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ABSTRACT 

 

 

 

LAND OF 10,000 PIXELS: APPLICATIONS OF REMOTE SENSING & GEOSPATIAL 

DATA TO IMPROVE FOREST MANAGEMENT IN NORTHERN MINNESOTA, USA 

 

 

The use of remote sensing and geospatial data has become commonplace in a wide 

variety of ecological applications. However, the utility of these applications is often limited by 

field sampling design or the constraints on spatial resolution inherent in remote sensing 

technology. Because land managers require map products that more accurately reflect habitat 

composition at local, operational levels there is a need to overcome these limitations and 

improve upon currently available data products. This study addresses this need through two 

unique applications demonstrating the ability of remote sensing to enhance operational forest 

management at local scales.  

In the first chapter, remote sensing products were evaluated to improve upon regional 

estimates of the spatial configuration, extent, and distribution of black ash from forest inventory 

and analysis (FIA) survey data. To do this, spectral and topographic indices, as well as ancillary 

geospatial data were combined with FIA survey information in a non-parametric modeling 

framework to predict the presence and absence of black ash dominated stands in northern 

Minnesota, USA. The final model produced low error rates (Overall: 14.5%, Presence: 14.3%, 

Absence: 14.6%; AUC: 0.92) and was strongly informed by an optimized set of predictors 

related to soil saturation and seasonal growth patterns. The model allowed the production of 

accurate, fine-scale presence/absence maps of black ash stand dominance that can ultimately be 

used in support of invasive species risk management. 
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In the second chapter, metrics from low-density LiDAR were evaluated for improving 

upon estimates of forest canopy attributes traditionally accessed through the LANDFIRE 

program. To do this, LiDAR metrics were combined with a Landsat time-series derived canopy 

cover layer in random forest k-nearest neighbor imputation approach to estimate canopy bulk 

density, two measures of canopy base height, and stand age across the Boundary Waters Canoe 

Area in northern Minnesota, USA. These models produced strong relationships between the 

estimates of canopy fuel attributes and field-based data for stand age (R2 = 0.82, RMSE = 10.12 

years), crown fuel base height (R2 = 0.79, RMSE = 1.10 m.), live crown base height (R2 = 0.71, 

RMSE 1.60 m.), and canopy bulk density (R2 = 0.58, RMSE 0.09 kg/m3). An additional standard 

randomForest model of canopy height was less successful (R2 = 0.33, RMSE 2.08 m).  The map 

products generated from these models improve upon the accuracy of national available canopy 

fuel products and provide local forest managers with cost-efficient and operationally ready data 

required to simulate fire behavior and support management efforts.  
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CHAPTER 1: MAPPING BLACK ASH DOMINATED STANDS USING FOREST 

INVENTORY DATA AND REMOTE SENSING 

 

 

 

Introduction 

 

The introduced emerald ash borer (EAB; Argilus planipennis Fairemaire) has been a 

persistent disturbance on ash forests in the United States since 2002 and is advancing into 

northern portions of the Upper Great Lakes states. Of particular concern is the impact EAB will 

have on the ecological and hydrological functioning of wetlands dominated by black ash 

(Fraxinus nigra). In preparation, forest managers need reliable and complete maps of the spatial 

configuration, extent, and distribution of black ash. Traditionally, the Forest Inventory and 

Analysis (FIA) program has provided rigorous measures of tree species presence at large spatial 

extents (e.g., species range maps) but such data are limited with regard to providing estimates at 

smaller management unit extents (e.g., stands). Fortunately, remotely sensed data can be 

leveraged to spatially extend forest survey information collected by FIA to predict forest 

attributes at extents smaller than the FIA sampling grid. To accomplish this, spectral and 

topographic indices, as well as ancillary geospatial data layers were integrated with FIA data in a 

non-parametric modelling framework (randomForest) to spatially predict and map black ash 

stand dominance in northern Minnesota, USA. Model selection techniques were employed to 

optimize the ecological interpretability and parsimony of the resulting prediction model. 

Additionally, during model development, a majority-class downsampling approach was used to 

minimize the negative effects of imbalanced sampling. This resulted in a final model that 

produced low error rates (Overall error: 14.5%, Presence error: 14.3%, Absence error: 14.6%; 

AUC: 0.92) and was strongly informed by an optimized set of predictors related to soil saturation 
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and unique phenological patterns of black ash. Results from this study provide forest managers 

with accurate, fine-scale presence/absence maps of black ash stand dominance that could 

ultimately be used to support EAB risk and vulnerability assessments across large spatial extents. 

 

Background 

 

A variety of exotic flora, fauna, and pathogens induce ecological changes to forested 

ecosystems worldwide, ultimately disrupting nutrient cycling, productivity, and wildlife habitat, 

among others (Lovett et al., 2016). In the short term, exotic species can alter forest floor 

environments and create canopy gaps, while long-term changes may affect entire forest 

successional trajectories (Gandhi and Herms, 2010). One such exotic species is the introduced 

emerald ash borer (EAB; Agrilus planipennis Fairmaire), a wood-boring beetle that was first 

discovered in southeast Michigan in 2002. EAB attacks all ash trees regardless of health and size 

(Herms and McCullough, 2014), killing hosts in as little as two years (Knight et al., 2013). Due 

to widespread municipal planting of ash trees, much of the research on EAB impact and 

mitigation strategies has been restricted to urban environments (i.e. Crook et al., 2008; Poland 

and McCullough, 2006; Kovacs et al., 2010). However, EAB range expansion and the associated 

threat to non-urban ash forests is expected to grow due to factors such as illegal firewood 

transportation (BenDor et al., 2006) and warming climate scenarios (Liang and Fei, 2014).  

One ash species of particular concern is black ash (Fraxinus nigra), a slow-growing 

hardwood tree often found in relatively pure stands on poorly drained soils. The native range of 

black ash spans from western Newfoundland to southeastern Manitoba, Canada south to Iowa 

and Ohio, and east to northern Virginia, USA (Wright and Rauscher 1990). Black ash is 
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considered to function as a foundational tree species, and thereby strongly regulates ecosystem 

processes (Ellison et al., 2005). Rapid stand mortality of black ash from EAB attack is expected 

to have significant impacts on ecosystem structure and function (Slesak et al., 2014). Indeed, 

dramatic disruptions are anticipated in native plant communities and wildlife food webs 

(DeSantis et al., 2013; Youngquist et al., 2017), biogeochemical processes (Flower et al., 2013) 

and resistance to invasion by exotic flora (Kenis et al., 2009; Klooster et al., 2012). Additionally, 

the reduction in evapotranspiration accompanying the loss of black ash may permanently shift 

vegetation types in these communities from forests to marsh-like ecosystems, and may ultimately 

increase flood risk (Telander et al., 2015). The loss of black ash also poses a distinct threat to 

multiple indigenous groups’ cultural practices in the northern Great Lakes states by reducing 

wood sources traditionally used for basketmaking (Costanza et al., 2017; Willow, 2011).  

To help address and minimize these risks, forest managers need reliable and complete 

maps depicting the spatial configuration, extent, and distribution of black ash. Large-area 

estimates of tree species distributions can be generated from systematic forest inventory data 

collected via national forest inventory surveys; however, such data do not provide specific 

predictions of species occurrence at spatial extents smaller than that of the systematic sampling 

grid (McRoberts and Tomppo, 2007). In the United States, the U.S. Forest Service’s Forest 

Inventory and Analysis program (FIA) provides forest inventory information through annual 

surveys via a variety of on-the-ground field measurements (Bechtold and Patterson, 2005). The 

sampling methodology of FIA ensures robust estimates at county, state, regional, and national 

levels.  However, smaller spatial units (e.g., forest district management units, stands, etc.) often 

contain an insufficient number of plots to generate precise local estimates of forest attributes and 

descriptions of their spatial characteristics (Goerndt et al., 2013).  
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Fortunately, this problem of small area estimation (SAE) has been successfully addressed 

in previous studies by combining FIA data with predictors derived from a variety of remote 

sensing sources to generate predictions of forest attributes. For example, multispectral data from 

passive optical sensors have been leveraged to estimate basal area (McRoberts et al., 2007), 

forest disturbance (Shroeder et al., 2014), stand density (McRoberts, 2009), successional stage 

(Liu et al., 2008), and canopy cover (Coulston et al., 2012), among others. Active remote sensing 

techniques, such as light ranging and detection (LiDAR), have been used in conjunction with 

data from FIA to model biomass (Andersen et al., 2009), stand volume (Sheridan et al., 2014), 

and fire effects (Alonzo et al., 2017).  

Species occurrence data from FIA has also been used to classify forest types, and is often 

combined with multiple remote sensing or geospatial resources that help define the biotic and 

abiotic niche of target species.  For example, Evans and Cushman (2009) used topographic 

indices and Landsat data to estimate occupancy of four conifer species in northern Idaho. In 

Maine, Dunckel et al (2015) mapped eastern Hemlock occurrence by combining climate, soil, 

and topographic indices with Landsat data. To map the extent of eastern hemlock in eastern 

Kentucky, Clark et al (2012) employed predictors derived from topography, soils, and climate 

data. In Utah, Zimmerman et al (2007) compared the effectiveness of topographic and 

bioclimatic predictors to vegetation indices from Landsat for species-level classification of over 

a dozen tree species. Finally, Franco-Lopez et al (2001) generated maps of tree cover types in 

northeastern Minnesota from Landsat and ancillary geospatial data. 

