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ABSTRACT

MODELING LANDSCAPEDYNAMICS AND ENVIRONMENTAL ASSOCIATION FOR

SPRUCE MORTALITY

This study addresses important issues relatatbttality of spruce speciePitea sp.) associate
with outbreaks of spruce beet@éehdroctonus rufipennis Kirby) by 1) modeling large scale landscape
dynamics of spruce mortality associated with long-term climate in Colorado and Alaska; Zphmodel
environmental association between spruce mortality and small scale environmental covarniatiesg)incl
climatic factors. In the first chapter, we review the ecology and etiology of spruce mant&lityorado.

In the second chapter, we evaluate landscape dynamics of spruce mortality at the regional scale of
Colorado and Alaska. We used climate transition matrices (CTMs) as a method to asaéisgtice iof
climate on spruce forest extent and mortality. We quantify the probabilities of observing fepeast,
spruce mortality, and the mismatches between probabilities for the presence of host ditd asorta
indicated by differential effects. All values were calculated to populate elenfeZitdvis. The
polynomial functions of ordinary regressive model and spatial autoregressive model plereanied to
represent thassociation between climate zones and the responses. The results show us that there are
influences of long-term precipitation and temperature on both probabilities. Presspoecefforest in
Coloradois associated with high precipitatiammoderately low temperatures while probability of spruce
mortality has a similar association. High probability of observing spruce forakiska is associated
with low to moderate precipitation while the probabilities of observing spruce mp#sdi positively
associated with high precipitation at warmer temperatures. From the differclietitd ethere are
mismatches of responses between host and mortality implying the advantageous of hotd aggocia
moderate temperatures and high precipitation in Colorado while healthy forest is found auératety

low temperature and moderate precipitation in Alaska.



In the third chapter, we describe associations between stand scale environmental conditions and
spruce mortality. We modeled the association using zero-and-one inflated beta regression model based on
hierarchical Bayesian frameworkw®-stage Bernoulli logistic models were applied to indicate the
occurrence of the extreme values represent presence and absence of neoritilityous proportional
responses were then addressed by beta regressive model. Multivariate Gaussian latent process was
included in the function to express the exponential spatial errorsthemesults indicate that spatial
distribution of the occurrence and intensity of spruce mortality were both associtité¢kenocal stand
covariates of temperature zone, precipitation zone, class of stand structure level, relathramcioelass,
and size class. The colder temperature zones have highly negative effects on both the pasbability
mortality occurrence and the probability of full mortality occurrence, while the warmer tempezraitigr
is positively associated with the presence of full mortality. The results also indiaastand
characteristics are important factors associated with mortality. Mortalityrecce is positively
associated with single-story stands with medium to large size classes. The higher-costplecity
structures have highly positive associations with the probability of entire stand movihlle medium
to high dominance classes have negative effects on full mortality. The largest sizedcthsshaghest

dominance class have negatassociations with the proportion of partial mortality.
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CHAPTER 1

INTRODUCTION

The spruce bark beetlB¢ndroctonus rufipennis Kirby) is a common species of beetle
(Coleoptera: Curculionidae: Scolytinae) native to temperate coniferous forest in Muoetica (Massey
and Wygant, 1954). The spruce bark beetle is an oligophagous herbivore that colonizes, develops broods,
and emerges for dispersal from a host tree that usually dies in the process. The deatfesfetdninst
is caused blockage of the flow of nutrients (Hart et al., 2013). Spruce beetles infest all speciésrsf con
in genusPicea (Spruce) In Canada and Alaska, white spruBedlauca (Moench) Voss], Sitka spruc [
sitchensis (Bong) Car] and Lutz’s spruce (P. x lutZii Little) are major host species, whereas the black
spruce P. mariana) is not usually infested (Holsten and Werner, 1990; Schmid and Frye, 1977). In the
Rocky Mountains, Engelmann spru¢e éngelmannii Parry ex. Engelmann) is the main host species,
whereas blue spruc®.(pungens Engelmann) is rarely a host (Holsten and Werner, 1990). In some
conditions, Lodgepole pin€inus contorta Douglas) in mixed spruce stands can be an accidental host in
an outbreak.

Epidemics of spruce bark beetles have ecological and socioeconomic impacts in both natural and
managed forest ecosystems. The bark beetle is a major disturbance in North Ameritsrafifeeting a
larger area than wildland fire (Veblen et al., 1991). Stand structure is modified by outbreak, especially
old-aged and high basal area stands, leaving suppressed and intermediate trees, reducing composition of
spruce tree in the stand, releasing understory, increasing composition of light-tolerant plaets, or ev
transforming the whole stand to non-host species (Schmid and Frye, 1977; Veblen et al., 1991). Other
effects of outbreak relate to streamflow due to loss of vegetation cover. Outbreak cause®wstiteamfl
increase (Bethlahmy, 1975), as well as nitrogen compound in the streamflow (Griffin @L4)., The

effects of an outbreak are similar to the changes that occur after removing large vegetatemdrea,


http://en.wikipedia.org/wiki/Charles_Christopher_Parry
http://en.wikipedia.org/wiki/George_Engelmann

but with standing dead trees (Schmid and Frye, 1977). Nutrient cycling, succession, forest strugture, sola
reflectance, soil dynamics, hydrology, fire, biodiversity, and forested landscape heterogeradgy ar
affected by outbreaks (Griffin et al., 2011; Kaiser et al., 2013; Kurz et al., 2008). Outbielskup dead
standing trees across the landscape, resulting in alteration of fire behavior fromedddapl
accumulation increase, and changing stand structure leads to more potential for wildland fitg,intensi
severity, and occurrence (DeRose and Long, 2009; Jenkins et al., 2012; Schmid and Frye, 1977).
Characteristicsand lifecycle

Holsten et al. (1999) provided a detailed morphological description of the spruce beetle The
oligophagous adults are typical of the genus and are characterized by a cylindrical shape with reddis
brown or black elytra, while the apodous larvae are creamy in color and slight C-shaped and stout. T.
Female beetles bore through host bark and construct an egg gallery in the phloem with a sliglettly groov
pattern (Massey and Wygant, 1954). Knight (1969) proposed that egg quantity laid by female is
associated with the stage of infestation for endemic populations. Deposition of eggs usualjnsiteir
feeding galleries less than a week after successful attack, and the incubation period isekie(1963).
Larvae feed by boring outward from the main egg gallery and feed as group until the third stage of instar.
After that, each larva constructs an individual feeding gallery before the pupation peridtbrPiagas
place at the end of individual galleries and lasts about two weeks. Clusters of neeaihesdiseolor to
yellowish-green and fall approximately a year after the successful attackeviasd Wygant, 1954).

The spruce beetle life cycle is identified as bivoltine, a two-year life cycle, but soher
conditions the life cycle can be univoltine (one year) or multivoltine (more than two yeasgdy and
Wygant, 1954). However, the spruce beetle life cycle rarely exceeds two years. McCambridge and Knight
(1972) documented that geographical location, weather, especially low temperatures can delay brood
development. Adult emergence occurs from May to October in a period of three to four consecutive days.
Beetles usually emerge when maximum shade temperature exceeds an approximate threshold of 16°C

(Dyer, 1973). In the southern Rocky Mountains, the first emergence occurs between June and July



(McCambridge and Knight, 1972). In British Columbia, the emerging flight begins in late May, (D
1973). In Alaska, spruce beetles usually begin to emerge between May and June (Beckwith et.al., 1977)
Maroja et al. (2007) studied how the historic glaciation period affects the differentiapruce
beetle phylogenetic groups in North America. Past isolation separated the spruce beetle population into
three allopatric population groups. The first two groups inhabit Alaska and Canada, infestnad) sev
Picea hosts. Another group inhabits the Rocky Mountains and specializes in infesting the Engelmann
spruce host. This reflects how geographical location, especially in Alaska and Colorade, tiosat
selection, and other factors can impact spruce beetle populations. Spruce beetle psjisbiathern
Rocky Mountain compose of distinct subgroup from subpopulations reside in subalpine forest of
Colorado, Montana, and/ashington, while the potential hybrid population is found in British Columbia
(Jenkins et al., 2014).
Ecology of spruce bark beetle
Bark beetle outbreak intensity is determined by the size of devastated population in a large-scal
area. Population dynamics of spruce beateinfluenced by density-dependent and density-independent
factors (Raffa et al., 2008). Density-independent factors or exogenous factors are th@opapuialiated
factors including the occurrence of both random and nonrandom events, such as weather-related events
and seasonal patterns. Density-dependent factors, or endogenous factors, act as positive or negative
feedbacks of population dynamics those may occur instantly (first-order feedback) andotraltéag
that affects after generation time (second-order feedback); such as predation, competi{idan&mo,
2010).
Seeking an available and suitable host tree is crucial for the survival of a bark begtiqgrop
In endemic populations, the behavioral state where insect population is low and cannot cause high-
intensity and widespread host mortality, #mdemic population of spruce beetle typically inhabits shaded
aspects of fallen host (Hebertson and Jenkins, 2007; Wallin and Raffa, 2004). After emergénce, fli
orientation of most bark beetle species depends on semiochemicals, the chemicals used to agsociate w

other individuals, consisting of aggregation and anti-aggregation pheromones. For the spridadbeetl
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visual cues and chemical sensory are used by females to seek a suitable host for brood development
(Berryman, 1982; Hard, 1985; Wallin and Raffa, 2000). Short-range olfaction or gustation during flight
are also used (Byers, 1996). The utilization of pheromones is critical to overcoming host defense
mechanisms. Dispersal and reproductive processes of spruce beetle relies on behavioral dynamics
mediated by pheromonal substances in aggregating the attacking population until density n§attacki
emerged populations are sufficient to overcome the defenses of host tree (Hard, 1989).

Anti-aggregation pheromones serve to control spruce population density by reducing intraspecific
competition from a highly aggregated population (Hard, 1989). Lewis and Lindgren (2002) observed that
spruce beetles avoided attacking trees already infested with a high degree of bark beetlerpopulati
Wallin and Raffa (2004) found that female beetles from epidemic populations, where population density
is high, prefer media with chemical substances similar to that of healthier trees.intiegss can
express that spruce beetles have an anti-overpopulation mechanism: during outbreak when population
rapidly increases, spruce beetles switch to attack a healthy, highly resistant host due tagncreasi
intraspecific competition.

Leptographium engelmannii Davidson is a species of blue stain fungus most commonly
associated with the spruce beetle and Engelmann spruce (Hinds and Buffam, 1971; Six and Bentz, 2003).
In Alaska,L. abietinum is associated with epidemic populations of the spruce bark beetle (Aukema et al.,
2005). Damage from both the blue stain fungus and bark beetle can weaken host defenses and accelerate
host death (Paine et al., 1997). Many species of bark beetle help in dispersion of fungi by cargghg f
spores in specialized adapted mouth structures, called mycangia. Even though spruce beetles lack
mycangia, they can carry fungal spores in both elytra and uncovered cuticular pits on the head, called
prosternum (Solheim, 1994).

The association with fungi also relates to weakening the host tree and brood development. Blue
stain fungi carried to host xylem tissues by the spruce beetle can also weaken spruce ddfiemégmec
by interrupting water transportation (Werner et al., 2006; Werner and lllman, 1994). The content of
ergosterol, a type of plant secondary metabolite important for brood development, is als@stynific
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higher in phloem infected by blue stain fungi compared with uninfected phloem (Bentz and Six, 2006),
implying that brood development not only acquires necessary compounds from phloem tissues, but also
from association with host fungal diseases. Cardoza et al. (2008) observed that weight gaindf a br
feeding orL. abietinum-infected substances was higher than those feeding on uninfected substances.
However, some fungi can have negative effects on spruce beetle gallery construction and oviposition,
causing a high brood mortality rate.

The most important natural predators of the spruce bark beetle are woodpeckers. Knight (1958)
stated that the northern three-toed woodpedkienides tridactylus Baird), hairy woodpeckePjcoides
villosus (Anthony)], and downy woodpeckePifoides pubescens (Hartlaub)] consume spruce bark
beetles primarily during outbreak. In the outbreak population, woodpeckers play a significant role in
controlling spruce beetle brood by causing between 19 apdré&nt mortality of total population,
depending on the spruce beetle population density (Fayt et al., 2005).

Schmid and Frye (1977) summarized that insect predators and parasites are known to Kill high
percentages of spruce beetle populations. Insect natural enemies consist of several speroibiseattle,
dipteran predators, and hymenopteran paragitesmasimus undatulus Say (Coleoptera: Cleridae) adults
are active between July and August and are aggregated to living spruce trees by frontalin kairomone from
the bark beetle (Dyer, 197%noclerus sphegeus Fabricius (Coleoptera: Cleridae). (Coleoptera:

Cleridae) adults prey on adult spruce beetles during the period of emergence. Thereratiall
enemies in other orderSoel oides dendroctoni (Cushman) (Hymenoptera: Braconidae) is an important
parasite with a 9- to 12-month life cycle (Schmid and Frye, 1@&¢)dostiba burkei Crawford
(Hymenoptera: Pteromalidae) is parasitic to beetle larvae (Massey and Wygant, 1954). Qtt@n com
predaceous species includieoclerus lecontei Wolcott (Coleoptera: Clerida€jhanasi mus undatulus Say
(Coleoptera: Cleridae), amdedetera aldrichii Wheeler (Diptera: Dolichopodidae). Although natural
enemies may locally control spruce beetle populations in endemic populations, the epiderofdostidt
beetle population can erupt regardless of the present of these natural enemies. Thess@pants
never been related to the collapse of epidemics (Berryman, 1982; Schmid and Frye, 1977).
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Since insects are poikilothermic, temperature is one of the most important density-independent
factors for survival and brood development due to the effect of body temperature on enzymiesactiviti
Warmer climate has the potential to increase the performance of insects (Bale et al., 200fpHat
al., 2001). Ambient temperatures have large effects on success of population at multiple points during
outbreak (Raffa et al., 2008). A critical temperature threshold is crucial to bark bedtlalswrer the
winter months. A study in the Rocky Mountains found that subcortical temperatu2&°ef will kill
adult beetles, while34°C is lethal for larval stages (Massey and Wygant, 1954). In Alaska, the critical
temperature threshold is slightly higher (Miller and Werner, 19873GC for mortality of larvae.

Extremely cold periods could kill a large bark beetle population at a landscape scale (Fry@edal

For example, the extremely low temperatures in the mid-20th century are cited as a major éactiog

the outbreak in White River National Forest (Wygant, 1956). However, high precipitation likensti@wy

winter can contribute to high overwinter survival. The insulation from the below snovahneetp bark

beetles survive the cold because they are not subjected to extremely low ambient temperatures
(McCambridge and Knight, 1972). Even in subfreezing temperatures above the threshold temperature,
bark beetles can survive due to the accumulation of intracellular cryoprotectant compounds, such as
glycerol, which cause cells to have a subzero supercooling point (Miller and Werner, 1987). @arthe ot
hand, an overheating temperature, exceeding 54.5°C, could also kill the bark beetle (Mitchell and Schmid,
1973).

Research based on laboratory experiments shows that spruce beetle population growth favors
warm temperatures because larval development rate and survival are increased (Bentz et al., 2010;
Chapman et al., 2012; Hansen et al., 2001). Warm periods during the summer (Knight, 1961) or warm
temperatures in a specific microclimate (Dyer, 1969) can shorten the life cycle froradavgay one
year. Warm temperatures inhibit larval diapauses, contributing to a faster developmddyegté470).

On the contrary, low temperatures during the brood development period can induce a longer life cycle
(Knight, 1961; McCambridge and Knight, 1972). A shortened life cycle earlier in the springlland f
could allow beetles to increase the number of generations completed in the developing seasoal(Bale et
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2002) and may reduce the likelihood of exposure to adverse conditions and predation (Hansen and Bentz,
2003). The accumulation of populations could induce the greater likelihood of epidemics. The time of
exposure to temperature affects the voltinism of the spruce bark beetle. The voltinism modekittitita
the best criterion for estimating brood univoltine is the number of cumulative temperaturegentrs s
above 17°C between 40 and 90 days after peak flight (Hansen et al., 2001). On the other hand, accelerated
development at inappropriate times could cause increased beetle mortality due to entezirig wint
developmental stage susceptible to freezing temperatures (e.g., pupae) (Bentz et al., 2010; Bentz and
Mullins, 1999; Miller and Werner, 1987; fr et al., 2007). Strong deviation of temperature from the
ordinary may also cause the loss of synchrony in development and dispersion, which could be detrimental
to a beetle population (Bentz et al., 2010; Logan and Bentz, 1999).

Spruce bark beetle feeds onlyRicea hosts. Host suitability and host susceptibility is
important, as well as the availability of host. Host suitability is the quality of theahasticated by
relative fecundity, rate of larval development, and brood survival. Host susceptibility isarenefithe
host’s ability to withstand a bark beetle attack. Usually, bark beetle outbreaks are incited by events that
weaken host defenses, such as drought and pathogens (Christiansen et al., 1987). In an endemic state
where bark beetle population is too low to overcome host defenses, bark beetle population stays low and
sparse across the landscape, even when suitable host species, host age, and climatic conditions are present
(Raffa et al., 2005). Endemic populations of bark beetle primarily colonize host material, sgsiddal
rarely weakened hosts with low defenses (Paine et al., 1997; Wallin and Raffa, 2004). Spruce bark beetles
prefer attacking defense-lacking hosts and only attack healthy trees after a susceptibteliesst ha
depleted, which usually occurs during outbreak. Large and old trees are preferred by spruce beetles. These
characteristics presumably imply for higher suitability for brood development due to higher radtrition
support (DeRose and Long, 2012a; Schmid and Frye, 1977; Wallin and Raffa, 2004). However, in an
epidemic population where the bark beetle can more easily overcome healthy trees, most available hosts
are attacked during outbreak, regardless of vigor (DeRose and Long, 2012a, 2012b; Dymerski et al.,
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Oleoresin is an important component of conifer defense against bark beetles. Hosts with low
oleoresin flow rates are susceptible to beetle attack (Hard, 1985). The flow of resin can pteaical
barrier, in addition to the formation of necrotic tissues. These defense mechanisnes loegttas b
nutrient-rich living tissues and induce secondary metabolites, which are toxic to the beetles and their
broods and inhibit associated fungal growth (Christiansen et al., 1987).

Susceptibility of Landscape and Spruce Bark Beetle Outbreak

Compared to other species of bark beetle, the spruce beetle is the most widely scaledréestructi
forest insect in North Amerieait can kill almost available hosts within the stand (DeRose and Long,
2007). In the past several decades, coniferous forests have experienced mortality of bilkass of tr
because of the spruce beetle (Bentz et al., 2009; Berg et al., 2006). Hart et al. (2@&8)hisiiorical
documents and tree-ring records to recount the history of spruce beetle outbreaks in northwestern
Colorado to construct a timeline of broad-scale outbreak, with the most recent outbrealesloccurr
between 2004 and 2010. They found out that duration between outbreaks has median of 75 years with at
least 17 years between outbreaks. In another study, spruce beetle populations were shown to have
periodic outbreaks in 30- to 50-year intervals (Holsten and Werner, 1990).

Disturbance is a key factor related to all known major bark beetle outbreaks (Wygant and
Lejeune, 1967)Knight (1961) stated that the occurrence of spruce bark beetle outbreak is related to
windthrow and timber harvesting. Windthrow typically causes a uniform predispositioteofltajs and
uprooting that the spruce beetle can use as breeding material to build up populationsqilabert
Jenkins, 2007; Schmid and Amman, 1992; Veblen et al., 1991). Other disturbances, such as timber
harvesting, landslides, fire, and avalanches, can also create host materials for spruce beetles and are
associated with most historic outbreaks (Berg et al., 2006; Hebertson and Jenkins, 2008; Wallin and
Raffa, 2004). Root disease is also a major disturbance associated with bark beetle outbredkh&lost
root diseasenfected subalpine stands in Colorado have been infested by bark beetles and borers (James
and Goheen, 1981). In south-central Utah, spruce bark beetle outbreak has been associated with

Armillaria [Armillaria ostoyae (Romagnesi) Herink] root disease (McDonald, 1998). In contrast,
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disturbance is not always associated with bark beetle outbreak. Kulakowski and Veblend@003hat
historic blowdown event in Colorado did not result in increased spruce-iedtieed host mortality.

