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ABSTRACT

MACHINE LEARNING AND ARTIFICIAL INTELLIGENCE APPROACHES TO THE

ANALYSIS OF PHYSICAL ACTIVITY FROM WEARABLES AND BIOSENSORS IN

CLINICAL TRIALS: APPLICATIONS OF CLUSTERING AND PREDICTION OF CLINICAL

OUTCOMES

As human demographics continue to trend toward elderly, especially in advanced economies,

the treatment of illness becomes more salient. Across many therapeutic areas, researchers exam-

ine potential treatments while incorporating novel technologies in an effort to prolong the years

in which quality of life is achieved for patients around the world. In the area of cardiovascular

disease, wearable and biosensor data is becoming increasingly used in order to compliment data

traditionally collected from clinical trials. This work discusses a series of analytical approaches

for the analysis of data from recent clinical trials in which accelerometry data from wearable de-

vices were analyzed using clustering approaches (K-means and consensus clustering) and survival

analyses (Cox proportional hazards and random survival forest) for the purposes of clustering pa-

tients and assessing their baseline clinical characteristics as well as for the prediction of clinical

outcomes. Unique clinical phenotypes were identified within the patient aggregations as part of

the clustering analyses. Furthermore, models were created with improved predictive accuracy for

clinical outcomes of interest in the heart failure space. Taken collectively, the results from these

analyses and the analytical approaches therein can be used to assess whether heterogeneous clinical

subgroups of patients exist as well as further guide the clinical development programs.
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Chapter 1

Introduction

1.1 Clinical trials

The science of clinical trials has continued to expand immensely since Dr. James Lind ran the

first modern-day clinical trial in 1747, almost a full 275 years ago [1]. In what became known as

the first contemporary clinical trial, Dr. Lind was interested in examining the possible treatment

options for 12 sailors suffering from scurvy on board of his ship at sea. He randomly assigned

each set of 2 an additional supplementary food as part of their controlled diet to assess if there

were any changes in the clinical outcome of scurvy. Dr. Lind had perhaps arguably setup the

world’s first 6-arm trial to examine the therapeutic effects of certain supplemental foods and as

the outcome of his work, he was able to identify that sailors who ate oranges and lemons as part

of their diet did not fall prey to scurvy. While it took some time to identify that these supportive

features were due to the vitamin C in these citrus fruits [1], this first modern-day example of a

clinical trial helped lay the foundation for how science and medicine has continued to evolve over

the subsequent centuries. While this was considered a novel approach for assessing a potential

treatment at the time, today it has been generally accepted that randomized clinical trials (RCTs)

are the gold-standard for being able to assess a treatment for efficacy and safety.

There are of course many aspects to clinical trials, particularly statistical ones, and it is beyond

the scope of this work to identify them all in great detail [2, 3], however, there are certain main

points that are important to consider. Firstly, one of the main important features of RCTs is the ran-

domization component, which allows for the random assignment of patients to different treatment

groups. The goal of this is to help greatly reduce, and if possible eliminate, bias that can be intro-

duced to the trial and affect the outcome of the results. For instance, an investigator may, either

consciously or unconsciously, favor a certain type of patient into a treatment group or into a control

group, which can negatively impact the viability and generalizability of a trial. For example, in
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the case where healthier patients are placed in the experimental treatment arm, it is possible that

these patients have a more positive outcome at the end of the trial that is less likely to be due to the

effectiveness of the treatment, but in part due to the overall healthier patients being enrolled in the

treatment arms [4]. While it is true that randomization can help reduce the impact of confounding

variables on a clinical trial, another potential way to help reduce this impact is through the use

of stratified randomization, in which patients are stratified into treatment arms based on known

factors that may influence the outcome response [5]. These stratification factors themselves are of-

ten identified in clinical literature through subsequent RCTs and studies in general that are able to

elucidate which factors may be associated with certain clinical outcomes. For example, in the case

of a diabetes trial, one may want to stratify patients into treatment arms based on baseline HbA1c,

as it is known that this can have a high impact on treatment outcomes. This can be particularly

useful in the case of smaller trials and may help with reducing sampling error [6]. Nevertheless, it

is not always clear which variables may have an important impact on the outcomes of interest and

thus it is here that randomization can help to limit imbalances across groups. It is for this reason

the analyses presented in this work will focus primarily on data from RCTs.

However, even with randomization allocating the values of covariates theoretically to be equal

amongst the arms of the trial, it is still possible that a differential heterogeneous subset of pa-

tients exists. Assessments of heterogeneous patient populations and outcomes allows researchers

to examine if there are certain characteristics of a patient or group of patients that are important

in differentiating overall outcomes. One common area this is seen in is within biomarkers, such

as NT-proBNP, where the biomarker can be used as a surrogate for understanding cardiovascular

disease improvement, progression, and severity [7]. Grouping patients by such biomarkers can in

turn allow researchers and health care professionals with a better understanding of the likelihood

of associated clinical outcomes for the respective subgroups [7].

Over the years, clinical trials have continued expanding upon the types of data they collect.

Traditionally, clinical trials have focused their data collection to occur at individual time points

throughout the trial at which the patient comes to the site. At these site visits, such data is col-

2



lected as medical history data, laboratory data, blood tests and general wet biomarker data, clinical

outcome data, and patient reported outcomes. Given the nature of some of these assessments, such

as blood tests or scans, the patient needs to physically be at the site for the testing to occur. How-

ever, these visits are often few and far between throughout the course of the clinical trial and as a

result the datapoints collected on each individual patient are often relatively sparse. This can be

problematic for a few reasons depending on the type of data one is collecting. Variability often

remains high due to the sparsity of the datapoints [8]. Particularly problematic are patient reported

outcome data, in which one is often assessing subjective outcomes at a single point in time that can

be influenced by a myriad of other factors in the patient’s life.

Novel technologies are making headways into clinical trials whereby they provide complimen-

tary information to data traditionally collected. In particular, wearables and biosensors allow for

the passive and non-invasive collection of data with a higher resolution as compared to the more

isolated data points currently collected and can also be used to collect data points over a long

period of time. Furthermore, wearable and biosensor data can also provide us with a higher resolu-

tion of information about the changes developing within a patient over time. Moreover, wearables

and biosensors are useful in the area of cardiovascular disease and heart failure as they can serve

as proxies for measures of physical activity and quality of life. However, the most appropriate

analytical approaches for examining these data are still under discussion.

1.2 Cardiovascular disease and heart failure

Cardiovascular disease and heart failure represent a public health crisis. For example, an esti-

mated 5.7 million patients have been diagnosed with heart failure in the US with further increasing

incidence and prevalence rates [9]. For patients diagnosed with heart failure, they experience fre-

quent hospitalizations, a general decrease in quality of life, and increased risk for mortality [10].

It is important to note that heart failure carries a similar prognosis as many cancers with a 5-

year survival rate of only 50 percent [11]. In addition to the burden placed upon the individual

with a heart failure diagnosis, the treatment and care of individuals suffering from heart failure

3



amounts to an enormous financial strain on healthcare systems. For example, Medicare spending

in the United States allocates more funds annually to the treatment of heart failure than any other

Medicare-covered condition [12]. Taken altogether, there is a clear need for further research and

development efforts to focus in this area in an effort to help uncover treatments and therapeutics to

ameliorate the effects of cardiovascular disease and heart failure on both the individual and society

at large.

By expanding our therapeutic options for cardiovascular disease and heart failure, the scientific

community can further reduce the impact on hospitals and the general health care system. Given

the estimated incidence rate of 5.7 million heart failure patients in the US [9], earlier identification

and intervention has the opportunity to improve healthcare outcomes and quality of life for patients.

For example, given that actigraphy data can be collected with something like a cell phone that

patients are likely already carrying around as part of their every day life, this data may be able to

be used for classifying patients earlier before they begin to show clinical systems of heart failure.

The median cost for heart failure hospitalization in the United States is $ 13,418 and with close to

6 million patients needing hospitalizations [13], just the cost of hospitalizations can balloon to over

$ 80 billion dollars. Even in the case that 5% of patients are able to be identified prior to requiring

a heart failure hospitalization, it could yield a potential savings of $ 4 billion dollars.

While there are currently treatments available for heart failure [14], there is still room for addi-

tional novel therapeutics, in particular in the area of heart failure with preserved ejection fraction

that has proven a difficult area to succeed in from a research perspective [15]. With the advent of

new technologies entering the space, the use of wearables and biosensors offer a new modality from

which to understand the disease development, patient journey, and impairments to quality of life

for patients [16]. In this area of active research, biosensors and wearables are used to supplement

data that is traditionally captured as part of a clinical trial. This work has applications to many ther-

apeutic areas and indications such as neurology in the study of patients with Parkinson’s disease or

in the case of continuous examination of blood glucose levels in patients with diabetes [17]. Over-

all, these devices provide the utility of informing clinical practice by identifying and categorizing

4



patients who represent with patterns of similarities or differences to one another. For this specific

work, the focus will be primarily on the heart failure and cardiovascular space where there is a

clear unmet medical need for improved therapeutics and a better understanding of the limitations.

However, the methodologies and analytical approaches therein may apply to other indications as

well.

Patients with heart failure have self-reported that some of the most important areas in which

they are interested in improving include aspects related to quality-of-life improvements such as

decreases in physical limitation [18]. This focus on patient reported outcomes has led many re-

searchers in the area and development programs to examine subjective and objective measures of

physical activity, such as the 6-minute walking test (6MWT) and the Kansas City Cardiomyopathy

Questionnaire (KCCQ) [15]. In the case of the 6MWT, the patient attends a visit and walks as much

as he/she can during a 6-minute time period and this distance is then recorded in meters, providing

an objective measure of physical capability. However, there still is a lack of understanding of what

level of activity patients feel comfortable engaging in when they are outside of the clinic. To assess

the subjective aspects of cardiomyopathy, the KCCQ questionnaire is a 23-item instrument that is

self-administered and quantifies such symptomology as physical functioning, social functioning,

and general aspects of quality of life [19].

In order to administer these tests and capture both the objective and subjective aspects of car-

diovascular functioning, the patient must attend an in person visit at the clinic. This has been the

traditional method for how physical limitation has been assessed over the years. While a patient’s

physical capability as measured in a clinic is a useful measure to better understand a patient’s

capabilities, it provides one perspective of the patient’s functioning. For example, the 6MWT

is performed in an artificial capacity, within an artificial and controlled environment, that may not

mimic that of the patient’s true physical functioning characteristics. Conversely, with the data from

wearables and biosensors, the researcher is able to better understand the daily activity profile of a

patient and to better elucidate the pattern therein when a patient is in his/her own personal envi-

ronment. From this type of data, it may be possible to answer such questions as 1) Over the course

5



of time, does the patient increase or decrease their daily physical activity levels? 2) Is he/she able

to sustain the activity for longer periods of time? In some ways, one can relate the relationship

between the 6MWT and the additional data from wearables and biosensors to that of randomized

clinical trials and real-world evidence. Undoubtedly RCTs provide a unique and important per-

spective to elucidate the underlying treatment effects for a potential therapeutic. However, over the

last few decades it has become clear that understanding the patient in the real-world also serves a

purpose. In a basic example, it may be easier to get a patient to follow a 5-times a day dosing regi-

men and assess the impact on disease progression as part of a clinical trial, particularly if as part of

the participation in the clinical trial the patients receive some sort of notification system to ensure

that they take the medicine. While allowing for a higher likelihood of adherence in the trial, exami-

nation of data in a real-world evidence scenario may provide a different picture that in fact patients

may be having a difficult time adhering to these dosing schedules. Similarly, examining physical

limitations as part of a clinical trial may prove different to an examination of physical activity data

from wearables and biosensors in the comfort of a patient’s own environment. In summary, it is

important to not only capture what the patient is maximally capable of, which would be reflective

in something like the 6MWT, but also the level of physical activity that a patient feels comfortable

with engaging at home in the more real-world environment. This is particularly important given

that patients may exhibit a differentiation in the level of physical activity they engage in during

a clinic visit which reflects more of an artificial environment as compared to the true activity the

patient may want to engage in while on their own. Taken together with the data collected in the

clinic, the activity data collected by wearable devices can provide a more cohesive picture of the

patient and his/her physical functioning limitations. Furthermore, in the context of patients in a

clinical trial, the use of wearables and biosensors may allow for a better understanding of changes

over time that may be due to the treatment effect of the new therapeutic. Recently the FDA has

come out in support of the use of novel endpoints such as accelerometry in their recent heart failure

guidance [20], suggesting that the field overall may be moving towards utilizing these devices not
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only in an exploratory manner to understand the patient journey and disease progression but also

from a primary or secondary endpoint perspective.

One of the major questions still pending in the literature is what can be done with these wear-

able and biosensor device data and what questions can be answered with it? How can the data be

utilized to improve our understanding of patients, their lives, and their journeys? The work here

proposes some answers to these questions by examining the data utilizing clustering algorithms

to group patients and assess any differences amongst patients with respect to physical activity and

clinical outcomes. These assessments can be utilized to assess the relationship between physical

activity and the clinical outcomes and also to detect if there are any signals of a heterogeneous

response to clinical outcomes based on physical activity. This can also be helpful with respect

to providing a more precision medicine-based approach where patients and their trajectories can

be more accurately estimated as more is learned about the patients, their diseases, and the patient

journey. Given the strong association between physical limitation and cardiovascular disease and

more specifically heart failure, additional research is necessary to examine the relationship be-

tween improvement in physical capability and physical exercise and the associated improvement

in clinical outcomes, including reduced hospitalizations and mortality, and a general improvement

in understanding of the patients. The focus of this work will be on a further examination for some

analytical options for the analysis of such data. To get a better understanding of what may be pos-

sible with these data, this work discusses potential approaches for classification and prediction of

the physical activity data utilizing both unsupervised and supervised machine learning techniques.
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Chapter 2

Datasets

2.1 Background on dataset

The data from the subsequent analyses is part of a recent multi-center, randomized, placebo-

controlled, parallel group, double-blind dose-finding phase 2b heart failure trial with reduced ejec-

tion fraction trial sponsored by Bayer Pharmaceuticals. All clinical trial participants provided an

informed consent for their voluntary enrollment in the trial. As part of the clinical trial, a wide

variety of data from non-wearables and wearables, including but not limited to clinical biomark-

ers, medical history and demographics, and clinical outcomes data were collected. The patients

enrolled included patients with a diagnosis of heart failure and a reduced ejection fraction, defined

as a left ventricular ejection fraction ≤ 35 percent. Patients spent 20 weeks in the trial. All patients

were 18 years of age or older at the time of enrollment in the trial.

2.2 Physical activity data from wearables and biosensors

Data related to activity intensity and activity duration were collected and derived from a chest-

worn device that collected tri-axial accelerometry data (X/Y/Z axes) at 4-second intervals. Data

were collected for the 7-days prior to randomization where each patient wore the device for the

7 consecutive days. These were considered the baseline values. Patients were selected out of

the full data set who had data available for two wearable device variables: activity intensity (in

milligravitational units (mg)) and activity duration (in seconds) [21]. In preparation for each wear

periods, patients were given the device a day prior to their 7-day wear period and each patient had

a subsequent scheduled visit at the clinic the day after the last day of the 7-day wear period for

the device, which yielded a high level of adherence to the designated wear time. Data from each

patient was assessed to ensure 7 full days of wear time, defined as wearing the device for at least 90

percent of the day for the full 7 days. For each patient, intra-day averages were calculated based on
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hourly aggregations for each variable and for each day such that each patient would end up with 14

total intra-day averages (7-days of intra-day averages for each of the two variables) which resulted

in a cleaned data set representing approximately 85 percent of the total enrolled patients in the

trial with respect to the baseline activity data. This data was used for the initial k-means clustering

and the subsequent predictive models. Descriptive statistics were performed on the variables to

assess for any potential issues resulting from outliers. Scatterplots of the individual variables were

produced and leftward skewness was observed across the variables. Log transformations were

applied to transform the data to allow for an approximately normal distribution. Standardization

of the variables was performed such that the mean equaled 0 and the standard deviation was equal

to 1.

2.3 Physical activity duration and intensity across the trial

A further subset of data was analyzed for patients who wore the device for 4 separate times

throughout the trial (3 in addition to the earlier baseline assessment) for 7-days at each time for a

total of 28 days. Patients were excluded from the analyses if they did not complete the trial (e.g.

the patient dropped out of the trial or withdrew consent for further follow-up), and thus the patient

did not have complete data for all 28 days. Complete data for a given patient required them to wear

the device for at least 90 percent of the day for the full 28 days of wear time. For each patient, intra-

day averages were calculated based on hourly aggregations for each variable such that a total of

56 intra-day averages were evaluated for each participant (28-days of intra-day averages computed

for each of the two variables, yielding 56 averages per patient).

This dataset expands upon the previous dataset by containing a longitudinal assessment of

patients and was only used in the consensus clustering portion of the analyses to assess the impact

of examining the impact of a longitudinal assessment. Descriptive statistics were performed on the

subsequent computed variables to assess for any issues such as skewness and outliers. Subsequent

scatterplots were produced to examine the data and identified slight leftward skewness across the

variables. To mitigate this in the subsequent analyses, a log transformation was applied to the data
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to transform it to an approximately normal distribution. The variables were then standardized with

mean equal to 0 and standard deviation equal to 1. In preparation for the analysis, a PCA was

performed and plotted to ensure that there were no obvious deviations from the assumptions, such

as non-linear structures and/or cluster imbalance.

Descriptive statistics were performed on the variables to assess for any potential issues resulting

from outliers. Scatterplots of the individual variables were produced and leftward skewness was

observed across the variables. Log transformations were applied to transform the data to allow for

an approximately normal distribution. As preparation for the clustering algorithm, standardization

of the variables was performed such that the mean equaled 0 and the standard deviation was equal

to 1.

2.4 Medical history and baseline characteristic variables

Certain continuous variables were grouped as categorical to obscure individual patient profiles

and to limit any ability to identify individual patients. The following clinical variables were se-

lected for inclusion into the models given their known impact in cardiovascular disease and heart

failure. Patients were categorized into three groupings of age: <65 years old, 65-75 years old,

and >75 years old. Age is often considered an important risk factor for cardiovascular disease

given that with aging, the overall cardiac structure continues to deteriorate, which in turn leads

to higher risk factors for developing heart failure [22]. Sex was included to provide additional

demographic information regarding the patients and also given that there is data to suggest that

rates of cardiovascular disease is increasing in women while rates remain somewhat the same in

men [23]. Country and regional grouping is another variable that is included given that there are

often differences in guideline directed medical therapy on how cardiovascular disease and heart

failure is treated across various regions [24]. Given areas of enrollment for patients in the study,

patients were grouped into three categories: Eastern Europe, North America, Western Europe and

Israel.
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N-terminal pro b-type natriuretic peptide (NT-proBNP) is a substance produced by the heart

and has been established in the literature as a biomarker for cardiovascular disease, recent cardio-

vascular decompensation, and general cardiovascular outcomes [7]. Patients were grouped into

two categories of NT-proBNP: less than or equal to the median NT-proBNP value of the study at

baseline and greater than the median NT-proBNP value of the study. At enrollment in the trial,

patients were classified based on the New York Heart Association (NYHA) Functional Classifica-

tion [25], which classifies heart failure patients into four categories based on how limited they are

while engaging in physical activity. Almost the entirety of patients in the trial presented fall into

class II – IV. Class II patients are categorized as having a slight limitation in physical activity, with

ordinary activity resulting in shortness of breath and fatigue. Class III patients have higher levels

of limitation engaging in physical activity, with low levels of activity resulting in severe shortness

of breath and fatigue. Class IV patients are unable to engage in physical activity without a level

of discomfort and exhibit heart failure symptoms even while at rest [25]. Several variables were

included with reference to patient’s previous medical histories and diagnoses prior to enrolling in

the clinical trial given their strong association with clinical outcomes in cardiovascular disease and

heart failure, including prior histories of: 1) heart failure hospitalization [26], diabetes [27], atrial

fibrillation [28], and hypertension [29]. These variables were coded as binary with the patient

either having a previous history or diagnosis of the respective variable or not.

Estimated Glomerular Filtration Rate (EGFR) is a biomarker that indicates how well an in-

dividual’s kidneys are filtering out extra waste and water from the blood into the urine. Given

the intricate relationship between kidney function and cardiovascular disease, many patients with

cardiovascular disease present with comorbidities of low EGFR values, kidney damage, or gen-

eral chronic kidney disease [30]. Patients were grouped into two categories of EGFR: less than

or equal to an EGFR value of 60 ml/min/1.73 m2 and those with an EGFR value greater than 60

ml/min/1.73 m2. An EGFR value of 60 ml/min/1.73 m2 was selected as the cut off point given that

previous literature indicated higher risk for heart failure hospitalizations (adjusted HR: 1.21; 95%

CI: 1.00–1.47), cardiovascular death (adjusted HR, 1.53; 95% CI: 1.23–1.91), and all-cause death
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(adjusted HR, 1.47; 95% CI, 1.24–1.76) for patients with EGFR values of less than 60 ml/min/1.73

m2 when adjusting for potential confounders [31]. Lastly, body mass index (BMI) was included

given that higher values of BMI (greater than or equal to 35) have been found to be associated with

higher risks of death in patients with chronic heart failure [32]. Patients were grouped into two

categories of BMI: less than or equal to 30 and greater than 30. The same categorizations of these

variables are used across the analyses presented within this work.

2.5 Clinical outcomes

Three different clinical outcomes were assessed as part of the subsequent predictive modelling

analyses, which included the following: 1) time to first heart failure hospitalization, 2) time to

the composite endpoint of first event of heart failure hospitalization or urgent heart failure visit,

and 3) time to the composite endpoint of first event of heart failure hospitalization, urgent heart

failure visit, or cardiovascular death. These three clinical outcomes were selected for assessment

given that they are commonly used as the outcome endpoints of clinical trials and present clinically

relevant information to both the patients and health care providers [33].

For the clinical outcomes and predictive analysis sections, a total sample size of 347 patients

were analyzed. 49 patients experienced the clinical event of time to first heart failure hospital-

ization (14.1%) and 298 (85.9%) did not. 55 patients experienced the clinical event of time to the

composite endpoint of first event of heart failure hospitalization or urgent heart failure visit (15.9%)

and 292 (84.1%) did not. Lastly, 58 (16.7%) patients experienced the clinical event of time to the

composite endpoint of first event of heart failure hospitalization, urgent heart failure visit, or car-

diovascular death and 289 (83.3%) patients who did not. Given that a substantial amount of patients

experienced these clinical outcomes, it was important to understand what the predictor variables

were impacting the outcomes and what role activity duration and activity intensity played in them.

An improved understanding of the association between these predictor variables and the clinical

outcomes can help improve many aspects of the clinical trial landscape, including ensuring that
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the appropriate patient population is enrolled in a trial and to improve the accurate grouping of

patients into risk categories based on the likelihood of developing the clinical outcomes of interest.
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Chapter 3

Methods: K-Means Clustering

3.1 Aggregation of patients based on physical activity duration

and intensity through K-means clustering

The goal of the following work was to assess whether the baseline clustering of activity inten-

sity and activity duration data from a wearable device can be used to distinguish clinically relevant

and unique phenotypes of patients and provide an improved understanding of patients enrolled in

the trial. More specifically, physical activity and activity duration at baseline was clustered and

the subsequent clustered groupings of patients were examined with respect to their demograph-

ics and medical histories to assess whether unique clinical phenotypes were present amongst the

heterogeneous patient population. In this analysis, the K-means clustering algorithm was utilized.

3.2 Methods

The R package ’NbClust’ was used and, more specifically, the function NbClust was employed

to assess 30 indices for determining the appropriate number of clusters by varying the distance

measures [34]. The overwhelming majority of indices identified 3 clusters as the most appropri-

ate under the k-means clustering method and such the results below were examined with these

3 clusters in mind. K-means clustering was then performed on the standardized data set with 3

pre-specified clusters with the added argument of 25 initial configurations attempted to converge

on the optimal configuration. The subsequent clusters were then merged with a data set containing

the baseline characteristics of the patients to examine the baseline characteristics of each cluster.

This allowed assessment of potential numerical differences with respect to clinical characteristics

and phenotypes. As these analyses were not multiplicity controlled, no hypothesis testing was

performed.
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3.3 Results

The R function NbClust from R package ‘NbClust’ was utilized to perform a grid search with

30 indices to identify the appropriate number of clusters for the data. This allows for an objective

assessment for the appropriate number of clusters as compared to a-priori proposing a specific

value without adequately assessing various indices to limit potential bias in the selected value. [34]

include a full list of the indices. The grid search performed examined the 30 indices starting from

k = 0 up to k = 15 utilizing the Euclidean distance measure to compute the dissimilarity matrix.

The final convergence of the grid search yielded k=3 as the optimal value of clusters, as shown in

Figure 3.1:

Figure 3.1: Plot visualizing optimal number of clusters based on the grid search optimization

With K identified as 3 based on the above grid search, the K-means clustering algorithm was

run. A cluster plot was then created to assess the general separation and overlap amongst the

clusters. Figure 3.2 indicates that there is a clear separation amongst the 3 clusters identified by

the algorithm and that 84.1% of the cumulative variance is captured by the first two dimensions:
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Figure 3.2: K-means patient cluster plot visualizing the distribution of patients into the cluster groupings

To better understand if patients could be differentiated based on these groupings, the three clus-

ters were grouped together and further examined across baseline medical history and demographic

variables, resulting in the results outlined in Table X below. Summary statistics were run on the

original activity intensity and activity duration variables by cluster as well. Cluster 3 resulted in

patients with a higher mean and median activity intensity and activity duration level, followed

by cluster 2 and then cluster 1. Furthermore, cluster 3 had the youngest patients over, as com-

pared to clusters 1 and 2 which were relatively similar in their age demographics. There were no

large differences amongst gender between the groups, however, generalizability based on females

may be difficult given the low proportion of female patients overall. Patients from cluster 3 were

more likely to be from Eastern Europe, have a baseline NT-proBNP value less than or equal to the

medium of the trial, have a higher baseline EGFR, and a lower BMI than patients from clusters 1

and 2.
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Table 3.1: K-means clustering output with respect to baseline medical history and demographics
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3.4 Discussion and interpretation

Based on the results of the K-means clustering algorithm, there seem to be some unique clinical

phenotypes present within the data. For example, cluster 3 is able to engage in the highest levels

of physical activity intensity as well as for the longest duration, resulting in almost twice as long

of a mean and median activity duration as compared to cluster 1 and almost four times the mean

and median of activity duration of cluster 1. Furthermore, cluster 3 contains the youngest patients,

with more than half of the cluster (50.3%) younger than the age of 65, compared to only 26.0% and

27.8% in the same age category in clusters 1 and 2, respectively. While there are no differences in

gender across the clusters, there is a difference in country grouping with slightly more patients in

cluster 3 enrolling from Eastern Europe as compared to only 22.0% and 30.5% from clusters 1 and

2, respectively.

