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ABSTRACT

ITERATIVE MATRIX COMPLETION AND TOPIC MODELING

USING MATRIX AND TENSOR FACTORIZATIONS

With the ever-increasing access to data, one of the greatest challenges that remains is how

to make sense out of this abundance of information. In this dissertation, we propose three

techniques that take into account underlying structure in large-scale data to produce better or

more interpretable results for machine learning tasks.

One of the challenges that arise when it comes to analyzing large-scale datasets is missing

values in data, which could be challenging to handle without efficient methods. We propose

adjusting an iteratively reweighted least squares algorithm for low-rank matrix completion to

take into account sparsity-based structure in the missing entries. We also propose an itera-

tive gradient-projection-based implementation of the algorithm, and present numerical exper-

iments showcasing the performance of the algorithm compared to standard algorithms.

Another challenge arises while performing a (semi-)supervised learning task on high-

dimensional data. We propose variants of semi-supervised nonnegative matrix factorization

models and provide motivation for these models as maximum likelihood estimators. The pro-

posed models simultaneously provide a topic model and a model for classification. We derive

training methods using multiplicative updates for each new model, and demonstrate the appli-

cation of these models to document classification (e.g., 20 Newsgroups dataset).

Lastly, although many datasets can be represented as matrices, datasets also often arise as

high-dimensional arrays, known as higher-order tensors. We show that nonnegative CANDE-

COMP/PARAFAC tensor decomposition successfully detects short-lasting topics in temporal

text datasets, including news headlines and COVID-19 related tweets, that other popular meth-

ods such as Latent Dirichlet Allocation and Nonnegative Matrix Factorization fail to fully detect.
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Chapter 1

Introduction

With the ever-increasing access to data, one of the greatest challenges that remains is how to

make sense out of this abundance of information. There are a lot of challenges that arise when

it comes to analyzing large-scale datasets. One of which is missing values in data, which could

be challenging to handle without efficient methods. It is often the case that the missing infor-

mation is not missing at random, implying that there is an underlying structure in the missing

data that, if taken into account, can allow for better recovery. Another challenge arises while

performing a (semi-)supervised learning task on extremely high-dimensional data. A common

approach is to first apply dimensionality-reduction, and then train the model for the learning

task on the low-dimensional representation of the data. One problematic aspect of this two-

step approach is that the learned representation of the data may provide a “good" fit, but could

suppress data features which are integral to the learning task. For this reason, supervision-

aware dimensionality-reduction models have become increasingly important in data analysis

and learning tasks. Lastly, although many datasets can be represented as matrices, datasets

also often arise as high-dimensional arrays, known as higher-order tensors. If treated as such,

nonnegative tensor decompositions extract more spatio-temporally localized features than tra-

dition matrix methods for topic modeling. This dissertation will investigate three popular tech-

niques used in the data sciences: (i) structured matrix completion, (ii) supervision-aware di-

mensionality reduction, and (iii) dynamic topic modeling.

In Chapter 2, we describe our work [88] on iterative methods for structured matrix comple-

tion. This problem arises in many situations where the incomplete matrices admit additional

structure in the missing entries, besides the low-rank structure of the whole matrix. One ex-

ample of such structure in the missing entries is when the probability that an entry is observed

or not depends mainly on the value of the entry. The question is whether we are able to better

recover these matrices knowing that they admit this additional structure. In recent work [118], a
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modification to the standard nuclear norm minimization for matrix completion has been made

to take into account structural differences between observed and unobserved entries. In our

work [88], we propose adjusting an Iteratively Reweighted Least Squares (IRLS) algorithm for

low-rank matrix completion to take into account sparsity-based structure in the missing entries.

This structure is motivated by many applications in which the missing values tend to be near

a certain value in the ℓ0 or ℓ1 norm sense. We also propose an iterative gradient-projection-

based implementation of the algorithm, and present numerical experiments showcasing the

performance of the algorithm compared to the standard IRLS algorithm in structured settings.

In Chapter 3, we describe our work [69] on semi-supervised nonnegative matrix factoriza-

tion (SSNMF) for learning tasks which use utilize information divergence as an error function.

We provide motivation for these models as maximum likelihood estimators. Further, we show,

as in [104], that our proposed models generalize nonnegative matrix factorization (NMF) to

supervised learning tasks and provide a topic model which simultaneously provides a lower

dimensional representation of the data and a predictive model for targets. The Poisson distri-

bution is particularly well suited for integer-valued datasets, such as documents represented

by a vector of term frequencies [135], which leads to the information divergence in the MLE

model [37, 74, 121]. We derive training methods using multiplicative updates for each new

model, and demonstrate the application of these models to document classification, partic-

ularly on the 20 Newsgroups dataset.

In Chapter 4, we describe our work [89] on dynamic topic modeling for temporal text

datasets using nonnegative tensor decomposition. Temporal data, such as a news articles or

Twitter feeds, often consists of a mixture of long-lasting trends and popular but short-lasting

topics of interest. A truly successful topic modeling strategy should be able to detect both types

of topics and clearly locate them in time. We show that nonnegative CANDECOMP/PARAFAC

tensor decomposition (NCPD) successfully detects such short-lasting topics that other popular

methods such as latent Dirichlet allocation (LDA) and nonnegative matrix factorization (NMF)

fail to fully detect. We demonstrate the ability of NCPD to discover short and long-lasting tem-

2



poral topics in semi-synthetic and real-world data including news headlines and COVID-19 re-

lated tweets.
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Chapter 2

An Iterative Method for Structured Matrix

Completion

2.1 Introduction

Matrix completion is the task of filling-in, or predicting, the missing entries of a partially ob-

served matrix from a subset of known entries. In today’s data-driven world, data completion is

essential, whether it is the main goal as in recommender systems, or a pre-processing step for

other tasks like regression or classification. One popular example of a data completion task is

the Netflix Problem [10, 11, 96], which was an open competition for the best collaborative filter-

ing algorithm to predict unseen user ratings for movies. Given a subset of user-movie ratings,

the goal is to predict the remaining ratings, which can be used to decide whether a certain movie

should be recommended to a user. The Netflix Problem can be viewed as a matrix completion

problem where the rows represent users, the columns represent movies, and the entries of the

matrix are the corresponding user-movie ratings, most of which are missing.

Matrix completion problems are generally ill-posed without some additional information,

since the missing entries could be assigned arbitrary values. In many instances, the matrix we

wish to recover is known to be low-dimensional in the sense that it is low-rank, or approximately

low-rank. For instance, a data matrix of all user-ratings of movies may be approximately low-

rank because it is commonly believed that only a few factors contribute to an individual’s tastes

or preferences [24]. Low-rank matrix completion is a special case of the affine rank minimiza-

tion problem, which arises often in machine learning, and is known to be NP-hard [49, 139].

Standard matrix completion strategies typically assume that there are no structural differ-

ences between observed and missing entries, which is an unrealistic assumption in many set-

tings. Recent works [35, 118, 142, 147, 154] address various notions of the problem of struc-
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tured matrix completion. General notions of structural difference include any setting in which

whether an entry is observed or unobserved does not occur uniformly at random. For example,

the probability that an entry is observed could depend not only on the value of that entry, but

also on its location in the matrix. For instance, certain rows (or columns) may have substan-

tially more entries than a typical row (or column); this happens in the Netflix Problem for very

popular movies or so-called “super-users”.

In [118], Molitor and Needell propose a modification to the standard nuclear norm mini-

mization for matrix completion to take into account structure when the submatrix of unob-

served entries is sparse, or when the unobserved entries have lower magnitudes than the ob-

served entries [118]. In our work, we focus on this notion of structure, in which the probability

that an entry is observed or not depends mainly on the value of the entry. In particular, we are

interested in sparsity-based structure in the missing entries, whereby the submatrix of miss-

ing values is close to 0 in the L1 or L0 norm sense. This is motivated by many situations in

which the missing values tend to be near a certain value. For instance, missing data in chemical

measurements might indicate that the measurement value is lower than the limit of detection

of the device, and thus a typical missing measurement is smaller in value than a typical ob-

served measurement. Similarly, in medical survey data, patients are more likely to respond to

questions addressing noticeable symptoms, whereas a missing response may indicate a lack of

symptoms [118]. In the Netflix problem, a missing rating of a movie might indicate the user’s

lack of interest in that movie, thus suggesting a lower rating than otherwise expected. More

generally, in survey data, incomplete data may be irrelevant or unimportant to the individual,

therefore suggesting structure in the missing observations [118]. For an example in the set-

ting of sensor networks, suppose we are given partial information about the signal strength

between sensors, where the signal strength reading is inversely proportional to the distance

between two sensors [24], and we would like to impute the missing signal strength readings.

Signals may be missing because of low signal strength, indicating that perhaps these sensors

are far from each other (or there are geographic obstacles between them). Thus, we obtain a

5



partially observed matrix with structured observations—missing entries tend to have lower sig-

nal strength. Sensor networks give a low-rank matrix completion problem, more specifically

of rank equal to two if the sensors are located in a plane, or three if they are located in three-

dimensional space [108, 153]. Therefore, in these settings, we expect that the missing entries

admit a sparsity-based structure in the L1 norm sense.

2.1.1 Background and Related Work

The Affine Rank Minimization Problem (ARMP), or the problem of finding the minimum

rank matrix in an affine set, is expressed as

minimize
X

rank(X)

subject to A (X) = b,

(2.1)

where matrix X ∈ R
m×n is the optimization variable, A : Rm×n → R

q is a linear map, and b ∈ R
q

denotes the measurements. The affine rank minimization problem arises frequently in applica-

tions like system identification and control [110], collaborative filtering, low-dimensional Eu-

clidean embeddings [50], sensor networks [15, 146, 152], quantum state tomography [64, 65],

signal processing, and image processing.

Many algorithms have been proposed for ARMP, e.g. reweighted nuclear norm mini-

mization [116], Singular Value Thresholding (SVT) [21], Fixed Point Continuation Algorithm

(FPCA) [112], Iterative Hard Thresholding (IHT) [59], Optspace [90], Singular Value Projection

(SVP) [82], Atomic Decomposition for Minimum Rank Approximation (AdMiRA) [105], Alternat-

ing Minimization approach [83], and the accelerated proximal gradient algorithm for nuclear

norm regularized linear least squares problems (NNLS) [157], etc.

The low-rank matrix completion problem can be formulated as follows [26, 138]. Suppose

we are given some matrix X ∈R
m×n with a set Ω of partially observed entries, of size |Ω| ≪ mn.

The goal is to recover the missing elements in X. The low-rank matrix completion problem is a

special case of the affine rank minimization problem where the set of affine constraints restrict

6



certain entries of the matrix X to equal observed values. In this case, the linear operator A is a

sampling operator, and the problem can be written as

minimize
X

rank(X)

subject to Xi j = Mi j , (i , j ) ∈Ω,

where M is the matrix we would like to recover, and where Ω denotes the set of entries which

are revealed. We define the sampling operator PΩ(X) : Rm×n →R
m×n via

(PΩ(X))i j =







Xi j (i , j ) ∈Ω

0 (i , j ) 6∈Ω,

as in [26]. Further, Ωc denotes the complement of Ω, i.e., all index pairs (i , j ) that are not in

Ω. Thus, Ωc corresponds to the collection of missing entries. The degrees of freedom ratio of a

partially observed m ×n matrix of rank r is given by F R = r (m +n − r )/|Ω|. Thus, the larger the

degrees of freedom ratio is, the harder it becomes to recover the matrix M .

The rank minimization problem (2.1) is NP-hard in general, and therefore we consider its

convex relaxation [23, 24, 26, 34, 49, 139],

minimize
X

‖X‖∗

subject to A (X) = b,

(2.2)

where ‖ ·‖∗ denotes the nuclear norm, given by the sum of singular values.

Inspired by the iteratively reweighted least squares (IRLS) algorithm for sparse vector recov-

ery analyzed in [43], iteratively reweighted least squares algorithms [54,100,117] have been pro-

posed as a computationally efficient method for low-rank matrix recovery (see Section 2.2.3).

Instead of minimizing the nuclear norm, the algorithms essentially minimize the Frobenius

norm of the matrix, subject to affine constraints. Properly reweighting this norm produces

low-rank solutions under suitable assumptions. In [117], Mohan and Fazel propose a family

7



of Iterative Reweighted Least Squares algorithms for matrix rank minimization, called IRLS-p

(for 0 ≤ p ≤ 1), as a computationally efficient way to improve over the performance of nuclear

norm minimization. In addition, a gradient projection algorithm is presented as an efficient im-

plementation for the algorithm, which exhibits improved recovery when compared to existing

algorithms.

Generally, standard matrix completion strategies assume that there are no structural dif-

ferences between observed and unobserved entries. However, recent works [35, 36, 118, 137,

142, 147, 154] also address various notions of the problem of structured matrix completion in

mathematical, statistical, and machine learning frameworks. In our work, we are interested in

sparsity-based structure. This notion of structure was proposed in [118], where the standard

nuclear norm minimization problem for low-rank matrix completion is modified to take into

account sparsity-based structure by regularizing the values of the unobserved entries. We refer

to this algorithm as Structured NNM (see Section 2.3.1).

2.1.2 Contribution

We adapt an iterative algorithm for low-rank matrix completion to take into account

sparsity-based structure in unobserved entries by adjusting the IRLS-p algorithm studied

in [117]. We refer to our algorithm as Structured IRLS. We also present a gradient-projection-

based implementation, called Structured sIRLS (motivated by sIRLS in [117]). The main moti-

vations for our approach, along with its advantages, are as follows:

• Iterative algorithm for structured matrix completion. Much work has been put into

developing iterative algorithms (SVT [21], FPCA [112], IHT [59], IRLS [54, 100, 117], etc.)

for ARMP, rather than solving the nuclear norm convex heuristic (NNM). We develop the

first (to our knowledge) iterative algorithm that addresses the structured low-rank matrix

completion problem, for which Structured NNM has been proposed. Indeed, iterative

methods are well-known to offer ease of implementation and reduced computational re-

sources, making our approach attractive in the large-scale settings.

8



• Comparable performance with Structured NNM. Structured NNM adapts nuclear norm

minimization and ℓ1 norm minimization, which are common heuristics for minimiz-

ing rank and inducing sparsity, respectively. For various structured regimes, we con-

sider small-sized matrices and show that our proposed iterative method is comparable

to Structured NNM on “hard” matrix completion problems and with “optimal” parame-

ter choices for Structured NNM.

• Improved IRLS recovery for structured matrices. We show that in structured settings,

Structured sIRLS often performs better than the sIRLS algorithm, as follows. We perform

numerical experiments that consider 192 = 361 combinations of different sampling rates

of the zero and nonzero entries, in order to demonstrate various levels of sparsity in the

missing entries. Consider for example Figure 2.1, on matrices of size 1000×1000 of rank

10, in which our proposed method outperforms standard sIRLS in over 90% of the struc-

tured experiments (and also in many of the unstructured experiments).

• Handle hard problems. We consider problems of varying degrees of freedom, and a priori

rank knowledge. We show that Structured sIRLS often outperforms the sIRLS algorithm

in structured settings for hard matrix completion problems, i.e. where the degrees of free-

dom ratio is greater than 0.4.

• Handle noisy measurements. We consider matrices with noisy measurements with two

different levels of noise. We show that for small enough noise Structured sIRLS often per-

forms better than sIRLS in structured settings. As the noise gets larger, both converge to

the same performance.

Our implementations of Structured-sIRLS and code for reproducing experiments are publicly

available1.

1https://github.com/lara-kassab/structured-matrix-completion-IRLS
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2.1.3 Organization

We review related iteratively reweighted least squares algorithms for recovering sparse vec-

tors and low-rank matrices in Section 2.2. In Section 2.3, we describe the structured matrix

completion problem, propose for this problem an iterative algorithm, Structured IRLS, and

present preliminary analytic remarks. Furthermore, we present a computationally efficient im-

plementation, Structured sIRLS. In Section 2.4, we run numerical experiments to showcase the

performance of this method, and compare it to the performance of sIRLS and Structured NNM

on various structured settings.

2.2 Iteratively Reweighted Least Squares Algorithms

In this section, we set notation for the rest of the chapter, and we review related algorithms

for recovering sparse vectors and low-rank matrices.

2.2.1 Notation

We denote vectors with lowercase letters x and matrices with uppercase boldface letters X.

The entries of a matrix X ∈ R
m×n are denoted by xi j or Xi j (the entry in row i and column j of

X). Let I denote the identity matrix and 1 the vector of all ones. The trace of a square matrix

X ∈ R
m×m is the sum of its diagonal entries, and is denoted by Tr(X) =

m∑

i=1
xi i . We denote the

adjoint matrix of X by X∗ ∈R
n×m . Without loss of generality, we assume m ≤ n and we write the

singular value decomposition of X as

X = UΣV∗.

Here U ∈R
m×m and V ∈R

n×n are unitary matrices, and Σ= diag(σ1, · · · ,σm) ∈R
m×n is a diagonal

matrix, where σ1 ≥σ2 ≥ ·· · ≥σm ≥ 0 are the singular values. The rank of X ∈ R
m×n , denoted by

rank(X), equals the number of nonzero singular values of X. Further, the Frobenius norm of the

matrix X is defined by

10



‖X‖F =
√

Tr(XX∗) =

(
m∑

i=1

n∑

j=1
x2

i j

)1/2

=

(
m∑

i=1
σ2

i

)1/2

.

The nuclear norm of a matrix X is defined by ‖X‖∗ =
m∑

i=1
σi . Given a vector w ∈ R

n of positive

weights, we define the weighted ℓ2 norm of a vector z ∈R
n as

‖z‖ℓ2(w) =

(
n∑

i=1
wi z2

i

)1/2

.

Let z(X) denote the vector of missing entries of a matrix X, and let z2(X) denote the correspond-

ing vector with entries squared, i.e. z2(X) = z(X)⊙ z(X) where ⊙ denotes elementwise multipli-

cation.

2.2.2 Sparse Vector Recovery

Given a vector x, the value ‖x‖0 denotes the number of nonzero entries of x, and is known

as the ℓ0 norm of x. The sparse vector recovery problem is described as

minimize ‖x‖0,

subject to Ax = b,
(2.3)

where x ∈ R
n and A ∈ R

m×n . This problem is known to be NP-hard. A commonly used convex

heuristic for this problem is ℓ1 minimization [25, 46],

minimize ‖x‖1,

subject to Ax = b.
(2.4)

Indeed, many algorithms for solving (2.3) and (2.4) have been proposed. In [43], Daubechies et

al. propose and analyze a simple and computationally efficient reweighted algorithm for sparse

vector recovery, called the Iterative Reweighted Least Squares algorithm, IRLS-p, for any 0 <

p ≤ 1. Its k-th iteration is given by

11



xk+1
= argmin

x

{
n∑

i=1
w k

i x2
i : Ax = b

}

,

where w k ∈R
n is a weight vector with w k

i
=

(

|xk
i
|2 +ǫ2

k

)p/2−1
, and where ǫk > 0 is a regularization

parameter added to ensure that w k is well-defined. For p = 1, [43] gives a theoretical guarantee

for sparse recovery similar to ℓ1 norm minimization.

