins have been chosen.

However, for hydrologic reasons, two restrictions were imposed on the choice of the parameters α :
(a) The mean of Q^{*}, \bar{Q}^{*}, must be equal to the sum of the means of the Q_{i}, \bar{Q}_{i}, symbolically:

$$
\begin{equation*}
\bar{Q}^{*}=\sum_{i=1}^{n} \alpha_{i} \bar{Q}_{i}=\sum_{i=1}^{n} \bar{Q}_{i} \tag{4}
\end{equation*}
$$

and
(b) The expected increase of $Q^{*}, \overline{\Delta Q^{*}}$, must be equal to the sum of the expected increases in Q_{i}, $\overline{\Delta Q}_{i}$, i.e., symbolically:

$$
\begin{equation*}
\overline{\Delta Q}^{\star}=\sum_{i=1}^{n} a_{i} \overline{\Delta Q}_{i}=\sum_{i=1}^{n} \overline{\Delta Q}_{i} . \tag{5}
\end{equation*}
$$

The hydrologic interpretation of equation (4) is that the expectation of the random variable Q^{*} is the mean of the total runoff for the group of n basins. The interpretation of equation (5) is that the expected increase of the mean of Q^{*} is that of the total runoff for the group of n basins.

As for a single basin the number of years, N^{*}, needed for evaluation of grouped basins is given by:

$$
\begin{equation*}
N^{*}=\frac{3.84 \sigma_{Q^{*}}^{2}}{\left(\Delta Q^{*}\right)^{2}} \tag{6}
\end{equation*}
$$

Another purpose of this study is to develop systematic methods to obtain the most favorable combinations of sub-basins in the pilot areas by determining the α_{i} 's such that the number of years, N^{*}, in equation (6), is kept to a minimum.
4. General plan of paper. In Chapter II, the hydrologic characteristics of the Upper Colorado River Basin are reviewed. In the same chapter, the potential for weather modification in this region is also discussed. Chapter IIItreats the question of definition of a criterion of suitability and its calculations. Chapters IV and V discuss the data used in the study, the techniques of data processing, and most importantly, the results. Chapter VI concludes the study.
5. Select basic terms used in this study.
(a) Water Year
"Water year" begins October 1 and ends September 30 of the calendar year. The term, "annual," refers to water year. In the text the words "year" and "water year" are used synonymously.

(b) Precipitation

"Precipitation" refers to rainfall and the water content of snow. Winter precipitation includes precipitation from September 1 through April 30 and spring precipitation from May 1 through July 31. Winter precipitation generally falls in the form of snow in the high mountain watersheds. Precipitation is measured in inches.
(c) Runoff
"Runoff" refers to the river flow measured at a gaging station. In this study, unit yield is used, i. e., the depth, in inches, of the cumulative volume of flow during a given period, when volume is spread uniformly over the whole watershed. Spring runoff includes runoff from April 1 through July 31.

(d) Upper Colorado River Basin

By this expression the drainage basin of the Colorado River above Lee's Ferry is meant (see Figure 1).

(e) Upper Basin of the Colorado River

A much smaller drainage basin is meant by this expression. The Upper Basin of the Colorado River is defined in this study as the drainage basin of the main stem of the Colorado, close to its source, and of a few tributaries. The limits of this basin are shown on Figure 6 (b).

Chapter II

THE HYDROLOGIC AND HISTORIC SETTING

The hydrologic characteristics of the Upper Colorado River Basin are reviewed. They explain in part the interest in and the potential for weather modification in this area. Certain aspects of the precipitation management program in the Upper Colorado River Basin are discussed briefly.

1. The Upper Colorado River Basin. The Upper Colorado River Basin (Fig. 1) covers parts of the states of Colorado, Wyoming, Utah, New Mexico, and

Arizona. It comprises 109,500 square miles above Lees Ferry, Arizona, its boundaries extending along the continental divide in the east and the north and along the divide of the mountain range through Utah in the west. The Colorado River, which is the third longest river in the United States, has a length of 1,450 miles. It has its source in the high, snowcapped mountains in northwestern Colorado. It is also fed by major tributaries originating in other parts

Fig. 1. The Upper Colorado River Basin (after Upper Colorado River Commission [7])
of Colorado; by the Green River originating in Wyoming and flowing into the Colorado River in southern Utah; by the San Juan River originating in southern Colorado, flowing through northern New Mexico and joining the Colorado River in southern Utah. In the northern portion of the basin, there are hundreds of peaks of more than 13,000 feet in elevation. A highly smoothed topography of the basin is shown in Fig. 2.

In high mountain regions, much of the annual runoff occurs as a result of melting snow. Hence, runoff is often characterized by a peak flood season in late spring followed by low water flow in summer, fall, and winter. This holds true for the Colorado River and its tributaries [2].

The annual virgin runoff at Lees Ferry, Arizona, is noted for its large fluctuation, as shown in Fig. 3. Virgin runoff is that runoff which takes place without the interference of man. Virgin runoff is reconstructed from the actual flow, from data on transmountain diversions, on regulation by dams, and from estimates of irrigation diversions and uses. The fluctuation of annual virgin runoff ranges from a low of 1.08 inches to a high of 4.10, as measured in the last 51 years [9].
2. Precipitation management in the Upper Colorado River Basin. The precipitation management project, currently planned by the United States Bureau of Reclamation, Office of Atmospheric Water Resources, concerns winter cloud seeding operations above certain high elevation watersheds of the Upper Colorado River Basin. The precipitation due to cloud seeding which falls as snow in winter, is expected to increase the runoff in spring.

The following characteristics of the Upper Colorado River Basin are favorable for weather modification:
(a) High mountain ranges in this region are favorable for orographic precipitation and in addition, the northwest wind brings large supplies of moisture in winter [10].
(b) Water from snowmelt in early spring through early summer can be stored and made available when needed for various kinds of use.

Figures 4 and 5 illustrate the typical variation of precipitation and runoff in this region. The distribution of monthly precipitation is, on the average,

Fig. 2 The highly smoothed topography of the Upper Colorado River Basin (in units of 1000 's of feet). (After Rasmussen, J.L. [8])
uniform. However, the major part of the runoff occurs during the spring and early summer months, which is due primarily to snowmelt.

The design of a moderate scale pilot program of operational seeding is in progress, serving as a bridge between experimental programs and the large-scale operation of the Colorado River Basin $[5,11]$. The following two areas were selected by the Bureau of Reclamation* for a pilot program.
(1) The San Juan Mountains including drainage areas from Lake Fork, Colorado, to the New Mexico border, and
(2) The Upper Basin of the Colorado River including drainage from Williams Fork, Colorado, to Troublesome Creek, Colorado.

These regions are shown in Fig. 6. The suitability of grouped basins from these regions for weather modification is discussed in Chapter V, Section 5.

The next chapter discusses the question of definition and calculation of suitability criteria. Based on these criteria, the overall suitability of the Upper Colorado River Basin is assessed in general and for the pilot areas in particular in Chapter V, Section 5.

Fig. 3 Annual and spring runoff at Lees Ferry, Arizona

Fig. 4(a) Annual, winter, and monthly precipitation (in inches) for stations Vallecito Dam and Cascade. $\mathrm{P}_{\mathrm{w}} / \mathrm{P}$ represents the ratio of mean winter precipitation to mean annual precipitation.

[^5]

Fig. 4 (b) Annual, winter, and monthly precipitation (in inches) for stations Palisade Lake 2 and Pagosa Springs. P_{w} / P represents the ratio of mean winter precipitation to mean annual precipitation.

Fig. 4 (c) Annual, winter, and monthly precipitation (in inches) for stations Trout Lake and Rico. P_{W} / P represents the ratio of mean winter precipitation to mean annual precipitation.

Fig. 4 (d) Annual, winter, and monthly precipitation (in inches) for stations Fraser and Ouray. P_{w} / P represents the ratio of mean winter precipitation to mean annual precipitation.

Fig. 4 (e) Annual, winter, and monthly precipitation (in inches) for stations Grand Lake 1 and Winter Park. P_{w} / P represents the ratio of mean winter precipitation to mean annual precipitation.

Fig. 5(a) Annual, spring, and monthly runoff (in inches) for stations Florida River near Durango, Colo. and La Plata River at Hesperus, Colo. \bar{Q}_{S} / \bar{Q} represents the ratio of mean spring runoff to mean annual runoff.

Remaining Season Runoff Standard Deviation

Fig. 5(b) Annual, spring, and monthly runoff (in inches) for stations Hermosa Creek near Hermosa Park, Colo. and Animas River at Durango, Colo. \bar{Q}_{S} / \bar{Q} represents the ratio of mean spring runoff to mean annual runoff.

Fig. 5(d) Annual, spring, and monthly runoff (in inches) for stations Navajo River at Banded Peak Ranch, near Chromo and Navajo River at Edith, Colo. \bar{Q}_{S} / \bar{Q} represents the ratio of mean spring runoff to mean annual runoff.

Fig. 5(e) Annual, spring, and monthly runoff (in inches) for stations San Juan River at Pagosa Springs, Colo. and Rio Blanco near Pagosa Springs, Colo. \bar{Q}_{S} / \bar{Q} represents the ratio of mean spring runoff to mean annual runoff.

Fig. 5(f) Annual, spring, and monthly runoff (in inches) for stations East Fork San Juan (San Juan) River near Pagosa Springs, Colo, and West Fork San Juan River near Pagosa Springs, Colo. \bar{Q}_{S} / \bar{Q} represents the ratio of mean spring runoff to mean annual runoff.

μ Mean

C_{V} Coefficient of VariationSpring Runoff
Remaining Season Runoff
Standard Deviation

Fig. $5(\mathrm{~g})$ Annual, spring, and monthly runoff (in inches) for stations Williams Fork (River) near Leal, Colo. and San Miguel River near (at) Placerville, Colo. \bar{Q}_{S} / \bar{Q} represents the ratio of mean spring runoff to mean annual runoff.
${ }^{\mu}$ Mean
C_{v} Coefficient of Variation
Spring Runoff
\square Remaining Season Runoff

Fig. 5(h) Annual, spring, and monthly runoff (in inches) for stations Ranch Creek near Tabernash, Colo. and Meadow Creek near Tabernash, Colo. $\bar{Q}_{\mathrm{S}} / \overline{\mathrm{Q}}$ represents the ratio of mean spring runoff to mean annual runoff.
μ Mean
C_{v} Coefficient of Variation
Spring Runoft
Remaining Season Runoff
Somaro bomeato

Fig. 5(i) Annual, spring, and monthly runoff (in inches) for stations Colorado (Grand) (North Fork of Grand) River near Grand Lake, Colo, and Arapaho Creek at Monarch Lake Outlet, Colo. \bar{Q}_{S} / \bar{Q} represents the ratio of mean spring runoff to mean annual runoff.
 digit numbers)

Fig. 6(a) General configuration of and location of gages within the Colorado River Basin Pilot Project area (San Juan Mountains region).

Fig. 6 (b) General configuration of the Upper Basin of the Colorado River.

Chapter III

SUITABILITY OF BASINS FOR PRECIPITATION MANAGEMENT

1. Criteria of suitability of basins for precipitation management. Whether it be an experimental or a large-scale operation, the proper selection of basins for weather modification is important. Simply put, the question to be answered is: What makes one basin more suitable than another for a precipitation management operation [6]?

From a water resource point of view, the largest amount of runoff that can be brought about by cloud seeding is one of the criteria of suitability. But at the present time, cloud seeding is in the preliminary stages, and its success still has to be measured and discussed. One needs another criterion for evaluation. The smallest number of years needed for significance at a given level and power is the criterion from the evaluation standpoint.

Both of the criteria above are not necessarily the same and, of course, they are not absolute. In addition, meteorologic and economic conditions must be considered. However, these criteria are beyond the objective of this study, which is confined to hydrologic suitability.
2. Suitability of basins for optimal water yield.
a. Increase of precipitation by cloud seeding. Cloud seeding operations have been carried out on the following assumptions [12]:
(1) That some cloud systems precipitate inefficiently or not at all because of a deficiency of ice crystals in their super-cooled regions;
(2) That by seeding these clouds with silver iodide to increase the concentration of ice crystals, it might be possible to produce adetectable increase in precipitation or, alternatively, change its distribution or character;
(3) That nuclei leaving a ground generator and carried up by convection and turbulent diffusion will provide the proper concentration of ice crystals, at least somewhere in the supercooled parts of the cloud system;
(4) That the silver iodide nuclei will retain their ice nucleating ability during their travel from the generator to the supercooled regions of the cloud.

Because cloud physics and physical meteorology in general have received vigorous impetus only during the past decade principally from interest in cloud seeding, it is still difficult to predict the extent of manmade precipitation in the future. But it seems to be the consensus of opinion that present technology is not sufficiently developed to induce an additional amount of precipitation above a small percentage (1020 percent) that occurs naturally.

At present it is a somewhat accepted opinion that the increase of precipitation by cloud seeding is proportional to the natural precipitation, i.e.,

$$
\begin{equation*}
\Delta P_{w}=k P_{w} \tag{7}
\end{equation*}
$$

where
$\Delta \mathrm{P}_{\mathrm{W}}$ is the expected increase of winter precipitation by cloud seeding,
$P_{w} \quad$ is the natural winter precipitation, and
k is the ratio of increase of precipitation to the natural value or relative increase.

In equation (7) the average value of k might be determined physically, for various meteorological and geographical conditions.
b. Relationship between runoff and precipitation. In order to implement a plan for the best use of the total manageable water supply, it is necessary to understand the relationship between climate, water losses, and water yield from watersheds. For this purpose, various methods have been developed indirectly or from data at hand, which are classified in the following two categories:
(1) Prediction equation for specific yield [13-16] and
(2) Runoff forecasting analysis [17-24].

The first approach is to relate the specific yield with climatologic and/or basin characteristics known to influence precipitation amounts, as well as their disposition. However, most available climatologic and basin data are only indices of the combined effects of several physical factors. Hence, the more complex statistical approaches have been applied. General effects of climatologic and basin characteristics are more clearly defined on an annual basis than for shorter periods.

The second approach is to find a solution to the water-budget equation which serves for water supply forecasting. This approach is based largely on the existence of a time lag between winter precipitation stored as snow pack and spring runoff and on the greater effectiveness of the winter precipitation in producing runoff as compared to that which occurs during the summer.

The atmospheric water resource project in the Upper Colorado River Basin aims to increase winter precipitation as snow, which is followed by an increase of runoff in the spring. Hence, the second approach is helpful in finding the relationship between spring runoff and winter precipitation and in estimating the increase of runoff.
c. Increase of runoff. The effect of cloud seeding is measured by the increase of usable runoff. It is assumed that runoff (Q) is a function of a representative precipitation (P). Then, in the general form,

$$
\begin{equation*}
Q=f(P) . \tag{8}
\end{equation*}
$$

But is is hard to find an integrated precipitation that represents the whole basin. Suppose that the
precipitation data P_{j} 's corresponding to Q are collected, as many as possible, in the basin in question Equation (8) is then modified as

$$
\begin{equation*}
Q=f\left(P_{1}, P_{2}, \ldots\right) \tag{9}
\end{equation*}
$$

In the case of precipitation management in the Upper Colorado River Basin, it is the spring runoff, $\left(Q_{S}\right)$, caused mainly by winter precipitation, $\left(P_{w j}\right)$, and partially by spring precipitation, $\left(P_{s j}\right)$, which is of concern. The relationship is represented more precisely by the following equation:

$$
\begin{equation*}
Q_{s}=f\left(P_{w 1}, P_{s 1}, P_{w 2}, P_{s 2}, \ldots\right) \tag{10}
\end{equation*}
$$

Multiple linear regression analysis is applied to find the approximate relationship. Finally,

$$
\begin{equation*}
Q_{s}=a+b_{1} P_{w 1}+c_{1} P_{s 1}+b_{2} P_{w 2}+c_{2} P_{s 2}+\ldots \tag{11}
\end{equation*}
$$

where the a, b_{j}, c_{j} are coefficients determined from available data.

Then, the increase of spring runoff, $\left(\Delta Q_{S}\right)$, caused by the increase of winter precipitation, $\left(\Delta \mathrm{P}_{\mathrm{w}}\right)$, is given by

$$
\begin{align*}
\Delta Q_{s} & =\left(Q_{s}+\Delta Q_{s}\right)-Q_{s} \\
& =\left\{a+b_{1}\left(P_{w 1}+\Delta P_{w 1}\right)+c_{1} P_{s 1}+b_{2}\left(P_{w 2}+\Delta P_{w 2}\right)+c_{2} P_{s 2}+\ldots\right\} \\
& =\left\{a+b_{1} P_{w 1}+c_{1} P_{s 1}+b_{2} P_{w 2}+c_{2} P_{s 2}+\ldots\right\} \\
& =b_{1} \Delta P_{w 1}+b_{2} \Delta P_{w 2}+\ldots \tag{12}
\end{align*}
$$

Substituting equation (7) into (12), and averaging

$$
\begin{equation*}
\overline{\Delta Q}_{s}=b_{1} k_{1} \bar{P}_{w 1}+b_{2} k_{2} \bar{P}_{w 2}+\ldots \tag{13}
\end{equation*}
$$

From a water resource point of view, the greater the $\overline{\Delta Q}_{S}$ calculated from equation (13), the more suitable the basin.

3. Suitability of basins for evaluation.

a. Two-sample u-test. One of the goals of the precipitation management program has been the rigorous establishment of the statistical significance of its attainment. For this purpose, various methods of evaluation were devised. Indeed, a great deal is already known about methods of evaluation of attainment [6].

Of course, the criteria of suitability of basins for evaluation depend upon the choice of the variable selected to test the hypothesis or the type of statistical test and upon the design of the experiments.

Assuming that the end result of seeding is to increase the natural mean, but that everything else stays the same, the criteria are derived from the two-sample u-test [6] in the following way. The two-sample u-test is a test of the hypothesis that assumes that the population mean is equal to a given value while the
population standard deviation is known and stationary [25]. The statistic used in testing this hypothesis is

$$
\begin{equation*}
u=\frac{\bar{x}-\mu}{\sigma / \sqrt{n}} \tag{14}
\end{equation*}
$$

where \bar{x} is the sample mean,
μ is the population mean,
σ is the standard deviation, and
n is the sample size
with the critical region $|u|>1.96$ if the 5 percent significance level is used. The significance of the increase in spring runoff is achieved if the observed statistic u, in equation (15), is greater than 1.96 at the 95 percent confidence level, i.e.,

$$
\begin{equation*}
u=\frac{\overline{\Delta Q}_{s}}{\sigma_{Q_{s}} / \sqrt{\mathrm{N}}} \geq 1.96 \tag{15}
\end{equation*}
$$

where $\overline{\Delta Q}_{S}$ is the expected increase in spring runoff,
N is the number of years necessary to establish the significance of the increase with a 50% power, and
${ }^{\circ} Q_{S}$ is the standard deviation of the natural spring runoff.
b. A criterion to determine the relative suitability of an individual basin. The number of years, \bar{N}, necessary for evaluation is derived from equation (15)

$$
\begin{equation*}
N=\frac{3.84 \sigma_{Q_{s}}^{2}}{\left(\overline{\Delta Q}_{s}\right)^{2}} . \tag{16}
\end{equation*}
$$

A low value of N in equation (16) provides a criterion to determine the relative suitability of many potential basins.
c. A criterion to determine the suitability of grouped basins. In the major basins there are sets of gaged sub-basins that are not, in part or in full, a tributary of any other member sub-basin of the set. Suppose that in a major basin there exist m such subbasins. The spring runoff for each of these individual sub-basins is denoted $Q_{s i}(i=1,2, \ldots m)$. Now suppose one wants to choose n of the m sub-basins for a pilot program ($\mathrm{n}<\mathrm{m}$). Construct a linear combination of $\mathrm{Q}_{\mathrm{si}}{ }^{\prime}$ s, i.e.,

$$
\begin{equation*}
Q_{s}^{*}=\alpha_{1} Q_{s 1}+\alpha_{2} Q_{s 2}+\ldots+\alpha_{n} Q_{s n}=\sum_{i=1}^{n} \alpha_{i} Q_{s i} \tag{17}
\end{equation*}
$$

The variance of Q_{s}^{\star} is given by

$$
\begin{equation*}
\sigma_{Q_{s}^{*}}^{2}=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} \alpha_{i} \alpha_{j} \tag{18}
\end{equation*}
$$

where

$$
a_{i j}= \begin{cases}\sigma_{Q_{s i}}^{2} & \text { for } i=j \tag{19}\\ \operatorname{Cov}\left(Q_{s i}, Q_{s j}\right) & \text { otherwise }\end{cases}
$$

The increase of spring runoff from grouped basins, ΔQ_{S}^{*}, is given by
$\Delta Q_{s}^{*}=\alpha_{1} \Delta Q_{s 1}+\alpha_{2} \Delta Q_{s 2}+\ldots+\alpha_{n} Q_{s n}=\sum_{i=1}^{n} \alpha_{i} \Delta Q_{s i}$,
where $\Delta Q_{s i}(i=1,2, \ldots, n)$ represents the increase in spring runoff from an individual basin. Now impose the restriction that

$$
\begin{equation*}
\bar{Q}_{s}^{\star}=\sum_{i=1}^{n} \alpha_{i} \bar{Q}_{s i}=\sum_{i=1}^{n} \bar{Q}_{s i} \tag{21}
\end{equation*}
$$

where \bar{Q}_{S}^{*} is the mean of the Q_{S}^{*} values and $\bar{Q}_{S i}$ is the mean of the $Q_{s i}$ values. Also impose the restriction that $\overline{\Delta Q}_{s}^{*}$ is equal to the sum of the $\overline{\Delta Q}_{s i}$ values, i.e.,

$$
\begin{equation*}
\overline{\Delta Q}_{S}^{\star}=\sum_{i=1}^{n} \alpha_{i} \overline{\Delta Q}_{s i}=\sum_{i=1}^{n} \overline{\Delta Q}_{s i} \tag{22}
\end{equation*}
$$

Finally the number of years, N^{*}, for evaluation of grouped basins is given by the following expression:

$$
\begin{equation*}
N^{*}=\frac{3.84 \sigma_{Q_{S}^{2}}^{*}}{\left(\overline{\Delta Q}_{S}^{*}\right)^{2}}=\frac{3.84 \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} \alpha_{i} \alpha_{j}}{\left(\overline{\Delta Q}_{S}^{*}\right)^{2}} \propto \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} \alpha_{i} \alpha_{j} \tag{23}
\end{equation*}
$$

where the α_{i} and α_{j} are as yet arbitrary but subject to the constraints expressed by equations (21) and (22). Choose the α_{i} 's such that the number of years, N^{*}, is kept to a minimum value. Setting

$$
\begin{aligned}
& f\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} \alpha_{i} \alpha_{j} \\
& g_{1}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)=\sum_{i=1}^{n}\left(\bar{Q}_{s i} \alpha_{i}\right)-\left(\sum_{i=1}^{n} \bar{Q}_{s i}\right) \\
& g_{2}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)=\sum_{i=1}^{n}\left(\Delta Q_{s i} \alpha_{i}\right)-\left(\sum_{i=1}^{n} \overline{\Delta Q}_{s i}\right)
\end{aligned}
$$

a new function is defined

$$
\begin{align*}
& F\left(\alpha_{1}, \alpha_{2} \ldots, \alpha_{n}, \lambda_{1}, \lambda_{2}\right)=f\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)-\lambda_{1} g_{1}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)- \\
& \lambda_{2} g_{2}\left(\alpha_{1}, \alpha_{2}, \ldots \alpha_{n}\right) \tag{24}
\end{align*}
$$

The α_{i} 's that make the objective function $F\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$ in equation (24) minimum give the minimum value for N^{*} in equation (23).

By taking the partial derivative of $\mathrm{F}\left(\alpha_{1}, \alpha_{2}, \ldots \alpha_{n}\right.$, λ_{1}, λ_{2}) with respect to the α_{i} 's, λ_{1}, and λ_{2} and setting each derivative equal to zero, one obtains the system of equations:

$$
\begin{aligned}
\frac{\partial F}{\partial \alpha_{k}} & =\sum_{j=1}^{n} a_{k j} \alpha_{j}+\sum_{i=1}^{n} a_{i k} \alpha_{i}-\lambda_{1} \bar{Q}_{s k}-\lambda_{2} \overline{\Delta Q}_{s k} \\
& =2 \sum_{i=1}^{n} a_{k i} \alpha_{i}-\bar{Q}_{s k} \lambda_{1}-\overline{\Delta Q}_{s k} \lambda_{2}=0
\end{aligned}
$$

$$
\text { for } k=1,2, \ldots, n
$$

$$
\begin{aligned}
& \frac{\partial F}{\partial \lambda_{1}}=-\sum_{i=1}^{n} \bar{Q}_{s i} \alpha_{i}+\left(\sum_{i=1}^{n} \bar{Q}_{s i}\right)=0 \\
& \frac{\partial F}{\partial \lambda_{2}}=-\sum_{i=1}^{n} \overline{\Delta Q}_{s i} \alpha_{i}+\left(\sum_{i=1}^{n} \overline{\Delta Q}_{s i}\right)=0
\end{aligned}
$$

or in matrix notation

The system of equation (25) is linear and its resolution for the unknown α_{i} 's is obtained by the Gaussian elimination procedure. Thus a procedure is described that objectively selects the optimal group of basins of a given size among a larger set. The procedure also determined the optimal parameters of the combination of runoff variables for minimum time evaluation.

It remains to apply this technique in practice to the Upper Colorado River Basin. Before doing so, Chapter IV describes the data used in the analysis.

DATA USED FOR THIS STUDY

The data used in this study are winter and spring precipitation and spring runoff. They have to be collected in a certain order and have to satisfy specific criteria. These conditions are discussed in this chapter.

1. Precipitation and runoff in the Upper Colorado Basin.
a. Precipitation records. According to the United States Weather Bureau's "Substation History" (26-30), about 400 stations are found in the Upper Colorado River Basin, including stations with records of storage gage and stations not now in operation. For 312 of these stations, monthly precipitation data were collected from the following sources and recorded on magnetic tapes.
(1) The United States Weather Bureau, "Climatological Data" $[31,35]$
(2) The United States Weather Bureau, "Climatic Summary of the United States" [36-37]
(3) The United States Weather Bureau, "Climatography of the United States" [38]
(4) The United States Weather Bureau, 'Monthly Weather Review" [39]
(5) The United States Department of Agriculture, "Report of the Chief of Weather Bureau" [40]

The characteristics of the precipitation stations are tabulated in Appendix A.
b. Runoff records. As a part of Colorado State University hydrology data system, monthly runoff records have been collected and recorded on magnetic tapes $[6,9]$. The source of the data is the United States Geological Survey, "Water Supply Papers" [41]. The total number of stations from which data were collected is 749 .
c. Hydrologic data system. There is no relationship between the numbering system of runoff stations of the United States Geological Survey and that of precipitation stations of the United States Weather Bureau. For fast data processing and particularly for ease of correlation between precipitation and runoff, it is desirable to have identical or almost identical identification numbers for neighboring precipitation and runoff stations for the entire Upper Colorado River Basin. The Colorado State University numbering system was developed for this purpose:
(1) Runoff stations are coded with seven digit numbers.Runoff stations within the same drainage have an intermediate number between two limiting numbers that characterize the downstream and upstream reach of the drainage area [6].
(2) Precipitation stations are coded with eight digit numbers. The first seven digits are identical to the Colorado State University identification number of the nearest downstream runoff station. However, in some areas there may be several precipitation gages close to a single runoff station. The eighth digit in the station number makes it possible to distinguish between the gages in this situation. The precipitation station closest to the associated runoff station is assigned a zero for its eighth digit. The precipitation station next in proximity is assigned one for its eight digit, and so forth.
2. The accuracy of data measurements. It is well known that the observed precipitation does not necessarily represent the true amount of water that falls over a station or over the surrounding area [42]. However, the precipitation data that correlate highly with runoff data are still useful indices in this study.
3. Non-homogeneity and inconsistency of records. Non-homogeneity and inconsistency of precipitation data are introduced when there is a change in location, exposure, or instrument. Substation History [26-30] and Climatological Data [31-35], both published by the Weather Bureau, show horizontal movement and elevation change. However, the environment and local orography cannot be shown.

Most of the drainage area in the Upper Colorado River Basin has been subjected to transmountain diversion, transbasin diversion, interbasin diversion, regulation by reservoir, and irrigation diversion that causes a non-homogeneity in the runoff data. The information about the first four cases is given in the Water Supply Papers [41] and is used for correction of runoff data on the monthly level [9]. As to irrigation diversion, there is no available record. Furthermore, it is very difficult to estimate seasonable consumptive use and return rate to river. In the high mountain regions, the irrigation allotment is small in amount and is diverted mainly in summer. Correction for irrigation diversion is not done for this reason.
4. Filling missing data. It is necessary to establish a reliable connection between stations having incomplete records and those that are complete. This is done by estimating the missing data from nearby stations with records covering the missing months and having a sufficiently long record which coincides with that of the station with incomplete records. In this study, a simple linear regression method is applied for this purpose.

The techniques described in Chapter III are applied by using the data discussed in Chapter IV. The goal of this chapter is to determine the relative suitability of individual basins within the Upper Colorado River Basin and to select the favorable combinations of subbasins in the two pilot areas.

1. Mean winter precipitation and mean spring runoff.
a. Seasonal and yearly variability of precipitation. The mean and standard deviations of monthly precipitation are computed for 10 stations in the pilot area and are plotted on Fig. 4. The annual and winter precipitation time series are also shown in the same figures. The distribution of monthly precipitation is roughly uniform, on the average, though there are peaks in July and August and a low in June. The coefficients of variation of monthly precipitation are very large though those of annual precipitation are relatively small. The ratios of winter to annual precipitation are around 0.6.
b. Seasonal and annual variability of runoff. The mean and standard deviations of monthly runoff were computed for 18 stations in the pilot areas and are plotted on Fig. 5. The annual and spring runoff time series are also shown in the same figures. These figures illustrate the typical behavior of stations located at a high altitude. An outstanding rise during April through June, a decline in July and August, and steady flow in fall and winter are common to all the watersheds.

Precipitation appears as snow during October through April. During this season, the watersheds are covered with snow and the streams are frozen. As the weather warms up in the spring, the snow pack on the high mountains begins to melt and pours into the streams along with the runoff from spring precipitation. The precipitation that falls during the summer season is stored in the soil, but strong evapotranspiration takes place and summer precipitation does not contribute to runoff to a great extent. This is why runoff displays an extreme seasonal variability compared to the nearly uniform distribution of seasonal precipitation. For this reason, the coefficients of variations of both annual and spring runoff are high for all the stations.
c. Mean winter precipitation. As far as precipitation management in the Upper Colorado River Basin is concerned, mostly the winter precipitation is significant in the application of artificial techniques. As discussed in Section 2 of Chapter III the increase of precipitation is roughly proportional to the natural precipitation. The establishment of zones of equal winter precipitation was attempted over the Upper Colorado River Basin. Though it is desirable to obtain recording years common to all the stations, all those having records of five years or more were used. Figure 7 shows isohyets of $5,7.5$ and 10 inches (very rough and uncorrected for topography).

The names of the watersheds that have a great amount of winter precipitation follow in order:
(1) San Juan Mountains
(2) Upper basin of the Colorado River
(3) Upper reach of the Yampa River and its tributaries
(4) Headwaters of the Rafael River
(5) Upper basins of Uinta River, Lake Fork, and Rock Creek.
d. Mean spring runoff. The increase of precipitation in winter appears as spring runoff. The spring runoff might be a rough indicator for optimal water yield.

Lines of equal spring runoff were drawn and are depicted in Fig. 8. The streams having a great amount of spring runoff, of course, correspond to the watersheds with a large amount of winter precipitation.
2. Relation between precipitation and runoff.
a. Stepwise multiple regression. To determine the coefficients a, b_{i}, and c_{i} in equation (11), stepwise multiple regression was used. Its chief advantage is to produce an equation that uses only a small number of prediction variables and that has a comparatively high coefficient of determination [43].
b. Correlation between winter and spring precipitation. For all precipitation stations in the pilot areas the correlation coefficient between winter and spring precipitation was calculated. Table 1 shows no correlation.

TABLE 1 CORRELATION COEFFICIENT, (r), BETWEEN WINTER AND SPRING PRECIPITATION

CSU ID	r
10734360	.04
10734560	.12
10734641	.17
10774000	.30
10778600	.01
12724450	-.04
12724602	-.32
13715600	.58
18036000	-.24
18054000	-.06
18500000	.26
19500000	.24

c. Watershed without precipitation station data available. Though it would be of interest to study the watersheds in the high altitudes, generally there are few, if any, stations there. In this case data from one of the precipitation stations nearby were used to compute the coefficients in equation (11). As long as a good correlation exists, a sufficient forecasting equation can be found.
d. Computation and results. Computation was done for all possible sets of precipitation and runoff having

Fig. 7 Mean winter precipitation (in inches)

Fig. 8 Mean spring runoff (in inches)
a common recording length. Three hundred and sixtyfive sets of these with greater than 0.90 correlation coefficient were used for the calculation of the increase in runoff and of the number of years needed for evaluation (see Appendix B).
3. Increase of runoff. At the present stage, it is impossible to assign scientifically a reasonable value to the relative increase in precipitation, k_{i}, in equation (7), for each station. A uniform 10 percent increase of winter precipitation over its natural value is assumed for further computation. Then the increase of spring runoff induced by an increase of winter precipitation is, on the average, found from equation (13) in Section 2 of Chapter III.

Here the $\overline{\mathrm{P}}_{\text {wi }}$ were calculated, not for the common recording length, which was used to find the regression line, but for the whole recording length of each station (see Appendix B).

The computed value of $\overline{\Delta Q}_{S}$ for every station is plotted on Fig. 9 and rough contour lines of equal increase of spring runoff are shown there.

The names of the watersheds where the greatest increase in runoff is expected follow:
(1) San Juan Mountains,
(2) Upper reach of the Yampa River and its tributaries,
(3) Headwaters of the Green River,
(4) Upper basin of the Colorado River,
(5) Upper basins of Uinta River, Lake Fork, and Rock Creek, and
(6) Headwaters of the Rafael River basin.

These watersheds also have a large amount of natural precipitation and natural spring runoff.
4. Number of years needed for evaluation. Using $\overrightarrow{U Q}_{S}$ calculated in the previous section, the number of years needed for evaluation was computed for each station by equation (16) in Section 3 of Chapter III.

The results are shown in Appendix B and on Fig. 10. The occurrence of aberrant values made it difficult to draw more precise contour lines. This is caused mainly by the fact that the common recording length was not used, and the variability of the data affects the value of N to the second power, compared to the case of $\overline{\Delta Q}_{S}$ in equation (13).

In general, the value of N are smaller in the high mountain watersheds where the large increase of spring runoff is expected. However, when the size of the watershed becomes quite small the trend sometimes reverses. This seems to occur to the watersheds consisting of sub-basins with different hydrological features and with a smaller variance. The names of the watersheds where the smaller number of years can be expected follow:
(1) Upper reach of the Yampa River and its tributaries,
(2) Headwaters of the Green River,
(3) Upper basin of the Colorado River,
(4) Upper basins of Uinta River, Lake Fork, and Rock Creek, and
(5) San Juan Mountains.
5. Optimized selection of basins in the pilot area.
(a) Runoff stations in the pilot area. Out of 53 stations in the San Juan Mountains and 49 stations in the upper basin of the Colorado River, 15 and 14 stations, respectively, were selected for the study. They gage representative sub-basins and have relatively long records. The locations of the stations and their characteristics are found in Table 2, and on Figs. 6 and 11. The covariance matrix was computed and is shown in Table 3.
(b) Optimized selection of basins. As discussed in Section 3 of Chapter III an attempt was made to find a combination of numbers of sub-basins giving the minimum number of years for evaluation. This was accomplished by solving equation (19) for all possible combinations of two through six stations out of 15 in the San Juan Mountains and out of 14 in the upper basin of the Colorado River. The number of all possible combinations is so large that only those combinations which yield the twenty lowest values of N^{*} are plotted. In Fig. 12, N^{*} is plotted versus the increase of spring runoff and also versus the drainage area. The minimum value in the San Juan Mountains is six and in the upper basin of the Colorado River it is three.

The same calculation was performed setting all the α_{i} 's equal to 1 in equation (17)instead of optimizing the parameters. The results are shown on Fig. 12. The comparison of the results for the two cases demonstrate that the method is effective.

The analysis of the results indicates that several particular sub-basins play a particular important role in making N^{*} small. They are in:
(a) the San Juan Mountains

1077015	Navajo River at Edith
1077250	Rio Blanco near Pagosa Springs
1371555	Uncompahgre River near Ridgway,

and in
(b) the upper basin of the Colorado River

1762500 East Fork Troublesome Creek near Troublesome
1810000
1930000
Willow Creek below Willow Creek Reservoir
North Inlet at Grand Lake.
These stations do not necessarily have a small value of N in Table 2. Table 4 list the optimal combination of gages for group sizes equal to $2,3,4,5$ and 6 selected from 15 stations in the San Juan Mountains and from 14 stations in the upper basin of the Colorado River.

The results are very encouraging for evaluation of the pilot projects. The method of optimized grouping of basins brings a very large reduction in the number of years needed to establish significance. One may nevertheless question the method. In other words how sensitive is the method? Could a slight variation in this or that parameter say double the calculated value of N^{*}, quadruple it ... etc?

A complete theoretical answer to the question is not easy. One can however obtain an idea by varying various

Fig. 9 Expected increase in spring runoff due to a uniform 10% increase in winter precipitation (in inches)

Fig. 10 Number of years needed for evaluation (based on the two-sample u-test)
parameters and observing the changes in the calculated values of N^{*}. Given the value of N^{\star} for the optimal group of a given size, how different is the corresponding value for the next best grouping, etc. Tables 5 and 6 show that many combinations will actually give a value of N^{*} close to the optimal.

How sensitive is N^{*} to the values of the weight coefficients α_{i} ? The best 10 ranking groups of size 6 were used for the sensitivity test.

The procedure was to modify 2 weight factors (those corresponding to the first 2 columns of Table 7) by 1,5 and 10%, keeping these fixed and recalculating
the remaining $4 \alpha_{i}$ according to the optimization procedure. The results are shown in Table 7. They indicate that the weight factors can be rounded off without appreciable effects.