As mentioned previously, the biomarker NT-proBNP can be used as a biomarker and proxy for

cardiovascular disease and recent heart failure decompensation with higher values of NT-proBNP

indicating a more recent decompensation as compared to lower values. Patients with higher values

of NT-proBNP can be considered to be less stable than those with lower values of NT-proBNP

and have a higher likelihood of worsening cardiovascular outcomes in the future [7]. With respect

to NT-proBNP, 60.6% of patients from cluster 3 have a value less than or equal to the medium,

as compared to only 42.0% and 38.4% in clusters 1 and 2, respectively. Patients from cluster 3

were also less likely to have a prior diagnosis of diabetes, a medical history of atrial fibrillation,

or a medical history of hypertension as compared to clusters 1 and 2. EGFR is another variable

for which the clusters differed. 60.0% of patients in cluster 3 had an EGFR value of greater than

60 ml/min/1.73 m2 as compared to only 32.0% and 34.4% in clusters 1 and 2. As previously

discussed, EGFR values lower than 60 ml/min/1.73 m2 are associated with increased risks of heart

failure hospitalization, all cause death, and cardiovascular death, and thus it is interesting to note

that the cluster of patients who were able to engage in the highest level of activity intensity and

the longest activity duration out of the groups of clusters also had the highest values of EGFR.
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Lastly, cluster 3 contained 74.2% patients with a baseline BMI less than or equal to 30, compared

to 58.0% and 63.6% in the same category in clusters 1 and 2, respectively.

Overall, clusters 1 and 2 may represent an older and potentially sicker heart failure patient pop-

ulation, with higher NT-proBNP values, lower EGFR, and higher rates of comorbidities. Further-

more, given cluster 1’s lower baseline EGFR values and higher proportion of diabetes, there may

be a higher prevalence of kidney disease involvement within this group. Cluster 3 may represent a

younger and potentially separate heart failure etiology given the lower proportions of comorbidi-

ties and higher capability of engaging in longer and more strenuous bouts of activity duration and

intensity. Interpreting the totality of the data, cluster 3 appears to present with the healthiest pa-

tients, followed by cluster 2 which acts as a sort of middle ground cluster that shows some further

limitations based on activity intensity and activity duration profiles, however, not as highly limited

as those patients belonging to cluster 1. Taken collectively, the results from these K-means clus-

tering analyses indicate that clustering patients by activity intensity and activity duration data can

be useful to assess baseline characteristics and differences amongst the clusters. This information

can then be further used to generate hypotheses and for precision medicine purposes to identify if

there are certain patients who may experience different clinical outcomes. Furthermore, the results

suggest that while many important variables are considered as part of traditional clinical trials,

the information gained from wearables and biosensors are complementary and have the potential

to help the scientific community better understand the patient journey and clinical phenotypes of

patients. Coupled with traditional data, these complementary approaches can be used to further

refine research and development programs in their aims of identifying novel therapeutics and cures

for today’s most pervasive and pernicious diseases.
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Chapter 4

Methods: Consensus Clustering

4.1 Aggregation of patients based on physical activity duration

and intensity through Consensus clustering

One of the major limitations of the K-means clustering algorithm is the limitation of repeated

runs of the algorithm yielding different results for patient clusters. Patient A may fall into cluster

1 during run 1 of the K-means algorithm, however, his/her membership may fall into cluster 2

during run 2, and the clusters themselves are likely to be produced from different convergences of

the K-means algorithm. In an attempt to rectify this, a consensus clustering approach is utilized to

address the following main concerns: 1) the resulting clusters are dependent on an arbitrary dis-

tance selection, variability of clustering results based on the initial clustering selections, the overall

difficulty in validating and generalizing clustering results ( [35, 36]. For consensus clustering, the

R package "M3C" is utilized and, specifically, a partitioning around medoids (PAM) clustering

algorithm with Euclidean distance and an entropy objective function is examined. A grid search

is used to identify the appropriate value of K and then the clusters were examined with respect

to their baseline characteristics, medical history, and activity duration and intensity. Unique clin-

ical phenotypes were identified and the utility of these approaches to identify possible clusters of

heterogeneous patient populations is discussed.

4.2 Methods

The R package ’M3C’ from the Bioconductor suite within R was used to perform the Monte

Carlo Reference-based Consensus Clustering algorithm [37]. This package utilizes a Monte Carlo

simulation approach which keeps the original correlational structures of the input data, resulting in

the creation of multivariate Gaussian references to aid in the consensus clustering and subsequently

reduce intrinsic bias. More specifically, a partition around medoids (PAM) clustering algorithm
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with Euclidean distance and an entropy objective function was utilized, in which the consensus

matrix elements are treated as probabilities. In this approach, the algorithm utilizes the information

entropy and attempts to minimize it to find the corresponding most appropriate value of K. In such

an approach, the K corresponding to the minimized information entropy is indicative of more

stability as well as less uncertainty within the system throughout the iterative resampling of the

consensus clustering algorithm. As an output to these analyses, PAC scores by cluster are initially

examined, which identify the consensus matrix stability under each value of K. However, given

the common score bias favoring lower values of K is present within the PAC scoring, the relative

cluster stability index (RCSI) is examined with an attempt to maximize the function given that

this eliminates the score bias [37]. This is then combined with a resulting p-value to select an

appropriate value of K and assess whether the null hypothesis that K=1 should be rejected in favor

of a value of K > 1 indicating that a true clustering exists within the data. Furthermore, the M3C

package itself provides an output of the K value it selects as most appropriate.

4.3 Results

Several different outputs were assessed to identify the appropriate value of K. Figure 1 presents

the RCSI graph indicating the appropriateness of selecting K=4 as the number of clusters given that

this is the value of K for which the function is maximized and suggests the highest stability index

at a value of K=4. In addition to the RCSI, the p-value assessing whether it is appropriate to reject

the null hypothesis of K=1 is significant at the K=4 value. Thus, we reject the null hypothesis

that K=1 in favor of the K=4 value (Monte Carlo simulation p-value = 0.038 and normalized p-

value = 0.00004). Figure 4.1 below shows the RCSI across K clusters plot identifying K=4 as the

appropriate value of K for which RCSI is maximized.

Figure 4.2 below examines the information entropy graph indicating the appropriateness of

selecting K=4 as the number of clusters given that this is the value of K for which the function

is minimized and thus indicative of more stability throughout the iterative sampling across the

consensus clustering algorithm at K=4.
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Figure 4.1: RCSI plot visualizing the RCSI across K clusters

Figure 4.2: Entropy plot visualizing the information entropy graph
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Furthermore, the M3C package itself provides an assessment of which value of K is the most

appropriate given the output of several assessments including those discussed above. In the anal-

yses examined here, the M3C algorithm selected K=4 as the appropriate K value as well. Thus,

the overall criteria examination identified 4 clusters as the most appropriate for the data under this

approach. Data from these subsequent clusters was then merged with baseline medical history

and demographic data to examine characteristics of each cluster as well as differences in activity

intensity and duration (Tables Table 4.1 and Table 4.2 below). Given that these analyses were

not multiplicity controlled, no subsequent hypothesis testing was performed and the subsequent

examinations focus on identifying numerical differences and the potential elucidation of clinical

characteristics suggesting unique clinical phenotypes within the data.

Table 4.1: Descriptive statistics of activity intensity and duration across clusters identified by consensus

clustering
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Table 4.2: Baseline and demographic data across clusters identified by consensus clustering

24



Patients were assigned to the 4 identified clusters and then examined based on baseline charac-

teristics and demographics. Furthermore, summary statistics were computed on the original activ-

ity duration and intensity variables for each wear period and then described by cluster. Numerical

differences were identified. Across all periods of wear time, cluster 1 had numerically higher val-

ues of activity intensity and duration. This was followed by cluster 2 which often yielded activity

intensity and duration values similar to that of the average across all clusters. Cluster 3 performed

slightly worse than the overall average, followed by cluster 4 which performed numerically much

worse than the other clusters. For example, cluster 1 had a 3.3-fold increase in mean activity inten-

sity at wear period 1 and a 3.4-fold increase in mean activity intensity at wear period 4 compared to

cluster 4. These results argue that the consensus clustering algorithm corrected clustered patients

into 4 clusters that differed based on their activity duration and intensity profiles. These numerical

differences were also evident when comparing clinical features (see Table 4.2). Cluster 1 presented

with younger patients who were predominantly from Eastern Europe, a higher proportion of pa-

tients with baseline NT-proBNP values less than or equal to the median, a higher proportion of

patients in the less severe NYHA classes (class II), a higher proportion of patients with previous

heart failure hospitalization, a lower proportion of patients with diabetes and atrial fibrillation, a

higher proportion of patients with larger baseline EGFR values, and a larger proportion of patients

with lower BMI values as compared to the more severe cluster 4. Overall, the clinical features for

patients in cluster 1 suggest that they are generally younger and healthier, however, it is interesting

to note the elevated proportion of previous heart failure hospitalizations as compared to other clus-

ters, perhaps indicating that they had begun some sort of stabilization therapy for their heart failure

and thus presented as less severe and with more physical activity capacity than the patients from

other clusters, and in particular cluster 4. Furthermore, while cluster 4 seemingly represented the

oldest and least healthy patients, the results suggest that these patients comprising cluster 4 may

have more renal impairment along with elevated rates of diabetes, hypertension, and atrial fibrilla-

tion. In general, patients from clusters 2 and 3 seem to represent patients comprising of moderate
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severity, having numerically higher proportions of diabetes, atrial fibrillation, and hypertension as

compared to patients in cluster 1 but not as high as those in cluster 4.

4.4 Discussion: Limitations of clustering approach

There are some limitations to these approaches. As previously stated, statistical hypothesis test-

ing was not performed given that these comparisons are not multiplicity adjusted and one would

not have the appropriate power to detect differences amongst the groups. As these comparisons

were not pre-specified and are post-hoc in nature, it is possible that they are detecting sample fluc-

tuations and noise instead of actual clinical phenotypes within the patients. Furthermore, small

numbers of patients are represented in cluster 4, and thus one may need to be careful with any

general interpretations from these findings. All analyses here must be taken into context with bio-

logical plausibility and further assessment to be generalized to the larger population. Nevertheless,

it is interesting to note that while these assessments were all conducted post-hoc, the clustering

algorithms were only applied to the wearable device activity intensity and duration data, and yet

yielded clusters that were clinically distinct from one another when examining baseline charac-

teristics. Furthermore, these relationships within clusters suggested biological plausibility for the

interpretation that patients who reached the highest levels of activity intensity and activity duration

were the patients that presented with the least severe clinical features. Similar analyses can be

used in the future to potentially identify differences in clinical phenotypes based on wearable de-

vice data and to help in the development of precision medicine therapeutics that are more tailored

to clusters of clinical phenotypes that may be present within a sample of patients in an indication.
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Chapter 5

Methods: Cox Proportional Hazards Model

5.1 Introduction to predictive models of clinical outcomes

As earlier outlined, the second step of these analyses is to examine the predictive relationship

between the variables collected and those of clinical outcomes. The earlier presented clustering

algorithms fall into the category of unsupervised learning wherein the algorithm does not train

itself based on labeled output data. Instead, it functions by aggregating datapoints based on their

relationship to one another from the unlabeled data [38]. The following predictive models examine

the relationship between the variables and their impact on several clinical outcomes of interest. In

particular, there are three sets of clinical outcomes that are assessed: 1) time to first heart failure

hospitalization, 2) time to first heart failure hospitalization or urgent heart failure visit, 3) and for

the composite of time to first event of heart failure hospitalization, urgent heart failure visit, or

cardiovascular death.

5.2 Cox Proportional Hazards Model and Method

In the first set of analyses, in order to examine the relationship between the physical activ-

ity variables and other data collected to the clinical outcomes, a Cox proportional hazards (PH)

model was used [39]. The Cox PH model functions essentially as a regression model with the

benefit that it can take time-to-event information, such as survival times of patients with respect

to a clinical outcome, and assess the association between these outcomes and predictor variables.

Bradburn and colleagues provide more theoretical information regarding the Cox PH [40]. In ad-

dition, a backwards selection approach to the Cox PH model is also fitted to the data. Utilizing

the fastbw function from the R package rms, a fast backward elimination of the predictor variables

is performed using the method from Lawless and Singhal [41]. Wald statistics and subsequent
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p-values are computed. The final output contains the predictive factors for the reduced model that

are deemed to have a significant association with the clinical outcomes [42].

5.3 Results for time to first heart failure hospitalization based

on Cox PH model

A Cox PH model was fitted to the data with the variables activity intensity, activity duration,

sex, country grouping, NYHA class at baseline, NT-proBNP at baseline, prior heart failure hospi-

talization, diabetes, atrial fibrillation, hypertension, EGFR, and BMI as independent variables and

the time-to-event clinical outcome of heart failure hospitalization as the dependent variable which

yielded the following results:
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Table 5.1: Cox Proportional Hazards model output for time to first heart failure hospitalization

The above output yielded NYHA class and NTproBNP as the most important variables with

respect to the clinical outcome of time to first heart failure hospitalization, as indicated by both

variables having a p-value ≤ 0.05. The variable diabetes is trending towards significance, with a

p-value ≤ 0.10. A backwards selection approach to the Cox PH model was also fitted to the data

yielding the following results:
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Table 5.2: Cox Proportional Hazards model with backwards selection output for time to first heart failure

hospitalization

The backward selection approach further confirmed NYHA and NTproBNP as the only signifi-

cant variables with respect to the outcome of time to first heart failure hospitalization. The Cox PH

model was rerun to just include the variables NYHA and NTproBNP to assess the model features

as shown in the following table:

30



Table 5.3: Cox Proportional Hazards model final reduced output for time to first heart failure hospitalization

Both variables remained significant in the final reduced model suggesting these are the ap-

propriate predictors to include. To further assess the appropriateness of the Cox PH model with

this data, an assessment of the underlying assumptions of the Cox PH model were performed by

examining the Schoenfeld residuals as shown in the figure below [43]:
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Figure 5.1: Schoenfeld residuals for Cox Proportional hazards model for time to first heart failure hospital-

ization

The plot provides a depiction of the variance-weighted transformation with respect to the

Schoenfeld residuals for each of the covariates in the final reduced model, reflecting the scaled

and smoothed Schoenfeld residuals. This plot provides an estimate of the coefficient regression

over time for each individual covariate. The above plot indicates a significant individual Schoen-

feld test for the covariate NYHA (p = 0.0402), however, the overall Global Schoenfeld test is

non-significant (p = 0.1127), indicating that we do not have any issues with non-proportionality.

Overall, visual inspection of the plots indicate that the plots are reasonably flat, further suggesting

that the PH assumption holds and the Cox PH model is appropriate for this data, allowing for the

interpretation of the findings of the model.
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5.4 Results for the composite of time to first heart failure hos-

pitalization or urgent heart failure visit based on Cox PH

model

A Cox PH model was fitted to the data with the variables activity intensity, activity duration,

sex, country grouping, NYHA class at baseline, NT-proBNP at baseline, prior heart failure hos-

pitalization, diabetes, atrial fibrillation, hypertension, EGFR, and BMI as independent variables

and the time-to-event composite clinical outcome of time to first heart failure hospitalization and

urgent heart failure visit as the dependent variable which yielded the following results:
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Table 5.4: Cox Proportional Hazards model output for the composite of time to first heart failure hospital-

ization or urgent heart failure visit

The above output yielded NYHA class and NT-proBNP as the most important variables with

respect to the clinical outcome of time to first heart failure hospitalization, as indicated by both

variables having a p-value ≤ 0.05. The variable prior heart failure hospitalization is trending

towards significance, with a p-value ≤ 0.10. A backwards selection approach to the Cox PH

model was also fitted to the data yielding the following results:
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Table 5.5: Cox Proportional Hazards model with backwards selection output for the composite of time to

first heart failure hospitalization or urgent heart failure visit

The backward selection approach further confirmed NYHA and NT-proBNP as the only sig-

nificant variables with to the time-to-event composite clinical outcome of time to first heart failure

hospitalization and urgent heart failure visit. The Cox PH model was rerun to just include the

variables NYHA and NT-proBNP to assess the model features as shown in the following table:
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Table 5.6: Cox Proportional Hazards model final reduced output for the composite of time to first heart

failure hospitalization or urgent heart failure visit

Both variables remained significant in the final reduced model suggesting these are the ap-

propriate predictors to include. To further assess the appropriateness of the Cox PH model with

this data, an assessment of the underlying assumptions of the Cox PH model were performed by

examining the Schoenfeld residuals as shown in the figure below [43]:
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Figure 5.2: Schoenfeld residuals for Cox Proportional hazards model for the composite of time to first heart

failure hospitalization or urgent heart failure visit

The plot provides a depiction of the variance-weighted transformation with respect to the

Schoenfeld residuals for each of the covariates in the final reduced model, reflecting the scaled

and smoothed Schoenfeld residuals. This plot provides an estimate of the coefficient regression

over time for each individual covariate. The above plot indicates a significant individual Schoen-

feld test for the covariate NYHA (p = 0.0441), however, the overall Global Schoenfeld test is

non-significant (p = 0.1316), indicating that we do not have any issues with non-proportionality.

Overall, visual inspection of the plots indicate that the plots are reasonably flat, further suggesting

that the PH assumption holds and the Cox PH model is appropriate for this data, allowing for the

interpretation of the findings of the model.
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5.5 Results for the composite of time to first heart failure hos-

pitalization, urgent heart failure visit, or cardiovascular

death based on Cox PH model

A Cox PH model was fitted to the data with the variables activity intensity, activity duration,

sex, country grouping, NYHA class at baseline, NT-proBNP at baseline, prior heart failure hos-

pitalization, diabetes, atrial fibrillation, hypertension, EGFR, and BMI as independent variables

and the composite of time to first event of heart failure hospitalization, urgent heart failure visit, or

cardiovascular death as the dependent variable which yielded the following results:
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Table 5.7: Cox Proportional Hazards model output for the composite of time to first heart failure hospital-

ization, urgent heart failure visit, or cardiovascular death based on Cox PH model

The above output yielded NYHA class and NT-proBNP as the most important variables with

respect to the clinical outcome of time to first heart failure hospitalization, as indicated by both

variables having a p-value ≤ 0.05. The variable prior heart failure hospitalization is trending

towards significance, with a p-value = 0.0538. A backwards selection approach to the Cox PH

model was also fitted to the data yielding the following results:
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Table 5.8: Cox Proportional Hazards model output for the composite of time to first heart failure hospital-

ization, urgent heart failure visit, or cardiovascular death based on Cox PH model

The backward selection approach further confirmed NYHA and NT-proBNP as the only sig-

nificant variables with to the time-to-event composite clinical outcome of time to first heart failure

hospitalization and urgent heart failure visit. The Cox PH model was rerun to just include the

variables NYHA and NT-proBNP to assess the model features as shown in the following table:

40



Table 5.9: Cox Proportional Hazards model final reduced output for the composite of time to first heart

failure hospitalization, urgent heart failure visit, or cardiovascular death based on Cox PH model

Both variables remained significant in the final reduced model suggesting these are the ap-

propriate predictors to include. To further assess the appropriateness of the Cox PH model with

this data, an assessment of the underlying assumptions of the Cox PH model were performed by

examining the Schoenfeld residuals as shown in the figure below [43]:
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Figure 5.3: Schoenfeld residuals for Cox Proportional hazards model for the composite of time to first heart

failure hospitalization, urgent heart failure visit, or cardiovascular death based on Cox PH model

The plot provides a depiction of the variance-weighted transformation with respect to the

Schoenfeld residuals for each of the covariates in the final reduced model, reflecting the scaled

and smoothed Schoenfeld residuals. This plot provides an estimate of the coefficient regression

over time for each individual covariate. The above plot indicates a significant individual Schoen-

feld test for the covariate NYHA (p = 0.0284), however, the overall Global Schoenfeld test is

non-significant (p = 0.09), indicating that we do not have any issues with non-proportionality.

Overall, visual inspection of the plots indicate that the plots are reasonably flat, further suggesting

that the PH assumption holds and the Cox PH model is appropriate for this data, allowing for the

interpretation of the findings of the model.
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5.6 Discussion based on Cox PH model

Across all of the Cox PH models for the three dependent variable clinical outcomes, NT-

proBNP and NYHA class appeared as the two significant predictor variables. This is not surprising

given the well documented and strong predictive value of these variables with respect to clinical

outcomes of heart failure [44]. Furthermore, both of these variables convey information as to the

state of severity of a heart failure patient and it is known that they are positively correlated [45]

and thus one could expect for them to appear implicated in the prediction of clinically relevant

outcomes data.

The variables diabetes and heart failure hospitalization were identified as trending towards

significance in the analyses, suggesting that they may play an important role in the prediction of

clinical outcomes in heart failure. The relationship between diabetes and heart failure is further

documented in the literature, with a particular focus on heart failure patients with diabetes having

higher rates of clinical outcomes as compared to their heart failure without diabetes counterparts

[27]. Additionally, the impact of a previous history of heart failure on further predicting follow-

up heart failure is well documented given that once a patient suffers from a heart failure event

and needs to be hospitalization, this initial heart failure hospitalization is associated with a further

increase in additional heart failure clinical outcomes [26].

While activity duration and activity intensity were not identified as significant variables for

the prediction of these clinical outcomes, it is possible we do not have the appropriate power to

detect their effects as part of the Cox PH model. Both NT-proBNP and NYHA class have been

well documented in the literature with regards to their strong association to clinical outcomes in

heart failure [44] and it is possible that activity intensity and activity duration, as identified by

the wearable devices, do in fact provide additional useful complimentary information towards the

prediction of clinical outcome events, however, this association to clinical outcome events may not

be as strong as with NT-proBNP and NYHA class. In particular, as seen in the results for activity

intensity, there is a wide confidence interval and thus it is possible that we need further patients to
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adequately assess the effect. Additionally, this ranking of the importance of activity intensity and

activity duration can be further assessed utilizing the random survival forest algorithm.

44



Chapter 6

Methods: Random Survival Forest

In an attempt to further understand the survival data, a separate machine learning method, the

random survival forest, was applied to the data. In addition to the classification work presented ear-

lier, a separate stream of research examined the utility of wearables and biosensors to improve pre-

dictive accuracy of models relating to clinical outcome events. Furthermore, the random survival

forest was used to assess the ranking of variable importance, including physical activity duration

and intensity, on the prediction of clinical outcome events and to assess whether an improvement

can be made upon the earlier presented Cox PH models.

The random forest (RF) is a machine learning and statistical learning algorithm that does not

assume an underlying distribution to be specified between the independent variables and the de-

pendent variable. It functions as an ensemble of unique tree-based learners, aggregating individual

decision trees together and averaging their operating characteristics. Through this iterative pro-

cess, the RF can identify key patterns and interactions amongst variables while reducing variance

due to the aggregation of the individual decision trees versus simply taking the results from one

individual tree. In addition, this aggregation of individual trees reduces the likelihood that an indi-

vidual tree will simply overfit to the data. In the case of survival data, the random survival forest

(RSF) algorithm extends upon the random forest methodology to take into account the specifics of

time-to-event survival analysis data [46, 47]. Furthermore, in comparison to the semi-parametric

Cox proportional hazards model, the RSF is non-parametric in nature and can be particularly use-

ful if data is non-proportional or if the analysis should be conducted without specifying a certain

distribution beforehand.

In an attempt to help validate the model, reduce overfitting, and improve variance estimates,

the RSF can utilize bootstrap aggregation, in which iterative training samples are created through

sampling with replacement in order for the model to learn from and create decision trees [47]. Out-

of-bag (OOB) error is then calculated from the bootstrapped aggregation for each training sample
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and then averaged across the samples to calculate the out-of-bag estimate of the overall predictive

performance of the model [48]. The following steps are part of the random survival forest: 1) A

bootstrapped sample of data is created from the original dataset and the pre-specified number of

trees identified a-priori, 2) A decision tree is grown and subsequently within each tree and for each

node, a number of predictors is used to assess the splitting. Given the survival nature of data here,

a log-rank splitting rule is used, 3) The splits continue within the tree until the final node of the

tree is converged upon, and 4) The results are combined and averaged together to compute the final

ensemble cumulative function for all patients [47]. With respect to the outcomes of the RSF, there

are two main variable importance measures to rank the importance of predictive variables: the

permutation variable importance (VIMP) and minimal depth. The permutation VIMP is derived

in the following manner: 1) Initially calculate the prediction error for a tree utilizing patients who

were not included in the subsample of that specific tree, 2) Create a permutation of the values for

a specific variable for those observation, 3) Re-calculate the prediction error of the tree utilizing

the values of the now permuted variable and compute differences between predictive accuracy,

and 4) This process is repeated across variables and trees and the results combined and averaged

together [47]. The results of the VIMP yield values for each variable that can be grouped as either

≤ 0 (negative or zero values) or > 0 (positive values). A variable yielding an overall positive VIMP

is indicative that the variable is contributing positive predictive importance. A variable yielding

an overall negative or zero-value VIMP is indicative that the variable is not contributing positive

predictive importance for the model. It is often suggested to remove variables that yield a VIMP

≤ 0 from the model and to re-run the model in an attempt to improve the predictive accuracy

of the overall model and include only variables with a positive VIMP > 0 in the final model.

This then yields the final reduced model [49]. The minimal depth approach assesses the overall

predictive utility of a variable by calculating how far down the node the variable is as compared

to the root node of the tree. The closer the split upon the variable is to the root node, the smaller

the minimal depth and the more predictive the effects of the variable is on the outcome dependent

variable [50]. Furthermore as outputs to the RSF analysis, the OOB prediction error is used to
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provide a quantitative metric as to what extent the outcome can be explained and predicted by the

included baseline variables. The output for range for the OOB prediction error is [0% - 50%].

In the case of an OOB prediction error of 50%, the baseline information does not contain any

relevant information for the predicting the outcome and essentially that the model performance at

predicting the outcome is the same as flipping a coin [48].

The following steps were taken with respect to training the random survival forest algorithm.

Given the probabilistic nature of iterative repetitions of the algorithmic process, an initial seed was

set for the algorithm prior to subsequent simulations and analyses. Data was randomly split into

a testing and training set, with 80% of the data comprising the training set and 20% of the data

comprising the testing set. A series of simulations were then conducted to identify the model with

the lowest out-of-bag (OOB) prediction error from the bootstrapped aggregation, which provides

the lowest mean prediction error for each iteration of the training sample (Gareth et al., 2013).