The objective of this study was to combine spectral and topographic indices, and 

ancillary geospatial layers with data from FIA field surveys to classify black ash dominated 

stands across a diverse forest landscape in northern Minnesota, USA. Specifically, this study 
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focused on predictors potentially indicative of soil moisture and phenology in an attempt to more 

fully describe the ecological niche of black ash. In the development of this approach, a model 

selection procedure was used to evaluate the most important predictors for classifying black ash 

stands and generated a highly accurate, parsimonious model that accounted for class imbalance. 

Model performance was evaluated via traditional accuracy assessment statistics and by 

conditional density plots to determine if the model produced ecologically meaningful results. 

Furthermore, a spatial assessment of classification stability was performed to explore the 

potential sources of error when classifying stand dominance across a diverse array of forest 

conditions. 

 

Methods 

 

Study area 

The study area is defined by the extent of a Landsat scene (WRS-2 Path 28/Row 27) in 

northern Minnesota, USA (Figure 1.1). The area (~36,000 km2) sits on the transition zone 

between boreal and mixed forest types resulting in a diverse, heterogeneous mix of hardwood 

and conifer species, as well as conifer bogs and hardwood swamps. Historical climate records 

(1981-2010) indicate an average rainfall of 54 to 81 cm (MN DNR, 2017) and elevation ranges 

from ~ 350 to 600 m above sea level. The study area contains a mix of public and private lands, 

including the entirety of the Chippewa National Forest. The study area was selected due to the 

availability of statewide LiDAR products in Minnesota and cloud-free Landsat imagery 

coterminous with the most recent year of publicly accessible FIA data. Placing the study in the
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Figure 1.1. Spatial extent of the study area in northern Minnesota, USA. All Forest Inventory 

and Analysis plots (n=1765) evaluated during model development are shown for the 2011-

2015 data collection cycle.  
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forests of northern Minnesota is also relevant due to their proximity to ongoing EAB outbreaks 

as well as the predicted northward shifts in EAB range (Liang and Fei, 2014). 

 

Data collection  

Field data used in this study consisted of FIA plots measured during a single inventory 

cycle between 2011 and 2015. The sampling design of FIA consists of long-term survey sites 

systematically stratified across public and private lands, with each site consisting of four 0.02 ha 

(1/24th acre) fixed radius subplots (Figure 1.2). The large number of forest attributes collected at 

each site generally fall in to two categories: site description and direct measurement. Site 

descriptions include observations of forest type, condition (forest or non-forest), and disturbance. 

Measurements recorded at the individual tree level include standard forestry metrics such as 

diameter at breast height (DBH), tree height, and tree age.  

To quantify stand dominance, basal area was calculated for each species using DBH 

(Equation 1). Basal area is understood as a correlate of stand density and has been successfully 

used in previous remote sensing studies of forest species occurrence (Duveneck et al., 2015; 

Goerndt et al., 2013; Martin et al., 1998; Moisen et al., 2006; Ohmann and Gregory, 2002). Total 

basal area for the plot was determined by scaling to the hectare-level using an expansion factor 

(ω) listed in the FIA database (Equation 2) for living trees >= 12.7 cm DBH. The relative 

dominance for each species in the plot was calculated as the total basal area by species divided 

by the total plot basal area.  

Researchers studying the impacts of EAB on black ash systems have not yet established a 

consensus on the percentage of stand mortality necessary to cause significant ecohydrological 

effects (Kolka, et al., 2018). Therefore, to explore one measure of stand dominance, plots with a 
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simple majority (>= 50% of total plot basal area) of black ash were assigned binary value of 

presence (1). Plots where black ash accounted for less than 50% of total basal area were assigned 

as absence (0). From an initial 1,765 field plots available during the inventory cycle, 923 

remained after retaining only undisturbed, single land cover condition, forested plots. The 

application of the stand dominance threshold resulted in training data that included 874 absence 

and 49 presence points.  

𝐵𝐴 (𝑚2) = (
𝜋

4 ∗ 10000
) ∗ 𝐷𝐵𝐻2 

(Equation 1) 

𝐵𝐴/ℎ𝑒𝑐𝑡𝑎𝑟𝑒 = ∑ 𝐵𝐴𝑖

𝑛

𝑖=1

𝜔𝑖 

(Equation 2) 

 

 
 

Figure 1.2. The national standard phase 2 plot design for the Forest Inventory and Analysis 

program administered by the U.S. Forest Service. 
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Remote sensing data 

The use of active and passive remote sensing data is common in ecological research. 

Specific to species-level classification, these data can potentially describe the biophysical 

characteristics of the target species’ environmental niche and growth patterns. For this study, a 

LiDAR-derived digital terrain model (MNGeo, 2017) was used to derive 20 m resolution 

topographic indices that describe a variety of soil attributes (Table 1.1). To characterize the wet 

soils typical of dense black ash stands, indices were chosen that reflect soil moisture potential 

(Compound Topographic Index), solar temperature effects (Heat Load Index), and water-holding 

capacity (Integrated Moisture Index) in addition to standard topography metrics such as 

elevation, slope, and aspect.  

While LiDAR data are extremely useful for characterizing topography and forest 

structure, they are generally of limited use for discriminating between different species due to 

limited spectral and temporal information (Fassnacht, et al., 2016). Fortunately, multispectral 

satellite sensors collect data with higher spectral and temporal resolution, facilitating species 

differentiation and seasonal averaging. In this study, Landsat 8 single-date (9/13/2015), cloud-

free, surface-reflectance vegetation indices were acquired from USGS (Table 1.1) at a 30 m 

resolution. Additionally, Google Earth Engine (https://earthengine.google.com) was used to 

generate minimum, maximum, median, and differenced values for normalized burn ratio (NBR), 

normalized difference vegetation index (NDVI) and normalized difference moisture index 

(NDMI) at a 30 m resolution (Table 1.1) within a date range long enough to capture the growth 

cycles of multiple forest species (April 1st to October 31st, 2015). The goal of including 

https://earthengine.google.com/
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Table 1.1. The 44 candidate predictor variables evaluated during development of the 

randomForest classification of black ash stand dominance in northern Minnesota. Variables 

included in the final model are indicated in bold. 

Variable Description 

CTI 

CURVE 

doy_EVI 

doy_IFZ 

doy_MSAVI 

doy_NBR 

doy_NDMI 

doy_NDVI 

doy_SAVI 

dNBR 

dNDMI 

dNDVI 

ELEV 

fall_NBR 

fall_NDMI 

fall_NDVI 

grow_NBR 

grow_NDMI 

grow_NDVI 

HLI 

IMI 

JSmax_NBR 

JSmax_NDMI 

JSmax_NDVI 

JSmin_NBR 

JSmin_NDMI 

JSmin_NDVI 

JSmed_NBR 

JSmed_NDMI 

JSmed_NDVI 

ROUGH 

SOILS_DI 

SOILS_PI 

summ_NBR 

summ_NDMI 

summ_NDVI 

TCAP_A 

TCAP_B 

TCAP_D 

TCAP_DI 

TCAP_G 

TCAP_W 

TRASP 

WETLAND 

Compound Topographic Index 

Slope Curvature 

Single-Date Enhanced Vegetation Index  

Single-Date Integrated Forest Z-Score 

Single-Date Modified Soil-Adjusted Vegetation Index 

Single-Date Normalized Burn Ratio 

Single-Date Normalized Difference Moisture Index 

Single-Date Normalized Difference Vegetation Index 

Single-Date Soil-Adjusted Vegetation Index 

Summer Minus Fall Median Differenced Normalized Burn Ratio 

Summer Minus Fall Median Normalized Difference Moisture Index 

Summer Minus Fall Median Normalized Difference Vegetation Index 

Elevation (meters) 

Median Normalized Burn Ratio (Sept-Oct) 

Median Normalized Difference Moisture Index (Sept-Oct) 

Median Normalized Difference Vegetation Index (Sept-Oct) 

Median Normalized Burn Ratio (Apr-Oct) 

Median Normalized Difference Moisture Index (Apr-Oct) 

Median Normalized Difference Vegetation Index (Apr-Oct) 

Heat Load Index 

Integrated Moisture Index 

Maximum Normalized Burn Ratio (June-Sept) 

Maximum Normalized Difference Moisture Index (June-Sept) 

Maximum Normalized Difference Vegetation Index (June-Sept) 

Minimum Normalized Burn Ratio (June-Sept) 

Minimum Normalized Difference Moisture Index (June-Sept) 

Minimum Normalized Difference Vegetation Index (June-Sept) 

Median Normalized Burn Ratio (June-Sept) 

Median Normalized Difference Moisture Index (June-Sept) 

Median Normalized Difference Vegetation Index (June-Sept) 

Terrain Roughness 

SSURGO Soil Drainage Index 

SSURGO Soil Productivity Index 

Summer Normalized Burn Ratio (Jul-Aug) 

Summer Normalized Difference Moisture Index (Jul-Aug) 

Summer Normalized Difference Vegetation Index (Jul-Aug) 

Tasseled Cap Angle 

Tasseled Cap Brightness 

Tasseled Cap Distance 

Tasseled Cap Disturbance Index 

Tasseled Cap Greenness  

Tasseled Cap Wetness  

Transformed Aspect 

National Wetlands Inventory Category 
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seasonally descriptive predictors was to differentiate the phenological signature of black ash 

(defined by smaller annual leaf area growth and a restricted number of growing days) from co-

occurring deciduous tree species.  

