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ABSTRACT 56 

 57 

USING SPECIES FUNCTIONAL TRAITS TO PREDICT COMMUNITY DYNAMICS 58 

 59 

 A major goal for community ecology has been to determine a general set of rules to 60 

explain the structure and function of communities. Traits-based methods for describing 61 

community dynamics have been touted as providing a set of general methods to describe the 62 

structure and function of communities based on measurable properties of individual organisms in 63 

the community in a changing environment. Validation of traits-based methods that describe 64 

changes in community structure as a function of the interaction between functional traits along 65 

changing environmental gradients in real systems is needed. Here we present studies of three 66 

different plant communities where we use novel applications of traits-based Bayesian 67 

hierarchical models and principal component analysis to explain the changes in community 68 

structure/function and demonstrate that the communities are primarily structured by traits and 69 

their interactions with a changing environment. In a natural tallgrass prairie we were able to 70 

explain more than 84% of the variation in community functional diversity and an average of 64% 71 

of the cover variation across the ten species in the study over a 25-year span (Chapter 1). 72 

Additionally we show that changes in community structure are primarily explained by relative 73 

growth rate and its interaction with precipitation. In an experimentally manipulated grassland, 74 

our model explains more than 75% of the variation in total plot biomass over the course of 18 75 

years. Further, we found that this system was primarily driven by the same trait/environment 76 

interactions as the tallgrass system. Finally, we show that trait/environment interactions allow us 77 

to explain 91% of the variation in plot biomass in a restored riparian wetland. Our ability to 78 

explain large portions of the variation in community structure and performance of these three 79 



 iii 

distinct types of plant communities, using similar traits and environmental drivers, provides 80 

evidence of general laws underlying the structure of plant communities. This work represents a 81 

significant step toward understanding those general laws and helping community ecology 82 

develop from a largely descriptive science to a predictive science. 83 

84 
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 1 

INTRODUCTION 

 

We are currently experiencing an unprecedented rate of extinction of species 

accompanying the increased globalization of the planet (McCann 2000). This enormous decline 

in biodiversity has serious implications for the functioning of global ecosystems. Since 

ecosystems collectively determine the biogeochemical processes that regulate the environment at 

a planetary scale, the consequences of this decline in biodiversity have become a central issue in 

ecology (Loreau et al. 2001). It is of particular importance that we understand the relationship 

between biodiversity and ecosystem functioning in a changing environment since, in the near 

future we will live in, manage and depend on ecosystems that are less diverse and subjected to 

higher carbon dioxide and nitrogen deposition rates than in recorded human history (Reich et al. 

2004) and facing increased climate extremes and variability (Scholze et al. 2006; Christensen et 

al. 2007). Thus, it is becoming increasingly urgent that we understand what future communities 

will look like so that we might understand the impact on the services that they provide to us. 

Although there is a general consensus that biodiversity is generally positively related to 

ecosystem stability and function (Tilman 1996; Lehman & Tilman 2000; Loreau et al. 2001; 

Kennedy et al. 2002; Worm et al. 2006), there is an ongoing debate about what mechanisms are 

responsible for the observed patterns. Whether this decreasing biodiversity will result in 

decreased ecosystem production depends on whether differences in community structure are 

determined by differences in the traits of organisms (i.e. niche differentiation, McGill 2006) or 

by stochastic birth, death, and dispersal processes (i.e. Neutral Theory, Hubbell 2001) and is a 

much debated, but unresolved, topic in community ecology. 
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Historically, studies of the relationship between biodiversity and ecosystem function 

(BEF) have focused on phenomenological relationships between species richness and some 

measure of ecosystem performance (e.g. biomass production or rate of nutrient cycling). 

Although this approach was important for advancing our understanding of the effects of 

biodiversity, it did little to illuminate the underlying mechanisms causing those effects. This is 

largely because the explanatory variable, species diversity, is based on taxonomic distinctions 

that may have little to do with differences in performance (Hooper et al. 2002). More recently, 

the focus has shifted to functional traits of organisms as a means of linking plant properties to 

mechanisms that determine the functioning of ecosystems. By linking the properties of 

individuals to their performance along a changing environmental gradient, functional traits 

provide a means to develop predictive models of community dynamics and function that are 

rooted in physiology. Here I will discuss the historical context behind modern traits-based theory 

in community ecology, which will provide the context for the works presented in the following 

chapters. 

History of Biodiversity and Ecosystem Function 

Ecologists have been interested, at least as far back as Charles Darwin, in the ways in 

which biodiversity is related to ecosystem function. Darwin claimed in The Origin of Species 

that a mixture of grasses could produce more biomass than a monoculture (Darwin 1859). 

Although his claim was based on agricultural studies, he also noted that, “The truth of the 

principle that the greatest amount of life can be supported by great diversification of structure, is 

seen under many natural circumstances” (Darwin 1859). Darwin’s observation went largely 

unaddressed until the 1950’s, when such notable ecologists as Odum (1953), MacArthur (1955), 

and Elton (1958) all published claims that biodiversity should positively impact the stability of 
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ecosystems. While the prevailing thinking was that biodiversity and ecosystem function were 

positively correlated, these ideas were mainly based on studies of greatly simplified agricultural 

systems and observational studies of natural systems.  

During this same period the concept of the niche (Grinnell 1924; Elton 1927) began to 

gain traction as an organizing principal behind community assembly and structure. G. Evelyn 

Hutchinson refined the term to describe the range of physiological tolerances of a species and 

differentiated between the fundamental niche a species occupied under optimal conditions, and 

the smaller realized niche that a species occupied in the presence of predators, competitors, and 

other limiting factors (Hutchinson 1957). He described these two types of niches as the hyper-

volumes occupied by a species in the n-dimensional space of requirements (e.g. nutrients, space, 

light, etc…). Inherent in the niche concept is the idea that organisms have differential 

performance in particular environments that allows them to survive and flourish in some 

environments, but not in others.  

This formalization of the niche concept allowed the development of models to describe 

community assembly and structure (e.g. MacArthur 1957,1960; MacArthur & MacArthur 1961; 

Levins 1963) and the effect of diversity on ecosystem stability (May 1972). These theoretical 

advances motivated much subsequent fieldwork. For example, Robert May developed very 

simple mathematical models which showed that when assembling communities randomly, with 

random interaction strengths, that addition of more species decreased the stability of the system 

(May 1972). This result ran counter to the prevailing paradigm that biodiversity increased 

stability and motivated researches to test this empirically. This led to several studies showing 

that models constructed using real food webs and realistic interaction strengths were more stable 

than randomly constructed food webs such as the ones May used (Yodzis 1981, 1982). 
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Beginning in the early 1980’s several long-term empirical studies were begun to identify 

the causes and consequences of species diversity. The longest and most comprehensive is the 

Biodiversity experiment at the Cedar Creek Long Term Ecological Research site that was begun 

by David Tilman and his colleagues at the University of Minnesota. Tilman's studies 

overwhelmingly confirmed that there is a positive correlation between species richness and 

ecosystem function (Tilman 1996; Lehman & Tilman 2000). Furthermore, they showed that the 

observed positive relationship was due to complementarity, enhanced resource use due to niche 

partitioning, rather than a sampling effect, where production is higher due to the chance presence 

of a very productive species (Tilman et al. 2001; Hille Ris Lambers et al. 2004). 

 In the 1990’s the number of biodiversity studies (e.g. BIODEPTH, Hector et al. 1999; 

Spehn et al. 2005) exploded in response to unprecedented decline in global biodiversity (Loreau 

et al. 2001). To date, these studies have produced an overwhelming amount of evidence showing 

that species diversity is positively correlated with ecosystem function and stability (e.g., Tilman 

et al. 1997; Loreau et al. 2001; Hooper et al. 2005; Tilman et al. 2006; Cardinale 2011; Steudel 

et al. 2012). They also led to advances in theory to explain the causal mechanisms behind the 

positive BEF relationship (e.g., Wardle 1999; Yachi & Loreau 1999; Loreau & Hector 2001; 

Loreau et al. 2003).  

Conspicuously missing from most of these studies was the linkages between an 

individual, its niche, and its performance. In other words, what properties of species or 

individuals are responsible for driving the increased functioning/stability at the community 

level? Several BEF studies replaced species richness with plant functional groupings (i.e. C3, C4, 

forb, and legume) and found that functioning/stability was positively correlated with functional 

group richness (Lanta & Leps 2006; Reich et al. 2004). However, this is problematic for at least 
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two reasons. First, the way in which functional groups are delineated is somewhat arbitrary and 

can impact the results of manipulative experiments (Naeem & Wright 2003; Wright et al. 2006). 

Second, even in cases where this approach explains variation in the data it fails to identify what 

property of the functional group is responsible for differences in performance along 

environmental gradients. 

Functional Traits in Ecology 

In recent years there has been push to use the functional traits of organisms as a basis to 

explain and predict the performance of species in changing environments (Lavorel & Garnier 

2002; McGill et al. 2006; Westoby & Wright 2006). A functional trait is a measurable property 

of an organism that strongly influences organismal performance and can be physiological, 

morphological, or life history traits (McGill et al. 2006). Functional traits, such as relative 

growth rate or specific leaf area, summarize important physiological properties of organisms that 

are comparable across species in a community. These functional traits link environmental 

conditions to species performance and, as such, provide a basis for understanding how the traits 

of individuals scale up to determine community structure and function and for developing 

predictive models of ecosystem functioning that are based on physiologically relevant properties 

of plants (McGill et al. 2006; Westoby & Wright 2006; Green et al. 2008; Webb et al. 2010). 

Certain functional traits show significant correlations across many taxa and broad environmental 

gradients (Wright et al. 2004), suggesting general functional relationships between traits and the 

environment that might be exploited to build predictive models. Some studies further 

differentiate between response traits, which impact an individuals response to environmental 

forcing, and effect traits, which impact one or more ecosystem processes (Suding et al. 2008). 
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We do not make this distinction as our studies focus on explaining community dynamics but do 

not address changes in ecosystem processes explicitly. 

Approaches built upon functional traits offer an advantage over taxon-specific 

approaches as they are generalizable across communities and are potentially predictive since 

traits can be mechanistically linked to fitness. Functional trait approaches are also superior to 

approaches that focus on functional groups as they make no assumptions about a priori 

relationships between species that may influence results or affect or prevent identification of 

underlying mechanisms (Naeem & Wright 2003, Wright et al. 2006). For example, one scheme 

used often in the study of grasslands partitions plants into C3 grasses, C4 grasses, forbs, legumes, 

and woody shrubs. This does little to explain the underlying cause in difference in performance 

either in or between these functional groups. Is it photosynthetic pathway? Since there are C3 and 

C4 members of legumes, forbs, and woody shrubs it is impossible to say. Is it annual vs. 

perennial life history? Since there are annuals and perennials in C3 grasses, C4 grasses, forbs, and 

legumes, it is impossible to say. Traits-based frameworks avoid these problems by focusing on 

properties of organisms that are comparable at the individual or species level and are directly 

relatable to fitness.  

 While trait oriented approaches have been used in community ecology for some time (e.g. 

Grime 1977; Southwood 1977; Connell 1978) and several modeling approaches have been 

proposed over that time (e.g. Keddy 1992a,b; Weiher & Keddy 1995; Norberg et al. 2001; 

Chesson et al. 2002; Shipley et al. 2006; Enquist et al. 2007; Savage et al. 2007), a strong 

conceptual footing linking traits and community dynamics that would provide common language 

for comparing studies had been lacking. Recent theoretical developments in trait-based 

community ecology provide a general framework for modeling the function and structure of 
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communities based on the traits of constituent species in a variable environment (McGill et al. 

2006; Webb et al. 2010).  

 In the following chapters I will demonstrate that the structure and function of certain 

ecosystems is an emergent property of the interaction between the traits of individual species and 

a changing environment at ecologically significant spatial and temporal scales. To do this I use 

novel applications of Bayesian hierarchical modeling that include components which measure 

not just the effects of traits and the environment, but the interaction between the two. In essence, 

these interaction terms capture how the performance of an organism along the environmental 

gradient is mediated by their functional traits. I also use a novel application of principal 

component analyses on the regression coefficients of the fitted models to tease apart the relative 

contribution of each trait/driver interaction to species performance. This allows us to determine 

which trait/environment interactions are most important for driving the dynamics of these plant 

communities. Specifically, in chapter one I will show that the long-term dynamics of a natural 

tallgrass prairie in Kansas are primarily determined by the interaction between species’ relative 

growth rates and their interaction with precipitation. In chapter two I will show that experimental 

grassland in Minnesota is also trait-structured and that it is structured largely by the same 

trait/environment interactions as those of the tallgrass prairie in Kansas. Finally, in chapter three 

I will show that a restored southeastern riparian wetland is primarily structured by traits at 

certain spatial scales. These studies represent the first empirical evidence that changes in 

biodiversity, in terms of functional trait diversity rather than species richness, can directly scale 

up to impact the structure and ecosystem function of natural communities by interacting with a 

changing environment.
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CHAPTER 1: FUNCTIONAL TRAITS PREDICT 25 YEARS OF COMMUNITY DYNAMICS 

  

 The relationship between biodiversity and ecosystem function and the relative importance 

of niche differentiation versus neutral processes in structuring communities have been the focus 

of much debate over the previous decade. At the heart of the issue is whether species-level 

variability in functional traits scales up to impact community dynamics via niche differentiation. 