How sensitive is N^{*} to the runoff data? The optimal group of size 6 in the Upper Basin of the Colorado was used for this test. It is a test of sensitivity of N^{*} to the sample covariance matrix. The procedure was to select at random 7 years from the total record (1948-1964). The years turned out to be: 1948, 1951, 1954, 1956, 1958, 1960 and 1963. Then runoff data for 3 out of the 7 years were deleted from the entire record. This can be done in 35 ways. For each sample N^{*} was calculated. Table 8 shows the results.
table 2(a) station characteristics - the san juan mountains

TABLE 2(b) STATION CHARACTERISTICS - THE UPPER BASIN OF THE COLORADO RIVER

$\begin{gathered} \text { CSU ID } \\ \text { (U.S.G.S. } \\ \text { No.) } \\ \hline \end{gathered}$	Name	Location Latitude Longitude	Elevation\qquad	$\begin{aligned} & \text { Drainage } \\ & \text { Area } \\ & \text { mile } \\ & \hline \end{aligned}$	Recording Length	Continuous Recording Length	Mean (inch) E. variance (inch ${ }^{2}$)		Ratio of spring to annual runoff	```Increase in runoff (inch)```	$\begin{gathered} \text { Increase } \\ \text { Percentage } \\ \hline \end{gathered}$	Number of years for Evaluation
							Annual	Spring				
$\begin{aligned} & 1762500 \\ & (9.0400) \end{aligned}$	East Fork Troublesome Creek near Troublesome	$\begin{array}{rrr}40 & 9 & 27 \\ 106 & 16 & 58\end{array}$	7750	76.0	1937-64	1954-64	4.95	$\begin{aligned} & 4.04 \\ & 4.32 \end{aligned}$. 82	. 31	7.7	173
1800900		$\begin{array}{r}40 \\ \hline 105\end{array}$			1936-45	1936-45	4.96 6.92	5.71				
(9.0355)	near Granby	$105 \quad 4930$	8650	12.6	1936-45	1936-45	4.57	3.90	. 83	. 51	8.9	57
1801800	Meadow Creek	$40 \quad 2 \quad 55$	9780	7.0	1936-56	1936-56	20.92	19.00			7.3	
(9.0330)	near Tabernash	1054630	9780	7.0			23.66	65.24	.91	1.39	7.3	181
1801816	Ranch Creek	$\begin{array}{rrrr}39 & 57 & 0 \\ 105 & 45 & 54\end{array}$	8670	19.9	1934-64	1934-64	11.30	8.98	. 80	. 65	16.3	245
(9.0320)	near Fraser	1054554	8670	19.9			26.92	26.92	. 80	. 65	16.3	245
1802730	St. Louis Creek	395430 1055245	8980	32.8	1934-64	1934-64	12.99	9.27	.71	. 66	7.1	143
(9.0265)	near Fraser	1055245	898	32.8			19.95	16.18	.71	. 66	7.1	143
1804500	Vasquez Creek	$39 \quad 5513$	8769	27.8	1907-64	1934-64	7.10	5.05	. 71	. 75	14.9	81
(9.0250)	near Winter Park	10547 5	8769	27.8			24.21	12.00	.71	. 75	14.9	81
1805400	Frazer River	39540 10546	8900	27.6	1911-64	1911-64	14.84	10.99	. 74	. 26	2.4	1349
(9.0240)	near Winter Park	1054635	8900	27.6			64.70	23.74	. 74	. 26	2.4	1349
1810000	Willow Creek below	$\begin{array}{rrrr}40 & 8 & 45 \\ 105 & 56 & 22\end{array}$	8024	134,0	1953-64	1953-64	4.08	2.72	. 67	. 55	20.2	81
(9.0210)	Willow Creek Res.	1055622	8024	134.0			10.84	6.39	. 67	. 55	20.2	81
1850000	Stillwater Creek	$\begin{array}{rrrr}40 & 11 & 20 \\ 105 & 53 & 40\end{array}$	8310	18.8	1950-56	1950-56	7.45 9.35	6.42 3.24	. 86	. 85	13.3	17
(9.0180)	above Lake Granby	$105 \quad 5340$	8310				9.35	3.24				
1866000 (9.0165)	Arapaho Creek	40 1054457	8310	47.1	1945-64	1945-64	23.79 24.78	19.94	. 84	1.52	7.7	38
(9.0165)	at Monarch Outlet	1054457	8510	47.1			24.78	22.98	. 84	1.52		
1880000	Columbine Creek	$\begin{array}{rrrr}40 & 11 & 20 \\ 105 & 49 & 0\end{array}$	8282	7.3	1950-56	1950-56	12.56	10.36	.83	. 95	9.2	375
(9.0155)	above Lake Granby	105490	8282	7.3			22.39	88.21	. 83	. 95	9.2	375
1920000	East Inlet near	$\begin{array}{r}40 \\ 105 \\ \hline 18\end{array}$			1948-56	1948-56						
(9.0135)	Grand Lake	10548	8371	27.1			26.62	29.28	. 87	1.57	8.3	46
1930000	North Inlet at	$\begin{array}{rrrr}40 & 15 & 0\end{array}$	8380		1950-56	1950-56	19.99	16.89				
(9.0115)	at Grand Lake	1054950	8380	46.6			30.44	17.31	. 84	1.36	8.1	36
1960000	Colorado River	$\begin{array}{llll}40 & 13 & 8\end{array}$	8380	103.0	1904-64	1934-64	15.17	12.28	. 81	. 92	7.5	55
(9.0110)	near Grand Lake	1055125	8380	103.0			25.34	12.11	. 81	.92	7.5	55

(a) The San Juan Mountains

CSU It	1073080	1073420	1073448	1073460	1075830	1076420	1077015	1077200	1077250	1077400	1272440	1272445	1278800	1371530	1371555
1073080	40.30	31.28	24.93	37, 18	31.87	25.39	22.28	23..1	39.75	36.61	23.74	16.00	36.39	6.05	23.92
1073420	31.28	27.21	20.85	31.51	27,48	21.69	17.42	19.02	30.35	30.27	19.16	13.57	29.98	5.08	19.96
1073448	24.93	20.85	16.53	24.56	21.14	16.88	14.02	15.22	24,31	23.54	15.38	10.68	23.72	3.93	15.68
1073460	37.18	31.51	24.56	37.69	32.08	25.32	21.26	22.82	37.40	35.83	23.66	16,32	36.09	6.09	23.72
1075830	31.87	27.48	21.14	32.08	28.40	22.08	17.94	19.64	31.81	31.30	19.54	13,49	30.75	5.14	19.90
1076420	25.39	21.69	16.88	25.32	22,08	17.65	14.24	15,50	24.69	24.79	15.47	10.65	24.28	3.91	15.63
1077015	22.28	17.42	14.02	21.26	17.94	14.24	12.94	13,66	23.15	20.63	14.16	9.20	20.94	3,42	13.62
1077200	23.71	19.02	15.22	22.82	19.64	15.50	13, 66	15.00	24.48	22.36	14.82	9.94	22.34	3,65	14.81
1077250	39.75	30.35	24.31	37.40	31.81	24.69	23.15	24.48	43.78	37,31	24.78	16.10	37.38	6.39	24.66
1077400	36.61	30.27	23.54	35,83	31.30	24.79	20.63	22.36	37.31	36.38	21.84	14.67	34.75	5.57	22.12
1272440	23.74	19.16	15.38	23.66	19.54	15.47	14.16	14.82	24.78	21.84	16.88	10.93	23.51	4.04	15.95
1272445	16.00	13.57	10.68	16.32	13.49	10.65	9.20	9.94	16,10	14,67	10.93	8.01	16.03	2.98	11.55
1278600	36.39	29.98	23.72	36.09	30.75	24.28	20.94	22.34	37. 38	34.75	23.51	16.03	35.71	6.06	23.56
1371530	6.05	5.08	5.93	6.09	5.14	3.91	3.42	3.65	6.39	5,57	4.04	2.98	6.06	1. 28	4.49
1371555	23.92	19.96	15,68	23.72	19.90	15.63	13.62	14.81	24. 66	22.12	15.95	11.55	23,56	4.49	17.78

(b) The Upper Basin of the Colorado River

CSU ID	1762500	1800900	1801800	1801816	1802730	1804500	1805400	1810000	1850000	1866000	1880000	1920000	1930000	1960000
1762500	5.77	4.80	16.72	10.23	5.88	6.72	8.57	3.78	4.48	9.66	8.22	11.72	9.11	7.66
1800900	4.80	4.50	14.17	8. 53	4.46	5.41	8.19	3.30	3.89	9.41	7.44	10.68	7.98	6.95
1801800	16.72	14.17	63.77	34.20	23.68	19.52	27.44	11,46	13.49	30.11	25.04	37.86	30.37	23.21
1801816	10.23	8.53	34. 20	25,32	16.47	14.22	19.65	5,43	8.11	18.55	14.61	20.57	17.56	14.03
1802730	5.88	4.46	23.68	16.47	15.26	9.21	10.82	2.40	4.82	10.90	7.51	11.03	10.90	7.39
1804500	6.72	5.41	19.52	14.22	9.21	11.32	12.72	4.58	4.86	11.14	8.91	12,32	9.82	8.36
1805400	8.57	8.19	27.43	19.65	10.82	12.72	22.40	6.02	6.19	17.92	13.07	18.70	14.19	12.10
1810000	3.78	3.30	11. 46	5.43	2.40	4.58	6.02	5.24	2.80	5.82	5.86	9.05	5.90	5.41
1850000	4,48	3.89	13.49	8.11	4.82	4.86	6.19	2.80	2.80	-	---	-..	-..	---
1866000	9.66	9.41	30.11	18.55	10.90	11.14	17.92	5.82	-..	21.68	-	---	---	---
1880000	8.22	7.44	25.04	14,61	7.51	8.91	13.07	5.86	-.-	--.	12.89	-	---	\ldots
1920000	11.72	10.68	37.86	20.57	11.03	12.32	18.70	9.05	--.	---	+.-	27.62	---	-*-
1930000	9.11	7.98	30.39	17.56	10.90	9.82	14.19	5.90	--.	-..-	...	-...	16.33	-...
1960000	7.66	6.95	23.21	14.03	7.39	8.36	12. 10	5.41	-..	--	\cdots	-..	-..	11.42

Fig. 11 Length of runoff records in the pilot area

TABLE 4 (a) OPTIMAL COMBINATIONS OF GAGES FOR VARIOUS GROUP SIZES IN THE SAN JUAN MOUNTAINS

Number of Sub-basins in Combination	CSU ID	Name	Weight Factor α	Number of Years Needed for Evaluation
1	1371555	Uncompahgre River near Ridgway	1.00	12
2	$\begin{array}{r} 1272440 \\ 1371555 \\ \hline \end{array}$	Beaver Creek near Norwood Uncompahgre River near Ridgway	$\begin{aligned} & 1.00 \\ & 1.00 \\ & \hline \end{aligned}$	53
3	$\begin{aligned} & 1073080 \\ & 1077015 \\ & 1272440 \end{aligned}$	La Plata River at Hesperus Navajo River at Edith Beaver Creek near Norwood	$\begin{array}{r} -9.41 \\ 4.68 \\ -2.78 \end{array}$	23
4	$\begin{aligned} & 1073080 \\ & 1077015 \\ & 1077250 \\ & 1272440 \end{aligned}$	La Plata River at Hesperus Navajo River at Edith Rio Blanco near Pagosa Springs Beaver Creek near Norwood	$\begin{array}{r} -9.90 \\ 8.18 \\ -4.27 \\ -6.38 \end{array}$	16
5	1073080 1077015 1077250 1272440 1371555	La Plata River at Hesperus Navajo River at Edith Rio Blanco near Pagosa Springs Beaver Creek near Norwood Uncompahgre River near Ridgway	$\begin{array}{r} -15.13 \\ 10.80 \\ -\quad 6.61 \\ -11.67 \\ 2.09 \end{array}$	11
6	1076420 1077015 1077250 1077400 1272440 1371530	Piedra River near Piedra Navajo River at Edith Rio Blanco near Pagosa Springs San Juan River at Pagosa Springs Beaver Creek near Norwood Dallas Creek near Ridgway	$\begin{array}{r} -7.49 \\ 24.55 \\ -32.45 \\ 5.31 \\ -23.36 \\ 27.38 \end{array}$	6.1

TABLE 4 (b) OPTIMAL COMBINATIONS OF GAGES FOR VARIOUS GROUP SIZES IN THE UPPER BASIN OF THE COLORADO RIVER

Number of Sub-basins in Combination	CSU ID	Name	Weight Factor a	Number of Years Needed for Evaluation
1	1850000	Stillwater Creek above Lake Grandby	1.0	17
2	$\begin{aligned} & 1800900 \\ & 1850000 \end{aligned}$	Strawberry Creek near Grandby Stillwater Creek above Lake Granby	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	32
3	$\begin{aligned} & 1762500 \\ & 1804500 \\ & 1930000 \end{aligned}$	East Fork Troublesome Creek near Troublesome Vasquez Creek near Winter Park North Inlet at Grand Lake	$\begin{array}{r} -2.38 \\ .59 \\ 2.39 \\ \hline \end{array}$	8.2
4	$\begin{aligned} & 1762500 \\ & 1801800 \\ & 1804500 \\ & 1930000 \end{aligned}$	East Fork Troublesome Creek near Troublesome Meadow Creek near Tabernash Vasquez Creek near Winter Park North Inlet at Grand Lake	$\begin{array}{r} -1.83 \\ -4.00 \\ .14 \\ 3.10 \end{array}$	6.0
5	$\begin{aligned} & 1762500 \\ & \\ & 1801800 \\ & 1804500 \\ & 1810000 \\ & 1930000 \end{aligned}$	East Fork Troublesome Creek near Troublesome Meadow Creek near Tabernash Vasquez Creek near Winter Park Willow Creek near Winter Park North Inlet at Grand Lake	$\begin{array}{r} -3.60 \\ \\ -6.99 \\ 2.67 \\ .34 \\ 4.15 \\ \hline \end{array}$	3.8
6	$\begin{aligned} & 1762500 \\ & 1801800 \\ & 1801816 \\ & 1804500 \\ & 1810000 \\ & 1930000 \end{aligned}$	East Fork Troublesome Creek near Troublesone Meadow Creek near Tabernash Ranch Creek near Frazer Vasquez Creek near Winter Park Willow Creek below Willow Creek Reservoir	$\begin{array}{r} -3.37 \\ -5.45 \\ -2.31 \\ 3.60 \\ .07 \end{array}$	2.9

Fig. 12 (a) Minimum number of years needed for evaluation for combinations of two through six sub-basins out of 15 in the San Juan Mountains

Fig. 12(b) Minimum number of years needed for evaluation for combinations of two through six sub-basins out of 14 in the Upper Basin of the Colorado River

Number of Years

Number of Years

Fig. 12(c) :inimum number of years needed for evaluation for combinations of six sub-basins out of 15 in the San Juan Mountains

Fig. 12(d) Minimum number of years needed for evaluation for combinations of four sub-basins out of 15 in the San Juan Mountains

TABLE 5 (a) 10 BEST COMBINATIONS OF SIX SUB-BASINS IN THE SAN JUAN MOUNTAINS

Rank	Number of Years for Evaluation	α_{i}	CSU ID	Station Name	Elevation (feet)	Length of Records (years)
1	6.1	-7.49	1076420	Piedra River near Piedra	6530	26
		24.55	1077015	Navajo River at Edith	7033	45
		-32.45	1077250	Rio Blanco near Pagosa Springs	7950	29
		5.31	1077400	San Juan River at Pagosa Springs	7052	29
		-23.36	1272440	Beaver Creek near Norwood	8008	22
		27.38	1371530	Dallas Creek near Ridgway	6980	14
2	7.7	-14.54	1073080	La Plata River at Hesperus	8105	48
		14.38	1077015	Navajo River at Edith	7033	45
		-9.90	1077250	Rio Blanco near Pagosa Springs	7950	29
		-14.46	1272440	Beaver Creek near Norwood	8008	22
		-1.71	1272445	San Miguel Creek near Placerville	7096	28
		18.90	1371530	Dallas Creek near Ridgway	6980	14
3	7.7	-18.86	1073080	La Plata River at Hesperus	8105	48
		16.25	1077015	Navajo River at Edith	7033	45
		-9.13	1077250	Rio Blanco near Pagosa Springs	7950	29
		-24.72	1272440	Beaver Creek near Norwood	8008	22
		-1.31	1272445	San Miguel Creek near Placerville	7096	28
		4.33	1371555	Uncompahgre River near Ridgway	6878	6
4	7.9	-7.37	1076420	Piedra River near Piedra	6530	26
		27.02	1077015	Navajo Kiver at Edith	7033	45
		-31.10	1077250	Rio Blanco near Pagosa Springs	7950	29
		4.70	1077400	San Juan River at Pagosa Springs	7052	29
		-37.00	1272440	Beaver Creek near Norwood	8008	22
		6.06	1371555	Uncompahgre River near Ridgway	6878	6
5	8.4	-14.10	1073080	La Plata River at llesperus	8105	48
		- 2.32	1073420	Florida River near Durango	7302	42
		14.00	1077015	Navajo River at Edith	7033	45
		- 8.93	1077250	Rio Blanco near Pagosa Springs	7950	29
		-18.16	1272440	Beaver Creek near Norwood	8008	22
		3.21	1371555	Uncompahgre River near Ridgway	6878	6
6	9.0	-20.93	1073080	La Plata River at Hesperus	8105	48
		- .88	1076420	Piedra River near Piedra	6530	26
		19.45	1077015	Navajo River at Edith	7033	45
		-12.54	1077250	Rio Blanco near Pagosa Springs	7950	29
		-21.47	1272440	Beaver Creek near Norwood	8008	22
		3.84	1371555	Uncompahgre River near Ridgway	6878	6
7	9.0	-22.05	1073080	La Plata River at Hesperus	8105	48
		- .59	1075830	Los Pinos River near Bayfield	7515	37
		18.85	1077015	Navajo River at Edith	7033	45
		-10.73	1077250	Rio Blanco near Pagosa Springs	7950	29
		-25.03	1272440	Beaver Creek near Norwood	8008	22
		3.80	1371555	Uncompahgre River near Ridgway	6878	6
8	9.1	-8.36	1076420	Piedra River near Piedra	6530	26
		24.17	1077015	Navajo River at Edith	7033	45
		-30.86	1077250	Rio Blanco near Pagosa Springs	7950	29
		3.54	1077400	San Juan River at Pagosa Springs	7052	29
		-42.16	1272440	Beaver Creek near Norwood	8008	22
		15.30	1278800	Dolores River below Rico	8422	13
9	9.3	-29.89	1073080	La Plata River at Hesperus	8105	48
		$-\quad .70$	1073460	Animas River above Tacoma	7520	11
		25.30	1077015	Navajo River at Edith	7033	45
		-14.72	1077250	Rio Blanco near Pagosa Springs	7950	29
		-30.20	1272440	Beaver Creek near Norwood	8008	22
		5.11	1371555	Uncompahgre River near Ridgway	6878	6
10	9.4	-16.80	1073080	La Plata River at Hesperus	8105	48
		1.95	1073448	Hermosa Creek near Hermosa	6706	36
		15.71	1077015	Navajo River at Edith	7033	45
		-10.69	1077250	Rio Blanco near Pagosa Springs	7950	29
		-14.95	1272440	Beaver Creek near Norwood	8008	22
		3.32	1371555	Uncompahgre River near Ridgway	6878	6

TABLE 5 (b) 10 BEST COMBINATIONS OF FIVE SUB-BASINS IN THE SAN JUAN MOUNTAINS

Rank	Number of Years for Evaluation	α_{i}	CSU ID	Station Name	Elevation (feet)	Length of Records (years)
1	11	-15.13 10.80 -6.61 -11.67 2.09	1073080 1077015 1077250 1272440 1371555	La Plata River at Hesperus Navajo River at Edith Rio Blanco near Pagosa Springs Beaver Creek near Norwood Uncompahgre River near Ridgway	$\begin{aligned} & 8105 \\ & 7033 \\ & 7950 \\ & 8008 \\ & 6878 \end{aligned}$	$\begin{array}{r} 48 \\ 45 \\ 29 \\ 22 \\ 6 \end{array}$
2	12	-10.93	1073080	La Plata River at Hesperus	8105	48
		8.36	1077015	Navajo River at Edith	7033	45
		- 5.41	1077250	Rio Blanco near Pagosa Springs	7950	29
		- 6.39	1272440	Beaver Creek near Norwood	8008	22
		5.36	1371530	Dallas Creek near Ridgway	6980	14
3	14	-15.75	1073080	La Plate River at Hesperus	8105	48
		10.42	1077015	Navajo River at Edith	7033	45
		- 6.26	1077250	Rio Blanco near Pagosa Springs	7950	29
		-11.30	1272440	Beaver Creek near Norwood	8008	22
		2.42	1278800	Dolores River below Rico	8422	13
4	14	-4.05	1076420	Piedra River near Piedra	6530	26
		15.22	1077015	Navajo River at Edith	7033	45
		-18.47	1077250	Rio Blanco near Pagosa Springs	7950	29
		-26.12	1272440	Beaver Creek near Norwood	8008	22
		12.62	1278800	Dolores River below Rico	8422	13
j	15	-24.66	1073080	La Plata River at Hesperus	8105	48
		. 65	1077400	San Juan River at Pagosa Springs	7052	29
		17.77	1077015	Navajo River at Edith	7033	45
		- 9.91	1077250	Rio Blanco near Pagosa Springs	7950	29
		-14.96	1272440	Beaver Creek near Norwood	8008	22
6	15	- -10.73	1073080	La Plata River at Hesperus	8105	48
		8.07	1077015	Navajo River at Edith	7033	45
		5.34	1077200	Rito Blanco near Pagosa Springs	7330	17
		- 4.51	1077250	Rio Blanco near Pagosa Springs	7950	29
		- 7.20	1272440	Beaver Creek near Norwood	8008	22
7	15	- 5.21	1073420	Floricia River near Durango	7302	42
		12.53	1077015	Navajo River at Edith	7033	45
		-11.73	1077250	Rio Blanco near Pagosa Springs	7950	29
		-18.43	1272440	Beaver Creek near Norwood	8008	22
		3.75	1371555	Uncompahgre River near Ridgway	6878	6
8	15	-15.90	1073080	La Plata River at Hesperus	8105	48
		. 51.8	1073448	Hermosa Creek near llermosa	6706	36
		11.84	1077015	Navajo River at Edith	7033	45
		11.84 -6.03 -9.35	1077250	Rio Blanco near Pagosa Springs	7950	29
		-9.35	1272440	Beaver Creek near Norwood	8008	22
9	15	-18.36 $-\quad 33$	1073080	La Plata River at llesperus	8105	48
			1076420	Piedra River near Piedra	6530	26
		17.13 $-\quad 9.21$	1077015 1077250	Navajo River at Edith Rio Blanco near Pagosa Sprin	7033	45
		-13.26	1272440	Beaver Creek near Norwood	8008	22
10	16	- 6.00	1076420	Piedra River near Piedra	6530	26
		25.83	1077015	Navajo River at Edith	7033	45
		-26.41	1077250	Rio Blanco near Pagosa Springs	7950	29
		4.11	1077400	San Juan River at Pagosa Springs	7052	29
		-23.92	1272440	Beaver Creek near Norwood	8008	22

TABLE 5 (c) 10 BEST COMBINATIONS OF FOUR SUB-BASINS IN THE SAN JUAN MOUNTAINS

Rank	Number of Years for Evaluation	α_{i}	CSU ID	Station Name	Elevation (feet)	Length of Records (years)
1	16	-9.90	1073080	La Plata River at Hesperus	8105	48
		8.18	1077015	Navajo River at Edith	7033	45
		- 4.27	1077250	Rio Blanco near Pagosa Springs	7950	29
		- 6.38	1272440	Beaver Creek near Norwood	8008	22
2	18	-16.03	1073080	LaPlata River at Hesperus	8105	48
		6.57	1077015	Navajo River at Edith	7033	45
		- 6.34	1272440	Beaver Creek near Norwood	8008	22
		1.68	1371555	Uncompahgre River near Ridgway	6878	6
3	20	-18.25	1073080	La Plata River at Hesperus	8105	48
		1.93	1073448	Hermosa Creek near Hermosa	6706	36
		6.99	1077015	Navajo River at Edith	7033	45
		-6.64	1272440	Beaver Creek near Norwood	8008	22
4	21	-16.41	1073080	La Plata River at Hesperus	8105	48
		6.22	1077015	Navajo River at Edith	7033	45
		-6.60	1272440	Beaver Creek near Norwood	8008	22
		2.22	1278800	Dolores River below Rico	8422	13
5	22	-27.61	1073080	La Plata River at liesperus	8105	48
		11.91	1077015	Navajo River at Edith	7033	45
		. 66	1077400	San Juan River at Pagosa Springs	7052	29
		-8.94	1272440	Beaver Creek near Norwood	8008	22
6	22	-10.69	1073080	La Plata River at Hesperus	8105	48
		4.87	1077015	Navajo River at Edith	7033	45
		- 2.92	1272440	Beaver Creek near Norwood	8008	22
		2.26	1371530	Dallas Creek near Ridgway	6980	14
7	22	-10.39	1073080	La Plata River at Hesperus	8105	48
		4.38	1077015	Navajo River at Edith	7033	45
		6.10	1077200	Rito Blanco near Pagosa Springs	7330	17
		- 3.55	1272440	Beaver Creek near Norwood	8008	22
8	22	-31.32	1073080	La Plata River at Hesperus	8105	48
		. 68	1073460	Animas River above Tacoma	7520	11
		13.57	1077015	Navajo River at Edith	7033	45
		-11.23	1272440	Beaver Creek near Norwood	8008	22
9	23	-23.64	1073080	La Plata River at Hesperus	8105	48
		. 34	1076420	Piedra River near Piedra	6530	26
		11.10	1077015	Navajo River at Edith	7033	45
		- 8.22	1272440	Beaver Creek near Norwood	8008	22
10	23	14.41	1073080	La Plata River at Hesperus	8105	48
		.67 6.73	1073420	Florida River near Durango		
		$\begin{array}{r} 6.73 \\ -\quad 4.93 \end{array}$	$\begin{aligned} & 1077015 \\ & 1272440 \end{aligned}$	Navajo River at Edith Beaver Creek near Norwood	$\begin{aligned} & 7033 \\ & 8008 \end{aligned}$	45

TABLE $5(\mathrm{~d}) 10$ BEST COMBINATIONS OF THREE SUB-BASINS IN THE SAN JUAN MOUNTAINS

Rank	Number of Years for Evaluation	α_{i}	CSU ID	Station Name	$\begin{aligned} & \text { Elevation } \\ & \text { (feet) } \end{aligned}$	Length of Records (years)
1	23	-9.41	1073080	La Plata River at Hesperus	8105	48
		4.68	1077015	Navajo River at Edith	7033	45
		- 2.78	1272440	Beaver Creek near Norwood	8008	22
2	34	-16.81	1073420	Florida River near Durango	7302	42
		5.17	1073460	Animas River above Tacoma	7520	11
		-10.74	1272440	Beaver Creek near Norwood	8008	22
3	34	-9.42	1073080	La Plata River at Hesperus	8105	48
		7.41	1077015	Navajo River at Edith	7033	45
		- 2.60	1278800	Dolores River below Rico	8422	13
4	34	5.53	1077015	Navajo River at Edith	7033	45
		- 6.18	1077250	Rio Blanco near Pagosa Springs	7950	29
		- 3.67	1272440	Beaver Creek near Norwood	8008	22
5	35	-2.72	1073080	La Plata River at Hesperus	8105	48
		11.38	1077200	Rito Blanco near Pagosa Spring	7330	17
		-1.21	1272440	Beaver Creek near Norwood	8008	22
6	37	-8.35	1073080	La Plata River at Hesperus	8105	
		5.59	1077015	Navajo River at Edith	7033	45
		- . 98	1371555	Uncompahgre River near Ridgway	6787	6
7	38	6.28	1073460	Animas River above Tacoma	7520	11
		- 6.39	1075830	Los Pinos River near Bayfield	7515	37
		-14.81	1272440	Beaver Creek near Norwood	8008	22
8	39	- 6.18	1073080	La Plata River at Hesperus	8105	48
		- 5.11	1272440	Beaver Creek near Norwood	8008	22
		4.34	1278800	Dolores River below Rico	8422	13
9	39	6.16	1073460	Animas River above Tacoma	7520	11
		-10.55	1076420	Piedra River near Piedra	6530	26
		3.47	1077400	San Juan River at Pagosa Spring	7052	29
10	41	-12.38	1073080	La Plata River at Hesperus	8105	48
		5.55	1073460	Animas River above Tacoma	7520	11
		- 4.54	1076420	Piedra River near Piedra	6530	26

TABLE 5 (e) 10 best COMBINATIONS OF TWO SUB-BASINS IN THE SAN JUAN MOUNTAINS

TABLE 6 (a) 10 BEST COMBINATIONS OF SIX SUB-BASINS IN THE UPPER BASIN OF THE COLORADO RIVER

TABLE 6(a) continued

9	5.1	- 2.72	1762500	East Fork Troublesome Creek near Troublesome	7750	17
		-9.58	1801800	Meadow Creek near Tabernash	9780	21
		- 1.00	1801816	Ranch Creek near Fraser	8670	30
		1.29	1802730	St. Louis Creek near Fraser	8980	31
		. 62	1810000	Willow Creek below Willow Creek Reservoir	8024	11
		4.76	1930000	North Inlet at Grand Lake	8380	14
10	5.4	- 2.96	1762500	East Fork Troublesome Creek near Troublesome	7750	17
		-8.75	1801800	Meadow Creek near Tabernash	9780	21
		. 64	1802730	St. Louis Creek near Fraser	8980	31
		. 04	1805400	Fraser River near Winter Park	8900	54
		. 29	1810000	Willow Creek below Willow Creek Res.	8024	11
		5.03	1930000	North Inlet at Grand Lake	8380	14

TABLE 6 (b) 10 BEST COMBINATIONS OF FIVE SUB-BASINS IN THE UPPER BASIN OF THE COLORADO RIVER

TABLE 6 (b) continued

8	6.3	$-3.01 \quad 1762500$		East Fork Troublesome Creek near Troublesome	7750	17
		- 7.83	1801800	Meadow Creek near Tabernash	9780	21
		. 61	1801816	Ranch Creek near Fraser	8670	30
		. 69	1810000	Willow Creek below Willow Creek Reservoir	8024	11
		4.29	1930000	North Inlet at Grand Lake	8380	14
9	6.7	- 1.93	1762500	East Fork Troublesome Creek near Troublesome	7750	17
		- 4.11	1801800	Meadow Creek near Tabernash	9780	21
		. 26	1801816	Ranch Creek near Fraser	8670	30
		. 07	1804500	Vasquez Creek near Winter Park	8769	31
		3.48	1930000	North Inlet at Grand Lake	8380	14
10	6.7	- 4.95	1762500	East Fork Troublesome Creek near Troublesome	7750	17
		3.75	1800900	Strawberry Creek near Granby	8650	10
		2.91	1804500	Vasques Creek near Winter Park	8769	31
		. 39	1810000	Willow Creek below Willow Creek Reservoir	8024	11
		3.01	1930000	North Inlet at Grand Lake	8380	14

- TABLE 6 (c) 10 BEST COMBINATIONS OF FOUR SUB-BASINS IN THE UPPER BASIN OF THE COLORADO RIVER

TABLE 6(c) continued

9	8.7	- . 78	1762500	East Fork Troublesome Creek near Troublesome	7750	17
		-10.25	1800900	Strawberry Creek near Granby	8650	10
		- 4.15	1801800	Meadow Creek near Tabernash	9780	21
		3.59	1930000	North Inlet at Grand Lake	8380	14
10	9.1	- 1.11	1762500	East Fork Troublesome Creek near Troublesome	7750	17
		- . . 45	1804500	Vasquez Creek near Winter Park	8769	31
		- .29	1810000	Willow Creek below Willow Creek Reservoir	8024	11
		11.95	1850000	Stillwater Creek above Lake Granby	8310	5

TABLE 6 (d) 10 BEST COMBINATIONS OF THREE SUB-BASINS IN THE UPPER BASIN OF THE COLORADO RIVER

Rank	Number of Years for Evaluation	α_{i}	CSU ID	Station Name	Elevation (feet)	Length of (years)
1	8.2	-2.38	1762500	East Fork Troublesome Creek near Troublesome	7750	17
		. 59	1804500	Vasquez Creek near Winter Park	8769	31
		2.39	1930000	North Inlet at Grand Lake	8380	14
2	9.5	- .94	1762500	East Fork Troublesome Creek near Troublesome	7750	17
		- . 30	1810000	Willow Creek below Willow Creek Reservoir	8024	11
		9.87	1850000	Stillwater Creek above Lake Granby	8310	5
3	9.8	-8.57	1800900	St rawberry Creek near Granby	8650	10
		- 5.18	1801800	Meadow Creek near Tabernash	9780	21
		2.92	1930000	North Inlet at Grand Lake	8380	14
4	11	- 7.76	1800900	Strawberry Creek near Granby	8650	10
		- . 07	1810000	Willow Creek below Willow Creek Reservoir	8024	11
		9.44	1850000	Stillwater Creek above Lake Granby	8310	5
5	12	-1.67	1762500	East Fork Troublesome Creek near Troublesome	7750	17
		-3.91	1800900	Strawberry Creek near Granby	8650	10
		$2,49$	1930000	North Inlet at Grand Lake	8380	14
6	12	- 3.61	1762500		7750	17
		. 88	1810000	Willow Creek below Willow Creek Reservoir	8024	11
		2.85	1930000	North Inlet at Grand Lake	8380	14
7	12	-1.79	1801816	Ranch Creek near Fraser	8670	30
		- 18	1810000	Willow Creek below Willow Creek Reservoir	8024	11
		8.68	1850000	Stillwater Creek above Lake Granby	8310	5
8	13	-2.58	1801800	Meadow Creek near Tabernash	9780	21
		- . 11	1810000	Willow Creek below Willow Creek Reservoir	8024	11
		8.31	1850000	Stillwater Creek above Lake Granby	8310	5
9	14	-7.23	1801800	Meadow Creek near Tabernash	9780	
		. 15	1804500	Vasquez Creek near Winter Park	8769	31
		2.54	1930000	North Inlet at Grand Lake	8380	14
10	14	- 4.21	1762500	East Fork Troublesome Creek near Troublesome	7750	17
		1.28	1804500	Vasquez Creek near Winter Park	8769	31
		2.23	1960000	Colorado River near Grand Lake	8380	45

TABLE 6 (e) 10 BEST COMBINATIONS OF TWO SUB-BASINS IN THE UPPER BASIN OF THE COLORADO RIVER

Rank	Number of Years for Evaluation	α_{i}	CSU ID	Station Name	Elevation (feet)	Length of Records (years)
1	32	1.00	1800900	Strawberry Creek near Granby	8650	10
		1.00	1850000	Stillwater Creek above Lake Granby	- 8310	5
2	39	1.00	1800900	Strawberry Creek near Granby	8650	10
		1.00	1930000	North Inlet at Grand Lake	8380	14
3	41	1.00	1804500	Vasquez Creek near Winter Park	8769	31
		1.00	1930000	North Inlet at Grand Lake	8380	14
4	41	1.00	1800900	Strawberry Creek near Granby	8650	10
		1.00	1866000	Arapaho Creek at Monarch Outlet	8310	20
5	42	1.00	1804500	Vasquez Creek near Winter Park	8769	31
		1.00	1866000	Arapaho Creek at Monarch Outlet	8310	20
6	42	1.00	1810000	Willow Creek below Willow Creek	8024	11
				Reservoir		
		1.00	1866000	Arapaho Creek at Monarch Outlet	8310	20
7	44	1.00	1801800	Meadow Creek near Tabernash	9780	21
		1.00	1866000	Arapaho Creek at Monarch Outlet	8310	20
8	45	1.00	1810000	Willow Creek below Willow Creek	8024	11
				Reservoir		
		1.00	1930000	North Inlet at Grand Lake	8380	14
9	45	1.00	1801800	Meadow Creek near Tabernash	9780	21
		1.00	1930000	North Inlet at Grand Lake	8380	14
10	46	1.00	1804500	Vasquez Creek near Winter Park	8769	31
		1.00	1850000	Stillwater Creek above Lake Granby	8310	5

TABLE 7 (a) SENSITIVITY OF NUMBER OF YEARS FOR EVALUATION ACCORDING TO CHANGE OF COEFFICIENTS (THE SAN JUAN MOUNTAINS)

TABLE 7 (a) continued

8	CSU ID	1076420	1077015	1077250	1077400	1272440	1278800	
	Optimized	-8.36	24.17	. -30.86	3.54	-42.16	15.30	9.13
	1\% change	-8.44	24.41	-31.08	3.59	-42.35	15.25	9.14
	5\% change	-8.78	25.38	-31.95	3.77	-43.11	15.06	9.25
	10\% change	-9.19	26.59	-33.04	4.00	-44.05	14.83	9.60
9	CSU ID	1073080	1073460	1077015	1077250	1272440	1371555	
	Optimized	-29.89	- .70	25.30	-14.72	-30.20	5.11	9.26
	1% change	-30.19	-. 70	25.38	-14.63	-30.28	5.12	9.26
	5\% change	-31.38	- .73	25.67	-14.30	-30.60	5.15	9.31
	10\% change	-32.88	- $\quad .77$	26.04	-13.89	-30.99	5.19	9.46
10	CSU ID	1073080	1073448	1077015	1077250	1272440	1371555	
	Optimized	-16.80	-1.95	15.71	-10.69	-14.95	3.32	9.44
	1\% change	-16.97	- 1.97	15.75	-10.65	-14.98	3.33	9.44
	5\% change	-17.64	- 2.04	15.94	-10.49	-15.11	3.36	9.49
	10\% change	-18.48	-2.14	16.17	-10.28	-15.26	3.39	9.63

TABLE 7 (b) SENSITIVITY OF NUMBER OF YEARS FOR EVALUATION ACCORDING TO CHANGE OF COEFFICIENTS (THE UPPER BASIN OF THE COLORADO RIVER)

TABLE 8 SENSITIVITY OF NUMBER OF YEARS FOR EVALUATION ACCORDING TO CHANGE OF COVARIANCE MATRIX (THE UPPER BASIN OF THE COLORADO RIVER)

	Years for data were	which not used	1762500	$\begin{aligned} & \text { Combination } \\ & 1801800 \end{aligned}$	$\begin{aligned} & \text { of Sub-bas } \\ & 1801816 \\ & \hline \end{aligned}$	$\begin{gathered} \text { sins and } \\ 1804500 \\ \hline \end{gathered}$	$\begin{array}{cc} \text { Coefficients } \\ 0 & 1810000 \\ \hline \end{array}$	1930000	Number of Years for Evaluation
--	----	----	-3.37	-5.45	-2.31	3.60	. 07	4.51	2.90
1948	1951	1954	-3.26	-5.69	-2.01	3.32	. 14	4.46	2.64
1948	1951	1956	-3.74	-6.51	-. 67	2.64	. 30	4.53	2.76
1948	1951	1958	-3.65	-4.44	-1.90	3.81	. 06	4.33	2.53
1948	1951	1960	-3.46	-5.41	-2.02	3.30	. 15	4.49	3.21
1948	1951	1963	-3.49	-4.48	-2.27	3.39	. 14	4.39	3.20
1948	1954	1956	-3.44	-6.89	-. 93	2.83	. 25	4.52	2.50
1948	1954	1958	-3.36	-4.87	-2.18	3.92	. 02	4.35	2. 20
1948	1954	1960	-3.20	-5.72	-2. 24	3.45	. 11	4. 48	2.75
1948	1954	1963	-3.25	-4.54	-2.50	3.59	. 09	4.35	2.68
1948	1956	1958	-3.70	-5.17	-1.49	3.53	. 11	4.40	2.69
1948	1956	1960	-3.59	-6.27	-1.28	2.95	. 22	4.55	3.21
1948	1956	1963	-3.60	-5.50	-1.57	3.05	. 21	4.47	3.22
1948	1958	1960	-3.57	-4.59	-2.19	4.00	. 01	4.38	2.71
1948	1958	1963	-3.66	-2.79	-2.60	4.19	. 01	4.17	2.63
1948	1960	1963	-3.43	-4.41	-2.54	3.53	. 10	4.41	3.33
1951	1954	1956	-3.59	-7.53	-. 18	2,74	. 28	4.52	2.37
1951	1954	1958	-3.47	-4.96	-1.79	3.89	. 04	4.31	2.00
1951	1954	1960	-3.27	-6.11	-1.83	3.50	. 10	4.48	2.69
1951	1954	1963	-3.30	-5.21	-2.08	3.64	. 08	4.38	2.69
1951	1956	1958	-3.90	-5.61	-. 67	3.32	. 17	4.37	2.36
1951	1956	1960	-3.76	-7.03	-. 41	2.82	. 26	4.55	3.01
1951	1956	1963	-3.74	-6.78	-. 57	2.83	. 26	4.54	3.09
1951	1958	1960	-3.69	-4.70	-1.73	3.91	. 04	4.34	2.42
1951	1958	1963	-3.75	-3.11	-2.14	4.15	. 00	4.16	2.41
1951	1960	1963	-3.49	-5.28	-2.00	3.54	. 10	4.46	3.27
1954	1956	1958	-3.56	-6.05	-1.05	3.53	. 11	4.40	2.05
1954	1956	1960	-3.45	-7.33	-. 77	3.05	. 20	4.55	2.58
1954	1956	1963	-3.44	-6.69	-1.01	3.15	. 18	4.48	2.60
1954	1958	1960	-3.39	-5.10	-2.06	4.06	-. 01	4.35	2.15
1954	1958	1963	-3.48	-3.28	-2.45	4.35	-. 05	4.14	2.03
1954	1960	1963	-3.24	-5.23	-2,30	3,77	. 05	4,40	2.80
1956	1958	1960	-3.73	-5.45	-1.35	3.68	. 08	4.41	2.62
1956	1958	1963	-3.74	-3.74	-1.95	4.01	. 02	4.24	2.62
1958	1960	1963	-3.66	-3.25	-2.43	4.32	-. 04	4.21	2.60

CONCLUSION

Suitability of basins for weather modification over the whole Upper Colorado River Basin was discussed from a hydrologic standpoint.

The relationship between precipitation and spring runoff with greater than 0.90 correlation coefficient was obtained for 365 sets by applying a multiple linear regression analysis, the independent variables being winter and spring precipitation. Using this relationship, the increase of spring runoff due to a 10 percent increase of winter precipitation was calculated and used as a criterion to discuss optimal water yield. The following watersheds are those where a relatively large amount of increase of runoff can be expected in order:
(a) San Juan Mountains,
(b) Upper reach of the Yampa River and its tributaries,
(c) Headwater of the Green River,
(d) Upper basin of the Colorado River,
(e) Upper basins of Uinta River, Lake Fork, and Rock Creek, and
(f) Headwaters of the Rafael River.

By applying the two-sample u-test, the number of years for evaluation of weather modification attainment for each basin was discussed. Though results show some variability between watersheds separated by a very short distance, the following basins lead to a smaller number of years needed for evaluation on the average:
(a) Upper reach of the Yampa River and its tributaries,
(b) Headwater of the Green River,
(c) Upper basin of the Colorado River,
(d) Upper basins of Uinta River, Lake Fork, and Rock Creek, and
(e) San Juan Mountains.

These results show that the upper reach of the Yampa River and its tributaries; the headwaters of the Green River; and the upper basins of Uinta River, Lake Fork, and Rock Creek are suitable, in addition to the two pilot-areas--the San Juan Mountains and the Upper Basin of the Colorado River.*

Furthermore, the number of years for evaluation was calculated for certain combinations of basins in the pilot area by using a new variable that is a linear combination of a given number of runoff variables from individual sub-basins. This was done in order to select the most desirable combination of basins for the planned experiment. It was found that particular gages play a particularly important role in keeping the number of years needed for evaluation to a minimum. They are in the
(a) San Juan Mountains

1077015	Navajo River at Edith
1077250	Rio Blanco near Pagosa Springs
1371555	Uncompahgre River near Ridgway

(b) the Upper Basin of the Colorado River

1762500 East Fork Troublesome Creek near
1810000 Willow Creek below Willow Creek Reservoir
1930000 North Inlet at Grand Lake
However, the study shows that there exist a great deal of latitude in the actual choice of the stations with little loss of efficiency in evaluation. This fact is probably the most important result of this study.

It also was found the minimum number of years in the San Juan Mountains was six, and in the Upper Basin of the Colorado River Basin was three. It must be remembered that these results hold under the assumption of a uniform 10% increase in winter precipitation in both pilot areas. If the increase is greater the number of years decreases approximately at a quadratic rate.

At this point, no physical meaning is assigned to the α_{i} 's in equation(3). It may be desirable to consider the meaning of the α_{i} 's in a further study.