 

Ancillary geospatial data 

To further capture the abiotic niche of black ash, geospatial data were acquired from the 

National Wetlands Inventory (NWI), which uses manual interpretation of aerial imagery to 

produce a detailed hierarchical classification of wetland habitat types (Dahl et al., 2009). 

Following previous research establishing forest wetlands as the primary habitat of black ash 

(Wright and Rauscher, 1990), NWI data was used to develop a categorical predictor that would 

discriminate forested from non-forested wetlands. Soil indices were also acquired from the Soil 

Survey Geographic Database (SSURGO; Soil Survey Staff 2015), which provide useful 

measures of soil inundation and nutrient quality. First, a drainage index, designed to measure 

long-term soil wetness, was used to relate black ash with heavily inundated soils. Second, the 

incorporation of a productivity index, interpreted from soil taxonomy, provided a measure 

related to the nutrient content of soils where black ash is found. 

 

Predictor variable development 

FIA plots are located on their own grid system irrespective of any predictor variable 

alignment used in this study. To address this, a 3 x 3 focal mean moving window was applied to 

continuous predictor variables, resolving the spatial incongruity of the larger FIA plot design (~ 

90 x 90-m) relative to that of the predictors (30 x 30 m). This method has been previously used 

to partially alleviate co-registration errors between remotely sensed predictors and FIA data 
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incorporating all four subplots (Dunckel et al., 2017; Moisen et al., 2006; Nelson et al., 2009; 

Powell et al., 2010). However, as noted by McRoberts (2009), one consequence of using all four 

subplots is a potential reduction in training data size, if filtering out non-homogeneous forest 

cover conditions. 

 

Model development 

A presence and absence classification model of black ash stand dominance was 

developed using the randomForest algorithm (RF; Breiman, 2001) as implemented in the 

‘randomForest’ package (Liaw and Wiener, 2002) of the R statistical software (R Core 

Development Team, 2017). The RF model was run with 4,000 bootstrapped replicates (ntrees), 

with replacement, to stabilize error rates, variable importance, and variable interaction (Evans 

and Cushman, 2009). Although RF is considered robust to collinearity (Cutler et al., 2007), a 

model selection procedure was used to reduce the number of redundant predictors while 

retaining ecological interpretability (Falkowski et al., 2009). Prior to model selection, a Gram-

Schmidt QR decomposition procedure, which is in the R ‘rfUtilities’ package (Evans et al., 

2011), was used to identify and remove multicollinear predictor variables. To further optimize 

model parsimony, the ‘model selection’ function, also available in ‘rfUtilities’, was 

implemented. This function iterates through and evaluates potential models (i.e., suites of 

potential predictor variables) by assessing possible variable combinations, and comparing them 

based on a model improvement ratio (MIR) statistic (Murphy et al., 2010) that measures the 

difference in percentage change in overall out-of-bag error.  
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Addressing class imbalance 

In machine learning, class size imbalance remains a regular source of bias, often resulting 

in the majority class being favored over the minority class (He and Garcia, 2009; Japkowicz and 

Stephen, 2002). Specific to RF, the iterative bootstrap sample of training data often lacks a 

representative sample from the minority class. To address this, downsampling the majority class 

has previously been shown to be more effective in overcoming majority class bias when 

compared to oversampling and weighted class methods (Chen et al., 2004; Drummond and 

Holte, 2003). In this study, the majority class (i.e., absence) was downsampled to match the size 

of the minority (i.e., presence) class (n = 49) for each bootstrap sample to minimize bias from 

class imbalance. 

 

Accuracy assessment and model evaluation 

Classification accuracy was measured based on internal error estimates from out-of-bag 

samples generated by the RF model. Overall accuracy as well as errors of omission and 

commission were calculated to explore the accuracy of presence and absence classes produced 

by the model. The model was also assessed using the Area Under the Curve (AUC) statistic, 

generated from a Receiver Operator Curve (ROC) comparing the true positive rate (sensitivity) 

against the true negative rate (specificity). After this, the model was applied to the geospatial 

datasets to produce a binary classification of presence and absence of black ash dominance 

across the study area. Model uncertainty was also assessed through visual inspection of a 

maximum value class probability map to summarize the uncertainty of the binary classification 

predictions. Finally, conditional density plots, which display the probability of class occurrence 
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across the range of values for a single predictor, were examined for the most important predictors 

(identified by RF) to verify the production of an ecologically reasonable model. 

 

Results 

 

Model selection 

The Gram-Schmidt QR decomposition procedure identified and removed 33 

multicollinear predictors. The secondary model selection function (MIR statistic) did not identify 

further model parsimony optimizations for the binary classification of black ash dominated 

stands. This left twelve predictor variables that were used to develop the RF classification model: 

Compound Topographic Index (CTI), Summer-Fall Differenced NBR, June-September  

Minimum NDMI, Tasseled Cap (TC) Brightness, TC Greenness, TC Wetness, TC Disturbance 

Index, Single-Date NBR, Single-Date Enhanced Vegetation Index (EVI), Single-Date NDMI, 

and NWI wetland class (Table 1.1).  

 

Classification accuracy and variable importance 

The overall accuracy of the final model was 85.5% and the AUC value was 0.92. 

Individual class and omission and commission errors were low (Table 1.2). However, some 

confusion did occur in the form of false positives, resulting in a 24.7% error rate. The 

investigation of variable importance (Figure 1.3) indicated CTI as the most important, followed 

closely by TC Disturbance Index (TCAP DI), Summer-Fall Differenced NBR (dNBR), and June-

September Minimum NDMI (JSminNDMI). 
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Figure 1.3. Plot of variable importance values for the predictors used in the final 

randomForest model of black ash dominated stand presence/absence. 

‘MeanDecreaseAccuracy’ measures the amount of accuracy lost with the removal of the 

individual variable. 

Table 1.2. Classification accuracy statistics for the randomForest model of presence and 

absence of black ash stand dominance. 

Class 
Omission Error  

(Producer) 

Commission Error  

(User) 

Class Accuracy 

Presence 4.7 14.3 85.7 

Absence 24.7 14.6 85.4 

Overall 

accuracy 

85.5%   
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Model evaluation 

The class probability map (Figure 1.4), illustrates the prediction stability of both 

presences and absences.  The majority of the study area (~60%) had a classification stability of 

over 80%. In contrast, approximately 14% of the study area was represented by stability under 

60%. Initial visual interpretation of low stability pixels indicated high instability occurrence in 

areas of forest disturbance (i.e. harvest) during the years of data collection (Figure 1.5). 

Conditional density plots (Figure 1.6) were examined to verify that the model produced 

ecologically meaningful results. The plots represent the relationship between the probability of 

presence or absence classes and the four most important predictors. For the presence class, an 

increasing likelihood of presence is generally associated with increasing values of CTI, TCAP 

DI, and dNBR. The inverse is true for JSminNDMI, where the likelihood of presence quickly 

decreases for values above ~ 0.25. 

 

Discussion 

 

The RF model developed in this study effectively classified the presence and absence of 

black ash dominated stands while addressing potential class imbalance bias. The maps produced 

are operationally ready estimates of the spatial configuration, distribution, and extent of black 

ash in northern Minnesota, USA. These results successfully overcome the SAE limitations 

inherent in the FIA sampling methodology and represent local estimates of a species at risk of 

potential habitat loss due to EAB. 

The accuracies presented here are similar to, or improve upon, the limited research 

generating species level classifications of black ash from remotely sensed data. For example, 
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Figure 1.4. Binary classification, maximum probability (classification stability) map, and 

output summary statistics produced by the randomForest model of black ash stand dominance 

in northern Minnesota, USA. The color of each bar corresponds to the associated stability 

level in the legend and probability map. The percentages listed above each bar represent the 

percentage of total land area for each probability class in the study area.  
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Figure 1.5. Detailed view of low level of classification stability in the class probability map. 

Forest disturbance in the form of harvest activity has occurred during the Forest Inventory 

and Analysis data collection cycle (2011 to 2015). 
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Figure 1.6. Conditional density plots for the top four predictors from the randomForest model. 