2.2.3 Low-rank Matrix Recovery

We review two related algorithms [54, 117] for low-rank matrix recovery that generalize the

iteratively reweighted least squares algorithm analyzed in [43] for sparse vector recovery. In

general, minimizing the Frobenius norm subject to affine constraints does not lead to low-rank

solutions; however, properly reweighting this norm produces low-rank solutions under suitable

assumptions [54, 117].

In [54], Fornasier et al. propose a variant of the reweighted least squares algorithm for sparse

recovery for nuclear norm minimization (or low-rank matrix recovery), called IRLS-M. The k-th

iteration of IRLS-M is given by

Xk+1
= argmin

X

{

‖(Wk )1/2X‖2
F : PΩ(X) =PΩ(M)

}

. (2.5)

Here Wk ∈ R
m×m is a weight matrix defined as W0 = I, and for k > 0, Wk = Uk (Σk

ǫk
)−1(Uk )∗,

where Xk (Xk )∗ = Uk (Σk )2(Uk )∗ and Σǫk
= diag(max{σ j ,ǫk }). Indeed, each iteration of (2.5) min-

imizes a weighted Frobenius norm of the matrix X. Under the assumption that the linear mea-

surements fulfill a suitable generalization of the Null Space Property (NSP), the algorithm is

guaranteed to iteratively recover any matrix with an error on the order of the best rank k ap-

proximation [54]. The algorithm essentially has the same recovery guarantees as nuclear norm

minimization. Though the Null Space Property fails in the matrix completion setup, the authors

illustrate numerical experiments which show that the IRLS-M algorithm still works very well in

this setting for recovering low-rank matrices. Further, for the matrix completion problem, the

12



algorithm takes advantage of the Woodbury matrix identity, allowing an expedited solution to

the least squares problem required at each iteration [54].

In [117], Mohan and Fazel propose a related family of Iterative Reweighted Least Squares

algorithms for matrix rank minimization, called IRLS-p (for 0 ≤ p ≤ 1), as a computationally ef-

ficient way to improve over the performance of nuclear norm minimization. The k-th iteration

of IRLS-p is given by

Xk+1
= argmin

X

{

Tr(Wk
p X⊤X) : PΩ(X) =PΩ(M)

}

, (2.6)

where Wk
p ∈R

m×m is a weight matrix defined as W0
p = I, and for k > 0, Wk

p = ((Xk )⊤Xk +γk I)
p
2 −1.

Here γk > 0 is a regularization parameter added to ensure that Wk
p is well-defined. Each itera-

tion of (2.6) minimizes a weighted Frobenius norm of the matrix X, since

Tr(Wk−1
p X⊤X) = ‖(Wk−1

p )1/2X‖2
F .

The algorithms can be viewed as (locally) minimizing certain smooth approximations to the

rank function. When p = 1, theoretical guarantees are given similar to those for nuclear norm

minimization, i.e., recovery of low-rank matrices under the assumptions that the operator

defining the constraints satisfies a specific Null Space Property. Further, for p < 1, IRLS-p shows

better empirical performance in terms of recovering low-rank matrices than nuclear norm min-

imization. In addition, a gradient projection algorithm, IRLS-GP, is presented as an efficient

implementation for IRLS-p. Further, this same paper presents a related family of algorithms

sIRLS-p (or short IRLS), which can be seen as a first-order method for locally minimizing a

smooth approximation to the rank function. The results exploit the fact that these algorithms

can be derived from the KKT conditions for minimization problems whose objectives are suit-

able smooth approximations to the rank function [117]. We will sometimes refer to IRLS-p (resp.

sIRLS-p) studied in [117] as IRLS (resp. sIRLS).
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The algorithms proposed in [54, 117] differ mainly in their implementations, and in the up-

date rules of the weights and their corresponding regularizers. In IRLS-M [54], the weights

are updated as Wk = Uk diag(max(σk
j
,ǫk )−1)(Uk )∗, and in IRLS-p [117] they are updated as

Wk = Uk diag(((σk
j
)2 +γ2

k
)−1/2)(Uk )∗. Further, each of the regularization parameters ǫk and γk

are updated differently. The IRLS-M algorithm makes use of the rank of the matrix (either given

or estimated), and thus the choice of parameter ǫk depends on this given or estimated rank.

On the other hand, the IRLS-p algorithm chooses and updates its regularizer γk based on prior

sensitivity experiments.

Terminology

NNM Nuclear Norm Minimization

Structured NNM Adjusted NNM for sparsity-based structure in the missing en-
tries, proposed in [118]

IRLS-p Iterative Reweighted Least Squares algorithms for matrix rank
minimization, proposed in [117]

sIRLS short IRLS-p, proposed in [117]

Structured IRLS Our proposed algorithm: adjusted IRLS for sparsity-based
structure in the missing entries

Structured sIRLS Our proposed implementation: adjusted sIRLS for sparsity-
based structure in the missing entries

To re-iterate, we differ from IRLS-p in [117] by considering the (sparsity-based) structured

matrix completion problem, and we differ from Structured NNM in [118] by considering an

iterative approach to the problem.

2.3 Structured Iteratively Reweighted Least Squares Algo-

rithms

In this section, we first introduce the structured matrix completion problem. Second, we

introduce and analyze our proposed algorithm and implementation.
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2.3.1 Problem Statement

In [118], the authors propose adjusting the standard nuclear norm minimization (NNM)

strategy for matrix completion to account for structural differences between observed and un-

observed entries. This could be achieved by adding to problem (2.2) a regularization term on

the unobserved entries, which results in a semidefinite program:

minimize
X

‖X‖∗+α‖PΩc (X)‖

subject to PΩ(X) =PΩ(M),

(2.7)

where α > 0, and where ‖ · ‖ is an appropriate matrix norm. If most of the missing entries are

zero except for a few, then the ℓ1 norm is a natural choice2. If the missing entries are mostly

close to zero, then the ℓ2 norm is a natural choice. The authors show that the proposed method

outperforms nuclear norm minimization in certain structured settings. We refer to this method

as Structured Nuclear Norm Minimization (Structured NNM).

Equation (2.7) very closely resembles the problem of decomposing a matrix into a low-rank

component and a sparse component (see e.g. [29]). A popular method is Robust Principal Com-

ponent Analysis (RPCA) [22], where one assumes that a low-rank matrix has some set of its en-

tries corrupted. In a more recent paper [144], reweighted least squares optimization is applied

to develop a novel online Robust PCA algorithm for sequential data processing. It would be

interesting to also consider generalizations of Equation (2.7) in which the projection PΩ is al-

lowed to be a more general affine transformation A : Rm×n →R
m×n , and PΩc could be an affine

transformation mapping into the nullspace of A .

2The method can be rescaled if there instead is a preference for the missing entries to be near a nonzero con-
stant.
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2.3.2 Proposed Algorithm: Structured IRLS

We propose an iterative reweighted least squares algorithm related to [54, 117] for matrix

completion with structured observations. In particular, we adjust the IRLS-p algorithm pro-

posed in [117] to take into account the sparsity-based structure in the missing entries.

The k-th iteration of IRLS-p is given by

Xk
= argmin

X

{

‖(Wk−1
p )1/2X‖2

F : PΩ(X) =PΩ(M)
}

,

where Xk ∈ R
m×n denotes the k-th approximation of the true matrix M, Wk

p ∈ R
m×m is a weight

matrix defined as W0
p = I, and for k > 0, Wk

p = ((Xk )⊤Xk +γk I)
p
2 −1. Here γk > 0 is a regularization

parameter added to ensure that Wk
p is well-defined.

We adjust IRLS-p by adding a regularization term on the unobserved entries in each iter-

ation, namely a weighted ℓ2 norm as proposed in [43] to induce sparsity. We define the cor-

responding weights at the k-th iteration as w k
q = (z2(Xk )+ ǫk 1)

q
2 −1, where 0 < ǫk ≤ ǫk−1, and

0 ≤ q ≤ 1. Here z(Xk ) denotes the vector of missing entries of the the k-th approximation Xk ,

and recall that z2(Xk ) denotes the vector with entries squared. The algorithm is then designed

to promote low-rank structure in the recovered matrix with sparsity in the missing entries at

each iteration. We give a description of the choice of parameters in Section 2.4.1. We refer to

the algorithm as Structured IRLS; it is outlined in Algorithm 1. Note that each iteration of Struc-

tured IRLS solves a quadratic program, and for α = 0, the algorithm reduces to IRLS-p studied

in [117].

In many applications, missing values tend to be near a certain value, e.g. the maximum

possible value in the range, or alternatively the lowest possible value (“1 star" in movie ratings).

In cases where this value is nonzero, our objective function can be adjusted accordingly. For

example, one can shift the given entries to be a −Mi j for all i , j , where a ∈ R is the constant or

threshold of interest.
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Algorithm 1: Structured IRLS for Matrix Completion
input : PΩ, M

set : k = 1, α> 0, and 0 ≤ p, q ≤ 1

initialize: X0 =PΩ(M), W0
p = I, w 0

q = 1, γ1 > 0, ǫ1 > 0

while not converged do

Xk = argmin
X

{

‖(Wk−1
p )1/2X‖2

F +α‖z(X)‖2
ℓ2(wk−1

q )
: PΩ(X) = PΩ(M)

}

compute: Wk
p = ((Xk )⊤Xk +γk I)

p
2 −1 and w k

q = (z2(Xk )+ǫk 1)
q
2 −1

update : 0 < γk+1 ≤ γk , 0 < ǫk+1 ≤ ǫk

set : k = k +1

end

Each iteration of Structured IRLS solves a quadratic program. The algorithm can be adjusted

to have the ℓ2 norm (instead of the weighted ℓ2 norm) for the regularization term on the unob-

served entries by fixing the weights w k
q = 1. Further, we can impose nonnegativity constraints

on the missing entries by thresholding all missing entries to be nonnegative.

We now provide an analytic remark, similar to [118, Proposition 1], applied to the objective

functions for each iteration of IRLS [117] and Structured IRLS. We consider the simplified setting

in which all of the unobserved entries are exactly zero. We show that the approximation given

by an iteration of Structured IRLS will always perform at least as well as that of IRLS with the

same weights assigned. This remark is weaker than [118, Proposition 1] as it does not apply to

the entire algorithm; instead it only bounds the performance of a single iterative step.

Remark 2.3.1. Let

X̃ = argmin
X

{

‖W1/2X‖2
F : PΩ(X) =PΩ(M)

}

be the minimizer of the objective function of each iterate in IRLS [117]. Let

X̂ = argmin
X

{

‖W1/2X‖2
F +α‖PΩc (X)‖2 : PΩ(X) =PΩ(M)

}
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be the minimizer of the objective function generalizing3 each iterate in Structured IRLS (with

α> 0). If PΩc (M) is the zero matrix and the same weights W are assigned, then ‖M−X̂‖ ≤ ‖M−X̃‖

for any matrix norm ‖ ·‖.

Proof. By definition of X̂, we have ‖W1/2X̂‖2
F +α‖PΩc (X̂)‖2 ≤ ‖W1/2X̃‖2

F +α‖PΩc (X̃)‖2. Similarly,

by definition of X̃, we have ‖W1/2X̃‖2
F ≤ ‖W1/2X̂‖2

F . Therefore,

‖W1/2X̂‖2
F +α‖PΩc (X̂)‖2

≤ ‖W1/2X̃‖2
F +α‖PΩc (X̃)‖2

≤ ‖W1/2X̂‖2
F +α‖PΩc (X̃)‖2.

Since α> 0, this implies ‖PΩc (X̂)‖2 ≤ ‖PΩc (X̃)‖2. We have

‖M− X̂‖ = ‖PΩc (X̂)‖ since PΩ(M) =PΩ(X̂) and PΩc (M) = 0

≤ ‖PΩc (X̃)‖

= ‖M− X̃‖ since PΩ(M) =PΩ(X̃) and PΩc (M) = 0.

2.3.3 Proposed Implementation: Structured sIRLS

In this section, we propose a gradient-projection-based implementation of Structured IRLS,

that we will refer to as Structured sIRLS. Indeed, sIRLS stands for short IRLS (in analogy to [117]),

the reason being we do not perform gradient descent until convergence; instead we take how-

ever many steps desired. Further, calculating PΩ(X) is computationally cheap, so the gradient

projection algorithm can be used to efficiently solve the quadratic program in each iteration of

Structured IRLS.

In this implementation, we do not perform projected gradient descent on

3Here ‖ ·‖ is an arbitrary matrix norm; one recovers Structured IRLS by choosing the norm ℓ2(w).
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‖(Wk−1
p )1/2X‖2

F +α‖z(X)‖2
ℓ2(wk−1

q )
,

with PΩ(X) = PΩ(M) for each iteration k. Instead, we perform projected gradient descent on

‖z(X)‖2
ℓ2(wk−1

q )
and ‖(Wk−1

p )1/2X‖2
F consecutively. This allows us to update the weights before

each alternating step, and to control how many gradient steps we would like to perform on

each function.

We follow [117] for the derivation of the gradient step of ‖(Wk−1
p )1/2X‖2

F at the k-th iteration.

Indeed, we consider the smooth Schatten-p function, for p > 0:

fp (X) = Tr(X⊤X+γI)
p
2 =

n∑

i=1

(

σ2
i (X)+γ

) p
2 .

Note that fp (X) is differentiable for p > 0, and convex for p ≥ 1 [117]. For γ= 0 we have f1(X) =

‖X‖∗, which is also known as the Schatten-1 norm. Again for γ= 0, we have fp (X) → rank(X) as

p → 0 [117]. Further, for p = 0, we define

f0(x) = logdet(X⊤X+γI),

a smooth surrogate for rank(X⊤X) (see e.g. [49, 50, 117, 139]). Thus, it is of interest to minimize

fp (X) subject to the set of constraints PΩ(X) =PΩ(M) on the observed entries.

The gradient projection iterates of Structured sIRLS are given by

Xk+1
=PΩc (Xk

− sk
∇ fp (Xk ))+PΩ(M),

where sk denotes the gradient step size at the k-th iteration and ∇ fp (Xk ) = Xk Wk
p , where we

iteratively define Wk
p as

Wk
p = (Xk⊤Xk

+γk I)
p
2 −1,

with 0 < γk ≤ γk−1. This iterate describes our gradient step promoting low-rankness, where we

preserve the observed entries and update only the missing entries.
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Further, we promote sparsity in the missing entries as follows. Instead of minimizing the ℓ1

norm of the vector of missing entries, we iteratively minimize a re-weighted ℓ2 norm of miss-

ing entries as described in [43]. Let z(Xk ) denote the vector of missing entries of the the k-th

approximation Xk . Define the weighted ℓ2 norm of z(X) as

gq (X) = ‖z(X)‖2
ℓ2(wq ) =

mn−|Ω|∑

i=1
(wq )i z2

i (X),

where (wq )i = (z2
i

(X)+ ǫ)q/2−1 (as done in [43]). The i -th entry of the gradient of gq (X) is given

by (∇gq (X))i = 2(wq )i zi . Therefore, the gradient projection iterates are given by

z(Xk+1) = z(Xk )− ck
∇gq (Xk ),

where ck denotes the gradient step size at the k-th iteration. We iteratively define the weights

w k
q as

w k
q = (z2(Xk )+ǫk 1)

q
2 −1,

where 0 < ǫk ≤ ǫk−1. We outline in Algorithm 2 Structured sIRLS, a gradient-projection-based

implementation of Structured IRLS.

A rank estimate r of the matrix M is used as an input to truncate the singular value decom-

position (SVD) when computing the weights Wk
p . In our implementation, we use a randomized

algorithm for SVD computation [70] to reduce the computational complexity. For example,

consider finding the r dominant components of the singular value decomposition of an m ×n

matrix. For a dense input matrix, randomized algorithms require O(mn log(r )) floating-point

operations in contrast with O(mnr ) for classical algorithms [70]. When the rank of the matrix

is not estimated or provided, we instead choose r to be min{rmax , r̂ } at each iteration, where r̂

is the largest integer such that σr̂ (Xk ) > 10−2 ·σ1(Xk ), and where rmax =

⌈

n

(

1−
√

1− |Ω|

mn

)⌉

(as

implemented in [117]).
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Algorithm 2: Structured sIRLS for Matrix Completion
input: PΩ, M, r

set : k = 1, 0 ≤ p, q ≤ 1, ks > 0, kl > 0, ck > 0, sk > 0

initialize: X 0 =PΩ(M), w 0
q = 1, γ1 > 0, ǫ1 > 0

while not converged do

perform : take ks steps promoting sparsity, z(Xk ) = z(Xk−1)− ck (wq
k−1 ⊙ z(Xk−1))

update : update the weights promoting low-rankness, Wk
p = (Xk⊤Xk +γk I)

p
2 −1

perform : take kl steps promoting low-rankness, Xk+1 = PΩc (Xk − sk Xk Wk
p )+PΩ(M)

update : update the weights promoting sparsity, w k
q = (z2(Xk+1)+ǫk 1)

q
2 −1

update : update the regularizers, 0 < γk+1 ≤ γk , 0 < ǫk+1 ≤ ǫk

set : set k = k +1

end

2.4 Numerical Experiments

In this section, we run numerical experiments to evaluate the performance of Structured

sIRLS. We compare Structured sIRLS to the performance of sIRLS (studied in [117]) and Struc-

tured NNM (studied in [118]) on structured settings. Our code for Structured sIRLS is available

at [87]. Further, we use the publicly available code of sIRLS [115].

First, in Section 2.4.1, we explain the choice of parameters we use. We describe our experi-

ments for exact matrix completion in Section 2.4.2. For problems of varying degrees of difficulty

in terms of the sampling rate, degrees of freedom, and sparsity levels, we find that Structured

sIRLS often outperforms sIRLS and Structured NNM in the structured setting. In Section 2.4.3

we consider matrix completion with noise, finding that Structured sIRLS improves upon sIRLS

in the structured setting with low noise. As the noise level increases, the performance of Struc-

tured sIRLS remains controlled, approximately the same as the performance of sIRLS.
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2.4.1 Choice of Parameters

In all the numerical experiments, we adopt the same parameters. However, one can use

different choices for parameters, or optimize some of the parameters. We normalize the input

data matrix M to have a spectral norm of 1 (as done in [117]).

We are particularly interested in the case p = q = 1. In our experiments, we set p = q = 1,

but generally, these parameters can be varied over the range 0 ≤ p, q ≤ 1. Each value of p and q

define a different objective function (see Sections 2.2.2 and 2.2.3 where q is referred to as p).

For the implementation parameters, we set ks = 1 and kl = 10, which means that we take one

gradient step to promote sparsity and ten gradient steps to promote low-rankness, respectively.

These parameters can be varied based on the low-rankness of the matrix and on the expected

sparsity of its missing entries: increasing ks promotes sparsity and increasing kl promotes low-

rankness. Further, we set the regularizers γk = (1/2)k and ǫk = (9/10)k at the k-th iteration.

Exponentially decreasing geometric sequences converging to 0 can be chosen for convenience.