This implies that, despite the disturbance, the other conditions such as susgeptibdit, stand
structure, and population dynamics of bark beetle must all be met along with the increased breeding
materials from the disturbances. However, disturbance sometimes reduces the likelihodenoicedy
reducing host availability from changing stand composition (Berg et al., 2006).

A number of studies have examined the association between bark beetle infestation and climate
across space and time (Berg et al., 2006; Campbell et al., 2007; Chavardés et al., 2012; Hart et al., 2013
Hebertson and Jenkins, 2008; Sherriff et al., 2011). Colorado subalpine forests have experienged period
mortality coincident with a warmer and drier climate since the late 20th century (Bigler2907;

Smith et al., 2015). Recent study has suggested that drought induced by Atlantic Multidecaddab@scillat
(AMO), Pacific Decadal Oscillation (PDO), and global warming affects forest health, degreast tree
defenses and being highly associated with the occurrence of spruce beetle outbreak in Colorado
(Chavardes et al., 2012; Hansen et al., 2001; Hart et al., 2013). AMO is one of the most important factors
in predicting drought and bark beetle outbreak in Colorado (Berg et al., 2006; McCabe et al., 2004). In
Alaska, spruce beetle outbreak is more negatively associated with PDO, related to increasih@mgr
more precipitation in the winter and EI Nifio Southern Oscillations (ENSQO), united with dchwgig

late summer leading to water deficit (Sherriff et al., 2011). Historically, tree linoftam bark beetles in

the southwest is associated with drought events (Kleinman et al., 20it&te change also has the
potential to disturb forest regimes and affect forest ecosystem functioning, whedsiesisusceptibility
across the landscape (Ayres and Lombardero, 2000; Dale et al., 2000).

Host defense against beetles is also significantly associated with local climate (HardThe85)
spruce beetle outbreak in Alaska that initiated in the 1990’s has been demonstrated to be associated with
high summer temperatures at the local scale (Berg et al., 2006). Recent decades of sprucebbegtie out
in the Rocky Mountains are associated with warm and dry yearly climate (Hebertson and Jenkins, 2008)
Spruce beetle outbreaks in the 1990s of Utah were also associated with high maximum summer
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temperatures, high minimum winter temperatures, and prolonged drought (DeRose and Long, 2012b).
The changing of local climate due to climate change can affect the spatial distributiorepfiblesbosts

at the local scale and can shift into a new area insect that have never experienced outtaran(_og

Bentz, 1999; Parmesan et al., 1999; Rouault et al., 2006; Sambaraju et al., 2012; Williams and Liebhold,
2002). The shifting of habitat range into a new geographic region causes the bark beetle to encounter new
ecological complexes, and it is beyond our knowledge how the interactions will be settled in new habitat
(Gaylord, 2014). In addition, beetles may encounter new hosts. Since climate models (Seager et al., 2007)
forecast more frequent drought in North America, the possibility is implied that outbrebak shifted to

a new area. A recent study in Canada showed that hosts in regions that have never been climatically
suitable to bark beetles may be less adapted to the bark beetle and may be more susceptible to outbreak
(Cudmore et al., 2010).

Changing distribution of climatic conditions across a landscape spatially affects both beetle
population dynamics and host susceptibility (Bentz et al., 2010). The directional changing of climate ca
favor growth for bark beetle populations that usually reside from low-level endemic to epidentihin w
large populations have more likelihood to successfully attack a healthy, living tresti@isen et al.,

1987). Widespread drought stress of a host can increase the susceptibility of the foedandstape

scale; furthermore, increasing temperatures could also increase the level of wateostradsidih

evaporation rate (Williams et al., 2013). Drought weakens the defense mechanisms of an individual host
by reducing its carbon balance, which is a source for maintenance and raw materials for defense
mechanisms such as resinous flows (Chavardeés et al., 2012). Several studies have expressed that high
temperature and water deficit are the most important factors impacting climate-piatechortality due

to physiological damage (Anderegg et al., 2012; Breshears et al., 2005; McDowell, 2011; Williams et al.,
2013) and stress-induced pathogens (Hicke et al., 2012; Raffa et al., 2008)

The plant stress hypothesis (Larsson, 1989) is a popular hypothesis depicting the relationship
between plant defenses depending on environmental factors, especially water, and the success of insect
herbivores. Water stress contributes to reducing photosynthesis and leads to lower sartlatias
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which weakens the defense mechanism from lower resin production (Gaylord et al., 2007; McDowell et
al., 2008). Stressed plants also attract more bark beetles from chemical emissions (Ke|s#y14t al

Mattson and Haack, 1987). Experiments have shown that water stress on a host has a positive effect on
the performance of wood borer and phloem feeder insects (Huberty and Denno, 2004). The success of a
bark beetle attack can be determined by modeling the population threshold for success withdahe level
host vigor; the population can exceed the threshold by both increasing the beetle population amgl deplet
host defenses (Berryman, 1982; Mattson and Haack, 1987).

The age and structure of stand is another significant factor contributing to bark beetlgkoutbre
Structure, composition, past management, and other stand characteristics, combined with climate
variability, influence the success of spruce beetle population and also affect outbrealy jrsjeresit,
and duration (Bentz et al., 2010; Chapman et al., 2012; DeRose and Long, 2012b, 2007; Fettig et al.,
2008; Raffa et al., 2008; Reynolds and Holsten, 199dRose et al. (2013) showed that proportion of
spruce in stand and total basal area are the most influential factors impacting spruce theedle. ou
Susceptibility of natural stands can be determined using average diameter, basal area, species
composition, and physiographic location (Schmid and Frye, 1977). A study in Alaska showed large-
diameter old spruce to be the most susceptible to outbreak (Doak, 2004). Increases in standrdemsities f
aggressive fire suppression can lead to high competition among hosts for limited water resoeeces (B
et al., 2008; Kolb et al., 1998), while prescribed fire application for general management dbesvnot s
evidence of increasing outbreak likelihood (Tabacaru et al., 2016). Diversity of fayegstemm,
connectivity of host, and heterogeneity of forested landscape also influence the development of spruce
beetle outbreaks. Although predation and parasitism are important for regulating an endemiopppulat
they have only a small effect on bark beetle outbreak at the landscape scale (Berryman, 1982).

The heterogeneity of ecological configurations in time and space is the causation of spatial
variability of forest mortality across the landscape. They have the direct influence on bdtipopund
behavioral dynamics of causal agents and their associated organisms but the effect of landscagpe structur
on spatial extent of spruce mortality is loosely understood (Lundquist and Reich, 2014). Landscape
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heterogeneity directly affects dispersal of bark beetles by altering life cycle, mhdingiprobabilities of
confrontation of natural enemies, competition and symbiotic organisms (Hughes et al., 2001). The
different features of the spatio-temporal dynamics also indirectly affect dispersiatk bletle by
influencing the geographical and meteorological factors. The important constituents that made the si
suitable are affected by the heterogeneity and connectivity of ecological features thobe atteiced
through time or by feedbacks of the events. Due to the limited mobility of bark beetle in dispersal,
heterogeneity of dynamics of host availability resulting in the unsuitable area in-bethiearcan
interfere the spread of outbreak between infested stands and susceptible stands (DeRose and Long, 2012a;
Fettig et al., 2008; Kausrud et al., 2012). Highly associated environmental factors those effectively
increases the connectivity between suitable patches could facilitate the spread of outbssakac
landscape (Aukema et al., 2008). However, using other studies (Berg et al., 2006; Reynolds and Holsten,
1994), DeRose and Long (2012a) suggested from autocorrelation tests that spruce beetle outbreak does
not originate from a single epicenter, but rather is initiated from a synchrony of midtiptions those
have certain characteristics to initiate outbreak (Kausrud et al., 2012).

The eruption at stanidvel depend on threshold that was defined as a causal agent’s population
capacity contribute to landscafesel of outbreak’s eruptions. This threshold depends on the suitability
and availability of host trees those affected by susceptibility of host due to environmentatispletion
of host, availability of suitable hosts in the spatially proximate patches, and synchronization of causal
agent’s populations (Raffa et al., 2008). These factors are influences by pattern of landscape dynamics
across space and time. Environmental factors and processes that alter landscape heterogéabley of su
host such as natural or anthropogenic disturbances, and temperature or drought events those favor the
growth of bark beetle’s population and affect susceptibility of host may spatially synchronize and involve
in the eruptive of bark beetle populations in the regional scale (Aukema et al., 2006).
Modeling the Influences of Climate on the Spatial Extent of Forest | nsects

Pattern and distribution of interaction between organisms and environment at the landscape level

have been long interesting to researchers (Pielou, 1977; Turner, 1989). Developing a method to model
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climate change effect on the distribution and intensity of bark beetle outbreaksandbedpe context is

a major goal for forest entomologists and land managers. In the regime of climate shift, we need more
understanding, and modeling can provide us information on how the processes interact at various
spatiotemporal scales (Lundquist and Reich, 2014). Outbreak in space and time is hard to determine
because bark beetles are not uniformly distributed across the landscape. Outbreak is usuattgdeterm
by population dynamics directly affected by environmental conditions, especially climate, tha play
important role in determining spatial extent dynamics and insect population abundance §Bai9eg;
Dukes et al., 2009). A climate-driven mechanistic model is usually created using environmental
covariates that directly affect population development and survival (Hansen et al., 2001) liBtiobabi
methods have also been applied in modeling the influences of climate and other environmergarfactor
forest insects, called ecological niche modeling or bioclimatic enveloped modeling (AraljaensdiRe
2012). Understanding the effects of climate on the spatial extent of outbreaks through combireed effect
with stand structure and other characteristics is crucial for predicting future outdezalket al., 2015).

The mechanistic model was used to develop a model accounting for influences of environmental
factors on forest insect and disease processes from the bottom-up, from the individual &péaledsts.
Geiszler et al. (1980) modeled the dynamics of mountain pine beetle aggregation using a mathematical
model. The concept of transitional threshold between epidemic and endemic behavior of fxest ins
population was modeled based on resource accumulation and depletion (@kland and Bjgrnstad, 2006) and
the influences of climate (Crozier et al., 2006). A simulation model was developed to analyzectise eff
of climate on daily bark beetle activity in the large spatial extent using daily tenmgedata (Joensson
and Barring, 2011). Cellular automata have also been used to model spatial extent dynamics at the
landscape scale. Bone et al. (2006) developed a geographic information systergg&i&ellular
automata model by incorporating the non-discrete fuzzy theory to predict the dynamics of forest
susceptibility with mountain pine beetle population dynamics. The population dynamics model of insect
pests was applied for insect mortality incorporating management approaches (Wang et al., 2010). Hart
and Veblen (2015) used a time series of high- and medium-resolution remote sensing imagery to model
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tree-level mortality from spruce beetle outbreak. The equation-based model for dispersaltaimuioe

beetle was developed using pheromones aggregate mechanism and other population-based variables

(Logan and Bentz, 1999). Perez and Dragicevic (2010) implemented agent-based model to predict

mortality and behaviors of bark beetle populations at the individual tree and landscape levels.
Probabilistic model or statistical model was used to represent effects of environmentateovaria

on the presence of forest insect epidemic across space and time from the top-down. M€g0@8)a

used logistic regression to model the probability of occurrence of insect pest based on elevation gradient.

Although many models offer important insights into forest insect outbreaks, they need consideration of

the spatial structure involved in the dynamics of forested landscape. Berg et al. (2006) ishtided

autocorrelation in a logistic regression to model probability of spruce beetle outbeeaRirms

temperature as the crucial factor in life cycle development. From a set of temporal climatieedat

annual presence of historic spruce beetle outbreak was predicted using dichotomous otassificati

regression tree (CART) analysis (Hebertson and Jenkins, 2008). Lundquist et al. (2012) hiefined t

spatial distribution of amber-marked birch leaf miner in Anchorage, Alaska, by modeling small-scale

spatial variability using kriging. Although these models offer important insights irgstfimrsect

outbreaks, they need consideration of the spatial structure involved in the dynamics of fondstapia
Recently, many fields in ecology have increasingly used the occupancy model for questioning

ecosystem changes and the emergence of vulnerabilities to address theoretical and practi¢hissues

2005; Keith et al., 2008). Approaches have been developed to deal with the association of known

covariates (Meier et al., 2010; Zimmermann and Kienast, 1999) and with unknown latent processes

(Royle et al., 2007) related to the concept of ecological niche (MacArthur et al., 1966alZeddinear

models (GLM) are developed to represent association between species distribution and environmental

factors (Guisan and Thuiller, 2005). Skewness from dispersed and non-normal responses can violate the

assumption of model severely bias the model estimates (Shono, 2008). Zero-inflated models are types of

mixture models developed to represent the association of zero and non-zero responses. Zero/nonzero data

usually been treated with appropriate link function (Chelgren et al., 2011).
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Bayesian approach is the method developed for a hierarchical structure of mixed models (Gelman
and Hill, 2006). To implement the Bayesian methods, multilevel parameters of model were simulated
using the Markov chain Monte Carlo (MCMC) method (Hooten and Hobbs, 2015). A multilevel model
can incorporate generalized linear mixed model (GLMM) with link function to address excesgiv
with spatio-temporal structure (Chelgren et al., 2011; Zuur et al., 2009). Spatial dependence could be
defined by the geostatistical point-process using the multivariate Gaussian process farspatial
(Banerjee et al., 2008; Diggle, 1983) that the error responses at every sample locatioriatedsso
each other.

Climate Transition Matrices (CTMs) with spatially-explicit climatic data were useeéscribe
relationships between causal agents, host and climate. Spatial data is summarized in a table where the
rows represent temperature zones and the columns represent precipitation zones. Climate zorses provide
an opportunity to examine the influence on the landscape dynamics of host mortality from long term
climate characteristics. Reich et al (2010; Robin M. Reich et al., 2008) developed climate zefies to
the specific strata in a natural resources monitoring program in Jalisco, Mexico. Aftartimaate zones
were implemented to model stand structure (Reich et al., 2011), and characterize the composition of soll
textures (Pongpattananurak et al., 2012). The climate zones can be used to predict the spatial
characteristics and extent of mortality of host from forest insects (Reich etl&l,, 2814, 2013, 2008).

Reich et al (2016) used CTMs to characterize environmental mismatches those contributing teesubalpi
fir decline in Colorado. The usage of climate zones provides perspective on the effect ef alititiats

on insect outbreak distribution, as well as opportunities to study the relationship between dlimate a
insect population (Guisan and Zimmermann, 2000).

Resear ch Questions

Not much research has been focused on combining small-scale sampling and large-scale data to
model the extent of spruce bark beetles at the landscape scale. In this research, we combineeserial sur
detection and stand-scale plot sampling to explore the relationship between environmental camdriates

spruce forest extent and spruce mortality due to the spruce bark beetle. To better undersspoinse r
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of spruce beetle outbreaks to climatic factors and other local stand characteristics, we astifieo spe
research questions:

1. How does long-term climate affect the presence of mortality from spruce bark beetle
outbreak? What is the proportion of observed spruce mortality to the presence of spruce
forest? What do the results imply about the environmental advantage of climate adaptation
for host and spruce bark beetle?

2. How can we develop a multistage hierarchical Bayesian model from stand characteristic
sampling? How does model create a description on the influences of small scale

environmental factors for predicting spruce mortality extent and severity of theakdtbr
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CHAPTER 2

ESTIMATING SPRUCE FOREST AND SPRUCE MORTALITY PROBABILITY AND
QUANTIFYING CLIMATIC MISMATCH BETWEEN HOST AND MORTALITY IN

COLORADO AND ALASKA

Introduction

The spruce bark beetlB¢ndroctonus rufipennis Kirby, Family: Curculionidae) is one of the
most destructive forest insects, causing large-scale forest mortalitytim Atoerica (Bentz et al., 2009;
Berg et al., 2006). Spruce beetle outbreak exists from the spruce forest of Alaska to thevaiigtnel
subalpine forestf the Rocky Mountains (Jenkins et al., 2014; Schmid and Frye, 1977; Werner et al.,
2006). The spruce beetle infests nearly all spaxfidse genu$icea. In Alaskathis includes white spruce
[P. glauca (Moench) Voss], Sitka sprucP.[sitchensis (Bong) Carr] and Lutz’s spruce (P. X lutzi Little)
(Holsten and Werner, 1990; Schmid and Frye, 1977). Engelmann spreogdmannii Parry ex
Engelm.) is the only host species in the Rockies for the spruce bark beetle.

Hart et al. (2013) expressed that prolonged climatic factors causing physiologesabstre
associated with most historic spruce beetle outbreaks. Climate patissss the landscape affect both
precipitation and temperature at the local and temporal scale. Even though precipitation andulemperat
are not direct causes of forest mortality, plant physiological stress mightfomouthe contribution of
these suboptimal exogenous factors. Suboptimal climatic factors can act as predispossthédcto
provide a higher likelihood of short-term inciting factors, such as drought, and thabpjpantunistic
contributing factors such as insects and diseases to overcome host plant defenses (BeBtkzOet-drt 2
et al., 2013). However, the influences of the mortality-inducing factors and thedctides are not well

understood in the spatial context.
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It is difficult to specify the complex interactions between the roles of biotic cagsats and
exogenous environmental factors in spruce mortality due to bark beetle outbreak because these factors
and the occurrence of mortality have a high variability at the spatial and temporal stiiedaAdscape
scale, the distribution of outbreaks is spatially designated to specific climate zones, wtifgh spe
suboptimal marginal population zone where there is a mismatch of suitable conditions between host and
causal agent, implying host population is not adaptive to the condition favoring the causal agent
population. The presence of spruce mortality dependisteraction between climate factors, including
precipitation and temperature, where the host and the causal agents both encounter climates condition
favoring the occurrence of mortality. A suboptimal climatic condition for a marginal hodgopu
could have detrimental effects of either physiological stress on the host or promotiowtbf gnd
development of causal agent population. A suitable climatic condition might increase the popeflations
spruce beetkand associated organisms. The large population of causal agents then becomes
overwhelming to defensive mechanisms of host.

In this studywe assign spatially explicit data to each climate zone using Climate Transition
Matrices (CTMs) to describe the relationship between the occurrences of host anityraodatlimatic
factors. CTM are visualized usingtwo-way table, where columns represent precipitation zones and
rows represent temperature zones. A particular climate zone is defined by a specific pair of taamperatur
and precipitation. Each element of the table represents the probability of observitgpsiostortality,
and the quantified mismatches between host and mortality, differential effects, @maliivate zone.

The benefits of using climate zones are (1) the opportunity to examine the roles of eaehfatitoabn
outbreak dynamics across the landscape (Aquirre-Bravo and Reich, 2006; Reich et al., 2014) and (2) the
ability to reduce the temporal variability and model error by using exact measurement predictions f
climate covariates. The idea of climate zones has been used in many previousagedeeichet al.

