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ABSTRACT 
 
 

REGIONAL DATA REFINE LOCAL ABUNDACE MODELS: MODELING PLANT 

SPECIES ABUNDANCE DISTRIBUTIONS ON THE CENTRAL PLAINS 

 
 

Species distribution models are frequently used to predict species occurrences in 

novel conditions, yet few studies have examined the effects of extrapolating locally 

collected data to regional scale landscapes. Using boosted regression trees, I examined 

the issues of spatial scale and errors associated with extrapolating species distribution 

models developed using locally collected abundance data to regional extents for a native 

and alien plant species across a portion of the central plains in Colorado. Topographic, 

remotely sensed, land cover and soil taxonomic predictor variables were used to develop 

the models. Predicted means and ranges were compared among models and predictions 

were compared to observed values between local and regional extent models. All models 

had significant predictive ability (p < 0.001).  My results suggested: (1) extrapolating 

local models to regional extents may restrict predictions; (2) modeling species abundance 

may prove more useful than models of species presence; (3) multiple sources of 

predictors may improve model results at different extents; and (4) regional data can help 

refine and improve local model predictions. Regional sampling designed in concert with 

large sampling frameworks such as the National Ecological Observatory Network, Inc 

(NEON) may improve our ability to monitor changes in local species abundance. 
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Introduction 

The application of species distribution models (SDMs) has increased in the past 

decade. Advancements in computer capabilities and powerful geographic information 

systems have facilitated the modeling of complex ecological interactions to predict 

species distributions (Guisan & Thuiller, 2005; Elith & Leathwick, 2009).  Species 

distribution models are increasingly being used to extrapolate information in space and 

time, often beyond the extent of the data used to develop the model (Elith et al., 2010). 

Extrapolating models developed using local data to regional extents can save valuable 

and limited resources (e.g. personnel, time, and money). While insights may be gained 

through extrapolation, recent studies have suggested this may not always be the best 

approach when modeling species distributions in novel environments (Pearson et al., 

2006).  The majority of SDMs use presence-absence or presence-only data (e.g., (Kumar 

et al., 2009), and there has been little investigation into extrapolation of the spatial 

distribution of species abundance. Abundance data require more resources to collect and 

are less common than presence-absence and presence-only data. At the same time, land 

managers need accurate predictions of species abundance to guide decisions. Predicted 

abundance allows managers to prioritize management actions that may not be possible 

with predicted presence alone. Furthermore, the effects, accuracy and predictive power of 

extrapolating abundance species distribution models to regional extents using only locally 

collected data are largely unknown. 

Scaling ecological patterns and processes has always been a challenge for 

ecologists (Levin, 1992). Spatial Scale can be thought of in two ways; spatial extent and 

resolution (also referred to as grain; Wiens, 1989). Spatial scale both in terms of extent 
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and resolution has significant implications on the ability to identify patterns within and 

among scales. Although there is no single spatial extent for ecological studies, the most 

studies usually only identify one scale. This can have significant limitations on our ability 

to not only identify ecological patterns, but also to understand the processes driving those 

patterns (Scott et al., 2002). For example, the drivers of change at a local scale are often 

influenced more by past disturbances of that area, while drivers at a continental scale are 

primarily climatic (Brown et al., 2008). The importance of scale in ecological study is 

increasingly being recommended and being included into more study designs, such as 

those of the National Ecological Observatory Network, Inc. (NEON).  

Ecologists have been quantifying species distributions since Grinell’s (1917) 

observation of the relationships between a species and the environmental conditions 

where it is found. Hutchinson (1957) later expanded this concept, describing this 

relationship as a n-dimensional hypervolume of biotic and abiotic interactions where a 

species can survive and persist. This has often been referred to as the fundamental niche 

or the potential distribution in a geographical space. A species realized niche is the 

portion of the fundamental niche that is actually occupied by the species, and includes all 

the constraints on the species’ distribution. While environmental variables are the most 

common and readily available predictors used to define the niche, other factors such as 

competition, dispersal barriers, and land use (Pulliam, 2000) can also be important 

contributors but are more difficult to include in SDMs. These factors are not only more 

challenging to quantify, but can also vary significantly with time and space. The niche 

can be thought of in two spaces; the environmental space and the geographic space. The 

environmental space is the environmental values associated where a species is found, 



 3 

while the geographic space is the physical location of a species on a landscape. Of the 

many terms that have been used to describe the species-environment relationship, I will 

use ecological niche to refer to this relationship. 

Species distribution models are numeric tools that relate species response data 

(either occurrence or abundance) with environmental characteristics at those locations 

(Elith & Leathwick, 2009). These models have been used to meet many management 

objectives including identifying previously unknown populations of endangered species 

(Evangelista et al., 2008b), predicting vulnerable habitats to species invasions (Stohlgren 

et al., 2002), estimating species richness (Graham & Hijmans, 2006), and many others 

(Elith & Leathwick, 2009). Species distribution models allow ecologists to combine 

current knowledge of species-environment relationships with advanced algorithms that 

explore and test multiple interactions to model the ecological niche of a species. Many 

SDMs have been developed and are commonly used, including Maxent (Phillips et al., 

2006), boosted regression trees (BRT; Friedman et al. 2000), multivariate adaptive 

regression splines (Friedman, 1991),  and Random Forests (Breiman, 2001). Each 

algorithm offers strengths and weaknesses for modeling species distributions and 

multiple studies compare these methods (Araujo & New, 2007; Elith & Graham, 2009; 

Kumar et al., 2009; Parisien & Moritz, 2009). Although these models are often compared 

using the same data set, environmental predictors, and spatial scale, it is important to 

consider that SDMs are designed to handle different types of data sets and perform best 

under specific circumstance. For example, Maxent is designed specifically for presence-

only data, while BRTs require presence and absence data. Therefore, when absence data 

are available, BRTs may be the more appropriate method to use. The primarily 
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assumptions of SDMs are the species being modeled are at an equilibrium with the 

environment (Guisan & Zimmermann, 2000) and the environmental variation has been 

adequately sampled within the extent being modeled. 

While SDMs were developed to model species within the environment from 

which the data were collected, these models are now being used to predict species 

distributions in novel conditions not representative of the data used to develop the model. 