[^6]
REFERENCES

1. Committee on Water of the National Research Council, "Water and Choice in the Colorado River Basin," National Academy of Sciences, Publication 1689, 107 pp., Washington, D.C., 1968.
2. Marlatt, W. and Rieh1, H., "Precipitation Regimes Over the Upper Colorado River," Journal of Geophysical Research, Vol. 68, No. 24, pp. 6447-6458, December 1963.
3. Golze, A. R., "Reclamation in the United States," the Caxton Printers, Ltd., Caldwe11, Idaho, 1961.
4. Elliott, R.D., "Weather Modification - Panel No. 5," Journal of Irrigation and Drainage, Vo1. 90, No. 4, Part 1 of 2 Parts, pp. 73-84, December 1964.
5. United States Department of the Interior, Bureau of Reclamation, "Reclamation to Conduct Project Skywater Program in Colorado Rockies this Winter," September 22, 1968, (pamphlet).
6. Morel-Seytoux, H.J., "Suitability of Basins to Weather Modification and Statistical Evaluation of Attainment," Final Report to the Bureau of Reclamation for FY 1966 and 1967, Part 1, 62 pp., Colorado State University, Fort Collins, Colorado, July 1, 1968.
7. Upper Colorado River Commission, "The Colorado River Storage Project as Authorized by Public Law 485, 84th Congress," (pamphlet).
8. Rasmussen, J. L., "Atmospheric Water Balance of the Upper Colorado River Basin," Atmospheric Science Paper No. 121,112 pp., Colorado State University, Fort Collins, Colorado, February 1968.
9. Brustkern, R., "Runoff Data of the Upper Colorado River Basin," Colorado State University, Fort Collins, Colorado, (unpublished).
10. Chappel1, C.F., "C1oud Seeding Opportunity Recognition," M.S. Thesis, 204 pp., Colorado State University, Fort Collins, Colorado, December 1967.
11. Grant, L. O., Mielke, P.W., Chappell, C.F., and Crow, L. W., "Pilot Program of Weather Modification Operations, Colorado River Basin, Field Program (suggested 1968-1969 winter season)," 18 pp., Colorado State University, Fort Collins, Colorado, August 1968.
12. Mason, B. J., "Some Fundamental Problems in Large-Scale Cloud Seeding," Proceedings of the Conference on the Scientific Basis of Weather Modification Studies, Institute of Atmospheric Physics, University of Arizona, Tucson, Arizona, April 1956.
13. Julian, R.W., Yevjevich, V., and Morel-Seytoux, H.J., "Prediction of Water Yield in High Mountain Watersheds Based on Physiography, "Hydrology Paper 22, $20 \mathrm{pp} ., \mathrm{Colorado} \mathrm{State} \mathrm{University} ,\mathrm{Fort} \mathrm{Collins}$, Colorado, August 1967.
14. Utah State University, "Utah Water and Power Board Water Yields in Utah, Developing a State Water Plan," Special Report 18, Utah Agricultural Experiment Station, 61 pp., Utah State University, Logan, Utah, September 1964.
15. Mustonen, S. E., "Effects of Climatologic and Basin Characteristics on Annual Runoff," Water Resources Research, Vol. 3, No. 1, pp. 123-130, First Quarter, 1967.
16. Sharp, A. L., Gibbs, A.E., and Harris, B., "Application of the Multiple Regression Approach in Evaluating Parameters Affecting Water Yields of River Basins," Journal of Geophysical Research, Vol. 65, No. 4, pp. 1273-1286, April 1960.
17. U.S. Department of Commerce, "Water Supply Forecasts for the Western United States," Vol. 20, No. 1, 16 pp., January 1, 1968.
18. Kohler, M.A., 'Water-Supply Forecasting Developments, 1951-1956," Proceedings of Western Snow Conference, Santa Barbara, California, pp. 62-68, Apri1 1957.
19. Ford, M.P., 'Multiple Correlation in Forecasting Seasonal Runoff," Bureau of Reclamation, Engineering Monograph No. 2., 38 pp., Technical Information Office, Denver Federal Center, Denver, Colorado, June 1953.
20. Kohler, M. A., and Linsley, R. K., "Recent Developments in Water Supply Forecasting from Precipitation," American Geophysical Union Transactions, Vol. 30 , No. 3, pp. 427-436, June 1949.
21. Clyde, G.D., and Work, R.A., "Precipitation Runoff Relationships as a Basis for Water-Supply Forecasting," American Geophysical Union Transactions, Vol. 24, Pt. 3, pp. 43-55, 1949.
22. Van Horn, 0. B., "Evaluation in Derivation of Seasonal Streamflow Forecast Procedures," Proceedings of Western Snow Conference, Bozeman, Montana, pp. 82-90, April 1958.
23. Work, R. A., and Beaumont, R. T., "Basic Data Characteristics in Relation to Runoff Forecast Accuracy", Proceedings of Western Snow Conference, Bozeman, Montana, pp. 45-53, April 1958.
24. Stanley, J.W., and Kennedy, R. E., "Forecasting Colorado River Flow," American Geophysical Union Transactions, Vol. 28, No. 5, pp. 766-779, October 1947.
25. Li, J.C.R., "Statistical Inference I," 658 pp., Edwards Brothers, Inc., Ann Arbor, Michigan, 1964.
26. The United States Weather Bureau, "Substation History, Arizona," The United States Government Printing Office, Washington, D.C., 1956.
27. The United States Weather Bureau, "Substation History, Colorado," The United States Government Printing Office, Washington, D.C., 1956.
28. The United States Weather Bureau, "Substation History, New Mexico," The United States Government Printing Office, Washington, D.C., 1956.
29. The United States Weather Bureau, "Substation History, Utah," The United States Government Printing Office, Washington, D.C., 1956
30. The United States Weather Bureau, "Substation History, Wyoming," The United States Government Printing Office, Washington, D.C., 1956.
31. The United States Weather Bureau, "Climatological Data, Arizona, "The United States Government Printing Office, Washington, D.C., available from 1914 through 1968.
32. The United States Weather Bureau, "Climatological Data, Colorado," The United States Government Printing Office, Washington, D.C., available from 1914 through 1968.
33. The United States Weather Bureau, "Climatological Data, New Mexico," The United States Government Printing Office, Washington, D.C., available from 1914 through 1968.
34. The United States Weather Bureau, "Climatological Data, Utah," The United States Government Printing Office, Washington, D. C., available from 1914 through 1968.
35. The United States Weather Bureau, "Climatological Data, Wyoming," The United States Government Printing Office, Washington, D.C., available from 1914 through 1968.
36. The United States Weather Bureau, "Climatic Summary of the United States, Supplement for 1880^{\prime} s through 1930," The United States Government Printing Office, Washington, D. C.
37. The United States Weather Bureau, "Climatic Summary of the United States, Supplement for 1931 through 1952, "The United States Government Printing Office, Washington, D.C.
38. The United States Weather Bureau, "Climatography of the United States, Supplement for 1951 through 1960," The United States Government Printing Office, Washington, D.C., 1964.
39. The United States Weather Bureau, "Monthly Weather Review," The United States Printing Office, Washington, D.C., available from 1885 through 1968.
40. The United States Department of Agriculture, "Report of the Chief of Weather Bureau, "The United States Government Printing Office, Washington, D.C., available from 1891 through 1909.
41. The United States Geological Survey, "WaterSupply Paper, Part 9, Colorado River," The United States Government Printing Office, Washington, D.C., available from 1893 through 1968.
42. Markovic, R. D., "Statistical Evaluation of Weather Modification Attainments," Hydrology Paper No. 16, 44pp., Colorado State University, Fort Collins, Colorado, October 1966.
43. Wallis, J. R., 'Multivariate Statistical Methods in Hydrology - A Comparison Using Data of Known Functional Relationship," Water Resources Research, Vol. 1, No. 4., pp. 447-461, Fourth Quarter 1965.
44. Health Sciences Computing Facility, "Biomedical Computer Programs," pp. 233-257, Department of Preventice Medicine and Public Health, School of Medicine, University of California, Los Angeles, 1968.
45. Bureau of Rec1amation, Office of Atmospheric Water Resources Skywater Conference V "Scientific Review Plans and Design of the Colorado River Basin Pilot Project with Appendix: Design Changes and Decisions," Denver Colorado, February 1969.

ADDITIONAL BIBLIOGRAPHY

46. Chow, V. T., "Handbook of Applied Hydrology," McGraw-Hill Book Company, 1964.
47. Colorado State University, "Computer Center Users Manual," 1968.
48. Ezekie1, M., and Fox, K.A., 'Methods of Correlation and Regression Analysis," 543 pp., John Wiley and Sons, Inc., 1967.
49. Fletcher, R., and Powe11, J.D., "A Rapidly Convergent Descent Method for Minimization," The Computer Journal, Vol. 6, No. 2; pp. 163-168, July 1963.
50. McGhee, R. B., "Some Parameters-Optimization Techniques," Digital Computer User's Handbook, Chapter 4.8, pp. 234-255, McGraw-Hill Book Company, 1967.
51. Mood, A. M., and Franklin, A. G., "Introduction to the Theory of Statistics," 443 pp. , McGraw-Hill Book Company, 1963.
52. Parzen, E., 'Modern Probability Theory and Its Application," 464 pp., John Wiley and Sons, Inc., 1960.
53. Rasmussen, J. L., "Some Aspects of the Monthly Atmospheric Circulation Affecting Monthly

Precipitation Over the Colorado River Basin," Technical Paper No. 46, 62 pp., Colorado State University, Fort Collins, Colorado, December 1963.
54. Rieh1, H., and E1sberry, R., "Precipitation Episodes in the Upper Colorado River Basin," Pure and Applied Geophysics, Vo1. 57, pp. 213-220, 1964.
55. Snyder, W. M., "Some Possibility of Multivariate Analysis in Hydrologic Studies," Journal of Geophysical Research, Vol. 67, No. 2, pp. 721-729, February 1962.
56. Spreen, W. C., "Determination of the Effect of Topography Upon Precipitation," American Geophysical Union Transactions, Vol. 28, pp. 285-290, April 1947.
57. Thom, H.C.S., "A Statistical Method of Evaluating Augmentation of Precipitation by Cloud Seeding," Final Report of the Advisory Committee on Weather Control, Vol. 2, 422 pp., The United States Government Printing Office, Washington, D.C., 1957.
58. United States Department of the Interior, "Plan to Develop Technology for Increasing Water Yield from Atmospheric Resources," 54 pp ., The United States Government Printing Office, November 1966.

APPENDICES
A and B

APPENDIX A

List of Precipitation Stations

The numbers in the tables of the recorded data indicate the number of missing monthly data．However，the number＂ 9 ＂indicates that the number of missing monthly data is 9,10 ，or 11 and the＂＊＂indicates that there is no monthly data at all．

C50＊）	svatuu		catrupe	Lovatriot	Elexatioy	atconotva sess＊－fybe）	santivjous accoagins	(2)>a+567a?	ni23+5ste4	0123456788						
2016＊90n	37，0000	Datavan	37．15．©	111.51.	tosa．0	1895－1809	1896－1897									
10160400	3，me\％	Mevotevtice	317＊．${ }^{\text {a }}$	112． 0.0	6000．0	1853－1904	1856－1935									
1017n000	》，＊＊＊	tanote		112．\％． 0	8790．0	1880－1005	195）－1065		moseosteno	0000050860						802
ivesosan	2．0．＊	Lefs femat	36．5\％．0	111．35，of	316.10	1917－1905	1900－106s									
10000日tin	C．V13＊	－1．4eran	30．59．A	111．1＊．	370.0	1851－t405	（06\％－1005									
10＊vanor	1．envo	cosorn atue tann	wn， m ．．	111．73． 0	S300．a	1461－1455	1952－1255									
18．60par	2．0．6．	＊＊satm	3x．u．	111．3， 0	sano．s	1050－1029	1251－1560									
10swoave	2roont	sureon unvotair	3．1．0	116．4＊．${ }^{\text {o }}$	5070．0	s90\％－140．5	1958－1365									
luspove	3，308	butecamay citr	37．5． 0	111．6． 0	＋1＊e．t	1967－1405	1067－1963									0
teroegat	3， 5 ＋18	anvienot veller	3r．．．	H0．12． 0	\＄210．0	1056－1059	1050－145\％									．
Luturaen	3\％．ster	－ricalest	\％． 9.0	109．23．A	＊＊20．n	1926－1903	1857－15\％s							，		
istakaw	c．icos	ntwoters	36．51．．	109．31．a	3 tne．n	195s－1087	1935－1358									．．．．
Ietreaie	P．pres	ave trous	3．2．0	108．31．	\＄316．0	1051－texs	－6s\％－105s									\％
Iotusas	S．veven	wace mowtats a	438．1． 0	109．52，	6356．0	1958－1904	185n－1965									
Iutunoov	2．217\％	cortin ano tms	14．．．	109．53．	8nse．n	105n－1958	1957－1059									
turusios	2．1．st	ctive	36．9． 0	109．32．	ssme．e	19n0－1845	1060．1355				1nns800000			0		08
16Tunas	c．ster	curational	3x．an． 0	108，10．o	stas．0	1915－136．	106＞－1554									．
10renten	c．ost－	crors	30．t．${ }^{\text {a }}$	180．16． 0	sams．0	1915－106s	1065－1465				． 6	Sa00090atso	n000日n00n＞	－tor＞2000	anomasan	3
Hritasy	3\％．07m	H．en	3．17．	109．33．${ }^{\text {a }}$	＋115．0	1917－1048	torutians				9006743	noraliszon n	nababnoosa	amabecana	amannoen	9
16Tishat	31.075	masotm	w．7．0	100．20．a	Sors．0	1905－1005	1917－104s	．．．．．．．．．．		……anoo	shavor	saposem9	20000090	apmenosoans	manamas）	n809
T01＋nome	31013	＊＊Et．	30．13．a	109．11，	＊＊50．0	1900－106\％	1065－130\％			700065ste．						－
1076091	8，0men	arot cosfx	3t．as．${ }^{\text {n }}$	100．54． 0	3＊ra．en	1915－1031	T917－192！									．
10rtases	5．1701	ATClisha save－	3．7．a．	104．53． 0	1000.0	1964－10．4	1068－106\％									．
14rinous	31．sros	mavemose cates	3\％．6．	109．3．	spes．0	t06－10x\％	1967－1455								amanome	．
107n＊＊	3． 1 \％0\％	cesay movt	v．．6．	109．3． 0	bloe．${ }^{\text {a }}$	1957－1005	1957－1305									8
sotinive	3.0041	tosetum＊	17．＊．	107．．．	nos．a	1017－1990	1976－1924									．
tiotinut	s．sotm	simpance	17．6．0．	100． 1.0	6xatie	1931－1905	1972－1305							noens00090	ontoanos	nnoso
tertamer	3tanam	revom	い．．＊）．	109．21， 0	sano．t	sanctions	160．0－1004									
turiame	30，304	－oxtictela	31．52．o	100，21． 1	Toxs．a	tonz－1ass	105701205				20000000		0000	neneapoot	aon	00008
Wrimest	Spurem	reer mase anc	36．56．．	108．\％，－	S140．0	106＞－106\％	1937－1365									\bigcirc
cotiasel	3．05\％1	DLeasavt vie．z－	\＄7．15．0	104，＊8． 0	T000．0	105 n －198．	，05t－1251									
sorimbe	3．70is	Meune hayt in	31．0．．	104．4． 0	－acs，${ }^{\text {a }}$	1007－104s	1037－1355									0
1071save	S．10en	Enatry	3．21． 0	100．30．	s1rm．0	1912－1905	1037－1055						－Jona00090	atananozoan		000
10\％20000	3.3581	\＃54．WTane Matro	37，12． 0	104．24．0	para．e	1977 －1048	1927－1955					$\cdots 8000 n 000$ n	Mano	noasnocos	nooosanes	00000
10720soa	s．3327	uevens	ツ．วา．	104．10．O	1015．a	teon－1905	1965－1455	．．．．．．．．．	．．．．．．． 30	S000ese	S00	ง．．．．．．．．．．		．．．．．．．－99n	amanaammoo	2000s
2072＊00n	25，0＞0．	sursenck 16	36．0． 0	105．2v． 0	＊atr．o	1920－7005	，206－175						nosocosatt	007＋98090A	tamamaso	002700
10720131	25，00vm	м¢ecoen	36．17．0	104，＋2． 0	sats．0	1950－1905	105＞－145s									00083
10 Tzatse	25．9457	vestmunar asven	35．56． 0	104．12．0	6noo， 0	1068＋1008	1957－1958									
totzelss	25，0605	0175	34．19．0	107．s2． 0	5040．0	1955－195s	1054－1065									\bigcirc
10766136	25.0080	vesery	36．15．0	107，45，o	sxamen	10．6－1961	1951－1951									．
1072013t	25．3900	¢rasmox	3x．14． 0	107，35．a	116000	4051－1305	1058－1265									000
1072015\％	25．1407	craen caurow wat	38．．． 0	107，50． 0	s13s．0	1032－1085	1050－1055						96008000	A1， 2 n30008	anamanaga	9000
167C6134	25，6008	PIt emen	35．65． 0	104． 7.0	60xo．0	1057 －1805	1057－1865									8088
107estor	25．2819	cas－wationt	35．4．－	108．9． 0	sars．0	1914－1045	1055－1965						anenonssso	asmanagooz	Oanh Mnmogo	9000
10tconve	25，5ms	－Extean eoatws	15．4．4．	108．50，\％	sest．o	1974－1965	1050－105s						．．．．．＋n0000	－00339125＊－	Pamanso	0030
lotetsi	25，60／4	T－4tcut	35．51．．	108，66，	Seno．e	1913－1905	1050－196s						186001	Oanpreas		0000
107c－000	25，30＊0	fajtram	36．6． 0	108．24．	Stas．0	1891 －1003	， 066 － 1005			0386	，			$0123+00001$	Moxaman	2300
10750008	25．nlen	Fasatugtav FAA A	36．45．0	108．55．	4．05．0	1001－1905	19057－104s								boseosan	0000
torasmith	5，＋216	＊LTVN iv	31．7．－	104．11． 0	5619．0	1861－1969	1069－1048									．
torsost	S．000n	kLTV5 कmen	3．11．－	104，15，＝	reno．e	1960－104	t906－1904	＊＊＊＊＊＊．．．．	．．．．．．．．．．．	．．．．．．．．．				＊＊301＊＊	．．．．．．．．．	．．．．
witsouc	5.6890	ALaLl euten	3．12．${ }^{\text {a }}$	1an．19．${ }^{\text {a }}$	toos．0	1045－196？	1807－1007							o．．．		．．．
1utsuas	5.3816	foat be－ts	3\％14．${ }^{\text {cod }}$	10R．3． 0	1585．0	1850－104s	coss－1ass	－3nestosen			＊950800000	saesponons a	nnopososes	Qeannnoues	sosernmen	10808
16T3006	28．31．	vazutmatar	3x．4s．．	$104.10,0$	\＄395．0	1916－1905	1037－1965					gnososos a	0523090090	0000ns00an	an	20082
w7res．	S．vave	Atrst murss vet	36．5a．－	108． 0.8	mato．o	1895－190s	1911－1968		．．．．．）30080	0080．	080000	0000n000	2000000030	oannososo	nox	Qanoss
10＋24s＂	\checkmark ．enton	W，．r．	3．13．${ }^{\text {a }}$	107．45．－	sest．o	1945－1963	1004－1905	，						．．．．．．．．．．．	．．．．．．．．	．．．．
torsabeif	s．ess？	nuavin	31．77．${ }^{\text {a }}$	107．43． 1	scte．0	1800－1045	1055－145s	．．．．．．．．．．）	2．．．．00000	000s0n008	$800 n 00$	00n8000	200800000	nanancose	manana	000080
147Asso．	S．ens	10＝7＊A	3．31． 0	107．6\％．${ }^{\text {a }}$	7ni．0	1906－1905	105\％－tans			100	96000000	200800n000	n＊．．．．．．．．	．．．．．．．．．．	00003000	200858
1073：32：	s．14ce	fitctat late	31．73．${ }^{\text {a }}$	tor，＊5． 0	－v4．0	sosoctices	1954－1255									00008
	3．0000	savast austs	17．5s．${ }^{\text {a }}$	107， 5.	$11500 . \%$	1015－1901	1724－1231	．．．．．．．．．．．	．．．．．．．．．．	．．．．．．．．．．	．．．．．＊＊090	0300＞000ns	now．．．．．．	．．．．．．．．．．．	．	．．．．．．．
20ヶ30－0\％	3．23．	Cascnit	17．4．0．	197．4．，o	sess．0	1096－1967	1804－105\％	．		100	2000000	00008000a00	n0200000	200nnoso	noonote	．．．．．．
107same	5．1430	stiveatiou	31．08．${ }^{\text {cos }}$	107， 0 ，a	＊172．0	1906－1905	1050－1065				000	0000650	n00n0000se	205000000	O00non 1	00000
r073．est	5，0004	Stiveray oc． 1	37．65． 0	1ar．as．${ }^{\text {a }}$	＊＊＊1．0	1905－1910	1010－1019	．．．．．．．．．．		．．3alor	，	．	．．．．．．．．．．．			．．．．．
Ierseten	3．t000	austrour	37．53． 0	197.30.	12008.0	1996－101］	1017－1019	．．．．．．．．．．．		－．．．．．esion	10r09001．4	．．．	．．．．．．．．．．	．．．．．．．．	．	．．．．
torsaose	25．100）	monatica 3 st	34．t． 0	107．58．－	570.08	1m91－1005	T030－1965			190000	000000000	20080000	073000800	．00n200189	onnoano	90000
tor＊enon	20．3700	antwrue	36．39． 0	107．3）．	5060.0	1960－100\％	1058－t00\％	．．．．．．．．．．						0002	0200n000	soc．0．
s0tenove	23，n＋s\％	orten	30．15．${ }^{\text {a }}$	（07．2）． 0	5000．0	1953－1907	1954－1255	\cdots			．．．．				N00noer	．．．．
1070．006	25，6051	navejn ou＊	36.49 .0	107．3t．A	smo．s	19033－1903	1856－1864									＊000
$1075000 y$	25．1588	anseaviona	36.42 .0	107．24． 0	\＄730．0	$1055 \cdot 1058$	1056－1059									．
2073080：	25．35n\％	anscereona 7 T＊	38．41． 0	107．23．	1200．0	1925－1055	105s－tass						－ 500000000	008000010	01n808．．．．	．．．＊
10155000	25，0008	mose meas	36．53．O	107．35，	\＄500．0	$1030-1981$	1931－1931									．．．
10758200	5．6750	1ovecto ，＊	3r． x .0	107．35． 0	s．peso	1900－1965	1051－10ss				000	00000000	000080	Sn00001n	0680008	000000
1015×200	5．0508	Webreten oas	3r．24． 0	107，33．${ }^{\text {a }}$	J6so．0	1067－1945	1903－1055							＊．．0000000	600	90000
10702004	5．8307	AR9nces	37．1．．	107．25． 0	s1rs．0	1958－1003	1050－1067									00＊＊
$1070200 t$	5．0000	arboces	37．1． 0	307．23．a	－n13．0	1⿴囗十介าनง＊＊	1806－1894									
20760200	s．is7a	chtwer mock	37，12． 0	107．27．	6550．0	1961－106\％	1957 －1967									

csu wo	Buatsu		catituot	covartuot	tursartov	aecnantws BE0A＊－fuDr）	$\begin{aligned} & \text { gov } \\ & \text { ite } \end{aligned}$	$\text { al } 216557 \mathrm{kq}$			P105s			345	345	$\begin{array}{r}1 \\ 123+5 \\ \hline\end{array}$
10760201	S．7020	Stare moser tre	37．13．	107．16． 0	6000．0	1060－1081	1901－1951	．．．．．．．．．．	．．．．．．．．．．．	．．．．．．．．．．						
$107 / 0000$	25．256m	ouse	3x．sy． 0	101． 0.0	8080．0	1006－1005	1006－1965									
107203as	5，0080	c＊an＊	－	108，ct．O	1395．0	1808－1012	1912－1917									
10716000	5，025n	veshnst coativor	37．16．	102． 1.0	71＊．0	1893－1005	1957－1065									
sortioue	5，0000	－xabsa spaings	11．23．${ }^{\text {a }}$	106．51． 0	me．o	1928－102\％	193－1937									
10troeos	5．527	Pa，rabe lake ？	31．3n． 0	107，10．－	mi．n	1917－1905	1904－1965									08
107 asos	5．9103	－obe cerea pass	37．29．$=$	106．52．0	－675，0	1996－1945	195\％－1865									
14810001	$37.25 v 2$	essacamic	37．46． 0	111．30．0	ssso．0	1001－1905	1059－1905								O00n	\％os
108Cozsa	31，04＊9		3r．5s．${ }^{\text {a }}$	112．20． 0	ssso．0	1956－1043	1455－1005									08
Hevoeve	31，3064	NTIK	3t．e9． 0	110．28． 0	3670.6	1080－185＊	1060－1056									．．．．
Hisoove	37，0053	Nativat nut	3r．1． 0	109．58．－	6500．0．	1865 －1045	1955－1965									
H60800	37.3011	mavesvatic	36．25．－	110．41． 0	＊56．0	1910－1945	1965－1065									008
114＊000	30．000	－tune coat	38．03．－	111．11．	3500．0	1061－1002	1907－1009									．
11614200	3．2400	Exator	38.35 .0	titis，－	\＄200．0	1081－106s	1955－1965			300000000	000000000	10000000	1000000000	－000n0000	Obosacro	058
H6isnoo	37．0000	\＃un	30． 0.0	111．20． 0	83no．0	1910－1910	1016－1918									
11680000	3.0000	O1，55	36．23．${ }^{\text {a }}$	118．53．0	－ 4 ato	1 100s－1040	1896－1906									
11630000	37．30．6	watre	36．17． 0	11．15，	5016．0	1098－1005	16＋0－1065			．．．．．				n0000200	00006n00	108
115seoul	37，0008	Teasace	36．16．0	i11．22．0	7no．e	（915－199	1919－1019									
$11603>00$	3\％．510＊	tos	30．74．${ }^{\text {co }}$	11．3．0	7045．0	1802－10．5	soss－1005		000500	0000000008			＋10000			08
1303001	31．0008	Elunave fism lax	3．r．${ }^{\text {a }}$	in．ra．	3600.0	1982－1928	1928－1784					mbre＊				．＊
12603）	3．eves	resons	34．A．©	in．s．	s995．0	1097－1945	1957－1059									
H601＋er	37．1710	castue nace	30．73． 0	tif．1．${ }^{\text {a }}$	sthrs．0	180＊－1＊＊	195\％－19＊s			8000000008	b00s000060	0000000000	．000000000		10863me	100
H60．ses－	3r．30．4	soten－tven avis	34．．．${ }^{\text {a }}$	ne． 7.8	0¢4．8	1＊＊－T＊4	1046－1965		－stoo．．	020	8008005800	0000080008	＊．．．．．．．＊	．．．．．30n	000000000	000
1260Y00e	3\％＊＊es	－03astion	30．15． 0	130．22．	＊＊＊e．0	1917－1988	1958－1254								9006533	
nseroes	37， 3 ＋ 6.	sivwrstor	30．7．${ }^{\text {cos }}$	110.22 .0	sancos	182n－1305	1965－1905									
1160roes	31．0950	vietme case	3v．24．${ }^{\text {a }}$	170．42．	250．0	1913－1927	1027－192\％									
1160700．	अ.	Besrat lake	30．72．．	110．4．0	500．0	1911－1901	1911－1911									
Hevtwe	31，0000	－xatruarme	30．72．－	116．4．${ }^{\text {ct }}$	50．4	1800－1009	1989－1009									
H607ive	3．3＊＊	nltates	10．29．．	111． 1.0	mis．o	1017－105s	1923－1963				＊．．．．．＊10	N000	0000000850	000900000n	0000800000	2000
Hicurish	31.7015	swict enet	30．37．－	712．50．	35＊＊＊0	1911－1904	＊＊＊－106s				（1060z24：	00n0800000	0000000000	esocoson	2000000000	00
116873s	21，784	scorition oky	38.67.	111． 1.0	30．0	195a－194s	1056－12065								\＄2＋000000	000
11807208	37.8000	castic gate	30.63 .8	110．s2． 0	5000．0	1591－1905	1336－1890									．
Hsouteve	35．7090	somito simutt	se．5s．－	in．3． 0	Tono．0	1693－1900	1950－1050							800000000n	M10ns＋00	．
11047001	37，1072	cateo cotex	30．30．－	Hit．${ }^{\text {c．}}$ ．	100．0	1036－1045	1955－1965							0000n0000n	900500000	0000
11609309	3\％．63＊0	wutrras anve－	30．45．－	H10．15．0	sano．0	1067－1965	1056－1965									00
$1161 * 001$	37，0830	soverat mondts	＊5． 2.0	109． 7.0	5700．0	198n－1905	1906－1065									008
H615000	37.0006	－atso4 ${ }^{\text {a }}$	3．51．	100．14．	s270．0	1911－187	1017－1927									．
11615903	37，0000	pamoy	36．47．．	100．6． 0	＊00．0	10ns－tans	1090－1307									
Holrave	s．075	Autests x	40．15．${ }^{\text {a }}$	109．55．O	sart．n	1966 －1405	1955－1885									
Hessous	s．04s	mewner	to． 5.0	104．01．－	3216.0	1s06－1809	1057－1055			0001＊＊00n	．．．	．．．．．．	．．．．．．		ernamano	000
Heisout	S．0008	sane tarta	to．15．－	104．10．0	3rna．n	1061－1064	186－6－190．									\ldots
Hbisisa	s．bout	stric atus	＊r． t ． 0	104．12．	6165．0	1986－1063	（06\％－106s								monn	n90
Hisispel	S．56se		＊． 4.0	109．85． 0	s．75．0	$1930-1903$	1957－125）						no	000	．．．．	．．．．
H61scye	s．30．0	－ Cl （e）	＊r．2． 0	107．55．${ }^{\text {co }}$	2020	198リ－1865	1067－1965		angoos	90nnosn	00nannoos			Ono		000
Hitusens	s．bson	－rictu Mo．	＊＊．．${ }^{\text {a }}$	107．55．${ }^{\text {a }}$	－1／42．0	1891－1839	1972－1024		vasonoo	00803000	000n000	08080×1.0		．．．		．．．．．
Hisiss	¢．Sove	－nevref	＊＊． 5.0	107．35．0	тano．0	1407－1565	1058－1463									058．
1163）20	31．105	2asuatit	－0．15．${ }^{\text {a }}$	108．55．	50t＋．0	196001045	195t－1953							anabone		noen
Hisionel	3thaler	$\times 3$.	＊－39．${ }^{\text {a }}$	160． 1.0	5006－0	$1950-1055$	1957－1963									1008
16atoor	N，009n		＊＊．20．${ }^{\text {a }}$	150． 0.0	－00．0	4001－104\％	10057－1542									．．．
116．7．0．	12，beve	W00 mones as	＊＊．7．－	H0．13．	7ano．s	2016－148V	1020－1929									．．．．
H16tman	3，．ovm	poar muratses	＊0．17．${ }^{\text {a }}$	100．51．${ }^{\text {co }}$	เ990．a	1 15as－10．5	1831－1965	．．．．．．．．	0009000	000080000	nosestos	Onomesono	nanonnoe	119060	manamar	20008
H61rom	3，＊＊er	L．samer	＊0．0． ．	1n9．25． 1	3sno．s	1066－1320	106\％－1593	．．．．．．．．．．．			．．．．．．．．．					．．．．
H6tmas	3n，envo	－rye poces	An，${ }^{\text {a }}$ ，．	109．55． 0	Sa70．n	1372－1510	1917－1916									．．．．
Hobrate	गr，onue	nerva	＊6． s ．	109．50．－	snoo．n	1015－1017	1917－1217				．．．．．．12－＊					．．．．
H63）	3．eact	fixation asme	© B, v ． ：	100．s\％．	sato．n	1970－1895	1077－1055			．．．．．．	50065＊0703	200800n000	n380008000n	manoas	sopse．	．．．．
1163 ke	3N，sony	＊1\％w	－6．27．${ }^{\text {a }}$	110．．．	3net．	1915－1205	1055－1045				000	206000nor	－pononpaga	na0000	soanator	n085
136\％ret	33．00\％	Acrasowr	＊0．74．：	116．14．0	sino．an	1097－1705	195s－1005								sasono	98008
H617\％t	3，0000	－njursta moue	＋0．06．	no．2＊． 0	sxass	1912－1910	1814－1014									．．．．
H61\％＊	3，＊＊74	＂cinestrave as	＊．．71．．	156．20．－	$7 \mathrm{mos.0}$	1971－1967	10＋\％－180\％									．．．
116173\％	3r．sats	mov casp	＊0．10．．	110．3．．	3150．0	1975－1643	1055－1965		．．．．．．．．．	．．．．．．．．．．	．．．．．．	＊－1．．．．．．．	$\cdots \times 0$	anacosoe	砣	6089
A16tras	31，285	oucatsw	－0．14．${ }^{\text {a }}$	110．20．${ }^{\text {c }}$	ssis．0	1906－1005	1907－1269			，	000000000	000000ncoo	nsosas00so	honanosos－	nocosan	04000
11605\％	31．3034	teatrum	－0．13． 0	110．51． 0	s490．8	1010－1＊＊5	1065－1365				мข121＊＊	1800nosano		anos611）	．．．．．．．．	004s
16E17ay	31，bre	stuantaor mev	＊5．15．0	111． 3.0	Pnos－s	1963－1853	1043－1308				．．．．．．．．．．．	．．．．．．．．．．				7000
Haical	30．0＊／	statertoot wes．	＊5．19．－${ }^{\text {a }}$	111．1t．0	thes．os	1956－10．5	1965－1808									1687
Hisitos．	3，＊＊11	woneuraut anct	－6．10．${ }^{\text {a }}$	111．11．${ }^{\text {a }}$	＇ms．0	1850－180＊	（1050－5as＊								．．＋．．．．．	＊－
1647men	31，mece	－+ ＊w＊	＊1．70．0	110，4＊． 0	＊＊＊＊，	1057－1945	10s\％－105s				．．．．．．．．				40gono	00000
H61＊0日	37，050n	nuan	＊5． 4.0	104．19．0	＋rees	106．－1043	194＋－1309	．．．．．．．．．				．．．．．．．．．．	．．．．．．．．．．	．$*$ ，	4	20080
H0＜zent	$3 .+1$.	Wrayd erarier	＊\％．7\％．${ }^{\text {a }}$	108．）1． 0	3720．0	1095－1205	（1653－134				000646000	000500n600－	20000n8000	－003nosto	an	0000
Hecrisy	31.0000	－asurn ancen	．n．v．，	104．01．	7neos	1970－126）	（800－175）									．．．．
H6z304e	3，＊＊？	Jesom	＋0．0． 0	100，22．	$\cdots 70.0$	1910－1 wes	1954－1965	．．．．．．．．．．．			．．．．．．）3＞	－	1＋10008000	nocoese	Onsma	1008
Hechnul	35.0808	thatr corex as	－6．es． 0	109，30．	7men	1015－10x	1980－1030									－
Hiserged	3 H 2172	Divasue wetc to	．0．73．	104，20． 6	＊＊so．s	1001－1704	1006－195\％									．．．
Hecroos	3．2173	STMOStio meti－o	＋0．75． 0	109，10．0	＋mo．n	1950－1985	1950－1089									1000
1163204	5.2808	Heander anuca	＊＊＊＊．－	197，59．\％	7no．0	1861－100．	1850－106n									
H65zent	5，3536	serat otviot	20．07．${ }^{\text {a }}$	185．50．．	saro．n	1060－1991	1851－1051									

csu mo	woutav		Latituot	tovatruse	cheration	accoãtw seas \％－［ndr	$\begin{aligned} & \text { sontimuo os } \\ & \text { aعcoopivs } \end{aligned}$	Bizatsorse	Bielasor	n3ssore	123.56					
1240	37	crisen	36．56．	109.1	－	2052－1003	1961－1965									
13809008	s．5sot 1	Utrue oncoare s	5 39．3．0	108．51．	surs．0	1961－1＊＊s	1＊5\％－te6s									00
$1300000{ }^{\text {c }}$	s．soes	ctite oncoss	34．56．0	108，51．－	＊Ta0．0	1002－184s	1955－1955									
13000003	3，000e	acose paax	30．0．0	106．3）．	s500．0	1911－1918	1912－1914									
11100508	31.3706	meacer nove	39．10．0	109．8．	5241．0	1959－1003	195\％－1069	．．．．．．．．．．								．
13800008	s．im	connemon axtiove	30．6． 0	108．4．${ }^{\text {a }}$	งres．0	194001845	1051－106s							n0100080		0
135veses	s．3106	Snutreza	3．11．－	104，．4．．	＊ste．0	1880－194s	1988－1965			0＋80	1000					000
137 cosen	5．0000	t．s．anser	38．${ }^{\text {a }}$ ．	194，19．－	5880．0	10ns－1＊＊｜	（6）7－1901									
1 1strese	\＄．0800	Atraw	36．．．．	108，16．－	10050．4	180\％－1＊9	$1638-1895$									
17 Hasase	s．604 1	aurre	3．7．0．	1m．st．	5xat．0	1001－19＊5	1085－105s							SResobe		
17nsost	s．sm＇	－avtrese to I	w．74．	177．33．${ }^{\text {a }}$	5＊17．0	Tero－1ms	106－6－6s									000
1371503？	s．stea	asaroses to ？	36．24．${ }^{\text {a }}$	107．53．${ }^{\text {a }}$	sers．0	1855－1＊＊5	1050－1045	．．．．．－300n		9600						0008
เมท1si＊	s．enes	fout coneromo	36．23．．	107．ev．－	stas．0	1＊＊＊＊＊＊＊	1580－18＊＊									
1stsiso	s．0000	Lusave	3n．er．．	107，4．${ }^{\text {c }}$	stzo．0	1900＊1910	1007－1919									
1371400e	\＄．6709	avaer	3． 1.0	107．4．${ }^{\text {a }}$	mas	1007－1＊4s	1951－1865									008
arastse	s．0000	tesvono	37．56．－	107，41．	＊eno．0	1000－1900	1026－1020				2080985800					
137 nosen	3．2192		36．05．．	198．3．－	3175．8	1880－1904	1857－1905	．．．．．．．．．3	2000600	20808603	－50060000	28005080000	9000000850	nanoosen 0	Oaso	0000
13 matas	s．1．0．	cesavear	30．56．－	10r．ss． 0	urs．0	1891－1504	1907－1905							Onalo	M0800800	10000
13＞0211	5．0306	Proute	30．52． 0	107．35．${ }^{\text {a }}$	sses．0．	1857－1905	1056－2968									000
13merte	5.0301	Peovit is	30．51．－	1075．29．	4135．0	1982－1087	1957－1057						n000000000	110000		．．．
1730330	5．90＋5	HLent naver．	36．55．－	107．22．O	5050．0	194n－1993	1909－1051									
13730roen	s，0008	coumer ive anven	30． 2.0	109，31，－	surs．0	1009－1934	1911－1934									
13730701	s．0063	atst munor anvat	30．6．0	107，31， 0	\＄600．0	1950－1985	1957－1057									
1）TJoces	s．0631	monnce moav	39．7．0	107．30， 9	Anos．0	1964－1905	195501865									9
13133909	S．0008	caternon	36．42． 0	107．13．O	saspo．	1900－1922	1910－1022				Sn0e					
13715600	S．0060	ative matal	3．1．${ }^{\text {a }}$	107．25．	－5sz．0	1006－1915	1091－1018	．．．．．．．．．．			1000000^{*}					
1972es	S．1509	ctuenm	38．26．．	107．31．	7066．0	1051－1045	1065－1065									0601
13गsoon	s．teso	sterweon	38．26．${ }^{\text {a }}$	101．28．${ }^{\text {a }}$	ท106．0	1920－1264	106\％－104									
1370 noen	S．0000	sapinem lecten	3．7\％．	ter，zs．	A1ps．0	$1908-199$	1055－1914									
13754000	S．0506	ato stomer	36．11． 0	107，16．	mes．	1963－1404	1960－1060									
13 rcose	s．0730	whe ctm	38．3．${ }^{\text {a }}$	187，19．	＊svo．0	1095－1004	1962－100s									0000
13 mazso	5．0860	cotucoser	38．．．	105．3，	swrs．0	1917－1901	1936－1934									
13163000	s．7ss	stavesem＊	36．20．0	10T，10．－	Ts00．0	1950－1045	1081－1865									0000
13712000	s．173	cocurtion ca $^{\text {a }}$	36．28．－	306．4t．	2000．0	100001403	1040－1065								000600000	．0000
$131 / 2400$	s．0si］	－1＊＊＊	36．35．。	105，यx，0	\＄200．0	1008－1005	1506－1905	．．．．．．．．．．	．．．．．．．	．．．．．．n	2008s0	00080000	， 60	Oos	Onoscoseno	0000
13712708	s．7601	stascots or	36．76． 0	106．28． 0	s125．0	1890－1908	1056－1054							．．．．eson	－nscosen？	．．．
1372701	5．7000	saments	36．2\％．	106．28． 0		2950－1005	1958－1065									00
13759090	5，3802	BuNeI5月N	36．33． 0	106．55．O	7604．0	18RA－1905	$1783-1955$									
	5．1039	ciesto wotre	＊＊＊\％．	106．55．©	mass．0	101001005	1957－1095									onose
12meoen	s．ure＊	trina peas	w．＊＊．．	106．3\％．©	2206．0	1061－1945	1057－1065									noses
isaveovi	5.2080	Gutin sunction 6	70．3． 0	104．2\％．－	－70．0	10nर－tus	1056－1065									e
120vocos	5，20es	oaxan mincrion－	19．\％．	136，32．O	＊＊＊．＊	1805－1005	1852－1065									nen
1000000e	5，4705		31．．．．	104．21．	＊re．e	1911－105s	1051－1088							manoson		1008
1－2\％0xan	s．0．es	9avat arstavmis	30，． 0	107，50． 0	moneo	1903－1805	1065－1085									918
102700ut	S．1701	cratamen	39．15．	197．ss．	－13，	1007－1005	195z－1905									0803
1－30noue	s．unvo	octewit	3．19． 0	108，12．0	＊sw．0	1910－134＊	1954－125．									
105cesse	s．021．	Atremeor	39．18．0	108．23． 4	sovo．s	sucteras	1064－1058									0000
1＊Poseur	s．0nce	Guevn valcer	30．\％e．．	184． 2.0	3140．0	120＊－1013	1＊80－1813									
107 oown	s．ants	ot，satact	30．13．	10\％．54． 0	4200．0	1067－1481	（90－6－105t									
1－avosode	$\text { s. } 1+3$	atre y me	м.v. 。			1016－1005	1933－105s									0200
19150890	S．80vo	Wheremes	10．＊）．	107， 2 ．－	3614．0	1＊＊0－1＊9\％	（13n－10\％）									
152000un	S．00ve	st．	3．73．．	10\％．w．${ }^{\text {c }}$	s．01．0	1900－1807	twor－1307									．．．
13505aya	s．eavo	Laveswer	30．15．O	197．32．－	mano．a	1917－1018	1914＊2914									
158C，ove	s．unvo	wa＊M，	33．．．．	100．10．0	rasi．n	19n0－191	1017－1917									．
159C－0．0n	S．0nco	c＊＊＊	30.22 .0	108， 3.0	$\rightarrow \cdot 1$	1848－1＊5	， $\mathrm{A}+\mathrm{T}$－189									．．．
159＊204e	s．05i－	sasal		108． 2.9	ssp＋．0	1905－1905	1985－1354	．．．．．．．．．								．．）
13002 LC	5．5607	＊erotiom	31.73.	106．43．a	7107．0	19671045	1066－136s	\cdots								．408
150021＊	र．3511	4xan＋t\％＊＊	30．22．0	108．01．0	＊500．0	1960－195	，2957－1057									．
130626au	s．eeso	nast	30.14 .0	106．3）． 0	smos．0	2900－1070	1836－103＊				Onansose					
1596）00e	3．03／8	4saen	30．11．－	206．50．0	783.0	180n－1945	1061－1965							Donsonooen ，	tensossoses	80800
159\％0060	S．0000	Sticans：	39．．． 8	106．4．， 0	＊＊3．0	1901－197\％	1914－192\％				200310060					－
1506esos	5．0＞78	twhermence－15	39．5． 0	106．3v． 0	10sso．0	1967－1508	1955－1054									．．．
T61voses	s．3158	Ohtwomo vatus	30．76．．	107．20．－	5033．0	1sas－tess	1054－1065	．．．．．．．．．0．	＊．＊＋1．．．s	－1080as6＊	200010000	3000055000	A00650080	sonmsssoen	Nanomonn	90000
1850600	，．1514	s－svens	34．3．．	107，14．	sap3．8	191n－tens	1015－105s				3ess00000	－080003s50	nosesonsas	Aenooberen	nosonosno	20000
tositeot	s．2．5＊	Etsce FAL ATavo	งv．s．－	105，5s．－	6．07．8	1006－tons	1960－1905			¢	s．．．．．．．．．			＊， 1 nnoose	Tano	00000
1statave	5，0000	Eas，	34．34．${ }^{\text {cos }}$	105，so．－	stov．：	1960－104\％	106－1007									．．．
108csoen	5．0000	erver	30．42．	106．12．${ }^{\text {a }}$	9000．0	1917－109	（0189－1914	\cdots								．．
106zeove	3．0000	as＊	30．3．－	186．29．0	7sts．0	1930－1902	1047－1062									
15670006	s．bsir	asocisf	34．11．${ }^{\text {a }}$	106，22．0	sxones	1890－1981	1951－195t	．．．．．．．．．．			181012 ．．．					
1790088	3．0n30	sove	30．53．－	106．t2．©	－7oc．s	1958－1965	1980－1059									．0008
$1730088{ }^{\text {c }}$	\＄．0000	mor vatue anc	39．54．－	106，23．0	rese．a	1900－1916	1915－1914									．．．
176soes	\＄．35v2	satro mentativo	30．ss．${ }^{\text {a }}$	108．20． 0	1760．0	1990－1905	1958－1063									2008
170＋5008	5.2701	otuen is	34．26．．	185．3．	＊800．0	1891－1905	te16－1969				9¢37000000			oonsonsoen O		008
17 ＋6sos	s．1500	chten，${ }^{\text {a }}$	30．73．－	106．12． 0	13805.0	1957－1905	1057－106s									
1700008	8．0000	serramenose	38．28，－	$1 \mathrm{ss}$.	＊spo．0	1888－1805	1068－1069									

Csu nu	*iaEau m		Lattriot	Levstrupt	Rupration	accouniva $45(4 \%-(\psi) r)$	eovetwoos 2ECOADIN3	$\begin{aligned} & \frac{1}{4} \\ & \text { o121+507\% } \\ & \text { ol } \end{aligned}$	$\begin{aligned} & \vdots \\ & 01236567=9 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 0123456789 \end{aligned}$	$\begin{aligned} & \text { ! } \\ & \text { b103.sotas } \end{aligned}$		${ }_{3}^{1}$	$\frac{1}{8}$!
17500001	5.0.560	aturctios	60. 4. ?	106.24.0	7159.0	1904*1935	1905-1098	***	*	35				ans	11050.****	70
17500004	5.74es	603F Dass ravet -	48. 9, 2	106.78.0	Tance.	145701903	1958-1963	****	**	*			***********************)	****500	0000**
17170000	S.0000	FAas-4.ll	+8. 1.0	106.15. 0	rrmsen	19n*-1*17	1917-1017	*	*.......**	3	139******		**********	********	*
17teosur	3.67*2	P6zstact loss\%	30.5s. =	108. 1. 0	*pro.*	1951-1905	1957-1953	***	**	****	********	********	***	*esolaraso	000008
11 Tranot		beat ${ }^{\text {ath }}$	30.4.0.	105. 3. ${ }^{\text {a }}$	30nosn	1910-1910	1910-1019	-	..	*	5********	********	*********	********	*
17t=0001	$5.33+5$	3654 20	39.6.	105. 1.0	86ay,n	100\%-1001	1951-t251		*****	...******	********	********	*	*901	17******	****
Preaver	$5 .+1 c^{4}$		45. 3. 0	106. 4.8	70nu.a	108k-10ks	1855-1055	*..	$3 \times$...	********	vs0.0.*.	710040s	000000
Ienssaum	6.519	reawer 3	3v.57. -	105.50.	***0.0	1***-1905	1938-1964	*******	s.*********	2008000000	008300008	n000000000	soansobsen	angeonasas	epnocs
inpsative	*, 9 /4	-TvFe abek	30.54. 0	105.45,	Pest.0	1063-1005	1050-1085	********	*	********	**1000001	anonsohbon	20nos0
inoticur	4.aNT*	Betronjo eass ${ }^{\text {a }}$	3v..4. ${ }^{\text {a }}$	105.45. 1	117*.	105n-19as	1954-1965	********	-	...*******	********	-	********	-	******************)	***00
	S.fting	Stave LIFt A 85* .	At.11. ${ }^{\text {a }}$	105.52, 0	*zan. 8	106\%-1045	195>-1205	********	********	*..******	***********************)	-	*********	**	- $8080 n 08$	280008
Issuaber	4.enter	arain valler *	40+1t. 8	105.52. ${ }^{\text {a }}$	©onke	1765-1043	1905-1765	*	*********.......	-	.	****	****
185veger	T.3000	ghavh lave 1 - .w.	40.14, 8	105.50. 3	ssrb.a	1907-10x5	1927-1565	...*.**	-**s1	Prnesabeep	s******************)	*	2001314580	0000000000	008000

APPENDIX B

Table of mean spring runoff, of mean winter precipitation, of correlation coefficient between winter, spring precipitation and spring runoff, of expected increase in spring runoff, and of the number of years needed for evaluation, based on the two-sample u-test.