(2010) defined climate zones for a natural resources monitoring program in Jaliscmy.Mé&e program

has been used to model composition of soil textures (Pongpattananurak et al., 2012), to model the
influence of climate on the richness of tree species (Reich et al., 2008), to modetdmckstrsicture
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(Reich et al., 2011), to model the abundance of damage agent by forest type (Masoud, 2012), and to
determine the influence of climate on forest insects in Alaska (Reich et al., R@id) et al (2016)
applied climate transition matrices (CTM) to represent the environmental mismatchrbetseand
subalpine fir decline.
In this study, | create separate CTMs to represent the combination of two climatic factors and use
them to identify the influence of climate on the presence of spruce forest and sprucéymoaliorado
and Alaska. We hypothesize that spruce mortality will be more commonly observed in a more severe
climate zone or in a climate zone that is extremely different from the optimum by askiagjtlestions
from the critical method proposed by Reich and colleagues (2016) to describe interaction betwveten cli
and outbreaks:
1. How do varying climatic conditions influence the distribution of spruce forest in the forested
landscape of the Colorado and Alaska?
2. How do varying climatic conditions influence the distribution of spruce mortality in the
forested landscape of the Colorado and Alaska?
3. How can climatic conditions influence the climatic mismasiepresented by differential
effects between spruce forests and the causal agents of spruce mortality across the landscap
of the Colorado and Alaska?
Methods
Establishing spruce forest and spruce mortality extent
Data from the raster layer of the vegetation cover were obtained from the Colorado Division of
Wildlife as part of the Gap Analysis Program (http://ndis1.nrel.colostate.edu/cogap/cogaphonme.html
analyze the spruce fore$t. @ngelmanni) in Colorado, while data from the raster layer of major
vegetation types were obtained from the Department of Natural Resources of Alaska to analyze spruce
forest in Alaska, includin®. mariana, P. glauca, andP. sitchensis. The raster laysrcontaining spruce
species were selected and convertedariimary raster representing the presence and absence of spruce

forest.Data from Colorado were converted into raster data with 30 meters of spatial resttetion;
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smallest feature that can be accurately delineated is one acre (Herold, 2011), whicihésraisortum

mapping unit for aerial forest health surveys (Johnson and Ross, 2008). Alaska data were resampled into
raster data with 1,000 metakspatial resolution for the convenience of computing a large study area.
Raster data on spruce forest presence were clipgemygons to cover the area of Colorado, excluding

the area where forest is absent (e.g., the Great Plains in eastern Colorado) to rededardigaay. The

whole extent of mainland Alaska and nearby islands was studied for the presence of sprusectuest
spruce species are commonly distributed across the Alaskan landscape.

Feature layers of Colorado aerial pest survey maps, produced by Region 2 Forest Health
Protection from 1994 to 2013, were obtained from the United States Forest Service to identify forest
insects and diseases in Colorado. Layers of Alaska aerial pest survey maps, produced by Regidn 10 Fores
Health Protection of the United States Forest Sefuire 1989 to 2010, were obtained to identify the
presence of forest insects and diseases from the aerial survey flight line ia. Aaature data for spruce
mortality due to spruce beetle outbreaks were extracted from the data of each polygon. Spalibe mor
usually appearasa single species patch, mixed subalpine species patch, or scattered across the
landscape. The polygon pattern of spruce mortality is related to the method in aerial, snmvejch
observed forest mortality events are grouped into polygons by the observers (Johnson and Ross, 2008)

Individual feature layers for each year were joined to obtain an estimated toiaiudated area
of spruce mortality, and, using ArcGIS 10, the layer was converted to raster data with a 30-rieker spa
resolution for Colorado and 1,000 meters for Alaska (ESRI, 2@h#&)‘majority” rule was used in
converting polygons to raster data: each cell was assigned the value of the polygon occupying the
majority in the cell area. Some of the minor polygons were ignored in assigning celWalde et al.

(2003) observed no significant differences and no substantial information losafrdscdpe metrics
using this conversion method.
Establishing climate zones

Thirty-six unique climate zones (Figure 1) and six temperature zones including sixtatecipi

zones were defined for Colorado area using 30-meter spatial resolution raster data fronictieel pred
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climate model. The climate model was composed using average monthly tempé@jtarel
precipitation (mm) data of the past 50 years from previous study (Aquirre-Bravo and Reich, 2006)
Climate data for Alaska weibtained from average monthly climate data produced by the United States
Geological Survey Alaska Science Center witlesolution of 1,000 meters. Monthly average
temperature and precipitation were partitioned into 25 unique zones (Figure 2) and fieeatene zones
with five precipitation zones, as in the study completed by Reich et al. (2014). To definentte cli
zonesa histogram equalization approach was used to partition the average monthly climate data by
uniform distribution across the study area (Acharya and Ray, 2005). i$laestrong linear relationship
between defined climate zone and original average monthly climate data (Acharya and Ray, 2005; Reich
et al., 2014). Zonal statistics were used to summarize climate data for each climate zone in Colorado
(Table 1) and Alaska (Table 2). To prepare climate zone raster data for the calculation wnadndit
probability given spruce forest presence, the raster layers of climate zones in Colomdlppedto the
extent that spruce forest is present to create the layers of climate zones within tithaspaice
present. Statewide climate zone layers of Alaska were clipped by aerial survey flight zansemtd
layer of spruce forest presence in flight transect.
Calculating spruceforest and spruce mortality probability

To estimate the probability of observing spruce forest in each climate zone, the binatayaster
represents the presence (1) or absence (0) of spruce forest intersecting withztimeat Probability was
calculated by averaging the binary layer in each climate zone using zonal statistics (ESRI, 2011). The
probability of observing spruce forest in a given climate zBGg|(;), can be calculated as the ratio of

the area (or number of cells) of spruce forest presence in a classified climat&(&pneand total area

in that climate zoneA(C;) (Equation 1). Each CTM element was populated by this information, with
rows representing temperature zones and columns representing precipitation zones (Reich et al., 2014).

AGSe) 1)

(Sc
PESIC) = Gt
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The probability of observing spruce mortality in a given climate zB@2|C;), was calculated in
the same way as the probability of observing spruce forest in a given climat®@jdg). The binary
layer of spruce mortality presence-absence was intersected with climate zones. Probalutitguated
by averaging of presence and absence of spruce mortality in each climate zone using zonal Btatistics.
probability of observing spruce mortality in a given climate z®@8)C;), can be calculated as the ratio
of the area (or number of cells) of spruce mortality in a classified climateZ@hg), and total area in
that climate zoneA(C;) (Equation 2). For layers of Alaska, which the mortality data is conditional on
flight lines, the probabilities of mortality were calculated within the total &@3,, given by the area
that is covered by flight lines. The conditional probability of observing spruce iogiakn spruce
forest presence for each climate zdh@) |S, C;), was also calculated as the ratio of the intersected area
of spruce mortality in a given climate zoagD,,), and total area of spruce forest in that climate zone,
A(S|C;) (Equation 3). Each CTM element was populated from the estimated information, with rows

representing temperature zones and columns repirgg@nécipitation zones.

A(D,. 2

P(DIC) = @)
A(D, 3

PODIS.C) = ©

To quantify the influence of climate factors on the distribution of spruce forest and spruce
mortality, linear second-degree polynomial and third-degree polynomial regression moéels wer
developed to estimate the natural logarithm of rescaled probabilities on the CTMs as a funicdon of t
integers representing temperature zofiegnd precipitation zoneB, The natural logarithm
transformation was used to stabilize the variability in probabilities.

Differential effects of climate on spruce mortality probability

The influence of climatic factors on the probability of observing active spruce nyoftaiit

spruce bark beetle outbreaks can be assessed by an index measuring the differential efffieats of cl

between the probability of spruce forest and spruce mortality. Firstly, we created gothidsys to
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define this index by assuming that the mortality in the defined area (or number of cells) iSqmaptar
the host availability in the defined area and is independent from climatic conditions. Weegtieatim
host distribution may be influenced by the climatic conditions, while the distribution of caasal ag
might be influenced by availability of host within climate zones, climatic conditionbearombination
of both. We can quantify this relationship in terms of probabilities and conditional probhipility
comparing the probability of spruce forest given climate zB((;), with the conditional probability of
spruce mortality conditional on host presence in a given climate RGDES, C;) (Equation 4).

P(D|S,C;) = aP(S|C)) (4)
where a is a constant, thought of as the intrinsic rate of increase for the difference in proportion of
probability. In this study, we normalized the scale of probability values on both sides by dikiling t
individual probabilities in an element of a given CTM by the maximum probability of the CTkisIn t
case we divideP(D|S, C;) by P4, (D]S, C;) and divideaP(S|C;) by aP,,,.(S|C;) (Equation 5). Because
the scale of probabilities was normalizedyas also canceled out, providing the rescaled probabilities,
B.(D|S, C;) andP.(S|C;), on both sides of equation to be on the same scale. Then we made a simple
expression for evaluating the effects of climate on the probability of spruce mdrtatit this equation
(Equation 6).

P(DIS,C;)) — aP(SIG) (5)
Pmax(Dls' Ci) B aPmax(Slci)

P-(D1S, C;) = B-(SICy) (6)
Under the null hypothesis that probability of observing host mortality is proportional to host
availability, the rescaled probabilities on both sides of the equation are equal. If the pgredalodinot
equal, we can consider the null hypothesis to be false. The new vasjalite,each climate zoné, was
added to the equation to represent the deviation from the null hypotheses calculated from the
difference betweeR.(D|S, C;) andP.(S|C;) (see Equations 7 and 8).

P.(D|S, C)) + A= P.(S|Cy) (7
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A;= P.(S|C;) — P.(DIS, Cy) (8)

The differential effects that climate has on the probability of spruce mortglitgnges in value
from-1to 1. IfA;= 0, spruce mortality probability is assumed null. Positive valués fdicate that
spruce mortality probability is lower than expsttimplying that the host has a competitive advantage
over the spruce bark beetle in adapting to climate. Negative valdesnaiicate that the mortality
probability is higher than expestt implying that the spruce beetle and its complex mutualism have a
competitive advantage over the spruce host in climatic adaptation.

Secondly, the regression models were developed to assess the influences of climatic factors on
the distribution of host and mortality across different climate zones in Colorado akd.Alhe models
were developed to regress on each CTM element for the rescaled probability of observingsgstjce f
P.(S|C;), the rescaled probability of observing spruce mortality conditional on observing spruce forest,
P.(D|S, C;), and the differential effecd;. The climate raster layers were then used to calculate the
estimated probabilities and differential effects to obtain area estimates associatsgl/eiit score levels
representing the competitive climatic adaptation between spruce host and spruce beetle:

1. High advantage for spruce hoAt> 0.7

2. Medium advantage for spruce had# < A;< 0.7

3. Low advantage for spruce ho8t15 < A;< 0.4

4. No advantage for either (null hypothesis).15 < A;< 0.15

5. Low advantage for spruce beetled.4 < A;< —0.15

6. Medium advantage for spruce beetid.7 < A;< —0.4

7. High advantage for spruce beeitex —0.7
Regression model and model selection
To account for the influence of climate on the variabititprobability of observing spruce forest and
spruce mortality, the ordinary least squares (OLS) approach was applied to create themdgredsn.

A spatial autoregressive (SAR) model was also used to account for spatial structureh@mong t

38



probabilities within the TMs. The spatial autocorrelation within CTMs does not account for spatial
association between locations in the landscape, but it does account for similarigyclimeare zones.
The OLS model used to estimate the parameters of the model can be formulated as the following (Reich
and Davis, 2008):
Y=XB+e ©)

e~Normal(0,c?) (10)
whereY is a column vector of the natural logarithm of the probability of observing sprest &ord
spruce mortalityX is a design matrix representing covariates of climate data, temperature zones
(T=1,2,3,4,5,6and T =1, 2,3,4,5 for Colorado and Alaska, respectively), and precipitation zones
(P=1,2,3,4,56and P = 1,2,3,4,5 for Colorado and Alaska, respectively); g is a vector of
regression coefficients; ards a vector of regression errors arising from independent and identically
normal distributions with zero mean amél variance. The SAR model used to account for similarity

among climate zones can be formulated as the following (Reich and Davis, 2008; Upton and Fingleton,

1985):
Y=XB+e¢ (11)
e=AWe+n (12)
n~Normal(0,c?) (13)

whereY is the vector of dependent variables for the rescaled probability of observing speste for
spruce mortality, and differential effect§;is a design matrix of climate covariatgsis a vector of the
regression coefficients;is an overall error term in regressingn X; € is aspatialy correlated error
portion of the error termmy is a spatially independent error portion of the error arising from normal
distribution with zero mean ancf variance}V is a binary spatial weights matrix used to define the
spatial joins of the 6x6 and 5x5 CTMs for Colorado and Alaska, respectively [$patiabs defined by
the first-degree neighbors of chess moves for a rook (up, down, left, right}]; anclue betweenl

and 1, is a measure of the degree of spatial autocorrelation. A backward stepwise Akariagibrior
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Criterion (AIC) model selection algorithm was used to select the climate variabtgsetature and
precipitation zones), the higher degree of climate variables (through third-degree polyremdidhe
interaction among climate variables to include in the final models. A likelihood ratioasstpplied to
test the null hypothesis that the SAR maddeln improvement over the OLS model (Reich and Davis,

2008) (Equation 14).

L(A, Buie , GifLE) (14)

1O, Pue GiiLE)

Likelihood ratio =

wherel(0, fy.g ,64.) is the maximum natural log likelihood for the OLS model Hid B,z , 6.z)

is the maximum natural log likelihood for the SAR modébran’s I (Equation 15) was used to test the

spatial autocorrelation between the regression’s residuals, which has the null hypothesis that regression
errors are spatially independehty (1 = 0). P-values of the spatially independent hypothesis testing were
calculated under the randomization assumption, given that each permutation has an equal probability to
occur (Reich and Davis, 2008; Upton and Fingleton, 198f)calculation of continuous Moran’s I is as

follows:

_ X X 6 - 72)(Z; - 7) (15)
24 n(Z-72)2

whereZ; andZ; are continuous data, residuals in our study, of locatéor neighboring locatighof the
totaln locations;g;; is the indicator that and; are joined to the spatially weighted matii); andA is
the total number of neighbors joined in the data.

A new set of CTMs was created from the predicted rescaled probability of observing spruce
forest,P(S|C;), spruce mortalityP(D|C;), and differential effects of spruce mortality, in a given
climate zone by the fitted regression model. The CTMs based on the predicted values of the regression
models were used to develop raster layers representing the distribution of expected probatukses a

the landscape. All regression models were developed by the spatial library of R (R &areT#4).

40



Results
Influences of climatic factors on the distribution of spruce forest

Spruce species are a major componeth®tlpine forested landscape in Colorado (Fighend
throughout Alaska (Figure)4The CTMs of rescaled probabilities of observing spruce forest were
calculated using the area (hnumber of cells) of observed spruce forest in a given climate Coiwddo
(Table 3) and Alaska (Table 7). In Colorado, spruce forest is present in 32 of 36 climate zones, excluding
the driest, coldest climate and the wettest, warmest climate. In Alaska, spruces fores¢nt in 24 of 25
climate zones, excluding the driest, warmest climate.

The third-degree polynomial function of OLS regression and SAR were applied as a full model to
account for the variability in rescaled probability of observing spruce forest e gimate zone,

P.(S|C;), for Colorado (Table 11). The OLS model accounted for 92% of the variability in rescaled
probability of observing spruce forest in a given climate zone. Because the residuals from the OLS model
were spatially correlated (Moran’s I = -0.47, p-value = <0.001), the SAR model did significantly improve
over the OLS model (likelihood ratio = 13, p-value = < 0.001) and accounted for 99% of the variability in
rescaled probability of observing spruce forest, with 95% correlation between predittassanved
probabilities. The probability of observing spruce forest in Colorado was highest in the wéidji a

climate characterized by moderate temperature (T = 2, 3, and 4) and high precipitation (P = 5 and 6). The
lowest probability of observing spruce forest was in the zone characterized by either extrencely

high temperature (T = 1, 5, and 6) and low precipitation (P = 1 and 2) (Table 3). Geographically, the
probability of observing spruce forest was highest in the central Rocky Mountain region (Figure 3).

The third-degree polynomial function of OLS regression and SAR were applied as a fultonodel
account for the variabiljtin rescaled probability of observing spruce forest in a given climate zone,
P.(S|C)), for Alaska (Table 15). The OLS model accounted for 97.43% of the variabiliéscaled
probability of observing spruce forest in a given climate zone. Because the residuals from the OLS model

were spatially correlated (Moran’s I =-0.4881, p-value = 0.003), the SAR model did significantly
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improve over the OLS model (likelihood ratio = 15.51, p-value = < 0.001) and accounted for 99.8% of the
variability in rescaled probability of observing spruce forest, with 99.03% correlativedrepredicted
and observed probabilities. The probability of observing spruce forest in Alaska was inighesegion
with a climate characterized by moderate temperature (T = 2, 3, and 4) and moderate precipitation (P = 2
and 3). The lowest probability of observing spruce forest was in the zone characterizedrbglgxow
temperature (T = 1) and high precipitation (P = 5) (Table 7). The probability of obsspvinge forest in
Alaska was shown in Figure 4.
Influences of climatic factors on the distribution of spruce mortality

The CTMs of rescaled probabilities of observing spruce mortality were calculated using the area
(number of cells) of observed spruce mortality in a given climate zone for Colorado and Alaska. The
pattern of observed spruce mortality is similar to the pattern of observed sprucanfarelétnate zone.
In Colorado, spruce forest is present in 25 of 36 climate zones (Table 4). In Alaska, spruce forest is
present in 16 of 25 climate zones (Table 8

The third-degree polynomial function of OLS regression and SAR were applied as a full model to
account for variability in rescaled probability of observing spruce mortality in a givaatelizone,
P.(D|C;), for Colorado (Table 12). The OLS model accounted for 74.7% of variability in rescaled
probability of observing spruce mortality in a given climate zone. Because residuals from the OLS model
have some degree of spatial autocorrelation (Moran’s I = -0.254, p-value = 0.091), the SAR model did
significantly improve over the OLS model (likelihood ratio = 5.24gme = 0.022) and accounted for
94.7% of the variability in rescaled probability of observing spruce mortality, with 8€o&%lation
between predicted and observed probabilities. The probability of observing spruce mortalityagdolo
was highest in the region with a climate characterized by moderate to low tempd&rat@euid 3) and
high precipitation (P = 6). The lowest probability of observing spruce mortality was #zone
characterized by either extremely low or high temperature (T = 1, 5, and 6) and low precipitation (P = 1)
(Table 4). Geographically, the probability of observing spruce forest was highest in tlaé roentntain
region of Colorado.
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The third-degree polynomial function of OLS regression and SAR were applied as a full model to
account for the variability in rescaled probability of observing spruce mortalityiirea glimate zone,
P.(D|C;), for Alaska (Table 16). The OLS model accounted for 79.98% of the variability in rescaled
probability of observing spruce mortality in a given climate zone. Because residuals from the OLS model
have some degree of spatial autocorrelation (Moran’s I =-0.309, p-value = 0.085), the SAR model did
significantly improve over the OLS model (likelihood ratio = 5.491, p-value = 0.019) and accounted for
96.94% of the variability in rescaled probability of observing spruce mortality, with 86.2%étation
between predicted and observed probabilities. The probability of observing spruce mortaliskan Ala
was highest in the region with a climate characterized by high temperatures (T = /aaddk)h
precipitation (P = 4 and 5), excluding the wettest and warmest climate zone (T =5 and P = 5). The lowest
probability of observing spruce mortality was in the zones characterizedrbynely low temperature (T
=1 and 2), regardless of precipitation, and those with the highest temperature and low pre¢ipitafion
and P = 2) (Table 8). Geographically, the probability of observing spruce mortality was highest in the
coastal region and lowest in the northern region of Alaska (Figure 4).

