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ABSTRACT 

 

 

 

FROM RAIN GAUGES TO RETWEETS: USING DIVERSE DATASETS TO EXPLORE 

OVERLAPPING HAZARDS AND HUMAN EXPERIENCES IN LANDFALLING TROPICAL 

CYCLONES 

 

Landfalling tropical cyclones (LTCs) are responsible for numerous hazards, including 

damaging winds, storm surge, inland flooding, and tornadoes. Furthermore, multiple hazards may 

threaten an area at the same time, which raises challenges from a prediction, warning operations, and 

human impacts standpoint. Previous research has approached overlapping tornado and flash flood 

events—which exemplify these challenges because the recommended protective actions can be in 

conflict—in continental systems from multidisciplinary perspectives, but less work has been done to 

explore these phenomena in LTC environments. Because LTCs also introduce other hazards, 

additional complexities may exacerbate already challenging circumstances. This work integrates 

meteorological and social sciences to broadly advance the understanding and implications of 

simultaneous flash flood and tornado events in LTCs.  

Part I of this thesis investigates the relationship between two predecessors to tornadoes and 

flash floods—meso- to storm-scale rotation and heavy rainfall rates, respectively—using observations. 

Motivated by previous work that has drawn linkages between these two processes in continental 

convective storms, this connection is explored in Tropical Storm Imelda, a system that was among the 

wettest LTCs on record to impact the contiguous United States (CONUS), producing rainfall 
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accumulations in excess of 1000 mm when it made landfall on the western Gulf Coast in September 

2019. First, a synoptic and mesoscale overview of the tropical cyclone (TC) is presented as motivation 

for its utility in examining overlapping embedded rotation and extreme rainfall rates. Then, rain 

gauges from a high-density observing network in southeast Texas are analyzed alongside polarimetric 

radar data to compare rainfall rates that occur in the presence of embedded rotation to those that 

occur when no rotation is evident on radar. According to these results, 5-minute rainfall rates that 

followed subjectively-identified meso-g to storm-scale rotation on radar tended to be statistically 

significantly greater, and when accumulated over time, more than twice as much rainfall was recorded 

at gauge sites when rotation was present near the gauge compared to when there was no rotation 

located nearby. To further quantify the spatial and temporal relationships of embedded rotation and 

heavy rainfall rates, quantitative precipitation estimates (QPE) and rotation tracks from the Multi-

Radar Multi-Sensor system are compared in time and space. A positive correlation was found to exist 

between the hourly-accumulated 0-2 km rotation tracks and hourly local gauge bias-corrected QPE, 

suggesting that more rain tends to fall in the presence of low-level rotation. 

In Part II of this thesis, social science methods are used to investigate another LTC: Hurricane 

Harvey (2017)—an unprecedented event that became the wettest LTC on record to impact CONUS 

and spawned over 50 tornadoes when it affected the western Gulf Coast. This work aims to explore 

the notion of experience as it evolves on Twitter in real-time during Harvey among a group of users 

who were located in areas that were impacted by the LTC and its overlapping hazards. Though a 

significant amount of research has investigated experience through surveying and interview techniques 

after LTCs occur, much less work has been done to study experience as it is shared live during an event 
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or through the lens of social media. Using this motivation and drawing on the overarching theme of 

concurrent hazards, this research begins with a database of tweets composed during the period 

surrounding Hurricane Harvey that reference tornadoes and flash flooding. The sample is refined 

through a multi-step querying process, ultimately resulting in a group of 39 users who shared 158 

tweets about “past events”—that is, events related to LTCs and/or the hazards that are associated with 

them. These tweets are thematically analyzed by individual users, by individual past events, and over 

time. The results of these analyses show that Twitter users referenced past events during Harvey for 

two main reasons: first, because the user has a personal connection to the event and second, because 

the past event is helping them to make sense of various aspects of the situation that is unfolding 

around them. Understanding what roles past events may play in a real-time crisis is useful to leaders 

and decision-makers, such as meteorologists, local politicians, and emergency managers, as it provides 

insight on the evolving needs and concerns of the public that they serve as they change and are 

modulated by various events that unfold throughout the overarching crisis. 
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PROLOGUE  

 

 

 

 Tornadoes, flash floods, and landfalling tropical cyclones (LTCs) can all be deadly 

atmospheric hazards (Ashley 2007; Ashley and Ashley 2008; Rappaport 2014), but what happens 

when they all take place in the same location at the same time? Meteorologically, each of these 

phenomena are complex and nuanced on their own in several ways, including the ways in which they 

are understood physically and their ability to be predicted. Sociological perspectives introduce 

additional considerations for each hazard, such as in the ways in which they are communicated by 

experts, and how they are responded to by the public. Despite major strides in interdisciplinary 

research on each of these phenomena, there has been little to no reduction in loss of life related to these 

events in recent years (NOAA 2020). As challenges persist across multiple disciplines when it comes to 

understanding various aspects of tornado, flash flooding, and LTC events, it is reasonable to 

hypothesize that these issues could become amplified and complicated when multiple hazards are 

present. Furthermore, relative to the work that has been done on each phenomenon individually, less 

work has been dedicated to various pairings of these overlapping events (e.g., tornado/flash flood 

events, LTC/tornado events, etc.), and little to no research has sought to examine all three events in 

unison. These reasons motivate the need to study concurrent flash flooding and tornadoes in LTCs. 

 Thus, this work seeks to take a multidisciplinary approach to this gap in the literature by 

investigating both the physical and the human aspects of concurrent, co-located flash floods and 

tornadoes in the context of LTCs by focusing on two recent events: Hurricane Harvey (2017) and 

Tropical Storm Imelda (2019). Both systems impacted the western Gulf Coast region within 
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approximately two years of each other, bringing overlapping hazards in the form of flooding, 

tornadoes, coastal surge, and destructive winds. In Part I of this thesis (Chapters 1-5), Tropical Storm 

Imelda is used to study the relationship between mesoscale to storm-scale meteorological features that 

can precede tornadoes and flash flooding. By analyzing these processes through observations, this work 

aims to investigate the occurrence and magnitude the relationship between the two mechanisms in an 

LTC environment. Part II of this work (Chapters 6-9) then explores a social science aspect of multiple 

hazards in LTCs. Namely, Twitter tweets collected from a group of users located in the western Gulf 

Coast who expressed awareness of the concurrent, co-located tornado and flash flooding that 

accompanied Hurricane Harvey, as well as referenced a past weather event related to LTCs and/or 

their hazards are studied. The goal of this analysis is to investigate the role that past experiences with 

weather events may play throughout a weather disaster (which is Harvey in this case) in real-time. 

While the interconnectedness between the social and meteorological sides of overlapping flash 

flooding and  tornadoes in LTCs will not be explored in detail in this manuscript, it is important to 

keep in mind that the two are related (e.g., forecast operations are informed by improved 

communication strategies and vice versa). 
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PART I: OBSERVATIONS OF EMBEDDED ROTATION AND EXTREME RAINFALL IN 

TROPICAL STORM IMELDA 

 

 

 

 In Part I of this thesis, the case of Tropical Storm Imelda is used to examine and quantify 

relationships between embedded rotation and heavy rainfall rates on very fine spatial and temporal 

scales in an LTC environment. Embedded rotation has already been shown to impact extreme rainfall 

in model simulations, but identifying whether this relationship holds true in the real-world 

observations is crucial. Further, if the relationship does exist, it is important to quantify the magnitude 

of it. Making sense of the strength of the connections that exist between these interacting physical 

phenomena can not only further understanding of the environments that produce tornadoes and flash 

flooding, but it can also add insight to short-term forecasting and nowcasting during forecasting 

operations when the threat of these overlapping hazards exists in LTCs.  

Given this motivation, the study presented in Part I aims to address the following goals:  

1) to identify the multiscale processes that contributed to Imelda’s excessive rainfall 

 

2) to explore the spatiotemporal relationship between embedded mesoscale/storm-scale rotation 

and the extreme rain rates that occurred during Imelda using observations 

 

3) to quantify the magnitude and identify the significance of the relationship between embedded 

rotation and rainfall rates based on these observations 
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CHAPTER 1: INTRODUCTION AND MOTIVATION 

 

 

 

 This literature review broadly covers flash flooding and tornadoes in the context of landfalling 

tropical cyclone (LTC) environments, particularly in the contiguous United States (CONUS). First, 

the physical mechanisms associated with each hazard are discussed individually, both in LTC 

environments and continental convective systems. Then, previous work that has explored the 

relationships between tornadoes and flooding and their driving forces (in particular, mesoscale 

rotation and extreme rainfall rates) is considered. It is intended that this literature review will help 

demonstrate the need to examine heavy rainfall and embedded rotation in tropical cyclones (TCs). 

With this previous research considered, the motivation and research goals for this work are presented, 

followed by a brief outline for the remainder of Part I of this manuscript. 

1.1 Basics of Flash Flood-Producing Rainfall 

 Before discussing flood-producing rainfall in the context of LTCs, it is first helpful to briefly 

review some of the basic mechanisms that drive excessive precipitation and resultant flooding in the 

first place. Flash flood events are caused almost exclusively as a result of heavy rainfall (as opposed to 

surface hydrology-related phenomena such as ice jams or dam failures) (Dougherty and Rasmussen 

2019), which has long motivated their interconnectivity in the literature. While the source of flash 

flooding almost always originates with the atmosphere, hydrology1 remains important, as it helps 

govern whether heavy rainfall becomes flash flood-producing heavy rainfall or not (e.g., Doswell et al. 

 
1 The importance of surface properties should not be minimized, though the focus of this literature review will focus on 

flash flooding in the context of heavy rainfall. 
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1996; Davis 2001; Schumacher 2017). This interplay between the atmosphere and the surface makes 

flash flood forecasting particularly challenging. Still, even by focusing on the heavy rainfall component 

alone, predictability is very complex (Sukovich et al. 2014). These challenges exist for several reasons, 

such as that atmospheric patterns can often appear benign or uninteresting ahead of flash flood events 

(Doswell et al. 1996) or that characteristics of the storms that produce flash flooding, such as their 

accumulations, rain rates, and relative frequency, can vary significantly by region (Dougherty and 

Rasmussen 2019). 

 One of the most straightforward approaches to flash flood forecasting that can be applied to 

any rainfall-producing system (regardless of location or convective mode) is the ingredients-based 

approach proposed by Doswell et al. (1996). In their method the accumulated precipitation (𝑃) is 

defined as:  

                                                                                 𝑃 = 	𝑅%𝐷                  (Eq. 1.1)  

 

where 𝑅# is the average rainfall rate and 𝐷 is the duration over which the rain falls. At an instantaneous 

point in time, 𝑅# becomes 𝑅, which is the instantaneous rain rate. For a given location, 𝑅 is a function 

of precipitation efficiency (𝐸) vertical ascent rate (𝑤) and the ambient mixing ratio (q): 

         𝑅 = 𝐸𝑤𝑞                                                        (Eq. 1.2) 

 

Together, 𝑤𝑞 is defined as the vertical moisture flux. Thus, Eqs. 1.1-1.2 show that as precipitation 

efficiency—defined by Doswell et al. (1996) as the ratio of rainfall to water vapor influx—and vertical 

moisture flux increase, instantaneous rainfall rate also increases, which would subsequently increase 𝑅# 

and ultimately 𝑃 (all else being equal).  
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 In addition to the factors that influence precipitation rate, the environments and patterns that 

lead to flash flood-producing rainfall are also important. One of the first attempts at classifying such 

environments was performed by Maddox et al. (1979), which found that common surface patterns 

associated with flash flood-producing systems include “frontal” (heavy rainfall in the cool sector ahead 

of a warm front), “mesohigh” (heavy rainfall along thunderstorm outflow), and “synoptic” (heavy 

rainfall in the warm sector of a warm front, ahead of a cold or stationary front) events. In all three of 

these archetypes, there is some kind of surface boundary present that serves as a lifting mechanism. In 

the mid-levels, shortwave troughs have been shown to be a common feature upstream of flash flood-

producing systems, as they can provide synoptic-scale forcing for ascent (e.g., Maddox et al. 1979; 

Doswell et al. 1996; Davis 2001). High moisture content, particularly at the surface and throughout 

the lower troposphere, is also a key ingredient for flash flood-producing storms (e.g., Maddox et al. 

1979; Doswell et al. 1996). This moisture can be enhanced or sustained when there is a low-level jet 

(LLJ) present, which serves as a transport mechanism for warm, moist air (e.g., Maddox et al. 1979; 

Davis 2001). 

Mesoscale convective systems (MCSs) have been shown to be the system type that is 

responsible for the majority of heavy precipitation events in much of CONUS, particularly in the 

warm season (Schumacher and Johnson 2006). However, not all MCSs are capable of producing flash 

flooding, with the primary reason being that the translational speed can be fast (hence limiting the 𝐷 

component of the basic equation for flash flood-producing rainfall). A critical factor that governs how 

much rain a MCS will produce and how long it will last is the orientation of the precipitation shield 

relative to the direction of the system’s motion (Doswell et al. 1996). For instance, if the major axis of 
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the MCS is parallel to the system’s motion, the duration of rainfall for a given location within the 

precipitation field would be greater than it would be if the major axis of the system was perpendicular 

to the system’s direction of motion. This concept is illustrated in Fig. 1.1..   

 

 
Figure 1.1: Schematic detailing the dependency of the rain rate (R) and duration of a convective system on the orientation 

of the system relative to the direction of system motion, from Fig. 3 in Doswell et al. (1996). The top row of plots show the 

convective systems (with darker shading representing higher reflectivity), the system’s direction of travel (shown by the 

arrows labeled with “C”), and a given location that the system will impact (small circle). The bottom row of plots shows 

the idealized R over time that corresponds to the location being impacted by the system shown in the diagram above each 

respective plot.   

 

In addition to the system motion of MCSs, the motion of the cells within the system relative to 

the development of new cells (i.e., the cell propagation) is also important to consider when discussing 

flash flood potential for a given system. Quasi-stationary motion can occur when there is near-

cancellation of the cell motion and cell propagation vectors within a system (Fig. 1.2a) (Chappell 1986; 

Doswell et al. 1996; Schumacher and Johnson 2005). This nearly-stationary motion can cause rain to 

fall over the same locations for many hours, which can result in localized flash flooding. In MCSs, 

systems that have persistent upstream development of new convection relative to the cell motion 

vector are classified as “backbuilding” MCSs (Fig. 1.2b) (Schumacher and Johnson 2005). 
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Climatologically, backbuilding MCSs have been shown to be the second-most common type of system 

responsible for producing extreme rainfall (specifically, across the eastern 2/3 of CONUS) 

(Schumacher and Johnson 2006). One way that backbuilding convection has been shown to form is 

through the interaction of a LLJ impinging on a mid-level low, which can provide lift, and shear that 

can help sustain convection (Schumacher and Johnson 2009). Quasi-stationary surface boundaries, 

such as storm outflow or cold pools, have also been shown to be an important component in 

maintaining backbuilding convection, as it can help to lift and destabilize warm, moisture-rich air that 

collides with the boundary (e.g., Schumacher and Johnson 2005; Keene and Schumacher 2013). 

Though larger-scale aspects of the environments that have been shown to support backbuilding 

convection are consistent with other heavy rainfall-producing systems (e.g., moderate instability, 

moisture transport by a LLJ, presence of vertical wind shear), localized, storm-scale processes are 

regarded as being more important (e.g., Schumacher and Johnson 2005). These mechanisms have been 

studied almost exclusively in continental systems, though back-building convection has been 

documented within TCs as well (Wang et al. 2015). 

 
Figure 1.2: Schematics showing mean wind, cell propagation, and cell motion vectors that lead to nearly stationary storm 

motion from Fig. 4 in Doswell et al. (1996) (a) and back-building structure in mesoscale convective systems from Fig. 3 in 

Schumacher and Johnson (2005) (b). 
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1.2 Heavy Rainfall in Landfalling Tropical Cyclones  

 LTCs can bring extreme rainfall accumulations. They contribute significantly to yearly rainfall 

in CONUS, accounting for upwards of 15% of annual summer rainfall in some coastal locations 

(Larson et al. 2005). They also make a noticeable contribution to extreme rainfall events, and this 

contribution has been shown to be increasing over time in some areas (e.g., Knight and Davis 2009). 

To examine rainfall in LTCs, the simple formula for heavy rainfall provided by Doswell et al. (1996) 

(i.e., Eq. 1.1) will provide a framework for the discussion below.   

Beginning first with duration (𝐷), the time component of heavy rainfall has been at the center 

of LTC rainfall-related discussions in recent years, particularly in regard to observed changes in their 

translational speed (e.g., Kossin 2018; Hall and Kossin 2019) and the time it takes them to decay over 

land (Li and Chakraborty 2020). On a global scale, forward speed of TCs have generally decreased over 

the past several decades, with a particularly pronounced slowdown occurring inland over North 

America (Kossin 2018). Over a similar time frame, North Atlantic TCs have also demonstrated a 

greater propensity to stall near the coast, which is hypothesized to be a result of both reduced 

translational speed and an increased frequency of sudden changes in LTC direction (Hall and Kossin 

2019). Once inland, LTCs have also been shown to be decaying at a slower rate, which is thought to be 

the result of warmer sea surface temperatures providing more moisture to LTCs before they move 

inland, which helps them maintain their intensity (Li and Chakraborty 2020). The obvious 

implication of reduced translational speeds and slower weakening of LTCs is that duration of LTC-

related rainfall would increase both along the coast and inland, which would increase the threat for 



 8 

heavy rainfall (all else being equal). Furthermore, translational speed may even be one of the main 

governing factors in determining rainfall amounts, since LTCs that are the slowest-moving tend to 

produce the highest storm-total rainfall amounts (Galarneau and Zeng 2020). This slow system speed 

that leads to long duration events is also perhaps a reason why LTCs are associated with hybrid 

flooding (which consists of both flash and slow-rise flooding) (Dougherty and Rasmussen 2019). 

 In addition to duration, the second component of Eq. 1.1 (rain rate) is also an important 

factor in rainfall accumulations produced by LTCs. Moisture content is one factor that influences rain 

rate (i.e., it is a positive relationship), and it is an ingredient that is very abundant in LTCs, as 

evidenced by their high precipitable water values. In an extreme example, precipitable water values in 

Hurricane Harvey (2017)—the wettest storm on record to impact CONUS—were shown to be 

several standard deviations above the climatological mean for the area, which persisted for several days 

after it made landfall (e.g., Brauer et al. 2020; Galarneau and Zeng 2020). For a broader perspective, it 

appears that among precipitable water values associated with LTCs, many of the heaviest rainfall-

producing systems (which were also often the slowest-moving) typically have area-mean values that 

remain above at least the 50th percentile for several days after landfall (Galarneau and Zeng 2020). In 

addition to high precipitable water, high precipitation efficiency also plays a role in enhancing rain 

rates (Eq. 1.2). In LTCs, strong horizontal moisture flux convergence as well as rich warm rain 

processes have been shown to increase precipitation efficiency (Brauer et al. 2020). The collocation of 

quasigeostrophic forcing for ascent with LTC environments has also been shown to further advance 

rainfall production (Galarneau and Zeng 2020) by providing additional lift that can support 

precipitation formation. In terms of the role that rainfall rate in LTCs may play in the future, there is 
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new evidence that suggests that rainfall rates in northern hemisphere LTC rainbands are increasing, in 

part as a result of increasing precipitable water values in the systems (Guzman and Jiang 2021). This 

finding highlights that moisture availability and other factors influencing rainfall rates should perhaps 

be given the same attention as translational speeds and inland system longevity when examining LTC-

related rainfall. 

1.3 Tornadoes in Landfalling Tropical Cyclones 

 Tornadoes are a relatively frequent phenomenon that accompany LTCs, with 76 occurring on 

average each year (Edwards 2010, according to a 1995-2009 climatology). Several climatologies have 

sought to capture the various spatial, temporal, and intensity characteristics of LTC tornadoes, both in 

CONUS (e.g., Hill et al. 1966; Novlan and Gray 1974; McCaul 1991; Schultz and Cecil 2009; 

Edwards 2010; Moore and Dixon 2011; Edwards 2012; Moore et al. 2017) and internationally (e.g., 

Fujita et al. 1972; Bai et al. 2020). With regards to intensity, the vast majority of LTC-spawned 

tornadoes tend to be “weak” (i.e., rated F/EF0 or F/EF1) and short-lived (e.g., Schultz and Cecil 2009; 

Moore and Dixon 2011; Edwards 2012; Moore et al. 2017),  with “strong” tornadoes (i.e., those rated 

F/EF2 or higher) making up a smaller percentage of LTC tornadoes compared to non-LTC tornadoes 

(Schultz and Cecil 2009). LTC tornadoes also tend to be smaller in diameter and have shorter path 

lengths relative to tornadoes not associated with LTCs (e.g., Moore and Dixon 2011; Edwards 2012), 

though LTC tornadoes that are stronger and have longer path lengths tend to occur 

disproportionately at locations that are at higher latitudes and further from coastlines (Moore et al. 

2017). Indeed, LTC tornadoes can occur several hundred kilometers inland, though they most often 

occur within a couple hundred kilometers of the coast (e.g., Hill et al. 1966; Novlan and Gray 1974; 
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Schultz and Cecil 2009; Moore and Dixon 2011; Edwards 2012; Moore et al. 2017). There is very high 

consensus among these same studies that tornado activity tends to be concentrated in the northeast 

quadrant of the LTC from an earth-relative perspective and/or the front-right quadrant (FRQ) from 

the perspective of the LTC’s translational motion. Many times, these quadrants are very closely co-

located. However, in the storm-relative framework, elevated tornadic activity in the FRQ may be less 

likely in LTCs that experience abrupt or deviant motion (e.g., Edwards 2012). Temporally, the height 

of TC tornado activity takes place in the early afternoon to early evening hours and roughly within the 

first day of landfall (e.g., McCaul 1991; Schultz and Cecil 2009; Moore and Dixon 2011; Edwards 

2012). 

 The number of tornadoes associated with LTCs is extremely variable, with some systems 

producing zero tornadoes and others producing over 100 (e.g., Schultz and Cecil 2009; Moore and 

Dixon 2011; Edwards 2012). Many studies have linked tornado productivity to features of the LTC 

itself, such as its intensity at landfall (e.g., Hill et al. 1966; Novlan and Gray 1974; Verbout et al. 2007; 

Moore and Dixon 2011). However, comprehension of the environmental characteristics that are 

favorable for LTC-spawned tornadoes is perhaps more useful from a predictability standpoint. 

This review of tornadic LTC environments begins first with dynamic patterns in the mid- to 

upper-levels. Early research suggested that LTCs with a northeasterly trajectory tended to spawn more 

tornadoes, but the reason was not particularly clear as to why (Hill et al. 1966; Novlan and Gray 1974). 

With later research recognizing the importance of mid- and upper-level winds in steering TCs, 

especially for systems that are strong (e.g., Velden and Leslie 1991), patterns in troughs and ridges 

began to be investigated in more detail. At 500 hPa, one common large-scale pattern found for 
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tornado-producing LTCs (specifically those making landfall along the Gulf Coast) is a trough located 

over the western CONUS (Verbout et al. 2007; Cohen 2010; Moore and Dixon 2015). As the trough 

begins to progress eastward, the Gulf Coast LTC can begin to interact with its ascending branch and 

the stronger winds associated it, which ultimately helps the system recurve towards the east (Verbout 

et al. 2007) and gives it the northeast trajectory that was noted by early scientists. For LTCs that 

become fully embedded in the midlatitude westerlies, tornado production can be even more prolific 

(Moore and Dixon 2015), particularly if the system is in a favorable region (i.e., right-entrance or left-

exit) of an upper-level jet streak (Cohen 2010; Moore and Dixon 2013). This feature was present 

during Hurricane Harvey (Galarneau and Zeng 2020), which likely played some role in supporting the 

tornadic environment during that event. One reason that the ascending branch of the mid-level trough 

and the upper-level jet streak are thought to be important characteristics in fostering tornadic 

development in LTCs is because they support synoptic-scale rising motion (Verbout et al. 2007; 

Cohen 2010; Moore and Dixon 2013, 2015), which is an important feature that contributes to 

convective development. 

 Moisture, instability, and vertical wind shear are other factors that must be considered in any 

tornadic environment, including those associated with LTCs. It has long been acknowledged that 

strong wind shear, particularly in the low levels, is essential in LTC tornadogenesis because instability 

often suffers due to high moisture content and dense cloud cover in those environments (e.g., Novlan 

and Gray 1974; McCaul 1991). Indeed, compared to non-LTC tornadic environments, LTC tornadic 

environments tend to be characterized as having less instability, lower lapse rates, higher moisture 

content, and stronger low-level vertical wind shear (e.g., Edwards et al. 2012). Fig. 1.3 shows a 
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statistical comparison of a few parameters that are pertinent to historical tornadic environments (i.e., 

mixed-layer convective available potential energy (MLCAPE), 0-1 km above ground level storm 

relative helicity (SRH), precipitable water, and mid-level lapse rates) in LTC and non-LTC cases. One 

 

Figure 1.3: Statistical comparison of some environmental parameters for non-landfalling tropical cyclone supercellular 

tornadic (left boxplot in each subplot) environments and landfalling tropical cyclone supercellular tornadic environments 

(right boxplot in each subplot) from Fig. 8 in Edwards et al. (2012). The parameters being shown are mixed-layer 

convective available potential energy (J kg-1) (a), 0-1 km above ground level storm relative helicity (m2 s-2) (b), precipitable 

water (inches) (c), and 700-500 hPa lapse rate (°C km-1) (d). The ends of the whiskers and associated annotated values 

correspond to the 10th and 90th percentiles of the dataset, the edges of the boxes and annotated values correspond to the 25th 

and 75th percentiles, and the central value is the 50th percentile. Environmental classification type and sample sizes are 

included in parenthesis along the x-axes.  

 

of the most obvious differences in this figure is moisture content, where the 10th percentile of 

precipitable water in LTC tornado environments is greater than even the 90th percentile of precipitable 

water in non-LTC tornado environments. The values of MLCAPE and 700-500 mb lapse rates in 

tornadic LTC environments are also noticeably low compared to the values in tornadic non-LTC 
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environments, further demonstrating the limited instability and buoyancy that is present in tornado-

producing LTCs. However, as stated previously, stronger low-level wind shear in tornadic TC 

environments compared to non-tornadic TC environments can help compensate for the lower 

instability. In addition the stronger low-level shear, enhanced deep-layer (i.e., 0-6 km) vertical wind 

shear on very localized scales in LTC environments also seems to play a role in determining which 

convective elements with velocity-derived storm-scale rotation (specifically, that is consistent with 

tornadogenesis) will ultimately produce a LTC tornado. 

 Two of the main components in tornadogenesis, vertical wind shear and instability, can be 

impacted as a result of interaction between broader synoptic-scale processes and LTCs. For example, 

deep-layer shear, which has been argued to be important for tornadogenesis in LTC environments 

since it promotes mesocyclogenesis, can be enhanced by the mid- to upper-level troughs that were 

discussed previously (e.g., Verbout et al. 2007; Moore and Dixon 2013, 2015). This pattern helps to 

foster veering vertical wind profiles that promote supercellular convection (e.g., McCaul 1991; 

Verbout et al. 2007; Moore and Dixon 2015). However, mesocyclones are generally weaker overall in 

LTC tornadic environments compared to non-LTC tornadic environments (e.g., Edwards et al. 

2012), and the magnitude of the effect that the strength of the deep-layer shear has on the number of 

tornadoes produced in LTC tornadic environments has been found to range from neutral to positive 

(e.g., Verbout et al. 2007; Cohen 2010; Edwards 2012; Moore and Dixon 2015), which does bring into 

question its relative importance compared to low-level shear for tornadogenesis in LTCs. Shifting 

focus to synoptic-scale effects on thermodynamics, dry air entrainment can help counteract the lack of 

instability in LTC environments by helping to destabilize the atmosphere. Specifically, LTC 
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environments that support tornadoes often show signs of dry air entrainment between 700 hPa and 

500 hPa, which works to steepen mid-level lapse rates and decrease cloud cover (allowing for 

additional surface heating), both of which increase positive buoyancy (e.g., Curtis 2004; Cohen 2010; 

Moore and Dixon 2013). This dry air, typically seen as a horizontal moisture gradient, often exists to 

the north or northwest relative to the center of circulation of the LTC, where it can then be mixed in 

to the system (e.g., Curtis 2004; Cohen 2010).  

1.4 Relationships Between Tornadoes and Flash Flooding   

 Though many studies have sought to understand tornado and flash flood-producing rainfall 

environments independently, fewer have considered where, when, and how they might occur together. 

Though most research on the meteorological aspects of the subject has occurred within the 21st 

century, concern related to the forecasting and communication of the combined threat of flash 

flooding and tornadoes has existed for many decades. As Maddox et al. (1979) writes in their early 

paper on flash flood forecasting: “if severe thunderstorms [storms that produce damaging winds, 

and/or hail and/or tornadoes] occur in association with the heavy precipitation event, forecaster 

concern for flash flood possibilities may become subordinate to that caused by other aspects of the 

storms” and that when they both occur, the “forecast office must contend simultaneously with both 

severe storm and flash flood problems” (p. 117-8). Doswell (1998) expresses similar sentiments in the 

context of supercell thunderstorms, articulating concern that forecasters may be more focused on their 

severe hazards rather than their flash flood potential. Recent work has suggested that these concerns 

are legitimate, as it has been shown that forecasters may unintentionally focus on the tornado risk over 
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the flash flood risk during warning operations when they occur simultaneously (Henderson et al. 