Column 1 of Table B lists the CSU code number for identification of runoff station (7 digits) or precipitation station (8 digits).

Column 2 of Table B lists the mean spring runoff or the mean winter precipitation, in inches.
Column 3 lists the variance of the spring runoff, in inches square.
Column 4 lists the coefficient of correlation between spring runoff and precipitation from one or several precipitation gages.

Column 5 indicates the number of years of record on which the correlation is based.
Column 6 gives the value of coefficient b_{j} of equation (11) for each precipitation station.
Column 7 gives the expected value of increase in spring runoff (inches) corresponding to a 10% increase in winter precipitation at each precipitation station.

Column 8 gives the expected relative increase in spring runoff assuming a uniform 10% increase in winter precipitation.

Column 9 gives the number of years for evaluation at the 95% level of significance and 50% power assuming a uniform 10% increase in winter precipitation.

TABLE

Table continued

1	2	3	4	5	6	7	8	9
CSU ID	Mean	Variance	Cor Cof	Case	Coeff	Increase Runoff	Increase Ratio	Years Eval.
1074400	3.87	4.24	. 97	25		. 399	. 103	102
10750001	6.51				. 377			
10758200	8.52				-. 261			
10758400	15.47				-. 085			
10764201	11.03				0.0			
10770000	9.37				. 311			
10774000	11.90				-. 120			
10776001	13.78				. 081			
10778600	30.53				. 081			
1075200	3.16	3.33	. 99	15		. 372	. 118	92
10758200	8.52				-. 464			
10758400	15.47				-. 874			
10764201	11.03				0.			
10770000	9.37				1.551			
10774000	11.90				-. 223			
10776001	13.78				. 698			
10778600	30.53				-. 010			
1075820	7.40	19.69	. 89	19		. 441	. 060	389
10758200	8.52				0			
10758400	15.47				. 285			
1076200	6.12	8.21	. 97	22		. 587	. 096	91
10764201	11.03				. 076			
10770000	9.37				. 365			
10774000	11.90				-. 314			
10776001	13.78				. 388			
$\begin{aligned} & 1076800 \\ & 10770000 \end{aligned}$	$\begin{aligned} & 5.64 \\ & 9.37 \end{aligned}$	9.80	. 98	25		. 749	.133	67
10774000	11.90				-. 314			
10776001	13.78				. 502			
10778600	30.53				0.			
1077200	9.43	29.10	. 97	13		1.019	. 108	107
10774000	11.90				. 856			
1077600	16.05	72.85	. 97	17		1.479	. 092	128
10776001	13.78				1.073			
1077800	19.70	74.85	. 97	25		1.652	. 084	105
10778600	30.53				. 541			
1146300	. 51	. 03	. 97	21		. 045	. 089	55
11463000	3.44				. 132			
1160121	1.31	1.87	. 84	17		. 162	. 123	274
11601300	4.22				-. 127			
11601420	4.29				. 502			
1160720	2.41	1.74	. 98	29		. 187	. 078	191
11607400	9.38				-. 012			
11607601	15.72				. 126			
1160725	2.71	2.83	. 96	30		. 351	. 130	88
11607400	9.38				-. 125			
11607601	15.72				. 298			
1160740	4.22	9.30	. 83	25		. 225	. 053	704
11607400	9.38				. 240			
1160755	4.49	5.66	. 95	25		. 489	. 109	90
11607601	15.72				. 311			
1161500	1.40	. 29	. 98	25		. 190	. 136	30
11615004	5.47				. 083			
11615150	7.35				. 097			
11615202	8.94				. 067			
11615550	12.25				. 011			
1161520	4.93	2.58	. 98	16		. 380	. 077	68
11615202	8.94				. 240			
11615550	12.25				. 135			
1161525	6.99	4.00	. 98	17		. 592	. 085	43
11615550	12.25				. 483			
1161706	. 47	. 09	. 90	13		. 032	. 067	347
11617060	4.78				. 066			
1161725	2.19	1.33	. 99	10		. 259	. 118	76
11617250	3.24				0.			
11617270	4.20				-. 897			
11617350	9.95				. 210			
11617460	4.58				. 932			
$\underline{11617850}$	6.02				0.			

Table continued

1	2	3	4	5	6	7	8	9
CSU ID	Mean	Variance	Cor Cof	Case	Coeff	Increase Runoff	Increase Ratio	Years Eval.
1161726	2.66	3.42	.97	25		. 163	. 061	492
11617270	4.20				. 280		. 061	492
11617350	9.95				. 046			
1161746	2.31	1.65	. 95	15		.207	. 090	148
11617530	6.67				. 406		.	148
11617631	7.11				-. 090			
1161752	1.52	1.08	. 93	15		.205	.135	98
11617530	6.67				. 308			
1161774	5.10	4.07	.99	12		.370	. 072	114
11617580	6.02				. 614			
1161783	5.30	4.25	. 99	12		. 400	. 076	101
11617850	6.02				. 665			
1161785	7.95	7.49	.99	11		.709	. 089	57
11617850	6.02				1.170			
1162200	1.13	. 84	. 96	12		. 066	. 059	737
11622001	4.76				. 139			
1163200	1.75	. 52	. 98	20		. 147	. 084	92
$\frac{11632080}{1163203}$	6.91				.213			
1163203	1.82	. 86	.96	15		. 190	. 104	91
11632080	6.91				. 275			
1163243	5.25	2.99	.99	25		. 114	. 022	880
11632490	10.11				-. 197			
11632570	7.31				-. 192			
11632610	9.20				. 322			
11632690	12.12				. 165			
11632850	15.17				-. 028			
11632940	9.19				0.			
1163256	7.70	3.09	. 99	25		. 555	. 072	38
11632570	7.31				. 257			
11632610	9.20				. 047			
11632690	12.12				-. 087			
11632850	15.17				. 283			
11632940	9.19				0.			
1163257	1.99	. 87	. 97	21		.156	. 079	136
11632570	7.31				. 214			
1163268	3.83	4.62	. 94	9		. 288	. 075	213.
11632690	12.12				. 238			
1163274	16.58	17.40	. 97	18		1.331	. 080	37
11632801	14.71				. 900			
1163280	19.34	29.98	.96	32		1.399	. 072	58
11632801	14.71				. 951			
1163285	8.64	6.40	. 98	18		. 562	. 065	77
11632940	9.19				. 612			
1163291	2.78	1.48	. 97	25		. 145	. 052	269
11632940	9.19				. 158			
1164700	1.19	. 17	. 98	15		. 066	. 056	149
11648001	5.13				. 019			
11654500	5.50				. 050			
11658000	4.00				. 036			
11662180	3.78				. 048			
11678450	5.29				-. 070			
11690000	9.79				. 034			
1165000	1.30	. 28	. 98	34		. 099	. 076	109
11654250	4.96				. 167			
11658000	4.00				. 062			
11662180	3.78				-. 082			
11673000	3.85				-. 167			
11678450	5.29				. 038			
11690000	9.79				. 068			
1165400	. 88	.28	$.96{ }^{*}$	17		. 081	. 092	165
11654050	4.08				. 046			
11654250	4.96				-. 075			
11654400	4.31				. 230			
1165410	1.01	. 28	. 94	15		. 052	. 051	404
11654250	4.96				. 104			
1165445	1.74	.97	.92	5		.113	. 065	293
11654500	5.50				. 205			
1166200	. 15	. 01	. 93	10		. 007	. 048	744
11662180	3.78				. 019			

Table continued

1	2	3	4	5	6	7	8	9
CSU ID	Mean	Variance	Cor Cof	Case	Coeff	Increase Runoff	Increase Ratio	Years Eval.
$\begin{aligned} & 1167800 \\ & 11678450 \end{aligned}$	$\begin{aligned} & 5.51 \\ & 5.29 \end{aligned}$	3.45	. 80	15	. 751	. 397	. 072	83
1167827	6.93	5.27	. 95	50		. 398	. 057	127
11678450	5.29				. 753		. 057	127
1167845	11.91	17.94	. 93	40		. 668	. 056	154
11678450	5.29				1.260		. 056	154
1167857	2.54	. 69	.97	6		. 196	. 077	69
11678690	5.57				. 351			
1168800	10.63	5.67	. 98	33		. 663	. 062	49
11690000	9.79				. 677			4
1270000	1.58	1.03	. 96	25		. 217	. 138	83
12708000	6.54				. 067		. 15	8
12724151	8.45				-. 047			
12724450	7.30				-. 012			
12724602	16.59				. 109			
12732001	6.09				-. 109			
12764000	11.25				. 367			
12788000	15.33				-. 203			
1272400	2.10	2.85	. 96	24		. 525	. 157	39
12724151	8.45				. 481			
12724450	7.30				-. 096			
12724601	16.59				. 114			
1272430	3.77	4.80	. 95	13		. 471	. 125	83
12724450	7.30				. 347			
12724602	16.59				. 131			
1272445	7.39	7.76	. 91	22		. 539	. 073	102
12724450	7.30				. 739			
1272455	7.66	12.54	. 96	18		. 816	. 107	72
12724602	16.59				. 492			
1274000	3.07	. 95	. 97	13		. 344	. 112	30
12764000	11.25				. 186			
12788000	15.33				. 088			
1275600	5.43	10.64	. 94	26		. 606	. 112	111
12764000	11.25				. 490			
12788000	15.33				. 036			
1277200	8.78	14.37	. 96	43		. 805	. 092	85
12788000	15.33				. 520			
1278000	8.80	15.99	. 97	25		. 958	.109	66
12788000	15.33				. 625			
1371200	4.24	3.84	. 98	16		. 561	. 132	46
13730212	9.62				. 159			
13772400	8.71				. 286			
13775000	5.18				-. 234			
13781450	14.25				-. 188			
13790000	9.10				. 602			
1371505	3.51	1.85	. 98	25		. 346	. 099	59
13715051	5.26				1.209			
13715052	5.15				-. 989			
13715600	11.69				. 188			
1371510	3.93	. 39	. 99	8		. 412	. 105	8
13715150	6.44				. 630			
1371515	5.79	1.48	. 99	8		. 743	. 128	10
13715150	6.44				1.150			
1371520	5.96	4.60	. 97	22		. 228	. 038	341
13715600	5.15				. 442			
1371565	24.61	8.79	. 98	11		2.327	. 095	6
13715750	13.49				1.720			
1371810	7.58	11.42	. 96	48		. 610	. 081	117
13718100	6.70				. 911			
1373000	7.35	14.92	. 97	15		. 457	. 062	274
13730211	8.71				-. 382			
13730212	9.69				. 821			
1373035	10.04	5.69	. 99	9		. 963	. 096	23
13730700	14.70				. 655			
1373055	9.60	12.60	. 95	15		. 513	. 053	184
13730701	12.12				. 423			
1373070	8.23	25.00	. 93	8		. 698	. 085	197
13730701	12.12				. 567			

Table continued

1	2	3	4	5	6	7	8	9
CSU ID	Mean	Variance	Cor Cof	Case	Coeff	Increase Runoff	Increase Ratio	Years Eval.
1374500	3.72	4.09	. 97	25		. 502	. 135	62
13754001	8.05				. 329			
13772000	4.97				. 484			
13742400	8.71				. 118			
13772700	6.12				-. 634			
13775000	5.18				-. 590			
13781450	14.25				. 071			
13790000	9.10				. 534			
1375100	3.66	1.40	. 98	25		. 173	. 047	179
13754001	8.05				-. 161			
13772000	4.97				. 326			
13772400	8.71				-. 030			
13772700	6.12				-. 040			
13775000	5.18				-. 239			
13781450	14.25				. 014			
13790000	9.10				. 327			
1375400	7.47	6.62	. 97	17		. 621	. 083	65
13754001	8.05				. 772			
1376300	3.29	2.19	. 97	27		. 347	. 106	69
13772000	4.97				. 436			
13772400	8.71				-. 101			
13775000	5.18				-. 203			
13781450	14.25				. 065			
13790000	9.10				. 254			
1377200	1.47	. 73	. 93	27		. 125	. 085	180
13772000	4.97				. 188			
13772400	8.71				. 036			
1377230	4.58	5.35	. 94	27		. 358	. 078	160
13772400	8.71				. 411			
1377500	7.78	7.85	. 98	20		. 658	. 085	69
13775000	5.18				-. 225			
13781450	14.25				. 229			
13790000	9.10				. 493			
1378100	12.60	15.53	. 97	30		. 798	. 063	93
13781450	14.25				. 56			
1378145	23.66	9.67	. 96	11		1.540	. 065	15
13781450	14.25				1.084			
1378400	5.95	5.91	. 97			. 510	. 086	87
13790000	9.10				. 560			
1420000	3.10	3.15	. 94	25		. 386	. 124	81
14250000	9.69				. 398			
1590000	9.54	9.31	. 97	18		. 696	. 073	73
15963000	11.30				. 616			
1592110	16.99	24.24	.99	8		. 675	. 040	204
15921800	17.12				. 394			
1592140	17.13	18.43	. 98	14		1.169	. 068	51
15921800	17.12				. 683			
1592160	18.71	39.28	. 98	9		. 909	. 049	182
15921800	17.12				. 531			
1592170	20.02	27.48	. 99	5		1.765	. 088	33
15921800	17.12				1.031			
1592180	35.09	47.91	. 99	7		1.063	. 030	162
15921800	17.12				. 621			
1594212	16.78	16.83	. 98	10		1.602	. 095	25
15942180	12. 20				1.313			
1594218	9.47	12.99	. 99	6		. 785	. 080	86
15942180	12.20				. 621			
1596300	18.94	22.29	. 99	5		1.425	. 075	42
15963000	11.30				1.260			
1598400	15.36	16.22	. 98	12		1.003	. 065	61
15984000	17.41				. 576			
1600000	6.37	3.60	. 99	25		.339	. 053	120
16100000	9.47				-. 158			
16300000	10.80				-. 541			
16614001	6.14				. 442			
17403000	8.56				-. 112			
17448600	14.32				. 038			
17460000	12.34				-. 444			
17720002	9.71				. 023			

Table continued

1	2	3	4	5	6	7	8	9
CSU ID	Mean	Variance	Cor Cof	Case	Coeff	Increase Runoff	Increase Ratio	Years Eval.
17900000	7.08				1.029			
18036000	10.69				-. 349			
18054000	15.82				-. 135			
18500000	6.80				. 745			
19500000	9.76				. 738			
1650000	5.59	3.08	. 96	24		. 326	. 058	111
$\begin{aligned} & 17403000 \\ & 17448600 \end{aligned}$	8.56 14.32				$0 .$			
17460000	12.34				.075 -.304			
17720002	9.71				0.			
17900000	7.08				. 178			
18036000	10.69				-. 101			
18054000	15.82				-. 043			
18500000	6.80				. 427			
19500000	9.76				. 362			
1700000	5.98	7.32	. 96	25		. 467	. 078	129
17403000	8.56				-. 061			
17460000	12.34				-. 217			
18036000	10.69				. 311			
18054000	15.82				. 128			
19500000	9.76				. 258			
1740000	8.15	4.67	. 98	17		. 824	. 101	26
17403000	8.56				. 120			
17448600	14.32				. 278			
17460000	12.34				. 262			
1742100	8.29	6.21	. 98	21		. 784	. 095	38
17448600	14.32				. 338			
17460000	12.34				. 243			
1743900	8.64	9.13	. 98	15		1.034	. 120	32
17448600	14.32				$.268$			
17460000	12.34				$.527$			
1744800	11.85	11.24	. 98	8		. 965	. 081	46
17448600	14.32				. 674			
1744815	9.80	9.68	.99	7		1.403	. 143	18
17448600	14.32				. 980			
1745400	8.90	5.95	. 98	14		. 856	. 096	31
17460000	12.34				. 694			
1745700	6.82	5.02	. 98	7		1.514	. 222	8
17460000	12.34				1.220			
1770000	5.57	6.33	. 95	16		. 326	. 059	228
17720002	9.71				. 336			
1790000	9.03	7.63	. 98	25		. 655	. 073	68
18036000	10.69							
18054000	15.82				-. 201			
18500000	6.80				. 585			
19500000	9.76				. 226			
1800000	7.26	5.21	. 98	18		. 738	. 102	36
18036000	10.69				$.374$			
18054000	15.82				$.214$			
1801800	19.00	19.60	. 98	21		1.381	. 073	39
18036000	10.69				1.292			
1801816	3.98	22.89	. 90	30		. 649	. 163	208
18036000	10.69				. 607			
1820000	11.58	9.96	. 97	20		. 932	. 080	44
19500000	9.76				. 955			
1830000	13.88	16.54	. 99	14		. 978	. 078	53
18500000	6.80				. 161			
19500000	9.76				1.002			
1890000	14.48	11.46	. 993	12		. 956	. 066	48
19500000	9.76				. 980			
1920000	18.83	21.18	. 99	8		1.567	. 083	33
19500000	9.76				1.606			
1930000	16.89	23.05	. 99	8		1.363	. 081	47
19500000	9.76				1.390			
1960000	12.28	18.66	. 97	31		. 923	. 075	84
19500000	9.76				. 946			
1073080	13.50	38.37	. 97	14		1.146	. 085	112
10734560	11.65				. 984			
1073420	12.21	34.79	. 98	5		1.004	. 082	132
10734560	11.65				. 862			

Table continued

1		3	4	5	6	7	8	
CSU ID	Mean	Variance	Cor Cof	Case	Coeff	Increase Runoff	Increase Ratio	Years Eval.
1073448	8.91	22.00	. 96	19		. 984	. 110	87
10734560	11.65				. 565			
10734641	18.60				. 175			
1073460	15.91	36.36	. 99	11		1.495	. 094	62
10734641	18.60				. 804			
1075830	12.47	26.43	. 97	22		1.010	. 081	99
10758400	15.47				. 653			
1076420	9.02	25.30	. 97	22		. 878	. 097	126
10758400	15.47				. 290			
10774000	11.90				-. 081			
10778600	30.56				. 172			
1077015	9.37	17.80	. 97	25		. 939	. 100	77
10774000	11.90				. 571			
10778600	30.53				. 085			
1077200	8.64	24.35	. 97	13		1.019	. 118	90
10774000	11.90				. 856			
1077250	15.39	47.06	. 97	25		1.305	. 085	106
10774000	11.90				1.097			
1077400	13.66	40.00	. 98	25		1.460	. 107	72
10774000	11.90				-. 142			
10776001	13.78				. 699			
10778600	30.53				. 218			
1272440	5.46	27.64	. 91	15		1.142	. 209	81
12724602	15.69				. 728			
1272445	7.39	7.76	. 98	9		. 555	. 075	96
12724450	7.30				. 189			
12724602	15.69				. 266			
1278800	13.57	39.08	. 96	13		1.571	. 116	60
12788000	15.33				1.025			
1371530	2.94	2.41	. 93	9		. 234	. 079	169
12724450	7.30				-. 117			
13715600	11.69				. 273			
1371555	9.19	2.93	. 99	6		1.158	. 126	8
13715600	11.69				. 991			
1762500	4.04	3.84	. 96	11		. 310	. 077	153
18036000	10.69				. 125			
18054000	18.52				. 095			
1800900	5.71	4.13	. 94	10		. 509	. 089	61
18036000	10.69				. 476			
1801800	19.00	19.60	. 98	21		1.381	. 073	39
18036000	10.69				1.292			
1801816	8.98	22.89	. 90	30		. 649	. 072	208
18036000	10.69				. 607			
1802730	9.27	12.31	. 94	31		. 662	. 071	108
18036000	10.69				. 619			
1804500	5.05	18.41	. 81	31		. 753	. 149	124
18054000	15.82				. 476			
1805400	10.99	44.69	. 86	22		.261	. 024	2019
18054000	15.82				. 165			
1810000	2.72	9.10	. 78	11		. 549	. 202	115
18500000	6.80				. 808			
1850000	6.42	8.22	. 99	5		. 854	. 133	43
19500000	9.76				. 875			
1866000	19.94	20.23	. 99	18		1.528	. 077	33
19500000	9.76				1.566			
1880000	10.36	16.47	. 99	5		. 949	. 092	70
18500000	6.80				1.395			
1920000	18.83	21.18	.99	8		1.566	. 083	33
19500000	9.76				1.605			
1930000	16.89	23.05	. 99	8		1.363	. 081	47
19500000	9.76				1.397			
1960000	12.28	18.66	. 97	18		. 923	. 075	84
19500000	9.76				. 946			

Table continued

1	2	3	4	5	6	7	8	9
CSU ID Mean	Variance	Cor. Coef	Case	Coeff	Increase Runoff	Increase Ratio	Years Eval.	

1072030	7.10 3.94	15.86	. 91	14		. 81	. 114	92
10724000	3.94				2.05			
1072045	7.09	20.67	. 97	14		. 69	. 098	164
10724000	3.94				1.76			
1072060	11.36	31.71	. 99	14		1.07	. 094	105
10724000	3.94				2.72			
1073412	2.94	2.96	. 95	15		. 290	. 099	134
10734360	11.06				. 26			
1076400	8.98	7.97	. 97	15		. 840	. 094	43
10770000	9.37				. 89			
1082075	6.70	3.67	. 94	14		. 510	. 076	54
10810001	6.15				. 82			
1086000	. 69	. 13	. 95	10		. 062	. 089	132
10810001	6.15				. 10			
1148100	1.73	. 16	. 95	9		. 121	. 070	41
11463000	3.44				. 35			
1160133	4.90	4.13	. 95	17		. 368	. 075	117
11601420	4.29				. 85			
1160142	2.36	4.44	. 89	11		. 242	. 102	292
11601420	4.29				. 56			
1160145	5.42	5.12	. 95	32		. 379	. 070	137
11601420	4.29				. 88			
1160181	1.88	. 914	. 914	12		. 072	. 072	428
11601420	4.29				. 16			
1160184	5.11	4.77	. 94	55		. 367	. 072	136
11601420	4.29				. 85			
1160190	22.97	22.40	. 97	10		1.716	. 075	29
11601420	4.29				4.00			
1160765	8.37	13.50	. 95	26		. 691	. 083	108
11607150	5.19				1.33			
1160770	12.98	33.18	. 96	24		1.090	. 085	105
11607150	5.19				2.10			
1161250	. 41	. 07	. 91	14		. 056	. 137	84
11615004	5.47				. 10			
1161530	2.41	1.44	. 95	15		. 227	. 094	107
11615550	12.25				. 18			
1161540	5.15	5.87	. 95	15		. 409	. 079	134
11615550	12.25				. 33			
1161545	14.34	16.07	. 98	13		1.137	. 079	47
11615550	12.25				. 92			
1161550	16.59	12.01	. 98	10		1.029	. 062	43
11615550	12.25				. 84			
1161555	10.20	10.31	. 98	13		. 773	. 076	66
11615550	12.25				. 63			
1161560	10.74	9.50	. 98	13		. 829	. 077	53
11615550	12.25				. 67			
1161570	11.51	14.92	. 98	13		. 804	. 070	88
11615550	12.25				. 65			
1161709	9.77	18.74	. 95	51		. 667	. 068	162
11617140	7.23				. 92			
1161710	6.86	7.12	. 96	9		. 582	. 085	80
11617140	7.23				. 80			
1161718	8.15	7.11	. 98	35		. 612	. 075	72
$\underline{11617140}$	7.23				. 84			

Table continued

1	2	3	4	5	6	7	8	9
CSU ID	Mean	Variance	Cor Cof	Case	Coeff	Increase Runoff	Increase Ratio	Years Eval.
1161720	2.78	2.96	. 96	10		. 243	. 087	193
11617250	3.24				. 74			
1161721	9.24	10.56	. 98	10		. 608	. 066	109
11617250	3.24				1.87			
1161723	12.65	19.36	. 97	10		. 786	. 062	120
11617250	3.24				2.42			
1161730	8.45	7.13	. 98	20		. 753	. 089	48
11617350	9.95				. 75			
1161734	11.07	11.03	. 98	22		. 916	. 083	50
11617350	9.95				. 92			
1161736	5.34	4.10	. 97	13		. 365	. 068	118
11617350	9.95				. 36			
1161737	13.49	18.09	. 99	13		. 995	. 074	70
11617350	9.95				1.0			
1161753	2.82	2.34	. 94	30		.246	. 087	148
11617460	4.58				. 53			
1161754	2.51	3.72	. 915	18		. 259	. 103	212
11617460	4.58				. 56			
1161755	5.52	10.98	. 94	18		. 567	. 103	130
11617460	4.58				1.23			
1161756	. 80	. 43	. 93	10		. 065	. 082	385
11617460	4.58				. 14			
1161761	1.35	. 42	. 93	10		. 101	. 075	158
11617460	4.58				. 22			
1161778	11.37	9.97	. 98	27		. 779	. 069	63
11617460	4.58				1.70			
1161780	8.53	13.18	. 96	11		. 927	.109	58
$\underline{11617460}$	4.58				2.02			
1161787	6.24	7.21	. 97	19		. 529	. 085	98
11617460	4.58				1.15			
1161788	7.82	10.31	.97	19		. 704	. 090	79
11617460	4.58				1.53			
1161791	15.48	22.67	. 97	17		1.034	. 067	81
11617460	4.58				2.25			
1161793	17.13	21.22	. 96	25		. 950	. 055	90
11617460	4.58				2.07			
1162205	5.07	4.23	. 97	25		. 416	. 082	93
11622001	4.76				. 87			
1162215	3.79	5.32	. 92	10		.390	.103	134
11622001	4.76				. 82			
1162225	7.92	15.39	. 96	17		. 785	. 099	95
11622001	4.76				1.65			
1162235	5.40	6.93	. 952	18		. 539	. 100	91
11622001	4.76				1.13			
1162240	7.69	10.24	. 97	25.		. 633	. 082	98
11622001	4.76				1.32			
1162285	9.30	13.09	.27	51		. 680	. 073	108
11622001	4.76				1.42			
1162275	11.28	18.31	. 98	12		. 655	. 058	163
11622001	4.76				1.37			
1162280	10.73	19.62	. 98	12		.590	. 055	216
$\frac{11622001}{1162620}$	4.76 6.30				1.24			
1162620 11623000	6.30 4.23	24.73	. 92	10	1.27	. 539	. 086	327
1163212	3.78	2.79	. 95	11		. 306	. 081	114
11632080	6.91				. 44			
1163213	21.28	39.38	. 97	11		1.419	. 067	75
11632080	6.91				2.05			
1163214	6.18	5.14	. 97	26		. 435	. 070	104
11632080	6.91				. 63			
1163215	4.15	2.74	. 94	10		. 352	. 085	84
11632080	6.91				. 51			
1163216	3.35	2.75	. 96	23		. 326	. 097	99
11632080	6.91				. 47			

Table continued

1	2	3	4	5	6	7	8	9
CSU ID	Mean	Variance	Cor Coef	Case	Coeff	Increase Runoff	Increase Ratio	Years for Eval.
1163220	1.85	. 68	. 93	12		. 200	. 108	65
11632080	6.91				. 28			
1163224	5.12	3.83	. 96	33		. 403	. 079	90
$\underline{11632080}$	6.91				. 58			
1163225	11.29	11.01	. 98	11		. 233	. 021	779
11632080	6.91				. 33			
1163228	11.54	6.27	. 98	12		. 741	. 064	43
11632610	9.20				. 80			
1163230	24.53	45.29	. 98	10		2.037	. 083	41
11632610	9.20				2.21			
1163232	9.06	8.33	. 98	22		. 693	. 076	66
$\frac{11632610}{1163234}$	9.20				. 75			
1163234 11632610	7.39	6.53	. 97	10		. 763	. 103	43
$\frac{11632610}{1163236}$	9.20				. 82			
1163236 11632610	17.85 9.20	20.08	. 98	10		1.492	. 084	34
1163237	32.67	58.32	. 99	10		2.685	. 082	31
11632610	9.20				2.91			
1163238	13.94	21.18	. 98	10		. 982	. 070	84
11632610	9.20				1.06			
1163247	3.88	4.39	. 94	12		.249	. 064	271
11632610	9.20				. 27			
1163249	7.09	4.68	. 98	18		. 464	. 065	83
11632610	9.20				. 50			
1163252	7.92	11.51	. 97	11		. 519	. 066	164
11632610	9.20				. 56			
1163253	10.67	14.78	. 98	10		. 703	. 066	114
11632610	9.20				. 76			
1163261	5.66	. 4.08	. 97	10		. 398	. 070	98
11632610	9.20				. 43			
1163263	8.39	9.97	. 97	10		. 719	. 086	74
11632850	15.17				. 47			
1163264	9.08	11.30	. 97	11		. 819	.090	64
11632850	15.17				. 54			
1163265	9.23	9.40	. 97	11		. 812	. 088	54
11632850	15.17				. 53			
1163276	37.50	29.84	. 99	10		3.475	. 093	9
1162850	15.17				2.29			
1163282	32.81	65.43	. 99	10		2.894	. 088	30
11632850	15.17				1.90			
1163284	13.10	15.57	. 98	10		1.335	.102	33
11632850	15.17				. 88			
1163294	6.00	6.33	. 98	10		. 593	. 099	69
11632850	15.17				. 39			
1163296	8.53	. 48	. 99	10		. 560	. 066	5
11632850	15.17				. 36			
1163298	14.59	9.02	. 99	12	. 84	1.279	. 088	21
11632850	15.17							
1164400	5.69	7.27	. 96	9		. 188	. 033	787
11648001	5.13				. 36			
1164810	1.13	. 46	. 90	36		. 052	. 046	645
11648001	5.13				. 10			
1164880	7.69	5.43	. 96	22		. 517	. 067	78
11648001	5.13				1.00			
1165425	5.02	3.70	. 92	15		. 381	. 076	98
11658000	4.00				. 952			
1165430	5.68	6.10	. 95	19		. 405	.071	143
11654250	4.96				. 81			
1165435	7.85	7.10	. 94	12		. 546	. 070	91
11654250					1.10			
1165455	2.88	1.77	. 92	16		. 199	. 069	171
11654250	4.96				. 40			
1165465	6.38	2.91	. 96	25		.370	. 058	81
11654250	4.96				. 74			

Table continued

1	2	3	4	5	6	7	8	9
CSU ID	Mean	Variance	Cor Cof	Case	Coeff	Increase Runoff	Increase Ratio	Years for Eval.
1165470	9.18	6.09	. 96	25		. 558	. 061	75
11654250	4.96				1. 12			
1165480	3.30	4.98	. 89	18		. 185	. 056	561
11654250	4.96				. 37			
1165485	10.78	5.11	.96	25		. 685	.064	41
11654250	4.96				1.38			
1166236	10.45	8.17	. 96	25		.573	. 055	95
11662180	3.78				1.51			
1166254	2.85	1.07	. 97	11		. 257	. 090	62
11662180	3.78				. 67			
1166272	9.67	7.32	.95	25		. 544	. 056	94
11662180	3.78				1.44			
1166630	3.89	2.53	. 93	13		.432	. 111	52
11673000	3.85				1.12			
1167030	4.11	3.29	.94	9		. 402	. 098	78
11673000	3.85				1.04			
1167460	8.22	12.50	. 96	15		. 927	. 113	55
11673000	3.85				2.40			
1167600	9.96	12.22	.933	33		. 563	. 057	147
11678450	5. 29				1.06			
1167806	5.39	3.82	. 97	10		. 510	. 095	56
11678450	5.29				. 965			
1167809	11.93	14.20	. 95	26		. 590	. 049	156
11678450	5.29				1.11			
1167815	14.90	16.93	. 96	26		. 753	. 051	114
11678450	5.29				1.42			
1167818	18.41	45.45	. 98	10		1.597	. 087	68
11678450	5.29				3.01			
1167821	16.55	13.52	. 96	25		. 789	. 048	83
11678450	5.29				1.49			
1167836	12.53	11.40	. 95	26		. 530	. 042	156
11678450	5.29				1.00			
1167842	13.73	10.61	. 96	26		. 589	. 043	117
11678450	5.29				1.11			
1167854	24.17	26.66	. 98	10		1.789	. 074	32
11678450	5.29				3.38			
1167875	15.72	4.06	. 95	26		. 650	. 041	36
11678450	5.29				1.22			
1168060	3.64	5.59	. 92	16		. 418	. 115	122
11690000	9.79				. 42			
1168430	5.93	9.01	. 96	23		.617	. 104	90
11690000	9.79				. 63			
1168460	17.90	31.07	.99	10		2.191	.122	24
11690000	9.79				2.23			
1168600	2.62	3.40	. 90	16		. 310	. 118	135
11690000	9.79				. 31			
1200000	. 39	. 05	. 96	10		. 037	. 094	142
12100000	5.32				. 06			
1203000	1. 29	. 55	. 93	15		.122	. 094	142
12100000	5.32				. 22			
1206000	2.80	3.48	. 93	10		.290	.104	158
12100000	5.32				. 54			
1270800	2.38	2.18	. 97	9		.220	. 092	173
12100000	5.32				. 41			
1272405	3.37	8.32	. 91	10		. 821	.244	47
12724602	16.59				. 49			
1272425	1.78	1.26	.90	11		. 196	.110	126
$\underline{12724602}$	16.59				. 11			
1272435	6.28	21.98	. 94	10		1.083	.173	71
12724602	16.59				. 65			
1272450	2.94	2.77	.91	10		.382	.130	73
12724602	16.59				. 23			

Table continued

1	2	3	4	5	6	7	8	9
CSU ID	Mean	Variance	Cor Cof	Case	Coeff	Increase Runoff	Increase Ratio	Years Eval.
1273230	3.38	5.25	. 93	10		. 229	. 068	384
12732001	6.09				. 37			
1274830	. 99	. 41	. 91	10		. 066	. 067	357
12732001	6.09				. 10			
1276400	4.80	4.75	. 93	10		. 228	. 048	349
12732001	6.09				. 37			
1370300	6.49	8.42	. 94	48		. 444	. 068	164
13715052	5.15				. 86			
1371500	1.51	. 56	. 95	25		. 128	. 085	131
13715052	5.15				. 24			
1371520	5.96	4.60	. 96	52		. 435	. 073	93
13715052	5.15				. 84 ,			
1371545	11.94	16.67	. 97	17		. 956	. 080	70
13715052	5.15				1.85			
1371550	7.81	6.02	. 97	10		. 617	. 079	60
13715052	5.15				1.19			
1371560	22.06	8.79	.98	16		1.510	. 068	14
13715052	5.15				2.93			
1371565	25.60	9.42	. 98	10		1.814	. 071	10
13715052	5.15				3.52			
1371570	21.86	12.93	. 98	14		1.418	. 065	24
$\underline{13715052}$	5.15				2.75			
1371575	17.02	23.19	. 98	10		1.360	. 080	48
13715052	5.15				2.64			
1371815	15.20	29.11	. 97	25		. 926	. 061	130
13715052	5.15				1.79			
1371835	7.01	11.41	. 97	10		. 540	. 077	150
13718100	6.70				. 80			
1371845	6.69	9.90	. 97	10		. 553	. 083	124
$\frac{13718100}{1371855}$	$\begin{array}{r}6.70 \\ \hline 12.15\end{array}$. 82			
1371855	12.15	22.83	. 98	10		. 888	. 073	111
13718100	6.70				1.32			
1371870	7.03	11.23	. 97	10		. 509	. 072	166
13718100	6.70				. 76			
1371890	6.58	12.93	.96	10		.527	. 080	179
13718100	6.70				. 78			
1373020	15.36	28.04	. 97	20		1.424	. 093	53
$\frac{13730212}{1373025}$	9.62				1.48			
1373025 13730212	6.60 9.62	3.61	. 98	11		. 656	. 099	32
$\frac{13730212}{1373080}$	9.62				. 682			
1373080	7.16	16.08	. 94	10		. 367	. 051	457
$\frac{13730212}{1373085}$	9.62				. 38			
1373085	7.56	6.72	. 97	19		. 646	. 085	61
13730212	9.62				. 67			
1373360	11.35	20.96	. 97	29		. 941	. 083	90
13730212	9.62				. 97			
1374275	14.62	35.42	. 99	10		. 569	. 039	420
13730212	9.62				. 59			
1374800	11.13	20.70	.97	19		. 746	. 067	143
13730212	9.62				. 77			
1375400	7.47	6.62	. 96	27		. 588	. 079	73
13772400	8.71				. 67			
1375750	11.61	30.69	. 96	10		. 822	. 071	174
13772400	8.71				. 94			
1376000	2.68	2.32	. 90	18		. 247	. 092	145
13772400	8.71				. 28			
1376050	4.93	6.15	. 94	10		. 313	. 063	241
$\frac{13772400}{1377210}$	8.71				. 35			
1377210	1.41	. 63	. 92	10		. 179	. 127	75
13772400	8.71				. 20			
1377250 13772400	1.42	. 64	.92	10		. 131	. 092	144
$\frac{13772400}{1377270}$	$\frac{8.71}{2.46}$	1.65	. 94	10	. 15	. 192	. 078	171
13772400	8.71		. 9	10	. 22	.	. 0	

Table continued

1	2	3	4	5	6	7	8	9
CSU ID	Mean	Variance	Cor Cof	Case	Coeff	Increase Runoff	Increase Ratio	Years for Eval.
1377280	3.99	3.13	. 93	27		. 225	. 056	237
13775000	5.18				. 43			
1377825	7.66	6.75	. 98	10		. 717	. 044	50
13775000	5.18				1.38			
1377850	10.38	28.99	. 92	10		. 440	. 042	574
13775000	5.18				. 85			
1378130	12.36	14.51	. 97	11		. 828	. 067	81
13781450	14.25				. 58			
1378160	24.89	6.41	. 96	10		1.743	. 070	8
13781450	14.25				1.22			
1379000	6.88	5.08	. 97	26		. 540	. 078	66
13781450	14.25				. 37			
1420800	12.32	10.11	. 98	23		1.178	. 096	27
14250000	8.79				1.34			
1423260	7.26	4.74	. 98	10		. 757	. 104	31
14250000	8.79				. 86			
1424050	7.47	2.86	. 98	13		. 806	. 108	16
14250000	8.79				. 91			
1424820	16.58	14.51	. 98	12		1.554	. 094	23
14250000°	8.79				1.76			
1425600	8.57	21.39	. 96	9		. 793	. 093	130
14250000	8.79				. 90			
1425625	4.11	4.58	. 94	43		. 431	. 105	94
14250000	8.79				. 49			
1425675	5.54	13.05	. 91	10		. 527	. 095	180
14250000	8.79				. 59			
1426400	13.09	27.35	. 96	39		1.137	. 087	81
14250000	8.79				1.29			
1428800	5.20	13.47	. 93	10		. 637	. 103	127
14250000	8.79				. 72			
1480000	7.36	16.22	. 94	10		. 645	. 088	149
14900000	6.36				1.01			
1500000	5.68	5.92	. 96	12		. 683	. 120	48
15963000	11.30				. 60			
1510000	1.24	. 13	. 98	12		. 113	. 108	28
15963000	11.30				. 11			
1515050	6.01	2.10	. 97	10		. 619	.103	21
15963000	11.30				. 54			
1554500	5.34	7.13	. 95	9		. 655	. 123	63
15963000	11.30				. 58			
1556000	10.77	10.29	. 95	9		1.259	. 117	24
15963000	11.30				1.14			
1560000	3.80	5.50	. 89	10		. 297	. 078	239
15963000	11.30				. 26			
1570000	6.12	6.36	. 94	10		. 537	. 088	84
15963000	11.30				. 47			
1580000	11.70	19.26	. 96	10		1.072	. 092	64
15963000	11.30				. 94			
1590700	6.15	8.57	. 96	10		. 793	. 129	52
15963000	11.30				. 70			
1594206	10.25	11.38	. 97	10		. 899	. 088	54
15963000	11.30				. 79			
1594218	9.85	12.10	. 98	10		1.113	. 113	37
15963000	11.30				. 98			
1594224	19.34	31.31	. 98	10		1.832	. 095	35
15963000	11.30				1.62			
1594236	15.19	21.10	. 97	17		. 972	. 064	85
15963000	11.30				. 86			
1594260	15.84	20.25	. 98	17		1.133	. 072	60
$\frac{15963000}{1660000}$	11.30				1.06			
1660000 166114001	6.05 6.14	4.11	. 97	18	. 99	. 612	. 101	42

Table continued

1	2	3	4	5	6	7	8	9
CSU ID	Mean	Variance	Cor Cof	Case	Coeff	Increase Runoff	Increase Ratio	Years for Eval.
1662150	5.18	3.83	. 96	14		. 532	. 103	51
16614001	6.14				. 86			
1662800	11.29	5.26	. 98	14		. 510	. 045	77
16614001	6.14				. 83			
1664900	14.82	12.99	. 98	12		1.232	. 083	32
16614001	6.14				2.00			
1664960	16.59	25.13	. 97	9		1.370	. 083	51
16614001	6.14				2.23			
1664980	22.61	28.80	. 98	9		1.854	. 082	32
16614001	6.14				3.02			
1666300	16.10	15.12	. 98	20		1.442	. 090	27
16614001	6.14				2.34			
1666350	2.32	. 27	. 98	10		. 183	. 079	30
16614001	6.14				. 29			
1667000	11.91	12.57	. 97	12		. 925	. 078	56
16614001	6.14				1.50			
1667700	8.79	10.01	. 96	20		. 713	. 081	75
16614001	6.14				1.16			
1720000	10.14	11.70	. 97	20		1.049	. 103	40
17403000	8.56				1.22			
1742400	9.32	10.26	. 96	12		. 782	. 084	64
17403000	8.56				. 91			
1742700	17.09	9.82	. 99	9		. 966	. 056	40
17403000	8.56				1.12			
1743000	15.62	11.87	. 98	14		1.344	. 086	25
17403000	8.56				1.57			
1743300	12.24	6.21	. 97	9		. 831	. 068	34
17403000	8.56				. 97			
1743600	11.76	4.83	. 98	9		. 876	. 074	24
17403000	8.56				1.02			
1745160	10.07	8.48	. 98	13		1.356	. 135	17
17403000	8.56				1.58			
1752000	4.96	4.00	. 95	10		. 475	. 096	68
17403000	8.56				. 55			
1754000	11.02	12.19	. 98	10		1.158	. 105	34
17403000	8.56				1.35			
1758000	7.22	6.05	.96	10		. 781	. 108	38
17403000	8.56				. 91			
1760000	2.86	1.50	. 94	19		. 275	. 096	76
17403000	8.56				. 32			
1767500	5.94	6.89	.96	11		. 815	. 137	39
17403000	8.56				. 95			
1775000	13.60	5.41	. 98	10		1.033	. 076	19
17403000	8.56				1.20			
1776000	11.80	11.25	. 97	31		. 985	. 083	44
18036000	10.69				. 92			
1777000	14.91	37.97	. 94	9		1.497	. 100	65
18036000	10.69				1.40			
1780000	4.97	6.77	. 91	10		. 797	. 160	40
17403000	8.56				. 93			
1801808	8.24	7.45	. 97	26		. 557	. 068	92
18036000	10.69				. 52			
1817500	7.16	4.78	. 98	19		. 729	. 102	34
18036000	10.69				. 68			
1863000	19.16	12.37	. 99	10		1.487	. 078	21
18036000	10.69				1.39			

Key Words: $\begin{aligned} & \text { Suitability, Upper Colorado River Basin, Precipitation } \\ & \text { Management, Evaluation, Optimal combinations }\end{aligned}$
Abstract: The purpose of this study was the determination of suitable watersheds or combinations of watersheds for precipitation management programs in the Upper Colorado River Basin in general and for two special zones: the San Juan Mountains and the Upper Basin of the Colorado River. The study shows that the introduction of optimal weight factors in the linear combination of runoff from several basins will reduce significantly the number of years necessary for evaluation of the operations. Assuming a uniform 10\% increase in winter precipitation throughout the Upper Colorado River Basin, the calculations show that three years of operations would be needed in the Upper Basin of the Colorado versus six years in the San Juan mountains

References: Hiroshi Nakamichi and Hubert J. Morel-Seytoux, Colorado State University Hydrology Paper No. 36 (October 1969) "Suitability of the Upper Colorado River Basin for Precipitation Management."