Influences of climatic factors on the distribution of spruce mortality conditional on spruce forest
presence

To measure the impact of spruce mortality, conditional probabilities of spruce mortality on t
presence of spruce forest were applied to account for aiméiiences in Colorado (Table 5) and
Alaska (Table 9). The conditional probabilities were calculated in the climate zonesvaiitible spruce
forest, 32 out of 36 climate zones for Colorado, with most absenttesCTM’s bottom left, and 24 out
of 25 climate zones in Alaska, with most absences in the coldest climate zone regardlesstatiprecip

The third-degree polynomial function of OLS regression and SAR were applied as a full model to
account for the variability in rescaled conditional probability of observing spruce ryogiaén the
presence of spruce forest in a given climate zBr(@®,|S, C;), for Colorado (Table 13). The OLS model
accounted for 69.18% of the variability in rescaled conditional probability of observingespiortality
given the presence of spruce forest in a given climate zone. Because residuals from the OLS model are
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spatially independent (Moran’s I = 0.023, p-value = 0.677), the SAR model did not significantly improve
over the OLS model (likelihood ratio = 0.035, p-value = 0.851) and accounted for 79.02% of the
variability in rescaled conditional probability of observing spruce mortality given the peeséspruce
forest, with 68.94% correlation between predicted and observed probabilities. The conglitibadllity
of observing spruce mortality given spruce forest presence in Colorado was highest imtheitbg
climate characterized by low temperature (T = 1, 2 and 3) and high precipitation (P = 4, 5, aed 6). Th
lowest conditional probability of observing spruce mortality given spruce forest peesasadn the zone
characterized by either extremely low or high temperature (T = 5 and 6) and low precipitation {fire= 1)
highest temperature zone showed low probabilities regardless of precipitation. There was e¥idence
climate shift between conditional and unconditional probabilities of observing spruce mortadit
probabilities increased most in the low temperature zones with moderate precipitatieng(Tabl

The third-degree polynomial function of OLS regression and SAR were applied as a full model to
account for the variability in rescaled conditional probability of observing spruce ryogiagn the
presence of spruce forest in a given climate zBr(@|S, C;), for Alaska (Table 17). The OLS model
accounted for 84.92% of the variability in rescaled conditional probability of observingesmpiortality
given the presence of spruce forest in a given climate zone. Despite the fact that residulaés @bsh t
model are spatially independent (Moran’s I =-0.248, p-value = 0.190), the SAR model did significantly
improve over the OLS model (likelihood ratio = 3.943, p-value = 0.047) and accounted for 97.6% of the
variability in rescaled conditional probability of observing spruce mortality given the peeséapruce
forest, with 88.69% correlation between predicted and observed probabilities. The conglitbahility
of observing spruce mortality given spruce forest presence in Alaska was highest inoihevigga
climate characterized by moderate to high temperature (T = 4) and high precipitation (P = &NeBte |
conditional probability of observing spruce mortality given spruce forest presence thaszbne
characterized by low temperature (T = 1 and 2), regardless of precipitation (Y.aliter@ was no
evidence of significant climate shift between conditional and unconditional probabilitibsest/mg
spruce mortality.
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Differential effects of climatic factors on spruce mortality

The differential effects of climate on spruce mortality given the availability ofeforest were
calculated by subtracting the rescaled probability of observing spruce forest by thedresoditional
probability of observing spruce mortality given spruce forest presence (Table 6 and Table 10).
Differential effects were estimated using the regression models with climate covariatige Ralsies
indicate a differential increase that the probability of mortality is b&h@shost availability, while
negative values indicate a differential increase that the probability of mpoisadbove the host
availability. Values near zere.15 <A; < 0.15) indicate that the mortality proportionally increases with
host availability (null hypothesis). For Colorado, the climate zones that satisfy the negétientié
effects (probability of mortality is higher than expected) cover the majority of the Th#iclimate
zones satisfying positive values (probability of mortality is lower than expected) are tlittemoderate
temperature (T = 3 and 4) and high precipitation (P = 5 and 6). For Alaska, the climate zones that satisfy
the negative differential effects (probability of mortality is higher than expected) treGTM’s bottom
right regions that represent climate zones with high temperature (T = 4 and 5) and moderhte to hig
precipitation (P = 3, 4, and 5). To spatially represent the results, the diffeedfet@llayers were
intersected with the binary layer associated with the presence of spruce forest to obtaimaaeese
associated with differential effect classes, which were developed to characteriZigémtiah levels of
climate on the probability of spruce mortality for Colorado (Tableah@ Alaska (Table 20).

The third-degree polynomial function of OLS regression and SAR were applied as a full model to
accant for the variability in differential effects on spruce mortality in a givenatinzonej;, for
Colorado (Table 14 The OLS model accounted for 78.7% of the variability in differential effects on
spruce mortality in a given climate zone. Because residuals from the OLS model are spaéipéndent
(Moran’s [ =-0.104, p-value = 0.596), the SAR model did not significantly improve over the OLS model
(likelihood ratio = 0.840, p-value = 0.359) and accounted for 85.42% of the variability in diférenti
effects on spruce mortality, with 79.64% correlation between predicted and observedipesb&bom
the areal representation (Table 19), 3.44% of spruce forest has higher diffefésdial of host
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availability to host mortalityAi > 0.15) (green area in Figure 5), while 784df spruce forest has
differential effects of host mortality proportionally increasing with host aledity (null hypothesis){
0.15 < Aj < 0.15) (blue areas in Figure 5). 17.66% of spruce forest has differential effects robhtadity
beinglower than expected (Ai <-0.15) (red areas in Figure 5). Geographically, spruce forest with a high
positive differential in probability of mortality occurs in the outer region of Cdlmravhile spruce forest
with ahigh negative differential in probability of mortality occurs in the central regidheo€olorado
mountains.

The third-degree polynomial function of OLS regression and SAR were applied as a full model to
account for the variability in differential effects on spruce mortality in a givematdi zonel;, for
Alaska (Table 18). The OLS model accounted for 87.02% of the variability in differefféiels on
spruce mortality in a given climate zone. Despite the fact that residuals from the OLS megatiaty
independent (Mam’s I =-0.273, p-value = 0.163), the SAR model did significantly improve over the
OLS model (likelihood ratio = 4.059, p-value = 0.044) and accounted for 96.56% of the variability in
differential effects on spruce mortality, with 90.13% correlation between prddiad observed
probabilities. From the areal representation (Ta2B)eapproximately 61.0% of spruce forest has
higher differential effect of host mortalifp; > 0.15) (green areas in Figure 6). 27.30% of spruce forest
has the differential effect that host mortality proportionally increaséshatt availability (null
hypothesis)-{0.15 < Aj < 0.15) (blue areas in Figure 6). 13.59% of spruce forest has the differential effect
of host availability to host mortality beidgwer than expected (A; <-0.15) (red areas in Figure 6).
Geographically, spruce forest with a high positive differential in probability of ritgrtadcurs in the
inland region of Alaska, while spruce forest withigh negative differential in probability of mortality
mostly occurs in the southern coastal region of Alaska, especially on the Kenai Peninsula.
Discussion

Climate is the crucial factor in determining the distribution of forest ingew diseases and the
availability of susceptible hosts across the landscape (Allen et al., 2010; Bresla¢a086). However,

lack of information on the interactions between ctiméctors and host’s susceptibility and dynamics

46



causal agents associated with spruce mortality lead to difficulty in defining theseex@nglspatially
variant processes. The influences of temperature and precipitation on landscape dynamics of spruce
mortality are not well understood. We need to explore the effects of changing climate oratisaexpf
spruce forest mortality to a new area without a history of infestation. This siidgites that spruce
stands become more susceptible to mortality due to spruce beetles when the spruce forest encounters
suboptimal climatic conditions over the long term. Suboptimal climate could affect the forest bg being
predisposing factor causing long-term suppression of growth and vigor or by inducing a condition
favoring growth and development of insects and diseases. Because climate factors ayedsstaitiaited
across the forested landscape, the climate characteristics within a site can be useatediiedi
heterogeneity of the stand condition across the landgcapdquist, 2005). In a time of climate change,
the shift of environmental conditions from optimal to marginal could be possible. Because climate will
tend to be warmer and drier in the near future (Seager et al., 2007), more optimal sites in the current
landscape may shift to marginal, possibly causing more spruce forest to become more susceptible to
insects and diseases.

In this study, we applied a critical method proposed by Reich and colleagues (2016) to describe
interactions between climatic effects and spruce mortality using fifty years attelohata to represent
long-term effects of abiotic factors on both presences of host and mortality. We adopteddhehegspof
using CTMs with regression model as the inference for interactions between climateuaedvapmtality
and implementing third degree polynomial regression function instead of the second degree alblgnomi
capture the non-linearity of the association. We hypothesized that spruce mortalityistedsadth
climate zones where host trees confront physiological stress of marginal conditions.nadlgjtio
marginal condition also does not support the growth and survival of host’s population which implying
environmental mismatch between host and causal agent. We use CTMs and regression model to test the
hypothesis that there are either positive or negative effect from long-term conditions of terapzerdt
precipitation on the probability of observing spruce forest and spruce mortality across thepkantisea
results suggest that climatic environments are at part etiology of spruce mortality.@fovtber exempt
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environmental factors could affect landscape dynamics of hosts and their causal agents (Al[201€x; al
Breshears et al., 2005; Hanson and Weltzin, 2000).

Based on the calculation of probability in CTMs (Table 3 to Table 10) and from the résults o
regression models, the presence of spruce forest in Colorado is mostly located in high pedpitas
throughout cold to moderate temperature zones while probability of spruce mortality fobonitaa
trend, as does the probability of spruce host presence. Especially, the probability of mortalsiyosit
correlates with higher precipitation zones in colder temperatures (Zone 3 and below). However,
probability of mortality is negatively associate with higher precipitation in the graiemperature zones
(Figure 7). The latter case indicates that there is evidence of increased mehailitprecipitation is
lower in warmer climate zones, according to historic spruce mortality in Colorado tsdedih a
drought period (Chavardés et al., 2012; Hart et al., 2013). In contrast, observing spruce fdasggin A
has the highest probability in the low to moderate precipitation zones and decreases asiprecipitat
increases, except in the warmest temperature zone where the unimodal peak of probabilities is between
the moderate to high precipitation zones (Figure 10 and Figure 13). While the probabilitiexef spr
mortality in Alaska are low across many climate zones, there is an increasing trend asphatijomrec
increases in the two warmest temperature zones (Figure 10 and EBgukecording to a previous study
in Alaska, spruce beetle outbreaks are positively associated with increasing precipitdiwinter and
is negatively associated with more precipitation in warmer periods (Sherriff et al., Z@g&Ipsults are
quite $milarto previous study of the same approach on subalpine fir decline (Reich et al., 2016), which
results indicate that host is found mostly in cold to moderate temperatures and high precipitzion cl
zones while relatively warm and dry climate are associated with the suboptimal zones. Nevertheless,
subalpine fir decline only subject to dry climate, the probability of spruce mortality hagigepos
association with higher precipitation in some levels of temperature Ziimese interactions with climate
were referred as the mismatch of environment/host which marginal population inhabit these fsdas con

with the various kinds of biotic and abiotic stress that lead to more probability of mortality.
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The adopted methods also aim at characterizing the differential effects between climate and
spruce mortality associated with outbreaks of spruce beetles. The results indidate phesence of
spruce forest inhabit in sites with optimal climatic conditions favor persistence optqmahktion while
populations those are mismatched with the favorable climatic conditions are vulnerable to stress and
being prone to mortality. Differential effects of forested landscape for Colorado and Alaskshaein
thatthere’re less area of host’s disadvantage compare to the total area of host’s presence (Table 19 and
Table 20). The differential effects of outbreaks of spruce beetle occurred in the limited aethehe
suboptimal conditions prevail. These results could delineate the future distribution ef fepest and
outbreaks. Results show that healthy forest is found mostly in climatic zones with moderate temperatures
and high precipitation in Colorado which comparable to previous study on the differential effects of
subalpine fir decline in Colorado while the probability of greatest negative differdieictisas observed
in sites with low temperature and high precipitation. While healthy forest is found irotterately lov
temperature and moderate precipitation in Alaska, whereas, the probability of observing negative
differential effects is greatest in zone with extremely high and low precipitation.

The applications of statistical modeling approaches on spatial data could help us determine the
importance of climatic factors on the spatial extent and distribution of forest nyoffatim our study,
we model the presence of host and mortality through OLS regression and SAR models. The models were
used to describe the association between climatic characteristics and the observatsh ios&mts and
diseases (Figure 8, to Figure 12). The models were also used to extrapolate the association between host
and mortality in the unobserved climatic covariates and area. This kind of model, called &te clim
enveloped model, was used to define the climatic niche of species (Farber and Kadmon, 2003; Pearson
and Dawson, 2003). The climate enveloped model was employed to predict the spatial response of species
to the fundamental climatic conditions. It delineates the spatial extent of the probabiliis®nfing
host and mortality based on climatic characteristics across the landscape. However, the climatgdenvelop
model only represents the response due to large-scale effects of climatic conditions. In othehavords, t
model describes the fundamental niche of the host and its mortality and cannot account for species
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distribution within climate zones due to small-scale environmental factors such as mutualism,
competition, predator-prey, communities structure, anthropogenic effects, etc., which accdwnt for t
realized niche (Aradjo and Peterson, 2012; Austin and Smith, 1990; Reich et al., 2010).

From our model, the climatic covariates represent the long-term conditions of temperature and
precipitation for each site. The model can be used to show the response of organisms to the
spatiotemporal trajectories of ecological and climatic conditions (Blois et al., R@Kkgtt, 1989). The
assumption of our study is that the species respond to specific climatic factors thattarg coes time,
but the extent of the species can change by aishdistribution of climatic factors through time and
space. Therefore, future species distribution can be determined by the current distribution and i
association with climate. In this study, we are interested in the probabilitiesstaritbmortality that
were created based on the reaction to the climatic covariates in each of the spatidieispstial units
with extreme or suboptimal conditions could favor the emergence of outbreaks causing host mortality
The CTMs developed from the data and the model prediction are able to quantify and predict changes due
to climate shift however the application of CTMs also have the limits. Due to long temporal scale CTMs
cover, it is difficult to use this method to predict the future outbreaks at a specifiotowéti specific
time. CTMs only yield regionally large-scale climatic effects on host and mortality which@zdeus
risk map. Moreover, the implementing of aerial survey detection in modeling could result in high
sampling errors from both false positive and false negative. Integration of samplisgraodhe models
could help us deal with this kind of bias. This could be done by further sampling on local scale to check
the accuracy of aerial surveys and implementing likelihood or Bayesian approach to deal with the model
with multi-structure of errors.

Despite the fact that temperature and precipitation patterns used in our study are long-term static,
under the changing-climate scenario, the distribution of marginal sites [where the probamilirtality
is high relative to the probability of host presente<(0)] would be changed by the altered landscape
pattern of climate (Seastedt et al., 2008). However, it is difficult to completely quantify thmahaites

of any species due to the complexity of the interaction. The responses of host and mortality are not only
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involved with the pattern of large-scale factors like climate, but also with other srafdlenvironmental
factors and how these variables and interactions have changed over space and time. On the other hand, the
outbreaks of insects and diseases can change large-scale spatial distribution of hostrap eviess|iy
depletes the available resources for forest pests. These also contribute to the charigergsppate of
the occurrence of outbreaks over the temporal scale.

The extreme climate compared to the typical climatic niche might contribute to the alfsiece o
establishment of forest tree species, and it can also cause mortality of exiggigdonmunities
(Anderegg et al., 2012; Wargo, 1985). The marginal population of the spruce residing in suboptimal
climatic conditions could have more risk of encountering physiological stress by living in variable
environmental conditions and disturbances and by living under the risk of contributing factors.
Suboptimal temperature and precipitation can cause a reduction in growth rate to below the maximum
level underlying the phenotype (Ayres, 1984). This detrimental effect is directly and tiydimeolved
with the physiological processes of trees, resulting in changing function and performancéy(atutber
Denno, 20@). Suboptimal temperature affects growth by interrupting enzymic activities involved in
photosynthesis and respiration. The interference of plant function involves lower casipaitation
(Gaylord et al., 2007), which reduces the carbon source of host trees. Because carbon-based compounds
are the building blocks of the organism and are crucial for physiological maintenance, the scarcity of
carbon due to climate stress could deplete vigor and lessen defense mechanisms of the host trele, causing i
to be more susceptible to insects and diseases (Gaylord et al., 2007; McDowell et al., 20@8erViore
high temperature increases the rate of evapotranspiration due to high water vapor deficit, causing loss of
water from the host tree (Williams et al., 2013). On the other hand, drought stress caused by low
precipitation levels also causes stress on plants because they lose water through transpiett@etsat
the amount required by the root system. This leads to disruption of the acquisition of carbompy closi
the stomata (Anderegg et al., 2012).

Moreover, climate also affect life histories and population dynamics of forest pathogens and
insects, resulting in detrimental effetdghe host tree (Bale et al., 2002; Huberty and Denno, 2004). In
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studies of insect pests, the plant stress and climate release hypotheses were developibe tihelescr
relationship among plants, insecnd climate (Huberty and Denno, 2004; Larsson, 1989). The plant
stress hypothesis focuses on the increasing susceptibility of a host and increased suitable f@source
pest populations caused by extreme abiotic conditions. For example, coniferous trees undertdrssight s
produce less oleoresin, which is the mechanical defense deterring wood-boring and phloem-feeding
insects (Hard, 1985). This also leads to increased emission of insects attraotatliéoconditions from
stressed plants (Kelsey et al., 2014; Mattson and Haack, 1987). The climate release hypothesis focuses
not only on the changed susceptibility of the hostalsat on the concept being joined with the effects on
pest populations and behaviors favoring the availability of resources (Larsson, 1989; Mattsoacknd Ha

1987).
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Table 1. Summary statistics for the average annual temperature and precipitationealsaittidhe

temperature (T) and precipitation (P) zones identified Colorado.

Zone Min. Mean Max. CV%
Average precipitation (mm)
P1 4.8 27.0 30.4 9.9
P2 30.4 33.9 36.7 5.2
P3 36.7 39.5 42.7 4.3
P4 42.7 46.0 50.7 4.8
P5 50.7 55.5 60.6 5.2
P6 60.6 65.6 83.7 5.2
Average temperaturé)
Tl -5.7 -1.7 -0.3 55.1
T2 -0.3 1.3 2.4 54.7
T3 2.4 35 4.4 16.6
T4 4.4 5.3 6.3 10.0
T5 6.3 7.4 8.4 8.0
T6 8.4 9.4 13.9 8.3
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Table 2. Summary statistics for the average annual temperature and precipitation assaitited wi

temperature (T) and precipitation (P) zones identified in Alaska.

Zone Min. Mean Max. CV%
Average precipitation (mm)
P1 4.6 14.8 20.6 27.8
P2 20.7 25.0 29.1 9.0
P3 29.2 33.0 375 7.1
P4 37.6 46.2 62.0 14.1
P5 62.1 116.0  275.5 36.0
Average temperaturé)

T1 -34.3 -12.0 -10.2 15.9
T2 -10.1 -8.6 -7.4 9.3
T3 -7.3 -6.2 5.1 10.7
T4 -5.0 -3.6 -2.1 234
T5 -2.0 1.0 9.0 243.8
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Table 3. Rescaled probability of observing spruce forest in a given climatePZ6&,), in Colorado.

Probabilities are rescaled so the maximum probability is equal to one (maximum probability = 0.8274).

Temperature Precipitation Zone
Zone 1 2 3 4 5 6

1 0.0000 0.0310 0.4223 0.3612 0.2679
2 0.0042 0.0287 0.1148 0.3978 0.6736 0.8089
3 0.0018 0.0124 0.0849 0.2979 0.8273 1.0000
4 0.0001 0.0037 0.0227 0.1505 0.4322 0.8671
5 0.0000 0.0001 0.0022 0.0073 0.0087 0.0000
6 0.0000 0.0000 0.0002 0.0006 0.0016
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Table 4. Rescaled probability of observing spruce mortaligiwen climate zone? (D|C;), in
Colorado. Probabilities are rescaled so the maximum probability is equal to one (maximum pycbabili

0.1939).

Temperature Precipitation Zone
Zone 1 2 3 4 5 6

1 0.0000 0.0000 0.6647 0.4787 0.3963
2 0.0011 0.0104 0.0478 0.2591 0.6581 1.0000
3 0.0003 0.0052 0.0372 0.1748 0.6750 0.9382
4 0.0000 0.0023 0.0132 0.1046 0.2964 0.5606
5 0.0000 0.0001 0.0015 0.0066 0.0063 0.0000
6 0.0000 0.0000 0.0000 0.0004 0.0000
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Table 5. Rescaled probability of observing spruce mortality conditional on spruce foresteliese
given climate zone?(D|S, C;), in Colorado. Probabilities are rescaled so the maximum probability is

equal to one (maximum probability = 0.2428).