The light area represents the probability of presence and the shaded area represents the 

probability of absence across the range of values for each individual predictor. 
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Wolter et al (1995) used multi-date Landsat imagery in a partial least squares regression (PLS) to 

produce a mean class accuracy of 91% for black ash stands in northwestern Wisconsin after 

masking all non-hardwood and oak cover types. Wolter and White (2002) used the same 

methodology and data sources to map black ash cover in northeastern Minnesota with less 

success (overall accuracy = 83.5%). Again, with a PLS regression approach and multi-date  

Landsat, Wolter and Townsend (2011) estimated forest composition in northeastern Minnesota 

and produced a mean accuracy of 89.5% for black ash. Additional studies, focused more on 

black ash as a component of forest cover type, have generally shown lower classification 

accuracies. Reese et al (2002) achieved 81.8% accuracy when combining black ash and sugar 

maple in a “Broad leaf deciduous forest” class while mapping land cover in Wisconsin. 

Dillabaugh and King (2008) were unable to successfully classify any (0.0%) of a “Forest” type 

consisting of black ash and sugar maple in riparian system in Ontario, Canada but suffered due to 

a small sample size (n = 5). A study by Bergen et al (2007) in northern Michigan produced 

moderate success (accuracy = 75.8%) using a “Wet Deciduous” category that included aspen, red 

maple, black ash, and white birch. 

Although direct comparisons cannot be made to the accuracies from models using 

regression instead of classification, previous studies on abundance have also included black ash 

at the species level. For example, Chambers et al (2013) reported an R2 of 0.368 when estimating 

black ash basal area across eastern North America using forest inventory data combined with 

topographic, climate, and soil predictors in a multiple linear regression model. In contrast, 

Wilson et al (2013) found better success predicting black ash abundance (R2 = 0.71) using data 

from MODIS with a nearest-neighbor imputation approach across the same study area. In 

methodologically related work, Dunckel et al (2015) reported an AUC = 0.91 when combining 
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relative basal area from FIA with climatic, soil, and Landsat data in a RF model to classify the 

presence and absence of a rare forest species (eastern hemlock) in Maine. Similarly, Evans and 

Cushman (2009) saw high model performance (≥ 0.98 AUC) for the classification of four conifer 

species in northern Idaho based on FIA data and using a downsampling technique in RF with 

predictors from topography, climate, and multispectral data.  

Overall, the RF classification algorithm produced accurate classifications and generated 

an interpretable importance metric for each of the predictors used in the final model. Of the 

initial 44 predictors, only 12 remained after the model selection process. Of these 12 variables, 

CTI, TCAP DI, dNBR, and JSminNDMI were selected as the most important in the model as 

measured by mean decrease in accuracy (Figure 1.3). The conditional density plot for the most 

important predictor, CTI, indicated increasing values to be generally associated with an 

increasing likelihood of presence (Figure 1.6). As CTI values increase, drainage depressions tend 

to form on the landscape, giving the index strong correlations with soil moisture content and 

surface water pooling (Moore et al., 1991).  The ability of CTI is discriminate these topographic 

features is important in defining the fundamental niche of black ash, characterized by saturated 

soils (i.e. bogs, streambanks) where few other tree species can establish or grow (Wright and 

Rauscher, 1990).  

TCAP DI, a normalized, linear combination of the three standard tasseled cap indices 

(brightness, greenness, wetness), displayed a similar trend of values increasing in parallel with 

the likelihood of presence. Originally developed to highlight the spectral differences between 

vegetated and unvegetated pixels, TCAP DI scales with low values representing ‘mature’ forest 

to high values representing ‘bare soil’ (Healey et al., 2005). In its conditional density plot higher 

TCAP DI values are generally associated with a higher probability of presence (Figure 1.6). The 
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most likely explanation is the unique phenology of black ash relative to neighboring deciduous 

species. Black ash is often the last leaf-on and first leaf-off species (Wolter and Townsend, 

2011), leading to less light being absorbed by its canopy. In their conditional density plots, 

distinct thresholds were evident for both dNBR and JSminNDMI (Figure 1.6). For dNBR, high 

values, representing more rapid senescence from April to October, were highly associated with 

black ash presence. For JSminNDMI, presence was associated with low values, which are often 

found in areas with sparser canopy closure, including forested wetland habitat. The base indices 

for these two metrics, NBR and NDMI, are both highly influenced by the inclusion of the mid-

infrared (MIR) bands, which have been shown the ability to discriminate a gradient of foliar 

moisture content (Hunt et al., 1987). 

Though model stability is high in much of the study area, the class probability map 

indicates low stability values occur over areas of disturbance, commonly from forest harvest 

(Figure 1.5). These areas likely account for the notable rate of false positives produced by the 

model. This may be due to unanticipated similarities in photosynthetic activity between areas of 

forest regrowth and black ash stands. Alternatively, classification confusion could be due to the 

temporal mismatch between the field data collection period (2011-2015) and the multispectral 

data (2015 only). To overcome these errors, the use of disturbance metrics from time-series data, 

such as those from Landtrendr (Kennedy et al., 2010), could be used to highlight changes in 

spectral trajectories indicative of significant vegetation change. 

The classification produced in this study can be used to enhance forest management 

actions at local levels. Primarily, the map products are a complement to additional data sources 

used to assess the risks to black ash dominated ecosystems posed by EAB. Additionally, the map 

products may help identify locations for enhanced monitoring efforts investigating the possible 
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factors mitigating EAB impact, such as woodpecker habitat use (Flower et al., 2014, Lyons, 

2015). The methods presented here could also be applied to models of presence and absence of 

other ash species across the anticipated invaded range of EAB. Dominant stands identified in this 

study may also be useful in establishing a baseline of black ash population health (Palik et al., 

2011), helping to distinguish between periodic crown dieback and EAB infestation. Finally, 

these results could also complement the growing body of research assessing the early detection 

of EAB infestation through remote sensing. Previous work has investigated hyperspectral 

(Pontius et al., 2008; Zhang et al., 2014), LiDAR (Hu et al., 2014), and high-resolution data 

(Murfitt et al., 2016) but approaches utilizing time-series metrics and phenological signatures 

remain unexplored. 

 

Conclusions 

 

Known spatial limitations of systematically collected forest inventory data can be 

improved through the use of remotely sensed data in support of forest composition modelling 

and SAE. This study evaluated the efficacy of combining FIA survey data with spatial predictors 

from Landsat, LiDAR, and ancillary geospatial layers to classify black ash stand dominance in 

northern Minnesota, USA. The class-balanced RF modelling framework presented here achieved 

an overall accuracy of 85% and AUC of 0.92 (with class accuracies of 85.4% for absence and 

85.7% for presence), indicating robust model performance. These results demonstrate the ability 

of remote sensing products to spatially extend forest survey data in support of land management 

at smaller management unit scales. The map outputs produced in this study can aid forest 

managers as they assess EAB risk and vulnerability in black ash dominated stands. Specifically, 
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these map outputs can be paired with hydrology, understory community, and wildlife data to 

anticipate local ecosystem impacts from the effects of rapid stand mortality due to EAB. 
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CHAPTER 2: ESTIMATING CANOPY FUEL ATTRIBUTES FROM LOW-DENSITY LIDAR 

 

 

 

Introduction 

 

Simulations of wildland fire risk and fire behavior are important components of forest 

management. Confidence in these simulations is dependent on the accuracy and operational 

relevance of spatial data inputs describing major drivers of wildland fire, including canopy fuels. 

The spatial data currently available, through programs such as LANDFIRE, are useful at national 

and regional levels; However, the spatial resolution and accuracy of these products often are 

insufficient to support fire modeling and planning needs at local levels. Fortunately, active 

remote sensing techniques, such as LiDAR, can produce accurate, high-resolution estimates of 

forest structure that often partially govern fire activity. In this study, the efficacy of low-density 

LiDAR data, together with a canopy cover estimate from Landsat time-series data, were 

combined in randomForest k-nearest neighbor imputation approach to estimate canopy bulk 

density, two measures of canopy base height, and stand age across the Boundary Waters Canoe 

Area in northern Minnesota, USA. This method produced strong relationships between the 

estimates of canopy fuel attributes and field-based data for stand age (R2 = 0.82, RMSE = 10.12 

years), crown fuel base height (R2 = 0.79, RMSE = 1.10 m), live crown base height (R2 = 0.71, 

RMSE =1.60 m), and canopy bulk density (R2 = 0.58, RMSE = 0.09kg/m3). In contrast, a 

standard randomForest model was less successful in generating estimates of canopy height (R2 = 

0.33, RMSE = 2.08 m).  These results suggest that low-density LiDAR can be used to estimate 

several canopy fuel attributes in a mixed forest ecosystem, with accuracies much improved over 

existing data products from sources such as LANDIFRE. The map products generated from this 
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research will provide local forest managers with cost-efficient and operationally ready data 

required to simulate fire behavior and support management efforts. 

 

Background 

 

Wildland fire is an important natural feature of forested ecosystems. Recently, the frequency 

and extent of severe fires have increased in many areas of the United States, influenced in part by 

historically large fuel loads and increased stand densities generated through fire suppression 

activities (Agee and Skinner, 2005; Keane et al., 2002). Compounding this problem, projected 

climate scenarios indicate further increases in fire frequency and severity likely due to warming 

temperatures (van Mantgem, et al., 2013), changes in fire season length (Westerling et al., 2006; 

2016), and increasing drought stress (Littel et al., 2016). 

