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ABSTRACT 

 

 

DISTRIBUTED RUNOFF SIMULATION OF EXTREME MONSOON RAINSTORMS 

IN MALAYSIA USING TREX 

 

Malaysia has a monsoon climate and most areas receive more than 2,500 mm of rainfall 

every year. For the past five years, the frequency and magnitude of floods in Malaysia have been 

relatively high. Floods have become the most significant type of natural disaster for Malaysia in 

terms of the population affected, financial losses and adverse socio-economic impact. This study 

uses the distributed two-dimensional TREX model to simulate infiltration, overland runoff and 

channel flow during extreme rainfall events. The main objective is to calibrate the distributed 

hydrological model to simulate monsoon floods. The second objective is to determine the 

affected flooding area under different rainfall events (i.e., large and extreme rainfall events). 

Large rainfall events cover return periods ranging from two to one hundred years. Extreme 

rainfall events include both the PMP and the world’s largest rainfall events. The third objective is 

to examine the effect of rainfall duration on the magnitude of peak flood discharge as a function 

of watershed size. Finally, determine and produce graphs for the relationships between peak 

specific-discharge and watershed sizes. 

Three different sizes of watersheds are considered: Lui (small – 68 km
2
), Semenyih 

(medium – 236 km
2
) and Kota Tinggi (large - 1,635 km

2
). Generally, the topography of these 

watersheds is steep, except for the large watershed. The TREX model calibration and validation 

have been done using field measurements during several storm events. The performance of the 

model to find peak discharge, time to peak, and volume has been tested using three metrics: 

Relative Percentage Difference (RPD), Percentage Bias (PBIAS) and Nash-Sutcliffe Efficiency 
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Coefficient (NSEC)) comparison. On average, the model performance was good for small (RPD 

– 7%, PBIAS – 14% and NSEC – 0.4) and medium watersheds (RPD – 14%, PBIAS – 28% and 

NSEC – 0.7). The RPD (4%), PBIAS (2%) and NSEC (0.8) for the large watershed shows that 

the model performance was very good. 

 The spatial and temporal runoff distribution for overland and channel flows were 

successfully visualized in 3D. Both small and medium watersheds were not flooded by large 

events, except in the main channel. The flow depth reached 1.72 m in the valley of the small 

watershed only during extreme events. It was estimated that about 24% (±10%) and 83% (±5%) 

of the valley area exceed a flow depth of 1.72 m during PMP and world’s largest events, 

respectively. For the medium watershed, the valley area was covered with water in excess of 

4.49 m under the world’s largest events. The visualization tool shows that the valley areas are 

prone to severe flooding (in excess of 4.49 m of flow depth) under this event (±5%). For the 

large watershed, the low land areas (i.e., along the tributaries and channels) are more likely to be 

flooded during large and extreme events. The water depths covered more than 2.8 m in these 

areas.  

The maximum estimated discharges (MED) for large rainfall events were highest for 

rainfall durations of 3 to 5 hours on small watersheds. However, the MED values for medium 

watersheds were obtained for rainfall durations between 5 and 12 hours. The MED values for 

extreme rainfall events were highest for rainfall durations between 10 and 13 hours on both 

watersheds. For the large watershed, the MED values of large and extreme events were obtained 

for a rainfall duration of 168 hour.  

The main conclusions of this study are: (1) rainfall intensity (i.e., hourly data) is one of 

the main factors that contribute to the magnitude of flooding on small and medium watersheds 
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(watershed size less than 1,000 km
2
). The flooding events on large watersheds (watershed size 

more than 1,000 km
2
) result from longer rainfall durations (i.e., multi-day rainstorms), (2) for all 

size watersheds, the average magnitude of peak discharge for the PMP and the world’s largest 

events are approximately 5 and 12 times larger than a 100-year rainfall event, (3) the peak 

specific-discharge (cms/km
2
) decreased as the watershed size (km

2
)  increased, and (4) the runoff 

coefficient C increased significantly (i.e., a factor of three) from the 100-year rainfall event to the 

PMP and the world’s largest events for all watersheds (CPMP,CWGR > 0.7). 
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CHAPTER ONE 

INTRODUCTION 

 

1.1 MOTIVATION 

Malaysia has 1,800 rivers and streams and receives an annual rainfall of approximately 

2,500 mm. This makes Malaysia rich in water resources by receiving an abundant amount of 

water every year. However, there are some water related problems that raise concern among 

engineers, developers and the public. The problem is not having a proper outlet system for rain 

runoff. This is due to inappropriate channel designs created from improper methods for 

predicting peak discharge and volume of water (MSMA 2000). Towards the year 2020, Malaysia 

will face serious challenges relating to flood and drought management. Rapid urbanization has 

accelerated the impact on catchment hydrology and geomorphology (Chang et al. 2008). In 

recent years, rapid urban development within river watersheds has resulted in higher runoff and 

decreasing river capacity. These, in turn, resulted in an increase in flood frequency and 

magnitude, as shown in Tables 1.1a and 1.1b.  

Modeling and simulating rainfall-runoff relationships is very rare in Malaysia, especially 

in two-dimensions, with a distributed model and the visualization of the output in two or three-

dimensions. Utilization of data from the government of Malaysia, through the Department of 

Irrigation and Drainage (DID), the Department of Meteorological Malaysia (DMM) and the 

Department of Surveying and Mapping Malaysia (DSMM), could be very useful for rainfall-

runoff modeling.  
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Table 1.1(a) Flooding in Peninsular Malaysia from 2007 to 2012 
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Table 1.1(b) Flooding in Peninsular Malaysia from 2007 to 2012 (continued) 
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1.2 PROBLEM STATEMENT 

For the past five years, the frequency and magnitude of floods in Malaysia have been 

relatively high. Generally, floods happen between November and February each year due to the 

monsoon climate. The problem is made worse by malfunctioning early warning systems at the 

flooding areas. These floods have caused massive damage, but they also provide valuable 

information. This information could help Malaysian researchers and authorities to develop new 

algorithms, new software and procedures for designing future developments.  

The government has been spending large amounts of money on flood mitigation projects 

in urban and rural areas. Therefore, it is important to correctly predict flow in rivers and flood 

plains under extreme rainfall events. Most of the past studies are based on idealized experimental 

laboratory investigations, which are then presented in terms of a regression model to determine 

runoff. However, a better understanding of the relationship between rapid development and 

channel stability will allow engineers and developers to make more informed decisions in 

designing and planning by establishing a new numerical model and guidelines. 

 

1.3 RESEARCH QUESTIONS 

The main questions to conduct this study are: 

1. There are several hydrological models to study rainfall-runoff relationships. Can any of 

these models be used to simulate floods from monsoon climates in countries with 

wide/flat valleys and steep mountain area? The related question is: how well can these 

models simulate the peak discharge and time to peak under extreme monsoon 

precipitation? 
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2. What is the percentage (and uncertainty) of the valley areas flooded under different 

rainfall events? 

3. How does the magnitude of peak flood discharges Qp vary with the size of watersheds? 

4. What is the relationship between peak specific-discharge (Qp/Aw) and watersheds area 

(Aw)? 

 

1.4 OBJECTIVES 

The overall goal of this study is to simulate large and extreme rainfall events at three 

different sizes of watersheds (small, medium and large) in Malaysia using a mathematical 

approach. Large rainfall events cover return periods ranging from two to one hundred years. 

Extreme rainfall events include the Selangor-PMP (S-PMP), Kota Tinggi PMP (KT-PMP) and 

the world’s largest rainfall events. This study also aims to provide basic knowledge to engineers 

and developers of the behavior of the watersheds under extreme rainfall events. The main 

objectives of this study are as follows: 

1. Calibrate the distributed hydrological model to simulate monsoon floods; 

2. Determine the affected flooding area under different rainfall events; 

3. Examine the effect of rainfall duration on the magnitude of peak flood discharge as a 

function of watershed size; and 

4. Determine and produce graphs for the relationship between peak specific-discharge and 

watershed sizes. 

The first objective must be achieved before continuing to the other objectives. The TREX 

model was developed and tested using data in the United States of America (USA). The model 

was successful in simulating the relationship of rainfall-runoff as reported by Velleux (2005), 
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England et al. (2007), and Velleux et al. (2006 and 2008). However, at the time of this study, the 

model had not been tested in other countries. Expanding on the use of this model may benefit the 

world of hydrologic modeling through its successful use in this study. 

Chapter 2 provides background information about the availability of the different 

distributed models in hydrological modeling.  The uses of stochastic and deterministic models in 

Malaysia are also given in this chapter. The grid size selection and the evaluation of model 

performance are discussed towards the end of this chapter. The model description and numerical 

schemes for the selected model are described and explained in Chapter 3. Chapter 4 presents the 

calibration and validation to accomplish the specific objective 1. The simulations for large and 

extreme monsoon rainstorms at different size watersheds are presented in Chapter 5. In this 

chapter, the distribution of water depth across the watersheds is visualized in pseudo three-

dimensions and discussed (Objective 2). The uncertainty analysis is conducted to determine the 

variability of the magnitude of peak flood discharge (Objective 3) and produce the relationship 

between peak specific-discharge and watershed size in the graph form (Objective 4). Finally, 

Chapter 6 summarizes the main conclusions of this study. Eight appendixes are also provided to 

show the details of any relevant discussions.  
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CHAPTER TWO 

LITERATURE REVIEW 

 

This chapter provides a brief overview of distributed models. There is also a discussion 

on the hydrological approach used by Malaysian researchers and agencies to forecast and study 

the relationship between rainfall and runoff. The methods to evaluate the performance of the 

models are described in the last section of this chapter.  

 

2.1 CRITERIA FOR SELECTING HYDROLOGICAL MODEL 

Several well-known general hydrological models are currently in use. The availability of 

source code is one of the main criteria for model selection. The model must also have the ability 

to support the distributed parameters and the two-dimensional overland routing approach. Some 

models use either a semi-distributed or lumped (Figure 2.1a) approach, but these do not consider 

the spatial variability of the processes, boundary conditions or watershed geometric 

characteristics. A distributed model (Figure 2.1b) is expected to give better results than semi-

distributed models because they do take these missing factors into account (El-Nasr et al. 2005). 

Two-dimensional overland (Figure 2.2b) routing is more accurate compared to one-dimensional 

overland (Figure 2.2a) routing because it analyzes more outputs, which provides more 

information. An additional value to a distributed model is the ability to work with raster (raster 

consists of a matrix of cells (or pixels) organized into rows and columns (or a grid) where each 

cell contains a value representing information, such as elevation and water depth (ESRI 2012)) 

GIS database. The availability of rainfall and flow data is also considered. 
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Figure 2.1 Lumped and distributed (COMET 2012) 

 

 

Figure 2.2 Comparison of overland flow (a) 1D overland flow (modified from COMET 2012) 

and (b) 2D overland flow 
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2.2 LUMPED VERSUS DISTRIBUTED MODELS 

Lumped models (Figure 2.1a) have been used for over fifty years to estimate flow at 

watershed outlets. However, the simplification of many watershed characteristics may affect the 

simulation results. The parameters used in lumped models are spatially averaged and made 

uniform across the watersheds (Johnson and Miller 1997; Shah et al. 1996) and the number of 

parameters is less (Refsgaard 1997). However, in reality, these input data vary.  

A number of questions remain as to how the variability of rainfall and watershed 

characteristics impact runoff to generate streamflow at the watershed outlet (Woolhiser 1996; 

Smith and Konstantine 2004; Smith et al. 2004; Carpenter 2004). Nowadays, instead of lumped 

modeling, distributed modeling (Figure 2.1b) is becoming a more favorable approach in 

research. This is because most of the models are compatible to work with GIS and the emergence 

of large data sets and the increased efficiency of powerful computers to simulate and display the 

results (Smith et al. 2004). Distributed models better represent the spatial variability of factors 

that control runoff, thus enhancing the predictability of hydrologic processes (Vieux and Vieux 

2002; El-Nasr et al. 2005). These models usually use parameters that are directly related to the 

physical characteristics of the watershed including: topography (i.e., elevation), soil type, 

channel properties, land use, etc. The climate variability can also be taken into account as 

reported by Shultz (2006). Results are presented in the form of spatial and temporal 

characteristics (Vieux and Fekadu 2003; Velleux 2005; Velleux et al. 2008).  

Several potential distributed models include: the Institute of Hydrology Distributed 

Model (IHDM), MIKE-SHE, InfoWorks River Simulation (IWRS), Système Hydrologique 

Européen Transport (SHETRAN), a real-time distributed hydrological model (Vflo™) and Two-
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dimensional Runoff, Erosion and Export (TREX). Discussions of each of these models are given 

in the following sections. 

 

2.2.1 Institute of Hydrology Distributed Model (IHDM) 

IHDM is a physically-based rainfall-runoff model developed at the UK Institute of 

Hydrology (Beven et al. 1987; Calver and Wood 1995). IHDM started in 1977 and combines a 

finite difference method of the one-dimensional Saint-Venant equation for overland and channel 

flows with a conceptual soil water storage model with distributed parameters. Modifications 

were made to allow the area of overland flow on a hillslope plane to expand and to contract 

dynamically, flexibility in controlling the evapo-transpiration from surface water and the root 

zone, and interception and snowmelt calculations. The Institute of Hydrology Report provides 

detailed descriptions, including changes from the earlier versions of the IHDM model (Beven et 

al. 1987). The watershed is divided into hillslope areas and channel lengths (Figure 2.2a). The 

hillslope and channel lengths are represented as square rectangular sloping planes and constant 

cross-section, respectively.  This model was successfully tested by Beven et al. (1987) on the 

Wye catchment at Plynlimon, mid-Wales. The model has the ability to simulate rainfall-runoff 

on several watersheds (Rogers et al. 1985; Calver 1988; Beven and Binley 1992; Calver and 

Cammeraat 1993), including ungaged watersheds (Morris 1980). The availability of the model 

cannot be found, but the user manual is available (Beven et al. 1987). 

 

2.2.2 MIKE-SHE  

MIKE-SHE was introduced by Refsgaard and Storm (1995). The model is a 

comprehensive, deterministic, distributed, and physically based modeling system. It can be used 
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for the simulation of hydrological processes occurring in the land phase of the hydrological 

cycle. It simulates overland and channel water flow, water quality and sediment transport. This 

model is user-friendly and based on the SHE modeling concept (Abbott et al. 1986a and 1986b). 

MIKE-SHE is applicable to a wide range of water resources and environmental problems. For 

surface waters, flow routing is performed using a diffusive wave approximation. The model 

simulates two-dimensional overland flow and one-dimensional flow in channels. The MIKE-

SHE is widely used by a large number of organizations. As the extended version of SHE 

(Système Hydrologique Européen), a list of applications can be found in Singh (1995). 

Unfortunately, the MIKE-SHE model source code (and documentation) could not be obtained 

and is not publicly available. MIKE-SHE is the product of DHI (Danish Hydraulic Institute) and 

more information about MIKE-SHE can be found at DHI’s website (http://mikebydhi.com/ 

Products/Water Resources?MIKESHE.aspx). 

 

2.2.3 InfoWorks River Simulation (IWRS) 

IWRS is a hydrodynamic model that solves for full unsteady flow equations. The model 

originated from the UK. This model can be used to simulate rainfall-runoff relationships either in 

one- or two-dimensions. The IWRS model has the capabilities to simulate the widest range of 

flow situations and channel characteristics based on the Saint-Venant equation, which uses the 

conservation of mass and momentum. The model uses a base flow in the steady state condition to 

generate the initial conditions for the full, unsteady solution. This steady state run is used to 

solve most of the instability issues that arise as the model begins because the unsteady model 

cannot run for a dry condition (Mountz and Crowley 2009). The output from this model can be 

merged into ArcGIS, which provides the ability to present an integrated view of geo-referenced 

http://mikebydhi.com/%20Products/Water%20Resources
http://mikebydhi.com/%20Products/Water%20Resources
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characteristics and spatial relationships. It has been shown that the IWRS model has successfully 

simulated the rainfall-runoff relationship (Carmona and Vargas 2008; Noh 2008; Ma 2008; Sloan 

2009; Hassan 2011). The steady state analysis of initial conditions was simulated using direct 

runoff inputs. The unsteady analysis can be calculated using either a fixed-time step set by the 

user or an adaptive (variable) time step determined by the program. Unfortunately, this model is 

not publicly available either. However, the Innovyze Company provides a special price to 

universities for up to twenty licenses for water distribution, sanitary and storm sewer, and urban 

drainage systems analysis software with a cost of $1000 per year (http://www.innovyze.com 

/education/universities/). Further information can be found at the Innovyze Company website 

(http://www.innovyze.com/ products/infoworks_rs/).  

 

2.2.4 Système Hydrologique Européen Transport (SHETRAN) 

SHETRAN is a physically-based, distributed, deterministic, integrated surface and 

subsurface modeling system. It is designed to simulate water flow, sediment transport and 

contaminant transport at the catchment scale (Ewen et al. 2000 and 2002). This model is based 

on the SHE modeling concept (Abbott et al. 1986a and 1986b) and is designed primarily to 

model watersheds and channel networks feeding surface and subsurface responses to 

precipitation to a single outflow reach of the channel. For surface waters, flow routing is 

performed using the diffusive wave approximation and is two-dimensional for overland flow and 

one-dimensional in channels. SHETRAN is publicly available and can be downloaded through 

the School of Civil Engineering and Geosciences, Newcastle University, UK 

(http://research.ncl.ac.uk/shetran /index.htm).  However, the main limitation of this model is that 

http://www.innovyze.com/
http://www.innovyze.com/%20products/infoworks_rs/
http://research.ncl.ac.uk/shetran%20/index.htm
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it can only generate a grid size up to 50 m. A larger grid size can be amended to the code by 

collaborating with the school, as recommended by its author. 

 

2.2.5 A Real-time Distributed Hydrological Model (Vflo™) 

Vflo™ is a real-time distributed and physics-based hydrologic model for managing water 

resources, water quality management and flood warning systems. Digital maps of soils, land use, 

topography and rainfall rates are used to compute and route rainfall excess through a network 

formulation based on the Finite Element Method (FEM) computational scheme, as described by 

Vieux (2001a and 2001b). Runoff production is from infiltration excess and is routed 

downstream using the kinematic wave analogy. This model represents an important advance in 

simulating rainfall-runoff using digital data describing Earth’s terrain coupled with new 

technology in radar precipitation detection. Hydrographs can be simulated in real-time and post-

analysis can be conducted at any location where there is a channel or an overland flow element. 

The details of this model have been described in Vieux and Vieux (2002). 

 Vflo™ is commercial code and can be purchased through VIEUX, INC. There are two 

types of Vflo™ model: basic and professional. The basic Vflo™ has limitations in terms of 

number of cells, maximum time to solve the problem, and the output cannot be exported for 

inundation mapping and animation, and has a limited numbers of rain gages. Further information 

about this model can be found at http://www.vieuxinc.com/vflo.html. 

 

2.2.6 Two-dimensional Runoff, Erosion, and Export (TREX) 

TREX is a two-dimensional distributed, physically-based model that can be used to 

simulate precipitation, overland runoff, channel flow, soil erosion, stream sediment transport and 
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chemical transport and fate at the watershed scale (Velleux et al. 2008; England et al. 2007; 

Velleux et al. 2006; Velleux 2005). This framework is based on the CASC2D watershed model 

(Julien et al. 1995; Johnson et al. 2000; Julien and Rojas 2002). TREX has three main 

components, which are hydrology, sediment transport and chemical transport and fate. The code 

has been subjected to extensive testing to ensure accuracy and error-free performance. This 

model has been applied to different sizes of watersheds, ranging from small to large (Ogden and 

Julien 2002; Velleux 2005; England 2006; Velleux et al. 2006; Velleux et al. 2008; England et 

al. 2007).  

The hydrological processes simulated are rainfall (England et al. 2007; Velleux 2005; 

Velleux et al. 2006; Velleux et al. 2008) and snowfall (precipitation), interception, snowmelt 

(Kang 2005) and surface storage, infiltration and transmission loss, and overland and channel 

flow. Model state variables are water depth in the overland plane and stream channels. 

Precipitation can be uniform or distributed in both time and space (Jorgeson 1999; Ogden 1992; 

Ogden and Julien 1993, 1994 and 2002; Ogden et al. 2000; Richardson et al. 1983) and can also 

be specified using several grid-based formats to facilitate radar precipitation data use. When 

spatially distributed precipitation is simulated, areal estimates are interpolated from point gage 

data using an inverse distance weighting approach. Interception and surface storage are 

simulated as equivalent depths. Infiltration and transmission loss rates are simulated using the 

Green and Ampt (1911) relationship. Overland and channel flows are simulated using the 

diffusive wave approximation in two- and one-dimensions, respectively. TREX model is 

publicly available and can be downloaded at http://www.engr.colostate.edu/~pierre/ceold/ 

Projects/TREX%20Web%20Pages/TREX-Home.html. 

http://www.engr.colostate.edu/~pierre/ceold/%20Projects/TREX%20Web%20Pages/
http://www.engr.colostate.edu/~pierre/ceold/%20Projects/TREX%20Web%20Pages/
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These findings and availability of the programs lead to only one model to be used in this 

research, the TREX model. The criteria for model selection have been summarized and 

tabulated, as shown in Table 2.1. Detailed descriptions on governing equations and numerical 

schemes are described and explained in Chapter Three. 

 

Table 2.1 Summary of the criteria for model selection 

HYDROLOGICAL 

MODELING 

CRITERIA 

Distributed 

Model 

Compatible 

with ArcGIS 

2D overland 

routing 

Continuous 

rainfall 

event 

Source 

code 

availability 

   IHDM YES NO NO NO NO 

   IWRS YES YES YES YES NO 

   SHETRAN YES NO YES YES YES 
   MIKE-SHE YES YES YES YES NO 

   Vflo
TM

 YES YES YES YES NO 

   TREX YES YES YES YES YES 

 

2.3 SELECTION OF THE COMPLEXITY OF THE MODEL 

The main discussions in this section are to compare the selection and the application of 

one-, two- and three-dimensional hydrologic models. Also discussed are the risks of not being 

able to represent the topography of the watersheds, the difficulty in getting a solution and the 

application of the hydrological models at difference sizes of watersheds. These are the main 

concerns in selecting the complexity of the hydrological model (CHM). Figure 2.3 shows the 

“trade-off diagram” for the CHM (i.e., one-, integrated one-two, two- and three-dimensional 

hydrological modeling) and size of the watershed. 

Generally, the choice of CHM depends on the project objectives (Dooge 1977; 

McPherson 1978) and scope, the knowledge and skills of the modeler, resources constraints 
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Figure 2.3 “Trade-off diagram” in selecting dimensions of hydrological modeling (modified 

from Overton and Meadows 1976) 

 

(Overton and Meadows 1976) and time and length scales (Church 2006; Grayson and Blöschl 

2000). In addition to these, the optimization and presentation of the final output should be 

considered as described by Scoging et al. (1993). Choosing a complex hydrological model will 

represent the characteristics of the watershed better, but it makes obtaining a solution more 

difficult. Another factor that should also be considered is the size of the watershed. A simpler 

model was usually selected when a large size watershed was to be modeled. From Figure 2.3, the 

1D and 2D models are more favorable to simulate hydrological models for any size of watershed. 

Conversely, the application of 3D models in hydrological modeling for a variety of watershed 

sizes is rare (Church 2006; CWCB 2008). The water depth distribution, as a function of time and 
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length scale, is one of the most important objectives of this study. Therefore, based on Church 

(2006) and CWCB (2008), a 1D or 2D model is sufficient to simulate this distribution as 

compared to 3D, which may not be realistic because it currently is very costly. Therefore, the 3D 

models will not be discussed in this section. 

 

2.3.1 Risk of not presenting the system 

In hydrological modeling, the representation of the system should be as accurate as it 

possibly can be. The representation of the system can be extracted directly from the digital 

elevation model (DEM). This is the most important data because topography controls runoff and 

watershed boundaries (Vieux 2004). The shape and timing of the hydrograph have been shown 

to be a function of size, slope, shape, soil types, storage capacity, land use and climatic variables. 

When a model is able to reflect the principle of how a watershed functions hydrologically, then 

the possibility to extrapolate beyond current situations with reliable predictions may be possible 

(Sivapalan and Young 2004). Rainfall intensity and duration are the major driving forces of the 

rainfall-runoff process, followed by watershed characteristics that translate the rainfall input into 

an output hydrograph at any point of the watershed.  