2020).  

Several studies have discussed the concurrence and/or co-location of tornadoes and flash 

flooding broadly using relatively loose definitions (e.g., Schumacher and Johnson 2006) or have 

highlighted their coexistence in specific events (e.g., Rogash and Smith 2000; Smith et al. 2001; 

Bluestein et al. 2015). Other work, however, has offered more explicit definitions. For example, 

Rogash and Racy (2002) selected their cases by requiring at least one F3+ or two F2 tornadoes to occur 

within 250 km and +- 3 hours of “significant flash flood reports”. Later, Nielsen et al. (2015) coined 

the term “TORFFs” to describe the overlapping existence of tornadoes and flash flooding and 

provided two definitions of them using specific spatial and temporal constraints. The first definition 

identifies a TORFF event by the spatial overlap in a storm-based tornado and storm-based flash flood 

warning that occurs within a relatively small time frame (≤ 30 minutes) (Nielsen et al. 2015). This 

definition has been applied in other recent studies in the context of forecasting practices (e.g., 

Henderson et al. 2020) and TC environments (Burow et al. 2021). The second method for TORFF 

identification classifies a TORFF event by the co-location of a confirmed tornado path and a flash 

flood observation within a short amount of time (3 hours) (Nielsen et al. 2015). As Nielsen et al. 

(2015) notes, the former of these methods inherently overcounts TORFF occurrences (i.e., every 

tornado warning and flash flood warning will not produce a verified event), while the latter method 

undercounts TORFF events by requiring that the tornado path and flash flood observation overlap 

perfectly (i.e., cases where the phenomena occur very near each other but do not overlap are excluded). 
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In order to forecast potential TORFF events, understanding how and why TORFFs occur are 

crucial steps that must be taken. Climatologically, TORFF events have been shown to occur with 

several types of convective systems, including MCSs, LTCs, discrete cells, and synoptic-scale frontal 

systems (Rogash and Racy 2002; Nielsen et al. 2015). Rogash and Racy (2002) found that TORFF 

environments (see previous paragraph for their definition of TORFF events) shared similar features at 

the surface and in the mid-levels with flash flood-producing environments, and their study even 

modeled their environmental classification scheme after the one proposed for flash flooding by 

Maddox et al. (1979) (i.e. synoptic, frontal, and mesohigh). One difference that their study did find, 

however, is that environments that produced tornadoes and flash flooding tended to have a deep mid-

tropospheric trough to the west of where the phenomena took place, whereas a weaker upstream 

trough can be sufficient in many flash flood-only environments, as detailed by Maddox et al. (1979). 

TORFF environments also have been shown to resemble tornadic environments in terms of 

ingredients (e.g., low-level vertical wind shear, instability), though the magnitudes of the ingredients 

tend to differ: that is, TORFF environments tend to have more moisture in the lower troposphere, 

greater forcing on the synoptic scale, and stronger vertical wind shear compared to tornadic 

environments (Nielsen et al. 2015). While these differences should be noted, TORFF environments 

remain complex and difficult to distinguish from tornado-only or flash flood-only environments. 

Further, these studies predominately explicate these features in continental convective systems, so 

questions remain as to what these characteristics may look like in LTC environments. 

Additional insights on TORFF events can be gathered at the storm-scale. Early discussions 

surrounding this topic have begun with supercell thunderstorms—a convective mode frequently 
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associated with tornadogenesis or other severe hazards, though considered far less often for their flash 

flood potential (e.g., Doswell 1998). This notion that supercells do not produce heavy rainfall is not 

necessarily incorrect, as supercells tend to have fast translational speeds (e.g., Doswell 1998; Smith et al. 

2001) and small precipitation footprints (specifically when in the form of discrete cells, rather than 

when embedded within a larger convective system). Despite these typical characteristics, supercells are 

capable of producing short-term heavy rainfall (e.g., Doswell 1998; Smith et al. 2001; Hitchens and 

Brooks 2013; Bluestein et al. 2015). This is especially true when the storm is a high precipitation (HP) 

supercell, which are characterized as having a mesocyclone located directly above the precipitation 

shield rather than above a non-precipitating or low-precipitating part of the cell (a feature that occurs 

in a “classic” supercell) (Moller et al. 1994). In general, supercells have been shown to be more likely 

than non-supercellular thunderstorms to produce short-term heavy to extreme rainfall rates (Hitchens 

and Brooks 2013), and they can have high precipitation efficiencies (Brauer et al. 2020). From an 

impacts standpoint, it has been shown that both flash flooding and tornadoes can occur not only 

within the same storm systems (e.g. Rogash and Smith 2000; Smith et al. 2001), but even within the 

same supercell (e.g. Bluestein et al. 2015),which  further illustrates that these dual-hazards can exist in 

close proximity to each other (in both a spatial and temporal sense). 

Knowing that supercells can generate extreme rainfall, more recent studies have begun to 

examine storm-scale dynamics in an effort to understand interconnected factors that might be 

precursors to flash flooding and tornadogenesis. Eq. 1.2 shows that vertical motion is positively 

correlated with increased rain rates (Doswell et al. 1996), and this ingredient is also a key component of 

tornado-producing convection. Nielsen and Schumacher (2018) demonstrated through model 
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simulations that vertical wind shear-driven low-level rotation can act to increase rainfall production by 

enhancing upward vertical velocity. More specifically, their study showed that low-level, meso-g scale 

rotation increases with increasing vertical wind shear, which enhances upward vertical accelerations, 

effectively lifting parcels to saturation that would have been otherwise stable. This relationship 

between small-scale rotation and heavy rainfall has also been examined in observations. Nielsen and 

Schumacher (2020a) showed that in continental convective systems, more rain tended to fall when 

there was rotation present in the precipitating system. In tropical systems, storm-scale rotation 

occurring in embedded supercells has been shown to be co-located with locally-heavy rainfall 

accumulations (Brauer et al. 2020), further suggesting a positive association between meso- to storm-

scale rotation and rain rates.  

TORFF events are challenging to predict and communicate (given the conflicting 

recommended protective actions that are associated with them) but understanding them is important 

given how often they occur. From a storm-based warnings perspective, Nielsen et al. (2015) found that 

TORFF events occur on average over 400 times per year across all modes of convective systems in 

CONUS. Fig. 1.4 (from Nielsen et al. 2015) illustrates the nearly 3000 TORFF events that were 

documented over a 6-year period. The graphic in Fig. 1.4 shows that TORFF events are relatively 

common for almost any location east of the Rockies, indicating that this type of overlapping hazard is 

pertinent to a large number of individuals. In LTCs specifically, TORFF events are also not unusual. 

Burow et al. (2021) notes, however, that the spread in number of TORFF events is large for a given 

LTC, ranging from over 200 events to zero. While their study does offer some basic spatial 

characteristics of TORFF events in LTCs (e.g., they occur in the rear-right quadrant of LTCs relative 
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to their translational direction of motion), their work does not discuss environmental characteristics 

that may favor their development in LTCs. 

 
Figure 1.4: Co-located, concurrent tornado and flash flood warnings (TORFFs) colored by month for 2008-2014 from 

Fig. 6 in Nielsen et al. (2015). The black dot represents the mean center of the warning overlaps, with the pink ellipse 

representing one standard deviation from the mean center. 

 

1.5 Motivation 

 This literature review demonstrates that there has been extensive research done to examine the 

environmental characteristics and physical mechanisms that contribute to flash flood-producing 

rainfall and tornadoes individually in LTCs. A few studies have investigated the environments and 

meteorological mechanisms that may precede the development of these concurrent, co-located hazards 

in non-TC cases. However, much less work has been done to investigate overlapping tornado and flash 
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flooding events in LTCs specifically. This study aims to improve the understanding of the relationship 

between these two hazards in LTCs by examining the connection between embedded meso- to storm-

scale rotation and extreme rainfall rates in LTCs. In order to support this goal, this study provides a 

close examination of several observational datasets in the case of Tropical Storm Imelda. Using several 

different methods, this work aims to 1) examine the multiscale processes that contributed to Imelda’s 

excessive rainfall, 2) explore the spatiotemporal relationship between embedded mesoscale/storm-scale 

rotation and the extreme rain rates that occurred during Imelda using observations, 3) identify the 

magnitude and significance of this relationship. Broadly, these goals will help further the 

understanding of the relationship between meso- to storm-scale rotation and heavy rainfall, specifically 

in LTC environments. 

 The remainder of Part I proceeds as follows. Chapter 2 provides a synoptic and mesoscale 

analysis of Tropical Storm Imelda and offers motivation for its use in studying the relationship 

between heavy rainfall rates and embedded mesoscale rotation in Chapters 3 and 4. A subjective and 

statistical analysis of radar and rain gauge observations is presented in Chapter 3, followed by an 

assessment of pertinent Multi-Radar Multi-Sensor products in Chapter 4. Chapter 5 includes the 

conclusion and limitations as well as offers potential next steps.  
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CHAPTER 2: SYNOPTIC AND MESOSCALE ANALYSIS OF TROPICAL STORM IMELDA 

(2019) 

 

 

 

Chapter 2 provides a synoptic and mesoscale analysis of Tropical Storm Imelda (2019). A 

variety of datasets are used to describe the evolution of the event and its impacts, including the 

excessive rainfall it produced and the embedded rotating features that were present in its remnants. 

This analysis provides a broad overview of the event and offers the motivation behind using this 

particular event in the analyses that examine rotation and rainfall rates in Chapters 3 and 4. 

2.1 Introduction and Datasets 

TS Imelda impacted the western Gulf Coast for several days in September 2019. Despite being 

a named TC for only a short time, the slow-moving system brought several days of flood-producing 

heavy rain and a couple of tornadoes to Southeast Texas and Southern Louisiana (Fig. 2.1). During the 

time leading up to its landfall and the day or so after, Imelda displayed characteristics similar to most 

weak TCs, such as spiraling rainbands with locally heavy precipitation and an isolated tornado risk in 

the right-front quadrant. However, as Imelda’s structure deteriorated over land, the remnants of the 

system transformed into a quasi-stationary back-building convective line with embedded rotation that 

brought extreme rainfall rates in excess of 100 mm h-1 to some already saturated areas, which led to 

flooding. This interesting transformation provided motivation for the case study. 

In this analysis, synoptic and mesoscale characteristics of the system, from its genesis to its 

dissipation, are assessed using radar, satellite, upper-air, and reanalysis data. First, the synoptic-scale 

evolution and large-scale dynamics are presented from the time that Imelda began developing to its 



 22 

dissipation (i.e., 9 September to 20 September). Then, moisture and thermodynamic properties that 

contributed to the heavy rainfall and embedded rotating features are examined on the mesoscale, with 

the primary focus being on the latter part of the period (i.e., beginning 18 September). The impacts of 

Imelda are detailed in the final section, where the motivation for its use in the other chapters of this 

thesis are detailed.  

 

Figure 2.1: Tropical Storm Imelda track from the time at which it became a named tropical storm to its dissipation using 

National Hurricane Center HURDAT2 best track data (1800 UTC 23 August to 1200 UTC 2 September) (Landsea and 

Franklin 2013) and Weather Prediction Center surface analysis data (0000 UTC-1800 UTC 19 September). Dates and 

times are also annotated. Green polygons indicate Imelda-related storm-based flash flood warnings and red polygons 

indicate Imelda-related storm-based tornado warnings (archived warnings courtesy of Iowa Environmental Mesonet). 

Confirmed tornadoes are shown as orange triangular markers based on data from the National Centers for Environmental 

Information Storm Events Database. 

 

 For the analysis, the National Hurricane Center HURDAT2 database (Landsea and Franklin 

2013) and Weather Prediction Center archived surface analysis 
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(https://www.wpc.ncep.noaa.gov/html/sfc-zoom.php) were used to track the location of the center 

of circulation of the TC and the remnant low. The National Centers for Environmental Information 

(NCEI) Storm Events Database (https://www.ncdc.noaa.gov/stormevents/) was used for identifying 

confirmed tornadoes. Upper air sounding data from Lake Charles, Louisiana (KLCH) were collected 

from the University of Wyoming archives (http://weather.uwyo.edu/upperair/sounding.html). Rapid 

Refresh (RAP) 13 km reanalysis data (https://rapidrefresh.noaa.gov/; Benjamin et al. 2016) were also 

used for analyzing various meteorological fields. Software from MetPy (May et al. 2021) was used to 

help visualize 13 km RAP reanalysis data and upper air soundings in Python. 4 km enhanced infrared 

satellite images were collected from the Cooperative Institute for Research in the Atmosphere 

Regional and Mesoscale Meteorology Branch (CIRA RAMMB) tropical cyclone imagery archive 

(https://rammb-data.cira.colostate.edu/tc_realtime/). Radar data was collected from NCEI 

(https://www.ncei.noaa.gov/products/radar) and visualized in Python using the Py-ART library 

(Helmus and Collis 2016). Quantitative precipitation estimate (QPE) products come from the Multi-

Radar Multi-Sensor (MRMS) system (Smith et al. 2016; Zhang et al. 2016). Flash flood guidance and 

storm-based warning data available from the Iowa Environmental Mesonet 

(https://mesonet.agron.iastate.edu/) were used to assess areas at high risk of flooding over time. 

Finally, WPC Excessive Rainfall Outlooks (EROs) 

(https://www.wpc.ncep.noaa.gov/archives/web_pages/ero/ero.shtml) and Storm Prediction Center 

Convective Outlooks (https://www.spc.noaa.gov/archive/) were used to emphasize the overlapping 

threat for heavy rainfall and tornadoes respectively. 
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2.2 Event Overview 

2.2.1 Dynamics and System Evolution 

13-km Rapid Refresh (RAP) analysis beginning 9 September 2017 shows an upper-level ridge 

centered over the northern high plains, with accompanying troughs to its east and west (Fig. 2.2a). Off 

the coast of the southeastern United States, a weak area of cyclonic rotation separate from the stronger 

flow to its north can be seen both in the 250 hPa wind fields and at 500 hPa (Fig. 2.3a) as an area of 

positive relative vorticity. As the upper-level trough amplified over the western U.S., the cyclonic 

Figure 2.2: 13-km Rapid Refresh (RAP) analysis 250 hPa maps showing geopotential height (contour) and winds (barbs 

and filled contour for speeds ³ 30 kt) at 9 September 0000 UTC (a), 11 September 0000 UTC (b), 13 September 0000 

UTC (c), 16 September 0300 UTC (d), 16 September 0600 UTC (e), and 20 September 0300 UTC (f). 

 

feature began to be absorbed by a weaker trough-like feature to the east, though by 0000 UTC 11 

September, a new upper-level cyclonic circulation can be seen developing near the Georgia/South 

Carolina border (Fig. 2.2b). The upper-level low became cutoff over the next 36 hours and drifted 

southwestward across the northern Florida peninsula and into the eastern Gulf of Mexico (Fig. 2.2c). 
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A closed cyclonic circulation and associated positive relative vorticity can also be seen at 500 hPa, just 

west of the upper-level low (Fig. 2.3b), though this circulation was not yet evident in the lower levels.  

 
Figure 2.3: 13-km Rapid Refresh (RAP) analysis 500 hPa maps showing geopotential height (contour) and winds (barbs) 

and positive relative vorticity (shaded) at 9 September 0000 UTC (a), 13 September 0000 UTC (b), 16 September 0300 

UTC (c), 17 September 0000 UTC (d), and 19 September 0000 UTC (e). 

 

Embedded in this weak flow, the cyclonic feature continued drifting westward for the next 

several days, though the circulation in the mid and upper-levels weakened nearly to the point of 

unrecognition (Figs. 2.2d; 2.3c). Meanwhile, a much stronger TC, Hurricane Humberto, can be seen 

spinning off the southeast U.S. coast. Despite the weak circulation in the mid- to upper-levels, buoy 

data indicated the development of a weak surface low by 1200 UTC 16 September southeast of the 

Texas coast (Fig. 2.4a). Disorganized showers and storms associated with this developing low remained 

mostly offshore, other than a loosely-organized band of convection that moved onshore between 1900 

UTC and 2100 UTC (Fig. 2.5a). By 0000 UTC 17 September, stacked cyclonic circulation became 

tighter and more well-defined as the surface low drifted slowly southwestward (Figs. 2.3d; 2.4b). 
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Figure 2.4: Surface analyses (courtesy of The Weather Prediction Center) for 16 September 1200 UTC (a), 17 September 

0000 UTC (b), and 19 September 0000 UTC (c). Contours show surface sea level pressure.  

 

After the offshore precipitation briefly weakened during the late hours of 16 September, the 

convection gradually reinvigorated throughout the early hours of 17 September as the surface low 

drifted slowly back northward. By 1200 UTC, the system organized further and was named Tropical 

Depression Eleven while TC-like rainbands began to spiral inland along the Texas coastline (Fig. 2.5b). 

Imelda became a named tropical storm around 1500 UTC, less than three hours before it made 

landfall around 1745 UTC (Fig. 2.5c) at its peak intensity (40 kt maximum sustained winds, 1003 hPa 

surface pressure) near Freeport, Texas (Fig. 2.1). Thunderstorm activity gradually became more 

widespread over inland areas during the latter part of 17 September, with the most intense convection 

focused close to the center of circulation (Figs. 2.5d; 2.6a). 

Imelda weakened to a tropical depression by 0000 UTC 18 September. The system continued 

to slowly meander northward as a shortwave acted to tilt the ridge positively, which continued to leave 

the western Gulf Coast in a region with weak flow aloft (Fig. 2.2e). During the overnight hours of 18 

September, most of the convective activity had become focused close to the center of circulation, with 

the most intense convection concentrated on the south side of the system along the southeast Texas 

coast (Fig. 2.6b). By 0800 UTC, areal rainfall coverage gradually increased, particularly southeast of  
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Figure: 2.5 Radar reflectivity from the Houston-Galveston radar in League City, Texas (KHGX) at 2045 UTC 16 

September (a), 1201 UTC 17 September (b), 1743 UTC 17 September (c), 2205 UTC 17 September (d), 0835 UTC 18 

September (e), and 2149 UTC 18 September (f). The black dot indicates the approximate location of downtown Houston, 

Texas. 

 

 
Figure 2.6: 4 km enhanced infrared images of Imelda (courtesy of CIRA RAMMB; Mueller et al. 2006). Images are shown 

for 17 September at 2200 UTC (a); 18 September at 0700 UTC (b) and 2000 UTC (c); and 19 September at 0500 UTC 

(d), 0800 UTC (e), 1200 UTC (f), 1600 UTC (g), and 1900 UTC (h). The colorbar in the bottom right of (h) represents 

cloud top temperatures for all images. 
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the center of circulation (Fig. 2.5e). The convection near the coast (southeast of Houston) was 

backbuilding for a few hours during this time, which led to saturated surfaces in the area as indicated 

by decreased flash flood guidance (Fig. 2.7a). Areal coverage of precipitation increased during the late 

morning and early afternoon, with the bulk of the inland convection shifting northeastward (Fig. 

2.6c). Within the system, a few convective bands with embedded supercells developed (Fig. 2.5f), 

which prompted several tornado warnings.  

 
Figure 2.7: One-hour flash flood guidance for 1200 UTC 18 September (a), 0000 UTC 19 September (b), 1200 UTC 19 

September (c), and 0000 UTC 20 September (d). The one-hour flash flood guidance product incorporates antecedent 

stream flow and soil moisture conditions to describe the approximate amount of rainfall that must fall over a particular area 

within one hour in order for flash flooding to occur in small streams.  

 

By 0000 UTC 19 September, the system had lost much of its TC-like structure, though the 

most intense rain had yet to fall. According to estimates from the Multi-Radar Multi-Sensor (MRMS) 
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system, widespread totals in excess of a few hundred millimeters had already occurred across the 

western Gulf Coast region over the previous several days (Fig. 2.8a), which led to saturated soils in 

many areas, as evidenced by flash flood guidance (Fig. 2.7b). In the early part of 19 September, a region 

of cooling cloud tops stretching from the coastal Texas/Louisiana border to the eastern suburbs of 

Houston (Fig. 2.6d) began to develop south of the center of Imelda’s surface circulation (Fig. 2.4c), 

which remained fairly well stacked with the cyclonic circulation in the mid-levels (Fig. 2.3e). Fig. 2.3e 

shows that there were still high values of positive relative vorticity in the mid-levels (with the 

maximum being just north of the developing precipitation complex). Northeasterly winds on the 

western side of the mid-level circulation likely helped to advect this area of positive vorticity 

southwestward towards the developing system, creating a localized area of positive vorticity advection.  

 
Fig. 2.8: Multi-Radar Multi-Sensor (MRMS) local gauge bias-corrected quantitative precipitation estimate (QPE) for 0000 

UTC 16 September to 0000 UTC 19 September (a), 0000 UTC 19 September to 0000 UTC 20 September (b), and 0000 

UTC 16 September 0000 UTC 20 September (c). 

 

The original precipitating structure began as a north-south oriented bowing convective line 

just west of the Texas/Louisiana border (Fig. 2.9a). By 0330 UTC, small convective cells began to 

develop just west of the main convective line and propagate eastward in a linear fashion as new cells 

continued to form upstream of the cell propagation (Fig. 2.9b). This WNW-ESE oriented convective 

line consisting of merging and backbuilding cells intensified over the next few hours, as evidenced by  
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Figure 2.9: As in Fig. 2.5, but for 19 September at 0244 UTC (a), 0334 UTC (b), 0544 UTC (c), 1018 UTC (d), 1404 

UTC (e), and 1615 UTC (f). 

 

cooling cloud tops (Fig. 2.6d) and increasing radar reflectivity (both in terms of magnitude and extent) 

(Fig. 2.9c). Meanwhile, the north-south bowing feature that had been the dominant feature in the 

earlier part of the period decayed somewhat, though the reflectivity values imply that heavy rainfall 

was still persisting in that area. This “t-shaped” pattern with a backbuilding east-west oriented line 

with a north-south oriented band of heavier convection is very similar to the structure found with 

Typhoon Morakot (2009) over Taiwan by Wang et al. (2015) (their Figs. 3b; 4), though the north-

south oriented convective line in that event was shown to be terrain-induced, which was not the case 

here. The shield of cooling cloud tops would continue to grow in extent for at least another 6 hours 

(Figs. 2.6e-f) as the quasi-stationary backbuilding convective line continued to intensify (Fig. 2.9d). 

Over this period, several persistent embedded rotating features could be seen within the convective line 
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(see Figs. 4.10; 4.11 in Chapter 4). The nearly-stationary motion of the intense nocturnal MCS 

decreased flash flood guidance to essentially zero in the local area by 1200 UTC (Fig. 2.7c).  

Radar imagery around 1400 UTC shows that the convective line had begun to bow 

southward, as well as progress slightly towards the southwest over the past couple hours (Fig. 2.9e). 

This trend would continue over the next several hours, as the system would begin to affect the greater 

Houston area. During this time, the area of cold cloud tops gradually decreased in extent (Fig. 2.6g) 

and the quasi-linear MCS started to fracture (Fig. 2.9f). As the most intense convection continued 

moving towards the southwest, this disorganization and weakening trend continued (Fig. 2.6h). The 

system devolved into scattered thunderstorms by 2200 UTC. However, the lingering effects of the 

extreme rainfall from earlier in the day persisted, as evidenced by the flash flood guidance at 0000 

UTC 20 September (Fig. 2.7d). Other than some light stratiform precipitation near the southern 

Texas/Louisiana border throughout 20 September, Imelda’s rainfall had largely concluded in the 

study area. However, the system did bring some heavy rainfall to areas further north such as southeast 

Oklahoma (Latto and Berg 2020), which was likely supported by upper-level divergence from the 

deepening trough over the western CONUS (Fig. 2.2f) before it finally dissipated. 

Over the 24-hour period ending on 0000 UTC 20 September, areas affected by the back-

building convective line experienced at least as much rainfall as they had over the previous three days 

combined, if not more (cf. Figs. 2.8a-b). As a result, some locations saw storm total rainfall estimates in 

excess of 1000 mm over a period of just 4 days (Fig. 2.8c). The next section investigates the time period 

when the most extreme rainfall fell more closely by examining the moisture, thermodynamics and 

mesoscale dynamics that were in place at the time.  
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2.2.2 Mesoscale Dynamics, Moisture, and Thermodynamics 

 Soundings from KLCH (located in southwestern Louisiana) show low-level moisture below 

approximately 500 hPa with drier air aloft before Imelda’s landfall (Fig. 2.10a). Soon after the LTC 

made landfall, this dry air began to be eroded away as the low to mid-levels continued to become more  

Figure 2.10: Observed upper-air soundings and hodographs from Lake Charles, LA (KLCH) for 1200 UTC 17 September 

(a), 0000 UTC 18 September (b), 1200 UTC 18 September (c), 0000 UTC 19 September (d), 1200 UTC 19 September 

(e), 0000 UTC 20 September (f). Parcel trajectories (black line) shown are for surface-based parcels, surface-based 

convective available potential energy (SBCAPE) shaded is in red, and temperature and dewpoint profiles are shown as red 

and green lines, respectively. SBCAPE, mixed-layer CAPE (MLCAPE), 0-1km storm-relative helicity (SRH), and 0-3km 

SRH are annotated. Wind barbs and hodographs are shown in units of knots. Sounding data is courtesy of the University 

of Wyoming sounding archive and is plotted using software from MetPy (May et al. 2021). 

 

saturated (Fig. 2.10b). The atmosphere remained relatively unstable during this period, with surface-

based convective available potential energy (SBCAPE), showing values in excess of 1800 J kg-1. Low-

level shear values remained low in terms of tornado potential (as evidenced by the 0-1 km and 0-3 km 

storm relative helicity, or SRH, values), which likely limited tornadogenesis within Imelda’s rainbands 
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soon after the system made landfall. The soundings in Fig. 2.10a; b also show a SBCAPE profile that is 

“skinny” as opposed to “fat”, and the warm cloud depth (based on the 0°C isotherm) extends vertically 

up to at least 600 hPa—both features that tend to be favorable for heavy precipitation due to the 

slower, deeper ascent that promotes warm rain processes. These features were accompanied by plenty 

of moisture availability, according to the column-integrated precipitable water (PWAT) values (Fig. 

2.11a). 

 
Figure 2.11: 13-km Rapid Refresh (RAP) analysis 850 hPa winds (barbs; contoured every 5 kt starting at 25 kt) and 

column-integrated precipitable water (fill, mm) at 1200 UTC 17 September (a), 1200 UTC 18 September (b), 0000 UTC 

19 September (c), and 1200 UTC 19 September (d). 
 

 As Imelda continued its slow northward progression after landfall, instability, moisture 

availability, and warm rain processes continued to be favorable for heavy rainfall throughout 18 

September (Figs. 2.10c-d; 2.11b). Despite the weak low-level shear values, SBCAPE and mixed-layer 

(MLCAPE) remained very high, and the lifted condensation level (LCL) heights were very close to the 
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surface. These ingredients tend to be favorable for tornadogenesis, and even though shear values were 

very low, several tornado warnings were issued throughout the day, with a confirmed tornado 

occurring around 2200 UTC in an east Houston suburb (Fig. 2.1).  

 As heavy rainfall continued to track near the southeastern Texas and southwestern Louisiana 

border (Fig. 2.5f) during the afternoon and evening hours of 18 September, a north-south oriented 

surface temperature gradient can be seen developing (Figs. 2.12a-b) as a result of differential heating 

occurring between the precipitating and cloud-free areas. Meanwhile, according to the 10 m winds, 

Imelda’s surface circulation can be seen slowly degenerating as the evening progressed (cf. Figs. 2.12a-

b). 

 
Figure 2.12: 13-km Rapid Refresh (RAP) analysis surface maps showing mean sea level pressure (MSLP) (contoured every 

1 hPa), 2 m temperature (fill), and 10 m winds (barbs) for 2100 UTC 18 September (a), 0000 UTC 19 September (b), 

1200 UTC 19 September (c), and 1800 UTC 19 September (d).  
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 Beginning around 0000 UTC 19 September, which marked the approximate start of the MCS 

development, many ingredients began to come together to support the t-shaped convection, which 

featured a backbuilding line and weak bow echo, that would emerge over the next several hours. 

Though instability had relaxed some compared to earlier in the day according to the KLCH sounding 

(Fig. 2.10d), there was persistent equivalent potential temperature (qe) advection over a localized area 

near the southern Texas/Louisiana border, suggesting increasing potential instability (from SPC 

mesoanalysis archive, not shown). Additionally, 0-1 km and 0-3 km SRH began to increase, and a 

veering wind profile (often associated with warm air advection) began to become apparent (Fig. 

2.10d). In the low-levels, mean 925 hPa to 700 hPa winds show convergence over far southeast Texas, 

with southwesterly flow offshore and northwesterly winds driven by the remnant low-level circulation 

that had shifted northward (Fig. 2.13a). The converging low-level wind field impinged on the warm 

side of the north-south oriented temperature gradient (Fig. 2.12b) at a nearly perpendicular angle, 

which promoted forcing for ascent and likely helped trigger the initial convection that developed west 

of and perpendicular to the existing convective complex (Fig. 2.9b). This wind pattern relative to the 

preexisting convection and precipitation-driven temperature gradient resembles that of “bow and 

arrow” convection that has been found in MCSs (Keene and Schumacher 2013). A very sharp 

SBCAPE gradient can also be seen developing along the coastal counties, with areas near the coast 

showing very high stability (> 3000 J kg-1) and areas further inland having significantly less (< 500 J kg-

1). The low-level winds can be seen converging on the area where the SBCAPE gradient was the 

sharpest (Fig. 2.13a). Meanwhile, moisture availability continued to be plentiful, with maximum 

PWAT values remaining very similar to what they had been over the past few days (Fig. 2.11c).  
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Figure 2.13: 13-km Rapid Refresh (RAP) analysis showing surface-based convective available potential energy (SBCAPE) 

(shade) and 925 hPa mean winds on 19 September at 0000 UTC (a), 0900 UTC (b), and 1800 UTC (c). 