Key Words: Suitability, Upper Colorado River Basin, Precipitation Management, Evaluation, Optimal combinations

Abstract: The purpose of this study was the determination of suitable water sheds or combinations of watersheds for precipitation management programs in the Upper Colorado River Basin in general and for two special zones: the San Juan Mountains and the Upper Basin of the Colorado River. The study shows that the introduction of optimal weight factors in the linear combination of runoff from several basins will reduce significantly the number of years necessary for evaluation of the operations. Assuming a uniform 10\% increase in winter precipitation throughout the Upper Colorado River Basin, the calculations show that three years of operations would be needed in the Upper Basin of the Colorado versus six years in the San Juan mountains

References: Hiroshi Nakamichi and Hubert J. Morel-Seytoux, Colorado State University Hydrology Paper No. 36 (October 1969) "Suitability of the Upper Colorado River Basin for Precipitation Management."

Key Words: Suitability, Upper Colorado River Basin, Precipitation Management, Evaluation, Optimal combinations

Abstract: The purpose of this study was the determination of suitable watersheds or combinations of watersheds for precipitation management programs in the Upper Colorado River Basin in general and for two special zones: the San Juan Mountains and the Upper Basin of the Colorado River. The study shows that the introduction of optimal weight factors in the linear combination of runoff from several basins will reduce significantly the number of years necessary for evaluation of the operations. Assuming a uniform 10% increase in winter precipitation throughout the Upper Colorado River Basin, the calculations show that three years of operations would be needed in the Upper Basin of the Colorado versus six years in the San Juan mountains

References: Hiroshi Nakamichi and Hubert J. Morel-Seytoux, Colorado State Hiroshi Nakamichi and Hubert J. Morel-Seytoux, Colorado State
University Hydrology Paper No. 36 (October 1969) "Suitability of the Upper Colorado River Basin for Precipitation Management."

Key Words: Suitability, Upper Colorado River Basin, Precipitation Management, Evaluation, Optimal combinations

Abstract: The purpose of this study was the determination of suitable watersheds or combinations of watersheds for precipitation management programs in the Upper Colorado River Basin in general and for two special zones: the San Juan Mountains and the Upper Basin of the Colorado River. The study shows that the introduction of optimal weight factors in the linear combination of runoff from several basins will reduce significantly the number of years necessary for evaluation of the operations. Assuming a uniform 10\% increase in winter precipitation throughout the Upper Colorado River Basin, the calculations show that three years of operations would be needed in the Upper Basin of the Colorado versus six years in the San Juan mountains

References: Hiroshi Nakamichi and Hubert J. Morel-Seytoux, Colorado State University Hydrology Paper No. 36 (October 1969) "Suitability of the Upper Colorado River Basin for Precipitation Management."

Colorado State University Hydrology Papers

No. 20
"Accuracy of Discharge Determinations," by W. T. Dickinson, June 1967.

No. 21 "Water Quality of Mountain Watersheds," by Samuel H. Kunkle and James R. Meiman, June 1967.

No. 22 "Prediction of Water Yield in High Mountain Watersheds Based on Physiography," by Robert W. Julian, Vujica Yevjevich, and Hubert J. Morel-Seytoux, August 1967.

No. 23 "An Objective Approach to Definitions and Investigations of Continental Hydrologic Droughts," by Vujica Yevjevich, August 1967.

No. 24 "Application of Cross-Spectral Analysis to Hydrologic Time Series, by Ignacio Rodriguez-Iturbe, September 1967.

No. 25 "An Experimental Rainfall-Runoff Facility," by W. T. Dickinson, M. E. Holland and G. L. Smith, September 1967.

No. 26 "The Investigation of Relationship Between Hydrologic Time Series and Sunspot Numbers," by Ignacio Rodriguez-Iturbe and Vujica Yevjevich, April 1968.

No. 27 "Diffusion of Entrapped Gas From Porous Media," by Kenneth M. Adam and Arthur T. Corey, April 1968.

No. 28
"Sampling Bacteria in a Mountain Stream," by Samuel H. Kunkle and James R. Meiman, March 1968.

No. 29
"Estimating Design Floods from Extreme Rainfa11," by Frederick C. Bell, July 1968.

No. 30 "Conservation of Ground Water by Gravel Mulches," by A. T. Corey and W. D. Kemper, May 1968.

No. 31 "Effects of Truncation on Dependence in Hydrologic Time Series," by Rezaul Karim Bhuiya and Vujica Yevjevich, November 1968.

No. 32 "Properties of Non-Homogeneous Hydrologic Series," by V. Yevjevich and R. I. Jeng, April 1969.

No. 33 "Runs of Precipitation Series," by Jose Llamas and M. M. Siddiqui, May 1969.

No. 34
"Statistical Discrimination of Change in Daily Runoff," by Andre J. Dumas and Hubert J. Morel-Seytoux, August 1969.

No. 35 "Stochastic Process of Precipitation," by P. Todorovic and V. Yevjevich, September 1969.

Appendix 4

REGIONAL DISCRIMINATION OF CHANGE IN RUNOFF

REGIONAL DISCRIMINATION OF CHANGE

 IN RUNOFF byViboon Nimmannit and Hubert J. Morel-Seytoux

HYDROLOGY PAPERS COLORADO STATE UNIVERSITY Fort Collins, Colorado

Several departments at Colorado State University have substantial research and graduate programs oriented to hydrology. These Hydrology Papers are intended to communicate in a fast way the current results of this research to the specialists interested in these activities. The papers will supply most of the background research data and results. Shorter versions will usually be published in the appropriate scientific and professional journals, or presented at national or international scientific and professional meetings and published in the proceedings of these meetings.

This research is part of a research project supported by the U.S. Department of Interior, Bureau of Reclamation, Office of Atmospheric Water Resources at Colorado State University with Dr. H. J. Morel-Seytoux as principal investigator, under contract numbered BR 14-06-D-6597.

EDITORIAL BOARD

Dr. Arthur T. Corey, Professor, Agricultural Engineering Department
Dr. Robert E. Dils, Professor, College of Forestry and Natural Resources
Dr. Vujica Yevjevich, Professor, Civil Engineering Department

REGIONAL DISCRIMINATION OF CHANGE IN RUNOFF

by

Viboon Nimmannit
and
Hubert J. Morel-Seytoux

HYDROLOGY PAPERS
COLORADO STATE UNIVERSITY
FORT COLLINS, COLORADO 80521

ACKNOWLEDGMENTS

The present paper is based primarily upon Mr. Viboon Nimmannit's Ph.D. dissertation in the Department of Civil Engineering, Colorado State University: "Multivariate Analysis of Hydrologic Changes." The work was supported by the U.S. Bureau of Reclamation, Office of Atmospheric Water Resources, Contract numbered BR 14-06-D-6597, whose help is gratefully acknowledged.

RELATION OF HYDROLOGY PAPER NO. 37 TO RESEARCH PROGRAM: "HYDROLOGY OF WEATHER MODIFICATION"

The present study is part of a more comprehensive project which has as one of its objectives the development of methods of evaluation of atmospheric water resources programs. Correlatively the application of the methods to a variety of basins forms a basis for selection of suitable watersheds, basins or regions.

Several approaches were pursued. This report discusses one of them. Several other approaches were previously described in Hydrology Papers 22, 34, and 36 (see back inside cover for complete reference).

TABLE OF CONTENTS

Chapter Page
Abstract ix
I Introduction. 1
1.1 Motivation of study. 1
1.2 Geographic and hydrologic setting 1
1.3 The water resources outlook 1
1.4 Precipitation management operations and plans 2
1.5 Objective of study and approach. 2
II Review of Previously Used Tests 5
2.1 Target sample u-test 5
2.2 Target two-sample t-test 5
2.3 Target control χ^{2}-test. 5
2.4 Target-control conditional Student's t-test. 6
2.5 Rank test 7
2.6 Median test 7
2.7 The Mann-Whitney U test 8
2.8 Run test 8
III Principal, Canonical Components and the T^{2}-Statistic 10
3.1 Principal component analysis. 11
3.2 The canonical analysis. 11
3.3 Computation of canonical variables. 11
3.4 The minimum number of years for detecting an increase in runoff means 12
IV Research Data Assembly 13
V Data Analysis and Results 25
5.1 The application of principal component analysis 25
5.2 The minimum number of years needed to detect a 10% increase in runoff based on the principal components 28
5.3 The application of canonical analysis. 28
5.4 The minimum number of years needed to detect a 10% increase in runoff based on the canonical variables 32
VI Conclusions 35
List of Symbols. 36
References 39
Figure Page1 The Upper Colorado River Basin (after Upper ColoradoRiver Commission)2
2 General configuration of and location of gages withinthe Upper Basin of the Colorado River.3
34
Value of τ^{2} 12
Description of Stations 13
Correlation Matrix between $\mathrm{N}-4$ and $\mathrm{CN}-4$ 14
Correlation Matrix between $\mathrm{N}-6$ and $\mathrm{CN}-6$ 14
Correlation Matrix between S-4 and CS-4 14
Correlation Matrix between S-6 and CS-6 14
$\mathrm{N}-4$ series (cfs) 15
$\mathrm{N}-6$ series (cfs) 15
$\mathrm{CN}-4$ series (cfs) 15
$\mathrm{CN}-6$ series (cfs) 15
S-4 series (cfs) 16
S-6 series (cfs). 16
CS-4 series (cfs) 16
CS-6 series (cfs) 16
Stations with Missing Data 17
Means and Standard Deviations of 30 Year Raw Data. 24
Table
Page
17
Correlation Matrix between $\mathrm{N}-4$ and $\mathrm{CN}-4$ 24
Correlation Matrix between $\mathrm{N}-6$ and $\mathrm{CN}-6$ 24
Correlation Matrix between S-4 and CS-4 24
Correlation Matrix between S-6 and CS-6 24
Coefficients for the Principal Components of $\mathrm{N}-4$ 26
Coefficients for the Principal Components of N-6 26
Coefficients for the Principal Components of $\mathrm{CN}-4$ 26
Coefficients for the Principal Components of $\mathrm{CN}-6$ 26
Coefficients for the Principal Components of S-4 26
Coefficients for the Principal Components of S-6 26
Coefficients for the Principal Components of CS-4 26
Coefficients for the Principal Components of CS-6 26
Cumulative Percentage of Total Variation Accounted For by the Principal Components 27
Means and Standard Deviations of the Principal Components 27
Covariance Matrix of $\mathrm{N}-\mathrm{CN}-4$ Principal Component Series 28
Covariance Matrix of $\mathrm{N}-\mathrm{CN}-6$ Principal Component Series 28
Covariance Matrix of S-CS-4 Principal Component Series 28
Covariance Matrix of S-CS-6 Principal Component Series 28
Correlation Matrix of $\mathrm{N}-\mathrm{CN}-4$ Principal Component Series 28
Correlation Matrix of $\mathrm{N}-\mathrm{CN}-6$ Principal Component Series 28
Correlation Matrix of S-CS-4 Principal Component Series 28
Correlation Matrix of S-CS-6 Principal Component Series 28
Minimum number of Years to Detect the Increase of 10 Percent in Runoff Means Using Principal Components. 29
Coefficients for the Canonical Variables of $\mathrm{N}-4$. 29
Coefficients for the Canonical Variables of $\mathrm{N}-6$. 29
Coefficients for the Canonical Variables of $\mathrm{CN}-4$ 29
Coefficients for the Canonical Variables of $\mathrm{CN}-6$ 29
Coefficients for the Canonical Variables of S-4. 29
Coefficients for the Canonical Variables of S-6. 29
Coefficients for the Canonical Variables of CS-4 29
Coefficients for the Canonical Variables of CS-6 29
N-4 Canonical Series (cfs). 30
N-6 Canonical Series (cfs). 30
Tab1e Page
50 CN-4 Canonical Series (cfs). 29
51 CN-6 Canonical Series (cfs). 30
52 S-4 Canonical Series (cfs) 31
53
S-6 Canonical Series (cfs) 31
54 CS-4 Canonical Series (cfs). 31
55
CS-6 Canonical Series (cfs). 31
56
Means and Standard Deviations of Canonical Variables 32
57 Covariance Matrix of N-CN-4 Canonical Series 32
58
Covariance Matrix of N-CN-6 Canonical Series 32
59 Covariance Matrix of S-CS-4 Canonical Series 32
60 Covariance Matrix of S-CS-6 Canonical Series 32
61 Inverse of Covariance Matrix of $\mathrm{N}-\mathrm{CN}-4$ Canonical Series 33
62 Inverse of Covariance Matrix of N-CN-6 Canonical Series 33
63 Inverse of Covariance Matrix of S-CS-4 Canonical Series 33
64 Inverse of Covariance Matrix of S-CS-6 Canonical Series 3365 Minimum number of Years to Detect the Increase of 10Percent in Runoff Means Using Canonical Variables.34

The object of this study is to find answers to the following questions: What is the appropriate statistical test for a regional target-control technique of evaluation?

What is a suitable method for reduction of an originally large number of variables?

Which of the Upper Basin of the Colorado River or the San Juan Mountains is a more suitable area of operations, if the effectiveness of precipitation management is to be detected as quickly as possible?

The results of this research study show:

1. The T^{2}-test is the appropriate test for multiple target-control technique of evaluation.
2. The canonical analysis is the suitable method for the reduction of a large number of original variables.
3. The Upper Basin of the Colorado River is preferable under the assumption of an equal percentage of increase in runoff. However, if the percentage increase in the southern area is at least 1.2 times as large as in the northern area (and recent publications suggest that this ratio is probably around 3) then the southern area is preferable.

Based on the T^{2}-test, the minimum number of years for detecting an increase of 10 percent in spring runoff means are three years in the Upper Basin of the Colorado River, and four years in the San Juan Mountains.
by
Viboon Nimmannit* and Hubert J. Morel-Seytoux**

Chapter I

INTRODUCTION

1.1 Motivation of study. As interference with nature is accelerating $[1,2,3]$ there is a need for early detection of direct or side effects of man's actions. Because of the rapid pace of development [3 , 4,5] it is important to develop techniques that will display the effect of any given practice on water resources availability and distribution at the earliest possible time. For large scale field research, the availability of an efficient and regionally representative test would reduce the duration of experiments required to attain conclusive results and therefore costs, and provide a basis for managerial decision at an earlier stage, without additional observations. The decision may be to stop a project earlier when it becomes apparent, based on real time analysis of data, that the objectives cannot be achieved in the planned time. Better, pre-experiment data simulation would permit to assess the chances of being in that unfortunate situation as a function of a range of values of the suspected or hoped for change. Useful charts can be drawn in terms of the parameters, (magnitude of change, basin characteristics, etc.) for first stage planning.

The techniques which are described in this paper could be used for detection of the effects of watershed management of any origin upon water supply. They could be used to determine the effect of urbanization on the local hydrology, to detect when such urbanization has created a significant change that calls for reappraisal of the protective designs, e.g., flood control, etc. In other words, they are quite general. To a certain degree the techniques will indeed be discussed in a general abstract form, but their practical applicability will be demonstrated with a very special and very important application in mind.

The Bureau of Reclamation will most probably initiate in the fall of 1970 a pilot project of massive cloud seeding operations, covering some 4000 square miles within the state of Colorado. It will be the primary purpose of this paper to establish as accurately as possible how long it will take to detect a regional hydrologic change and to attribute it with little risk of error to the cloud seeding operations. To understand this practical illustration of the technique some knowledge of the geographic and hydrologic features of the region, of the water situation and of the plans of the Bureau of Reclamation is a prerequisite. The purpose of the following sections is to provide this background information.
1.2 Geographic and hydrologic setting. The Colorado River begins high in the snow-capped Rocky Mountains of north central Colorado, flows nearly 1,400 miles southwest, and empties into the Gulf of California in Mexico far to the south. It drains a vast area of 244,000 square miles, 242,000 square miles in the United States--one-twelfth of the area of Continental United States--and 2,000 square miles in northern Mexico. The basin from Wyoming to below the Mexican border is some 900 miles long and varies in width from about 300 miles in the upper section to 500 miles in the lower section. It is bounded on the north and east by the Continental Divide in the Rocky Mountains, on the west by the Wasatch Range, and on the southwest by the San Jacinto Mountains, a range of the Sierra Nevada Mountains. The area, larger than the states of New York, Pennsylvania, and New Jersey combined, above Lee Ferry, Arizona, is known as the Upper Colorado River Basin (Fig. 1). This area is the source of the greatest part of water reaching the Colorado River. The upper portion of this basin in Wyoming and Colorado is a mountainous plateau, 5,000 to 8,000 feet in altitude, marked by broad rolling valleys, deep canyons, and intersecting mountain ranges. Climatologically, the Colorado River Basin has heavy precipitation on the high peaks of the Rockies and truly desert conditions with little rain in the southern area around Yuma, Arizona. Extremes of temperatures in the basin range from 50° below zero to 130° above zero degree Fahrenheit. Development and utilization of resources in this arid land depend on the availability of water. Crops must be irrigated; cattle on the vast ranges must be partially fed from hay produced on irrigated land; towns and cities must be located within distance of dependable domestic and municipal water supplies, and mining and many other industries depend, to an extent, on the availability of hydroelectric power [1].
1.3 The water resources out look. The U.S. Geological Survey estimates total water demand in the United States was 280 billion gallons per day (314 million acre-feet per year) in 1960. As a point of comparison let us note that the average annual flow of the biggest river in the United States, the Mississippi, is 440 maf and that of the Upper Colorado is about 14 maf. The U.S.G.S, estimates the total water demand for the U.S. will be 600 billion gallon per day (672 million acre-feet per year) by 1980 . In 1960 the demand in the Western States alone was estimated at 125 billion gallons per day (140 million

[^7]

Fig. 1 The Upper Colorado River Basin (after Upper Colorado River Commission)
acre-feet per year) and for 1980 at 190 billion gallons per day (213 million acre-feet per year). The lower percentage of demand growth for the Western States reflects different demands of industry in the East and agriculture in the West. Because rainfall is low in the Western States, the conservation use must be greater than in the East and Midwest. Municipal or domestic use has first priority in the West, with irrigation second. It is estimated the $44,000,000$ population of the Western States in 1960 will expand to more than $100,000,000$ by the year 2000 [2].

From the population figures given above, it is obvious much more water will be needed in the near future. So, the question one must answer is, "What can be used as sources for additional water to alleviate the shortages?" Several agencies, such as, the Bureau of Reclamation [3], the Upper Colorado River Commission [4], and the Committee on Water of the National Research Council [5], feel cloud seeding, to augment the precipitation amount in the Upper Colorado River Basin, may become a partial solution to the recurrent water shortage.
1.4 Precipitation management operations and plans. An important experimental cloud seeding operation is being conducted near Climax, Colorado, by Colorado State University under sponsorship of the National Science Foundation. These experiments are designed to show quantitative change in precipitation by cloud seeding and to determine criteria for optimum seeding conditions.

The most favorable conditions for cloud seeding are in regions where moist winds blow more or less constantly up the slopes of the mountains. Cloud seeding involves artificial introduction of tiny particles into clouds so that moisture can depose around each of the nuclei to form a crystal heavy enough to fall to the ground. Among nuclei that have been used experimentally in cloud seeding operations are solid carbon dioxide, silver iodide, water spray, and carbon black. To date, the greatest number of cloudseeding attempts have been made by using silver iodide generators operated on the ground. However, seeding operations using aircraft flown directly over cloud layers have demonstrated that this technique may be more effective [6].

In 1968, the Bureau of Reclamation adopted a plan to start pilot programs for weather modification operations in the Upper Colorado River Basin (Fig. 1), and two regions were selected for this purpose [7]. The first was the Upper Basin of the Colorado River*, which will for brevity be referred to in this study as the Northern Project area (Fig. 2). The second area was the San Juan Mountains region referred to as the Southern Project area (Fig. 3). Since the initiation of this study, the plans of the Bureau were modified. Currently [8] only one area is considered: the Southern area. Nevertheless, because they had already been calculated, the results for the Northern area are also reported.
1.5 objective of study and approach. The primary objective was to develop an appropriate and efficient methodology that can be used to demonstrate the effectiveness of cloud seeding in each project region. In order to achieve this, a multivariate analysis of geographically well distributed stations in each region is carried out. These stations are referred to as targets. Variables used in this study are spring runoffs. The spring runoff of a station is defined here as the average flow, in cubic feet per second, of that station during the spring months. Because this flow is substantially contributed by winter snow, it can be regarded as an indirect measure of the effect of weather modification. However, because of the lack of a precise date for the start of snow melting, two different time intervals will be used for spring months. The first interval will be composed of four months: April, May, June and July; the second of six months: March, April, May, June, July and August.

Because the use of controls, which are the stations free from the effect of weather modification, is a well proven means of making tests more effective, (9), it also will be utilized in this study. An area between the Northern and Southern Project areas has been selected (Fig. 4) to serve as the control area.

[^8]

Fig. 2 General configuration of and location of gages within the Upper Basin of the Colorado River

Fig. 3 General configuration of and location of gages within the Colorado River Basin Pilot Project area

Fig. 4 General configuration of and location of gages within the Colorado River Basin Pilot Project control area

For brevity, the following symbols will be employed:

N-4: 4-month runoff series in the northern target region,
N-6: $\quad 6$-month runoff series in the northern target region,
$\mathrm{CN}-4$: $\quad 4$-month runoff series in the northern control region,
CN-6: $\quad 6$-month runoff series in the northern control region,
S-4: $\quad 4$-month runoff series in the southern target region,
S-6: $\quad 6$-month runoff series in the southern target region,
CS-4: 4-month runoff series in the southern control region,
CS-6: 6-month runoff series in the southern control region.
$\mathrm{N}-\mathrm{CN}-4$: the combination of $\mathrm{N}-4$ and $\mathrm{CN}-4$,
$\mathrm{N}-\mathrm{CN}-6$: the combination of $\mathrm{N}-6$ and $\mathrm{CN}-6$,
S-CS-4: the combination of S-4 and CS-4,
S-CS-6: the combination of S-6 and CS-6.
In applying theories of statistics to an engineering problem, it is necessary to assume certain properties of the variables. The assumptions made in this study are:
a) The observations of runoff follow a multivariate normal distribution.
b) The estimated means in both target and control areas from the period before seeding are essentially equal to the population values.
c) After seeding the means in the target areas will change but the means in the control areas will remain unchanged.
d) The covariance matrix of the target and control variables is the same for both periods before and after seeding.

The above assumptions are required in this study because of the difficulty in developing the theoretical distribution of the test criterion otherwise. In dealing with more than two variables, the knowledge of distributions, except that of the normal distribution, are not sufficiently developed [10]. So, even though it is rather obvious the assumptions made here will be violated to some degree in reality, they are practically as good as one can make with the present state of statistical knowledge.

From the work of Ref. [9], it is found that the x^{2}-test which is based on the population values, and the conditional Student's t-test which is based on the sample values, give very closely the same results for sample sizes around 30 . Thus, for convenience in handling the mathematics, the population values are assumed to be known here and this assumption appears justified. Also, all the observations of runoff station used in this study have been plotted on normal probability paper. If the runoff were exactly distributed as a normal variate, all the observations would fall exactly on a straight line. The actual observations did not in any case deviate appreciably from a straight line. The assumption of normality may therefore be entertained for these data.

Based on the above assumptions, a T^{2}-statistic is obtained $[11,12]$. The minimum number of years, N^{*}, to detect the expected increase can be obtained [11] from the formula,

$$
\begin{equation*}
N^{*}=\frac{\tau^{2}}{\underline{u}^{\prime} \underline{V}^{-1} \underline{\underline{u}}}, \tag{1}
\end{equation*}
$$

where τ^{2} is the noncentrality parameter (it is a measure of the amount of deviation from being central which is the case when the variables under study have means zero),
$\underline{\mu}=\frac{\mu^{*}}{\tilde{f}^{*}}-\underline{\mu^{\prime}} 0$, $\frac{\mu^{*}}{}$ is the runoff mean vector for the seeded period, and $\underline{\mu}_{0}$ is the runoff mean vector for the non-seeded period,
$\underline{\mu}^{\prime}$ is the transpose of $\underline{\mu}$, and
\underline{V}^{-1} is the inverse of the covariance matrix of runoff variables, \underline{V}.

In Chapter II, most approaches used to detect the effectiveness of weather modification by other investigators are summarized. The theoretical concepts of the principal component analysis, the canonical analysis, and the T^{2}-statistic are the main subjects of Chapter III. Chapters IV and V deal with data assembly, analysis of data, and results.

The study led to two major conclusions, one of general theoretical interest and the second of practical significance for the plans of the Bureau:
a) Canonical analysis coupled with the multivariate T^{2}-test provides an effective technique of detection of a suspected regional hydrologic change and,
b) Assuming a 10% uniform increase in runoff by precipitation management 3 and 4 years only are required for significant evaluation for the Upper Basin of the Colorado and the San Juan Mountains, respectively.

Chapter II

REVIEW OF PREVIOUSLY USED TESTS

The statistical content of this chapter is not new. The material here is provided for the sake of convenience to a reader whose statistical background is that of the average engineer. A statistician can bypass this chapter without detrimental effect to the continuity and understanding of this paper.

In this chapter the statistical tests, which have been employed by other investigators for detecting the effectiveness of weather modification, will be presented. The literature is further discussed in Ref. 12. Because all tests are concerned with the expected increase in the means of either runoff or precipitation during the seeded period, the hypotheses for all tests can be stated as:
H_{0} (null hypothesis) - there is no increase in the mean of the hydrologic variable during the seeded period,
H_{a} (alternate hypothesis) - there is an increase in the mean.
2.1 Target sample u-test. Let q_{11}, q_{12}, \ldots, $q_{1 n_{1}}$, be n_{1} observations of a hydrologic variable for the nonseeded period, and $q_{21}, q_{22}, \ldots, q_{2 n_{2}}$ be n_{2} observations for the seeded period of a target watershed. When n_{1} is large the mean and variance of the series $q_{11}, q_{12}, \ldots, q_{1 n_{1}}$ can be considered to be the population mean and population variance. Assuming the variance of the seeded period is the same as the non-seeded period, the test statistic is [13]

$$
u_{0}=\frac{\bar{q}_{2}-\mu_{1}}{\sigma_{1} / \sqrt{n_{2}}}
$$

where u_{o} is normally distributed with mean o and variance 1

$$
\begin{aligned}
& \bar{q}_{2}=\frac{1}{n_{2}} \sum_{i=1}^{n_{2}} q_{2 i} \\
& \mu_{1}=\frac{1}{n_{1}} \sum_{i=1}^{n_{1}} q_{1 i} \\
& \sigma_{1}^{2}=\frac{1}{n_{1}} \sum_{i=1}^{n_{1}}\left(q_{1 i}-\mu_{1}\right)^{2} .
\end{aligned}
$$

The null hypothesis, H_{0}, will be accepted at a 5% level of significance if u_{0} has a value less than 1.645 . That is, there is no increase in the mean. On the contrary, if u_{0} is greater than 1.645
the alternative hypothesis, H_{a}, will be accepted at a 5% level of significance. The use of this test can be found in References [9] and [14]. South Fork San Joaquin, California, was the target basin for the study in Reference [9]. There were 15 years of seeded record, and 29 years of non-seeded record. The apparent percentage increase in the mean of the seasonal runoff for the seeded period was about 10%. By the use of the target sample u-test it was found that $u_{0}=1.20$. This shows that the target sample u-test was not powerful enough to detect the increase in mean value in the order of 10% of the old mean.
2.2 Target two-sample t-test. This test does not require knowledge of population parameters. Let $q_{11}, q_{12}, \ldots, q_{1 n_{1}}$ and $q_{21}, q_{22}, \ldots, q_{2 n_{2}}$ be n_{1} and n_{2} observations for the non-seeded and seeded periods of a target watershed.

Assuming the variances of the non-seeded and seeded periods are equal, the test statistic [15]

$$
t_{0}=\frac{\bar{q}_{2}-\bar{q}_{1}}{s \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}}
$$

is distributed as t-distribution with $n_{1}+n_{2}-2$ degrees of freedom, where:

$$
\begin{aligned}
& \bar{q}_{1}=\frac{1}{n_{1}} \sum_{i=1}^{n_{1}} q_{1 i} \\
& \bar{q}_{2}=\frac{1}{n_{2}} \sum_{i=1}^{n_{2}} q_{2 i} \\
& s^{2}=\frac{\sum_{i=1}^{n_{1}}\left(q_{1 i}-\bar{q}_{1}\right)^{2}+\sum_{i=1}^{n_{2}}\left(q_{2 i}-\bar{q}_{2}\right)^{2}}{\left(n_{1}-1\right)+\left(n_{2}-1\right)}
\end{aligned}
$$

The use of this test can be found in References [8], [14], [16], [17], [18], [19], [20], [21], [22], [23], and [24]. The value of the t-statistic was also computed for South Fork San Joaquin [9] from the same set of data used in computing the target sample u_{0} The computed t-statistic has the value of 0.89 . So, again no significant increase was concluded. The target two-sample t-test, and the target sample u-test therefore can be considered to be insufficiently powerful tests for studies of this nature.
2.3 Target-control x^{2}-test. The detectability of the test can be improved by the use of a control [9]. This can be done by comparing sets of hydrologic data of non-seeded and seeded periods for the target watershed with those for an unseeded control watershed located in the vicinity of the target area.

Let $q_{11}, q_{12}, \ldots, q_{1 n_{1}}$ and $q_{11}^{\prime}, q_{12}^{\prime}, \ldots$, $q_{1 n_{1}}^{\prime}$ be n_{1} observations for the period prior to seeding of the target and control watersheds respectively. Also, let n_{2} observations for the seeded period in the target be denoted by $q_{21}, q_{22}, \ldots, q_{2 n_{2}}$, and those in the control by $q_{21}^{\prime}, q_{22}^{\prime}, \ldots, q_{2 n_{2}}^{\prime}$.

When the length of record before seeding is long enough, the estimated statistics of the target and control can be assumed to be the population values. Assuming the variables in the target and control are bivariate normally distributed, then the test statistic [14]:
$x_{0}^{2}=\frac{n_{2}}{1-\rho^{2}}\left\{\left(\frac{\bar{q}_{2}-\mu_{1}}{\sigma}\right)^{2}-2 \rho \frac{\left(\bar{q}_{2}-\mu_{1}\right)\left(\bar{q}_{2}^{\prime}-\mu_{1}^{\prime}\right)}{\sigma \sigma^{\prime}}+\left(\frac{\bar{q}_{2}^{\prime}-\mu_{1}^{\prime}}{\sigma^{\prime}}\right)^{2}\right\}$
is distributed as Chi-square distribution with two degrees of freedom, where
p is the population coefficient of correlation between the target and control for the nonseeded period, given by

$$
\rho=\frac{\sum_{i=1}^{n_{1}}\left(q_{1 i}-\mu_{1}\right)\left(q_{1 i}^{\prime}-\mu_{1}^{\prime}\right)}{\left[\sum_{i=1}^{n_{1}}\left(q_{1 i}-\mu_{1}\right)^{2} \sum_{i=1}^{n_{1}}\left(q_{1 i}^{\prime}-\mu_{1}^{\prime}\right)^{2}\right]^{\frac{1}{2}}}
$$

$$
\mu_{1}=\frac{1}{n_{1}} \sum_{i=1}^{n_{1}} q_{1 i}
$$

$$
\mu_{i}^{\prime}=\frac{1}{n_{1}} \sum_{i=1}^{n_{1}} q_{1 i}^{\prime}
$$

$$
\bar{q}_{2}=\frac{1}{n_{2}} \sum_{i=1}^{n_{2}} q_{2 i}
$$

$$
\bar{q}_{2}^{\prime}=\frac{1}{n_{2}} \sum_{i=1}^{n_{2}} q_{2 i}^{\prime}
$$

$$
\sigma=\sqrt{\frac{1}{n_{1}} \sum_{i=1}^{n_{1}}\left(q_{1 i}-\mu_{1}\right)^{2}}
$$

$$
\sigma^{\prime}=\sqrt{\frac{1}{n_{1}} \sum_{i=1}^{n_{1}}\left(q_{1 i}^{\prime}-\mu_{1}^{\prime}\right)^{2}}
$$

This test has been used in References [9] and [14].
With the use of Merced River at Pohono Bridge as a control runoff station for the target, South Fork San Joaquin, the observed x_{0}^{2}-statistic was found to be [9] 22.2. The value of x^{2} for significance at 99% level of confidence is 9.2 . Therefore, a significant increase was detected by the use of the targetcontrol x^{2}-test. This shows that for the same set of
data for the target basin, the target-control x^{2}-test is overwhelmingly more discriminating than the target two-sample t-test and the target two-sample u-test.

2.4 Target-control conditional Student's

 t-test. In this test population parameters are not known. What is tested is the normality or abnormality of the target, given the behavior of the control, normal or otherwise [9].$$
\text { Let } q_{11}, q_{12}, \ldots, q_{1 n_{1}} \text { and } q_{21}, q_{22}, \ldots \text {, }
$$ $q_{2 n_{2}}$ be the n_{1} and n_{2} observations of a hydrologic variable in the target watershed before and during seeded periods respectively. Let $q_{11}^{\prime}, q_{12}^{\prime}$, $\ldots, q_{1 n_{1}}^{\prime}$ and $q_{21}^{\prime}, q_{22}^{\prime}, \ldots, q_{2 n_{2}}^{\prime}$ be the corresponding observations in the control watershed.

By application of the maximum-likelihood ratio method [25], the test statistic:

$$
t_{o}=\frac{\sqrt{n_{1}+n_{2}-3}\left[\left(\bar{q}_{2}-\bar{q}_{1}\right)-\left(\bar{q}_{2}^{\prime}-\bar{q}_{1}^{\prime}\right)\left\{\sum_{i=1}^{n_{1}} a_{i}\left(\Delta q_{1 i}\right)+\sum_{i=1}^{n_{2}} b_{i}\left(\Delta q_{2 i}\right)\right\}\right]}{\left[\frac{1}{n_{1}}+\frac{1}{n_{2}}+\left(\frac{\bar{q}_{2}^{1}-\bar{q}_{1}^{\prime}}{\Delta}\right)^{2}\right]^{\frac{1}{2}}}\left[_{i=1}^{n_{1}\left(\Delta q_{1 i}\right)^{2}+\sum_{i=1}^{n_{2}}\left(\Delta q_{2 i}\right)^{2}-\left\{\sum_{i=1}^{\left.\left.n_{i}^{1} a_{i}\left(\Delta q_{1 i}\right)+\sum_{i=1}^{n_{2}} b_{i}\left(\Delta q_{2 i}\right)\right\}^{2}\right]^{\frac{1}{2}}}\right.}\right.
$$

is obtained and it is distributed as Student's tdistribution with $n_{1}+n_{2}-3$ degrees of freedom, where

$$
\begin{aligned}
& \bar{q}_{1}=\frac{1}{n_{1}} \sum_{i=1}^{n_{1}} q_{1 i} \\
& \bar{q}_{2}=\frac{1}{n_{2}} \sum_{i=1}^{n_{2}} q_{2 i} \\
& \bar{q}_{1}^{\prime}=\frac{1}{n_{1}} \sum_{i=1}^{n_{1}} q_{1 i}^{\prime} \\
& \bar{q}_{2}^{\prime}=\frac{1}{n_{2}} \sum_{i=1}^{n_{2}} q_{2 i}^{\prime} \\
& \left(\Delta q_{1 i}\right)=q_{1 i}-\bar{q}_{1} \\
& \left(\Delta q_{2 i}\right)=q_{2 i}-\bar{q}_{2} \\
& \left(\Delta q_{1 i}^{\prime}\right)=q_{1 i}^{\prime}-\bar{q}_{1}^{\prime} \\
& \left(\Delta q_{2 i}^{\prime}\right)=q_{2 i}^{\prime}-\bar{q}_{2}^{\prime} \\
& \Delta^{2}=\sum_{i=1}^{n_{1}}\left(\Delta q_{1 i}^{\prime}\right)^{2}+\sum_{i=1}^{n_{2}}\left(\Delta q_{2 i}^{\prime}\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& a_{i}=\frac{\left(\Delta q_{1 i}^{\prime}\right)}{\Delta} \\
& b_{i}=\frac{\left(\Delta q_{2 i}^{\prime}\right)}{\Delta}
\end{aligned}
$$

The use of this test can be found in References [9] and [14].

In Reference [9], the application of the targetcontrol conditional Student's t-test was made for the target, South Fork San Joaquin, and the control, Merced River at Pohono Bridge. The observed t_{o}-statistic by this method was 3.80 . The value of t for significance at 99% was 2.71 . Therefore, a significant increase was the result of this test. Comparison of the results of the above mentioned statistic tests show that the target-control x^{2}-test and the target-control conditional Student's t-test are better tests than the target two-sample t-test and the target sample u-test. Also note that for runoff data from high elevation watersheds the outcomes of the two tests are essentially the same for a sample size around 30 . However, it should be noted that all these tests are applicable only when single target or single target-control technique is used. None of these tests can be applied without modification when the number of variables in the study is greater than two, which is the usual case.
2.5 Rank test. Let $q_{11}, q_{12}, \ldots, q_{1 n_{1}}$ and $q_{21}, q_{22}, \ldots, q_{2 n_{2}}$ be n_{1} and n_{2} observations of a hydrologic variable for the non-seeded and seeded periods respectively.

Arrange the observations in a common sequence of increasing magnitude,
$q_{11}, q_{12}, q_{21}, q_{22}, q_{13}, q_{14}, q_{15}, q_{23}, q_{16}, \ldots$.
Assign ranks from 1 to n, where $n=n_{1}+n_{2}$, to the above sequence so that rank 1 is given to the smallest observation and n to the largest.

The test statistic is now [26]:

$$
z=\frac{T_{S}-T}{\sigma},
$$

where Z is approximately a standard normal variate, T_{S} is the sum of ranks for seeded observations, $\overline{\mathrm{T}}$ is the expected mean value of T_{S}, given by $\overline{\mathrm{T}}=\frac{\mathrm{n}_{2}\left(\mathrm{n}_{2}+\mathrm{n}_{1}+1\right)}{2}$
$=\frac{n_{2}(n+1)}{2}$
$0=\sqrt{\frac{n_{2} n_{1}(n+1)}{12}}$

If Z is greater than 1.645 , then, one rejects the null hypothesis and concludes that at the 5% level of significance weather modification was effective.