 

2.3.2 Difficulty in obtaining solution 

The difficulties in obtaining accurate solutions involve: (1) easy to use and prepare the 

input data, (2) model accuracy, (3) hydrologic parameters consistency, (4) sensitivity of the 

output when parameters changes, (5) storage (in computer hard drive space) required for the 

output, (6) data limitations, and (7) computer time simulation. The availability of data is the most 
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important in selecting the CHM (Bedient and Huber 2002). In general, the 1D model can predict 

flow and produce accurate hydrographs when it has been calibrated and validated.  

According to Knapp et al. (1991), the basic idea in the selection of models is to adopt the 

simplest model (i.e., easy to use and apply) that will provide acceptable results. However, the 

ease of application will also depend upon the individual experience of the modeler, both in the 

use of the model and the knowledge of the watershed. Generally, the complexity of the model 

strongly relates to the ease of the application.  This means that the simpler models normally 

require the least effort to apply and least effort in calibration and validation as compared to more 

complex models (WMO 1975; Abbott 1978; Franchini and Paccicani 1991). 

A study conducted by McPherson (1978) regarding the accuracy of the rainfall-runoff 

model may vary and is mostly inconclusive, and therefore controversial. However, other studies 

show that most rainfall-runoff models will predict runoff and streamflow with similar accuracy 

(Papadakis and Preul 1973; Heeps and Mein 1974; Marsalek et al. 1975; WMO 1975; Abbott 

1978; Loague and Freeze 1985; Franchini and Pacciani 1991; Melching et al. 1991). The 

accuracy of the model is determined by availability of the input data and an observed input and 

output time series at various locations in a watershed (Bedient and Huber 2002). The accuracy of 

the model can be measured using model performance evaluation techniques as suggested by 

Legates and McCabe (1999), Krause et al. (2005), and Moriasi et al. (2007). The sensitivity 

analyses of a model will reveal information on the relative importance of many input parameters 

as well as uncertainty in the model output (James and Kuch 1998). 

Based on these discussions (i.e., sections 2.3.1 and 2.3.2), Figure 2.3 shows that a two-

dimensional hydrological model was recommended to study the rainfall-runoff relationship as 

concluded in the reports by Bates and De Roo (2000), Juza and Barad (2000), Syme (2001), 
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Wagner and Mueller (2001), Leorpardi et al. (2002), Kelly and Rydlund (2005), Musser and 

Dyer (2005), Barnard et al. (2007), Schumann et al. (2008), Tayefi et al. (2007), CWCB (2008) 

and Papanicolaou et al. (2009).  

 

2.4 RAINFALL-RUNOFF MODELING IN MALAYSIA 

In Malaysia, the prediction of flood frequency using stochastic models is common. The 

statistical concept (Suhaila and Jemain 2007 and 2008; Wan-Zin et al. 2009a and 2009b) and 

artificial neural network (ANN) (Nor et al. 2007; Wardah et al. 2008; Sulaiman et al. 2011) are 

the preferred methods, as compared to other stochastic models. Deterministic models are still 

relatively new in Malaysia, even though they have been widely used in many other countries 

(Ab. Ghani et al. 2009). However, some of the hydrological simulations that have been 

successfully conducted are briefly discussed.  

In Malaysia, models from the United Kingdom (UK), United States of America (USA) 

and Australia are widely used for rainfall-runoff simulations. Mah et al. (2007, 2010 and 2011), 

Said et al. (2009) and Ali and Ariffin (2011) used the commercial software InfoWorks River 

Simulation (IWRS) and Siang et al. (2007) used InfoWorks Collection System (IWCS) from the 

UK to simulate rainfall-runoff. Hydrological models from the USA such as HEC (Yusop et al. 

2007; Razi et al. 2010; Mohammed et al. 2011), L-THIA program (Izham 2010), MIKE (Billa et 

al. 2004 and 2006; Lim and Cheok 2009) and MAYA 3D (Ghazali and Kamsin 2008) have been 

used to simulate flood events. Teo et al. (2009) and Toriman et al. (2009) used the 2DSWAMP 

and XP-SWMM models from Australia to simulate runoff. Except for the L-THIA model, the 

other models listed are not publicly available. Most hydrological modeling studies in Malaysia 

were carried out using a one-dimensional approach (except Lim and Cheok 2009 and Teo et al. 
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2009, which are two-dimensional approaches). While modelers are aware of the advantages of 

two-dimensional models, the lack of reliable information is another main reason modelers in 

Malaysia avoid using them.  

Commercial software from the UK, namely IWRS and IWCS, has been widely used in 

simulating hydrological processes. Siang et al. (2007) used the IWCS model in their case study 

at Tanjong Malim, Perak to draft a comprehensive stormwater management and flood mitigation 

plan for local authorities. They found that this model has the ability to simulate the interaction 

between rivers and urban drainage. These results were useful to design the flood mitigation plan 

based on the impact of variously designed storm events in the study area. Additionally, the study 

provides local authorities with valuable information to plan for existing and future land use 

changes. Mah et al. (2007, 2010 and 2011) and Said et al. (2009) used the IWRS model to 

simulate the impact of runoff on the floodplains and the water quality of the river before and 

after the floods. They successfully simulated these events and the information is useful to the city 

council for flood mitigation design and water quality management. Ali and Ariffin (2011) used 

IWRS to simulate the flood events at the Damansara Catchment (Kg. Melayu Subang – 

upstream, Taman TTDI Jaya, Batu 3, and Taman Sri Muda) in 2006, 2007 and 2008. The model 

has the ability to simulate and produce hydrographs that are useful in designing structures such 

as retention ponds and flood walls, especially in low-lying areas (i.e., Taman TTDI Jaya and 

Batu 3).  

 Yusop et al. (2007) used the commercial software HEC-HMS to determine the runoff and 

hydrograph-characteristic modeling for an oil palm plantation in the Skudai River watershed. 

From the high index of the model’s performance (calibrated and validated models efficiency 

index of 0.81 and 0.82, respectively), they suggested that the model could be used for filling in 
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the missing runoff from rainfall data. Razi et al. (2010) used HEC-HMS at the Johor River to 

estimate flooding. The model has been suggested for use as a tool to estimate peak discharge. 

This conclusion has been supported because the evaluation of the model’s performance is close 

to unity with observation. The HEC-2 model was adopted by Mohammed et al. (2011) to predict 

water surface profiles for the Langat River at Selangor and Linggi River at Negeri Sembilan 

(both tropical rivers). The HEC-2 model was developed by the US Army Corps of Engineers 

especially to compute water surface profiles. The HEC-2 model successfully predicted the water 

level at Linggi River, Negeri Sembilan with a small error. However, the model at the Langat 

River, Selangor did not have a good agreement. According to the authors, the model can still be 

applied to tropical rivers with a reasonable level of error if the input data are good. 

 Modeling the effects of mangroves on tsunamis has used commercial software from 

Australia, namely 2DSWAMP, by Teo et al. (2009). This model was used to investigate the 

pattern of mangrove tree distribution and diameters that can affect the attenuation of tsunamis at 

the Merbok Estuary, Kedah. A one-dimensional hydrodynamic model, namely XP-SWMM, was 

used by Toriman et al. (2009) to simulate flood water of the Damansara River at TTDI, Selangor. 

The authors studied the time of water filling and volume of flood discharge (m
3
/s) over the flood 

plain. They were successful in producing a Flood Hazard Mapping for Urban Area (FHMUA).  

Izham et al. (2010) used a free commercial program, L-THIA (Purdue University), to simulate 

runoff at Pinang River, Pulau Pinang. Lim and Cheok (2009) used MIKE-FLOOD coupled with 

MIKE-11 and MIKE-21 to simulate flood events at Damansara River, Selangor. In summary, the 

two-dimensional simulations provide crucial information with regard to the direction and rate of 

flood propagation, the flood inundation extent, and flood depths and flood durations that cannot 

be achieved using one-dimensional simulations. 
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2.5 SIMULATING LARGE AND EXTREME FLOOD EVENTS 

Though rare in reality, large and extreme flood simulations are important for both urban 

and rural areas (Curran et al. 2005). Malaysia receives heavy rainfall for a period of a few hours 

and development has contributed to an increase in the frequency of flooding in both urban and 

rural areas (Suhaila and Jemain 2007 and 2008; Wan-Zin et al. 2009a and 2009b). This condition 

is different than the US, which receives a series of small precipitation (Votteler 2002) that 

usually results in flooding (Grigg 2003). 

Typical parameters that affect the runoff estimation are: time, land covers, soil type and 

size of watershed, and rainfall. Gravitational, thermodynamics and other natural forces affect the 

generated runoff and these effects are influenced by time (Shaver et al. 2007). The response time 

of runoff indicates how quickly the runoff created from the rainfall event drains to the outlet and 

how quickly the rate of that runoff will change as the rainfall changes. The soil surface and 

subsurface plays a direct role in determining the volume and rate of runoff from rainfall 

(Bissonnais et al. 2005). Among soil types, sands, which have less void space and permeability, 

can be expected to produce less runoff volume than silts and clay (Shaver et al. 2007). The 

characteristics of the vegetation and impervious surfaces can also affect the volume of resulting 

runoff and watershed response time (Chow et al. 1988; Singh 1989; Bras 1990). 

 

2.5.1 Watersheds size classification 

The temporal and spatial flood magnitude and the response time of the peak discharge are 

both related to the size of the watershed (Grigg 2003; England et al. 2007). Research conducted 

on watershed modeling at different areas has used several definitions for classifying the size of 
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the watershed. These sizes vary greatly. In the next paragraph, the classification for small, 

medium and large watersheds will be discussed. 

 Yaolin and Zhijun (2005) claimed that 26.14 km
2
 is a small watershed when they 

conducted a case study on the estimation of the amount of soil erosion at Taipingxi, China. 

Cheng (1987) did the analysis of storm design on 6.32 km
2
 and 97.9 km

2
 watersheds in 

Dashuiken and Fengsulang, respectively. Cui et al. (2011) applied the AHP-PCA method on the 

40.5 km
2
 watershed at Puwa to evaluate the sustainable development of a small watershed. Li et 

al. (2009) used the trace technique to estimate the net soil loss on a 4.46 km
2
 watershed in 

Sichuan Hilly, China. Ni et al. (2008) claimed that 187 km
2
 is a small watershed in their study to 

simulate the water and soil erosion at Loess Plateau. Zhou et al. (2005) labeled a 15,300 km
2
 

watershed as small when they designed the flood management system at Miyun and Guanting.  

 However, Jinliang et al. (2009) stated that a 14,700 km
2
 watershed was medium sized 

when they conducted a study at the Jiulong River watershed. Liu et al. (2004) defined a medium 

size watershed as more than 500 km
2
. Bitew and Gebremichael (2011) used two medium sized 

watersheds (299 km
2
 and 1,656 km

2
) to determine the streamflow using satellite rainfall in 

regions of the Ethiopian highlands. Feyen et al. (2000) defined 600 km
2
 as a medium size 

watershed.  

Frenette and Julien (1987) determined the soil erosion and sediment yields on a large 

watershed (6,684 km
2
) at Quebec, Canada. Molnar (1997) described a large watershed as 560 

km
2
 for his study area at Hickahala-Senatobia basin in Northwestern Mississippi. Lange et al. 

(1999) studied a large arid watershed of Nahal Zin, Israel with an area of 1,400 km
2
. Güntner and 

Bronstert (2004) stated that a large watershed for modeling is between 10,000 and 100,000 km
2
. 

Boston et al. (2004) used the Banqiao sub-catchment of the Malianhe watershed in China with an 
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area of 730 km
2
, and termed this as a large watershed in a semi-arid region. Skøien (2003) 

defined small, medium and large watersheds as 3 to 70 km
2
, 70 to 250 km

2
 and 250 to 130,000 

km
2
, respectively. 

For this study, the classifications of the watershed size as defined by Singh (1995) will be 

used. He categorized the area of a watershed that is less than 100 km
2
 as small, and more than 

1,000 km
2
 as large. Watershed areas between these two sizes are defined as medium. 

The term peak specific-discharge, which is the ratio between peak discharges to the 

watershed size, was first used by Julien (2002). He used the term to plot the relationship between 

peak specific-discharge and watershed size (Figure 2.4). Later, Smith et al. (2005a, 2005b and 

2007) and Javier et al. (2007a and 2007b) used similar terms to describe the amount of peak 

discharge (for observed and simulated) during large flood events. The terms they used are unit 

discharge, unit specific peaks, peak unit discharge, and unit discharge peaks. However, the graph 

was first introduced by Creager (1939). He used recorded big flood data in the USA for the years 

of 1890, 1913, 1921, 1934, and 1939. He believed that the big flood will increase as time goes by 

if more recorded data were available and used in this analysis. Six years after he wrote this 

article, Creager et al. (1945) used more data, as suggested in the previous article. They collected 

the big flood event data in the USA and some other countries from the various sources. Data 

were recorded between 1501 and 1940. Gupta (2001) described Creager’s method in his book.  

 

2.5.2 Large and extreme rainfall events 

According to Nathan and Weinmann (1999), there are three categories of rainfall and 

flood events (Figure 2.5): large, rare and extreme. The large events can be obtained from 

interpolation techniques with moderate uncertainty and range from one in fifty years to one in
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Figure 2.4 Extreme peak specific-discharges vs. drainage area (modified from Julien 2002) 

 

one hundred years Annual Exceedence Probability (AEP). An extrapolation from the known to 

the unknown, and a pragmatic approach based on theoretical upper limits, is the technique used 

to obtain information on rare and extreme events, respectively. These events have a value of less 

than one in 2,000 years AEP for rare events and more than one in 2,000 years for extreme events. 

The uncertainty for rare events can be from moderate to large, and unquantifiable for extreme 

events. In this study, levels of one in two years, one in five years, one in ten years and one in 

twenty year events have been added to the large events category for simulations. 
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Figure 2.5 Categories in designing rainfall and flooding modeling (adapted from Nathan and 

Weinmann 1990) 

 

The polynomial approximation as shown in Equation 2.1 has been used to calculate the 

rainfall intensity for large rainfall events covering return periods ranging from two to one 

hundred years for Selangor (Table 2.2) and Kota Tinggi (Table 2.3), as suggested in MSMA 

(2000). 

 

  (  
 )       ( )   [  ( )]   [  ( )]           [            ] 

Where,    
   = the average rainfall intensity (mm/hr) for ARI and duration t 

R  = average return interval (years) 
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Table 2.2 Duration of rainfall intensity (mm/hr) for Selangor – small and medium watersheds 

RAINFALL 

DURATION 

(hrs.) 

RETURN PERIOD (year) RAINFALL 

DURATION 

(hrs.) 

RETURN PERIOD (year) 

2 5 10 20 50 100 2 5 10 20 50 100 

1 53.6 64.1 72.2 79.8 87.7 94.9 9 10.5 13.1 14.9 16.3 17.9 19.1 

2 35.1 42.7 48.2 52.8 58.2 62.3 10 9.5 11.9 13.4 14.8 16.2 17.3 

3 26.3 32.4 36.7 40.0 44.2 47.1 11 8.7 10.9 12.2 13.5 14.8 15.8 

4 21.0 26.2 29.6 32.3 35.7 38.0 12 8.0 10.0 11.2 12.4 13.6 14.5 

5 17.5 21.9 24.8 27.1 30.0 31.9 13 7.4 9.2 10.4 11.5 12.5 13.4 

6 15.0 18.9 21.4 23.3 25.8 27.4 14 6.9 8.5 9.6 10.7 11.6 12.4 

7 13.1 16.5 18.7 20.4 22.5 24.0 15 6.4 7.9 8.9 9.9 10.8 11.6 

8 11.6 14.6 16.6 18.2 20.0 21.3 16 6.0 7.4 8.3 9.3 10.1 10.8 

Table 2.3 Duration of rainfall intensity (mm/hr) for Kota Tinggi – large watershed 

RAINFALL 

DURATION 

(hrs.) 

RETURN PERIOD (year) RAINFALL 

DURATION 

(hrs.) 

RETURN PERIOD (year) 

2 5 10 20 50 100 2 5 10 20 50 100 

1 67.2 81.4 92.0 107.7 118.4 129.7 12 14.3 19.6 22.7 25.6 30.6 34.1 

2 44.5 56.2 63.9 72.4 82.5 90.3 13 13.6 18.7 21.6 24.6 29.2 32.6 

3 34.6 44.7 51.1 56.7 66.3 72.7 14 13.0 17.8 20.7 23.7 28.0 31.3 

4 28.8 37.8 43.4 47.7 56.6 62.3 15 12.5 17.1 19.9 22.9 26.9 30.1 

5 25.0 33.2 38.1 41.7 50.0 55.2 16 12.0 16.4 19.1 22.2 26.0 29.0 

6 22.2 29.8 34.3 37.5 45.1 50.0 24 (1-day) 9.5 12.8 14.9 18.7 20.7 23.1 

7 20.1 27.2 31.3 34.3 41.4 45.9 48 (2-days) 6.5 8.4 9.8 15.0 14.1 15.6 

8 18.5 25.1 28.9 31.8 38.4 42.7 72 (3-days) 5.4 6.6 7.7 14.0 11.3 12.4 

9 17.2 23.3 27.0 29.8 35.9 40.0 120 (5-days) 4.4 4.9 5.7 13.8 8.7 9.2 

10 16.1 21.9 25.3 28.2 33.9 37.7 168 (7-days) 4.0 4.0 4.7 14.4 7.3 7.6 

11 15.1 20.7 23.9 26.8 32.1 35.8        
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t  = duration (minutes) 

  a, b, c, d = fitting constants dependent on ARI (Tables 2.4 and 2.5) 

 

Table 2.4 Coefficients for the polynomial approximation for Selangor - small and medium 

watersheds (          min) 

ARI (Year) 
SELANGOR 

a b c d 

2 4.2095   0.5056 - 0.1551   0.0044 

5 5.1943 - 0.0350 - 0.0392 - 0.0034 

10 5.5074 - 0.1637 - 0.0116 - 0.0053 

20 5.6772 - 0.1562 - 0.0229 - 0.0040 

50 6.0934 - 0.3710   0.0239 - 0.0073 

100 6.3094 - 0.4087   0.0229 - 0.0068 

 

Table 2.5 Coefficients for the polynomial approximation for Kota Tinggi – large watershed 

(           min) 

ARI (Year) 
KOTA TINGGI 

a b c d 

2 5.1028   0.2883 - 0.1627 0.0095 

5 5.7048 - 0.0635 - 0.0771 0.0036 

10 5.8489 - 0.0890 - 0.0705 0.0032 

20 4.8420   0.7395 - 0.2579 0.0165 

50 6.2257 - 0.1499 - 0.0631 0.0032 

100 6.7796 - 0.4104 - 0.0160 0.0005 

 

The coefficients in Tables 2.4 and 2.5 are valid for rainfall durations from 30 to 1,000 

minutes (MSMA 2000). The margin of error is likely to be higher for durations shorter than 30 

minutes and longer than 1,000 minutes (MSMA 2000). However, for the Kota Tinggi watershed, 

the rainfall duration needed to extend up to 10,080 minutes (7 days). This is because the 

maximum estimated discharge for this watershed can only be reached when the duration of 
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rainfall is longer, as compared to small and medium watersheds (Knighton 1998). The rainfall 

intensity for extreme rainfall events include the Selangor Probable Maximum Precipitation (S-

PMP), Kota Tinggi Probable Maximum Precipitation (KT-PMP) and the world’s largest rainfall 

events (Table 2.6), which were obtained from NAHRIM (2008) and Poon and Hwee (2010) and 

Jennings (1950), respectively. These tabulated values (Tables 2.2, 2.3 and 2.6) are visualized in 

Figures 2.6 and 2.7, respectively. 

 

Table 2.6 Rainfall duration and intensity for S-PMP, KT-PMP and the world’s largest events 

RAINFALL 

DURATION (hrs.) 

S-PMP 

(mm/hr) 

KT-PMP 

(mm/hr) 

WORLD’S 

EVENT (mm/hr) 

1 188 185.7 260.9 

2 --- --- 186.6 

3 100 74.3 153.4 

4 --- --- 133.4 

5 --- --- 119.8 

6 65.2 58.8 109.7 

7 --- --- 101.8 

8 --- --- 95.4 

9 --- --- 90.2 

10 --- --- 85.7 

11 --- --- 81.8 

12 43.2 44.0 78.4 

13 --- --- 75.5 

14 --- --- 72.8 

15 --- --- 70.4 

16 --- --- 68.3 

24 (1-day) 25.7 27.3 56.1 

48 (2-days) --- 19.3 40.1 

72 (3-days) --- 14.8 33.0 

120 (5-days) 6.5 10.8 25.8 

168 (7-days) 4.9 9.1 21.9 

Note: PMP = Probable Maximum Precipitation; S-PMP = Selangor’s PMP; KT-PMP = Kota       

         Tinggi PMP 
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Figure 2.6 Data for simulating large and extreme rainfall events at small and medium watersheds 

 

2.6 SELECTION OF THE GRID SIZE 

According to Doe and Harmon (2001), different model outputs can be simulated if the 

same system is modeled with different grid cell sizes. Several studies, which will be discussed 

here, have shown that grid size has an influence on both catchment characteristics (as calculated 

from DEMs) and on modeling results. The simulation results have a significant impact at 

different spatial resolutions of input data, which is represented by the heterogeneity of landscape 

(Blöschl et al. 1997). Therefore, there is a need to consider the appropriate spatial resolution in 
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Figure 2.7 Data for simulating large and extreme rainfall events at large watershed 

 

hydrological modeling (Grayson and Blöschl 2000). Generally, increasing the level of 

discretization could increase the level of accuracy. However, according to Wood et al. (1988) 

and Mamillapalli et al. (1996), there must be a limit to increasing the level of discretization 

where the model performance cannot be improved. This section will discuss the recommended 

grid sizes at different sizes of watersheds. Based on the literature reviewed on this subject, the 

appropriate grid size will be selected to simulate rainfall-runoff in this study. 
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Zhang and Montgomery (1994) used TOPMODEL to simulate a hydrologic model at 

Mettman Ridge (0.3 km
2
), Oregon and Tennessee Valley (1.2 km

2
), California. They suggested 

that 10 m grid size would suffice to produce good and reliable results. Fedak (1999) studied the 

effect of grid size for a 152 km
2
 sized watershed. He increased the DEM grid size from 15 to 120 

m and the resulting hydrograph generated by TOPMODEL was completely the same. Usul and 

Paşaoğullari (2004) examined the effect of grid size and map scale on geomorphological basin 

parameters. They recommended that for a one km
2
 watershed (Tarasҫi watershed) the grid size 

should be between 2 and 25 m. Whereas for 10.6 km
2
 (Ciftlikozu watershed) and 98 km

2
 (Cicek 

watershed) size of watersheds, appropriate grids ranged between 5 and 30 m and between 10 and 

50 m, respectively. 

Valeo and Moin (2000) studied the impact of grid size on calibrated parameters for a 

small catchment in southern Ontario (8 km
2
). They found that a coarser grid size increased the 

topographic index and, as a result, the calibrated transmissivities become larger. These authors 

recommend an optimal grid size of 50 m if simple hydrologic studies are to be conducted. The 

effect of different grid sizes on runoff and soil moisture in central New York has been 

investigated by Kuo et al. (1999). Grid sizes ranging between 10 and 600 m were used. Three 

different sizes of basins, ranging between 6.5 to 23.6 km
2
, were also used. They found that when 

the simulation was conducted in wet seasons, discharges were not affected by the grid size. 

However, grid size comparison did show differences in simulated discharges when the same 

exercises were conducted in dry seasons. 

Zhao et al. (2009) studied the impacts of DEM and land use grid size at Xitiaoxi 

catchment in Southern China (2,200 km
2
) on simulated discharge. Four different grid sizes 

ranging between 100 to 1,000 m were used. They found that at a 1,000 m grid size, the input data 
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(i.e., DEM and land use) and the model efficiencies did not lead to significant error to the 

simulated discharge. Bormann (2006) selected the Dill catchment (693 km
2
) in Germany to study 

the impact of spatial data resolution in simulating catchment water balance and model 

performance. The DEM, soil maps and land use were reclassified from 25 m to various numbers 

of spatial resolutions between 50 to 2,000 m. The error was small (i.e., 0-3% for annual stream 

flow) when these input data were reclassified from 25 m up to 500 m. However, when the spatial 

resolution for these input data increased from 500 m up to 2,000 m, the error becomes 

significant, which was about twelve percent for annual stream flow. 