This has been referred to as model projecting, generalizing, transferring, and 

extrapolating (Fielding & Haworth, 1995; Randin et al., 2006), hereafter referred to as 

extrapolation. Species distribution model extrapolation has been used to predict the 

distribution of a species under climate change (Penman et al., 2010), in hypothesized 

susceptible regions of invasion (Medley, 2010), and to predict a species distribution over 

large extents (Mateo-Tomas & Olea, 2010). In these applications of model extrapolation 

in time and space, the model is being applied to novel environmental conditions not 

captured in the original data. Efforts have been made to improve extrapolated model 

predictions in space and time using ensemble modeling (Araujo & New, 2007), scaling 

functions (Miller et al., 2004), or improving model calibration (Phillips & Elith, 2010). 

Previous studies have shown extrapolating SDMs to regions not representing the 

complete range of environmental conditions can lead to highly liberal predictions of 

occurrence (Thuiller et al., 2004). On the other hand, regional data are more difficult to 

collect and require more resources. If accurate regional predictions can be made using 

only locally collected data through model extrapolation land managers can save valuable 

resources. 
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Identifying and predicting the spatial pattern of species abundance has advanced 

through the increased use of geographic information systems and spatial models (Sagarin 

et al., 2006). Before the advent of powerful computers and geographic information 

systems, previous studies predicting abundance primarily used regression methods 

(Evangelista et al., 2004; Crall et al., 2006). While these methods rarely produced a map, 

they were still capable of predicting species abundance given a set of environmental 

variables. These methods are still a foundation to many of the recently developed models 

(e.g. random forests, boosted regression trees). Managers are not only interested in the 

pattern and probability of presence, but also predicted abundance. The number of species 

distribution models using abundance data is small in comparison to those using presence-

absence or presence-only data. This is largely due to the scarcity of abundance data. 

Modeling abundance data requires more robust statistical models than presence-absence 

data (Austin, 2002). Most SDMs are designed exclusively for presence-only or presence-

absence data and are not compatible with abundance data. These models predict the 

probability of presence or probability of suitable habitat rather than a measure of the 

number of species. Still, abundance models have occasionally been used to predict 

densities and dominance of native and non-native species across the landscape (Strubbe 

et al., 2010). Although abundance data are difficult to acquire, these data can be used 

with boosted regression trees and provide better predictions of species abundance on a 

landscape. 

Alien species continue to be an economic burden for the organizations responsible 

for maintaining ecosystem integrity and processes (Mack et al., 2000). For land 

managers, the task of surveying an entire area for alien species is unrealistic. Modeling 
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abundances of alien species can help managers spatially prioritize detection, control and 

prevention efforts. Furthermore, monitoring the distribution of alien and native species 

can identify locations vulnerable to risk (Stohlgren et al., 2002). Species distribution 

models can also serve as a monitoring tool for detecting alien species invasions(Barnett et 

al., 2007). For alien species, knowledge of predicted abundance in addition to predicted 

presence may be important to better guide management priorities.  

The purpose of this study was to examine the issue of scale (in terms of spatial 

extent) and errors associated with extrapolating models developed using locally collected 

data to regional extents for a native and alien plant species on a portion of the Central 

Plains. My objectives were to: (1) investigate model performance and prediction errors 

associated with extrapolating local models to regional extents, and (2) evaluate the ability 

of boosted regression trees to predict abundance using percent cover of plant species 

from two extents on a portion of the Central Plains in Colorado. I used abundance data 

(i.e. percent foliar cover) and boosted regression trees to compare models using (1) local 

data extrapolated to regional extents with (2) models created using data at both the local 

and regional extents.  

 

Methods 

Study area 

 I examined two extents on the central plains of eastern Colorado (Figure 1). I chose 

these extents because they represent two of the four strategic designs NEON has 

identified in their continental-scale research platform for discovering and understanding 

the impacts of climate change, land-use change, and alien species on ecosystem processes 
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(NEON, 2010). There are 20 ecoclimatic domains established by NEON across the 

United States, and the local and regional extents used in this study represent the Core 

Wildland Site and the Airborne Observatory Platform, respectively, within the Central 

Plains Domain (Domain10).  

 

 
Figure 1. Study area showing sampled plots at the local and regional extents. The local 
and regional extents are within the larger central plains domain (National Ecological 
Observatory Network domain 10). Data for figure downloaded from Colorado 
Department of Transportation and NEON. Figure displayed in World Geodetic System 
1984 projection Universal Trans Mercator zone 13 North datum. 

 
 The Core Wildland Site for Domain 10 is at the Central Plains Experimental Range, 

which is located in the Colorado Piedmont section of the Great Plains (40°49’ N and 

104°46’ W). Covering 6,798 ha, the site represents the local extent of my study area and 

focal point of my research. This area is a semi-arid, C4-dominated native shortgrass 

�Legend
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Streams
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steppe ecosystem. Most of the precipitation occurs during the growing season from April 

to September. Grazing by domestic cattle is the dominant land use in conjunction with 

research and monitoring projects including prescribed fire (Shortgrass Steppe Long Term 

Ecological Research; http://www.sgslter.colostate.edu).  

 The regional extent my study area covers an area of 40,000 ha, which represents the 

20 x 20 km Airborne Observatory Platform defined by NEON for this domain. The 

regional area contains the local extent and is similar in terms of climate and ecological 

characteristics; however, land use is more diverse. Much of the regional extent is a 

mosaic of shortgrass steppe, agricultural land, rangeland, and human development. 

Highway 85 runs north-south down the middle of the regional extent and the large 

developed area surrounding the town of Nunn is located in the southern portion. 

 

Species 

I chose to model common native and alien species to the central plains. Bouteloua 

gracilis (blue grama), a warm season perennial bunchgrass, is native to the shortgrass 

steppe and considered a dominant species in the Colorado Piedmont. Although it has 

evolved on the shortgrass steppe, B. gracilis has been observed to recover poorly on 

disturbed sites (Marilyn & Hart, 1994). Sisymbrium altissimum (tall tumblemustard) is an 

alien annual or biannual species found in disturbed sites with other alien and native 

annuals (Allen & Knight, 1984). Sisymbrium altissimum can be found on many different 

soil types including sand (Patman & Hugh, 1961). Although both species are considered 

generalist in the shortgrass steppe ecosystem, B. gracilis is generally a dominant species, 

while S. altissimum is rarely dominant. 
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Field data 

Local and regional abundance data were augmented from two separate studies. 