 

 Low-level wind convergence continued as 19 September progressed, with the northwesterly 

winds that were feeding into the zone of convergence becoming more westerly (Fig. 2.13b). Soundings 

from KLCH also suggest that low-level winds feeding in from the southwest (or south, given the 

location of the sounding site) became slightly stronger as nocturnal cooling set in, suggesting evidence 

of a LLJ (cf. Figs. 2.10d-e). Despite nocturnal cooling, instability continued to increase, particularly 

west of the convective line (2.13b). Storm-relative helicity also continued to increase (Fig. 2.14a), with 

the highest values being co-located near the area of maximized low-level convergence and the sharpest 

SBCAPE gradient. Comparing Figs. 2.13b and 2.9d, the orientation of the convective line appears to 

set up parallel to the SBCAPE gradient, and the low-level winds seem to intersect the gradient at an 

approximately 45° angle. 0-3 km SRH increased to values in excess of 300 m2s-2 at their peak around 

1200 UTC to 1300 UTC (Fig. 2.14b), which is sufficient to support rotating updrafts. Coincidentally, 

this is also the time when the southerly LLJ was the strongest, as evidenced by the localized corridor of 

enhanced southerly flow at 850 hPa over western Louisiana (Fig. 2.11d). The 850 hPa westerly flow 

(resulting from the converging wind field in the low-levels) to the west of the LLJ were also near its 

peak at this time as the winds intersected the southerly LLJ at a nearly 90° angle. Meanwhile, sounding 
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data from KLCH reflected the increasing SBCAPE that had also occurred overnight, with 1200 UTC 

values nearly doubling from the 0000 UTC sounding (Fig. 2.10e). The 1200 UTC hodograph also 

indicates very strong, deep shear—demonstrating a “hairpin” shape that has been previously shown to 

support backbuilding convection due to the strong reversal in winds with height (Schumacher and 

Johnson 2009). PWAT values continued to remain high as well (Fig. 2.11d). At the surface, nocturnal 

cooling made the surface temperature gradient less apparent (Fig. 2.12c).   

 
Figure 2.14: 0-3 km storm relative helicity (SRH) (m2 s-2) for 19 September at 0700 UTC (a), 1300 UTC (b), and 2000 

UTC (c). Courtesy of the Storm Prediction Center Mesoanalysis Archive. 

 

 As diurnal heating began, conditions became less favorable for the backbuilding convective 

line. As the MCS progressed southward by approximately 1400 UTC (Fig. 2.9e), the low-level 

cyclonic circulation began to shift north. While the low-level convergence remained, the area of 

maximized convergence also shifted north as the relatively high inland SBCAPE values had eroded due 

to the hours of intense convection that had persisted over the same area (Fig. 2.13c). These two 

changes meant that the convergent low-level winds were no longer co-located with an area of elevated 

instability. Thus, while there was still plenty of moisture (Fig. 2.11d), a re-developing temperature 

gradient driven by the ongoing convection and daytime heating (Fig. 2.12d), and ongoing convergence 

in the low-level wind field (Fig. 2.13c)—the latter two of which could serve as a lifting mechanism—

the lack of instability due to the hours of convection that had worked-over the atmosphere was the 
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limiting factor in perpetuating the MCS. Furthermore, weakening 0-3 km SRH also largely hindered 

the ability for embedded rotating updrafts to form within the system (Fig. 2.14c). Low-level shear and 

SBCAPE remained somewhat more favorable further east (e.g., southern Louisiana) even into the 

evening hours according to the KLCH soundings (Fig. 2.10f). These ingredients likely helped to make 

the environment in that region more favorable for tornadic development compared to areas further 

west—and there was a brief EF-0 tornado around 1600 UTC south of Lake Charles, LA (Fig. 2.1). 

 To summarize, several ingredients were in place that promoted an extreme rainfall event to 

take place in southeast Texas, the worst of which occurred on 19 September 2019. First, there was 

plenty of moisture availability in place with Tropical Storm Imelda’s remnants, and while the system 

had been inland for several days, the column-integrated moisture had not changed much. There was 

plenty of surface-based instability (though mixed-layer instability was more limited) and observed 

radiosonde profiles showed persistent, deep warm cloud depths and skinny SBCAPE profiles—both 

of which provided favorable conditions for warm rain processes. Ongoing precipitation created a 

localized north-south oriented temperature gradient. Low-level winds from the northwest and 

southwest impinged on the warm side of this temperature gradient to create a localized zone of 

enhanced westerly winds, serving as a source of forcing for ascent. A southerly LLJ also developed to 

the east of the converging wind field, which enhanced low-level shear and moisture convergence on 

the eastern side of the system. Moderate SBCAPE values suggested favorable instability, and relatively 

high 0-3 km SRH values, indicating the potential for rotating updrafts (as was evident in several 

locations within the convective system based on storm-relative velocity data). Additionally, referring 

back to the previous section, mid-level cyclonic rotation and associated positive relative vorticity from 
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the remnant LTC was located just north of the convective system (Fig. 2.3e). This feature likely 

provided a somewhat larger scale source of positive vorticity advection into the region where the 

backbuilding line became organized. As the developing cells moved westward with the ambient winds, 

persistent forcing from the converging winds along the edge of the temperature gradient provided 

upward forcing to allow convection to continue developing on the back side of the system. Storm-

scale cold pools from the downwind convection likely locally enhanced this lift even further. The 

system began to degrade when the instability and forcing were no longer co-located.  

 Features of Imelda on 19 September were consistent with findings from previous literature on 

backbuilding MCSs. The presence of a southerly LLJ impinging on a decaying mid-level cyclonic 

circulation (which was the remnants of Imelda in this case) accompanied by high-qe air to the south 

and west (that was also positively advecting into the region where the MCS developed) strongly 

resembled the environmental setup described in Schumacher and Johnson (2009)’s study on quasi-

stationary/backbuilding convection (Fig. 2.15a). One notable difference that was found with Imelda 

was the zone of enhanced low-level westerlies resulting from converging northwesterly and 

southwesterly winds, which was a feature that their results did not show. However, this feature was 

present in Keene and Schumacher (2013)’s study on “bow and arrow” convection (Fig. 2.15b). 

Additional features from their study were also found with Imelda’s remnants, particularly in the earlier 

hours of 19 September. These similarities include 1) a bowing MCS (the “bow”) that preceded the 

upstream development of the “arrow”, 2) a surface cold pool, created by the cool outflow from the 

“bow”, 3) enhanced westerly winds that impinged on the warm side of the cold pool and provided 

forcing for ascent, and 4) the subsequent development of the “arrow”—a linear convective feature that 
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developed along the cold outflow approximately parallel to the “bow”. However, there were slight 

differences in the role of the LLJ between their study and this one. Specifically, the LLJ seemed to  

Figure 2.15: The schematic on the left shows the interaction of a midlevel cyclonic vortex and low-level jet to produce a 

backbuilding mesoscale convective system (MCS), from Fig. 13 in Schumacher and Johnson (2009) (a). The low-level jet 

(LLJ) is represented by thick black arrows, the flow around a upper-level ridge is shown as a dashed black arrow, and the 

thinner black arrows represent the mid-level cyclonic circulation and associated vorticity (shaded in dark gray). The region 

of high-qe lower tropospheric air is shaded light gray. The schematic on the right shows the development of “bow and 

arrow” convection, from Fig. 25 in Keene and Schumacher (2013) (b). Green arrows represent wind speed and direction at 

all pressure levels, the red arrows symbolize the LLJ, and the shaded contours in the background of the figure represent 

temperature (with warmest colors in red and coolest colors in blue). The bow echo, linear “arrow”, and cold pool are all 

labeled.  

 

supply the southwesterly flow into the converging low-level wind field in Keene and Schumacher 

(2013), whereas this feature was not evident in Imelda—rather, the LLJ was more southerly and co-

located with the “bow” and seemed to be predominately supporting ongoing convection along the 

eastern side of the system. A third study that aspects of Imelda resembled on 19 September were some 

of the findings by Wang et al. (2015). Their study showed the development of an east-west oriented 

backbuilding MCS embedded within the rainbands on the south side of a typhoon and formed 

perpendicular to a terrain-induced north-south oriented convective line, creating a “t-shaped” zone of 

convection. Their study showed that converging northwesterly and southwesterly winds were co-

located with a westerly LLJ, which contributed to the development of the quasi-stationary 
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backbuilding convective line by providing strong shear. The radar imagery shown in their study (their 

Fig. 3b, not shown) strongly resembled the t-shaped reflectivity patterns seen during some periods in 

Imelda (e.g., Fig. 2.9d). While it is worth considering similarities between their study and Imelda (e.g., 

the interaction with the low-level jet, the orientation of the convection), there are some notable 

differences—particularly with respect to terrain effects, which played a significant role in their study 

but were irrelevant in Imelda. Therefore, it appears most likely that the quasi-stationary convective 

complex associated with Imelda’s remnants developed as a result of a combination of the 

environmental characteristics described by Schumacher and Johnson (2009) and Keene and 

Schumacher (2013). 

2.3 Impacts and Motivation for Use in this Study 

 The intense flash flood-producing rainfall was the primary driver for the damage that resulted 

from Imelda in southeast Texas.  Based on the maximum rainfall that fell with Imelda (approximately 

1125 mm), the LTC became the fifth wettest on record2 to impact CONUS (Weather Prediction 

Center), surpassing rain totals from other notorious heavy rain-producing systems such as Tropical 

Storm Allison (2001) and Hurricane Florence (2018). While Imelda’s rain totals were lower and 

covered less area compared to Hurricane Harvey in 2017 (Fig. 2.16), many of the same areas were 

impacted. The flood-producing rainfall associated with Tropical Storm Imelda ultimately led to 5 

deaths, several high water rescues, and damage to thousands of homes (Latto and Berg 2020). In 

addition to the flooding caused by Imelda, there was a marginal tornado threat that verified: some 

 
2 Based on maximum accumulated rainfall that was recorded.   
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additional damage was caused by two brief tornadoes (one rated EF-0 and on rated EF-1). Though the 

tornado-related impacts were far less extensive relative to the flooding (NOAA National Centers for 

Environmental Information 2021a), the tornado threat was taking place in the same locations that 

were also at risk of flash flooding (Fig. 2.1). Economically, Tropical Storm Imelda was classified as a 

billion-dollar disaster, with the damage estimates exceeding $5 billion dollars (NOAA National 

Centers for Environmental Information 2021b).  

 
Figure 2.16: Storm total rainfall (in inches) for Tropical Storm Imelda (a) and Hurricane Harvey (2017) (b), courtesy of the 

Weather Prediction Center. 

 

This overview of Tropical Storm Imelda on the synoptic and mesoscales provides motivation 

to investigate the LTC on even smaller scales—specifically, one that focuses on the relationship 

between heavy rainfall and embedded rotation. First, the extreme rain rates were accompanied by 

multiple persistent embedded mesovorticies for many hours, which provides a relatively long period of 

time to examine their relationship in the local observations. Second, from a forecast operations and 

human impacts standpoint, there existed a co-located, concurrent threat for tornadoes and flash 

flooding (Figs. 2.17; 2.18). According to the storm-based warnings (Fig. 2.1), the dual threat did 

materialize, with 12 spatiotemporal TORFF warning overlaps occurring. This point is relevant 
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because it indicates that there was a legitimate risk that overlapping hazards could emerge as a 

consequence of these two meteorological processes, and it highlights its relevancy to the overarching 

goal of better understanding the interconnectedness of the two phenomena. Lastly, the area was well-

covered by a variety of relevant observational platforms (e.g., rain gauges, radar), which makes it a good 

location to examine embedded rotation and rainfall on the storm- to mesoscales. It is these reasons that 

Tropical Storm Imelda will be used in Chapters 3 and 4 to study the co-location of extreme rainfall 

rates and embedded rotation through observations.    

 
Figure 2.17: Day 1 Excessive Rainfall Outlook (ERO) products from the Weather Prediction Center (WPC) for 1600 

UTC 18 September to 1200 UTC 19 September 2019 (a) and 1600 UTC 19 September to 1200 UTC 20 September 2019 

(b). 

 

 
Figure 2.18: Day 1 Tornado Outlooks from the Storm Prediction Center (SPC) for 0100 UTC to 1200 UTC 19 

September 2017 (a) and 2000 UTC 19 September to 1200 UTC 20 September 2019 (b). 
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CHAPTER 3: RADAR AND RAIN GAUGE ANALYSIS  

 

 

 

This chapter provides the methods, results, and discussion for the radar and rain gauge analysis 

for Tropical Storm Imelda. In essence, radar images that have been subjectively analyzed for embedded 

rotation within convection are spatially and temporally matched with five-minute surface rain gauge 

observations during a period when extreme precipitation rates occurred. Statistical comparisons are 

made between the gauge observations that follow radar-indicated rotation and the gauge-recorded 

rainfall observations that follow radar images that do not contain embedded rotation. The statistical 

significance of these results is examined using a Wilcoxon Signed-rank test. The purpose of this 

analysis is to examine the relationship between observed embedded mesoscale/storm-scale rotation and 

surface rainfall in an LTC environment on very fine spatial and temporal scales. It also aims to 

quantify the difference in short-term rainfall accumulations when there is rotation present versus 

when there is not, as well as examine how these differences may compound over longer periods of 

time. The statistical test in this chapter will also illustrate whether the differences in rain rates under 

the presence of rotation or no rotation is significant.   

3.1 Methods: Gauge Selection and Subjective Radar Analysis 

Two dense networks of rain gauge sites, one in Jefferson County, Texas (which includes the 

city of Beaumont) and one in Harris County, Texas (which includes the city of Houston), offer a 

unique opportunity to explore precipitation rates during Tropical Storm Imelda at very fine spatial 

and temporal resolutions (Fig. 3.1). Once filtered for erroneous data, the two networks provided five-

minute precipitation data from nearly 250 gauges. Real-time data from the two precipitation 
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observing networks are freely available online (Harris County: https://www.harriscountyfws.org/; 

Jefferson County: https://dd6.onerain.com/).  

 
Figure 3.1: Locations of rain gauge sites for the Harris County (purple) and Jefferson County (orange) networks. 

 

Hourly data from the gauges were initially analyzed in order to identify periods during which 

the heaviest precipitation fell over the time that Imelda was impacting southeast Texas (i.e., 

approximately 16-20 September 2019). Based on the gauge observations, it was determined that the 

most extreme precipitation rates took place during much of 19 September. More specifically, the 

Jefferson County sites received the most extreme precipitation from 0000 UTC to 1400 UTC, while 

the Harris County sites saw the greatest rainfall rates generally between 1000 UTC to 1800 UTC as 

the system progressed towards the west-southwest. Fig. 3.2 illustrates these temporal patterns, 

specifically for gauges that reported an hourly rainfall rate3 in excess of 100 mm. This time series 

 
3 Hourly rainfall rates are defined as observations beginning at the top of an hour and ending at the bottom of an hour (e.g., 

0000 UTC to 0100 UTC). 
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reveals that the Jefferson County sites received a much longer duration of heavy rainfall than the 

Harris County sites due to the slow-moving nature of the system earlier in the period. Additionally,  

 
Figure 3.2: Hourly precipitation for gauges receiving over 100 mm h-1 during at least one hourly period in the Harris 

County gauge network (purple) and Jefferson County gauge network (orange) from 0000 UTC 17 September to 0000 

UTC 21 September 2019. Note that only 60-minute periods that begin at the top of an hour and end at the bottom of an 

hour (e.g. 0500 UTC to 0600 UTC) are considered. Hourly data from individual gauges are shown as thin lines, and 

hourly mean data among the individual sites are shown in bold. 

 

according to Fig. 3.3, the 17 gauges in Harris County that reported an hourly observation that was 

greater than or equal to 100 mm h-1 generally only saw a single, short-lived period with extreme rainfall 

rates, while heavy rainfall rates were recorded over several separate hours in Jefferson County. These 

differences are also evident in the footprint of the accumulated rainfall4 (Figs. 3.4a-b). Further, the 

magnitude and spatial extent of the hourly rainfall rates by the system are generally lower in the latter 

part of the 0000 UTC-1800 UTC period as well (i.e., when the Harris County gauges recorded their  

 
4 According to the Multi-Radar Multi-Sensor (MRMS) local gauge bias-corrected quantitative precipitation estimate. This 

dataset will be discussed further in Chapter 4.  



 47 

 
Figure 3.3: As in Fig. 3.2, but zoomed in to 1800 UTC 19 September to 0000 UTC 20 September. 

 

 
Figure 3.4: Multi-Radar Multi-Sensor (MRMS) local gauge bias-corrected quantitative precipitation estimate (QPE) for 

0000 UTC -1400 UTC 19 September 2019 (a) and 1000 UTC -1800 UTC 19 September 2019 (b). Also shown is 

maximum MRMS one-hour (beginning at the top of the hour and ending at the bottom of the hour, e.g. 0300 UTC -0400 

UTC) QPE over the 0000 UTC -1400 UTC 19 September (c) and 1300 UTC -1800 UTC 19 September (d) periods. The 

circular (triangular) markers represent the Harris (Jefferson) County gauge sites that received ³ 100 mm h-1 of rainfall 

(using the definition described in Fig. 3.2). Note the difference in time periods between (b) and (d), as the rain rates ³ 100 

mm h-1 occurred over most of the plotted Harris County gauge sites after 1300 UTC.   
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highest hourly values) (Figs. 3.4c-d). For these reasons, only the Jefferson County sites were focused on 

for this part of the analysis. Specifically, the 11 gauges from the Jefferson County gauge network that 

recorded hourly rainfall rates in excess of 100 mm h-1 were included. Though this threshold is relatively 

high, the Jefferson County gauge network is very spatially dense compared to typical gauge networks, 

so this benchmark coincides with thresholds in previous work that have studied observed rotation 

alongside high-resolution precipitation datasets (e.g., NCEP Stage IV gridded precipitation, which was 

used in Nielsen and Schumacher (2020a). 

With the five-minute precipitation data collected and the period of heaviest rainfall identified, 

Level II reflectivity and storm-relative velocity from the Houston-Galveston NEXRAD WSR-88D 

radar (KHGX) were then used to subjectively determine rotation within convection. Each gauge was 

centered within its own unique domain of size +/-0.15° latitude and +/-0.17° longitude relative to its 

coordinates, which equated to an area of approximately 33 km x 33 km. This size domain proved to be 

best suited for monitoring storm-scale rotation after several rounds of trial and error. KHGX radar 

data was then overlaid with each Jefferson County gauge site of interest over the period when the most 

extreme rainfall rates were reported by the gauges (i.e.,0000 UTC to 1400 UTC on 19 September) 

(Fig. 3.3). This process yielded a total of 1067 images over the 14-hour period for the 11 gauge sites.  

Next, the radar frames centered over each of the 11 gauges were paired with gauge observations 

for each radar timestamp. Because the time steps between the two types of observations were available 

at different time intervals (i.e., archived radar imagery was available every 8-9 minutes and gauge data 

was available every 5 minutes), the pairings are irregular in time. Thus, each radar frame was paired 

with the gauge observation that most closely followed the radar timestamp (e.g., if the radar image 
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showed data for 1018 UTC, the gauge observation taken at 1020 UTC would be matched with that 

particular image). With this method, the time difference between the radar image and the gauge 

observation could vary anywhere between one and five minutes. Note that if the radar image and 

gauge observation were to occur at the same time, the gauge reading that occurred 5 minutes after the 

radar timestamp was used (rather than the gauge observation that occurred at the same time as the 

radar image). The purpose of taking this measure is to account for time lag between the rotational 

behavior aloft and the surface precipitation.  

Once the radar timestamps were paired with the surface observations, the subjective analysis 

for each radar image was conducted. Each image was classified into one of two categories, “rotation 

images” or “non-rotation images”, based on the appearance of the KHGX Level II reflectivity and 

velocity data within each ~33x33 km domain. Rotation was permitted to occur anywhere within the 

domains and did not necessarily have to be directly located over the gauge site in the image.  

Given that the subjective nature of this portion of the analysis allows room for human error, 

each image was carefully assessed three different times, with the criteria becoming stricter for each 

round of analysis. This was to ensure that only images containing relatively strong, well-defined, 

storm-scale rotation were classified as rotation images. During the first pass of the images, images 

containing embedded storm-scale rotation of any magnitude were classified as “having rotation”. In 

the second round of analysis, the rotation images were further refined by ensuring that the rotation 

occurred in an area of high reflectivity (i.e., approximately 40 dBZ or higher). This step was done in 

order to remove cases where rotation was detected in a stratiform precipitation or precipitation-free 

region. The remaining rotation images were reviewed a final time to filter out images that showed 
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particularly weak and/or disorganized rotating convection, as well as to remove images where the 

rotation was located on the cusp of the gauge-centered domains and was therefore barely located 

within the domain. An example of a rotation image versus a non-rotation image is shown in Fig. 3.5. 

 
Fig. 3.5: Example of a rotation image showing embedded rotation within convective precipitation based on reflectivity (a) 

and storm-relative velocity (b) from the Houston-Galveston radar (KHGX) at gauge site 3300 in the Jefferson County 

gauge network on 19 September 0244 UTC. This is contrasted with KHGX reflectivity (c) and storm-relative velocity (d) 

for a non-rotation image at the same gauge site. The black dot in the center of (a)-(d) is the gauge site, and the location of 

the radar relative to the gauge site is shown in (a) and (c). The 5-minute precipitation observations from the gauge site are 

shown in (e) and (f) (black line) with the time of the radar images corresponding to (a-b) and (c-d) annotated in (e) and (f) 

respectively as a red dashed line. 

 

Distributions of the rainfall following rotation images versus rainfall following non-rotation 

images are assessed statistically. These data are separated into two categories for analysis: one set that 

contains the rainfall observations following all of the radar images collected (n=1067) for all 11 gauges, 

and a second, smaller set that removes the zero precipitation observations that follow the sample of 

rotation and non-rotation images (n=859). These sets of rainfall observations will hereafter be referred 

to as “all_data” and “no0_data” respectively. The two datasets are assessed for statistical significance 

using a method described in the next subsection.  
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3.2 Methods: Wilcoxon Signed-rank Test 

To assess the significance of the results of the radar and rain gauge analysis, a Wilcoxon signed-

rank test is conducted between the five-minute rainfall observations that correspond to the radar 

images with rotation and the rainfall observations corresponding to the radar images without rotation. 

This test is used because it is applicable for comparing the distributions of non-parametric data that 

are not independent (Wilcoxon 1946; King and Eckersley 2019). The appropriateness of these 

assumptions in this study is discussed in the results. The test is performed twice: once for all_data, and 

once for no0_data. The aim of this test is to evaluate the significance of the differences in the rainfall 

observations following rotation and non-rotation images by examining the sums of the ranks of these 

differences. 

SciPy (Virtanen et al. 2020) has a built-in function that computes the Wilcoxon signed-rank 

test statistics and associated p-values, and its methods closely follow those found in the literature (e.g., 

King and Eckersley 2019). In essence, the differences between paired observations are calculated and 

ranked in order of the absolute value of their magnitude, and then the ranks are summed in two 

groups: one for the ranks belonging to positive differences, and one for the ranks belonging to negative 

differences. Note that the method chosen here discards all zero differences in the ranking process 

(which yielded very similar results to other methods that handle zero differences in other ways, not 

shown). Though the literature is consistent on using the smaller of the positive or negative ranked sum 

for a two-tailed test (e.g., Wilcoxon 1946; King and Eckersley 2019), there is more debate on which 

should be used in one-tailed tests. The SciPy function uses the sum of the positive ranks to calculate 

the test statistic when a one-tailed test (which will be used in this study) is performed. Thus, the 
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default setting using the sum of the positive ranks is used to calculate the test statistics, but the results 

are briefly compared to the test statistics computed with the sum of the negative ranks. Once the sum 

of the positive ranks is determined, the test statistic and associated p-value can be calculated. The test 

statistic is computed with the following equation: 
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where 𝑧 is the test statistic, 𝑤 is the sum of the positive ranks, 𝑁 is the number of pairs with a non-zero 

difference, 𝜇 is the mean, 𝜎 is the standard error, and	𝑡 is a correction factor for tied ranks.  

In this study, because the number of images containing rotation is greater than the number of 

images that do not contain rotation in both all_data and no0_data, an adjustment must be made so 

that there are an equal number of observations that can be evenly paired, which is a requirement for 

the Wilcoxon signed-rank test. Therefore, a random sample equal to the length of the precipitation 

observations following the non-rotation images is selected from the set of precipitation observations 

that follow the rotation images. The rainfall observations associated with no rotation can then be 

paired with the randomly chosen rainfall observations associated with rotation, and the test statistic 

and p-value can be calculated. This process is repeated with randomly selected pairs 100,000 times each 

for all_data and no0_data, and the mean rank sum, mean test statistic, and mean p-value are computed 

for both datasets. Thus, the variables described in Eq. 3.1 will all be mean values hereafter. 100,000 

iterations were performed because the mean statistics were approximately the same when multiple 

trials were run using this number of iterations.  
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A one-sided test for significance is conducted for both all_data and no0_data using a 

significance level of ɑ=0.01. The one-sided test is used over the two-sided test because it is anticipated 

that the images containing rotation will tend to have higher rainfall than the images that do not 

contain rotation, so the test is being conducted a priori. The null hypothesis is that the median of the 

differences between the precipitation observations following the rotation and those following non-

rotation images is less than zero. In other words, the difference in the distributions of the rainfall 

following rotation images minus the rainfall following non-rotation images will be negative, suggesting 

that more rain would have tended to follow non-rotation images. Therefore, the alternative hypothesis 

is that the median of these paired signed differences in observations is greater than zero. That is, the 

calculated median of the signed differences (when non-rotation precipitation is subtracted from 

rotation precipitation) is greater than zero, suggesting that more rainfall tended to fall after rotation 

images compared to non-rotation images.  

3.3 Results and Discussion 

3.3.1 Basic Statistics 

When all 1067 analyzed images (all_data) are considered, 616 radar images (57.73%) were 

found to have rotation while 451 (42.27%) were determined to have no rotation present (Table 3.1). 

Of these 1067 images, approximately 20% (208) of the five-minute rainfall observations associated 

with them showed records of zero precipitation (Table 3.1), 91 (117) of which were associated with 

rotation (non-rotation) images. Therefore, to construct no0_data, approximately one in four rainfall 

observations following non-rotation images were removed while about 15% of the rainfall observations 

following rotation images were removed. In virtually all radar images that were analyzed, there was 
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some hydrometeor-related reflectivity values present within the domain around the gauge site, 

meaning that the zero observations that were recorded were almost never a result of precipitation 

simply not being present within the domain surrounding the gauge site. Instead, zero observations 

were recorded as a result of either the high reflectivity values (and embedded rotation, if applicable) 

being located within the domain but not directly over the gauge site, or they occurred as a result of the 

temporally irregular pairings of the radar images and gauge observations. That is, the non-zero 5-

minute rainfall associated with high radar reflectivity (and also co-located rotation in some cases) that 

was present over or very close to the gauge site may have occurred in the observation period just before 

or after the one that was paired with the radar image. Nonetheless, removing the images paired with 5-

minute rainfall observations of zero left 525 (334) rotation (non-rotation) images and rainfall 

observations in no0_data, which represented 61.12% and 38.88% of the dataset respectively (Table 

3.1).  

Table 3.1: Cross-tabulation of 5-minute rainfall observations following non-zero precipitation images (no0_data), zero 

precipitation images, and all images (all_data) based on whether or not the image contained subjectively-identified rotation. 

Row-wise and column-wise percentages are also computed against the total number of images. 

 

 Non-zero Images Zero Images All Images 

Rotation Images (row %) 

(column %) 

525 (85.23%) 

(61.12%) 

91 (14.77%) 

(43.75%) 

616 (100%) 

(57.73%) 

Non-rotation Images (row %) 

(column %) 

334 (74.06%) 

(38.88%) 

117 (25.94%) 

(56.25%) 

451 (100%) 

(42.27%) 

Total Images (row %) 

(column %) 

859 (80.51%) 

(100%) 

208 (19.49%) 

(100%) 

1067 (100%) 

(100%) 
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 Examining the five-minute rainfall observations for all_data shows that the mean (median) 

precipitation observed after rotation images is 5.08 mm (4.06 mm). These values are approximately 1 

to 1.5 mm higher than the rainfall following non-rotation images in all_data (Table 3.2). Removing 

the zero precipitation observations raises all these measures of central tendencies by approximately 1 

mm each (Table 3.2). The spread of the distributions (measured by the standard deviation) is very 

similar among the non-rotation and rotation images across both all_data and no0_data, though the 

observations following rotation images tended to have a slightly higher degree of spread compared to 

the observations associated with non-rotation images.  

Table 3.2: Summary statistics for the 5-minute rainfall following the rotation images and non-rotation images when 

examining all images (all_data) and non-zero images only (no0_data). 