The simulation approaches the task of optimizing the OOB prediction error by running through

an iterative succession of hyperparameters to tune the model through a grid search task. More

specifically, the parameters of node size, nsplit, and mtry are modulated in the simulation with the

following parameters to perform the grid search optimization [51]:

nodesize<-c(10,20,35,50,70,85,100,120,150,180,190,200,210,220)

nsplit<-c(2,3,4,5,6,7,8,9,10,15,20)

mtry<-c(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)

The R package randomForestSRC version 3.1.0 was used to perform the random survival forest

algorithm [51]. Within the algorithm, node size refers to the average overall forest node size,

nsplit refers to the value used to identify random splitting, and mtry identifies the number of the

variable subset that is randomly selected during each iteration of the model (in this case with an

upper limit of 15 as for this dataset there are a total of 15 independent variables included in the

model) [52]. These combinations of these hyperparameters are then iteratively assessed throughout

the algorithm with the OOB prediction error stored in a grid. As the final step, the model with the

least OOB prediction error is selected and these specific values of the hyperparameters node size,
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nsplit, and mtry are then used to identify and examine the final model. Across the simulations,

the logrank splitting rule is used by the algorithm to decide upon splits of the tree. The value of

the hyperparameter ntree was set equal to 500 to avoid high variance in the resulting VIMPs [52].

Furthermore, a minimal depth criterion is used to assess the importance of variables identified by

the random survival forest. The minimal depth is then averaged across the trees to provide a reliable

measure, with lower values indicative of the most predictive variables for the clinical outcomes of

interest. For the purposes of refining the models and selecting the final variables included in the

reduced model, the VIMP will primarily be used.

6.1 Results for time to first heart failure hospitalization based

on Random Survival Forest

A random survival forest algorithm was fitted to the independent variables of NT-proBNP

at baseline, NYHA class, activity duration, activity intensity, prior heart failure hospitalization,

atrial fibrillation, diabetes, age group, sex, EGFR at baseline, BMI at baseline, country group,

and hypertension at baseline to predict the dependent clinical outcome variable of heart failure

hospitalization, yielding the below output for the VIMP:
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Figure 6.1: Random survival forest VIMP output for clinical outcome of heart failure hospitalization

After following the simulation process grid search denoted above, the model was tuned to the

hyperparameters values of nsplit = 2, node size = 20, and mtry = 4, yielding an OOB prediction

error for the overall model of 0.3078. The results categorized the variables into two groupings;

those with a positive VIMP and those with a negative VIMP. The variables with positive VIMPs for

the outcome of time to first heart failure hospitalization included NT-proBNP, NYHA class, activity

intensity, prior heart failure hospitalization, activity duration, atrial fibrillation, sex, and history

of diabetes. Variables with a negative VIMP include baseline EGFR, age group, hypertension,

and BMI. Additionally, a minimal depth approach is used to assess the random survival variable

importance through another measure to assess similarity of findings [50]. The output for this

approach is seen below in graphical and tabular format:
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Table 6.1: Random survival forest minimal depth and VIMP scores for clinical outcome of heart failure
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Figure 6.2: Random survival forest minimal depth output for clinical outcome of heart failure hospitaliza-

tion

The minimal depth approach identifies the same variables as important except sex and base-

line EGFR, which are not ranked amongst the most important set of variables. The output above

indicates that the same highest rank variables were identified by both the VIMP and the minimal

depth, including NT-proBNP, NYHA class, activity duration, and activity intensity. Plotting both

the minimal depth and VIMP together allows for a comparison of the selected variables and their

ranking between the two variable importance measures:
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Figure 6.3: Random survival forest minimal depth and VIMP output for clinical outcome of heart failure

hospitalization

Concordance between the VIMP and minimal depth is indicated by variables falling on the

diagonal line in the plot above, which occurs for most of the variables listed suggesting that the

ranking of variables by both variable importance measures is similar. Perfect agreement between

the two indices would occur if the variables all fall on the diagonal line. In this case, there is

strong overlap between the variables and their importance as measured by the two indices. Given

that these variables with VIMP ≤ 0 are not contributing to the predictive power of the model,

these variables are removed, and the reduced model is then re-run to assess the appropriateness

of including them in the final model [49]. Improvement as quantified by a reduction in OOB

error in the reduced model is confirmation that the removal of these variables improves predictive

accuracy. The VIMP from the final model with the variables baseline EGFR, age group, BMI, and
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hypertension removed confirms that all variables left in the reduced model now have a positive

VIMP as shown in the following VIMP plot:

Figure 6.4: Random survival forest final reduced VIMP output for clinical outcome of heart failure hospi-

talization

As all of the variables have a VIMP > 0, the above VIMP plot indicates that all variables in the

model contribute to an improvement in the predictive power of the model. This is also confirmed

by an improvement in the OOB predictive error which is 0.2987 for the model. Of importance

to note here is the ranking of the variables, with NT-proBNP identified as the most important

variable in predicting the clinical outcome of heart failure hospitalization, followed by NYHA

class at baseline, prior history of heart failure hospitalization, and then activity duration. Further

examination into the partial dependence plots is performed to better understand the relationship

between the variables contributing the most improvement in the predictive power of the model and

the clinical outcome variable of heart failure hospitalization [53].
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Figure 6.5: Partial dependence plot for baseline NT-proBNP for clinical outcome of heart failure hospital-

ization

In the above partial dependence plot examining the relationship between NT-proBNP and sur-

vival with respect to the clinical outcome of time to first heart failure hospitalization, patients with

baseline NT-proBNP less than or equal to the median have higher survival than patients who have

baseline NT-proBNP greater than the median as a predictive variable for the clinical outcome of

time to heart failure hospitalization. Furthermore, fewer patients in the less than or equal to the

median baseline NT-proBNP group had the outcome event (10 out of 173 patients or 5.8%) as

compared to those in the greater than median baseline NT-proBNP group (39 out of 174 patients

or 22.4%). NYHA class was identified as the second most important variable and the following

partial dependence plot examines survival across the variable:
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Figure 6.6: Partial dependence plot for baseline NYHA class for clinical outcome of heart failure hospital-

ization

The grouping of patients across NYHA class showed a trend for which patients who fell into

the more severe categories of NYHA classes (Class III/IV) had more events and lower survival than

patients who were in NYHA class II. More specifically, there were 17 clinical events in the NYHA

class I and II patients out of 208 patients (8.2%). Out of the NYHA class III/IV group, there were

32 patients out of a total of 139 patients who had the clinical event (23.0%). Prior history of heart

failure hospitalization was identified as the third most important variable and the following figures

examines survival across the variable:
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Figure 6.7: Partial dependence plot for prior history of heart failure hospitalization class for clinical out-

come of heart failure hospitalization

Patients with no history of prior hospitalization had less events and a higher overall survival

(14 clinical outcome events out of a total of 135 patients or 10.4%). Patients with a history of prior

hospitalization had more events and a lower overall survival (35 clinical outcome events out of a

total of 212 patients or 16.5%). The relationship of activity duration to survival is examined in the

following partial dependence plot:
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Figure 6.8: Partial dependence plot for activity duration for clinical outcome of heart failure hospitalization

The function of survival by activity duration with respect to the clinical outcome of heart failure

hospitalization suggests that patients with lower rates of activity duration, particularly less than

3000 seconds or 50 minutes per day, have lower rates of survival. The function seems to plateau

at activity duration rates greater than 3000 seconds or 50 minutes per day, however, it is possible

this may be due to less patients at the higher levels of activity duration given that the confidence

intervals widen. The relationship of activity intensity to the clinical outcome of time to heart failure

hospitalization is examined in the following partial dependence plot:
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Figure 6.9: Partial dependence plot for activity intensity for clinical outcome of heart failure hospitalization

The function of survival by activity intensity with respect to the clinical outcome of heart

failure hospitalization suggests that patients with lower rates of activity intensity, particularly less

than an average of 50 mgs of sustained activity intensity per day, have lower rates of survival. The

function seems to plateau at activity intensity rates greater than 50 mgs, however, it is possible

this may be due to less patients at the higher levels of activity intensity given that the confidence

intervals widen.

6.2 Results for the composite of time to first heart failure hos-

pitalization or urgent heart failure visit based on Random

Survival Forest

A random survival forest algorithm was fitted to the independent variables of NT-proBNP

at baseline, NYHA class, activity duration, activity intensity, prior heart failure hospitalization,

atrial fibrillation, diabetes, age group, sex, EGFR at baseline, BMI at baseline, country group,
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and hypertension at baseline to predict the composite clinical outcome of time to first heart failure

hospitalization and urgent heart failure visit, yielding the below output for the VIMP:

Figure 6.10: Random survival forest VIMP output for clinical outcome of the composite of time to first

heart failure hospitalization or urgent heart failure visit

After following the simulation process grid search denoted above, the model was tuned to the

hyperparameters values of nsplit = 2, node size = 20, and mtry = 4, yielding an OOB prediction

error for the overall model of 0.2965. The results categorized the variables into two groupings;

those with a positive VIMP and those with a negative VIMP. The variables with positive VIMPs

for the composite outcome of time to first heart failure hospitalization and urgent heart failure

visit included NT-proBNP, NYHA class, activity duration, activity intensity, prior history of heart

failure hospitalization, atrial fibrillation, diabetes, age group, and sex. Variables with a negative

VIMP included EGFR, BMI, country grouping, and hypertension. Additionally, a minimal depth

approach is used to assess the random survival variable importance through another measure to

assess similarity of findings. The output for this approach is seen below in graphical and tabular

format:
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Table 6.2: Random survival forest minimal depth and VIMP scores for clinical outcome of the composite

of time to first heart failure hospitalization or urgent heart failure visit
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Figure 6.11: Random survival forest minimal depth output for clinical outcome of the composite of time to

first heart failure hospitalization or urgent heart failure visit

The output above indicates that the same top variables were identified by both the VIMP and

the minimal depth, including NT-proBNP and NYHA class. However, according to the minimal

depth approach activity duration and activity intensity, while the third and fourth most important

features as identified by the VIMP, are not identified as important overall as deemed by the minimal

depth approach. Plotting both the minimal depth and VIMP together allows for a comparison of

the selected variables and their ranking between the two variable importance measures:
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Figure 6.12: Random survival forest minimal depth and VIMP output for clinical outcome of the composite

of time to first heart failure hospitalization or urgent heart failure visit

Concordance between the VIMP and minimal depth is indicated by variables falling on the

diagonal on the diagonal line in the plot above, which occurs for most of the variables listed

suggesting that the ranking of variables by both variable importance measures is similar. Perfect

agreement between the two indices would occur if the variables all fall on the diagonal line. In

this case, there is strong overlap between the variables and their importance as measured by the

two indices. Given that these variables with VIMP ≤ 0 are not contributing to the predictive power

of the model, these variables are removed, and the reduced model is then re-run to assess the

appropriateness of including them in the final model. Improvement as quantified by a reduction
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OOB error in the reduced model is confirmation that the removal of these variables improves

predictive accuracy. The VIMP from the final model with the variables baseline EGFR, BMI,

country group, and hypertension removed confirms that all variables left in the reduced model

result in the following VIMP plot, now with the variable sex resulting in a negative VIMP:

Figure 6.13: Random survival forest intermediate reduced VIMP output for clinical outcome of the com-

posite of time to first heart failure hospitalization or urgent heart failure visit

The overall model here had a OOB prediction error of 0.284. In an attempt to improve the

OOB prediction error, the variable sex was dropped given its negative VIMP and the grid search
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optimization was re-run yielding the following final reduced model with all remaining predictor

variables yielding positive VIMP values:

Figure 6.14: Random survival forest final reduced VIMP output for clinical outcome of the composite of

time to first heart failure hospitalization or urgent heart failure visit

As all of the variables in the above plot have a VIMP > 0, it indicates that all variables in the

reduced model contribute to an improvement in the predictive power of the model. This is also

confirmed by an improvement in the OOB predictive error which is 0.282 for the final reduced

model. Of importance to note here is the ranking of the variables, with NT-proBNP identified

as the most important variable in predicting the clinical composite outcome of time to first event
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of heart failure hospitalization or urgent heart failure visit, followed by NYHA class at baseline,

activity duration and then activity intensity. Further examination into the partial dependence plots

is performed to better understand the relationship between the variables contributing the most

improvement in the predictive power of the model for the clinical composite outcome variable of

heart failure hospitalization and urgent heart failure visit.

Figure 6.15: Partial dependence plot for baseline NT-proBNP for clinical outcome of the composite of time

to first heart failure hospitalization or urgent heart failure visit

Patients with baseline NT-proBNP less than or equal to the median have higher survival than

patients who have baseline NT-proBNP greater than the median as a predictive variable for the

clinical composite outcome of time to first heart failure hospitalization and urgent heart failure

visit. Furthermore, fewer patients in the less than or equal to the median baseline NT-proBNP

group had the outcome event (11 out of 173 patients or 6.4%) as compared to those in the > median

baseline NT-proBNP group (44 out of 174 patients or 25.3%). Baseline NYHA class was identified

as the second most important variable and the following partial dependence plot examines survival

across the variable:
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Figure 6.16: Partial dependence plot for baseline NYHA class for clinical outcome of the composite of time

to first heart failure hospitalization or urgent heart failure visit

Patients in NYHA class I and II had less events and a higher overall survival (19 clinical

outcome events out of a total of 208 patients or 9.1%). Patients in NYHA class III and IV had

more events and a lower overall survival (36 clinical outcome events out of a total of 139 patients

or 25.9%). The relationship of activity duration to survival is examined in the following partial

dependence plot:

66



Figure 6.17: Partial dependence plot for baseline activity duration for clinical outcome of the composite of

time to first heart failure hospitalization or urgent heart failure visit

The function of survival by activity duration with respect to the clinical composite outcome of

time to first heart failure hospitalization and urgent heart failure visit suggests that patients with

lower rates of activity duration, particularly less than 4000 seconds or approximately 67 minutes

per day, have lower rates of survival. The function seems to plateau at activity duration rates greater

than 4000 seconds or approximately 67 minutes per day, however, it is possible this may be due to

less patients at the higher levels of activity duration given the increasing width of the confidence

intervals at that point in the plot. The relationship of activity intensity to survival is examined in

the following partial dependence plot:
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Figure 6.18: Partial dependence plot for baseline activity intensity for clinical outcome of the composite of

time to first heart failure hospitalization or urgent heart failure visit

The function of survival by activity intensity with respect to the clinical composite outcome of

time to first heart failure hospitalization and urgent heart failure visit suggests that patients with

lower rates of average activity intensity, particularly less than an average of 40 mgs of sustained

activity intensity per day, have lower rates of survival. The function seems to plateau at activity

intensity rates greater than 40 mgs, however, it is possible this may be due to less patients at the

higher levels of activity intensity given the width of the confidence intervals at this point in the

plot.

6.3 Results for the composite of time to first heart failure hos-

pitalization, urgent heart failure visit, or cardiovascular

death based on Random Survival Forest

A random survival forest algorithm was fitted to the independent variables of NT-proBNP

at baseline, NYHA class, activity duration, activity intensity, prior heart failure hospitalization,
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atrial fibrillation, diabetes, age group, sex, EGFR at baseline, BMI at baseline, country group, and

hypertension at baseline to predict the dependent clinical outcome variable of time to first event of

for the composite of time to first event of heart failure hospitalization, urgent heart failure visit, or

cardiovascular death, yielding the below output for the VIMP:

Figure 6.19: Random survival forest VIMP output for clinical outcome of the composite of time to first

heart failure hospitalization, urgent heart failure visit, or cardiovascular death

After following the simulation process grid search denoted above, the model was tuned to the

hyperparameters values of nsplit = 2, node size = 35, and mtry = 3, yielding an OOB prediction

error for the overall model of 0.2829. The results categorized the variables into two groupings;
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those with a positive VIMP and those with a negative VIMP. The variables with positive VIMPs

for the outcome of time to first event of the composite of time to first event of heart failure hos-

pitalization, urgent heart failure visit, or cardiovascular death included NT-proBNP, NYHA class,

prior history of heart failure hospitalization, activity duration, activity intensity, atrial fibrillation,

sex, diabetes, EGFR, and BMI. Variables with a negative VIMP included age grouping, country

grouping, and hypertension. Additionally, a minimal depth approach is used to assess the random

survival variable importance through another measure to assess similarity of findings. The output

for this approach is seen below in graphical and tabular format:

Table 6.3: Random survival forest minimal depth and VIMP scores for clinical outcome of the composite

of time to first heart failure hospitalization, urgent heart failure visit, or cardiovascular death
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Figure 6.20: Random survival forest minimal depth output for clinical outcome of the composite of time to

first heart failure hospitalization, urgent heart failure visit, or cardiovascular death

The output above indicates that the same top variables were identified by both the VIMP and

the minimal depth, including NYHA class, NT-proBNP, activity duration, prior heart failure hos-

pitalization, atrial fibrillation, and activity intensity. However, according to the minimal depth

approach, BMI, sex, EGFR, and diabetes are not identified as important overall as deemed by the

algorithm. Plotting both the minimal depth and VIMP together allows for a comparison of the

selected variables and their ranking between the two variable importance measures:
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Figure 6.21: Random survival forest minimal depth and VIMP output for clinical outcome of the composite

of time to first heart failure hospitalization, urgent heart failure visit, or cardiovascular death

Concordance between the VIMP and minimal depth is indicated by variables falling on the

diagonal on the diagonal line in the plot above, which occurs for most of the variables listed

suggesting that the ranking of variables by both variable importance measures is similar. Perfect

agreement between the two indices would occur if the variables all fall on the diagonal line. In

this case, there is strong overlap between the variables and their importance as measured by the

two indices. There are several variables, including age group, country group, and hypertension

that yielded VIMP scores ≤ 0, suggesting that these variables are not contributing to the predictive

power of the model. These variables are removed and the reduced model is re-run to assess the

72



appropriateness of excluding them in the final model. Improvement as quantified by a reduction

OOB error in the reduced model is confirmation that the removal of these variables improves

predictive accuracy. The VIMP from the reduced model with the variables age group, country

group, and hypertension removed confirms that most of the remaining variables left in the reduced

model result in a positive VIMP, however, now the variables BMI and baseline EGFR are yielding

a VIMP score ≤ 0.

Figure 6.22: Random survival forest intermediate reduced VIMP output for clinical outcome of the com-

posite of time to first heart failure hospitalization, urgent heart failure visit, or cardiovascular death
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This intermediate reduced model plotted above yields an OOB prediction error of 0.278, sug-

gesting an improvement from the original model containing all variables. In an attempt to improve

the model further, the grid search simulation was re-run with the variables yielding a VIMP ≤ 0

removed (baseline EGFR and BMI), and the following final reduced model was identified with all

remaining predictor variables resulting in positive VIMP values:

Figure 6.23: Random survival forest final reduced VIMP output for clinical outcome of the composite of

time to first heart failure hospitalization, urgent heart failure visit, or cardiovascular death

As all of the variables in the final reduced model have a VIMP > 0, it indicates that all variables

in the model contribute to an improvement in the predictive power of the model. This is also
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confirmed quantitatively by an improvement in the OOB predictive error which is 0.2732 for the

model. Of importance to note here is the ranking of the variables, with NT-proBNP identified

as the most important variable in predicting the clinical outcome of the composite of time to first

event of heart failure hospitalization, urgent heart failure visit, or cardiovascular death, followed by

NYHA class at baseline, activity duration and then activity intensity. Further examination into the

partial dependence plots is performed to better understand the relationship between the variables

contributing the most improvement in the predictive power of the model and the clinical outcome

variable of the composite of time to first event of heart failure hospitalization, urgent heart failure

visit, or cardiovascular death.
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Figure 6.24: Partial dependence plot for baseline NT-proBNP for clinical outcome of the composite of time

to first heart failure hospitalization, urgent heart failure visit, or cardiovascular death

Patients with baseline NT-proBNP less than or equal to the median have higher survival than

patients who have baseline NT-proBNP greater than the median as a predictive variable for the

clinical outcome of the composite of time to first event of heart failure hospitalization, urgent

heart failure visit, or cardiovascular death. Furthermore, fewer patients in the less than or equal

to the median baseline NT-proBNP group had the outcome event (11 out of 173 patients or 6.4%)

as compared to those in the greater than the median baseline NT-proBNP group (47 out of 174

patients or 27.0%). Baseline NYHA class was identified as the second most important variable

and the following figures examines survival across the variable:
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Figure 6.25: Partial dependence plot for baseline NYHA class for clinical outcome of the composite of time

to first heart failure hospitalization, urgent heart failure visit, or cardiovascular death

Patients in NYHA class I and II had less events and a higher overall survival (19 clinical

outcome events out of a total of 208 patients or 9.1%). Patients in NYHA class III and IV had

more events and a lower overall survival (39 clinical outcome events out of a total of 139 patients

or 28.1%). The relationship of activity duration to survival is examined in the following partial

dependence plot:
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Figure 6.26: Partial dependence plot for baseline activity duration for clinical outcome of the composite of

time to first heart failure hospitalization, urgent heart failure visit, or cardiovascular death

The function of survival by activity duration with respect to the clinical outcome of the compos-

ite of time to first event of heart failure hospitalization, urgent heart failure visit, or cardiovascular

death suggests that patients with lower rates of activity duration, particularly less than 3000 sec-

onds or 50 minutes per day, have lower rates of survival. The function seems to plateau at activity

duration rates greater than 3000 seconds or 50 minutes per day, however, it is possible this may

be due to less patients at the higher levels of activity duration given that the confidence intervals

widen at this point in the plot. The relationship of activity intensity to survival is examined in the

following partial dependence plot:
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Figure 6.27: Partial dependence plot for baseline activity intensity for clinical outcome of the composite of

time to first heart failure hospitalization, urgent heart failure visit, or cardiovascular death

The function of survival by activity intensity with respect to the clinical outcome of the for the

composite of time to first event of heart failure hospitalization, urgent heart failure visit, or car-

diovascular death suggests that patients with lower rates of average activity intensity, particularly

less than 40 mgs of sustained activity per day, have lower rates of survival. The function seems

to plateau at average activity intensity rates greater than 40 mgs, however, it is possible this may

be due to less patients at the higher levels of activity intensity given that the confidence intervals

widen at this point of the plot.
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6.4 Discussion for Random Survival Forest

Overall, the RSF models yielded similar strong predictive accuracy with respect to OOB pre-

diction error (0.2987, 0.2820, 0.2732 for the three reduced models corresponding to the three clin-

ical outcomes, respectively). As mentioned previously, an OOB predictive error of 50% indicates

that the model is performing at chance. Given the small dataset and the variability in biological

data, the OOB prediction error values generated by the models presented here can be considered

as reflecting useful models with strong performance. Based on the model characteristics and per-

formance, it may be possible to use these models to identify patients who are in earlier stages of

their disease progression and introduce therapeutics that will reduce the likelihood of progression

to later stages.

Additional, one may be able to use this improved understanding of physical activity data and

its association to clinical outcomes to identify patients earlier on in their disease progression and

improve on this area of unmet medical need. This identification can subsequently be used to

provide patients with an earlier treatment intervention. Based on recent surveys of US adults in

2021, Pew Research Center has identified that 85% of adults in America have smartphones [54],

who would thus have the capability of having their physical activity and intensity data assessed.

Assuming the earlier mentioned approximately 5.7 million patients suffering from heart failure

[9], a potential 85% of them or approximately 4.85 million would have access to a smartphone.

Coupled with the utility of the proposed activity models, these patients could then utilize their

smartphone to track their physical activity data and have it assessed to predict the likelihood of the

individual patient experiencing an event. This would have a significant improvement in cost and

outcomes for the healthcare system, improving on things like general efficiency, reducing cost, and

improving patient’s quality of life by identifying heart failure decompensations earlier before they

result in outcomes like myocardial infarction or cardiovascular death.

Furthermore, it is interesting to note that all 3 RSF models further implicated NT-proBNP and

NYHA class as the most important predictor variables, similar to what was identified by the Cox

PH models in the previous section. According to the partial dependence plots, on average and
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across the models, patients in the NT-proBNP group with baseline values ≤ to the median had a

90% survival at 6 months as compared to those in the > median NT-proBNP group who had only

a 77% median survival at 6 months. This is in line with previously discussed information that

NT-proBNP plays an important role as a diagnostic biomarker variable, with higher values of NT-

proBNP being associated with more recent decompensations in heart failure [7]. Correspondingly,

these higher values are associated with higher rates of the clinical outcome events, as can be seen

in the differential survival of 12% amongst these two groups. On average and across the models,

NYHA class patients in class II had 89% median survival at 6 months, compared to 77% median

survival in class III/IV. This is further supported by the literature stating that patients in class III/IV

represent more severe heart failure patients with an increased risk for clinical outcomes [25]. This

finding also corresponds well with the importance of the activity intensity and activity duration

variables as identified by the RSF models. Through examination of the partial dependence plots, it

is evident that higher rates of activity intensity and activity duration yield improvements in median

survival times over the 6-month period. In particular, those patients who are able to engage only in

lower levels of activity intensity and activity duration have strikingly lower survival probabilities

across all three models. Taken collectively, the information from the RSF models suggests that

the variables of NT-proBNP, NYHA class, activity intensity, and activity duration are particularly

important and provide positive predictive performance across the three clinical outcomes assessed.
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Chapter 7

Discussion and clinical interpretation of findings

The present work provides a comprehensive overview of topics to consider when analyzing

wearable and biosensor data, particular data from accelerometers used to assess physical activity

in patients. In the case where one is interested in understanding how patients relate to one an-

other without taking into account clinical outcomes data, perhaps because the trial has just begun

and only baseline values are available, k-means clustering and consensus clustering algorithms are

presented to help categorize the patients into groupings. These clusters can then be used to help

examine any heterogeneity across patients clusters and profiles and to identify if certain patient

groups are responding differently within the trials. In the case where one is interested in devel-

oping models to predict clinical outcomes of patients, the Cox PH model and random survival

forest approaches were presented to include approaches able to predict the time-to-event clinical

outcome data based on independent variables including clinical data and accelerometry wearable

device data. In these cases, the wearable device data proved complimentary to other strong pre-

dictive variables such as NT-proBNP and NYHA class and helped to improve model performance.

While it is evident that there are many different variables that are implicated in the understanding

of patients, their journeys, clinical outcomes, and general patient quality of life, the analytical as-

sessments presented here suggest that certain variables, such as NT-proBNP and NYHA class, can

provide strong ability to differentiate between patients and predict their outcomes. Furthermore, it

is suggested by the results of the clustering algorithms and predictive models that physical activity

data from biosensors and wearable devices provide informative complimentary information for the

models to utilize that allows the algorithms to aggregate the patients into clinically relevant and

meaningful clusters as well as improve predictive accuracy for clinical outcome models.

In summary, the overall findings across the algorithms utilized suggested that a signal emerged

from the activity duration and activity intensity data in that patients who engaged in lower levels

of physical activity and activity intensity represented a clinically relevant differentiated group of
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heart failure patients from those heart failure patients who were able to engage in higher levels of

physical activity duration and activity intensity. These patients with lower levels of activity inten-

sity and duration were generally older, had more previous serious comorbidities, had lower EGFR

suggesting kidney impairment, higher NT-proBNP values at baseline, and were more likely to be

categorized as NYHA class III/IV patients compared to their higher activity engaging counterparts.