Data used for the local extent were collected in 2008 as a part of a NEON preliminary 

assessment for the Central Plains Experimental Range (Evangelista et al., 2009a) and 

consisted of 20 sampled plots. Vegetation cover abundances were recorded by estimating 

the percent cover within a 168-m2 circular, multi-scale vegetation plot modified from the 

National Forest Service Inventory and Analysis Program (Barnett et al., 2007; Frayer & 

Furnival, 1999). Regional abundance data were collected using the Braun-Blanquet 

method (Braun-Blanquet, 1932) and totaled 72 sampled plots (see Appendix A for 

regional extent species list). This relatively quick method of sampling is suited for 

species-environment relationships (Wikum & Shanholtzer, 1978). These data were 

collected outside of the local extent with the exception of two locations which were 

sampled inside the local extent. These two samples were also added to the local extent 

dataset. From the augmented dataset, I selected the native and alien species with the 

largest number of occurrences. While the number of observed abundance plots at the 

regional extent for B. gracilis (n=62) and S. altissimum (n=38) were adequate, the 

number of observed abundance plots in the local extent were relatively small (B. gracilis 

n=20, S. altissimum n=7). 

 

Environmental variables 

I used soil, land cover, topographic and remotely sensed environmental data as 

my predictor variables (Appendix B). All predictor variables had a 30 m resolution. 
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Topographic variables consisted of elevation, slope, aspect, solar radiation, eastness, and 

northness. No climatic variables were used in the models because the spatial extent was 

too small for these predictors to be important drivers.  

Soil data were downloaded from Soil Data Mart provided by USDA NRCS 

(SoilDataMart@nrcs.usda.gov). The data were originally classified by map unit series. I 

classified the map series to soil great groups (Appendix C). Soil great groups are a 

classification of soil taxonomy that reflect assemblages of the horizons and the most 

significant properties of the whole soil (Soil Taxonomy, 1999). In cases where a map unit 

had multiple series, the series first listed was used for classification. For example, I used 

the soil great group Thedalund for the map unit Thedalund-Keota loams series. Certain 

map units did not have associated series (e.g. water, playas, badlands). These categories 

were left as their original classification.  

I downloaded LANDFIRE existing Vegetation Type land cover data from the 

LANDFIRE website (http://www.landfire.gov/products_national.php). The LANDFIRE 

dataset was developed using a complied field database for reference plots along with 

biophysical gradients and Landsat imagery (Rollins, 2009). LANDFIRE uses land cover 

classifications defined by NatureServes’s ecological systems classifications which are 

ecological units at mid-scale resolution (NatureServe 2009). The LANDFIRE values 

were grouped to represent nine land cover types (Appendix D). Open water (11), 

developed (21, 22, 23, 24), barren (31, 2007), agriculture (81, 82), shrubland (2072, 

2081, 2086, 2107), grassland/forbland (2094, 2127, 2181, 2182, 2183), mixedgrass 

prairie (2132), shortgrass prairie (2149) and riparian (2159, 2162). I used these grouped 
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land cover types to represent classifications appropriate for the scales I was modeling and 

to allow for more intuitive interpretation of model results.  

Six topographic predictor variables were used in the models.  Using a U.S. 

Geological Survey 30 m digital elevation model (DEM), I calculated solar radiation in 

ArcGIS 9.3 (The Environmental System Research Institute, USA). I used the time period 

for solar radiation calculations from June 15, 2010 to June 29, 2010 which was when the 

regional extent sampling occurred. I chose to use a sky resolution of 1000 instead of the 

default 200 because of the relatively small extent of the digital elevation model used and 

short time period. Slope, aspect, northness and eastness were also derived from the DEM 

and calculated using ArcGIS 9.3.  

In addition to land cover and topographic variables, remotely sensed Landsat 7 

ETM+ satellite scene data were downloaded for July 7, 2000 from USGS Earth 

Resources Observation Center (EROS, http://glovis.usgs.gov/). The scenes were the most 

recent cloud free images obtained when the operational scene line corrector was 

functioning for the season the field data were collected. The scenes and derived 

vegetation indices were processed using ERDAS Imagine 2010 (ERDAS Atlanta, GA, 

USA) and ArcGIS 9.3 software. I generated three vegetation indices: Normalized 

Difference Vegetation Index (NDVI), Ratio Vegetation Index (RVI) and Soil-Adjusted 

Vegetation Index (SAVI). These indices are used for vegetation and land cover feature 

estimations. Tasselled cap transformations were also conducted for the Landsat 7 scenes 

using ERDAS Imagine 2010. These transformations provide measurements of soil 

brightness (tasselled cap, band 1), vegetation greenness (tasselled cap, band 2) and 

soil/vegetation wetness (tasselled cap, band 3). Tasselled cap bands and vegetation 
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indices have been shown to be effective predictors of plant occurrences when used with 

SDMs (Evangelista et al., 2009b).   

 

Analysis 

For my spatial analysis, I used BRTs to model B. gracilis and S. altissimum at 

local and regional extents. Modeling species abundances using BRTs is a relatively new 

method in ecology. In addition to being able to model abundance data, I chose BRTs 

because they have been shown to perform well with small sample sizes compared to other 

SDMs (Wisz et al., 2008). Boosted regression trees attempt to minimize the loss function 

by generalizing many simple classification and regression trees. Tree based models, such 

as BRTs, accomplish this by applying rules to the predictors that partition the data into 

rectangles with the most homogeneous response (Elith et al., 2008). For each tree, the 

data are split into two groups based on a single predictor variable and a rule. The 

boosting part of BRTs can be thought of as an ensemble model of many tree models that 

allow for a more robust estimate of the response. Boosting is a form of resampling that, 

unlike other methods such as bagging or subsampling, applies a weighted probability of a 

response to be resampled based on previous classifications (Franklin, 2009). Therefore, 

BRTs decrease overfitting the data by averaging the predictions of many trees created 

using subsets of the data (Franklin, 2009). Boosted regression trees are also able to 

incorporate categorical predictors. The relative importance of the predictor variables can 

also be generated from the model. This is calculated based on the number of times a 

predictor variable was used as a splitting node and weighted based on the improvement to 

the model based on each split (Friedman & Meulman, 2003).  
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I used the generalized boosted models (gbm) package in R (R Development Core 

Team, 2010) to run BRT models (Friedman et al., 2000). There are a few settings that can 

be adjusted when running BRTs. A low learning rate decreases the model over-learning, 

but requires more iterations (De'ath, 2007), I chose to use a learning rate at 0.001 and 

performed 5000 iterations. Optimizing both the learning rate in conjunction with the 

number of trees is similar to model regularization. Regularization prevents models from 

over-fitting training data. Interaction depth or tree complexity is the number of nodes in 

each tree created. By adding more nodes to the tree, more variable interactions are added. 