 

 Mean 5-min 

Rainfall (mm) 

Median 5-min 

Rainfall (mm) 

Standard 

Deviation of 5-

min Rainfall 

(mm) 

Total 5-min 

Rainfall (mm) 

All Rotation Images 

(n=616) 

5.08 4.06 0.16 3131.13 

All Non-Rotation 

Images (n=451) 

3.39 3.05 0.14 1530.60  

Non-zero Rotation 

Images (n=525) 

5.96 5.08 0.15 3131.13 

Non-zero Non-

rotation Images 

(n=334) 

4.58 4.06 0.13 1530.60  

 

When all images (all_data) are examined, the distributions are strongly skewed right for the 

rainfall observations following rotation images (Fig. 3.6a) as well as the rainfall observations following 
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non-rotation images (Fig. 3.6b). This finding demonstrates that a majority of the five-minute 

precipitation observations in the dataset are small, while the more extreme readings are rarer. Boxplots 

confirm this observation, showing that 75% of the observations fall at or below approximately 8 mm  

Figure 3.6: Histograms showing the distribution of 5-minute precipitation values from 11 Jefferson County, Texas gauge 

sites in the minutes following radar images that contain storm-relative rotation (a), (c) or do not contain storm-relative 

rotation (b), (d) in close proximity to the gauge sites. (a) and (b) correspond to the dataset containing all images (all_data), 

and (c) and (d) correspond to the dataset containing only non-zero observations (no0_data). The analysis period of the data 

ranges from 0000 UTC to 1400 UTC 19 September 2019. The number of images is annotated in the upper right corner of 

each plot. Note the differences in scale on the y-axes. 

 

for the rotation images (Fig. 3.7a) and approximately 5 mm for the non-rotation images (Fig. 3.7b). 

Fig. 3.7b illustrates that the distribution of the observations following non-rotation images is heavily 

weighted by the zero observations, demonstrated by the 25th percentile value of 0 mm. It is also 

evident that many of the more extreme precipitation values follow rotation images rather than non- 
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Figure 3.7: Boxplots showing the distribution of 5-minute precipitation values from 11 Jefferson County, Texas gauge sites 

in the minutes following radar images that contain storm-relative rotation (a), ( c) or do not contain storm-relative rotation 

(b), (d) in close proximity to the gauge sites. (a) and (b) correspond to the dataset containing all images (all_data), and (c) 

and (d) correspond to the dataset containing only non-zero observations (no0_data). The analysis period of the data is 0000 

UTC to 1400 UTC 19 September 2019. 
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rotation images. In fact, all of the observations following non-rotation images that are considered 

outliers would fall within the 90th percentile of observations following rotation images (which is 

approximately 16 mm). 

The right-skewness is also obvious in the distributions of rainfall observations following 

rotation and non-rotation images from no0_data (Figs. 3.6c-d). The histogram of observations 

following rotation images and the histogram of observations following non-rotation images are 

identical to their counterparts in all_data, except for the first bin, which is now much smaller due to 

the removal of the zero-rainfall observations. However, there are several additional differences that can 

be seen in the boxplots with no0_data (Figs. 3.7c-d) compared to those associated with all_data. 

Removing non-zero images reduces the standard deviation slightly (Table 3.2) for the observations 

following rotation and non-rotation images. This is also evident in the shrinking of the interquartile 

ranges, which results from the 25th percentile increasing and the 75th percentile decreasing. Further, 

more of the 5-minute rainfall observations on the upper side of the distributions become outliers as the 

upper maximums decrease.  

Though the magnitude of the differences in the observations following rotation images and 

the observations following non-rotation images may appear small, these differences become much 

more important when they are compounded over time. Over the 14-hour period, the five-minute 

rainfall accumulations that were analyzed alongside the radar images totaled approximately 4,662 mm 

across the 11 gauges. Of this total precipitation, 3131.13 mm of it fell in the minutes after embedded 

rotation occurred (Table 3.2). In other words, over two-thirds of the rainfall that was included in the 

analysis fell when rotation was identified in close proximity to the gauge. Scaling by the number of 
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observations to account for the differences in the number of observations, the total precipitation 

following rotation images is 1913.67 mm, compared to 595.13 mm for the total rainfall following non-

rotation images, which further emphasizes the excess rainfall that fell when rotation was present. This 

finding suggests that while 5-minute rainfall observations do not generally differ much when 

compared on an individual basis between when rotation is present or not, the small differences can 

accumulate quickly over time, illustrating that rotation may play a significant role in enhancing surface 

rainfall.  

3.3.2 Statistical Significance 

 Before assessing the significance of these results, it is important to perform a final verification 

to ensure that the Wilcoxon signed-rank test is appropriate for the datasets. In addition to the data 

being non-parametric (which was shown in Figs. 3.6; 3.7), the signed paired differences must also be 

approximately normal and therefore not highly-skewed (King and Eckersley 2019). This final 

requirement was stated as an assumption in the methods section because the sample size is large, but it 

is worthwhile to check this assumption alongside the results. Fig. 3.8 shows the paired signed 

differences of rainfall (observations following rotation minus observations following non-rotation) for 

100,000 random pairings from all_data (turquoise) and no0_data (beige). Indeed, both histograms 

appear approximately normal and not highly skewed, so the Wilcoxon signed-rank test is valid.  

 The results of the Wilcoxon signed-rank test show that the null hypothesis can be rejected in 

both all_data and no0_data. That is, there is significant evidence in both datasets to support the claim 

that the median of the differences between the rainfall following the rotation images and the rainfall 

following the non-rotation images is not negative. The mean of the positive rank sums (𝑤) calculated 
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from the 100,000 random pairs are approximately 56900 and 30500 for all_data and no0_data 

respectively. These values are used to calculate the mean test statistics (𝑧) using Eq. 3.1 after the means 

of means (𝜇), and mean standard errors (𝜎)	are calculated from the mean number of non-zero paired 

differences (𝑁) and made into distributions (using a normal approximation) for all_data and 

no0_data.  

 
Figure 3.8: Histograms of 100,000 random sets of paired 5-minute rainfall differences for all images (all_data, turquoise) 

and non-zero images only (no0_data, tan). In both sets of data, the paired differences are found by subtracting the rainfall 

following an image without rotation from the rainfall following an image with rotation. The medians of the two datasets 

(which are equal) are shown by the solid red and black dashed line. The mean of the paired rainfall differences for all images 

is shown as the solid blue line, and the mean of the paired rainfall differences for non-zero images only is shown as the 

dashed green line. 

 

This test of significance places the means of the positive ranks at approximately 6.4𝜎 (for 

all_data) and 4.8𝜎 (for no0_data) above 𝜇 in the distributions of rank sums (Fig. 3.9), which  
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Figure 3.9: Mean probability distributions of the positive rank sums using a normal approximation based on the mean of 

means and mean of standard deviations from the 100,000 randomly-paired rainfall observations for the rotation and non-

rotation images for all images (all_data, turquoise) and non-zero images only (no0_data, tan). Distributions are shown for 

+-5 mean standard errors (𝜎), with +-3𝜎 shaded and labeled. The mean of means, 𝜇, are also noted as dotted lines and 

annotated in the upper left corner with the mean number of non-zero pairs (𝑁) determined through the 100,000 random 

pairs that were analyzed. The critical rank sum values corresponding to a significance of ɑ=0.01 are shown as grey dashed 

lines. The mean rank sum values corresponding to the mean test statistics from the 100,000 random pairs are shown as tan 

and turquoise dashed lines for no0_data and all_data respectively. Note 𝜇 and 𝜎are calculated using Equation 1. 

 

corresponds to p-values of approximately 6*10-6 and 1*10-9 for no0_data and all_data (respectively) 

(Table 3.3). These p-values are much smaller than the critical value of 0.01, which leads to the rejection 

of the null hypothesis. Comparing this result to the mean sums of the negative ranks (Table 3.3) 

reveals that the means of the negative ranked sums were similarly distant from the mean (except on the 

left side of the bell curves, rather than the right side). Taking the absolute value of the test statistics 

calculated from the mean negative ranked sums (King and Eckersley 2019) leads to very similar mean 

p-values as those calculated using the mean positive ranked sums, which provides additional 

confidence in these results. Therefore, the results of the Wilcoxon signed-rank test are consistent with 

the alternative hypothesis, which is that the median of the signed paired differences is not less than 

zero, but rather, is greater than zero. This conclusion suggests that there is a significant positive 
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difference in the rainfall amounts that follow rotation versus the rainfall amounts that follow no 

rotation, regardless of whether zero precipitation values are included or not.  

Table 3.3: Mean values of the sum of the signed ranks (rounded to the nearest 100), mean test statistics (calculated from the 

mean sum of positive signed ranks), and corresponding mean p-values resulting from the 100,000 random pairs of rainfall 

observations following rotation images and non-rotation images when all images (all_data) and only non-zero images are 

analyzed (no0_data). 

 

 Mean Sum of Positive 

Signed Ranks (𝑤) 

Mean (Abs. Value) 

Sum of Negative 

Signed Ranks 

Mean Wilcoxon 

Signed-rank Test 

Statistic (𝑧) 

Mean P-value  

All Images 56900 26500 6.4 1 * 10-9 

Non-zero 

Images 

Only 

30500 15800 4.8 6 * 10-6 

 

 One final caveat of this analysis that needs to be addressed alongside the results is the 

assumption that the data are not independent, particularly because the matched pairs are randomized 

during the calculation of the test statistic. To check this assumption, the Mann-Whitney U-test is 

conducted. This test is very similar to the Wilcoxon signed-rank test in that it works for non-

parametric data and involves assigning ranks to two sets of data (i.e., rainfall following rotation and 

rainfall following no rotation), but it assumes independence and can only describe the significance of 

the difference in medians between two groups of data (King and Eckersley 2019). Calculating the test 

statistic using this method and the subsequent p-values show very similar results to the p-value 

calculated with the Wilcoxon signed-rank method (for no0_data) or a p-value that is several orders of 

magnitude smaller (for all_data). In other words, the Wilcoxon signed-rank method is at least as strict 
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or stricter than the Mann-Whitney U-test for all_data and no0_data, so the assumption of non-

independence appears to be not only reasonable but also conservative. 

3.4 Summary 

 In this section, remote data (from radar) are paired with in-situ observations (from rain gauges) 

to evaluate the relationship between embedded rotation in convective precipitation within the 

atmosphere with surface rainfall observations during Tropical Storm Imelda. 11 gauge sites located in 

Jefferson County, Texas reported extreme precipitation rates in excess of 100 mm h-1 over a 14-hour 

period on 19 September 2019. 5-minute observations from the gauge sites were spatially and 

temporally paired with radar reflectivity and storm-relative velocity fields from the Houston-Galveston 

WSR-88D radar site (KHGX). The radar fields were used to subjectively identify embedded rotation 

occurring within convective precipitation near the 11 gauge sites. 5-minute rainfall observations that 

followed radar images identified as having embedded rotation were compared to 5-minute rainfall 

observations that followed radar images that did not show embedded rotation.  

Of the 1067 radar images that were subjectively analyzed near the 11 gauge sites from 0000 

UTC to 1400 UTC on 19 September, approximately 58% of the images contained embedded rotation. 

This is slightly higher than the percentage of heavy rainfall events that had accompanied rotation in 

the climatological study of continental convective systems by Nielsen and Schumacher (2020a), 

though it is difficult to draw comparisons between these two studies given the differences in spatial 

and temporal scales. Median 5-minute rainfall accumulations for observations following rotation 

images was 4.06 mm compared to 3.05 mm for gauge observations following the non-rotation images. 

When images that preceded 5-minute observations that recorded zero precipitation were removed 
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(leaving 859 images), 61% of the images contained subjectively-identified rotation. With these 

observations removed, the median of the 5-minute rainfall observations following rotation images was 

5.08 mm, while the median of the 5-minute rainfall observations following images without rotation 

was 4.06 mm. All distributions were skewed right, with the majority of the most extreme 5-minute 

rainfall observations tending to be associated with observations following rotation images. Though 

these differences may appear small in magnitude, they compound greatly over time, with the total 

observations associated with rotation images being over twice as large compared to those that followed 

non-rotation images. This evidence from these observations supports previous work in modelling 

studies, which have shown that mesoscale rotation can locally increase rainfall rates through dynamic 

processes (e.g., (Nielsen and Schumacher 2018, 2020b). 

The differences in the rainfall observations following radar-identified rotation images and the 

non-rotation images for the dataset containing all of the observations (“all_data”) and the dataset 

containing only the non-zero rainfall observations (“no0_data”) were compared and tested for 

significance using a one-sided Wilcoxon signed-rank test. To perform the test, observations following 

non-rotation images and observations following the rotation images were randomly paired 100,000 

times for all_data and no0_data. For each iteration, the difference between each pair of rainfall 

observations was calculated, ranked in order of the absolute value of its magnitude, and given a sign 

based on whether the difference was positive or negative. Positive ranks were summed, and a test of 

significance was performed by comparing the sum of the ranks relative to a normal distribution of 

summed ranks for the given number of non-zero paired differences. When the mean of these 100,000 

iterations were calculated for all_data and no0_data, the calculated p-values were 1*10-9 and 6*10-6 
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respectively. These values were much less than the critical value of p=0.01, which supported the 

alternative hypothesis that the median of the difference between 5-minute rainfall observations 

following rotation minus 5-minute rainfall observations following non-rotation images was greater 

than zero, suggesting that the observations following rotation images were statistically significantly 

greater than those that followed non-rotation images.   
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CHAPTER 4: MRMS QPE AND ROTATION TRACK ANALYSIS 

 

 

 

In this chapter, the spatial and temporal relationship between rainfall and embedded rotation 

is explored further using Multi-Radar Multi-Sensor (MRMS) data. First, background on the two 

MRMS products used in this study, one for quantitative precipitation estimate (QPE) and one for 

rotation tracks, is provided, and their utility in this study is described. Then, once again using the case 

of Tropical Storm Imelda, the QPE data is overlaid with rotation data over hourly time steps during an 

18-hour period of extreme rainfall, then analyzed using three methods—two of which focus on 

comparing the magnitudes of the two phenomena spatially and one that attempts to examine the co-

location of the observations over time. The methods and results of these three analyses are presented in 

this chapter. Similar to the motivations of Chapter 3, this analysis also seeks to examine and quantify 

the relationship between embedded rotation and heavy rainfall rates in an LTC environment. 

However, by incorporating gridded data, the relationship between these two mechanisms can be 

studied across a continuous area (rather than discrete gauge sites), and embedded rotation is calculated 

via an algorithm, which removes the subjectivity of the feature identification approach used in 

Chapter 3.   

4.1 Overview of MRMS QPE and Rotation Track Products 

 The MRMS product suite ingests data from models, radar, satellites, surface observing 

networks, and more (Smith et al. 2016; Zhang et al. 2016). This study uses two MRMS products to 

explore the relationship between rainfall and mesoscale/storm-scale rotation in Tropical Storm 

Imelda. The local gauge bias-corrected one-hour quantitative precipitation estimate (QPE) product is 
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used for accumulated rainfall, and the accumulated 60-minute 0-2 km rotation track product is used 

to diagnose low-level rotation. Both products ingest new data on a two-minute temporal frequency. 

New rotation track products are released with each of these updates (i.e., a new rotation track product 

is available every two minutes with aggregated data over the prior 60 minutes). The hourly QPE 

product is generated every hour. These QPE and rotation track data sets have horizontal resolutions of 

approximately 0.01°x0.01° (~1x1 km) and 0.005°x0.005° (~0.5x0.5 km) respectively. The development 

of these two products, as well as their use and appropriateness for this particular study are described in 

this section. 

4.1.1 Local Gauge Bias-corrected Radar Precipitation Accumulation 

MRMS has several QPE products that blend a variety of data sets and are available across 

several time scales. For this study, the local gauge bias-corrected radar precipitation one-hour 

accumulation product is used and will therefore be highlighted here. The development of this product 

relies on data from radars, gauges, and model inputs (Zhang et al. 2016). A summary flowchart for the 

creation of this product can be found in Fig. 4.1. 

 The origins of the radar-based QPE component of the MRMS gauge bias-corrected QPE 

product can be traced back to single-radar reflectivity. First, reflectivity data from all available tilts that 

is quality-controlled through a neural network (Lakshmanan et al. 2014) is converted from polar to 

cartesian coordinates (Smith et al. 2016). The cleaned reflectivity data from the lowest available 

elevation angle is then taken for each radar, and gaps due to beam blockage are filled in with data from 

adjacent azimuths or higher elevation scans (depending on the size of the gap) (Zhang et al. 2016). If 

applicable, an adjustment (known as the apparent vertical profile of reflectivity, or AVPR, correction)  
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Figure 4.1: Flowchart illustrating the development of the Multi-Radar Multi-Sensor (MRMS) local gauge bias-corrected 

radar precipitation 1-hour quantitative precipitation estimate (QPE) product as described in Smith et al. (2016) and Zhang 

et al. (2016). Algorithms are located in the dashed-line boxes, and products are located within the solid-line boxes.  

 

MRMS grid (Zhang et al. 2016). This field, known as the MRMS seamless hybrid scan reflectivity 

(SHSR), is the base product that is used to create subsequent MRMS precipitation fields, including 

QPE.  

 Before a QPE product can be generated, the MRMS precipitation type product is created from 

the SHSR product (along with temperature information from the High-Resolution Rapid Refresh 

model (HRRR) and an MRMS hail product) (Zhang et al. 2016). This data, along with the SHSR 



 69 

product is used to calculate precipitation rates. At the time of Imelda, MRMS utilized formulas that 

relied only on reflectivity data (from SHSR) to calculate precipitation rates, which are permitted to 

change depending on the MRMS-derived precipitation type (stratiform rain, convective rain and hail, 

tropical-stratiform mixed rain, or snow) (Zhang et al. 2016). Newer updates to the MRMS system 

have since introduced more complex formulas for rain rate and QPE products by incorporating several 

dual-pol variables to the algorithm, which have made the radar-based rainfall estimates more accurate 

(Zhang et al. 2020), though those updates are not relevant to this particular study (since the upgrade 

occurred after this event). The precipitation rate calculation is made at a high temporal resolution 

(every two minutes) and the values are provided in units of mm h-1. The two-minute precipitation 

rates are totaled over each hour, which yields the MRMS one-hour radar-only QPE product (Zhang et 

al. 2016).    

Incorporating gauge data into precipitation products, such as those in the MRMS suite, adds 

ground-based, in-situ measurements that remote methods (e.g., radar and satellite) lack. However, 

surface observations are still prone to errors, so quality control remains a crucial step. The gauge data 

incorporated into MRMS QPE products is monitored for several error types. The system uses an 

algorithm that rejects data when the recorded precipitation is too high or low relative to the radar-

based QPE, with extra scrutiny applied to gauges located in areas with poor radar coverage (Zhang et 

al. 2016).  Data is also removed by the algorithm when either the gauge or the radar reports non-zero 

rainfall while the other reports zero rainfall, as well as when the wet-bulb temperature is below 0°C at 

the gauge site (Zhang et al. 2016). The latter of these controls is implemented because gauges typically 
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underestimate frozen precipitation, particularly as a result of wind-driven undercatch (Goodison et al. 

1998; Rasmussen et al. 2012).  

For gauges that do pass the validation process, the differences are calculated between the 

hourly gauge QPE and the hourly radar-based QPE at each site, and the differences are interpolated to 

the MRMS grid with a distance-related weighting function, and the radar-only MRMS QPE dataset is 

adjusted based on the gauge bias (Zhang et al. 2016). The aggregated effects of the bias from all gauges 

on the MRMS gridded QPE products are shown in the hourly-updating MRMS gauge influence 

index (GII) product (Zhang et al. 2016). GII is relatively high in the region of study given the dense 

networks of gauges in the area (Fig. 4.2a). However, recalling the gauge datasets used in Chapter 2, it is 

worth noting that while the Harris County gauges are included in the MRMS product, the Jefferson 

County gauges are not. Once the gauge data is assimilated and the adjustments are made, the local 

gauge bias-corrected radar precipitation one-hour QPE product is complete.  

 
Figure 4.2: Examples of the Multi-Radar Multi-Sensor (MRMS) 1-hour Gauge Influence Index (GII) (a), MRMS seamless 

hybrid scan reflectivity height (SHSRH) (b), and MRMS radar quality index (RQI) (c) products in southeast Texas during 

a rainfall event that caused isolated flooding in Houston. Data are shown for 0000 UTC 17 August 2021.  

 

4.1.2 Accumulated 60-minute 0-2 km Rotation Tracks 

The MRMS product suite also offers several accumulated rotation-track products (Miller et al. 2013; 

Smith et al. 2016) that show low- and mid-level rotation (see Fig. 4.3 for a summary graphic of the 

product development). To generate these products, base radar from individual sites is ingested and  
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Figure 4.3: Flowchart adapted from Smith et al. (2016) (Figures 1 and 2) and Miller et al. (2013) (Figure 4) summarizing 

the development of the Multi-Radar Multi-Sensor (MRMS) 60-minute aggregated (2-minute updating) 0-2 km rotation 

track product. Algorithms are located in the dashed-line boxes, and products are located within the solid-line boxes. 

 

processed, producing radar products such as reflectivity and aliased velocity. The aliased velocity is 

then dealiased using an algorithm (Jing and Wierner 1993; Miller et al. 2013), and the reflectivity data 

is quality controlled (Lakshmanan et al. 2014). The dealiased radial velocity data are then ingested into 

an algorithm that uses a linear least squares derivative method, otherwise known as LLSD (Smith and 

Elmore 2004). A full derivation of the LLSD method, including the equations used specifically for 

MRMS data, can be found in Mahalik et al. (2019). In essence, this algorithm computes the partial 

derivatives of the 2D radial velocity data, which yields a rotational and divergent component (Smith 

and Elmore 2004). The rotational component, known as the azimuthal shear, is approximately equal 

to 50% of the vertical vorticity at a given pixel if a symmetric wind field is assumed  (Smith and Elmore 

2004), which allows it to serve as a good proxy for rotation.  
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 Once the maximum azimuthal shear is calculated along each radial at every vertical tilt of the 

radar that the radar has, the quality-controlled reflectivity data is incorporated, so that azimuthal shear 

values that are more than 5 km away from a 20 dBZ pixel are removed (Smith et al. 2016). Two 

products can be generated from this algorithm. The azimuthal shear product, which shows the 

azimuthal shear maxima for a given tilt, and the two-dimensional azimuthal shear layer products, 

which are produced by ingesting terrain data from a digital elevation model (to calculate height above 

ground level, or AGL) and identifying the maximum azimuthal shear within a vertical layer of interest 

(Miller et al. 2013). The latter of these two products is implemented in the MRMS system. 

Specifically, the maximum layer-wise azimuthal shear values are calculated for two vertical layers, 0-2 

km AGL and 3-6 km AGL, on a two-minute temporal resolution (Smith et al. 2016). This process is 

done for every radar site that is incorporated into the MRMS system. 

 After the single-radar data processing is complete, the data from 173 radars across the United 

States and Canada are blended using a multi-radar algorithm (Lakshmanan et al. 2006), which leads to 

the multi-radar, two-dimensional maximum azimuthal shear fields (for 0-2 km AGL and 3-6 km 

AGL). In the final step, an accumulation algorithm ingests the azimuthal shear data for a given layer 

and identifies the maximum value for a given location over a two minute time period (Miller et al. 

2013; Smith et al. 2016). When the maximum azimuthal shear values over the aggregated time period 

are plotted, this represents the two-dimensional rotation track product. The maximum values are 

accumulated over different time intervals  (Smith et al. 2016), though this study uses those that are 

accumulated over a 60-minute time period within the 0-2 km AGL layer. Using this particular product 
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will allow for rotation to be analyzed in the lowest levels (i.e., close to the surface), which is the relevant 

regime to study its relationship with precipitation at the surface. 

4.1.3 Quality of MRMS Data in Southeast Texas 

 To ensure that MRMS QPE and rotation data is appropriate to use in Southeast Texas, it is 

important to assess the quality of the radar data being assimilated into the products for that particular 

region. Fortunately, MRMS provides radar quality index (RQI) products and a SHSR height 

(SHSRH) product that can help provide insight on the quality of the observations. The SHSRH 

product shows the AGL elevation at which the SHSR data is coming from (Zhang et al. 2016). 

Logically-speaking, SHSR data coming from lower elevations will be more representative of what is 

taking place at the surface compared to data sourced from higher elevations. And because SHSR is 

used to calculate precipitation rate (and subsequently QPE), better precipitation estimates are 

produced when data from lower scans are available. RQI, which factors in the radar beam elevation 

and beam blockage (Zhang et al. 2012), also provides insight on the quality of the radar data being 

assimilated into the products. 

Examining the SHSRH and RQI products during a heavy rainfall event5 on 16-17 August 

2021 that caused isolated flooding in Houston suggest that the quality of the radar data over the 

Southeast Texas and southern Louisiana region is relatively high. According to the SHSRH product 

(Fig. 4.2b), reflectivity data for the SHSR product comes from elevations that are less than 1 km for 

most of the region. This indicates that most of the reflectivity data that is assimilated into the system, 

 
5 Archived SHSRH, RQI, and GII fields were not able to be accessed for dates prior to October 2020, so fields are 

shown for a recent heavy rainfall event in an effort to draw a close comparison to Imelda. 
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both for the QPE and rotation products, is sourced from a relatively low elevation. Therefore, it is 

expected that the radar is likely providing data that is close to what is true near the surface, which is 

beneficial for both the QPE and the rotation track products. The RQI also suggests that the data 

quality is relatively good over the region, with most areas showing at least 85% accuracy (Fig. 4.2c). 

The RQI does degrade slightly in the context of one-hour QPE estimates (not shown), which 

emphasizes the benefits of using a dataset that incorporates the multitude of gauges in the region (Fig. 

4.2a) that can add ground truth. This assessment aligns well with findings by Gao et al. (2021), which 

showed that MRMS QPE performed reasonably well during several heavy rainfall events across 

southeast Texas, including Hurricane Harvey (2017) and the Memorial and Tax Day floods (2015 and 

2016, respectively), with primarily only small dry biases being the error that was observed. 

4.2 Methods 

 The three methods for analyzing the spatial and temporal relationship between the hourly 

MRMS local gauge bias-corrected radar QPE (referred to simply as MRMS QPE hereafter) and the 

MRMS one-hour accumulated 0-2 km rotation tracks (referred to as MRMS rotation tracks hereafter) 

are described here. All three analyses were conducted over the same 18-hour period of Tropical Storm 

Imelda: 0000 UTC to 1800 UTC 19 September (using one hour time steps). As has been described 

previously, this time period was selected because it is when the most extreme rainfall rates occurred 

during the event, and there were also several persistent embedded rotating features that were present in 

the convective complex at that time. These features, associated with a back-building convective line, 

were well-maintained throughout the period based on radar and rain gauge data (see Chapter 3), 

which provided a reasonably long period to examine rotation and rainfall. 
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 Because the back-building convective line remained nearly stationary for at least 12 hours 

during the period, the domains for the area of study are relatively small for the analyses. For the first 

method, the domain bounds are 29° N to 31° N and 93° W to 96° W (red box in Fig. 4.4). For the 

second two methods, the domain extends from 28° N to 33.5° N and 92° W to 97° W (blue box in Fig. 

4.4).   

 
Figure 4.4: The domain for analysis for MRMS Method 1 and MRMS Method 2 (blue) and the domain over which the 

Hovmӧller diagram spatial averaging is performed (red). 

 

In all three methods, the MRMS QPE and the MRMS rotation tracks are overlaid for each 

time step. However, the relationships between the two datasets will not be assessed pixel by pixel on 

their native geospatial grids because as is demonstrated in Fig. 4.5, the MRMS datasets, particularly the 

rotation tracks, can be very noisy. This noise makes it difficult to compare the two datasets grid cell by 

grid cell. Additionally, the spatial overlap between what is occurring in the atmosphere (even in the 

low levels) may not perfectly align with the surface. For these reasons, different spatial averaging 

methods are applied in the subsequent three subsections. 
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Figure 4.5: Overlaid Multi-Radar Multi-Sensor (MRMS) local gauge bias-corrected one-hour radar quantitative 

precipitation estimate (QPE) (fill) and MRMS one-hour accumulated 0-2 km rotation tracks (contour) at 0900 UTC (a), 

1200 UTC (b), and 1500 UTC (c) on 19 September 2019. 

 

4.2.1 Hovmӧller Diagrams 

 First, in order to provide an overview on the spatiotemporal relationship between the MRMS 

rotation tracks and the MRMS QPE, Hovmӧller diagrams are composed. In essence, the diagrams are 

constructed by averaging the MRMS rotation data and the MRMS QPE data either across a given 

latitude range or across a given longitude range for each available time step. Then, these spatially-

averaged data are plotted over all time steps.  

To construct the diagrams, the MRMS gauge bias-corrected QPE and accumulated 0-2 km 

rotation tracks are overlaid for each time step before the spatial averaging is performed. Because of the 

stationary motion of the system, the spatial averaging is done two separate times: once latitudinally and 

once longitudinally. Each of the spatially-averaged datasets are then plotted separately over time, 

resulting in two Hovmӧller diagrams. The longitude-wise averaging is done between 93° W and 96° W, 

and the east-west averaged data are shown for latitudes between 29° N and 31° N over the 18-hour 

period. Conversely, the latitude-wise averaging is done between 29° N and 31° N, with the north-south 

averaged data shown for longitudes between 93° W and 96° W during the same study period. This 
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approach offers two different perspectives of the embedded rotating features and precipitation over 

time. Radar images are included and referenced alongside the Hovmӧller diagrams during the analysis 

in order to provide additional context on the structure and motion of the system. 

4.2.2 MRMS Method 1 

 Motivated by the spatiotemporal analysis that stems from the Hovmӧller diagrams, these next 

two methods attempt to quantify the spatial relationship between the MRMS QPE and the MRMS 

rotation. This analysis is done by applying two different spatial averaging techniques (over two 

dimensions rather than one, as was done with the Hovmӧller diagrams) to the two datasets and 

comparing their averaged values to each other.  