Not only did these patients suffer from these additional negative associations within their baseline

data, but these patients also had a lower probability of survival as indicated in the predictive model

assessments.

While physical limitation and a general negative impact on physical ability and quality of life is

a common complaint of patients suffering from cardiovascular disease and heart failure, the ability

to assess a patient’s physical capabilities in everyday life have not been possible given technical

limitations in the development of and utilization of wearables and biosensors in clinical trials.

While assessments on quality of life can be performed through the use of surveys and ques-

tionnaires that represent subjective assessments of physical limitation, a wearable can be utilized

to examine a patient’s physical capabilities over the course of the trial and as indicated by the re-

sults of this work, can provide meaningful complimentary information to the understanding of the

patient’s likelihood for clinical outcomes. As mentioned previously, utilizing physical activity data

from the smartphones phones that many American adults regularly carry, could potentially result

in nearly 4.85 million heart failure patients having their physical activity data modeled. This data

could be used to improve the predictive accuracy of patient outcome models based on physical

activity and to potentially classify patients and provide treatment interventions earlier on. Given

the median cost of heart failure hospitalization is $ 13,418 [13], even a small improvement in re-

ducing heart failure hospitalizations could potentially dramatically reduce the cost of heart failure

treatment. Optimistically, if the physical activity data was routinely assessed and utilized in mod-

els from all heart failure patients who used smartphones in the US, the upper limit of potential

treatment costs saved solely for heart failure hospitalization would eclipse $ 65 billion.
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Given that the heart failure population examined here represents a very compromised patient

population that has strong limitations in physical activity, it is possible that a feature such as activity

duration may be more sensitive than a feature such as activity intensity, as patients are often only

able to engage in lower levels of activity intensity across the majority of their data. One would

need to adapt this when examining healthier patients, as it is possible additional variables would

be necessary to further differentiate aspects of physical activity deterioration and improvement

form one another.

7.1 Limitations and future development

There are some general limitations to the work presented here. One clear and main limitation

is the small sample size utilized. While the results of the work are biologically plausible and did

yield support based on evidence reported in the literature, it is still questionable how well the

results would generalize to other heart failure patients. In particular, given the small proportion of

females enrolled in the trial, one would need to further assess the results in this population before

generalizing it to a wider female heart failure population. Furthermore, given that the scope of

guideline directed medical therapy for heart failure is ever changing, it is possible that clinically

relevant clusters identified in trials from 5-10 years ago may be different today based on things such

as medical standard of care variability or refinement in inclusion / exclusion criteria. Nevertheless,

the work here can serve as a foundation to expanding upon some of the future work in these areas.

A question that still needs to be addressed within the scientific literature is what resolution of

wearable and biosensor data is appropriate to assess changes in patients, and more specifically in

the area of physical activity. While the focus on these assessments were based on an hourly level

of resolution aggregated to a daily level, it is possible that even daily summaries would still capture

the signal necessary to differentiate patients. Nevertheless, this question remains open and would

need to be answered experimentally to fully understand the repercussions of utilizing different

resolutions. One can envision the appropriate resolution to analyze data would be dependent on

the patient population being studied. While wearable and biosensor data at a higher resolution can
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necessitate a large amount of storage space, one can always then summarize the data to a lower

resolution using something like a moving average approach, whereas it is impossible to accurately

backtrack the data from a lower resolution to a higher resolution.

While the work presented here reflected several workstreams within wearable devices and

biosensors, there are additional areas that require further examination to truly reap the full ben-

efit and information that utilizing wearable and biosensors can provide. For example, work needs

to be done to identify a minimal clinically relevant difference for physical activity variables de-

rived from wearables and biosensors to know what is important from a patient perspective, as

has been done in other areas relating to heart failure [18]. Furthermore, additional variables can

be derived besides activity intensity and activity duration that may prove to be more informative

about a specific patient population or allow for better discernment between groups of patients. Ad-

ditionally, examination into association of physical activity variables and other clinical variables

including but not limited to patient reported outcomes and physical limitation scores is of interest

and would be necessary in hopes of utilizing wearables and biosensors further in clinical trials.

Based on the work presented here and that of others [55], it suggests that data focusing on activity

duration and activity intensity provide unique streams of information that can be utilized by algo-

rithms to improve classification and predictive accuracy of the models. Further work is necessary

to identify what are the most optimal derivations of activity duration and activity intensity, and if

further sub-classifications and sub-derivations of these variables, would improve algorithmic ac-

curacy. Additional working groups are currently examining devising an open-source approach for

the analysis of wearable device data. Furthermore, as there are some differences dependent on the

therapeutic area one is interested in collecting and analyzing wearable device data with, working

groups such as the Heart Failure Collaboratory representing an innovative collaboration spanning

the major pharmaceutical companies, biotechnological companies, and regulatory agencies like

the FDA, are tasked with helping to address some of the regulatory hurdles implicit in these areas.

While there clearly remain many open questions in the area of wearable devices and biosensors and

their utility to clinical trials and more specifically heart failure, it is an exciting area of research
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that has the potential to change the landscape of clinical trials and improve patient lives for the

better.
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Appendix A

Programming Code

data work.advsact;

set ads.advsact;

if AVISITN = 1 and PARAMN=11 and VSEVINTX="INTRADAY"

and RANDFL="Y" and DTYPE ^= "AVERAGE" and ADT ^= .;

run;

proc summary data=work.advsact nway;

class USUBJID ADT;

var AVAL;

output out=advsact_means mean=mean;

run;

proc sql;

create table actdaycount as

select USUBJID

, ADT

,count(*) as Count

from advsact_means

group by USUBJID

;

quit;
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data work.actday_cleaned;

set work.actdaycount;

if Count GE 7;

RUN;

proc sort data=work.actday_cleaned;

by USUBJID ADT;

RUN;

proc sort data=work.advsact_means;

by USUBJID ADT;

RUN;

data work.act_merge;

merge work.actday_cleaned(in=a) work.advsact_means(in=b);

by USUBJID ADT;

if a and b;

RUN;

data work.act_merge_ct7;

set work.act_merge;

if Count=7;

RUN;

data work.act_merge_ct8;

set work.act_merge;

if Count=8;
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RUN;

proc sort data=work.act_merge_ct8;

by USUBJID _FREQ_;

RUN;

data work.act_merge_ct8_clean;

set work.act_merge_ct8;

if first.USUBJID then delete;

by USUBJID;

RUN;

proc sql;

create table work.act_merge_ct8_final as

select USUBJID

, ADT

,count(*) as Count_v2

from work.act_merge_ct8_clean

group by USUBJID

;

quit;

data work.act_merge_ct9;

set work.act_merge;

if Count=9;

RUN;
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data work.act_merge_ct9;

set work.act_merge;

if Count=9;

RUN;

proc sort data=work.act_merge_ct9;

by USUBJID _FREQ_;

RUN;

data work.act_merge_ct9_clean_step1;

set work.act_merge_ct9;

if first.USUBJID then delete;

by USUBJID;

RUN;

data work.act_merge_ct9_clean_step2;

set work.act_merge_ct9_clean_step1;

if first.USUBJID then delete;

by USUBJID;

RUN;

proc sql;

create table work.act_merge_ct9_final as

select USUBJID

, ADT

,count(*) as Count_v2

from work.act_merge_ct9_clean_step2
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group by USUBJID

;

quit;

proc sort data=work.actday_cleaned;

by USUBJID ADT;

RUN;

proc sort data=work.advsact_means;

by USUBJID ADT;

RUN;

proc sort data=work.act_merge_ct7;

by USUBJID ADT;

RUN;

proc sort data=work.act_merge_ct8_final;

by USUBJID ADT;

RUN;

proc sort data=work.act_merge_ct9_final;

by USUBJID ADT;

RUN;

data work.act_combined;

merge work.act_merge_ct7 work.act_merge_ct8_final

work.act_merge_ct9_final;
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by USUBJID ADT;

RUN;

data work.act_combined_dropmeans;

set work.act_combined;

drop mean;

RUN;

proc sort data=work.act_combined_dropmeans;

by USUBJID ADT;

RUN;

data work.act_final;

merge work.act_combined_dropmeans(in=a)

work.advsact_means(in=b);

by USUBJID ADT;

if a and b;

RUN;

data work.act_final;

set work.act_final;

drop Count Count_v2 _FREQ_ _TYPE_;

RUN;

data work.advsint;

set ads.advsint;

if AVISITN=1 and PARAMN=8 and RANDFL="Y"
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and DTYPE ^= "AVERAGE" and ADT ^= .;

run;

proc summary data=work.advsint nway;

class USUBJID ADT;

var AVAL;

output out=advsint_means mean=mean;

run;

proc sql;

create table actintcount as

select USUBJID

, ADT

,count(*) as Count

from advsint_means

group by USUBJID

;

quit;

data work.actint_cleaned;

set work.actintcount;

if Count GE 7;

RUN;

proc sort data=work.actint_cleaned;

by USUBJID ADT;

RUN;
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proc sort data=work.advsint_means;

by USUBJID ADT;

RUN;

data work.int_merge;

merge work.actint_cleaned(in=a)

work.advsint_means(in=b);

by USUBJID ADT;

if a and b;

RUN;

data work.int_merge_ct7;

set work.int_merge;

if Count=7;

RUN;

data work.int_merge_ct8;

set work.int_merge;

if Count=8;

RUN;

proc sort data=work.int_merge_ct8;

by USUBJID _FREQ_;

RUN;

data work.int_merge_ct8_clean;
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set work.int_merge_ct8;

if first.USUBJID then delete;

by USUBJID;

RUN;

proc sql;

create table work.int_merge_ct8_final as

select USUBJID

, ADT

,count(*) as Count_v2

from work.int_merge_ct8_clean

group by USUBJID

;

quit;

data work.int_merge_ct9;

set work.int_merge;

if Count=9;

RUN;

data work.int_merge_ct9;

set work.int_merge;

if Count=9;

RUN;

proc sort data=work.int_merge_ct9;

by USUBJID _FREQ_;
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RUN;

data work.int_merge_ct9_clean_step1;

set work.int_merge_ct9;

if first.USUBJID then delete;

by USUBJID;

RUN;

data work.int_merge_ct9_clean_step2;

set work.int_merge_ct9_clean_step1;

if first.USUBJID then delete;

by USUBJID;

RUN;

proc sql;

create table work.int_merge_ct9_final as

select USUBJID

, ADT

,count(*) as Count_v2

from work.int_merge_ct9_clean_step2

group by USUBJID

;

quit;

proc sort data=work.actint_cleaned;

by USUBJID ADT;

RUN;
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proc sort data=work.advsint_means;

by USUBJID ADT;

RUN;

proc sort data=work.int_merge_ct7;

by USUBJID ADT;

RUN;

proc sort data=work.int_merge_ct8_final;

by USUBJID ADT;

RUN;

proc sort data=work.int_merge_ct9_final;

by USUBJID ADT;

RUN;

data work.int_combined;

merge work.int_merge_ct7 work.int_merge_ct8_final

work.int_merge_ct9_final;

by USUBJID ADT;

RUN;

data work.int_combined_dropmeans;

set work.int_combined;

drop mean;

RUN;
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proc sort data=work.int_combined_dropmeans;

by USUBJID ADT;

RUN;

data work.int_final;

merge work.int_combined_dropmeans(in=a)

work.advsint_means(in=b);

by USUBJID ADT;

if a and b;

RUN;

data work.int_final;

set work.int_final;

drop Count Count_v2 _FREQ_ _TYPE_;

RUN;

data work.int_final;

set work.int_final;

rename mean = mean_INT;

RUN;

proc sort data=work.int_final;

by USUBJID ADT;

RUN;

data work.act_final;
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set work.act_final;

rename mean = mean_ACT;

RUN;

proc sort data=work.act_final;

by USUBJID ADT;

RUN;

data work.act_int_merge;

merge work.int_final(in=a) work.act_final(in=b);

by USUBJID ADT;

if a and b;

RUN;

proc sql;

create table merge_counts as

select USUBJID

, ADT

,count(*) as Count

from work.act_int_merge

group by USUBJID

;

quit;

data work.act_int_merge_comp;

merge work.int_final(in=a) work.act_final(in=b);

by USUBJID ADT;
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RUN;

proc sql;

create table count_comp as

select USUBJID

, ADT

,count(*) as Count

from work.act_int_merge_comp

group by USUBJID

;

quit;

proc sort data=count_comp;

by USUBJID ADT;

RUN;

proc sort data=work.act_int_merge_comp;

by USUBJID ADT;

RUN;

data work.merge_comp_counts;

merge work.act_int_merge_comp count_comp;

by USUBJID ADT;

RUN;

data work.merge_comp_missing;

set work.merge_comp_counts;
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array vars(3) mean_INT mean_ACT;

numMissing = cmiss(of vars[*]);

run;

data work.merge_comp_missing_ct8;

set work.merge_comp_missing;

if Count=8;

RUN;

proc sort data=work.merge_comp_missing_ct8;

by USUBJID numMissing;

RUN;

data work.merge_comp_missing_ct8_cln;

set work.merge_comp_missing_ct8;

if last.USUBJID then delete;

by USUBJID;

RUN;

data work.act_intraday_avg;

set ads.advsact;

if AVISITN=1 and VSEVINTX="INTRADAY"

and RANDFL="Y" and DTYPE="AVERAGE";

keep USUBJID AVAL;

rename AVAL=act_avg;

RUN;
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data work.int_intraday_avg;

set ads.advsint;

if AVISITN=1 and RANDFL="Y" and ABLFL="Y"

and PARAMN=8;

keep USUBJID BASE;

rename BASE=int_avg;

RUN;

proc sort data = work.act_intraday_avg;

by USUBJID;

RUN;

proc sort data = work.int_intraday_avg;

by USUBJID;

RUN;

data work.merge_averages;

merge work.act_intraday_avg(in=a)

work.int_intraday_avg(in=b);

by USUBJID;

if a and b;

RUN;

proc sort data=work.merge_comp_counts;

by USUBJID;

RUN;
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proc sort data=work.merge_averages;

by USUBJID;

RUN;

data work.merge_comp_avgs;

merge work.merge_comp_counts(in=a)

work.merge_averages(in=b);

by USUBJID;

RUN;

data work.merge_comp_avgs_ct7;

set work.merge_comp_avgs;

if Count=7;

RUN;

data work.comp_avg_counter;

set work.merge_comp_avgs_ct7;

by USUBJID;

if first.USUBJID then COUNTER_act=0;

COUNTER_act+(mean_ACT eq .);

if first.USUBJID then COUNTER_int=0;

COUNTER_int+(mean_INT eq .);

RUN;

data work.comp_avg_counter_identify;

set work.comp_avg_counter;

by USUBJID;
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if COUNTER_act > 1 or COUNTER_int > 1

then remove=1;

else remove=0;

RUN;

proc sql;

create table work.pat_remove as

select USUBJID, sum(remove) as remove_sum

from work.comp_avg_counter_identify

group by USUBJID;

QUIT;

proc sort data=work.comp_avg_counter_identify;

by USUBJID;

RUN;

proc sort data=work.pat_remove;

by USUBJID;

RUN;

data work.comp_avg_merged_c7_prep;

merge work.comp_avg_counter_identify

work.pat_remove;

by USUBJID;

RUN;

data work.comp_avg_merged_c7_clean;
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set work.comp_avg_merged_c7_prep;

if remove_sum = 0;

RUN;

data work.merge_comp_avgs_8;

set work.merge_comp_avgs;

if Count = 8;

RUN;

proc sort data=work.merge_comp_avgs_8;

by USUBJID ADT;

RUN;

proc sort data=work.merge_comp_missing_ct8_cln;

by USUBJID ADT;

RUN;

data work.merge_clean_ct8_part1;

merge work.merge_comp_avgs_8(in=a)

work.merge_comp_missing_ct8_cln(in=b);

by USUBJID ADT;

if a and b;

RUN;

data work.merge_clean_ct8_part1_imp;

set work.merge_clean_ct8_part1;

if mean_ACT = . then mean_ACT = act_avg;

113



if mean_INT = . then mean_INT = int_avg;

RUN;

proc sort data=work.merge_clean_ct8_part1_imp;

by USUBJID;

RUN;

proc sort data=work.comp_avg_merged_c7_clean;

by USUBJID;

RUN;

data work.final_intraday_part1;

merge work.merge_clean_ct8_part1_imp

work.comp_avg_merged_c7_clean;

by USUBJID;

keep USUBJID ADT mean_INT mean_ACT;

RUN;

proc sgplot data=work.final_intraday_part1;

histogram mean_ACT;

RUN;

proc sgplot data=work.final_intraday_part1;

histogram mean_INT;

RUN;
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data work.final_intraday_part1;

set work.final_intraday_part1;

logmean_ACT = log(mean_ACT);

logmean_INT = log(mean_INT);

RUN;

proc sgplot data=work.final_intraday_part1;

histogram logmean_ACT;

RUN;

proc sgplot data=work.final_intraday_part1;

histogram logmean_INT;

RUN;

data work.final_intraday_part2_ct;

set work.final_intraday_part1;

count + 1;

by USUBJID;

if first.USUBJID then count=1;

RUN;

data work.final_intraday_part2_rn_per1;

set work.final_intraday_part2_ct;

rename mean_INT = mean_INT_per1;

rename mean_ACT = mean_ACT_per1;

drop logmean_INT logmean_ACT count ADT;

RUN;
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data work.final_intraday_part2_ct_dt;

length date $5;

set work.final_intraday_part2_ct;

date = cats(’date’,count);

drop count ADT;

RUN;

proc sql;

create table work.avg_per_pat_INT as

select USUBJID, mean(mean_INT) as avg_mean_INT

from work.final_intraday_part2_ct_dt

group by USUBJID;

QUIT;

proc sql;

create table work.avg_per_pat_ACT as

select USUBJID, mean(mean_ACT) as avg_mean_ACT

from work.final_intraday_part2_ct_dt

group by USUBJID;

QUIT;

data avg_pat_ACT_INT;

merge work.avg_per_pat_INT work.avg_per_pat_ACT;

by USUBJID;

run:
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proc transpose data=work.final_intraday_part2_ct_dt

out=wide_ACT prefix=per1_ACT;

by USUBJID;

ID date;

var mean_ACT;

RUN;

proc transpose data=work.final_intraday_part2_ct_dt

out=wide_INT prefix=per1_INT;

by USUBJID;

ID date;

var mean_INT;

RUN;

proc transpose data=work.final_intraday_part2_ct_dt

out=wide_logACT prefix=per1_logACT;

by USUBJID;

ID date;

var logmean_ACT;

RUN;

proc transpose data=work.final_intraday_part2_ct_dt

out=wide_logINT prefix=per1_logINT;

by USUBJID;

ID date;

var logmean_INT;

RUN;
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data work.wide_final;

merge wide_ACT(drop=_name_) wide_INT(drop=_name_)

wide_logACT(drop=_name_) wide_logINT(drop=_name_);

by USUBJID;

drop _LABEL_;

run:

proc standard data=wide_final mean=0 STD=1

out=wide_final_std;

var per1_ACTdate1--per1_INTdate7;

RUN;

proc standard data=wide_final mean=0 STD=1

out=wide_logfinal_std;

var per1_logACTdate1--per1_logINTdate7;

RUN;

data work.advsinmn;

set ads.advsinmn;

run;

data work.adsvinmn_subj;

set work.advsinmn;

by USUBJID;

if first.USUBJID then output;

RUN;
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libname results "~/results";

data work.adtte;

set ads.adtte;

RUN;

proc copy in=work out=results;

select adtte;

RUN;

proc copy in=work out=results;

select wide_final;

RUN;

proc copy in=work out=results;

select wide_final_std;

RUN;

proc copy in=work out=results;

select adsvinmn_subj;

RUN;

proc copy in=work out=results;

select final_intraday_part2_ct_dt;

RUN;
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proc copy in=work out=results;

select avg_pat_ACT_INT;

RUN;

K-means clustering

rm(list = ls())

library(namespace)

library(rlang)

library(data.table)

library(tidyverse)

library(stringr)

library(readr)

library(haven)

library(lubridate)

library(dplyr)

library(cluster)

library(factoextra)

library(formattable)

library(NbClust)

library(psych)

wide_final <- read_sas(data_file = /wide_final.sas7bdat’)

wide_final_std <- read_sas(data_file = /wide_final_std.sas7bdat’)

wide_final_std_cln <- select(wide_final_std, -USUBJID)
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wide_final_cln <- select(wide_final_std, -USUBJID)

advsinmx <- read_sas(data_file = ’/adsvinmn_subj.sas7bdat’)

long_final <- read_sas(data_file = ’/final_intraday_part2_ct_dt.

sas7bdat’)

df <- wide_final_std_cln

k3 <- kmeans(wide_final_std_cln, centers=3, nstart=20)

set.seed(123)

wss <- function(k) {

kmeans(wide_final_std_cln, k, nstart = 10 )$tot.withinss

}

k.values <- 1:15

wss_values <- map_dbl(k.values, wss)

plot(k.values, wss_values,

type="b", pch = 19, frame = FALSE,

xlab="Number of clusters K",

ylab="Total within-clusters sum of squares")

set.seed(123)

fviz.nbclust(wide_final_std_cln, kmeans, method="wss")

avg_sil <- function(k) {
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km.res <- kmeans(df, centers = k, nstart = 25)

ss <- silhouette(km.res$cluster, dist(df))

mean(ss[, 3])

}

k.values <- 2:15

avg_sil_values <- map_dbl(k.values, avg_sil)

plot(k.values, avg_sil_values,

type = "b", pch = 19, frame = FALSE,

xlab = "Number of clusters K",

ylab = "Average Silhouettes")

set.seed(123)

gap_stat <- clusGap(df, FUN = kmeans, nstart = 25,

K.max = 20, B = 50)

print(gap_stat, method = "firstmax")

fviz_gap_stat(gap_stat)

df <-scale(wide_final_cln)

distance <- get_dist(df)

fviz_dist(distance, gradient = list(low = "#00AFBB",

mid = "white", high = "#FC4E07"))

k2 <- kmeans(df, centers = 2, nstart = 25)

str(k2)
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k2

fviz_cluster(k2, data = df)

k3 <- kmeans(df, centers = 3, nstart = 25)

str(k3)

k3

fviz_cluster(k3, data = df)

k4 <- kmeans(df, centers = 4, nstart = 25)

str(k4)

k4

fviz_cluster(k4, data = df)

set.seed(123)

fviz_nbclust(df, kmeans, method = "wss")

set.seed(123)

fviz_nbclust(df, kmeans, method = "silhouette")

set.seed(123)

fviz_nbclust(df, kmeans, nstart=25,

method="gap_stat", nboot=50)

set.seed(123)

nb <- NbClust(df, distance = "euclidean",

min.nc = 2, max.nc = 15,method="kmeans")

fviz_nbclust(nb)
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print(gap_stat, method = "firstmax")

fviz_gap_stat(gap_stat)

USUBJID <- wide_final$USUBJID

id_cluster2 <- cbind(USUBJID, k2$cluster)

id_cluster3 <- cbind(id_cluster2, k3$cluster)

final_clusters <- merge(id_cluster3, advsinmx, by="USUBJID")

df_long_3 <- merge(id_cluster3, long_final, by="USUBJID")

final_clusters_step1 <- final_clusters[-c(4:118)]

df_3 <- final_clusters_step1

df$AGEGR01 = as.factor(df$AGEGR01)

df$age = as.factor(df$age)

split(df, df$cluster) |> summary()

tapply(df$AGEGR01, df$V2, function(x) table(x)/length(x))

tapply(df$age, df$cluster, function(x) table(x)/length(x))

tapply(df$O2, df$cluster, function(x) table(x)/length(x))

table(df_3$V3)

fviz_cluster(k3, data = df)

df_3$AGEGR01 = as.factor(df_3$AGEGR01)

df_3$AGEGR02 = as.factor(df_3$AGEGR02)

df_3$V3 = as.factor(df_3$V3)
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tapply(df_3$AGEGR01, df_3$V3, function(x) table(x)/length(x))

tapply(df_3$AGEGR02, df_3$V3, function(x) table(x)/length(x))

df_long_3$V3 = as.factor(df_long_3$V3)

describeBy(df_long_3$mean_INT, group=df_long_3$V3, mat=TRUE,

digits=3)

describeBy(df_long_3$mean_ACT, group=df_long_3$V3, mat=TRUE,

digits=3)

df_3$SEX = as.factor(df_3$SEX)

table(df_3$V3, df_3$SEX)

tapply(df_3$SEX, df_3$V3, function(x) table(x)/length(x))

df_3$RACE = as.factor(df_3$RACE)

table(df_3$V3, df_3$RACE)

df_3$CNTYGR1N = as.factor(df_3$CNTYGR1N)

table(df_3$V3, df_3$CNTYGR1N)

tapply(df_3$CNTYGR1N, df_3$V3, function(x) table(x)/length(x))

df_3$NTBNP = as.factor(df_3$NTBNP)

tapply(df_3$NTBNP, df_3$V3, function(x) table(x)/length(x))
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df_3$NYHAFUC = as.factor(df_3$NYHAFUC)

tapply(df_3$NYHAFUC, df_3$V3, function(x) table(x)/length(x))

df_3$BETABLK = as.factor(df_3$BETABLK)

tapply(df_3$BETABLK, df_3$V3, function(x) table(x)/length(x))

df_3$PRIHOSP = as.factor(df_3$PRIHOSP)

tapply(df_3$PRIHOSP, df_3$V3, function(x) table(x)/length(x))

df_3$DIABETE = as.factor(df_3$DIABETE)

tapply(df_3$DIABETE, df_3$V3, function(x) table(x)/length(x))

df_3$ATRFIBR = as.factor(df_3$ATRFIBR)

tapply(df_3$ATRFIBR, df_3$V3, function(x) table(x)/length(x))

df_3$HYPERTE = as.factor(df_3$HYPERTE)

tapply(df_3$HYPERTE, df_3$V3, function(x) table(x)/length(x))

df_3$MAXACE = as.factor(df_3$MAXACE)

tapply(df_3$MAXACE, df_3$V3, function(x) table(x)/length(x))

df_3$MAXARB = as.factor(df_3$MAXARB)

tapply(df_3$MAXARB, df_3$V3, function(x) table(x)/length(x))

df_3$BASEGFR = as.factor(df_3$BASEGFR)

tapply(df_3$BASEGFR, df_3$V3, function(x) table(x)/length(x))
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df_3$BMIGR1 = as.factor(df_3$BMIGR1)

tapply(df_3$BMIGR1, df_3$V3, function(x) table(x)/length(x))

df_3$BMIGR2 = as.factor(df_3$BMIGR2)

tapply(df_3$BMIGR2, df_3$V3, function(x) table(x)/length(x))

df_3$LVEFB25 = as.factor(df_3$LVEFB25)

tapply(df_3$LVEFB25, df_3$V3, function(x) table(x)/length(x))

df_3$LVEFHIM = as.factor(df_3$LVEFHIM)

tapply(df_3$LVEFHIM, df_3$V3, function(x) table(x)/length(x))

describeBy(df_3$CNTYGR1N, group=df_3$V3, mat=TRUE, digits=3)

tapply(df_long_3$mean_INT, df_long_3$V3, min, mean, median,

maximum)

descriptive_intensity <- df_long_3 %>%

group_by(V3) %>%

summarize(mean_INT)

summarize(mean_INT~V3, data=df_long_3, digits=3)

final_clusters_step1 %>%

group_by(V2) %>%

summarise(PRIHOSPN = n())%>%

mutate(freq = formattable::percent(PRIHOSPN / sum(PRIHOSPN)))