To protect people and property at high risk from wildland fire (those at or near the wildland-

urban interface), federal agencies spent $2.9 billion on fire suppression in 2017 (NIFC, 2018). 

The ability of land managers to mitigate the cost and scale of this threat depends the 

understanding of fire behavior as predicted by mathematical models of fire spread such as 

FARSITE (Finney, 2004) and FlamMap (Finney, 2006). Simulating fire growth and spread with 

these models requires detailed, accurate knowledge of the spatial patterns and extent of surface 

and canopy vegetation structures relating to fuel availability (Keane et al., 2001).  

Common canopy fuel attributes include: canopy bulk density (CBD), canopy base height 

(CBH), and canopy height. These metrics contribute to the understanding of the initiation and 

spread of crown fires, which are often more severe and difficult to control as compared to 

surface fires (Scott and Reinhardt, 2001). CBD is a metric that does not have a universally 
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accepted calculation but generally attempts to quantify per unit volume of combustible live and 

dead canopy fuel available (Scott and Reinhardt, 2001). Similarly, measures of CBH are not 

universally defined but generally refer to the height at which a tree canopy exceeds a minimum 

fuel load threshold. Fire behavior models use CBD and CBH to determine the threshold for 

active crown fire initiation (Finney, 2004) as well as an indication of potential fire spread 

between stands (Riaño et al., 2004b). Canopy height influences wind direction and speed through 

stands, influencing spotting through the movement of embers (Finney, 2004).  

As a complement to CBH and CBD, knowledge of stand age class and distribution offers 

additional insight into crown fire dynamics in forested landscapes. In pre-fire contexts, stand age 

can help to describe flammability relationships (Tiribelli, et al., 2018) and ignition potential (Erni 

et al., 2018). In post-fire contexts, stand age can inform the understanding of wildlife habitat 

selection (Wood, et al., 2018), species recruitment (Kalamees et al., 2005), and burn severity in 

forest regeneration planning (Taylor et al., 2014). 

Field-based measurement of forest fuels for operational use is costly and often logistically 

impractical across large spatial extents. Fortunately, remotely sensed data can be used in support 

of forest fuel quantification and fire risk management. To achieve this, forest managers often rely 

on fuels layers available from the LANDFIRE program, a nation-wide mapping project utilizing 

Landsat imagery and field data to generate spatial estimates of forest fuels in the United States at 

a 30 m spatial resolution using a Classification and Regression Tree modelling approach 

(Rollins, 2009). However, these products are designed to provide regional and national baselines 

and are not recommended to replace locally available products with higher spatial resolutions 

(Reeves et al., 2006). Previous studies comparing the efficacy of local data to LANDFIRE 

products have indicated that the latter tend to under-predict fire initiation in behavioral models 



43 

 

(Krasnow et al., 2009) and are poorly correlated with field measurements relative to estimates 

produced with local data or with more advanced machine learning algorithms (Pierce et al., 

2012). These shortcomings are also caused in part by inadequate sampling densities at local 

extents and the inability of moderate-resolution remotely sensed data (Landsat) to capture the 

complex, three-dimensional structural heterogeneity of canopy fuels (Reeves et al., 2009). 

To overcome these limitations, high-resolution data from remote sensing-based systems can 

be used in tandem with locally available field-based measurements to generate accurate, 

spatially-explicit, and cost-effective products that quantify and map fire fuels, ultimately 

supporting fire management decision making. Data from LiDAR (light detection and ranging) 

offers a detailed descriptions of three-dimensional forest structure and improves upon the 

limitations of passive sensors, which are not overly sensitive to forest structure (Lefsky et al., 

2001; Wagner et al., 2008). It has been well established in the literature that LiDAR can assist in 

modeling a variety of forest attributes including basal area (Lefsky et al., 1999; Falkowski et al., 

2010; Fekety et al., 2015; Hudak et al., 2006, 2008), biomass (Boudreau et al., 2008; Lefsky et 

al., 1999; Zhao et al., 2009), leaf area index (Morsdorf et al., 2006; Riaño et al., 2004a; Tang et 

al., 2014), and successional stage (Falkowski et al., 2009), among others. LiDAR has also been 

successful used to generate estimates of canopy fuel attributes including overall canopy height 

(Erdody and Moskal, 2010; Hermosilla et al., 2014; Skowronski et al., 2007), canopy base height 

(Popescu and Zhao, 2008; Zhao et al., 2011), canopy bulk density (González-Ferreiro et al., 

2014; Riaño et al., 2004b), canopy cover (Hall et al., 2005; Riaño, 2003), and stand age (Racine 

et al., 2014).  

Many of the previously mentioned studies make use of medium to high density LiDAR (2 to 

16 points/m2) and are limited in their spatial extent due to logistical and/or financial constraints 
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associated with LiDAR data collection across large areas. Collecting LiDAR data across entire 

states or regions often results in lower point densities and are often intended to support surface 

elevation characterization rather than vegetation mapping. As a result, acquisition parameters of 

LiDAR with densities less than 2 pts/m2 have been described as sub-optimal for the 

characterization of forest structure. However, a handful of studies have demonstrated the efficacy 

of low-density LiDAR in forestry applications. For example, Montagnoli et al (2015) used a 

point density of less than 2 pts/m2 to model biomass in a mixed broad leaf forest in northern 

Italy, achieving accuracies of R2 = 0.76. Shendryk et al (2014) combined low density LiDAR 

(average 0.8 pts/m2) with optical imagery to model biomass in a mixed forest in southern 

Sweden, and demonstrated model performance of R2 = 0.80. A study by Treitz et al 2012 

compared low (0.5 pts/m2) to high density (3.6 pts/ m2) LiDAR data and found little difference in 

predictive accuracy for eight different forest attributes. Even with extremely low densities (0.035 

pts/m2), Thomas et al (2006) accurately estimated mean height, biomass, and basal area in a 

forest area in southwestern Ontario, Canada.  

Even with these encouraging examples, the application of low-density LiDAR (< 1 point/m2) 

to estimate canopy fuels is not well represented in the literature, especially in mixed forest 

systems. And despite low-density collections accounting for 43% of publicly available LiDAR in 

the United States (Department of Commerce, 2018), these datasets often are produced without 

specific vegetation mapping and modeling goals. To expand the scope of research and make use 

of readily available data, more research is needed to evaluate if low-density LiDAR can support 

vegetation mapping efforts. To meet this need, this study evaluated the efficacy of low-density 

LiDAR data to estimate canopy fuels in structurally complex mixed forests in northern 

Minnesota, USA. Specifically, this study used a randomForest imputation modeling framework 
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to predict canopy fuel attributes of interest to forest managers, including canopy base height, 

canopy bulk density, canopy height, and stand age. To generate a parsimonious model, a model 

selection procedure was performed, maximizing ecological interpretability as measured by 

variable importance. Because the end products are direct inputs to models of fire behavior and 

fire risk, imputation accuracy was compared against traditionally utilized data resources, such as 

LANDFIRE. 

 

Methods 

 

Study Area 

The study area covers 14,000 km2 in northern Minnesota, USA (Figure 2.1) and encompasses 

the Boundary Waters Canoe Area (BWCA). Elevation ranges from 337 to 701 m above mean 

sea-level. Pleistocene glacial till formed much of the soil structure in the BWCA with mineral 

soil conditions ranging from granitic deposits to sandy loams (Heinselman, 1996). Located in a 

transition zone between deciduous hardwoods and true northern boreal forests, the vegetation 

and biophysical characteristics of the BWCA are diverse. Conifers and deciduous tree species 

exist along a spectrum between pure and mixed stands of pine, fir, aspen, and maple trees. 

Charcoal in lake sediments has indicated that these stands were historically subject to frequent 

fire events (Swain, 1973) but after the implementation of 20th century forest management 

practices this frequency declined dramatically (Heinselman, 1996). 
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Sampling design and data collection 

Fuels data for canopy height, CBH and age were collected at 263 inventory plots within the 

study area during the summers of 2014 and 2015. Plot locations were located using a stratified 

random sampling design, where strata were defined by forest type and stand age classes. Plot 

locations were randomized within the study area in known forest stands > 30 years old and > 

4.05 ha (10 acres). No plots were allowed within 24 m (80 ft.) of a stand boundary or 80 feet 

(~24 m) from another plot. Forest inventory crews installed 0.04 ha (1/10th acre) fixed-radius 

forest inventory plots and recorded standard forest inventory data (i.e., individual tree 

measurements of species, height, and DBH) and additional plot-level measurements of stand age 

and canopy base height. Plots were located on the ground using handheld Trimble Juno GPS 

devices and differentially corrected to enhance the accuracy of final plot locations. For this 

study, stand age was determined by selecting and coring the oldest tree from the dominant 

species present on each plot. CBH was assessed by two separate metrics: crown fuel base height 

(CFBH) and live crown base height (LCBH). CFBH is defined as a measure of height above the 

ground of the lowest live and/or dead fuels that can move fire higher in the tree. LCBH is 

defined as height above ground to the base of the live crown.  