 Shrestha et al. (2002 and 2006) introduced a method to determine grid size, the IC-ratio, 

which is the ratio of the input data (e.g., DEM, soil types and land use) grid size to the watershed 

size. They suggested that IC-ratios between 1:6 and 1:20 are considered to be optimal for 

performance of the model. That means, if the IC-ratio is less than 1:6, the performance of the 

model can be improved, while at an IC-ratio of more than 1:20, the improvement of the model 

performance is very small (i.e., negligible). Hessel (2005) applied the LImburg Soil Erosion 

Model (LISEM) at the Danangou catchment (3.5 km
2
) area. He studied the effect of grid size to 

the simulated discharge and recommended that for this catchment, the grid size should not be 

larger than 20 m. Vázques et al. (2002) studied the effect of grid size on effective parameters and 

model performance at the Gete watershed in Brussels (586 km
2
). They reported that 600 m grid 

size for the watershed was most appropriate, as compared to 300 and 1,200 m. A wide range of 

DEM resolutions up to 3,000 m were by Wu et al. (2007) at two different watersheds: 

GoodwinCreek (GCW) (21.3 km
2
) and Peacheater Creek (PCW) (64 km

2
). The efficiency of the 

model was equivalent when the grid size increased from 100 to 1,000 m for both watersheds. 

England (2006) and England et al. (2007) used a grid size of 960 m to simulate extreme events 
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on a large watershed (12,000 km
2
) using the TREX model. The model successfully showed the 

effect of extreme storm events for dam safety purposes. Molnar (1997) and Molnar and Julien 

(2000) used CASC2D to study the grid-size effects on surface runoff. The Hickahala-Senatobia 

watershed (560 km
2
) was used. The square grid sizes ranging from 127 to 914 m were tested. 

The authors conclude that coarser grid sizes could be used for this watershed without sacrificing 

important information affecting surface runoff. 

 Table 2.7 shows a summary of suggested grid sizes by various authors. As previously 

stated, the size of the watershed for this study is classified according to Singh (1995). In 

conclusion, from looking at these various studies and grid sizes, the following grid sizes are 

acceptable for small, medium, and large watersheds, respectively: 10 to 100 m, 15 to 120 m, and 

100 to 1,000 m. Therefore, this study will use a 90 m grid size at small (Lui) and medium 

(Semenyih) watersheds, and a 230 m grid size at the large (Kota Tinggi) watershed. 

 

2.7 TIME-FRAME-SERIES ANIMATION (TFSA) 

Visualizing simulated results through Geospatial data has been a cartographic concern for 

centuries. With technological advancement came animation. The main purpose of animation is to 

visualize geospatial data by making it visual, and moving, and not just plain data like tables of 

facts and figures or mathematical equations (Dorling 1992; Sánchez 2002). Dransch (2000) 

added that the importance of animation is that it is a visual aid for critical thinking, helps to 

verify the hypothesis, and makes sharing and delivering information between researchers and the 

public easier. There are three different types of animations that have been explained by Dorling 

(1992): space, time, and 3D animations. 
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Table 2.7 Summary of the grid size suggested by various authors 

WATERSHEDS AREA (km
2
) SUGGESTED GRID SIZE (m) AUTHOR(S) 

SMALL WATERSHED ( less than 100 km
2
) 

Mettman Ridge 0.3 10 
Zhang and Montgomery (1994) 

Oregon and Tennessee Valley 1.2 10 

Tarasҫi 1 2 - 25 

Usul and Paşaoğullari (2004) Ciftlikozu 10.6 5 – 30 

Cicek 98 10 – 50 

Ontario 8 50 Valeo and Moin (2000) 

Central New York, New York 6.5 – 23.6 Do not effected Kuo et al. (1999) 

Danangou, China 3.5 20 Hessel (2005) 

Goodwin Creek, Mississippi 21.3 100 – 1,000 
Wu et al. (2007) Peacheater Creek, Illinois 64 100 – 1,000 

MEDIUM WATERSHED (between 100 km
2
 and 1,000 km

2
) 

Back Creek, Virginia 152 15 – 120 Fedak (1999) 

Hickahala-Senatobia 560 914 Molnar (1997); Molnar and Julien (2000) 

Dill, Germany 693 25 – 500 Bormann (2006) 

Gete, Brussels 586 600 Vásques et al. (2002) 

LARGE WATERSHED (more than 1,000 km
2
) 

Arkansas River 12,000 960 England (2006); England et al. (2007) 

Suiping, China 2,093 
IC-Ratio between 

1:6 – 1:20 

Shrestha et al. (2002 and 2006) 

IC-Ratio (grid size to watershed area) 
Wangjiaba, China 29,844 

Bengbu, China 132,350 

Xitiaoxi, China 2,200 Up to 1,000 Zhao et al. (2009) 

Note: The classification of the watershed size is adopted from Singh (1995) 
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This study integrates the Geographical Information System (ArcGIS 9.3) to create a 3D 

animation. The ArcGIS 9.3 software is widely used in hydrology to generate 3D animation and 

has successfully helped visualize and enhance the output in a number of previous studies 

(Rahman et al. 2001; Drogue et al. 2002; Wang et al. 2007; Daxikar et al. 2008; Merwade et al. 

2008; Guo et al. 2009; Jiang et al. 2010; Chan and Mori 2011; Hossain et al. 2011; Li et al. 

2011).  

This study will use frame series animation. According to Peterson (1995), frame-series 

animation is a product of a group of images that display on-top after one-to-another. There are 

several factors that must be considered when creating the TFSA. Gersmehl (1990) and Acevedo 

and Masuoka (1997) suggested five such factors. First is the number of images, because this 

determines the detail of the animation. With a large number of images, the animation can be 

shown in excellent quality. However, the size of the animation file is then huge and time 

consuming. Second is the starting and ending time; this is important because the animation 

should capture only the most significant events. This factor can be influenced by the duration of 

the visualization. Third, the number of intervals between images must be defined because it will 

affect the duration and display time. Fourth, the animation display speed must be determined, 

which depends on several factors such as human visual perception and the purpose of creating 

the animation. Last, the user must choose the medium to display the animation, such as a 

computer screen or recorded onto CD/DVD or on the Internet as mentioned by Dykes (1997) and 

Cartwright (1997). 
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2.8 MODEL PERFORMANCE EVALUATION 

During model calibration and validation, agreements between observed and simulated 

values will be evaluated using graphical and statistical methods. The graphical method is the first 

and simplest overview. It is done by making comparisons between observed and simulated peak 

discharge, time to peak, and rising and falling limb, as suggested by Green and Stephenson 

(1986), ASCE (1993) and Legates and McCabe (1999). However, the graphical method can be 

very subjective, especially when the numbers between observed and simulated are similar but not 

identical (Green and Stephenson 1986). The second method uses statistical quantitative measures 

of the agreement between observed and simulated peak discharge, time to peak and total volume. 

The statistical method for this study will use three criteria: Relative Percentage Difference 

(RPD), Percent BIAS (PBIAS) and Nash-Sutcliffe Efficiency Coefficient (NSEC).  

 

2.8.1 Relative Percentage Difference (RPD) 

The RPD method is the simplest statistical method among others used to calculate the 

differences between observed and simulated peak discharge, total volume and time to peak 

(Singh et al. 2005; Fernandez et al. 2005). The RPD value can be calculated using Equation 2.2. 

 

    
           

     
              [            ] 

Where:        = simulated discharge value [L
3
/T] 

        = observed discharge value [L
3
/T] 

  

The calculated RPD value can be either negative or positive. A negative sign indicates 

that the model underestimates the peak discharge, total volume and time to peak values, and 
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positive indicates the opposite. According to Donigian et al. (1983), the performance of the 

model can be classified as very good, good or satisfactory, depending on the calculated |RPD| 

values. The calculated |RPD| is very good when the difference between observed and simulated 

values is less than 10%, good when |RPD| is between 10% and 15% and satisfactory when |RPD| 

is between 15% and 25%. 

 

2.8.2 Percent BIAS (PBIAS) 

The PBIAS method is a statistical error analysis that measures the average tendency of 

the simulated results to underestimate or overestimate the observed data (Gupta et al. 1999). The 

value of the PBIAS can be calculated using Equation 2.3. 

 

      
∑ (  

      
   ) 

   

∑   
    

   

               [            ] 

Where:    = number of data for simulated/observed [-] 

    
    = simulated discharge value [L

3
/T] 

  
    = observed discharge value [L

3
/T] 

 

The value of the PBIAS can be either negative or positive. If the PBIAS values are 

approximately equal to zero (    ), the observed and simulated peak discharge, total volume 

and time to peak are the same. However, if PBIAS is negative, then the simulated volume of 

water value is over-estimated and under-estimated for a positive value.  
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2.8.3 Nash-Sutcliffe Efficiency Coefficient (NSEC) 

This method was introduced by Nash and Sutcliffe (1970). This method is recommended 

by Leavesley et al. (1983), Wilcox et al. (1990), Sevat and Dezette (1991), Gupta et al. (1999), 

ASCE (1993) and Legates and McCabe (1999) to be used because it provides extensive 

information on reported values. It is computed by taking the ratio of the mean square error 

between observed and simulated values to the variance of the observed data, as shown in 

Equation 2.4. 

 

       
∑ (  

      
   )

  
   

∑ (  
         )

  
   

          [            ] 

Where:    = number of data for simulated/observed [-] 

    
    = simulated discharge value [L

3
/T] 

  
    = observed discharge value [L

3
/T] 

      = mean value from observed data [L
3
/T] 

 

The optimal value is 1.0. The NSEC value should be larger than 0.0 to indicate that 

observed and simulated data have the minimal acceptable criteria. In this study, the 

classifications defined by Moriasi et al. (2007) are used. They classified the model performance 

as very good, good, satisfactory and unsatisfactory for the calculated NSEC value of more than 

0.75, between 0.65 and 0.75, between 0.36 and 0.65 and less than 0.36, respectively. A negative 

value indicates that the mean observed value is better than the simulated value. 
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SUMMARY 

Estimating the discharge for large (return period) and extreme events (i.e., PMP) in the 

channel using stochastic models is common in Malaysia as compared to computer models (i.e., 

physically-based model) (Ab. Ghani et al. 2009). There are several criteria in selecting a proper 

hydrological model. These criteria are to have a fully-distributed physically-based model, that is 

compatible with GIS, use two-dimensional overland routing, has continuous or discontinuous 

hydrology events, and the availability of model code (i.e., publicly available or commercial 

code). In this study, the fully-distributed physically-based model was chosen to be the main 

criteria among others. Six potential hydrological models were chosen and compared based on 

this criterion. From these comparisons, the TREX model was selected to simulate large and 

extreme events. Three different sized watersheds were selected to simulate these events. The 

sizes are small (less than 100 km
2
), medium (between 100 and 1,000 km

2
) and large (more than 

1,000 km
2
), based on Singh (1995). In this study the large event consists of return periods 

ranging from 2 to 100 years. These values were obtained from MSMA (2000). The extreme 

events consist of PMP and world’s largest rainfalls. The PMP and world’s largest rainfall values 

were obtained from NAHRIM (2008), Poon and Hwee (2010), and Jennings (1950). The 

performance of the TREX model will be evaluated using graphical and statistical methods. The 

graphical method will focus on time to peak, peak discharge and rising and falling limbs. Three 

different statistical methods, RPD, NSEC and PBIAS, will be used as the quantitative 

measurement between observed and simulated peak discharge, time to peak and total volume. 
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CHAPTER THREE 

HYDROLOGICAL PROCESSES IN THE TREX MODEL 

 

 This chapter will describe the hydrological processes and numerical schemes in the 

TREX model. The governing equations, such as mass and momentum equations, will be 

described in section 3.1. The description of the numerical scheme to simulate the hydrological 

processes is explained in section 3.2. 

 

3.1 GOVERNING EQUATIONS IN THE TREX MODEL 

There are four main processes in the TREX hydrological sub-model: (1) precipitation and 

interception, (2) infiltration and transmission losses, (3) depression storage and (4) overland and 

channel flow as shown in Figure 3.1. 

 

 

Figure 3.1 Overview of hydrological processes in TREX model 
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3.1.1 Precipitation and Interception 

Precipitation is the beginning of the hydrological cycle. The gross volume of water 

reaching the near surface can be described in a mathematical model, as shown in Equation 3.1. 

 

   

  
               [            ] 

Where:     = gross precipitation [L
3
] 

    = time [T] 

     = gross precipitation rate [LT
-1

] 

     = surface area over which precipitation occurs [L
2
] 

 

The presence of forests or any other vegetation cover over an area of land influences the 

distribution pattern of precipitation. Some of the precipitation is intercepted and retained by the 

leaves and other parts of the tree, and then eventually returns to the atmosphere in the form of 

evaporation. The TREX model factors interception in volume. Linsley et al. (1982) showed that 

the interception volume could be calculated using Equations 3.2 and 3.3. 

 

   (      )            [            ] 

   {
                         
                               

          [            ] 

Where:     = interception volume [L
3
] 

     = interception capacity of projected canopy per unit area [L
3
L

-2
] 

    = evaporation rate [LT
-1

] 

     = precipitation event duration [T] 
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     = net precipitation volume reaching the surface [L
3
] 

 

Note that for single storm events, the volume of evaporation, E [LT
-1

] in Equation 3.2 can 

be neglected. Net precipitation volume also can be shown as a net precipitation rate by 

rearranging Equation 3.1 and substituting Equations 3.2 and 3.3 to end with Equation 3.4. 

 

   
 

  

   
  
          [            ] 

Where:     = net precipitation rate at the surface [LT
-1

] 

 

3.1.2 Infiltration and Transmission Losses 

Green and Ampt (1911) first analyzed the process of infiltration. Later, Li et al. (1976), 

Smith and Parlange (1978) and many others provided improved understanding and descriptions 

about this method. In the TREX model, infiltration rate is calculated using Equation 3.5, as 

introduced by Green and Ampt (1911). 

 

    [  
  (    )  

 
]          [            ] 

Where:    = infiltration rate [LT
-1

] 

     = effective hydraulic conductivity [LT
-1

] 

     = capillary pressure (suction) head at the wetting front [L] 

     = effective soil saturation [-] 

     = effective soil porosity (    ) [-] 

    = total soil porosity [-] 
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     = residual soil moisture content [-] 

    = cumulative infiltrated water depth [L] 

 

Transmission loss is the process by which water from the river may be lost as the effect 

of seepage to groundwater, overbank flow that goes into floodplains, wetlands and billabongs 

and never returns to the river. The rate of transmission may be affected by several factors, 

particularly hydraulic conductivity. The Green and Ampt (1911) method has been applied to 

calculate transmission losses (Equation 3.6). 

 

     [  
(     )(    )  

 
]          [            ] 

Where:     = transmission loss rate [LT
-1

] 

     = hydrostatic pressure head (depth of water in channel) [L] 

    = cumulative depth of water transported by transmission loss [L] 

 

Note here that for single storm events, the recovery of infiltration capacity by 

evapotranspiration and percolation can be neglected. Similarly, the recovery of transmission loss 

capacity by evaporation or other processes can be neglected for single storm events. 

 

3.1.3 Depression storage 

Precipitation retained in small surface depressions is called depression storage (Linsley et 

al. 1982). Water in depression storage may be conceptualized as a volume, or when normalized 

by surface area, a depth. When the water depth is below the depression storage threshold, 

overland flow is zero. Note that water in depression storage is still subject to infiltration and 
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evaporation. Similar to depression storage in overland areas, water in channels may be stored in 

depressions in the stream bed, which are caused when channel water depth falls below some 

critical level, flow is zero, and the water surface has discontinuities but individual pools of water 

remain. This mechanism is termed dead storage. Note that water in dead storage is still subjected 

to transmission loss and evaporation. 

For single storm events, recovery of depression storage volume by evaporation can be 

neglected. Similarly, the recovery of a dead storage volume by evaporation can also be neglected 

for single storm events. 

 

3.1.4 Overland and Channel Flow 

Overland flow occurs when the water depth of the overland plane exceeds the depression 

storage threshold. Overland flow is governed by the conservation of mass (continuity) and 

conservation of momentum. The two-dimensional (vertically integrated) continuity equation for 

gradually-varied flow over a plane in rectangular (x, y) coordinates is shown in Equation 3.7 

(Julien et al. 1995; Julien 2002): 

 

  

  
 
   
  

 
   

  
       ̇              [            ] 

Where:    = surface water depth [L] 

        = unit discharge in the x- or y-direction =     ⁄       ⁄  [L
2
/T] 

        = flow in x- or y-direction [L
3
/T] 

        = flow width in x- or y-direction [L] 

   ̇ = discharge from / to a point source / sink [L/T] 

     = excess precipitation [L/T] 
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The application of momentum equations (Saint-Venant equations) for x- and y-directions 

may be derived by relating the net forces per unit mass to flow acceleration (Julien et al. 1995; 

Julien 2002). The small terms: local and convective acceleration components, of full Saint-

Venant equations may be neglected (Cunge et al. 1980), resulting in the diffusive wave 

approximation for x- and y-directions (Equation 3.8). 

 

        
  

  
                     

  

  
          [            ] 

Where:            = friction slope (energy grade line) in the x- or y-direction [-] 

           = ground surface slope in the x- or y-direction [-] 

 

Five hydraulic variables must be defined in terms of depth-discharge relationship (Julien 

et al. 1995; Julien 2002) (Equations 3.9 and 3.10) to describe the flow resistance before the 

overland flow equations can be solved. Turbulent flow is assumed and resistance is described 

using Equations 3.9 and 3.10.  

 

      
                    

           [            ] 

   
   

   

 
                

   
   

 
          [             ] 

Where:          = resistance coefficient for flow in the x- or y-direction [L
1/3

/T] 

     = resistance exponent (   ⁄ ) [-] 

     = Manning roughness coefficient [T/L
1/3

] 
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One-dimensional channel flow (along the channel in the down-gradient direction which 

laterally and vertically integrated) is also governed by conservation of mass (continuity) and 

momentum. The method suggested by Julien et al. (1995) and Julien (2002) is applied for 

gradually-varied flow as shown Equation 3.11. 

 

   
  
 
  

  
     ̂          [             ] 

Where:     = cross sectional area of flow [L
2
] 

    = total discharge [L
3
/T] 

     = lateral flow into or out of the channel [L
2
/T] 

   ̂ = unit discharge from / to a point sink / source [L
2
/T] 

 

To solve the channel flow equations from the momentum equation (by neglecting the 

local and convective terms), the diffusive wave approximation may be used for the friction slope 

(Equation 3.8 – only in x-direction). The Manning relationship (Equation 3.12) is used with the 

channel flow equations for mass and momentum (Julien et al. 1995; Julien 2002). 

 

  
 

 
    

     
             [             ] 

Where:      = hydraulic radius of flow (    ⁄ ) [L] 

    = wetted perimeter of channel flow [L] 
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3.2 NUMERICAL SCHEME IN THE TREX MODEL 

Figure 3.2 shows the visualization of the grid concept that was used in the TREX model 

to simulate the rainfall-runoff. The square grid size (i.e., W x W in meter) was assigned for the 

entire watershed area. The hydrologic model parameters (e.g., roughness coefficient and 

hydraulic conductivity) and the characteristic of the watershed (i.e., land use, soil type, geometry 

of rivers and topography) are assigned to a central nodal point and are assumed to be uniform 

throughout the cell area. The explicit Euler method (Chapra and Canale 1985) is used to compute 

the mass balances for each time step by counting all materials that enters, accumulates within or 

leaves a grid cell through precipitation excess, interception, infiltration, transmission losses and 

storage. 

This section will mainly describe in detail the numerical scheme or discretization method 

that was used in the TREX model. The description of this scheme will begin with rainfall 

distribution, the infiltration process, and finally, overland flow and in channels. 

 

3.2.1 Rainfall  

In this study, rainfall is determined using rain gage data. The rainfall intensity is 

calculated for every cell at each time step. If rainfall is determined using one rain gage, the 

TREX model will simulate the event as a uniform rainfall across the watershed. An interpolation 

scheme, inverse distance weighted (IDW) approximation, is used when there are more than one 

rain gage data. The IDW approximation equation is shown in Equation 3.13, which is the 

simplest form and was introduced by Shepard (1968). This approximation is the most common 

method to determine the distribution of rainfall (Watson and Philip 1985; Smith 1993; Keckler 

1995; Sharif et al. 2010). 
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Figure 3.2 A two-dimensional model grid mesh (adapted from Julien and Saghafian 1991) 

 

  (   )  ( ∑
    
 (   )

  

   

     

)( ∑
 

  

   

     

)

  

          [             ] 

Where: NRG = number of rain gage 

     
 (   ) = rainfall intensity recorded by the n-th gage located at (   ) at time   

   = distance from the rain gage to be calculated (     ) to cell (   ) 

   = an arbitrary positive real number or power parameter (typically is 2)  

 

3.2.2 Infiltration 

Infiltration modeling in the TREX model begins when there is rainfall generated at the 

watershed. Rainfall intensity is compared to the infiltration capacity of the soil to determine 

whether there is runoff or not. When the infiltration rate is high, as compared to rainfall intensity, 
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then water will accumulate as groundwater. However, if the rainfall intensity is high and/or 

duration of rainfall is long, the soil becomes fully saturated after a certain period of rainfall. As a 

result, overland flow will begin. The TREX model determines the infiltration for each cell at the 

middle of the given time step. The value is calculated using the Green and Ampt (1911) method, 

as suggested by Saghafian (1992). Equation 3.14 is the formula to calculate the infiltration 

process in the TREX model. 

 

        [  
  (    )  

  
  
  

    
]          [             ] 

Where:       = infiltration rate [LT
-1

] 

     = effective hydraulic conductivity [LT
-1

] 

     = capillary pressure (suction) head at the wetting front [L] 

     = effective soil saturation [-] 

     = effective soil porosity (    ) [-] 

    = total soil porosity [-] 

     = residual soil moisture content [-] 

    = cumulative infiltrated water depth [L] 

 

This method indicates that the Green and Ampt (1911) equation is implicit with respect to 

time. A time explicit solution, as suggested by Li et al. (1976), is used (Equation 3.15). 

 

    
(       )

 
 
(       )

       (   )
  ⁄

 
          [             ] 
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Substituting Equation 3.15 into Equation 3.14 and then simplifying yields Equation 3.16. 

This equation is used to numerically solve the infiltration process in the TREX hydrological 

modeling. 

 

      
 

    
{(        

 )

 [(       
 )   (   

      (    )  )  ]
  ⁄ }        [             ] 

 

3.2.3 Overland and channel flows 

A 2D explicit difference formulation was selected to model overland flow and enable 

better representation of the flow paths (Marks and Bates 2000; Ogden 2000; Downer et al. 2002; 

Ogden and Julien 2002; Horrit et al. 2006). In general, each grid cell is assumed to be a 

homogeneous unit with one representative value of any hydraulic and hydrologic parameters, 

such as hydraulic conductivity, roughness and elevation. The Saint-Venant equation of 

continuity and momentum describe the physics of gradually-varied flow.  In this case, it is 

assumed that the fluid is incompressible. The two-dimensional continuity equation in partial 

differential form is shown in Equation 3.17. 

 

  

  
 
   
  

 
   

  
             [             ] 

Where:    = excess rainfall equal to (   ) [LT
-1

] 

   = rainfall intensity [LT
-1

] 

   = infiltration from Green-Ampt (1911) [LT
-1

] 
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Discretization of Equation 3.17 with first-order approximation for element (   ) leads to 

the Equation 3.18. 