However, there are other possible choices for these regularizers, for example ǫk could depend

on the (s+1)-th largest value of z(Xk ), where s is the sparsity of z(Xk ) (as done in [43]). Similarly,

γk could depend on the (r +1)-th singular value of Xk , where r is the rank of M (as done in [54]).

Lastly, for all k we set the step size sk = (γk )1− p
2 to promote low-rankness and ck = 10−6 to

promote sparsity; however, these parameters could be scaled or varied. We define the relative

distance between two consecutive approximations as

d(Xk ,Xk−1) = ‖Xk
−Xk−1

‖F /‖Xk
‖F .

We say the algorithm converges if we obtain d(Xk ,Xk−1) < 10−5. We set the tolerance 10−5 for

both sIRLS and Structured sIRLS in our comparison experiments,4 and we set the maximum

number of iterations for Structured sIRLS to be 1000 and for sIRLS to be 5000.

4In the original implementation of sIRLS provided by the authors [115, 117], the tolerance value is set to 10−3.
However, Structured sIRLS converges much faster per iteration, thus attaining the tolerance 10−3 with fewer iter-
ations. To report fair comparisons between the algorithms that do not overly benefit Structured sIRLS, we set the
tolerance to 10−5 in addition to increasing the maximum number of iterations for sIRLS.
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2.4.2 Exact Matrix Completion

We first investigate the performance of the Structured sIRLS algorithm when the observed

entries are exact, i.e. there is no noise in the observed values. We construct m ×n matrices of

rank r as done in [118]. We consider M = MLMR , where ML ∈ R
m×r and MR ∈ R

r×n are sparse

matrices. Indeed, the entries of ML (resp. MR ) are chosen to be zero uniformly at random so that

on average 70% (resp. 50%) of its entries are zero. The remaining nonzero entries are uniformly

distributed at random between zero and one. The sparsity level of the resulting matrix M cannot

be calculated exactly from the given sparsity levels of ML and MR . Thus for each of the following

numerical simulations, we indicate the average sparsity level of M (we refer to the density of M

as the fraction of nonzero entries).

For each experiment with m, n, and r fixed, we choose twenty random matrices of the form

M = MLMR . We subsample from the zero and nonzero entries of the data matrix at various rates

to generate a matrix with missing entries. We define the relative error of Structured sIRLS as

‖M− X̂‖F /‖M‖F ,

where X̂ is the output of the Structured sIRLS algorithm. Similarly, we define the relative error

of sIRLS as

‖M− X̃‖F /‖M‖F ,

where X̃ is the output of the sIRLS algorithm. The average ratio is then defined as

‖M− X̂‖F /‖M− X̃‖F .

We say Structured sIRLS outperforms sIRLS when the average ratio is less than one, and vice

versa when the average ratio is greater than or equal to one. These two cases, when the average

ratio is strictly less than or greater than or equal to one, are visually represented by the white

and black squares, respectively, in the bottom right plots of Figures 2.1–2.3 and 2.5. We refer to
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this binary notion of average ratio as binned average ratio. We report each of these error values

in our numerical experiments.

It is important to note that the setting we are interested in is the structured setting where the

submatrix of missing values is close to 0 in the L1 or L0 norm sense. This setting can be observed

in the upper left triangle of the images in Figures 2.1–2.7 (in particular, this is the region above

the diagonal gray line in the bottom rows of Figures 2.1–2.7). In this upper-left triangular region,

the percentage of nonzero entries that are sampled is greater than the percentage of zero entries

that are sampled. Hence the region above the diagonal gray lines is the structured setting that

Structured sIRLS is designed for.

In general, algorithms obtain better accuracy as we move right along a row or up along a

column in Figures 2.1–2.7, since we are sampling more and more entries. In addition, it is im-

portant to note that in all experiments we are using the same algorithm (with fixed parame-

ters) for all the cases considered in our computations, without any parameter optimization.

The Structured sIRLS algorithm promotes sparsity in all the cases, even in the unstructured

settings. Omitting the sparsity promoting step would result in an algorithm promoting only

low-rankness.

1000×1000 rank 10 matrices

In Figure 2.1, we construct twenty random matrices of size 1000× 1000 and of rank 10, as

described in Section 2.4.2. Error ratios below one, in the bottom left plot of Figure 2.1, indicate

that Structured sIRLS outperforms sIRLS. In this particular experiment, we observe that Struc-

tured sIRLS outperforms sIRLS for most of the structured cases (the upper left triangle above

the gray line), and more. For this particular experiment, it turns out that this happens roughly

when the decimal percentage of sampled nonzero entries is greater than 0.2.

Note that in the case where all entries are observed (no longer a matrix completion prob-

lem), both relative errors are 0 and thus the average ratio is 1. We only say that Structured sIRLS

outperforms sIRLS when the average ratio is strictly less than 1, and this is why the upper right

pixel in the bottom right plot of Figure 2.1 is black. The same is true in later figures.
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Figure 2.1: We consider twenty 1000×1000 sparse random matrices of rank 10 with average density equal
to 0.66. The upper plots display (left) the average relative error for sIRLS ‖M− X̃‖F /‖M‖F , and (right) the
average relative error for Structured sIRLS ‖M−X̂‖F /‖M‖F . The lower plots display (left) the average ratio
‖M− X̂‖F /‖M− X̃‖F , and (right) the binned average ratio where white means the average ratio is strictly
less than 1, and black otherwise.

500×500 rank 10 matrices

In Figure 2.2, we construct twenty sparse random matrices of size 500×500 and of rank 10,

as described in Section 2.4.2. We observe that Structured sIRLS outperforms sIRLS not only in

the majority of the structured cases, but also in many of the other cases where the submatrix of

unobserved entries is not necessarily sparse.

100×100 rank 10 matrices

In Figure 2.3, we construct twenty random matrices of size 100×100 and of rank 10, as de-

scribed in Section 2.4.2. We observe in Figure 2.3 that Structured sIRLS outperforms sIRLS when

the sampling rate of the nonzero entries is high (roughly speaking, when the decimal percent-
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Figure 2.2: We consider twenty 500×500 sparse random matrices of rank 10 with average density equal
to 0.66. The upper plots display (left) the average relative error for sIRLS ‖M− X̃‖F /‖M‖F , and (right) the
average relative error for Structured sIRLS ‖M−X̂‖F /‖M‖F . The lower plots display (left) the average ratio
‖M− X̂‖F /‖M− X̃‖F , and (right) the binned average ratio where white means the average ratio is strictly
less than 1, and black otherwise.

age of sampled nonzero entries is greater than 0.5), which covers the majority of the cases where

there is sparsity-based structure in the missing entries.

100×100 matrices with no knowledge of the rank a priori

In Figure 2.4, we construct twenty random matrices of size 100×100 and of rank 8, as de-

scribed in Section 2.3.3. For this experiment, we do not provide the algorithm with any rank

estimate, for either sIRLS or Structured sIRLS. Instead, we allow the algorithm to estimate the

rank at each iteration based on a heuristic described in Section 2.3.3. We observe in the bottom

right plot of Figure 2.4, where we zoom in on the cases where the sampling rate of non-zero en-

tries is at least 0.7, that Structured sIRLS outperform sIRLS to some extent in this region. Indeed,

Structured sIRLS does particularly better when more entries are observed. As a reminder, the
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Figure 2.3: We consider twenty 100×100 sparse random matrices of rank 10 with average density equal
to 0.66. The upper plots display (left) the average relative error for sIRLS ‖M− X̃‖F /‖M‖F , and (right) the
average relative error for Structured sIRLS ‖M−X̂‖F /‖M‖F . The lower plots display (left) the average ratio
‖M− X̂‖F /‖M− X̃‖F , and (right) the binned average ratio where white means the average ratio is strictly
less than 1, and black otherwise.

region above the diagonal gray lines is the region where the sampling rate of non-zero entries is

greater than the sampling rate of zero entries.

100×100 rank 20 matrices

We say a matrix completion problem is hard when the degrees of freedom ratio F R is greater

than 0.4 (as in [117]). In the previous experiments, we considered a few cases where F R > 0.4,

which occur when the sampling rates of zero and nonzero entries are both relatively small.

In these cases, there is not necessarily high sparsity-based structure, which imposes another

challenge since the sampling rate of non-zero entries is approximately equal to or only slightly

greater than the sampling rate of zero entries. Therefore, in this section, we consider hard cases

(where F R > 0.4) with sparsity-based structure.
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Figure 2.4: We consider twenty 100×100 sparse random matrices of rank 8 with density equal to 0.58,
but we do not input any rank guess. The upper plots display (left) the average relative error for sIRLS
‖M− X̃‖F /‖M‖F , and (right) the average relative error for Structured sIRLS ‖M− X̂‖F /‖M‖F . The lower
plots display (left) the average ratio ‖M− X̂‖F /‖M− X̃‖F , and (right) the average ratio when the sampling
rate of non-zero entries is at least 0.70 (a zoomed in version of part of the lower left plot).

In Figure 2.5, we construct twenty random matrices of size 100 × 100 and of rank 20, as

described in Section 2.4.2. If the number of sampled entries is 90% of the entire matrix, i.e.

|Ω| = 0.9 ·m ·n, then

F R = r (m +n − r )/|Ω| = 20(200−20)/(0.9×1002) = 0.4.

So, even sampling 90% of the matrix is still considered to be a hard problem. In the bottom

row of Figure 2.5, the added red line separates the “hard" cases from those that are not: all the

cases below the red line are hard. Note that in these hard regimes with sparsity-based structure,

Structured sIRLS outperform sIRLS more often than not.
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Figure 2.5: We consider twenty 100×100 sparse random matrices of rank 20 with average density equal
to 0.88. The upper plots display (left) the average relative error for sIRLS ‖M− X̃‖F /‖M‖F , and (right) the
average relative error for Structured sIRLS ‖M−X̂‖F /‖M‖F . The lower plots display (left) the average ratio
‖M− X̂‖F /‖M− X̃‖F , and (right) the binned average ratio where white means the average ratio is strictly
less than 1, and black otherwise. The red line separates the hard cases from those that are not: all the
cases below the red line are hard.

Comparison with Structured NNM on 30×30 rank 7 matrices

In this section, we run numerical experiments to compare the performance of Structured

sIRLS with Structured NNM, using the L1 norm on the submatrix of unobserved entries for

Structured NNM. We use CVX, a package for specifying and solving convex programs [60, 61],

to solve Structured NNM. In the experiments of Figure 2.6, we construct twenty random matri-

ces of size 30× 30 and of rank 7 as described in Section 2.4.2. We compare the accuracy with

Structured NNM on small-sized matrices due to computational constraints of CVX: with this

implementation of Structured NNM, it is difficult to handle significantly larger matrices. Sim-

ilar experiments are considered in [118], where Structured NNM is compared to NNM. Com-

paring our iterative algorithm to Structured NNM is important since Structured NNM adapts
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nuclear norm minimization and ℓ1 norm minimization, which are common heuristics for min-

imizing rank and inducing sparsity, respectively. We define the relative error of Structured NNM

as ‖M− X̄‖F /‖M‖F , where X̄ is the output of the Structured NNM algorithm. The average ratio is

then defined as ‖M− X̂‖F /‖M− X̄‖F , where X̂ is the output of the Structured sIRLS algorithm.

For all sampling rates, the degrees of freedom ratio is greater than 0.4, i.e. all the problems

are considered to be “hard" matrix completion problems. In Figure 2.6, we provide Structured

sIRLS with the rank of the matrices.

Figure 2.6: We consider twenty 30×30 sparse random matrices of rank 7, with average density equal to
0.53. We provide Structured sIRLS with the rank of the matrices. We optimize for each matrix and com-
bination of sampling rates the regularization parameter α ∈ {10−4,10−3,10−2,10−1} for Structured NNM
and report the “optimal" results. The upper plots display (left) the average relative error for Structured
NNM ‖M− X̄‖F /‖M‖F , and (right) the average relative error for Structured sIRLS ‖M− X̂‖F /‖M‖F . The
lower plots display (left) the average ratio ‖M− X̂‖F /‖M− X̄‖F , and (right) the average ratio when the
sampling rate of non-zero entries is at most 0.90 (a zoomed in version of part of the lower left plot).

In Figure 2.6, we give Structured NNM an advantage by optimizing for each matrix and com-

bination of sampling rates the regularization parameter α ∈ {10−4,10−3,10−2,10−1} for Struc-
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tured NNM. However, for Structured sIRLS (again with p = q = 1) we do not optimize the gra-

dient step sizes or the number of step sizes. Varying the number or sizes of the gradient steps

controls how much we would like to promote low-rankness versus sparsity in the submatrix of

missing entries. In the experiments of Figure 2.6, we observe that for the most part where the

sampling rate of nonzero entries is between 0.6 and 0.9, Structured sIRLS performs better than

Structured NNM. Furthermore, for the remainder of the structured settings, Structured sIRLS

performs approximately the same as Structured NNM or only slightly worse. We note that in a

couple of cases where the sampling rate of nonzero entries is 1, and where the relative error for

both algorithms is close to zero, Structured NNM performs much better. This is in part because

we optimize Structured NNM over α ∈ {10−4,10−3,10−2,10−1}; see [118] where the relationship

between the choice of α and the accuracy of Structured NNM is studied.

As observed in Figure 2.6, our proposed method is often comparable to Structured NNM

on small-sized matrices, with certain regions where Structured sIRLS results in improved ac-

curacy. In addition, iterative methods are well-known to offer ease of implementation and

reduced computational resources, making our approach attractive not only in the setting of

small-sized matrices, but also large-sized matrices.

2.4.3 Matrix Completion with Noise

In this section, we investigate the performance of Structured sIRLS when the observed en-

tries are corrupted with noise. In particular, we compare the performance of Structured sIRLS

with the performance of sIRLS. We adapt sIRLS and Structured sIRLS for noisy matrix com-

pletion by replacing the observed entries PΩ(M) with the noisily observed entries PΩ(B) in the

constraints, where M is an unknown low-rank matrix that we wish to recover, where PΩ(Z) is the

measurement noise, and where the noisy matrix B satisfies PΩ(B) = PΩ(M)+PΩ(Z). The algo-

rithms for matrix recovery do not update the noisily observed entries, only the missing entries.

We define our noise model such that ‖PΩ(Z)‖F = ǫ‖PΩ(M)‖F for a noise parameter ǫ. We do so

by adding noise of the form
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Zi j = ǫ ·
‖PΩ(M)‖F

‖PΩ(N)‖F
·Ni j ,

where Ni j are i.i.d. Gaussian random variables with the standard distribution N (0,1). We de-

fine the relative error of Structured sIRLS as ‖B− X̂‖F /‖B‖F , where X̂ is the output of the Struc-

tured sIRLS algorithm. Similarly, we define the relative error of sIRLS as ‖B− X̃‖F /‖B‖F , where

X̃ is the output of the sIRLS algorithm.

Figure 2.7: We consider twenty 100 × 100 random matrices of rank 3 with noise parameter ǫ = 10−4.
The upper plots display (left) the average relative error for sIRLS ‖B− X̃‖F /‖B‖F , and (right) the average
relative error for Structured sIRLS ‖B− X̂‖F /‖B‖F . The lower plots display (left) the average ratio ‖B−

X̂‖F /‖B− X̃‖F , and (right) the average ratio when the sampling rate of non-zero entries is at least 0.35 (a
zoomed in version of part of the lower left plot).

In Figure 2.7, we consider twenty random 100×100 rank 3 matrices with noise parameter

ǫ= 10−4, where we construct our matrices in the same fashion as in Section 2.4.2. We consider

analogous structured settings as in the prior experiments, and observe that for the cases where

the sampling rate of nonzero entries is greater than 0.3, which covers the majority of the cases
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where there is sparsity-based structure in the missing entries, Structured sIRLS performs bet-

ter than sIRLS. For a higher noise level ǫ = 10−3, we observe that sIRLS and Structured sIRLS

algorithms perform roughly the same. This suggest that both sIRLS and Structured sIRLS are

robust to noise, with the improvements of Structured sIRLS from the structure diminishing as

the noise grows.

2.5 Conclusion

In this work, we consider the notion of structured matrix completion, studied in the recent

paper [118]. In particular, we are interested in sparsity-based structure in the missing entries

whereby the vector of missing entries is close in the ℓ0 or ℓ1 norm sense to the zero vector (or

more generally, to a constant vector). For example, a missing rating of a movie might indicate

the user’s lack of interest in that movie, thus suggesting a lower rating than otherwise expected.

In [118], Molitor and Needell propose adjusting the standard nuclear norm minimization prob-

lem by regularizing the values of the unobserved entries to take into account the structural

differences between observed and unobserved entries.

To our knowledge, we develop the first iterative algorithm that addresses the structured low-

rank matrix completion problem, for which Structured NNM has been proposed. We adapt an

iterative algorithm, called Structured IRLS, by adjusting the IRLS algorithm proposed in [117].

We also present a gradient-projection-based implementation, called Structured sIRLS, that can

handle large-scale matrices. The algorithms are designed to promote low-rank structure in the

recovered matrix with sparsity in the missing entries.

We perform numerical experiments on various structured settings to test the performance

Structured sIRLS compared to sIRLS and Structured NNM. We consider problems of various

degrees of freedom and rank knowledge. To generate matrices with sparsity-based structure in

the missing entries, we subsample from the zero and nonzero entries of a sparse data matrix

at various rates. We are particularly interested in the structured cases, i.e. the cases where a
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missing entry is more likely to be zero. This occurs when the sampling rate of the zero entries is

lower than the sampling rate of the nonzero entries.

Our numerical experiments show that Structured sIRLS often gives better recovery results

than sIRLS in structured settings. Further, for small enough noise our proposed method often

performs better than sIRLS in structured settings, and as noise gets larger both converge to the

same performance. Further, our numerical experiments show that Structured sIRLS is compa-

rable to Structured NNM on small-sized matrices, with Structured sIRLS performing better in

various structured regimes.

In future work, we hope to extend the theoretical results for Structured IRLS to more gen-

eral settings. In the simplified setting, in which all of the unobserved entries are exactly zero,

we show that the approximation given by an iteration of Structured IRLS will always perform

at least as well as that of IRLS with the same weights assigned. However, we empirically ob-

serve the stronger result that Structured sIRLS often outperforms sIRLS in structured settings

(in which algorithms are run until convergence, and in which not all missing entries are zero).

Another extension is to explore Structured IRLS for different values of p and q , both empirically

and theoretically. Furthermore, a possible direction for future work is to extend sparsity-based

structure in the missing entries to a more general notion of structure, whereby the probabil-

ity that an entry is observed or not may depend on more than just the value of that entry. For

example, one could imagine that columns in a matrix corresponding to popular movies would

have many entries (user ratings) filled in. In this context, an entry might be more likely to be

observed if many entries in its same column are also observed.
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Chapter 3

Semi-supervised NMF Models for Topic Modeling in

Learning Tasks

3.1 Introduction

Frequently, one is faced with the problem of performing a (semi-)supervised learning task

on extremely high-dimensional data which contains redundant information. A common ap-

proach is to first apply a dimensionality-reduction or feature extraction technique (e.g., Prin-

cipal Component Analysis [130]), and then train the model for the learning task on the new,

learned representation of the data. One problematic aspect of this two-step approach is that

the learned representation of the data may provide “good" fit, but could suppress data features

which are integral to the learning task [67]. For this reason, supervision-aware dimensionality-

reduction models have become increasingly important in data analysis; such models aim to use

supervision in the process of learning the lower-dimensional representation, or even learn this

representation alongside the supervised learning model [17, 133, 164].