%>%

arrange(desc(freq))
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split(df_long_3, df_long_3$V3) | summary()

Consensus clustering

rm(list = ls())

library(ellipsis)

library(namespace)

library(rlang)

library(data.table)

library(tidyverse)

library(stringr)

library(readr)

library(haven)

library(lubridate)

library(tidyverse)

library(cluster)

library(factoextra)

library(formattable)

library(NbClust)

library(psych)

library(xtable)

library(table1)

library(survival)

library(survminer)

library(survivalAnalysis)

wide_final<- read_sas(data_file = ’/wide_final.sas7bdat’)
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wide_final_std <- read_sas(data_file = ’/wide_final_std.sas7bdat’

)

wide_final_std_cln <- select(wide_final_std, -USUBJID)

wide_final_cln <- select(wide_final_std, -USUBJID)

advsinmx <- read_sas(data_file = ’/adsvinmn_subj.sas7bdat’)

long_final <- read_sas(data_file = ’/final_intraday_part2_ct_dt.

sas7bdat’)

avg_pat <- read_sas(data_file = ’/avg_pat_ACT_INT.sas7bdat’)

long_final_comb <- read_sas(data_file = ’/final_intraday_comb.

sas7bdat’)

wide_final_complete <-

read_sas(data_file = ’/wide_final_log_comb.sas7bdat’)

wide_final_complete_cln <- select(wide_final_complete, -USUBJID)

advsinmx <- read_sas(data_file = ’/adsvinmn_subj.sas7bdat’)

library(M3C)

df <- wide_final_complete_cln

df_t <- t(df)

df_t <- as.data.frame(df_t)

colnames(df_t) <- cbind(1,1:109)

colnames(df_t) <- paste0("foo_", colnames(df_t))

df_test <- df_t

df_test2 <- df_test %>%

set_names(c(seq_along(df_test)))
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colnames(df_test2) <- paste0("foo_", colnames(df_test2))

df_t <- df_test2

test_M3C <- M3C(df)

res_t_km <- M3C(df_t, removeplots = FALSE, iters=25,

objective=’entropy’, fsize=8, lthick=1, dotsize=1.25,

clusteralg=c("pam"))

res_t_km$plots[[1]]

res_t_km$plots[[2]]

res_t_km$plots[[3]]

res_t_km$plots[[4]]

annon_t_km <- res_t_km$realdataresults[[4]]$ordered_annotation

annon_t_km <- as.data.frame(annon_t_km)

annon_t_km$consensuscluster <- as.factor(annon_t_km$

consensuscluster)

table(annon_t_km$consensuscluster)

df_update_km <- tibble::rownames_to_column(annon_t_km, "patinfo")

df_update_km$patinfo <- gsub("foo_V","",as.character(df_update_km

$patinfo))

df_update_km$patinfo <- as.numeric(df_update_km$patinfo)

df_update_km <-as.data.frame(df_update_km)

df_update_km_sort <- df_update_km[order(df_update_km$patinfo),]
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wide_final_complete_sort <-

wide_final_complete[order(wide_final_complete$USUBJID),]

intermediate_merge <- cbind(wide_final_complete_sort, df_update_

km_sort)

names(intermediate_merge)[names(intermediate_merge)

== "consensuscluster"] <- "Cluster"

final_clinical_consensus_cluster <-

merge(intermediate_merge, advsinmx, by="USUBJID")

names(final_clinical_consensus_cluster)

[names(final_clinical_consensus_cluster)

== "consensuscluster"] <- "Cluster"

final_clinical_consensus_cluster$Cluster <- as.factor(final_

clinical_consensus_cluster$Cluster)

final_clinical_consensus_cluster$CNTYGR1N <- as.character(final_

clinical_consensus_cluster$CNTYGR1N)

final_clinical_consensus_cluster$

CNTYGR1N[final_clinical_consensus_cluster$CNTYGR1N == "5"]

<- "Eastern Europe"

final_clinical_consensus_cluster$

CNTYGR1N[final_clinical_consensus_cluster$CNTYGR1N == "6"]

<- "Western Europe and Israel"

final_clinical_consensus_cluster$
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CNTYGR1N[final_clinical_consensus_cluster$CNTYGR1N == "8"]

<- "North America"

final_clinical_consensus_cluster$BASEGFR <- as.character(final_

clinical_consensus_cluster$BASEGFR)

final_clinical_consensus_cluster$

BASEGFR[final_clinical_consensus_cluster$BASEGFR == ""]

<- "Missing"

final_clinical_consensus_cluster$LVEFHIM <- as.character(final_

clinical_consensus_cluster$LVEFHIM)

final_clinical_consensus_cluster$

LVEFHIM[final_clinical_consensus_cluster$LVEFHIM == ""]

<- "Missing"

final_clinical_consensus_cluster$AGEGR01 = as.factor(final_

clinical_consensus_cluster$AGEGR01)

final_clinical_consensus_cluster$AGEGR02 = as.factor(final_

clinical_consensus_cluster$AGEGR02)

final_clinical_consensus_cluster$SEX =

as.factor(final_clinical_consensus_cluster$SEX)

final_clinical_consensus_cluster$RACE =

as.factor(final_clinical_consensus_cluster$RACE)

final_clinical_consensus_cluster$CNTYGR1N = as.factor(final_

clinical_consensus_cluster$CNTYGR1N)

final_clinical_consensus_cluster$NTBNP = as.factor(final_clinical

_consensus_cluster$NTBNP)
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final_clinical_consensus_cluster$NYHAFUC = as.factor(final_

clinical_consensus_cluster$NYHAFUC)

final_clinical_consensus_cluster$BETABLK = as.factor(final_

clinical_consensus_cluster$BETABLK)

final_clinical_consensus_cluster$PRIHOSP = as.factor(final_

clinical_consensus_cluster$PRIHOSP)

final_clinical_consensus_cluster$DIABETE = as.factor(final_

clinical_consensus_cluster$DIABETE)

final_clinical_consensus_cluster$ATRFIBR = as.factor(final_

clinical_consensus_cluster$ATRFIBR)

final_clinical_consensus_cluster$HYPERTE = as.factor(final_

clinical_consensus_cluster$HYPERTE)

final_clinical_consensus_cluster$MAXACE = as.factor(final_

clinical_consensus_cluster$MAXACE)

final_clinical_consensus_cluster$MAXARB = as.factor(final_

clinical_consensus_cluster$MAXARB)

final_clinical_consensus_cluster$BASEGFR = as.factor(final_

clinical_consensus_cluster$BASEGFR)

final_clinical_consensus_cluster$BMIGR1 = as.factor(final_

clinical_consensus_cluster$BMIGR1)

final_clinical_consensus_cluster$LVEFB25 = as.factor(final_

clinical_consensus_cluster$LVEFB25)

final_clinical_consensus_cluster$LVEFHIM = as.factor(final_

clinical_consensus_cluster$LVEFHIM)
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names(final_clinical_consensus_cluster)

[names(final_clinical_consensus_cluster) == "AGEGR01"]

<- "Age_Group"

names(final_clinical_consensus_cluster)

[names(final_clinical_consensus_cluster) == "CNTYGR1N"]

<- "Country_Group"

names(final_clinical_consensus_cluster)

[names(final_clinical_consensus_cluster) == "NYHAFUC"]

<- "NYHA"

names(final_clinical_consensus_cluster)

[names(final_clinical_consensus_cluster) == "PRIHOSP"]

<- "Prior_HF_hosp"

names(final_clinical_consensus_cluster)

[names(final_clinical_consensus_cluster) == "DIABETE"]

<- "Diabetes"

names(final_clinical_consensus_cluster)

[names(final_clinical_consensus_cluster) == "ATRFIBR"]

<- "Afib"

names(final_clinical_consensus_cluster)

[names(final_clinical_consensus_cluster) == "HYPERTE"]

<- "Hypertension"

names(final_clinical_consensus_cluster)

[names(final_clinical_consensus_cluster) == "BASEGFR"]

<- "EGFR"

names(final_clinical_consensus_cluster)

[names(final_clinical_consensus_cluster) == "LVEFHIM"]

<- "LVEF"
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names(final_clinical_consensus_cluster)

[names(final_clinical_consensus_cluster) == "BMIGR1"]

<- "BMI"

full4_table_test <- table1(~ factor(Age_Group)

+ factor(SEX) + factor(Country_Group) + factor(NTBNP)

+ factor(NYHA) + factor(Prior_HF_hosp) + factor(Diabetes)

+ factor(Afib) + factor(Hypertension) + factor(EGFR)

+ factor(BMI) | Cluster, data=final_clinical_consensus_cluster)

full4_table_test

long_final_cluster <-

merge(long_final_comb, USUB_cluster, by="USUBJID")

names(long_final_cluster)[names(long_final_cluster) ==

"mean_INT_per1"] <- "Act_Int_Per1"

names(long_final_cluster)[names(long_final_cluster) ==

"mean_INT_per2"] <- "Act_Int_Per2"

names(long_final_cluster)[names(long_final_cluster) ==

"mean_INT_per3"] <- "Act_Int_Per3"

names(long_final_cluster)[names(long_final_cluster) ==

"mean_INT_per4"] <- "Act_Int_Per4"

names(long_final_cluster)[names(long_final_cluster) ==

"mean_ACT_per1"] <- "Act_Dur_Per1"

names(long_final_cluster)[names(long_final_cluster) ==

"mean_ACT_per2"] <- "Act_Dur_Per2"

names(long_final_cluster)[names(long_final_cluster) ==
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"mean_ACT_per3"] <- "Act_Dur_Per3"

names(long_final_cluster)[names(long_final_cluster) ==

"mean_ACT_per4"] <- "Act_Dur_Per4"

Act_Int_Per1 <- long_final_cluster %>% group_by(USUBJID) %>%

summarise_at(vars(Act_Int_Per1), list(Act_Int_Per1=mean))

Act_Int_Per2 <- long_final_cluster %>% group_by(USUBJID) %>%

summarise_at(vars(Act_Int_Per2), list(Act_Int_Per2=mean))

Act_Int_Per3 <- long_final_cluster %>% group_by(USUBJID) %>%

summarise_at(vars(Act_Int_Per3), list(Act_Int_Per3=mean))

Act_Int_Per4 <- long_final_cluster %>% group_by(USUBJID) %>%

summarise_at(vars(Act_Int_Per4), list(Act_Int_Per4=mean))

Act_Int_Per1$USUBJID <- as.character(Act_Int_Per1$USUBJID)

Act_Int_Per2$USUBJID <- as.character(Act_Int_Per2$USUBJID)

Act_Int_Per3$USUBJID <- as.character(Act_Int_Per3$USUBJID)

Act_Int_Per4$USUBJID <- as.character(Act_Int_Per4$USUBJID)

Act_Dur_Per1 <- long_final_cluster %>% group_by(USUBJID) %>%

summarise_at(vars(Act_Dur_Per1), list(Act_Dur_Per1=mean))

Act_Dur_Per2 <- long_final_cluster %>% group_by(USUBJID) %>%

summarise_at(vars(Act_Dur_Per2), list(Act_Dur_Per2=mean))

Act_Dur_Per3 <- long_final_cluster %>% group_by(USUBJID) %>%

summarise_at(vars(Act_Dur_Per3), list(Act_Dur_Per3=mean))

Act_Dur_Per4 <- long_final_cluster %>% group_by(USUBJID) %>%

summarise_at(vars(Act_Dur_Per4), list(Act_Dur_Per4=mean))
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Act_Dur_Per1$USUBJID <- as.character(Act_Dur_Per1$USUBJID)

Act_Dur_Per2$USUBJID <- as.character(Act_Dur_Per2$USUBJID)

Act_Dur_Per3$USUBJID <- as.character(Act_Dur_Per3$USUBJID)

Act_Dur_Per4$USUBJID <- as.character(Act_Dur_Per4$USUBJID)

full_4_periods_act_part1 <- merge(Act_Int_Per1,

Act_Int_Per2, by="USUBJID")

full_4_periods_act_part2 <- merge(Act_Int_Per3,

Act_Int_Per4, by="USUBJID")

full_4_periods_act_part3 <- merge(full_4_periods_act_part1,

full_4_periods_act_part2, by="USUBJID")

full_4_periods_act_part4 <- merge(Act_Dur_Per1,

Act_Dur_Per2, by="USUBJID")

full_4_periods_act_part5 <- merge(Act_Dur_Per3,

Act_Dur_Per4, by="USUBJID")

full_4_periods_act_part6 <- merge(full_4_periods_act_part4,

full_4_periods_act_part5, by="USUBJID")

full_4_periods_act_part7 <- merge(full_4_periods_act_part3,

full_4_periods_act_part6, by="USUBJID")

full_4_periods_act_final <- merge(full_4_periods_act_part7,

USUB_cluster, by="USUBJID")

names(full_4_periods_act_final)[names(full_4_periods_act_final)

== "consensuscluster"] <- "Cluster"

full_4_periods_act_final$Cluster =
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as.factor(full_4_periods_act_final$Cluster)

full4_table_act_perpat <- table1(~ Act_Int_Per1 + Act_Int_Per2 +

Act_Int_Per3 + Act_Int_Per4 + Act_Dur_Per1 + Act_Dur_Per2

+ Act_Dur_Per3 + Act_Dur_Per4 | Cluster, data=full_4_periods_act_

final)

full_4_periods_act_final_clin <- merge(full_4_periods_act_final,

advsinmx, by="USUBJID")

names(full_4_periods_act_final_clin)

[names(full_4_periods_act_final_clin) == "consensuscluster"] <- "

Cluster"

full_4_periods_act_final_clin$Cluster

<- as.factor(full_4_periods_act_final_clin$Cluster)

full_4_periods_act_final_clin$CNTYGR1N <- as.character(full_4_

periods_act_final_clin$CNTYGR1N)

full_4_periods_act_final_clin$CNTYGR1N

[full_4_periods_act_final_clin$CNTYGR1N == "5"]

<- "Eastern Europe"

full_4_periods_act_final_clin$CNTYGR1N

[full_4_periods_act_final_clin$CNTYGR1N == "6"]

<- "Western Europe and Israel"

full_4_periods_act_final_clin$CNTYGR1N

[full_4_periods_act_final_clin$CNTYGR1N == "8"]

<- "North America"
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full_4_periods_act_final_clin$BASEGFR <- as.character(full_4_

periods_act_final_clin$BASEGFR)

full_4_periods_act_final_clin$BASEGFR

[full_4_periods_act_final_clin$BASEGFR == ""]

<- "Missing"

full_4_periods_act_final_clin$LVEFHIM <- as.character(full_4_

periods_act_final_clin$LVEFHIM)

full_4_periods_act_final_clin$LVEFHIM

[full_4_periods_act_final_clin$LVEFHIM == ""]

<- "Missing"

full_4_periods_act_final_clin$AGEGR01 =

as.factor(full_4_periods_act_final_clin$AGEGR01)

full_4_periods_act_final_clin$AGEGR02 =

as.factor(full_4_periods_act_final_clin$AGEGR02)

full_4_periods_act_final_clin$SEX =

as.factor(full_4_periods_act_final_clin$SEX)

full_4_periods_act_final_clin$RACE =

as.factor(full_4_periods_act_final_clin$RACE)

full_4_periods_act_final_clin$CNTYGR1N = as.factor(full_4_periods

_act_final_clin$CNTYGR1N)

full_4_periods_act_final_clin$NTBNP =

as.factor(full_4_periods_act_final_clin$NTBNP)

full_4_periods_act_final_clin$NYHAFUC =

as.factor(full_4_periods_act_final_clin$NYHAFUC)

full_4_periods_act_final_clin$BETABLK =
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as.factor(full_4_periods_act_final_clin$BETABLK)

full_4_periods_act_final_clin$PRIHOSP =

as.factor(full_4_periods_act_final_clin$PRIHOSP)

full_4_periods_act_final_clin$DIABETE =

as.factor(full_4_periods_act_final_clin$DIABETE)

full_4_periods_act_final_clin$ATRFIBR =

as.factor(full_4_periods_act_final_clin$ATRFIBR)

full_4_periods_act_final_clin$HYPERTE =

as.factor(full_4_periods_act_final_clin$HYPERTE)

full_4_periods_act_final_clin$MAXACE =

as.factor(full_4_periods_act_final_clin$MAXACE)

full_4_periods_act_final_clin$MAXARB =

as.factor(full_4_periods_act_final_clin$MAXARB)

full_4_periods_act_final_clin$BASEGFR =

as.factor(full_4_periods_act_final_clin$BASEGFR)

full_4_periods_act_final_clin$BMIGR1 =

as.factor(full_4_periods_act_final_clin$BMIGR1)

full_4_periods_act_final_clin$LVEFB25 =

as.factor(full_4_periods_act_final_clin$LVEFB25)

full_4_periods_act_final_clin$LVEFHIM =

as.factor(full_4_periods_act_final_clin$LVEFHIM)

names(full_4_periods_act_final_clin)

[names(full_4_periods_act_final_clin) == "AGEGR01"]

<- "Age_Group"
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names(full_4_periods_act_final_clin)

[names(full_4_periods_act_final_clin) == "CNTYGR1N"]

<- "Country_Group"

names(full_4_periods_act_final_clin)

[names(full_4_periods_act_final_clin) == "NYHAFUC"]

<- "NYHA"

names(full_4_periods_act_final_clin)

[names(full_4_periods_act_final_clin) == "PRIHOSP"]

<- "Prior_HF_hosp"

names(full_4_periods_act_final_clin)

[names(full_4_periods_act_final_clin) == "DIABETE"]

<- "Diabetes"

names(full_4_periods_act_final_clin)

[names(full_4_periods_act_final_clin) == "ATRFIBR"]

<- "Afib"

names(full_4_periods_act_final_clin)

[names(full_4_periods_act_final_clin) == "HYPERTE"]

<- "Hypertension"

names(full_4_periods_act_final_clin)

[names(full_4_periods_act_final_clin) == "BASEGFR"]

<- "EGFR"

names(full_4_periods_act_final_clin)

[names(full_4_periods_act_final_clin) == "LVEFHIM"]

<- "LVEF"

names(full_4_periods_act_final_clin)

[names(full_4_periods_act_final_clin) == "BMIGR1"]

<- "BMI"
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df_3_comps <- c("USUBJID", "V2")

df_3_sub <- df_3[df_3_comps]

names(df_3_sub)[names(df_3_sub) == "V2"] <- "Cluster"

baseline_period_clus <-

merge(avg_pat, df_3_sub, by="USUBJID")

baseline_period_act <-

merge(baseline_period_clus, advsinmx, by="USUBJID")

baseline_period_act$Cluster <-

as.factor(baseline_period_act$Cluster)

baseline_period_act$CNTYGR1N <-

as.character(baseline_period_act$CNTYGR1N)

baseline_period_act$CNTYGR1N

[baseline_period_act$CNTYGR1N == "5"] <-

"Eastern Europe"

baseline_period_act$CNTYGR1N

[baseline_period_act$CNTYGR1N == "6"] <-

"Western Europe and Israel"

baseline_period_act$CNTYGR1N

[baseline_period_act$CNTYGR1N == "8"] <-

"North America"
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baseline_period_act$BASEGFR <- as.character(baseline_period_act$

BASEGFR)

baseline_period_act$BASEGFR[baseline_period_act$BASEGFR == ""] <-

"Missing"

baseline_period_act$LVEFHIM <- as.character(baseline_period_act$

LVEFHIM)

baseline_period_act$LVEFHIM[baseline_period_act$LVEFHIM == ""] <-

"Missing"

baseline_period_act$AGEGR01 = as.factor(baseline_period_act$

AGEGR01)

baseline_period_act$AGEGR02 = as.factor(baseline_period_act$

AGEGR02)

baseline_period_act$SEX = as.factor(baseline_period_act$SEX)

baseline_period_act$RACE = as.factor(baseline_period_act$RACE)

baseline_period_act$CNTYGR1N = as.factor(baseline_period_act$

CNTYGR1N)

baseline_period_act$NTBNP = as.factor(baseline_period_act$NTBNP)

baseline_period_act$NYHAFUC = as.factor(baseline_period_act$

NYHAFUC)

baseline_period_act$BETABLK = as.factor(baseline_period_act$

BETABLK)

baseline_period_act$PRIHOSP = as.factor(baseline_period_act$

PRIHOSP)

baseline_period_act$DIABETE = as.factor(baseline_period_act$

DIABETE)
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baseline_period_act$ATRFIBR = as.factor(baseline_period_act$

ATRFIBR)

baseline_period_act$HYPERTE = as.factor(baseline_period_act$

HYPERTE)

baseline_period_act$MAXACE = as.factor(baseline_period_act$MAXACE

)

baseline_period_act$MAXARB = as.factor(baseline_period_act$MAXARB

)

baseline_period_act$BASEGFR = as.factor(baseline_period_act$

BASEGFR)

baseline_period_act$BMIGR1 = as.factor(baseline_period_act$BMIGR1

)

baseline_period_act$LVEFB25 = as.factor(baseline_period_act$

LVEFB25)

baseline_period_act$LVEFHIM = as.factor(baseline_period_act$

LVEFHIM)

names(baseline_period_act)[names(baseline_period_act) == "AGEGR01

"] <- "Age_Group"

names(baseline_period_act)[names(baseline_period_act) == "

CNTYGR1N"] <- "Country_Group"

names(baseline_period_act)[names(baseline_period_act) == "NYHAFUC

"] <- "NYHA"

names(baseline_period_act)[names(baseline_period_act) == "PRIHOSP

"] <- "Prior_HF_hosp"
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names(baseline_period_act)[names(baseline_period_act) == "DIABETE

"] <- "Diabetes"

names(baseline_period_act)[names(baseline_period_act) == "ATRFIBR

"] <- "Afib"

names(baseline_period_act)[names(baseline_period_act) == "HYPERTE

"] <- "Hypertension"

names(baseline_period_act)[names(baseline_period_act) == "BASEGFR

"] <- "EGFR"

names(baseline_period_act)[names(baseline_period_act) == "LVEFHIM

"] <- "LVEF"

names(baseline_period_act)[names(baseline_period_act) == "BMIGR1"

] <- "BMI"

clin_subset <- subset(adtte, PARAM=="HF HOSPITALIZATION" | PARAM

=="HF HOSPITALIZATION AND URGENT VISIT FOR HF" | PARAM=="

SECONDARY EFFICACY OUTCOME", select=c(USUBJID, PARAM, PARAMCD,

AVAL, CNSR))

table(clin_subset$PARAM, clin_subset$CNSR)

clin_subset_hosp <- subset(adtte, PARAM=="HF HOSPITALIZATION" &

TIMEREF=="UP TO 26 WEEKS AFTER FIRST DOSE")

clin_subset_hosp_urg <- subset(adtte, PARAM=="HF HOSPITALIZATION

AND URGENT VISIT FOR HF" & TIMEREF=="UP TO 26 WEEKS AFTER

FIRST DOSE")
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clin_subset_secondary_eff <- subset(adtte, PARAM=="SECONDARY

EFFICACY OUTCOME" & TIMEREF=="UP TO 26 WEEKS AFTER FIRST DOSE"

)

baseline_period_act

myvars <- c("USUBJID", "avg_mean_INT", "avg_mean_ACT", "Cluster",

"Age_Group", "Country_Group", "NYHA", "Prior_HF_hosp", "

Diabetes", "Afib", "Hypertension", "EGFR", "BMI")

int_dur_clin_baseline <- baseline_period_act[myvars]

clin_subset_hosp_act <- merge(int_dur_clin_baseline, clin_subset_

hosp, by="USUBJID")

clin_subset_hosp_act$SEX = as.factor(clin_subset_hosp_act$SEX)

clin_subset_hosp_act$NTBNP = as.factor(clin_subset_hosp_act$NTBNP

)

clin_subset_hosp_urg_act <- merge(int_dur_clin_baseline, clin_

subset_hosp_urg, by="USUBJID")

clin_subset_secondary_eff <- merge(int_dur_clin_baseline, clin_

subset_secondary_eff, by="USUBJID")

Cox Proportional Hazards Model

rm(list = ls())

library(haven)

library(corrplot)

library(caret)
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library(epiDisplay)

library(ggplot2)

library(RColorBrewer)

library(plot3D

library(dplyr)

library(reshape2)

library(parallel)

library(xtable)

library(randomForestSRC)

library(ggRandomForests)

library(expss)

library(prodlim)

library(pec)

library(plotly)

library(M3C)

library(table1)

library(expss)

library(survival)

library(survminer)

library(prodlim)

library(pec)

library(plotly)

library(psych)

library(tab)

advsinmx <- read_sas(data_file = ’/adsvinmn_subj.sas7bdat’)

adtte<- read_sas(data_file = ’/adtte.sas7bdat’)
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wide_final<- read_sas(data_file = ’/wide_final.sas7bdat’)

wide_final_baseline <- wide_final[c(23:36)]

df_scale <- scale(wide_final_baseline)

long_final <- read_sas(data_file = ’/final_intraday_part2_ct_dt.

sas7bdat’)

set.seed(123)

k3 <- kmeans(df_scale, centers = 3, nstart = 25)

str(k3)

USUBJID <- wide_final$USUBJID

id_cluster3 <- cbind(USUBJID, k3$cluster)

final_clusters <- merge(id_cluster3, advsinmx, by="USUBJID")

df_long_3 <- merge(id_cluster3, long_final, by="USUBJID")

final_clusters_step1 <- final_clusters[-c(4:118)]

df_3 <- final_clusters_step1

df_long_3$V2 = as.factor(df_long_3$V2)

describeBy(df_long_3$mean_INT, group=df_long_3$V2, mat=TRUE,

digits=3)

df_long_3_table <- df_long_3

df_long_3_table_ren <- rename(df_long_3_table, Activity_Intensity

= mean_INT ,

Activity_Duration = mean_ACT)
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df_long_3_table_ren$V3 <- factor(df_long_3_table_ren$V2, levels=c