Recently, a focus on functional traits has been promoted as a means to build predictive 

community models (McGill et al. 2006; Westoby & Wright 2006). Such approaches offer an 

advantage over taxon-specific models as they are generalizable across communities and are 

predictive since traits can be mechanistically linked to fitness. While much theoretical work has 

demonstrated the potential of traits-based frameworks (Norberg et al. 2001; Savage et al. 2007), 

application of these approaches to predict the dynamics of natural communities from the traits of 

their constituent species in a variable environment is needed.  

 Here we show that the interaction between a single trait and three environmental drivers 

explains more than 84% of the variation in community functional diversity for a native North 

American tallgrass prairie over a 25-year period, and more than 76% of the variation in relative 

cover for each of the 4 most abundant species. Further, our results support aspects of niche 

differentiation as primary drivers of change in community structure at broad spatial and temporal 

scales.  Our model analysis provides the first empirical evidence that changes in biodiversity, in 

terms of functional trait diversity rather than species richness, can directly scale to impact 

structure and ecosystem function in natural communities. This generalized modeling approach 

effectively abstracts biodiversity for its functional properties and accurately predicts species 
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diversity and performance in grasslands, providing a blueprint for assessing these relationships 

elsewhere. 

A key assumption of trait-based community ecological theory is that traits of individuals 

scale up to determine community level dynamics. There is a hierarchical relationship where 

environmental changes drive responses in individual species that differ with respect to their 

functional traits, resulting in changes in composition and relative abundance at the community 

level. To test this relationship, we developed trait-based models to describe the dynamics of plant 

species at the Konza Prairie Long-Term Ecological Research Station (LTER) near Manhattan, 

Kansas. Species cover and environmental data have been collected at Konza since 1982 (see 

Appendix 1), and trait data (Reich et al. 2003) are available for all of the most abundant species; 

the 10 species included in our model account for about 43% of the annual cover. Our Bayesian 

hierarchical models describe species abundance as a function of species’ traits, environmental 

variables, and the interactions between the two. These Bayesian methods naturally incorporate 

these hierarchal relationships and the high dimensionality of our data, which varies across time 

and space and by species (Webb et al. 2010; Clark 2005). 

If species success in this system is determined primarily by differential performance to 

changing environmental pressures (i.e. niche differentiation) we would expect that the model 

components relating traits to the environment would most strongly influence species growth. On 

the other hand, if species performance were independent of trait differences between species, as 

assumed in Neutral Theory (Hubbell 2001), we would expect trait-independent model terms, 

such as intercepts, to be more influential. We measure the relative contribution of each of the 

model terms by using principal component analysis (PCA) on the model parameters to identify 

which components most influence species performance. Here we show that community structure 
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of a native undisturbed North American tallgrass prairie is primarily explained by niche 

differences over a 25-year period. 

Species and community level 

A key problem in trait-based ecology is determining which traits are essential for 

understanding community-level processes. A single-trait model using relative growth rate (RGR) 

presents an obvious starting point for understanding plant communities since RGR is a whole-

plant measure of performance that integrates several key plant functional traits (Hunt & 

Cornelissen 1997) and is known to influence success across a range of taxa (Grime & Hunt 

1975). If RGR is a poor predictor of performance then other, less integrative, traits are unlikely 

to be successful either. Our RGR model incorporated three environmental drivers chosen via 

model selection (wDIC, Farnsworth & Ward 2009) from drivers known to be important to 

community dynamics in this system: average growing season temperature, total growing season 

precipitation, and fire. The model also contains terms for the interaction of each of these 

environmental drivers with RGR as well as species-specific intercept terms (see Appendix 1). 

Our RGR model was successful at both the species and community levels. At the species 

level we were able to explain more than 76% of the variation in mean cover of the dominant 

species, Andropogon gerardii, and nearly 58% of the variation in the mean cover of the co-

dominant, Sorghastrum nutans, while also tracking major directional changes (Figure 1.1). 

Capturing the dynamics of A. gerardii is particularly important as it is a strong driver of 

ecosystem function, contributing as much as 80% of the total aboveground annual net primary 

production (Smith & Knapp 2003). Additionally, across all 10 species, our model predicted an 

average of 64% of the variation in cover. We measured the community-level fit using Rao’s 
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quadratic entropy (FDQ), a generalization of Simpson’s Diversity Index that incorporates trait 

differences, species richness and evenness into a single measure of community functional 

diversity (Botta-Dukát 2005) . The model explained more than 84% of the variation in 

community mean functional diversity for the species used in the study (FDQ, Figure 1.2). We 

could not calculate FDQ for the entire community of 141 species due to lack of trait data, but 

instead measured the Shannon’s Diversity Index (H’), which combines species richness and 

evenness into a single measure of biodiversity (Colwell 2009). The model, using only 10 key 

species, explained 29% of the variation in the diversity (H’) of the entire community (Appendix 

1, Figure S1.4).  

Since RGR is a “composite” trait that integrates the effects of multiple “primary” traits 

that are more closely tied to mechanism (e.g., photosynthetic rate), we also examined models that 

explicitly incorporate the effects of these primary traits. To determine the best set of traits, we 

used model selection (Farnsworth & Ward 2009) to choose from among candidate models 

consisting of combinations of traits available from the greenhouse study (Reich et al. 2003). The 

selected model contained root mass fraction (RMF), specific leaf area (SLA), and net 

assimilation rate by area (NAR). These three traits are further justified by their high correlation 

with RGR across a wide range of plant taxa (Hunt & Cornelissen 1997) coupled with the good fit 

of our RGR model. We found that the results from the primary trait model were quantitatively 

similar to those of the RGR model at both the species and community levels (see Appendix 1). 

Which factors are the most important? 

 The remarkable fit of these models at both the species and community level begs the 

question of whether the observed changes in composition are primarily controlled by differences 



 12 

in traits (niche differences) or neutral processes? To address this we examined the regression 

parameters associated with the terms of the RGR model. Differences in the species’ performance 

are represented by differences in parameter values. All covariates were scaled to have mean zero 

and unit variance, so ranking the parameters based on their relative magnitudes describes their 

relative impact on species performance. If this community is primarily structured by traits, and 

thus niche differentiated, we would expect that the parameters associated with the terms 

containing traits should be consistently larger in magnitude than those of the other model terms. 

 We found substantial variation in the coefficients for each model term, including those that 

interact with RGR, indicating that species responded differently to environmental pressures and 

that their responses differed with respect to their trait values (Appendix 1, Figure S1.3). Because 

the responses to each factor were potentially correlated, we used PCA on the species’ vectors of 

regression parameters to assess the relative contribution of each model term to overall species 

abundance. This analysis revealed that species form loose clusters in parameter space consistent 

with classical plant functional groupings (i.e., C3/C4 grass, legume, or forb; Figure 1.3). This is 

not the case, however, when a PCA was performed directly on the species trait values (Reich et 

al. 2003). The model’s ability to capture classical plant functional groupings is consistent with 

biologically and mechanistically relevant implications as opposed to a solely phenomenological 

prediction.  

 The first principal component (PC), which explains over 47% of the parameter variance, 

was dominated by the direct effects of RGR and temperature, and the interaction between RGR 

and precipitation. The fact that so much variance is explained by RGR and its interaction with 

precipitation provides direct evidence of the strong role of niche differentiation in structuring the 

community. The addition of the second PC explained another 20% of the variance. This PC was 
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dominated by the species-specific intercept and year effect. The species-specific intercept can be 

interpreted as explaining variation in the data caused by the effect of species’ other traits that are 

not captured by RGR, while the year effect explains variation in the data caused by 

environmental variation not captured in our three environmental drivers. Alternatively, both 

terms may be interpreted as the effect of neutral processes acting on the community. 

 Although PCA was not possible for this model as it contained more parameters than 

species, the primary-trait model also showed substantial variation in the parameters associated 

with traits and trait/driver interactions (Appendix 1, Figure S1.5), indicating that species 

performance is primarily the result of a suite of trait/environment interactions rather than neutral 

processes. 

Our approach allowed us to identify traits responsible for known phenomenological 

relationships between performance and the environment, which moves us closer to understanding 

the underlying mechanisms. For example, it is known that North American grassland production 

increases with precipitation (Sala et al. 1988) and that temperature and precipitation influence 

the abundance of A. gerardii and S. nutans, the dominant grasses at Konza (Silletti & Knapp 

2001, 2002). While our results are in agreement with these findings, they extend them by linking 

these environmental drivers explicitly to the plant’s functional traits and show that precipitation 

is not directly driving performance, but is being mediated by traits. This is consistent with 

experiments at Konza showing that irrigation resulted in decreased net photosynthesis in the 

dominant, A. gerardii, while increasing net photosynthesis in the subdominant, S. nutans (Silletti 

& Knapp 2001).  Large-scale transitions in species composition and grassland type may therefore 

be explained by rainfall patterns, because species’ RGR mediates their response to rainfall. 

Conventional modeling approaches that incorporate environmental effects, but ignore species’ 
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traits, will necessarily do a poorer job explaining community dynamics and fail to identify key 

mediating interactions between rainfall and RGR. 

Additionally, our results bear directly on the ongoing debate in community ecology as to 

whether natural communities are structured primarily by neutral processes (Hubbell 2001) or by 

niche differentiation (McGill et al. 2006). Our accurate reproduction of community structure in a 

natural system using species traits, and the dominance of model terms containing those traits, 

establishes that this temperate tallgrass prairie is structured primarily by niche differentiation 

rather than neutral processes. This is important since it confirms that it is possible to predict the 

trajectory of individual species in a changing environment, something that is impossible in a 

system structured by neutral processes. In most plant communities, certain species will have a 

stronger impact on ecosystem processes than others (Naeem et al. 1996; Vinton & Burke 1997; 

Gordon 1988; Symstad et al. 1998), so being able to predict the trajectory of specific species is 

necessary for predicting changes in a wide range of ecosystem functions. 

Overall, our results provide strong empirical validation of the potential of trait-based 

community ecological theory (Norberg et al. 2001; McGill et al. 2006; Westoby & Wright 2006; 

Savage et al. 2007; Webb et al. 2010) and is a first step toward mechanistic prediction of this and 

other systems. Our results also show that it is not species diversity per se that structures the 

community, but diversity of functional traits. This implies that preservation of trait diversity will 

be essential for maintaining ecosystem function in the face of forecast climatic changes that 

include increased temperatures and greater variability in the timing and amount of rainfall 

(Scholze et al. 2006; Christensen et al. 2007).  
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Figure 1.1: Comparison of relative growth rate model prediction of relative cover to observed 

relative cover data for the dominant species A. gerardii and the co-dominant S. nutans. Each 

point represents the mean value and the error bars represent one standard deviation across the 20 

plots. The model mean explains 76% of the variation in the data mean for A. gerardii, 58% for S. 

nutans over the 25 years of the study. 
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Figure 1.2: Functional diversity measured using Rao’s quadratic entropy (FDQ) for the relative 

growth rate  model. Each point represents the mean value and the error bars represent one 

standard deviation across the 20 plots. The model mean value explains more than 84% of the 

variation in observed functional diversity (FDQ) over the 25 years of the study. 
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Figure 1.3: Species plotted with respect to the first two principal components (PC’s). The dots 

are colored according to classic functional groupings: C4 plants (red), C3 plants (blue), legumes 

(green), and forbs (purple). The red star corresponds to A. gerardii, the dominant species. The 

vectors are the original parameter axes projected onto the first two PC’s. The first PC explains 

48% of the variation and is dominated by RGR, temperature, and RGR x precipitation, which 

suggests that this community is primarily structured by traits. 
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CHAPTER 2: THE INFLUENCE OF PLANT TRAITS ON THE COMMUNITY STRUCTURE 

OF NORTH AMERICAN GRASSLANDS 

 

Introduction 

It is well established that climate change is resulting in significant changes in the 

historical patterns of temperature and rainfall events across North America and that those 

changes are likely to accelerate (Scholze et al. 2006; Christensen et al. 2007). Much work has 

been done to understand the response of individual grassland species to these changes (e.g., 

Silletti & Knapp 2001, 2002; Travers et al. 2010), yet little is known about how these 

environmental changes will impact the community dynamics of North American grasslands. To 

understand community dynamics requires that we understand how plant traits interact with biotic 

and abiotic drivers, as well as understanding how those interactions change with increasing 

spatial and temporal scales. 