A popular technique for topic modeling that provides a lower rank approximation of a matrix

is nonnegative matrix factorization (NMF). Given a nonnegative matrix X ∈ R
n1×n2
≥0 and a target

dimension r ∈N, NMF decomposes X into a product of two low-dimensional nonnegative ma-

trices. The model seeks A and S so that X ≈ AS, where A ∈ R
n1×r
≥0 is called the dictionary matrix

and S ∈R
r×n2
≥0 is called the representation matrix. Typically, r is chosen such that r < min{n1,n2}

to reduce the dimension of the original data matrix or reveal latent themes in the data. Data

points are typically stored as columns of X, thus n1 represents the number of features, and n2

represents the number of samples. The columns of A are generally referred to as topics, which

are characterized by features of the dataset. Each column of S provides the approximate repre-

sentation of the respective column in X in the lower-dimensional space spanned by the columns
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of A. Thus, the data points are well approximated by an additive linear combination of the latent

topics.

Several formulations for this nonnegative approximation, X ≈ AS, have been studied [41,

102, 103, 171]; e.g.,

argmin
A≥0,S≥0

‖X−AS‖2
F and argmin

A≥0,S≥0
D(X‖AS), (3.1)

where A ≥ 0 denotes a matrix restricted to have only nonnegative entries, ‖ ·‖F is the Frobenius

norm, and D(·‖·) is the information divergence that we define in (3.5). In what follows, we refer

to the left formulation of (3.1) as ‖ · ‖F -NMF and the right formulation of (3.1) as D(·‖·)-NMF.

We refer the reader to [41] for discussions of similarity measures and generalized divergences

(where information divergence is a particular case), and [106, 155] for generalized nonnegative

matrix approximations with Bregman divergences.

Multiplicative update algorithms for both formulations of (3.1) have been proposed [102,

103]. These algorithms are widely adopted because they are easy to implement, do not require

user-specified hyperparameters, preserve the nonnegativity constraints, and have desirable

monotonicity properties [102]. Other popular algorithms include projected gradient descent

and alternating least-squares [41, 91, 92, 107].

NMF has gained popularity recently due to large scale data demands of applications such

as document clustering [12,57,127,149,168], image processing [66,79,103], financial data min-

ing [44], audio processing [40,58], and genetics [109]. Nonegativity of the factor matrices allows

for better interpretabilty in many applications where the features are naturally nonnegative (e.g.

pixel values, word counts, etc.). The classic work of [103] demonstrates that multiplicative up-

dates of NMF is able to learn parts-based, sparse representation of the data (e.g. parts of faces

and semantic features of text). This is in contrast to other methods, such as principal compo-

nents analysis and vector quantization, that learn holistic, not parts-based, representations.

Semi-supervised Nonnegative Matrix Factorization (SSNMF), proposed in [104], is a modi-

fication of NMF to jointly incorporate a data matrix and a (partial) class label matrix. Follow-

ing [104], let X ∈R
n1×n2
≥0 denote the data matrix and Y ∈R

k×n2
≥0 the supervision matrix, where the
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n1 ×n2 n1 × r

r ×n2

k ×n2 k × r r ×n2

Figure 3.1: Given the number of classes k, and a desired dimension r , SSNMF is formulated as a joint
factorization of a data matrix X ∈ R

n1×n2
≥0 and a label matrix Y ∈ R

k×n2
≥0 , sharing representation factor S ∈

R
r×n2
≥0 .

data observations are the columns of X and the associated targets (e.g., labels) are the columns

of Y. SSNMF seeks A ∈ R
n1×r
≥0 , S ∈ R

r×n2
≥0 , and B ∈ R

k×r
≥0 which jointly factorize X and Y; that is

X ≈ AS and Y ≈ BS. SSNMF is defined by

argmin
A,S,B≥0

‖W⊙ (X−AS)‖2
F

︸ ︷︷ ︸

Reconstruction Error

+λ‖L⊙ (Y−BS)‖2
F

︸ ︷︷ ︸

Classification Error

, (3.2)

where A ∈ R
n1×r
≥0 , B ∈ R

k×r
≥0 , S ∈ R

r×n2
≥0 , and the regularization parameter λ > 0 governs the rela-

tive importance of the supervision term [104]. See Figure 3.1 for an illustration of the SSNMF

model. We denote this objective function as F1(A,B,S;X,Y). The binary weight matrix W ac-

commodates missing data by indicating observed and unobserved data entries (that is, Wi j = 1

if Xi j is observed, and Wi j = 0 otherwise). Similarly, L ∈ R
k×n2 is a weight matrix that indicates

the presence or absence of a label (that is, L•, j = 1k if the label of X•, j is known, and L•, j = 0k

otherwise).

Multiplicative updates have been developed for SSNMF for the Frobenius norm, and the

resulting performance of clustering and classification is improved by incorporating data labels

into NMF [104]. To differentiate the model defined in (3.2) from the proposed SSNMF models,

we refer to the model defined by (3.2) as (‖ ·‖F ,‖ ·‖F )-SSNMF.

In this work, we define models with different error functions applied to the reconstruction

and supervision factorization terms as
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argmin
A,S,B≥0

R(W⊙X,W⊙AS)
︸ ︷︷ ︸

Reconstruction Error

+λS(L⊙Y,L⊙BS)
︸ ︷︷ ︸

Supervision Error

(3.3)

denoted by (R(·, ·),S(·, ·))-SSNMF where R(·, ·) and S(·, ·) are the error functions applied to the re-

construction term and supervision term, respectively. In each model, the matrix A ∈R
n1×r
≥0 pro-

vides a basis for the lower-dimensional space, S ∈ R
r×n2
≥0 provides the coefficients representing

the projected data in this space, and B ∈R
k×r
≥0 provides the supervision model which predicts the

targets given the representation of points in the lower-dimensional space. We allow for missing

data and labels or confidence-weighted errors via the data-weighting matrix W ∈R
n1×n2
≥0 and the

label-weighting matrix L ∈R
k×n2
≥0 .

We point out the simple fact that these joint factorizations can be stacked into a single NMF

(visualized in Figure 3.1)





X

Y




≈






A

B




S. (3.4)

which will be useful in some of the analysis in the next sections.

Table 3.1: Overview of NMF and SSNMF models.

Model Objective

‖ ·‖F -NMF [103] argmin
A,S≥0

‖X−AS‖2
F

D(·‖·)-NMF [102] argmin
A,S≥0

D(X‖AS)

(‖ ·‖F ,‖ ·‖F )-SSNMF [104] argmin
A,B,S≥0

‖W⊙ (X−AS)‖2
F +λ‖L⊙ (Y−BS)‖2

F

(‖ ·‖F ,D(·‖·))-SSNMF argmin
A,B,S≥0

‖W⊙ (X−AS)‖2
F +λD(L⊙Y‖L⊙BS)

(D(·‖·),‖ ·‖F )-SSNMF argmin
A,B,S≥0

D(W⊙X‖W⊙AS)+λ‖L⊙ (Y−BS)‖2
F

(D(·‖·),D(·‖·))-SSNMF argmin
A,B,S≥0

D(W⊙X‖W⊙AS)+λD(L⊙Y‖L⊙BS)

In Table 3.1, we summarize existing and proposed models, where each proposed model is

of the form (3.3) for specific choices of error functions R and S. Our models differ from that

of [104] in the error functions used, since our models utilize information divergence on the
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data reconstruction term. This is a natural choice since many representations of document

data (e.g., bag-of-words, n-grams, etc.) correspond to counts of word patterns in the data and

are naturally modelled by Poisson distribution(s), which leads to the information divergence

in the maximum likelihood estimation (MLE) model [37, 74, 121, 122, 135, 143]. Furthermore,

our proposed models differ in the classification framework proposed (in Section 3.2.4) which

does not necessarily rely on support vector machines (SVM) for linear classification. We further

provide analysis on the topics learned for the classification task where the choice of rank is not

necessarily the same as the number of classes.

3.1.1 Background and Related Work

In this section, we describe related work most relevant to our own. We focus on work in

three main areas: statistical motivation for NMF models, models for simultaneous dimension

reduction and supervised learning, and semi-supervised and joint NMF models.

Statistical Motivation for NMF

The most common discrepancy measures for NMF are the Frobenius norm and the informa-

tion divergence. One reason for this popularity is that ‖ · ‖F -NMF and D(·‖·)-NMF correspond

to the MLE given an assumed latent generative model and a Gaussian and Poisson model of

uncertainty, respectively [28,48,160]. In [28,160], the authors go further towards a Bayesian ap-

proach, introduce application-appropriate prior distributions on the latent factors, and apply

maximum a posteriori (MAP) estimation. Under certain conditions, D(·‖·)-NMF is equivalent

to probabilistic latent semantic indexing [45].

Dimension Reduction and Learning

There has been much work developing dimensionality-reduction models that are

supervision-aware. Semi-supervised clustering makes use of known label information or other

supervision and the data features while forming clusters [6, 93, 162]. These techniques gener-

ally make use of label information in the cluster initialization or during cluster updating via
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must-link and cannot-link constraints; empirically, these approaches are seen to increase mu-

tual information between computed clusters and user-assigned labels [6]. Semi-supervised fea-

ture extraction makes use of supervision information in the feature extraction process [56,151].

These approaches are generally filter- or wrapper-based approaches, and distinguished by their

underlying supervision type [151].

Linear Discriminant Analysis [53, 136] is another popular linear dimensionality technique

used in supervised learning, e.g. as a linear classifier or a pre-processing step before classifi-

cation. Principal Component Analysis (PCA) is an unsupervised technique that searches for

directions in the data that have the largest variance. Linear Discriminant Analysis is super-

vised technique that searches for directions that maximize class separation (i.e. a large variance

among the classes, and a small variance within each class).

Semi-supervised and Joint NMF

Since the seminal work of Lee et al. [104], semi-supervised NMF models have been studied

in a variety of settings. The works [33,51,84] propose models which exploit cannot-link or must-

link supervision. In [38], the authors introduce a model with information divergence penalties

on the reconstruction and on supervision terms which influence the learned factorization to

approximately reconstruct coefficients learned before factorization by a support-vector ma-

chine (SVM). Several works [85, 169, 173] propose a supervised NMF model that incorporates

Fisher discriminant constraints into NMF for classification. Furthermore, joint factorization of

two data matrices, like that of SSNMF, is described more generally and denoted Simultaneous

NMF in [41].

3.1.2 Contribution

In this work, we propose variants of semi-supervised nonnegative matrix factorization for-

mulations which utilize information divergence on the data reconstruction term. The Pois-

son distribution is particularly well-suited for integer-valued datasets, such a documents rep-

resented by vector of term frequencies [135], or images which can be interpreted as a photon
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counting process [72], which leads to the information divergence in the MLE model [37,74,121].

As in [104], our proposed models generalize NMF to supervised learning tasks and provide a

topic model which simultaneously provides a lower dimensional representation of the data and

a predictive model for targets. While historically the focus of SSNMF studies have been on clas-

sification [104], we highlight that this joint factorization model can be applied quite naturally

to regression tasks. The main contributions of this work are as follows:

• Maximum likelihood estimators. We motivate the proposed SSNMF models and that

of [104] as maximum likelihood estimators (MLE) given specific models of uncertainty in

the observations.

• Multiplicative updates. We derive multiplicative updates for the proposed models that

allow for missing data and partial supervision.

• Classification framework. We propose a classification framework using SSNMF based on

the linear classifier B ∈R
k×r
≥0 obtained from the factorization.

• Experiments on the 20 Newsgroups dataset. We perform experiments on the 20 News-

groups benchmark dataset [141], illustrating the promise of these models in both topic

modeling and classification relative to the performance of other common document clas-

sifiers (e.g. Linear SVM, Multinomial Naive Bayes).

Our PyPI package for all SSNMF models [68] and our code for reproducing experiments5 are

publicly available.

3.1.3 Organization

The chapter is organized as follows. We begin by motivating the proposed models and that

of [104] via MLE in Section 3.2.2, present the multiplicative update methods for training in

Section 3.2.3, and present details of a framework for classification with these models in Sec-

tion 3.2.4. We present experimental evidence illustrating the promise of the SSNMF models on

5https://github.com/jamiehadd/ssnmf
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the 20 Newsgroup dataset in Section 3.3. Finally, we end with some conclusions and discussion

of future work in Section 3.4.

3.2 SSNMF Models: Motivation and Methods

In this section, we present a statistical MLE motivation for variants of the SSNMF model,

introduce the general semi-supervised models, and provide a multiplicative updates method

for each variant.

3.2.1 Notation

Our models make use of two matrix similarity measures. The first is the standard Frobenius

norm, ‖A−B‖F . The second is the information divergence or I-divergence, a measure defined

between nonnegative matrices A and B,

D(A‖B) =
∑

i , j

(

Ai j log
Ai j

Bi j
−Ai j +Bi j

)

, (3.5)

where D(A‖B) ≥ 0 with equality if and only if A = B [102]. Because the information divergence

reduces to the Kullback-Leibler divergence when A and B represent probability distributions,

i.e.,
∑

Ai j =
∑

Bi j = 1, it is often referred to as the generalized Kullback-Leibler divergence [48].

In the following, A/B indicates element-wise division, A⊙B indicates element-wise multi-

plication, and AB denotes standard matrix multiplication. We denote the set of non-zero in-

dices of a matrix by supp(A) :=
{

(i , j ) : Ai j 6= 0
}

. When an n1 ×n2 matrix is to be restricted to

have only nonnegative entries, we write A ≥ 0 and A ∈ R
n1×n2
≥0 . We let 1k denote the length-k

vector consisting of ones, 1k = (1, · · ·1)⊤ ∈ R
k , and similarly 0k denotes the vector of all zeros,

0k = (0, · · ·0)⊤ ∈R
k .

We let N
(

z
∣
∣µ,σ2

)

denote the Gaussian density function for a random variable z with mean

µ and variance σ2, and P O (z|ν) denotes the Poisson density function for a random variable z

with nonnegative intensity parameter ν.
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3.2.2 Maximum Likelihood Estimation

In this section, we demonstrate that specific forms of our proposed variants of SSNMF are

maximum likelihood estimators for given models of uncertainty or noise in the data matrices X

and Y. These different uncertainty models have their likelihood function maximized by differ-

ent error functions chosen for reconstruction and supervision errors, R and S. We summarize

these results next; each MLE derived is a specific instance of a general model discussed in Sec-

tion 3.2.3 or in [104].

Maximum Likelihood Estimators. Suppose that the observed data X and supervision informa-

tion Y have entries given as the sum of random variables,

Xγ,τ =

r∑

i=1
xγ,i ,τ and Yη,τ =

r∑

i=1
yη,i ,τ,

and that the set of Xγ,τ and Yη,τ are statistically independent conditional on A,B, and S.

1. When xγ,i ,τ and yη,i ,τ have distributions

N
(

xγ,i ,τ
∣
∣Aγ,i Si ,τ,σ1

)

and N
(

yη,i ,τ
∣
∣Bη,i Si ,τ,σ2

)

respectively, the maximum likelihood estimator is

argmin
A,B,S≥0

‖X−AS‖2
F +

σ1

σ2
‖Y−BS‖2

F .

2. When xγ,i ,τ and yη,i ,τ have distributions

N
(

xγ,i ,τ
∣
∣Aγ,i Si ,τ,σ1

)

and P O
(

yη,i ,τ
∣
∣Bη,i Si ,τ

)

respectively, the maximum likelihood estimator is

argmin
A,B,S≥0

‖X−AS‖2
F +2rσ1D(Y‖BS).
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3. When xγ,i ,τ and yη,i ,τ have distributions

P O
(

xγ,i ,τ
∣
∣Aγ,i Si ,τ

)

and N
(

yη,i ,τ
∣
∣Bη,i Si ,τ,σ2

)

respectively, the maximum likelihood estimator is

argmin
A,B,S≥0

D(X‖AS)+
1

2rσ2
‖Y−BS‖2

F .

4. When xγ,i ,τ and yη,i ,τ have distributions

P O
(

xγ,i ,τ
∣
∣Aγ,i Si ,τ

)

and P O
(

yη,i ,τ
∣
∣Bη,i Si ,τ

)

respectively, the maximum likelihood estimator is

argmin
A,B,S≥0

D(X‖AS)+D(Y‖BS).

We note that 4 follows from [28, 48, 160], but the others are distinct from previous MLE

derivations due to the difference in the distributions assumed on data X and supervision Y.

Here, we provide only the MLE derivation for 2 as the other derivations are similar; these are

included in the appendix for completeness. We demonstrate that the MLE, in the case that the

uncertainty on X is Gaussian distributed and on Y is Poisson distributed, is a specific instance

of the (‖ ·‖F ,D(·‖·))-SSNMF model.

Our models for the distribution of observed entries of X and Y assume that the mean is given

by E[X] = AS and E[Y] = BS, and the uncertainty in the set of observations in X is governed by

a Gaussian distribution while the set in Y is governed by a Poisson distribution. That is, we

consider hierarchical models for X and Y where
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Xγ,τ =

r∑

i=1
xγ,i ,τ and xγ,i ,τ ∼N

(

xγ,i ,τ
∣
∣Aγ,i Si ,τ,σ1

)

,

Yη,τ =

r∑

i=1
yη,i ,τ and yη,i ,τ ∼P O

(

yη,i ,τ
∣
∣Bη,i Si ,τ

)

.

Note then that

Xγ,τ ∼N

(

Xγ,τ

∣
∣
∣
∣
∣

r∑

i=1
Aγ,i Si ,τ,rσ1

)

, and Yη,τ ∼P O

(

Yη,τ

∣
∣
∣
∣
∣

r∑

i=1
Bη,i Si ,τ

)

due to the summable property of Gaussian and Poisson random variables. We note that this

assumes different distributions on the two collections of rows of the single NMF (3.4), with

Gaussian and Poisson models of uncertainty.

Assuming that the set of Xγ,τ and Yη,τ are statistically independent conditional on A, B, and

S, we have that the likelihood

p(X,Y|A,B,S) =
∏

γ,τ
N

(

Xγ,τ

∣
∣
∣
∣
∣

r∑

i=1
Aγ,i Si ,τ,rσ1

)

∏

η,τ
P O

(

Yη,τ

∣
∣
∣
∣
∣

r∑

i=1
Bη,i Si ,τ

)

. (3.6)

We apply the monotonic natural logarithmic function to the likelihood and ignore terms that

are invariant with the factor matrices. This transforms the likelihood into a (‖·‖F ,D(·‖·))-SSNMF

objective while preserving the maximizer. That is, the log likelihood (excluding additive terms

which are constant with respect to A, B, and S) is

ln p (X,Y|A,B,S) =+
−

1

2rσ1

∑

γ,τ

(

Xγ,τ−

r∑

i=1
Aγ,i Si ,τ

)2

−
∑

η,τ

[

(BS)η,τ−Yη,τ log(BS)η,τ+ logΓ
(

Yη,τ+1
)]

=
+
−

1

2rσ1

[

‖X−AS‖2
F +2rσ1D(Y‖BS)

]

.