(1,2,3), labels=c("Cluster 1", "Cluster 2", "Cluster 3"))

table1(~ Activity_Intensity + Activity_Duration | V2, data=df_

long_3_table_ren)

df_long_3_table_ren_mrg <- merge(df_long_3_table_ren, advsinmx,

by="USUBJID")

avg_pat <- read_sas(data_file = ’ /avg_pat_ACT_INT.sas7bdat’)

id_cluster3_avg <- merge(id_cluster3, avg_pat)

id_cluster3_avg_merge <- merge(id_cluster3_avg, advsinmx, by="

USUBJID")

table(df_3$V2)

fviz_cluster(k3, data = df)

df_3$AGEGR01 = as.factor(df_3$AGEGR01)

df_3$AGEGR02 = as.factor(df_3$AGEGR02)

df_3$V2 = as.factor(df_3$V2)

tapply(df_3$AGEGR01, df_3$V2, function(x) table(x)/length(x))

tapply(df_3$AGEGR02, df_3$V2, function(x) table(x)/length(x))

df_long_3$V2 = as.factor(df_long_3$V2)

describeBy(df_long_3$mean_INT, group=df_long_3$V2, mat=TRUE,

digits=3)
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df_long_3_table <- df_long_3

df_long_3_table_ren <- rename(df_long_3_table, Activity_Intensity

= mean_INT ,

Activity_Duration = mean_ACT)

df_long_3_table_ren$V3 <- factor(df_long_3_table_ren$V2, levels=c

(1,2,3), labels=c("Cluster 1", "Cluster 2", "Cluster 3"))

table1(~ Activity_Intensity + Activity_Duration | V3, data=df_

long_3_table_ren)

describeBy(df_long_3$mean_ACT, group=df_long_3$V2, mat=TRUE,

digits=3)

df_3$SEX = as.factor(df_3$SEX)

table(df_3$V2, df_3$SEX)

tapply(df_3$SEX, df_3$V2, function(x) table(x)/length(x))

df_long_3_table_ren_mrg$SEX = as.factor(df_long_3_table_ren_mrg$

SEX)

table1(~ Activity_Intensity + Activity_Duration + factor(SEX) |

V3, data=df_long_3_table_ren_mrg)

df_3$RACE = as.factor(df_3$RACE)

table(df_3$V2, df_3$RACE)
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###Let’s examine CNTYGR1N

df_3$CNTYGR1N = as.factor(df_3$CNTYGR1N)

table(df_3$V2, df_3$CNTYGR1N)

tapply(df_3$CNTYGR1N, df_3$V2, function(x) table(x)/length(x))

df_3$NTBNP = as.factor(df_3$NTBNP)

tapply(df_3$NTBNP, df_3$V2, function(x) table(x)/length(x))

df_3$NYHAFUC = as.factor(df_3$NYHAFUC)

tapply(df_3$NYHAFUC, df_3$V2, function(x) table(x)/length(x))

df_3$BETABLK = as.factor(df_3$BETABLK)

tapply(df_3$BETABLK, df_3$V2, function(x) table(x)/length(x))

df_3$PRIHOSP = as.factor(df_3$PRIHOSP)

tapply(df_3$PRIHOSP, df_3$V2, function(x) table(x)/length(x))

df_3$DIABETE = as.factor(df_3$DIABETE)

tapply(df_3$DIABETE, df_3$V2, function(x) table(x)/length(x))

df_3$ATRFIBR = as.factor(df_3$ATRFIBR)

tapply(df_3$ATRFIBR, df_3$V2, function(x) table(x)/length(x))

df_3$HYPERTE = as.factor(df_3$HYPERTE)

tapply(df_3$HYPERTE, df_3$V2, function(x) table(x)/length(x))
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df_3$MAXACE = as.factor(df_3$MAXACE)

tapply(df_3$MAXACE, df_3$V2, function(x) table(x)/length(x))

df_3$MAXARB = as.factor(df_3$MAXARB)

tapply(df_3$MAXARB, df_3$V2, function(x) table(x)/length(x))

df_3$BASEGFR = as.factor(df_3$BASEGFR)

tapply(df_3$BASEGFR, df_3$V2, function(x) table(x)/length(x))

df_3$BMIGR1 = as.factor(df_3$BMIGR1)

tapply(df_3$BMIGR1, df_3$V2, function(x) table(x)/length(x))

df_3$BMIGR2 = as.factor(df_3$BMIGR2)

tapply(df_3$BMIGR2, df_3$V2, function(x) table(x)/length(x))

df_3$LVEFB25 = as.factor(df_3$LVEFB25)

tapply(df_3$LVEFB25, df_3$V2, function(x) table(x)/length(x))

df_3$LVEFHIM = as.factor(df_3$LVEFHIM)

tapply(df_3$LVEFHIM, df_3$V2, function(x) table(x)/length(x))

df_long_3_table_ren$V3 <- factor(df_long_3_table_ren$V2, levels=c

(1,2,3), labels=c("Cluster 1", "Cluster 2", "Cluster 3"))

df_long_3_table_ren_mrg$CNTYGR1N <- as.character(df_long_3_table_

ren_mrg$CNTYGR1N)
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df_long_3_table_ren_mrg$CNTYGR1N[df_long_3_table_ren_mrg$CNTYGR1N

== "5"] <- "Eastern Europe"

df_long_3_table_ren_mrg$CNTYGR1N[df_long_3_table_ren_mrg$CNTYGR1N

== "6"] <- "Western Europe and Israel"

df_long_3_table_ren_mrg$CNTYGR1N[df_long_3_table_ren_mrg$CNTYGR1N

== "8"] <- "North America"

df_long_3_table_ren_mrg$BASEGFR <- as.character(df_long_3_table_

ren_mrg$BASEGFR)

df_long_3_table_ren_mrg$LVEFHIM <- as.character(df_long_3_table_

ren_mrg$LVEFHIM)

df_long_3_table_ren_mrg$AGEGR01 = as.factor(df_long_3_table_ren_

mrg$AGEGR01)

df_long_3_table_ren_mrg$AGEGR02 = as.factor(df_long_3_table_ren_

mrg$AGEGR02)

df_long_3_table_ren_mrg$SEX = as.factor(df_long_3_table_ren_mrg$

SEX)

df_long_3_table_ren_mrg$RACE = as.factor(df_long_3_table_ren_mrg$

RACE)

df_long_3_table_ren_mrg$CNTYGR1N = as.factor(df_long_3_table_ren_

mrg$CNTYGR1N)

df_long_3_table_ren_mrg$NTBNP = as.factor(df_long_3_table_ren_mrg

$NTBNP)

df_long_3_table_ren_mrg$NYHAFUC = as.factor(df_long_3_table_ren_

mrg$NYHAFUC)

df_long_3_table_ren_mrg$BETABLK = as.factor(df_long_3_table_ren_

mrg$BETABLK)
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df_long_3_table_ren_mrg$PRIHOSP = as.factor(df_long_3_table_ren_

mrg$PRIHOSP)

df_long_3_table_ren_mrg$DIABETE = as.factor(df_long_3_table_ren_

mrg$DIABETE)

df_long_3_table_ren_mrg$ATRFIBR = as.factor(df_long_3_table_ren_

mrg$ATRFIBR)

df_long_3_table_ren_mrg$HYPERTE = as.factor(df_long_3_table_ren_

mrg$HYPERTE)

df_long_3_table_ren_mrg$MAXACE = as.factor(df_long_3_table_ren_

mrg$MAXACE)

df_long_3_table_ren_mrg$MAXARB = as.factor(df_long_3_table_ren_

mrg$MAXARB)

df_long_3_table_ren_mrg$BASEGFR = as.factor(df_long_3_table_ren_

mrg$BASEGFR)

df_long_3_table_ren_mrg$BMIGR1 = as.factor(df_long_3_table_ren_

mrg$BMIGR1)

df_long_3_table_ren_mrg$LVEFB25 = as.factor(df_long_3_table_ren_

mrg$LVEFB25)

df_long_3_table_ren_mrg$LVEFHIM = as.factor(df_long_3_table_ren_

mrg$LVEFHIM)

table1(~ Activity_Intensity + Activity_Duration + factor(AGEGR01)

+ factor(AGEGR02) + factor(SEX) + factor(CNTYGR1N) + factor(

NTBNP) + factor(NYHAFUC) + factor(PRIHOSP) + factor(DIABETE) +

factor(ATRFIBR)
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+ factor(HYPERTE) + factor(BASEGFR) + factor(BMIGR1) +

factor(LVEFB25) + factor(LVEFHIM) | V2, data=df_long_3_

table_ren_mrg)

id_cluster3_avg_merge$AGEGR01 = as.factor(id_cluster3_avg_merge$

AGEGR01)

id_cluster3_avg_merge$AGEGR02 = as.factor(id_cluster3_avg_merge$

AGEGR02)

id_cluster3_avg_merge$SEX = as.factor(id_cluster3_avg_merge$SEX)

id_cluster3_avg_merge$RACE = as.factor(id_cluster3_avg_merge$RACE

)

id_cluster3_avg_merge$CNTYGR1N = as.factor(id_cluster3_avg_merge$

CNTYGR1N)

id_cluster3_avg_merge$NTBNP = as.factor(id_cluster3_avg_merge$

NTBNP)

id_cluster3_avg_merge$NYHAFUC = as.factor(id_cluster3_avg_merge$

NYHAFUC)

id_cluster3_avg_merge$BETABLK = as.factor(id_cluster3_avg_merge$

BETABLK)

id_cluster3_avg_merge$PRIHOSP = as.factor(id_cluster3_avg_merge$

PRIHOSP)

id_cluster3_avg_merge$DIABETE = as.factor(id_cluster3_avg_merge$

DIABETE)

id_cluster3_avg_merge$ATRFIBR = as.factor(id_cluster3_avg_merge$

ATRFIBR)

id_cluster3_avg_merge$HYPERTE = as.factor(id_cluster3_avg_merge$

HYPERTE)
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id_cluster3_avg_merge$MAXACE = as.factor(id_cluster3_avg_merge$

MAXACE)

id_cluster3_avg_merge$MAXARB = as.factor(id_cluster3_avg_merge$

MAXARB)

id_cluster3_avg_merge$BASEGFR = as.factor(id_cluster3_avg_merge$

BASEGFR)

id_cluster3_avg_merge$BMIGR1 = as.factor(id_cluster3_avg_merge$

BMIGR1)

id_cluster3_avg_merge$LVEFB25 = as.factor(id_cluster3_avg_merge$

LVEFB25)

id_cluster3_avg_merge$LVEFHIM = as.factor(id_cluster3_avg_merge$

LVEFHIM)

names(id_cluster3_avg_merge)[names(id_cluster3_avg_merge) == "avg

_mean_INT"] <- "Activity_Intensity"

names(id_cluster3_avg_merge)[names(id_cluster3_avg_merge) == "avg

_mean_ACT"] <- "Activity_Duration"

table1(~ Activity_Intensity + Activity_Duration + factor(AGEGR01)

+ factor(AGEGR02) + factor(SEX) + factor(CNTYGR1N) + factor(

NTBNP) + factor(NYHAFUC) + factor(PRIHOSP) + factor(DIABETE) +

factor(ATRFIBR)

+ factor(HYPERTE) + factor(BASEGFR) + factor(BMIGR1) +

factor(LVEFB25) + factor(LVEFHIM) | V2, data=id_cluster3_

avg_merge)

id_cluster3_avg <- merge(id_cluster3, avg_pat)

156



id_cluster3_avg_merge <- merge(id_cluster3_avg, advsinmx, by="

USUBJID")

id_cluster3_avg_merge <- id_cluster3_avg_merge[!(id_cluster3_avg_

merge$NTBNP=="Missing"),]

id_cluster3_avg_merge <- id_cluster3_avg_merge[!(id_cluster3_avg_

merge$BASEGFR==""),]

id_cluster3_ren <- rename(id_cluster3_avg_merge, Activity_

Intensity = avg_mean_INT, Activity_Duration = avg_mean_ACT)

id_cluster3_ren$V3 <- factor(id_cluster3_ren$V2, levels=c(1,2,3),

labels=c("Cluster 1", "Cluster 2", "Cluster 3"))

id_cluster3_ren_mrg <- id_cluster3_ren

id_cluster3_ren_mrg$CNTYGR1N <- as.character(id_cluster3_ren_mrg$

CNTYGR1N)

id_cluster3_ren_mrg$CNTYGR1N[id_cluster3_ren_mrg $CNTYGR1N == "5"

] <- "Eastern Europe"

id_cluster3_ren_mrg$CNTYGR1N[id_cluster3_ren_mrg $CNTYGR1N == "6"

] <- "Western Europe and Israel"

id_cluster3_ren_mrg$CNTYGR1N[id_cluster3_ren_mrg $CNTYGR1N == "8"

] <- "North America"

id_cluster3_ren_mrg$BASEGFR <- as.character(id_cluster3_ren_mrg $

BASEGFR)

id_cluster3_ren_mrg$LVEFHIM <- as.character(id_cluster3_ren_mrg $

LVEFHIM)

id_cluster3_ren_mrg$AGEGR01 = as.factor(id_cluster3_ren_mrg$

AGEGR01)
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id_cluster3_ren_mrg$AGEGR02 = as.factor(id_cluster3_ren_mrg$

AGEGR02)

id_cluster3_ren_mrg$SEX = as.factor(id_cluster3_ren_mrg$SEX)

id_cluster3_ren_mrg$RACE = as.factor(id_cluster3_ren_mrg$RACE)

id_cluster3_ren_mrg$CNTYGR1N = as.factor(id_cluster3_ren_mrg$

CNTYGR1N)

id_cluster3_ren_mrg$NTBNP = as.factor(id_cluster3_ren_mrg$NTBNP)

id_cluster3_ren_mrg$NYHAFUC = as.factor(id_cluster3_ren_mrg$

NYHAFUC)

id_cluster3_ren_mrg$BETABLK = as.factor(id_cluster3_ren_mrg$

BETABLK)

id_cluster3_ren_mrg$PRIHOSP = as.factor(id_cluster3_ren_mrg$

PRIHOSP)

id_cluster3_ren_mrg$DIABETE = as.factor(id_cluster3_ren_mrg$

DIABETE)

id_cluster3_ren_mrg$ATRFIBR = as.factor(id_cluster3_ren_mrg$

ATRFIBR)

id_cluster3_ren_mrg$HYPERTE = as.factor(id_cluster3_ren_mrg$

HYPERTE)

id_cluster3_ren_mrg$MAXACE = as.factor(id_cluster3_ren_mrg$MAXACE

)

id_cluster3_ren_mrg$MAXARB = as.factor(id_cluster3_ren_mrg$MAXARB

)

id_cluster3_ren_mrg$BASEGFR = as.factor(id_cluster3_ren_mrg$

BASEGFR)

id_cluster3_ren_mrg$BMIGR1 = as.factor(id_cluster3_ren_mrg$BMIGR1

)
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id_cluster3_ren_mrg$LVEFB25 = as.factor(id_cluster3_ren_mrg$

LVEFB25)a

id_cluster3_ren_mrg$LVEFHIM = as.factor(id_cluster3_ren_mrg$

LVEFHIM)

names(id_cluster3_ren_mrg)[names(id_cluster3_ren_mrg) == "AGEGR01

"] <- "Age_Group"

names(id_cluster3_ren_mrg)[names(id_cluster3_ren_mrg) == "

CNTYGR1N"] <- "Country_Group"

names(id_cluster3_ren_mrg)[names(id_cluster3_ren_mrg) == "NYHAFUC

"] <- "NYHA"

names(id_cluster3_ren_mrg)[names(id_cluster3_ren_mrg) == "PRIHOSP

"] <- "Prior_HF_hosp"

names(id_cluster3_ren_mrg)[names(id_cluster3_ren_mrg) == "DIABETE

"] <- "Diabetes"

names(id_cluster3_ren_mrg)[names(id_cluster3_ren_mrg) == "ATRFIBR

"] <- "Afib"

names(id_cluster3_ren_mrg)[names(id_cluster3_ren_mrg) == "HYPERTE

"] <- "Hypertension"

names(id_cluster3_ren_mrg)[names(id_cluster3_ren_mrg) == "BASEGFR

"] <- "EGFR"

names(id_cluster3_ren_mrg)[names(id_cluster3_ren_mrg) == "LVEFHIM

"] <- "LVEF"

names(id_cluster3_ren_mrg)[names(id_cluster3_ren_mrg) == "BMIGR1"

] <- "BMI"

names(id_cluster3_ren_mrg)[names(id_cluster3_ren_mrg) == "V2"] <-

"Cluster"
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final_table <- table1(~ Activity_Intensity + Activity_Duration +

factor(Age_Group) + factor(SEX) + factor(Country_Group) +

factor(NTBNP) + factor(NYHA) + factor(Prior_HF_hosp) + factor(

Diabetes) + factor(Afib) + factor(Hypertension) + factor(EGFR)

+ factor(BMI) | Cluster, data=id_cluster3_ren_mrg)

main_RSF_vars <- id_cluster3_ren_mrg[var_interest]

main_RSF_vars <- main_RSF_vars[, -16]

clin_subset <- subset(adtte, PARAM=="HF HOSPITALIZATION" | PARAM

=="HF HOSPITALIZATION AND URGENT VISIT FOR HF" | PARAM=="

SECONDARY EFFICACY OUTCOME", select=c(USUBJID, PARAM, PARAMCD,

AVAL, CNSR))

table(clin_subset$PARAM, clin_subset$CNSR)

clin_subset_hosp <- subset(adtte, PARAM=="HF HOSPITALIZATION" &

TIMEREF=="UP TO 26 WEEKS AFTER FIRST DOSE")

clin_subset_hosp_urg <- subset(adtte, PARAM=="HF HOSPITALIZATION

AND URGENT VISIT FOR HF" & TIMEREF=="UP TO 26 WEEKS AFTER

FIRST DOSE")

clin_subset_secondary_eff <- subset(adtte, PARAM=="SECONDARY

EFFICACY OUTCOME" & TIMEREF=="UP TO 26 WEEKS AFTER FIRST DOSE"

)

hosp_cnsr <- c("USUBJID", "AVAL", "CNSR")

clin_subset_hosp_cnsr <- clin_subset_hosp[hosp_cnsr]

RSF_hosp_final <- merge(main_RSF_vars, clin_subset_hosp_cnsr, by=

"USUBJID")

RSF_hosp_final <- RSF_hosp_final[,-1]

RSF_hosp_final <- RSF_hosp_final[,-3]
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RSF_hosp_final$CNSR2 <- ifelse(RSF_hosp_final$CNSR==0, 1, 0)

RSF_hosp_final <- RSF_hosp_final[, -c(15)]

names(RSF_hosp_final)

coxPH_hosp_final <- RSF_hosp_final

res.cox.hosp_BWS <- selectCox(Surv(AVAL, CNSR2) ~ Activity_

Intensity + Activity_Duration + Age_Group + SEX + Country_

Group + NYHA + NTBNP + Prior_HF_hosp + Diabetes + Afib +

Hypertension + EGFR + BMI, data=coxPH_hosp_final)

res.cox.hosp <- coxph(Surv(AVAL, CNSR2) ~ Activity_Intensity +

Activity_Duration + Age_Group + SEX + Country_Group + NYHA +

NTBNP + Prior_HF_hosp + Diabetes + Afib + Hypertension + EGFR

+ BMI, data=coxPH_hosp_final)

res.cox.hosp_pub <- coxphSeries(Surv(AVAL, CNSR2==1) ~ Activity_

Intensity + Activity_Duration + Age_Group + SEX + Country_

Group + NYHA + NTBNP + Prior_HF_hosp + Diabetes + Afib +

Hypertension + EGFR + BMI, vars=c("Activity_Intensity", "

Activity_Duration", "Age_Group", "SEX", "Country_Group", "NYHA

", "NTBNP", "Prior_HF_hosp", "Diabetes", "Afib", "Hypertension

", "EGFR", "BMI"), data=coxPH_hosp_final)

publish(res.cox.hosp_pub)

dev.off(dev.list()["RStudioGD"])

grid.hosp <- grid.table(res.cox.hosp_pub)

res.cox.hosp_final <- coxph(Surv(AVAL, CNSR2) ~NTBNP+NYHA, data=

coxPH_hosp_final)

res.cox.hosp_pub_final <- coxphSeries(Surv(AVAL, CNSR2==1) ~ NYHA

+ NTBNP, vars=c("NYHA", "NTBNP"), data=coxPH_hosp_final)
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publish(res.cox.hosp_pub_final)

dev.off(dev.list()["RStudioGD"])

grid.hosp <- grid.table(res.cox.hosp_pub_final)

test.ph = cox.zph(res.cox.hosp_final)

test.ph

publish(test.ph)

grid.hosp <- grid.table(test.ph)

ggcoxzph(test.ph)

hosp_urg_cnsr <- c("USUBJID", "AVAL", "CNSR")

clin_subset_hosp_urg_cnsr <- clin_subset_hosp_urg[hosp_urg_cnsr]

RSF_hosp_urg_final <- merge(main_RSF_vars, clin_subset_hosp_urg_

cnsr, by="USUBJID")

RSF_hosp_urg_final <- RSF_hosp_urg_final[,-1]

RSF_hosp_urg_final <- RSF_hosp_urg_final[,-3]

RSF_hosp_urg_final$CNSR2 <- ifelse(RSF_hosp_urg_final$CNSR==0, 1,

0)

RSF_hosp_urg_final <- RSF_hosp_urg_final[, -c(16)]

RSF_hosp_urg_final <- RSF_hosp_urg_final[, -c(15)]

names(RSF_hosp_urg_final)

coxPH_hosp_urg_final <- RSF_hosp_urg_final

res.cox.hosp_urg_SEX <- coxph(Surv(AVAL, CNSR2) ~ SEX, data=coxPH

_hosp_urg_final) #nonsignificant

res.cox.hosp_urg_CG <- coxph(Surv(AVAL, CNSR2) ~ Country_Group,

data=coxPH_hosp_urg_final) #nonsignificant
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res.cox.hosp_urg_NYHA <- coxph(Surv(AVAL, CNSR2) ~ NYHA, data=

coxPH_hosp_urg_final) #significant

res.cox.hosp_urg_NT <- coxph(Surv(AVAL, CNSR2) ~ NTBNP, data=

coxPH_hosp_urg_final) #significant

res.cox.hosp_urg_PH <- coxph(Surv(AVAL, CNSR2) ~ Prior_HF_hosp,

data=coxPH_hosp_urg_final) #nonsignificant

res.cox.hosp_urg_DB <- coxph(Surv(AVAL, CNSR2) ~ Diabetes, data=

coxPH_hosp_urg_final) #barely non significant

res.cox.hosp_urg_AF <- coxph(Surv(AVAL, CNSR2) ~ Afib, data=coxPH

_hosp_urg_final) #significant

res.cox.hosp_urg_HT <- coxph(Surv(AVAL, CNSR2) ~ Hypertension,

data=coxPH_hosp_urg_final) #nonsignificant

res.cox.hosp_urg_EG <- coxph(Surv(AVAL, CNSR2) ~ EGFR, data=coxPH

_hosp_urg_final) #significant

res.cox.hosp_urg_BM <- coxph(Surv(AVAL, CNSR2) ~ BMI, data=coxPH_

hosp_urg_final) #nonsignificant

res.cox.hosp_urg_pub <- coxphSeries(Surv(AVAL, CNSR2==1) ~

Activity_Intensity + Activity_Duration + Age_Group + SEX +

Country_Group + NYHA + NTBNP + Prior_HF_hosp + Diabetes + Afib

+ Hypertension + EGFR + BMI, vars=c("Activity_Intensity", "

Activity_Duration", "Age_Group", "SEX", "Country_Group", "NYHA

", "NTBNP", "Prior_HF_hosp", "Diabetes", "Afib", "Hypertension

", "EGFR", "BMI"), data=coxPH_hosp_urg_final)

publish(res.cox.hosp_urg_pub)

dev.off(dev.list()["RStudioGD"])

grid.hosp_urg <- grid.table(res.cox.hosp_urg_pub)
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res.cox.hosp_final <- coxph(Surv(AVAL, CNSR2) ~NTBNP+NYHA, data=

coxPH_hosp_final)

res.cox.hosp_urg_BWS <- selectCox(Surv(AVAL, CNSR2) ~ Activity_

Intensity + Activity_Duration + Age_Group + SEX + Country_

Group + NYHA + NTBNP + Prior_HF_hosp + Diabetes + Afib +

Hypertension + EGFR + BMI, data=coxPH_hosp_urg_final)

res.cox.urg.hosp <- coxph(Surv(AVAL, CNSR2) ~ Activity_Intensity

+ Activity_Duration + Age_Group + SEX + Country_Group + NYHA +

NTBNP + Prior_HF_hosp + Diabetes + Afib + Hypertension + EGFR

+ BMI, data=coxPH_hosp_urg_final)

res.cox.urg.hosp_final <- coxph(Surv(AVAL, CNSR2) ~NTBNP+NYHA,

data=coxPH_hosp_urg_final)

res.cox.hosp_urg_pub_final <- coxphSeries(Surv(AVAL, CNSR2==1) ~

NYHA + NTBNP, vars=c("NYHA", "NTBNP"), data=coxPH_hosp_urg_

final)

publish(res.cox.hosp_urg_pub_final)

dev.off(dev.list()["RStudioGD"])

grid.hosp <- grid.table(res.cox.hosp_urg_pub_final)

test.ph = cox.zph(res.cox.urg.hosp_final)

test.ph

ggcoxzph(test.ph)

clin_subset_secondary_eff <- subset(adtte, PARAM=="SECONDARY

EFFICACY OUTCOME" & TIMEREF=="UP TO 26 WEEKS AFTER FIRST DOSE"

)

secondary_cnsr <- c("USUBJID", "AVAL", "CNSR")

clin_subset_sec_cnsr <- clin_subset_secondary_eff[secondary_cnsr]
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RSF_sec_final <- merge(main_RSF_vars, clin_subset_sec_cnsr, by="

USUBJID")

RSF_sec_final <- RSF_sec_final[,-c(1, 4, 18)]

RSF_sec_final$CNSR2 <- ifelse(RSF_sec_final$CNSR==0, 1, 0)

table(RSF_sec_final$CNSR)