Temperature Precipitation Zone
Zone 1 2 3 4 5 6
1 0.0000 1.0000 0.8795 0.9092
2 0.0821 0.1040 0.1970 0.4388 0.7265 0.9833
3 0.0022 0.0974 0.1703 0.3217 0.6458 0.8053
4 0.0000 0.0600 0.1523 0.3189 0.4127 0.3121
5 0.0000 0.0000 0.1181 0.2233 0.0503
6 0.0000 0.0000 0.0000 0.0000 0.0000
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Table 6. Differential between probability of observing spruce forest and rescaled lisobfbbserving

spruce mortality conditional on observing spruce forest in a given climate/omeColorado.

Temperature Precipitation Zone

Zone 1 2 3 4 5 6

1 0.0310 -0.5777 -0.5184 -0.6413
2 -0.0778 -0.0753 -0.0822 -0.0410 -0.0528 -0.1744
3 —-0.0004 -0.0850 -0.0854 -0.0239 0.1815 0.1947
4 0.0001 -0.0563 -0.1296 -0.1685 0.0195 0.5550
5 0.0000 0.0001 -0.1159 -0.2159 -0.0417

6 0.0000 0.0000 0.0002 0.0006 0.0016
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Table 7. Rescaled probability of observing spruce foresgiaen climate zone? (S|C;), in Alaska.

Probabilities are rescaled so the maximum probability is equal to one (maximum probability = 0.3736).

Temperature Precipitation Zone
Zone 1 2 3 4 5
1 0.2680 0.3483 0.0980 0.0270 0.0010
2 0.5454 0.6858 0.8076 0.1714 0.0207
3 0.6102 0.9539 1.0000 0.4578 0.1106
4 0.3973 0.7914 0.9453 0.6334 0.2546
5 0.1673 0.2742 0.5145 0.0468
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Table 8. Rescaled probability of observing spruce mortaligygiven climate zone? (D|C;), in Alaska.

Probabilities are rescaled so the maximum probability is equal to one (maximum probability = 0.1253).

Temperature Precipitation Zone
Zone 1 2 3 4 5
1 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.0005 0.0012 0.0000 0.0000 0.0074
3 0.0102 0.0072 0.0495 0.0134 0.0549
4 0.0266 0.1160 0.1124 0.0743 1.0000
5 0.0000 0.4686 0.7257 0.1709
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Table 9. Rescaled probability of observing spruce mortality conditional on spruce foresteiesenc
given climate zone?(D|S, C;), in Alaska. Probabilities are rescaled so the maximum probability is equal

to one (maximum probability = 0.3115).

Temperature Precipitation Zone
Zone 1 2 3 4 5
1 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.0004 0.0012 0.0000 0.0000 0.0000
3 0.0036 0.0025 0.0242 0.0035 0.0716
4 0.0059 0.0803 0.0518 0.0480 1.0000
5 0.0000 0.4016 0.5276 0.7332
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Table 10. Differential between probability of observing spruce forest and rescaletilizobk

observing spruce mortality conditional on observing spruce foreggiiren climate zoné);, in Alaska.

Temperature Precipitation Zone
Zone 1 2 3 4 5
1 0.2680 0.3483 0.0980 0.0270 0.0010
2 0.5450 0.6845 0.8076 0.1714 0.0207
3 0.6067 0.9514 0.9758 0.4543 0.0391
4 0.3913 0.7112 0.8935 0.5854 -0.7454
5 0.1673 -0.1274 -0.0132 -0.6864
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Table 11. Comparison between OLS model and SAR model for the natural logarithm of the rescaled
probability of observing spruce forest in a given climate zone, Pr(S|Ci), in the Colorado asoangally

function of the temperature and precipitation zones.

OLS Model SAR Model
Variable Coefficient Standard Coefficient Standard
Error Error
Intercept -13.401 3.4672 | -14.125 1.743
T 5.234 1.6122 6.048 0.823
P 2.548 1.4072 2.232 0.687
T? -1.486 0.2637 -1.653 0.135
p? —-0.082 0.2470 0.015 0.124
TP
T3
P3
T?p 0.212 0.0582 0.248 0.030
TP? -0.125 0.0623 -0.161 0.033
A -0.655  (0.0001)
R? 0.92 0.99
FIT 0.95
AICC 147 134
Likelihood Ratio 13 (4e-04)
Moran's | for
Residuals -0.47 (0.00047)| -0.0065 (0.85)

OLS full modelln(B,.) = By + 1T + BoP + B3T? + BoP? + BsTP + BT> + B,P3 + BgT?P + BoTP? +
U, whereU~N(0,52);

SAR full modelln(P,.) = By + 1T + B2P + B3T? + ByP? + BsTP + BeT3 + B,P3 + BgT?P + BoTP? +
&, Wheres = AWe + n andn~N(0, 02);

B. = rescaled probabilityf = temperature zon@ = precipitation zoneW/ = binary spatial weights
matrix based on the rook’s move on CTM; —1 <A < 1, spatial correlation of the residuals; & = spatially
correlated errord/~ N(0,1) is spatially independent errors. The final model is selected by stepwise
regression based on AICC.

FIT is correlation between the observed and predicted values squmaredreliable than R-squared in
evaluation of SAR model).

Likelihood ratio tests the hypothesis that the SAR model is an improvement over the OLS model. The p-
value associated with the test statistic is given in parentheses.
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Table 12. Comparison between OLS model and SAR model for the natural logarithm of the rescaled
probability of observing spruce meality in a given climate zone, Pr(D | Ci), in the Colorado as a

polynomial function of the temperature and precipitation zones

OLS Model SAR Model
Variable Coefficient Standard Coefficient Standard
Error Error
Intercept -21.730 12.460 -15.841 7.476
T 7.051 4.112 5.055 2.455
P -1.522 6.487 -3.543 3.934
T? -1.729 0.382 -1.605 0.224
p? 0.704 0.876 0.900 0.536
TP 2.588 1.683 3.071 1.044
T3
P3
T?p
TP? -0.422 0.242 -0.466 0.152
A -0.560  (0.0021)
R? 0.747 0.947
FIT 0.808
AlCC 202 197
Likelihood Ratio 5.24 (0.0221)
Moran's | for
_ -0.254 (0.0907) -0.113 (0.536)
Residuals

OLS full modelln(B,.) = By + 1T + BoP + BsT? + BoP? + BsTP + BeT> + B,P3 + BgT?P + BoTP? +
U, whereU~N(0,52);

SAR full modelln(P,.) = By + BT + B2P + B3T? + B4P? + BsTP + BeT3 + B,P3 + BgT?P + BoTP?* +
&, Wheres = AWe + n andn~N(0, 02);

B. = rescaled probabilityf = temperature zon@ = precipitation zonel/ = binary spatial weights
matrix based on the rook’s move on CTM; —1 <A < 1, spatial correlation of the residuals; & = spatially

correlated errord/~ N(0,1) is spatially independent errors. The final model is selected by stepwise
regression based on AIC.

FIT is correlation between the observed and predicted values squmaredreliable than R-squared in
evaluation of SAR model).

Likelihood ratio testshe hypothesis that the SAR model is an improvement over the OLS model. The p-
value associated with the test statistic is given in parentheses.

64



Table 13. Comparison between OLS model and SAR model for the natural logarithm of the rescaled
probability of observing spruce mortality conditional on spruce forest presence in a givatie aame, Pr

(D|S,Ci), in the Colorado as a polynomial function.

OLS Model SAR Model
Variable Coefficient Standard Coefficient Standard
Error Error
Intercept —24.259 5.8110 | -26.8017 6.2298
T 10.812 3.1027 12,1099 3.3172
P 2.273 0.6517 2.4782 0.7041
T? -1.945 0.4249 -2.1708  0.4542
PZ
TP
T3
P3
T?p
TP?
A 0.0458  (0.8371)
R? 0.6918 0.7902
FIT 0.6894
AlCC 208.4 215.1
Likelihood Ratio 0.0353  (0.8509)
Moran's | for
_ 0.02272  (0.6769) | 0.004454 (0.7807)
Residuals

OLS full modelln(B,.) = By + 1T + BoP + B3T? + BoP? + BsTP + BT> + B,P3 + BgT?P + BoTP? +
U, whereU~N(0,52);

SAR full modelln(P,.) = By + 1T + B2P + B3T? + ByP? + BsTP + BeT3 + B,P3 + BgT?P + BoTP? +
&, Wheres = AWe + n andn~N(0, 02);

B. = rescaled probabilityf = temperature zon@ = precipitation zoneW/ = binary spatial weights
matrix based on the rook’s move on CTM; —1 <A < 1, spatial correlation of the residuals; & = spatially
correlated errord/~ N(0,1) is spatially independent errors. The final model is selected by stepwise
regression based on AICC.

FIT is correlation between the observed and predicted values squared (more reliable thaadRrsqua
evaluation of SAR model).

Likelihood ratio tests the hypothesis that the SAR model is an improvement over the OLS model. The p-
value associated with the test statistic is given in parentheses.
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Table 14. Comparison between OLS model and SAR model for differential influences of spruadigymort

in a given climate zone, Ai, in the Colorado as a polynomial function of the temperature and precipitation

zones.
OLS Model SAR Model
Variable Coefficient Standard Coefficient Standard
Error Error
Intercept -0.7010 0.3042 -0.7520  0.2295
T 0.3360 0.2383 0.3834 0.1823
P 0.4854 0.2173 0.4703 0.1652
T? —0.1048 0.0708 -0.1177 0.0540
p? -0.1901 0.0704 | -0.1828  0.0539
TP
T3 0.0124 0.0064 0.0136 0.0049
p3 0.0146 0.0065 0.0139 0.0050
T?p -0.0139 0.0033 —-0.0143 0.0025
TP? 0.0192 0.0036 0.0192 0.0027
pl ~0.2447 (0.2565)
R? 0.787 0.8542
FIT 0.7964
AlCC -32.08 -32.92
Likelihood Ratio 0.8404  (0.3593)
Moran's | for
Residuals -0.1039 0.5955 -0.03317 (0.9946)

OLS full modela;= By + B1T + BoP + B3T? + ByP? + BsTP + BeT3 + B, P3 + BgT?P + BoTP? + U,
whereU~N (0, 52);

SAR full modela;= By + BT + BoP + B3T? + B4P? + BsTP + BeT> + P2 + BgT?P + BoTP? + ¢,
wheres = AWe + n andn~N(0, c2);

A; = differential influencesT’ = temperature zon® = precipitation zongW = binary spatial weights
matrix based on the rook’s move on CTM; —1 <A < 1, spatial correlation of the residuals; € = spatially
correlated errord/~ N(0,1) is spatially independent errors. The final model is selected by stepwise
regression based on AICC.

FIT is correlation between the observed and predicted values squmaredreliable than R-squared in
evaluation of 3R model).

Likelihood ratio tests the hypothesis that the SAR model is an improvement over the OLS model. The p-
value associated with the test statistic is given in parentheses.
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Table 15. Comparison between OLS model and SAR model for the natural logarithm of the rescaled
probability of observing spruce forest in given climate zone, Pr (S|Ci), in Alaska as a polyiuoctiah

of the temperature and precipitation zones.

OLS Model SAR Model
Variable Coefficient Standard Coefficient Standard
Error Error
Intercept -1.6896 1.1569 -2.1042 0.4766
T 0.8501 0.6079 1.0164 0.2427
P -0.7145 1.0583 —-0.2518 0.4415
T? -0.1997 0.1125 -0.2131 0.0482
p? 0.1367 0.3525 0.0131 0.1474
TP 0.5601 0.2310 0.4217 0.0909
T3
p3 -0.0732 0.0387 -0.0621  0.0164
T?p —-0.0829 0.0319 -0.0722 0.0138
TP? 0.0442 0.0319 0.0577 0.0136
2 -0.8438  (0.0000)
R? 0.9743 0.998
FIT 0.9903
AICC 32.58 17.07
Likelihood Ratio 15.51 (1e-04)
Moran's | for
Residuals -0.4881 (0.003168)] -0.2591 (0.1542)

OLS full modelln(B,.) = By + 1T + BoP + B3T? + BoP? + BsTP + BT> + B,P3 + BgT?P + BoTP? +
U, whereU~N(0,52);

SAR full modelln(P,.) = By + 1T + B2P + B3T? + ByP? + BsTP + BeT3 + B,P3 + BgT?P + BoTP? +
&, Wheres = AWe + n andn~N(0, 02);

B. = rescaled probabilityf = temperature zon@ = precipitation zoneW/ = binary spatial weights
matrix based on the rook’s move on CTM; —1 < < 1, spatial correlation of the residuals; & = spatially
correlated errord/~ N(0,1) is spatially independent errors. The final model is selected by stepwise
regression based on AICC.

FIT is correlation between the observed and predicted values sqmaredreliable than R-squared in
evaluation of SAR model).

Likelihood ratio tests the hypothesis that the SAR model is an improvement over the OLS model. The p-
value associated with the test statistic is given in parentheses.
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Table 16. Comparison between OLS model and SAR model for the natural logarithm of the rescaled
probability of observing spruce mortality in given climate zone, Pr (D|Ci), in Alaska agreopudl

function of the temperature and precipitation zones.

OLS Model SAR Model
Variable Coefficient Standard Coefficient Standard
Error Error
Intercept -23.5667 12.7354 | -20.2475 7.3833
T 12,5223  15.3099 | 10.8577 9.1350
P -11.7747 5.2987 | -13.3558 2.9474
T? 0.7498 5.6214 1.2596 3.3667
p? 2.6036 1.2169 2.9208 0.7173
TP
T3 -0.7762 0.6328 -0.8247  0.3847
P3
T?p 1.0337 0.4419 1.0669 0.2813
TP? —0.7656 0.3993 -0.8098  0.2515
A -0.619  (0.0024)
R? 0.7998 0.9694
FIT 0.8625
AlCC 163 157.5
Likelihood Ratio 5.491 (0.0191)
Moran's | for
Residuals -0.3094 0.08523 | -0.1558 (0.4703)

OLS full modelln(B,.) = By + 1T + BoP + B3T? + BoP? + BsTP + BT> + B,P3 + BgT?P + BoTP? +
U, whereU~N(0,52);

SAR full modelln(P,.) = By + 1T + B2P + B3T? + ByP? + BsTP + BeT3 + B,P3 + BgT?P + BoTP? +
&, Wheres = AWe + n andn~N(0, 02);

P. = rescaled probabilityf = temperature zon@ = precipitation zoneW/ = binary spatial weights
matrix based on the rook’s move on CTM; —1 <A < 1, spatial correlation of the residuals; & = spatially
correlated errord/~ N(0,1) is spatially independent errors. The final model is selected by stepwise
regression based on AICC.

FIT is correlation between the observed and predicted values squmaredreliable than R-squared in
evaluation of SAR model).

Likelihood ratio tests the hypothesis that the SAR model is an improvement over the OLS model. The p-
value associated with the test statistic is given in parentheses.
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Table 17. Comparison between OLS model and SAR model for the natural logarithm of the rescaled
probability of observing spruce mortality conditional on spruce forest presence in givatecone,

Pr(D|S,Ci), in Alaska as a polynomial function of the temperature.

OLS Model SAR Model
Variable Coefficient Standard Coefficient Standard
Error Error
Intercept -12.6587 11.2137 | -11.7937 6.8530
T -2.1701  13.4806 | -1.9941  8.4675
P -10.4264 4.6656 | -10.5711 2.7417
T? 5.7411 4.9498 5.4971 3.1199
p? 2.1729 1.0715 2.0850 0.6651
TP
T3 -1.3555 0.5572 -1.2880 0.3562
P3
T?p 1.2064 0.3891 1.1201 0.2598
TP? -0.8219 0.3516 -0.7422  0.2324
A -0.5766  (0.0061)
R? 0.8492 0.976
FIT 0.8869
AlCC 156.9 152.9
Likelihood Ratio 3.943 (0.0471)
Moran's | for
_ -0.2475 (0.1901) | -0.1722  (0.408)
Residuals

OLS full modelln(B,.) = By + 1T + BoP + B3T? + BoP? + BsTP + BT> + B,P3 + BgT?P + BoTP? +
U, whereU~N(0,52);

SAR full modelln(P,.) = By + 1T + B2P + B3T? + ByP? + BsTP + BeT3 + B,P3 + BgT?P + BoTP? +
&, Wheres = AWe + n andn~N(0, 02);

B. = rescaled probabilityf = temperature zon@ = precipitation zoneW/ = binary spatial weights
matrix based on the rook’s move on CTM; —1 <A < 1, spatial correlation of the residuals; & = spatially
correlated errord/~ N(0,1) is spatially independent errors. The final model is selected by stepwise
regression based on AIC.

FIT is correlation between the observed and predicted values squmaredreliable than R-squared in
evaluation of SAR model).

Likelihood ratio tests the hypothesis that the SAR model is an improvement over the OLS model. The p-
value associated with the test statistic is given in parentheses.
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Table 18. Comparison between OLS model and SAR model for differential influences of sprudigymort

in a given climate zone, Ai, in Alaska as a polynomial function of the temperature and precipitation zones.

OLS Model SAR Model
Variable Coefficient Standard Coefficient Standard
Error Error
Intercept -1.139 0.2884 -1.2422 0.1667
T 1.3206 0.2374 1.3977 0.1542
P 0.2276 0.1954 0.2442 0.1198
T2 -0.2818 0.0601 -0.3008  0.0407
p? —-0.0113 0.0447 —-0.0119 0.0288
TP
T3
P3
T?P 0.0414  0.0161 | 0.0448  0.0110
TP? -0.0419 0.0146 -0.0444 0.0099
A -0.5420 (0.0113)
R? 0.8702 0.9656
FIT 0.9013
AICC 1.54 -2.52
Likelihood Ratio 4.059 (0.0439)
Moran's | for
Residuals -0.2728 0.1363 -0.1103  (0.6685)

OLS full modeld;= By + B1T + PP + BsT? + BoP? + BsTP + BT3 + B, P3 + BgT?P + BoTP? + U,
whereU~N (0, 52);

SAR full modela;= By + 1T + 2P + B3T? + B4P? + BsTP + B¢ T? + ,P3 + BgT?P + foTP? + &,
wheree = AWe + n andn~N(0, g2);

A; = differential influencesT = temperature zon@ = precipitation zoneW = binary spatial weights
matrix based on the rook’s move on CTM; —1 <A < 1, spatial correlation of the residuals; & = spatially
correlated errord/~ N(0,1) is spatially independent errors. The final model is selected by stepwise
regression based on AICC.

FIT is correlation between the observed and predicted values squaredreliable than R-squared in
evaluation of SAR model).

Likelihood ratio tests the hypothesis that 8&R model is an improvement over the OLS model. The p-
value associated with the test statistic is given in parentheses.
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Table 19. Area estimates associated with differential climate effects on the ptypldiaititive subalpindéir mortality in the spruce-fir forests of

Colorado.
Type Differential Effects CT™M OLS Model
Area Percent Percent Area Percent Percent
(Hectares) by type of Total (Hectares) by type of Total
High (A; <-0.7) 0 0.00 0.00 0 0.00 0.00
_ Host Medium (0.7 <A; <-0.4) | 1,154,660 40.31 7.12 12,796,242 59.79 7.10
disadvantage
Low (-0.4 <A; <-0.15) 1,709,770 59.69 10.54 8,607,011 40.21 4.78
Total 2,864,430 100.00 17.66 21,403,253 100.00 11.87
No (-0.15<A; <0.15) 12,800,497 100.00 78.91 158,014,625 100.00 87.66
advantage
Low (0.4 >A; > 0.15) 557,560 100.00 3.44 831,979 99.97 0.46
Host Medium (0.7 >A; > 0.4) 17 0.00 0.00 212 0.03 0.00
advantage
High (A; <0.7) 0 0.00 0.00 0 0.00 0.00
Total 557,576 100.00 3.44 832,191 100.00 0.46
Grand Total 16,222,503 - 100.00 | 180,250,069 - 100.00
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Table 20. Area estimates associated with differential climate effects on the ptyldiaititive subalpine-fir mortality in the sprufieforests of

Alaska.