Beginning with a method that will be referred to as MRMS Method 1 hereafter (see Fig. 4.6 

for a schematic), the first step in the method is to identify QPE grid points that exceed a certain 

threshold. Specifically, for each one-hour timestamp, all QPE grid points that exceed 32 mm h-1 are 

selected. For each QPE grid point that meets this criterion, a small box is “drawn” around the 

individual point. In this analysis, four different sized boxes are tested. The approximate spatial 

resolutions for each sized box are as follows: 11 km x 12 km, 22 km x 21 km, 33 km x 33 km, and 44 

km x 45 km. The spatial resolutions are approximate due to the geographic gridding of the products, 

which is based on latitude and longitude rather than cartesian distance. The threshold of 32 mm h-1 

was chosen for two reasons. First, it limited the potential for selecting precipitation that was occurring 

outside of the main core of the system (where many of the surrounding grid points would be zero, 

which would make the spatial averages very small). Further, it was the smallest (even-numbered) 
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threshold that could be chosen without causing domain errors when the largest of the boxes (i.e., 44 

km x 45 km) were drawn. 

 
Figure 4.6: Idealized schematic demonstrating Multi-Radar Multi-Sensor (MRMS) Method 1 as described in the text. 

MRMS local gauge bias-corrected quantitative precipitation estimate (QPE) is shown as the filled contours, and MRMS 

one-hour accumulated 0-2 km rotation tracks are shown as dashed contours. Magnitudes of the QPE and rotation are 

shown in the legend. MRMS local gauge bias-corrected quantitative precipitation estimate grid points (1 km spatial 

resolution) are indicated by black boxes with crosses, and averaging/area-maximum boxes (shown here for a spatial 

resolution of approximately 5 km) are indicated by red dotted boxes.  

 

 Once the boxes are “drawn” for each of the MRMS QPE grid points, the mean of all the 

MRMS QPE grid points that fall within each of the drawn boxes is taken, as is the mean of the MRMS 

rotation track grid points that fall within the same box. Note that within each of these boxes, there will 

be twice as many grid points for the rotation track data than the QPE data since the native spatial 

resolutions of these products are 0.5 km and 1 km respectively. The area-averaged value of the MRMS 

QPE box remains paired with the area-averaged magnitude of the MRMS rotation tracks over that 

same box. For each of the four averaging box sizes that were tested, these paired values are compared to 

the paired values for other boxes that were drawn based on the 32 mm h-1 threshold, and this step is 

repeated across all 18 hourly time steps. 

For an additional perspective, the maximum values, rather than the area-averaged values, 

within each box drawn around MRMS QPE grid points ≥ 32 mm h-1 are also calculated among the 
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MRMS QPE and MRMS rotation grid points that fall within each box. Then, the paired area-

maximum QPE and area-maximum rotation for all boxes are compared against those found within 

other boxes for each of the four box sizes.  

4.2.3 MRMS Method 2 

 Though methodological limitations will be discussed in further detail in Chapter 5, the 

motivation for introducing an additional method for assessing the spatial relationship between the 

hourly MRMS QPE and hourly-accumulated MRMS rotation tracks was due to concerns 

surrounding oversampling in MRMS Method 1 due to large overlaps between the area-averaged boxes. 

For instance, two adjacent MRMS QPE grid points that both exceed 32 mm h-1 would have boxes that 

overlap almost entirely, meaning that their area-averaged means would be very similar, and the grid 

points within the box would be shared with multiple other drawn boxes nearby. For these reasons, an 

additional method, defined here as MRMS Method 2, was developed to address these concerns by 

attempting to mitigate the issue of oversampling. A schematic representing the second method is 

shown in Fig. 4.7. 

 
Figure 4.7: As in Fig. 4.6, but for MRMS Method 2, except the averaging boxes are shown as solid (rather than dashed) red 

boxes (note area-maximum values were not calculated with MRMS Method 2).   
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 Rather than drawing averaging boxes based on an estimated rainfall accumulation threshold, 

MRMS Method 2 coarsens the MRMS grid independently of the MRMS QPE values. This is done by 

dividing the domain into equally-sized small boxes that remain spatially identical across the entire 

period, rather than allowing their locations to vary with each time step based on the locations of the 

QPE values. Within each of the boxes, the values of the MRMS QPE and MRMS rotation track grid 

points that fall within the box are averaged. This approach prevents the same grid points from being 

sampled multiple times and effectively coarsens the grid. This approach is tested using three different 

coarsened resolutions of approximately 2 km x 2 km, 5 km x 5 km, and 10 km x 10 km (Fig. 4.8). As  

 

Figure 4.8: Example of the Multi-Radar Multi-Sensor (MRMS) Method 2 grid coarsening for MRMS local gauge bias-

corrected one-hour radar quantitative precipitation estimate (QPE) (fill) and MRMS one-hour accumulated 0-2 km 

rotation tracks (contour) for 19 September 2019 at 1000 UTC. The datasets are shown with the original resolutions (1 km 

for precipitation, 0.5 km for rotation) in (a), then with their resolutions coarsened to 2 km (b), 5 km (c), and 10 km (d). 
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with MRMS Method 1, the area-averaged MRMS QPE and MRMS rotation track values for each 

averaging box remain paired together for analysis across the 18-hour time period. Note that in order to 

exclude small values in the analysis, only area-averaged values that exceed 0.001 s-1 for the MRMS 

rotation tracks and 4 mm for the MRMS QPE are included.   

4.3 Results and Discussion 

4.3.1 Hovmӧller Diagrams 

From the perspective of the longitudinally-averaged Hovmӧller diagram (Fig. 4.9), there is 

evident spatial overlap between the MRMS QPE and the MRMS rotation when viewed over the 18-

hour period. During the first four hours of the period, the highest longitudinally-averaged 

precipitation values are focused near 30° N (Fig. 4.9a), which is where the axis of back-building 

precipitation began to form (Fig. 4.10a). Around 0500 UTC, east-west averaged precipitation begins 

to increase as the convective line intensifies (Fig 4.9a), as does east-west averaged rotation (Fig. 4.9b) as 

embedded rotation begins in the eastward portion of the line (Fig. 4.10b). Longitudinally-averaged 

rotation begins to intensify again between 0600 UTC and 0800 UTC between 29.75° N and 30.0° N 

very near a developing precipitation maximum at the same time (Fig. 4.9c). Several rotating elements 

can be seen within some of the heaviest reflectivity areas (Fig. 4.10c), which aligns well with the 

longitude-averaged rotation seen in Fig. 4.9b.  

The west-northwest east-southeast oriented convective line becomes more well-organized over 

the next few hours, with embedded rotation present throughout most of it (Fig. 4.11a), which is 

indicated by the longitudinally-averaged MRMS rotation maximum just north of 30.0° N (Fig. 4.9b). 

Note that the area of most intense east-west averaged precipitation aligns very well with the averaged 
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Figure 4.9: Hovmӧller diagrams showing mean 1-hour Multi-Radar Multi-Sensor (MRMS) quantitative precipitation 

estimate (QPE) (mm) (a), mean MRMS one-hour accumulated 0-2 km rotation tracks (0.001 s-1) (b) between latitudes 29° 

N to 31° N from 0000 UTC to 1800 UTC on 19 September 2019. Data from (a) and (b) are overlaid in (c), with the QPE 

shaded and the rotation tracks contoured. For all plots, the QPE and rotation tracks are averaged over longitudes 96° W to 

93° W.  

 

rotation (Fig. 4.9c). These rotating features remain present for several hours (Fig. 4.11b) as the system 

begins to bow southward, which is evident from the MRMS QPE footprint (Fig. 4.5c). The  
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Figure 4.10: Radar reflectivity and velocity from the Houston-Galveston radar in League City, Texas (KHGX) at 0326 

UTC (a) 0510 UTC (b) 0730 UTC (c) on 19 September 2019. The black dot indicates the approximate location of 

downtown Houston, Texas. 

 

convection producing the most intense precipitation can be seen advancing southwestward by 1500 

UTC (Fig. 4.9c), though the line slowly begins becoming less organized (Fig. 4.11c). 

The north-south averaged MRMS QPE and MRMS rotation fields provide additional insight 

on the time-evolution of the intense convective band and associated rainfall and rotation (Fig. 4.12a-c). 

Similar to Fig. 4.9, averaged MRMS rotation and MRMS QPE often overlap spatially with each other  
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Figure 4.11: As in Fig. 4.10 but at 0943 UTC (a) 1413 UTC (b) and 1606 UTC (c). 

 

across the period. In a general sense, the fields shown from this perspective suggest that the 

precipitating system becomes longer in the east-west direction throughout the period, as does the 

extent of the heavier precipitation. 

Unlike Fig. 4.9b, Fig. 4.12b shows more clearly that there are multiple areas in the domain that 

indicate well-maintained embedded rotation. One of these rotating features is present from around  
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Figure 4.12: As in Fig. 4.9, but averaged over latitude (29° N to 31° N) instead of longitude. Data shown for 93° W to 96° 

W. 

 

0300 UTC to 0600 UTC (Fig. 4.12b) and appears to originate within an eastward-moving bowing 

convective band centered near 94° W that originated as a TC rainband (Fig. 4.10a). The northward 

extent of this north-south oriented band decays over time (Fig. 4.10b), and while KHGX velocity 
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shows little in the way of rotation in the area at this time, the latitudinally-averaged MRMS QPE and 

MRMS rotation fields indicate eastward propagation of the co-located rotating feature and 

accompanied rainfall during this time (Fig. 4.12c). A few hours later, another, broader area of 

latitudinally-averaged rotating features develops after 0700 UTC along a similar line of longitude (Fig. 

4.12c). This area of embedded rotation moves very little in the east-west direction through 1300 UTC, 

and Fig. 4.9b suggests that they do not deviate in the north-south direction very much during this 

period either, though they do overlap well spatially with the latitudinally-averaged MRMS QPE (Fig. 

4.12a). Again, radar images do not indicate very much rotation in the area during these times, though 

this is likely because the KHGX radar beam may be too high to capture the low-level rotation in this 

area that would be better detected by the KLCH radar. In the region of this ongoing rotation, the 

once-broader area of intense convection (Fig. 4.11a) narrows longitudinally into a narrower north-

south oriented line (Fig. 4.11b). While the rotating features can be seen moving eastward in Fig. 4.12b, 

the latitudinally-averaged MRMS QPE do not reflect this eastward motion as clearly (Fig. 4.12a), 

suggesting a lessening degree of co-location than had been identified previously.   

Meanwhile, further west, the orange shades near 94.5° W beginning around 0500 UTC in Fig. 

4.12b correspond to the developing rotation within the back-building convective line (Fig. 4.10b). 

Due to the north-south averaging and the west-northwest east-southeast orientation of the line, these 

areas of rotation do not appear as intense. Nonetheless, the rotation remains nearly continuous 

through the end of the period as the line drifts southwestward, with the magnitude of the latitudinally-

averaged MRMS rotation and MRMS QPE increasing (Fig. 4.12c) as the system becomes less linear 
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and broadens in the north-south direction (Fig. 4.11b; c). In general, the latitudinally-averaged MRMS 

QPE and MRMS rotation are co-located quite well throughout the convective line’s lifetime. 

4.3.1 MRMS Methods 1 and 2 

Beginning with MRMS Method 1, 51,276 total grid cells exceeding 32 mm h-1 in the one-hour 

MRMS local gauge bias-corrected QPE product were identified within the established domain (Fig. 

4.4) between 0000 UTC to 1800 UTC 19 September 2019. Hexbin plots of the area-averaged hourly 

MRMS QPE and area-averaged MRMS one-hour accumulated 0-2 km rotation tracks suggest a 

relatively strong positive relationship between the two variables (Fig. 4.13). This relationship is present  

 
Figure 4.13: Hexbin plots of area-averaged Multi-Radar Multi-Sensor (MRMS) one-hour quantitative precipitation 

estimate (QPE) (mm) and area-averaged MRMS one-hour accumulated 0-2 km rotation tracks calculated from horizontal 

domains of approximate sizes of 11 km x 12 km (a), 22 km x 21 km (b), 33 km x 33 km (c), and 44 km x 45 km (d) as 

described by MRMS Method 1. Note the differences in scale on the colorbars and axes. The number of horizontal domains 

being sampled (which is based on the number of QPE grid points that are greater than 32 mm h-1) are annotated with the r 

and r2 values for each domain size. 
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regardless of the sizes of the averaging boxes that are used to conduct the spatial averaging, though as 

the size of the averaging boxes being drawn increases, the correlation also increases. This is not 

surprising, given that as the averaging boxes become larger in size, there is more overlap between the 

boxes, meaning that the spatial averages calculated among them become more similar. Therefore, the 

calculated correlation coefficient (r) is weakest for the averaging boxes of size 11 km x 12 km. This 

smallest size of averaging box yields a correlation coefficient of 0.33, with the majority of the averaging 

boxes having an hourly MRMS QPE between 25 mm h-1 and 60 mm h-1 and mean hourly 

accumulated rotation track between 0.5*0.001s-1 and 4.5*0.001s-1, which equates to an area-averaged 

mean of 1.8 and 16.2 tracks h-1 respectively (Fig. 4.13a). 

As the size of the averaging boxes increases, the magnitudes of the spatially-averaged MRMS 

QPE and MRMS rotation tracks become less extreme (Fig. 4.13b-d). This trend exists because the 

isolated extreme values begin to get averaged-out as more grid points are averaged together. By the time 

the box size is 44 km x 45 km (Fig. 4.13d), an r-value of 0.57 is reached, though the area-averaged 

maximum MRMS QPE and area-averaged maximum MRMS rotation are approximately 55 mm h-1 

and 4.5*0.001s-1 respectively, which were characterized more as mid-range values when the averaging 

boxes were smaller (e.g., Fig. 4.13a). 

In addition to examining the area-averaged mean QPE and rotation track values within the 

various sized boxes, the maximum grid point values found within each of the boxes can also be 

examined at each time step within the 18-hour period (Fig. 4.14). This perspective is helpful because 

the grid points with larger magnitudes do not get smoothed out by the averaging. In general, the 

relationships between the maximum one-hour MRMS QPE and maximum one-hour MRMS rotation 
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taken among the different sized boxes were less strong compared to the area-averaged relationships of 

the same sized boxes (Fig. 4.14). Notably, the differences in r-values between the area-averaged 

relationships and area-maximum relationships of the MRMS QPE and MRMS rotation are smaller for 

the smaller sized averaging boxes (e.g., cf. Figs. 4.13a; 4.14a) than the larger sized averaging boxes (e.g., 

cf. Figs. 4.13d; 4.14d). While it is interesting that the correlations between the maximum QPE versus 

maximum rotation values are higher when compared to the correlations of the area-averaged QPE and 

area-averaged rotation, this result should be interpreted with caution. Care should be taken because 

the area-maximum values are only representative of a single 1x1 km (for QPE) and 0.5x0.5 km (for 

rotation) grid point within each of the boxes, meaning that those values may not fully represent what 

is occurring within each box.  

 
Figure 4.14: As in Fig. 4.13, but for area-maximum Multi-Radar Multi-Sensor (MRMS) one-hour quantitative 

precipitation estimate (QPE) (mm) and area-maximum MRMS one-hour accumulated 0-2 km rotation tracks. Note the 

differences in scale on the colorbars and axes. 

 

Analyzing the results of the MRMS Method 2 reveals that there is still a positive relationship 

between the area-averaged MRMS rotation and the area-averaged MRMS QPE, though the 
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correlations are less strong than those that were found with MRMS Method 1 (Fig. 4.15). Because the 

oversampling issue is alleviated with MRMS Method 2, it is not surprising that the relationships are 

not as prevalent, since the values of the averaging boxes being analyzed with this second method will 

undoubtedly be less similar to each other. As with MRMS Method 1, the correlation between the area-

averaged MRMS QPE and area-averaged MRMS rotation increases as the grid becomes coarser.  

 
Figure 4.15: Hexbin plots of area-averaged Multi-Radar Multi-Sensor (MRMS) one-hour quantitative precipitation 

estimate (QPE) (mm) and area-averaged MRMS one-hour accumulated 0-2 km rotation tracks calculated from coarsened 

grids with horizontal resolutions of 2 km (a), 5 km (b), and 10 km (c) as described by MRMS Method 2. Only coarsened 

grid boxes that have an area-averaged one-hour QPE greater than 4 mm and an area-averaged one-hour accumulated 

rotation track greater than 0.001 s-1 are included. Note the differences in scale on the colorbars and axes. 

 

The hexbin plots in Fig. 4.15 show the majority of the area-averaged values are centered in the 

lower left-hand corner of the plots. This makes sense given the method of only incorporating each grid 

point (which will predominantly be small values) into the area-averages once, meaning the majority of 

the QPE and rotation tracks will fall on the lower end of the spectrum, with large values of each being 

much more isolated. These smaller values are responsible for much of the strong positive correlation, 

as the data becomes less correlated as smaller values are removed (not shown). This is not surprising, as 

none of the plots show the absence of high QPE/low rotation and low QPE/high rotation that was 

prevalent in the plots associated with MRMS Method 1 (Fig. 4.13). Thus, this particular finding is not 
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consistent with what is shown in Fig. 4.13, where there were very few boxes with strong rotation for 

low QPE values or vice versa. However, all averaging boxes used in MRMS Method 2 are all as small or 

smaller than the averaging boxes used with MRMS Method 1, which could also be why the plots in 

Fig. 4.15 have more spread compared to those in Fig. 4.13. Coarsening the grid further with MRMS 

Method 2 does not add much more value, as the resolution of the datasets becomes very low, and the 

number of averaging boxes to analyze are reduced significantly (not shown). Nonetheless, it does 

appear that in general, areas that had a higher area-averaged QPE tended to also have higher area-

averaged rotation, suggesting that there is some positive relationship between low-level rotation and 

estimated rainfall accumulations. 

4.4 Summary 

 This analysis utilized hourly MRMS local gauge bias-corrected QPE and hourly-accumulated 

MRMS 0-2 km rotation tracks to examine the spatial and temporal relationships between heavy 

rainfall and low-level storm-scale rotation in Tropical Storm Imelda. The MRMS QPE and MRMS 

rotation were overlaid across one-hour time steps from 0000 UTC to 1800 UTC on 19 September 

2019, which was a period characterized by extreme rainfall rates and embedded rotation based on 

previous analyses of gauge precipitation and radar imagery.  

 Three analyses were conducted to assess the relationship between the MRMS QPE and 

MRMS rotation. The first method aimed to examine the spatial overlaps over time using both 

latitudinally-averaged and longitudinally-averaged Hovmӧller diagrams. The second two techniques 

(MRMS Method 1 and MRMS Method 2) involved sampling the MRMS grid cells using two 

different approaches, then analyzing them over different horizontal areas by calculating area-averages 
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and area-maximums. In all three cases, spatial-averaging methods needed to be applied because 

comparing individual overlapping MRMS QPE and MRMS rotation grid cells to one another would 

be too fine of a resolution (1 km and 0.5 km respectively) to study the relationship of rainfall and 

rotation on the meso-/storm-scales. 

The Hovmӧller diagrams suggest a consistent spatial and temporal overlap between the 

MRMS QPE and MRMS rotation during the 18-hour period. This finding was true both in a 

latitudinally-averaged and longitudinally-averaged sense. Persistent rotating features could be 

identified in multiple parts of the system, and the high MRMS QPE values were frequently located in 

very similar areas as high MRMS rotation values. These results also suggest that as rotation intensified, 

precipitation tended to increase during the 18-hour period of study, implying that there is a positive 

relationship between rotation in the low levels and rainfall at the surface. 

The results of MRMS Method 1 and MRMS Method 2 indicate a positive correlation 

between area-averaged hourly MRMS QPE and area-averaged hourly MRMS rotation. In other words, 

locations that saw a larger amount of rotation in the low levels of the atmosphere also tended to see 

greater area-averaged accumulated rainfall.  

With MRMS Method 1, there were few to no boxes that contained high area-averaged MRMS 

QPE and low area-averaged MRMS rotation, nor were there many boxes that contained high area-

averaged rotation and low area-averaged MRMS QPE. This characteristic suggests that for this 

particular event, it was uncommon for strong embedded rotation to take place in locations receiving 

relatively small amounts of rainfall, nor was it likely that locations receiving large amounts of rainfall 

would see very little rotation in the low levels. As averaging area increased (i.e., the size of the boxes) 
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using MRMS Method 1, the correlation became stronger, though this is likely due to the fact that area-

averaged boxes became more similar to each other as more of the same grid points began to be included 

in the same boxes, which made the area averages more similar. 

MRMS Method 2 also shows a positive relationship between these two sets of data, though the 

correlations are less strong than those found with MRMS Method 1. However, this difference may be 

partially due to the fact that area-averaging of the MRMS QPE and MRMS rotation occurred over 

areas as large or larger in MRMS Method 1, and overlaps between the averaging boxes were also 

permitted in that method. MRMS Method 2 did not show the similar absence of low rotation/high 

QPE and high rotation/low QPE in the area-averaging that was seen in the results of MRMS Method 

1, which does cast some doubt over the relationship between rainfall and rotation in this particular 

analysis. Nonetheless, the majority of the evidence provided by the Hovmӧller diagrams and MRMS 

Methods 1 and 2 largely support a positive spatiotemporal correlation between MRMS low-level 

rotation and MRMS accumulated rainfall.  

Given the positive correlation between embedded rotation and rainfall rates that were found in 

the MRMS products, this result is consistent with previous studies that have established physical 

connections between these two processes via modelling (e.g., Nielsen and Schumacher 2018, 2020b). 

Further, these results agree with the results of Brauer et al. (2020), which showed that MRMS rotation 

tracks tended to be co-located with areas of enhanced rainfall accumulations and high precipitation 

efficiencies in LTC supercells. Lastly, the positive correlation and spatiotemporal overlap between 

embedded rotation and rainfall agrees with previously-examined observations that have shown a 
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positive relationship between these two features in continental convective systems (Nielsen and 

Schumacher 2020a). 
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CHAPTER 5: LIMITATIONS, NEXT STEPS, CONCLUSION 

 

 

 

5.1 Limitations 

 There are a few limitations with this study that should be addressed, beginning with the 

downsides of using only one case, Tropical Storm Imelda, in these analyses. Because this is a case study, 

sweeping generalizations about observations of embedded rotation and extreme rainfall in LTCs 

cannot be made. In particular, Tropical Storm Imelda was relatively messy given its weak, short-lived 

nature, and its most extreme rainfall occurred when the system had been reduced to remnants. This 

means that while the relationship between embedded rotation and rainfall rates shown here may 

translate to other LTC remnants, the relationship of these two mechanisms in LTCs with better-

developed structures remain outside the scope of this work. Nonetheless, Imelda’s transition from 

traditional weak TC structure to its remnants becoming a quasi-stationary MCS with extreme 

precipitation rates and embedded rotating features arguably make the system worthy of a case study at 

the least. 

Shifting focus to the radar and rain gauge analysis presented in Chapter 3, one of the most 

obvious limitations is that the presence of rotation is determined subjectively rather than using an 

algorithm or some other automated classification scheme, meaning that the identified rotation could 

vary by individual interpretation. While this concern is valid, multiple steps were taken to ensure that 

the classification scheme was very conservative with identifying rotation images. Further, manual radar 

analysis is frequently relied on in the literature, not only for identifying mesoscale rotation (e.g., 

Nielsen and Schumacher 2020a), but also for classification of system types, such as with MCSs (e.g., 
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Parker and Johnson 2000; Schumacher and Johnson 2005, 2006; Keene and Schumacher 2013), 

making this approach not unreasonable. Another potential limitation to this analysis is that the 

rotation classification scheme is binary—that is, radar velocity images are not categorized further based 

on the structure or magnitude of the embedded rotation. Because of this relatively simplistic approach, 

not much can be said about the relationship between the observed strength or structure of the rotation 

and the quantity of rain that was observed with this method. However, the methods did seek to only 

include rotation that was relatively strong, well-defined, and between storm- and meso-g scale, which 

did inherently constrain the type and strength of the rotation that was identified. 

 One other key limitation that should be addressed with the radar and rain gauge analysis is the 

temporal variability between the paired radar images and the 5-minute rainfall observations. The 

method used here allowed there to be anywhere between 1 and 5 minutes of lag time from the radar 

image to the gauge observation. Because of this approach, some 5-minute observation periods may 

have begun several minutes before the time stamp of the radar image, while others may have occurred 

entirely after the radar image was captured. Further, some 5-minute observations were neglected 

entirely if they fell between certain radar timestamps (e.g., the 0225 UTC gauge observation would be 

neglected for radar scans occurring at 0218 UTC and 0226 UTC). Though these issue do complicate 

the comparisons that were drawn between the time-matched radar images and rainfall observations, 

this time resolution is an improvement from Nielsen and Schumacher (2020a), which paired 

observations of meso-g scale rotation and rainfall observations on hourly time scales. Potential 

improvements to the method described here will be included in the subsection of this chapter that 

focuses on avenues for future work. 
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 Lastly, there are a few limitations that need to be noted with regards to the MRMS analysis 

presented in Chapter 4. One concern with the results presented is autocorrelation, i.e., that the paired 

MRMS rotation and MRMS QPE values calculated from the averaging boxes are correlated with 

themselves over time. Autocorrelation is to be expected because consecutive time stamps are being 

evaluated, thus it is anticipated that the observations to be somewhat related over time. The evident 

spatial overlap shown among the rotation and QPE makes this issue somewhat less concerning. 

Nonetheless, this study only examines the relationship between two variables, and it is likely that there 

are confounding variables that were not explored here. An additional concern lies with the MRMS 

system itself, particularly in regard to the calculations of rainfall rates, which are used for the QPE 

products. At the time of Imelda, the MRMS QPE products relied on relatively simple “Z-R” 

relationships, which uses the radar reflectivity factor (or SHSR in the case of MRMS) (Z) to calculate 

rainfall rate (R). While the algorithm does adjust the Z-R relationship based on precipitation type 

(Zhang et al. 2016), recent work has found that these calculations tend to underestimate very heavy 

rainfall rates in some cases and overestimate it in others, which is why recent updates to the MRMS 

system have begun incorporating dual-pol variables in an effort to improve rain rate calculations 

(Zhang et al. 2020). Further, in the algorithm before the update, the maximum rain rate for tropical-

stratiform mixed rain and convective rain was 147.4 mm h-1 and 103.8 mm h-1 respectively (Zhang et 

al. 2016). Though the maximum rain rate of 142.2 mm h-1 that was identified in the MRMS QPE for 

Imelda implies that the algorithm correctly identified the environment in at least some cases, many of 

the hourly gauge observations come very close to this value (Fig. 3.3), and misidentification of the 

rainfall type could clearly have significant limitations of the rainfall rate that is being calculated for the 
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QPE products. Thus, the shortcomings of radar-based QPE estimations are something that should be 

kept in consideration when digesting the results of this study. 

5.2 Conclusion 

 This analysis explores observations of embedded rotation and heavy rainfall in LTCs through a 

case study of Tropical Storm Imelda. In order to further the understanding of the relationship of these 

mechanisms, this study had three objectives: 1) to identify the multiscale mechanisms that contributed 

to Imelda’s excessive rainfall, 2) to explore the spatial and temporal relationship between embedded 

meso- to storm-scale rotation and the extreme rain rates that occurred during Imelda using 

observations, and 3) to identify the magnitude and significance of this relationship. The synoptic and 

mesoscale analysis presented in Chapter 2 revealed that extreme rainfall rates that occurred during 

Imelda resulted from a combination of several factors. Specifically, the co-location of high column-

integrated moisture, moderate instability, mid-level positive vorticity advection, a LLJ, and converging 

winds impinging perpendicularly on the warm side of a mesoscale temperature gradient provided 

sufficient moisture, lift, instability, and rising motion to support the development of the heavy 

rainfall-producing system. The radar-rain gauge analysis in Chapter 3 revealed a statistically significant 

positive relationship between the presence of embedded rotation and 5-minute rainfall observations, 

showing that nearly two times as much total rainfall fell when there was rotation present compared to 

when there was no rotation present. Lastly, Chapter 4 showed a positive correlation between low-level 

rotation and rainfall rates using rotation tracks and QPE products from the Multi-Radar Multi-Sensor 

system. It additionally demonstrated that the heavy rainfall and embedded rotation tended to track 

together over time. Together, this evidence supports the claim that there is some correlation between 
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embedded rotation and rainfall rates in LTC environments, and these findings can be translated into 

improved forecasting practices in multi-hazard situations. Specifically, it suggests that in LTC 

environments, convection with embedded mesovorticies should not only be monitored for their 

tornadic potential, but also for their localized flash flood threat, particularly when there is evidence of 

backbuilding or training.  