Recent advances in trait-based models provide a method for relating plant traits to 

environmental forcing in order to explain differences in observed performance between 

individuals or species (Webb et al. 2010).  These methods have proven successful in predicting 

long-term changes in the composition of the tall-grass prairie of Eastern Kansas and in 

identifying the trait-driver interactions that were most responsible for those changes (Chapter 1).  

It is unknown whether different grasslands are controlled by the same trait/environment 

relationships. The Cedar Creek Long Term Ecological Research (LTER) station is a mixed-grass 

site where trait diversity is known to be correlated with total biomass production (Cadotte et al. 
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2009; Harpole & Tilman 2006), but it has yet to be shown that plant traits are responsible for 

community dynamics. 

Since there is a high degree of species overlap between the two sites, it is reasonable to 

hypothesize that the two communities might respond similarly to environmental forcing. 

However, because the two sites differ in average growing season temperature and inter-annual 

variability in precipitation, it is also reasonable to hypothesize that individuals in the two 

communities are locally adapted to environmental conditions and therefore might respond 

differently to different environmental drivers. 

Here we use models that explicitly describe the interaction between species traits and the 

changing environment to show that 1) the interaction between plant traits and environmental 

forcing explains most of the variability in community dynamics and, 2) while the mixed-grass 

prairie of the Cedar Creek LTER does respond differently to the direct effects of precipitation 

and temperature, it is primarily controlled by the same trait-driver interactions that control the 

tall-grass prairie of the Konza LTER. Further, the cumulative response strategies of species at 

Cedar Creek are consistent with traditional functional group classifications (i.e., C3 grass, C4 

grass, legume, forb). 

Modeling Cedar Creek 

The Cedar Creek Ecosystem Science Reserve LTER is a mixed-grass prairie in Eastern 

Minnesota where species biomass measurements have been collected since 1982 in 207 plots as 

part of a long-term nutrient manipulation experiment. This system has provided insight on such 

key concepts in community ecology as the relationship between species diversity and ecosystem 

stability/function (e.g. Tilman & Downing 1994; Tilman et al. 1996) and the niche versus 
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neutrality debate (e.g. Fargione et al. 2003; Tilman 2004). Here we use a subset of the data 

consisting of 46 plots that were not given additional nitrogen1. Precipitation and temperature 

measurements for the site are available from a nearby weather station2. Species trait data is 

available for eight species that are consistently present in these plots from a greenhouse study 

(Reich et al. 2003).  

Webb et al. (2010) provides a theoretical framework for predicting the dynamics of 

communities through time based on the traits of the constituent species. This framework requires 

plant trait data, environmental driver data, and some measure of species performance, which, in 

this case, consists of annual biomass measurements for each species.  

We started by creating a single trait model using each species’ relative growth rate 

(RGR). RGR has been shown to be a strong predictor of species success (Hunt & Cornelissen 

1997; Grime & Hunt 1975) and, more specifically, has been shown to be an important trait for 

explaining community dynamics in the tallgrass prairie of North America (Chapter 1). We 

modeled the centered, standardized biomass data for the eight species as distributed multivariate 

normal: 

!
Yt,1:J ~ N(

!
µt,1:J ,!)  

where Y is a vector containing the species’ biomass, Σ is the variance-covariance matrix,  t is the 

year of study, and j = 1:J are the species of interest. The mean biomass of each species, µt,j, is 

given by: 

                                                
1	  http://www.cedarcreek.umn.edu/research/data/	  
2	  http://www.cedarcreek.umn.edu/research/weather	  
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µt, j = !0 +!1, j
+!2, jE1 +!3, jE2 +!4, jE3 +!5, jT
+!6, jT *E1 +!7, jT *E2 +!8, jT *E3

 

where T is the species’ RGR trait value, E1 is the total plot biomass, E2 is average growing 

season temperature, E3 is total growing season precipitation, β0 is an intercept, and β1,j is a 

species-specific intercept. Temperature and rainfall were chosen as drivers due to their well-

known impact on grassland function, and total plot biomass (of species not used in this study) 

was chosen as a surrogate for competitive forces that impact plant growth and/or survival. All 

covariates were standardized to have mean zero and unit variance. The parameters of the model 

were estimated in a Bayesian context using WinBUGS (version 1.4.3) and convergence was 

checked using standard diagnostics. To assess the fit of the model to the data at the community 

level we used the Shannon Diversity Index, H’, which combines species richness and evenness 

into a single measure of community diversity (Colwell 2009). 

The magnitude and sign of each regression coefficient describes a species’ strategy for 

responding to environmental change in terms of its relative growth rate, and since the model 

covariates were standardized, the magnitude of the regression coefficients can be used to rank 

the relative contribution of each model term to overall plant performance. However, because 

environmental drivers covary and a species’ responses may be correlated, we must use 

multivariate analyses to understand each species’ overall strategy for responding to 

environmental perturbations. If we write each species’ regression coefficients as vector, then a 

species’ strategy can be thought of as a point in an 8 dimensional space and we can use principal 

component analysis (PCA) to remove the effect of correlations. The resulting principal 
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components from the PCA tell us which combination of trait/environment relationships most 

influences species growth and hence community structure.  

 Because RGR is a whole-plant trait that summarizes the effects of other, more 

fundamental, physiological traits, we also generated a set of multivariate normal models whose 

mean values are a function of various combinations of traits available to us from the Reich et al. 

(2003) data set and their interaction with the environmental variables. Starting with a model 

containing all available traits and environmental drivers, we used model selection (wDIC, 

Farnsworth & Ward 2009) to iteratively remove first traits then environmental variables that 

were not contributing significantly to model performance. The best model contains root mass 

fraction (RMF), specific leaf area (SLA), and net assimilation rate by area (NAR). Interestingly, 

these were the same traits in the best 3-trait model selected for the tallgrass prairie (Chapter 1). 

The selection of RMF, SLA, and NAR is also reassuring given their strong association with RGR 

(Hunt & Cornelissen 1997) across many plant taxa. The multiple-trait model is given by: 

!
Yt ~ N(

!
µt,!)

µt, j = !0 +!1, j
+!2, jE1 +!3, jE2 +!4, jE3
+!5, jT1 +!6, jT2 +!7, jT2
+!8, jT1 *E1 +!9, jT1 *E2 +!10, jT1 *E3
+!11, jT2 *E1 +!12, jT2 *E2 +!13, jT2 *E3
+!14, jT3 *E1 +!15, jT3 *E2 +!16, jT3 *E3

 

where T1 is root mass fraction, T2 is specific leaf area, T3 is net assimilation rate by area, and the 

environmental drivers are the same as the RGR model. Because this model contains 16 

parameters per species, but only 8 species, the system is underdetermined and so unsuited to the 

PCA analysis of regression coefficients used for the RGR model. 
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Model results and analysis 

At the community level, the RGR model did well predicting changes in biodiversity over 

relatively large spatial and temporal scales using a single trait and three environmental drivers. 

The RGR model explains nearly 35% of the variation in the mean Shannon Diversity Index (H’) 

of the data (Figure 2.1). The model did a much better job in terms of describing ecosystem 

functioning, explaining nearly 68% of the annual variation in average total biomass (Figure 2.2). 

The model did an excellent job predicting overall community productivity when looking at 

estimates of total plot productivity. When aggregating across all years of the study the model 

predicted nearly 75% of the variation in total plot biomass production (g/m2,Figure 2.3). 

Previous studies of Cedar Creek have used species diversity to explain significant variation in 

plant cover (Tilman et al. 1996) and biomass (Tilman & Downing 1994); our results go further 

by showing that it is not species diversity, per se, but the related trait diversity that is driving 

species performance. Because traits can be related directly to physiology, this offers a path to the 

development of predictive, mechanistic models. 

The communities in each plot are not natural assemblages but randomly constructed from 

the local species pool. This may result in assemblages that are poorly matched for the 

microclimates they experience in the plot. We suspected that this might result in strong species 

sorting early in the experiment that may be controlled by different traits than those that control a 

more mature community. If so, the strength of trait-mediated responses for the traits used in this 

study might change over time as the historical artifact of the initial planting weakened and the 

plots came more to reflect natural communities. To test this we broke the complete data set up 

into thirds and ran the model on years 1-7, 8-15, 16-23 separately. We found that the variation in 

the Shannon Index explained by the model increased dramatically over time, with R2 = 0.02, 
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0.16, and 0.54 respectively (Appendix 2, Figure S2.3). This suggests that our model fits better 

than suggested by Figures 2.1-2.3, as those results are negatively impacted by fitting the model 

to the data from the early years of the study. This also suggests, however, that caution be taken 

when using trait-based analyses on short duration studies of randomly assembled communities.  

The RGR model had mixed-success at the species-level. For Schizachyrium scoparium, 

the most abundant species  (53% average relative cover), the model did very well, explaining 

75% of the variation in the data mean biomass (Figure 2.4, Table 2.1). Agropyron repens and 

Sorghastrum nutans are the next two most abundant species with 17% and 15% average relative 

cover, respectively. The model only explains 19% and 15%, respectively, of the variation in 

cover for these two species. The remaining five species together represent 16% of the relative 

cover in the data, and the model explains 44% of the variation in cover for these species on 

average (Table 2.1). The H’ and species biomass results generated by the three-trait model were 

similar to those of the RGR model. The fact that the models explained biomass reasonably well 

for most species individually but did only a modest job estimating H’ is most likely due to the 

relatively poor biomass estimates for A. repens and S. nutans, which were both relatively 

abundant species. The Shannon Diversity Index weights species diversity by each species’ 

relative abundance, so poor biomass estimates for relatively abundant species have more 

influence on the index than proportionately poor estimates for species with low abundance.  

 Analysis of the regression coefficients estimated by each model can provide insight into 

the mechanisms that are driving the observed diversity and ecosystem production. For both 

models, the regression coefficients showed substantial variation across species for each of the 

trait/driver interactions (see Appendix 2), signifying that they are well differentiated in terms of 
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their trait-mediated response to the environment. Or, put another way, each of these species is 

occupying a unique environmental niche.  

In our PCA analysis of the regression coefficients for the RGR model (see Appendix 2) 

the first principal component explains 40% of the variation and is dominated by the direct effects 

of RGR, the interaction between RGR and precipitation and, to a lesser extent, the direct effect 

of plot biomass. We interpret this to mean that, biologically, differences in RGR are primarily 

responsible for the differences in species dynamics across the environmental gradient, but the 

impact of RGR is mediated by precipitation.  

This linkage of precipitation and growth rate strongly suggests water use efficiency 

(WUE, the ratio of carbon fixed by photosynthesis to water lost by transpiration) as a controlling 

mechanism in this system. This is supported by the local dominance of high WUE C4 grasses. 

From the point of view of climate change, the impact of differences in rainfall patterns will likely 

be mediated by the local community composition. Even in regions that experience an increase in 

precipitation, differences among species in their ability to use that water for growth may result in 

drastic changes in relative abundance without necessarily resulting in large changes in ecosystem 

production. 

The second principal component explains an additional 26% of the variation and is 

dominated by the species-specific intercept, the direct effect of precipitation and the interaction 

between RGR and plot biomass. The biological interpretation of this component as a whole is not 

as straightforward. We interpret the species-specific intercept as describing the effect of other 

traits that are not explicitly incorporated in the model, but it may also include other factors, such 

as neutral effects. The direct effect of precipitation on each species measures the impact of 
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precipitation on species growth that is not mediated by RGR, but it may include the effects of 

precipitation that are mediated by traits not included in the model. The interaction between RGR 

and total plot biomass measures the effect of density-dependent interactions between species that 

are mediated by RGR.  

Another interesting result of the PCA analysis is that, in the 8-dimensional regression 

coefficient space, the species tended to form loose clusters that are consistent with traditional 

functional groupings, as was found for the Konza Prairie study (Chapter 1, Figure 1.5). These 

traditional functional groupings are based on physiology, phylogeny, and life history traits. The 

fact that these groupings are re-created by the regression coefficients illustrates that the model is 

capturing biologically meaningful interactions rather than generating a phenomenological fit. 