 

     (   )    (   )      

 [
  
 (     )    

 (     )

 

 
  
 (     )    

 (     )

 
]            [             ] 

Where:      (   ) = flow depth at cell (   ) at time      [L] 

   (   ) = flow depth at cell (   ) at time   [L] 

    = time step [T] 

    = excess rainfall [LT
-1

] 

   
 (     ) = unit flow rate in x-direction at time   from (   ) to (     ) [L2

T
-1

] 

   
 (     ) = unit flow rate in x-direction at time   from (     ) to (   ) [L2

T
-1

] 

   
 (     ) = unit flow rate in y-direction at time   from (   ) to (     ) [L2

T
-1

] 

   
 (     ) = unit flow rate in y-direction at time   from (     ) to (   ) [L2

T
-1

] 

   = grid size [L] 

 

The unknown value in Equation 3.18, i.e., the unit flow rate in x- and y-direction, is 

obtained using Manning’s equation, which is given in Equation 3.19. These values are calculated 

using momentum equations that may be derived by relating the forces per unit mass to flow 

acceleration (Julien et al. 1995; Julien 2002). Often, the full Saint-Venant equation is necessary 

in hydrological modeling. The simplification of the full Saint-Venant equation can be 

accomplished by neglecting the local and convective acceleration of momentum terms because 
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they have small effects (Cunge et al. 1980; Daluz Vieira 1983; Moussa and Bocquillon 1996 and 

2000). By neglecting these terms, a simpler form of the Saint-Venant equation is produced, 

known as the diffusive wave equation (Equations 3.21a (x-direction) and 3.21b (y-direction)). 

The diffusive wave equation can be considered a higher order approximation than the kinematic 

wave approximation (Katapodes 1982; Daluz Vieira 1983; Ferrick 1985; Ponce 1990). The 

numerical schemes for these equations are discretized and lead to Equations 3.19a and 3.19b, 

respectively. 

 

      
           [             ( )] 

      
           [             ( )] 

Where:        = resistance coefficient for flow in x- and y-direction [L
1/3

T
-1

] 

   = resistant exponent ( = 5/3) [-] 

 

 The resistance coefficients for flow in x- and y-direction are calculated from Equation 

3.20. 

 

   
(   
 )

 
 

 
                          

(   
 )

 
 

 
          [             ] 

Where:    
             

  = friction slope in x- and y-direction [-] 

   = Manning’s n coefficient in the overland [TL
-1/3

] 
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The direction of unit flow rate for any given time and location is strongly dependent on 

its relation to the friction slope, Sf. This relationship is shown in Equations 3.21a and 3.21b for 

x- and y-direction, respectively. 

 

   
 (     )     (     )  [

  (   )    (     )

 
]          [             ( )] 

   
 (     )     (     )  [

  (   )    (     )

 
]          [             ( )] 

Where:   (   ) = flow depth at cell (   ) at time   [L] 

   (     ) = flow depth at cell (     ) at time   [L] 

 

The bed slope, So, which is expressed in terms of the cell elevation in x- and y-direction, 

is calculated using the numerical scheme as shown in Equations 3.22a and 3.22b, respectively. 

 

   (     )  
 (     )   (   )

 
          [             ( )] 

   (     )  
 (     )   (   )

 
          [             ( )] 

Where:  (     ) = elevation at cell (     ) [L] 

  (   ) = elevation at cell (   ) [L] 

  (     ) = elevation at cell (     ) [L] 

 

 Starting with Equation 3.18 and taking from Equations 3.19 through 3.22, then 

substituting these into Equation 3.17, the specific discharge, q [L
2
T

-1
], in x- and y-direction is 

calculated using numerical schemes as shown in Equations 3.23(a) and 3.23(b), respectively. The 
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width of the channel is constant throughout the simulation. The discharge, Q [L
3
T

-1
], is 

calculated by multiplying the specific discharge (Equation 3.23) and width of the channel. This is 

the value that was recorded by the TREX model at any point selected by the user. 

 

  
 (     )  

 

 (     )
[  (     )]  ⁄  [   

 (     )]
  ⁄
          [             ( )] 

  
 (     )  

 

 (     )
[  (     )]  ⁄  [   

 (     )]
  ⁄

          [             ( )] 

 

The process of flow exchange between overland (i.e., floodplain) and channel is complex 

to solve numerically; for this reason, the one-dimensional diffusive wave equation is applied for 

the channel flow. This method has been well established by Woolhiser and Liggett (1967), Ponce 

et al. (1978), Morris and Woolhiser (1980), Fread (1985), Julien and Saghafian (1991), Moussa 

and Bocquillon (1996), Knight and Shiono (1996) and Ogden and Julien (2002). The numerical 

scheme to calculate the discharge is similar to that used for overland flow. However, the 

direction of the flow is only in the x-direction. Therefore, the formulation and numerical schemes 

in the y-direction can be neglected in these processes. The Manning’s roughness is specifically 

used for the bed channel as required in Equation 3.20.  

The channel network defined in the TREX model is made up of links that are numbered 

by the user or automatically by the computer. Each channel consists of several numbers of nodes 

(the minimum nodes is three). The properties of the channel such as side slope, bed roughness 

(Manning’s n value), sinuosity, initial water depth and width of the channel are applied to each 

node. The model has the ability to calculate either rectangular and/or trapezoidal shapes by 

providing the value of the side slope. The tributaries and channel are assumed to be located at the 

middle of the grid cell, as shown in Figure 3.3. 
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Figure 3.3Channel cross section 

 

The integration of water flow between overland (floodplain) and channel can be shown as 

two phases. These phases are (1) falling limb of the hydrograph (Figure 3.4a) and (2) rising limb 

of the hydrograph (Figure 3.4b). Figure 3.4a indicates that the flow depth in a channel (hw) is less 

than the height of its bank (hch). At this phase, overland flows go directly into the channel. The 

calculation of specific discharge is a one-dimensional (x-direction) diffusive ware 

approximation. However, when the flow depth in a channel (hw) is higher than the height of its 

bank (hch), water will be transferred to both sides of the floodplains. At this point, the numerical 

approach is transformed to a two-dimensional (in x- and y-direction) diffusive wave 

approximation (Figure 3.4b). 
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Figure 3.4 Integrated overland and channel flow during (a) the falling limb of the hydrograph 

and (b) the rising limb of the hydrograph (modified from Velleux et al. 2006) 

 

SUMMARY 

The TREX model uses a finite difference scheme to calculate the dynamic mass balances 

for each variable state. Each grid cell is assumed to be a homogeneous unit with one 

representative value of any hydraulic and hydrologic parameters, such as hydraulic conductivity, 

roughness and elevation. In this study, rainfall is determined using rain gage data. The rainfall 

intensity is calculated for every cell at each time step. If rainfall is determined using one rain 

gage, the TREX model will simulate it as uniform rainfall across the watershed. An interpolation 

scheme, an inverse distance weighted (IDW) approximation, is used when there are more than 

one rain gage data. The infiltration process is calculated using the Green and Ampt (1911) 

method. Diffusive wave approximation is used to solve for overland and channel flow. A two-

dimensional explicit difference formulation is selected to model overland flow and enable a 

better representation of the flow paths. 
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CHAPTER FOUR 

CALIBRATION AND VALIDATION 

 

Chapter four has been organized into four sections. Sections 4.1 and 4.2 will discuss the 

study areas and the preparation of the input data. Preparation of the input data includes: digital 

elevation model (DEM), links (rivers) and nodes, soil type, land use, channel properties, initial 

water in channels, and in soil and storage depth. In section 4.3, calibration, validation and the 

performance of the model was evaluated. Discussion of the comparison on the uses of different 

grid size (only in small watershed) is in section 4.4.  

 

4.1 STUDY AREAS 

Malaysia has land borders with Thailand in West Malaysia, and Indonesia and Brunei in 

East Malaysia (Figure 4.1). These two parts of Malaysia, separated from each other by the South 

China Sea, share a largely similar landscape in that both Peninsular and East Malaysia feature 

coastal plains rising to hills and mountains. The study areas are located in Peninsular Malaysia 

(Figure 4.1 – red color). Three study areas were purposely selected to represent small, medium 

and large watersheds. There are Lui and Semenyih, which are located in the state of Selangor 

(Figure 4.2), and Kota Tinggi, which is located in Johor (Figure 4.3). The Lui, Semenyih, and 

Kota Tinggi watersheds cover 68, 236 and 1,635 km
2
, respectively. These study areas have been 

classified as small, medium and large watersheds, respectively. Influenced by the Southwest and 

Northeast monsoons, the small and medium watersheds fall into the West Coast rainfall region, 

where June and July are the driest months and November is the wettest.  

http://en.wikipedia.org/wiki/Borders_of_Malaysia
http://en.wikipedia.org/wiki/Thailand
http://en.wikipedia.org/wiki/Indonesia
http://en.wikipedia.org/wiki/Brunei
http://en.wikipedia.org/wiki/South_China_Sea
http://en.wikipedia.org/wiki/South_China_Sea
http://en.wikipedia.org/wiki/Peninsular_Malaysia
http://en.wikipedia.org/wiki/East_Malaysia
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The small watershed (Lui) is located north of the medium watershed (Figure 4.2b). The 

watershed has land surface elevations ranging from 80 to 1,200 m above sea level (a.s.l). 

Approximately 87% of the area is mountainous, and valleys cover 13% of the watershed area. 

The flow depth in the Lui watershed ranges from 0.23 m to 0.99 m. The top width of the main 

channel is constant at 16 m along the river. An average channel bed slope was 0.04. The 

maximum discharge in the main channel ranged from 0.74 to 17.17 cms during normal flow. The 

topography of the medium watershed ranged from 40 m a.s.l at the outlet and 1,100 m a.s.l at the 

upstream end of the watershed. The average terrain slope was about 45% and ranges between 4% 

and 85%, with very steep mountains overhanging flat and wide valleys.  This study area was 

covered approximately 68% by mountains and the remaining area is valleys. The average normal 

depth of the main channel in Sungai Semenyih ranges between 0.8 m and 2.49 m. The large 

watershed is located in the district of Johor (Figure 4.3). Mountains cover about 20% of the 

watershed, with an elevation of more than 600 m. The lowest elevation is 4 m at the 

downstream-end of the watershed. The watershed receives annual rainfall of 2,500 mm and the 

temperature of the watershed ranges between 21
o
C to 32

o
C.  

 

 

Figure 4.1 Locations of Selangor and Johor on Malaysia’s map 
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(a) Hulu Langat district on Selangor’s map 

 

(b) Lui (small) and Semenyih (medium) 

watersheds on Hulu Langat district 

Figure 4.2 Location of the small and medium watersheds on Malaysia’s map 

 

 

(a) Kota Tinggi district on Johor’s map (b) Kota Tinggi watershed on Kota Tinggi 

district 

Figure 4.3 Location of the large watershed on Malaysia’s map 
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4.2 MODEL PARAMETERIZATION 

The TREX model was used to simulate infiltration, overland runoff, and channel flow 

during extreme rainfall events. Input data were prepared using ArcGIS 9.3 and converted into 

text files. To resolve surface topography, the watersheds were discretized at a 90 by 90 m grid 

size for small and medium watersheds, and a 230 by 230 m grid size for large watersheds. 

Detailed discussion on the selection of these grid sizes can be found in section 2.6 and in 

Appendix D. There is a possibility that by reducing the grid size will give better simulated result, 

i.e., runoff and discharge. However, there must be a limit to increase the level of discretization 

where the model performance cannot be improved (Wood et al. 1988; Mamillapalli et al. 1996). 

The study conducted by Shrestha et al. (2002 and 2006) confirmed the previous statement for 

various watershed sizes from 2,000 km
2
. From these studies, they concluded that the minimum 

and maximum ratio between grid size and watershed area are 1:20 and 1:6, respectively. In this 

study, for a large watershed, the appropriate grid size according to Shrestha et al.  (2002 and 

2006) is between 80 and 270 m. Therefore, a 230 m grid size was chosen for the large watershed, 

which is well within the range suggested by Shrestha et al. (2002 and 2006). Considering the 

time to prepare the input data, simulation time and post-processing the result, a grid analysis for 

the large watershed was not feasible in this study.  

The DEM (Figures 4.4a and 4.5a) data for the small and medium watersheds were bought 

from the Department of Surveying and Mapping Malaysia (DSMM) and resampled from 20 m to 

90 m resolution. The grid size was used to delineate these watersheds. The resultant rectangular 

raster grid has 122 columns and 109 rows for the small watershed and 265 rows and 197 

columns for the medium watershed. That means the total number of grid cells for the small and 

medium watersheds are 13,298 and 52,205, respectively. Within these raster grids, the watershed 
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areas are defined by 8,426 and 29,139 grids for small and medium, respectively. For the large 

watershed, the DEM (Figure 4.6a) was downloaded from the ASTER GDEM website 

(www.gdem.aster.ersdac.or.jp/search.jsp) with a 90 m resolution. The total active grid size is 

31,000 grids from 62,000 total grids, resulting from 292 rows and 292 columns. 

The DEM were also used to delineate the channel network within the watersheds. For the 

small watershed, there is only one link and consists of 66 nodes, making the length of the river 

approximately 6 km. The land use and soil types are shown in Figures 4.4b and 4.4c, 

respectively. The defined channel network in the medium watershed comprised 7 links totaling 

399 nodes, defining a total river length of approximately 36 km. The land use and soil types at 

medium the watershed are shown in Figures 4.5b and 4.5c. The land use and soil type at small 

and medium watersheds were obtained from Jaafar (2007). The total river length at the large 

watershed is 250 km (1,081 nodes and 42 links). The input data for land use and soil types at this 

watershed are shown in Figures 4.6a and 4.6b, respectively. These data were obtained from 

Shafie (2009) and Google Maps. These photos were digitized in ArcGIS 9.3 and converted to 

raster. Finally, these raster data were converted to ASCII files as input in the TREX model. 

http://www.gdem.aster.ersdac.or.jp/search.jsp
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Figure 4.4 Input data for the small watershed (a) DEM, (b) land use and (c) soil type  

a) 
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Figure 4.5 Input data for the medium watershed (a) DEM, (b) land use and (c) soil type 
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Figure 4.6 Input data for the large watershed (a) DEM, (b) land use and (c) soil type 
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Model parameters to be calibrated are shown in Table 4.1. Sensitivity analysis (Appendix 

B) shows that the Kh and Manning’s n are the most sensitive parameters during calibration. Other 

model parameters are less important determinants of overall model performance because 

significant changes in values have minimum impact to the peak discharge. Parameters for forcing 

functions and boundary conditions have an impact to the model performance. However, the 

calibration process for these parameters was not necessary. There were no reported values for 

hydraulic conductivity and Manning’s n, for these watersheds. Therefore, hydraulic 

conductivities were determined from soil type as described by Rawls et al. (1993). The 

Manning’s n values for bed channel were obtained from Zakaria et al. (2010) for small and 

medium watersheds. The ranging values of calibrated parameters for small, medium and large 

watersheds are summarized in Table 4.1. These values were adjusted during calibration to 

achieve very good agreement between observed and simulated discharges. The antecedent 

moisture condition for the watershed was assumed to be fully dry at the beginning of the 

simulation.   

 

4.3 CALIBRATION AND VALIDATION OF THE TREX MODEL 

Calibrations for the small and medium watersheds were done using recorded data at 

stations 3118445 and 2918401, respectively. The simulations were done for 48 hours to provide 

enough base flow in the channel before the storm events. However, for large watershed, three 

flow gages were used during calibration and validation processes. The locations of each station 

were shown in Figure 4.2b for small and medium watersheds and Figure 4.3b for large 

watershed. 
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 Table 4.1   Summary of model parameter values for small, medium and large watersheds 

Parameter Value    Application 

Interception depth (mm) 

2.0 Agriculture 

0.05 Urban / Commercial 

5.0 Forest 

1.0 Grass area 

1.0 Open area 

Soil moisture deficit (-) 0.29 

Sandy loams 

Loams 

Clay 

Mountain – limestone 

Capillary suction head (m) 

0.14 Sandy loams 

0.22 Loams 

0.33 Clay 

0.17 Mountain – limestone 

Hydraulic conductivity 

Kh (m/s) 

3.5 x 10
-10

 – 3.5 x 10
-7

 Sandy loams 

3.7 x 10
-10

 – 3.7 x 10
-7

 Loams 

7.7 x 10
-10

 – 1.3 x 10
-8

 Clay 

3.5 x 10
-11

 – 3.2 x 10
-6

 Mountain – limestone 

Manning’s n 

0.05 – 0.35 Agriculture 

0.01 – 0.10 Urban / Commercial 

0.18 – 0.65 Forest 

0.05 – 0.35 Grass area 

0.05 – 0.35 Open area 

 

During the validation processes, the rainfall-runoff relationship was simulated using 

calibrated parameters (Kh and n) without any changes. The calibration and validation procedure 

focused on the accuracy of simulated peak discharge and time to peak at the main outlet (i.e., at 

the point-end-downstream of the link). The total volume was also considered but it will not be 

discussed in detail because this parameter is less important in flood analysis. The results and 

discussions are divided into three subsections which are 4.3.1 for the small watershed (Lui), 

4.3.2 for the medium watershed (Semenyih) and 4.3.3 for the large watershed (Kota Tinggi). 
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4.3.1 Small watershed (Lui) 

The largest storm on April 10, 2009 was used to calibrate the model. There was no 

rainfall for several days before this event. Two years of recorded data from 2009 to 2010 were 

used independently for validation purposes. The availability of the data obtained from 

Department of Irrigation and Drainage (DID), particularly the duration of the recorded data and 

missing values, are limitations in this study.  Graphs of observed and simulated discharge for this 

event are presented in Figure 4.7a. Several storm events ranging from small to large events were 

selected to validate the model parameters. The calibrated and validated hydrograph are shown in 

Figures 4.7a and Figure 4.7b, 4.7c and 4.7d, respectively.  

 

Graphical method 

The graphical methods provide visual comparison between observed and simulated peak 

discharge, time to peak and rising and falling limb. The calibrated hydrograph (Figure 4.7a) 

shows fairly good model performance on estimating the peak discharge, time to peak and 

estimating the rising and falling limb. However, the validated hydrographs (Figures 4.7b – 4.7d) 

show better performance for estimating the same three parameters. The model estimated higher 

total volume than the observed. The uniformity of rainfall across the watershed was not a good 

representation of the true event. The spatial distribution of the rainfall was concentrated at some 

location. However, the input data (DEM, land use, soil type, hydrologic, hydrology, etc.) and 

calibrated and validated model parameters can produce hydrographs that are comparable to the 

observed data. Figures 4.8 and 4.9 show the observed and simulated values are plotted for peak 

discharge and time to peak, respectively. The 45 degree line (1:1 line) indicates that observed 

and simulated values estimated by the model are accurate. It was found that most of the
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Figure 4.7 Hydrologic calibration (a) and validation (b, c and d) for the small watershed (Lui) 
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simulated peak discharge values (Figure 4.8) are distributed along the 1:1 line except for a few 

events (Nov. 13, 2010, Jan. 3, 2009 and May 14, 2009). Comparison between observed and 

simulated time to peak, as shown in Figure 4.9, found that the model performed fairly well. Most 

of the simulated times to peaks were simulated to be earlier than the observed time, except for 

the rainfall events on May 14, 2009 and February 26, 2010, which were delayed by about 30 

minutes. On average, the model simulated time to peak at 1.5 hours earlier than the observed 

value. In general, the overall performance of this model for the calibration and validation were 

good. 

 

Statistical methods 

Model performance evaluation was continued by applying statistical analyses, namely the 

Relative Percentage Difference (RPD), Percent BIAS (PBIAS) and Nash-Sutcliffe Efficiency 

Coefficient (NSEC). These values were calculated using Equations 2.2, 2.3 and 2.4 as described 

in subsections 2.8.1, 2.8.2 and 2.8.3, respectively. The calculated RPD, PBIAS and NSEC values 

are classified based on the criteria given in Table 4.2. Table 4.3 shows the values of statistical 

tests between observed and simulated peak discharge, total volume and time to peak during 

calibration and validation periods. Most of the peak discharge, total volume and time to peak 

values indicate that the model shows excellent performances specified by RPD values of less 

than 10%, except for a few events. Even though the calibrated total volume is underestimated by 

50%, the validated total volume can be classified as good when an average RPD value is 

underestimated by 10%. NSEC values for the peak discharge calibration and validation ranged 

from unsatisfactory (-0.5) to very good (0.81). The unsatisfactory events are on December 26, 

2009 and July 1, 2010 with NSEC values of 0.07 and -0.5, respectively. Statistical tests indicated
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Figure 4.8 Peak discharge for the model calibration and validation events on the small watershed 

(Lui) 

 

Figure 4.9 Time to peak for the model calibration and validation events on the small watershed 

(Lui) 
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that the average PBIAS of total volume during calibration and validation is underestimated by 

about 14%. The high values of PBIAS during the calibration process (April 10, 2009) and 

validation process (July 1, 2010) reflected that the model underestimates total volumes beyond 

the level of acceptance. However, considering the overall statistics, it can be said that the model 

simulations were good.  

Rainfall events recorded in the wettest months (i.e., October, November and December) 

were selected for the validation process and model performance evaluation. These scenarios 

were selected in order to observe the capabilities of the model to simulate high rainfall volumes 

under Malaysia’s climate.  

 

4.3.2 Medium watershed (Semenyih) 

In this study, data from station 2918401 were used for calibration and validation 

purposes. The gaging station is located at the downstream end of the medium watershed. The 

observed and simulated values for the calibrated model are shown in Figure 4.10a. The storm 

event on April 13, 2003 was used to calibrate the model. There was no rainfall for several days 

before this event. The calibrated model parameters were then applied for several other rainfall 

events for validation purposes. Storm events from 2002 to 2009 were used in the validation 

process. Comparisons between observed and simulated graph discharges for these events are 

presented in Figures 4.10b – 4.10d. 
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Table 4.2 General performance ratings to classify the performance of the model 

PERFORMANCE RATING RPD and PBIAS NSEC 

Very Good RPD, PBIAS ≤ ± 10% 0.75 ≤ NSEC < 1.00 

Good ± 10% < RPD, PBIAS ≤ ± 15% 0.65 ≤ NSEC < 0.75 

Fair / Satisfactory ± 15% < RPD, PBIAS ≤ ± 25% 0.36 ≤ NSEC < 0.65 

 

Table 4.3   Summary of the evaluation of hydrologic model performance for the small watershed (Lui) 

CALIBRATION 

Date of 

event 

Total volume ( x 1,000 m
3
) Peak flow (cms) Time to peak (24 hours) 

Model’s 

performance 

Obs. Sim. 
RPD 

(%) 
Obs. Sim. 

RPD 

(%) 
Obs. Sim. 

RPD 

(%) 
NSEC PBIAS 

04/10/09 652 313 - 51.9 23.99 24.01 0.1 22:00 21:11 - 3.7 0.4 50.6 

VALIDATION 

11/14/10 520 577 10.9 13.36 13.67 2.3 21:00 20:36 - 1.9 0.5 29.3 

12/26/09 216 204 - 5.6 5.80 5.97 3.0 18:00 16:51 - 6.4 0.1 9.1 

10/20/09 470 495 5.3 16.60 17.00 2.4 22:00 20:35 - 6.4 0.8 - 11.4 

05/14/09 592 573 - 3.2 16.51 13.74 - 16.8 07:00 07:18 4.2 0.8 - 11.1 

01/03/09 526 442 - 16.0 14.67 13.37 -8.8 18:00 14:42 - 18.3 0.7 - 7.6 

01/07/10 506 522 3.1 17.28 17.76 2.8 23:00 19:36 - 14.8 -0.5 44.7 

11/13/10 227 205 - 10.0 5.99 4.25 - 29.1 23:00 22:00 - 4.3 0.7 4.4 

02/26/10 203 141 - 30.6 6.86 7.58 10.4 17:00 17:39 3.7 0.7 21.4 

Note: Obs. = Observed; Sim. = Simulated; RPD = Relative Percentage Different; NSEC = Nash-Sutcliffe Efficiency Coefficient; 

          PBIAS = Percent BIAS 
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Graphical method 

The simulated model generally followed the shape of observed values perfectly during 

calibration and validation, as seen in Figure 4.10. The calibrated model parameters produced an 

excellent hydrograph, as shown in Figure 4.10a. The model accurately estimated the peak 

discharge, time to peak, and rising and falling limb. The calibrated model parameters were 

further validated using several independent storm events.  The hydrographs of these validations 

are shown in Figures 4.10b - 4.10d. From this method, the validation of the model was 

performed very good, same as during the calibration process. The estimated total volume was 

higher than the observed data. The model requires more time to drain the water after the rainfall 

events, which causes higher total volume. Figures 4.11 and 4.12 show the observed and 

simulated values plotted for peak discharge and time to peak, respectively. The 45 degrees line 

(1:1 line) indicates that observed and simulated values were accurately estimated by the model. 