For CBD, a separate sample of 60 inventory plots were surveyed in 2015 and 2016. These 

plots were randomly located within the study area but within 2 km of a paved road and within a 

forested area. Plots were located on the ground using handheld Trimble GeoXT GPS devices and 

differentially corrected. At each plot, field crews recorded average canopy gap fraction (CGF), 

average and total species basal area, and average canopy height. A LAI-2000 instrument was 

used to record CGF in a square 3 x 3 grid of nine points arranged around the plot center, each 

separated by five meters, following Keane et al (2005). With the LAI-2000, a 38° angle was used
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with average canopy height to determine the respective CGF plot radius. Within this CGF-

defined circular plot area, all conifers species > 15 cm DBH were measured for height, height to 

first live branch, and canopy diameter. These data were used with published allometry (Perala 

and Alban, 1993) to calculate component biomass estimates for each field plot (i.e., needles, 

branch, and bole). The variety and detail of these measurements (i.e. biomass, CGF) allowed for 

the use of five CBD estimation methods (Table 2.1). These methods provide only indirect 

estimates and none are universally applicable to every forest type. Therefore, to determine the 

most appropriate CBD estimation method, only the most accurate of the five different methods 

tested was retained for continued evaluation.  

 

 

Table 2.1. Names and descriptions of the five calculation methods evaluated in the 

development of the canopy bulk density (CBD) mode. Units for all CBD measurements are in 

kg/m3. 

 

CBD Method Description 

TREEWISE Based on total needle and large branch biomass sum of all 

conical tree volumes on a plot. 

 

PLOTWISE Based on total needle and large branch biomass and the 23-

degree LAI2000 view angle and estimated forest height for 

the plot (kg/m3)” 

 

KEANE Calculated using Keane et al. (2005) formula for use with 

weighted LAI2000 GAP measurements (CBD_E = 0.0402 + 

7.6293 * LAI2000) 

 

CONE Total plot CBD based on cone shape of trees 

 

CYL Plotwise total CBD based on cylinder shapes of trees  
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Remote sensing data 

LiDAR data used in the study was collected May 14th to June 1, 2011 by Woolpert, Inc. 

under contract from the State of Minnesota as a part of the Minnesota Elevation Mapping Project 

(MEMP). The expected outcome of the MEMP was the development of a state-wide, high-

accuracy surface elevation dataset with possible vegetation mapping applications left 

unexplored. Horizontal positional accuracy of the dataset is +/-1.6 m (α = 0.05) and vertical 

positional accuracy is 3.6 cm (α = 0.05) with a minimum side-lap of 25% and a scan angle of ± 

20° off nadir (MNGEO, 2017). The average density of the LiDAR point cloud is 0.44 pts/m2.  

To characterize the horizontal and vertical distribution of vegetation a suite of raster grid 

metrics were created from the LiDAR point cloud data (Table 2.3) using the FUSION software 

package (McGaughey, 2012) at a 10 m spatial resolution. Due to the narrow side lap in the flight 

path and large scan angle, these metrics were visually screened for data quality issues before 

inclusion in the final predictor list. LiDAR canopy cover layers were replaced by a Landsat time-

series derived canopy cover product generated from the work of Vogeler et al (2018) due to 

striping between flight lines. For this substitute data, spectral indices were harmonized across all 

Landsat sensors along with photo-interpreted samples of canopy cover to produce annual maps 

of predicted canopy cover across the state from 1973-2015 (Vogeler et al., 2018). The map of 

canopy cover for 2011 was chosen for use in all models to best match the year of LiDAR data 

collection.  

 

Model development 

A randomForest (RF; Breiman, 2001) k-nearest neighbor imputation approach (RF-kNN), 

available in the “yaImpute” R package (Crookston et al., 2007), was used to develop models of 
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four canopy fuel attributes: stand age, CFBH, LCBH, and CBD. RF-kNN is different from other 

imputation methods because it identifies nearest neighbor distances based on proximity values 

generated from an initial RF model (Hudak et al., 2008). Furthermore, comparative studies of 

nearest neighbor methods have shown RF-kNN to be a preferable modeling approach when 

predicting forest attributes (Eskelson et al., 2009; Hudak et al., 2008, 2014; Latifi and Koch, 

2012; Latifi et al., 2010; Packalén et al., 2010; Powell et al., 2010).  

Following Falkowski et al. (2009), model parsimony was optimized during the 

implementation of the RF-kNN approach to maximize the ecological interpretability of the 

model results. First, using the ‘rfUtilities’ package in R (Evans and Murphy, 2017; Evans et al., 

2011), a Gram-Schmidt QR decomposition was performed to identify and remove multicollinear 

variables. Next, to generate parsimonious RF models an iterative selection function was 

performed using the ‘modelSel’ function in the ‘rfUtilities’ package (Murphy et al., 2010). This 

function generates a Model Improvement Ratio (MIR) statistic that describes how well predictor 

variables minimize the mean squared error and maximize the variation explained in the response. 

The RF model generating the highest MIR values is then identified as the most parsimonious 

model.  

Using parsimony optimized predictor sets and associated RF proximity values, kNN 

imputations were run to generate predicted values to compare against the training data for 

LCBH, CFBH, CBD, and stand age. For the imputations, the number of neighbors was set to k = 

1, a value understood to preserve the distribution and covariance structure of the reference 

dataset (Franco-Lopez, et al., 2001). Canopy fuel attributes were then imputed across the study 

area at a 10 m resolution. In a separate analysis, canopy height was evaluated only after the
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Table 2.2. The 55 predictors evaluated in the model development of the five canopy fuel 

attributes. Selected predictors in the final models for crown fuel base height (CFBH), live 

crown base height (LCBH), canopy bulk density (CBD), stand age, and canopy height (CH) 

are indicated with ‘X’. 
Predictor Name Description CFBH LCBH CBD Age CH 

FRET 

HCV 
LMOM1 

LMOM2 

LMOM3 
LMOM4 

LCV 
LSKEW 

MEDMAD 

MEDMODE 
H5PCT 

H10PCT 

H20PCT 
H25PCT 

H30PCT 

H40PCT 
H50PCT 

H60PCT 

H70PCT* 
H75PCT* 

H80PCT* 

H90PCT* 
H95PCT* 

H99PCT 

HMEAN* 
CRR 

HCUBE* 

HSKEW 
HMAX* 

HQUAD* 

HSTD* 

HVAR 

STRATUM1 

STRATUM2 
STRATUM3 

STRATUM4_MEAN 

STRATUM4 
STRATUM4_SD 

STRATUM5_MEAN 

STRATUM5 
STRATUM5_SD 

STRATUM6 

STRATUM6_SD 
STRATUM7_MEAN 

STRATUM7 

STRATUM7_SD 
STRATUM8_MEAN* 

STRATUM8* 

STRATUM8_SD* 
ASPECT 

PLANCURV 

PROFCURV 
SLOPE 

SRI 

CCLST 

Percentage of first returns above mean height 

Coefficient of variation of heights 
First L-moment (Hosking, 1990) 

Second L-moment (Hosking, 1990) 

Third L-moment (Hosking, 1990) 
Fourth L-moment (Hosking, 1990) 

L-moment coefficient of variation 
L-moment skewness 

Median absolute deviation from median height 

Median absolute deviations from mode height 
Average height 5th percentile 

Average height 10th percentile 

Average height 20th percentile 
Average height 25th percentile 

Average height 30th percentile 

Average height 40th percentile 
Average height 50th percentile 

Average height 60th percentile 

Average height 70th percentile 
Average height 75th percentile 

Average height 80th percentile 

Average height 90th percentile 
Average height 95th percentile 

Average height 99th percentile 

Average height of returns 
Canopy relief ratio (mean-min)/(max-min) 

Cubic mean of all return heights 

Kurtosis of heights 
Maximum height 

Quadratic mean height 

Standard deviation of all return heights 

Variance of heights 

Percentage of vegetation returns > 0.15 m and ≤ 1 m 

Percentage of vegetation returns > 1 m and ≤ 2 m 
Percentage of vegetation returns > 2 m and ≤ 3 m 

Mean height of vegetation returns >3 m and ≤ 5 m 

Percentage of vegetation returns >3 m and ≤ 5 m 
Standard deviation of vegetation returns >3 m and ≤ 5 m 

Mean height of vegetation returns > 5 m and ≤ 10 m 

Percentage of vegetation returns > 5 m and ≤ 10 m 
Standard deviation of vegetation returns > 5 m and ≤ 10 m 

Percentage of vegetation returns >10 m and ≤ 20 m 

Standard deviation of vegetation returns 10 m and ≤ 20 m 
Mean height of vegetation returns >20 m and ≤ 30 m 

Percentage of vegetation returns > 20 m and ≤ 30 m 

Standard deviation of vegetation returns > 20 m and ≤ 30 m 
Mean height of vegetation returns >30 m and ≤ 45 m 

Percentage of vegetation returns > 30 m and ≤ 45 m 

Standard deviation of vegetation returns > 30 m and ≤ 45 m 
Aspect 

Surface planar curvature 

Surface profile curvature 
Slope 

Solar radiation index 

Canopy cover derived from Landsat time-series 

X 

 
X 
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X 
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initial RF model selection process. To examine the potential for bias due to scan angle, residuals 

from the canopy height model were explored as a function of average scan angle and height 

variability. 