Here, =+ denotes suppression of additive terms that do not depend upon A, B, and S, and Γ(·)

denotes the Gamma function: Γ(n) = (n −1)! for n ≥ 1. Thus, the maximum likelihood estima-

tors for A, B, and S are given by
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argmin
A,B,S≥0

‖X−AS‖2
F +2rσ1D(Y‖BS).

We see that the MLE, in the case of Gaussian uncertainty on the observations in X and Poisson

uncertainty on the observations in Y, is a specific instance of the (‖·‖F ,D(·‖·))-SSNMF objective

where the regularization parameter λ is a multiple of the variance of the Gaussian distribution.

The other MLEs are derived similarly; see Appendix A.1.

An instance of each of the models in Table 3.1 are MLE for a given model of uncertainty in

the observed data X and supervision Y. While this motivates our exploration of these models,

we present them in more general context next and provide training methods for the general

form.

3.2.3 General Models and Multiplicative Updates

In this section, we propose the general form of (‖ · ‖F ,D(·‖·))-SSNMF, (D(·‖·),‖ · ‖F )-SSNMF,

and (D(·‖·),D(·‖·))-SSNMF and present multiplicative updates methods for each model. These

three models are novel forms of SSNMF, and besides their statistical motivation via MLE, we

demonstrate their promise experimentally in Section 3.3. Recall that (‖ · ‖F ,‖ · ‖F )-SSNMF is

defined by (3.2) and multiplicative updates are derived in [104].

As in [104], our multiplicative updates methods allow for missing (or certainty-weighted)

data and missing (or certainty-weighted) supervision information via matrices W and L, which

represent our knowledge or certainty of the corresponding entries of X and Y, respectively.

When W is a matrix of all ones (or more generally has all equal entries) and L is a matrix of

all zeros, the SSNMF models reduce to either the ‖ · ‖F -NMF or D(·‖·)-NMF. The SSNMF model

is fully supervised when supp(Y) ⊂ supp(L) and Y contains supervision information for each

element in X.

The multiplicative updates for all methods can be derived as follows. Suppose that the gra-

dient of the objective function F with respect to one of the variables Θ has a decomposition that

is of the form:
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∇ΘF = [∇ΘF ]+− [∇ΘF ]−,

where [∇ΘF ]+ > 0 and [∇ΘF ]− > 0. Then we define the multiplicative update for Θ as:

Θ←Θ−Γ⊙∇ΘF =Θ−Γ⊙ ([∇ΘF ]+− [∇ΘF ]−) =Θ⊙
[∇ΘF ]−

[∇ΘF ]+

for Γ=
Θ

[∇ΘF ]+
. We now provide detailed derivations of the multiplicative updates for the three

proposed methods.

The first proposed semi-supervised NMF model is (‖·‖F ,D(·‖·))-SSNMF, which is defined by

the solution to

argmin
A,B,S≥0

‖W⊙ (X−AS)‖2
F +λD(L⊙Y‖L⊙BS). (3.7)

We denote this objective function as F2(A,B,S;X,Y). Similar to the previous SSNMF model, this

model seeks a joint factorization of the data matrix X and target matrix Y; however, the error

functions applied to the reconstruction and classification terms in the objective differ.

The multiplicative updates for A, B, and S which minimize (3.7) are derived as follows. The

gradient of the objective function of (3.7) with respect to A, B and S are, respectively,

∇AF2 =−2[W⊙ (X−AS)]S⊤,

∇BF2 = LS⊤
−

[
L⊙Y

L⊙BS
⊙L

]

S⊤, and

∇SF2 =λB⊤L−λB⊤

[
L⊙Y

L⊙BS
⊙L

]

−2A⊤[W⊙ (X−AS)].

The multiplicative updates method, Algorithm 3, can be viewed as an entrywise gradient de-

scent method, where the stepsizes are chosen individually for each entry of the updating matrix

to ensure nonnegativity. That is, the updates in Algorithm 3 are given by
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A → A−Γ⊙∇AF2 for Γ=
A

2(W⊙AS)S⊤
,

B → B−Γ⊙∇BF2 for Γ=
B

LS⊤
, and

S → S−Γ⊙∇SF2 for Γ=
S

2A⊤(W⊙AS)+λB⊤L
.

Algorithm 3: (‖ ·‖F ,D(·‖·))-SSNMF multiplicative updates

Require: X,W ∈R
n1×n2
≥0 , Y,L ∈R

k×n2
≥0 , r , λ, N

1: Initialize A ∈R
n1×r
≥0 ,S ∈R

r×n2
≥0 ,B ∈R

k×r
≥0

2: for i = 1, ..., N do

3: A ← A⊙
(W⊙X)S⊤

(W⊙AS)S⊤
;

4: B ←
B

LS⊤
⊙

[
(L⊙Y)

(L⊙BS)
⊙L

]

S⊤;

5: S ← S⊙

2A⊤(W⊙X)+λB⊤

[
(L⊙Y)

(L⊙BS)
⊙L

]

2A⊤(W⊙AS)+λB⊤L
;

6: end for

The next proposed semi-supervised NMF model is (D(·‖·),‖ · ‖F )-SSNMF, defined by the so-

lution to

argmin
A,B,S≥0

D(W⊙X‖W⊙AS)+λ‖L⊙ (Y−BS)‖2
F . (3.8)

We denote this objective function as F3(A,B,S;X,Y). Again, this model seeks a joint factoriza-

tion of the data matrix X and target matrix Y; here the reconstruction error is penalized by the

information divergence, while the supervision error is penalized by the Frobenius norm. Multi-

plicative updates for this model are provided in Algorithm 4. The multiplicative updates follow

from those for (‖ · ‖F ,D(·‖·))-SSNMF (Algorithm 3) by swapping the roles of X and Y, and A and

B.
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Algorithm 4: (D(·‖·),‖ ·‖F )-SSNMF multiplicative updates

Require: X,W ∈R
n1×n2
≥0 , Y,L ∈R

k×n2
≥0 , r , λ, N

1: Initialize A ∈R
n1×r
≥0 ,S ∈R

r×n2
≥0 ,B ∈R

k×r
≥0

2: for i = 1, ..., N do

3: A ←
A

WS⊤
⊙

[
(W⊙X)

(W⊙AS)
⊙W

]

S⊤;

4: B ← B⊙
(L⊙Y)S⊤

(L⊙BS)S⊤
;

5: S ← S⊙

A⊤

[
(W⊙X)

(W⊙AS)
⊙W

]

+2λB⊤(L⊙Y)

A⊤W+2λB⊤(L⊙BS)
;

6: end for

The third, and final, proposed semi-supervised NMF model is (D(·‖·),D(·‖·))-SSNMF, de-

fined by the solution to

argmin
A,B,S≥0

D(W⊙X‖W⊙AS)+λD(L⊙Y‖L⊙BS). (3.9)

We denote this objective function as F4(A,B,S;X,Y). Again, this model seeks a joint factorization

of the data matrix X and target matrix Y; here both the reconstruction error and supervision er-

ror are penalized by the information divergence error function. The multiplicative updates are

derived as follows. The gradients of F4(A,B,S;X,Y) with respect to A, B, and S are, respectively

∇AF4 = WS⊤
−

[
W⊙X

W⊙AS
⊙W

]

S⊤,

∇BF4 = LS⊤
−

[
L⊙Y

L⊙BS
⊙L

]

S⊤, and

∇SF4 =−A⊤

[
(W⊙X)

(W⊙AS)
⊙W

]

+A⊤W−λB⊤

[
(L⊙Y)

(L⊙BS)
⊙L

]

+λB⊤L.

The multiplicative updates of Algorithm 5 are given by
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A ← A−Γ⊙∇AF4 for Γ=
A

WS⊤
,

B ← B−Γ⊙∇BF4 for Γ=
B

LS⊤
, and

S ← S−Γ⊙∇SF4 for Γ=
S

A⊤W+λB⊤L
.

Algorithm 5: (D(·‖·),D(·‖·))-SSNMF multiplicative updates

Require: X,W ∈R
n1×n2
≥0 , Y,L ∈R

k×n2
≥0 , r , λ, N

1: Initialize A ∈R
n1×r
≥0 ,S ∈R

r×n2
≥0 ,B ∈R

k×r
≥0

2: for i = 1, ..., N do

3: A ←
A

WS⊤
⊙

[
(W⊙X)

(W⊙AS)
⊙W

]

S⊤;

4: B ←
B

LS⊤
⊙

[
(L⊙Y)

(L⊙BS)
⊙L

]

S⊤;

5: S ← S⊙

A⊤

[
(W⊙X)

(W⊙AS)
⊙W

]

+λB⊤

[
(L⊙Y)

(L⊙BS)
⊙L

]

A⊤W+λB⊤L
;

6: end for

As previously stated in Section 3.2.2, an instance of each family of models, (‖ · ‖F ,‖ · ‖F )-

SSNMF, (‖ · ‖F ,D(·‖·))-SSNMF, (D(·‖·),‖ · ‖F )-SSNMF, and (D(·‖·),D(·‖·))-SSNMF, correspond to

the MLE in the case that the data X and supervision Y are sampled from specific distributions

with mean given by a latent lower-dimensional factorization model. One might expect that each

model is most appropriately applied when the associated model of uncertainty is a reasonable

assumption (i.e., one has a priori information indicating so). For example, we expect that the

Poisson uncertainty assumption in the data reconstruction error associated to (D(·‖·),‖ · ‖F )-

SSNMF or (D(·‖·),D(·‖·))-SSNMF is likely most appropriate when the data features are word

counts.

We note that the iteration complexity of each of these methods scales with complexity of

multiplication of matrices of size n1 ×max{k,r } and max{k,r }×n2. In our implementation of
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each of these methods, we ensure that there is no division by zero by adding a small positive

value to all entries of divisors. Implementations of these methods are available in the Python

package SSNMF [68]. Finally, we note that the behavior of these models and methods are highly

dependent on the hyperparameters r , λ, and N . One can select the parameters according to

a priori information or use a heuristic selection technique; we use both and indicate selected

parameters and method of selection.

3.2.4 Classification Framework

In this section, we describe a framework for using any of the SSNMF models for classifi-

cation tasks. Given training data Xtrain (with any missing data indicated by matrix Wtrain) and

labels Ytrain, and testing data Xtest (with unknown data indicated by matrix Wtest), we first train

our (R(·‖·),S(·‖·))-SSNMF model to obtain learned dictionaries Atrain and Btrain. We then use

these learned matrices to obtain the representation of test data in the subspace spanned by

Atrain, Stest, and the predicted labels for the test data Ytest. This process is:

1. Compute Atrain,Btrain,Strain as argmin
A,B,S≥0

R(Wtrain ⊙Xtrain,Wtrain ⊙AS)+λS(Ytrain,BS).

2. Solve Stest = argmin
S≥0

R(Wtest ⊙Xtest,Wtest ⊙AtrainS).

3. Compute predicted labels as Ŷtest = label(BtrainStest), where label(·) assigns the largest en-

try of each column to 1 and all other entries to 0 (or more general functions for multi-class

classification).

In step 1, we compute Atrain,Btrain, and Strain using implementations of the multiplicative up-

dates methods described above. In step 2, we use either a nonnegative least-squares method (if

R = ‖ · ‖F ) or one-sided multiplicative updates only updating Stest (if R = D(·‖·)). We note that

this framework is significantly different than the classification framework proposed in [104]; in

particular, we use the classifier B learned by SSNMF, rather than independent SVM trained on

the SSNMF-learned lower-dimensional representation.
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3.3 Numerical Experiments

The 20 Newsgroups dataset [141] is a collection of approximately 20,000 newsgroup docu-

ments commonly used as an experimental benchmark for document classification and cluster-

ing; see e.g., [104]. The dataset consists of six groups partitioned roughly according to subjects,

with a total of 20 subgroups.

Table 3.2: 20 Newsgroups and subgroups.

Groups Subgroups

Computers graphics, mac.hardware, windows.x

Sciences crypt(ography), electronics, space

Politics guns, mideast

Religion atheism, christian(ity)

Recreation autos, baseball, hockey

We consider a subset of the dataset, summarized in Table 3.2. We treat the groups as classes

and assign them labels, and we treat the subgroups as (un-labeled) latent topics in the data. 6

3.3.1 Document Representation

We represent each document by an m-dimensional vector, where m is the number of terms

in the dictionary. Terms could consist of n-grams (e.g. unigrams, one-word sequences, or bi-

grams, two-word sequences).

Let T Fi j denotes the frequency of term ti in document d j . For a document d j , the set of

weights determined by T Fi j may be viewed as a quantitative digest of that document, known

in the literature as the bag-of-words model. The exact ordering of the terms in a document is

ignored; only the number of occurrences of each term is measured

Let DFi represent the number of documents containing term ti . Given n documents, we

construct a term-document matrix X ∈R
m×n consisting of term-frequency inverse-document-

6Our results present this data in its raw form; in particular, we do not capitalize words to reflect common usage.
Results are in no way meant to be a political statement.
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frequency (TF-IDF) weights as

Xi j = T Fi j log

(
n

DFi

)

,

which represent the significance of term ti in document d j [114].

3.3.2 Preprocessing and Choice of Parameters

We remove headers, footers, and quotes from all documents, subsample the dataset to ob-

tain a balanced dataset across classes (1796 document per class), and split the dataset into train

(60%), validation (20%), and test (20%) sets. We consider only unigrams and compute the TF-

IDF representation for documents using TFIDFVectorizer [131]. The Natural Language Toolkit

(NLTK) English stopword list [14], and words appearing in less than 5 documents or more than

70% of the documents were removed. We use the tokenizer [a-zA-Z]+ and limit the vocabu-

lary size to 5000. We compare to the linear Support Vector Machine (SVM) classifier and Multi-

nomial Naive Bayes (NB) (see e.g., [113]) using the Scikit-learn implementation with default

parameters [131], where the groups in Table 3.2 are treated as classes. We consider all SSNMF

models with the training process described in Section 3.2.4 with the maximum number of it-

erations (number of multiplicative updates) N = 50. Our stopping criterion is the earlier of N

iterations or relative error

F (A(N−1),B(N−1),S(N−1);X,Y)−F (A(N ),B(N ),S(N );X,Y)

F (A(0),B(0),S(0);X,Y)
(3.10)

below tolerance, tol where F denotes the objective function.

We also apply SVM as a classifier to the low-dimensional representation obtained from NMF

as follows. We consider the default implementation [131] of ‖ · ‖F -NMF with multiplicative up-

dates, random initialization, and maximum number of iterations N = 400. We apply NMF on

the training data to obtain a vocabulary dictionary matrix Atrain and a document representation

Strain. Next, we train an SVM classifier using Strain and the labels of the train set. We test our

model by (i) computing the document representation of the test data Stest from the learned dic-
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tionary Atrain (i.e., step 2 of Section 3.2.4), and then (ii) applying the trained SVM classifier on

Stest to obtain the test predicted labels.

For both NMF models and all four SSNMF models, we consider rank (the number of topics7)

equal to 13. We select the hyperparameters tol and λ for the models by searching over different

values and selecting those with the highest average classification accuracy on the validation set;

see Appendix A.2.

3.3.3 20 Newsgroups Dataset Experiments

We report in Table 3.3 the mean and standard deviation of the test classification accuracy for

each of the models over 11 trials. We define the test classification accuracy as
∑n

i=1δ(Yi , Ŷi )/n,

where δ(u, v) = 1 for u = v , and 0 otherwise, and where Yi and Ŷi are true and predicted labels,

respectively. We observe that (D(·‖·),‖ · ‖F )-SSNMF produces the highest average classification

accuracy, and is comparable to Multinomial NB.

Table 3.3: Mean (and std. dev.) of test classification accuracy for each of the models on the subset of the
20 Newsgroups dataset described in Table 3.2.

Model Class. accuracy % (sd)

(‖ ·‖F ,‖ ·‖F ) 79.37 (0.47)

(‖ ·‖F ,D(·‖·)) 79.51 (0.38)

(D(·‖·),‖ ·‖F ) 81.88 (0.44)

(D(·‖·),D(·‖·)) 81.50 (0.47)

‖ ·‖F -NMF + SVM 70.99 (2.71)

D(·‖·)-NMF + SVM 74.75 (2.50)

SVM 80.70 (0.27)

Multinomial NB 82.28

In Table 3.3, we separate models that simultaneously perform dimensionality-reduction

and classification from those which only perform classification. Note that the SSNMF mod-

els, which provide both dimensionality-reduction and classification in that lower-dimensional

7A larger choice of rank could be made to learn hidden topics within subgroups.
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Figure 3.2: The normalized Btrain matrix for the (D(·‖·),‖ · ‖F ) SSNMF decomposition corresponding to
the median test classification accuracy equal to 81.78.

space, do not suffer great accuracy loss which suggests that the simultaneously learned low-

dimensional representation serves the classification task well. The SSNMF framework provides

an intermediate layer that allows for additional interpretability by representing the data points

in the low-dimensional topics space, where we learn about the shared and discriminative topics

between classes. This serves the purpose of topic modeling (dimensionality reduction and clus-

tering) and classification. Further, we observe that (D(·‖·),‖ ·‖F )-SSNMF performs significantly

better than D(·‖·)-NMF + SVM in terms of accuracy emphasizing the importance of learning

simultaneously a linear classifier and a low-dimensional representation. In Appendices A.2 and

A.3, we present NMF and SSNMF model results, and compare keywords, classifier matrices, and

clustering performance.

Table 3.4: Top keywords representing each topic of the (D(·‖·),‖ · ‖F )-SSNMF model referred to in Fig-
ure 3.2.

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6 Topic 7 Topic 8 Topic 9 Topic 10 Topic 11 Topic 12 Topic 13
would game god x would game players people would one israel like god
space team would thanks armenian one team israel chip us guns anyone people

government car one anyone one like car gun key get people available church
use games jesus graphics people car last right algorithm could gun key one
key engine think know fbi baseball year government use like well probably christians

chip year bible use armenians think game us using earth weapons right jesus
get like believe mac israeli get hockey say bit space know phone would

clipper know christian please killed season would jews like know like another religious
one espn christ would fire last go arab system see government also christian

could get say get jews would time one data used would big different

Here, we consider the “typical" decomposition for the (D(·‖·),‖·‖F )-SSNMF by selecting the

decomposition corresponding to the median test classification accuracy. We display in Fig-
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ure 3.2 the column-sum normalized Btrain matrix of the decomposition, where each column

illustrates the distribution of topic association to classes. We display in Table 3.4 the top 10

keywords (i.e. those that have the highest weight in topic column of Atrain) for each topic of the

(D(·‖·),‖ ·‖F )-SSNMF of Figure 3.2.