RSF_sec_final <- RSF_sec_final[, -c(15)]

names(RSF_sec_final)

coxPH_sec_final <- RSF_sec_final

res.cox.sec_AI <- coxph(Surv(AVAL, CNSR2) ~ Activity_Intensity,

data=coxPH_sec_final) #significant

res.cox.sec_AD <- coxph(Surv(AVAL, CNSR2) ~ Activity_Duration,

data=coxPH_sec_final) #significant

res.cox.sec_SEX <- coxph(Surv(AVAL, CNSR2) ~ SEX, data=coxPH_sec_

final) #nonsignificant

res.cox.sec_CG <- coxph(Surv(AVAL, CNSR2) ~ Country_Group, data=

coxPH_sec_final) #nonsignificant

res.cox.sec_NYHA <- coxph(Surv(AVAL, CNSR2) ~ NYHA, data=coxPH_

sec_final) #significant

res.cox.sec_NT <- coxph(Surv(AVAL, CNSR2) ~ NTBNP, data=coxPH_sec

_final) #significant

res.cox.sec_PH <- coxph(Surv(AVAL, CNSR2) ~ Prior_HF_hosp, data=

coxPH_sec_final) #barely nonsignificant

res.cox.sec_DB <- coxph(Surv(AVAL, CNSR2) ~ Diabetes, data=coxPH_

sec_final) #nonsignificant
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res.cox.sec_AF <- coxph(Surv(AVAL, CNSR2) ~ Afib, data=coxPH_sec_

final) #significant

res.cox.sec_HT <- coxph(Surv(AVAL, CNSR2) ~ Hypertension, data=

coxPH_sec_final) #nonsignificant

res.cox.sec_EG <- coxph(Surv(AVAL, CNSR2) ~ EGFR, data=coxPH_sec_

final) #significant

res.cox.sec_BM <- coxph(Surv(AVAL, CNSR2) ~ BMI, data=coxPH_sec_

final) #nonsignificant

res.cox.sec_BWS <- selectCox(Surv(AVAL, CNSR2) ~ Activity_

Intensity + Activity_Duration + Age_Group + SEX + Country_

Group + NYHA + NTBNP + Prior_HF_hosp + Diabetes + Afib +

Hypertension + EGFR + BMI, data=coxPH_sec_final)

res.cox.sec_pub <- coxphSeries(Surv(AVAL, CNSR2==1) ~ Activity_

Intensity + Activity_Duration + Age_Group + SEX + Country_

Group + NYHA + NTBNP + Prior_HF_hosp + Diabetes + Afib +

Hypertension + EGFR + BMI, vars=c("Activity_Intensity", "

Activity_Duration", "Age_Group", "SEX", "Country_Group", "NYHA

", "NTBNP", "Prior_HF_hosp", "Diabetes", "Afib", "Hypertension

", "EGFR", "BMI"), data=coxPH_sec_final)

publish(res.cox.sec_pub)

dev.off(dev.list()["RStudioGD"])

grid.hosp_urg <- grid.table(res.cox.sec_pub)

res.cox.sec <- coxph(Surv(AVAL, CNSR2) ~ Activity_Intensity +

Activity_Duration + Age_Group + SEX + Country_Group + NYHA +
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NTBNP + Prior_HF_hosp + Diabetes + Afib + Hypertension + EGFR

+ BMI, data=coxPH_sec_final)

res.cox.sec_final <- coxph(Surv(AVAL, CNSR2) ~NTBNP+NYHA, data=

coxPH_sec_final)

res.cox.sec_pub_final <- coxphSeries(Surv(AVAL, CNSR2==1) ~ NYHA

+ NTBNP, vars=c("NYHA", "NTBNP"), data=coxPH_sec_final)

publish(res.cox.sec_pub_final)

dev.off(dev.list()["RStudioGD"])

grid.hosp <- grid.table(res.cox.sec_pub_final)

test.ph = cox.zph(res.cox.sec_final)

ggcoxzph(test.ph)

Random Survival Forest

rm(list = ls())

library(haven)

library(corrplot)

library(caret)

library(epiDisplay)

library(ggplot2)

library(RColorBrewer)

library(plot3D)
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library(dplyr)

library(reshape2)

library(parallel)

library(xtable)

library(randomForestSRC)

library(ggRandomForests)

library(expss)

library(survival)

library(prodlim)

library(pec)

library(plotly)

library(M3C)

library(table1)

library(haven)

library(corrplot)

library(caret)

library(epiDisplay)

advsinmx <- read_sas(data_file = ’/adsvinmn_subj.sas7bdat’)

adtte<- read_sas(data_file = ’/adtte.sas7bdat’)

wide_final<- read_sas(data_file = ’/wide_final.sas7bdat’)

long_final <- read_sas(data_file = ’/final_intraday_part2_ct_dt.

sas7bdat’)

wide_final_baseline <- wide_final[c(23:36)]

df_scale <- scale(wide_final_baseline)

set.seed(123)

k3 <- kmeans(df_scale, centers = 3, nstart = 25)

str(k3)
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USUBJID <- wide_final$USUBJID

id_cluster3 <- cbind(USUBJID, k3$cluster)

final_clusters <- merge(id_cluster3, advsinmx, by="USUBJID")

df_long_3 <- merge(id_cluster3, long_final, by="USUBJID")

final_clusters_step1 <- final_clusters[-c(4:118)]

df_3 <- final_clusters_step1

df_long_3$V2 = as.factor(df_long_3$V2)

describeBy(df_long_3$mean_INT, group=df_long_3$V2, mat=TRUE,

digits=3)

df_long_3_table <- df_long_3

df_long_3_table_ren <- rename(df_long_3_table, Activity_Intensity

= mean_INT ,

Activity_Duration = mean_ACT)

df_long_3_table_ren$V3 <- factor(df_long_3_table_ren$V2, levels=c

(1,2,3), labels=c("Cluster 1", "Cluster 2", "Cluster 3"))

table1(~ Activity_Intensity + Activity_Duration | V2, data=df_

long_3_table_ren)

df_long_3_table_ren_mrg <- merge(df_long_3_table_ren, advsinmx,

by="USUBJID")

avg_pat <- read_sas(data_file = ’/avg_pat_ACT_INT.sas7bdat’)

id_cluster3_avg <- merge(id_cluster3, avg_pat)
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id_cluster3_avg_merge <- merge(id_cluster3_avg, advsinmx, by="

USUBJID")

table(df_3$V2)

df_3$AGEGR01 = as.factor(df_3$AGEGR01)

df_3$AGEGR02 = as.factor(df_3$AGEGR02)

df_3$V2 = as.factor(df_3$V2)

tapply(df_3$AGEGR01, df_3$V2, function(x) table(x)/length(x))

tapply(df_3$AGEGR02, df_3$V2, function(x) table(x)/length(x))

df_long_3$V2 = as.factor(df_long_3$V2)

describeBy(df_long_3$mean_INT, group=df_long_3$V2, mat=TRUE,

digits=3)

df_long_3_table <- df_long_3

df_long_3_table_ren <- rename(df_long_3_table, Activity_Intensity

= mean_INT ,

Activity_Duration = mean_ACT)

df_long_3_table_ren$V3 <- factor(df_long_3_table_ren$V2, levels=c

(1,2,3), labels=c("Cluster 1", "Cluster 2", "Cluster 3"))

table1(~ Activity_Intensity + Activity_Duration | V3, data=df_

long_3_table_ren)

describeBy(df_long_3$mean_ACT, group=df_long_3$V2, mat=TRUE,

digits=3)
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df_3$SEX = as.factor(df_3$SEX)

table(df_3$V2, df_3$SEX)

tapply(df_3$SEX, df_3$V2, function(x) table(x)/length(x))

df_long_3_table_ren_mrg$SEX = as.factor(df_long_3_table_ren_mrg$

SEX)

table1(~ Activity_Intensity + Activity_Duration + factor(SEX) |

V3, data=df_long_3_table_ren_mrg)

df_3$RACE = as.factor(df_3$RACE)

table(df_3$V2, df_3$RACE)

df_3$CNTYGR1N = as.factor(df_3$CNTYGR1N)

table(df_3$V2, df_3$CNTYGR1N)

tapply(df_3$CNTYGR1N, df_3$V2, function(x) table(x)/length(x))

df_3$NTBNP = as.factor(df_3$NTBNP)

tapply(df_3$NTBNP, df_3$V2, function(x) table(x)/length(x))

df_3$NYHAFUC = as.factor(df_3$NYHAFUC)

tapply(df_3$NYHAFUC, df_3$V2, function(x) table(x)/length(x))

df_3$BETABLK = as.factor(df_3$BETABLK)

tapply(df_3$BETABLK, df_3$V2, function(x) table(x)/length(x))

df_3$PRIHOSP = as.factor(df_3$PRIHOSP)

tapply(df_3$PRIHOSP, df_3$V2, function(x) table(x)/length(x))

df_3$DIABETE = as.factor(df_3$DIABETE)

tapply(df_3$DIABETE, df_3$V2, function(x) table(x)/length(x))
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df_3$ATRFIBR = as.factor(df_3$ATRFIBR)

tapply(df_3$ATRFIBR, df_3$V2, function(x) table(x)/length(x))

df_3$HYPERTE = as.factor(df_3$HYPERTE)

tapply(df_3$HYPERTE, df_3$V2, function(x) table(x)/length(x))

df_3$MAXACE = as.factor(df_3$MAXACE)

tapply(df_3$MAXACE, df_3$V2, function(x) table(x)/length(x))

df_3$MAXARB = as.factor(df_3$MAXARB)

tapply(df_3$MAXARB, df_3$V2, function(x) table(x)/length(x))

df_3$BASEGFR = as.factor(df_3$BASEGFR)

tapply(df_3$BASEGFR, df_3$V2, function(x) table(x)/length(x))

df_3$BMIGR1 = as.factor(df_3$BMIGR1)

tapply(df_3$BMIGR1, df_3$V2, function(x) table(x)/length(x))

df_3$BMIGR2 = as.factor(df_3$BMIGR2)

tapply(df_3$BMIGR2, df_3$V2, function(x) table(x)/length(x))

df_3$LVEFB25 = as.factor(df_3$LVEFB25)

tapply(df_3$LVEFB25, df_3$V2, function(x) table(x)/length(x))

df_3$LVEFHIM = as.factor(df_3$LVEFHIM)

tapply(df_3$LVEFHIM, df_3$V2, function(x) table(x)/length(x))

df_long_3_table_ren$V3 <- factor(df_long_3_table_ren$V2, levels=c

(1,2,3), labels=c("Cluster 1", "Cluster 2", "Cluster 3"))

df_long_3_table_ren_mrg$CNTYGR1N <- as.character(df_long_3_table_

ren_mrg$CNTYGR1N)
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df_long_3_table_ren_mrg$CNTYGR1N[df_long_3_table_ren_mrg$CNTYGR1N

== "5"] <- "Eastern Europe"

df_long_3_table_ren_mrg$CNTYGR1N[df_long_3_table_ren_mrg$CNTYGR1N

== "6"] <- "Western Europe and Israel"

df_long_3_table_ren_mrg$CNTYGR1N[df_long_3_table_ren_mrg$CNTYGR1N

== "8"] <- "North America"

df_long_3_table_ren_mrg$BASEGFR <- as.character(df_long_3_table_

ren_mrg$BASEGFR)

df_long_3_table_ren_mrg$LVEFHIM <- as.character(df_long_3_table_

ren_mrg$LVEFHIM)

df_long_3_table_ren_mrg$AGEGR01 = as.factor(df_long_3_table_ren_

mrg$AGEGR01)

df_long_3_table_ren_mrg$AGEGR02 = as.factor(df_long_3_table_ren_

mrg$AGEGR02)

df_long_3_table_ren_mrg$SEX = as.factor(df_long_3_table_ren_mrg$

SEX)

df_long_3_table_ren_mrg$RACE = as.factor(df_long_3_table_ren_mrg$

RACE)

df_long_3_table_ren_mrg$CNTYGR1N = as.factor(df_long_3_table_ren_

mrg$CNTYGR1N)

df_long_3_table_ren_mrg$NTBNP = as.factor(df_long_3_table_ren_mrg

$NTBNP)

df_long_3_table_ren_mrg$NYHAFUC = as.factor(df_long_3_table_ren_

mrg$NYHAFUC)

df_long_3_table_ren_mrg$BETABLK = as.factor(df_long_3_table_ren_

mrg$BETABLK)
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df_long_3_table_ren_mrg$PRIHOSP = as.factor(df_long_3_table_ren_

mrg$PRIHOSP)

df_long_3_table_ren_mrg$DIABETE = as.factor(df_long_3_table_ren_

mrg$DIABETE)

df_long_3_table_ren_mrg$ATRFIBR = as.factor(df_long_3_table_ren_

mrg$ATRFIBR)

df_long_3_table_ren_mrg$HYPERTE = as.factor(df_long_3_table_ren_

mrg$HYPERTE)

df_long_3_table_ren_mrg$MAXACE = as.factor(df_long_3_table_ren_

mrg$MAXACE)

df_long_3_table_ren_mrg$MAXARB = as.factor(df_long_3_table_ren_

mrg$MAXARB)

df_long_3_table_ren_mrg$BASEGFR = as.factor(df_long_3_table_ren_

mrg$BASEGFR)

df_long_3_table_ren_mrg$BMIGR1 = as.factor(df_long_3_table_ren_

mrg$BMIGR1)

df_long_3_table_ren_mrg$LVEFB25 = as.factor(df_long_3_table_ren_

mrg$LVEFB25)

df_long_3_table_ren_mrg$LVEFHIM = as.factor(df_long_3_table_ren_

mrg$LVEFHIM)

table1(~ Activity_Intensity + Activity_Duration + factor(AGEGR01)

+ factor(AGEGR02) + factor(SEX) + factor(CNTYGR1N) + factor(

NTBNP) + factor(NYHAFUC) + factor(PRIHOSP) + factor(DIABETE) +

factor(ATRFIBR) + factor(HYPERTE) + factor(BASEGFR) + factor(

BMIGR1) + factor(LVEFB25) + factor(LVEFHIM) | V2, data=df_long

_3_table_ren_mrg)
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id_cluster3_avg_merge$AGEGR01 = as.factor(id_cluster3_avg_merge$

AGEGR01)

id_cluster3_avg_merge$AGEGR02 = as.factor(id_cluster3_avg_merge$

AGEGR02)

id_cluster3_avg_merge$SEX = as.factor(id_cluster3_avg_merge$SEX)

id_cluster3_avg_merge$RACE = as.factor(id_cluster3_avg_merge$RACE

)

id_cluster3_avg_merge$CNTYGR1N = as.factor(id_cluster3_avg_merge$

CNTYGR1N)

id_cluster3_avg_merge$NTBNP = as.factor(id_cluster3_avg_merge$

NTBNP)

id_cluster3_avg_merge$NYHAFUC = as.factor(id_cluster3_avg_merge$

NYHAFUC)

id_cluster3_avg_merge$BETABLK = as.factor(id_cluster3_avg_merge$

BETABLK)

id_cluster3_avg_merge$PRIHOSP = as.factor(id_cluster3_avg_merge$

PRIHOSP)

id_cluster3_avg_merge$DIABETE = as.factor(id_cluster3_avg_merge$

DIABETE)

id_cluster3_avg_merge$ATRFIBR = as.factor(id_cluster3_avg_merge$

ATRFIBR)

id_cluster3_avg_merge$HYPERTE = as.factor(id_cluster3_avg_merge$

HYPERTE)

id_cluster3_avg_merge$MAXACE = as.factor(id_cluster3_avg_merge$

MAXACE)

id_cluster3_avg_merge$MAXARB = as.factor(id_cluster3_avg_merge$

MAXARB)
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id_cluster3_avg_merge$BASEGFR = as.factor(id_cluster3_avg_merge$

BASEGFR)

id_cluster3_avg_merge$BMIGR1 = as.factor(id_cluster3_avg_merge$

BMIGR1)

id_cluster3_avg_merge$LVEFB25 = as.factor(id_cluster3_avg_merge$

LVEFB25)

id_cluster3_avg_merge$LVEFHIM = as.factor(id_cluster3_avg_merge$

LVEFHIM)

names(id_cluster3_avg_merge)[names(id_cluster3_avg_merge) == "avg

_mean_INT"] <- "Activity_Intensity"

names(id_cluster3_avg_merge)[names(id_cluster3_avg_merge) == "avg

_mean_ACT"] <- "Activity_Duration"

table1(~ Activity_Intensity + Activity_Duration + factor(AGEGR01)

+ factor(AGEGR02) + factor(SEX) + factor(CNTYGR1N) + factor(

NTBNP) + factor(NYHAFUC) + factor(PRIHOSP) + factor(DIABETE) +

factor(ATRFIBR) + factor(HYPERTE) + factor(BASEGFR) + factor(

BMIGR1) + factor(LVEFB25) + factor(LVEFHIM) | V2, data=id_

cluster3_avg_merge)

id_cluster3_avg <- merge(id_cluster3, avg_pat)

id_cluster3_avg_merge <- merge(id_cluster3_avg, advsinmx, by="

USUBJID")

id_cluster3_ren <- rename(id_cluster3_avg_merge, Activity_

Intensity = avg_mean_INT, Activity_Duration = avg_mean_ACT)
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id_cluster3_ren$V3 <- factor(id_cluster3_ren$V2, levels=c(1,2,3),

labels=c("Cluster 1", "Cluster 2", "Cluster 3"))

id_cluster3_ren_mrg <- id_cluster3_ren

id_cluster3_ren_mrg$CNTYGR1N <- as.character(id_cluster3_ren_mrg$

CNTYGR1N)

id_cluster3_ren_mrg$CNTYGR1N[id_cluster3_ren_mrg $CNTYGR1N == "5"

] <- "Eastern Europe"

id_cluster3_ren_mrg$CNTYGR1N[id_cluster3_ren_mrg $CNTYGR1N == "6"

] <- "Western Europe and Israel"

id_cluster3_ren_mrg$CNTYGR1N[id_cluster3_ren_mrg $CNTYGR1N == "8"

] <- "North America"

id_cluster3_ren_mrg$BASEGFR <- as.character(id_cluster3_ren_mrg $

BASEGFR)

id_cluster3_ren_mrg$LVEFHIM <- as.character(id_cluster3_ren_mrg $

LVEFHIM)

id_cluster3_ren_mrg$AGEGR01 = as.factor(id_cluster3_ren_mrg$

AGEGR01)

id_cluster3_ren_mrg$AGEGR02 = as.factor(id_cluster3_ren_mrg$

AGEGR02)

id_cluster3_ren_mrg$SEX = as.factor(id_cluster3_ren_mrg$SEX)

id_cluster3_ren_mrg$RACE = as.factor(id_cluster3_ren_mrg$RACE)

id_cluster3_ren_mrg$CNTYGR1N = as.factor(id_cluster3_ren_mrg$

CNTYGR1N)

id_cluster3_ren_mrg$NTBNP = as.factor(id_cluster3_ren_mrg$NTBNP)

id_cluster3_ren_mrg$NYHAFUC = as.factor(id_cluster3_ren_mrg$

NYHAFUC)
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id_cluster3_ren_mrg$BETABLK = as.factor(id_cluster3_ren_mrg$

BETABLK)

id_cluster3_ren_mrg$PRIHOSP = as.factor(id_cluster3_ren_mrg$

PRIHOSP)

id_cluster3_ren_mrg$DIABETE = as.factor(id_cluster3_ren_mrg$

DIABETE)

id_cluster3_ren_mrg$ATRFIBR = as.factor(id_cluster3_ren_mrg$

ATRFIBR)

id_cluster3_ren_mrg$HYPERTE = as.factor(id_cluster3_ren_mrg$

HYPERTE)

id_cluster3_ren_mrg$MAXACE = as.factor(id_cluster3_ren_mrg$MAXACE

)

id_cluster3_ren_mrg$MAXARB = as.factor(id_cluster3_ren_mrg$MAXARB

)

id_cluster3_ren_mrg$BASEGFR = as.factor(id_cluster3_ren_mrg$

BASEGFR)

id_cluster3_ren_mrg$BMIGR1 = as.factor(id_cluster3_ren_mrg$BMIGR1

)

id_cluster3_ren_mrg$LVEFB25 = as.factor(id_cluster3_ren_mrg$

LVEFB25)

id_cluster3_ren_mrg$LVEFHIM = as.factor(id_cluster3_ren_mrg$

LVEFHIM)

names(id_cluster3_ren_mrg)[names(id_cluster3_ren_mrg) == "AGEGR01

"] <- "Age_Group"
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names(id_cluster3_ren_mrg)[names(id_cluster3_ren_mrg) == "

CNTYGR1N"] <- "Country_Group"

names(id_cluster3_ren_mrg)[names(id_cluster3_ren_mrg) == "NYHAFUC

"] <- "NYHA"

names(id_cluster3_ren_mrg)[names(id_cluster3_ren_mrg) == "PRIHOSP

"] <- "Prior_HF_hosp"

names(id_cluster3_ren_mrg)[names(id_cluster3_ren_mrg) == "DIABETE

"] <- "Diabetes"

names(id_cluster3_ren_mrg)[names(id_cluster3_ren_mrg) == "ATRFIBR

"] <- "Afib"

names(id_cluster3_ren_mrg)[names(id_cluster3_ren_mrg) == "HYPERTE

"] <- "Hypertension"

names(id_cluster3_ren_mrg)[names(id_cluster3_ren_mrg) == "BASEGFR

"] <- "EGFR"

names(id_cluster3_ren_mrg)[names(id_cluster3_ren_mrg) == "LVEFHIM

"] <- "LVEF"

names(id_cluster3_ren_mrg)[names(id_cluster3_ren_mrg) == "BMIGR1"

] <- "BMI"

names(id_cluster3_ren_mrg)[names(id_cluster3_ren_mrg) == "V2"] <-

"Cluster"

main_RSF_vars_cln <- id_cluster3_ren_mrg[!(id_cluster3_ren_mrg$

NTBNP=="Missing" | id_cluster3_ren_mrg$EGFR==""),]

final_table <- table1(~ Activity_Intensity + Activity_Duration +

factor(Age_Group) + factor(SEX) + factor(Country_Group) +

factor(NTBNP) + factor(NYHA) + factor(Prior_HF_hosp) + factor(
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Diabetes) + factor(Afib) + factor(Hypertension) + factor(EGFR)

+ factor(BMI) | Cluster, data=main_RSF_vars_cln)

var_interest <- c("USUBJID", "Activity_Intensity", "Activity_

Duration", "Age_Group", "SEX", "Country_Group", "NYHA", "NTBNP

", "Prior_HF_hosp", "Diabetes", "Afib", "Hypertension", "EGFR"

, "BMI")

main_RSF_vars <- id_cluster3_ren_mrg[var_interest]

main_RSF_vars_cln <- main_RSF_vars[!(main_RSF_vars$NTBNP=="

Missing" | main_RSF_vars$EGFR=="Missing"),]

main_RSF_vars <- main_RSF_vars_cln

clin_subset <- subset(adtte, PARAM=="HF HOSPITALIZATION" | PARAM

=="HF HOSPITALIZATION AND URGENT VISIT FOR HF" | PARAM=="

SECONDARY EFFICACY OUTCOME", select=c(USUBJID, PARAM, PARAMCD,

AVAL, CNSR))

table(clin_subset$PARAM, clin_subset$CNSR)

clin_subset_hosp <- subset(adtte, PARAM=="HF HOSPITALIZATION" &

TIMEREF=="UP TO 26 WEEKS AFTER FIRST DOSE")

clin_subset_hosp_urg <- subset(adtte, PARAM=="HF HOSPITALIZATION

AND URGENT VISIT FOR HF" & TIMEREF=="UP TO 26 WEEKS AFTER

FIRST DOSE")

clin_subset_secondary_eff <- subset(adtte, PARAM=="SECONDARY

EFFICACY OUTCOME" & TIMEREF=="UP TO 26 WEEKS AFTER FIRST DOSE"

)

hosp_cnsr <- c("USUBJID", "AVAL", "CNSR")

clin_subset_hosp_cnsr <- clin_subset_hosp[hosp_cnsr]
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RSF_hosp_final <- merge(main_RSF_vars, clin_subset_hosp_cnsr, by=

"USUBJID")

RSF_hosp_final <- RSF_hosp_final[,-1] #Remove subject id since

its not useful

RSF_hosp_final <- RSF_hosp_final[,-3] #Removing treatment

RSF_hosp_final$CNSR2 <- ifelse(RSF_hosp_final$CNSR==0, 1, 0)

RSF_hosp_final <- RSF_hosp_final[, -c(15)]

RSF_hosp_final_check0 <- subset(RSF_hosp_final, CNSR2==0)

RSF_hosp_final_check1 <- subset(RSF_hosp_final, CNSR2==1)

summary(RSF_hosp_final_check0$AVAL)

summary(RSF_hosp_final_check1$AVAL)

table(RSF_hosp_final$CNSR)

set.seed(12345)

Train <- createDataPartition(RSF_hosp_final$CNSR2, p=0.8, list=

FALSE)

Training <- RSF_hosp_final[ Train, ]

Testing <- RSF_hosp_final[ -Train, ]

Training[sapply(Training, is.character)] <- lapply(Training[

sapply(Training, is.character)],

as.factor)

Testing[sapply(Testing, is.character)] <- lapply(Testing[sapply(

Testing, is.character)],

as.factor)
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tab1(RSF_hosp_final$CNSR2, sort.group = "decreasing", cum.percent

= TRUE) #85.9 and 14.1 after cleaning up the missing

options(rf.cores=20,mc.cores=20)

set.seed(12345)

nodesize<-c(10,20,35,50,70,85,100,120,150,180,190,200,210,220)

nsplit<-c(2,3,4,5,6,7,8,9,10,15,20)

mtry<-c(1,2,3,4,5,6,7,8,9,10,11, 12, 13, 14, 15)

combis<-expand.grid(nodesize,nsplit,mtry)

cv_time<-vector(mode="numeric",length=nrow(combis))

oob_error<-vector(mode="numeric",length=nrow(combis))

for(j in 1:nrow(combis)){

cat("Working on combination n r:",j,"with nodesize:",

combis[j,1],

"nsplit:",combis[j,2],"and mtry:",

combis[j,3],"\n")

cv_time[j]<-{

system.time(

fit_ovr<-rfsrc(Surv(AVAL,CNSR2)~.,

splitrule="logrank",

nodesize=combis[j,1],

nsplit=combis[j,2],

data=Training,

mtry=combis[j,3],

ntree=500,seed=-12345,

# sampsize=3473,

ntime=500,forest=FALSE
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))[3]

}

cat("Calculating the OOB prediction error of combination...",

"\n")

oob_error[j]<-as.numeric(fit_ovr$err.rate[fit_ovr$ntree])

cat("Error is:",oob_error[j],"\n")