The simulated peak discharge values (Figure 4.11) are well distributed along the 1:1 line. The 

performance of the model has been classified as very good even though the comparison of 

observed and simulated time to peak graph (Figure 4.12) shows a short delay from the observed 

by about half an hour. 
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Figure 4.10   Hydrologic calibration (a) and validation (b, c and d) for the medium watershed (Semenyih) 
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Figure 4.11 Peak discharge for the model calibration and validation event on medium watershed 

(Semenyih) 

 

Figure 4.12 Time to peak for the model calibration and validation event on medium watershed 

(Semenyih) 
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Statistical methods 

Statistical methods, namely RPD, PBIAS and NSEC, were used to assess the model’s 

quantitative accuracy. These values were calculated using Equations 2.2, 2.3 and 2.4 and 

tabulated in Table 4.4. Table 4.2 was used to classify the rating of the model’s performance. The 

RPD method showed very good agreement between observed and simulated for peak discharge 

and time to peak. The average RPD value for peak discharge and time to peak is overestimated 

by 0.3% and 4%, respectively. However, the RPD values for total volume for all simulations are 

classified as fair. Except for the simulation event on April 3, 2008, all of the simulated total 

volume values are overestimated by an average value of 35%. Longer time required by the model 

to drain the water in the main channel, which causes large discrepancies between the simulated 

and observed total volumes. The excepted event was considered very good with an 

overestimation of 3.9%. The PBIAS values were calculated for total volume and the model 

shows overestimation ranging from 7.6% to 31.7%. Different methods were used in RPD and 

PBIAS to calculate the volume. The RPD method calculates the total volume under the 

hydrograph and compares the difference between simulated and observed. The same comparison 

was applied using PBIAS method except that the volume is calculated hourly. Reasonable 

coefficients using NSEC ranged from 0.4 to 1.0 for model calibration and validation were 

obtained, except for the event on September 23, 2003, which had an NSEC value of 0.1. On 

average, the model overestimated the total volume by 58%. A lower NSEC value was obtained 

due to the fact that the model estimated larger total volumes. It can also be concluded that when 

the PBIAS value is near to zero, the NSEC value will be close to 1.0. The inaccuracy of the 

results is due to differences in topography of the watershed such as channel, soil, and land use 

characterized by the model. 
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Table 4.4   Summary of the evaluation of hydrologic model performance for the medium watershed (Semenyih) 

CALIBRATION 

Date of 

event 

Total volume ( x 1,000 m
3
) Peak flow (cms) Time to peak (24 hours) 

Model’s 

performance 

Obs. Sim. 
RPD 

(%) 
Obs. Sim. 

RPD 

(%) 
Obs. Sim. 

RPD 

(%) 
NSEC PBIAS 

04/13/03 1,375 1,638 19.1 39.98 40.15 0.4 20:00 20:18 1.5 0.8 - 19.3 

VALIDATION 

04/03/08 2,939 3,052 3.9 77.58 77.77 0.2 23:00 23:54 3.9 1.0 - 7.6 

09/23/03 590 950 61.2 32.83 33.37 1.6 07:00 07:42 10.0 0.1 - 57.7 

02/02/09 1,924 2,530 31.5 61.59 61.23 - 0.6 22:00 22:45 3.4 0.4 - 31.7 

11/10/02 947 1,277 34.9 27.71 27.74 0.1 00:00 00:42 41.0 0.8 - 25.9 

10/01/04 1,236 1,590 28.7 43.12 43.18 0.1 19:00 19:21 1.8 0.8 - 28.9 

Note: Obs. = Observed; Sim. = Simulated; RPD = Relative Percentage Different; NSEC = Nash-Sutcliffe Efficiency Coefficient; 

          PBIAS = Percent BIAS 
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4.3.3 Large watershed 

The hydrologic parameters of the model were calibrated to fit the observed daily flow 

data from DID flow gage stations (Figure 4.3b) at the large watershed during 2010. This year 

was chosen because it is recent and a good representation of the current climate and land use. 

These flow gages were used to calibrate and validate the hydrologic parameters at the upstream 

part of the watershed. The stage data were also used to validate hydrologic parameters at the 

downstream for flood in December 2006 and January 2007. These data were obtained from 

Shafie (2009). 

 The storm event on November 23 – December 4, 2010 was used to calibrate the model 

(Figure 4.13). The hydrograph indicates that the model performance is very good in estimating 

the peak discharge and time to peak during this storm event. There were several river tributaries 

located near station 1836402, which give different travel time and therefore causes the 

discrepancies of peak discharge. The calibrated model parameters were then applied 

independently to several other rainfall events for validation purposes. Storm events in December 

2006, January 2007 and 2010 were used in the validation process. The comparisons between 

observed and simulated graph discharges and stage for these events are presented in Figures 4.14 

and 4.15, respectively. 

 

Graphical method 

Longer simulations were done, i.e., 14 days, as compared to small and medium 

watersheds (i.e., two days) because the large watershed’s flow requires longer travel time from 

upstream to downstream. As a result, more time is required to reach the peak of the hydrograph. 

This is important because the assumption is that for large watersheds, the time to peak and peak
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Figure 4.13 Hydrologic calibrations for the large watershed 

 

discharge can be reached within few days after the rainfall events. Graphical results during 

calibration and validation are shown in Figure 4.13 (validation using discharge data) and Figures 

4.14 and 4.15 (validation using flood stage in December 2006 and January 2007). The model 

shows good and very good performance in estimating peak discharge and peak stage, 

respectively, during these processes. The model did very well in estimating the rising and falling 

limb of the hydrograph (Figures 4.13 and 4.14) and stage (Figure 4.15). 

Figures 4.16 and 4.17 show the observed and simulated values are plotted for peak 

discharge and time to peak, respectively. The simulated peak discharge values (Figure 4.16) are 

very well distributed along the 1:1 line. However, 35% of the simulated data show that there was 

a 6-hour delay in estimating the time to peak (Figure 4.17).  



81 
 

 

Figure 4.14 Hydrologic validations for the large watershed using discharge 

 

Figure 4.15 Hydrologic validations for the large watershed using stage 
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Figure 4.16 Peak discharge for the model calibration and validation event at large watershed 

(Kota Tinggi) 

 

Figure 4.17 Time to peak for the model calibration and validation event at large watershed (Kota 

Tinggi) 
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Statistical methods 

Equations 2.2, 2.3 and 2.4 as described in sections 2.8.1, 2.8.2 and 2.8.3 were used to 

calculate the accuracy of the model’s performance. These equations are referred to as the 

statistical methods RPD, PBIAS and NSEC, respectively. Table 4.5 shows the calculated values 

using these equations.  The classifications of the model performance are rated as shown in Table 

4.2. During the calibration storm event (i.e., November 11 – December 4, 2010), on average, the 

RPD values indicated that the model performance is very good in estimating the peak flow 

(9.7%), time to peak (8%) and total volume (0.6%). The NSEC (0.8) and PBIAS (overestimated 

by 0.6%) values suggest that the model was very good in estimating hourly flow and volume. 

The model was validated using storm event on May 7 -17, 2010 and flood in December 2006 and 

January 2007. The first statistical method, RPD, shows very good agreement between observed 

and simulated total volume and peak flow. The RPD value shows that the total volume and peak 

discharge is underestimated by about 1.5% and overestimated by about 2.7%, respectively. 

However, the model was classified as good in estimating the time to peak with an average RPD 

value of about 9.3% (about 3 hours delay on average). The difference of the maximum stage 

between observed and simulated was used, instead of discharge and volume as storm events in 

Nov. 11 – Dec. 4, 2010 and May 7 – 17, 2010 in validation purpose. These stage data were 

obtained from Shafie (2009) for flooding in 2006 and 2007. The RPD value indicated that the 

model performed very good in estimating the maximum stage and time to reach maximum stage. 

The NSEC and PBIAS methods were used to define the performance of the TREX model for 

both peak discharge and total volume, respectively. Both methods indicated that the model is 

very good in estimating the peak discharge and total volume, with average overestimation of 

about 0.8 and 1.5%, respectively.  
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Table 4.5   Summary of the evaluation of hydrologic model performance for the large watershed (Kota Tinggi) 

CALIBRATION 

Date of 

Event 
Total volume ( x 1,000 m

3
) Peak flow (cms) Time to peak (24 hours) 

Model’s 

performance 

Station Obs. Sim. RPD Obs. Sim. RPD Obs. Sim. RPD NSEC PBIAS 

11/11/10 – 12/04/10 

     1836403 2,947 2,944 -0.1 5.14 5.73 11.5 12:00 12:00 0.0 0.8 0.1 

     1836402 20,179 19,954 -1.1 30.18 30.18 18.7 00:00 18:00 25.0 0.6 1.1 

     1737451 51,411 52,900 2.9 97.68 97.67 -1.0 12:00 12:00 0.0 1.0 -2.9 

VALIDATION 

05/07/10 – 05/17/10 

     1836403 2,798 2,634 -5.9 8.34 7.94 -4.8 06:00 06:00 0.0 0.9 5.9 

     1836402 11,602 13,010 12.1 28.56 27.56 -3.5 00:00 06:00 25.0 0.9 -12.1 

     1737451 29,463 29,806 1.2 51.36 48.96 -4.7 12:00 18:00 25.0 1.0 -1.2 

 Total volume ( x 1,000 m
3
) Maximum stage (m) 

Time to become 

Maximum stage (24 hours) 

Model’s 

performance 

 Obs. Sim. RPD Obs. Sim. RPD Obs. Sim. RPD NSEC PBIAS 

Flood in Dec. 2006 --- --- --- 5.0 5.0 0.0 12:00 12:00 0.0 0.5 --- 

Flood in Jan. 2007 --- --- --- 5.45 5.57 2.2 12:00 12:00 0.0 0.7 --- 

Note: Obs. = Observed; Sim. = Simulated; RPD = Relative Percentage Different; NSEC = Nash-Sutcliffe Efficiency Coefficient; 

          PBIAS = Percent BIAS 
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There are several factors that contributed on the discrepancies of the volume between 

simulated and observed data. In this study, the hydrologic and hydraulic parameters are the main 

causes of discrepancies. For the large watershed, the subsurface flow is one of the main 

contributions to the total discharge at the main outlet, as compared to the small and medium 

watersheds. TREX model does not take into account the subsurface flow; which contributed to 

the discrepancies of the water volume. However, in this study, the volume was assumed to be 

less significant as compared to the peak discharge and time to peak. Other than these parameters, 

grid size also contributed to the discrepancies of the volume. But because of the time and 

computational constrains, the grid sizes of 90 m and 230 m are assumed to be best for small and 

medium, and large watersheds 

 

SUMMARY 

The calibration and validation of the hydrologic parameters on small, medium and large 

watersheds were shown and discussed. A series of sensitivity analysis experiments were 

performed to determine the most sensitive hydrologic parameters (Appendix B). Hydraulics 

conductivity Kh and Manning’s n (Table 4.1) were the parameters calibrated and validated. Two 

methods: graphical and statistical, were used in assessing the performance of the TREX model. 

The graphical method is the simplest overview by making the comparison between observed and 

simulated results of peak discharge, time to peak and rising and falling limb. The 45 degrees line  

(1:1 line) was introduced to indicate that observed and simulated values for peak discharge and 

time to peak were accurately estimated by the model. The graphical method shows that the 

model performed good for the small watershed and very good at the medium and large 

watersheds. Statistical methods: RPD, NSEC and PBIAS were used, as suggested by many 
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researchers, to give more assurance on the model’s performance. The RPD method was used to 

evaluate the total volume (volume under the hydrograph), peak discharge and time to peak. The 

NSEC and PBIAS methods were used to evaluate the peak discharge and total volume (hourly), 

respectively. Table 4.6 shows the classification summary for the graphical and statistical 

methods on small, medium and large watersheds. 

 

Table 4.6 Summary of the TREX model evaluation performance using graphical and statistical 

methods on small, medium and large watersheds 

METHODS 

WATERSHED 

SMALL 

(Lui) 

MEDIUM 

(Semenyih) 

LARGE 

(Kota Tinggi) 

GRAPHICAL 

METHOD 
Good Very good Very Good 

 STATISTICAL METHOD 

RPD Very good (- 6.9) Good (+ 13.5) Very good (+ 3.7) 

PBIAS 
Underestimate 

volume (14%) 

Overestimate 

volume (28%) 

Overestimate 

volume (1.5%) 

NSEC Satisfactory (0.4) Good (0.7) Very good (0.8) 

OVERALL GOOD VERY GOOD VERY GOOD 

Note: RPD = Relative Percentage Difference; PBIAS = Percent BIAS; NSEC = Nash-Sutcliffe 

          Efficiency Coefficient 
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CHAPTER FIVE 

SIMULATION OF LARGE AND EXTREME RAINFALL EVENTS 

 

The model parameters, i.e., hydraulic conductivity and roughness (channel bed and 

overland), were calibrated and validated for small, medium and large watersheds. The TREX 

model performance is good (on a small watershed) and very good (on a medium and large 

watershed) as discussed in Chapter 4. The results of the simulations for large and extreme 

rainfall events at small, medium and large watersheds are presented in this chapter. These rainfall 

events are discussed separately in sections 5.1 and 5.2, respectively. Each section covers the 

three watershed sizes. The discussion will be aided by 3D graphic visualization of spatial and 

temporal distribution of water depth overland and in the channel. The main concern of this 

chapter is the evaluation of spatial and temporal distribution of runoff and flooding areas in the 

form of water depths for a return period of 100-years, Selangor PMP (S-PMP), Kota Tinggi PMP 

(KT-PMP) and the world’s largest rainfall events. Section 5.3 contains a discussion of the 

relationship between rainfall duration, peak specific-discharge and watershed area.  

 

5.1 SIMULATION OF THE LARGE RAINFALL EVENTS 

Rainfall data in Tables 2.2 (for the small and medium watersheds) and 2.3 (for the large 

watershed) were used to simulate large rainfall events. The duration of rainfall for return periods 

is between 1 and 16 hours for the small and medium watersheds. However, for the large 

watershed, the rainfall durations have been extended up to seven days.  

S-PMP rainfall data, which were applied at the small and medium watersheds, are limited 

to 1, 3, 6, and 12 hour durations (Table 2.6).  The peak discharge for each simulated large event 
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was plotted and tabulated. The Normal Discharge (ND), Alert Discharge (AD) and Danger 

Discharge (DD) zones were plotted in each graph also. These values were obtained from the 

Department of Irrigation and Drainage (DID) website.  

 

Small watershed (Lui) 

Figure 5.1 is a semi-log graph that shows the Maximum Estimated Discharge (MED) at 

specific rainfall duration (every hour) for each large event. These values were estimated by the 

TREX model at the downstream end of the main channel. This graph was plotted from tabulated 

data in Table A1. The ND, AD and DD zones obtained from DID are 6.5, 16.6 and 47.9 cms, 

respectively. These zones can be translated into water depth (meter) in the main channel at the 

downstream end (station 3118445) as ND < 1.72 m, 1.72 m ≤ AD ≤ 2.72 m, and DD > 2.72 m, 

respectively. The simulation period for these extreme events was 48 hours.  

Other than the 2- and 5-year return period events, the MED of the large events were 

estimated to be bigger than the DD zone. These MEDs values were reached when the duration of 

the events was between 2 and 5 hours.  The MED value for a 100-year return period is 91 cms at 

a rainfall intensity of 38 mm/hr for four hours total rainfall depth of 152 mm. Even though all the 

MED value during this event (100-year) is above the DD zone, the 3D visualization shows that 

there is no flooding in the valley, except in the main channel (Figure 5.2). The 91 cms of the 

MED value is visualized in the form of water depths, as shown in Figure 5.2c.   
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Figure 5.1 Maximum estimated discharges (MED) for the small watershed (Lui) 
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Figure 5.2 Three-dimensional visualizations for a 100-year return period event for the small watershed (Lui) 
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Medium watershed (Semenyih) 

The MED values during large and extreme events at the medium watershed were plotted 

in semi-log graph as shown in Figure 5.3. The discharges were measured at the downstream-end 

of this watershed. The results are summarized in Table A2. The ND, AD and DD zones obtained 

from DID are 22, 96 and 195 cms, respectively. These zones (ND, AD and DD) can be translated 

into water depth in meters as ND ≤ 4.49 m, 4.49 m < AD ≤ 6.09 m, and DD > 6.09 m, 

respectively. All MED values are simulated within 48 hours of the beginning of rainfall. 

All large rainfall events exceeded the DD zone except for the two and five year period, as 

shown in Figure 5.3. The highest MED values for two, five, and ten year return period events 

were estimated at five hours of rainfall duration with rainfall intensity of 18, 22 and 25 mm/hr, 

respectively. The MED values of these events are 147, 164 and 206 cms, respectively. However, 

for 20, 50 and 100-year return period event, the highest MED values were estimated at 12 hours 

of rainfall duration. Among these events, the highest MED value is 256 cms, which was 

estimated during a 100-year return period event. The water depth across the watershed for this 

event was visualized in 3D as shown in Figure 5.4. Figure 5.4a is the scenario at the beginning of 

the event. Figures 5.4b and 5.4d are the water depths at the rising (water start to accumulate in 

the main channel) and falling (water start to leave the main channel) limb, as shown in Figure A2 

(in Appendix A). The MED value of 256 cms is shown in Figure 5.4c, which is the peak of the 

hydrograph for a 100-year return period event as shown in Figure A2 (blue line). The valley 

areas are safe from flood except in the main channel. Approximately 13% and 42% of the main 

channel was estimated to be in the AD and DD zone, respectively. The remainder of the main 

channel was in the ND zone. 
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Figure 5.3 Maximum estimated discharge (MED) for the medium watershed (Semenyih) 
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Figure 5.4 Three-dimensional visualizations for a 100-year return period rainfall event for the medium watershed (Semenyih) 
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Large watershed (Kota Tinggi) 

Figure 5.5 shows the MED at the large watershed. Unfortunately, flow gage and stage 

data were unavailable at the main outlet in this watershed. However, there are three flow gages 

(which located at the upstream of the large watershed) that have been calibrated and validated as 

discussed in Chapter 4. The simulated discharge by the model at the main outlet is assumed to be 

very good. According to DID website, the normal, alert and danger stages are 2.1, 2.5 and 2.8 m, 

respectively.  

Figure 5.6 shows the water depth distribution across the watershed for 7 days of rainfall 

duration and 7.6 mm/hr of rainfall intensity. The maximum estimated stage value for this event is 

5.2 m. The snapshots of this event at the rising limb, peak stage and the falling limb are shown in 

Figures 5.6a - 5.6c, respectively. Figure 5.6a shows that the water depth in the main channel 

reached the DS line (i.e., 2.8 m) after 60 hours of rainfall. There are few areas where overtopping 

occurs (refer to Figure 5.6a), which were identified as low-land areas. The drastic change in 

slope, i.e., from high to low land areas, affected the velocity of flow. When the rainfall duration 

of a 100-year event increased up to seven days, all floodplain areas along the channel were 

flooding (Figure 5.6b). The topography of these areas consists of small valleys that are likely to 

be flooded. Longer times (i.e., more than 14 days) are needed to drain-out the flood because of 

the large size of the watershed, as shown in Figure 5.6c. A large-sized watershed requires more 

time to be drained compared to small and medium watersheds. Having several tributaries with 

different bed slopes also contributed to this cause. Therefore, the hydrograph’s rising limb did 

not increase as rapidly as at the small and medium watersheds. 
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Figure 5.5 Maximum estimated discharge (MED) for the large watershed (Kota Tinggi) 
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Figure 5.6 Three-dimensional visualizations for a 100-year return period rainfall event for the large watershed (Kota Tinggi) 
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5.2 SIMULATION OF THE EXTREME RAINFALL EVENTS 

The simulation of the extreme event included the PMP and the world’s largest recorded 

rainfall event, as tabulated and plotted in section 2.5.2. Temporal and spatial distribution of water 

depth at the three different size watersheds is the main concern in this section. In this section, the 

Maximum Estimated Discharge (MED) is used for small and medium watersheds, whereas the 

Maximum Estimated Stage (MES) is used for the large watershed.   

 

Small watershed (Lui) 

Different trends were observed for the S-PMP events. The simulated S-PMP events 

showed increasing MED values from 141 cms to 520 cms (Figure 5.1). These values were 

estimated at rainfall duration between one to 12-hours. The highest MED value for the S-PMP 

events was 520 cms at 12-hours rainfall duration with an intensity of 43 mm/hr. Figure 5.7 shows 

the water depth across the watershed for this event. Figure 5.7a shows the water depth across the 

watershed after one hour of S-PMP event. Figures 5.7b and 5.7d are water depth of the 

watershed at the rising and falling limb of hydrograph, respectively (Figure A1 – red line).  The 

MED of 520 cms is visualized in Figure 5.7c. The valleys are prone to flooding by 18% and 6% 

of the AD and DD zone, respectively. The upstream and downstream of the channel were 

flooding within the AD zone. 

The world’s largest rainfall events were simulated using various rainfall intensity and 

duration ranging from one to 16 hours. The trends of the MED values for the world’s largest 

events are shown in Figure 5.1. The simulated MED increased from 250 to 1,100 cms for rainfall 

durations of one to seven hours. Then, the trends remain stable at approximately 1,300 cms up to 

eleven hours of rainfall duration before decreasing to 750 cms (Figure 5.1). The highest MED
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Figure 5.7 Three-dimensional visualizations using S-PMP rainfall event for the small watershed (Lui) 
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value for this event was 1,358 cms, which was estimated after ten hours of rain with an intensity 

of 86 mm/hr. 

The temporal and spatial distribution of water depths for this event was visualized in 3D, 

as shown in Figure 5.8. One hour after the rainfall event, the watershed was covered with water 

at depths between 0.1 m to 0.3 m (Figure 5.8a). The valley was covered by 50% of water at more 

than 1.72 m (AD zone) approximately six hours after the rainfall event (Figure 5.8b). After 

eleven hours, about 83% of the valley was covered with more than 1.72 m of water (Figure 5.8c). 

The downstream of the watershed was fully flooded due to the decreasing valley width (see 

Figure 4.4a).  

 

Medium watershed (Semenyih) 

During the S-PMP events, the MED values increased as the rainfall duration increased 

(Figure 5.3). The highest MED value during this event was 1,474 cms, with an intensity of 43 

mm/hr and 12 hours of rainfall duration (Table A2). Figure 5.9 shows the water depth across the 

watershed for this event. Figures 5.9a, 5.9b, and 5.9d show the water depths at the beginning and 

at the rising and falling limbs of the S-PMP event. The water depths for the peak discharge are 

shown in Figure 5.9c. Looking at the 3D visualization, the valleys appear safe from water depths 

of more than 4.49 m (AD zone). However, water depth was observed to be more than 6.09 m 

(approximately 4%) in the mountain area. Approximately 80% of the main channel had water 

depths of more than 4.49 m (AD zone). If the rainfall intensity or duration is increased, the 

valleys are even more likely to be in AD zone. 
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Figure 5.8 Three-dimensional visualizations using the world’s largest rainfall event for the small watershed (Lui) 
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Figure 5.9 Three-dimensional visualizations using S-PMP rainfall event for the medium watershed (Semenyih) 
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The total rainfalls during the world’s largest events are approximately 50% increased 

from the S-PMP events (Table A2). As a result, the MED values during the world’s largest 

events will be greater than S-PMP events as well. Simulations where rainfall intensity was 

decreased and rainfall duration was increased showed that MED increased until 12 hours of 

rainfall. After that, the MED decreased.  The highest MED value for the world’s largest event 

was estimated at 3,793 cms, with duration of rainfall at 12 hours and rainfall intensity is 78 

mm/hr. The water depth for this event is visualized in Figure 5.10. The runoff starts to raise the 

water depth from ND to AD at the upstream of the valleys after approximately 10 hours with 78 

mm/hr of rainfall intensity (Figure 5.10b). Then it starts to spread out downstream in the valleys, 

as shown in Figure 5.10c. The percentage of water depth in AD and DD zone is 83% and 16%, 

respectively. The distribution of water depth of 4.49 m (AD zone) from upstream to downstream 

of the valleys is very fast, approximately four to five hours. The soil type and land use at the 

valley area are the main contributions for this condition, other than high rainfall intensity. From 

Figure 4.5, most of the valley is covered by impervious surface (i.e., urbanization) and far-

downstream the soil type is clay. Therefore, infiltration was very small and the soil which 

becomes fully saturated very fast. 
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Figure 5.10 Three-dimensional visualizations using the world’s largest rainfall event for the medium watershed (Semenyih) 
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Large watershed (Kota Tinggi) 

The rainfall duration and intensity for the extreme event at the large watershed are shown 

in Table 2.6. The maximum estimated stage (MES) for this event was estimated with rainfall 

durations of seven and five days for KT-PMP and the world’s largest event, respectively. To 

make an easier comparison between large and extreme events, the seven days of rainfall duration 

for world’s largest event is considered. The seven days of rainfall duration was considered to be 

comparable events because the difference of MES between 5 and 7 days was less than five 

percent.  