This test has been used in References [27] and [28]. From the data in the Necaxa Watershed, Mexico,
it was found that [27] the value of Z was 2.64 , which is a value significant beyond the 99% level. The numbers of observations were 45 seeded days and 29 unseeded days. However, the apparent increase in the mean of the seeded period here was large. The seeded mean was about 26 percent larger than the unseeded mean. So, the use of rank test in Reference [27] does not tell much about the efficiency of the test at all. In fact, with the amount of increase of this order, one can find with any statistical test that the cloud seeding is effective. For example, when the u-test is applied the approximate number of observations needed to detect the 26 percent increase in the mean is obtained from:

$$
N^{\star}=\frac{4 \sigma^{2}}{h^{2} \mu^{2}}
$$

where N^{*} is the approximate number of observations required to detect a certain amount of increase in the mean,
σ^{2} is the variance of the hydrologic variable for the unseeded period,
μ is the mean of the hydrologic variable for the unseeded period, and
h is the fractional increase in mean.
Upon substituting the values of σ^{2}, μ, h from the data of Reference [27], it was found that

$$
N^{*}=\frac{4 \times 600.17}{(.26)^{2}(88.14)^{2}} \approx 5
$$

Thus, it is clear that the required number of observations to detect a 26 percent increase in the mean is much smaller than 45 which is the actual number of observations. So, with this large amount of increase any statistical test will always give the positive result.
2.6 Median test. The median of a distribution is that value which divides the distribution halfway, i.e., half the distribution have lower and half have higher values. The median test determines primarily if the medians of the populations from which the samples come are well separated or not.

$$
\text { Let } q_{11}, q_{12}, \ldots, q_{1 n_{1}} \text { and } q_{21}, q_{22}, \ldots \text {, }
$$ $q_{2 n_{2}}$ be n_{1} and n_{2} observations of a hydrologic variable for the non-seeded and seeded periods respectively. Arrange the observations in a common sequence of increasing magnitude, e.g.,

$q_{11}, q_{12}, q_{21}, q_{22}, q_{23}, q_{13}, q_{14}, q_{15}, q_{16}, q_{24}, \ldots$.
If the total number of observations is even, the median is taken to be halfway between the two middle observations. If this total number is odd, the median observation is removed since it does not contribute any information to the question of whether the distribution of that sample has its median above or below the joint sample median. The case then reduces to the even case.

Let the numbers of $\mathrm{q}_{1 i}$'s above and below the median of the common sequence be $n_{1 a}$ and $n_{1 b}$, and
the numbers of $q_{2 j}$'s above and below the same common sample median be $\mathrm{n}_{2 \mathrm{a}}$ and $\mathrm{n}_{2 \mathrm{~b}}$. Under the null hypothesis that the two samples come from identical distributions, the proportion of each sample lying below any point should be the same.

If the test function [29]

$M=\left(\left|2 n_{1 \mathrm{a}}-\left(\mathrm{n}_{1 \mathrm{a}}+\mathrm{n}_{1 \mathrm{~b}}\right)\right|-1\right)^{2} / \mathrm{n}_{1}+\left(\left|2 \mathrm{n}_{2 \mathrm{a}}-\left(\mathrm{n}_{2 \mathrm{a}}+\mathrm{n}_{2 \mathrm{~b}}\right)\right|-1\right)^{2} / \mathrm{n}_{2}$
is greater than $x_{0.95}^{2}$ with one degree of freedom, then, one rejects, at the 95% level, the hypothesis that the samples have the same median.

This test has been used in Reference [20]. The data used in Reference [20] were obtained from an experiment on artificial stimulation of rain in three climatologically similar regions, Delhi, Agra and Jaipur in northwest India. The net increase in rainfall obtained over all three regions was 41.9%. Thus, it was found that there was a highly significant increase in the amount of rainfall. The observations were made from 1957 to 1965 (excluding 1962) in Delhi, from 1960 to 1965 in Agra, and from 1960 to 1963 in Jaipur. There was, however, no observed statistic given in this report.
2.7 The Mann-Whitney U test. Let q_{11}, q_{12},
$\ldots, q_{1 n_{1}}$ and $q_{21}, q_{22}, \ldots, q_{2 n_{2}}$ be n_{1} and n_{2} observations of a hydrologic variable for the nonseeded and seeded periods respectively. Arrange the observations in a common sequence of increasing magnitude, e.g.,

$$
q_{11}, q_{12}, q_{13}, q_{21}, q_{14}, q_{15}, q_{22}, q_{23}, q_{24}, \ldots .
$$

The statistic U is defined as the number of times a $q_{2 j}$ precedes a $q_{1 i}$. This test was used to test the null hypothesis
H_{0} - the $q_{1 i}$ and $q_{2 j}$ values have the same distribution against the alternative hypothesis,
H_{a} - the location parameter of $q_{2 j}$ is larger than the location parameter of $q_{1 i}$, i.e., the bulk of the distribution of $q_{2 j}{ }^{\prime} s$ is to the right of the bulk of the distribution of $q_{1 i}{ }^{\prime} s$.
If H_{a} is true, one expects U to be small. Mann and Whitney [30] computed tables that give probabilities associated with small (lower tail) values of U, and Auble [31] gives tables of critical values of U for significant levels of $0.001,0.01,0.025$, and 0.05 for a one-sided test. For the one-sided alternative hypothesis that the location parameter of $q_{2 j}$ is smaller than the parameter of $q_{1 i}$, one computes the statistic U^{\prime}, defined to be the number of times a $q_{1 i}$ precedes a $q_{2 j}$, and uses Aubles's tables to test H_{0}.

The relationship between U and the sum of ranks for seeded observations, T_{s}, in the rank test can be expressed as (Wine [32]):

$$
U=n_{1} n_{2}+\frac{n_{2}\left(n_{2}+1\right)}{2}-T_{s}
$$

The U statistic is usually computed by the above equation, since it is tedious to compute from the definition of U when n_{1} and n_{2} become fairly large.

The test statistic is

$$
\mathrm{W}=\frac{\mathrm{U}-\overline{\mathrm{U}}}{\sigma}
$$

where $\frac{W}{W}$ is approximately a standard normal variate,
\bar{U} is the expected value of U, given by
$\overline{\mathrm{U}}=\frac{\mathrm{n}_{1} \mathrm{n}_{2}}{2}$
and
$\sigma=\sqrt{\frac{\mathrm{n}_{1} \mathrm{n}_{2}\left(\mathrm{n}_{1}+\mathrm{n}_{2}+1\right)}{12}}$
If W is greater than 1.65 , then the null hypothesis is rejected and one can conclude the location of $q_{2 j}$ is larger than that of $q_{1 i}$. This test has been used by many authors - [20], [21], [28], [33], and [34].

In Reference [21], the data used were collected from a five-year period experiment (1960 through 1964) in Missouri. On comparing the average rainfall (inches/ hour) of the seeded days with that of the non-seeded days, it was found there was, on the average, a decrease of 67.9%. The values of W ranged from smaller than 0.01 to 0.88 . Thus, it was concluded that no evidence of increases in precipitation because of cloud seeding was achieved.
2.8 Run test. Let $q_{11}, q_{12}, \ldots, q_{1 n_{1}}$ and $q_{21}, q_{22}, \ldots, q_{2 n_{2}}$ be n_{1} and n_{2} observations of a hydrologic variable for the non-seeded and seeded periods respectively.

Arrange the observations in a common sequence of increasing magnitude, e.g.,

$$
q_{11}, q_{12}, q_{21}, q_{13}, q_{14}, q_{22}, q_{23}, \ldots .
$$

A run is defined as an unbroken sequence of elements of the same type, i.e., a sequence of $q_{1 i}$'s or a sequence of $q_{2 j}$'s. Let the number of runs be denoted by n. If two samples are from the same population, the non-seeded and seeded observations will be well mixed and the number of runs, η, will be large.

The test statistic is now [14]

$$
\mathrm{U}=\frac{\eta-\bar{n}}{\sigma},
$$

where \underline{U} is a standard normal variate, $\frac{n}{n}$ is the expected value of n, given by

$$
\begin{aligned}
& \bar{n}=\frac{2 n_{1} n_{2}}{n_{1}+n_{2}} \\
& \sigma=\sqrt{\frac{2 n_{1} n_{2}\left(2 n_{1} n_{2}-n_{1}-n_{2}\right)}{\left(n_{1}+n_{2}\right)^{2}\left(n_{1}+n_{2}-1\right)}} .
\end{aligned}
$$

If U is greater than 1.65, then the null hypothesis is rejected and the alternative hypothesis is accepted. This test has been used in Reference [35].

In Reference [35], the data of the King River at Piedra, California was analyzed. The observations were the annual flows from 1917 to 1954 for the nonseeded period, and 1955 to 1966 for the seeded period There was a decrease of about 3.3% in mean annual
flows for the seeded period. The number of runs, η, was found to be $17, \bar{n}=19.240$, and $\sigma=2.533$. From the above values, U was obtained as -0.88 . Therefore, no significant increase in the mean annual flow was concluded.

Of all the tests stated above, it is found that none of them can be applied for testing the increase in runoff means when the number of runoff variables is greater than two. In the evaluation of weather modification effectiveness based on a multiple targetcontrol concept the number of runoff variables involved is large. So, it is necessary to find an approach to detect the increase in means of these runoff variables.

In Chapter III, the principal components, canonical analysis, and the T^{2}-statistic are discussed.

Chapter III

PRINCIPAL, CANONICAL COMPONENTS AND THE T²-STATISTIC

For small scale operations the method of evaluation of a significant change in hydrologic characteristics based on the single target-control concept is adequate. For large regions this procedure would not be very representative. Besides if the test were performed for many pairs of target and control it is not clear how one should treat the ensemble of the outcomes. On the other hand, there is no problem of interpretation when a single test is performed even though the tested statistic may itself be a complicated combination of many observations from many targets and controls. For representativity the station runoff variables should be geographically well distributed over the large area of interest. This results in a selection of a large number of variables that are usually not independent variables. Sometimes the number of variables involved may be so large that any study can hardly be made economically. In fact, this is one of the difficulties in this study since there are three big areas under investigation. It is, therefore, also an object of this study to find a suitable method for reducing the number of variables involved in the analysis.

There are several ways to reduce the number of variables. However, two methods are used here before the statistical test is carried out. One is the principal components analysis, the other the canonical analysis.
3.1 Principal component analysis. The principal components are linear combinations of random variables, which have special properties in terms of variances. Usually, the linear combination with the maximum variance is referred to as the first principal component; the second component is the one that is uncorrelated with the first and has the second largest variance, and so on. The idea of this analysis was discussed thoroughly by Hotelling [36] in 1933.

From the hydrologic point of view, these principal components can be considered as new transformed runoff variables though lacking simple physical meaning. These transformed variables have, in total, the same amount of fluctuation or variation as do the original runoff variables. But the number of the transformed variables can be smaller than that of the original variables. Also these transformed variables are independent while the original variables are not.

A priori what can be expected from the principal components analysis for the purpose of evaluation? Suppose the principal components analysis is carried for all the targets and all the controls. The first principal component for each group will be the most statistically representative single combination of targets and controls, respectively, because that combination will account for the largest fraction of the total variation. If the percentage is high (say 95\%) all the other principal components can be dropped. Then the originally multivariate test reduces again to a familiar single target control t-test, even
though the target variable and the control variable are each a combination of many target and control ones. The procedure will be simple and effective if the target first principal component and the control one are highly correlated. However, this need not happen because the targets and controls are treated separately and the procedure does not attempt to maximize the correlation between the two components (which canonical analysis does). It can be concluded that principal components analysis can provide the basis for a simple and highly representative test but it will not be, by far, a minimal time evaluation one. (The procedure for the actual computation of the principal components is summarized in Chapter V, Section 1).
3.2 The canonical analysis. Canonical analysis is a technique to maximize the correlations between two groups of random variables. This analysis gives new sets of transformed variables as linear combinations of the original runoff variables. The first linear combination of each group will have the highest correlation, and each is uncorrelated with the other linear combinations in its group. The second linear combinations will have the second highest correlation, the third linear combinations will have the third highest correlation and so on. These linear combinations are referred to as canonical variables or components.

In this study the first group is the group of runoff stations in the target region and the second group is made of stations in the control region. This analysis is particularly advantageous for evaluation purposes. The canonical analysis yields a smaller number of variables for the final test, and most importantly it also guarantees high correlations between the variables of the target and control regions.
3. 3 Computation of canonical variables. The steps for computing the canonical variables are now described:

Step 1) Compute the covariance matrix, V̂ of the runoff variables of the two sets (target and control). For p_{1} runoff stations in the target region and p_{2} in the control region, then

The subscripts of σ are the ordering numbers of the stations. The numbers 1 to p_{1} are for the p_{1} stations in the target region. The numbers $p_{1}+1$ to $p_{1}+p_{2}$ are for the p_{2} stations in the control region. For example, the subscript 1 will refer to the first station in the target region, while the subscript $p_{1}+1$ will refer to the first station in the control region and the subscript $p_{1}+2$ the second station in the control region, etc.
$\sigma_{i i}$ is the variance of the runoff series for station i , defined as,

$$
\begin{equation*}
\sigma_{i i}=\frac{1}{N} \sum_{s=1}^{N}\left(q_{i s}-\bar{q}_{i}\right)^{2}, \tag{3}
\end{equation*}
$$

where N is the number of years of recorded runoff data, $q_{i s}$ is the $s^{\text {th }}$ recorded runoff of station i, and \bar{q}_{i} is the mean of the recorded runoff of station i.
$\sigma_{i j}$ is the covariance of stations i and j , defined as,

$$
\begin{align*}
& \sigma_{i j}=\frac{1}{N} \sum_{s=1}^{N}\left(q_{i s}-\bar{q}_{i}\right)\left(q_{j s}-\bar{q}_{j}\right) \tag{4}\\
& \sigma_{i j}=\sigma_{j i} .
\end{align*}
$$ $\hat{\hat{V}}$, such that,

$$
\underline{\hat{v}}=\left[\begin{array}{ll}
\hat{\underline{v}}_{11} & \hat{\underline{v}}_{12} \tag{5}\\
\hat{\hat{v}}_{21} & \hat{\mathrm{v}}_{22}
\end{array}\right] \text {, }
$$

where \hat{v}_{11} is a $p_{1} \times p_{1}$ matrix,

$$
\hat{v}_{11}=\left[\begin{array}{cccc}
\sigma_{11} & \sigma_{12} & \cdots \cdots \sigma_{1 p_{1}} \tag{6}\\
\sigma_{21} & \sigma_{22} & \cdots \cdots \cdots \sigma_{2 p_{1}} \\
\vdots & \vdots & & \\
\vdots & \vdots & & \\
\sigma_{p_{1} 1} & { }_{p_{1}} & \cdots \cdots \cdots \sigma_{p_{1} p_{1}}
\end{array}\right]
$$

$$
\begin{align*}
& \hat{v}_{12}=\left[\begin{array}{cccc}
\sigma_{1\left(p_{1}+1\right)} & \sigma_{1\left(p_{1}+2\right)} & \cdots \cdots \sigma_{1\left(p_{1}+p_{2}\right)} \\
\sigma_{2\left(p_{1}+1\right)} & \sigma_{2\left(p_{1}+2\right)} & \cdots \cdots \sigma_{2\left(p_{1}+p_{2}\right)} & \vdots \\
\vdots & \vdots & \vdots \\
\sigma_{p_{1}\left(p_{1}+1\right)} & { }_{p_{1}}\left(p_{1}+2\right) & \cdots \cdots \sigma_{p_{1}}\left(p_{1}+p_{2}\right)
\end{array}\right] \tag{7}\\
& \hat{V}_{12}=\hat{v}_{21} \tag{8}
\end{align*}
$$

$\hat{v}_{22}=\left[\begin{array}{ccc}\sigma \\ \left(p_{1}+1\right)\left(p_{1}+1\right) & { }^{\sigma}\left(p_{1}+1\right)\left(p_{1}+2\right) \cdots \cdots{ }_{\left(p_{1}+1\right)\left(p_{1}+p_{2}\right)}^{\sigma}\left(p_{1}+2\right)\left(p_{1}+1\right) & { }^{\sigma}\left(p_{1}+2\right)\left(p_{1}+2\right) \cdots \cdots{ }_{\left(p_{1}+2\right)\left(p_{1}+p_{2}\right)}^{\sigma_{1}} \\ \vdots & \vdots & \vdots \\ { }^{\sigma} & \vdots & \vdots \\ \left(p_{1}+p_{2}\right)\left(p_{1}+1\right) & { }^{\sigma}\left(p_{1}+p_{2}\right)\left(p_{1}+2\right) \cdots{ }_{\left(p_{1}+p_{2}\right)\left(p_{1}+p_{2}\right)}\end{array}\right]$

Step 3) Obtain the values of canonical correlations by solving the system,

$$
\left|\begin{array}{cc}
-\theta \hat{\hat{v}}_{11} & \underline{\hat{v}}_{12} \tag{10}\\
\hat{\mathrm{v}}_{21} & -\theta \hat{\mathrm{v}}_{22}
\end{array}\right|=0 .
$$

The values of θ are the canonical correlations.
Step 4) Let \underline{a} and \underline{y} be the column vectors of coefficients for the canonical variables of the target and control regions respectively. Then, for a given value θ_{i}, the vectors $\underline{\alpha}_{i}$ and \underline{q}_{i} can be obtained by solving the system,

$$
\left[\begin{array}{lc}
-\theta_{i} \hat{v}_{11} & \hat{v}_{12} \tag{11}\\
\underline{\hat{v}}_{-21} & -\theta_{i} \hat{v}_{22}
\end{array}\right]\left[\begin{array}{l}
\underline{\alpha}_{i} \\
\underline{\alpha}_{i}
\end{array}\right]=\underline{0}
$$

subject to the standardization conditions:

$$
\begin{align*}
& \alpha_{i}^{\prime} \hat{v}_{11} \underline{q}_{i}=1 \tag{12}\\
& \underline{\underline{\gamma}}_{i}^{\prime} \hat{v}_{22} \underline{\underline{Y}}_{i}=1 ; \tag{13}
\end{align*}
$$

$\underline{\alpha}_{i}^{\prime}$ and $\underline{q}_{i}^{\prime}$ are the transposes of $\underline{\alpha}_{i}$ and \underline{Y}_{i} respectively.

Once the α_{i} and \underline{q}_{i} are obtained, the canoncal variables for the target region are obtained from the relations:

$$
\begin{equation*}
\zeta_{i}=\alpha_{i}^{\prime} \underline{Q}_{1} \tag{14}
\end{equation*}
$$

where ζ_{i} is the $i^{\text {th }}$ canonical variable in the target region

$$
\begin{equation*}
\underline{\alpha}_{i}^{\prime}=\left(\alpha_{i 1}, \alpha_{i 2}, \ldots, \alpha_{i p_{1}}\right) \tag{15}
\end{equation*}
$$

$$
\underline{Q}_{1}=\left[\begin{array}{l}
Q_{1} \tag{16}\\
Q_{2} \\
\vdots \\
Q_{p_{1}}
\end{array}\right]
$$

$Q_{1}, Q_{2}, \ldots, Q_{p_{1}}$ are runoff variables in the target region.

Similarly, ε_{i} is the $i^{\text {th }}$ canonical variable in the control region defined by the relation:

$$
\begin{align*}
\varepsilon_{i} & =\underline{r}_{i}^{\prime} \underline{Q}_{2}, \tag{17}\\
\text { where } \underline{\gamma}_{i}^{\prime} & =\left(\gamma_{i}\left(p_{1}+1\right)^{\gamma_{i}\left(p_{1}+2\right) \cdots \gamma_{i}\left(p_{1}+p_{2}\right)}\right) \tag{18}
\end{align*}
$$

$Q_{p_{1}+1}, Q_{p_{1}+2}, \ldots, Q_{p_{1}+p_{2}}$ are runoff variables in the control region.
3.4 The minimum number of years for detecting an increase in runoff means. In the previous sections two techniques to transform the original runoff varibles were described and in the case of canonical analysis even the basic steps of the procedure were described. However, the multivariate T^{2} test applies just as well for the set of original variables. The principal and canonical transformations will either simplify some of the calculations or improve the outcome of the test. Again, the transformations are not necessary to apply the test. Nevertheless in this study the test was only performed for the transformed variables.

Assuming the values of the population mean vector μ^{*} and covariance matrix \underline{V} for the seeded periō are known, the minimum number of observations, N^{*}, that one needs in order to be able to reject the hypothesis $\underline{\mu}^{*}=\underline{\mu}_{0}$, where $\underline{\mu}_{0}$ is a given vector, is given by

$$
\begin{equation*}
N^{\star}=\frac{\tau^{2}}{\left(\mu^{\star}-\underline{\mu}_{0}\right)^{\prime} \underline{v}^{-1}\left(\underline{\mu}^{\star}-\underline{u}_{0}\right)}, \tag{20}
\end{equation*}
$$

where τ^{2} is the noncentrality parameter with degrees of freedom k and $N-k$,
k is the total number of runoff variables, and
N is the number of observations for the nonseeded period.

Select values of τ^{2} as given by Tang [37] and Lehmer [38] are shown for convenience in Table 1.

TABLE 1 - Value of τ^{2}
Level of significance, $\alpha=0.05$; power $\beta=0.50$

Degrees of freedom			
k	$\mathrm{N}-\mathrm{k}$	τ^{2}	
2	28	5.468	
4	26	7.640	
5	25	8.640	
6	24	9.646	
8	22	11.655	

In this study the value of $\underline{\mu}_{0}$ is assumed to be the mean vector of target and control runoff variables for the period before seeding. $\underline{\mu}^{*}$ is similar to μ_{0} except that the means of the target runoff variables are 1.1 times greater than those in μ_{0}. In other words, it is assumed in this study that \bar{t}° the effect of precipitation management over the target areas will be to increase the runoff uniformly throughout the target areas by 10%. The covariance matrix \underline{V} is assumed to be the same as that of the nonseeded period.

When the principal components (or the canonical variables) are used for computing N^{*}, then $\underline{\mu}^{\star}$ and
are the mean vectors of the principal components (or the canonical variables) for the seeded and nonseeded periods respectively, and \underline{V} is the covariance matrix of the principal components ${ }^{-}$(or the canonical variables) for the non-seeded period. The original runoff variables can also be used in computing N^{*}. However, because of the large number of the original runoff variables, they are not used in this study.

It should be noted here that the use of principal components in equation (20) will yield approximately the same results as the use of the original runoff variables. This is due to the fact that the amount of variation accounted for by the principal components is practically the same as the variation of the original runoff variables. Thus, the principal component analysis will merely reduce the number of original variables, but will not improve the final outcome of the test.

However, if the number of variables can be reduced to one component then the principal component analysis will be very useful because one can apply a bivariate test, such as the conditional Student's t-test which is less restrictive in its assumptions than the T^{2}-test. Unfortunately, this usefulness will not be known until one has completed the analysis.

In the next chapter the collection of data in the Upper Basin of the Colorado River, the San Juan Mountains area, and the Maroon Peak and Grand Mesa region is discussed.

RESEARCH DATA ASSEMBLY

The data used in this study are the records of the runoff from three regions in the Colorado River Basin. These are:

1. The Upper Basin of the Colorado River,
2. The San Juan Mountains area,
3. The Maroon Peak and Grand Mesa region.

The first two areas were originally [7] proposed as sites for extensive cloud seeding operation. They are called northern and southern target regions (Figs. 2 and 3), while the third is called the control region (Fig. 4). Currently [8] only one area is considered: the southern area. The selection of the control stations is done primarily on the basis of the high correlations with those in the target regions.

It is virgin flow, which is the flow free from any man-made intervention, that is necessary for this study. So, corrections must be made for the records
of runoff. The records of runoff were obtained from U.S. Geological Survey Water Supply Papers. However, only the corrections due to transmountain, transbasin diversions, and regulation can be made. The diversion for irrigation cannot be made because there is no record for the amount of water diverted for this purpose. Thus, it is assumed after making the corrections above, that virgin flows are obtained.

Out of a large number of stations, seven stations are chosen for the final analysis in the northern target region, and six stations in the southern region. There are fourteen stations used as controls for the northern region, and nine stations as controls for the southern region. These stations and their descriptions are listed in Table 2. The correlations for these stations computed from all the corresponding actually available records are shown in Tables 3, 4, 5 and 6. There are two stations used as controls for both the northern and southern regions.

Types	$\begin{aligned} & \text { Seq. } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { csu Sta. } \\ & \text { No. } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { LisGS sta. } \\ & \text { No. } \end{aligned}$	Names	10	Lat.		10	Long.	(1)	$\begin{aligned} & \text { Area } \\ & \left(S q_{i} M_{1}\right) \end{aligned}$	$\begin{aligned} & \text { Elevation } \\ & \text { (ft.) } \end{aligned}$
Targetstations	1	1970000	9.0105	Colorado River below Baker Culch, near Grand Lake, Colorado.	40	19	33	105	51	22	53	8750
in	2	1960000	9.0110	Colorado River near Grand Lake, Colo.	40	13	08	105	51	25	103	8380
Northern Project	3	1866000	9.0165	Arapaho Creek at Monarch Lake out let. Colo.	40	06	45	105	44	\$7	47.1	8310
	4	1830000	9.0190	Colorado River below Lake Granby, Colo.	. 40	08	39	105	52	00	311	soso
	5	1820000	9.0195	Colorado River near Granby, Colo.	40	07	15	105	54	00	322	7960
	6	1802730	9.0265	St. Louis Croek near Fraser, Colo.	39	54	30	105	52	45	32.8	8980
	7	1776000	9.0360	Willians Fork near Leal, Colo.	39	49	55	106	03	20	89.5	8790
Controlstations for Northern Froject	1	1742100	9.0535	Blue River above Green Mountain Reservoir, Colo. Blue River below Green Mountain Reservoir, Colo.	39	48	55	106	13	20	514	7947
	2	1740000	9.0575		39	52	so	106	20	00	599	7683
	3	1720000	9.0595	Piney River near State Bridge, Colo. Homestake Creek near Red C1Iff, Colo. Fryingran River at Norrie, Colo. North Fork Fryingpan River near Norrie. Colo.	59	48.	00	106	35	00	82.6	7272
	4	1666300	9.0645		39	28	25	106	22	00	58.9	8783
	5	1594260	9.0780		39	19	50	106	39	30	89.5	8410
	6	1594236	9.0785		39.	20	40	106	39	So	41.2	8400
	7	1590000	9.0850	Roaring Fork River at Clenwood Springs, Colo.	59	32	50	107	19	50	1460	5721
	8	1379000	9.1090	Taylor River below Taylor Park Reservoir. Calo.	58	48	50	106	36	40	254	9170
	9	1378400	9.1100	Taylor River at Almont, Colo.	38.	40	00	106	51	00	477	8011
	10	1378100	9.1125	East River at Almont, Colo.	38	40	00	106	51	00	295	8006
	11	1377825	9. 1135	Ohio Creek near Baldwin, Colo.	38	42	00	107	00	00	124	8180
	12	1377500	9.1145	Gunnison River near Cunnison, Colo.	38	32	50	106	57	00	1010	7670
	13	1377280	9.1155	Tomichi Creek at Sargents, Colo.	38	24	00	106	25	00	155	8420
	14	1377230	9.1180	Quartz Creek near Ohio City, Colo.	38	33	35	106	38	10	106	8430
Targetstarions in	$\frac{1}{2}$	1278800	9.1650	River below Rico, Colo.	37.	38	20	108	${ }^{03}$	35	105	8422
	$\frac{3}{3}$	1278000	9.1665	River at Dolores, Colo. uel River near piacervilie,	37.	28	00	105	30	00	556	6919
Southern Project		1272445	9.1725	san Miguel River near Placervilie, Colo.	38	02	05	108	07	15	308	7056
	4	1077090	9.3440	at Banded Peak Ranch. . Colo. at Howardsville, Colo. at Durango, Colo.	37	05	07	106	41	20	69.3	7941
	5	1073480	9.3575		37	50	00	107	36	00	55.9	9617
	6	1073436	9.3615		37	16	45	107	52	47	692	6502
Controlstations for Southern Project	1	1425625	9.0975	Buzzard Creek near Collbran. Colo. Toelch1 Creek at Sargents, Colo. Quarta Creek near ohio City, Colo. Tomich1 Creek at Gumison, Colo. Crystal Creek near Maher, Colo. North Fork Gunnison River near Sonerset, Calo. teroux Creek near Cedaredge, Colo. Surface Creek near Cedaredge, Colo. Kannah Creel near Mhitewater, Colo.	39	16	20	107	51	00	139	6955
	2	1577280	9.1155		58.	24	00	106	25	00	155	8420
	3	1377230	9.1180		38	33	35	106	38	10	106	8430
	4	1377200	9.1190		38	31	20	106	56	25	1020	7629
	5	1373900	9.1275		38	${ }_{5}^{33}$	05	107	30	20	42.2	8070
	6	1373055	9.1325		38.	55	45	107	26	55	521	6039
	7	1373020	9.1345		38.	55	35	107	47	35	35.1	7160
	8	1371815	9.1430		38	59	00	107	51	00	26.7	8180
	9	1370300	9.1520		38	59	00	108	14	00	61.9	-

		M-4							
		$\begin{array}{ll} \hline \operatorname{cso} & \\ \text { ers. No. } \end{array}$	1970000	1960000	1866000	1830000	1820000	1802730	1776000
	csu STA. No.	$\begin{aligned} & \text { ungs } \\ & \text { S7k. No. } \end{aligned}$	9.010s	9.0105	3.8110	9.0165	3.0190	9.0265	9,0360
$\mathrm{CH}-4$	1742100	9.0535	. 7625	. 8365	. 8375	.8234	. 6475	. 7779	. 9342
	1740000	9.0575	. 6025	, 1277	. 6970	. 7077	. 4634	. 8427	-8357
	1720000 1666700	9.0595	+ 9164	. 9093	-332	-8476	. 7171	. 6076	,947a
	1666709 1594260	9.0645	-6785	- 85414	-8854	-8304	- 67218	.6515	-6039
	1594236	9.0715	, 6.6 6if	. 8567	. 3187	-9089	+7975	. 66291	-18647
	1590000	9.0850	,8723	. 8776	-13382	.8770	. 7701	. 6381	. 8717
	1379000	9.0190	. 13164	. 8174	. 7846	-8541	. 6999	. 4699	. 9080
	1374400	3.1100	. 1474	. 8434	. 7942	. 6473	-7329	. 5012	. 7744
	1378100	9.1125	. 1635	. 8151	. 7971	-8301	. 6581	. 6456	,7896
	1372325	9.1135	.9741	. 6354	. 5844	. 7306	, 5222	-6130	. 7672
	1377500	9.1145	. 8714	-8338	-7996	-8434	-6851	. 5337	+11012
	1377230°	9.1180	. 8.8264	.6437	+7113	-8009	.6614	-5672 +5090	. 70838

			3-4					
		$\begin{aligned} & \text { csut, no. } \\ & \text { sin. } \end{aligned}$	1278800	1278050	1272445	1077090	1073480	1073436
	$\begin{aligned} & \text { cso } \\ & \text { 2TA, No. } \end{aligned}$	usas BTA, NO.	9.1650	9.1665	9.1725	9.3440	9.1440	9.3615
	1425625	9.0975	-9004	88519	. 3872	. 7978	-18466	. 8258
-		9.1155	-9020					
	137230		-9108			. 6336	-7553	-6964
C5-4	1377200 1373900	9.1170 9.1275	-9865	-8587	. 84205	-7859	-8895	+8423
Cs-4	1373055	9.1275	-8900	-8599	-7981	. 7838	-. 8502	-8216
	1373020	9.1345	-8335	. 3608	. 7064	-1226	-81118	-0069
	1371815	3, 1630	. 8.961	-8993	.8021	+8490	-2168	- 4315
	1370300	9.1520	. 9299	. 8058	. 8909	. 8576	- 0276	. 7837

TADLE 4-CORMRLATTON MATMXX METNEEN N-6 AND CN-6 (an conputed from all available data)

			N-6						
		Csid. No.	1970000	1960000	1666000	1830000	1820000	1802730	1776000
	$\begin{aligned} & \operatorname{csy} \\ & 5 \mathrm{TA} . \\ & \mathrm{sin} . \end{aligned}$	uscs 85A. No.	9.0105	9.0110	9.0165	9.0190	9.0195	\$.0265	3.0360
$\mathrm{CH}-6$	1742100	9.0535	. 6548	. 9578					
	1740000	9.0573							-8409
	1720000	9.0595		-3230	- 5376	. 6146	- 3806	. 3611	. 1126
	1666309 1594250	9.0645	. 73488	+6093	- 57378	.5336 .7567	.3514 .8406	.3718 .5299	.6702 .7359
	1594236	9.0760	-7923	\% 59248	. 63717	. 7567	-8806	.5299 .3247	7339 -4008
					-6076	. 6012	. 7616	-5203	-5695
	1379000	9.0130	. 6576	-5072	. 6912	. 2468	-4766	-5283	-7748
	1378400 1778100 1737025	9.1100	+7135 +3529	$\begin{array}{r}.4173 \\ \hline 1010\end{array}$. 5538	. 7091	. 2055	. 5232	-7908
	1378109 1377925	9.1125	. 3529	-4010	. 7701	+1470	. 4582	- 4277	. 4510
	1377500	9.1175	.6645	-2784	16396 .5132	-7202	. .54736	.7097 .4155	. 44389
	1377260	9.115s	-7954	-5034	-6163	+5226	. 4351	-4590	-8899
	1377230	9,1180	- 8004	- 5576	-1133	. 6640	. 6830	. 6961	. 4868

TABLE 6- CORRELATION MATICIX AITNEEN S-6'AND CS-5 (as computed Eron all available data)

			5-4					
			1276800	1278050	1272445	1077090	1073480	2023436
	$\begin{aligned} & \text { csu } \\ & \text { sTA. wo. } \end{aligned}$	uscs STA. NO.	9.1650	3.1665	9.1725	9.3440	9.3575	9.3615
cs-6	1425625	9.0975	. 8227	. 6427	. 7111	. 6302	.128	3267
	1377280	2. 1155	, 9310	9100	. 7033	¢ 3573	.9009	.9126
	7377230	9.1170	. 8008	. 8536	. 7309	.7923	7754	*297
	1377200 373900	9.1190 9.1275	18864 .9406	. 7361	-8601	. 9351	. 9729	. 1719
	2373900	9.1275	.9406	.7605	.8115	. 7576	. 7964	. 7121
	1373055	9.1325	-9368	. 7148	-. 8999	. 8423	. 1881	. 9498
	+1373020	9.1345 9.1430	\%8947	. 6972	. 8129	-3556	.8410	. 6934
	1370300	9.7520	-8848	. 7429	. 78381	+7217	. 7546	+ 78467

The major part of the spring runoff will occur because of the melting of the winter snow, which is subject to the effect of seeding during winter time. So, it is reasonable to consider whatever changes in the value of the spring runoff as an indirect indicator of the effect of cloud seeding. This is equivalent to saying a larger amount of snowfall in winter will produce a larger amount of runoff in spring. Because of the uncertainty of the start of snow melting, both the runoff during the four months of April, May, June and July, and during the six months of March, April, May, June, July and August are used. These four-month runoff and six-month runoff periods are treated separately in this analysis.

The number of years of record for all stations is fixed at 30 , starting from 1938 up to 1967. To assure that these stations are still in operation, the selection has been made in such a way that only stations that have records available for 1967 are considered. It is not likely that the operation of these stations will be discontinued in the near future.

The characteristics of the data used in this study are shown in Tables $7,8,9,10,11,12,13$, and 14. There are some data missing in the runoff record of the stations selected but they are filled in by the regression method [39] with the random component superimposed. These stations with missing data are shown in Table 15. Also shown in Table 15 are the stations used in evaluating the missing data. Graphical representations of the data used are shown in Figs. 5, 6, 7, 8, 9, 10, 11, and 12 according to the regions. The means and standard deviations computed from the year 1938 up to 1967 data are shown in Table 16; and the correlations between $\mathrm{N}-4$ and $\mathrm{CN}-4$, $\mathrm{N}-6$ and CN- $6, \mathrm{~S}-4$ and CS-4, and S-6 and CS- 6 are shown in Tables 17, 18, 19, and 20, respectively.

In Chapter V, the analysis of the data and the results are presented.

csuy	$\begin{aligned} & 1970000 \\ & 8.0105 \end{aligned}$	$\begin{aligned} & 1800000 \\ & 9,0110 \end{aligned}$	$\begin{aligned} & \text { Station } \\ & 1006000 \\ & 9.0105 \end{aligned}$	Wuankers 1850000 9.0290	$\begin{aligned} & 1520000 \\ & 3.0195 \end{aligned}$	$\begin{array}{r} 1502750 \\ 9,0265 \end{array}$	$\begin{aligned} & 1776000 \\ & 3.0360 \end{aligned}$
Tepr							
1939	130．3s	106． 27	24，61	1175．06	1136．35	102，10	329.77
1339	216.15	245，75	t23，61	134， 3	263．01	72.44	247，57
1940	138.55	195.02	1s． 37	6s6．37	673.5	3 sc 67	175．59
194	161.60	251.25	318，${ }^{\text {c／}}$	94，23	803．08	50，50．	224．73
1942	216,65	219.05	235.59	1192．38	850.45	83，64	291．53
1943	180.00	230， 69	${ }^{14.65}$	365.11	${ }^{207} 78.90$	3．98	315.73
1944	191.33	234，33	179．59	601，\％	728．79	77%	218,40
1945	211.40	21.49	126.92	1069.87	Sir 71	22.00	253．12
1946	H25］ 3	179.04	201，58	62\％．49	64， 57	73.00	226.57
1947	200.72	517.40	240，16	1556.10	1035.65	39．51	317．49
1948	17.75	198.7	tol．ss	3035.12	602， 4	74，${ }^{\text {a }}$	231.42
1948	302，．07	306.47	248，28	1069．03	1039，22	8，${ }^{\text {a }}$	200， 31
1950	170.23	180.74	155.25	222，67	260．07	22，07	227．33
1951	352.28	300， 53	${ }^{245} 5.09$	1000.46	993，60	107.17	301．82
1982	24， 13	522，67	203．23	1ม\％	1385，72	107． 45	［3．81
1533	235，0？	207， 41	186，89	740.49	231．45	75.58	225.97
1351	108， 64	112.41	129.00	529.31	4te，s？	34．59	108，27
1955	143．00	150，6］	171.00	769．74	438.18	32．04	163，22
193	206， 35	299.24	213.13	1046． 16	804．9：	42．58	219．0．ts
1957	D4：13	366.69	320.44	1625，95	1232， 68	s， 12	306，48
1936	226.14	249.54	220，32	209， 26	993.11	40．32	207， 4
1959	17，${ }^{\text {a }}$	206，87	204，50	458，75	S75． 10	$2 \mathrm{~S}, \mathrm{os}$	201，92
1360	212．78	200.48	217，77	1122，92	1294，95	31.55	252，19
1961	14．57	202， 94	117.29	536．40	813.74	23.22	17s．72
1962	261．49	273，30	229.44	121．\％	1209．42	48，16	313，24
1363	130.16	151．48	14.76	655.72	656.17	21.13	100．42
1904	175.19	193.73	177.40	\＄26，63	810.51	22，48	177，83
2905	271．50	$3 \mathrm{~m} / 11$	206.29	1233.67	1188.51	29．62	275，43
1306	141．71	13,83 243,04	103．35	（286，08	272．07	30．50，	162.67 11.29

$\mathrm{css}^{\mathrm{css}}$	$\begin{array}{r} 1970000 \\ 9.0105 \end{array}$	Station Nambera						
		1960000	1860000	1530000	1820000	1802750	1776000	
year								
1939	152.42	172．51	91.26	490．37	359，43	38．38	200．28	
190	97，si：	135.72	121．40	456，37	479，65	40.21	126.53	
1341	14， 87	176．89	228，03	053，22	571.12	53.16	162，34	
1942	152，75	153,63	166．17	137．27	537．20	62.61	202．05	
1963	127.65	164.24	304．99	329， 29	578．21	69，92	180．20	
1941	133，58	15S．78	221，31	428.60	521，21	55，4s	152，48	
139	159， 44	141.16	105， 00	73．17	68\％ 76	61.18	143，51	
1946	155.16	128.65	143，45	447.69	466.07	\＄5，12	164．47	
294	143， 31	228.14	176．76	tut， 29	152．17	78． 38	29，03	
198	30，11	140.56	114，3	29．13	402，25	85，915	166，26	
1959	213.43	216.55	172，61	23．79	231．75	63．60	195．88	
2980	119.74	127.12	109.07	685，61	178，45	53，53	163， 16	
1351	185，38	223.48	173．25	723．23	ne．es	40．43	221，28	
1932	175，29	253，57	205．26	6ss．st	6ss． 23	61，65	24，8\％	
1935	171.42	154，66	136．06	515.19	542， 68	58．72	169．56	
1354	77，05	12.52	91，46	175．96	3s9．63	26.67	10，90	
1955	10s． 61	112.60	123，39	540，36	318．39	${ }^{41,40}$	125.25	
195	144．50	177.11	133．30	735.35	621.37	33.12	139.23	
1937	201.40	273.95	25， 4	1276．kS	904．12	35.48	229.10	
1558	157.49	175．29	134.85	644，29	710，91	57．01	17， 4	
1950	123.4	151.96	244，11	618.79	42， 40	30.29	167.68	
1850	150.52	139.33	15s， 2 k	280.54	033，41	31.54	180.31	
1961	130，3	14548	124，20	390，67	Steo．04	19.4	133.18	
1562	198，05	26.76	154．31	351，17	762．64	55，21	225，00	
1963	H2．60	115.22	120．65	453.61	477.88	16.44	79.08	
1364	141.14	146.24	128.08	589.51	575．56	［5，43	130,35	
164	136，22	227，93	193， 31	760.73	249，85	31，52	290，70	
1360	102.45	98.69	74.06	109.61	95．96	17． 30	106．26	
1967	166.64	175．08	135.65	4ep． 44	199．60	27．0n	158.68	

 	喜
 	粊然
はぞ 	$\begin{aligned} & 5 \frac{6}{8} \\ & \frac{8}{20} \end{aligned}$
825	
 	新
 	$\frac{2}{5}$
 	部零
 	唇言
 	－5

	数
 	$\begin{aligned} & \text { ? } \\ & \text { 苟咅 } \end{aligned}$
 	$\begin{aligned} & \stackrel{5}{2} \\ & \stackrel{y y}{4} \frac{8}{8} \end{aligned}$
 	苟
 	为菪

cises	statiom Smpers					
	1274690．	127029 9,1685	127245 8.7725	103000	107480 9.3575	${ }_{\text {1074 }}$
Tear						
1938	260．70	1087．32	423， 45	233．09	$2 \mathrm{x}, 72$	269．61
1939	12．78	44.68	323，3	$136.7 n$	109．07	833.04
1940	64．40	S34，58	232， 6	126.38	18.8	200，as
1941	485,72	1294.50	20，02	34．08	289.28	2328.01
190	23．45	120\％． 215	203．54	23， 185 18.26	220．05	${ }^{1018} 1276$
134	293.31	［142．22	xss，72	22.03	222，43	1106.08
194	883．08	K2e． 24	402．87	200．32	171．12	1270， 13
196	35．9\％	523，26	320．06	97，90	134.95	915．27
194\％	253．36	767，28	H10．71	10，2	315.76	1396．58
1948	238．48	932．16	330.64	105.6	291.43	1740， p
1949	223.61	972．30	460．79	mi．as	24， 48	I905．60
136	70．44	\＄91．36	261，48	109．55	124，24	\＄59．00
2351	145.76	356.17	201，${ }^{\text {cos }}$	\％ 9.00	13.48	207， 76
1052	sa9， 4	1255.06	520.65	272.82	264，08	2010.24
1953	173.05	49.35	306，44	126，15	121．97	（40， z_{2}
195	135.63	361．00	206.30	108，44	117，40	${ }^{\text {sss．}} 60$
1935	172.42	450.31	270.27	14， 10	127．159	135．79
125	170．00	496． 15	258．7\％	123，36	144．73	153，34
195	422.6	120n－4	187.31	25．515	273.42	1950.09
1358	545，4t．	1046．41	828．61	स21．4）	201， 19	170．as
190	111．${ }^{\text {co }}$	376．50	$23 \mathrm{s.53}$	85．02	173．31	chiss
150	23.14	723．01	176．54．	112．67	173．61	1286， 51
1961	158．4．	sss．an	361.64	14，5s	19．11	3024．07
2962	24，23	256.19	175，03	176．30	196．04	148.25
1363	124．45	tes． 73	23，42	103.45	127.91	36， 0^{0}
194	12，08	271，99	305，47	134.14	127.19	27，04
BSS	357． 10	1003， 69	217．0	20．3s	24.37	1301．56
1360	194，47	638．68	277，4	163，20	159.73	1050．99
1367	143．22	400．01	235.45	120．57	tzi．ss	71．36