Type Differential Effects CT™Mm SAR Model
Area Percent Percent Area Percent Percent
(Hectares) by type of Total (Hectares) by type of Total
High (A; <-0.7) 3,731,800 18.61 2.53 16,321,600  81.39 11.06
_ Host Medium (0.7 <A; <-0.4) | 16,321,600  81.39 11.06 0 0.00 0.00
disadvantage
Low (-0.4 <A; <-0.15) 0 0.00 0.00 3,731,800 18.61 2.53
Total 20,053,400 100.00 13.59 20,053,400 100.00 13.59
No (-0.15 <A; < 0.15) 37,408,700 100.00 25.36 40,265,800 100.00 27.30
advantage
Low (0.4 >A; > 0.15) 16,075,200 17.85 10.90 19,334,800 22.17 13.11
Host Medium (0.7 >A; > 0.4) 34,350,400 38.15 23.29 24,391,100 27.97 16.53
advantage
High (A; < 0.7) 39,624,700 44.00 26.86 43,467,300 49.85 29.47
Total 90,050,300 100.00 61.05 87,193,200 100.00 59.11
Grand Total 147,512,400 - 100.00 147,512,400 - 100.00
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Value
Wettest : 6

- Driest : 1

1:5,000,000

Figure 1. Maps represent delineated area for 6 discrete values of temperature zones (leficasie &alues of precipitation zones (right) of the

Colorado. The study area was delineated by the area indicates the presence of forest otmradm C
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Value
Wettest : 5

- Driest : 1

1:20,000,000

Figure 2. Maps represent delineated area for 5 discrete values of temperature zones (lefsceste Salues of precipitation zones (right) of

Alaska.
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- Spruce Forest - Spruce Mortality

1:5,000,000

Figure 3. Maps indicate the presence of spruce forest (left) and presence of sprudy (nighdlliin the Colorado. The study area was delineated

by the layer represent forest land cover in Colorado.
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- Spruce forest - Fly Zone
- Spruce Mortality

1:20,000,000

Figure 4. Maps indicate the presence of all species of spruce (left) and presence of spruteandttalsurvey flight line (right) in Alaska.
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Differential Effects
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1:5,000,000

Figure 5. Map showing the differential effects of probability of observing spruce mocgatititional on observing spruce forest from CTM (left)

and OLS model (right) for Colorado. The study area was delineated by the layer represdanfbrees/er in Colorado.

e



Differential Effects
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1:20,000,000

Figure 6. Map showing the differential effects of probability of observing spruce modgatititional on observing spruce forest from CTMtjlef

and SAR model (right) for Alaska.
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Figure 7. Probability of observing spruce forest in a given climate zone (top left), prytatiabserving
spruce mortality in a given climate zone (top right), probability of observing spruce tyartadditional
on spruce forest presence in a given climate zone (bottom left), and differential dffgotsatility of

observing spruce mortality conditional on observing spruce forest (bottom right) from CTlloohdd.
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OLS P(SICi) OLS P(DICi)
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Figure 8. Probability of observing spruce forest in a given climate zone (top left), prytatiabserving
spruce mortality in a given climate zone (top right), probability of observing spruce tgartadditional
on spruce forest presence in a given climate zone (bottom left), and differential dffgotsatility of
observing spruce mortality conditional on observing spruce forest (bottom right) from Qe of

Colorado.
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Figure 9. Probability of observing spruce forest in a given climate zone (top left), prtyhaiabserving
spruce mortality in a given climate zone (top right), probability of observing spruce tgartadditional
on spruce forest presence in a given climate zone (bottom left), and differential dffgotsadility of
observing spruce mortality conditional on observing spruce forest (bottom right) from 8ddR oh

Colorado.
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Figure 10. Probability of observing spruce forest in a given climate zone (top left), iitplodb
observing spruce mortality in a given climate zone (top right), probability of observing spottedityn
conditional on spruce forest presence in a given climate zone (bottom left), and differentimlogéffec
probability of observing spruce mortality conditional on observing spruce forest (bottojrfnaghtCTM

of Alaska.

82



OLS P(SICi) OLS P(DICi)

2 2 e
d /
i i , y
- 4 s /
d /
=N = + /
-~
i i e /
A .. - ___,_)(

2- g
1 2 3 4 5 1 2 3 4 5
OLS P(D|5,Ci) OLS Diff

@ T T e
=N Fome Al e IR
—_— J / o #_.-—" m"-.‘:..._é
; / + — NS
E ; / = E”J:E!mx
; / = P N N HE
I / e Ny
1 f ).rf’ a 1w S
= 4 .--"f ™

Temperature zone

—— 1
— - 2
—+- 4
—— 5

Figure 11. Probability of observing spruce forest in a given climate zone (top left), fitpludibi
observing spruce mortality in a given climate zone (top right), probability of observing spouizdity
conditional on spruce forest presence in a given climate zone (bottom left), and differentimlogéffec
probability of observing spruce mortality conditional on observing spruce forest (bottonfnaghLS

model of Alaska.
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Figure 12. Probability of observing spruce forest in a given climate zone (top left), fitpludibi
observing spruce mortality in a given climate zone (top right), probability of observing spottedityn
conditional on spruce forest presence in a given climate zone (bottom left), and differentimlogéffec
probability of observing spruce mortality conditional on observing spruce forest (bottonfnoghtpAR

model of Alaska.
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Figure 13. Above, spatial association between the probability of observing spruce (solid confpur lines
and the probability of observing spruce mortality given the presence of spruce fiotsts ¢ontour

lines) for Colorado (left) and Alaska (right). The symbols represent the maxinalrabilities (black
circle— spruce forests, black trianglespruce mortality). Below, solid contour lines show risk map for
spruce mortality for Colorado (left) and Alaska (rigfthe symbols represent the maximum differential

effects (black circle- maximum positive value, black trianglaninimum negative valye
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CHAPTER 3

ZERO-AND ONE-INFLATED BETA REGRESSION MODEL FOR ESTIMATING
ENVIRONMENTAL ASSOCIATION AND INTENSITY OF ENGELMANN SPRUCER|cea

engelmannii Parry ex Engelm.) MORTALITY IN COLORADO

Introduction

Understanding the effects of climate and environmental association with the distribution and
density of forest insects and diseases across the spatial context is a major goadtfenfomologists
and land managers (Lundquist, 2005). Especially in the regime of changing climate, understanding the
interaction of the forest and its etiology at various spatio-temporal scales vidangadal provide
valuable information (Lundquist and Reich, 2014). Modeling the distribution and intensity ofakutbre
involves combining ecological and statistical theories phlayed a large part in the development of
numerous applications for ecosystem management and decision-making support. Statistical hasleling
been applied in many aspects of natural resources management, such as conservation of endangered
species (Engler et al., 2004), managing invasive species (Cook et al., 2007), and mapping the risk of
infectious diseases (Jones et al., 2008). In studies of forest insects and diseases, stadislicglras
been applied to describe the association between the habitat of forest insecdsasebdn the spatial
context (Araujo and Peterson, 2012; Hart et al., 2015; Hebertson and Jenkins, 2008).

Outbreak of spruce bark beetl&se(droctonus rufipennis Kirby), native to western North
America (Massey and Wygant, 1954; Raffa et al., 2008), takes place in temperate coniferous forest
ecosystemdD. rufipennis can infest nearly aPicea species. In the Colorado Rocky Mountains, the
Engelmann sprucd’(cea engelmanniii Parry ex Engelm.) is the most comnfeéinea species affected by
the spruce bark beetle (Holsten and Werner, 1990; Schmid and Frye, 197 a)angtdr affected area

than wildfires (Veblen et al., 1991). Outbreak modifies the composition and structueespftice stand
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by killing larger trees in spruce-dominated swhelving smaller spruces and trees of other species

(Schmid and Frye, 1977; Veblen et al., 1991). Outbreak results in large-scale removal of vegetetion in t
subalpine forest ecosystem without removing the standing dead trees (Schmid and Frye, 1977). This leads
to the accumulation of fuel across the landscape, altering the behavior of wildfires gbdreihi

intensity, severity, and occurrence (DeRose and Long, 2009; Jenkins et al., 2012; Schmid and Frye,
1977). Other outbreak effects relate to changing the amount of streamflow and nitrogen runoff

(Bethlahmy, 1975; Griffin et al., 2011), changing forest biodiversity, and changing landscape
heterogeneity (Kaiser et al., 2013; Kurz et al., 2008).

It is difficult to identify the complex association between causal agents and environmental factor
because of the high variabiligt both the spatial and temporal scale. In this study, we hypothesize that the
occurrence and intensity of Engelmann spruce mortalagditively associated with both climate factors
and plot-level characteristics of vegetation, such that a suboptimal state of halfitanfystmannii due
to local individuals encountering environmental conditions either impacts host suditgpiilgiffects
population dynamics of casual agents. These conditions &igher chance for mortality occurrence
and increase the intensity of the infested host. Persistent suboptimal conditions of hdditaadabe
local host population to a state of marginal population, in which either survival or regendmnot
favor host population tenacity over the long term (Kawecki, 2008). For example, drought-prone sites
(those deficient of persistent water) or even excessive-moistureaithave physiological effects on
local spruce species and can cause the population to be predisposed to bark beetlniaiedtather
diseases (Hard and Holsten, 1985; Hart et al., ; 2808riff et al., 2011).

Features of stand structure and composition are essential factors associated with hostahortality
both spatial and temporal scales. Stands with older-age spruce may gradually become suscegitible to bar
beetles. The slow diameter growth rat@obld or highly competitive stand is one indicator for
susceptibility to spruce bark beetles. Structure-induced suscepiibdiso found in large-volume stands,
stands with a high basal area, stands with a high proportion of spruce composition, and stands with a high
crown competition (DeRose et al., 2013; Doak, 2004; Hard, 1985; McCambridge and Stevens, 1982;
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Raffa et al., 2005; Reynolds and Holsten, )984rthermore, stands with dense, largestese higher
phloem content, whicls eventually a major food source for bark beetle brood development, favoring the
growth of population (Berryman, 1982). Aggressive fire suppression could consequently lead to high
competition for scarce water resources within a stand (Breece et al., 2008). Diveaisstaind, the

spatial characteristics of heterogeneity, and connectivigteht may restrain spread and reduce the
magnitude of mortality from spreading outbreak (DeRose and Long, 2012; Fettig et al., 2088 ket

al., 2012).

Pattern and distribution of ecological procasthe landscape scale have been interesting to
scientists for a long time (Pielou, 1977; Turner, 1989). Since the proposal of a method to model the
spatially explicit occupancy rate aspecies (Hoeting et al., 2000; MacKenzie et al., 2002), the
probabilistic occupancy model has become regarded with great favor in ecological studies. The
occupancy model, which focus on correlation between responses and covariatesofodascribing
the probability of the existence of interested organisms given a set of habitatsin@hof model is used
for assessing the influences of the hypothesized environmental covariates on the presenceandfabse
an interested organism in the survey unit. Recently, many fields in ecology have increasihgie use
occupancy model for questioning ecosystem changes and the emergence of vulnerabilities to address
theoretical and practical issues (Clark, 2005; Keith et al., 2008). Many approaches hawevbleged
to deal with the association of known covariates (Meier et al., 2010; Zimmermann and Kienast, 1999) and
with unknown latent processes (Royle et al., 2007). The modeling of occupancy response to
environmental factors is related to the concept of ecological niche (MacArthur et a)., TI9&® are
numerous statistical methods dse model species’ distributional and abundant responses. Generalized
linear models (or generalized additive models) are usually developed and applied to describe the
association between data of spatial distribution and environmental covariates (Guisan ke Z006b).

The original likelihood method of model fitting hasomputational limit in the ability to
accommodate multistage and mixed structures that model could be composed of more than single sub-
model. This kind of model usually involve in inclusion of variance of sampling or mechanist@sgroc
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and temporally or spatially correlated structure (MacKenzie, 2006), or making predictionstiptemul
observed variables (Hobbs and Hilborn, 2006). On the other hand, the Bayesian approach is the only
computational method available for a hierarchical structure of mixed models. The Bayedihodik
framework allows for random variables of mixed structtiodse possibly incorporated into the model
(Gelman and Hill, 2006). Structured parameters dependent on otblsrdéproblems can be
simultaneously simulated by the Bayesian model using the Markov chain Monte Carlo (MCMC) method,
so we can address the several connected problems within one multilevel model (Hooten and Hobbs,
2015). A multilevel model incorporating generalized linear mixed model (GLMM) can deal with the
problem of needing the linear predictor function of fixed and random effects from covariates to be
associated with a link function of the response data. These relationships conditionally defpend on
predictors and responsetaarising from an appropridtedesignated probabilistic distribution function
(Breslow and Clayton, 1993).

The effective model must be able to strongly address the spatio-temporal dependent stidicture a
to account for the numerical skewness due to excessive absent responses (Chelgren et al., 2011; Zuur et
al., 2009). Disregarding these characteristics might lead to incorrect statisticat@efeData collected
from the spatial extent could be dependent on obscure processes related to the proximitias betwee
sampling units. Integrating the uncertainty from spatial dependence could lead to more accurate
estimation of model parameters instead of just the average effects from the functidated svith
environmental covariates (Hobbs and Hilborn, 2006; Wikle, 2002). Spatial dependence could be modeled
by the geostatistical point-process model using the multivariate Gaussian process for gmatial err
(Banerjee et al., 2008; Diggle, 1983). In the spatial point-process or kriging model, the respiatdes
at every sample location are associated with explanatory variables at their own locatiompredittor
function, and the errors term is correlated among each sampling location point. Sometinmessthe e
term may include an additional non-spatially uncorrelated error, or nugget effect (BdG®atz, 1990;

Latimer et al., 2009). However, spatial dependence should be under the assumption of the absence of
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local microevolution that the changing in the response to habitat could cause shifting of species
distribution (Record et al., 2013).

Skewness from the high proportion of absence, or zero, in survey data may violate the assumed
probability distribution function and could severely bias the model estimates (Shono, 2008). Tta remov
of absent data prior to analysis may solve this problem, but it could bias the analysis. There angsnumer
modeling approaches to deal with zero-inflated data (Ridout et al., 1998). Zero-inflated matglesar
of mixture models applied to describe the association of zero and non-zero responses, with the
explanatory variables separate from the estimation of numerical responses such as the foéquency
detections and other continuous data. A common approach is to model the zero/non-zero data using a
binomial distribution with parameters predictedadink function such as logit or probit. This kind of
model treats zero data as a true absence. After modeling absence, the positive values of dattensparam
describing the data are modeled using a standard probability distribution function for continuous data or
by using a Poisson distribution for count data (Chelgren et al., 2011).

However, there are not many applications of zero-inflated approaches in ecology to model
proportion or density data where values range from zero to one. Nishii and Tanaka (2012) developed an
approach to model the proportion of forest area cover in the spatial grid by decongposithgl into two
likelihood parts composed of multinomial logistic regression to separate extreme data of nero to o
responses from the proportional data. The partial forest cover ratio data were then modetbé icgjitg
link normal regression model. Ospina and Ferrari (Ospina and Ferrari, 2012, 2008) proposed a class of
inflated models to describe proportional data by regressing on the parameters of limtiti@histisinga
standard distribution function instead of directly modeling the proportional data. This modets$isainm
the response datavea mixed continuous-discrete distribution, in which extreme datmadeled by
binomial distribution and beta distributiosiised to indirectly describe continuous proportional data via
parameters of probability distribution function.

In this study, we devel@u a spatial Bayesian multistage mixture modelHoengel mannii
mortality response caused Dy rufipennis. We usecamodel based on three structures of likelihood to
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describe the occurrence and intensity of mortality, as well as account for spatial depdrnyden
implementing a geostatistical point-pattern approach. The presence and absence of Engelmann spruce
mortality were described by Bernoulli distribution, and the extreme response valueseostamii
mortality were then modeled with the same distribution. The rest of the continuoustynprtgbrtion
wasdescribed by beta distribution. The spatial dependence portion was integrated into eachatep of t
model using the multivariate Gaussian process with an exponential correlation function.
We used the developed model to address four questions in the study:
4. How do varying climatic conditions, stand structure, and composition associate with the
presence of Engelmann spruce mortality, conditional on sampled spruce forest?
5. How do varying climatic conditions, stand structure, and composition associate with the full
stand mortality (100% mortality) of Engelmann spruce, conditional on sampled spruce forest?
6. How do varying climatic conditions, stand structure, and composition associate with the
proportion of partial mortality of Engelmann spruce, conditional on sampled spruce forest?
7. How does the association between Engelmann spruce mortality and habitat affect the spatial
distribution of spruce mortality and its intensity in Colorado using predictions from the
model?
Our goal in this studwas to combine the information found in the features of abiotic climate
data, biotic vegetation structure and composition collected in the field, and spatially dependent
uncertainty in order to provide a description of association with presence and inessitysesaswell
as to provide spatial predictions at the landscape scale.
Material and Methods
Field data collection
During July and August 2013 and 2014, field data were collected from 55 sites within the western
part of Colorado. The study area veatected and delineated based on raster layers representing the
vegetation cover obtained from the Colorado Division of Wildlife as part of the Gap Analysis Program

(http://ndis1.nrel.colostate.edu/cogap/cogaphome.html) to indicate the lo&dBlt@hgel mannii in
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Colorado. Survey plot sampling was conducted in eight national forests: Roosevelt, Routt, Wihnjte Riv
Uncompahgre, Grand Mesa, San Juan, Rio Grande, and Pike (Figurbellpcations of survey site

were randomly assigned along the forest road conditional on the presence of habitat area, and each study
site must be at least 50 meters from the forest road. Each study site was surveyed using variattle-size pl
sampling conditional on the presence of forest-type vegetation, so the plot locations exisieuaice of

the tree species welgft out of the samplegit each study site, we implemented multiple-plot adaptive
sampling. Three sampling plots were assigaigte site where the centered plot had forest cover. The

other two plots, subplots, were randomly chosen to be aligned 50 meters from the centarexitipémt

the direction of north-south or east-west (Figure 15). The same sampling method dfdersgecies and

stand composition was conducted for other plots with at least one available sampled tree.

From the total of 153 survey plots, we sampled both living and dead trees of all species using
relascope for a variable-radius sampling method, which, in a previous study, did not have dogrgignif
accuracy differences compared to the fixed-plot sampling methods for forest inv&htorg €t al.,

2011). Each sampled tree considereside the plot was identified for species and for mortality caused by
Dendroctonus rufipennis, which can be assumed by the presence of feeding galleries with fan-shaped and
gregarious feeding pattern on the inner bark of the dead, measured by diameter at breébBidight

The DBH data were converted to basal area for each species in each plot. Then we used the basal area t
calculate the features of stand characteristics and composition. The main respabse afamortality
proportion was calculated by the ratio between basal area of the dead and total bas&l. area of
engelmannii. The other plot-level characteristics included relative dominance (RD) comparedctbé¢n
species and average basal area per tree (BT). Relative dominance was calculated by dividireg lodisal ar

P. engelmannii by the sum of basal area of every other species in the plot. Relative dominance represents
the species composition and dominance in the plot. We calculated basal area per tree by divigimg the s
of basal area by the number of samgPedngelmannii in the plot. Basal area per tree represents the

average size and age class of the sampled species. Another stand characteristic collesteth fotoh
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was the number of stories, representing stand structure complexity (S). The number of stories was
visually measured by separating stand into dominance, co-dominance, and sub-dominance.