Further, the specific trait/environment axes along which species cluster tell us which aspects of 

these traditional groupings are important for driving community dynamics 

 In both models, species show substantial niche differentiation in their response to key 

environmental drivers. In the RGR model trait-by-environment responses figure prominently in 

both principal components. Since these factors explain a substantial amount of variation in the 

species’ temporal dynamics we can see that this mixed-grass prairie is largely structured by niche 

differentiation, which is in agreement with previous studies that did not explicitly include 

trait/environment interactions (e.g., Tilman 2004; Harpole & Tilman 2006). The strong 

relationships found between RGR and precipitation indicate that predicting the response of 

mixed-grass prairie will require not only knowledge of future precipitation patterns, but also an 

understanding of the underlying trait distribution of the impacted communities. 
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Comparison to the tall-grass prairie 

The Midwestern United States is expected to experience significant changes in 

precipitation and temperature in coming years (Christensen et al. 2007), but it is not understood 

if all grassland communities in this region can be expected to respond similarly to changes in 

forcing. In addition to the mixed-grass prairie of Cedar Creek, much of the Midwest was 

historically dominated by tall-grass prairie similar to those of the Konza Prairie LTER near 

Manhattan, KS. Here we compare our results from the Cedar Creek LTER with a recent study of 

the Konza LTER (Chapter 1). Both sites are the focus of long-term study and there is a high 

degree of species overlap between the two, providing a unique opportunity to compare the forces 

structuring these two systems over long temporal scales.  

 It is important to note that there are profound differences in data collection between these 

systems that dictated the modeling approaches available for each site, and hence restricts our 

ability to make direct head-to-head comparisons. Unlike the experimental assemblages of the 

Cedar Creek LTER, the plant communities at Konza Prairie are naturally assembled, though 

grazing and fire regimes have been altered. The Konza LTER did not have annual biomass data 

available for the watershed of interest, but instead had measures of areal coverage for each 

species sampled at multiple points along a long spatial gradient. So, while we model productivity 

directly for Cedar Creek, we used relative cover as a surrogate for productivity at Konza. Despite 

these differences, there was remarkable agreement between the two regarding the trait/driver 

interactions that structure the two communities. 

 At both sites RGR and the combination of SLA, RMF, and NAR did incredibly well 

explaining changes in diversity over large temporal and spatial scales. Ames et al. were able to 
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explain 74% of the variation in H’ at Konza, as well explaining 76% of the variation in cover of 

the dominant species, Andropogon gerardii. The better explanatory power of the Konza model at 

the community level is very likely due to a combination of the fact that Konza is dominated by a 

single species, A. gerardii, and the use of a multinomial model. The multinomial model 

constrains the relative covers of all species to sum to one. Since the model fit A. gerardii so well, 

and that single species accounted for such a large proportion of the community cover, the sum-

to-one constraint prevented the other species from substantially deviating from their true cover 

values.  

The two studies had similar shortcomings as well. For example, S. nutans, was poorly 

predicted in both our Cedar Creek models the Konza models as well, relative to the other species. 

This consistency across studies suggests that S. nutans performance may be better explained by 

other traits and/or drivers not included in these models. 

The analysis of regression coefficients for the mixed-grass prairie Cedar Creek LTER 

agrees well with those found for the Konza tallgrass prairie and gives some insight into the 

factors driving differences between the sites. In their analysis of a RGR model containing similar 

interaction terms, Ames et al. found that the first principal component explained 47% of the 

variation and RGR, average growing season temperature, and the interaction of RGR with 

precipitation were the major contributors while the second principal component explained an 

additional 20% of the variation and was dominated by the species effect. So, in both grasslands, 

species success is strongly determined by RGR, but that the effects of RGR are mediated by 

rainfall.  
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Precipitation has a similar, strong influence on community structure at both sites, which 

might be expected given the precipitation patterns for both sites. Though Konza had higher 

average total growing season precipitation than Cedar Creek, and higher inter-annual variation, 

we cannot rule out that the rainfall samples are drawn from the same distribution (Anderson-

Darling 2-sample test p=0.135, Figure 2.6). Since their rainfall patterns are not statistically 

different, and there is a high degree of overlap in the abundant species, it is not unreasonable to 

expect rainfall would exert similar influence on community structure at both locations.  

This begs the question: If both sites are largely structured by the same trait/environment 

interactions, why are the species compositions different at both sites? This may be due to the fact 

that temperature is a major contributor in the first principal component for Konza, but not for 

Cedar Creek. Between 1982-2005, the temperature distributions between Konza and Cedar 

Creek were statistically different (Anderson-Darling 2-sample test p<0.001, Figure 2.6). Konza 

had an average growing season temperature that was 12% higher (two sided t-test, p<0.001) and 

less variable between years than that of Cedar Creek (Figure 2.6). The consistently warmer 

temperatures at Konza may result in temperature being relatively more important at Konza than 

it is for the same species at Cedar Creek. For example, more extreme, sustained average 

temperatures at Konza could create added selective pressure on plants, e.g. by increased 

evaporative demand, resulting in local adaptation.  

 The inclusion of total plot biomass and its interaction with RGR in the first two principal 

components for Cedar Creek shows that there are significant density dependent factors 

controlling the community structure at the site. This is likely true for Konza as well, but density 

dependence was implicit in the model structure for that study, since the sum-to-one constraint of 

the multinomial model requires that an increase in cover of one species must necessarily result in 
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corresponding decreases in cover for one or more of the other species. The disparity in data types 

prevents us from comparing the relative importance of competition directly. 

 Another major factor that may be driving differences in structure is the quality of soils 

between the two sites is that the soil at Cedar Creek is sandy and nitrogen-poor (Tilman 1986; 

Fornara & Tilman 2009; Craine et al. 2001), while the lowland soils of Konza are rich, loamy 

and relatively highly productive (Abrams et al. 1986). This major difference in soil quality is 

almost certainly responsible for at least some of the difference in community structure between 

sites. Neither the Konza nor the Cedar Creek model contains traits that are explicitly tied to 

nitrogen uptake or usage, nor are there any environmental covariates describing nutrient 

availability. Inclusion of such factors in future studies may help to explain differences in 

community structure between sites. The fact that the RGR model explains the data so well, 

without terms to describe nutrient uptake, further highlights the strong role of RGR in structuring 

this community. 

Conclusions and future directions 

It has been shown that trait-based methods allow us to construct models that scale up 

from the traits of individuals to community level structure (e.g., Pollock et al. 2011) and that by 

incorporating trait and environmental interactions explicitly we can establish the relative 

contribution of each factor to overall community structure (Chapter 1). Here we have shown that 

the comparison of such models from different sites can illuminate the relative importance of 

factors that control community composition across those sites as well as identifying those 

interactions that are uniquely influential at a particular site.  
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Using these methods we have shown that two North American grasslands are niche-

structured and are primarily controlled by the same trait-driver interactions over large spatial and 

temporal scales. More specifically, species’ RGR and the regulation of RGR by total growing 

season precipitation are the most significant determinants of species’ relative abundance at both 

locations. Because RGR is relatively easy to measure in greenhouse experiments, this suggests a 

powerful tool for developing predictive models of grassland community composition. While it is 

known that grassland production is positively correlated with precipitation (Sala et al. 1988), it is 

now clear that to accurately predict the response of a community to changes in rainfall requires 

knowledge of the underlying trait distribution and how it responds to environmental forcing.  

 Analysis of the models has also yielded insights regarding the unique forces that are 

structuring the communities at each site. For example, average growing season temperature 

significantly influences community structure at Konza, but exerts much less influence at Cedar 

Creek relative to other forces, and hence may explain differences in community composition at 

the two sites given their otherwise similar niche structuring.  

 Trait data for more species would have allowed for in depth analysis of models 

containing more traits and drivers, perhaps yielding a more detailed understanding of forces 

structuring these two systems. The wealth of trait data that is coming on-line (e.g. the TRY plant 

database,  http://www.try-db.org) will make this possible in the near future.  Despite this, the 

ability of our models to predict such a high percentage of ecosystem function (Figures 2.2, 2.3) is 

significant, even had we not had the ability to accurately describe the dynamics of individual 

species (Figure 2.4). The fact we were able to do both well simultaneously, across different 

systems with different data types demonstrates the potential of traits-based approaches to address 

key problems in community ecology.  
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Figure 2.1: Shannon Diversity Index, H’, (Model vs. Data) for the relative growth rate (RGR) 

model. The RGR model explains over a third of the variation in biodiversity (H’) over an 18-year 

period using a single trait and three environmental drivers. 

  

Figure 2.2: Log of average total biomass for all study species (g/m2, model vs. data) for the 

relative growth rate (RGR) model for an 18-year period. The error bars represent one standard 
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deviation across all 46 study plots. The model mean explains nearly 68% of the variation in the 

data mean between years. 

 

 

Figure 2.3: Total plot biomass for all species (g/m^2) for all years versus total plot biomass 

predicted by the relative growth rate model. These data consist of 828 separate measurements 

from 46 different plots recorded over 18 years. The model predictions explain nearly 75% of the 

variation in the data. 
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Figure 2.4: Biomass (g/m2) for the most abundant species Schizachyrium scoparium (for both 

data and model) for the relative growth rate RGR model. The points represent the mean value 

and the error bars represent one standard deviation across the 46 study plots. The model mean 

explains 75% of the variation in S. scoparium biomass across years. 
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Figure 2.5  Species plotted with respect to the first two principal components (PC’s). The dots 

colored according to classic functional groupings: C4 plants (red), C3 plants (blue), legumes 

(green), and forbs (purple). The vectors are the original parameter axes projected onto the first 

two PC’s. The first PC explains 40% of the variation and is dominated by RGR, Biomass, and 

RGR x precipitation, which suggests that this community is primarily structured by traits. The 

second PC explains an additional 26% of the variation and is dominated by precipitation, species 

effect RGR x biomass. 
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Figure 2.6: Frequencies of total growing season precipitation (mm) and average growing season 

temperature (C) for the Konza and Cedar Creek LTER’s. The distributions of precipitation 

effects for each site are not statistically different (Anderson-Darling 2-sample test p=0.135). The 

temperature distributions between Konza and Cedar Creek were statistically different (Anderson-

Darling 2-sample test p<0.001), with Konza having an average growing season temperature that 

was 12% higher (two sided t-test, p<0.001) and less variable between years than that of Cedar 

Creek. 
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Table 2.1: Traditional functional group, average relative cover in the Cedar Creek LTER data, 

and variation explained (R2) by the relative growth rate model for each species used in the study. 

The model means explained and average of 41% of the variation in observed biomass means 

across all species 

Species 
Functional 

group 
Average relative 

cover in data 
R2 for RGR 

model 

Agropyron repens C3 0.17 0.191 

Andropogon gerardii C4 0.05 0.662 

Calamagrostis canadensis C3 0.05 0.503 

Lespideza capitata Legume 0.02 0.567 

Liatris aspera Forb 0.01 0.301 

Schizachyrium scoparium C4 0.53 0.747 

Solidago nemoralis Forb 0.03 0.166 

Sorghastrum nutans C4 0.15 0.150 

. 



 40 

CHAPTER 3: THE RELATIONSHIP BETWEEN DIVERSITY AND STABILITY/FUNCTION 

AT DUKE’S SANDY CREEK WETLAND RESTORATION SITE 

 

Introduction 

Wetland conservation and restoration is increasingly recognized as a priority because of 

the ecosystem services wetlands provide (Turner 1991; Keddy et al. 2009). To effectively restore 

the functioning of a wetland, or to develop effective conservation goals, requires an 

understanding of how diversity impacts the functioning and stability of those systems, but the 

relationship between the diversity of wetlands and their functioning is poorly understood. In 

general, most investigations of the relationship between diversity and ecosystem function have 

been done in temperate grasslands and have focused on species diversity as a predictor of 

ecosystem production and/or stability (e.g. Tilman 1996; Tilman et al. 2006; though see 

Engelhardt & Ritchie 2001; Sutton-Grier et al. 2011). It is now understood that functional trait 

diversity is more important than species diversity in determining ecosystem function (McGill et 

al. 2006) since species diversity is based on taxonomic distinctions that may have little to do 

with differences in performance (Hooper et al. 2002). Functional traits, such as relative growth 

rate or specific leaf area, summarize important physiological properties of organisms that are 

comparable across species in a community. These functional traits link environmental conditions 

to species performance and, as such, provide a basis for understanding how the traits of 

individuals scale up to determine community structure and function and for developing 

predictive models of ecosystem functioning that are based on physiologically relevant properties 

of plants (McGill et al. 2006; Westoby & Wright 2006; Webb et al. 2010). 
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 Duke University’s Sandy Creek restoration site is a wetland area where the traits of 

species have been shown to influence belowground nutrient cycling (Sutton-Grier et al 2011, 

2012), but understanding of the degree to which traits determine community structure and 

ecosystem production is needed. Understanding how traits scale up to determine community 

structure in this system could allow prediction of future community structure/function and would 

allow for better management decisions for this ongoing restoration. Here we use Bayesian 

Hierarchical models to show that both community structure and ecosystem production of this 

wetland area are driven by the functional traits of the constituent species. Further we show that 

our results are consistent with what has been found in other terrestrial plant systems, and adds to 

the increasing body of evidence that the traits of individual organisms scale up to determine 

functioning at higher levels of ecological organization.  