 Figure 5.11 shows the distribution of water depth after seven days of rainfall for the KT-

PMP event. As mentioned in the previous paragraph, by adding about 1.5 to 7.6 mm/hr of 

rainfall intensity to the 100-year rainfall event, the main channel response to the DS is very fast. 

It took only 34 hours after a seven-day rainfall KT-PMP event to achieve the depth of more than 

2.8 m in the main channel (Figure 5.11a). The difference in rainfall intensity between the 100-

year return period event and the KT-PMP event is not as high as S-PMP (i.e., small and medium 

watersheds). However, analysis of the 100-year event showed that low rainfall intensity was 

enough to make the watershed become fully saturated. As a result, small additional rainfall 

intensity from KT-PMP created a very large amount of total runoff. The highest MES value for 

this event was 8.7 m, which occurred approximately one hour after the rainfall of the KT-PMP 

event ended (Figure 5.11b). The floodplains along the main channel and tributaries were flooded 

with water depth of more than 2.8 m. These areas had the lowest elevation in the watershed (see 

Figure 4.6a). Seven days after the KT-PMP event (Figure 5.11c), upstream of the main outlet, the 

water depth remained over 2.8 m. The topography of this area is nearly flat and wider than 

upstream; therefore, more time is required to drain the flood. 
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Figure 5.11 Three-dimensional visualizations using KT-PMP rainfall event for the large watershed (Kota Tinggi) 
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The stage hydrograph, with temporal and spatial distribution of water depth for the 

world’s largest rainfall event, is shown in Figure 5.12. The response time for the water depths in 

the tributaries and channel to increase to more than 2.8 m is faster than the KT-PMP event. The 

water depths were in the DS zone approximately 18 hours after the rainfall event (see stage 

hydrograph in Figure 5.12). At this time, the soil was fully saturated. Figure 5.12a shows that 

after the second day of the event, the water has overtopped to the floodplain. The MES value for 

this event was 14.4 m (Figure 5.12b). The stage hydrograph also indicated that if the rainfall 

intensity is slightly higher for the event, then the equilibrium condition could be reached. At this 

point, the watershed becomes impervious. This would require more than seven days for water 

depths to decrease back to the NS zone after the world’s largest rainfall event (Figure 5.12c). 

This time duration is similar to estimates of large and KT-PMP events.  

The relationship between the magnitude of the highest maximum discharge value and 

rainfall events is interesting. The ratio between the highest maximum discharge values for each 

rainfall events was calculated and tabulated in Table 5.1. The magnitudes at small and medium 

watersheds were calculated to be from 6 to 15 times bigger than the 100-year rainfall event for S-

PMP and the world’s largest rainfall events, respectively. However, these magnitudes are smaller 

at the large watershed. Here, the calculated magnitude was 3 and 8 times bigger for the same 

comparison. The difference of these magnitudes was mainly influenced by the size of the 

watershed, land use, and soil type (Appendix F). The properties of the soil and its land use 

(hydraulic conductivity and roughness) are different at each watershed in this study. A detailed 

explanation of how these values can affect the discharge is in Appendix B.  
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Figure 5.12 Three-dimensional visualizations using the world’s largest rainfall event for the large watershed (Kota Tinggi)
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Table 5.1 The magnitude of the highest MED values from one rainfall event to another 

WATERSHED 

SIZE 

MAXIMUM DISCHARGE, Qp (cms) 

100-year PMP 

Ratio 

[PMP / 100-

year] 

World 

Ratio 

[World / 100-

year] 

SMALL (68 km
2
) 91 520 6 1358 15 

MEDIUM (236 km
2
) 256 1474 6 3793 15 

LARGE (1,635 km
2
) 1023 3016 3 8332 8 

 

5.3 RELATIONSHIP BETWEEN RAINFALL DURATION, PEAK SPECIFIC- 

DISCHARGE AND WATERSHED AREA 

Figure 5.13 is a log-log graph that shows the relationship of the rainfall duration for 

highest maximum estimated discharge (MED) value estimated by the model for each large and 

extreme event as a function of watershed size. The highest MED value was selected and the 

duration of the rainfall at that particular event was determined. For instance, for a 100-year 

return period event at the small watershed, the highest estimated MED value was 91 cms when 

the duration of rainfall is four hours (Table A2 – Appendix A). For the large rainfall events 

(Figure 5.13 - green color), the duration of rainfall to reach the highest MED values for large 

rainfall events at small and medium watersheds vary. The rainfall duration between 3 and 5 

hours was estimated by the model at a small watershed. For medium watershed, the rainfall 

duration is longer, i.e., between 5 and 12 hours. However, for the large watershed, the rainfall 

duration were simulated for 7 days to reach the highest MED for all large rainfall events. Similar 

to a large event, the duration of rainfall for the model to estimate highest MED is not the same as 

at the small, medium and large watersheds. The TREX model estimated the MED values for 

small and medium watersheds with the duration of rainfall between 10 and 13 hours (Figure 5.13 

– yellow and red dots). However, for the large watershed, the duration of rainfall was longer. The 
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Figure 5.13 The relationship between duration of rainfall of the highest MED value and the watershed area  
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rainfall duration to get the highest MED value was 168 and 150 hours for the KT-PMP and  

world’s largest rainfall events, respectively. 

The topography of the small and medium watersheds is approximately similar, i.e., more 

than 50% of the watershed is mountainous (Figure 4.4a and 4.5a for the small and medium 

watershed, respectively). Conversely, more than 50% of the large watershed is a low land area 

(Figure 4.6a). The topography difference between these watersheds affected the time to reach 

MED for each simulated event. At the large watershed, the low land area is covered by forest and 

some places are swampy (Appendix F - Figure F3). Generally, tropical rain forest is dense and 

their tree trunks are big, which causes the travel time from far-upstream to the downstream end 

to increase. 

During extreme rainfall events, the intensity of rainfall is very high compared to large 

rainfall events. Therefore, more water was added to the watershed and soils become fully 

saturated in a very short time. As a result, more overland flow was generated because the rainfall 

exceeded infiltration rates. Increasing rainfall intensity by a factor of 2.0 (for small and medium 

watersheds) and 1.6 (for large watershed) from the 100-year return period to PMP event and 

from PMP to the world’s largest event creates rainfall beyond the normal conditions. That 

means, by increasing the intensity of rainfall, the discharge in the main channel and overland will 

be much different than during normal events. During normal events, the flow in the main channel 

is controlled by the channel itself. However, as the rainfall intensity and duration are far beyond 

the normal conditions, the flow conveyance and distribution is controlled by the rainfall event. 

The channel and overland surface roughness decrease as the flow depth and volume increase. As 

a result, the MED values are significantly increased. 
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The relationship between rainfall duration and intensity as a function of watershed size is 

interesting as well. The MED at the small and medium watersheds was obtained at rainfall 

durations between 3 to 13 hours (Table 5.2). This means, the MED values are influenced by 

rainfall intensity. However, at the large watershed, the duration of rainfall to obtain MED values 

are longer than the other two watersheds. Except for the world’s largest event, the MED values 

are estimated at 168 hours of rainfall duration (Table 5.2). The MED value for the world’s 

largest event is estimated when the duration of rainfall was at 150 hours. To make this discussion 

easier, the rainfall duration of this event was assumed to be 168 hours, the same as other events 

for the large watershed, because the difference of MED values for 150 and 168 hours duration 

was less than 5%. Therefore, for the large watershed, the duration of rainfall is more important 

than the rainfall intensity in order to determine the MED value 

Figures 5.14 and 5.15 show the relationship between peak specific-discharge and 

watershed area. The plotted values were calculated by dividing the highest MED for each 

specific event with the watershed area as tabulated in Table 5.2. The graph has been modified 

from Creager et al. (1945) and Julien (2002) in order to fit the results of this study. This graph 

was introduced by Creager et al. (1945) by plotting the highest floods observed from the USA 

and some big floods from other countries such as China, India and Brazil. These data were 

tabulated in Appendix G. Additional information, as shown in Table 5.3, was obtained from 

USNRC (1980), Fontaine (1992), Eberle et al. (2002), REDAC (2006), England et al. (2007), 

and USACE (2008), Moussa and Bocquillon (2009) and Sharif et al. (2010) to support the 

findings from this study. 
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Table 5.2 Duration of rainfall contributed to highest MED value and peak specific-discharges 

Rainfall 

Events 

Watershed size (in km
2
) 

Small (68) Medium (236) Large (1,635) 

Highest 

MED 

(cms) 

Rainfall 

Duration 

(hrs) 

Peak 

Specific- 

Discharge 

(cms/km
2
) 

Highest 

MED 

(cms) 

Rainfall 

Duration 

(hrs) 

Peak 

Specific- 

Discharge 

(cms/km
2
) 

Highest 

MED 

(cms) 

Rainfall 

Duration 

(hrs) 

Peak 

Specific- 

Discharge 

(cms/km
2
) 

Large 

Events 

2-year 22 3 0.32 147 5 0.62 368 168 0.23 

5-year 46 5 0.68 167 12 0.71 --- --- --- 

10-year 62 5 0.91 206 5 0.87 --- --- --- 

20-year 74 5 1.09 226 12 0.96 --- --- --- 

50-year 85 4 1.25 242 12 1.03 920 168 0.56 

100-year 91 4 1.34 256 12 1.08 1,023 168 0.63 

Extreme 

Events 

PMP 520 12 7.65 1,474 12 6.25 3,016 168 1.84 

World 1,358 10 19.97 3,793 13 16.07 8,332 120 5.10 
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Table 5.3 Peak specific-discharge data from other researchers 

Rainfall 

event 

Jeniang [1] 

(Area = 1,740 km
2
) 

Jambatan [1] 

(Area = 3,330 km
2
) 

Ladang [1] 

(Area = 4,010 km
2
) 

River Estuary [1] 

(Area = 4,210 km
2
) 

Highest 

MED 

(cms) 

Peak 

Specific- 

Discharge 

(cms.km
-2

) 

Highest 

MED 

(cms) 

Peak 

Specific- 

Discharge 

(cms.km
-2

) 

Highest 

MED 

(cms) 

Peak 

Specific- 

Discharge 

(cms.km
-2

) 

Highest 

MED 

(cms) 

Peak 

Specific- 

Discharge 

(cms.km
-2

) 

Large 

events 

50-year 667 0.38 1,386 0.42 1,768 0.44 1,910 0.45 

100-year 767 0.44 1,579 0.47 2,000 0.50 2,100 0.50 

100-Yr / PMP 

England et al. (2008) [2] 

(Area = 12,000 km
2
) 

USNRC (1980) [3] USACE (2008) [4] 

(Area = 3,224,535 km
2
) (Area = 23,491 km

2
) (Area = 267,805 km

2
) 

2,830 0.24 7,985 0.34 24,069 0.09 85,801 0.03 

Moussa and Bocquillon 

(2009) [5]  

(Area = 27,088 km
2
) 

Sharif et al. (2010) [6] 

(Area = 1,630 km
2
) 

Fontaine (1992) [7] 

(Area = 690 km
2
) 

Eberle et al. (2002) [8] 

(Area = 27,088 km
2
) 

2,440 3.25 2,829 1.7 406 0.6 4,020 0.14 

Note: The source for [1] is from REDAC (2006) 
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The plotted data can be classified into three regions: large events cover return periods 

between two to 100-years, PMP, and world’s largest rainfall event. These regions were classified 

using 50% lower and upper limits from the minimum and maximum of the highest MED values 

in each region. The first region is represented in green. The region has a minimum limit to ensure 

that the design discharge is not under estimated. This is important so that any hydrologic design 

system, for example drainage or widening and deepening of a river could contain high discharge. 

The second region is represented in orange. The highest MED values resulted from S-PMP 

(small and medium watersheds) and KT-PMP (large watershed) events were used as benchmarks 

to produce this region. Additional data from USNRC (1980), Fontaine (1992), Eberle et al. 

(2002), REDAC (2006), England et al. (2007), and USACE (2008), Moussa and Bocquillon 

(2009) and Sharif et al. (2010) were used to support the outline of this region. Finally, the 

world’s largest event, which is classified as extreme event, is presented in red. According to 

Nathan and Weinmann (1990), this event has the annual exceedence probability of at least 1 in 

2,000 years (Figure 2.5).The upper bound is introduced to limit the design discharge. If the 

design discharge is beyond this region, the cost (time and money) of the construction will be 

high. 

The variability of the peak specific discharge decreases for the extreme events (i.e., PMP 

and world’s largest rainfall events). At this point, the hydrologic parameters do not play any role 

because the soils become fully saturated and the roughness is small. The coverage for all regions 

decreases as size of watershed increases. The peak specific-discharge decreased trivially as the 

watershed size increased up to 1 x 10
3
 km

2
. For one-log-cycle of watershed size, the peak 

specific-discharge decreased about one-third-log-cycle. However, beyond this watershed size (1 

x 10
3
 km

2
), the value of peak specific-discharge is decreased significantly. The peak specific-
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Figure 5.14 Large and extreme peak specific-discharges as a function of watershed area 
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Figure 5.15 Large and extreme peak specific-discharges as a function of watershed area with Creager et al. (1945) flood data.  
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discharge decreased more than a half-log-cycle. The distributions of these regions are related to 

the magnitude (or ratio) as shown in Table 5.1. As shown in this table, the magnitude (or ratio) 

of the highest MED values for the extreme events to the large event (100-year return period) is 

about the same. The average magnitude is 5 and 12 times bigger for the respective events. 

Currently, relationships between rainfall duration, peak specific-discharge and watershed 

size are not well explained, published or used by other researchers or engineers. This study has 

provided a graph that gives good approximate values for estimating discharge at small, medium 

and large watersheds, provided that the characteristics of the watersheds (small, medium and 

large) to be studied are similar or the same as in this study. This information can also be a good 

reference and benchmark when conducting large and extreme rainfall event analyses. 

 

5.4 SENSITIVITY ANALYSIS OF THE LARGE AND EXTREME DISCHARGES  

Sensitivity analysis was conducted to describe the entire set of possible discharges and 

runoff coefficients, C, based on several combinations of upper, lower limits and 

calibrated/validated values. From the sensitivity analysis, the uncertainty of the water depth 

distribution across three watersheds during these rainfall events (i.e., large and extreme events) 

will also be highlighted. The upper and lower limits for each parameter are presented in Tables 

5.4, 5.5 and 5.6 for the small, medium and large watershed, respectively. There are several 

sources that contributed to the uncertainty of discharge, which includes the measurement error in 

rainfall and discharge and the estimation of hydrological and hydraulic parameters in the 

hydrologic model. However, in this study, the uncertainty analysis for discharge was evaluated 

using only hydrological and hydraulic parameters. The measurements of rainfall and flow are 

assumed to be error free in this study.  The hydrological and hydraulic parameters for TREX 

model include the hydraulic conductivity, Kh, soil moisture deficit, hydraulic suction head, Hc, 



118 
 

slope (overland, Sov, and channel, Sch), roughness (Manning’s n for overland, nov, and channel, 

nch). These parameters were known to be the most sensitive parameters as discussed in Appendix 

B. The Kh and Manning’s n vary widely between soil classes and land covers, respectively. The 

variation of the Manning’s n depends on the type and condition of vegetative cover, as well as 

the flow condition (laminar or turbulent). Upper and lower Kh and Manning’s n values were 

assumed to be 50% larger and lower than the calibrated value. To simplify the analysis, only the 

variation of the overland roughness was explored.  

The Logic Tree Analysis (LTA) approach as described by Mishra (2009) was used. The 

author suggests that this approach is particularly useful for uncertainty propagation when 

parameter uncertainty is described using a limited number of possibilities (e.g., upper and lower 

limit, and calibrated and validated parameters values). The LTA is ordered such that the sum of 

the possibilities is unity (i.e., 1.0) when the combination of upper and lower limits were used. 

The upper (UP) and lower limits (LL) were selected using the ±50% of calibrated and validated 

values. These limits correspond to the maximum and minimum permissible values of hydrology 

and hydraulic parameters (will be referred to as the model parameters in the following 

paragraph) in hydrological model as suggested by Liong et al. (1989). The model parameters 

depend on the soil types and topography of the watersheds. The assumption is that these model 

parameters do not change much as compared to the land use, unless there is a significant work in 

replacing the existing soil type on the watershed area. The ±50% limits were chosen to depict the 

plausible and realistic range of parameter uncertainty for the key inputs to assess variability in 

the system outputs. However, in this study, there are some of the model parameters exceed the 

Liong’s limit. In this case, the exceeding values are used and assumed to be valid. 
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Table 5.4 Parameter bound for uncertainty analysis at small watershed: hydraulic conductivity 

and Manning’s n 

PARAMETER LOWER LIMIT UPPER LIMIT APPLICATION 

Hydraulic 

Conductivity, Kh (m/s) 

1.31 x 10
-7

 3.405 x 10
-7

 Sandy loams 

1.14 x 10
-7

 3.930 x 10
-7

 Loams 

4.34 x 10
-7

 1.301 x 10
-6

 Mountain - limestone 

Manning’s n 

0.085 0.255 Agricultural  

0.025 0.075 Urban / Commercial 

0.200 0.600 Forest 

 

Table 5.5 Parameter bound for uncertainty analysis at medium watershed: hydraulic conductivity 

and Manning’s n 

PARAMETER LOWER LIMIT UPPER LIMIT APPLICATION 

Hydraulic 

Conductivity, Kh (m/s) 

5.60 x 10
-9

 1.68 x 10
-8

 Sandy loams 

6.35 x 10
-9

 1.91 x 10
-8

 Loams 

1.53 x 10
-9

 4.59 x 10
-9

 Clay 

5.90 x 10
-11

 1.77 x 10
-10

 Mountain - limestone 

Manning’s n 

0.050 0.150 Agriculture 

0.025 0.075 Urban / Commercial 

0.100 0.300 Forest 

0.050 0.200 Grass area 

0.050 0.150 Open area 

 

Table 5.6 Parameter bound for uncertainty analysis at large watershed: hydraulic conductivity 

and Manning’s n 

PARAMETER LOWER LIMIT UPPER LIMIT APPLICATION 

Hydraulic 

Conductivity, Kh 

(m/s) 

3.56 x 10
-10

 1.07 x 10
-9

 Sandy loams 

3.64 x 10
-10

 1.09 x 10
-9

 Loams 

3.59 x 10
-11

 1.08 x 10
-10

 Mountain - limestone 

Manning’s n 

0.15 0.45 Agriculture 

0.01 0.03 Urban / Commercial 

0.30 0.90 Forest 

0.15 0.45 Grass area 

0.15 0.45 Open area 
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The watershed runoff coefficients, C, at each watershed were calculated using the 

Rational Method (RM) shown in Equation 5.1.  

 

  
  

  
          [            ] 

Where:    = runoff coefficient [-] 

     = peak discharge [L
3
T

-1
] 

    = rainfall intensity [LT
-1

] 

    = watershed area [L
2
] 

 

This method was use with the assumptions that (1) the peak flow is reach when the entire 

watershed is contributing to the runoff, (2) the rainfall intensity is assumed to be uniform across 

the watershed and over a time duration, and (3) the peak discharge recurrence interval simulated 

is equal to the rainfall intensity recurrence interval (i.e., the 100-year rainfall intensity is assumed 

to produce 100-year flood discharge and so forth). 

The simulated peak discharges obtained using combination parameters from Tables 5.4, 

5.5 and 5.6 are tabulated in Tables H1- H3 (Appendix H) for the small, medium and large 

watershed, respectively. Figures 5.16 - 5.18 show the box plot of the peak discharges for return 

period events from two to 100-year and extreme events, i.e. PMP and world’s largest rainfall 

events.  The calibrated/validated (CV) values are presented with white box. The distribution of 

the peak discharges are presented in the forms of box-plot, red-dotted, and line.  

Tables H1 - H3 show discharges and runoff coefficients for different combinations of 

hydrologic parameters at the small, medium and large watersheds, respectively. The peak 

discharges, as tabulated in these tables, indicated that the possible peak discharge value at small 
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Figure 5.16 Box-plot for hydrological uncertainty at small watershed (Lui) 

 

and medium watersheds are normally distributed for large events (Figures 5.16 and 5.17). 

Conversely, the distribution of peak discharges at the large watershed is clustered into three 

(Figure 5.18). These three clusters can be defined as minimum, mean and maximum. The same 

trend also can be found for extreme events. This trend indicates that during extreme events, the 

Kh and Manning’s n does not affect the discharge. This happens because after a certain period of 

rainfall, soil becomes fully saturated and roughness becomes smooth very fast as compared to 

during large events (except at the large watershed). All rainfall becomes runoff and flows 

directly to tributaries and the main channel. The runoff coefficient, C, value for the calibrated 

hydrologic parameters is between 0.1 and 0.3 for large events at all watersheds (see Figures H1 – 

H3 in an Appendix H). However, the coefficient drastically increased for extreme event at all 

watersheds, which was between 0.6 and 0.9. From these values, it can be said that Manning’s n is 
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Figure 5.17 Box-plot for hydrological uncertainty at medium watershed (Semenyih) 
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Figure 5.18 Box-plot for hydrological uncertainty at large watershed (Kota Tinggi) 

  

the most uncertain parameter as compared to hydraulic conductivity, Kh. The maximum runoff 

coefficient for all watersheds calculated when the lower limit of Manning’s n was applied. The 

trends of the C values were the same, as indicated by the uncertainty analysis conducted for peak 

discharges. 

The uncertainty analysis on water depth distribution across small, medium and large 

watersheds based on these rainfall events was done. For a small watershed, during 100-year 

event, the main channel will be flooded (Figure H4 - Appendix H) with the uncertainty ranging 

between 86% and 91%. The uncertainty limit for this event is ±3%. It was estimated that 13% to 

34% of the valley area will be flooded with water depths of more than 1.72 m during S-PMP 

event. Flooded areas at the valley increased between 77% and 85% during the world’s largest 
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rainfall event. The valley area at medium watershed is safe from any water depth more than 4.49 

m, except in the main channel during 100-year event. For this event, the DD zone in the main 

channel does not change, i.e., 55% (Figure H5 – Appendix H). During S-PMP event, 67% to 

82% of the main channel will reach the DD zone. The valley area at a medium watershed is 

prone flooding, at the range between 85% and 96% during the world’s largest rainfall event. The 

valley areas at a large watershed were flooded during 100-year, KT-PMP and world’s largest 

rainfall events as shown in Figure H6 (Appendix H). 

 Figure 5.19 shows the uncertainty value of the peak specific-discharge as a function of 

watershed area. The upper (UP) and lower limits (LL) were obtained from the sensitivity 

analysis as discussed in the first paragraph of this section. The uncertainty of the 100-year flood 

at small watershed is ±20% from the estimation of calibrated/validated value; while medium and 

large watersheds give ±10% for the same comparison. However, the uncertainty of peak 

discharges for PMP event shows increasing bounds (i.e., lower and upper limit) at small and 

medium watersheds. The values are ±30% and ±22%, respectively. The uncertainty of the peak 

discharge at large watershed for PMP event is ±8%. For the world’s largest rainfall event, the 

uncertainty of the peak discharge at small, medium and large watersheds is ±16%. The 

distribution of large, PMP and world’s largest event, as shown in Figure 5.20 is classified by 

considering the data reported by Creager et al. (1945), USNRC (1980), Fontaine (1992), Eberle 

et al. (2002), REDAC (2006), England et al. (2007), and USACE (2008), Moussa and Bocquillon 

(2009) and Sharif et al. (2010). 
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Figure 5.19 Uncertainty of the peak specific-discharge as a function of watershed areas
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SUMMARY 

The simulated results for 100-year return period (large event), PMP (including S-PMP 

(small and medium watersheds) and KT-PMP (large watershed)), and world’s largest rainfall 

events were presented and discussed. For small and medium watersheds, the analyses and 

discussions were based on simulated discharges, whereas for the large watershed, simulated 

stage was used for analysis and discussion. The temporal and spatial distributions of water 

depths for all events at the three watersheds were visualized in 3D. 