Each covariate collected in the survey ploéstkansfornedinto categorical data to account for
the possible non-linear association with response. This made the model selection eamiamdpuie of
the model the complex components of multinomial functions. Each covariate was splitted by equalization
of frequency and then round the value into integer. Relative dominafcergjel mannii was broken up
into four classes: RD1 for-@5%, RD2 for 2550%, RD3 for50-75%, and RD4 for 75.00%. Average
basal area per tree was classified into three categories: BTd1lfggQare feet/tree, BT2 for2 square
feet /tree, and BT3 for >@quarefeet /tree. The stand structure was categorized into three classes: S1 for
stand with one story, S2 for stand with two stories, and S3 for stand with at leastdhiese Ehe
distribution of categorical covariates in sample plots is provided in Figure 17.
Climate Data

Besides the covariates for local stand characteristics and composition, we additiorgilydassi
the climate zone data for each plot location to describe the relationship between the occurrence and
intensity of mortality with the climatic factors. A particular climate zas classified by a specific pair
of temperature zone and precipitation zone. Climate data for each plot were obtained from a previous
study (Aquirre-Bravo and Reich, 2006) by spatially intersecting the locations of study platisewith
climate zone map (Figutks). The benefit of using zones to describe climate characteristics is that it
provides an opportunity to examine the roles of climatic factors on outbreak dynamicdteeross
landscape (Aquirre-Bravo and Reich, 2006; Reich et al., 2014). Additionally, we can reduce the spatio
temporal variability and alleviate the sampling and process error of the prediotiothe climate model.
Climate zones have been used in several previous studies. Reich and colleagues (2010) defined climate
zones for a natural resources monitoring program in Jalisco, Mexico. Climate zone was algo used t
model soil texture composition (Pongpattananurak et al., 2012), to model climate associatimewith t

species richness (Reich et al., 2008), to model forest stand structure (Reich et al., 20ddg]| than
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abundance of causal agents in various forest types (Masoud, 2012), and to determine theahfluence
climate on forests insects in Alaska (Reich et al., 2013).
Hierarchical Model Framework

From here forward, we make frequent use of linear algebra notation to avoid the redundant usage
of collective terms for covariates. We use italic letters (a.gr,A) to represent the random variable and a
square bracket notation (e.g:|lj]) to represent probability distributions; in this caseb] represents the
probability distribution of random variabéeconditional on random variabbewithout specification of the
type of probability distribution function. Fora particular probability distribution function, we use the
notation to specify the type of distribution function for the random variablg., Normalg, b) to
represent the Gaussian probability function of a random variable with specified paranaeteios For
notation of linear algebra, we use bold, uppercase letters for matriceé)eamd we use bold,
lowercase letters for vectors (e x).,

In this study, the hierarchical Bayesian framework was implemented to account for the GLMM.
There are many studies that implement the hierarchical Bayesian model, but there are only agfew studi
in forest health and pathology that apply the Bayesian method (Giovanini et al., 2013; #la&déd ;
Stadelmann et al., 2013). Conceptually, the hierarchical model is based on a hypothetical probability
distribution describing likelihood. From the conditional probability perspective, we can seithe |
distribution of random variablesa,[b, c], as a hierarchical structure of conditional probabiligybf c] =
[a,b|c][c] =[a]b, c][b]|c][c]. The idea behind these three random variables is that there is a hierarchical
structure of processes from the response data,the set of parameters,through an unknown latent
processb, that conveys the association from the model parameters to the responses.

The hierarchical structure of GLMM can be specified by likelihood model framework. From the
example of joint distributiond, b, c], we can rewrite the equation into the likelihood framework by
substitutinga with vectory, representing the response variables from sample. Random vériable

substituted with the unknown latent process of vexitand random variableis replaced by vect@,
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representing model parameters. Therefore, we can write the likelihood function of the model from the
conditional probability function:
L(6ly) «x [y,z|0] = [y|z, 6][z|0] 1)
From the likelihood modeling’s framework, we can fit the parameters, 8, given the datay, by
maximizing the product of likelihood function for every sample point. The challenge of the lilktlihoo
model is that when the hierarchical structure of model is too complicated (e.qg., by including processes of
variation from spatiaemporal error processes), it’s nearly impossible to find the parameters that optimize
the likelihood function. In Bayesian modeling, the prior distribution of the param[@]yrsan be
updated by prior belief, which could be from meta-analysis information, preliminary data analysis, or
could be specified with uninformative probability distribution. Priors are added to the likelinactibh,
so we get the following joint probability function:
[v.z,0] = [ylz, 0](z|0][6] 2
From the Bayesian viewpoint, parameters are treated as random variables arising from a
probability distribution instead of being treated as a fixed value. Therefore, the patistribution,
which is the marginal probability distribution of model parameters conditional on the data, can be

analytically transformed from the joint distribution between likelihood function and priors using Bayes’

theorem:
_ [y, z|6](0] 3
.21 = T 1011610
_ [y z|6][6] (4)

From the equation, the conditional paramei@rsan be described by the prior distribution and
can be used in the hierarchical model structure to describe the multistage processespafitbesyrs
Because it is nearly impossible for us to know the probability of respgp(y)swe can utilize the

Bayesian equation for posterior distribution by the decomposition of equation (4):

[0, z]y] « [y,z]6](6] ®)
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However, it is very challenging to specify the components of Bayesian modeling of complicated
hierarchical structure, and it is difficult to evaluate the posterior distribution by theiealanethod. The
MCMC posterior sampling method was developed to deal with the complexity of the Bayesian
hierarchical model (see the details of this approach in Gilks, 2005).

M odel specification

In zero- and one-inflated mixed models, we consider the hierarchical logistic model where the
logit (or the probit) link function describes the binary response of presence/absence ofrdatastiéd
features. In this application, we assumed the occurring observation in therglotesent the true
presence and absence of mortality (the detection is perfect), and the niche-relateddetterstes
have no measurement errors. A simple occupancy model for the presence/absence of mortality with
heterogeneous probabilities can be written as a zero-inflated binomial data model (withiprghabil
that depends on the Bernoulli process the presence of mortality), varying among sample piats (

1, ..., n). We get the estimated parametp;s for the probability of the occurrence of mortality at pJot
and we can specify the probability of occurrence of mortali®y. @hgelmannii at a sample plot with a

Bernoulli distribution as follows:

(b z=1 (6)
p(z) _{1—Pi ;2 =0
2. _{ 1 y Vi >0 (7)
Lo ;=0
z~Bernoulli(p)

given thaty; is the proportional mortality in terms of basal are®.cdngelmannii at ploti. The next step

is to apply another occupancy model for the occurrence of full mortglity (), conditional on the

presence of mortality in the plot with heterogeneous probability values. Since both 0 and 1 are not in the
domain of beta distribution, the extreme values must be modeled separately from the beta regression
model. This model can be written as a one-inflated binomial data model (with probab)ilibat

depends on the Bernoulli process; (full mortality or partial mortality binary variable), varying among
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sites given that mortality occurs. This process model, combined with the model for thermecofre
mortality inflated to the extreme data of zero and one, leaves out the proportiondhgdateat) < y; <
1. The estimated parameteg;, for the probability of full mortality at pldtcan specified by a Bernoulli

distribution as follows:

(¢ ymp =1 (8)
p(m) _{ 1-¢) ;m=0
_ 1 sy =1 9)
mi = { 0 0<y; <1
m~Bernoulli(¢)

Then we apply another model to account for the proportion of mortality in the plota with
heterogeneous mean proportion of mortality. This model can be written as a beta regression rhodel (wit
responding variablg;), in which the predicted value varies among sites given that the latent variable for
mean proportion of mortalityf) is between 0 and 1. This sub-model is based on the assumption that
there’s an error structure from conducting sampling with the latent error parameters, g2. The estimated

responsey;, for the proportion of mortality at plotcan be specified by a beta distribution as follows:

i—1 -
YT A - y)fi? (10)
pl0<y<1)= B(@. By
(@I (By) (11)
ERN (T )

y~Beta(a, B)
givenT is the gamma function amdandp are the vectors of parameters for the beta distribution function
at each data point. We can account for the respgpde, the latent of estimated mean of the response,
u;, and sampling erros2, by the analytical method of moment matching between regression estimates
and can obtain the parameters of beta distribution function as a function of the mean ofymortalit

proportion and the sampling variance:

<1—u 1> ) (12)
a= ——— |1

Os
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_ 1 (13)
ﬁ_a(u D

givenu is the vector of responses of the linear regression modelZisdthe sample variance of the

random variable describing the proportion of mortalityRoengelmannii. Then we get the full

conditional probability for the zero- and one-inflated beta regression model as follows:

{ 1-p ¥i=0
1162) { o S (14)
= ai=leq o \Bi—1
kpi(l —¢0) <yl B((la. ;’l)) ) 0<y; <1

In this study, the GLMM was implemented to describe the association between the responses and
local habitat covariates. The logit link function was used to predict both probabilitie=ssehpe/absence
for presence/absence data and the latent mean of the proportional data. So the probabgitymead df
proportion can be written as an inverse logit function of the predictors (Finley et al., 2007 X gindy
are the habitat covariates and the linear coefficients at locatiespectively. We get the simple GLMM

for each response:

_exp(Xy) (15)
1+ exp(Xy)
logit(p) = Xy (16)

We also used this type of function with the same covariates in the mplerafu . To account
for the spatial dependence of responses, a spatially explicit regression model witariatdtivormal
(MVN) distribution of spatial errors with exponential decay covariance fumcién be written as
follows:

logit(p) =Xy +w+e¢ a7)
e~Normal(0, ¢2)
w~MVN(py, )

Y =02C (18)

C = exp(—A1D) (29)
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We used the same spatial structure for Igndndu. Vectorw added to the regression model is
the latent Gaussian process spatial errors. Spatial error term is given by an MVie@anal., 2008),
with u,, being the mean of MVN (0 in our case) @htheing the spatial covariance matrix. Spatial
covariance matrix incorporates spatial dependence between pairs of observations, which idae fimese
a2, the variance effect parameter, ahadhe exponential correlation matrix as a function of the distance
between pairs of point®,. 1 is the exponential decay parameter associated with this function. &\thile
the model represents the error term, this does not depend on the spatial proximity, or the nugget effect
(Diggle, 1983). The distance matrix, the spatial correlation matrix, and the spatial covarianceanat
be written as follows:

dii din 1 “ Cip O-VZV szvcin (20)
p=|: =~ | c=|: ~ | w=|: -

2 2
Cni 1 OwCni ™ Ow

Qi
The hierarchical model used in this study was developed under the Bayesian framework (Gelman

and Hill, 2006) The Bayesian model commences by composing the likelihood function for each model.

The concept of hierarchical structure modeling is shown by directed acyclic graphs in Figure 18. The

likelihood function for the model for probability of occurrence and proportion of mortatitpea

summarizeasfollows:

(21)

n
L(y. 2,05, 02| Yoinary) | | Bernoulli(¥pinarylg(v, w, 02))MYN(W|0, c(2, 53))

n
(22)
L2, 65,02, 0 Yeont) | | Beta(Veont (g, W, 02)), £ (62)) MYN(WI0, c(2, 52))

Giveng() is an inverse logit function including the latent spatial error tg(nis the moment-
matching function for the parameters of beta distribution funcitamdp, andc() is the spatially
exponential covariance function with paramefesnds?2. Then we completed the hierarchical Bayesian
model by assigning prior distributions to the model parameters. Intercept and coefficient model

parameteryg were assigned by the flat normal distribution with zero mBannal (0, var = 1.0 X
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10%)). The spatial variance effect and non-spatial variance tggrands?2, received priors of the narrow
density near zero because sparse priors of the variance parameters can lead to convergemce failure i
MCMC. The over-parameterized model fitting required informative prior distributions oratizee
parameters, with relatively high weight placed on values near zero (Gelman and Hill, 200@prelec
priors for variance parameters is still an active research topic in BayesiaicstdRiztameters for the
spatial covariance are difficult to estimate in hierarchical models (Zhang and Wang, 2010¢r&fted
specified priors for spatial parameters in a preliminary analysis by fitting the i@adél, but without
latent spatial effects, and then implementing kriging analysis with the GeoR package(Rilaeid
Diggle, 2001) to the empirical residuals of the results. The parameters from the &igangnce model
were used as the central value of uniform prior for spatial dé¢aynd gamma prior for variance effect,
a2.

All the model fitting was performed by JAGS (Plummer, 2004) software coding from R
programming interface (R Core Team, 2014). We fitted the model using the MCMC method with
Metropolis and the Gibbs sampling algorithm to update the parameters by JAGS through the rjags
package for R (Plummer, 2013). The sampling was run on three independent MCMC chains of 60,000
iterations (100,000 iterations with thinning for every five iterations for threieshaith 10,000 burn-ins
for each chain. Initial parameters for each chain were randomly initialized within laldaasige.
Gelman-Rubin diagnostics were applied to assess the convergence.

Model validation and selection

We fitted the competing models with different combinations of covariates. To compare
alternative models, we used the Deviance Information Criterion (DIC) (Spiegelhalter et al. [Q0R)
the sum of the loss function (a measure of the model fit) represented by Bayesian dBviandehe
effective number of parametegs, (a penalty for the model complexity). In contrast to Akaike

Information Criterion (AIC) and Bayesian Information Criterion (BIC), DIC is the truesBian
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information criterion, whose calculations encompass all MCMC iterations. The lower Di€s\salggest

best-fit models. DIC can be estimated as the following equation:

DIC = D + 2pp (23)
D = —2log[y|E(8]y)] (24)
pp=D—-D (25)

D = f —2logly|6][6]y] d6 (26)

Furthermore, we used the posterior predictive check for other comparison criterion; the mea
squared prediction error (MSPE) is implemented to assess the accuracy of the predictiertadlati
true value:
n
giveny is the model predigin. A smaller value of MSPE implies more effectiveness of a model’s
predictability. Besides MSPE, the other scoring function we used for validation was log predictitye dens
(LPD), estimated by averaging over the iteration of the sum of likelihood conditional on model

parameters at each iterationkofithin MCMC chains:

K13 'ak 28
LPD = log[y|y] = log <2—[y1|!3’ ]> (28)

Prediction domain
The prediction of the hierarchical Bayesian mogietan be applied from the parameters
conditional on the observational data. The prediction probabilities of the mortality occumertbe a
proportion of mortality is given by the following:
pBly) = [ p(310)p(6]y)d6 (29)
We can see from the equation that the prediction values were iteratively calculated across the
parameter spectrum of MCMC. However, we ignored the prediction of spatial structure for tbeqoredi

because it is difficult to determine the directional randomness of the spatial erroadcdlate the
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prediction for each iteratiokin MCMC chains, the conditional prediction value was calculated from the
local environmental covariates via model parameters of iteratidns of
Vi = Xﬁk (30)

The prediction at a new site that was excluded from the sample locations requires the values of
each covariate to be known. The climate covariates of temperature and precipitation zone alezady cov
the whole study area. The plot-level covariates describing stand characteristics were obtainedry applyi
linear interpolation by the inverse distance weight (IDW) method, considering 12 neighbors’ value. The
interpolation was applied in all grids of neighboring sites, conditional on the presdnagef manni
(see Figurd9 and Table22) given by vegetation cover data from the Colorado Division of Wildlife as
part of the Gap Analysis Program. The kriging interpolation method was implemented by ArcMap (ESRI,
2011). The prediction was implemented in 20,547 of the 1000- x 1000-meter grids across the landscape.
Results
Probability of mortality given the presence of P. engelmannii

To measure the impact of environmental factors on the occurrence mortality condititmal o
presence oP. engelmannii, the hierarchical Bayesian zero-inflated model was implemented to regress on
the latent variable of probability of mortality preserngeThe candidate model with different
combinations of environmental covariates was verified with DIC. Furthermore, LPD and MSPE posterior
predictive check were implemented to assess the predictability of the model. All candidateanddel
their validation criteria are shown in Table 23. The best-fitted model, that yielding the lo@estd3
selected from the candidate models. The selected model describing the environmental association with the
presence of mortality includes the climatic covariates of temperature zone (T) anidgti@cipone (P)
and two other plot-level covariates: complexity of crown structure (S) and average basal aesa per tr
(BT). The summary of posterior distribution of parameters is given in Table 25. Comparatéreopost
density is shown in Figure 21. The posterior predictive check of the Bernoulli simulation model using the

latent process of the probability of observing mortality indicates that despitete having an
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acceptable predictive power of 80.4% accuracy, sensitivity of the model is low due to only 6&uUés of
positive results (Table 24

The GLMM of logit link function, including the Gaussian process of spatial error, was applied t
account for the spatial variability of the conditional probability for the ocoaerefP. engelmannii
mortality, p. From the results, there appears to be a spatially dependent structure on the logistic regression
function for the probability of mortality. The preliminary analysis of krigiegiduals yields an estimated
value for the exponential decay parametenf 0.027 (range parameter of 37.037 km) with the posterior
along the distance shown in Figure 20. The estimated variance effect for the covariance fighdtion,
7.106. The detailed results of the exponential spatial covariance parameters are described in Table 25. For
associating the presence of mortality with the local habitat covariates, thergatieeneffects from
temperature zones 1 and 2 relative to temperature zone 3, and there are no significant effects from
temperature zones 4 and 5 compared to temperature zone 3. As seen in Figure 21, there is an
overwhelmingly negative effect from temperature zone 1. The effects of precipitation zones 1, 2, and 4
have no significant difference relative to precipitation zone 3, while precipitation zone 4 isytzerual
with a significant positive effect. For the stand characteristic covariatesgtilg bomplex stand
structures, S2 and S3, have significant negative effects on the occurrence of mortalieytoethe
single stand structure. The effects of the size class show that there are sigrostare effects from
average basal area per tree for size classes BT2 and BT3 relative to the smalliesissiBa t, with the
largest size class, BT3, having a smaller effect than the moderate size class, BT2. Teal pregicif
the probability of mortality conditional on the presenc® aéngelmannii with the selected model is
given in Figure 22. The spatial context of prediction matches well with observation ieltheviiere the
plots with mortality are observed more in the northern area of the study extent. The sumnary of th
predicted probability of mortality is shown in Table 28.
Environmental association of the probability of entire plot mortality given the presence of mortality

To measure the impact of the environmental factors on the occurrence of full mayfahity X
of P. engelmannii conditional on the presence of mortality, the hierarchical Bayesian one-inflated model
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was implemented to regress on the latent variable of probability of the presence of fultyngrtdihe
candidate model with different combinations of environmental covariates was verified with DIC. Al
candidate models and their validation criteria are shown in Table 23. The best-fitted model,dimat yiel
the lowest DIC, was selected from the candidate models. The best-fitted model includesatine clim
covariates of temperature zone (T) and precipitation zone (P) and stand-level covariates of number of
stories (S) and relative dominance (RD). The summary of posterior distribution of pasamgteen in
Table 26, and the comparative posterior density is shown in Figure 23. The posterionvpredetk of
the Bernoulli simulation model using the latent process of probability of observing fullitgataoss
MCMC iterations shows that the model has a high predictive power of 100% accuracy in predicting plots
with full mortality (Table24).

The GLMM of logit link function, including the Gaussian process of spatial error term, was
applied to account for the spatial variability of the conditional probability of the recmg of full
mortality of P. engelmannii in the sample plotp. From the preliminary results, there is no effect of large
scale spatial structure for the logistic function. The estimated value of expodentglparametera,
from the empirical residuals kriging model is 0.149 (range parameter of 6.725 km), with th@pasid
correlogram shown in Figure 20, while the estimated spatial variance effet,0.686. The results of
posterior for model parameters are shown in Table 26, while comparative posterior densities are
expressed in Figure 23. For the association between occurrence of full mortality and ctiveriates,
there is no available mortality site with temperature zone 1, and there are significastrefédiste to the
baseline of temperature zone 3 compared with the rest of the temperature zones. Temperature zones 2 and
4 have negative effects relative to the baseline, while the effect of temperature zone 5 haswhe positi
effects on the response. Additionally, precipitation zones 2 and 4 have negative effects on the probability
of full mortality relative to precipitation zone 3. Precipitation zone 5 has the rgogicant positive
effect compared to the baseline, while precipitation zone 1 has no significant effect relative t
precipitation zone 3. For the influence of stand-level characteristics on the presenceoitélity, the

higher-complexity stand structures, S2 and S3, have positive effects relative to singlesttursestr
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The effects of the relative dominanceRofengelmannii are negative for the higher-dominance classes,
RD2, RD3, and RD4, compared with the lowest class, RD1, with highly negative effects of RD2 and
RD3. The predicted map of the probability of full mortality conditional on presence of mobtalitye
selected model is given in Figure 24. The summary of the predicted probability of mortality isishow
Table 28.