Methods 

 The study site is located along Sandy Creek within Duke University’s Stream and Wetland 

Assessment Management Park (SWAMP) in the Duke Forest in Durham, NC (36° 00' N, 78° 54' 

W). The site is a riparian forested wetland dominated by Acer rubrum (Red Maple), 

Liriodendron tulipifera (Tulip Poplar), and Liquidambar styraciflua (Sweet Gum).  The Sandy 

Creek watershed drains 490 hectares including part of the Duke campus and neighboring 

Durham residential areas (Sutton-Grier et al. 2012). The site was re-graded in 2004 to reconnect 

the stream and flood plain, which had become disconnected by channel incision. During the 

restoration all vegetation was removed from the site and soils were mixed and redistributed 

(Unghire et al. 2011).  
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 In May of 2005 one hundred 2x2 meter plots were planted adjacent to the creek. Each 

plot contained 100 seedlings (as plugs) of 1, 4 or 8 species from a pool of 10 species from the 

regional pool of wetland species. There were initially four monoculture plots of each species, 

thirty 4-species plots, and thirty 8-species plots. The species for the 4 and 8-species plots were 

drawn at random from the species pool (Sutton-Grier et al. 2011). During the study, the area was 

aggressively invaded by Japanese Stiltgrass (Microstegium viminium), a widely distributed 

invasive species that is of increasing concern because of its ability to crowd out native vegetation 

(Warren et al. 2010). A decision was made to incorporate M. viminium into the overall 

biodiversity design and to use the opportunity to study the factors that impact M. viminium 

invasion and growth. There were 93 study plots where aboveground biomass measurements were 

taken for all species at least three times: in either 2005 or 2006 and then in 2007 and 2009. Soil 

moisture and soil nitrate and ammonium levels were measured repeatedly in each plot (Sutton-

Grier et al. 2011). Temperature and precipitation data were measured at a nearby weather station. 

 In conjunction with the field measurements of plant performance, key plant functional 

traits associated with the “leaf economic spectrum” (Wright et al. 2004) were measured in a 

greenhouse study to minimize destructive sampling of the restored wetland sites (Sutton-Grier et 

al. 2012). Individuals of each species were grown under light, temperature and humidity 

conditions that were similar to those at the field site during the same period. To determine 

differences in trait values in response to varying water stress, the plants were grown at water 

table depths of 0, 15, and 30cm. Specific leaf area (SLA, cm2 g−1), photosynthetic rate by mass 

(Amass, nmol CO2 g-1s-1), percentage of aboveground tissue mass that is nitrogen (Nmass), and 

the ratio of belowground biomass to aboveground biomass (RtoS) were measured for each of the 

11 study species. We computed the weighted distribution for each trait, which is the frequency 
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distribution of the trait weighted by the relative abundance of each species at the site level based 

on their biomass. We found that over the course of the study the distributions of all four traits 

shifted significantly (Anderson-Darling 2-sample tests, p<0.01, Figure 3.1).   

 To test whether these changes in the species trait distributions are driving observed 

changes in species composition and plot productivity we constructed a set of linear Bayesian 

Hierarchical Models that estimate the biomass of each species, in each plot, as a function of that 

species’ traits, environmental variables, and interactions between the two. Starting with the full 

model containing all traits, environmental variables, and their interactions we used weighted 

deviance information criterion (wDIC, Farnsworth & Ward 2009) to iteratively remove traits and 

environmental drivers from the model until the wDIC score ceased to meaningfully improve.  

The software packages JAGS (v.3.2.0, http://mcmc-jags.sourceforge.net/) and R (v.12.14.1, 

http://www.R-project.org) were used to run each model or 1.5 million iterations from each of 

three sets of initial conditions and the final 5,000 iterations were kept as the measure of the 

posterior density of the regression parameters. Convergence within and between chains was 

verified using standard diagnostics. Model selection eliminated the effect of plot and initial 

species richness from the model, as well as the following environmental drivers: total soil 

nitrogen, average growing season temperature, and total growing season precipitation. None of 

the traits in the complete model were eliminated. In addition to the four traits, the final model 

contains four environmental drivers: plot soil moisture at time of harvest, average temperature 

during month of harvest, total precipitation during month of harvest, and a measure of functional 

diversity, Rao’s Quadratic Entropy for the plot (FDQ, Botta-Dukát 2005). FDQ is a generalization 

of Simpson’s diversity index that incorporates trait differences, species diversity and evenness 

into a single measure of community functional diversity: 
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 In this model FDQ is used as a surrogate for interspecific competitive pressure since it can be 

thought of as a measure of how much of the niche space is occupied. The final model is given 

by:  
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  (3.1) 

where the biomass of species j at time t, Bt,j,p, is normally distributed with mean µt,j,p and species 

covariance matrix Σ, α is a global intercept, βj is a species-specific intercept, 
!
Et,p is a 1x4 vector 

of environmental variables, 
!
Tj  is a 1x4 vector of species traits. The remaining elements !! j  

(1x4), 
!
! j  (1x4) and ! j  (4x4) are matrices of regression coefficients corresponding to the direct 

effects of the environment, direct effects of traits, and the interaction of traits and environment, 

respectively.  “tr()” is the trace operator, which sums the diagonal elements of the matrix 

argument, here generates the trait by environment interactions. 

Results 

 When we look at the species’ biomass averages across all plots for each year, our model 

does an excellent job, explaining more than 91% of the variation across all years (Figures 3.2) 

and reproducing the mean biomass of individual species (Figure 3.3). If we look at each year’s 

averages separately, we find that over the course of the study the variation explained by the 

model increases from 86% in 2005 to 96% in 2009. At the same time, the slope of the regression 

line between the data and the model predictions rises from 0.95 (95% CI = (0.68, 1.23)) in 2005 
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to 1.49 (95% CI = (1.28,1.7)) for 2009. For a perfectly accurate model the slope of the regression 

line between the data and the model predictions would be one. So, over the course of the study, 

the amount of variation in species mean biomass explained by the model increases, but the 

accuracy of the model degrades slightly. Early on in the study the model is consistently inflating 

biomass production, but at the end of the study the estimates are consistently underestimated. 

 The increased ability of the model to explain variation through time and the consistent 

overestimation of biomass are likely the result of two different factors. The increase in variance 

explained by the model is similar to the result found in Chapter 2 for long-term biomass data 

from mixed-grass prairie at Cedar Creek, MN. Using 25 years of data from a similar 

experimental design we found that the predictive power of the model improved dramatically over 

the course of the study. We speculated that the model fit improves over time as the influence of 

the traits used in the model begins to outweigh the impact of other factors that result from the 

original experimental setup. For example, the assemblages of species were chosen at random 

from the species pool and may not reflect good matches to the microclimates of the individual 

plots. Early in the study this may have resulted in species-sorting where some unmeasured 

trait(s) exerted a stronger influence on community structure than the set of traits used in this 

study. It is possible that the same thing is occurring in this system due to randomly constructed 

assemblages whose initial relative abundances may not reflect those of a natural community 

occurring in the same microclimate.  

 The problem of consistently overestimating biomass is at least partially the result of using 

a continuous statistical model, which has difficulty predicting a biomass value of exactly zero 

when plant species were absent from a plot (Equation 3.1). In fact, the normal distribution 

predicts zero biomass with probability zero. There were many zeros in the biomass data as the 
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result of species that were never present in particular plots due to the initial planting distribution. 

With the notable exception of M. viminium, the presence/absence of a particular species in a 

particular plot is almost entirely determined whether or not it was planted there in the first place. 

M. viminium was the only species that consistently colonized plots and had invaded 91 of the 93 

study plots by 2009. Because the model did not incorporate information about prior occupancy 

of the species in a given plot, it was likely to predict small, non-zero biomass for each species 

even when the species was absent. This resulted in a consistent overestimate of biomass. 

 The success of the model predictions did vary with spatial scale. Generally speaking, the 

model did a poor job predicting species biomass at the plot level. While there was a significant 

relationship between the model prediction and the observed values at the plot level (p<0.01), it 

explained a small amount of the variation (R2=0.15, Figure 3.4). This is understandable in light 

of the fact that each plot was only sampled three times over the course of the study and only two 

of the four environmental drivers were plot-specific. Because of this there was simply not 

enough unique information to make plot specific predictions. 

Discussion 

 It has been well established that increased species diversity is related to decreased 

temporal variation in community biomass production in temperate grasslands (Tilman 1996, 

2006), and it is true for this system as well (Appendix 3, Figures S3.2 & S3.3). But it is now 

generally accepted that species diversity does not accurately represent the functional diversity 

present in a plant community since it treats different species as unique from one another and 

members of the same species as identical regardless of the range of meaningful variation within 

and between species (McGill et al. 2006). Additionally, relationships between species diversity 
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and ecosystem function provide little insight into the causative mechanisms that drive temporal 

changes in these communities. Instead, more weight is being given to functional diversity 

measures which calculate diversity based on variation in those traits of individuals which are 

thought to be most important to survival, growth, and/or reproduction (Petchey & Gaston 2002, 

2006). These traits are subsequently being used to predict changes in community composition 

and productivity (e.g. Chapters 1 & 2), though these methods had until now been applied almost 

exclusively to temperate grasslands. The traits of species in this system have been shown to 

influence belowground nutrient cycling (Sutton-Grier et al 2011, 2012), but the degree to which 

traits determine aboveground production in this wetland system was not known. 

 We used species functional traits to develop a statistical model that can explain 91% of 

the variation in species biomass at the community level between 2005 and 2009 (Figure 3.2) and 

successfully reproduced the mean biomass of each species in the study (Figure 3.3).  Given this 

model’s remarkable ability to explain the variation in the production of this community it is 

reasonable to ask which traits and trait/driver relationships are most influential in determining 

community dynamics but, unfortunately, the complexity of the model prohibits us from teasing 

apart the relative contribution of each trait since it contains far more covariates than species 

rendering it underdetermined. What we can say is that there is substantial variation across 

species in the strength, and even direction, of their trait-induced response to the environment 

(Figure 3.5). This makes it clear that species respond differently to environmental forcing with 

respect to their traits. This variation in trait/environmental response defines a species niche that 

changes in along the environmental gradient and provides compelling evidence that the structure 

of this wetland community is, in fact, determined primarily by niche differentiation rather than 

being the result of neutral processes. Furthermore, the fact that three out of the four traits (SLA, 
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Amass, & RtoS) are the same as those that are driving community dynamics in grassland systems 

(Chapters 1 & 2) and are strongly correlated with relative growth rate (Hunt & Cornelissen 

1997). These three traits are strongly tied to the plant carbon budget: Rate of carbon assimilation 

per unit mass (Amass), above versus belowground carbon allocation (RtoS), and light 

interception potential per carbon investment (SLA). SLA, Amass, and Nmass have also been 

shown to be correlated in a host of taxa spanning large climatic gradients (Wright et al. 2004). 

The fact that these traits have been shown to control grassland systems (Chapters 1 & 2) and 

restored wetlands, along with their strong correlation across ecosystems suggests underlying, 

general rules based on functional traits that structure a range of plant community types. 

 This study represents a first demonstration that functional traits structure wetland 

communities and thereby determine the production of these systems. It is clear that this type of 

analysis will require more and better data to be able to determine the specific trait/environment 

relationships that are key to structuring this wetland system or to make predictions of species 

biomass at fine spatial scales. For example, a longer time-series for each plot would be required 

to parameterize a model to be able to make plot-specific predictions. That being said, using only 

a few traits and environmental variables, and only 3 years of biomass data, our model was able to 

explain 91% of the variation in species biomass at the community level and provides a powerful 

demonstration of using traits to understand wetland systems. 
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Figure 3.1: Trait distributions weighted by relative abundance for percent nitrogen by mass 

(Nmass), photosynthesis per unit mass (Amass), specific leaf area (SLA) and root to shoot ratio 

(RtoS) for the start and ending years of the study.  
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Figure 3.2: Model predicted biomass averaged across all plots vs. observed biomass averaged 

across all plots for all species. The lines are the linear fits color-coded for the specific year. The 

black dashed line corresponds to the 1 to 1 line where the model and data agree exactly.  Close 

grouping of fitted lines to 1:1 indicate a good fit of the model in each year and overall. 

Regression lines are extended past the range of each data set to facilitate comparison between 

them. 
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Figure 3.3: Plots of mean biomass (dots) for each species for both data (black) and model 

predictions (red). The bars represent one standard deviation. 