Station with missing data		Filling in of missing data is made with station		Year of missing data
csu sta. No.	$\begin{gathered} \text { USGS Sta. } \\ \text { No. } \end{gathered}$	$\begin{aligned} & \text { csu Sta. } \\ & \text { No. } \end{aligned}$	$\begin{gathered} \text { USGS sta. } \\ \text { No. } \end{gathered}$	
1820000	9.0195	1830000	9.0190	54-60
1830000	9.0190	1960000	9.0110	38-50
1970000	9.0105	1960000	9.0110	38-53
1272445	9.2725	1277200	9.1665	$38-42$
1278800	9.1650	1277200	9.1665	38-51
1371815	9.1430	1370300	9.1520	$38-39$
1373020	9.1345	1373055	9.1325	57-60
1373900	9.1275	1373360	9.1285	38-45; 55-60
1377230	9.1180	1377280	9.1155	51-60
1377825	9.1135	1378100	9.1125	$38-40 ; 51-58$
1594236	9.0785	1378400	9.1100	$38-47$
1720000	9.0595	1590000	9.0850	$38-44$
1377500	9.1145	1378400	9.1100	38-44
1379000	9.1090	1378400	9.1100	38
1594260	9.0780	1378400	9.1100	38-47

Fig. $5 \quad \mathrm{~N}-4$ series

Fig. $6 \mathrm{~N}-6$ series

Fig. $7 \quad \mathrm{CN}-4$ series

N-6 CSU STA. 1802730 USGS STA. 9.0265

Fig. 7 CN-4 series - Continued

CN-A CSU STA. 1594260 USGS STA. 9.0780

CN-4 CSU STA. 1594236 USGS STA. 9.0785

CN-4 CSU STA. 1377500 USGS STA. 9.1145

CN-6 CSU STA. 1594260 USGS STA. 9.0780

EAR

CN-6 CSU STA, 1378400 USGS STA. 9.1100

[^9]Fig. 8 CN-6 series - Continued

Fig. 9 S-4 series

Fig. 10 S-6 series

S-6 CSU STA. 127805 C USGS STA. 9.1665

CS-A CSU STA. 1373020 USGS STA. 9,1345

Fig. $10 \mathrm{~S}-6$ series - Continued S-6 CSU STA. 1073480 USGS STA. 9,3575

Fig. 11 CS -4 series
CS -4 CSU STA. 1377280 USGS STA. 9.1155

CS-A CSU STA. 1373900 USGS STA. 9.1275

S. 6 CSU STA. 1073436 USGS STA. 9.3615

CS-4 CSU STA. 1377230 USGS STA, 9.1180

CS-4. CSU STA. 1370300 USGS STA. 9.1520

Fig. 12 CS-6 series

CS-6 CSU STA. 1373900 USGS STA. 9.1275

csu Sta. No.	usgs Sta. No.	Mean of 4-month averages (ofs)	Sta. Dev. of 4month averages (cfs)	Mean of 6-month averages (cfs)	std. Dev. of 6-month averages (cfs)
1970000	9.0105	198.449	55.552	141.865	38.338
1960000	9.0110	241.821	71.196	174.569	51.065
1866000	9.0165	203.590	53.612	146.297	38.545
1830000	9.0190	931.757	290.050	644.206	220.359
1820000	9.0195	826.556	274.385	582.724	203.842
1802730	9.0265	63.007	27.307	47.814	20.085
1776000	9.0360	234,679	64.188	171.954	45.884
1742100	9.0535	924.237	316.280	702.783	233.361
1740000	9.0575	1043.263	341.708	794.292	241.819
1720000	9.0595	177.674	72.281	124.358	50:072
1666300	9,0645	199.184	55.142	141.030	39.140
1594260	9.0780	297.711	73.851	215.045	53.847
1594236	9,0785	128.576	38.515	89.611	27.138
1590000	9.0850	2739.444	854.102	2031.847	624.926
137900	9.1090	406.685	122.728	306.039	91.987
1378400	9.1100	641.932	224.886	486.119	165.435
1378100	9.1125	736.162	236.020	534.229	170.870
1377825	9.1135	219.301	98.861	157.011	69.485
1377500	9.1145	1521.405	754.366	1129.644	546.188
1377280	9.1155	126.388	59.684	94.178	42.221
1377230	9.1180	113.268	42.698	85.892	30.376
1278800	9.1650	314.930	159.674	226.413	111.344
1278050	9.1665	1028.025	467.197	738.323	319.454
1272445	9.1725	500.048	204.184	379.190	144.622
1077090	9.3440	230.964	93.315	170.480	64.553
1073480	9.3575	245.702	68.310	178.304	50.207
1073436	9.3615	1696.563	688.607	1254.713	481.412
1425625	9.0975	114.324	68.267	78.467	45.159
1377280	9.1155	126.388	59.684	94.178	42.221
1377230	9.1180	113.268	42.698	85.892	30.376
1377200	9.1190	322.737	192.349	257.047	136.341
1373900	9.1275	78.756	36. 701	55.056	24.150
1373055	9.1325	1124.250	410.613	790.065	280.861
1373020	9.1345	124.166	46.158	88.247	31.349
1371815	9.1430	88.115	29.509	68.390	21.124
1370300	9.1520	76.695	35.297	56.029	24.863

			N-6						
		cspu, mo.	1970000	1960000	1866000	1830000	1020000	1802730	1776000
	$\begin{aligned} & \operatorname{csu} \\ & \text { sтג. no. } \end{aligned}$	usas STA. no.	9.0105	9.0110	3.0165	9.0190	8.0195	9.0263	9.0360
CM-6	1742100	${ }^{9} .0515$. 486	-731	. 730	. 813	. 671	. 706	. 896
	1740000 1720000	9.0575 9.0595	457 .329 .398	. 776	- 598	. 731	. 631	. 825	. 855
	1720000 1666300	9.0595 9.0645	.529 .370	. 7740	.587 .659	. 620	+569	$\begin{array}{r}-408 \\ -578 \\ \hline\end{array}$. 7746
	1594260	9.0740	- 598	.795	. 592	. 659	, 621	. 555	-803
	1594236	3.0785	. 627	. 650	. 603	. 529	. 552	. 468	. 562
	1590000	9.0850	. 509	. 40	. 720	. 764	. 659	. 623	. 876
	1779000	9.1090	. 529	. 766	. 658	. 704	. 613	. 438	. 734
	1378400	9.1100	. 551	. 788	. 669	. 693	. 639	. 456	. 761
	1371100	9. 1125	. 507	-802	. 716	. 700	. 597	. 599	. 799
	1377825 1377500 177200	9.1135	$\begin{array}{r}\text { - } 433 \\ .501 \\ \hline 855\end{array}$	-681	-640	$\begin{array}{r}\text {-650 } \\ .596 \\ \hline\end{array}$	$\begin{array}{r}\text {. } 541 \\ .450 \\ \hline\end{array}$	+477	. 644
	1377500	9.1145	. 503	. 532	-420	. 596	. 450	. 373	-604
	1377280	9.1155	. 355	. 708	, 701	-683	-695	. 542	715
	1377230	9.1180	. 497	. 66%	. 673	. 674	. 593	. 509	.723

DATA ANALYSIS AND RESULTS

In this chapter the data described in Chapter IV are analyzed according to the procedures discussed in Chapter III. The approaches used for reducing the number of runoff variables are the principal component analysis and the canonical analysis. The minimum numbers of years to detect the increase in the runoff means are obtained by application of equation (1).

In the principal component analysis and the canonical analysis, the coefficients for the principal components and the canonical variables are obtained basically from the analysis of the covariance matrix. Therefore, because the covariance matrix is assumed to be the same for both periods, it follows that the coefficients obtained for the non-seeded period apply for the seeded period as well. The suspected change in the means of the runoff leave the coefficients of the components invariant.
5.1 The application of principal component analysis. The numerical procedures for the reduction of the number of runoff variables by the principal components method were executed separately in each region on the CDC 6400 digital computer of Colorado State University. The program BMDO1M from the University of California Press was modified to accommodate nonstandardized variables. The zero mean is not desirable here because a certain percent increase in the mean will be postulated later.

The steps in obtaining the principal components in each region may be summarized as follows:

1) Compute the covariance matrix of the runoff variables in that region, $\hat{\hat{V}}$, as defined in equation (2).
2) Solve the system,

$$
\begin{equation*}
|\underline{\hat{v}}-\lambda I|=0, \tag{21}
\end{equation*}
$$

to obtain $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{p}$, the characteristic roots, which are the amounts of variances of components 1 , $2, \ldots, p$.
3) Solve the system,

$$
\begin{equation*}
\left(\underline{\hat{v}}-\lambda_{i} \mathrm{I}\right) \underline{B}_{i}=\underline{0} \tag{22}
\end{equation*}
$$

subject to the normalization condition,

$$
\begin{equation*}
\underline{B}_{i}^{\prime} \underline{B}_{i}=1 \tag{23}
\end{equation*}
$$

to obtain \underline{B}_{i} which is the vector of the coefficients for the $i^{\text {th }}$ component in that region.

For example, when $\mathrm{N}-4$, which is the four-month runoff of the northern region, is used the coefficients for the first principal component are found to be (Table 21),

$$
\begin{aligned}
& \beta_{1,1}=0.0859 \\
& \beta_{1,2}=0.1679 \\
& \beta_{1,3}=0.1151 \\
& \beta_{1,4}=0.7065 \\
& \beta_{1,5}=0.6576 \\
& \beta_{1,6}=0.0332 \\
& \beta_{1,7}=0.1359
\end{aligned}
$$

where the first subscript of β indicates the ordering number of the principal component, the second one indicates the sequential number of the station as shown in Table 2.

Let ξ_{i} be the $i^{\text {th }}$ principal component in the target region before seeding, then for $\mathrm{N}-4$,

$$
\begin{aligned}
E_{1} & =\sum_{j=1}^{7} \beta_{1, j} Q_{j} \\
& =0.0859 Q_{1}+0.1679 Q_{2}+0.1151 Q_{3}+0.7065 Q_{4} \\
& +0.6576 Q_{5}+0.0332 Q_{6}+0.1359 Q_{7}
\end{aligned}
$$

where $Q_{1}, Q_{2}, Q_{3}, Q_{4}, Q_{5}, Q_{6}$ and Q_{7} are runoff variables listed in order corresponding to the numbers in the 'Seq. No.' column in Table 2. This first principal component will account for the largest percentage of the total variation in this whole region based on the four-month spring runoff.

The coefficients for the principal components in $\mathrm{N}-4, \mathrm{~N}-6, \mathrm{CN}-4, \mathrm{CN}-6, \mathrm{~S}-4, \mathrm{~S}-6, \mathrm{CS}-4$ and CS-6 are shown in Tables 21, 22, 23, 24, 25, 26, 27, and 28, respectively. The cumulative percentages of total variation accounted for by the principal components in each region are shown in Table 29. A 99 cumulative percentage was used to limit the number of the principal components to be retained for the study, because it was found that beyond this percentage of total variation, the rate of increase of the cumulative percentage was very slow.

After the coefficients of the principal components in each region have been found, then the series of the principal components can be simply obtained from the original series [12].

TABLE 21 - COEFPICIENTS FOR THE PRINCIPAL COMPONENTS OF $\mathrm{N}-4$

| CSU
 Sta. | USGS
 Sta.
 No. | 1st
 Comp. | 2nd
 Comp. | 3rd
 Comp. | 4th
 Comp. |
| :--- | :--- | :--- | :--- | :--- | ---: | ---: |
| 1970000 | 9.0105 | .0859 | -.0894 | -.4339 | -.8081 |
| 1960000 | 9.0110 | .1679 | -.0529 | -.4719 | .06337 |
| 1866000 | 9.0165 | .1151 | .0334 | -.1221 | -.2757 |
| 1830000 | 9.0190 | .7065 | .6848 | .1407 | -.0308 |
| 1820000 | 9.0195 | .6576 | -.7201 | .1966 | .0688 |
| 1802730 | 9.0265 | .0332 | .0191 | -.3072 | .2822 |
| 1776000 | 9.0360 | .1359 | .0132 | -.6491 | .4262 |

TABLE 22 - COEFFICIENTS FOR THE PRINCIPAL COMPONENTS OF $\mathrm{N}-6$

CSU	USGS				
Sta.	Sta.	lst	2nd	3rd	4th
No.	No.	Comp.	Comp.	Comp.	Comp.
1970000	9.0105	.0767	-.0806	-.5604	-.6494
1960000	9.0110	.1549	-.0680	-.5037	.0808
1866000	9.0165	.1084	.0256	-.2105	-.2926
1830000	9.0190	.7191	.6784	.1135	-.0377
1820000	9.0195	.6510	-.7266	.2122	.0154
1802730	9.0265	.0339	.0048	-.1892	.4046
1776000	9.0360	.1279	-.0079	-.5424	.5664

CSU	USGS				
Sta.	Sta.	lst	2nd	3rd	4th
No.	No.	Comp.	Comp.	Comp.	Comp.
1742100	9.0535	.2268	-.1513	-.5634	-.7013
1740000	9.0575	.2156	-.2566	-.6879	.6239
1720000	9.0595	.0422	-.0478	.0304	-.0128
166300	9.0645	.0375	-.0220	-.0413	.0318
1594260	9.0780	.0528	-.0362	-.0035	.0583
1594236	9.0785	.0233	-.0100	.0220	.0898
1590000	9.0850	.7062	-.4663	.3442	-.1245
1379000	9.1090	.1005	-.0147	.1038	.1050
1378400	9.2100	.1825	-.0337	.1947	.1356
1378100	9.1125	.1858	-.1261	.1495	.2038
1377825	9.1135	.0710	-.0262	.0944	.1331
1377500	9.1145	.5577	.8196	-.0869	.0420
1377280	9.1155	.0433	-.0047	.0120	.0192
1377230	9.1180	.0313	-.0008	.0125	-.0051

TABLE 25 - COEFFICIENTS FOR THE PRINCIPAL COMPONENTS OF S-4

USGS				
CSU	USGa.	1st	2nd	3rd
Sta.	Sta.	Comp.	Comp.	Comp.
No.	No.			
1278800	9.1650	-.1608	-.0738	-.8889
1278050	9.1665	-.5304	.8066	-.0525
1272445	9.1725	-.2180	-.4039	-.2817
1077090	9.3440	-.1027	.0634	-.1532
1073480	9.3575	-.0754	-.0045	. .1153
1073436	9.3615	-.7931	-.4205	.3017

TABLE 26 - COEFFICIENTS FOR THE PRINCIPAL COMPONENTS OF S-6

CSU				
Sta.	USGS			
Sta.	lst	2nd	3rd	
No.	No.	Comp.	Comp.	Comp.
1278800	9.1650	-.1622	-.1421	-.8496
1278050	9.1665	-.5207	.8186	-.1102
1272445	9.1725	-.2240	-.3730	-.3252
1077090	9.3440	-.1013	.0618	-.1660
1073480	9.3575	-.0802	-.0038	.1155
1073436	9.3615	-.7973	-.4084	.3456

| TABLE $27-$ | COEFFICIENTS FOR THE PRINCIPAL |
| :---: | :---: | :---: | :---: |
| COMPONENTS OF CS | |

TABLE 28 - COEFFICIENTS FOR THE PRINCIPAL COMPONENTS OF CS-6

CSU			
Sta.	USGS		
No.	Sta.	1st	2nd
No.	Comp.	Comp.	
1425625	9.0975	-.1278	-.0209
1377280	9.1155	-.1201	-.2711
1377230	9.1180	-.0831	-.1661
1377200	9.1190	-.3994	-.8374
1373900	9.1275	-.0625	-.0688
1373055	9.1325	-.8857	.4363
1373020	9.1345	-.0853	.0376
1371815	9.1430	-.0567	-.0003
1370300	9.1520	-.0621	-.0283

TABLE 29 - CUMULATIVE PERCENTAGE OF TOTAL VARIATION ACCOUNTED FOR BY THE PRINCIPAL COMPONENTS

Type	Principal component	Cumulative percentage of total variation accounted for
$\mathrm{N}-4$ series	ξ_{1}	85
	ξ_{1} and ξ_{2}	97
	,ξ_{2} and ξ_{3}	98
	ξ_{2}, ξ_{3} and ξ_{4}	99
N-6 series	ε_{1}	85
	E_{1} and E_{2}	97
	, ε_{2} and ε_{3}	98
	ξ_{2}, ξ_{3} and ξ_{4}	99
CN-4 series	n_{1}	82
	n_{1} and n_{2}	94
	n_{2} and n_{3}	98
	${ }_{2}, n_{3}$ and n_{4}	99
CN-6 series		83
	n_{1} and n_{2}	95
	n_{2} and n_{3}	98
	${ }_{2},{ }_{3}$ and n_{4}	99
S-4 series	${ }^{5}$	97
	ε_{1} and E_{2}	98
	, ε_{2} and ε_{3}	99
	ξ_{1}	97
S-6 series	ξ_{1} and ε_{2}	98
\leq	,ε_{2} and ε_{3}	99
CS-4 series	${ }^{1}$	95
	n_{1} and n_{2}	99
CS-6 series	n_{1}	95
	n_{1} and n_{2}	99

The means and standard deviations of the series of the principal components for $\mathrm{N}-4, \mathrm{~N}-6, \mathrm{CN}-4, \mathrm{CN}-6$, S-4, S-6, CS-4 and CS-6 are given in Table 30.

It is simply proven [12] that if all the means in the target areas during the seeded period have been increased by a certain fraction of the old means, say h, that is, the increase of Q_{1} is $h Q_{1}$, of Q_{2} is $h Q_{2}$, and so on, then the increase in the means of the principal components will also be h. If h is assigned a value of 0.10 , then

$$
\mathrm{E}\left\{\xi_{i}^{\star}\right\}=1.1 \mathrm{E}\left\{\xi_{i}\right\},
$$

where $E\}$ denotes the expected value of \{\}, which is the cloud seeding effect assumed in this study.

TABLE 30 - MEANS AND STANDARD DEVIATIONS OF THE PRINCIPAL COMPONENTS

Type	Principal component	Mean (cfs)	Std. Dev. (cfs)
N-4 series	ξ_{1}	1316.896	385.728
	ξ_{2}	23.431	144.526
	ξ_{3}	-103.167	50.427
	ξ_{4}	-55.122	37.622
N-6 series	ε_{1}	919.996	289.498
	ξ	-7.066	106.279
	ε_{3}	-103.770	39.834
	ξ_{4}^{3}	-19.400	27.483
2N-4 series	n_{1}	3566.570	1171.757
	n 2	-616.325	446.487
	${ }_{3}$	-124.669	238.558
	n_{4}	41.293	146.087
CN-6 series	n_{1}	2656.142	853.439
	${ }^{1}$	-442.328	326.332
	n_{3}	-118.678	169.248
	${ }^{3} 4$	49.830	101.846
S-4 series		-2092.706	865.153
	52	-95.873	108.688
	ε_{3}	30.022	81.462
S-6 series	5	-1538.060	601.913
	ξ_{2}	-71.786	74.436
	ξ_{3}	28.886	55.548
CS-4 series		-1190.877	459.172
	n_{2}	-146.711	86.254
CS-6 series		-849.227	315.594
	n_{2}	85.939	61.805

For the control region, it is obvious that following the assumption that the means of the runoff stations in the control region remain unchanged,

$$
\mathrm{E}\left\{n_{i}^{*}\right\}=\mathrm{E}\left\{n_{i}\right\}
$$

where n_{i}^{*} is the $i^{\text {th }}$ principal component of the control region during the seeded period.

After the principal components in each separate region have been obtained, they are gathered into four major target-control groups as $\mathrm{N}-4$ and $\mathrm{CN}-4, \mathrm{~N}-6$ and $\mathrm{CN}-6, \mathrm{~S}-4$ and CS-4, and S-6 and CS-6. For brevity, after the principal components in the target are combined with those in the control, the following symbols will be used:
$\mathrm{N}-\mathrm{CN}-4$ - the combination of $\mathrm{N}-4$ and $\mathrm{CN}-4$
$\mathrm{N}-\mathrm{CN}-6$ - the combination of $\mathrm{N}-6$ and $\mathrm{CN}-6$
S-CS-4 - the combination of S-4 and CS-4
S-CS-6 - the combination of S-6 and CS-6.
Since it is the principal components that will be utilized in the final test, the computations of the covariance matrices are carried out for these principal components. These are as shown in Tables 31, 32,33 , and 34 ; also shown are the correlations matrices in Tables 35, 36, 37, and 38.

	$3-1$				C3-4			
	r_{1}	5	5	5_{4}	4	"	3	4
	166766. 203	-3.184	-1.64	-4.523	261313.644	-12548.249	-7106.256	- -854.487
$=-1{ }_{1}$	-5.184	10647. 123	-. 361	-.075	21386.7n	1237,046	-4660.36\%	$-2230,761$
Cl_{5}	-1.64	-. 361	2542.346	, 155	-18366.184	\$623.264	2877.78	-678.761
4	-4.128	-.075	. 153	1625.475	4602.073	-6336.183	-2012.64	14.484
${ }_{1}$	348ss.64	312sc.72\%	-10260.184	4632.078	1373015:76	-71.36	37,23	-69.204
as. 4×2	-32394. 148	1487.644	sczs,908:	-4938,812	-71.561	193350.076	-6s9	-3.719
3	-7106. 585	-4650.193	2977.77	-1612.464	57,234	,oso	56310.296	2.404
0	-8545.409	-22s0.763	-679.741	169.454	-49.244	-3.719	2.404	21341.54

	*-6				Con-6			
	4_{2}	4_{3}	4	4	4	\%	3	4
3-4	5_{1} 13805.330	2,376	13.826	1.133	1920s6.s33	-20977,623	-20560.438	-2612.418
	$52.3,376$	H29s.c21	2.646	. 066	1371.454	1162.736	-2003,314	-961.144
	$\mathrm{c}_{3} 15.230$	2.644	15Ec. 754	. 858	-22162.228	1678.320	26.742	-126,973
	5.1 .319	, 066	,064	755.354	3064.384	-2714.278	-932.038	122.939
Cal		13722.64	-12183, 228	386.:34	7203se.339	(20.302	20, 287	-16.297
	3) -20877, 238	2182.76	2674.320	-2718.276	20,301 20.191	[06433.131	2064. 2.308	-, 317
	$3{ }^{7}$-10580.852	-2093,234	- 24.762		- 26.18 .289	-3.214 ,- .017	20663.203	10372.317
	4 - 2629.418	-261.24	-186,573	121.930	-14.25:		-.067	10372.an

		S-4			CS-4	
		${ }_{1}$	ε_{2}	5_{3}	${ }^{4} 1$	${ }^{n} 2$
s-4	ε_{1}	748491.385	-45.282	41.666	338072.405	-12524.935
	c_{2}	-45.282	11813.224	-. 485	-11808.907	-1953.006
	C_{3}	-41.666	-. 485	6636.209	-636.724	-167.057
CS-4	${ }^{n} 1$	338072.405	-11808.907	-636.724	210839.108	7.238
	n_{2}	-12524.935	-1953.006	-167.057	7.238	7439.863

TABLE 34 - COVARINACE MATRIX OP S-CS-6 PRINCIPAL COMPONENT SERTES

		S-6			Cs-6	
		ζ_{1}	${ }^{\prime}$	c_{3}	${ }^{7} 1$	${ }^{1} 2$
S-6	t_{1}	362299.490	9.116	18.085	162180.856	5816.690
	ξ_{2}	9.116	5540.858	-.073	-5460.831	1113.406
	5	18.085	-. 073	3085.627	10.105	11.309
cs-6	${ }_{1}$	162180.856	-5460.831	10.105	99600.481	-. 854
	n_{2}	5816.690	1113.406	11.309	-. 854	3819.884

TABLE 35 - CORRELATION MATRIX OR N-CN-4 PRINCIPAL COMPONENT SERIES

		$\mathrm{N}-4$				$\mathrm{CN}-4$			
		c_{1}	ϵ_{2}	5_{3}	$¢_{4}$	${ }^{1}$	${ }^{7} 2$	${ }^{3}$	${ }^{71} 4$
N-4	41	1.000	-. 000	-, 000	-. 000	. 800	-. 189	-.077	-. 152
	4.2	-.000	1.000	-. 000	-. 000	. 185	. 022	-. 135	-. 107
	t_{3}	-. 000	-. 000	1.000	. 000	-. 309	. 250	. 239	-. 092
	4_{4}	$-.000$	-. 000	.000	1.000	. 100	-. 294	-. 180	. 027
	${ }^{1} 1$. 800	. 185	-. 309	. 100	1.000	-. 000	. 000	-. 000
CN-4	n_{2}	-. 189	. 022	. 250	-. 294	-. 000	1.000	. 000	-. 000
	n_{3}	-. 077	-. 135	.239	-. 180	. 000	. 000	1.000	. 000
	${ }_{7}$	-. 152	-. 107	-. 092	. 027	-. 000	-. 000	. 000	1.000

		N-6				CN-6			
		ε_{1}	t_{2}	7_{3}	5_{4}	${ }^{n} 1$	${ }^{n} 2$	${ }^{7} 3$	${ }^{7} 4$
N-6	${ }_{6}$	1.000	. 000	. 001	. 000	.773	-. 218	-. 215	-. 091
	c_{2}	. 000	1.000	. 001	. 000	. 251	. 091	-. 111	-. 089
	C_{3}	. .001	. 001	1.000	. 000	-. 358	. 129	. 004	-. 031
	5_{4}	. 000	. 000	. 000	1.000	. 166	-. 303	-. 214	. 044
CN-6	${ }_{1}$. 773	. 151	-. 358	. 166	1.000	. 000	. 000	-. 000
	n_{2}	-. 218	. 091	. 129	-. 303	. 000	1.000	-. 000	-. 000
	π_{3}	-. 215	-. 111	. 004	-. 214	. 000	-. 000	1.000	-. 000
	${ }_{7}$	-. 091	-. 089	-.031	. 044	-.000	-,000	-. 000	1.000

		S-4			CS-4	
		c_{1}	ϵ_{2}	53	${ }^{n} 1$	n_{2}
S-4	ϵ_{1}	1.000	-. 000	-. 001	. 851	-. 168
	F_{2}	-. 000	1.00	-. 000	-. 237	-. 208
	C_{3}	-. 001	-. 000	1.000	-. 017	-. 024
Cs-4	${ }^{1} 1$. 851	-. 237	-. 017	1.000	. 000
	n_{2}	-. 168	-. 208	-. 024	. 000	1.000
TABLE		38 - CORRELATION MATRIX OF S-CS-6 PRINCIPAL COMPONENT SERIES				
		t_{1}	ε_{2}	δ_{3}	${ }^{n} 1$	${ }^{7} 2$
		s-6			cs-6	
5-6	${ }_{6}$	1.000	. 000	. 001	. 854	. 156
	δ_{2}	. 000	1.000	-. 000	-. 232	. 242
	ϵ_{3}	. 001	-. 000	1.000	. 001	. 003
CS-6	${ }^{+1}$. 854	-. 232	. 001	1.000	-. 0000
	n_{2}	. 156	. 242	. 003	-. 000	1.000

5.2 The minimum number of years needed to detect a 10% increase in runoff based on the principal components. The minimum number of years, N^{*}, for detect ing the increase of one-tenth of the old runoff means can be computed from equation (1) again,

$$
\begin{equation*}
N^{*}=\frac{\tau^{2}}{\underline{\underline{u}}^{\prime} \underline{V}^{-1} \underline{u}} \tag{24}
\end{equation*}
$$

where $\tau^{2}=$ the noncentrality parameter,
$\underline{\mu}=\underline{\mu}^{*}-\underline{\mu}_{0}$,
$\underline{\mu}^{*}=$ the mean vector of the runoff variables for the seeded period,
$\underline{\mu}_{0}=$ the mean vector of the runoff variables for the period before seeding, and
$\underline{v}^{-1}=$ the inverse of covariance matrix \underline{V}. The values of τ^{2} are given in Table 1.

With this table the number of years needed to detect the increase can be computed easily. The values of N^{*} are shown in Table 39.
5.3 The application of canonical analysis. In this analysis the set of the runoff variables in the target region is first combined with the set of those in the control region. As for the principal component analysis, the computation of the canonical variables were performed on the CDC 6400 digital computer of the University Computer Center at Colorado State University. The steps in finding the coefficients for the canonical variables were described in Chapter III Section 3.

After the coefficients of the canonical variables for $\mathrm{N}-4, \mathrm{~N}-6, \mathrm{CN}-4, \mathrm{CN}-6, \mathrm{~S}-4, \mathrm{~S}-6, \mathrm{CS}-4$ and CS-6 are all computed and tabulated in Tables 40-47, the canonical series of each region are easily calculated [12].

TABLE 39 - MINIMUM NUMBER OF YEARS TO DETECT THE INCREASE OF 10 PERCENT IN RUNOFF MEAN USING PRINCIPAL COMPONENTS

Type	No. of principal components in target	No. of principal components in control	$\begin{aligned} & \text { Value } \\ & \text { of } \\ & \underline{\mu}^{\prime} \underline{v}^{-1} \underline{\mu} \end{aligned}$	τ^{2}	Minimum number of years to detect the increase, N*	r Remarks
$\mathrm{N}-\mathrm{CN}-4$	4	4	1.066	11.655	11	The minimum value of N^{*}
$\mathrm{N}-\mathrm{CN}-6$	4	4	0.813	11.655	15	is obtained from the
S-CS-4	3	2	0.243	8.640	36	larger of $N^{*}=\tau^{2} / \underline{\mu}^{\prime} \underline{V}^{-1} \underline{\mu}$
S-CS-6	3	2	0.273	8.640	32 is	or $N^{*}=k+1$ where k is the total number of components in both target and control regions

csu Sta. No.	usgs Sta. No.	$\begin{gathered} \text { lst } \\ \text { Variable } \end{gathered}$	$\underset{\text { Variable }}{\text { 2nd }}$	$\begin{gathered} 3 \mathrm{ra} \\ \text { Variable } \end{gathered}$	$\begin{gathered} 4 \text { th } \\ \text { Variable } \end{gathered}$
1970000	9.0105	-. 003956	-. 006628	-. 003592	. 018543
1960000	9.0110	. 003128	-. 009783	. 011935	-. 042535
1866000	9.0165	. 005767	-. 004685	. 026278	. 009310
1830000	9.0190	. 000796	. 003972	-. 002342	. 002199
1820000	9.0155	-. 001320	-.,002450	-. 001804	. 001937
1802730	9.0265	. 008752	. 008348	. 024461	-. 012694
1776000	9.0360	. 008385	. 002618	-.023413	. 019209

TABLE 42 - COEPFICIENTS FOR THE CANONICAL VARIABLES OF CN-4

| CSU | USGS | | | | |
| :--- | :---: | ---: | ---: | ---: | ---: | ---: |
| Sta. No. | Sta. No. | Variable | 2nd
 Variable | 3rd
 Variable | 4th
 Variable |
| 1742100 | 9.0535 | .001564 | .001900 | .003294 | .003207 |
| 1740000 | 9.0575 | .000620 | -.000087 | -.002110 | -.002931 |
| 1720000 | 9.0595 | .000086 | -.001640 | -.004363 | .002621 |
| 1666300 | 9.0645 | -.0011139 | .015690 | .001530 | .004480 |
| 1594260 | 9.0780 | .001374 | .001985 | -.002575 | .003694 |
| 1594236 | 9.0785 | -.003596 | -.040136 | .019047 | .013573 |
| 1590000 | 9.0850 | .000525 | .000354 | -.001849 | -.001949 |
| 1379000 | 9.1090 | .002959 | .029446 | -.003503 | .007790 |
| 1378400 | 9.1100 | -.004647 | -.030526 | .005096 | -.010398 |
| 1378100 | $9 . .1125$ | .001847 | .006202 | .009424 | .002551 |
| 1377825 | 9.1135 | .001334 | .011723 | .005682 | -.002092 |
| 1377500 | 9.1145 | -.000174 | .000685 | -.0010477 | .000878 |
| 1377280 | 9.1155 | -.0033380 | -.010015 | -.008777 | -.003425 |
| 1377230 | 9.1180 | .008358 | .033933 | .021453 | .033986 |

TABLE						
CSU	- COEFFICIENTS FOR THE CANONICAL VARIABLES OF	S-4				
USGS	Ist	2nd	3rd	4th		
Sta. No.	Sta. No.	Variable	Variable	Variable	Variable	
1278800	9.1650	-.000949	.010797	-.004734	.000415	
1278050	9.1665	.002273	-.002086	.003651	-.002148	
1272445	9.1725	.000895	.002056	.008422	-.004012	
1077090	9.3440	.000256	.009180	.003705	-.009945	
1073480	9.3575	.007460	.009551	-.023825	-.047496	
1073436	9.3615	-.003435	-.0034335	-.002076	.008598	

csu Sta. No.	USGS Sta. No.	$\underset{\text { Variable }}{\text { list }}$	$\begin{gathered} \text { 2nd } \\ \text { Variable } \end{gathered}$	$\begin{gathered} \text { 3rd } \\ \text { Variable } \end{gathered}$	$\begin{gathered} \text { 4th } \\ \text { Variable } \end{gathered}$
1425625	9.0975	. 001734	-. 004611	. 004333	-. 005155
1377280	9.1155	-. 003347	. 055553	. 035314	-. 034470
1377230	9.1180	-. 005054	. 005968	. 000726	. 005480
1377200	9.1190	. 003365	-. 014545	-. 017608	. 013770
1373900	9.1275	. 000054	-. 003457	. 002488	-. 02948
1373055	9.1325	. 000225	. 000372	-, 000186	-. 000378
1373020	9,1345	. 002328	. 007410	-. 0007410	-. 022485
1371815	9.1430	. 004076	. 010501	. 000507	. 023824
1370300	9.1520	. 010696	. 012852	. 036629	. 024040

TABLE 41 - COBFPICIENTS FOR THE CANONICAL VARIABLES OF $\mathrm{N}-6$

CSU						
Sta. No.	USGS Sta.	Ist	2nd Variable	3rd Variable	4th Variable	Variable
1970000	9.0105	-.006033	-.009805	-.005114	.032451	
1960000	9.0110	.004802	-.007516	.011799	-.033462	
1866000	9.0165	.009597	.005297	.041092	-.001293	
1830000	9.01 .90	.001003	.003991	-.004721	.002069	
1820000	9.0195	-.001910	-.003885	-.001016	.002457	
1802730	9.0265	.013825	.025201	.014417	.035857	
1776000	9.0360	.010705	-.008078	-.021553	-.008330	

TABLE 43 - COEFFICIENTS FOR THE CANONICAL VARIABLES OF CN-6

csu Sta.	USGS Sta.	Ist Variable	2nd Variable	3rd Variable	4th Variable
1742100	9.0535	.002365	-.001262	.006282	.000515
1740000	9.0575	.000555	-.000926	-.004814	.000489
1720000	9.0595	.000399	-.003421	-.005800	-.000807
1666300	9.0645	-.002081	.0194407	-.009901	.012097
1594260	9.0780	.002055	.004230	-.001362	.003426
1594236	9.0785	-.003831	-.049581	.040428	.029201
1590000	9.0850	.000478	-.000866	-.002470	-.002815
1379000	9.1090	.006095	.041344	-.006513	-.013108
1378400	9.1100	-.008394	-.045125	.0017449	-.003420
1378100	9.1125	.004031	.013690	.010848	.005814
1377825	9.1135	.001566	.017428	-.000181	-.005258
1377500	9.1145	-.000219	.000494	-.001734	.001375
1377280	9.1155	-.005293	-.011148	-.003944	.002038
1377230	9.1180	.013811	.053074	.011299	.031200

TABLE 45 - COEFFICIENTS FOR THE CANONICAL VARIABLES OF s-6

$\begin{aligned} & \text { csu } \\ & \text { Sta. No. } \end{aligned}$	$\begin{aligned} & \text { USGS } \\ & \text { Sta. No. } \end{aligned}$	$\begin{aligned} & \text { Ist } \\ & \text { Variable } \end{aligned}$	$\begin{gathered} \text { 2nd } \\ \text { Variable } \end{gathered}$	$\begin{gathered} \text { 3rd } \\ \text { Variable } \end{gathered}$	$\begin{aligned} & \text { 4th } \\ & \text { Variable } \end{aligned}$
1278800	9.1650	-. 001790	. 017228	. 001080	-. 003766
1278050	9.1665	. 003301	-. 004374	. 004401	-. 006282
1272445	9.1725	. 001264	-. 000937	. 010721	-. 014541
1077090	9.3440	. 000707	. 007274	-. 011061	. 011509
1073480	9.3575	. 014087	. 018233	-.052315	-. 056559
1073436	9.3615	-.001675	-.002813	. 000808	. 013618

TABLE 47 - COEFFICIENTS FOR THE CANONICAL VARIABLES OF CS-6

csu Sta. No.	$\begin{aligned} & \text { usgs } \\ & \text { Sta. No. } \end{aligned}$	$\begin{gathered} \text { 1st } \\ \text { Variable } \end{gathered}$	$\begin{gathered} \text { 2nd } \\ \text { Variable } \end{gathered}$	$\begin{gathered} \text { 3rd } \\ \text { Variable } \end{gathered}$	$\begin{gathered} \text { 4th } \\ \text { Variable } \end{gathered}$
1425625	9.0975	. 003565	-. 010123	. 004390	-. 000819
1377280	9.1155	-. 007498	. 056512	. 054781	-. 081378
1377230	9.1180	-.006890	. 014796	-. 000303	. 016373
1377200	9.1190	. 005324	-. 012051	-. 020296	. 025777
1373900	9.1275	. 004037	-. 053190	-. 028107	-. 030019
1373055	9.1325	. 000329	. 001040	. 000236	-. 003660
1373020	9.1345	. 004450	-. 000957	-. 031094	. 005098
1371815	9.1430	. 005299	. 012212	. 024251	. 036120
1370300	9.1520	. 010325	. 000287	. 053491	. 006772

The series of the canonical variables are tabulated in Tables $48-55$ for $\mathrm{N}-4, \mathrm{~N}-6, \mathrm{CN}-4, \mathrm{CN}-6, \mathrm{~S}-4$, S -6, CS -4 , and CS -6 , respectively. The means and standard deviations of the canonical series are shown in Table 56.