Environmental association of the proportion of mortality given partial mortality

A hierarchical Bayesian beta regression model was implemented to describe the imffuence
environmental factors on the proportion of mortality conditional on the partial mypakR.
engelmannii, y. Given that there is sampling error on the responses collected from the field, the
proportion of mortality is represented by the beta distribution latent state of the mean of gmdpottie
mortality, #, and the sampling errarZ. The model with various combinations of covariates was verified
with DIC. All candidate models and their validation criteria are shown in Ra&blehe best-fitted model,
that yielding the lowest DIC, was selected from the candidate models. The model withekeDIC
includes the covariates of precipitation zone (P) and stand-level covariates of stancestoroplexity
(S), relative dominance (RD), and size class (BT). The summary of posterior of parameters is given i
Table 27, and comparative posterior density is shown in Figure 25. The posterior predictive check of the
model from the latent process of mean proportion of mortality is expressed as the median of iasidual
Figure 27.

The GLMM of logit link function for the mean of proportion was modeled to include the
Gaussian process of spatial error term to account for the spatial variability obpleetion of mortality
conditional on observing partial mortality. From the preliminary results, there is no stidagavof the
effect of large scale spatial structure for the logistic function. The estireatue of exponential decay
parameters], from the empirical residuals kriging model is 0.145 (range parameter of 6.916 km), with
the posterior and correlogram shown in Figure 20, while the estimated spatial variance&ffsct,

1.028. The distribution of parameters is shown in Table 27 and Fi§ufdere are significant positive

climatic effects of precipitation zone 4, and there are small negative effects oftatiecizones 1 and 2
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relative to precipitation zone 3. There is no sample in precipitation zone 5 having partityn&ior
stand characteristic covariates, the higher-complexity stand structures, S2 and S3, have small negati
effects relative to the single story, S1, while the relative dominaneéeenfielmannii has a small positive
effect in the higher dominance class, RD4, compared with the lowest dominant class, RD1. However,
there is no difference in effects of other dominant classes compared to RD1. The largest siZ€3;lass, B
is the only size class that has a negative effect compared to the baseline at size clagedicldtkmap
of the proportion of mortality conditional on partial mortality presence by the selected modehisngi
Figure 26. The summary of the predicted proportion of mortality is shown in Table 28.
Discussion

The influences of climate and habitat factors on occurrence and intensity spruce navgaliby
well understood. In this study, we explored the effects of climate and stand-level habéeterisdics on
the occurrence and proportion of mortality Forengelmannii. We answered the proposed questions by
developing a hierarchical Bayesian zero-and one-inflated beta model to address the multilevel problems
where there are multiple responses. We adapted this general class of model concept, proposed by Ospina
and Ferrari (2012, 2008), by applying two-stage Bernoulli random variables to indicate thenoecofre
the extreme value of the proportion of mortality, representing the sample with ahseads,and full
mortality, y; = 1. The proportional responses were addressed by beta distribution, allowing more
flexibility by modeling the association between covariates and the latent statearoproportion and
also incorporating stochasticity from the sampling ermfsEach step of the model was performed by
logistic function to deal with probabilities and continuous proportional responses. The nai#ivari
Gaussian latent process was included in the function to express the exponential spatial errors term.

From the modeabutput, spatial distribution of the occurrence and intensity of mortali®y of
engelmannii were both associated with the local covariates of temperature zone, precipitation zone, class
of stand structure level, relative dominance class, and size class described by average lpesaleee

Climate variables play crucial roles in both occurrence and intensity of mort&léycolder temperature
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zones (T1 and T2) have highly negative effects on both the probability of mortality occumdribe a
probability of full mortality occurrence, while the high temperature zone (T5) isyadgiassociated
with the presence of full mortality. Although high precipitation zones are positigstyciated with the
presence and proportion of mortality (P4 is associated with the presence and proportiorl of partia
mortality while P5 is associated with the occurrence of full mortality), the effectmatecompared
with the negative effects from temperature factors. Therefore, the climate zoisecthiidtand humid has
a negative cumulative effect, while a warm and humid climate has the most positive effect on
observations of mortality.

Despite there being no evidence of increasing mortality when precipitation is lower, there is an
apparent positive effect in the warmer climate zones that could be related to the water vapor deficit
associated with drought events, according to a study of historic spruce mortality in CéCinadardés
et al., 2012; Hart et al., 2013). The deviation of temperature and precipitation from optimalsmn ca
direct and indirect detrimental effects on the physiological processes of treemgestiltcreased
susceptibility (Ayres, 1984; Huberty and Denno, 2004; Williams et al., 2013). Warmer climate also
affects the population dynamics of forest insects by shortening life cycle (Bale et al., 2062y tdad
Denno, 2004). The Climate Release Hypothesis (CRH) states that climate changes might affect
susceptibility of host and pest populations, with the conditions favoring a high probabifityrtadity for
host trees (Huberty and Denno, 2004; Larsson, 1989; Mattson and Haack, 1987). Since climate has a
trend of warming in the near future (Seager et al., 2007), the shifting of climate zonestaeros
landscape may cause more spruce forest to become more susceptible to insects and diseases.

The results from this study indicate that stand characteristics are important factotsaas we
climate. Stand susceptibility can be determined with the average diameter, basal area, species
composition, and physiographic location (Schmid and Frye, 1977). Mortality occurrence is positively
associated with single-story stands (S1) with medium to large size classes (BT2 andBT3)
engelmannii. The higher-complexity stand structures (S2 and S3) have highly positive associations with
the probability of full mortality, while medium to high dominance classes (RD2, RD3, and RD4) have
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negative effects on full mortality. For the proportion of partial mortality, the lasjgsiclass (BT3) and
the highest dominance class (RD4) have negative effects on the proportion of mortalityeStkse
correspond with the previous model study stating that the dominance and heterogdheditgafnannii
and large basal area of stand are the most influential factors on spruce beetle outbreak (DERose et a
2013; Doak, 2004). Stand characteristics, combined with climate variability, influence the success of
spruce beetle populations (Bentz et al., 2010). In contrast, the covariates show highly positive effects on
the presence of mortality, but did have negative effects on the probability of full ngcatadithe
proportion of mortality. This may be explained by the marginal population concept that the subdominance
of P. engelmannii in a mixed-structure stand might be affected by the natural thinning of the
subdominance in stands or by the suboptimal physiological conditions, resulting in the absence of
establishment and regeneration and high susceptibility due to physiological stress on the existing
population (Anderegg et al., 2012; Wargo, 1985). However, we need further study is required focusing on
the stand-scale ecology of species, such as regeneration and establishment through the temporal scale
encompassing the different stage of subalpine spruce-fir systems.

The inclusion of spatial structure in the model helps describe the spatial process)grtied
processes not included in the covariates. The paramgtefthe exponential spatial process were used
to account for the unmeasured local stand characteristics such as the similarity of geograpbsg; the
demographic and dispersion of the insects and diseases from multiple epicenters, the tempawalysync
of insect life cycle, the historic local disturbance, local micrometeorological featunggven the local
shift in habitat association caused by microevolution. These features are diffinglasore and can
cause spatial correlation between proximate samples, which may lead to bias in estimating parameters.
However, the spatial dependent structure must rely on the simplified assumption on the spatial
characteristics. It is difficult to assume the stationary and anisotropy of the regioaalfssjadtial
structure due to small scale variability. Moreover, the sampling sites are too sgatsidyted across
the forested landscape, making it is difficult to describe the significant spatialigtr{¢immerman,
2006).
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The applications of statistical modeling approaches to spatial data could help us figure out the
importance of the environmental factors on the spatial extent, distribution, and intensigsof f
mortality. The models were also used to extrapolate the association between covariates and responses in
the unobserved sites. Nevertheless, the model is only the average of habitat association over the temporal
scale conditional on the samples. Due to data being collected over two years, there is only onerrealizati
to represent the true impact on the occurrence and intensity of mortality. So the model parameters might
not be strong enough to represent the true model, and the described association can be changed as the
habitat characteristics change through time, especially when the changes might come froncstochasti
factors affecting growth and succession of forest stand or from ecological disturbansefawener, the
stand characteristics we used in the model are recent features at the local spatio-terteydvat atiahe
dead trees that existed in the plot were counted and measured, so the association described by the model
might possess high bias. These factors likely weaken the predictability of the model compéined t
sets of data in different spatial extents and times. The data collection in temporal orderdititrabd
records for the time that mortality occurred, and the record on the changing of stand ¢$técacted
environmental conditions through time are required to help us build a mechanistic model that can describe

the processes and association of mortality.
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Table 21. Summary statistics for the average annual temperature and precipitation assdgitted wit

temperature (T) and precipitation (P) zones in the study area.

Zone Minimum Mean Maximum CV%
Average precipitation (mm)
P1 30.4 33.9 36.7 5.2
P2 36.7 39.5 42.7 4.3
P3 42.7 46.0 50.7 4.8
P4 50.7 55.5 60.6 5.2
P5 60.6 65.6 83.7 5.2
Average temperaturéQ)
Tl -5.7 -1.7 -0.3 55.1
T2 -0.3 1.3 2.4 54.7
T3 2.4 35 4.4 16.6
T4 4.4 5.3 6.3 10.0
T5 6.3 7.4 8.4 8.0
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Table 22. Frequency of climate and habitat covariates of the prediction domain that were used to predict
the mortality and intensity d?. engelmannii on the study area. Stand characteristics variables were
guantified from inverse distance weight (IDW) method from the 12 nearest neighbors. The covariates
include temperature zones (T), precipitation zones (P), number of stories (S), relative domiBbance (R

and average basal area per tree (BT).

Covariate\Clasg 1 2 3 4 5
T 3797 9062 6252 1396 40
P 382 1871 4664 7628 5976
S 7596 12091 860 - -
RD 1311 11979 7117 122 -
BT 3163 14976 2408 - -
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Table 23. List of candidate model with information criteria and posterior predittaak cThree stages of
model consist of zero-inflated model for dealing with the presence of spruce mortality, oteetimtalel
for dealing with the presence of full mortality conditional on the presence of mqraalitybeta
regression model for dealing with the proportion of partial mortality. The cossiiatlude temperature
zones (T), precipitation zones (P), number of stories (S), relative dominance (RD), and basehgrea

per tree (BT).

Model Parameters DIC ADIC  LPD MSPE
Zero-Inflated Logistic Regression Model

T+P+S+BT 90.020 0.000 -41.205 0.115
T+P+S+RD+BT 91.040 1.020 -40.683 0.111
T+S+BT 92.970 2.950 -43.512 0.118
T+S+RD+BT 93.410 3.390 -42.622 0.115
P+S+BT 93.740 3.720 -46.294 0.124
T+P+S 94.370 4.350 -43.944 0.122
T+P+S+RD 94510 4.490 -42.912 0.115
One-Inflated Logistic Regression Model

T+P+S+RD <0.001 0.000 =>-0.001 <0.001
T+P+S+RD+BT <0.001 <0.001 >-0.001 <0.001
T+P+RD+BT 12.710 12.710 -5.536  0.065
P+S+RD 16.660 16.660 -7.328  0.080
T+P+S+BT 17.770 17.770 -7.704 0.090
T+P+RD 18.340 18.340 -8.112 0.091
T+S+RD+BT 21.000 21.000 -8.860  0.095
Beta Regression Model

P+S+RD+BT -9.169 0.000 12.082 0.039
T+P+S+RD+BT -9.006 0.163 13.790 0.035
T+P+RD+BT -8.679 0.490 12.259 0.039
P+ RD + BT -8.501 0.668 10.775 0.044
T+P+ST+RD -8.246 0.923 12.134  0.039
P+S+RD -6.408 2.761 9.789 0.048
T+P+RD -5.162 4.007 8.495 0.050
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Table 24. Posterior predictive check of the presence/absence responses for zero-inflatécl Mioaed
one-inflated model (OIM).

Predictive check | ZIM OIM

True positive 0.631 1.000
False zero 0.369 0.000
True zero 0.867 1.000

False positive 0.133 0.000

True prediction | 0.804 1.000

False prediction | 0.196 0.000
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Table 25. Quantile, mean, and standard deviation of model parameters of the best fitted #edo-infla
regression model. The letter T represent temperature zones, P represent precipitati@repnesent
number of stories, and BT represent average basal area parregpeesent coefficient of spatial structure

while o2 represent variance effect on spatial dependence.

2.50% 25% 50% 75% 97.50% Mean SD
Intercept | -0.5867 0.290429 0.755457 1.22278 2.127683| 0.757257 0.690462
T1 -19.8086 -18.5164 -17.847 -17.1795 -15.8948| -17.8494 0.997102
T2 -3.22495 -2.43716 -2.03272 -1.63042 -0.88259| -2.03676 0.598114
T4 -1.92202 -1.00866 -0.53404 -0.05795 0.849928| -0.53412 0.705771

T5 -2.66897 -1.50788 -0.90749 -0.30573 0.824886| -0.90978 0.89165

P1 -2.47281 -1.32117 -0.72767 -0.14068 0.959555| -0.73423 0.874583

P2 -1.16524 -0.11467 0.42575 0.96516 1.97242| 0.421486 0.800289

P4 1.094344 1.886409 2.307247 2.727188 3.554886| 2.309701 0.626042

PS5 -1.43384 -0.32991 0.223995 0.765433 1.794287| 0.212742 0.820657

S2 -4.96294 -4.16602 -3.74994 -3.33595 -2.55048| -3.75238 0.614563

S3 -6.47113 -5.57145 -5.10368 -4.65127 -3.79908| -5.11399 0.682038

BT2 0.887743 1.615916 2.006812 2.399999 3.159492| 2.01059 0.58187

BT3 -0.07357 0.75829 1.185512 1.610857 2.430151| 1.181886 0.637167

A 0.013663 0.014901 0.016946 0.021228 0.03661 | 0.019162 0.005983

119



Table 26. Quantile, mean, and standard deviation of model parameters of the best fitted one-inflated
regression model. The letter T represent temperature zones, P represent precipitation epressr r
number of stories, and RD represent relative dominan@present coefficient of spatial structure while
a2 represent variance effect on spatial dependence.

2.50% 25% 50% 75% 97.50% | Mean SD

Intercept| 45.391 46.679 47.351 48.032 49.322 | 47.353 1.002

T2 —94.544 -93.269 -92.594 -91.926 -90.628| -92.595 0.996
T4 -25.419 -24.134 -23.462 -22.791 -21.484| -23.461 1
T5 65.23 66.521 67.193 67.862 69.176 | 67.194 1
P2 -1.976 -0.675 -0.002 0.672 1.948 | -0.005 0.999

P3 -49.138 -47.834 -47.165 -46.48 -45.213| -47.163 1.002

P5 —73.007 -71.727 -71.063 -70.38 -69.099| -71.057 0.998
P6 72.17 73.445 74124 74804 76.077 | 74.124 1.001
S2 136.83 138.112 138.794 139.464 140.749| 138.791 1
S3 91.67 92963 93.633 94.316 95.611 | 93.638 1.003
RD2 -141.15 -139.87 -139.19 -138.53 -137.24| -139.20 1
RD3 -143.08 -141.78 -141.12 -140.44 -139.16| -141.11 0.998

RD4 -49.239 47939 -47.26 -46.588 -45.287| -47.263 1.003
A 0.01 0.014 0.019 0.024 0.028 0.019 0.006

a2 0.57 0.668 0.724 0.783 0.905 0.727 0.085
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Table 27. Quantile, mean, and standard deviation of model parameters of the best fitted beta regression
model. The letter P represent precipitation zones, S represent number of stories, RDt remagen
dominance, and BT represent average basal area pet tegesent coefficient of spatial structurg,

represent variance effect on spatial dependencesanepresent non-spatial sampling errors.

2.50% 25% 50% 75%  97.50% | Mean SD

Intercept -1.311 0451 -0.010 0.430 1.303 | -0.011 0.663
P2 -2.177 -1.234 -0.731 -0.230 0.751 | -0.728 0.747
P3 -2.183 -1.371 -0.949 -0.532 0.274 | -0.953 0.626
P5 0.063 0.728 1.056 1.370 1.967 1.044 0.484
S2 -1.377 -0.826 -0.535 -0.238 0.348 | -0.530 0.439
S3 -2.001 -1.082 -0.608 -0.129 0.810 | -0.604 0.715
RD2 -0.943 -0.302 0.032 0.375 1.044 0.037 0.504
RD3 -1.238 -0.475 -0.077 0.319 1.092 | -0.077 0.591
RD4 -2.110 -1.443 -1.084 -0.724 -0.023 | -1.080 0.532
BT2 -1.064 -0.519 -0.238 0.037 0.574 | -0.242 0.417
BT3 -2.520 -1.686 -1.258 -0.832 -0.002 | -1.260 0.638
A 0.003 0.005 0.007 0.008 0.009 0.006 0.002
ol 0.098 0.149 0.189 0.241 0.388 0.203 0.076
o2 1.030 1.071 1.094 1.116 1.159 1.094 0.033
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Table 28. Posterior prediction results from zero-inflated model (ZIM), one-inflated n@id&), @and
beta regression model (BRM). The results were shown by the 95% credible interval of quantiles for
posterior distribution. Given 2.50% and 97.50% are lower bound and upper bound of credible interval

respectively while 50.00% is median (central value) of the interval. Percent columnsedtone r

frequency of the prediction for each prediction class.

Predicted 2.50% 50% 97.50%
interval Area (Sq.km.) percent | Area (Sq.km.) percent | Area (Sq.km.) percent
ZIM
0-20% 15307 74.5 9878 48.08 5621 27.36
20-40% 982 4.78 3903 19 2887 14.05
40-60% 1351 6.58 1299 6.32 611 2.97
60-80% 1576 7.67 1171 5.7 4134 20.12
80-100% 1331 6.48 4296 20.91 7294 35.5
o]\Y]
0-20% 14349 69.84 13862 67.46 13631 66.34
20-40% 0 0.00 4 0.02 0 0.00
40-60% 0 0.00 388 1.89 0 0.00
60-80% 0 0.00 0 0.00 0 0.00
80-100% 6198 30.16 6293 30.63 6916 33.66
BRM
0-20% 12878 62.68 2837 13.81 0 0.00
20-40% 6717 32.69 7044 34.28 131 0.64
40-60% 952 4.63 7664 37.30 2585 12.58
60-80% 0 0.00 3002 14.61 11021 53.64
80-100% 0 0.00 0 0.00 6810 33.14
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Figure 14. Study area in western Colorado and locations of 55 study sites (black dots). The study area wa

delineated by the layer represent forest land cover in Colorado.
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Figure 16. Maps represent temperature zones (left) and precipitation zones (higtsiudy area was

delineated by the layer represent forest land cover in Colorado.
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dominance (RD). The study area was delineated by the layer represent forest land cover in Colorado.
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was delineated by the layer represent forest land cover in Colorado.

131



2 — Temperatore 200 2

——  Predpitabon 2one |

= § = Preciitaton 2008 5
u -
i 3 '
R i
" "
" i
" "
& i "
° I it
I n i
z n 2 S W
2 i E "
& i 5 i
a i1 a8 "
t a1
I I
1 i P [
| = '
I = P
I P
Ve i
y I
i il
i it
=4 Vi s '
i s i
[ i
[ '
1 '
i
'
2 E >
T +
100 0 50
Temperatire Zone Eflects Precip e Effe
S — 2siey — Z%-50%
=== 35t e === =%.7%
75% - 100%
S .
\ T
' 3
i) 3
[
i
)
[
o i
: \
2 '
' o
i °
2 I z
£ v £
& [ &
Yoy
r oA
4 [ o
© o g
1
o
I
'
oo
'
I
[
e b -
= b o
v
l
'
1
'
= s
T T T T T T T
£ 100 10 120 130 o 110 120 100 80 10

Stand Structure Effects

Figure 23. Posterior distribution of parameters of the best-fitted one-inflated mbdeloVariates of

temperature zone (T), precipitation zones (P), number of stories (S), and relative dominangeréRD)

included in the best-fitted model.

132

Relabve Dominance Eftacts




N

A

1:5,000,000

Probabilities
Value

075

0.5
025

Figure 24. Prediction map from the best-fitted one-inflated model. Top left is the prediction at 0.025
guantile. Top right is the prediction at median. Bottom is the prediction at 0.975 quantile. Tharetudy

was delineated by the layer represent forest land cover in Colorado.
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was delineated by the layer represent forest land cover in Colorado.
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