With smaller datasets, larger tree complexity provides no advantage (De'ath, 2007). I set 

the tree complexity to 3 and performed 5000 iterations (see appendix E for example R 

code and model settings).  

Preliminary models for each species and each extent were constructed using all 15 

predictor variables to identify those with the greatest predictive contributions and reduce 

the overall number of variables used for my analyses. From these results, I kept only 

those predictor variables that contributed over 5% to the model and removed the others. 

From those, I performed a Pearson’s cross-correlation test using SYSTAT (version 12; 

SYSTAT Software, Port Richmond, California, USA) to remove highly correlated 

variables (Pearson correlation coefficient >0.8 or <-0.8). The variables remaining were 

used to develop final models. 

With larger datasets, the model can be developed using a training dataset and 

tested against a separate test dataset. I had a small dataset, especially for the local extent 

study area. Had I split my data into a training and test dataset, I would have degraded the 

estimate of predictive error (Franklin, 2009). Therefore, I used cross-validation to test the 
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model. Cross-validation withholds a certain proportion of the data at each stage of model 

development, but uses all data in forming the final model.  

I evaluated the difference of the mean, minimum and maximum between model 

predicted abundance and observed abundance to compare models developed with local 

data and models developed using regional data. The predicted abundance values were 

extracted from the local and regional models using Hawth’s Tools point intersect function 

(Beyer, 2004) at the locations were abundance values were observed. The summary 

statistics were calculated using SYSTAT. 

 

Results 

Predictor variables 

The local model for B. gracilis had five predictor variables and the final regional 

model had 10 predictor variables that were used in the final models (Table 1). Sisymbrium 

altissimum final models for local and regional data had five and four variables, 

respectively (Table 2). Soil and topographic environmental variables had a relative 

influence to the final models that was greater than vegetation indices and remotely sensed 

variables. For all models except for the B. gracilis regional model, the top three 

predictors had a total relative influence over 80% to the model. Soil great group was a 

key contributor (>20% relative influence) for each model with the exception of the S. 

altissimum regional model where soil great group was not included in the final model. 

Soil great group had a relative influence of over 40%, indicating soil is a key predictor 

for these species at the local and regional scales. Solar radiation was also an important 



 15 

predictor, with a relative influence of over 65% to the S. altissimum regional model, and 

over 30% for the B. gracilis regional model. 

 
 
Table 1. B. gracilis local and regional model environmental predictor relative influence  

Local  Regional 

Predictor 
Relative 
influence   Predictor 

Relative 
influence 

Soil Great Group 42  Soil Great Group 22 
Solar Radiation 32  Eastness 12 
Wetness 12  Aspect 11 
Eastness 9  Slope 10 
Northness 5  Ratio Vegetation Index 10 
   LANDFIRE veg. class 8 
   Wetness 7 
   Solar Radiation 7 
   Soil brightness 6 
     Elevation 6 

 
 
Table 2. S. altissimum local and regional model environmental predictor relative 
influence 

Local  Regional 

Predictor 
Relative 
influence   Predictor 

Relative 
influence 

Soil Great Group 43  Solar Radiation 65 
Soil brightness 23  LANDFIRE veg. class 19 
Eastness 17  Wetness 8 
Soil-Adjusted 
Vegetation Index 9  

Enhanced Vegetation 
Index 8 

Ratio Vegetation Index 8      

 
 

Model performance 

Local and regional models showed significant predictive ability for both B. 

gracilis and S. altissimum (p < 0.001).  The B. gracilis regional model had the highest 

explained variance (adjusted R2= 0.62) while the S. altissimum regional model had the 
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lowest (adjusted R2= 0.34). The local models both explained more than 50% of the 

variance (B. gracilis= 0.53, S. altissimum = 0.59).  

 

Predictive map descriptions and model estimates 

In general, the predicted abundance for the local model of B. gracilis was highest 

in the southern portion of the regional extent and extended northward in bands following 

suitable soil types (Figure 2a). The lowest abundance predictions were found in the 

northern portion of the regional extent where the land cover is more barren and includes a 

portion of the Pawnee Buttes National Grassland. The regional model of B. gracilis 

differs from the local model in that the highest predicted abundance values are found in a 

swath running from the east to the northwest (Figure 2b). In addition, where the local 

model predicted high abundance in the southern portion, the regional model predicted 

low to moderate abundance. When looking at the local extent, the local model predicted 

more uniform abundance with higher abundance in the east (Figure 2c). The regional 

model for the local extent showed much more variation in abundance predictions than the 

local model, but showed similar areas of high abundance (Figure 2d). 
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Figure 2. B. gracilis (a) model developed using local data extrapolated to regional extent. 
(b) Model developed using local data and regional data at regional extent. (c) Local 
extent modeled using local data and (d) local extent modeled using local and regional 
data. Figure displayed using World Geodetic System 1984 projection and Universal 
Transverse Mercator zone 13 north datum. 
 
 

The mean abundance prediction for the local (mean=25.7% cover, S.E.± 1.3) and 

regional models (mean=22.4% cover, S.E.± 4.0) were similar, but the range of abundance 

for the local model (6.0% cover) was narrower than the regional model (29.2% cover).  