We (qualitatively) observe from Table 3.4 that topic 5 (“armenian", “fbi"), topic 8 (“arab"),

and topic 11 (“weapons") share common keywords (e.g. “israel", “government", “gun") and

are associated with class Politics; see Figure 3.2. We also observe that topic 1 (“space", “gov-

ernment") and topic 9 (“chip", “key", “algorithm") are associated to class Sciences. Topic 2 is

related to autos (“car", “engine"), topic 6 captures the specific subject of baseball, and topic

7 of hockey. Indeed, all three topics are associated to class Recreation, and topic 12 (“avail-

able",“key",“phone") is shared between Sciences and Recreation. Topics 3 and 13 capture topics

related to religion and beliefs (“god", “believe", “religious") and are associated to class Religion.

Topic 10 (“earth", “space") is shared between Religion and Sciences. Topic 4 captures computer

subjects (“x" for Windows 10, “graphics", and “mac"). Indeed, topic 4 is the only topic associ-

ated to class Computers in Figure 3.2.

While the learned topics in Table 3.4 are not in one-to-one correspondence with the sub-

groups in Table 3.2, these topics appear relatively coherent. We see in Table 3.3 that these

learned topics serve the classification task well; that is, the data representation in this signif-

icantly lower-dimensional space is able to achieve nearly the same accuracy as the higher-

dimensional multinomial NB model.

3.4 Conclusion

In this work, we propose SSNMF models which utilize information divergence on the data

reconstruction term. This is motivated by count data which is often best described as fol-

lowing a Poisson distribution, which leads to the information divergence in the MLE model

[37,74,121]. We demonstrate that these models and that of [104] are MLE in the case of specific

distributions of uncertainty assumed on the data and labels. Further, we provide multiplica-
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tive update training methods for each model, and demonstrate the ability of these models to

perform document classification.

In recent work [69], we further illustrate the promise of these models and training meth-

ods on single-label and multi-label document classification datasets (e.g., Reuters, BBC News).

In future work, we plan to take a Bayesian approach to SSNMF by assuming data-appropriate

priors and performing maximum a posteriori estimation. Further, we will form a general frame-

work of MLE models for exponential family distributions of uncertainty, and study the class of

models where multiplicative update methods are feasible.
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Chapter 4

Detecting Short-Lasting Topics Using Nonnegative

Tensor Decomposition

4.1 Introduction

Topic modeling is an unsupervised machine learning technique used to reveal latent themes

from large text datasets. Dynamic topic modeling investigates how topics evolve in a se-

quentially organized corpus of documents, where the data is typically divided by time slices

[16, 80, 81, 145]. Temporal text data, such as news articles or Twitter feeds, often consists of

a mixture of long-lasting trends and popular but short-lasting topics of interest. A truly suc-

cessful topic modeling strategy should be able to detect both types of topics and clearly locate

them in time. However, we find that Latent Dirichlet Allocation (LDA) and Nonnegative Matrix

Factorization (NMF), two popular classic methods in topic modeling, do not detect such short-

lasting topics on real-world datasets of interest when the temporal data is aggregated along

the time dimension. On the contrary, we find that nonnegative CANDECOMP/PARAFAC ten-

sor decomposition (NCPD) [27, 71] can successfully detect transient topics on semi-synthetic

and real-world text datasets. In LDA, one models a topic by a probability distribution on the

set of words, which are evolved according to a Bayesian scheme by feeding in subsequent time

slices [16, 76]. On the other hand, there are two basic methods of using NMF for dynamic topic

modeling. First, one can factorize each time slice independently using NMF [3, 101, 103, 124].

Second, one can first concatenate all the time slices along the documents dimension and de-

compose the resulting matrix using NMF with a fixed dictionary to obtain common topics; the

evolution of such topics is then found by computing their contribution in each time slice [42].

We note that it is natural to encode a sequence of documents as a 3-dimensional tensor, a

common algebraic representation for high-dimensional arrays, where the three modes corre-
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spond to words, documents, and time, respectively. The crucial step of (dynamic) topic mod-

eling is to decompose high-dimensional data (tensors) into interpretable representations with

attention to the temporal information. In addition, one may also be interested in finding such

decompositions with some additional structure, such as nonnegativity, which allows for inter-

pretability of topics [1] as opposed to traditional matrix factorization approaches like principal

component analysis (PCA) where factors often cancel due to subtractive combinations [103].

The proposed method based on nonnegative CANDECOMP/PARAFAC tensor decomposi-

tion (NCPD) [27,71] processes the entire 3-dimensional tensor at once by finding three nonneg-

ative factor matrices of shape (words×topics), (documents×topics), and (time×topics)

such that their outer product approximates the original 3-dimensional tensor. Note that NCPD

for 2-dimensional tensors is equivalent to the nonnegative matrix factorization (NMF) from

Chapter 3, which is well-known to be able to extract spatially localized features when applied to

image data [103]. Roughly speaking, being a 3-dimensional analogue of NMF, NCPD is able to

extract spatio-temporally localized features, where ‘spatial localization’ in our context means

words that form topics, which are also transient by ‘temporal localization’. We also note that

one of the advantages of NCPD and NMF over existing LDA methods is that there are fewer

parameter choices involved in the modeling process. In our experiments, we show that NCPD

successfully detects short-lasting topics that other popular methods such as LDA and NMF fail

to fully detect. We demonstrate the ability of NCPD to discover short and long-lasting temporal

topics in semi-synthetic and real-world data including news headlines and COVID-19 related

tweets.

4.1.1 Background and Related Work

In this section, we describe related work in three main areas: dynamic topic modeling, ap-

plications of tensor decompositions, and studies on COVID-19 related tweets.
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Dynamic Topic Modeling

Several works have examined topics and their evolution through time using probabilistic

models [16, 163], nonnegative matrix factorizations [9, 42, 63], and deep learning models [126].

In [16], Blei and Lafferty propose a generative model which is an extension to Latent Dirichlet

Allocation (LDA) to handle a sequentially organized corpus of documents. The applicability of

the dynamic topic model is demonstrated by analyzing over 100 years of articles from the jour-

nal Science aiming to show that this method can be used to analyze the trends of word usage

inside topics. In [163], the authors propose a continuous time dynamic topic model (cDTM)

which uses Brownian motion to model latent topics through a sequential collection of docu-

ments, where a “topic” is a pattern of word use that is expected to evolve over the course of the

collection.

Applications of Tensor Decompositions

Tensor decompositions have many applications in machine learning [95, 134] including

temporal analysis such as discovering patterns [167], discovering time-evolving topics [4,5,95],

predicting evolution [47], modeling the behaviors of drug-target-disease interactions [31], de-

tecting time-evolving phenotypic topics [174], spotting anomalies [125], and identifying fake

news [78]. Tensor methods have also been successfully applied to independent component

analysis [8] and probabilistic topic models [2]. We refer the reader to [95, 134] for surveys that

provide an overview of higher-order tensor decompositions and their applications.

The most related work is [4], where the authors use a nonnegative PARAFAC tensor factor-

ization to analyze Enron email data. They demonstrate that the approach provides more in-

terpretability than nonnegative methods, but do not analyze structural or temporal differences

between matrix or tensor variants. In particular, they group emails by month, and comment

that it is interesting future work to study the effect of varying this granularity. Here, we uncover

the important phenomenon that topics that are short lasting are revealed more readily using

NCPD than by using the matrix variants, suggesting yet another advantage of utilizing higher

mode structures.
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COVID-19 Related Tweets

Analyzing social media using various dynamic topic models has become popular for study-

ing and tracking various public health events around the world [32, 128, 129]. In this work,

we consider data from the social media platform, Twitter. During the COVID-19 pandemic,

Twitter has experienced increased usage including discussion and dissemination of informa-

tion relating to the pandemic [30, 158]. A number of related works consider Twitter and other

social-media data related to the COVID-19 pandemic via various statistical and learning ap-

proaches, with specific aims to understand the effects and prevalence of bots and misinfor-

mation [52, 170], polarization [18, 62], sentiment and emotional state [94, 172], gender differ-

ences [159], racism and xenophobia [175], politics [148], and other aspects [123].

4.1.2 Contribution

Investigating how latent themes emerge, evolve, and fade in temporally dynamic text

datasets may provide valuable insights in understanding both large-scale trends and impactful

shorter-lasting events. Nonnegative factorizations are used ubiquitously for topic identification

and interpretability. However, there is less work that makes use of NCPD for this purpose, mak-

ing it ever more important to study the differences in output when using a matrix versus a tensor

factorization method with temporal data. While some major topics may persist for an extended

period of time, detecting short-lasting topics, that correspond to shorter-lasting, but impactful

events or discussions, is equally important. In all experiments, we find that NCPD successfully

detects both short-lasting and longer-lasting topics, whereas LDA- and NMF-based methods

primarily detect only long-lasting topics. The main contributions of this work are as follows:

• Detect short-lasting topics. We demonstrate nonnegative CANDECOMP/PARAFAC ten-

sor decomposition (NCPD) as a dynamic topic modeling technique able to detect and

accurately represent both long- and short-lasting topics from temporal text data.

• Compare with traditional matrix methods. We show that NCPD performs significantly

better than standard matrix-based topic modeling methods such as LDA and NMF in de-
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tecting topics with short durations on semi-synthetic 20 Newsgroups dataset [141] de-

signed as a benchmark dynamic text dataset, and two real-world datasets: news headlines

and COVID-19 related tweets.

• COVID-19 related tweets. An interesting auxiliary result of this work is the analysis of

Twitter text data related to the COVID-19 pandemic [30]. From the text data, the meth-

ods discover topics trending in news sources, including political events, personal beliefs

about COVID-19, and calls to action, and successfully attribute the topics to the days they

were trending8.

Our code for reproducing experiments is publicly available9.

4.1.3 Organization

In Section 4.2, we describe the dynamic topic modeling methods considered in this work,

namely NMF, LDA, and NCPD. We present numerical experiments comparing the performance

of these methods on (i) semi-synthetic 20 Newsgroups dataset in Section 4.3.2; (ii) COVID-19

related tweets in Section 4.3.3; and (iii) ABC news headlines dataset in Section 4.3.4. Lastly, we

end with a conclusion and discussion of future work in Section 4.4.

4.2 Methods for Dynamic Topic Modeling

In this section, we introduce notation and discuss the dynamic topic modeling methods

NMF, LDA, and NCPD.

4.2.1 Notation

We denote third-order tensors with uppercase calligraphic letters X . Tensors are common

algebraic representations for multidimensional arrays. The order of a tensor is the number of

8The topics learned from data and news references may contain factually inaccurate information. While we
include some news references to validate results, many additional sources exist. We make no claims that these
sources are factually accurate.

9https://github.com/lara-kassab/dynamic-tensor-topic-modeling
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dimensions, which is also referred to as ways or modes [95]. For a matrix X, the vector xk denotes

its kth column. We let ‖ · ‖F and ‖ · ‖1 denote the entrywise Frobenius norm, and the entrywise

L1 norm, respectively. The set of nonnegative real numbers [0,∞) is denoted R≥0. See [95] for

an excellent survey of related definitions and algorithms for tensor decomposition.

4.2.2 Nonnegative Matrix Factorization

Nonnegative Matrix Factorization (NMF) is a popular tool for extracting hidden themes

from text data [20, 98]. For a data matrix X ∈ R
n1×n2
≥0 , one learns a low-rank dictionary A ∈ R

n1×r
≥0

and representation matrix S ∈ R
r×n2
≥0 that minimize ‖X−AS‖2

F , where r > 0 is typically chosen

such that r < min{n1,n2}. Suppose n1 denotes the number of features (in our case unigrams

and bigrams; see e.g. 3.3.1) and n2 the number of documents, then the dictionary matrix A

represents topics in terms of the original features. Each column of the representation matrix

S represents a data point as a linear combination of the dictionary elements with nonnegative

coefficients.

To extract temporal information from a basic NMF decomposition, we perform the follow-

ing [42]. We concatenate Xi ∈R
n1×n2
≥0 for each time slice 1 ≤ i ≤ n3 along the columns to obtain

X ∈ R
n1×(n2·n3)
≥0 where X =

[

X1,X2, · · · ,Xn3

]

. We use NMF to learn a dictionary matrix A from all

the time slices,
[

X1,X2, · · · ,Xn3

]

≈ A
[

S1,S2, · · · ,Sn3

]

,

where A ∈R
n1×r
≥0 , and Si ∈R

r×n2
≥0 is the representation matrix for each time slice i = 1, · · · ,n3. We

analyze topic dynamics through changes in topic prevalence over time in the representation

matrices. We compute the mean topic representation s̄i ∈ R
r×1
≥0 for each time slice i by taking

the average over the columns of the matrix Si . We present s̄i as the columns of the heatmaps

(e.g. Figure 4.3).
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4.2.3 Latent Dirichlet Allocation

Latent Dirichlet Allocation (LDA) is another popular tool for extracting hidden topics from

text data. LDA is a generative probabilistic bag-of-words model of a corpus, where documents

are represented as random mixtures over latent topics, and where each topic is characterized

by a distribution over words [17]. We summarize the generative process of LDA in Algorithm 4.1

(see e.g. [17, 73]), and we detail all the quantities of the model in Table 4.1.

Algorithm 6: Generative model for latent Dirichlet allocation

1: for all topics k ∈ [1,K ] do

2: sample mixture components φk ∼ Di r (β)
3: end for

4: for all documents m ∈ [1, M ] do

5: sample mixture proportion θm ∼ Di r (α)
6: sample document length Nm ∼ Poi ss(ζ)
7: for all words n ∈ [1, Nm] in document m do

8: sample topic index zm,n ∼ Mul t (θm)
9: sample term for word wm,n ∼ Mul t (φzm,n )

10: end for

11: end for

Table 4.1: Quantities in the model of latent Dirichlet allocation [73].

M number of documents in the corpus

K number of topics/mixture components

V number of terms t in vocabulary

α hyperparameter on the mixing proportions (K -vector or scalar if symmetric)

β hyperparameter on the mixture components (V -vector or scalar if symmetric)

θm parameter notation for p(z|d = m), the topic mixture proportion for document m.

One proportion for each document, Θ= {θm}M
m=1 (M ×K matrix)

φk parameter notation for p(t |z = k), the mixture component of topic k.

One component for each topic, Φ= {φk }K
k=1 (K ×V matrix)

Nm document length (document-specific), here modelled with a Poisson distribution

with constant parameter ζ

zm,n mixture indicator that chooses the topic for the nth word in document m

wm,n term indicator for the nth word in document m
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The intuition behind LDA is that documents exhibit multiple topics. The model assumes

that the document at first is empty, then choose a topic from the topic mixture and then a word

from the word mixture of that topic, repeating this process until the document is shaped [39].

This process is repeated for every document in the corpus and assumes that the order of the

words in the documents does not necessarily matter.

In general, there are two approaches that are commonly used to approximate posterior dis-

tributions, Markov Chain Monte Carlo (MCMC) methods and variational inference. In our ex-

periments, we consider symmetric prior distributions and an LDA model that uses online varia-

tional inference [76]. We analyze topic dynamics through changes in topic prevalence over time

in the Θ matrix. We compute the mean topic representation for each time slice i by taking the

average over the row of the matrix Θi , where Θi denotes the i th time slice of Θ. We present the

mean topic representation as the columns of the heatmaps (e.g. Figure 4.4).

4.2.4 Nonnegative CP Tensor Decomposition

Nonnegative CP Tensor Decomposition (NCPD) is a tool for decomposing higher-

dimensional data tensors into interpretable lower-dimensional representations. NCPD factor-

izes a tensor into a sum of nonnegative component rank-one tensors, defined as outer products

of nonnegative vectors [27, 71]. More precisely, given a third-order tensor X ∈ R
n1×n2×n3
≥0 and a

fixed integer r > 0, the approximate NCPD of X seeks matrices A ∈ R
n1×r
≥0 ,B ∈ R

n2×r
≥0 ,C ∈ R

n3×r
≥0 ,

such that X ≈
r∑

k=1
ak ⊗bk ⊗ck , where the nonnegative vectors ak , bk , and ck are the columns of

A,B, and C, respectively. The matrices A, B, and C are referred to as the NCPD factor matrices.

Such factor matrices are found by solving the following minimization problem

argmin
A∈R

n1×r

≥0 ,B∈R
n2×r

≥0 ,C∈R
n3×r

≥0

∥
∥
∥
∥
∥
X −

r∑

k=1

ak ⊗bk ⊗ ck

∥
∥
∥
∥
∥

F

. (4.1)

Note that (4.1) is a non-convex optimization problem, but it is convex for each factor matrix

while the other two factors are held fixed. Leveraging this observation, many proposed algo-
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rithms for solving (4.1) have the nature of block coordinate descent [13, 166], including the

multiplicative update algorithm [150], alternating least squares [27, 71] and its variants [111].

NCPD is considered as a topic modeling technique for tensor data that successfully show-

cases topic variation across all modes of the tensor (including temporal mode(s)) (see e.g., [1,

4, 134]). Namely, suppose we have a third-order tensor data X ∈ R
n1×n2×n3
≥0 where n1 = words

denotes the number of words in the vocabulary, n2 = docs denotes the number of documents,

and n3 = time denotes the number of time slices. Applying NCPD to the third-order tensor data

X , we obtain three factor matrices A,B, and C of shapes (words× r ), (docs× r ), and (time× r ),

respectively, where r = topics equals the number of topics we seek to find. We will be the

most interested in the factor matrices A and C; the columns of A give word representation of the

topics whereas the corresponding columns of C give how their importance evolves through the

time, i.e. the time representation of the topics. The second factor matrix B gives the document

representation of topics, which is of less importance for our purpose of dynamic topic model-

ing. In the heatmaps (e.g., Figure 4.5), we present the factor matrix C and the top keywords for

each topic obtained from A.

4.3 Experiments

In this section, we compare the performance of NMF, LDA, and NCPD methods in identify-

ing temporal topics in several datasets. Section 4.3.2 compares the methods on a semi-synthetic

dataset derived from the popular 20 Newsgroups dataset [141] to serve as a benchmark. Sec-

tion 4.3.3 considers a dataset of the top retweeted tweets from each day during several months

of the COVID-19 pandemic, which was a particularly dynamic period in terms of the amount

of events happening over short periods of time. Finally, we consider a dataset of news head-

lines from the years 2003 to 2019 that contains long-lasting, short-lasting, and periodic topics

in Section 4.3.4. The keyword representation of each of the extracted topics is also provided
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for interpretability10. The number of topics for the semi-synthetic 20 Newsgroups dataset is

chosen to match the known number of article subjects. For the real-world COVID-19 Twitter

and News Headlines datasets, we choose the number of topics to balance readability and the

discovery of relevant events.

4.3.1 Experimental Setup

In all the experiments, documents are converted to term frequency–inverse document fre-

quency (TF-IDF) vector representations (e.g., see Section 3.3.1) using the sklearn TFIDFVector-

izer [131]. We compute NMF of the data matrix using sklearn [131] with nonnegative double

singular value decomposition initialization [19]. We compute NCPD of the tensor data with

multiplicative updates [150] using TensorLy [97] and singular value decomposition initializa-

tion. Lastly, for LDA we construct a bag-of-words corpus using the same dictionary as the

other methods (obtained from the TF-IDF weights) and compute the model using Gensim LDA

model [140] with various numbers of passes and training chunks to save memory on larger

datasets [76]. Our code is publicly available11.