2005 2006 2007 2008 2009

0
30

70

Year

B
io
m
as
s

A. incarnate

2005 2006 2007 2008 2009

0
40

10
0

Year

B
io
m
as
s

C. crinita

2005 2006 2007 2008 2009

0
10
0

Year

B
io
m
as
s

C. lurida

2005 2006 2007 2008 2009

0
40
0

Year

B
io
m
as
s

E. perfoliatum

2005 2006 2007 2008 2009

0
15
0

Year

B
io
m
as
s

J. effusus

2005 2006 2007 2008 2009

0
2

4

Year

B
io
m
as
s

L. cardinalis

2005 2006 2007 2008 2009

0
15
0

Year

B
io
m
as
s

M. viminium

2005 2006 2007 2008 2009

0
30

60

Year

B
io
m
as
s

P. verigatum

2005 2006 2007 2008 2009

0
10
0

Year

B
io
m
as
s

S. cyperinus

2005 2006 2007 2008 2009

0
60

Year

B
io
m
as
s

C. latifolium

2005 2006 2007 2008 2009

0
10
0

Year

B
io
m
as
s

V. noveboracensis



 52 

0 50 100 150

0
50
0

10
00

15
00

Model predicted biomass (g)

O
bs

er
ve

d 
bi

om
as

s 
(g

)

  

Figure 3.4: Model predicted biomass vs. observed biomass for all species. The red dashed line is 

the linear fit.  
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Figure 3.5: Plot of Bayesian model parameter values. Each box plot represents the distribution of 

the mean parameter values across all species. 
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CONCLUSION 

 

It has been a longstanding goal of community ecologists to find laws to explain how 

communities are assembled and how their composition changes over time (e.g. MacArthur & 

Wilson 1967). Some have even despaired that it might be impossible to do so and that 

community ecologists should direct their efforts elsewhere (Lawton 1999; Simberloff 2004). We 

have shown in the previous chapters that there is reason for much optimism. Traits-based 

approaches offer a way to escape the taxonomy-bound community ecology of the past, and 

instead build a new understanding of community dynamics that is based on inherent, 

fundamental properties of individual organisms.  

We showed in chapter one that the long-term community dynamics of a natural tallgrass 

prairie are explained primarily by the relative growth rates of the constituent species and the 

interaction between those growth rates and total growing season precipitation. This model was 

able explain the majority of variation in the data at both the species and community level. In a 

more detailed primary-trait model we found that variation in the data was well explained and that 

it was controlled by variation in trait/driver interactions. Although the primary-trait model was 

underdetermined, preventing a detailed analysis of the relative contribution of each model 

component, we were able to show that each of the trait and trait/environment terms showed 

substantial variation, which indicates that the difference in performance between species is at 

least partly the result of niche differentiation with respect to their traits.  

 In chapter two we showed that the production of an experimental mixed-grass prairie was 

also controlled primarily by trait/environment interactions. Despite using a different model 
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structure (Normal distribution vs. Multinomial distribution) and different data types (Biomass vs. 

Cover), we found that both systems were primarily structured by the same trait/environment 

interactions, namely relative growth rate and its interaction with growing season precipitation. 

This is encouraging given the differences in these two types of grasslands in terms of climate and 

the fact that Cedar Creek is experimentally manipulated whereas Konza is a natural system. This 

is evidence that temperate grasslands are subject to general rules governing their dynamics and 

that our methods are robust with respect to different data structures. 

 In chapter three we found that the restored wetlands at Sandy Creek were trait-structured 

and that the model did an excellent job describing biomass production at the site level, but the 

explanatory power of the model broke down at the plot level. We speculate that this is the result 

of the short-term duration of the study resulting in an insufficient sample size for each plot. 

There simply was not enough plot level data to parameterize the model for that particular spatial 

scale. However, at the site level we found that many of the same primary traits that were 

responsible for structuring the grassland sites (Chapters 1 & 2) were also controlling the Sandy 

Creek system. 

 Across all of the studies it is remarkable how much of the data variation is explained in 

each case using a small number of traits and environmental drivers. This suggests that we chose 

our traits well, and did not exclude any key traits from the analyses. Alternatively, we may have 

chosen traits that are strongly correlated with the true traits driving this system. Many of the 

traits used in our studies are known to be correlated with each other, and with other traits,  across 

a large number of taxa spanning large climatic gradients and biome types (Wright et al. 2004). 

These strong correlations suggest that there are trade-offs constraining the strategies that plants 

employ to deal with the environment. Our success in teasing apart the relative contribution of the 
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trait/environment interactions for the relative growth rate models at Konza (Chapter 1) and Cedar 

Creek (Chapter 2) demonstrates the potential to do similar analyses for detailed, multi-trait 

models for communities that have trait and performance data for a sufficient number of species. 

In a model containing all of the traits from the Leaf Economic Spectrum (Wright et al. 2004), it 

should even be possible to tease apart relationships driving the observed trait correlations. 

Looking Forward 

 The previous chapters contain some of the first attempts to understand and model how 

traits and their interaction with the environment impact the structure and function of plant 

communities. As with any novel application there are many lessons to be learned to refine these 

methods going forward.  

 The chief factor that limited the depth of my analyses for all three systems was the small 

number of species for which trait data were available, and the resolution of those trait data. In 

each case I was limited to less than a dozen species, but for each species it was desirable to 

include the effects of multiple traits, environmental drivers, and trait/driver interactions. As a 

consequence, the models were severely underdetermined, i.e. they had many more variables than 

species. This resulted in an inability to tease apart the contributions of the model terms in all but 

the simplest models. Trait data for more species would have allowed for in-depth analysis of 

models containing more traits and drivers, yielding a more detailed understanding of forces 

structuring these systems. In future studies this is going to be essential if we hope to be able to 

analyze the relative contribution of the myriad factors that impact community dynamics across 

different systems.  
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 While there is a wealth of trait data that is becoming available (e.g. the TRY plant 

database, http://www.try-db.org), it is important that we address the type and quality of data 

needed moving forward if we hope to answer ecologically relevant questions about the structure 

and function of ecosystems. The resolution of the trait data available to us restricted the type of 

analyses that we could use and the explanatory power of the analyses. In all three studies we 

were restricted to using species mean trait values measured under a single, or a few, sets of 

environmental conditions. It is well known that intraspecific trait variability is substantial and 

can impact the result of traits-based studies (e.g. Boege et al. 2004; Albert et al. 2010; Bolnick et 

al. 2011). The use of species’ means restricted us to estimating the mean effect of each species 

rather than getting a more nuanced understanding of the impact of inter- and intra-specific trait 

variation on community dynamics. Further, the ability to include detailed prior distributions for 

each trait, rather than point estimates, would have allowed our Bayesian Hierarchical models to 

produce more accurate posterior parameter distributions, which in turn would allow a better 

understanding of the relative contribution of each trait/environment interaction to overall 

community dynamics. 

 It will also be important going forward to improve our mechanistic understanding of how 

the trait values of individuals vary along environmental gradients. For example, rates of 

photosynthesis vary as a function of ambient temperature, evaporative demand, and CO2 

availability. Understanding the functional relationship between these variables and how that 

relationship varies between species will be key for incorporating mechanistic relationships into 

these models and taking full advantage of the quantitative tools available (e.g. Webb et al. 2010). 

 Another important lesson to remember going forward comes from our analysis of Cedar 

Creek (Chapter 2).  We found, when the time-series data were divided into three parts, the 
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explanatory power of the model increased over time, explaining 2% of the variability in the data 

over the first seven years, 16% over the following eight years, and 54% of the variability in the 

final eight years of the study. We suspect that this is due to the fact that the communities in each 

plot are not natural assemblages but randomly constructed from the local species pool. This may 

result in assemblages that are poorly matched for the microclimates they experience in the plot 

and may have resulted in strong species sorting early in the experiment that could be controlled 

by different traits than those that control a more mature community. This could cause the 

strength of trait-mediated responses for the traits used in this study to change over time as the 

historical artifact of the initial planting weakened and the composition of the plots came more to 

reflect natural communities. As the design of the Cedar Creek study has served as a template for 

many subsequent biodiversity studies (e.g. BIODEPTH, Hector et al. 1999; Spehn et al. 2005) 

this effect could have an important impact on the results of these experiments, particularly for 

short duration studies (e.g. Sandy Creek, Chapter 3). It will be important in these manipulated, 

experimental systems to measure a larger suite of traits to ensure that we have traits that are 

important for all successional phases of the community. It will also be important to model the 

traits as a function of time so that it would be possible to determine what traits and 

trait/environment interactions are at important at particular times in community development. 

 While it is easy to focus on the limitations of the data, and what could have been done “if 

only,” it is worth noting how well our methods worked despite these limitations. At Konza we 

were able to explain more than 84% of the variation in community functional diversity (Figure 

1.2) and an average of 64% of the cover variation across all ten species. At Cedar Creek we 

explained 75% of the variation in total plot biomass (Figure 2.3). At the Sandy Creek restoration 

site we explained 91% of the variation in plot biomass (Figure 3.2). In each case this was done 
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using a small number of traits and environmental drivers. Our ability to explain large portions of 

the variation in community structure and performance of these three distinct types of plant 

communities, using similar traits and environmental drivers, implies that there are general laws 

underlying the structure of plant communities. This work represents a significant step toward 

eventually understanding those general laws and helping community ecology develop from a 

largely descriptive science to a predictive science. 
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APPENDIX A: SUPPLEMENT TO CHAPTER 1 

  

Study site 

The Konza Prairie Long Term Ecological Research (LTER) station in North-Eastern Kansas is a 

3500 ha native undisturbed tallgrass prairie ecosystem – a grassland type that once stretched 

from Canada to Texas. Konza is located at the northern end of the Flint Hills, and escaped 

conversion to agriculture because the shallow rocky soils, which characterize the area, proved 

unsuitable for agriculture. Since 1982 the site has been divided into watersheds over which 

grazing and fire regimes have been imposed. Controlled burns are performed on each watershed 

on an annual, 4, 10, or 20-year basis. Meteorological data has been collected continuously since 

1982. We focus on the lowland, deep soils (>1 m) of watershed 004b, an ungrazed site subjected 

to a 4-year burn cycle.  

Relative cover data 

Species cover for watershed 004b was measured for all species at twenty 10 m2 plots from 1983-

2007 (Figure S1.1). This yields 20 measurements per year for each species. In some years cover 

data were collected more than once. When this occurred we used the maximum value recorded 

for each species. Coverage measures were binned during data collection into bins of unequal size 

(0-1%, 2-5%, 5-25%, 25-50%, 50-75%, 75-95%, 95-100%).  We assigned the average value of 

each bin to every species in the bin. Because of the multi-layered nature of the tallgrass canopy, 

total percent cover measurements were generally greater than 100%, so we divided by the total 

cover to obtain relative cover measures for each species.  The species used in the study are listed 
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in model results below. Cover data are available on the Konza Prairie website 

(http://www.konza.ksu.edu/KNZ/) 

Environmental data 

The environmental data consists of meteorological and fire history data collected at the Konza 

headquarters between 1983 and 2007, as well as records of controlled and natural fires occurring 

in the watershed over the same time period. These data are available at the Konza LTER website 

(http://www.konza.ksu.edu/KNZ/). The temperature data used in this study is the average of all 

daily average temperatures (in degrees Celsius) during the growing season (April-August) of 

each year (Figure S1.2). The precipitation data consists of the sum of all rainfall (in mm) during 

the same period (Figure S1.2). The temperature and precipitation data were scaled to have mean 

zero and variance equal to one. Fire is used in this study as a potential surrogate for a number of 

processes that were not measured. For example, fire in the tall grass prairie alters the availability 

of nutrients, water (Knapp & Seastedt 1986). All fires occurred early in the growing season 

(between March and May).  
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Figure A1.1: Konza watershed 004b relative cover for the ten species used in this study averaged 

across all 20 plots. The error bars for A. gerardii represent one standard deviation across the 20 

plots and are included to demonstrate the variability in the cover data.  
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Figure A1.2: Average growing season (April-August) temperature(°C) and total growing season 

precipitation (mm)for the Konza Prairie LTER. 

Methods and Models 

For this study we examine two different models: a single-trait RGR model and a primary-trait 

model containing three traits. The RGR model is given by:  

  

! 