.The regional model predicted a maximum abundance of 38% cover while the local 

model predicted a much lower prediction (29%). Furthermore, the minimum predicted 

abundance for the regional model was 9%, while the local model minimum prediction 

was 23%.  
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The S. altissimum predicted map of the local model shows higher abundance in 

patches concentrated in the central portion of the regional extent (Figure 3a). Lower 

abundance was located in the northeast and southeast corners. The regional predicted 

map shows high abundance in the northwest that extends southeastward and into the 

regional extent (Figure 3b). These higher abundance locales were not predicted by the 

local model. Furthermore, higher abundance was predicted for the southwest where the 

land use is primarily agricultural and where the highest abundance estimates were 

observed. At the local extent, the local model predicted low abundance with little 

variation in estimates (Figure 3c). In contrast, the regional model predicted relatively 

higher abundance with more variation (Figure 3d).   
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Figure 3. S. altissimum (a) model developed using local data extrapolated to regional 
extent. (b) Model developed using local data and regional data at regional extent. (c) 
Local extent modeled using local data and (d) local extent modeled using local and 
regional data. Figure displayed using World Geodetic System 1984 projection and 
Universal Transverse Mercator zone 13 north datum.   
 

 

Sisymbrium altissimum regional and local models have similar predicted 

abundance ranges (local =1.0% cover,  regional=1.2% cover) but the predicted mean of 

the local model (0.5% cover, S.E.± 0.2) was much less than the regional model (1.1% 

cover, S.E.± 0.2) Similar to B. gracilis, the maximum predicted abundance for the local 

S. altissimum model (1.1% cover) was much higher than the regional model (2.0% 

cover), but the minimum predicted abundance was lower for the local model (0.1% 
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cover). Furthermore, when comparing the area of the local extent (area=68.1 km2) that 

was different between the local and regional models for both species, I found the total 

area either below or above the local model for B. gracilis was 36.9 km2 and the area 

within both models predicted range was 31.3 km2. Sisymbrium altissimum models differed 

from B. gracilis in that the local model predicted abundance values lower than the 

minimum abundance of the regional model, but only predicated a maximum abundance 

half that of the regional model. For the local model, the area predicted below the 

minimum value of the regional model was 52.8 km2 while the area predicted by the 

regional model above the local model minimum was 11.4 km2. The total area in the same 

range for both models for S. altissimum was 3.9 km2. 

 

Model predictions compared to observed values 

Regional models predicted species abundance closer to observed values than local 

model predictions. When compared to the observed values, predicted abundance from 

models developed using local data were off by a factor of 9% (S.E.± 2.2, n=92) for B. 

gracilis and 0.5% (S.E.± 0.4, n=92) for S. altissimum. Conversely, the regional models 

were off by a factor of 5% (S.E.± 2.1, n=92) for B. gracilis and 0.1% (S.E.± 0.4, n=92) 

for S. altissimum. For both species, the regional models predicted abundance values 

closer to the observed values.  
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Discussion 

Using regional data can refine local models 

Incorporating regional data improved model predictions at local and regional 

extents. For both species, the models developed using regional data to model the local 

geographical extent showed a larger range of predicted abundances (Figure 2d and Figure 

3d). This was especially true for B. gracilis where more than half of the area in the 

regional model was either below or above the range of the local model. The improved 

predictions may be attributed to the additional landscape elements included by increasing 

the extent (Wiens, 1989). Furthermore, although the S. altissimum local model predicted 

a lower minimum abundance value than the regional model, the regional model predicted 

a maximum value almost twice as much as the local model’s maximum value. For both 

species, a larger range of predicted abundance can provide more detail and easier 

interpretations for location with extreme predictions. In addition, higher abundances were 

predicted in the northwest corner of the local extent for S. altissimum, possibly showing a 

leading edge of invasion into the area. This pattern was not detected in the local model, 

and provides important information when monitoring alien species. For example, large 

seed sources might exist just outside the area of interest being modeled and without 

including data outside the area of interest increases the possible risk of an invasion would 

go unnoticed. Modeling the potential distribution of invaders in the local area is essential 

to alien species risk characterization (Stohlgren & Schnase, 2006), and only possible by 

sampling outside the local area. My results are similar to those of Menke et al. (2009) 

who looked at extrapolation of an Argentine ant in southern California and found if 

predictions are to be made to larger unsampled regions, additional sampling is needed to 
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capture the environmental variation in those regions. My results also suggest the 

importance of collecting data outside the local area to not only capture the environmental 

variation but also species response variation. These additional samples may improve 

model predictions and reveal patterns missed by local models. 

 

Extrapolation may restrict predictions 

Using BRTs to extrapolate models using local data to regional extents may 

constrict the range of predicted values. My results show when extrapolating local models 

to regional extents, predictions in the regional extent will not exceed the range of 

predictions within the local extent. For both S. altissimum and B. gracilis, models 

developed using local extent data did not predict abundance values below the minimum 

or above the maximum predicted within the local extent (Figures 2 and 3). Randin et al. 

(2006) found similarly restricted predictions when extrapolating to a completely separate 

region. Similarly, additional studies of extrapolation have shown other SDMs may over 

predict or under predict when extrapolated to novel conditions (Peterson et al., 2007). 

Thuiller et al. (2004) found limiting the environmental conditions used to train the model 

may cause unpredictable effects on the tails of the response curves leading to poor 

extrapolations.  How a model will predict when extrapolated to novel environments 

appears to depend on the specific model being used (Pearson et al., 2006).  Boosted 

regression trees fit response curves for each predictor and, for environmental values 

outside the sample variation, the response curves remain constant (Elith & Graham, 

2009). This explains why the abundance range for models developed only using local 

data was the same for both the local extent and the regional extent.  
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The term clamping has been used to refer to restricting the model to only those 

areas of the landscape within the range of values from which the data used to train the 

model were sampled (Phillips, 2008). Evaluating clamping is a recent addition to model 

interpretation, but is becoming more common practice (Anderson & Raza, 2010; Fouquet 

et al., 2010). Even with the caution surrounding model extrapolation, extrapolating 

models will likely continue to prompt new studies to explore ways to improve model 

extrapolations (see Elith & Leathwick, 2009 for a summary of these studies). For 

example, Miller et al. (2004) recommend using simple mechanistic relationships that are 

well understood when extrapolating beyond narrow ranges. Elith et al. (2010) suggested 

smoothing the initial models to improve fitting a model to the species rather than the 

specific data set when the model will be used for extrapolation. 

 

Modeling abundances provides additional information  

My results show BRTs can be a useful tool to model plant species abundance. I 

generated accurate spatial distribution models for plant species abundance with both local 

and regional extents. All models performed well even with small sample sizes. 