Year	${ }^{5} 1$	ζ_{2}	5_{3}	ζ_{4}
1938	5.356	-2.195	-1.045	. 827
1939	2.963	-2.067	-1.608	1.737
1940	2.621	-1.618	. 602	1.452
1941	4.203	-1.884	3.477	2.474
1942	4.103	-. 582	-. 923	5.512
1943	3.128	-2.357	-. 364	1.256
1944	2.971	-2.235	. 303	1.703
1945	3.402	-1.408	- . 306	2.703
1946	3.167	-1.729	. 509	4.003
1947	5.015	-. 291	-1.002	2.790
1948	3.835	. 538	-. 802	1.186
1949	3.636	-3.039	. 383	3.314
1950	3.739	. 635	- . 523	2.882
1951	4.328	-2.584	. 609	2.509
1952	4.910	-2.824	. 700	2.171
1953	2.966	-2.111	. 030	3.728
1954	1.655	-. 943	. 533	2.180
1955	2.723	-. 476	. 674	2.865
1956	3.098	-1.871	- . 248	2.906
1957	4.865	-2.033	. 654	3.208
1958	3.365	-2.401	. 150	3.345
1959	2.979	-1.403	. 070	2.835
1960	2.855	-3.081	-1.656	3.486
1961	2.184	-2.026	-. 791	2.903
1962	3.978	-3.188	-1.473	1.454
1963	1.504	-1.735	. 921	2.158
1964	2.148	-2.119	-. 679	3.336
1965	3.473	-3.180	- . 720	3.962
1966	1.651	-1.613	- . 401	1.842
1967	2.634	-2.746	-. 196	2.709

TABLE $49-\mathrm{N}-6$ CANONICAL SERIES (cfs)

Year	ζ_{1}	ζ_{2}	ζ_{3}	ζ_{4}
1938	5.220	-2.656	.059	-.505
1939	2.893	-2.476	-.902	1.870
1940	2.679	-1.385	1.301	.978
1941	4.411	-.711	4.330	.885
1942	4.138	-.805	-.152	3.364
1943	3.198	-2.354	.342	1.723
1944	3.012	-1.995	1.019	1.780
1945	3.747	-1.514	.188	2.513
1946	3.236	-1.534	1.364	2.704
1947	5.197	-.650	-.825	1.721
1948	3.884	. .209	-.482	.- .298
1949	3.712	-2.711	1.024	3.491
1950	3.721	.334	-.572	1.811
1951	4.513	-2.259	1.273	2.446
1952	5.098	-2.365	1.539	1.697
1953	3.143	-1.963	.609	3.348
1954	1.736	-.761	.828	1.569
1955	2.933	-.278	.877	1.845
1956	3.152	-1.874	.550	1.478
1957	5.089	-1.963	1.283	1.943
1958	3.370	-2.207	.873	2.707
1959	3.080	-1.422	1.006	.546
1960	2.774	-3.571	-.238	1.683
1961	2.289	-2.217	.168	1.377
1962	4.004	-3.549	-.196	.046
1963	1.706	-1.470	1.505	1.636
1964	2.227	-2.279	. .342	1.726
1965	3.805	-3.339	1.237	1.362
1966	1.851	-1.664	.974	.259
1967	2.803	-2.707	1.528	.894

TABLE 50 - CN-4 CANONICAL SERIES (cfs)

Year	ε_{1}	ε_{2}	ε_{3}	ε_{4}
1938	5.491	.115	-1.004	-.420
1939	2.734	-.116	-1.548	1.356
1940	2.615	.354	.971	1.517
1941	4.068	.150	3.984	1.335
1942	4.074	2.026	-.968	4.727
1943	3.220	.655	.902	-.005
1944	3.06	-.109	.309	1.172
1945	3.502	1.417	.684	1.071
1946	3.261	.466	-.008	.919
1947	5.064	2.293	-.718	1.325
1948	4.185	2.310	-.353	.906
1949	3.901	-.062	.090	1.921
1950	3.628	2.314	.803	.889
1951	4.410	.050	.907	1.639
1952	4.792	.306	.297	1.187
1953	3.284	-1.026	.337	2.767
1954	1.706	1.475	.351	.867
1955	2.617	1.851	.501	2.010
1956	3.454	.852	.812	1.785
1957	5.042	-.562	.234	1.013
1958	3.567	-0.	1.252	1.950
1959	3.244	1.619	-.080	1.708
1960	2.788	-1.017	-.883	1.251
1961	2.161	.360	-.346	.701
1962	3.934	-.921	-1.099	.704
1963	1.605	.767	.207	1.260
1964	2.151	. .491	.053	1.798
1965	3.539	-.812	.163	3.907
1966	1.896	.599	-.422	.600
1967	2.791	-.149	.551	1.160

TABLE 51 - CN-6 CANONICAL SERIES (cfs)

Year	ε_{1}	ε_{2}	ε_{3}	ε_{4}
1938	5.435	-.743	.- .753	-1.522
1939	2.761	-.672	-1.612	2.013
1940	2.720	.376	.907	1.868
1941	4.347	1.186	3.955	.553
1942	4.185	1.426	-1.182	3.186
1943	3.364	.413	.095	1.183
1944	3.191	-.404	.263	1.457
1945	3.889	.973	-.041	1.240
1946	3.395	-.020	-.033	.823
1947	5.229	1.489	-1.339	.433
1948	4.290	1.883	-.778	-.139
1949	4.025	-.170	-.034	1.808
1950	3.739	2.145	-.209	.809
1951	4.659	.076	.437	2.087
1952	5.008	.190	-.012	1.158
1953	3.472	-1.173	.497	2.826
1954	1.825	1.054	.052	-.140
1955	2.919	1.474	-.004	1.060
1956	3.554	.719	.244	1.561
1957	5.326	-.878	.242	1.018
1958	3.617	.154	.726	2.551
1959	3.364	1.098	-.704	1.214
1960	2.811	-1.515	-.516	.645
1961	2.313	-.274	-.274	.450
1962	3.998	-1.686	-.719	.351
1963	1.888	.542	-.128	1.010
1964	2.322	.302	.169	.812
1965	3.921	-1.187	1.097	1.002
1966	2.035	.174	-.273	-.195
1967	3.040	-.127	1.315	-.522

TABLE 52 - S-4 CANONICAL SERIES (cfs)

Year	ζ_{1}	ζ_{2}	ζ_{3}	ζ_{4}
1938	4.095	.364	-2.671	-4.194
1939	2.327	.148	-.980	-5.317
1940	2.453	-.015	-1.387	-4.918
1941	4.406	2.663	.354	-2.341
1942	4.391	-.427	-1.419	-4.347
1943	2.809	2.182	-2.294	-3.036
1944	3.989	-.096	-1.276	-1.624
1945	2.834	3.730	-2.042	-3.576
1946	2.414	-.203	-1.678	-4.181
1947	3.075	.861	-3.444	-4.148
1948	3.735	.191	-2.762	-3.410
1949	3.437	.397	-4.331	-1.361
1950	2.313	-.805	-.805	-2.759
1951	1.656	1.645	-2.952	-4.037
1952	4.550	1.260	-3.162	-3.385
1953	1.937	1.592	-1.501	-3.254
1954	1.450	.972	-2.460	-2.073
1955	1.786	1.169	-1.523	-2.373
1956	2.116	1.677	-2.476	-4.210
1957	4.638	2.586	-2.328	-5.720
1958	3.719	1.944	-.092	-2.539
1959	1.478	1.392	-2.539	-4.031
1960	2.794	1.582	-2.113	-3.544
1961	2.280	1.493	-1.499	-3.458
1962	2.926	1.492	-2.984	-3.647
1963	1.642	1.144	-2.166	-3.056
1964	1.992	1.696	-1.201	-3.911
1965	3.494	1.786	-3.343	-2.664
1966	2.378	1.268	-2.392	-3.432
1967	1.625	1.464	-1.932	-3.333

TABLE 54 - CS-4 CANONICAL SERIES (cfs)

Year	ε_{1}	ε_{2}	ε_{3}	ε_{4}
1938	2.930	1.215	1.510	-3.400
1939	1.591	2.091	1.492	-1.727
1940	1.759	.584	3.668	-2.275
1941	3.394	3.652	3.261	-.218
1942	3.803	.792	1.554	-1.400
1943	1.592	2.963	.687	-1.611
1944	3.313	1.341	2.705	-1.182
1945	2.203	4.083	2.156	-.240
1946	1.248	1.090	1.964	-1.471
1947	2.324	2.780	.819	-.605
1948	2.743	.375	.301	-.867
1949	2.928	1.488	-.815	.334
1950	1.582	1.640	.697	-1.436
1951	1.172	3.505	1.263	-1.684
1952	3.543	3.331	.329	-.868
1953	1.218	3.747	1.844	-1.956
1954	.790	1.778	1.233	-.007
1955	1.242	2.389	1.687	-.296
1956	1.121	2.417	.685	-1.332
1957	4.062	3.149	-.353	-3.382
1958	3.096	2.103	2.758	-.973
1959	.921	1.808	1.273	-3.346
1960	1.737	3.652	1.126	-2.610
1961	.962	2.936	1.963	-1.602
1962	2.434	2.865	1.149	-2.768
1963	.634	1.824	.478	-1.287
1964	1.480	2.019	1.262	-2.769
1965	2.462	2.433	.434	-1.807
1966	1.234	1.464	.990	-.835
1967	.924	1.732	.216	-1.053

TABLE 53 - S-6 CANONICAL SERIES (cfs)

Year	ζ_{1}	ζ_{2}	ζ_{3}	ζ_{4}
1938	4.315	.650	-3.827	-1.785
1939	2.608	-.295	-3.195	-3.121
1940	2.712	-.147	-3.104	-3.009
1941	4.493	1.887	-.200	-1.089
1942	4.659	-.473	-3.052	-1.967
1943	3.037	2.460	-2.033	-2.540
1944	4.106	.041	-1.266	-1.033
1945	2.979	3.682	-1.863	-2.466
1946	2.701	-.155	-2.611	-3.445
1947	3.413	1.457	-3.637	-3.310
1948	3.950	.576	-3.158	-2.331
1949	3.596	1.477	-3.813	.509
1950	2.501	-.872	-1.819	-1.651
1951	1.887	2.023	-3.754	-2.471
1952	4.765	1.748	-3.567	-1.583
1953	2.149	1.476	-2.031	-2.269
1954	1.611	1.328	-2.774	-.413
1955	1.982	1.232	-1.707	-1.486
1956	2.338	1.780	-3.107	-2.676
1957	5.055	2.684	-3.450	-4.024
1958	3.792	1.383	.019	-2.808
1959	1.737	1.697	-3.562	-2.468
1960	2.923	1.542	-2.718	-1.512
1961	2.436	1.360	-2.011	-2.307
1962	3.145	1.739	-3.473	-1.878
1963	1.881	1.324	-2.507	-1.724
1964	2.215	1.561	-1.735	-3.363
1965	3.766	2.294	-3.333	-.807
1966	2.578	1.285	-3.051	-.899
1967	1.901	1.538	-2.819	-1.276

TABLE 55 - CS-6 CANONICAL SERIES (cfs)

Year	ε_{1}	ε_{2}	ε_{3}	ε_{4}
1938	3.125	.666	-.268	-1.690
1939	1.867	1.119	.241	-.796
1940	1.871	-.579	1.762	-2.090
1941	3.368	2.396	2.874	.131
1942	3.969	.358	.766	-.335
1943	1.786	2.652	.400	-1.213
1944	3.375	.546	2.335	-1.515
1945	2.292	3.207	2.501	-.102
1946	1.463	.475	1.185	-1.301
1947	2.513	2.392	.927	.182
1948	2.948	.382	.056	-.645
1949	3.056	1.832	-.294	.970
1950	1.764	1.431	.319	-.692
1951	1.245	3.109	1.424	-2.270
1952	3.640	3.039	.844	-.329
1953	1.387	3.068	1.520	-2.353
1954	.848	1.630	1.126	.792
1955	1.357	2.024	1.420	.655
1956	1.223	2.196	.605	-1.273
1957	4.357	3.251	-1.240	-2.029
1958	3.165	1.284	2.821	-1.556
1959	1.145	1.309	-.355	-1.342
1960	1.855	2.945	.362	-.880
1961	1.025	2.263	1.682	-1.794
1962	2.618	2.358	.671	-2.190
1963	.816	1.432	-.026	-.750
1964	1.645	1.454	.473	-2.581
1965	2.718	2.316	-.082	-1.514
1966	1.418	1.063	.549	-.018
1967	1.119	1.632	-.258	.303

TABLE 56 - MEANS AND STANDARD DEVIATIONS OF CANONICAL VARIABLES

Type	Canonical Variable	Mean (cfs)	Std. Dev (cfs)
$\mathrm{N}-4$ series	$\zeta 1$	3.315	1.000
	51	-1.819	1.000
	ζ_{3}	-0.104	1.000
	5_{4}^{3}	2.648	1.000
N-6 series	ζ_{1}	3.421	1.000
	ζ_{2}	-1.804	1.000
	5	. 695	1.000
	ζ_{4}	1.620	1.000
$\mathrm{CN}-4$ series	ε_{1}	3.394	1.000
	$\varepsilon{ }_{2}$	0.523	1.000
	ε_{3}	0.199	1.000
	ε_{4}	1.434	1.000
CN-6 series	ε_{1}	3.555	1.000
	$\varepsilon{ }_{2}$. 227	1.000
	ε_{3}	. 046	1.000
	ε_{4}	1.020	1.000
S-4 series	51	2.825	1.000
	52	1.172	1.000
	ζ_{3}	-2.047	1.000
	ζ_{4}^{3}	-3.463	1.000
S-6 series	ζ_{1}	3.041	1.000
	5_{2}	1. 276	1.000
	5_{3}	-2. 639	1.000
	5_{4}	-2.040	1.000
CS-4 series	ε_{1}	2.015	1.000
	ε_{2}	2.241	1.000
	ε_{3}	1.278	1.000
	ε_{4}	-1.489	1.000
CS-6 series	ε_{1}	2.166	1.000
	ε_{2}	1.775	1.000
	ε_{3}	. 811	1.000
	ε_{4}	-0.941	1.000

Similar to the principal component analysis, it is clear now that,

$$
\mathrm{E}\left\{\zeta_{i}^{*}\right\}=(1+\mathrm{h}) \mathrm{E}\left\{\zeta_{i}\right\}
$$

where 100 h is the percent increase of the runoff means in the target region. If $h=0.10$, then,

$$
\mathrm{E}\left\{\zeta_{i}^{*}\right\}=1.1 \mathrm{E}\left\{\zeta_{i}\right\}
$$

and

$$
\mathrm{E}\left\{\varepsilon_{\mathrm{i}}^{\star}\right\}=\mathrm{E}\left\{\varepsilon_{\mathrm{i}}\right\}
$$

where ε_{i}^{*} is the $i^{\text {th }}$ canonical variable of the contral region for the seeded period.

The covariance matrices of $\mathrm{N}-\mathrm{CN}-4, \mathrm{~N}-\mathrm{CN}-6$, S-CS-4, and S-CS-6 are shown in Tables 57-60, respectively. In this analysis the correlation matrices are the same as the covariance matrices since all the canonical variables have unit variances.

5.4 The minimum number of years needed to

 detect a 10% increase in runoff based on the canonical variables. As discussed before in Section 5.2, the minimum number of years needed to detect the increase can be obtained with the use of Table 1 , which gives the value of τ^{2}. After the canonical analysis has been performed because the high corre-| | | $\mathrm{N}-4$ | | | | $\mathrm{CB}^{\text {-4 }}$ | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | c_{1} | s_{2} | 5_{3} | 54 | ${ }^{4} 1$ | ${ }_{2}$ | ${ }^{3}$ | ${ }_{4}$ |
| N-4 | r_{1} | 1.000 | 0. | 0. | 0. | . 989 | 0. | 0. | 0. |
| | c_{2} | 0. | 1.000 | 0. | 0. | 0. | . 890 | 0. | 0. |
| | c_{3} | 0. | 0. | 1.000 | 0. | 0. | 0. | . 847 | 0. |
| | ${ }_{4}$ | 0. | 0. | 0. | 1.000 | 0. | 0. | 0. | . 767 |
| CN-4 | t_{1} | . 989 | 0. | 0. | \bigcirc. | 1.000 | 0. | 0. | 0. |
| | τ_{2} | 0. | . 890 | 0. | 0. | 0. | 1.000 | 0. | 0. |
| | ${ }_{3}$ | 0. | 0. | . 847 | | 0. | $0 .$ | 1.000 | $0 .$ |
| | ${ }_{4}$ | 0. | 0. | 0. | . 767 | 0. | 0. | 0. | 1.000 |

		\$-6				Cs-4			
		${ }^{6} 1$	τ_{2}	4_{3}	${ }_{4}$	${ }^{1} 1$	S_{2}	${ }_{3}$	${ }_{4}{ }_{4}$
N-6	ε_{1}	1.000	0.	0.	\bigcirc.	. 990	0.	0.	0.
	c_{2}	0.	1.000	0.	0.	0.	. 894	0.	0.
	c_{3}	0.	0.	1.000	0.	0.	0.	. 869	
	c_{4}	0.	0.	0.	1.000	0.	0.	0.	. 768
	${ }_{1}$. 990	0.	0.	0.	1.000	0.	0.	0.
	t_{2}	0.	. 894	0.	0.	\bigcirc	1.000	0.	0.
	${ }^{2}$	0.	0.	. 869	0.	0.	0.	1.000	
	${ }_{4}$	0.	0.	a.	. 768	0.	0.	0.	1.000

		S-4				cs-4			
		${ }^{6} 1$	${ }^{6}$	c_{3}	ε_{4}	${ }^{1}$	ε_{2}	${ }^{*} 3$	${ }^{4} 4$
S-6	5_{1}	1.000	0.	0.	0.	. 968	0.	0.	
	5_{2}	0.	1.000	0.	0.	0.	. 771	0.	0.
	S_{3}	0.	0.	1.000	0.	0.	0.	.703	0.
	5_{4}	0.	0.	0.	1.000	0.	0.	0.	. 617
cs-4	${ }^{\text {c }} 1$. 968	0.	0.	0.	1.000	0.	0.	$0 .$
	C_{2}	0.	. 771	0.	0.	0.	1.000	$0 .$	$0 .$
	${ }^{2}$	0.	0.	. 703	0.	0.	$0 .$	1.000	0.
	${ }_{4}$	0.	0.	0.	. 617	0.	0.	0.	1.000

		s-6				Cs-6			
		5_{1}	s_{2}	${ }^{3} 3$	5_{4}	${ }^{1} 1$	${ }^{2}$	${ }^{5}$	${ }_{4}$
S-6 ${ }_{5}$	c_{1}	1.000	0.	Q.	0.	. 969	0.	0.	0.
	5_{2}	0.	1.000	0.	0.	0.	. 777	0.	0.
	S_{3}	0.	0.	1.000	0.	0.	0.	. 696	0.
	4		0.	0.	1.000	0.	0.	0.	. 568
	${ }^{*}$. 969	0.	0.	0.	1.000	0.	0.	0.
CS-6	S_{2}	0.	. 177	0.	0.	0.	1.000	0.	0.
	${ }_{3}$	0.	-.	. 696	0.	0.	0.	1.000	0.
	${ }_{4}$	0.	0.	0.	. 568	0.	0.	0.	1.000

lation between target and control variables are desirable here, only the highly correlated canonical variables will be retained for further study.

For example, consider the case of S-CS-4. The correlation between the first canonical variable in S-4 and the first canonical variable in CS-4 is found to be 0.968 , which is the maximum of all the correlations between the canonical variables for $\mathrm{S}-\mathrm{CS}-4$. If it is decided to use only these two canonical variables in the test, then all one needs to do is the following. From Table 56, obtain

$$
\underline{\mu}_{0}=\left[\begin{array}{l}
2.825 \\
2.015
\end{array}\right]
$$

Assuming that there is an increase of 10% in the means of the target region and the means in the control region remain unchanged, then, the mean vector for the seeding period can be obtained as

$$
\underline{\mu}^{*}=\left[\begin{array}{l}
3.107 \\
2.015
\end{array}\right]
$$

Now $\underline{\mu}=\left(\underline{\mu}^{*}-\underline{\mu}_{0}\right)$, that is,

$$
\begin{gathered}
\underline{\mu}=\left[\begin{array}{l}
3.107 \\
2.015
\end{array}\right]-\left[\begin{array}{l}
2.825 \\
2.015
\end{array}\right] \\
\underline{\mu}=\left[\begin{array}{l}
0.282 \\
0.0
\end{array}\right] .
\end{gathered}
$$

Compute the inverse of the covariance matrix of the first canonical variables in the target and control regions, \underline{v}^{-1}. In this case,

$$
\underline{v}^{-1}=\left[\begin{array}{cc}
15.879 & -15.371 \\
-15.371 & 15.879
\end{array}\right]
$$

and then compute,

$$
\underline{u}^{\prime} \underline{v}^{-1} \underline{\mu}=\left[\begin{array}{ll}
0.282 & 0.0
\end{array}\right]\left[\begin{array}{rr}
15.879 & -15.371 \\
-15.371 & 15.879
\end{array}\right]\left[\begin{array}{l}
0.282 \\
0.0
\end{array}\right]
$$

$$
=1.271
$$

TABLE 61 - Inverse of CONARIANCE MATRIX OF N -CN-4 CANOMICAL SERTES

		$\mathrm{N}-4$				$\mathrm{Cw}-4$			
		c_{1}	s_{2}	c_{3}	ϵ_{4}	${ }_{1}$	K_{2}	5	${ }_{4}$
$\mathrm{N}-4$	41	45.706	0.	0.	0.	-45.203	0.	0.	0.
	5_{2}	0.	4.810	0.	0.	0.	-4.281	0.	0.
	5_{3}	0.	0.	3.539	0.	0.	0.	-2.997	0.
	5_{4}	0.	0.	0.	2.429	0.	0.	0.	-1.863
CN-4	${ }^{1}$	-45.203	0.	0.	0.	45.706	0.	0.	0.
	c_{2}	0.	-4.281	0.	0.	0.	4.810	0.	0.
	c_{3}	0.	0.	-2.997	0.	0.	0.	3.539	0.
	c_{4}	0.	0.	0.	-1.863	0.	0.	0.	2.429

TABLE 63 - TNVERSE OF COVARIANCE MATRIX OF S-CS-4 CANONICAL SERIES

		S-4				CS-4			
		${ }_{5} 1$	c_{2}	6_{3}	ι_{4}	${ }^{6} 1$	${ }_{5}$	E_{3}	${ }_{4}$
S-4	ε_{1}	15.879	0.	0.	0.	-15.371	0.	0.	0.
	δ_{2}	0.	2.466	0.	0.	0.	-1.901	0.	0.
	ε_{3}	0.	0.	1.977	0.	0.	0.	-1.390	0.
	c_{4}	0.	0.	0.	1.615	0.	0.	0 .	-. 996
	${ }^{5}$	-15.371	0.	0.	0.	15.879	0.	0.	0.
cs-4	c_{2}	0.	-1.901	$0 .$	0.	$0 .$	2.466		0.
	c_{3}	0.	ठ.	-1.390	0.	0.	0.	1.977	0.
	Σ_{4}	0.	0.	0.	-. 996	0.	0.	0.	1.615

		S-6				cs-6			
		t_{1}	5_{2}	C_{3}	5_{4}	${ }_{5}$	s_{2}	8_{3}	c_{4}
5-6	s_{1}	16.383	0.	0.	0.	-15.875	0.	0.	0.
	s_{2}	0.	2.524	0.	0.	0.	-1.961	0.	0.
	6_{3}	0.	0.	1.940	0.	0.	0.	-1.350	0.
	6_{4}	0.	0.	0.	1.476	0.	0.	0.	-.839
cs-6	ε_{1}	-15.875	0.	0.	0.	16.383	0.	0.	0.
	${ }_{5}{ }_{2}$	0.	-1.961	0.	0.	0 .	2.524	0.	0.
	c_{3}	0.	0.	-1.350	0.	0.	0.	1.940	0.
	${ }_{4}$	0.	0.	0.	-. 839	0.	0.	0.	1.476

The degrees of freedom here are 2 and 28 , which are the number of canonical variables and the number of observations less the number of canonical variables, respectively. With these degrees of freedom, the value of τ^{2} is found to be 5.468 , at the level of significance $\alpha=0.05$ and power $\beta=0.50$. Now from

$$
N^{\star}=\frac{\tau^{2}}{\underline{\mu}^{\prime} \underline{v}^{-1} \underline{u}}
$$

the value of N^{*} is obtained as

$$
N^{\star}=\frac{5.468}{1.271}=4.3=5 \text { years },
$$

since N^{\star} must be an integer. These values of N^{\star} are shown in Table 65.

The previous results are based on the assumption that the sample mean is the same as the population mean during the non-seeded period. Now consider what effect a violation of this assumption would have on the results.

Suppose the true population mean is not equal to the sample mean. Instead it lies at the upper extremity of the 50% confidence interval established for the sample mean of the non-seeded period. Then a 10% increase in the true population mean results in a larger absolute increase than does a 10% increase in the assumed population mean (simply because the actual population mean is larger than the assumed population mean).

In the northern region, an actual 10% increase in the true population mean yields a 14.2% increase in the assumed population mean. This results in a reduction in the number of observations required to detect a change. The number of observations would be reduced to 50% of the previously determined number of observations. Similarly, in the southern region an

TABLE 65 - MINIMUM NUMBER OF YEARS TO DETECT THE INCREASE OF 10 PERCENT IN RUNOFF MEANS USING CANONICAL VARIABLES

Type	No. of canonical variables in target	No. of canonical variables in control	$\begin{aligned} & \text { Value } \\ & \text { of } \\ & \underline{\mu}^{\prime} \underline{v}^{-1} \underline{\mu} \end{aligned}$	τ^{2}	Minimum number of years to detect the increase, N^{*}	Remarks
$\mathrm{N}-\mathrm{CN}-4$	1	1	5.037	5.468	3	The minimum value of N^{*}
	2	2	5.197	7.640	5	is obtained from the
	3	3	5.198	9.646	7	is obtained from the ${ }^{-1}$
	4	4	5.368	11.655	9	larger of $N *=\tau^{2} / \underline{\underline{H}}^{\prime} \underline{V}^{-1} \underline{\mu}$
$\mathrm{N}-\mathrm{CN}-6$	1	1	5.877	5.468	3	or $N^{*}=k+1$ where k
	2	2	6.040	7.640	5	is the total number of
	3	3	6.060	9.646	7	variables in both target
	4	4	6.124	11.655	9	and control
S-CS-4	1	1	1.271	5.468	5	
	2	2	1.305	7.640	6	
	3	3	1.388	9.646	7	
	4	4	1.581	11.655	9	
S-CS-6	1	1	1.423	5.468	4	
	2	2	1.465	7.640	6	
	3	3	1.690	9.646	7	
	,	4	1.752	11.655	9	

actual 10% increase in the true population mean yields a 15.6% increase in the assumed population mean, and a corresponding reduction in the required number of observations by 60 percent.

Now, suppose that the true population mean lies at the lower end of the 50% confidence interval. Then a 10% increase in the true population mean results in a smaller absolute increase than does a 10% increase in the assumed population mean.

In the northern region, an actual 10% increase in the true population mean yields a 5.8% increase in the assumed population mean. This results in an
increase in the number of observations required to detect a change. The number of observations would be increased by a factor of three. Similarly, in the southern region an actual 10% increase in the true population mean yields a 4.4% increase in the assumed population mean, and the number of observations required would be increased by a factor of 5.2.

In view of the above discussion, it is seen that if the number of observations is calculated by assuming different values for the population mean a distribution is obtained. The median number of observations will be the same as that number obtained by using the sample mean of the non-seeded period.

CONCLUSIONS

It was the objective of this study to develop a technique for detection of a geographically widespread change in a minimum amount of time.

It was found that a combination of techniques, namely canonical analysis and multivariate T^{2} test was the most effective means to provide positive results in the least time. Assuming a 10% increase in runoff, 3 and 4 years are the minimum number of years needed for significance in the Upper Basin of the Colorado and the San Juan Mountains, respectively.

A word of caution is needed at this point. If the effect of precipitation management is to produce exactly a uniform 10% increase in runoff the use of only one set of canonical components is very efficient, However, if the increase is not uniform, it is safer to use several canonical components. With more canonical components, however, the number of years needed for significance increases.

It is apparent that there exists a trade-off between power of the test and representativity of the tested variables. This is well illustrated by the combined use of principal components analysis and the T^{2} test. The first three or four principal
components account for 99% of the total variation in the target regions. These sets of components so to speak, are 99% representative. The number of years calculated from the T^{2} test is much higher than the corresponding figure for the same number of canonical components. This number of years could be decreased by using only one principal component, which already accounts on the average for 90% of the total variation. (This number was not actually calculated but the validity of the statement can be inferred from examination of the covariance matrices).

Note that when the x^{2}-test is applied to each target station with the best correlated control station, the lowest minimum number of years is found to be seven in both northern and southern regions. Again, a single station is, of course, poorly representative of the entire region. The technique (canonical components - T^{2} test) improves both the power of the test and the regional representativity of the tested variable, over what it would have been even with the best single target control pair.

The results from the use of four-months or six-months spring runoff are very similar. Nevertheless, better results are obtained with the six-months runoff series, particularly in the southern area.

Q_{i}	Runoff at station i (i is the number in the 'Seq. No.' column in Table 2)
q_{i}	Observation of Q_{i}
a_{1}	The mean of Q_{i}
$\mathrm{q}_{\mathrm{i}, \mathrm{m}}$	The $\mathrm{m}^{\text {th }}$ observation of Q_{i}
Q	Column vector of runoff at all stations
q_{i}	Column vector of the $i^{\text {th }}$ observation of \underline{Q}
q	Mean vector of observations of Q
N	Number of observations of non-seeded period
N^{*}	Minimum number of years for detecting a 10% increase in the runoff means of seeded period
N-4	Four-month runoff series in the northern target region (the 4 months are: April, May, June, and July)
N-6	Six-month runoff series in the northern target region (the 6 months are: March, April, May, June, July and August)
$\mathrm{CN}-4$	Four-month runoff series in the northern control region
CN-6	Six-month runoff series in the northern control region
S-4	Four-month runoff series in the southern target region
S-6	Six-month runoff series in the southern target region
CS-4	Four-month runoff series in the southern control region
CS-6	Six-month runoff series in the southern control region
$\mathrm{N}-\mathrm{CN}-4$	The combination of $\mathrm{N}-4$ and $\mathrm{CN}-4$
N-CN-6	The combination of $\mathrm{N}-6$ and $\mathrm{CN}-6$
S-CS-4	The combination of S-4 and CS-4
S-CS-6	The combination of S-6 and CS-6
k	Total number of runoff variables, i.e., the number of all target and control variables
h	The fractional increase in the runoff mean
E\{\}	The expected value of \{\}
p	The number of runoff variables in target (or control) region in the principal component analysis
p_{1}	The number of runoff variables in target region
p_{2}	The number of runoff variables in control region
\underline{B}_{i}	Column vector of coefficients for computing the $i^{\text {th }}$ principal component

LIST OF SYMBOLS - Continued

Symbol

$\beta_{i j}$	Coefficient of runoff at station j in the computation of the $i^{\text {th }}$ principal component
I	Identity matrix
V	Covariance matrix of runoff variables
v^{-1}	Inverse of \underline{V}
W	\underline{v}^{-1}
ξ_{i}	The $i^{\text {th }}$ principal component of target region before seeding
ξ_{i}^{*}	The $i^{\text {th }}$ principal component of target region for seeded period
${ }^{1}$	The $i^{\text {th }}$ principal component of control region before seeding
n_{1}^{*}	The $i^{\text {th }}$ principal component of control region for seeded period
$\xi_{i, m}$	The $\mathrm{m}^{\text {th }}$ data point of ξ_{i}
${ }^{1}, \mathrm{~m}$	The $\mathrm{m}^{\text {th }}$ data point of n_{i}
λ_{i}	The amount of variance accounted for by the i ${ }^{\text {th }}$ principal component
ζ_{i}	The $i^{\text {th }}$ canonical variable of target region before seeding
ζ_{i}^{*}	The $i^{\text {th }}$ canonical variable of target region for seeded period
ε_{i}	The $i^{\text {th }}$ canonical variable of control region before seeding
ε_{i}^{*}	The $i^{\text {th }}$ canonical variable of control region for the seeded period
$\zeta_{i, m}$	The $\mathrm{m}^{\text {th }}$ data point of ζ_{i}
$\varepsilon_{i, m}$	The $\mathrm{m}^{\text {th }}$ data point of ε_{i}
${ }^{\text {i }}$	Correlation between ζ_{i} and ε_{i}
$\underline{\alpha}$	Vector of coefficients for computing ζ_{i}
$\underline{\gamma}_{1}$	Vector of coefficients for computing ε_{i}
$a_{i, j}$	Coefficient of runoff at station j (target region) in the computation of ζ_{i}
$\gamma_{i, j}$	Coefficient of runoff at station j (control region) in the computation of ε_{i}
$\underline{*}$	Runoff mean vector for the seeded period
${ }_{0}$	Runoff mean vector for the non-seeded period
$\underline{\square}$	$\underline{H}^{*}-\underline{H}_{0}$
$\underline{\underline{u}}^{\prime}$	Transpose of $\underline{\Perp}$
$\sum_{i=1}^{N}$	Summation from $i=1$ to $i=N$
$\stackrel{N}{N}$	Product from $i=1$ to $i=N$
τ^{2}	Noncentrality parameter
,	Estimated value

LIST OF SYMBOLS - Continued

Symbol	Transpose of a matrix
$\sigma_{i i}$	Variance of runoff variable Q_{i}
$\sigma_{i j}$	Covariance of runoff variables Q_{i} and Q_{j}
$*$	Of seeded period
cfs	Cubic feet per second

REFERENCES

1. Krug, J. A., "The Colorado River," Bureau of Reclamation, U.S. Dept. of the Interior, March 1966, 295 p.
2. Golzé, A. R., "Reclamation in the United States," the Caxton Printers, Ltd., Caldwe11, Idaho, 1961, 486 p.
3. Bureau of Reclamation, U.S. Dept, of the Interior, "Plan to Develop Technology for Increasing Water Yield from Atmospheric Sources," November 1966, 54 p .
4. Upper Colorado River Commission, Salt Lake City, Utah, the Nineteenth Annual Report, September 30, 1967, 152 p.
5. Committee on Water of the National Research Council, National Academy of Sciences, Washington, D.C., 1968, "Water and Choice in the Colorado Basin," 107 p.
6. Miller, D. W., J. J. Geraghty and R. S. Collins, "Water Atlas of the United States," Water Information Center, Inc., Port Washington, L. I., N. Y., 80 p.
7. Bureau of Reclamation, U.S. Dept. of the Interior, Reclamation to conduct Project Skywater Program in Colorado Rockies this winter, September 22, 1968, pamphlet.
8. Bureau of Reclamation, U.S. Dept. of the Interior, "Scientific Review Plans and Design of the Colorado River Basin Pilot Project with Appendix: Design Changes and Decisions" Proceedings: Skywater Conference V, February 1969, Denver, Colo.
9. Morel-Seytoux, H. J., "Suitability of Basins to Weather Modification of Statistical Evaluation of Attainment," Final report for the Bureau of Reclamation, Hydrology Program, Colorado State University, Fort Collins, Colorado, 1967, Part 1, 62 p. .
10. Kenda11, M. G. and A. Stuart, "The Advanced Theory of Statistics," Vol. 1-2-3, Charles Griffin and Co., Ltd., London.
11. Anderson, T. W., "An Introduction to Multivariate Statistical Analysis," Wiley Publications in Statistics, 374 p .
12. Nimmannit, V., "Multivariate Analysis of Hydrologic Changes," Ph.D. dissertation, August 1969, Department of Civil Engineering, Colorado State University, Fort Collins, Colorado, CED68-69VN45.
13. Li, J. C. R., "Statistical Inference," Vol. I, Edwards Brothers, Inc., Ann Arbor, Michigan, 658 p.
14. Markovic, R. D., "Statistical Evaluation of Weather Modification Attainments," Hydrology Paper, Colorado State University, Fort Collins, Colorado, 1966, No. 16.
15. Brownlee, K. A., "Statistical Theory and Methodology in Science and Engineering," John Wiley and Sons, Inc., 570 p.
16. Brier, G. W. and I. Enger, "An Analysis of the Results of the 1951 Cloud Seeding Operations in Central Arizona," Bulletin of the American Meteorological Society, 1952, Vol. 33, No. 5, pp. 208-210.
17. Buell, E. C., "An Evaluation of the Results of Cloud Seeding in Western New Mexico and Southern Arizona During July and August 1951 and 1952," Bulletin of the American Meteorological Society, 1955, Vol. 36, No. 1, pp. 6-15.
18. Dennis, A. S., "Cloud Seeding Results in Santa Clara County," Journal of Irrigation and Drainage, March 1960, pp. 93-99.
19. Thom, H. C. S., "An Evaluation of a Series of Orographic Cloud Seeding Operations," Advisory Committee on Weather Control, Technical Report No. 2, 1957, p. 25.
20. Biswas, K. R., R. K. Kapoor and K. K. Kanuga, "Cloud Seeding Experiment Using Common Salt," Journal of Applied Meteorology, 1967, pp. 914923.
21. Decker, L. W. and P. T. Schickedanz, "The Evaluation of Rainfall Records from a 5-Year Cloud Seeding Experiment in Mississippi," 5th Berkeley Symposium of Mathematical Statistics and Probability, 1967, pp. 55-63.
22. U.S. Advisory Committee on Weather Control, Final Report, 1957, Vol. 1, 32 p.
23. Howell, W. E., "Twelve Years of Cloud Seeding in the Andes of Northern Peru," Journal of Applied Meteorology, 1965, Vol. 4, pp. 693-700.
24. Howell, W. E. and M. E. Lopez, "Cloud Seeding in Southern Puerto Rico, April-July 1965," Journal of Applied Meteorology, 1966, Vol. 5, pp. 692-696.
25. Mood, A. M. and F. A. Graybill, "Introduction to the Theory of Statistics," McGraw-Hill Book Company, Inc., 443 p.
26. Edwards, A. L., "Statistical Methods for the Behavioral Sciences," Rinehart and Company, Inc., N. Y., 1956, 420 p.
27. Siliceo, E. P., A. A. Ahumada and P. A, Mosino, "Twelve Years of Cloud Seeding in the Necaxa Watershed, Mexico," Journal of Applied Meteorology, 1963, Vol. 2, No. 3, pp. 311-323.
28. Battan, L. J. and A. R. Kassander, Jr., "Summary of Results of a Randomized Cloud Seeding Project in Arizona," 5th Berkeley Symposium on Mathematical Statistics and Probability, 1967, pp. 29-33.
29. Mack, C., "Essentials of Statistics for Scientists and Technologists," Plenum Press, N.Y., 174 p.
30. Mann, H. B. and D. R. Whitney, "On a Test Whether One of Two Random Variables is Stochastically Larger than the Other," Annals of Mathematical Statistics, Vol. 18, 1947, pp. 50-60.
31. Auble, D., "Extended Tables for the Mann-Whitney Statistics," Bulletin of Institution of Educational Research, Indiana University, Vol. 1, No. 2, 1953.
32. Wine, R. L., "Statistics for Scientists and Engineers," 1964, Prentice-Hall, Inc., 671 p.
33. Elliott, R. D., "Note on Cloud Seeding Evaluation with Hourly Precipitation Data, 1962," Journal of Applied Meteorology, Vol. 1, pp. '578-580.
34. Battan, L. J., "Silver-Iodide Seeding and Precipitation Initiation in Convective Clouds," Journal of Applied Meteorology, 1967, Vol. 6, p. 317.
35. Markovic, R. D., "Statistical Evaluation of Weather Modification: Target Two-Sample Run Method," Report to the Bureau of Reclamation, Civil Engineering Department, Colorado State University, Fort Collins, 1967, 17 p.
36. Hotelling, H., "Analysis of a Complex of Statistical Variables into Principal Components," J. Educ. Psych., 24, 1933, pp. 417-441, 498-520.
37. Tang, P. C., "The Power Function of the Analysis of Variance Tests with Tables and Illustrations of Their Use," Statistic Research Memo, 2, pp. 126-157, 1938.
38. Lehmer, E., "Inverse Tables of Probabilities of Errors of the Second Kind," Ann. Math. Stat., 15, pp. 388-398, 1944.
39. Chow, V. T., editor, "Handbook of Applied Hydrology" Section 8-II "Statistical and Probability Analysis of Hydrologic Data," by V. M. Yevjevich, McGraw-Hi11, 1964.

Key Words: : Statistical discrimination, regional hydrologic change, $\begin{aligned} & \text { seasonal runoff, precipitation management, evaluation }\end{aligned}$
Abstract: The object of this study is to find answers to the following questions: What is the appropriate statistical test for a regional for reduction of an originally large number of variables? the Upper Basin of the Colorado River or the San Juan Mountains is a jore suitable area of operations, if the effectiveness of precipita management is to be detected as quickly as possible? The results of this research study show: 1. The T ${ }^{2}$-test is the appropriate test for this research study show: 1. The T^{2}-test is the appropriate test anlysis is the suitable method for the reduction of a large number of original variables. 3. The Upper Basin of the Colorado River is preferable under the assumption of an equal percentage of increase in runoff. However, if the percentage increase in the southern area is at least 1.2 times as large as in the northern area (and recent publications suggest that this ratio is probably around 3) then the southern area is preferable. Based on the I^{2}-test, the minimum number of years for detecting an increase of 10 percent in spring runoff means are three years in the Upper Basin of the Colorado River, and four years in the San Juan Mountains.

References: Viboon Nimmannit and Hubert J. More1-Seytoux, Colorado State University Hydrology Paper No. 37 (November 1969) "Regional Discrimination of Change in Runoff."

Key Words: Statistical discrimination, regional hydrologic change, seasonal runoff, precipitation management, evaluation

Abstract: The object of this study is to find answers to the following questions: What is the appropriate statistical test for a regional carget-control technique of evaluation? What is a suitable method for reduction of an originally large number of variables? Which of the Upper Basin of the Colorado River or the San Juan Mountains is a more suitable area of operations, if the effectiveness of precipitation management is to be detected as quickly as possible? The results of this research study show: 1. The T^{2}-test is the appropriate test for itiple ts orisinal variables. 3. The Upper Basin of the Colorado Piver is preferable under the assumption of an equal percentage of incres runoff. Hovever, if the percentage increase in the southern area in least 1.2 times as large as in the northern area (and recent publications suggest that this ratio is probably around 3) then the southern area is preferable. Based on the T^{2}-test, the minimum number of years for detecting an increase of 10 percent in spring runoff means are thred years in the Upper Basin of the Colorado River, and four years in the San Juan Mountains.

References: Viboon Nimmannit and Hubert J. Morel-Seytoux, Colorado State University Hydrology Paper No. 37 (November 1969) "Regional Discrimination of Change in Runoff."

Key Words: Statistical discrimination, regional hydroiogic change, seasonal runoff, precipitation management, evaluation

Abstract: The object of this study is to find answers to the following questions: What is the appropriate statistical test for a regional target-control technique of evaluation? What is a suitable method for reduction of an originally large number of variables? Which of the Upper Basin of the Colorado River or the San Juan Mountains is a more suitable area of operations, if the effectiveness of precipitation management is to be detected as quickiy as possible? The results of ins ine anlysis is the suitable method for the reduction of a large number of original variables. 3. The Upper Basin of the Colorado River is original variables. 3. The Upper Basin of the Colorado River is preferable under the assumption of an equal percentage of increase in
runoff. However, if the percentage increase in the southern area is at least 1.2 times as large as in the northern area (and recent publications suggest that this ratio is probably around 3) then the southern area is preferable. Based on the T^{2}-test, the minimum number of years for detecting an increase of 10 percent in spring runoff means are three years in the Upper Basin of the Colorado River, and four years in the San Juan Mountains.

References: Viboon Nimmannit and Hubert J. Morel-Seytoux, Colorado State University Hydrology Paper No. 37 (November 1969 "Regional Discrimination of Change in Runoff."

Key Words: Statistical discrimination, regional nyarologic cnange

Abstract: The object of this study is to find answers to the following questions: What is the appropriate statistical test for a regional target-control technique of evaluation? What is a suitable method for reduction of an originally large number of variables? Which of the Upper Basin of the Colorado River or the San Juan Mountains is a more suitable area of operations, if the effectiveness of precipitation management is to be detected as quickly as possible? The results of this research study show: 1. The T^{2}-test is the appropriate test for misis is riginal variables. 3 . The Uper Basin of the Colorado River is preferable under the . runoff. However if the ption or an least 1.2 times as large as in the northern area (and recent publications suggest that this ratio is probably around 3) then the soit cations suggest that this ratio is probably around 3) then the southern for detecting an increase of 10 percent in spring runoff means are thre years in the Upper Basin of the Colorado River, and four years in the San Juan Mountains.

References: Viboon Nimmannit and Hubert J. Morel-Seytoux, Colorado State University Hydrology Paper No. 37 (November 1969) "Regional Discrimination of Change in Runoff.

[^0]: *In 1968, the Bureau of Reclamation adopted a plan to start pilot programs for weather modification operations in the Upper Colorado River Basin and two regions were selected for this purpose [1]. The first was the Upper Basin of the Colorado River ** which will for brevity be referred to in this report as the Northern Project area (Fig. 1). The second area was the San Juan Mountains region referred to as the Southern Project area (Fig. 2). Since the initiation of the study, the plans of the Bureau were modified. Currently [2] only one area is considered: the Southern area. Nevertheless, because they had already been calculated, the results for the Northern area are also reported.

[^1]: **The reader is warned for possible confusion. In this report the expression "Upper Colorado River Basin" refers to the Colorado Basin above Lee's Ferry. On the other hand, the expression "Upper Basin of the Colorado River" refers to a much smaller drainage basin including the main stem of the Colorado close to its source and a few tributaries. The limits of that basin are shown on Fig. 1.

[^2]: *Former M.S. Graduate of Colorado State University, Civil Engineering Department, Fort Collins, Colorado, presently with Ministere des Richesses Naturelles, Quebec, Canada
 ${ }^{\star *}$ Associate Professor of Civil Engineering, Colorado State University, Fort Collins, Colorado.

[^3]: 6 months: March-August
 4 months: April-July
 G.T. means greater than.

[^4]: * M.S. Graduate of Colorado State University, Civil Engineering Department, Fort Collins, Colorado, presently with Planning Division, Chugoku-Shikoku, Nosei kyota, 9-24 Tenjin-cho, Okayama-shi, Japan.
 ** Associate Professor, Civil Engineering Department, Colorado State University, Fort Collins, Colorado.
 $* * *$ Since the initiation of this study the plans of the Bureau were modified. Currently (45) only one area is considered: the San Juan Mountains region.

[^5]: * Since the initiation of this study the plans of the Bureau were modified. Currently (45) only one area is considered: the San Juan Mountains region.

[^6]: *Since the initiation of this study the plans of the Bureau were modified. Currently (45) only one area is considered: the San Juan Mountains region.

[^7]: *Ph,D. graduate of Colorado State University, Department of Civil Engineering, Fort Collins, Colorado, presently with Engineering Consultants Inc., Denver, Colorado.
 ${ }^{* *}$ Associate Professor of Civil Engineering, Colorado State University, Fort Collins, Colorado.

[^8]: *The reader is warned for possible confusion. In this paper the expression "Upper Colorado River Basin" refers to the Colorado Basin above Lee's Ferry, On the other hand, the expression "Upper Basin of the Colorado River" refers to a much smaller drainage basin including the main stem of the Colorado close to its source and a few tributaries. The limits of that basin are shown on Fig. 2.

[^9]: CN-6 CSU STA. 1377500 USGS STA. 9.1145