Xi,1:J ~ multinomial( ! p i,1:J ,Ni)

Ni = Xi,k
k =1

J

"

pi, j =
#i, j

#i,k
k =1

J

"

log(#i, j ) = $0 + $1
j + $2

ji

+$3
jGi, j + $4

jTi + $5
jPi + $6

jFi

+$7
jGi, jTi + $8

jGi, jPi + $9
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where i is the year of study, j = 1:J are the species of interest, G is the species’ relative growth 

rate, F is a binary variable signifying whether or not it is a fire year, T is average growing season 

temperature, and P is total growing season precipitation. In the linear portion of the model β0 is 

an intercept, β1
j is a species effect, and β2

j*i is a year by species interaction. The β*_ terms 

correspond to the direct effects of relative growth rate and the environmental effects. The β*G*_ 

terms correspond to the interaction of growth rate with the environment. X is a vector of species 

count data generated from the observed cover data. To do this we multiplied the species cover 

values by 10,000 yielding a count. One can thus think of the study plot as being divided into 

10,000 equal areal units and the count for each species representing the number of units covered 

by a particular species. To ensure that the choice of multiple (i.e., 10,000) was not arbitrarily 

influencing the model, we experimented with a range of values and found that, for values above 

1,000, there was no influence on the model outcome. 

In our primary-trait model the un-scaled mean is similar to the RGR model and is 

described as: 

log(!i,k ) = B0 +B1
j +B2

j ! i

+B3
j !Ti +B4

j !Pi +B5
j !Fi

+B6
j !RMF +B7

j !SLA+B8
j !NAR

+B9
j !Ti !RMF +B10

j !Pi !RMF +B11
j !Fi !RMF

+B12
j !Ti !SLA+B13

j !Pi !SLA+B14
j !Fi !SLA

+B15
j !Ti !NAR+B16

j !Pi !NAR+B17
j !Fi !NAR

 

where RMF is root mass fraction, SLA is specific leaf area, and NAR is net assimilation rate by 

area. The B*_ terms correspond to the direct effects of the traits  and the environmental effects. 



 81 

The remaining terms represent the interactions between the traits and the environmental 

variables. 

In both cases we use a multinomial model since we are trying to estimate the expected 

relative percent cover of each species, which is exactly the information contained in the 

parameter p of the multinomial distribution.  We modeled p as multivariate logistic, which 

required that the parameters for one (arbitrary) species be set to zero to ensure that the resulting 

solution is unique. We opted to set the values for the dominant species, A. gerardii, to zero to 

enable us to interpret the other species parameter values as being relative to A. gerardii. For 

example, if a species has a positive parameter value for a particular term of the model we can say 

that that model term is more important to the species’ success than it is to A. gerardii’s.  

Model selection and parameter estimation 

 Models were selected using weighted deviance information criterion (wDIC, Farnsworth 

& Ward 2009) based on the average species cover across all transects. This was done on the 

average data rather than on the transect data because it would have been prohibitive to test each 

of the models on all of the data given our computational resources. For each of the two selected 

models, model parameters were separately estimated for each of the twenty sets of transect data 

using Bayesian parameter estimation. The parameter estimation was done in WinBUGS (version 

14, http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/contents.shtml) through R (version 2.13, 

http://www.r-project.org/) using the R2WinBUGS package. All model parameters were assigned 

non-informative priors so that β ~ Normal(0, 100) for all β. For each transect, with each model, 

we ran three chains using different initial conditions. Each chain was run for 200,000 iterations. 

The first 195,000 iterations were used as “burn-in” and discarded and parameters were estimated 
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using the final 5,000 iterations of each chain. Within and between chain convergence was 

verified using standard diagnostics. For each model run we looked at the mean value for each 

parameter. This yielded a distribution consisting of 20 estimates for each parameter for each 

model. 

Relative growth rate model results 

 

Table A1.1: R2 explained by RGR model for each species. (*) denotes species that average at 

least 1% cover throughout the study. All R2 values are significant with p<0.001. 

Konza species 
ID 

Species name Common name RGR 
Model R2 

S2* Andropogon gerardii Big Bluestem 0.76234 
S3* Schizachyrium scoparium Little Bluestem 0.77754 
S4 Bouteloua curtipendula Sideoats gramma 0.77043 
S9 Elymus canadensis Canada Wildrye 0.77933 
S12 Koeleria pyramidata Prairie June Grass 0.31209 
S15* Panicum virgatum Switch Grass 0.80451 
S18* Sorghastrum nutans Indian Grass 0.57701 
S44 Achillea millefolium Common Yarrow 0.60847 
S90* Lespedeza capitata Roundhead Lespedeza 0.70638 
S106 Dalea candida White Prairie Clover 0.46909 
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Table A1.2: Mean parameter estimates for the relative growth rate model ± one standard 

deviation. The global intercept was the same for all species, β0 = -0.21 ± 0. The values for A. 

gerardii (S2) were set to zero to ensure that parameter estimates are unique. 

  S3 S4 S9 S12 S15 S18 S44 S90 S106 S2 

β1 -4.43 
± 2.65 

-6.87 
± 3.37 

-7.41 
± 3.56 

-3.84 ± 
12.35 

-4.62 ± 
2.31 

-2.06 ± 
0.89 

-3.98 ± 
3.53 

-4.18 ± 
3.12 

-8.39 ± 
9.33 

0 

β2 0.09 ± 
0.17 

0.05 ± 
0.09 

-5.33 
± 6.04 

-4.42 ± 
5.34 

-1.1 ± 
3.77 

-0.01 ± 
0.06 

-10.36 
± 3.78 

-2.61 ± 
5.48 

-6.43 ± 
5.96 

0 

β3 1.59 ± 
2.42 

-1.63 
± 4.6 

0.84 ± 
1.2 

-7.29 ± 
11.48 

-0.59 ± 
1.78 

-2.22 ± 
2.69 

-2.97 ± 
0.82 

6.31 ± 
6.51 

0.15 ± 
4.76 

0 

β4 -0.73 
± 1.08 

-0.75 
± 1.26 

1.75 ± 
3.49 

7.57 ± 
5.8 

-0.05 ± 
3 

0.13 ± 
0.32 

2.98 ± 
2.95 

-4.27 ± 
17.21 

0.28 ± 
3.36 

0 

β5 0.07 ± 
0.62 

0.2 ± 
2.75 

2.2 ± 
2.9 

-2.16 ± 
7.58 

0.23 ± 
1.36 

0.51 ± 
0.2 

2.79 ± 
2.15 

-3.19 ± 
22.71 

0.27 ± 
4.64 

0 

β6 -1.89 
± 1.79 

-3.11 
± 3.81 

-3.79 
± 4.68 

0.86 ± 
7.95 

-2.6 ± 
2.4 

-2.64 ± 
1.44 

-2.71 ± 
1.23 

1.72 ± 
4.62 

-1.26 ± 
4.41 

0 

β7 -1.21 
± 2.36 

1.87 ± 
3.93 

-4.61 
± 

14.63 

-5.2 ± 
11.72 

-0.15 ± 
2.5 

-1.22 ± 
2.15 

1.09 ± 
1.42 

-2.62 ± 
8.78 

-0.81 ± 
2.18 

0 

β8 -0.66 
± 1.18 

-0.39 
± 3.7 

3.68 ± 
18.12 

6.37 ± 
6.66 

0.01 ± 
0.81 

-0.16 ± 
1.33 

3.06 ± 
0.7 

-2.32 ± 
11.26 

-1.13 ± 
3.91 

0 

β9 5.17 ± 
3.86 

4.6 ± 
3.26 

0.71 ± 
1.12 

-1.24 ± 
9.31 

-2.22 ± 
2.99 

-3.19 ± 
2.78 

-3.14 ± 
2.03 

2.01 ± 
3.03 

2.93 ± 
2.3 

0 
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PCA results for RGR model 

Table A1.3: The first three principal components of the regression parameters in the relative 

growth rate model, along with the variance explained by each of the parameters. 

 PC1 PC2 PC3 
β1 (Species effect) -0.017 -0.565 -0.265 
β2 (Year effect) 0.368 -0.689 0.272 
β3 (RGR) 0.528 0.273 -0.102 
β4 (Temperature) -0.512 -0.063 0.257 
β5 (Precipitation) -0.097 0.174 -0.327 
β6 (Fire) 0.041 -0.137 0.224 
β7 (RGR*Temperature) 0.127 -0.011 -0.475 
β8 (RGR*Precipitation) -0.429 0.003 0.226 
β9 (RGR*Fire) 0.335 0.278 0.588 

Variance Explained 47.5% 19.2% 13.0% 
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Figure A1.3: Distributions of relative growth rate model parameters for all species. Each box plot 

describes the distribution of a single model parameter across all species. All values are relative to 

A. gerardii whose parameter values were set to zero and are denoted by the red line. Note that 

the x-axis is a log-scale, so positive values have more influence on plant performance than 

negative values of the same magnitude. 
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Figure A1.4: The Shannon diversity index (H’) for the study species from the Konza LTER data 

(blue), the model predictions for the study species (red), and for all species present in the data 

including those not used in the study (black). Points are the average across all 20 plots and error 

bars represent one standard deviation. The model mean explains more than 29% of the 

biodiversity variation in the data for all species (p<0.001). 
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Primary trait model results 

 

Table A1.3: R2 explained by the primary trait model for each species. (*) denotes species that 

average at least 1% cover throughout the study. All R2 values are significant with p<0.001. 

 

Konza 
species ID Species name Common name 3-trait 

Model R2 

S2* Andropogon gerardii Big Bluestem 0.76241 
S3* Schizachyrium scoparium Little Bluestem 0.77747 
S4 Bouteloua curtipendula Sideoats gramma 0.77018 
S9 Elymus canadensis Canada Wildrye 0.78073 
S12 Koeleria pyramidata Prairie June Grass 0.33014 
S15* Panicum virgatum Switch Grass 0.80460 
S18* Sorghastrum nutans Indian Grass 0.57706 
S44 Achillea millefolium Common Yarrow 0.60998 
S90* Lespedeza capitata Roundhead Lespedeza 0.70683 
S106 Dalea candida White Prairie Clover 0.46839 
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Table A1.4: Mean parameter estimates for the primary-trait model ± one standard deviation. The 

global intercept was the same for all species, B0 = -0.23 ± 0. The values for A. gerardii (S2) were 

set to zero to ensure that parameter estimates are unique. 