}

df_logrank_ovr<-data.frame(Node_size=combis$Var1,

Nsplit=combis$Var2,

Mtry=combis$Var3,

Error=round(oob_error,4))

df_logrank_ovr[which.min(df_logrank_ovr$Error),]

bestnode=df_logrank_ovr[which.min(df_logrank_ovr$Error),][1]

bestnsplit=df_logrank_ovr[which.min(df_logrank_ovr$Error),][2]

bestmtry=df_logrank_ovr[which.min(df_logrank_ovr$Error),][3]

fit<-rfsrc(Surv(AVAL,CNSR2)~.,

splitrule="logrank",nsplit=2,

data=Training,ntree=500,

split.depth="all.trees",

var.used="all.trees",seed=-12345,

mtry=4,nodesize=20,#nodedepths=7,

ntime=500,forest=TRUE,

importance=TRUE

)
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fit$err.rate[fit$ntree]

plot(gg_vimp(fit), labs = st.labs)+

theme(legend.position = c(0.8, 0.2)) +

labs(fill = "VIMP > 0")

summary(fit$time.interest)

gg_v <- gg_variable(fit, time = c(6, 176),

time.labels = c("1 day", "6 months"))

plot(gg_v, xvar = "NTBNP", alpha = 0.4)

plot(gg_v, xvar = "Age_Group", alpha = 0.4)

plot(gg_v, xvar = "SEX", alpha = 0.4)

plot(gg_v, xvar = "Country_Group", alpha = 0.4)

plot(gg_v, xvar = "NYHA", alpha = 0.4)

plot(gg_v, xvar = "Prior_HF_hosp", alpha = 0.4)

plot(gg_v, xvar = "Diabetes", alpha = 0.4)

plot(gg_v, xvar = "Afib", alpha = 0.4)

plot(gg_v, xvar = "Hypertension", alpha = 0.4)

plot(gg_v, xvar = "EGFR", alpha = 0.4)

plot(gg_v, xvar = "BMI", alpha = 0.4)

plot(gg_v, xvar = "Activity_Intensity", alpha = 0.4)

plot(gg_v, xvar = "Activity_Duration", alpha = 0.4)

varsel_pbc <- var.select(fit)
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gg_md <- gg_minimal_depth(varsel_pbc, lbls = st.labs)

plot(gg_md)

print(gg_md)

plot(gg_minimal_vimp(gg_md))# , lbls = st.labs)

theme(legend.position=c(0.8, 0.2))

RSF_hosp_final_removed <- RSF_hosp_final[, -c(3, 11, 13)]

set.seed(12345)

Train <- createDataPartition(RSF_hosp_final_removed$CNSR2, p=0.8,

list=FALSE)

Training <- RSF_hosp_final_removed[ Train, ]

Testing <- RSF_hosp_final_removed[ -Train, ]

Training[sapply(Training, is.character)] <- lapply(Training[

sapply(Training, is.character)],

as.factor)

Testing[sapply(Testing, is.character)] <- lapply(Testing[sapply(

Testing, is.character)],

as.factor)

tab1(RSF_hosp_final_removed$CNSR2, sort.group = "decreasing", cum

.percent = TRUE) #85.9 vs. 14.4%

options(rf.cores=20,mc.cores=20)

set.seed(12345)

nodesize<-c(10,20,35,50,70,85,100,120,150,180,190,200,210,220)

nsplit<-c(2,3,4,5,6,7,8,9,10,15,20)
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mtry<-c(1,2,3,4,5,6,7,8,9,10,15,20,35,40,50)

combis<-expand.grid(nodesize,nsplit,mtry)

cv_time<-vector(mode="numeric",length=nrow(combis))

oob_error<-vector(mode="numeric",length=nrow(combis))

for(j in 1:nrow(combis)){

cat("Working on combination n r:",j,"with nodesize:",

combis[j,1],

"nsplit:",combis[j,2],"and mtry:",

combis[j,3],"\n")

cv_time[j]<-{

system.time(

fit_ovr<-rfsrc(Surv(AVAL,CNSR2)~.,

splitrule="logrank",

nodesize=combis[j,1],

nsplit=combis[j,2],

data=Training,

mtry=combis[j,3],

ntree=500,seed=-12345,

# sampsize=3473,

ntime=500,forest=FALSE

))[3]

}

cat("Calculating the OOB prediction error of combination...",

"\n")

oob_error[j]<-as.numeric(fit_ovr$err.rate[fit_ovr$ntree])

cat("Error is:",oob_error[j],"\n")

}
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df_logrank_ovr<-data.frame(Node_size=combis$Var1,

Nsplit=combis$Var2,

Mtry=combis$Var3,

Error=round(oob_error,4))

df_logrank_ovr[which.min(df_logrank_ovr$Error),]

bestnode=df_logrank_ovr[which.min(df_logrank_ovr$Error),][1]

bestnsplit=df_logrank_ovr[which.min(df_logrank_ovr$Error),][2]

bestmtry=df_logrank_ovr[which.min(df_logrank_ovr$Error),][3]

fit<-rfsrc(Surv(AVAL,CNSR2)~.,

splitrule="logrank",nsplit=3,

data=Training,ntree=500,

split.depth="all.trees",

var.used="all.trees",seed=-12345,

mtry=1,nodesize=20,#nodedepths=7,

ntime=500,forest=TRUE,

importance=TRUE

)

fit$err.rate[fit$ntree]

plot(gg_vimp(fit), labs = st.labs)+

theme(legend.position = c(0.8, 0.2)) +

labs(fill = "VIMP > 0")

summary(fit$time.interest)
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gg_v <- gg_variable(fit, time = c(6, 176),

time.labels = c("1 day", "6 months"))

plot(gg_v, xvar = "NTBNP", alpha = 0.4)

plot(gg_v, xvar = "Age_Group", alpha = 0.4)

plot(gg_v, xvar = "SEX", alpha = 0.4)

plot(gg_v, xvar = "Country_Group", alpha = 0.4)

plot(gg_v, xvar = "NYHA", alpha = 0.4)

plot(gg_v, xvar = "Prior_HF_hosp", alpha = 0.4)

plot(gg_v, xvar = "Diabetes", alpha = 0.4)

plot(gg_v, xvar = "Afib", alpha = 0.4)

plot(gg_v, xvar = "Hypertension", alpha = 0.4)

plot(gg_v, xvar = "EGFR", alpha = 0.4)

plot(gg_v, xvar = "BMI", alpha = 0.4)

plot(gg_v, xvar = "Activity_Intensity", alpha = 0.4)

plot(gg_v, xvar = "Activity_Duration", alpha = 0.4)

varsel_pbc <- var.select(fit)

gg_md <- gg_minimal_depth(varsel_pbc, lbls = st.labs)

plot(gg_md)

print(gg_md)

plot(gg_minimal_vimp(gg_md))# , lbls = st.labs)

theme(legend.position=c(0.8, 0.2))

hosp_urg_cnsr <- c("USUBJID", "AVAL", "CNSR")

clin_subset_hosp_urg_cnsr <- clin_subset_hosp_urg[hosp_urg_cnsr]
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RSF_hosp_urg_final <- merge(main_RSF_vars, clin_subset_hosp_urg_

cnsr, by="USUBJID")

RSF_hosp_urg_final <- RSF_hosp_urg_final[,-1]

RSF_hosp_urg_final <- RSF_hosp_urg_final[,-3]

RSF_hosp_urg_final$CNSR2 <- ifelse(RSF_hosp_urg_final$CNSR==0, 1,

0)

RSF_hosp_urg_final <- RSF_hosp_urg_final[, -c(16)]

RSF_hosp_urg_final <- RSF_hosp_urg_final[, -c(15)]

names(RSF_hosp_urg_final)

RSF_hosp_urg_final_check0 <- subset(RSF_hosp_urg_final, CNSR2==0)

RSF_hosp_urg_final_check1 <- subset(RSF_hosp_urg_final, CNSR2==1)

summary(RSF_hosp_urg_final_check0$AVAL)

summary(RSF_hosp_urg_final_check1$AVAL)

set.seed(12345)

Train <- createDataPartition(RSF_hosp_urg_final$CNSR2, p=0.8,

list=FALSE)

Training <- RSF_hosp_urg_final[ Train, ]

Testing <- RSF_hosp_urg_final[ -Train, ]

Training[sapply(Training, is.character)] <- lapply(Training[

sapply(Training, is.character)],

as.factor)

Testing[sapply(Testing, is.character)] <- lapply(Testing[sapply(

Testing, is.character)],

as.factor)

189



tab1(RSF_hosp_urg_final$CNSR2, sort.group = "decreasing", cum.

percent = TRUE) #84.1% vs 15.9%

options(rf.cores=20,mc.cores=20)

set.seed(12345)

nodesize<-c(10,20,35,50,70,85,100,120,150,180,190,200,210,220)

nsplit<-c(2,3,4,5,6,7,8,9,10,15,20)

mtry<-c(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)

combis<-expand.grid(nodesize,nsplit,mtry)

cv_time<-vector(mode="numeric",length=nrow(combis))

oob_error<-vector(mode="numeric",length=nrow(combis))

for(j in 1:nrow(combis)){

cat("Working on combination n r:",j,"with nodesize:",

combis[j,1],

"nsplit:",combis[j,2],"and mtry:",

combis[j,3],"\n")

cv_time[j]<-{

system.time(

fit_ovr<-rfsrc(Surv(AVAL,CNSR2)~.,

splitrule="logrank",

nodesize=combis[j,1],

nsplit=combis[j,2],

data=Training,

mtry=combis[j,3],

ntree=500,seed=-12345,

# sampsize=3473,

ntime=500,forest=FALSE
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))[3]

}

cat("Calculating the OOB prediction error of combination...",

"\n")

oob_error[j]<-as.numeric(fit_ovr$err.rate[fit_ovr$ntree])

cat("Error is:",oob_error[j],"\n")

}

df_logrank_ovr<-data.frame(Node_size=combis$Var1,

Nsplit=combis$Var2,

Mtry=combis$Var3,

Error=round(oob_error,4))

df_logrank_ovr[which.min(df_logrank_ovr$Error),]

bestnode=df_logrank_ovr[which.min(df_logrank_ovr$Error),][1]

bestnsplit=df_logrank_ovr[which.min(df_logrank_ovr$Error),][2]

bestmtry=df_logrank_ovr[which.min(df_logrank_ovr$Error),][3]

fit<-rfsrc(Surv(AVAL,CNSR2)~.,

splitrule="logrank",nsplit=2,

data=Training,ntree=500,

split.depth="all.trees",

var.used="all.trees",seed=-12345,

mtry=4,nodesize=20,#nodedepths=7,

ntime=500,forest=TRUE,

importance=TRUE

)
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fit$err.rate[fit$ntree]

plot(gg_vimp(fit), labs = st.labs)+

theme(legend.position = c(0.8, 0.2)) +

labs(fill = "VIMP > 0")

summary(fit$time.interest)

gg_v <- gg_variable(fit, time = c(8, 176),

time.labels = c("1 day", "6 months"))

plot(gg_v, xvar = "NTBNP", alpha = 0.4)

plot(gg_v, xvar = "Age_Group", alpha = 0.4)

plot(gg_v, xvar = "SEX", alpha = 0.4)

plot(gg_v, xvar = "Country_Group", alpha = 0.4)

plot(gg_v, xvar = "NYHA", alpha = 0.4)

plot(gg_v, xvar = "Prior_HF_hosp", alpha = 0.4)

plot(gg_v, xvar = "Diabetes", alpha = 0.4)

plot(gg_v, xvar = "Afib", alpha = 0.4)

plot(gg_v, xvar = "Hypertension", alpha = 0.4)

plot(gg_v, xvar = "EGFR", alpha = 0.4)

plot(gg_v, xvar = "BMI", alpha = 0.4)

plot(gg_v, xvar = "Activity_Intensity", alpha = 0.4)

plot(gg_v, xvar = "Activity_Duration", alpha = 0.4)

varsel_pbc <- var.select(fit)

gg_md <- gg_minimal_depth(varsel_pbc, lbls = st.labs)
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plot(gg_md)

print(gg_md)

hosp_urg_cnsr <- c("USUBJID", "AVAL", "CNSR")

clin_subset_hosp_urg_cnsr <- clin_subset_hosp_urg[hosp_urg_cnsr]

RSF_hosp_urg_final_v2 <- merge(main_RSF_vars, clin_subset_hosp_

urg_cnsr, by="USUBJID")

RSF_hosp_urg_final_v2 <- RSF_hosp_urg_final_v2[,-c(1, 4, 6, 7,

13, 14, 15, 18)]

RSF_hosp_urg_final_v2$CNSR2 <- ifelse(RSF_hosp_urg_final_v2$CNSR

==0, 1, 0)

RSF_hosp_urg_final_v2 <- RSF_hosp_urg_final_v2[, -c(10)]

names(RSF_hosp_urg_final_v2)

RSF_hosp_urg_final_v2_check0 <- subset(RSF_hosp_urg_final_v2,

CNSR2==0)

RSF_hosp_urg_final_v2_check1 <- subset(RSF_hosp_urg_final_v2,

CNSR2==1)

summary(RSF_hosp_urg_final_v2_check0$AVAL)

summary(RSF_hosp_urg_final_v2_check1$AVAL)

set.seed(12345)

Train <- createDataPartition(RSF_hosp_urg_final_v2$CNSR2, p=0.8,

list=FALSE)

Training <- RSF_hosp_urg_final_v2[ Train, ]

Testing <- RSF_hosp_urg_final_v2[ -Train, ]
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Training[sapply(Training, is.character)] <- lapply(Training[

sapply(Training, is.character)],

as.factor)

Testing[sapply(Testing, is.character)] <- lapply(Testing[sapply(

Testing, is.character)],

as.factor)

tab1(RSF_hosp_urg_final_v2$CNSR2, sort.group = "decreasing", cum.

percent = TRUE) #84.1% vs 15.9%

options(rf.cores=20,mc.cores=20)

set.seed(12345)

nodesize<-c(10,20,35,50,70,85,100,120,150,180,190,200,210,220)

nsplit<-c(2,3,4,5,6,7,8,9,10,15,20)

mtry<-c(1,2,3,4,5,6,7,8,9,10,15,20,35,40,50)

combis<-expand.grid(nodesize,nsplit,mtry)

cv_time<-vector(mode="numeric",length=nrow(combis))

oob_error<-vector(mode="numeric",length=nrow(combis))

for(j in 1:nrow(combis)){

cat("Working on combination n r:",j,"with nodesize:",

combis[j,1],

"nsplit:",combis[j,2],"and mtry:",

combis[j,3],"\n")

cv_time[j]<-{

system.time(

fit_ovr<-rfsrc(Surv(AVAL,CNSR2)~.,

splitrule="logrank",

nodesize=combis[j,1],
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nsplit=combis[j,2],

data=Training,

mtry=combis[j,3],

ntree=500,seed=-12345,

# sampsize=3473,

ntime=500,forest=FALSE

))[3]

}

cat("Calculating the OOB prediction error of combination...",

"\n")

oob_error[j]<-as.numeric(fit_ovr$err.rate[fit_ovr$ntree])

cat("Error is:",oob_error[j],"\n")

}

df_logrank_ovr<-data.frame(Node_size=combis$Var1,

Nsplit=combis$Var2,

Mtry=combis$Var3,

Error=round(oob_error,4))

df_logrank_ovr[which.min(df_logrank_ovr$Error),]

bestnode=df_logrank_ovr[which.min(df_logrank_ovr$Error),][1]

bestnsplit=df_logrank_ovr[which.min(df_logrank_ovr$Error),][2]

bestmtry=df_logrank_ovr[which.min(df_logrank_ovr$Error),][3]

fit<-rfsrc(Surv(AVAL,CNSR2)~.,

splitrule="logrank",nsplit=4,

data=Training,ntree=500,

split.depth="all.trees",
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var.used="all.trees",seed=-12345,

mtry=8,nodesize=10,#nodedepths=7,

ntime=500,forest=TRUE,

importance=TRUE

)

fit$err.rate[fit$ntree]

plot(gg_vimp(fit), labs = st.labs)+

theme(legend.position = c(0.8, 0.2)) +

labs(fill = "VIMP > 0")

summary(fit$time.interest)

gg_v <- gg_variable(fit, time = c(6, 176),

time.labels = c("1 day", "6 months"))

plot(gg_v, xvar = "NTBNP", alpha = 0.4)

plot(gg_v, xvar = "Age_Group", alpha = 0.4)

plot(gg_v, xvar = "SEX", alpha = 0.4)

plot(gg_v, xvar = "Country_Group", alpha = 0.4)

plot(gg_v, xvar = "NYHA", alpha = 0.4)

plot(gg_v, xvar = "Prior_HF_hosp", alpha = 0.4)

plot(gg_v, xvar = "Diabetes", alpha = 0.4)

plot(gg_v, xvar = "Afib", alpha = 0.4)

plot(gg_v, xvar = "Hypertension", alpha = 0.4)

plot(gg_v, xvar = "EGFR", alpha = 0.4)
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plot(gg_v, xvar = "BMI", alpha = 0.4)

plot(gg_v, xvar = "Activity_Intensity", alpha = 0.4)

plot(gg_v, xvar = "Activity_Duration", alpha = 0.4)

varsel_pbc <- var.select(fit)

gg_md <- gg_minimal_depth(varsel_pbc, lbls = st.labs)

print(gg_md)

plot(gg_minimal_vimp(gg_md))# , lbls = st.labs)

theme(legend.position=c(0.8, 0.2))

clin_subset_secondary_eff <- subset(adtte, PARAM=="SECONDARY

EFFICACY OUTCOME" & TIMEREF=="UP TO 26 WEEKS AFTER FIRST DOSE"

)

secondary_cnsr <- c("USUBJID", "AVAL", "CNSR")

clin_subset_sec_cnsr <- clin_subset_secondary_eff[secondary_cnsr]

RSF_sec_final <- merge(main_RSF_vars, clin_subset_sec_cnsr, by="

USUBJID")

RSF_sec_final <- RSF_sec_final[,-c(1, 4, 18)]

RSF_sec_final$CNSR2 <- ifelse(RSF_sec_final$CNSR==0, 1, 0)

table(RSF_sec_final$CNSR)

RSF_sec_final <- RSF_sec_final[, -c(15)]

names(RSF_sec_final)

RSF_sec_final0 <- subset(RSF_sec_final, CNSR2==0)
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RSF_sec_final1 <- subset(RSF_sec_final, CNSR2==1)

summary(RSF_sec_final0$AVAL)

summary(RSF_sec_final1$AVAL)

set.seed(12345)

Train <- createDataPartition(RSF_sec_final$CNSR2, p=0.8, list=

FALSE)

Training <- RSF_sec_final[ Train, ]

Testing <- RSF_sec_final[ -Train, ]

Training[sapply(Training, is.character)] <- lapply(Training[

sapply(Training, is.character)],

as.factor)

Testing[sapply(Testing, is.character)] <- lapply(Testing[sapply(

Testing, is.character)],

as.factor)

tab1(RSF_sec_final$CNSR2, sort.group = "decreasing", cum.percent

= TRUE) #83.3% vs 16.7%

options(rf.cores=20,mc.cores=20)

set.seed(12345)

nodesize<-c(10,20,35,50,70,85,100,120,150,180,190,200,210,220)

nsplit<-c(2,3,4,5,6,7,8,9,10,15,20)

mtry<-c(1,2,3,4,5,6,7,8,9,10,15,20,35,40,50)

combis<-expand.grid(nodesize,nsplit,mtry)

cv_time<-vector(mode="numeric",length=nrow(combis))

oob_error<-vector(mode="numeric",length=nrow(combis))
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for(j in 1:nrow(combis)){

cat("Working on combination n r:",j,"with nodesize:",

combis[j,1],

"nsplit:",combis[j,2],"and mtry:",

combis[j,3],"\n")

cv_time[j]<-{

system.time(

fit_ovr<-rfsrc(Surv(AVAL,CNSR2)~.,

splitrule="logrank",

nodesize=combis[j,1],

nsplit=combis[j,2],

data=Training,

mtry=combis[j,3],

ntree=500,seed=-12345,

# sampsize=3473,

ntime=500,forest=FALSE

))[3]

}

cat("Calculating the OOB prediction error of combination...",

"\n")

oob_error[j]<-as.numeric(fit_ovr$err.rate[fit_ovr$ntree])

cat("Error is:",oob_error[j],"\n")

}

df_logrank_ovr<-data.frame(Node_size=combis$Var1,

Nsplit=combis$Var2,

Mtry=combis$Var3,

Error=round(oob_error,4))
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df_logrank_ovr[which.min(df_logrank_ovr$Error),]

bestnode=df_logrank_ovr[which.min(df_logrank_ovr$Error),][1]

bestnsplit=df_logrank_ovr[which.min(df_logrank_ovr$Error),][2]

bestmtry=df_logrank_ovr[which.min(df_logrank_ovr$Error),][3]

fit<-rfsrc(Surv(AVAL,CNSR2)~.,

splitrule="logrank",nsplit=2,

data=Training,ntree=500,

split.depth="all.trees",

var.used="all.trees",seed=-12345,

mtry=3,nodesize=35,#nodedepths=7,

ntime=500,forest=TRUE,

importance=TRUE

)

fit$err.rate[fit$ntree]

plot(gg_vimp(fit), labs = st.labs)+

theme(legend.position = c(0.8, 0.2)) +

labs(fill = "VIMP > 0")

summary(fit$time.interest)

gg_v <- gg_variable(fit, time = c(6, 176),

time.labels = c("1 day", "6 months"))
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plot(gg_v, xvar = "NTBNP", alpha = 0.4)

plot(gg_v, xvar = "Age_Group", alpha = 0.4)

plot(gg_v, xvar = "SEX", alpha = 0.4)

plot(gg_v, xvar = "Country_Group", alpha = 0.4)

plot(gg_v, xvar = "NYHA", alpha = 0.4)

plot(gg_v, xvar = "Prior_HF_hosp", alpha = 0.4)

plot(gg_v, xvar = "Diabetes", alpha = 0.4)

plot(gg_v, xvar = "Afib", alpha = 0.4)

plot(gg_v, xvar = "Hypertension", alpha = 0.4)

plot(gg_v, xvar = "EGFR", alpha = 0.4)

plot(gg_v, xvar = "BMI", alpha = 0.4)

plot(gg_v, xvar = "Activity_Intensity", alpha = 0.4)

plot(gg_v, xvar = "Activity_Duration", alpha = 0.4)

varsel_pbc <- var.select(fit)

gg_md <- gg_minimal_depth(varsel_pbc, lbls = st.labs)

print(gg_md)

plot(gg_md)

plot(gg_minimal_vimp(gg_md))# , lbls = st.labs)

theme(legend.position=c(0.8, 0.2))

RSF_sec_final_rem <- RSF_sec_final[,-c(3, 5, 11)]

set.seed(12345)

Train <- createDataPartition(RSF_sec_final_rem$CNSR2, p=0.8, list

=FALSE)
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Training <- RSF_sec_final_rem[ Train, ]

Testing <- RSF_sec_final_rem[ -Train, ]

Training[sapply(Training, is.character)] <- lapply(Training[

sapply(Training, is.character)],

as.factor)

Testing[sapply(Testing, is.character)] <- lapply(Testing[sapply(

Testing, is.character)],

as.factor)

tab1(RSF_sec_final_rem$CNSR2, sort.group = "decreasing", cum.

percent = TRUE) #83% vs 17%

options(rf.cores=20,mc.cores=20)

set.seed(12345)

nodesize<-c(10,20,35,50,70,85,100,120,150,180,190,200,210,220)

nsplit<-c(2,3,4,5,6,7,8,9,10,15,20)

mtry<-c(1,2,3,4,5,6,7,8,9,10,15,20,35,40,50)

combis<-expand.grid(nodesize,nsplit,mtry)

cv_time<-vector(mode="numeric",length=nrow(combis))

oob_error<-vector(mode="numeric",length=nrow(combis))

for(j in 1:nrow(combis)){

cat("Working on combination n r:",j,"with nodesize:",

combis[j,1],

"nsplit:",combis[j,2],"and mtry:",

combis[j,3],"\n")

cv_time[j]<-{

system.time(
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fit_ovr<-rfsrc(Surv(AVAL,CNSR2)~.,

splitrule="logrank",

nodesize=combis[j,1],

nsplit=combis[j,2],

data=Training,

mtry=combis[j,3],

ntree=500,seed=-12345,

# sampsize=3473,

ntime=500,forest=FALSE

))[3]

}

cat("Calculating the OOB prediction error of combination...",

"\n")

oob_error[j]<-as.numeric(fit_ovr$err.rate[fit_ovr$ntree])

cat("Error is:",oob_error[j],"\n")

}

df_logrank_ovr<-data.frame(Node_size=combis$Var1,

Nsplit=combis$Var2,

Mtry=combis$Var3,

Error=round(oob_error,4))

df_logrank_ovr[which.min(df_logrank_ovr$Error),]

bestnode=df_logrank_ovr[which.min(df_logrank_ovr$Error),][1]

bestnsplit=df_logrank_ovr[which.min(df_logrank_ovr$Error),][2]

bestmtry=df_logrank_ovr[which.min(df_logrank_ovr$Error),][3]

fit_v2<-rfsrc(Surv(AVAL,CNSR2)~.,
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splitrule="logrank",nsplit=3,

data=Training,ntree=500,

split.depth="all.trees",

var.used="all.trees",seed=-12345,

mtry=2,nodesize=20,#nodedepths=7,

ntime=500,forest=TRUE,

importance=TRUE

)

fit_v2$err.rate[fit_v2$ntree]

plot(gg_vimp(fit_v2), labs = st.labs)+

theme(legend.position = c(0.8, 0.2)) +

labs(fill = "VIMP > 0")

RSF_sec_final_rem <- RSF_sec_final[,-c(3, 5, 11, 12, 13)]

fit_v2<-rfsrc(Surv(AVAL,CNSR2)~.,

splitrule="logrank",nsplit=2,

data=Training,ntree=500,

split.depth="all.trees",

var.used="all.trees",seed=-12345,

mtry=2,nodesize=35,#nodedepths=7,

ntime=500,forest=TRUE,

importance=TRUE

)

fit_v2$err.rate[fit_v2$ntree]
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plot(gg_vimp(fit_v2), labs = st.labs)+

theme(legend.position = c(0.8, 0.2)) +

labs(fill = "VIMP > 0")

summary(fit_v2$time.interest)

gg_v <- gg_variable(fit_v2, time = c(6, 176),

time.labels = c("1 day", "6 months"))

plot(gg_v, xvar = "NTBNP", alpha = 0.4)

plot(gg_v, xvar = "Age_Group", alpha = 0.4)

plot(gg_v, xvar = "NYHA", alpha = 0.4)

plot(gg_v, xvar = "Diabetes", alpha = 0.4)

plot(gg_v, xvar = "Afib", alpha = 0.4)

plot(gg_v, xvar = "EGFR", alpha = 0.4)

plot(gg_v, xvar = "BMI", alpha = 0.4)

plot(gg_v, xvar = "Activity_Intensity", alpha = 0.4)

plot(gg_v, xvar = "Activity_Duration", alpha = 0.4)

varsel_pbc <- var.select(fit_v2)

gg_md <- gg_minimal_depth(varsel_pbc, lbls = st.labs)

print(gg_md)

plot(gg_minimal_vimp(gg_md))# , lbls = st.labs)

theme(legend.position=c(0.8, 0.2))
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