Interestingly, the S. altissimum regional model preformed the poorest of all four models. 

This may be due to the relatively low abundance of S. altissimum (often only observed at 

1% cover) or because S. altissimum is a generalist species, which are often more difficult 

to predict (Evangelista et al., 2008a). While S. altissimum was generally observed at low 

abundance values, a few locations were observed to have over 20% cover. These high 

abundances are not common, but are important to recognize for alien species 

management and my results suggest that BRTs may not predict abundances that are 
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unusually high. Boosted regression trees have shown to perform well for other abundance 

distribution modeling (Pittman et al., 2009), and when compared to other methods (Elith 

& Graham, 2009).The ability to predict abundance rather than just probability of 

presences may provide more than just where a species may occur, but also information on 

the quality of habitat (Pearce & Ferrier, 2001). In terms of alien species, this information 

may help managers identify possible susceptible life stages to control and prevent 

invasion (Brown et al., 2008). When managing and monitoring alien species, abundance 

predictions can help prioritize control and prevention efforts in addition to early 

detection. Many SDMs are limited to presence-absence or presence-only data. This is 

most likely due to the costs associated with obtaining abundance data compared to 

presence-absences or presence-only data. This has prompted comparison studies that 

investigated possible correlations between probability of presence and abundance. 

Unfortunately, these studies found little correlation, and if so, only between high 

probability of occurrence and high abundance (Vanderwal et al., 2009; but see Pearce & 

Ferrier, 2001). Boosted regression trees can be a useful tool to model plant species 

abundance on the central plains, even with small sample sizes.  

I have shown BRTs can provide accurate and informative abundance models of 

native and alien plant species on the central plains. Often species distribution models are 

developed using presence-absence or presence-only data and rarely use abundance 

values. NEON is focusing on collecting abundance response values and will most likely 

use distribution models that can provide abundance predictions. More importantly, 

abundance data will become more available with the development of large databases 

collecting and disseminating ecological data (Graham et al., 2007). While BRTs are still 
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largely unused in ecology (De'ath, 2007), the recent increase of BRTs in the literature is 

promising. 

 

Integrating multiple sources of predictors 

I chose to use a variety of different predictors from different sources. While some 

studies have focused on using only a single source of predictor variables (Lahoz-Monfort 

et al., 2010), I integrated multiple sources of predictors. Selecting predictor variables 

relevant to the extent of the study area is important for accurate predictions (Wiens, 

1989). I used soil data, land cover data, remotely sensed data, and topographic data as 

environmental predictors for both species. These predictors included both continuous and 

categorical data. While it may have been convenient to only use predictors from one 

source, the risk of not including an important predictor is increased. Boosted regression 

trees allow the use of both categorical and continuous predictor variables. This allowed 

me to include soil and land cover data not supported by other SDM methods (e.g. 

generalized linear models and generalized additive models) and, in my case, soil great 

group proved to be a significant contributor to my models. Furthermore, by reclassifying 

the land cover and soil data, I was able to generate layers that provided more 

interpretation and ecological relevance for the extents being modeled. 

 

Caveats 

All models have assumptions and SDMs assumptions are more likely to be 

violated to some degree when extrapolating a model in time or space (Wiens et al., 2009). 

This is especially true for alien species because they are not at equilibrium with the 
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environment. While the use of BRTs to predict abundance appears promising, uncertainty 

is inherent to all models and results should be carefully interpreted (Elith & Leathwick, 

2009). More specifically, decision trees are sensitive to the response data and predictors 

being modeled (Berk, 2008). Modifying either of these can result in very different models 

that have similar measured predictive abilities (Scull et al., 2005). I did not test the ability 

of other SDMs that can model abundance and results from these methods are likely to be 

different. Small data sets may be more prone to varying results because of the importance 

of the addition or removal of a single or a few data points. Likewise, I may have 

overlooked an important predictor. For example, I did not include any dispersal or 

competition predictors which could impact abundance predictions (Austin, 2002). My 

results are for two generalist plant species and different patterns may be observed for 

species with rarer occurrences or higher abundance. The extents I used in my study were 

small and different predictors may be more important if the same study was preformed 

with larger extents (Wiens, 1989). An iterative approach to surveys and modeling may 

gain a more comprehensive understanding of modeling abundances and possible errors 

stemming from model extrapolation. 

 

Conclusion 

Extrapolating local models to regional extents is likely to predict abundance 

further from observed values when compared to models that included regional data. 

When possible, additional samples should be collected in the regional extent to improve 

predictions. In addition, local models may be improved by including data outside the 

local extent (at the regional extent). These additional data can provide insights into 
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populations that may be just outside the local extent and would otherwise go unnoticed. 

This information can be important for regional and local conservation planning in 

prioritizing management efforts. Future work may investigate the number of additional 

regional samples required and their optimal location to provide the best predictions. 

Boosted regression trees can be a useful tool for modeling and predicting species 

abundance, especially when using multiple sources for predictor variables. As species 

distribution models become more robust and flexible, integrating multiple sources of 

predictor variables to include key predictors for the species being modeled will become 

increasingly more important. More research into the use and extrapolation of species 

distribution models to predict species abundance is needed to fully understand the errors 

and benefits of this application. 
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APPENDICES 
 
APPENDIX A 

Common name and scientific name of the species observed at the regional extent. 72 total 
plots sampled for foliar cover using Braun-Blanquet method. 
 

Common name Scientific name 

blue grama Bouteloua gracilis 

western wheatgrass Pascopyrum smithii 

fourwing saltbush Atriplex canescens 

carex stenophylla spp. Eleocharis spp. 

plains prickypear Opuntia polyacantha 

scarlet globemallow Sphaeralcea coccinea 

prickly russian thistle Salsola. pestifer 

kochia Kochia scoparia 

cheatgrass Bromus tectorum 

tall tumblemustard Sisymbrium altissimum 

yellow sweet clover Melilotus officinalis 

needle and thread Hesperostipa comata 

smooth brome Bromus inermis 

sand dropseed Sporobolus cryptandrus 

meadow barley Hordeum brachyantherum 

alfalfa Medicago sativa 

fremont cottonwood Populus fremontii 

ponderosa pine Pinus ponderosa 

common barley Hordeum vulgare 

mountain rush Juncus arcticus 

meadow grass  Poa annua 

yellow salsify Tragopogon dubius 

bush dry Atriplex canescens 

wolly plantain Plantago patagonica 

buffalo grass Buchloe dactyloides 

purple three awn Aristida purpurea 

purple locoweed Oxytropis lambertii 

sixweeks fescue Vulpia octoflora 

stiff greenthread Thelesperma filifolium 

yucca Yucca filamentosa 

scurfy pea Psoralea tenuiflora 

prairie sagewort Artemisia frigida 
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APPENDIX B 

List of all environmental predictors used in BRT models and their source. 