5.3 Future Work 

 The work presented in Part I of this manuscript sparks ideas for several avenues for future 

research. One of the first paths would be to apply the MRMS methods shown in Chapter 4 to other 

recent LTC cases that have included flash flood-producing rainfall and associated tornadoes, including 

slow-moving systems like Imelda (e.g., Hurricane Florence (2018)) and systems that were faster-

moving flash flood-producers but also produced a greater number of tornadoes (e.g., Isaias (2020), Ida 

(2021)).  Expanding the cases in the MRMS analysis would 1) clarify the significance of the results 

found with Imelda and 2) determine if there is variability in the relationships shown between the heavy 

rainfall and embedded rotation among various “types” of LTCs. It would also be interesting to apply 

the rain gauge/radar analysis presented in Chapter 3 to other cases as well, though the lack of densely-

populated rain gauge networks would hinder this possibility some. Nonetheless, if this test were to be 

repeated, applying some kind of weight to the rainfall observations to account for the variable time 

offset between the gauge and radar timestamps would be beneficial. Lastly, this study focuses solely on 

observations of heavy rainfall rates and embedded rotation in LTCs, but numerical modelling 

introduces an entirely new dimension to these results. There is ongoing collaboration with other 
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researchers who have been focused on running such simulations in LTCs (including Imelda), and their 

results along with those from the observations used in this study will be compared.  
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PART II: EVOLVING EXPERIENCES OF GULF COAST RESIDENTS DURING 

HURRICANE HARVEY USING TWITTER 

 

 

 

Previous chapters in this manuscript have demonstrated through observations that heavier 

rainfall may occur when there is embedded mesoscale rotation present, specifically in a landfalling 

tropical cyclone (LTC). Knowledge that these two processes are related is significant because both can 

lead to co-located, concurrent hazards at the surface: flooding and tornadoes. Understanding that 

relationships between precursors to these overlapping hazards exist is important from a forecasting 

perspective, as their occurrence can complicate the warning-issuing process by dividing meteorologists’ 

attention and result in unintentional amplification of one threat over the other (Henderson et al. 

2020), which can ultimately lead to failures in communication to end users.  

Though it is necessary to make sense of the physical mechanisms that drive coincident 

tornadoes and flooding in LTCs because of the impacts on operational forecasting, it is also crucial to 

consider members of the general public that receive forecasts and information about these hazards, as 

they can experience impacts to themselves (mentally and/or physically) and their property. Numerous 

studies have shown that personal experience with significant meteorological events can shape the 

thoughts, perceptions, actions, and decision-making processes of those who have lived through them, 

all of which can then influence their behaviors in future disasters. Understanding how these behaviors 

and thoughts manifest is critical to improving communication by decision-makers and operational 

forecasters who wish to minimize loss of life and property. 
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In Part II of this thesis, the ways in which current experiences are informed by past events are 

explored. Specifically, the following chapters examine the ways in which past experience emerges and 

evolves across different stages of a weather-related disaster. The methods employed here examine these 

experiences through the lens of Twitter data collected from a 12-day period encompassing Hurricane 

Harvey, a significant LTC that impacted the western Gulf Coast in 2017. Geographically, this study 

focuses on tweets from users located in southeast Texas and southern Louisiana, all of whom expressed 

awareness of the multiple hazards (specifically tornadoes and flooding) that accompanied Harvey, as 

well as demonstrated knowledge of past meteorological events (primarily tropical cyclones, or TCs). 

By using knowledge of these past events as a proxy for experience, this work addresses the following 

two research questions:  

 

Q1: How does experience emerge through the lens of the past event tweets during Hurricane 

Harvey? 

 

Q2: What are the different ways in which past events are discussed by users during the various 

stages of Hurricane Harvey? 
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CHAPTER 6: BACKGROUND AND MOTIVATION 

 

 

 

6.1 Experience with Past Weather Hazards 

Experience has been studied in the context of numerous natural hazard-related events, from 

hurricanes, to floods, to tornadoes, to earthquakes. However, the definitions of what classifies as 

“experience” and the proxies used to characterize it have been broad. Historically, these definitions 

have drawn designations between direct and indirect experiences, which can be tangible and/or 

intangible. As Demuth (2018) writes in the context of weather and disaster-related experiences, a direct 

experience can be broadly classified as “one’s own, unmediated participation in a threat and/or event”, 

whereas an indirect experience is “mediated by reading, viewing, or hearing information… from 

others” (p. 1928). For a review of the different ways in which experience has been defined in weather-

related studies, see Demuth (2018).  

Direct experiences, which can be both tangible and intangible, have been explored on several 

occasions in the context of LTCs. Definitions of what qualifies as a direct experience with a LTC vary 

among studies, though some authors assert that in order for an experience to be direct, the person 

having a the experience must be located in an area affected by a LTC while it was occurring (e.g., 

Trumbo et al. 2011; Goldberg et al. 2020). Tangible direct experiences in LTC scenarios could include 

evacuating an area where a LTC was imminent, or experiencing some kind of personal damage or loss 

(e.g., Trumbo et al. 2011; Demuth et al. 2016; Rickard et al. 2017). Meanwhile, an intangible direct 

experience in the context of LTCs could include emotions that arise as a result of the storm, such as 

distress (Demuth et al. 2016). Tangible and intangible direct experiences are not necessarily mutually 
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exclusive, though they can occur in tandem. In other words, intangible direct experiences can occur 

even when tangible experiences are not reported, though it is common for people to experience both 

types at the same time (Demuth et al. 2016). 

Indirect experiences have also been studied in LTC settings. By definition, indirect experiences 

can only be intangible, since there is a mediating person or object that stands between the person 

having the experience and the event itself. Examples of indirect experiences that could be associated 

with LTCs could include knowing someone who was personally impacted by a LTC (e.g., Trumbo et 

al. 2011; Rickard et al. 2017) or developing emotions while watching LTC aftermath on television. 

The existence of indirect experiences further confirms that intangible experiences can occur in 

isolation from tangible experiences (Demuth et al. 2016).  

One reason that past experiences with LTCs are important to make sense of is because they 

can provoke changes to future perceptions. For instance, perception of hurricane impacts tends to be 

higher among people who have had a past hurricane experience (e.g., Huang et al. 2012), as do risk 

perceptions (e.g., Demuth et al. 2016; Goldberg et al. 2020) and risk judgements (e.g., Rickard et al. 

2017). Hurricane experience can also skew perceptions of LTC severity relative to other events of 

similar meteorological intensity. That is, when comparatively worse impacts are endured in one’s own 

area from a particular storm, that event is perceived to be more intense, even if the same area is 

impacted by an event of similar strength (though sees fewer impacts) (Senkbeil and Schneider 2010). 

With knowledge of the Saffir-Simpson scale (the scale used to rate hurricane intensity based on wind 

speed) being limited in scope (e.g., Senkbeil and Schneider 2010; Knox et al. 2016), and with impacts 
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of LTCs being highly variable across areas that are affected, people’s past experiences with hurricane 

events may cause them to misjudge future events as a result.  

Experience can also influence behaviors and actions. For instance, people with past hurricane 

experience may be more likely to take additional preventative action, such as having a hurricane 

evacuation kit prepared (Horney et al. 2008) or choose to evacuate (e.g., Brommer and Senkbeil 2010). 

However, more studies have found that the connections between experience and actions are not 

necessarily simple and straightforward. Specifically, beliefs and perceptions can serve as mediators or 

predictors between experience and behavior (see Fig. 6.1 for an example theoretical model). Demuth et 

al. (2016) showed that past experience with a hurricane can shape efficacy beliefs and perceived risk, 

which when elevated, tend to have a positive effect on evacuation intentions (Fig. 6.1). Even among  

 
Figure 6.1: From Fig. 1 in Demuth et al. (2016), showing a theoretical model of hurricane experience and evacuation 

behavior with mediating variables (i.e. perception and efficacy). 

 

meteorologists, past experience can play a role in their own risk perceptions of certain hazards, which 

can unintentionally lead to certain hazards being focused on over others during forecasting operations 

(Henderson et al. 2020). It has also been shown that experience can be coupled with other factors, 
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such as confidence in past decisions, to predict future actions (Goldberg et al. 2020). These studies all 

demonstrate that experience cannot necessarily be examined in isolation, but rather, the interplay of 

thoughts, perceptions, and belief systems must all be considered in tandem with experience. Yet, these 

elements of experience remain difficult to capture, analyze and measure. 

Many of the experience-related studies described above share a methodological commonality, 

which is that they were conducted using either surveying (e.g., Huang et al. 2012; Demuth et al. 2016; 

Rickard et al. 2017; Demuth 2018; Goldberg et al. 2020) or interviewing techniques (e.g., Horney et 

al. 2008; Henderson et al. 2020). Because of this choices in methods, most studies have examined 

experience in the context of weather-related events after the weather-related event(s) took place. Very 

little has been done to assess the ways in which past experiences emerge in real-time while the weather-

related disaster is taking place. This work attempts to address this gap in the literature by examining 

experience as it emerges during a real-time weather event by using archived tweets from Twitter. 

6.2 Use of Twitter Data in Weather Hazards Research 

The social media platform Twitter presents an opportunity to examine statements, behaviors, and 

perceptions of users as they are captured online in real-time during disasters, as opposed to after the 

event is over. Unlike other social media sites, each qualitative data point (i.e., a tweet) on Twitter must 

be succinct—that is, no longer than 280 characters6 —which helps make the data somewhat more 

digestible. Data on the site is also easily accessible. Through application programing interfaces, or 

APIs, large volumes of tweets can be queried based on specific keywords or hashtags over designated 

 
6 Twitter increased the maximum character count permitted in tweets from 140 to 280 in late 2017. 
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periods of time, allowing groups of interest to be identified. Twitter users can also be identified based 

on geographic location, though this approach is limited by the fact that relatively few tweets are 

geotagged (approximately 1-2%) and those that are frequently tagged are riddled with inaccuracies, 

since location can be manually selected by the user (Palen and Anderson 2016). Sophisticated 

techniques have developed tools to sift through tweets more effectively than traditional APIs to 

specifically target disaster-related tweets that can be used to help focus recovery efforts (e.g., Ashktorab 

et al. 2014). 

 The ways in which disasters are discussed on social media platforms, including Twitter, is 

typically dependent on the type of disaster that is occurring (Vieweg et al. 2010; Palen and Hughes 

2018). In LTC-related disasters specifically, tweets have been shown to cover a wide variety of topics 

and themes. For example, Anderson et al. (2016) and Demuth et al. (2018) found that some common 

risk perception themes among tweets sent during Hurricane Sandy included sharing of environmental 

cues, noting preparatory or protective actions, and circulating of coping mechanisms. Other studies 

have shown that users display a variety of emotions through their tweets during LTCs, ranging from 

negative affectivity (e.g., fear, worry) to use of humor (Spence et al. 2015; Anderson et al. 2016; Knox 

et al. 2016; Demuth et al. 2018). Other uses of the social media platform include memorializing 

victims and coordinating relief efforts in the aftermath of LTCs (Takahashi et al. 2015), and discussing 

evacuation information ahead of them (Demuth et al. 2018; Xu et al. 2019). Using Twitter to 

disseminate information to at-risk individuals before and after a hurricane serves a meaningful 

purpose, though misinformation and irrelevant or distracting discourse can easily drown out tweets 

containing pertinent data (Knox et al. 2016). 
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 The characteristics of the information shared on Twitter during LTC events can also be time-

dependent. For instance, Kogan and Palen (2018) found that during the height of Hurricane Sandy’s 

impacts, Twitter users interacted with an above average number of users and tended to have longer, 

slower-paced conversations compared to other periods of the event. On the contrary, other studies 

have suggested that tweet activity peaks at the height of the event, which for LTCs tends to be 

centered around the time when landfall occurs (Anderson et al. 2016; Morss et al. 2017; Xu et al. 

2019).  

The subject matter of information that is shared throughout a natural disaster can also change 

as the event progresses, and there are various ways to monitor such temporal trends. One way to 

examine changes in tweet content over time is through examining how themes evolve among 

individual users (e.g., Morss et al. 2017; Demuth et al. 2018). As an example, Fig. 6.2, which comes 

from Fig. 5 in Morss et al. (2017) shows the temporal evolution of tweets by an individual user 

tweeting from Far Rockaway, New York during Hurricane Sandy. This graphic shows that even when 

only one user is examined, the type of information being discussed on social media can vary 

throughout the course of a disaster.  

Recent studies have also examined the use and limitations of Twitter in the context of 

Hurricane Harvey specifically, which is the target of this study as well. One study by Vera-Burgos and 

Griffin Padgett (2020) examined tweets sent by a high-profile user, the mayor of Houston, during the 

event, finding that his account was used for purposes such as to communicate with key partners and 

encourage unity among local residents. Residents of the impacted areas also used the social media 

platform for communication purposes, such as to assist with rescue efforts for people stranded by the  
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Figure 6.2: From Fig. 5 in Morss et al. (2017), which shows a graphical depiction of a tweet stream from a user tweeting 

from Far Rockaway, New York during Hurricane Sandy. The bar plot on the bottom shows hourly tweets (both Sandy-

related and non-Sandy-related) over time. Sandy-related tweets over time are also shown as black dots along the top of the 

plot. Colored dots correspond to Sandy-related tweets over time that correspond with a particular theme, which are listed 

on the left in corresponding colors. Some tweets of interest are included and color-coded by theme. Time of the New York 

City evacuation order and Sandy’s landfall are included as vertical dashed lines. 

 

rising flood waters (Mihunov et al. 2020). While Twitter did prove to be helpful with sharing 

information and coordinating aid, the site was not equally accessible by all western Gulf Coast 

residents during Harvey. Studies found that while the disaster was taking place, the website was used 

disproportionately more often by users who were not particularly geographically vulnerable (Zou et al. 

2019) and were of higher socioeconomic status (Mihunov et al. 2020). This work alludes to the 

broader issue of the “digital divide” among individuals who are more socially, economically, and 

geographically vulnerable, and highlights the benefits of specifically targeting such users in disaster 

studies involving Twitter data (Anderson et al. 2016; Demuth et al. 2018) who would otherwise be 

lost within the large datasets. 
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Other methods have employed models to separate the event into various stages or periods, 

which can assist with studying themes over time among tweets authored by many users at once. One of 

these models, known as the Fink crisis model (Fink 1986), has been applied in several disaster studies 

utilizing Twitter data, including ones focused on LTCs (Spence et al. 2015; Xu et al. 2019). In short, 

the model breaks crises into four stages: prodromal, acute, chronic, and resolution (Fink 1986). The 

prodromal stage represents the period before the crisis. It is followed by the acute stage, which is the 

crisis itself, beginning with a “triggering” event. The chronic stage comes after, and it encapsulates the 

period when the peak of the crisis has passed, though the crisis still continues as the aftermath must be 

dealt with. The final stage, resolution, is marked by the end of the crisis. Applying the Frink crisis 

model to studies of tweets during LTCs shows that preparatory actions (Xu et al. 2019) and 

information related to the status of the meteorological phenomenon itself (Spence et al. 2015) tend to 

be present in the earlier stages of LTC events. Meanwhile, dialogue surrounding impacts and damage 

become more popular topics in the middle of the event (Xu et al. 2019) followed by recovery and relief 

information, affectivity, and political debate in the later stages of the event (Spence et al. 2015; Xu et 

al. 2019).  

A few studies that have analyzed tweets from Twitter have noted that some people do indeed 

refer to past LTC events while they are being impacted by another LTC (e.g., Anderson et al. 2016; 

Knox et al. 2016; Xu et al. 2019). However, these conversations have not been studied in-depth, and it 

is hypothesized that there is rich information about experience that can be extrapolated from tweets 

that reference past events. In this study, the Fink crisis model is used to temporally analyze the tweets 

as other LTC-related studies have done before (e.g., Spence et al. 2015; Xu et al. 2019), but it is used to 
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specifically examine experience in real-time as it emerges across different stages of a hazard (i.e., 

Harvey). Then, experience is assessed in more specific ways, first in how it emerges in individual past 

events, and then how it evolves among the individual users themselves. Therefore, this analysis 

provides a new contributions to the existing literature in three ways: 1) by investigating past events as a 

proxy for experience, 2) by exploring past experience as it unfolds in real-time rather than as it is 

recalled post-disaster, and 3) by considering the individual’s purpose for referencing a past event 

during a real-time event. 

The remainder of Part II of this thesis proceeds as follows. Chapter 7 includes a meteorological 

overview of Hurricane Harvey as well as the methods for Twitter user selection and analysis and the 

research questions of this study. Chapter 8 presents the results and discussion. Chapter 9 offers a 

summary of Part II, limitations of this analysis, and avenues for future work. 
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CHAPTER 7: EVENT OVERVIEW AND METHODS 

 

 

 

7.1 Site: Hurricane Harvey  

Hurricane Harvey began as a disturbance in the waters off the west coast of Africa on 12 

August 2017 as a broad area of convection (Blake and Zelinsky 2017). The system tracked westward 

and eventually organized into a named tropical storm by 1800 UTC on 17 August a few hundred 

kilometers east of the Lesser Antilles. National Hurricane Center (NHC) track data (Landsea and 

Franklin 2013) shows that Harvey made landfall in Barbados, then St. Vincent as a tropical storm on 

18 August, before weakening in a tropical wave about one day later. The remnants of Harvey 

continued westward across the Caribbean and through the Yucatan Peninsula before entering the Bay 

of Campeche around 1200 UTC 22 August. The tropical wave reformed into a tropical storm by 1800 

UTC 23 August, then intensified into a hurricane 24 hours later (Fig. 7.1). Harvey drifted northward, 

then northwestward as it underwent rapid intensification, becoming a 105 knot Category 3 hurricane 

by 1800 UTC 25 August. The TC continued intensifying, becoming a Category 4 hurricane before it 

made landfall near Rockport, Texas on San José Island around 0300 UTC 26 August, then the Texas 

mainland three hours later. 

 Harvey made landfall between two upper-level troughs to its west and east, as well as south of a 

shortwave ridge to its north (Fig. 7.2a). This pattern set up very weak flow in the upper levels over the 

southeast Texas region, and while the trough-ridge pattern remained progressive, the stronger flow 

remained north of southeast Texas, which supported a prolonged period of weak winds aloft over the 

region (Fig. 7.2b). Weak steering currents are typical in LTCs that produce particularly heavy rainfall  
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Figure 7.1: Hurricane Harvey track from the time at which it became a renamed tropical storm to its dissipation using 

National Hurricane Center HURDAT2 best track data (1800 UTC 23 August to 1200 UTC 2 September) (Landsea and 

Franklin 2013) and Weather Prediction Center surface analysis data (1200 UTC 2 September to 0000 UTC 4 September). 

Annotated dates are shown at 0000 UTC for each day. Additional points along the track are generally shown every six 

hours, with additional points being included if there was a change in intensity reported during a different hour.   

 

because they allow deep, tropical moisture to remain over a given area for an extended period of time. 

Thus, this feature contributed to Harvey’s excessive rainfall, but in addition, forcing for ascent 

associated with a baroclinic zone (i.e., a stationary front) was co-located with the tropical moisture 

(Fig. 7.3), providing a lifting mechanism to support heavy rainfall that is not often found in even the 

top rain producing TCs (Galarneau and Zeng 2020). This feature is clear in the precipitable water 

fields, which show little change in moisture between the time just before Harvey made landfall (Fig. 

7.2c) and nearly 48 hours after being inland (Fig. 7.2d). 
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Figure 7.2: 13-km Rapid Refresh (RAP) analysis showing 250 hPa heights and 250 hPa winds (30+kt shaded) on 26 

August 2017 at 0000 UTC (a) and 28 August 2017 at 0000 UTC (b) as well as 700 hPa heights, 700 hPa winds, and 

column-integrated precipitable water on 26 August 2017 at 0000 UTC (c) and 28 August 2017 at 0000 UTC (d). 

 

 
Figure 7.3: Weather Prediction Center surface analysis showing the location of Harvey and the stationary front at 1800 

UTC 27 August (a) and 1800 UTC 28 August (b). 

 

Slow storm motion, rich and prolonged moisture availability, and localized forcing all 

contributed to Harvey’s historic rainfall, making many other flood-producing southeast Texas rainfall 
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events appear insignificant in comparison (Fig. 7.4). Rainfall totals in excess of 500 mm occurred over 

a broad area and led to widespread flooding across southeast Texas and southern Louisiana (Fig. 7.5b). 

Maximum storm total precipitation in excess of 1500 mm set numerous all-time records, including 

one for wettest recorded TC to impact the CONUS. In addition to the excessive rainfall, Harvey’s 

category 4 winds led to extensive damage in the Corpus Christi area, and it also spawned 52 confirmed 

tornadoes from Texas to Tennessee. Harvey ultimately left over 30,000 people displaced from their 

residences, left 89 dead, and cost an estimated $133.8 billion USD in damages (NOAA National 

Centers for Environmental Information 2021b). 

 
Figure 7.4: Accumulated rainfall during Hurricane Harvey, using an average of hourly readings from 4 Harris County 

Flood Warning System rain gauge stations located near the William P. Hobby airport in Houston. Also shown are various 

TC and non-TC flooding events that have impacted the Houston area, as well as their storm total rainfall accumulations 

according to the same 4 gauges. Note that these are not the event-maximum rainfall totals. 
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Figure 7.5: Rainfall totals (inches) over southeast Texas for Tropical Storm Allison (2001) (a) and Hurricane Harvey 

(2017) (b). Image from National Hurricane Center Tropical Cyclone Report on Hurricane Harvey.  

 

7.2 Data Collection Methods 

In order to use past events as a proxy for experience during Hurricane Harvey, several rounds 

of both automated and manual data collection and classification were required to produce a relevant, 

manageable database of “past event tweets”. As will be described in more detail in the methods below, 

the users that were ultimately collected share the following characteristics: 

1) Located in or evacuated from southeast Texas or southern Louisiana, where Harvey made 

landfall 

2) Members of the general public, who were seeking information and advice about the storm 

3) Awareness of and experience with tornadoes and flooding associated with Harvey  

4) Knowledge of past meteorological events involving TCs and/or their hazards 

Those methods, in addition to the methods used to analyze the data, are described in the 

following subsections. A summary of the methodological steps described in the next four sections can 

be found in Fig. 7.6. 
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Figure 7.6: Summary of steps for selecting users and tweets (left) and line plot showing the number of tweets 

corresponding to each step (right). Interpolated data where the number of tweets was not determined is shown as a dashed 

line. N_tweets and N_users refer to the number of tweets and number of users corresponding to each step, respectively, 

where data is available.  

 

7.2.1 Sampling Strategies 

7.2.1.1 People Tweeting about Tornados and Flash Floods (TORFFs)  

In order to connect this work to the broad theme of tornadoes and flash flooding as 

overlapping hazards, the initial data collection aimed to identify users who had experienced both of 

these phenomena. In an effort to achieve this goal, a Twitter API was used by a team of previous 

researchers to identify tweets made between 0000 UTC 22 August to 0000 UTC 3 September 2017 

that featured at least one tornado-related word and at least one flood-related (from rain or from surge) 

word (Table 7.1). The time frame begins a couple days before Harvey was re-upgraded to tropical 
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storm status (Fig. 7.1) and ends with its dissipation into a remnant low pressure system over the Ohio 

River Valley. These tweets will be referred to hereafter as tornado and flash flood, or “TORFF”, 

tweets. This terminology offers an expansion on the meteorologically defined “TORFF events” 

described by Nielsen et al. (2015). In their paper, the term a “TORFF event” encompasses both a 

“TORFF warning” (co-located tornado warning and flash flood warning that occur within 30 minutes 

of each other) and a “verified TORFF” (a recorded tornado path and flash flood local storm report 

that occur within 50 kilometers and 3 hours of each other) (Nielsen et al. 2015). A total of 6,128 

TORFF tweets were identified using the aforementioned search criteria across the 12-day collection 

timeframe (Fig. 7.6, Step 1). Given that retweets (i.e., the sharing of an original tweet created by 

someone else) do not capture a user’s original content, these tweets were removed by the researcher 

team, leaving a total of 2,111 original, unique TORFF tweets. 

Table 7.1: Search criteria used to identify TORFF tweets between 0000 UTC 22 August and 0000 UTC 3 September 

2017.  

 

Hazard Type Key Words 

Tornado tornado 

#tornado 

\funnel cloud\ 

funnelcloud 

Flood flood 

\flash flood\ 

flashflood 

\storm surge\ 

stormsurge 

 

7.2.1.2 Manual Classification of Public Users  

Previous disaster-oriented research has demonstrated the value of distinguishing between 

different types of users on social media. For instance, Takahashi et al. (2015) showed that celebrities, 
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government officials, the media, and laypeople used Twitter for different purposes before, during, and 

after Typhoon Haiyan impacted the Philippines. For this study, profiles of users who created each of 

the TORFF tweets were scanned and categorized by a previous group of researchers into 3 different 

types of users: public, authoritative, and bots/unavailable. Public users represent profiles that do not 

demonstrate professional or in-depth knowledge of meteorology or weather forecasting, nor do they 

present themselves as a member of the media or a government authority. Typically, their accounts 

were not dedicated to sharing Harvey-related weather information, but rather focused on their own 

thoughts and experiences as they evolved during the event, including seeking information. This 

contrasts with authoritative users, which include professional meteorologists (broadcast, public, and 

private), storm chasers, weather enthusiasts, news outlets, journalists, and government agencies. These 

accounts focus primarily on disseminating Harvey-related information to other Twitter users 

throughout the event, rather than amplifying their own personal experiences. The third category of 

users includes accounts that had been deleted, suspended, or unavailable (i.e., had “gone private” or 

made their tweets “protected”), as well as accounts that appeared to be “bots”. Bots are classified here 

as accounts that were primarily sharing links, often to news articles, with no apparent personal 

commentary or varied syntax, and they typically tweet automatically. 337 users that had issued 

TORFF tweets were classified as public users, and additional analysis stemmed from this subset of 

users. 

7.2.1.3 API Query of Contextual Tweet Streams 

The goal of this step was an attempt to develop a richer picture of the content that the 337 

public users shared on Twitter throughout the lifecycle of Hurricane Harvey. To do so, in-depth 
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summaries or “narratives” were composed for each user along with a team of three other researchers by 

collecting and analyzing all tweets that were sent by the users over the 12-day period (Bica et al. 2021; 

Palen and Anderson 2016). These “contextual tweet streams” (Bica et al. 2021; Palen and Anderson 

2016), were then organized into a spreadsheet by a previous group of researchers for a total of 208,725 

tweets during the 12-day period (Fig. 7.6, Step 4). Again, all retweets were excluded since they do not 

provide original content by the users. During additional refinement of these categories, authoritative 

accounts, bots, and unavailable users were again removed. At the time that the remainder of the 

database assembly was complete (i.e., January 2021), there were 289 public users who posted 49,950 

total original tweets between 0000 UTC 22 August and 0000 UTC 3 September 2017 (Fig. 7.6, Step 

6). 

7.2.2 Analysis Strategies  

7.2.2.1 Identifying Past Events 

The remaining methods attempt to capture mentions of past events related to LTC events and 

their associated hazards among the public users described above. The database of the 289 remaining 

users was mined using a variety of 66 search terms (Table 7.2). The first step in this process involved 

searching the database for mentions of any retired TCs that occurred during any Atlantic hurricane 

season between 2000-20177. This range of dates was selected in order to capture references to all 

Atlantic TCs in the 21st century that were damaging enough to be deemed worthy of retirement, with 

the idea being that such events would be most salient in the minds of the majority of users given their  

 

 
7 Only retired Atlantic TCs that occurred before Harvey in 2017 were included in the search. 
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Table 7.2: Alphabetized search terms for querying the Twitter database for mentions of specific and non-specific past 

hurricane, tornado, and flooding events. 

 

 Search Terms 
 

“alica” “hugo” “lili” 

“alicia” “humberto” “lilly” 

“alisha” “hurricaneike” “lily” 

“alison” “hurricaneotto” “matthew” 

“allison” “hurricanes” “memorial” 

“andrew” “ ike” “michele” 

“been through” “igor” “michelle” 

“bill” “ingrid” “noel” 

“carla” “irene” “ondoy” 

“catrina” “iris” “opal” 

“charley” “isabel” “ otto” 

“charly” “isidore” “otto ” 

“cindy” “ivan” “rita ” 

“dean” “jeanne” “paloma” 

“dennis” “joaquin” “sandi” 

“erika” “juan” “sandy” 

“fabian” “kartina” “ stan ” 

“felix” “katarina” “tax day” 

“frances” “katirna” “taxday” 

“gone through” “katrin ” “tomas” 

“gustauv” “katrina” “wilma” 

“gustav” “keith” “yolanda” 

 

significant impacts. Furthermore, the Texas and Louisiana coasts (i.e., the region primarily impacted 

by Harvey), saw landfalls from numerous retired systems during the earlier half of this period (Allison 

(2001), Isidore (2002), Lili (2002), Ivan (2004), Katrina (2005), Rita (2005), Gustav (2008), and Ike 

(2008) (NOAA National Hurricane Center; NOAA National Ocean Service 2021). The choice to 

focus only on 21st century events was made because prior to Allison in 2001, Louisiana had not seen a 

retired LTC since Andrew (1992), and Texas had not seen a landfall from a retired TC since 

Hurricane Alicia (1983), marking a significant amount of time over which the region impacted by 

Harvey did not see a LTC worthy of retirement. Further support for this decision comes from the 

population of Twitter users, who tend to be young relative to overall population demographics (e.g., 
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Sloan et al. 2015; Wojcik and Hughes 2019). In the United States specifically, 73% of Twitter adult 

users were between 18-49, whereas that same age group only makes up approximately 54% of the adult 

population (Wojcik and Hughes 2019). Thus, it would be reasonable to anticipate that the sample of 

users here would also be younger and therefore less likely to recall memorable LTCs that took place 

several decades ago. However, inductive analysis of the tweets revealed references to other systems, 

including non-retired TCs and TCs that occurred before the year 2000. Thus, when a new TC that 

had not been previously searched for was found, the entire database was re-queried for that system. For 

TCs with more complicated spellings, variations in spelling were used to capture typos and 

misspellings (e.g., Allison vs. Alison), a step that has shown to be valuable in previous hurricane 

research involving Twitter data (Knox et al. 2016). 