4.3.2 Semi-synthetic Dynamic Dataset Results

20 Newsgroups dataset [141] is a collection of documents divided into six groups partitioned

into subjects, with a total of 20 subgroups. This dataset is commonly used as an experimental

benchmark for document classification and clustering;; see e.g., [55, 75]. We consider a semi-

synthetic dataset constructed from the 20 Newsgroups dataset to illustrate the dynamic topic

modeling performance of NMF, LDA, and NCPD on a simple and well-understood dataset.

We consider only five categories: “Atheism", “Space", “Baseball", “For Sale", and “Windows

X" with a total of 1040 documents. We remove headers, footers, and quotes from all documents

10Each learned topic is represented by a positive linear combination of terms. Terms with larger values in a
particular topic are more significant for that topic and, thus, the terms with the largest values provide interpretable
descriptions of the topics.

11https://github.com/lara-kassab/dynamic-tensor-topic-modeling
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Figure 4.1: Semi-synthetic 20 Newsgroups tensor construction.

and compute the TF-IDF representations of all the documents in the corpus with vocabulary

size equal to 5000. The NLTK English stopword list [14], and words appearing in more than

95% of the documents are removed. We organize the dataset into a 5000×26×40 tensor with

dimensions: vocabulary size by number of documents by time. Each time slice consists en-

tirely of articles from the same category, and the categories of the times slices are ordered as:

(“Aethism", time slices 1-2), (“Space", time slices 3-20), (“Baseball", time slices 21-23), (“For

Sale", time slices 24-35), (“Windows X", time slices 36-37), and (“Baseball", time slices 37-40).

We run NMF, LDA, and NCPD as described in Section 4.2 with rank equal to 5 reflecting the

number of categories in the dataset. Learned topics and prevalence of each topic over time are

indicated for each method.

On this semi-synthetic data, NCPD identifies topics associated with each subject and accu-

rately indicates the temporal occurrence of each subject, while NMF and LDA learn topics that

are prevalent during time slices associated with multiple subjects. NCPD learns a single topic

for each subject included in the dataset and accurately attributes highest prevalence to the true

underlying topic in each time slice. NMF and LDA also learn reasonable topics, including topics

corresponding to the longer-lasting “Space" and “For Sale" segments. On this relatively simpler

semi-synthetic data, NMF and LDA detect some but not all of the short-lasting topics. For exam-

ple, NMF’s learned topic 1 spikes in prevalence during the short-lasting “Aetheism" and “Base-

ball" segments, while LDA accurately detects a short-lasting “Windows X" related topic. Both

LDA and NMF learn topics that blend multiple document subjects. For example, for both NMF
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NMF NCPD LDA

1 would, like, think space, would, like would, like, one
2 drive, sale, offer 00, sale, drive edu, use, window
3 space, shuttle, nasa games, game, year space, launch, nasa
4 00, 20, 50 god, believe, religion new, sale, please
5 mac, hm, msu window, widget, application 00, 50, 20

Figure 4.2: The learned topics and prevalence of each extracted topic from the semi-synthetic 20 News-
groups dataset are shown for each of the three models (NMF, NCPD, LDA). The columns of each heatmap
indicate the distribution over the extracted topics for each time slice. The top three keywords corre-
sponding to each topic of the models are provided in the table.

and LDA, the most prevalent topic detected during the “Aetheism" time slices is also present

during the “Space" time slices. The difference in the ability to detect short-lasting topics be-

tween NCPD versus NMF and LDA is even more drastic for the more complex Twitter and News

Headlines datasets (Sections 4.3.3 and 4.3.4).

4.3.3 COVID-19 Related Tweets Dataset Results

The next dataset we consider consists of tweets related to the COVID-19 pandemic [30], col-

lected from February-April 2020. We subsample the dataset to 90,000 tweets by keeping the 1000

most popular tweets per day, so that the number of tweets is the same for each day (“popular-

ity" is measured by the number of retweets)12. We limit the vocabulary size to 5000, remove the

NLTK English stopword list [14] and non-word sequences such as “https". We additionally re-

move words that are essentially synonymous with COVID-19 (such as,“coronavirus" or “covid")

12We would like to note that online versions of the methods can be used to efficiently process larger datasets;
in particular, they can be used to avoid subsampling in the Twitter (Section 4.3.3) and Headlines (Section 4.3.4)
dataset.
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as all the tweets in the dataset are related to this common topic. We run all the methods with

target rank 20 to balance readability and the discovery of relevant events.
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Figure 4.3: The normalized mean topic representation of tweets per day learned via NMF with rank 20.

We present results in the form of heatmaps that summarize both the term representation

and temporal prevalence of topics in Figures 4.3 – 4.5. For NMF and LDA, the mean topic repre-

sentation for each day is given in the columns of the heatmaps, while for NCPD, the factor ma-

trix showcasing the temporal representation of the topics is shown. Each row of the heatmaps

corresponds to a learned topic and a three-term summary of each topic is included for inter-

pretability. The top three terms (unigrams and bigrams) are listed for each topic. Each of the

methods recovers common large trends in the data. Generally, China-related topics are most

prominent in early and mid February. The prevalence of these topics then decreases in mid

February. A topic relating to new cases spikes in prevalence in mid February as outbreaks begin

to occur around the world. In late February to mid March, a topic relating to U.S. President

Trump and his administration’s response spikes in prevalence. Separate “social distancing",

“stay home", and “lockdown" topics begin in early to mid March. These topics typically persist

throughout April. On the other hand, certain topics are only present for a short period of time,
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Figure 4.4: The mean topic representation of tweets per day learned via LDA with rank 20.
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Figure 4.5: The normalized factor matrix of NCPD on the tweets dataset with rank 20.

and such topics were discovered by NCPD only (see Figure 4.5). Several such short-lasting top-

ics are detected by NCPD in February (Figure 4.5). For example, topic 2 relating to the beliefs

surrounding eating meat and COVID-19 peaks on February 2 ( [165]), and topic 19 related to the
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passengers of the cruise ship, Diamond Princess, peaks on February 5 ( [86]). Further, political

topics such as topic 3 relating to President Trump’s claims of COVID-19 being the Democrats’

new hoax peaks on February 28 ( [119]), and topic 9 relating to Vice President Mike Pence’s ap-

pointment as chair of the White House Coronavirus Task Force peaks on February 26 ( [132]).

Other topics related to deaths include topic 10 on the death of the Chinese doctor, Dr. Li Wen-

liang ( [7]), which peaks on February 6, and topic 16 related to the first death in Washington

State due to COVID-19, which peaks on February 28 (compare with [120]). Lastly, topics related

to South Korea include topic 15 and 20, which are most prominent in February 20-22 ( [156]).

Topic 20 captures “cases/new cases" events related to the outbreak in South Korea more gener-

ally, whereas topic 15 captures the outbreak event in Iran.

The fact that the short-lasting topics are discovered at similar times to related news articles

additionally demonstrates how quickly events are discussed on Twitter. We also observe that

in the first months of the pandemic general Twitter discussion was less homogeneous, leading

to greater variety of popular short-lasting topics appearing. Later on, primarily longer-lasting

topics are detected by all methods.

4.3.4 News Headlines Dataset Results

A Million News Headlines is a dataset containing news headlines published over a period of

17 years sourced from the Australian news source ABC [99]. The dataset includes noteworthy

global events from February-2003 to December-2019 (203 months total) with a focus on Aus-

tralia. We consider 700 headlines randomly selected per month with a total of 142,100 head-

lines in the entire dataset. We compute a TF-IDF representation for documents, and limit the

vocabulary size to 7000. The NLTK English stopword list [14], "abc", and words appearing in

more than 70% of the documents or less than 5 documents were removed. We run NMF, LDA,

and NCPD with rank equal to 25 to balance readability and the discovery of relevant events.

The dataset contains short-lasting and long-lasting topics along side a temporal structure of

periodic topics (which we also find much easier to discover with NCPD).
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Figure 4.6: The normalized mean topic representation of headlines per month learned via NMF with
rank 25.

All of the methods feature several persistent topics, including those trending in earlier and

later years only. The majority of such topics are generic and refer to the state entities, society, or

police, rather than specific events, e.g., NMF topic 15 (“australian, open, market"), LDA topic 18

(“man, court, murder"), or NCPD, topic 4 (“police, new, us"). There are common topics among

them, such as the one related to the government, including NMF, topic 5 (“govt, urged, vic"),

LDA, topic 11 (“health, report, govt"), and NCPD, topic 13 (“govt, closer, pm").

Furthermore, we observe that NMF picks up only the topics that persist through time, as we

observed in the previous sections. Some of the topics discovered by LDA seem to refer to more

time-localized events, such as, LDA, topic 6 (“found, canberra, dead"). However, each topic

discovered by LDA includes articles throughout the whole time span.

On the other hand, NCPD for topic modeling (Figure 4.8) discovers a range of short-lasting

events, such as the swine flu outbreak peaking in Spring 2019 ( [77]) (topic 20, “swine, flu, case"),

federal elections in 2009 (topic 24, “election, federal, 2019"), the “Boxing day tsunami" on De-
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Figure 4.7: The mean topic representation of headlines per month learned via LDA with rank 25.

cember 26th, 2004 ( [161]) (topic 8, “tsunami, aid, toll"), and others. Moreover, some learned

topics trend periodically throughout the years, being related to a specific time of the year. For

example, topic 9 (“budget, federal, may") trends every spring, but especially in 2014, while Box-

ing day shopping events are present each December (topic 21, “christmas, day, boxing"). We

conclude the discussion of the NCPD results with a comparison between the topics 1 and 2,

both having “interview" as the most frequent word. Topic 1 (“interview, police, man") refers to

more generic police-suspect interviews and is prevalent across several years, whereas topic 2

(“interview, nathan, john") likely refers to popular interview(s) with public figures.

4.4 Conclusion

We demonstrate nonnegative CANDECOMP/PARAFAC decomposition (NCPD) as a power-

ful dynamic topic modeling technique capable of detecting short-lasting and periodic topics

along with long-lasting topics in dynamic text datasets (including news headlines and Twitter

feeds). We compare NCPD to other popular dynamic modeling techniques based on NMF and
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Figure 4.8: The normalized factor matrix of NCPD on the News Headlines dataset with rank 25.

LDA where temporal data is aggregated along the time dimension. We observe that on the sim-

pler semi-synthetic dataset all methods are able to detect short and long-lasting topics, while

NCPD is the only method able to detect and accurately represent short-lasting topics in the

COVID-19 Twitter dataset and the short-lasting and periodic topics in the headlines dataset.

We discuss and compare the temporal topic patterns learned through each of these methods.

We validate some learned topics against news sources, and show that NCPD accurately discov-

ers topics trending in news sources, and successfully attributes them to the period of times they

were trending.

In recent work [89], we demonstrate an online version of the NCPD algorithm as a method

to reduce computation time for large-scale tensors while preserving the temporal patterns of

the topics. For large datasets, online NCPD serves as a viable alternative for learning topics and

their temporal patterns, retaining the ability to detect short-lasting topics. Further, we propose

a quantitative measure of the topic length and numerically demonstrate the variability of the

topics discovered by NCPD (as well as its online variant).
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Chapter 5

Conclusion

In this dissertation, we propose three techniques that take into account underlying structure

in large-scale data to produce better or more interpretable results for machine learning tasks.

The first technique is an iterative method for matrix completion designed to handle large-scale

datasets and take into account sparsity structure in the missing values to improve recovery.

The second is a semi-supervised nonnegative matrix factorization formulation with informa-

tion divergence as an error function to better model count data and learn a low-dimensional

representation that serves a (semi-)supervised machine learning task. The third is a dynamic

topic modeling technique that uses nonnegative tensor decomposition to simultaneously pro-

cess all the modes of the data tensor (e.g. vocabulary, documents, time), resulting in a more

time-localized lower-dimensional representation than traditional matrix methods.

In Chapter 2, we describe our work [88] on iterative methods for matrix completion with

sparsity-based structure in the missing entries whereby the vector of missing entries is close

in the ℓ0 or ℓ1 norm sense to the zero vector (or more generally, to a constant vector). We

adapt an iterative algorithm for low-rank matrix completion to take into account sparsity-based

structure in unobserved entries by adjusting the IRLS-p algorithm studied in [117]. We also

present a gradient-projection-based implementation, called Structured sIRLS (motivated by

sIRLS in [117]). Many research directions remain open in terms of defining matrix comple-

tion algorithms for more general structures in the missing entries. This includes the case where

the probability that an entry is observed or not may depend on more than just the value of that

entry; perhaps on the row and/or column the missing entry belongs to. Other interesting direc-

tions include extending such methods to higher-order tensors with certain underlying low-rank

and sparsity structures.

In Chapter 3, we describe our work [69] on semi-supervised nonnegative matrix factoriza-

tion (SSNMF) for learning tasks which use utilize information divergence as an error function.
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This is motivated by count data which is often best described as following a Poisson distribu-

tion, which leads to the information divergence in the MLE model [37, 74, 121]. We provide

motivation for these models as maximum likelihood estimators, derive training methods using

multiplicative updates for each new model, and demonstrate the application of these mod-

els document classification (e.g., 20 Newsgroups dataset). Interesting future directions include

adapting the algorithm for other (semi-)supervised learning tasks such as regression and gen-

eralizing such algorithms for higher-order tensors.

In Chapter 4, we describe our work [89] on dynamic topic modeling for temporal text

dataset using nonnegative CANDECOMP/PARAFAC tensor decomposition (NCPD). We show

that NCPD successfully detects short-lasting topics in dynamic text datasets that other pop-

ular methods such as latent Dirichlet allocation (LDA) and nonnegative matrix factorization

(NMF) fail to fully detect. We demonstrate the ability of NCPD to discover short, long-lasting,

and periodic temporal topics in semi-synthetic and real-world data including news headlines

and COVID-19 related tweets. Several future directions include performing such comparisons

between matrix and tensor-based methods on different types of data (e.g. hyperspectral image

data) for topic modeling and other applications.
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Appendix A

Additional SSNMF Models Derivations and Results

We provide in Appendix A.1 the remaining maximum likelihood estimation derivations (1,

3, and 4) from Section 3.2.2, and additional experimental results on the 20 Newsgroups dataset

in Appendices A.2 and A.3.

A.1 Maximum Likelihood Estimation Derivations

First, we demonstrate that the MLE, in the case that the uncertainty on the X and Y observa-

tions is Gaussian distributed, is a specific instance of (‖ · ‖F ,‖ · ‖F )-SSNMF of [104]. Our models

for the distribution of the observed entries of X and Y will assume that the mean is given by an

exact factorization, E[X] = AS and E[Y] = BS, and the uncertainty in each set of observations is

governed by a Gaussian distribution. That is, we consider the hierarchical models for X and Y

in which

Xγ,τ =

r∑

i=1
xγ,i ,τ and xγ,i ,τ ∼N

(

xγ,i ,τ
∣
∣Aγ,i Si ,τ,σ1

)

,

Yη,τ =

r∑

i=1
yη,i ,τ and yη,i ,τ ∼N

(

yη,i ,τ
∣
∣Bη,i Si ,τ,σ2

)

.

Here and throughout, γ and η are row indices of X and Y respectively, τ is a column index of X

and Y, and i indexes the random variable summands which form Xγ,τ and Yη,τ. Note then that

Xγ,τ ∼N

(

Xγ,τ

∣
∣
∣
∣
∣

r∑

i=1
Aγ,i Si ,τ,rσ1

)

and Yη,τ ∼N

(

Yη,τ

∣
∣
∣
∣
∣

r∑

i=1
Bη,i Si ,τ,rσ2

)

due to the summable property of Gaussian random variables. We note that this assumes differ-

ent Gaussian models of uncertainty on the two collections of rows of the NMF (3.4).

Assuming that the set of Xγ,τ and Yη,τ are statistically independent conditional on A, B, and

S, we have that the likelihood
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p(X,Y|A,B,S) =
∏

γ,τ
N

(

Xγ,τ

∣
∣
∣
∣
∣

r∑

i=1
Aγ,i Si ,τ,rσ1

)

∏

η,τ
N

(

Yη,τ

∣
∣
∣
∣
∣

r∑

i=1
Bη,i Si ,τ,rσ2

)

. (A.1)

We apply the monotonic natural logarithmic function to the likelihood, and ignore terms that

do not vary with the factor matrices. This transforms the likelihood function into a (‖·‖F ,‖·‖F )-

SSNMF objective, while preserving the maximizer. That is, the log likelihood (excluding additive

terms which are constant with respect to A, B, and S) is

ln p (X,Y|A,B,S) =+
−

1

2rσ1

∑

γ,τ

(

Xγ,τ−

r∑

i=1
Aγ,i Si ,τ

)2

−
λ

2rσ2

∑

η,τ

(

Yη,τ−

r∑

i=1
Bη,i Si ,τ

)2

=
+
−

1

2rσ1

[

‖X−AS‖2
F +

σ1

σ2
‖Y−BS‖2

F

]

.

Thus, the maximum likelihood estimators for A, B, and S are given by

argmin
A,B,S≥0

‖X−AS‖2
F +

σ1

σ2
‖Y−BS‖2

F .

We see that the MLE in the case of Gaussian uncertainty on both sets of observations, X and

Y, is a specific instance of (‖ · ‖F ,‖ · ‖F )-SSNMF objective where the regularization parameter λ,

which defines the relative weighting of the supervision term, is given as a ratio of the variances

of the distributions.

Next, we demonstrate that the MLE, in the case that the uncertainty on X is Poisson dis-

tributed and on Y is Gaussian distributed, is a specific instane of the (D(·‖·),‖ · ‖F )-SSNMF

model. This MLE derivation follows from that of 2 by swapping the roles of X and Y, and rescal-

ing the resulting log likelihood; however, we include a sketch of the derivation to be thorough.

Again, our models for observed X and Y assume that the mean is given by an exact factoriza-

tion, E[X] = AS and E[Y] = BS, with the uncertainty in X governed by a Poisson distribution and

the uncertainty in Y governed by a Gaussian distribution. That is, we consider the hierarchical

models for X and Y in which
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Xγ,τ =

r∑

i=1
xγ,i ,τ and xγ,i ,τ ∼P O

(

xγ,i ,τ
∣
∣Aγ,i Si ,τ

)

,

Yη,τ =

r∑

i=1
yη,i ,τ and yη,i ,τ ∼N

(

yη,i ,τ
∣
∣Bη,i Si ,τ,σ2

)

.

Note then that

Xγ,τ ∼P O

(

Xγ,τ

∣
∣
∣
∣
∣

r∑

i=1
Aγ,i Si ,τ

)

and Yη,τ ∼N

(

Yη,τ

∣
∣
∣
∣
∣

r∑

i=1
Bη,i Si ,τ,rσ2

)

due to the summable property of Gaussian and Poisson random variables. We note this assumes

a Poisson and Gaussian model of uncertainty on the two collections of rows of the NMF (3.4).