Environmental Predictor Source 

Aspect Calculated from Elevation 

Eastness Calculated from Elevation 

Elevation U.S. Geological Survey (http://eros.usgs.gov) 

Enhanced Vegetation Index Calculated from Landsat bands 

Greeness Calculated from Landsat bands 

LANDFIRE veg. class http://www.landfire.gov/products_national.php 
Normalized Difference Vegetation 
Index  Calculated from Landsat bands 

Northness Calculated from Elevation 

Ratio Vegetation Index Calculated from Landsat bands 

Slope Calculated from Elevation 

Soil brightness Calculated from Landsat bands 

Soil Great Group Soil Data Mart (SoilDataMart@nrcs.usda.gov) 

Soil-Adjusted Vegetation Index  Calculated from Landsat bands 

Solar Radiation Calculated from Elevation 

Wetness Calculated from Landsat bands 
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APPENDIX D  

Original soil data values and map unit names downloaded from Soil Data Mart provided 
by USDA NRCS (SoilDataMart@nrcs.usda.gov) with associated soil great group 
taxonomy classified using Soil Taxonomy, 1999.  

Map unit name 

Soil great 

group 

Soil map 

unit value 

Great 

group value 

Altvan fine sandy loam, 0 to 6 percent slopes Argiustolls 1 1 

Badland Badland 11 2 

Bankard loamy fine sand, 0 to 3 percent 

slopes Torrifluvents 12 10 

Bresser sandy loam, 3 to 9 percent slopes Argiustolls 16 1 

Bushman fine sandy loam, 0 to 3 percent 

slopes Haplustolls 17 6 

Bushman fine sandy loam, 3 to 9 percent 

slopes Haplustolls 18 6 

Cascajo gravelly sandy loam, 5 to 20 percent 

slopes Haplocalcids 20 5 

Dacono clay loam, 0 to 6 percent slopes Argiustolls 23 1 

Epping silt loam, 0 to 9 percent slopes Torriorthents 27 11 

Haverson loam, 0 to 3 percent slopes Ustifluvents 29 11 

Kim-Mitchell complex, 0 to 6 percent slopes Torriorthents 31 11 

Kim-Mitchell complex, 6 to 9 percent slopes Torriorthents 32 11 

Manter sandy loam, 0 to 6 percent slopes Argiustolls 34 1 

Manter sandy loam, 3 to 9 percent slopes Argiustolls 35 1 

Manzanola clay loam, 0 to 3 percent slopes Haplargids 36 4 

Midway clay loam, 0 to 9 percent slopes Torriorthents 37 11 

Nucla loam, 3 to 9 percent slopes Haplustolls 39 6 

Ascalon fine sandy loam, 0 to 6 percent 

slopes Argiustolls 4 1 
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Nunn loam, 0 to 6 percent slopes Argiustolls 40 1 

Nunn clay loam, 0 to 6 percent slopes Argiustolls 41 1 

Olney fine sandy loam, 0 to 6 percent slopes Haplargids 44 4 

Olney fine sandy loam, 6 to 9 percent slopes Haplargids 45 4 

Otero sandy loam, 0 to 3 percent slopes Ustorthents 46 11 

Otero sandy loam, 3 to 9 percent slopes Ustorthents 47 11 

Paoli fine sandy loam, 0 to 6 percent slopes Haplustolls 49 6 

Ascalon fine sandy loam, 6 to 9 percent 

slopes Argiustolls 5 1 

Paoli fine sandy loam, 6 to 9 percent slopes Haplustolls 50 6 

Peetz gravelly sandy loam, 5 to 20 percent 

slopes Calciustolls 51 3 

Peetz-Altvan complex, 0 to 20 percent slopes Calciustolls 52 3 

Peetz-Rock outcrop complex, 9 to 40 percent 

slopes Calciustolls 53 3 

Platner loam, 0 to 3 percent slopes Paleustolls 54 8 

Renohill fine sandy loam, 0 to 6 percent 

slopes Haplargids 55 4 

Renohill fine sandy loam, 6 to 9 percent 

slopes Haplargids 56 4 

Renohill-Shingle complex, 3 to 9 percent 

slopes Haplargids 57 4 

Rosebud fine sandy loam, 0 to 6 percent 

slopes Argiustolls 58 1 

Rosebud fine sandy loam, 6 to 9 percent 

slopes Argiustolls 59 1 

Shingle clay loam, 0 to 9 percent slopes Torriorthents 60 11 

Stoneham fine sandy loam, 0 to 6 percent Haplustalfs 61 6 
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slopes 

Stoneham fine sandy loam, 6 to 9 percent 

slopes Haplustalfs 62 6 

Tassel loamy fine sand, 5 to 20 percent 

slopes Torriorthents 63 11 

Terry sandy loam, 0 to 3 percent slopes Haplargids 64 4 

Terry sandy loam, 3 to 9 percent slopes Haplargids 65 4 

Thedalund-Keota loams, 0 to 3 percent 

slopes Torriorthents 66 11 

Thedalund-Keota loams, 3 to 9 percent 

slopes Torriorthents 67 11 

Ascalon-Bushman-Curabith complex, 0 to 3 

percent slopes Argiustolls 7 1 

Vona loamy sand, 0 to 3 percent slopes Haplustalfs 71 6 

Vona loamy sand, 3 to 9 percent slopes Haplustalfs 72 6 

Vona sandy loam, 0 to 3 percent slopes Haplustalfs 73 6 

Vona sandy loam, 3 to 9 percent slopes Haplustalfs 74 6 

Wages fine sandy loam, 0 to 6 percent slopes Argiustolls 75 1 

Wages fine sandy loam, 6 to 9 percent slopes Argiustolls 76 1 

Weld loam, 0 to 6 percent slopes Argiustolls 77 1 

Water Water 85 12 

Playas Playas 86 9 

Avar fine sandy loam Natrargids 9 7 
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APPENDIX E 