 

Model performance and evaluation 

The performance of each model was assessed by comparing imputed predictions to observed 

values in the training dataset and evaluating accuracy using the coefficient of determination (R2) 

and root mean square error (RMSE). Performance for the canopy height model was assessed 

directly from the R2 and RMSE values produced by the RF model summary. The five methods of 

estimating CBD were analyzed and the method that produced the highest R2 was retained as the 

final CBD model.  

The influence of individual predictors in each model was analyzed in two ways. First, 

internal RF variable importance was generated to measure the mean decrease in accuracy if a 

predictor was removed from the model. Second, partial dependence plots were generated for the 

most important predictors in each model. In the context of RF modeling, partial dependence plots 

represent an attempt to visualize the relationship between the response variable and the marginal 

effect of a single predictor while accounting for the average effect of all other predictors used to 

grow the forest of regression trees (Cafri and Bailey, 2016; Cutler et al., 2007).  
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Results 

 

Model selection and variable importance 

The QR-Decomposition procedure identified and removed 13 multicollinear predictors 

(Table 2.3), leaving 42 potential model metrics to use in model selection. The canopy height 

model retained 11 total predictors including: return heights (H40PCT, H50PCT, H60PCT, 

H99PCT), pulse densities (STRATUM1, STRATUM4, STRATUM5, STRATUM6), and the 

third L-moment (Table 2.3). The stand age model retained 11 predictors (Figure 2.2): mid-

canopy pulse densities (STRATUM3, STRATUM4, STRATUM5), return heights (H99PCT), 

surface texture (SRI, PROFCURV), as well as the Landsat time-series derived canopy cover 

layer (CCLST; Table 2.3).  The CFBH model retained 16 predictors (Figure 2.3): the first L-

moment, mid-canopy pulse densities (STRATUM3, STRATUM4, STRATUM5, STRATUM6), 

return heights (H10PCT, H20PCT), among others (Table 2.3). The LCBH model retained 11 

predictors (Figure 2.3): L-moments (LMOM1, LMOM3), mid-canopy pulse densities 

(STRATUM4, STRATUM5, STRATUM6), height distribution characteristics (MEDMAD, 

CRR), slope, and canopy cover (CCLST; Table 2.3). Plot-wise cylinder volume (CYL; Table 

2.1) was identified as the best of the five CBD estimation methods (Figure 2.4) and the final 

CBD model retained 11 total predictors (Figure 2.3) including: mid-canopy pulse densities 

(STRATUM4, STRATUM5, STRATUM6), return heights (H40PCT, H50PCT, H60PCT, 

HVAR), surface texture (SRI), slope, and L-moments (LMOM1, LMOM3; Table 2.3). 
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Figure 2.2. Variable importance plots from the randomForest models of stand age and canopy 

height. ‘%IncMSE’ indicates the percent increase in mean squared error if the predictor was 

removed from the model. 
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Figure 2.3. Variable importance plots from the randomForest models of crown fuel base 

height, live crown base height, and canopy bulk density. ‘%IncMSE’ indicates the percent 

increase in mean squared error if the predictor was removed from the model. 
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Model performance and evaluation 

Overall, the imputation models of canopy fuels showed strong relationships (Figure 2.4) 

between predicted and field plot data for stand age (R2 = 0.82, RMSE = 10.12 years), CFBH 

(R2= 0.79, RMSE = 1.10 m), LCBH (R2= 0.71, RMSE = 1.60 m), and CBD (R2= 0.58, RMSE = 

0.09 kg/m3). Canopy height showed the weakest modeled relationship between predicted and 

actual values (R2= 0.33, RMSE = 2.08 m).  

Additional analysis showed no relationship between the canopy height model residuals, average 

scan angle, and canopy height variability.  

In terms of variable importance, the proportion of fifth strata returns (STRATUM5) and 

average return heights in the 99th percentile (H99PCT) were the most important for the stand age 

model (Figure 2.2). In the canopy height model, the most important predictors (Figure 2.2) were 

the proportion of returns from the fifth and first strata (STRATUM5, STRATUM1). For the 

CFBH and LCBH models, the most important predictors (Figure 2.3) were identical: the 

proportion of returns from the sixth strata (STRATUM6) and the first L-moment (LMOM1). In 

the CBD model, the most important predictors (Figure 2.3) were the percentage of returns in the 

fifth strata (between 5 - 10 m) and the third L-moment (LMOM3).  

To determine the marginal effect of important variables (as determined by RF), partial 

dependence plots were examined for each canopy fuel attribute model. For the CFBH and LCBH 

models, the first L-moment (LMOM1) values and the proportion of sixth strata returns 

(STRATUM6) are both associated with increasing heights (Figure 2.6). For the CBD model, 

STRATUM5 values are associated with increasing biomass volumes while the third L-moment is 

associated with higher biomass volumes for values from ~ -0.5 to 0.5 (Figure 2.7). For the stand 

age model, the proportion of fifth strata returns (STRATUM5) are associated with variations in 
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Figure 2.5. Plots comparing predicted versus observed values for each of the four imputed 

canopy fuel attributes. Accuracy metrics are displayed in the form of the coefficient of 

determination (R2) and the root mean squared error (RMSE). The lease squares fit trend line 

is shown in blue and the trend line standard error is shown as a transparent gray polygon.  
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Figure 2.6. Partial dependence plots describing the marginal effects of the top two 

predictors from randomForest models of crown fuel base height and live crown base height. 
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Figure 2.7. Partial dependence plots describing the marginal effects of the top two 

predictors from randomForest models of stand age, canopy bulk density, and canopy 

height. 
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older stand ages while 99th percentile return heights (H99PCT) are associated with increasing 

stand ages (Figure 2.7).  For the canopy height model, increasing STRATUM5 and STRATUM1 

values between ~ 0.2 and 0.6 are both associated with increasing heights (Figure 2.7).   

 

Discussion 

 

The RF-kNN models developed in this study demonstrate the ability of low-density LiDAR to 

effectively describe several canopy fuels attributes in a mixed forest setting. Imputed estimates of 

CFBH, LCBH, CBD, and stand age facilitated the production of detailed, high-resolution maps 

(Figure 2.8) ready for use as fire behavior model inputs while the RF model of canopy height 

underperformed. The imputed products improve upon the accuracies and spatial limitations found 

in commonly utilized canopy fuels data sources, such as LANDFIRE.  

The accuracies presented in this study offer similar results compared to the few previous 

studies estimating CBH and CBD using low-density LiDAR (< 1 pts/m2). Maguya et al. (2014) 

presented R2 ranging from 0.46 to 0.75 for CBH at a density of 0.5 pts/m2 in conifer-dominated 

forests of eastern Finland. González-Ferreiro et al. (2014) generated estimates for CBD (R2 = 

0.44) in Pinus radiata stands in northwest Spain also at 0.5 pts/m2. However, González-Ferreiro 

et al. (2014) also reported CBH accuracy in upwards of R2 = 0.96.  

Accuracies also met or exceed results from studies using LiDAR pulse densities much higher 

than those presented here. For example, Andersen et al (2005) attained an R2 of 0.77 when 

estimating CBH from LiDAR data with a point density of 3.5 pts/m2 for in a small forest in 

southwestern Washington dominated by Douglas fir. Hermosilla et al. (2014) achieved similar 

CBH results in another Douglas fir forest in northwestern Oregon (R2: 0.78) from LiDAR with a
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Figure 2.8. Imputation predictions across the study area for stand age, crown fuel base 

height (CFBH), live crown base height (LCBH), and canopy bulk density (CBD). 
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density of 8 pts/m2. Ermody and Moskal (2010) reported accuracies ranging from R2 = 0.77 to 

0.84 for CBH in the eastern Cascade mountains of Washington using a LiDAR dataset with a  

density of 4 pts/m2. These high-density LiDAR studies all achieved higher R2 values for CBD 

(0.67 to 0.88) and canopy height (0.79 to 0.98). However, it should be noted that direct 

comparisons to these particular studies warrant caution due to their use of square root and log 

transformations of dependent variables.  

This study’s accuracy is also comparable or outperforms previous studies using metrics 

derived from LiDAR to estimate stand age.  Work by Racine et al. (2014) is very similar in 

accuracy (R2: 0.83), model methodology (RF-kNN imputation), and study system (northern 

boreal transition forest in Quebec, Canada). Additional work by Straub and Koch (2011) 

combined LiDAR with multispectral data but had less success (R2 = 0.63) in a mixed forest site  

in southern Germany. Unfortunately, direct comparisons to other studies are limited because 

stand age is more often segmented into discrete classes of successional stage (i.e. Falkowski et 

al., 2009; Kane et al., 2010) as opposed to a continuous response variable.  