Then proceeding as in (A.1) and (3.6) and assuming that the set of Xγ,τ and Yη,τ are statisti-

cally independent conditional on A, B, and S, we have that the log likelihood (excluding additive

terms which are constant with respect to A, B, and S) is

ln p (X,Y|A,B,S) =+
−

[

D(X‖AS)+
1

2rσ2
‖Y−BS‖2

F

]

.

Thus, the maximum likelihood estimators for A, B, and S are given by

argmin
A,B,S≥0

D(X‖AS)+
1

2rσ2
‖Y−BS‖2

F .

We see that the MLE in the case of Poisson uncertainty on the observations in X and Gaussian

uncertainty on the observations in Y is a specific instance of the (D(·‖·),‖·‖F )-SSNMF objective

where the regularization parameter λ is the inverse of a multiple of the variance of the Gaussian

distribution.

Finally, we demonstrate that the MLE, in the case that the uncertainty on X and Y are Pois-

son distributed, is a specific instance of the (D(·‖·),D(·‖·))-SSNMF model. This result follows

from [28, 48, 160]; we sketch the derivation to be thorough.
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Again, we assume that the distributions of the observed X and Y have means given by an

exact factorization, E[X] = AS and E[Y] = BS, with the uncertainty in both governed by a Poisson

distribution. That is, we consider the hierarchical models for X and Y in which

Xγ,τ =

r∑

i=1
xγ,i ,τ and xγ,i ,τ ∼P O

(

xγ,i ,τ
∣
∣Aγ,i Si ,τ

)

,

Yη,τ =

r∑

i=1
yη,i ,τ and yη,i ,τ ∼P O

(

yη,i ,τ
∣
∣Bη,i Si ,τ

)

.

Note then that

Xγ,τ ∼P O

(

Xγ,τ

∣
∣
∣
∣
∣

r∑

i=1
Aγ,i Si ,τ

)

and Yη,τ ∼P O

(

Yη,τ

∣
∣
∣
∣
∣

r∑

i=1
Bη,i Si ,τ

)

due to the summable property of Poisson random variables. We note that assumes different

Poisson models of uncertainty on the two collections of rows of the NMF (3.4).

Then proceeding as in (A.1) and (3.6) and assuming that the set of Xγ,τ and Yη,τ are statisti-

cally independent conditional on A, B, and S, we have that the log likelihood (excluding additive

terms which are constant with respect to A, B, and S) is

ln p (X,Y|A,B,S) =+
− [D(X‖AS)+D(Y‖BS)] .

Thus, the maximum likelihood estimators for A, B, and S are given by

argmin
A,B,S≥0

D(X‖AS)+D(Y‖BS).

We see that the MLE in the case of Poisson uncertainty on the observations in X and Y is a

specific instance of the (D(·‖·),D(·‖·))-SSNMF objective where the regularization parameter is

λ= 1.
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A.2 Results of SSNMF Models on 20 Newsgroups Dataset

In this section, we include additional analysis and results for the SSNMF models on 20

Newsgroups dataset. First, we summarize in Table A.1 the hyperparameters used for the

methods described in Section 3.3. We select the hyperparameters that result in the high-

est average classification accuracy of the validation set. For the SSNMF models, we search

over tol ∈ {10−4,10−3,10−2}, and λ ∈ {10,102,103}, and for the NMF model, we search over

tol ∈ {10−5,10−4,10−3,10−2}.

Table A.1: Hyperparameter selection for NMF and SSNMF models by selecting the hyperparameters that
result with the highest average classification accuracy of the validation set (over 10 trials).

Model hyperparameters

(‖ ·‖F ,‖ ·‖F ) tol = 10−4, λ= 102

(‖ ·‖F ,D(·‖·)) tol = 10−4, λ= 10

(D(·‖·),‖ ·‖F ) tol = 10−3, λ= 102

(D(·‖·),D(·‖·)) tol = 10−3, λ= 103

‖ ·‖F -NMF tol = 10−4

D(·‖·)-NMF tol = 10−5

As in Section 3.3, we consider the “typical" (achieving median accuracy within trials) de-

composition for the NMF models, and the remaining SSNMF models. We display in Figures A.1-

A.3 the Btrain matrices for each of the median accuracy SSNMF decompositions, and in Fig-

ures A.4 and A.5 the coefficients matrix of the SVM classifier for the median accuracy for each of

‖ · ‖F -NMF and D(·‖·)-NMF decompositions, respectively. Further, we report in Tables A.2-A.6

the top 10 keywords representing each topic for each of the models.

For the (‖ · ‖F ,‖ · ‖F )-SSNMF model, we (qualitatively) observe from Table A.2 that topics 4,

5, 7 and 10 are overlapping topics associated to the class Computers; see Figure A.1. Similarly,

topics 1 and 9 that capture the subjects of crypt(ography), electronics, and space, have various

overlapping keywords (“space", “key",“chip"), and are associated with the class Sciences. On

the other hand, topics associated to class Politics and Religion are less overlapping. Lastly, top-
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Figure A.1: The normalized Btrain matrix for (‖ · ‖F ,‖ · ‖F )-SSNMF decomposition corresponding to the
median test classification accuracy equal to 79.44%. Each column is normalized to represent the distri-
bution of the topic over classes.

Table A.2: Top keywords representing each topic of the (‖ · ‖F ,‖ · ‖F )-SSNMF model referred to in Fig-
ure A.1.

Topics Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6 Topic 7 Topic 8 Topic 9 Topic 10 Topic 11 Topic 12 Topic 13
would people game use x would x game would please god israel god

like israel team thanks software jews thanks car key x church people one
space gun car x c fbi get team could would jesus would would
one one year using know time need like one use one one people

Keywords chip jews hockey window r israel image games space anyone would killed jesus
key would espn know thanks like window baseball use like people armenians believe
use armenian would graphics widget law problem one chip graphics think police christ

good government players pc system arabs windows think know work like jewish religion
phone said nhl program please government mac would get help say well think

edu turkish games anyone motif right version get like apple faith israeli bible
Hard electronics mideast hockey graphics windows guns windows baseball crypt graphics christian guns christian
Score 0.2060 0.6594 0.3411 0.2211 0.1047 0.1466 0.5698 0.7500 0.7641 0.1441 0.5226 0.1625 0.4574
Soft space mideast hockey graphics windows guns windows baseball crypt graphics christian mideast christian

Score 0.3135 0.4560 0.4222 0.2389 0.1951 0.2278 0.3564 0.5933 0.6276 0.2128 0.4983 0.2480 0.4525

ics 3 and 8 are recreation topics (“game", “team", “car") relating to autos where in addition topic

3 (“hockey", “player", “nhl") is specific to hockey and topic 8 (“baseball") is specific to baseball.

Figure A.2: The normalized Btrain matrix for (‖ · ‖F ,D(·‖·))-SSNMF decomposition corresponding to the
median test classification accuracy equal to 79.56%. Each column is normalized to represent the distri-
bution of the topic over classes.
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Table A.3: Top keywords representing each topic of the (‖ · ‖F ,D(·‖·))-SSNMF model referred to in Fig-
ure A.2.

Topics Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6 Topic 7 Topic 8 Topic 9 Topic 10 Topic 11 Topic 12 Topic 13
x israel thanks would would people game ordinary car god game people god

know would x chip one would player yeah team jesus good gun one
would people anyone use key jews hockey monitors game deleted one one would

use government get clipper could israel espn ok games science car guns people
Keywords window israeli mac space space gun would big like would get israel jesus

graphics one sun government like fbi baseball know year moses anyone said church
please fbi graphics key know one new shareware get post great armenian think

software armenians file much get law wings way would passages play government bible
windows armenian one get use fire think anyone one come year well believe

mac also please people chip think players good think commandments better would christian
Hard windows mideast graphics crypt electronics guns hockey graphics autos atheism baseball mideast christian
Score 0.6429 0.3548 0.3719 0.3272 0.6478 0.2784 0.2268 0.0067 0.7676 0.0463 0.0405 0.3865 0.9298
Soft windows mideast windows crypt electronics guns hockey graphics autos christian baseball mideast christian

Score 0.5262 0.3315 0.3821 0.3973 0.5444 0.2988 0.2717 0.0659 0.5669 0.1296 0.1274 0.3363 0.8198

For the (‖ · ‖F ,D(·‖·))-SSNMF model, we (qualitatively) observe from Table A.3 that topic

2 (“armenian"), topic 6 (“jews",“gun", “fire") and topic 12 (“guns") are related political topics

(“people", “government", “israel", “fbi"). The topics are associated to the class Politics; see Fig-

ure A.2. Further, recreation topics include topic 7 (“player", “hockey", “baseball") relating to

hockey and baseball, topic 9 (“car",“team") relating to autos, and a broad topic 11 (“game",

“good", “great", “play", “better"). Lastly, topics 1, 3 and 8 are associated to class Computers.

Topic 1 (“window",“graphics",“software",“windows"), and topic 3 (“mac", “sun", “graphics"),

are specific in comparison to topic 8 (“ordinary",“yeah",“monitor") which is broad and not as

informative.

Figure A.3: The normalized Btrain matrix for (D(·‖·),D(·‖·))-SSNMF decomposition corresponding to the
median test classification accuracy equal to 81.39%. Each column is normalized to represent the distri-
bution of the topic over classes.

For the (D(·‖·),D(·‖·))-SSNMF model, we observe from Figure A.3 that topic 5 (“space",

“moon", “time"), topic 7 (“key",“chip",“clipper"), and topic 11 (“data",“government",“buy") are
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Table A.4: Top keywords representing each topic of the (D(·‖·),D(·‖·))-SSNMF model referred to in Fig-
ure A.3.

Topics Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6 Topic 7 Topic 8 Topic 9 Topic 10 Topic 11 Topic 12 Topic 13
thanks game israel god would god key would game people one car x

x games one would space atheists would people win gun like team anyone
mac would arab one could one chip government etc get use game thanks

know think people jesus u people clipper gun turbo right get year graphics
Keywords would get government church use would could said know jews would like get

problem back would people moon think space israel games armenian think hockey use
please hit fire believe time paul know one get well data players window

use well well bible old jesus one jews would us anyone last would
one one like think one know using armenians cup time government one please
se like israeli christian may also like batf find armenians buy baseball know

Hard graphics hockey mideast christian crypt atheism crypt guns autos mideast electronics baseball windows
Score 0.2982 0.0993 0.4487 0.8947 0.1246 0.0876 0.5897 0.1875 0.0545 0.3526 0.3256 0.8521 0.7475
Soft graphics hockey mideast christian crypt christian crypt mideast hockey mideast space baseball windows

Score 0.3682 0.1746 0.3643 0.7596 0.2175 0.1989 0.4307 0.2602 0.1306 0.3252 0.3199 0.6653 0.6240

associated with class Sciences. Further, we (qualitatively) observe from Table A.4 that topic 4

(“church", “believe",“bible"), and topic 6 (“atheists", “paul") are both related to religion (“god",

“jesus") and are associated to class Religion; see Figure A.3. Lastly, topic 12 (“car", “hockey",

“players", “baseball") is a recreation topic that captures autos, hockey, and baseball subjects,

whereas topics 2 and 9 are broad and not as informative.

Figure A.4: The coefficients matrix of the SVM classifier (with NMF-‖ · ‖F ) corresponding to the median
test classification accuracy equal to 71.67%. Here, all negative coefficients are thresholded to 0, and then
each column is normalized to showcases the distribution of the topic over classes.

For the NMF-‖ · ‖F model, we (qualitatively) observe from Table A.5, that topic 12 (“car",

“engine", “oil") is related to autos, and topic 4 (“game", “team", “hockey",“baseball") captures

other recreation games like hockey and baseball. We observe in Figure A.4 that topics 4 and

12 are associated to the class Recreation. Further, topic 8 (“book",“true",“evidence") relates to

atheism, and topic 11 (“god",“jesus",“christ",“faith") relates to religion and specifically Chris-
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Table A.5: Top keywords representing each topic of the NMF-‖·‖F + SVM model referred to in Figure A.4.

Topics Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6 Topic 7 Topic 8 Topic 9 Topic 10 Topic 11 Topic 12 Topic 13
people key armenian game thanks israel would one x get god car know

gun chip armenians team please jews like two r mac jesus like anyone
right clipper turkish games mail israeli think book window use christ cars need

government encryption genocide year advance arab could another server space faith engine something
Keywords fbi keys armenia hockey edu jewish make true windows system believe good like

guns algorithm turks baseball e arabs say point motif software sin new us
law escrow soviet last anyone palestinian church evidence display drive bible v anybody
us phone turkey players list palestinians might may running apple us price heard

think government muslim season send peace someone thing application mhz christians oil sure
batf number russian espn address israelis something word sun monitor lord dealer program

Hard guns crypt mideast hockey graphics mideast space atheism windows mac christian autos electronics
Score 0.7080 0.5266 0.2576 0.7947 0.2647 0.3854 0.1655 0.2115 0.5781 0.6499 0.5436 0.6138 0.0864
Soft guns crypt mideast hockey graphics mideast christian atheism windows mac christian autos graphics

Score 0.4408 0.3594 0.2025 0.5635 0.2149 0.2707 0.1426 0.1722 0.4083 0.4519 0.3427 0.4238 0.0929

tianity. Lastly, we observe in Figure A.4 that topic 13 is a shared across 3 classes (Computers,

Sciences, and Religion), and is not as informative as the other topics.

Figure A.5: The coefficients matrix of the SVM classifier (with D(·‖·)-NMF) corresponding to the median
test classification accuracy equal to 74.89%. Here, all negative coefficients are thresholded to 0, and then
each column is normalized to showcases the distribution of the topic over classes

Table A.6: Top keywords representing each topic of the D(·‖·)-NMF + SVM model referred to in Figure A.5.

Topics Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6 Topic 7 Topic 8 Topic 9 Topic 10 Topic 11 Topic 12 Topic 13
armenian x sound get com israel god list thanks space car game key
armenians r power like deleted gun jesus event anyone gas drive team chip

turkish file one going think people church mailing please earth price games government
p window time time one fbi christian widget know would apple year clipper

Keywords turkey edu copy think believe jews bible points would nasa mac baseball phone
genocide c like one exist israeli one draw post test k hockey encryption

greek windows use back say guns christians white mail ground card players keys
armenia server problem would atheism arab christ data help shuttle video season public

turks display would know perhaps fire faith graphics someone orbit buy play law
russian program signal really argument would religion call information high speed win security

Hard mideast windows electronics baseball atheism guns christian windows graphics space mac hockey crypt
Score 0.2860 0.6528 0.3306 0.1884 0.3305 0.4818 0.4819 0.1860 0.2328 0.6014 0.5896 0.7864 0.6910
Soft mideast windows windows baseball atheism guns christian windows graphics space mac hockey crypt

Score 0.2577 0.5010 0.2424 0.2306 0.2512 0.3281 0.5430 0.1856 0.2301 0.4237 0.4435 0.5902 0.5032

For the D(·‖·)-NMF model, we (qualitatively) observe from Table A.6, that topic 3

(“sound",“power") is related to electronics, topic 10 (“space", “gas", “earth") is related to
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space, topic 13 (“key",“chip",“government") is related to cryptography. All three topics are

associated to class Sciences. Topic 12 (“game", “team", “hockey",“baseball") captures recre-

ation games like hockey and baseball and is associated to class Recreation. Further, topic

7 (“god",“jesus",“church") relates to religion and specifically Christianity and is associated to

class Religion. Lastly, we observe in Figure A.5 that topic 4 is a shared across Religion and Recre-

ation, and is not as informative as the other topics.

A.3 Clustering Analysis on 20 Newsgroups Dataset

In this section, we measure the performance of the NMF and SSNMF topic models with a

clustering-motivated score. In these experiments, we measure the similarity of ground-truth

clusters, encoded by a given label matrix M, to NMF/SSNMF computed clusters, encoded by

the representation matrix S. We denote by M the (column-wise) one-hot encoded label matrix

which maps documents to the subgroups to which they belong13, M ∈ {0,1}13×8980 (subgroups

by documents). We let S be the representation matrix computed by NMF/SSNMF, in which the

i th row provides the association of each document with the i th topic.

We employ two approaches to clustering or mixture assignment. The first is hard clustering

in which the documents are assigned to a single cluster corresponding to computed topics. In

this approach, we apply a mask to the representation matrix, Ŝ = label(S), where label(·) assigns

the largest entry of each column to 1 and all other entries to 0. The second approach is soft

clustering in which the documents are assigned to a distribution of clusters corresponding to

the topics. In this approach, we normalize each of the columns of the representation matrix to

have sum 1 to produce Ŝ.

Now, in either approach, we apply a metric P which measures the association between the

ℓth topic-documents association Ŝℓ,• and the best ground truth subgroup-documents associa-

tion, MI ,• that is, for topic ℓ, we define I as

13In the 20 Newsgroups dataset, each document belongs to only one subgroup.
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I = argmax
i

‖Ŝℓ,•⊙Mi ,•‖1

‖Mi ,•‖1
,

and define score P for the ℓth topic as

P (Ŝℓ,•) =
‖Ŝℓ,•⊙MI ,•‖1

‖MI ,•‖1
,

where ‖·‖1 denotes the ℓ1-norm. We note that this metric is similar to that of [168]; we use score

P instead as it allows us to measure clustering performance topic-wise. We also note that the

learned topics of NMF and SSNMF methods need not be in one-to-one correspondence with

the subgroups in Table 3.2 as topics are also learnt for the classification task at hand.

We present in Table A.7 the average (averaged over topics) score P for the representation

matrices computed by each of the NMF/SSNMF models in both the hard-clustering and soft-

clustering settings. The scores P for each topic (for both hard-clustering and soft-clustering)

and the maximizing subgroup (indicated by I ) are listed in the bottom four rows of the keyword

table associated to each model; see the last four rows of Tables A.2-A.6, and A.8.

Table A.7: Listed scores are average over 11 trials; in each trial, we average score P across all topics.

Model Hard Clustering Soft Clustering

(‖ ·‖F ,‖ ·‖F ) 0.3895 0.3647

(‖ ·‖F ,D(·‖·)) 0.3857 0.3703

(D(·‖·),‖ ·‖F ) 0.3874 0.3553

(D(·‖·),D(·‖·)) 0.3874 0.3732

‖ ·‖F -NMF 0.4348 0.3080

D(·‖·)-NMF 0.4879 0.3764

Table A.8: Clustering results for topics of the (D(·‖·),‖ ·‖F )-SSNMF model referred to in Figure 3.2.

Topics Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6 Topic 7 Topic 8 Topic 9 Topic 10 Topic 11 Topic 12 Topic 13
Hard crypt autos christian windows guns hockey hockey mideast electronics space mideast space christian
Score 0.5698 0.4167 0.7332 0.9867 0.5693 0.3046 0.3146 0.1976 0.3106 0.0692 0.2140 0.1115 0.2477
Soft crypt autos christian windows mideast hockey baseball mideast electronics crypt mideast electronics christian

Score 0.3284 0.3260 0.5527 0.9181 0.4010 0.3006 0.3056 0.2689 0.2733 0.1577 0.2601 0.2217 0.3571
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