 The highest MED values for the large event (100-year return period) at small and 

medium watersheds were 91 and 256 cms, respectively. The rainfall intensities for these 

watersheds were 38 and 15 mm/hr, respectively. Although the rainfall intensity at the small 

watershed was higher than at the medium watershed, the duration of rainfall that gave the highest 

MED value was the opposite. This means the duration of rainfall at the medium watershed was 

12 hours to simulate the highest MED value, as compared to the small, which is 4 hours. For the 

large watershed, the intensity and duration of rainfall were 7.6 mm/hr and 168 hours, 

respectively. The intensity at this watershed was smallest when compared to the small and 

medium watersheds. However, a much longer duration of rainfall was required to simulate the 

highest MED value, which was 1,023 cms. Simulation of the 100-year return period showed the 

valley areas at the small and medium watersheds were not flooded except in main channel 

(Figures 5.2 and 5.4). However, for the same level event, most of the low land areas (along 

tributaries and channels) at the large watershed were estimated to have water depth more than 2.8 

m (Figure 5.6b).  

 Extreme rainfall events, PMP and world’s largest rainfall data, were simulated at these 

watersheds also. The rainfall and duration for small, medium and large were presented in
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Table 2.6. The highest MED for the PMP event at small, medium and large watersheds was 520, 

1,474 and 3,016 cms, respectively. These values were estimated at rainfall durations of 12 hours 

for small and medium watersheds and 168 hours (7 days) for the large watershed. The highest 

estimated MED values for small, medium and large watersheds using the world’s largest rainfall 

are 1,358, 3,793 and 8,332 cms, respectively. The distributions of water depth above alert zone 

levels for all watersheds were not the same. The hydrological simulation indicates that all study 

areas were estimated to be flooded, except the S-PMP event at the medium watershed (Figure 

5.9). For the small watershed, the flooded areas were estimated at the far-upstream and end-

downstream of the valley (Figures 5.7 and 5.8). At the medium watershed, the whole valley area 

was flooded during the world’s largest rainfall event (Figure 5.10). At large watershed, Figures 

5.11 and 5.12 indicate that the low land areas (i.e., along the tributaries and channels) are more 

likely to be flooded. 

The relationships between rainfall duration, peak specific discharge and watershed size 

were also discussed. From these analyses and discussions, it was concluded that rainfall intensity 

does not affect the estimation of the highest MED values for large and extreme events at the 

large watershed. Rainfall duration is the main factor that creates flooding. Instead of rainfall 

duration, the intensity of rainfall is the main factor that contributes to flooding at the small and 

medium watersheds. From the simulation results as shown in Figure 5.14, three regions were 

produced and shown in Figure 5.15. These regions are very useful in providing the first 

approximation for a hydrological modeler or any practitioner to estimate peak discharges. The 

uncertainty analysis was conducted to quantify the reliability of peak discharge and flooding area 

for large, PMP and world’s largest rainfall events on these watersheds. 
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CHAPTER SIX 

CONCLUSIONS 

 

Lui (small – 68 km
2
), Semenyih (medium – 236 km

2
) and Kota Tinggi (large – 1,635 

km
2
) watersheds were used to simulate large and extreme rainfall events. Large rainfall events 

covered return periods from two to 100-year events. Extreme rainfall events included Selangor-

PMP (S-PMP), Kota Tinggi PMP (KT-PMP) and the world’s largest rainfall events. This study 

used the distributed two-dimensional TREX model for the simulation of infiltration, overland 

runoff, and channel flow during extreme rainfall events. Following the objectives outlined in the 

first chapter, these conclusions have been reached from conducting this study: 

 

Objective 1: Calibrate the distributed hydrological model to simulate monsoon floods. 

The model was calibrated and validated for the available period of record from 2009 to 

2010 and from 2002 to 2009 for small and medium watersheds, respectively. The rainfall and 

discharge recorded in 2010 and the flood event in December 2006 to January 2007 were used to 

calibrate and validate the model parameters of the large watershed. The calibrated and validated 

model parameters were Kh and Manning’s n. Two approaches were used to evaluate the model’s 

performance, these were graphical and statistical (relative percentage difference (RPD), Nash-

Sutcliffe Efficiency Coefficient (NSEC) and Percent BIAS (PBIAS)) methods. Generally, the 

graphical method showed that the observed and simulated hydrograph achieved good results for 

the small watershed and very good results for both medium and large watersheds. Overall, the 

PBIAS values showed that the model underestimated the volume of water with an average of 

14% and 1.5% for small and large watersheds, respectively. For the medium watershed, the 
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PBIAS indicated that the model overestimated the volume of water with an average of 28%. The 

NSEC values indicate that the model performed differently. The NSEC value indicated 

satisfactory (0.4) for the small watershed, good (0.7) for the medium watershed, and very good 

(0.8) for the large watershed.  

 

Objective 2: Determine the affected flooding area under different rainfall events. 

The spatial and temporal runoff distributions overland and in the channel were 

successfully visualized in 3D. The valley areas at small and medium watersheds were not 

flooded by the large events, except in the main channel. Approximately 89% and 55% of the 

main channel at small and medium watersheds had water depths more than 1.72 m and 4.49 m, 

respectively. Runoff simulations using S-PMP and the world’s largest events showed that the 

valleys were flooded. The water depths at both upstream and downstream of the valley for the 

small watershed were estimated to be more than 1.72 m. During S-PMP and the world’s largest 

events, it was estimated that about 24% (±10%) and 83% (±5%), respectively, of the valleys 

were covered with water deeper than 1.72 m. At the medium watershed, the valley areas were 

covered with water more than 4.49 m during the world’s largest events with uncertainty between 

81% and 96%. During the S-PMP events, the valley area was safe from flooding. However, it 

was estimated that the main channel’s water depth exceed 4.49 m over about 81% from the total 

length of the main channel. However, most of the low land areas (i.e., valley area along 

tributaries and main channel) of the large watershed were estimated to have water depth greater 

than 2.8 m, which was overtopping the river bank. 
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Objective 3: Examine the effect of rainfall duration on the magnitude of the peak flood discharge 

as a function of watershed size. 

The highest maximum estimated discharge (MED) values for each large event were 

obtained between 3 and 5 hours of rainfall duration for the small watershed. However, for the 

medium watershed, the highest MED values were obtained at rainfall durations between 5 and 12 

hours. The highest MED values for extreme rainfall events were estimated at rainfall duration 

between 10 and 12 hours for both watersheds. The large watershed required more time to reach 

the highest MED value for all events, which was 168 hours (7 days). The average magnitude for 

the PMP and the world’s extreme rainfall events was 5 and 12 times bigger than the 100-year 

event, respectively.  

 

Objective 4: Determine and produce graphs for the relationship between peak specific-discharge 

and watershed sizes. 

 The intensity of rainfall is the main factor in determining the flood magnitude of small 

and medium watersheds. The flooding events of large watersheds resulted from longer rainfall 

durations. The graph showing the relationship between peak specific discharges and watershed 

areas was plotted (Figures 5.14 and 5.15). From this graph, three main regions were produced to 

estimate the peak discharge for the three sizes of watersheds. These regions were established 

based on the rainfall events of large, PMP, and the world’s largest rainfall events. The peak 

specific-discharge decreased slightly as the watershed size increased up to 1 x 10
3
 km

2
. 

However, beyond this watershed size, the value of peak specific-discharge decreased 

significantly.  The graph is useful to estimate the peak discharge at first-order approximation to 

design any hydraulic and hydrology system before conducting further analysis. 
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Table A1 Value of peak discharge, rainfall intensity (mm/hr) and total rainfall (depth in mm) at 

small watershed 

FLOOD 

EVENTS 

RAINFALL DURATION, TRD (Hour) 

1 2 3 4 5 12 14 16 

2- 

years 

Qp 14 21 22 22 21 14 12 10 
i 54 35 26 21 18 8 7 6 

i xTRD 54 70 79 84 88 96 97 96 

5- 

years 

Qp 22 32 42 45 46 28 23 18 

i 64 43 32 26 22 10 9 7 
i xTRD 64 85 97 105 110 120 119 118 

10-

years 

Qp 29 45 55 60 62 43 35 27 
i 72 48 37 30 25 11 10 8 

i xTRD 72 96 110 118 124 134 134 133 

20-

years 

Qp 35 54 66 72 74 57 51 42 
i 80 53 40 32 27 12 11 9 

i xTRD 80 106 120 129 136 149 150 149 

50-

years 

Qp 43 65 81 85 85 65 59 53 
i 88 58 44 36 30 14 12 10 

i xTRD 88 116 133 143 150 163 162 162 

100-

years 

Qp 50 76 89 91 90 71 65 59 
i 95 62 47 38 32 15 12 11 

i xTRD 95 125 141 152 160 174 174 173 

  RAINFALL DURATION, TRD (Hour) 

  1 2 3 4 6 12 14 16 

S-PMP 

Qp 141 --- 278 --- 418 520 --- --- 
i 188 --- 100 --- 65 43 --- --- 

i xTRD 188 --- 300 --- 391 518 --- --- 

  RAINFALL DURATION, TRD (Hour) 

  2 4 6 8 10 12 14 16 

World’s 

event 

Qp 493 888 1164 1321 1358 1275 1072 750 
i 187 133 110 95 86 78 73 68 

i xTRD 374 532 660 760 860 936 1019 1092 

Note: Qp = Peak discharge in cms; i = rainfall intensity in mm/hr; i x TRD = Total rainfall in mm 
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Figure A1 The hydrograph of the highest MED for 100-year return period, S-PMP and WL 

events at small watershed 
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Table A2 Value of peak discharge, rainfall intensity (mm/hr) and total rainfall (depth in mm) at 

medium watershed 

FLOOD 

EVENTS 

RAINFALL DURATION, TRD (Hour) 

1 2 3 4 5 12 14 16 

2- 

years 

Qp 89 114 135 143 147 142 139 136 
i 54 35 26 21 18 8 7 6 

i xTRD 54 70 79 84 88 96 97 96 

5- 

years 

Qp 106 130 150 160 164 167 163 157 
i 64 43 32 26 22 10 9 7 

i xTRD 64 85 97 105 110 120 119 118 

10-

years 

Qp 116 158 194 205 206 202 200 179 
i 72 48 37 30 25 11 10 8 

i xTRD 72 96 110 118 124 134 134 133 

20-

years 

Qp 124 180 205 214 219 226 224 210 
i 80 53 40 32 27 12 11 9 

i xTRD 80 106 120 129 136 149 150 149 

50-

years 

Qp 135 197 219 229 236 242 238 234 
i 88 58 44 36 30 14 12 10 

i xTRD 88 116 133 143 150 163 162 162 

100-

years 

Qp 148 209 227 240 249 256 251 246 
i 95 62 47 38 32 15 12 11 

i xTRD 95 125 141 152 160 174 174 173 

  RAINFALL DURATION, TRD (Hour) 

  1 2 3 4 6 12 14 16 

S-PMP 

Qp 304 --- 643 --- 1023 1474 --- --- 

i 188 --- 100 --- 65 43 --- --- 

i xTRD 188 --- 300 --- 391 518 --- --- 

World’s 

event 

Qp 501 --- 1513 --- 2717 3793 3774 3562 

i 261 --- 153 --- 110 78 73 68 

i xTRD 261 --- 460 --- 658 941 1019 1092 

Note: Qp = Peak discharge in cms; i = rainfall intensity in mm/hr; i x TRD = Total rainfall in mm 
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Figure A2 The hydrograph of the highest MED for 100-year return period, S-PMP and WL 

events at medium watershed 
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Table A3 Value of peak discharge, rainfall intensity (mm/hr) and total rainfall (depth in mm) at 

large watershed 

FLOOD 

EVENTS 

RAINFALL DURATION, TRD (Hour) 

1 3 6 12 24 48 72 150 168 

2- 

years 

Qp 29 38 62 76 101 138 222 300 368 
h 1.08 1.28 1.71 1.93 2.30 2.69 3.07 3.46 3.47 
i 67 35 22 14 10 7 5 4 4 

i xTRD 67 104 133 172 228 312 389 660 672 

50- 

years 

Qp 53 83 116 199 310 452 654 853 920 
h 1.56 2.04 2.45 2.93 3.51 3.75 4.34 4.84 5.00 
i 118 66 50 31 21 14 11 9 7 

i xTRD 118 199 300 367 497 677 814 1305 1226 

100-

years 

Qp 62 97 136 251 384 562 808 995 1023 
h 1.71 2.22 2.66 3.22 3.67 4.29 4.73 5.18 5.24 
i 130 73 50 34 23 16 12 9 8 

i xTRD 130 218 300 409 554 749 893 1380 1277 

KT-

PMP 

Qp 210 255 528 994 1304 2396 2721 2982 3016 
h 3.00 3.24 4.41 5.17 5.83 7.76 8.25 8.64 8.69 
i 186 74 59 44 27 19 15 11 9 

i xTRD 186 223 353 528 655 926 1066 1620 1529 

World’s 

event 

Qp 297 743 1224 2453 3996 6552 7680 8332 8010 
h 3.45 5.14 5.67 7.85 10.01 12.94 14.09 14.72 14.41 
i 261 153 110 78 56 40 33 26 22 

i xTRD 261 460 658 941 1346 1925 2376 3870 3679 

Note: Qp = Peak discharge in cms; h = Stage in m;  i = rainfall intensity in mm/hr; i x TRD = Total rainfall   

          in mm 
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Figure A3 The hydrograph of the highest MED and MES for 100-year return period, KT-PMP and WL events at large watershed 
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APPENDIX B 

SENSITIVITY ANALYSIS 
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A sensitivity analysis attempts to determine the change in model output values that 

results from the changes in the TREX model parameter values. This analysis is a valuable tool 

for identifying important model parameters. Table B1 shows the parameters that have been used 

to determine which are most sensitive when conducting a hydrological model using TREX. 

These values are calculated by subtracting and adding 50% from the calibrated / validated value 

to represent lower and upper values, respectively. The sensitivity analysis was conducted using 

the small (Lui) watershed. The results were assumed to be same for the medium (Semenyih) and 

large (Kota Tinggi) watershed. Additionally, the small watershed has a lot of advantages as 

compared to medium and large watershed for conducting sensitivity analysis (see Figure 2.3).  

Figure B1 shows the results from the hydrologic parameters model sensitivity analysis. 

The hydraulic conductivity, Kh, and flow resistance (Manning’s n) are the most sensitive 

parameters in the model (Figure B1a and B1b). Changing the Kh value by ±50% will affect the 

time to drain-out the water and also the peak discharge. However, the n values only control the 

peak discharge without affecting time to drain-out the water. The soil moisture deficit, θr, and 

capillary suction head, Hc (Figure B1c) and interception, Vi (Figure B1d) had minimal effect on 

discharge.   
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Table B1 Hydrological parameters for sensitivity analysis 

PARAMETER LOWER LIMIT UPPER LIMIT APPLICATION 

Interception 

depth (m) 

0.0 0.0 Urbanization 

1.0 3.0 Agricultural 

2.5 7.5 Forest 

Soil moisture 

deficit (-) 
0.145 0.435 

Sandy loams 

Loams 

Mountain - limestone 

Capillary suction 

head (m) 

0.110 0.330 Sandy loams 

0.070 0.210 Loams 

0.085 0.255 Mountain - limestone 

Hydraulic 

conductivity (m/s) 

1.135 x 10
-7

 3.405 x 10
-7

 Sandy loams 

1.310 x 10
-7

 3.930 x 10
-7

 Loams 

4.335 x 10
-7

 1.301 x 10
-6

 Mountain - limestone 

Manning’s n 

0.025 0.075 Urbanization 

0.085 0.255 Agricultural 

0.200 0.600 Forest 
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Figure B1 Hydrologic parameter model sensitivity analysis 
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APPENDIX C 

FLOOD FREQUENCY ANALYSIS 
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Data were assumed to follow the Gumbel (1958) model distribution. This model 

distribution was used for fitting the frequency distribution of extreme natural events at study 

areas. This method is one of the most recommended to analyze the frequency of floods (Benson 

1962; Reich and Jackson 1971; Reich 1972; Lettenmaier and Burges 1982). The moment method 

was used to estimate Gumbel’s parameters as suggested by Lowery and Nash (1970), Landwehr 

et al. (1979), Lettenmaier and Burges (1982), and Raynal and Salas (1986). 
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Where:    = the scale parameter (    ) 

   = the location parameter 

 

The scale and location parameter is calculated using Equations C2 and C3, respectively. 
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Where:   = sample mean [           ] 

   = sample standard deviation [           ] 

 

The sample mean and standard deviation value is calculated from Equations C4 and C2. 
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The daily maximum discharges from flow gage stations were used in this analysis and 

shown in Tables C1, C2 and C3 and C4 for the small, medium and large watershed, respectively. 

This method was used to compare between calculated flood frequency event and TREX model 

results for large rainfall events (i.e. from two to one hundred years return periods). Peak 

discharge probabilities are calculated using Weibull (1939) as shows in Equation 4.6. 

 

 ( )  
 

   
           [           ] 

Where:  i = rank (ordered sample either from smaller to the largest or vice versa) 

 N = sample size 

 

 Figures C1, C2, C3 and C4 were plotted in semi-log graph from the calculated values 

using Weibull (1939) and Gumbel (1958) equations for observed and fitted data, respectively. 

The 5% and 95% confidence limit were calculated and plotted as a lower and upper limit, 

respectively. These limits are useful to determine either the simulated discharge from the TREX 

model can be estimated between these limits. These graphs indicated that the model can be used 

to estimate the peak discharges for the large event (i.e., from two to one hundred years return 

periods) as well as the stochastic approach. However, there are several advantages to using the 

TREX model as compared to the stochastic approach. First, the simulated result can be extended 

to the map and animation created aided by using any animation software such as ArcGIS and 

GRASS to determine the distribution of the area that likely would be flooded.
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Table C1 Maximum daily discharge in cms at small watershed 

RANK YEAR QMAX RANK YEAR QMAX RANK YEAR QMAX RANK YEAR QMAX 

1 1971 121.33 12 2002 23.55 23 2004 14.52 34 1981 8.69 
2 1977 111.49 13 1974 23.02 24 1982 12.98 35 1990 7.79 
3 1978 40.85 14 2008 22.34 25 1987 12.77 36 2001 7.67 
4 1996 40.82 15 1989 21.67 26 1973 11.47 37 2000 7.58 
5 1997 27.48 16 2010 20.23 27 1986 11.43 38 1980 7.33 
6 2009 26.98 17 1998 18.20 28 2007 11.22 39 1983 6.07 
7 1979 26.76 18 1993 18.11 29 1995 10.46 40 1999 4.29 
8 1991 26.49 19 1970 16.48 30 1994 9.78 41 2005 3.36 
9 1976 25.91 20 1975 16.17 31 1984 8.90    

10 1972 24.52 21 2006 16.02 32 1988 8.90    

11 2003 24.34 22 1985 15.64 33 1992 8.72    

 

Table C2 Maximum daily discharge in cms at medium watershed 

RANK YEAR DISCH. RANK YEAR DISCH. RANK YEAR DISCH. RANK YEAR DISCH. 

1 2009 244.90 10 1983 153.56 19 1991 142.05 28 1975 135.01 

2 2008 242.61 11 1988 149.87 20 2007 141.48 29 1995 131.53 

3 1982 237.50 12 1987 149.56 21 1986 139.53 30 2006 129.21 

4 2010 167.89 13 1993 148.86 22 1979 138.66 31 1998 127.36 

5 1989 165.67 14 1984 145.54 23 2002 137.71 32 2000 125.72 

6 2004 165.46 15 1980 144.89 24 1978 136.64 33 1997 120.64 

7 2003 157.99 16 1985 144.70 25 1994 136.33 34 1999 120.03 

8 1992 157.58 17 1990 142.74 26 1976 135.96 35 2001 119.88 

9 1981 155.73 18 2005 142.08 27 1977 135.44 36 1996 119.85 
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Table C3 Maximum daily discharge at large watershed (station no. 1836402) 

RANK YEAR DISCH. RANK YEAR DISCH. RANK YEAR DISCH. RANK YEAR DISCH. 

1 2006 475.87 10 1987 135.94 19 1999 75.88 28 1997 53.60 

2 1983 288.53 11 1995 133.33 20 2010 75.63 29 1981 52.36 

3 2011 237.68 12 2005 111.28 21 1980 75.19 30 1993 50.30 

4 1986 230.36 13 2007 109.91 22 1992 74.99 31 1994 50.29 

5 1984 175.13 14 1996 105.51 23 1985 65.33 32 1989 41.96 

6 2004 164.61 15 1982 101.53 24 1977 64.11 33 1991 40.69 

7 2003 159.25 16 2008 88.00 25 2009 63.29    

8 1990 150.81 17 1978 85.00 26 1998 60.07    

9 2002 150.78 18 1979 83.57 27 2001 53.70    

 

Table C4 Maximum hourly discharge at large watershed (station no. 1737451) 

RANK YEAR DISCH. RANK YEAR DISCH. RANK YEAR DISCH. RANK YEAR DISCH. 

1 1996 709.66 13 1981 273.98 25 1985 184.37 37 1998 100.30 

2 1969 554.35 14 1971 273.60 26 1988 179.64 38 2000 98.67 

3 1983 536.65 15 1978 256.31 27 1999 164.99 39 1968 97.95 

4 2007 544.76 16 1995 254.32 28 1990 145.66 40 1965 97.12 

5 1982 521.45 17 1992 235.19 29 1994 139.65 41 1997 95.03 

6 1989 501.77 18 2001 226.11 30 2003 138.84 42 1970 92.45 

7 1984 426.01 19 2005 223.34 31 2009 133.35 43 1993 88.07 

8 2006 365.62 20 2004 213.54 32 1973 131.57 44 1966 84.40 

9 1986 351.81 21 1991 203.51 33 1980 119.11 45 2010 81.81 

10 1979 329.20 22 1977 202.20 34 2002 118.42 46 1972 80.09 

11 2011 321.62 23 1987 199.97 35 1975 106.18 47 1974 79.52 

12 1967 307.68 24 1976 190.76 36 2008 101.20    
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Figure C1 Comparison the daily maximum discharge between flood frequency analysis and 

TREX model at small watershed 

 

Figure C2 Comparison the daily maximum discharge between flood frequency analysis and 

TREX model at medium watershed 
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Figure C3 Comparison the daily maximum discharge between flood frequency analysis and 

TREX model at large watershed (1836402) 

 

Figure C4 Comparison the daily maximum discharge between flood frequency analysis and 

TREX model at large watershed (1737451) 
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From this map and animation, the contingency plan can be managed to evacuate people from the 

flooded area. TREX model also is a 2D distributed model and has an advantage to give discharge 

estimates at any point in the watershed. This advantage is helpful to the authorities and rescue 

teams to evacuate and relocate the flood victims by knowing the distribution of water depth at 

any watershed spatially and temporally.    

Secondly, the stochastic approach can only estimate the discharge for the year of N+1. 

This means, for instance from Figure C4, the maximum year is 48 (N = 47 years of sample data). 

When the TREX model has been calibrated and validated, the accuracy of the estimated peak 

discharge can be beyond what the stochastic approach can gives. Normally, the extrapolation 

method has been used to estimate the discharge beyond the plotted flood frequency graph 

plotted. The predicted peak discharge can be either high or low. This prediction also will affect 

the cost of any construction. For instance, to design a dam, the designs must factor for discharge 

from return periods longer than fifty years. If the stochastic approach cannot produce reliable 

results, the cost for this project would increase by over predicting the peak discharge. 