Using an RF-kNN imputation approach provides for the assessment of predictor 

importance as measured by mean decrease in accuracy (Figures 2.2, 2.3). Of the original 55 

predictor variables, only one, describing the proportion of returns between 5 and 10 m 

(STRATUM5), was retained across all models. This finding is consistent with previous studies 

that have previously identified canopy strata intensities as important across multiple models of 

forest attributes (Bright et al., 2017, González-Olabarria et al., 2012). For the models of CFBH 

and LCBH, the most important variables are identical (LMOM1, STRATUM6). Similar marginal 

effects of each predictor are found in the partial dependence plots for the CFBH and LCBH 

models (Figure 2.6), where the importance of STRATUM6 (pulse density proportion between 10 
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and 20 m) can be explained by many CFBH and LCBH values falling within the height range of 

this strata.  

The fact that LMOM1 was also shared by the CFBH and LCBH models is perhaps more 

intriguing due to recent research regarding the improved understanding of forest structure 

through the use of L-moments (Valbuena et al., 2017). LMOM1 is functionally analogous to 

mean canopy height, a metric identified as an important component of other crown fuel models 

(Ermody and Moskal, 2010; Hermosilla et al., 2014; Riaño et al., 2004b). The efficacy of L-

moments over conventional moments may be explained by the former’s robustness to the smaller 

sample sizes and outliers (Hosking, 1990) such as those found in low-density LiDAR point cloud 

data.  

For CBD, the top predictors were STRATUM5 and LMOM3 (an L-moment analogous to 

skewness). The partial dependence plot of CBD and STRATUM5 (Figure 2.7) indicates that the 

number of mid-canopy returns generally increases as the amount of tree biomass becomes denser 

between 5 and 10 meters. The plot of LMOM3 to CBD (Figure 2.7) indicates increasing biomass 

volumes are associated with returns distributed mostly through the mid-crown heights. As the 

number of returns concentrate at higher or lower heights, biomass values decrease. However, it 

should be noted that the variation of the marginal effect on CBD occurs over a narrow range 

(0.255 to 0.280 kg/m3). For the stand age model, the most important predictors were 

STRATUM5 and H99PCT (the average height of the 99th percentile of returns). The known 

relationship between age and tree height (King, 1990) is supported by the importance of 

H99PCT in the stand age model and the association of H99PCT with increasing stand ages in the 

partial dependence plot (Figure 2.7). The partial dependence plot for STRATUM5 and stand age 

(Figure 2.7) appears to indicate the power of this predictor lies mainly in its ability to distinguish 
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between zero and non-zero values of stand age (i.e. forested vs. non-forested conditions). Finally, 

for canopy height and STRATUM5, increasing heights track with increasing pulse densities at 

higher heights similar to LCBH and CFBH (Figure 2.7). The narrow range of STRATUM1 (the 

proportion of returns between 0.15 and 1 m) values associated with increasing canopy heights 

(Figure 2.7) may reflect differences in forest vegetation types. The deliverables for this project 

did not originally include canopy height models and it remains unclear if the model results 

reflect differences in precision between canopy height and canopy base height field 

measurements. 

Despite numerous studies of forest attributes using LiDAR, previous research has focused 

heavily on conifer-dominated systems (Lim et al., 2003). This may be partially driven by 

concerns over the variability of leaf-off, leaf-on conditions in forests with deciduous components 

or a concentration of research in locations with available funding for LiDAR data collection 

efforts. However, previous research has shown little difference in model accuracy due to the 

timing of LiDAR acquisition (Anderson and Bolstad, 2013; Wasser et al., 2013; White et al., 

2015) and LiDAR collections occur across a wide variety of forest conditions in the United 

States. Indeed, data covering mixed forest systems have been used estimate biomass (Hoover, et 

al., 2018; Li et al., 2014 Lim et al., 2003; Zheng et al., 2008), stem density (Hawbaker et al., 

2010) and basal area (Hayashi et al., 2014; Woods et al., 2008). Results from this study 

contribute to this body of work while addressing a lack of research into LiDAR-based canopy 

fuel estimates in mixed forest systems. 

Studies characterizing canopy structure have shown only small differences in accuracy 

and precision between high and low-density LiDAR collections (Jakubowski et al., 2013, Lim et 

al., 2008; Treitz et al., 2012). This bodes well for areas where statewide, low-density LiDAR 
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data is already available, offering a cost-effective complement to expensive, time-consuming, 

and logistically complex field-based sampling. These results highlight the valuable ecological 

knowledge that can be generated even when LiDAR collection efforts are not specifically 

intended for vegetation mapping, as was the case with the Minnesota Elevation Mapping Project. 

The canopy fuels estimates produced in this study improve upon the accuracy and resolution 

found in nationwide spatial data resources of canopy fuels, such as LANDFIRE. Indeed, the 

accuracies presented here show a marked improvement over LANDFIRE for CBH (R2 = 0.45) 

and are comparable to CBD (R2 = 0.58) for the Lake States region. Additionally, field data used 

in this study was poorly correlated with LANDFIRE data for CBH and CBD (R2 range: 0.01 - 

0.30). The improvement in accuracy is likely influenced by LiDAR’s ability to describe the 

three-dimensional structure of forest canopies whereas LANDFIRE is reliant on imagery from 

two-dimensional optical sensors. High-resolution data from LiDAR also leads to more detailed 

spatial inputs for fire modeling and more relevant information for local, operational forest 

management. 

Although the results of this study demonstrate the utility of low-density LiDAR, it is worth 

pointing out that two aspects of the initial data collection effort may have hindered model 

performance. The LiDAR data was collected with a minimum side-lap of 25%, which less than 

the 50% often seen in other collection efforts. Low or inconsistent side-lap can influence overall 

point densities.  The wide scan angle of the LiDAR collection (20 degrees) may have also led to 

the striping seen during the initial visual assessment of the potential predictors because larger 

off-nadir angles can affect the proportion of canopy returns (Holmgren et al., 2003). Fortunately, 

the CCLST predictor was a sufficient supplement and improved model performance in some 

cases. Preliminary research on the modeling of forest structure using a combination of time-
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series data and LiDAR metrics has generated mixed success (Bright et al., 2017). But this study 

suggests the potential use of time-series derived metrics, in concert with low-density LiDAR, is 

worthy of further exploration. 

 

Conclusions 

 

This study demonstrates that low-density LiDAR can be used to provide reasonable estimates 

of canopy fuel attributes in the mixed forest ecosystem of northern Minnesota, USA. The results 

also highlight the use of pre-existing low-density LiDAR collections to complement the limited 

resources of forest managers to gather plot-based field data. The high-resolution map products of 

imputed canopy fuel attributes produced by this study improve upon the resolution and accuracy 

of similar products from national data repositories, such as LANDFIRE. They also potentially 

provide improved inputs for fire behavior models as forest managers plan for fire risk. It is 

encouraging that the data limitations of low-density LiDAR were generally not a major 

hindrance to model accuracy. These results indicate the expanded utility of low-density LiDAR 

and suggest re-evaluations of datasets where vegetation mapping has not yet been tested. 
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FINAL CONCLUSIONS 

 

 

 

The direct measurement of forest attributes in the field is an expensive, time-consuming, and 

logistically difficult task. Fortunately, remote sensing and geospatial data can be used to spatially 

extend limited forest survey information by predicting forest attributes across unsampled areas. 

The results of this thesis research demonstrate two distinct applications of remote sensing and 

geospatial data designed to aid and enhance forest management needs at local extents.  

In the first chapter, forest survey information from FIA was combined with variety of 

predictors from remote sensing and geospatial data to accurately classify forest stands dominated 

by black ash in north central Minnesota, USA. The map outputs from this study provide a new 

geospatial resource to forest managers in the region that can be used in concert with data and 

expert knowledge of hydrology, vegetation, and wildlife to anticipate local ecosystem impacts 

from the effects of rapid stand mortality due to EAB. In the future, the downsampled 

randomForest classification model methodology could be applied to other ash species to aid and 

enhance EAB invasion model development and regional risk assessments. 

In the second chapter, a suite of metrics from low-density LiDAR (0.44 pts/m2) were used to 

model five canopy fuel attributes in the mixed forest ecosystem of northeastern Minnesota, USA. 

To date, few studies have evaluated the accuracy of low-density LiDAR to model canopy fuel 

attributes. The results from this study indicate potentially unrealized, cost-efficient benefits to 

other low-density LiDAR collections that cover over 5,000,000 km2 in the United States (Dept. 

of Commerce, 2018). The results also support previous research (Jakubowski, et al., 2013; 

Thomas et al., 2006; Treitz et al., 2012) suggesting that agencies and researchers should reassess 
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guidelines and recommendations (i.e. Mitchell et al., 2018) that advise against the use of low-

density LiDAR for plot-level measurement and mapping of forest attributes. 
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