Outside of specific named TC events, other recent, non-TC-related flood events that impacted 

the southeast Texas region were identified upon inductive analysis of the database. These events 

included the Memorial Day floods (occurring both in 2015 and 2016), as well as the Tax Day flooding 

event (2016). Given that inland flooding due to heavy rain was one of the most devastating hazards 

associated with Harvey, the database was queried for mentions of these systems as well.  

In addition to these specific events, a few additional search terms were included upon 

inductive analysis in order to expand the number of tweets included in the analysis. For instance, the 

database was mined for phrases such as “gone through [a non-specific weather-related event]” and 

“been through [a non-specific weather-related event]”. The intent behind including these search terms 

was to identify tweets that implied that the user had experienced a non-specific (or “unnamed”) past 

weather event. The overarching term “hurricanes” was also searched for in an effort to find users that 
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mentioned experience with non-specific past TC events. Lastly, inductive analysis of the user 

contextual streams revealed a few more tweets referencing past TCs and/or their accompanying 

hazards8, so those tweets were included as well.  

When combined, these initial search criteria yielded a list of 274 tweets from 82 active (i.e., not 

deleted, suspended, or private) users as of January 2021 (Fig. 7.6, Step 7). Tweets identified through 

the various searches described above will hereafter be referred to as “past event tweets”. 

7.2.2.2 Refining Location and Identifying Final Group of Users 

Given that this study seeks to understand the role of past experiences as users experience in 

real-time, it is crucial that the users that are being analyzed are, in fact, experiencing the event. In order 

to do this, a definition for what constitutes as “experience” must be provided for the study. As was 

stated in the literature review, one way that experience (specifically, direct experience) is defined in 

LTC events is that the person being studied must have been located in the area being affected by the 

LTC (e.g., Trumbo et al. 2011; Goldberg et al. 2020). When experience is defined in this way, it 

generally implies that the person is experiencing direct impacts from the event to themselves and/or 

their property because they are local to where it is occurring. Refining the dataset to focus on users 

who are tweeting from the location where the disaster is unfolding rather than from afar is a common 

step that is taken in disaster research involving Twitter data (e.g., Vieweg et al. 2010; Ashktorab et al. 

2014; Takahashi et al. 2015; Knox et al. 2016; Anderson et al. 2016; Demuth et al. 2018). 

 
8 This method was applicable for only two users.  
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In order to identify the user locations, the locations that were “affected by Harvey” need to be 

defined. The focus area extends as far west as Austin, Texas, as far south as Corpus Christi, Texas, as 

far east as New Orleans, Louisiana, and as far north as a line running between College Station, Texas 

and Alexandria, Louisiana (Fig. 7.7). In short, the domain includes the area where the hurricane made 

its three contiguous United States (CONUS) landfalls. Although there were areas impacted by Harvey 

and its multiple hazards outside of this area, including by the remnants of system (e.g., Mississippi, 

Tennessee, Kentucky), these locations were excluded, as the impacts to those areas could be 

characterized as being less severe (in terms of number of warnings, rainfall accumulation, and ambient 

wind speeds, for instance) and on a much shorter time scale due to the system’s acceleration after it 

made its final landfall (Fig. 7.1). 

 
Figure 7.7: As in Fig. 7.1, but zoomed in to southeast Texas, southern Louisiana, and southern Mississippi. Shaded light 

blue area shows the approximate domain where Twitter users analyzed for this study must be located. 

 

For the final analysis, the user must have either 1) been located in (either permanently or 

temporarily) the area of study or 2) had recently evacuated but was a permanent resident of the study 
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area. Although Twitter allows its users to list a location in their biography, it is impossible to 

determine whether a person’s listed location is accurate or current. Further, the database did not 

include any additional geolocation information, meaning an alternative approach needed to be taken 

to determine user locations.  

To determine location, the detailed narratives that were composed for each user from the 

contextual streams were analyzed for contextual evidence that implied a location, with locations listed 

on profiles only being used to add confidence to the location assessment. Examples of location-related 

contextual evidence include self-identifying location in a tweet, sharing a photo that reveals a current 

location (e.g., a radar image), reporting a direct encounter with Harvey’s impacts (e.g., photo of 

flooding that the user takes themselves), or describing preparatory actions ahead of the LTC. In most 

cases, multiple forms of contextual evidence could be identified among users, and the tweets that 

implied a location typically matched the self-reported biographical locations.  

As of June 2021, 39 of the 82 public users were identified as being located in southeast Texas or 

southern Louisiana (Fig 7.6, Step 9). It is this group of users and their past event tweets (158 of them) 

that are the focus of the analysis. 

7.2.2.3 Analyzing the Tweets 

To review, the final set of users that was collected using the methods above share the following 

characteristics: 

1) Located in or evacuated from southeast Texas or southern Louisiana, where Harvey made 

landfall 

2) Members of the general public, who were seeking information and advice about the storm 
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3) Awareness of and experience with tornadoes and flooding associated with Harvey  

4) Knowledge of past meteorological events involving TCs and/or their hazards 

For all parts of the analysis, each of the past event tweets shared by the 39 users in the southeast 

Texas and southern Louisiana regions were examined for context and purpose. Every tweet was 

studied in isolation unless it was part of a thread or conversation with another user, in which ambient 

context was then taken into account. Common themes were identified among the past event tweets. 

Analyses are conducted on three different “scales”, beginning with the broadest/most generalized, 

which is a temporal analysis that is organized by stages in a crisis model. The second analysis is more 

specific, focusing on themes that are attached to individual LTCs. The third analysis, which 

investigates the personal experiences among individual users, is the most personalized and nuanced. 

For the first portion of the analysis, and in order to organize the past event tweets over time, 

the Fink crisis model (Fink 1986) is used. The stages of the model and the time periods they 

correspond to for this analysis on Harvey are listed in Table 7.3. In this study, the prodromal stage is 

defined as the start of the tweet collection period (0000 UTC 22 August) through 0000 UTC 26 

August, which is when conditions began to rapidly deteriorate in many areas of southeast Texas. The 

acute stage begins immediately after, with the “triggering event” being this onset of TC conditions for 

southeast Texas. The stage ends at 0800 UTC 30 August, at which point Harvey had largely weakened 

and was making its final landfall in Louisiana. This marks the beginning of the chronic stage, which 

then continues through the end of the tweet collection period (0000 UTC 3 September). The final 

stage, resolution, was not included in this study because the period over which the data was collected 

does not include the point at which the crisis was fully resolved. Therefore, the tweets are only sorted 
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among the prodromal, acute, and chronic stages for the analysis. Using this model as a framework, 

emerging thematic and temporal trends in the past event tweets among the different stages of Harvey 

are identified.   

Table 7.3: Four stages of crisis defined by Fink 1986, as well the dates and times defined for each stage over the 12-day 

period of study for Harvey. 

 

Stage Description Time Period 

Prodromal Before the crisis 0000 UTC 22 Aug - 0000 UTC 26 Aug 

Acute Crisis itself, beginning with a triggering event 0001 UTC 26 Aug - 0800 UTC 30 Aug 

Chronic Crisis ongoing/ “clean-up” stage 0801 UTC 30 Aug - 0000 UTC 3 Sep 

Resolution End of crisis N/A 

 

For the second part of this analysis, past event tweets pertaining to three of the most 

frequently-mentioned events (all of which are LTCs) are assessed for themes individually. Commonly 

held themes or “identities” that many of the users tie to each storm are discussed. The relationship of 

these identities related to events unfolding during Harvey is also explained. 

For the third part of the analysis, the past event tweets are examined to see the ways in which 

past experiences emerge among them. In order to identify the nature of these experiences, direct versus 

indirect experiences must be explicitly defined. For this study, a qualifying direct experience requires 

that the user’s past event tweet contains evidence to support that they were a permanent resident of or 

temporary visitor to the area the referenced event influenced at the time it occurred, temporarily fled 

(i.e., evacuated) the affected location just before the event or visited the site of the disaster after it 
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happened. Direct experiences can be further classified as being tangible or intangible. Tangible direct 

experiences are defined here as being able to be touched, measured, or seen by others, whereas 

intangible direct experiences are “invisible” and not easily measured.  Indirect experiences, which can 

only be intangible, are defined as tweets that reference a past event and include an explicit statement 

that the experience they describe was mediated through someone or something other than themselves, 

such as the media, friends, or family, and/or there is obvious evidence that the person was not at the 

site of the past event. In any case, intangible experiences are frequently equated to expressions of 

emotion. 

 Though their information is public at the time of these analyses, the identity of the Twitter 

users is protected by anonymizing all usernames. Additionally, the wording of the tweets presented 

herein is altered slightly (without compromising the original meaning) to further protect user identity 

(e.g., Demuth et al. 2018). These steps follow guidelines for ethical Twitter research as suggested by 

Fiesler and Proferes (2018). Note that some tweets contain spelling and grammar errors that are 

reflective of the non-altered tweets, and there are a few instances of strong language. 
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CHAPTER 8: RESULTS AND DISCUSSION 

 

 

 

 In this section, the results corresponding to the two research questions presented at the start of 

Part II are shared.  After offering some general statistics for the users and their tweets in section 8.1, the 

temporal trends of the past event tweets are discussed in section 8.2. Section 8.3 highlights the unique 

themes that accompanied three frequently mentioned LTCs in the past event tweets. Section 8.4 

describes the ways in which individual experiences emerged in the past event tweets. Section 8.5 

provides discussion for sections 8.1-8.4.  

8.1 Statistics on Users and Their Tweets 

The 39 users of interest collectively sent a total of 10,697 original tweets (i.e., non-retweets) 

over the period of study (Fig. 8.1, Step 10). The range in number of tweets per user was large, with the 

selected users tweeting anywhere between 28 and 1049 times over the 12-day period. The mean 

number of tweets per user during this time was approximately 274. Additional statistics can be found 

in Fig. 8.1. Despite a broad domain being set over southeast Texas and southern Louisiana, the 

majority of users resided in Houston and its surrounding suburbs at the time of Harvey, with only a 

handful coming from other areas of Texas or Louisiana. While the fact that the Houston metropolitan 

area is the fifth largest in the United States by population (United States Census Bureau 2019) could 

help explain the disproportionalities within the sample, there could be other explanations for this 

characteristic. For instance, the lack of spread in user locations could be a result of residents in other 

parts of Texas (such as Corpus Christi), which were located closer the eye of Harvey as it made landfall 

and thus experienced stronger winds and more widespread power outages early in the event than areas 
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such as Houston, which were further from the center of the storm when it was at its peak intensity. 

This factor could have hindered communication for residents who experienced impacts in the early 

stages of Harvey’s landfall, which would have likely prevented them from ever sending TORFF tweets 

(i.e., the first query that was used to identify the group of users that was included in the analysis) 

during the height of the impacts, effectively eliminating their likelihood of ever being included in the 

database. 

 
Figure 8.1: Total number of tweets shared by each of the 39 southeast Texas/southern Louisiana users between 0000 UTC 

22 August and 0000 UTC 3 September 2017.  

 

34 of the 39 users identified explicitly referenced at least one specific past event in a past event 

tweet, while the remaining 5 users exclusively alluded to non-specific experience with weather-related 

events. There were 13 specific events referenced, and these events were referenced a total of 186 times, 

indicating that several of the tweets collected included more than one event in them (Table 8.1).  

 There was a wide distribution in the number of times a given hurricane or flooding event was 

mentioned by the users. By far, the most frequently referenced event was Hurricane Katrina (2005), 

mentioned at least twice as frequently as all other storms (Table 8.1). Hurricane Ike (2008) was the 
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second most mentioned storm (33 references) followed by Hurricane Rita (2005) and Tropical Storm 

Allison (2001) (referenced 30 times each). All other events were referenced no more than 6 times.  

Table 8.1: Specific events mentioned in tweets during the period of study by Twitter users identified as being located in the 

southeast Texas and southern Louisiana region. 

 

Event Number of Mentions 

Carla (1961) 1 

Alicia (1983) 3 

Andrew (1992) 3 

Allison (2001) 30 

Katrina (2005) 67 

Rita (2005) 30 

Wilma (2005) 1 

Ike (2008) 33 

Gustav (2008) 2 

Sandy (2012) 6 

Memorial Day Floods (2015; 2016) 5 

Bill (2015) 2 

Tax Day Flood (2016) 3 

ALL EVENTS 186 

 

8.2 Temporal Analysis of Past Event Tweets Using the Fink Crisis Model 

  

 In this section, the past event tweets are investigated in a relatively broad sense, as they are 

discussed thematically during different stages of the disaster (according to the Fink crisis model). To 

summarize these findings, these results show that tweets sent during the prodromal stage tended to 

focus on sharing direct experiences and drawing comparisons between Harvey’s predicted intensity 

and past events that they are familiar with. The acute stage, which was the most active period of 

tweeting, had several embedded crises within it (both meteorological and sociopolitical), each of which 

the users collectively associated with a past, analogous event. Further, a shift from meteorological 
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comparisons to impact-based comparisons was evident among the past event tweets that were sent 

during the acute stage. This shift to impact-based comparisons continued into the chronic stage,  

which is when past events began to be discussed in more of a reflective tone.  

8.2.1 Broad Temporal Trends in Tweeting and a Brief Connection to TORFFs 

 When all tweets sent by the users are examined temporally by the three Fink crisis model stages 

that are being evaluated (Fig. 8.2), the hourly rate of tweeting was generally highest during the acute 

stage compared to the prodromal or chronic stages. The mean rate of tweeting was 53.47 tweets h-1 

during the acute period, which was more than twice that of the prodromal (27.42 tweets h-1) and 

chronic (28.45 tweets h-1) stages. As would be anticipated, there is a clear diurnal trend in the tweets, 

with most activity occurring during the daytime hours. There is one exception to this however, which 

is the night of 26-27 August. During that period, there were many tornado warnings, flash flood  

 
Figure 8.2: Time series of tweets per hour by the 39 users (solid navy line) and accumulated rainfall (dashed green line, as in 

Fig. 7.4). Also shown are the times of Harvey’s 3 landfalls (vertical dashed grey line) and overnight hours (defined as 12am-

6am CDT, grey shading). The time periods representing the first three stages of the Fink crisis model (as defined in Table 

7.3) are labeled and shaded at the bottom of the plot.  
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warnings, and TORFF warning overlaps that occurred across the area of study (Fig. 8.3), which 

illustrates the severity of the storm during this particular time period. 

When only the 158 past event tweets were examined, the acute stage was again the most active 

period of tweeting among the three stages of the Fink crisis model that were used. Nearly two-thirds of 

them (101 tweets) were sent during that period compared to the prodromal (29 tweets) and chronic 

(28 tweets) stages.  

 

 
Figure 8.3: As in Fig. 8.2, but zoomed in to dates between 25 Aug 0000 UTC and 31 Aug 1200 UTC. Also shown are 

cumulative Harvey-related tornado warnings (red), flash flood warnings (light green), and tornado and flash flood 

(TORFF) overlaps (purple) across the Corpus Christi, Austin/San Antonio, Houston, Lake Charles, Shreveport, and New 

Orleans National Weather Service county warning areas. Numbers annotated by each of the lines represents the total 

number of each warning type that occurred over the period. Tornado and flash flood warning data are courtesy of Iowa 

State University Iowa Environmental Mesonet NWS warnings archive, and TORFF overlapping warning data are courtesy 

of Erik Nielsen, and TORFF warning overlaps follow the definition provided in Nielsen et al. (2015). 

 

8.2.2 Prodromal Stage: Recalling Personal Experiences and Assessing Uncertainty 

 Beginning with the 29 tweets associated with the prodromal stage, the past event tweets 

mentioned at this stage of Harvey were largely connected to individualized past experiences. That is, as 

details on Harvey’s forecast began to emerge, users thought back on the experiences they had during 



 134 

past events. This theme will be discussed in more detail in section in section 8.4, but to include a few 

examples here: 

@user7, 25 Aug 0111 UTC: @user Oh I see. I’m in Barker/Cypress. Oh my! So you will have 
to monitor Spring Creek! When Ike came, roofs were damaged but no flooding. 
 
@user36, 25 Aug 0341 UTC: @user Thank you. My neighborhood didn’t flood in Ike, but rain 
doesn’t falls the same way twice.  

 

Others draw or seek meteorological comparisons between the forecast for Harvey and forecasts for 

past events that they are able to recall: 

@user29, 24 Aug 2120 UTC: This won’t be fun… Harvey looks like Allison on steroids 
 
@user3, 25 Aug 0320 UTC: Hurricane Ike hit at 1 AM in 2008. Hutticane Harvey is hitting 
at 1 AM this is déjà vu!!! 
 
@user15, 25 Aug 1837 UTC: @meteorologists in comparison, how much rain did we have with 
Ike and Allison? 

 

8.2.3 Acute Stage: Comparing Past Impacts and Political Responses 

As was seen in the prodromal stage, direct experience tweets were also shared during the acute 

stage, though since there were more than three times as many past event tweets shared during this stage 

compared to the two other stages, that theme is much less prevalent during this stage.  

An interesting feature in the acute stage of the tweet collection period is that there appears to 

be smaller temporal trends with regards to when specific storms are mentioned within various parts of 

that stage. To visualize this, cumulative sums of three of the most-mentioned events in the dataset 

(Tropical Storm Allison, Hurricane Rita, and Hurricane Katrina) during the tweet collection period 

are shown in Fig. 8.4.  

For Tropical Storm Allison specifically, there are sharp increases in the cumulative number of 

Allison-referenced tweets that were sent during the earlier part of the acute stage. According to Fig. 
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8.4, a sharp increase in Allison-related mentions begins soon after 0500 UTC on 27 August, which is 

midnight local time. A total of 9 tweets referencing Allison are sent over the 8-hour period between  

 
Figure 8.4: Cumulative references to 3 frequently-referenced tropical cyclones for the 39 users analyzed. Storm names are 

color-coded with their respective data, and the numbers next to each event represent the total number of mentions for each 

event over the 12-day period. The vertical dashed grey lines show the times of Harvey’s 3 contiguous United States 

landfalls, and the green dotted line shows accumulated rainfall gauge-averaged rainfall near the Houston airport, as 

described in Fig. 7.4. Fink crisis stages are shaded and labeled along the x-axis, as in Fig. 8.2. 

 

0500 UTC and 1300 UTC, which accounts for nearly one-third of all Allison-related tweets collected 

over the 12-day period. During this period, several users share that Harvey’s storm-total rainfall 

surpassed the maximum rainfall total associated with Allison—a fact which many of them heard on 

the news and is supported by the rapidly accumulating rainfall shown in Fig. 8.4. Although it was a 

Saturday night, timestamps show that users were awake during the overnight and early morning hours 

and were monitoring the situation: 

@user36, 27 Aug 0510 UTC: Harvey move your ass, this one mph shit is bullshit, I told him 
he shouldn’t listen to Allison. She was a bitch 
 
@user38, 27 Aug 0553 UTC: Trump’s 1st natural disaster is in US’s 4th largest city!! 
Under flood emergency. Worse than Allison... may beat Alisha! 
 
@user25, 27 Aug 0626 UTC: The news says Harvey has surpassed Allison’s rain. If you 
aren’t familiar, highways were underwater. #HurricaneHarvey 
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@user9, 27 Aug 0920 UTC: The news says the water levels are greater than they were during 

TS Allison 😳 #Harvey2017 

 

Similar tweets continue throughout the day as heavy rainfall continues, with users largely comparing 

Harvey to Allison, specifically in terms of rainfall: 

@user5, 27 Aug 1625 UTC: #Harvey record rain fall is unprecedented, I’ve never seen a 
#houston flood like this. The closest was #Allison 18 yrs ago... 
 
@user25, 27 Aug 1743 UTC: Another hospital evacuation. Houston metro had historic 
flooding with Allison. Seems like it’s happening again. #Houstonflood  

 

Much like Allison, there is a prevalent increase in the number of Rita references in the past 

event tweets during the acute stage, but the increase occurs later in the acute stage compared to 

Allison. Tweets related to Allison largely level off by 1800 UTC 27 August, which is approximately 

when tweets related to Rita begin to ramp up. Over the next eight hours, 10 tweets containing 

references to Rita are sent. In these tweets, users strongly defend the decisions made by officials not to 

evacuate Houston during this time period, including by using anecdotal evidence about their own 

evacuation decisions: 

@user36, 27 Aug 1954 UTC: Unless you sat on the interstate during Rita when 4 million 
people, tried to leave on 3 roads, stop shit talking  
 
@user5, 27 Aug 2059 UTC: I evacuated for Rita. Houston to Austin normally: 4 hrs max. 
Then: 26 hrs! Leaving would have been MORE dangerous! 
 
@user24, 27 Aug 2335 UTC: I have mixed feelings about Mayor Turner, but he’s right that 
an evacuation would have made #Harvey an even bigger disaster (see Rita). 

 

Another, smaller period of increased Rita-related tweet activity occurs around 0000 UTC 29 August, 

though this spike can be largely attributed to a single user sending multiple Rita-related evacuation 

tweets in a short time span.  

 As the Rita references wane, the latter part of the acute stage (beginning after around 0000 

UTC 29 August) consists of past event tweets containing mostly Katrina references. This seems to 
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partially because 29 August marked the 12-year anniversary of Katrina, which many users, particularly 

those with ties to New Orleans, are able to recall: 

@user16, 29 Aug 0212 UTC: It’s the eve of Katrina’s anniversary, and we have warnings for 

tornadoes and flash floods in New Orleans. God, bless the south😔🚧🌪🌊🛶  
 
@user33, 29 Aug 1554 UTC: Today is the 12 year anniversary of Hurricane #Katrina 
#TwitterNewsChat 
 
@user2, 29 Aug 1711 UTC: Trump just said "No one has ever seen something like this" on 
the anniversary of Katrina hitting new Orleans. 
 
@user18, 30 Aug 0146 UTC: 8:45 pm: why I am thankful. 12 years ago, Katrina was impacting 
my hometown of New Orleans. It... [link to facebook] 
 
@user35, 30 Aug 0229 UTC: Some perspective... Hurricane Katrina dropped 16" of rainfall 
on New Orleans 12 years ago today #HurricaneHarvey #houstonflood 

 

This latter acute stage also includes a few periods where one user rants about Joel Osteen not opening 

his megachurch for Harvey victims, something the user seems to believe also happened to Katrina 

victims (see section 8.3.2 for additional context). 

 By stepping back to examine the acute stage as a whole, there appears to be a shift where users 

begin to view Harvey more as a disaster, rather than a meteorological phenomenon. While in the 

earliest part of the stage, users drew comparisons between rainfall and wind between Harvey and past 

events, as the rainfall continued and the flooding worsened, comparisons became more impact-based 

and disaster-focused. This transition generally began when scenes of rescue and recovery began to 

emerge and get coverage in the media, soon after rainfall totals surpassed those from Tropical Storm 

Allison. By mid-afternoon on 27 August, residents had begun fleeing their homes: 

@user39, 27 Aug 1957 UTC: Looks just like Katrina , people trapped on highways and 
bridges, not knowing whats next? System overwhelmed  

 

As users watched the scenes of widespread flooding and rescue operations, discussion transitioned 

from being less focused on the rain and flooding (which were often mentioned win association with 

Allison) but instead focused on the impacts of it. Evidence of this includes the increased references to 
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the Rita evacuations, where users defend the decisions made by local officials. Focus also shifts to 

concern for the victims and evacuees, where outrage is sparked over them being called “refugees” (see 

section 8.3.2 for more details) and the controversial move by Joel Osteen to delay opening of his 

church as a shelter for them.  

8.2.4 Chronic Stage: Reflecting on Societal and Personal Trauma 

 By the chronic stage, meteorological comparisons related to Harvey and past events are non-

existent. However, the focus does remain on drawing impact-based comparisons between Harvey and 

past events, specifically Katrina: 

@user25, 30 Aug 2207 UTC: This. Is. Worse. Than. Katrina. Its impacting the entire coast 
of Texas and Louisiana too. 
 
@user39, 2 Sep 1254 UTC: @user Harvey will be more costly than Katrina. There was bad 
flooding even in places with modern drainage systems 
 
@user39, 2 Sep 1336 UTC: @user Those are just early estimates. [Damage costs] will be 
higher. Harvey damage area is MUCH larger than post-Katrina New Orleans 

 

Additionally, a couple of users appear to become reflective on past events as the focus shifts from 

disaster management towards disaster recovery after Harvey. One user acknowledges feeling fortunate 

that they did not experience worse impacts, while another uses a thread to reflect on their experience 

with post-Katrina disaster victims: 

@user31, 30 Aug 1452 UTC: - I really dodged a bullet with Hurricane Ike & Harvey. Now 
it's time to help friends recover they've lost so much including a life. 
 
@user6, 31 Aug 1416 UTC: When I was a sophomore at CU Boulder, a some students from LSU, 
who were displaced after Katrina, came to classes with us. 
 
@user6, 31 Aug 1419 UTC: I was nice to the LSU kids displaced after Katrina and I thought 
I understood them. Looking back, I didn't understand at all 
 
@user6, 31 Aug 1454 UTC: Harvey brings back so many memories of Katrina. 

 

8.3 Thematic Explication of Individual Events 

Themes that were specific to an individual past TC were found among three events: Tropical 

Storm Allison (2001), Hurricane Katrina (2005), and Hurricane Rita (2005). These findings show 
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that each of these storms were described as having their own “identity” in the past event tweets—that 

is, they were bound by a common topic of conversation. To summarize, Allison’s identity was tied to 

rainfall amounts, Katrina’s was frequently referenced in the context of sociopolitical issues, and Rita’s 

was discussed in tandem with evacuations.     

8.3.1 Tropical Storm Allison: Meteorological Comparisons 

 Among the five most-frequently mentioned events, Tropical Storm Allison (2001) is the most 

appropriate comparison to Harvey from a meteorological standpoint. Though much weaker than 

Harvey in terms of wind speed, the system lingered over the Gulf Coast region for several days, which 

allowed tropical moisture to remain stagnant and led to widespread, flood-producing rainfall (see Fig. 

7.5 for a comparison of Harvey and Allison rainfall). The Allison-related tweets by the users 

demonstrate familiarity with the event meteorologically, and Harvey seems to trigger some of these 

memories, prompting them to draw comparisons to Harvey. They recall the slow motion of the storm 

and that Downtown Houston saw significant flooding, both of which also occur with Harvey: 

@user36, 27 Aug 0510 UTC: Harvey move your ass, this one mph shit is bullshit, I told him 
he shouldn’t listen to Allison. She was a bitch 

 
@user25, 27 Aug 1743 UTC: Another hospital evacuation. Houston metro had historic 
flooding with Allison. Seems like it’s happening again. #Houstonflood  

 

Despite living in Houston for Allison, one user refers to Harvey’s widespread tornadoes and flooding 

as being an unprecedented experience for them: 

@user3, 27 Aug 0535 UTC: I was here in Allison & you're right this feels like a non-stop 
nightmare! I’ve never seen so many tornados & flooding! 

 

Several other users compare the two events and argue that Harvey is worse, though they are not 

explicit as to which aspect of the event they are referring to (e.g., flooding, damage, etc.): 

@user29, 24 Aug 2120 UTC: This won’t be fun… Harvey looks like Allison on steroids 
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@user38, 27 Aug 0545 UTC: Harvey AIN'T weakening in Houston. Might be worse than Allison 
and Alisha 

 
@user5, 27 Aug 1434 UTC: I’m from Houston can say it hasn’t been like this since 2001, 
Allison? It is way worse than the memorial day flood 

 

 Allison was also frequently compared to Harvey by media outlets, which was a unique theme 

found attached to that storm specifically. Users explicitly noted that the information they were passing 

along to their followers was from “the news”. Their tweets involved comparisons related to rainfall 

amounts, flooding, and estimated disaster-related costs: 

@user25, 27 Aug 0626 UTC: The news says Harvey has surpassed Allison’s rain. If you 
aren’t familiar, highways were underwater. #HurricaneHarvey 

 
@user9, 27 Aug 0920 UTC: The news says the water levels are greater than they were during 

TS Allison 😳 #Harvey2017 
 

@user33, 27 Aug 1538 UTC: @newsanchor just said this weather event is considered to be 
"worse than" Allison flooding. 

 
@user3, 27 Aug 2310 UTC: The news said Allison had $5 billion of damage but 
#HurricaneHarvey is going to exceed that by far!!!!! 

 

Regardless of whether the users were receiving explicit forecast information from the news or they 

were relying on their own memories, users almost always associated Allison with heavy rainfall or 

flooding when they tweeted about the event. 

8.3.2 Hurricane Katrina: Evoking Lessons Learned 

 Hurricane Katrina was an unprecedented storm, though less-so for its meteorological impacts, 

but rather for the failures that ensued during recovery efforts. There were sociopolitical issues that 

unfolded, from inappropriate news reporting, to delays in relief supplies, to neglect by political 

administrations. Katrina-related tweets tended to draw on these subjects while they were being shared 

during Harvey. For example, on several occasions, users expressed disappointment in the media when 

the word “refugees” was used to describe Harvey victims rather than “evacuees” or “residents”—a 

lesson that they believe should have been learned from Katrina:  
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@user2, 28 Aug 0013 UTC: They’re not refugees - same mistake was made with Katrina. 
Evacuees please. 

 
@user33, 28 Aug 1650 UTC: #HurricaneKatrina Lesson: Please, do not call our neighbors 
"Refugees." They’re residents and citizens of Houston, Rosenberg, Rockport ...  