  S3 S4 S9 S12 S15 S18 S44 S90 S106 S2 

B1 -2.94 ± 
1.5 

-2.56 ± 
2.36 

-1.24 ± 
3.15 

-8.71 ± 
13 

-1.54 ± 
3.24 

-1.4 ± 
0.86 

-2.3 ± 
4.85 

-0.52 ± 
2.95 

-4.67 ± 
5.3 

0 

B2 0.1 ± 
0.17 

0.05 ± 
0.09 

-6.22 ± 
6.81 

-4.52 ± 
6.02 

-0.59 ± 
3.92 

-0.01 ± 
0.06 

-10.46 ± 
3.7 

-2.09 ± 
5.5 

-6.02 ± 
6.11 

0 

B3 -3.75 ± 
2.08 

-0.23 ± 
4.14 

3.53 ± 
3.7 

-2.15 ± 
10.99 

0.25 ± 
1.8 

1.78 ± 
0.86 

3.02 ± 
3.19 

0.35 ± 
2.8 

-0.11 ± 
4.05 

0 

B4 -0.67 ± 
2.14 

2.7 ± 
3.36 

1.04 ± 
2.93 

4.4 ± 
4.78 

1.28 ± 
1.74 

0.01 ± 
0.71 

2.01 ± 
2.47 

0.5 ± 
2.55 

-0.94 ± 
7.5 

0 

B5 -2.85 ± 
1.87 

0.68 ± 
3.77 

-2.32 ± 
5.87 

-3.9 ± 
3.95 

-0.11 ± 
2.59 

-0.78 ± 
1.39 

-2.95 ± 
1.32 

-0.91 ± 
3.09 

-1.08 ± 
3.48 

0 

B6 0.57 ± 
2.66 

-8.55 ± 
4.16 

-5.16 ± 
3.02 

2.34 ± 
3.25 

-5.74 ± 
3.9 

-2.3 ± 
2.41 

-4.38 ± 
2.46 

5.42 ± 
4.68 

3.05 ± 
4.64 

0 

B7 -1.28 ± 
1 

2.06 ± 
4.33 

-3.54 ± 
3.39 

1.58 ± 
6.63 

-1.96 ± 
3.66 

-0.91 ± 
1.87 

0.79 ± 
3.28 

0.93 ± 
3.86 

6.26 ± 
5.23 

0 

B8 -0.09 ± 
1.44 

0.71 ± 
2.97 

-1.07 ± 
2 

-1.47 ± 
5.37 

-2.29 ± 
4.43 

-0.32 ± 
0.92 

-0.64 ± 
1.03 

4.2 ± 
3.23 

0.64 ± 
1.8 

0 

B9 -3.37 ± 
2.07 

1.35 ± 
5.01 

-0.22 ± 
3.65 

-1.31 ± 
2.75 

0.8 ± 
2.93 

-2.75 ± 
1.65 

1.8 ± 
0.62 

0.7 ± 
2.97 

-0.99 ± 
2.05 

0 

B10 -0.51 ± 
2.18 

0.07 ± 
4.18 

-0.05 ± 
2.91 

0.72 ± 
1.87 

0.96 ± 
2.63 

0.75 ± 
1.45 

3.2 ± 
1.16 

1.02 ± 
2.85 

-2.07 ± 
3.06 

0 

B11 
-0.34 ± 

2.38 
-0.24 ± 

2.46 
-5.85 ± 

4.17 
0.35 ± 
0.14 

-3.81 ± 
4.19 

1.17 ± 
4 

-2.94 ± 
2.42 

0.05 ± 
3.9 

-0.05 ± 
5.37 

0 

B12 
0.68 ± 
0.81 

2.99 ± 
2.9 

0.13 ± 
3.16 

-6.11 ± 
6.22 

-0.16 ± 
2.3 

4.05 ± 
2.67 

-0.28 ± 
1.68 

-0.22 ± 
2.84 

-0.79 ± 
2.57 

0 

B13 
-0.14 ± 

0.99 
1.86 ± 
3.33 

1.36 ± 
3.96 

2.75 ± 
3.64 

-0.49 ± 
1.92 

-2.98 ± 
1.3 

-0.62 ± 
1.74 

-0.2 ± 
7.77 

-0.49 ± 
5.04 

0 

B14 
-6.18 ± 

4.64 
3.25 ± 
2.59 

2.16 ± 
2.37 

-2.57 ± 
3.48 

0.22 ± 
2.45 

-3.57 ± 
2.54 

-0.14 ± 
0.08 

-1.19 ± 
3.18 

2.06 ± 
2.59 

0 

B15 
-0.76 ± 

1.38 
2.86 ± 
2.99 

0.7 ± 
1.83 

-0.38 ± 
5.16 

-0.27 ± 
1.95 

1.51 ± 
1.3 

-0.41 ± 
1.54 

-1.1 ± 
2.23 

-2.01 ± 
5.94 

0 

B16 -0.87 ± 
1.72 

-0.01 ± 
3.86 

0.93 ± 
3.52 

0.27 ± 
3.62 

-0.31 ± 
1.21 

-1.43 ± 
0.71 

0.35 ± 
0.36 

-0.85 ± 
2.15 

2.1 ± 
6.87 

0 

B17 -5.9 ± 
3.42 

1.27 ± 
2.25 

-2.23 ± 
2.28 

0.97 ± 
1.61 

5.86 ± 
2.9 

-0.81 ± 
4.1 

0.27 ± 
2.24 

2.81 ± 
3.53 

0.96 ± 
1.48 

0 
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Figure A1.5: Distributions of primary trait model parameters for all species. Each box plot 

describes the distribution of a single model parameter across all species. The parameters are 

explained in the model description above. All values are relative to A. gerardii whose parameter 

values were set to zero and are denoted by the red line. Note that the x-axis is a log-scale, so 

positive values have more influence on plant performance than negative values of the same 

magnitude. 
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Fig A1.6: Functional diversity measured using Rao’s quadratic entropy (FDQ) for the primary 

trait model. Each point represents the mean value across 20 plots and the error bars represent one 

standard deviation. The model mean explains more than 85% of the variation observed 

biodiversity (FDQ) over the 25-year span. 
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APPENDIX B: SUPPLEMENT TO CHAPTER 2 

 

Table B2.1: Mean, standard deviation, and skew for the distributions of average growing season 

temperature and total growing season precipitation at the Konza and Cedar Creek LTER’s 

between 1982-2004. 

 
Average Temperature Total Precipitation 

 
Cedar Creek Konza Cedar Creek Konza 

Mean 18.80 21.00 432.47 505.34 
SD 0.99 0.90 107.08 150.80 

Skew 0.18 0.12 0.79 1.12 
 

Table B2.2: Traditional functional group, average relative cover in the Cedar Creek LTER data, 

and variation explained (R2) by the 3-trait model for each species used in the study. 

Species Functional 
group 

Average relative 
cover in data 

3-Trait model 
R2 

Agropyron repens C3 0.17 0.191 
Andropogon gerardii C4 0.05 0.663 
Calamagrostis canadensis C3 0.05 0.504 
Lespideza capitata Legume 0.02 0.565 
Liatris aspera Forb 0.01 0.275 
Schizachyrium scoparium C4 0.53 0.747 
Solidago nemoralis Forb 0.03 0.167 
Sorghastrum nutans C4 0.15 0.144 
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Figure B2.1: Distributions for individual parameters from the RGR model. The vertical red line 

at zero distinguishes the point at which the corresponding model term has no effect on 

production. 
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Figure B2.2: Distributions for individual parameters from the three-trait model. The vertical red 

line at zero distinguishes the point at which the corresponding model term has no effect on 

production. 
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Figure B2.3: Shannon index (H’) of model estimate vs. observed data for the RGR model when 

run separately on data for years 1-7 (blue), 8-15 (red), and 16-23 (green) of the study. The 

variation explained by the model increased dramatically from 2% in the first seven years to over 

54% in the final eight years. 
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PCA Results for Cedar Creek RGR model 

 

Importance of components: 

                          Comp.1    Comp.2    Comp.3     Comp.4     Comp.5     Comp.6       Comp.7 

Standard deviation     4.6442101 3.6987932 3.0426223 2.04076063 1.99823742 0.85594438 7.106345e-02 

Proportion of Variance 0.4038879 0.2561871 0.1733537 0.07798683 0.07477068 0.01371918 9.456483e-05 

Cumulative Proportion  0.4038879 0.6600750 0.8334287 0.91141558 0.98618625 0.99990544 1.000000e+00 

                             Comp.8 

Standard deviation     7.403275e-09 

Proportion of Variance 1.026325e-18 

Cumulative Proportion  1.000000e+00 

 

Loadings: 

   Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8 

B1 -0.156  0.693  0.311  0.047 -0.459  0.306  0.234 -0.194 

B2 -0.271 -0.068  0.754 -0.383  0.221 -0.172  0.047  0.354 

B3  0.116 -0.013 -0.247 -0.025  0.032  0.376  0.577  0.671 

B4 -0.113 -0.472 -0.007 -0.377 -0.180  0.046  0.570 -0.513 

B5 -0.860  0.124 -0.441 -0.173  0.059 -0.031 -0.096  0.079 

B6  0.119  0.436 -0.089 -0.083  0.765 -0.104  0.313 -0.296 

B7 -0.007 -0.136  0.085 -0.205  0.272  0.839 -0.364 -0.148 

B8  0.348  0.261 -0.251 -0.794 -0.213 -0.132 -0.216  0.092 
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Scores: 

        Comp.1     Comp.2      Comp.3     Comp.4     Comp.5      Comp.6       Comp.7        Comp.8 

[1,] -7.591135  2.1071020 -1.81989004  2.5121250 -0.8312849 -0.07167605  0.099250576 -1.354472e-14 

[2,]  5.009554 -1.7891716  2.39436260  1.8095892  3.7103582 -0.17988187  0.059668483 -6.938894e-15 

[3,]  2.094659  1.5594979 -6.86365282 -0.3812519  1.5773468  0.15814490 -0.065048408  1.082467e-14 

[4,] -4.216571  5.7369076  3.77429286 -1.5038193  1.3089857 -0.32045476 -0.075171115  1.228444e-14 

[5,]  2.841394 -1.9473000  0.76275241  2.2242228 -2.6314504 -1.24447090 -0.079442779  9.686696e-15 

[6,]  1.587874 -0.5204163  1.75349788  0.8993204 -1.4877616  2.01677973 -0.034150345  4.392320e-15 

[7,] -5.202785 -7.5309685  0.04328569 -2.5438288  0.3583050 -0.09095395 -0.003185769 -2.636780e-15 

[8,]  5.477010  2.3843489 -0.04464860 -3.0163574 -2.0044988 -0.26748710  0.098079358 -1.387779e-14 

 

Note: For the scores given above, the rows correspond to the study species in the order given in Table 2.1 
of the text. 
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APPENDIX C: SUPPLEMENT TO CHAPTER 3 

 

 Virtually all plots had substantial changes in species composition and relative abundances 

over the course of the study. To quantify these changes we calculated the Bray-Curtis 

Dissimilarity Index, BCI, which measures the degree of dissimilarity of composition and 

abundance between two communities (Bray & Curtis 1957). BCI is given by: 

BCIt1,t2 =
bj,t1 ! bj,t2

j
"

bj,t1
j
" + bj,t2

j
"

 

where bj,t is the biomass of species j at time t. The index ranges from zero when the species 

composition and abundances are identical, to 1 when there is no species overlap. BCI is typically 

applied to two different communities separated in space, but we have applied it to measure the 

change in the same plot over time.  

 We found that that the mean dissimilarity across all of the study plots was 0.64 (SD = 

0.23), and that the initial species richness had no effect (paired t-tests, p > .10 for each case, 

Figure S3.1). It is clear from this result that the study plots are dynamic over time, but it is not as 

clear what is driving this change in similarity. High dissimilarity over time can result from 

species turnover even though total biomass production is constant, changes in relative biomass 

production by species even when species composition is constant, and combinations of the two 

scenarios where there is species turnover and changes in biomass production by species. 

 As we are interested in the impact of biodiversity on production and stability of the 

community we began by looking at the relationships between species diversity and ecosystem 
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function/stability. We found a significant quadratic relationship (p < 0.03 for all 3 terms) 

between total plot biomass and plot species richness, where plot biomass was optimized when 

species richness is approximately 5 species (Figure S3.2), though the single covariate explained 

only a trivial amount of variation in biomass (R2 = 0.05). 

 To asses the relationship between species diversity and ecosystem stability we looked at 

the temporal coefficient of variation (CV) for the biomass of each plot, which is the standard 

deviation of the total plot biomass across all study years divided by the mean plot biomass. The 

CV provides a measure of stability that controls for mean productivity and has been shown to be 

negatively correlated with average species richness in temperate grassland systems (Tilman 

1996). At Sandy creek we found that CV was, in fact, negatively correlated average species 

richness for each plot (ρ = -0.22, CI = (-0.40,-0.02),p = 0.03, df = 91). The slope and intercept of 

the linear relationship between CV and average species richness were significant (p < 0.03 for 

both), but the explanatory power was low (R2 = 0.04, Figure S3.3a). 

 To understand whether these changes in the trait distributions are related to the observed 

plot level measures of biomass production and coefficient of variation we measured the 

functional trait diversity of each plot using Rao’s Quadratic Entropy (FDQ, Botta-Dukát 2005, 

Petchey & Gaston 2006). FDQ is a generalization of Simpson’s diversity index that incorporates 

trait differences, species diversity and evenness into a single measure of community functional 

diversity: 

FDQ = dik pi
k=i+1

J

!
i=1

J"1

! pk  
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where J is the number of species in the community, pi is the relative abundance of species i, and 

dik is the distance between species i and k in trait space. Any distance metric can be used so long 

as dik = dki and dii = 0. We chose a Euclidian distance metric as we had no a priori reason to 

weight the contributions of any particular trait.  

 We found a significant quadratic relationship (p < 0.05 for all 3 terms) between total plot 

biomass and plot FDQ, where plot biomass was optimized when plot FDQ is approximately equal 

to 0.45 (Figure 3.2b). As with species richness, the relationship was significant, but explained 

little variation (R2 = 0.01). In terms of ecosystem stability we found that CV is correlated with 

FDQ (ρ = -0.25, CI = (-0.43,-0.05),p = 0.02, df = 91). They are significantly linearly related (p = 

0.015) but, as with species diversity, the relationship does not explain much variation(R2 0.05, 

Figure 3.3b).  

 

Figure C3.1: Bray-Curtis Dissimilarity (BCI) for plots with initial richness of 1, 4, and 8 species 

and all plots grouped together. Plots with similar species composition and abundances over time 

will have low BCI values. 
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Figure C3.2: Total plot biomass (g) as a function of (a) plot species richness and (b) functional 

diversity (FDQ) for 2005-2009. The dashed red lines show the least squares quadratic fits. 

 

2 4 6 8

0.
0

0.
5

1.
0

1.
5

Average Species Richness

C
oe

ffi
ci

en
t o

f V
ar

ia
tio

n

 
0.0 0.2 0.4 0.6 0.8 1.0

0.
5

1.
0

1.
5

Average Functional Diversity (FDQ)

C
oe

ffi
ci

en
t o

f V
ar

ia
tio

n

 

Figure C3.3: Coefficient of variation as a function of (a) average species richness and (b) average 

functional diversity (FDQ). The red lines show the least squares linear fits. 
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