Conversely, under estimating peak discharge would make the main objective of the dam 

construction to fail. The peak discharge that is simulated using the TREX model take into 

account the physical topography such as the elevation, land use and soil type. The rainfall 

amount was applied from the recorded data. For these watersheds, the quality of the rainfall data 

is more reliable when compared to flow data. As a result, the estimated discharge by the model is 

more reliable. 

 The ability of the model to go beyond the stochastic approach provides the motivation for 

this study to go further by simulating the extreme events as described in section 2.5.2. There is a 
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need to have other methods that not only can estimate the discharge but also can show the most 

critical flooded area accurately and precisely. 
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APPENDIX D 

GRID SIZE ANALYSIS 
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Different sizes of the grid have a significant impact on the simulation results (Blöschl et 

al. 1997). Therefore, an appropriate grid size should be considered carefully to reduce the 

difficulty in obtaining results (Grayson and Blöschl 2000; Wu et al. 2007) as describe in section 

2.3.2. Grid sizes ranging from 30 to 330 m were used to analyze the performance of the TREX 

model in estimating the peak discharge, time to peak and total volume at a small (Lui) watershed. 

This grid size analysis at the small watershed is done by considering the time to prepare the input 

data, simulation time and post-processing the result. The analysis for this watershed was 

conducted by applying the calibrated and validated hydrologic parameters as shown in Table D1. 

This table shows the calibrated and validated values of hydraulic conductivity and Manning’s n, 

respectively. The interception depth, soil moisture deficit and capillary suction head were same 

as shown in Table 4.1. The hydraulic conductivity and surface roughness were chosen because 

these values control the peak discharge, time to peak and volume of the water. The graphical and 

three statistical methods: NSEC, PBIAS and RPD, were used to classify the performance of the 

model. 

Figure D1 shows the hydrographs of the observed and simulated discharge at different 

sizes of grid. This figure is used to evaluate the performance of the model graphically. The 

hydrograph reveals that the model performed very good in estimating the peak discharge, time to 

peak and rising and falling limbs grid size of 30 and 90 m and good for 150 m grid size.  At a 

grid size more than 150 m, the simulation results changed obviously. Time to peak simulated by 

the model was clearly three hours earlier than observed. The estimated peak discharge and 

volume of water were larger than observed. The rising and falling limbs indicated that the model 

did not show at least the minimum level to be accepted.  
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Table D1 The evaluation of hydrologic model performance at difference grid sizes 

Grid size 

(m) 

Simulation time 

(seconds) 

NSEC 

[-] 

PBIAS 

[%] 

RPD (Qp) 

[%] 

RPD (Tp) 

[%] 

30 40,248 (11.2 hrs.) 0.9 - 8.1 - 2.2 0 

90 780 (13 mins.) 0.8 - 11.3 - 4.3 0 

150 49 0.6 - 15.7 - 9.0 - 43 

210 19 0.6 - 22.1 16.1 - 43 
270 9 0.3 - 41.6 25.7 - 43 
330 6 0.1 - 50.0 32.6 - 43 

 

 

Figure D1 Comparison of discharge hydrograph at difference grid sizes 

 

Three statistical methods were calculated and tabulated in Table D1. These data were 

plotted in Figure D2. The performance rating as classified in Table 4.2 was used. The 

performance of the model can be classified as very good, good and satisfactory when the 

statistical values are located in the green, orange and red regions, respectively. From Table D1,  
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Figure D2 The model performance rating as a function of grid sizes at the small watershed (Lui) 

 

all the calculated values described that the model simulated results are varied resulting from grid 

size changes. The calculated NSEC values for hourly discharges show that the model 

performance is very good for grid sizes of 30 and 90 m and good at grid sizes 150 and 210 m 

(Table D1 – third column and Figure D2 – blue line). However, by increasing the grid size from 

210 to 330 m led to decreasing the NSEC values (unsatisfactory) as shown in Table D1. The 

performance of the model in estimating hourly volume was compared to observed data using the 

PBIAS method. The model had very good and good performance, as indicated in Table D1 

(fourth column) and Figure D2 (red line), for grid sizes of 30 and 90 m and 150 m, respectively. 

The application of the model using different grid sizes than becomes less significant as the 

hourly volume estimated has not reached the minimum rating, i.e. satisfactory, for grid size 

coarser than 210 m. The estimated volume decreased as coarser grid sizes were applied. The 
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RPD method indicated that the estimation of the peak discharge (Figure D2 – grid line) and time 

to peak at grid sizes up to 90 m is very good. However, for grid size of more than 90 m, the 

discrepancies of simulated and observed time to peak increased from -9% to 33%. 

The temporal and spatial distributions of water depth at various grid sizes were visualized 

in 3D as shown in Figure D3. From this figure, water depth distributions are uncertain for grid 

sizes larger than 150 m. Increasing the grid size from 30 to 330 m resulted in the inaccuracy of 

input data such as DEM, land use and soil type (Figure D4).  

Based on two methods of performance evaluation, it can be said that as the grid size 

increases, the simulated results become less significant. Simulation time required by the TREX 

model decreased significantly when coarser grid size was used (Figure D2 – purple line). 

Simulation using coarser grid size resulted in high discrepancies values of the estimated peak 

discharge, time to peak and volume of water. Generally, coarser grid size makes the topography 

of this watershed become more flat. However, this watershed is surrounded by mountains, i.e., 

about 80%. This situation contributed to an earlier time to peak (about 3 hours) simulated using 

coarser grid size. Other than topography, changing the grid size from fine to coarse has 

oversimplified the model parameters. Figures D4 and D5 illustrate the simplified DEM, land use 

and soil type. Numerically, the model is stable and consistent during the simulations. The 

simulation converged to the observed data when finer grid sizes were used (Figure D1). 
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Figure D3 Comparison of the maximum water depth distribution for different grid sizes at the 

small watershed (Lui) 
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Figure D4 Comparison of the DEM, land use and soil type using different grid sizes
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Figure D5 Various sizes of grid used to represent DEM, land use, soil type and other model 

parameters  
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APPENDIX E 

COMPARISON BETWEEN 1D AND 2D HYDROLOGICAL 

MODELS
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The comparison between 1D and 2D was made. The HEC-HMS was used to simulate 1D 

rainfall-runoff relationship. In Malaysia, there were several studies conducted to simulate 

rainfall-runoff and rainfall-water surface profile relationships. The most common software from 

HEC group was applied to this watershed, i.e., the HEC-HMS (Yusop et al. 2007; Razi et al. 

2010) and HEC-2 (Mohammed et al. 2010). Both models are capable of simulating the rainfall-

runoff relationship in Malaysia, based on the historical events. The HEC-HMS model gives the 

simulation results in terms of a hydrograph, while the HEC-2 model produced the water level of 

the study area. Since the TREX model is capable of producing a hydrograph of the study area, 

therefore HEC-HMS was chosen in this study because a more meaningful comparison between 

both models can be made.  

Table E1 and Figures E1 and E2 show the estimated hydrographs for the 100-year, PMP 

and world greatest rainfall (WGR) events on the small and medium watersheds, respectively. 

The HEC-HMS model has the ability to estimate the peak discharge for the 100-year and PMP 

events on both watersheds. However, the peak discharges estimated by the HEC-HMS model for 

the WGR event are less than the TREX model for both watersheds. The difference between these 

two models on both watersheds is 25% and 15%, respectively. In this study, the estimated peak 

discharges from TREX model were assumed to be reliable because the model use grid to 

represent the land use, soil type and elevation of the watershed. In addition to that, the 

formulations to solve the hydrologic cycles are based on the physically-based model which 

includes the mass balance and momentum equations. Whereas the HEC-HMS is a lumped model 

which the properties of the watershed is presented as an average across the watershed. Another 

reason that the 1D model cannot estimate peak discharge for the WGR event is because the 

model assumed a linear relationship between Qp and rainfall intensity, i. The 2D model performs 
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much better in simulating the nonlinear relationship between Qp and i, as shown in Figures E1 

and E2 and Table E1. 

 

Table E1 Comparison of simulated peak discharges (cms), Qp, between 1D (HEC-HMS) and 2D 

(TREX)  models for different watershed sizes 

Rainfall events 

Watershed area 

Small Medium Large 

i 
Qp (cms) 

i 
Qp (cms) 

i 
Qp 

(cms) 1D 2D 1D 2D 

100-year 38 101 91 15 222 256 8 1,023 

PMP 43 421 520 43 1,508 1,474 9 3,016 

WGR 86 1,027 1,358 78 3,195 3,793 26 8,332 

Note: i = Rainfall intensity (mm/hr); Qp = Highest peak discharge 

 

 

Figure E1 Discharge comparison between 1D (HEC-HMS) and 2D (TREX) models for 100-year, 

PMP and the world’s largest rainfall on a small watershed 
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Figure E2 Discharge comparison between 1D (HEC-HMS) and 2D (TREX) models for 100-year, 

PMP and the world’s largest rainfall on a medium watershed 

 

Other significant topic that should be included when comparing the 1D and 2D models is 

the calibrated and validated model parameters. Both models use the Green and Ampt method to 

calculate infiltration. The 2D diffusive wave approximation is used to calculate the overland 

flow, while 1D diffusive wave approximation is used to estimate the channel flows in the 2D 

model. However, these flows are calculated using only the 1D kinematic wave approximations in 

the 1D model. The same storm events were used to calibrate and validate the model parameters 

(i.e., Kh and Manning’s n). The storm event on May 14, 2009 (Figure E5) was chosen to compare 

between the TREX model, HEC-HMS model and observed flow gage measurement.  The 

hydraulic conductivity values on both watersheds are higher than the suggested limit by Liong et 

al. (1989), as shown in Table E2 and Figure E3.The allowable upper and lower limits of the 

hydraulic conductivity and roughness were derived from the suggested values by Rawls et al. 

(1982 and 1993) and Maidment (1993). These values are 100 times higher and lower (as 
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suggested by Liong et al. 1989) for the upper and lower limits, respectively.  The calibrated and 

validated roughness are within the acceptable limit for the small watershed but not for the 

medium watershed (see Table E3 and Figure E4). The calibrated and validated roughness for the 

medium watershed is higher than the values suggested by Chow (1969).  Additionally, the 1D 

simulation is unable to estimate the flooding area as compared to the 2D model, especially on the 

flood plains. This is because the 1D model use 1D kinematic wave approximation which force 

the overland flow to be in one-direction, i.e., only flow in y-direction, by assuming that the 

channel flow is in x-direction from upstream to downstream. 

 

Table E2 Calibrated and validated hydraulic conductivity, Kh, using 1D (HEC-HMS) and 2D 

(TREX) models at small and medium watersheds 

SOIL TYPE 

SUGGESTED VALUE 

(Rawls et al (1982,1993); 

Maidment (1993)) 

2D (TREX) 1D (HEC-HMS) 

Lower Upper Small Medium Small Medium 

Sandy loams 1.81 x 10
-8

 6.06 x 10
-4

 1.14 x 10
-7

 1.12 x 10
-6

 

9.12 x 10
-2

 6.12 x 10
-3

 

Loams 9.44 x 10
-9

 3.67 x 10
-4

 1.31 x 10
-7

 4.00 x 10
-7

 

Clay 8.33 x 10
-10

 1.67 x 10
-5

 --- 1.27 x 10
-8

 

Mountain 

(Limestone) 
3.20 x 10

-11
 3.20 x 10

-6
 4.34 x 10

-7
 1.18 x 10

-10
 

 

Table E3 Calibrated and validated roughness values (Manning’s n) using 1D (HEC-HMS) and 

2D (TREX) models at small and medium watersheds 

LAND USE 

SUGGESTED VALUE 

(Chow (1969)) 
2D (TREX) 1D (HEC-HMS) 

Lower Upper Small Medium Small Medium 

Main channel * 0.02 0.08 0.04 0.03 0.04 0.45 

Urbanization 0.01 0.08 0.05 0.045 

0.04 0.47 

Agricultural 0.02 0.2 0.17 0.1 

Forest 0.11 0.4 0.4 0.2 

Grassland 0.03 0.1 --- 0.1 

Open area 0.03 0.1 --- 0.1 

Note: * Suggested value for roughness at main channel obtained from Zakaria et al. (2010) 
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Figure E3 The calibrated and validated hydraulic conductivity using 1D (HEC-HMS) and 2D 

(TREX)  models for different soil types: (a) sandy loam, (b) loam, (c) mountain (limestone) and 

(d) clay 
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Figure E4 The calibrated and validated roughness values (Manning’s n) using 1D (HEC-HMS) 

and 2D (TREX)  models for different land use: (a) main channel, (b) urbanization, (c) 

agricultural, (d) forest and (e) grassland and open area  
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Figure E5 shows the comparison of the hydrograph produced by both 1D and 2D models. 

The hydrograph simulated using calibrated and validated model parameters for 1D (black) and 

2D (purple – 30 m grid size and green – 90 m grid size) models are comparable to the observed 

data (red dots). However, the calibrated and validated model parameters are off from the 

acceptable limit for 1D model, as discussed in the previous paragraph. When the acceptable 

model parameters were applied to the 1D model, the peak discharge is 5 times larger than the 

observed data. 

 

 

Figure E5 Comparison of the hydrograph produced by the 1D (HEC-HMS) and 2D (TREX) 

models 
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APPENDIX F 

PICTURES OF LAND USE FOR THE STUDY AREAS
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Figure F1 Picture of land use at small watershed (Lui) 
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Figure F2 Picture of land use at medium watershed (Semenyih) 
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Figure F3 Picture of land use at large watershed (Kota Tinggi) 
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APPENDIX G 

CREAGER’S DATA
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Table G1(a) Data from Creager et al. (1945) 
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Table G1(b) Data from Creager et al. (1945) (continued) 
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Table G1(c) Data from Creager et al. (1945) (continued) 
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Table G1(d) Data from Creager et al. (1945) (continued) 
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Table G1(e) Data from Creager et al. (1945) (continued) 
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Table G1(f) Data from Creager et al. (1945) (continued) 
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Table G1(g) Data from Creager et al. (1945) (continued) 
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Table G1(h) Data from Creager et al. (1945) (continued) 
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APPENDIX H 

TABLE FOR THE UNCERTAINTY ANALYSIS
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Table H1 Small watershed: The hydrologic parameter combination, discharge and runoff coefficient 

HYDROLOGIC 

PARAMETERS 

RAINFALL EVENTS 

LARGE EVENTS EXTREME EVENTS 

2-year 5-year 10-year 20-year 50-year 100-year S-PMP World 

Qp C Qp C Qp C Qp C Qp C Qp C Qp C Qp C 

H
y
d
ra

u
li

c 

co
n
d
u
ct

iv
it

y
 

LL 

M
an

n
in

g
’s

 n
 

LL 48 0.1 77 0.2 88 0.2 95 0.2 106 0.3 111 0.3 661 0.8 1516 0.9 
UP UP 14 0.0 25 0.1 41 0.1 55 0.1 67 0.2 76 0.2 342 0.4 1092 0.7 
LL UP 20 0.1 49 0.1 62 0.1 71 0.2 80 0.2 86 0.2 413 0.5 1174 0.7 
UP LL 25 0.1 57 0.1 72 0.2 84 0.2 95 0.2 101 0.3 583 0.7 1449 0.9 
CV LL 18 0.0 65 0.2 81 0.2 89 0.2 100 0.3 106 0.3 615 0.8 1481 0.9 
CV UP 34 0.1 37 0.1 54 0.1 65 0.2 76 0.2 84 0.2 421 0.5 1223 0.8 
LL CV 18 0.0 58 0.1 72 0.2 81 0.2 90 0.2 95 0.2 534 0.7 1385 0.9 
UP CV 31 0.1 35 0.1 53 0.1 66 0.2 80 0.2 88 0.2 459 0.6 1299 0.8 

CV 22 0.1 46 0.1 62 0.1 74 0.2 85 0.2 91 0.2 520 0.6 1358 0.8 

Note: LL = Lower Limit Value; UP = Upper Limit Value; CV = Calibrated / Validated Value; Qp = Peak discharge in cms; 

          C = Runoff-coefficient 
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Table H2 Medium watershed: The hydrologic parameter combination, discharge and runoff coefficient 

HYDROLOGIC 

PARAMETERS 

RAINFALL EVENTS 

LARGE EVENTS EXTREME EVENTS 

2-year 5-year 10-year 20-year 50-year 100-year S-PMP World 

Qp C Qp C Qp C Qp C Qp C Qp C Qp C Qp C 

H
y
d
ra

u
li

c 

co
n
d
u
ct

iv
it

y
 

LL 

M
an

n
in

g
’s

 n
 

LL 166 0.1 187 0.2 230 0.2 253 0.2 268 0.3 298 0.3 1866 0.7 4389 0.9 

UP UP 147 0.1 149 0.1 196 0.2 211 0.2 222 0.2 237 0.2 1242 0.5 3321 0.7 

LL UP 153 0.1 148 0.1 198 0.2 213 0.2 224 0.2 240 0.2 1249 0.5 3341 0.7 

UP LL 163 0.1 168 0.1 228 0.2 251 0.2 266 0.3 295 0.3 1860 0.7 4355 0.9 

CV LL 162 0.1 169 0.1 228 0.2 250 0.2 266 0.3 295 0.3 1860 0.7 4355 0.9 

CV UP 135 0.1 152 0.1 197 0.2 212 0.2 223 0.2 239 0.2 1245 0.5 3324 0.7 

LL CV 138 0.1 184 0.2 224 0.2 226 0.2 238 0.3 258 0.3 1476 0.6 3797 0.8 

UP CV 137 0.1 183 0.2 206 0.2 224 0.2 237 0.3 255 0.3 1472 0.6 3796 0.8 

CV 147 0.1 167 0.1 206 0.2 226 0.2 242 0.3 256 0.3 1474 0.6 3793 0.8 

Note: LL = Lower Limit Value; UP = Upper Limit Value; CV = Calibrated / Validated Value; Qp = Peak discharge in cms; 

          C = Runoff-coefficient 
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Table H3 Large watershed: The hydrologic parameter combination, discharge and runoff coefficient 

HYDROLOGIC 

PARAMETERS 

RAINFALL EVENTS 

LARGE EVENTS EXTREME EVENTS 

2-year 50-year 100-year S-PMP World 

Qp C Qp C Qp C Qp C Qp C 

H
y
d
ra

u
li

c 

co
n
d
u
ct

iv
it

y
 

LL 

M
an

n
in

g
’s

 n
 

LL 455 0.3 1022 0.3 1128 0.3 3135 0.8 9664 0.9 

UP UP 331 0.2 821 0.2 909 0.3 2653 0.6 7095 0.6 

LL UP 333 0.2 824 0.2 911 0.3 2660 0.6 7101 0.6 

UP LL 452 0.2 1019 0.3 1126 0.3 3130 0.8 9656 0.9 

CV LL 453 0.2 1021 0.3 1127 0.3 3132 0.8 9659 0.9 

CV UP 332 0.2 822 0.2 910 0.3 2656 0.6 7096 0.6 

LL CV 369 0.2 922 0.3 1025 0.3 2952 0.7 8333 0.8 

UP CV 367 0.2 919 0.3 1022 0.3 2945 0.7 8327 0.8 

CV 368 0.2 920 0.3 1023 0.3 3016 0.7 8332 0.8 

Note: LL = Lower Limit Value; UP = Upper Limit Value; CV = Calibrated / Validated Value; Qp = Peak discharge in cms; 

          C = Runoff-coefficient 
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Figure H1 Box-plot the uncertainty for runoff coefficient at small watershed (Lui) 

 

Figure H2 Box-plot the uncertainty for runoff coefficient at medium watershed (Semenyih) 
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Figure H3 Box-plot the uncertainty for runoff coefficient at large watershed (Kota Tinggi) 

Table H4 The variation coefficient of the maximum estimated discharge (MED) on a small, 

medium and large watershed 

Rainfall events 

Coefficient of variation (Cv) [%] 

Small watershed 

(68 km
2
) 

Medium watershed 

(263 km
2
) 

Large watershed 

(1,635 km
2
) 

Large 

events 

2-year 41 8 14 

5-year 32 9 --- 

10-year 23 7 --- 

20-year 17 8 --- 

50-year 14 8 10 

100-year 12 10 10 

Extreme 

events 

PMP 21 18 8 

WGR 11 12 14 

Note: The coefficient of variation (Cv) = standard deviation (σ) / mean (μ) 

 

 The coefficient of variation Cv is significantly decreased from 2-year event to WGR 

event for the small watershed (Table H4). Conversely trend was found for the medium watershed 

and approximately same for the large watershed as shown in Table H4. 
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Figure H4 Uncertainty of water depth distribution for (a) Lower limit of Kh and n, (b) Calibration/Validation of Kh and n, and (c) 

Upper limit of Kh and n, at small watershed during 100-year, S-PMP and world’s largest rainfall events 
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Figure H5 Uncertainty of water depth distribution for (a) Lower limit of Kh and n, (b) Calibration/Validation of Kh and n, and (c) 

Upper limit of Kh and n, at medium watershed during 100-year, S-PMP and world’s largest rainfall events 
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Figure H6 Uncertainty of water depth distribution for (a) Lower limit of Kh and n, (b) Calibration/Validation of Kh and n, and (c) 

Upper limit of Kh and n, at large watershed during 100-year, KT-PMP and world’s largest rainfall events 
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LIST OF ABBREVIATIONS 
 

 

Abbreviations 

DID Department of Irrigation and Drainage  

DEM Digital Elevation Model 

DMM Department of Meteorology Malaysia 

DSMM Department of Surveying and Mapping Malaysia 

KT-PMP Kota Tinggi Probable Maximum Precipitation 

MED Maximum Estimated Discharge 

MES Maximum Estimated Stage 

NSEC Nash-Sutcliffe Efficiency Coefficient 

ND/NS, AD/AS, 

DD/DS 

Normal Discharge/Stage, Alert Discharge/Stage, 

Danger Discharge/Stage 

PBIAS Percent BIAS 

RPD Relative Percentage Difference 

S-PMP Selangor Probable Maximum Precipitation 

 

Symbols 

   surface area over which precipitation occurs [L
2
] 

   cross sectional area of flow [L
2
]  

a to d fitting constants dependent on ARI (Table 2.1) 

      flow width in x- or y-direction [L]  

C runoff coefficient [-] 

  evaporation rate [LT
-1

]  

  cumulative infiltrated water depth [L] 

  infiltration rate [LT
-1

]  

   capillary pressure (suction) head at the wetting front [L]  

   hydrostatic pressure head (depth of water in channel) [L]  

  surface water depth [L]  

  
  the average rainfall intensity (mm/hr) for ARI and duration t 

   excess precipitation [LT
-1

] 

   gross precipitation rate [LT
-1

] 

   effective hydraulic conductivity [LT
-1

]  

  number of data for simulated / observed [-] 

  Manning roughness coefficient [TL
-1/3

] 

  wetted perimeter of channel flow [L] 
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  total discharge [L
3
T

-1
]  

      flow in x- or y-direction [L
3
T

-1
]  

   lateral flow into or out of the channel [L
2
T

-1
]  

      mean value from observed data [L
3
T

-1
] 

      unit discharge in the x- or y-direction =     ⁄       ⁄  [L
2
T

-1
]  

     ,   
     observed value 

     ,   
    simulated value 

R average return interval (years) 

   hydraulic radius of flow (    ⁄ ) [L]  

   effective soil saturation [-]  

         friction slope (energy grade line) in the x- or y-direction [-] 

   interception capacity of projected canopy per unit area [L
3
L

-2
] 

         ground surface slope in the x- or y-direction [-] 

  cumulative depth of water transported by transmission loss [L] 

  time [T] 

td duration (minutes or hours) 

   transmission loss rate [LT
-1

]  

   precipitation event duration [T] 

   gross precipitation [L
3
] 

   interception volume [L
3
] 

   net precipitation volume reaching the surface [L
3
] 

 ̇ discharge from / to a point source / sink [LT
-1

]  

 ̂ unit discharge from / to a point sink / source [L
2
T

-1
] 

 

Greek Symbols 

       resistance coefficient for flow in the x- or y-direction [L
1/3

T
-1

]  

  resistance exponent (   ⁄ ) [-] 

   effective soil porosity (    ) [-]  

   residual soil moisture content [-]   

  total soil porosity [-]  

 