 

Another user cautioned reporters to be more sensitive in the way they conduct their journalism in 

general, since many Katrina victims relocated to Texas after the disaster (e.g., Sastry and Gregory 2014; 

Jan and Martin 2017): 

@user38, 29 Aug 2026 UTC: @CNN & other news media: we have Katrina evacuees who relocated 
here. Please respect, many of them are going through HELL again 

 

 In addition to the controversy surrounding the media’s coverage of Harvey, local and national 

politics also prompted users to refer back to sociopolitical issues that occurred with Katrina. Some 

users recall the failures of the government and their abandonment of the residents who were impacted: 

@user39, 27 Aug 1924 UTC: Houston reminds me of Katrina right now.  A system overwhelmed 
and people having to help others and themselves #houstonflood 

 
@user39, 28 Aug 1140 UTC: @user Houston has mirrored Katrina without as many deaths and 
huge incompetence. The expenses are going to be staggering #HoustonStrong 

 
@user20, 31 Aug 0315 UTC: Neighbor saving neighbor. Katrina showed don't rely on the 
government to rescue you. Save yourself and save your neighbors 

 

Other users expressed concern specifically over Former President Donald Trump’s ability to handle 

Harvey recovery based on their opinions of his presidential track record:   

@user2, 23 Aug 2358 UTC: [Trump being president] makes me worried just as much as Harvey 
itself.  Katrina showed how officials at the local, state, and federal levels have to 
work together.  

 
@user38, 27 Aug 1459 UTC: Remember Houston opened the Astrodome for Katrina victims? Now 
who will open the doors for Houston? Not Trump! 

 
@user2, 27 Aug 1906 UTC: I have lived in New Orleans and housed Katrina evacuees. The 
lack of leadership by POTUS is astounding #HoustonFlood 

 

One user also tweeted frequently (over 15 times) about Joel Osteen, a pastor at a large Houston 

church, who while not a politician, sparked controversy when he did not initially open his building for 

Harvey evacuees (Dart 2017). The author of the tweets alleges that this was an action that he also did 

not take during Katrina, though that claim was not able to be validated. Given the frequency of the 



 142 

tweets, this issue appears to be very personal to the user, and/or they feel very passionate about the 

issue. For an example of one of these tweets: 

@user38, 29 Aug 2039 UTC: Osteen and his Megachurch had to be shamed to open. They NEVER 
opened for Katrina evacuees. They DONT deserve good PR! 

 

In essence, as additional issues other than weather-related damages began to arise in areas impacted by 

Harvey, such as slow-moving rescue operations or mistakes by local leaders, Katrina was evoked by the 

users as an analog to the events they were witnessing, since they collectively recall the event as having 

numerous sociopolitical issues that were ultimately more severe than the LTC itself.  

8.3.3 Hurricane Rita: Legitimizing Evacuation Decisions 

Hurricane Rita was a unique TC disaster in that the majority of impacts came during storm 

preparations rather than during or after the event. Specifically, massive mandatory evacuations left 

thousands stranded on interstates in gridlocked traffic. With residents fearful of the aftermath that 

Katrina brought, many more people evacuated than needed to, and combined with the lack of supplies 

and extreme heat, over 100 people died on the interstate (Baker 2018). For these reasons, Rita was 

largely recalled by users in conjunction with evacuations among the past event tweets. In fact, 

evacuations and Rita were arguably the most obvious tie between theme and storm with this analysis: 

19 of the 29 tweets that reference Rita also explicitly mention evacuations, and evacuations were rarely 

mentioned in association with other past storms. Several users explicitly state that they were in the Rita 

evacuations themselves and recall the dense traffic and deaths on the roadways: 

@user30, 27 Aug 2110 UTC: @newsanchor and @user In Rita we tried to evacuate. After 13 
hours we had only driven 43 miles. 

 
@user5, 27 Aug 2202 UTC: @bethreinhard In Rita I remember TRYING to evacuate, it was a 
disasters in it of itself, a 4 hr ride became 26 hrs!  

 
@user38, 29 Aug 0043 UTC: @user I agree. I was in the evacuation during Rita and 100 
people died in traffic incidents 
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Even if they did not explicitly state that they were in the evacuations themselves, most users in the 

sample seemed to be strongly against mandatory evacuations in the case of Harvey and supported their 

opinion by using Rita as an example. Others explicitly backed up the decisions of state and local 

lawmakers to not issue a mandatory evacuation in Houston by exemplifying the failures associated 

with Rita. Often, the users also assert that experience with Rita is a prerequisite to being able to hold a 

legitimate opinion on whether or not Houston should have been placed under mandatory evacuation:  

@user36, 27 Aug 1954 UTC: Unless you sat on the interstate during Rita when 4 million 
people, tried to leave on 3 roads, stop shit talking  

 
@user24, 27 Aug 2335 UTC: I have mixed feelings on Mayor Turner, but he is right that an 
evacuation (see Rita) would have made #Harvey disaster even bigger. 

 
@user11, 28 Aug 1335 UTC: Don't tell us shit about evacuations unless you know about 
#Rita. Keep #Houston outta your mouths ok? 

 
@user5, 29 Aug 0247 UTC: @user pls stop doggin @SylvesterTurner if you had lived in 
Houston and tried to leave during Rita, you'd know why!! 

 
@user5, 29 Aug 0500 UTC: y'all blamin @SylvesterTurner @GregAbbott_TX 4 not coordinating 
a evac. U obviously did not live in Houston during Rita!  

 

In other words, the users share their experiences to put themselves in a place of authority that not only 

allows them to have an opinion on the handling of Harvey evacuations, but also, in their minds, allows 

them to use experience to gatekeep opinions on the matter by restricting valid criticism to only those 

who had experienced the failed evacuations themselves. 

8.4 Individual Direct Experiences with Past Events 

The previous two sections have viewed experience in a broader sense. In this section, the finer 

details of experience among the users are further examined. These results show that within the past 

event tweets, users shared direct experiences, both tangible and intangible, that are personal and 

unique to them. Both types of direct experience appear to be equally prevalent among the data. 

Some examples of direct tangible experiences from the dataset include: 
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@user32, 24 Aug 2356 UTC: naw they said ike was supposed to hit bad and i was at the park 

in crestmont. 😂 
 
@user3, 25 Aug 0340 UTC: OMG 2 wks??? With hurricane Ike I was without power for 3 days 
in 100 degree heat & that was unbearable!!!! 
 
@user36, 25 Aug 0343 UTC: @user I lived in Baytown during Allison and the downstairs of 
my apartment building was flooded.  
 
@user36, 25 Aug 1301 UTC: @user I lived in Baytown during Allison and there was really 
bad flooding, luckily I lived in a second floor apartment, 
 
@user37, 25 Aug 1324 UTC: We're not going to be sitting ducks. I survived Ike and Rita 
doing that, and know my luck is going to run out. #HurricaneHarvey 
 
@user38, 25 Aug 2248 UTC: When Tropical Storm Allison stalled over Houston area as is 
expected with #Harvey, it took me 36 hours to get home! 
 

@user21, 26 Aug 0127 UTC: @user Stay safe. We're near Galleria hopefully shld be dry 🤞 B4 
Ike packed freezer w/water bottles. Kept food & water cold longer when power out  
 
@user5, 27 Aug 2058 UTC: @user yep. Evacuation would have actually put more ppl in 
danger. I evacuated for Rita, and a 4 hr drive turned into 26 hrs!!! 
 
@user24, 27 Aug 2342 UTC: Even with mandatory evacuation I would’ve stayed home where I 
survived Ike, Memorial Day flood, Tax Day flood. Take responsibilities seriously.  
 
@user2, 31 Aug 0530 UTC: True story: ironically one of my very first tweets was telling 
my 0 Twitter followers that I was evacuating for Ike. 

 

In the above tweets, each user makes it clear that they were in the location of the storm when it 

occurred and that they personally had a tangible experience. The specific tangible experiences that the 

users described as having happened directly to themselves mostly focus on impacts to their property, 

barriers to travel, or externally driven disruptions to their livelihood. Additionally, there are several 

users who note that during some of the past, significant events, they had decided not to evacuate—a 

choice that also constitutes a tangible direct experience given that it is something that is able to be seen 

by others. These past evacuation decisions are described by the users for two reasons. The is to allude 

to how their past decision to not evacuate during an event that they directly experienced informed 

their evacuation decision for Harvey. The second is to use their past decision to not evacuate as a way 

of helping them make sense of the current information they are receiving on the severity of Harvey.   

 Instances of direct, intangible weather-related experiences were also identified among the past 

event tweets. The experience is direct because the user states that they were physically present at the 
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location where the event occurred, and it is intangible because the effects being described cannot be 

seen, heard, etc.: 

@user28, 23 Aug 1516 UTC: I'm beginning to panic. I think I may have PTSD from the last 
big flood we had.  
 
@user36, 24 Aug 0207 UTC: Tropical Storm Allison was my first Houston storm experience 
and she was a bitch. 
 
@user25, 24 Aug 1615 UTC: After #HurricaneAndrew I went through there with my Dad. The 
dead animal smell was overwhelming. 
 
@user23, 24 Aug 1624 UTC: I've ridden through many hurricanes in my life, & have been 
lucky. Just minor damages & crossing my fingers for this 1, it worries me 
 
@user31, 25 Aug 0153 UTC: I lived in Galveston Island for 6yrs and was there in Katrina, 
Rita and Gustav. It was the scariest thing ever! 
 
@user26, 25 Aug 1633 UTC: So 4 those of u who don't know: my ptsd started w/ surviving a 
tornado as a child. They found us in a field and we lost everything we owned 
 
@user26, 25 Aug 1641 UTC: I've survived many storms, we were in Houston during Ike. I'm 
prepped - even tho my hyper vigilance tells me to do more more more 

 
@user4, 26 Aug 1330 UTC: In Florida I've been through Hurricanes, but I’ve never seen one 

so stationary and big! I wish it would just move! 🙃☔ #Harvery 
 

@user36, 26 Aug 1506 UTC: Seeing some of the damages out of Rockport and Port A, I feel 
for those people. After Ike I woke up crying and shit was a mess 
 
@user3, 27 Aug 0535 UTC: I was here in Allison & you're right this feels like a non-stop 
nightmare! I’ve never seen so many tornados & flooding! 
 
@user29, 27 Aug 1944 UTC: I have been in Houston for Rita, Allison, Ike, the Memorial 
flood and now #Harvey. By far Harvey is absolutely the worst. 
 
@user18, 28 Aug 1012 UTC: This is only day 3 of what is supposed to be day 5 or 6. Im 
from NOLA and katrina wasn't this bad. Maybe it was. This feels like agony 

 
@user27, 28 Aug 0720 UTC: I can't believe it. In the developing world I grew up with 
hurricanes and earthquakes and my worst experience is in the developed world 
 

@user14, 28 Aug 2312 UTC: I am deadass not tryna re-experience Katrina 🤦 
 
@user31, 30 Aug 1452 UTC: I dodged a bullet in Ike and Harvey. Now I need to help 
friends– they lost so much even a life 

 

Here, intangible experiences are seen broadly in the form of emotions or feelings. Specifically, the users 

use words that express several negative emotions, including fear, worry, exacerbation, and being 

overwhelmed. In a couple cases, emoticons in the tweets help to portray the feelings of the users. 

Beyond the negative emotions, past experiences also seem to be associated with some mental health 

challenges in a few of the users, which is evident in the references to PTSD (posttraumatic stress 

disorder) and anxiety, for example.  
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It appears that the emotion associated with the intangible experiences are described on three 

different time scales. In some cases, the user recalls their emotions or trauma as feelings that occurred 

in the past—that is, concurrently with the past event that they describe. In other examples, the users 

express that they feel the negative emotions in the present, meaning that the feelings may have 

originated during the time that the past event took place, but the anticipation of Harvey’s impacts in 

the days before the event is reinvigorating those emotions. On a third time scale, even though the tweet 

mentions a past event, it appears that the feelings that the user expresses are new: they develop during 

Harvey and are not associated with a past event that they went through. In other words, the user either 

1) reflects on how they felt during a past event, 2) evokes their experience with the past event to help 

them attend to the emotions they feel as Harvey is beginning to reignite feelings from the past, or 3) 

develops new negative emotions as they experience Harvey that are separate from the past event.  

There also seems to be some temporal variability with regards to the types of emotions that are 

felt during different stages of the storm. For example, many of the negative emotions that are described 

in the earlier part of Harvey (i.e., in the prodromal or early acute stages) are anticipatory, such as 

expressions of fear of the unknown or hypervigilance. As time goes on and Harvey lingers over the 

area, it seems that the negative emotions shift to become more characteristic of exasperation or 

exhaustion. In the last several days of the event, intangible direct experience (as well as tangible) is 

almost nonexistent in the dataset of past event tweets. 

Lastly, it is worth noting the interconnectedness of the tangible and intangible experiences. 

Namely, in several of the tweets, tangible effects are mentioned alongside the intangible effects. 
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Furthermore, the intangible experiences appear to be just as prevalent in the past event tweets as 

tangible experiences are based on the number of times that each type of direct experience is referenced.  

8.5 Discussion 

The results presented above suggest that there are two overarching reasons that users attend to 

past events during Hurricane Harvey. First, they refer to the past event because they have some 

personal connection to the storm. Second, the users use the event as an analog to help them 

contemplate and make sense of the events that are unfolding around them during Hurricane Harvey. 

Drawing on the results presented above, the following discussion demonstrates how the above analyses 

of the past event tweets can contribute to a better understanding of experience in the context of 

weather-related disasters. Applications of these results with regards to practices by decision-makers and 

leaders, such as emergency managers, meteorologists, and political figures are also considered.  

To summarize, the temporal analysis suggests that experiences with past events are described in 

ways that reflect stages of a disaster, like the Fink model, because past events share similarities with the 

specific circumstances that are unfolding throughout the current hazard (which is Harvey in this case). 

These personal experiences with past events are also recalled to help the users make sense of these 

events over time. Results that examined specific TCs suggest that some past events have become a 

shared experience among multiple users. Additionally, as Harvey unfolds, the individual storm 

references in the past event tweets also serve as a timeline that can be used to track the multiple crises 

embedded within Harvey (e.g., impacts of record flooding). Past event tweets examined across 

individuals show that different types of experience with past events (e.g., tangible or intangible) can be 

long-lasting and insightful to the users’ understanding of the circumstances they face throughout 
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Harvey. Further, though there are some commonalities in the ways that users describe certain past 

events, these results suggest that for individual users, personal experience is incredibly complex and 

variable, depending on the aspects of the past storm that people endured. As a whole, these findings 

show that by examining experience through the lens of past events across various dimensions, insight 

on the ways in which the public manages weather-related disasters can be gained. 

8.5.1 Temporal: Experience Across Crisis Stages 

 The temporal analysis of the past event tweets demonstrates that during an event, collective 

experience can be inferred based on the frequency of the tweets, as well as the events that are taking 

place during a particular stage. Using the Fink crisis model, the results above showed that the acute 

stage was a much more active period of tweeting compared to the prodromal and chronic stages, a 

finding that is consistent with Xu et al. (2019)’s application of the same model to tweets that were sent 

throughout Hurricane Irma. Additionally, there was a period (26-27 August) in the acute stage where 

the nocturnal maximum in tweeting was much less pronounced compared to other overnight periods 

in the analysis. These elevated periods of tweeting suggest that the acute period was when users were 

most attuned to the hazards taking place around them. It appears that they were using social media as a 

distraction, source of information, or coping mechanism while they were going through the most 

severe impacts of the event. These increases in attention mirror the increased frequency of warnings 

and the rainfall rates that were taking place at the time, suggesting that individuals may have been 

actively tweeting more because of local impacts of hazards and warnings for them. 

 The temporal analysis of the past event tweets also suggests that past events are evoked to help 

users make sense of the circumstances that they encountered  at different stages of the event. For 
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example, tweets in the prodromal stage largely focused on emotional impacts and disruptions to life 

that resulted from past events. At this point in the disaster, users were anticipating the impacts of the 

impending crisis, though because the impacts had not yet begun, the past events were not being 

evoked to draw comparisons to Harvey (except with forecasted meteorological impacts). Since the 

acute stage began alongside the meteorological impacts, users could see application of the past 

experiences they had with previous storms to the situation that was unfolding with Harvey. As the 

crisis shifted into the chronic stage, users could begin to reflect on the aftermath of Harvey, including 

the humanitarian crisis that persisted after the meteorological impacts had ended. By acknowledging 

that past events are evoked to help people process various stages of a present disaster they face, 

decision-makers could use this information to adjust crisis management practices across different 

stages of the disaster. 

8.5.2 Individual Tropical Cyclones: Collective Storm Identities 

 By thematically assessing past event tweets by individual storms (section 8.3), these results 

suggest that some past events are referenced in the same ways by several users, indicating that they have 

a shared experience or memory of the event. This claim is supported by the collective identities that are 

developed by multiple users for some of the frequently-referenced LTCs. Even though Rita, Katrina, 

and Allison all took place over a decade before Harvey, many of the users share a common recollection 

of them, associating them with a common theme or idea—that is, evacuation failures, sociopolitical 

issues, and flood-producing rainfall (respectively). Given these shared long-term memories that were 

revealed in this dataset, it would be reasonable to anticipate that a collective view of Harvey would also 

stem from the users who experienced it, as would occur with future LTCs as well. Using this 
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information, it is worth pondering how this knowledge might be used by communicators, such as 

broadcast meteorologists or emergency managers. Knowing that some LTCs have long-term shared 

memories tied to them, this information could assist with communication efforts in that the past event 

could be used to prepare the public for some aspect of the storm, such as flooding. However, certain 

aspects of LTCs are not always easy to predict (e.g., the evacuation disaster that unfolded with Rita 

was unexpected). Further, for LTC events that are poised to be unprecedented (as Harvey was in terms 

of rainfall totals), comparisons to crises embedded within the storm might be more challenging to 

design (particularly since even the communicators would not have a conceptual understanding of the 

magnitude of the impacts). Plus, any forecast will always have some element of uncertainty that could 

ultimately make leaders hesitant about making these comparisons. Nonetheless, evidence that the 

public can hold on to a collective vision of a past event is powerful knowledge because it shows that 

people not only consider these memories as they experience a new disaster, but also because it provides 

insight to political leaders, emergency managers, and forecasters on what the public is thinking about 

during these events. 

In a similar way that the users studied here experience embedded overlapping hazards (e.g., 

tornadoes and flash floods) throughout the all-encompassing hazard (i.e., a LTC), the thematic 

analysis of the tweets referencing specific TCs also reveals that the users experience multiple 

overlapping crises (e.g., rising flood waters, political controversy) that are embedded within a primary 

crisis (i.e., Harvey). The results presented above show that Allison, Rita, and Katrina tend to be 

referenced during different time periods of the event, with each of them being associated with a crisis 

that unfolds during Harvey—that is, its historic rainfall, the criticism of political figures for evacuation 
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decisions, and the transition from meteorological event to humanitarian crisis (respectively). 

Essentially, references to each of these events serve as a proxy for chronologically tracking between the 

embedded crises as they become the dominant issue in the overarching crisis, with discourse about the 

past event becoming amplified on social media as an analogous crisis in the current crisis unfolds. This 

finding is consistent with results shown in Morss et al. (2017) and Demuth et al. (2018). Additionally, 

this finding could once again be applicable to decision-makers, including emergency managers and 

political officials, as the past event references provide information on where the public’s primary 

concerns lie at a given point of the event, which could allow leaders to continuously reassess the needs 

of the people that they serve. Given the relevance of past events to the evolving, overlapping crises 

embedded within a larger crisis, perhaps these past events could be implemented into existing 

algorithms that have been built to scrape information from Twitter than is pertinent to disaster 

response efforts (e.g. Ashktorab et al. 2014).     

8.5.3 Individual Direct Experiences: Unique Visible and Invisible Impacts 

By taking this analysis a step deeper to the individual users (section 8.4), the past event tweets 

suggest that experience is complex and varies significantly between users, with each person 

experiencing their own individual physical or emotional impacts from the past event that they 

describe. In other words, the users’ own  experiences (e.g., direct and indirect) with past weather-

related events are dependent on the specific impacts they encountered—each of which is unique to 

them. Results show that these impacts are disruptive to each person’s life in different ways, regardless 

of whether the impacts are tangible or intangible. It is important to recognize these nuances in past 

experiences as new crises unfold because it highlights that not all people hold the same picture of what 



 152 

an event looks like, and these viewpoints could differ depending on the impacts that the person 

sustained, which can depend on factors such as geographic location, resource availability, local 

infrastructure, and individual perceptions. As a recent example of this variability in experience, people 

who were impacted by Hurricane Ida in August 2021 when it first made landfall along the Gulf Coast 

could hold very different memories of the event than people residing in the northeast who witnessed 

the remnants of the storm. These varying experiences could be attributed to factors such as differences 

in primary meteorological hazards (e.g., storm surge and hurricane-force winds along the Gulf versus 

inland flash flooding and tornadoes in the Northeast) or variable impacts (e.g., long-term power 

outages for Gulf Coast residents versus short-term infrastructure flooding or deaths in flooded 

basement apartment in the Northeast). In Harvey, even though there were several commonalities 

amongst many of the users (e.g., long-term residents of a similar geographic area, direct experiences 

with the same LTCs), there are still unique details that are specific to an individual’s experience. One 

implication may be that while decision-makers might garner information from the collective identities 

of past LTCs to use as analogs in conveying risk, they should recognize that each person enters a crisis 

with a unique collection of experiences, which may impact the ways in which they interpret 

information being disseminated to them. 

 Results also show that the visible and invisible impacts that the users experienced from past 

events are equally important, as they both to help them make sense of the events that they are 

experiencing with Harvey in real-time. The  prevalence of the invisible impacts that were described 

(i.e., the intangible experiences) is particularly noteworthy, as these types of experiences have 

historically been focused on less in the literature than tangible experiences. This finding supports 
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results described by Demuth et al. (2016), which highlighted the importance of considering both 

tangible and intangible impacts when characterizing experience with LTCs, particularly since they can 

occur independently of one another.   
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CHAPTER 9: CONCLUSIONS, LIMITATIONS, AND FUTURE WORK 

 

 

 

9.1 Summary and Conclusion 

In Part II of this thesis, discourse related to past weather-related events and experience was 

explored using Twitter data from a 12-day period in late August through early September, when 

Hurricane Harvey impacted the western Gulf Coast. Through many rounds of refinement, 158 tweets 

that referenced past meteorological events, specifically LTCs and/or the hazards that accompany 

them, were collected from a group of 39 users who identified as members of the public and resided in 

the hardest-hit regions of southeast Texas and southern Louisiana. Using this dataset of “past event 

tweets”, this research sought to answer two questions: 

Q1: How does experience emerge through the lens of the past event tweets during Hurricane 

Harvey? 

 

Q2: What are the different ways in which past events are discussed by users during the various 

stages of Hurricane Harvey? 

 

By exploring these questions and using Hurricane Harvey as the case, this work aims to address three 

less-investigated areas of the literature by 1) evaluating past events as a proxy for experience, 2) 

examining how past experiences evolve in real-time rather than after the disaster is over, and 3) 

contemplating the purposes for which past events are referenced while an event is occurring. To 

address these gaps, the past event tweets were examined thematically and over time using the Fink crisis 

model. 

 This analysis found that users attended to past events during Harvey for two main reasons: 

first, because they are important to them and they have a personal connection with them, and second 
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to use them as analogs to help them to process, understand and/or discuss the events that are taking 

place around them in real-time. Section 8.2 shows that certain past events were referenced for various 

reasons, and the subject matter surrounding the past event tweets was largely connected to the events 

that occurred during different stages of Harvey. Section 8.3 shows that frequently mentioned storms 

tend to be associated with a particular aspect of them, effectively giving them an “identity”. These 

identities were described by the users through the past event tweets to both highlight their connection 

with the storm as well as help them process the scenes that were unfolding with Harvey. Lastly, section 

8.4 demonstrates that users reference past events throughout Harvey because they have a tangible or 

intangible direct experience with them, meaning that the storm they are referencing is personal to 

them. 

In summary, past events can be used to reflect certain aspects of the crisis that is happening in 

the present. They can hold an identity that many people share, as well as be seen in a unique way 

depending on the individual experience that a person had with that event. Understanding that past 

weather-related events and experiences are being recalled and shared on social media can help provide 

insights to the thoughts and needs of the public as a severe weather event is unfolding, which is helpful 

to decision-makers throughout a crisis. Additionally, understanding these thought processes of the 

public can help communicators develop strategies to draw accurate comparisons between past events 

that the public has familiarity with, which would likely help many members of the public make sense 

of the current threat that they face. 

Lastly, though not related to the analysis or discussed in Part II, there are a couple things that 

can be said about the past event tweets in relation to TORFFs in LTCs based on these results. For 
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instance, the specific past events that were mentioned were either flood events or LTC events, rather 

than tornado outbreaks. It is hypothesized that this finding could result from tornado outbreaks not 

often being given specific names that they can be universally referred to as that they can be referred to 

as or or lack of tornado events altogether. Additionally, past event tweets do not mention tornadoes 

nearly as much as they mention flooding, suggesting that hazard may have been the primary focus of 

the users (at least when it came to also referencing past events).  It seems that according to these results, 

it seems that users may have good analogs for several LTC events, but when it comes to TORFF 

events, users do not memorialize them in the same ways (if at all). 

9.2 Challenges, Limitations, and Future Work 

One of the first limitations of this study that needs to be addressed is the limited scope of the 

dataset that was developed. The methods for selecting the tweets that were used for this analysis began 

with only selecting users that made a tweet containing some variation of the words “tornado” and 

“flash flood” (i.e., “TORFF tweets”) during the 12-day period. While this decision did help refine the 

dataset to users who were aware of overlapping hazards in Harvey and was a convenient choice given 

that the data had already been queried by a research team, it also likely eliminated many users who may 

have been tweeting about past events but did not send a TORFF tweet. Beginning the initial data 

search with different criteria may have yielded a slightly larger sample. Further, these results only come 

from a single LTC event. Each LTC brings different impacts of various magnitudes and presents its 

own unique challenges to different populations of people. The results described in this study may not 

apply to different LTC events given these nuances. Lastly, this analysis only sought to examine 

experience through the lens of past events, though past experiences may emerge in real-time during 
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LTCs in many other ways that were not explored here. Other methods may reveal more instances of 

indirect experiences (for example) which were difficult to identify in this particular dataset.  

 There are additional issues and concerns that can result from using Twitter data in research as 

a whole. While tweets are valuable data for scientific analysis, they can pose unique methodological 

challenges. One of these issues revolves around data availability. In this study, the content of the tweets 

is downloaded at a single point in time and organized into a spreadsheet. Because the data is 

downloaded, the tweet content remains accessible to researchers indefinitely, though some data may 

no longer be available on the Twitter platform at various points in time as a result of users deleting 

individual tweets, privatizing or deactivating their account, or being suspended by the site. This issue 

brings up two challenges with these methods: one being ethical concerns and the other being potential 

for misinterpretation of the available data. To address ethical concerns, the database was frequently 

monitored to ensure that deleted or privatized data were not used, and for data that were used for 

publication, efforts were made to protect user privacy by anonymizing users and altering their tweets 

slightly. While these steps are in disagreement with the requests of Twitter (Twitter 2021) and are not 

required given the public nature of the platform, they fall in agreement with recommendations of 

recent publications that discuss the ethical use of social media data in research (Evans et al. 2015; 

Fiesler and Proferes 2018). Ultimately, updating the database according to data availability must be a 

finite process in order to finish the study, meaning that some tweets may become inaccessible after 

results are published, but it is believed that the anonymization efforts will help to protect user 

identities even if their data is no longer publicly available on the platform. In addition to privacy 

concerns, deleted data can also increase chances for misinterpretation of the available data during 
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contextual analysis due to missing information. While some of these misunderstandings are 

unavoidable due to the limited scope of social media data, remaining vigilant that assumptions are not 

made beyond what the content of the tweets provide is one way to curtail such issues. 

 There are a couple of additional concerns with use of Twitter data in disaster research, 

particularly with regards to the demographics of the sample population. For example, using this 

platform could exclude older adults, who are less likely to have social media accounts (Sloan et al. 

2015; Wojcik and Hughes 2019), as well as people of lower socioeconomic status, who may have 

limited access to internet services and other technology. When data from the platform is used in 

disaster research specifically, the widespread extent of the damage in events such as Harvey could 

restrict internet access for an even larger population, including those that may be considered less 

vulnerable, which may affect the demographics of the sample users further. For similar reasons, users 

who are in particularly dire circumstances may be more focused on rescue and survival, rather than 

posting on social media, which would also exclude them from the sample9. Remaining aware of these 

biases and making targeted efforts to specifically include members of the general population who may 

not frequently appear on online platforms as often as others are some ways that the demographics can 

be made more diverse in studies using social media data. 

With these shortcomings considered, future studies may consider methods to develop a system 

where hyperlinks to mined tweets are automatically updated in real time, so broken links would be 

flagged, meaning that tweets would not have to be manually monitored for deleted or unavailable 

 
9 However, many users did use social media for rescue purposes during Harvey specifically (e.g., Mihunov et al. 2020). 
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content. Future studies should also continue to seek ways to address the “digital divide” when using 

Twitter data, so all populations can be examined in detail. Determining other ways to mine Twitter for 

experience could also be explored. Additionally, these results focus on the discussion of these past 

experiences throughout a single evolving LTC, but there are many other applications where similar 

methods could be applied, such as with other weather-related events or over longer periods of time 

with many LTC events included. Lastly, there is ongoing work being conducted with the same public 

database described in this paper that aims to investigate themes surrounding overlapping tornado and 

flash flood events, which will provide additional insight on the social science side of overlapping 

hazards research. 
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