Example R code using boosted regression trees to model and predict abundance. This 
code uses the gbm package to fit the BRT. 
######################################################################## 
#Title: Boosted Regression Tree: Bouteloua gracilis Regional extent model 
#10 variables 
#Date: 07/29/2010 
############################################# 
#This code takes a CSV file with location points with cover of species 
#and also the predictor variable values for each sample point to create a boosted 
#regression 
#tree model and prediction surface. Also calculates R2.  
############################################# 
#clear memory 
rm(list=ls()) 
 
#Select a file and get path 
#file.choose() 
 
#Set working directory 
#setwd("C:\\neyoung\\Projects\\R\\CPER_NEON\\") 
 
#Data contains the response of all the species collected and the predictor vairables 
data.all=read.csv("C:\\neyoung\\Projects\\CPER_NEON\\Data\\FinalData\\BRT_csv\\All
_bogr_10.csv") 
 
#make generic data label so that we can move from dataset to dataset (CPER->AOP-
>All) 
data<-data.all 
 
#Data check command to see if data appear correct 
head(data) 
names(data) 
 
#Look at the names of the predictors. These columns are the predictors (total = 15) 
names(data[15:22]) 
 
################Organize data############### 
#Set Categorical data 
data$soil_gg<-factor(data$soil_gg, levels=c(1:14)) 
data$landfir<-factor(data$landfir, levels=c(1:9)) 
 
#set species to model 
Y=data$bogr 
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#for loop to create vector of presence and absence for species 
#This can be used to calculate AUC or generate a probability of presence model  
#rather than predicted abundance 
num.responses=length(Y) 
pres.abs= numeric(num.responses) 
for(i in 1:num.responses){ 
 if (Y[i]==0) pres.abs[i]=0  
 else pres.abs[i]=1 
} 
#Count the number of occurances  
num_occurances=sum(pres.abs) 
print(num_occurances) 
 
#Combine Response with Predictors to go into gbm 
data.gbm<-cbind(Y,data[15:22]) 
#################FIT BRT MODEL################### 
#call to load the gbm package 
library(gbm) 
 
#set the seed to get repeatable results 
set.seed(1) 
 
#set formula for BRT. Additional variables can be added here 
formula<-Y~ 
 tc3 +      
 tc1 +      
 solarra + 
 soil_gg + 
 slope_d +      
 rvi +          
 landfir +    
 elev + 
 eastnes + 
 aspect 
 
#Fit the brt model 
fit<- gbm( 
 formula = formula, 
 distribution = "gaussian", # bernoulli, adaboost, gaussian, 
      # poisson, coxph, and quantile available 
 data = data.gbm,   # dataset including response 
 shrinkage = 0.001,  # shrinkage or learning rate 
 n.tree = 5000,   # number of trees 
 interaction.depth = 3,  # 1: additive model, 2: two-way interactions, etc. 
 #train.fraction = 1,  # fraction of data for training 
 bag.fraction = 0.5,  # subsampling fraction, 0.5 is probably best 
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 cv.folds = 5,   # do 5-fold cross-validation 
 #keep.data = TRUE,  # keep a copy of the dataset with the object 
 ) 
summary(fit) 
 
##############REVIEW MODEL############## 
 
#Set up plotting window to view results 
par(mfrow=c(1,3))  
 
#Set best iteration 
best.iter<-fit[[1]]$best 
print(best.iter) 
 
# plot variable influence 
summary(fit,n.trees=best.iter) # based on the estimated best number of trees 
 
fit.summary<-summary(fit, n.trees=best.iter) 
#Write the realtive influence file out 
#write.table(fit_summary,"BRT_varimp_AOP_bogr.txt") 
 
###################PREDICTIONS################### 
 
#Make predictions from the boosted trees for the training data 
pred.train <- predict.gbm(fit, data.gbm, best.iter) 
 
#transform predicted values between 0-1 
pred.train_transformed<-(pred.train-min(pred.train))*1/(max(pred.train)- min(pred.train)) 
Pred.test_transformed<-(pred.train-min(pred.train))*1/(max(pred.train)- min(pred.train)) 
summary(pred.train_transformed) 
 
##############Spatial Predictions################ 
 
myfun<-function(x)round(unlist(predict.gbm(fit, x, best.iter)),4) 
 
#Predictor and ASC names (the ASCIIs and predictor names must match) 
fnames<-names(data[15:22]) 
 
#Path to a folder containing the ASCII predictor files 
Fpath -> 
"C:/neyoung/Projects/CPER_NEON/EnvironmentalPredictors/20x20/WGS84_UTM_13
N/ASCII/" 
 
#Open Source R code for processing ascii by line 
source("C:/neyoung/Projects/R/CPER_NEON/process_asc_by_line_v3.R") 
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#Spatial prediction function 
#proc.asc.byline(fnames,fpath,myfun,n=150,outfile="all_bogr_BRT.asc") 
 
##############ROC/AUC Calculations################ 
#Load the presenceAbsence package to calculate AUC 
library(PresenceAbsence) 
 
#Set up a data frame for the format used by the PresenceAbsence function 
(ID,PresenceAbsence,Prediction) 
#This is also used to calculate roc (see next section) 
data.AUC=data.frame(ID=c(1:nrow(data)),response=pres.abs,pred.train_transformed) 
#set up new plotting window for AUC plot 
par(mfrow=c(1,1)) 
 
#Plot AUC/ROC plot 
auc.roc.plot(data.AUC) 
 
#Calculate auc using dataframe 
auc.cal<-auc(data.AUC) 
print(auc.cal) 
###################Calculate R2################## 
#Make predictions for the data 
pred.train <- predict.gbm(fit, data.gbm, best.iter) 
pred.observ <-cbind(Y,pred.train) 
 
# calculate correlation between obsevred vs. predicted values from BRT 
correlation<-cor(Y,pred.train)  
 
# Run linear regression between obsevred and predicted to calculate R2 
reg.predct.observe<-lm(Y~pred.train)  
summary(reg.predct.observe) 
 
######################################################################## 
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