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ABSTRACT 

MASS DISPERSION FROM AN INSTANTANEOUS LINE 
SOURCE IN A TURBULENT SHEAR FLOW 

Dispersion of passive material released from an instantaneous 

line source in the constant stress region of a neutral atmosphere is 

investigated. Concentration fields within the cloud of dispersing 

material is represented by a three dimensional density function. This 

density function is divided into a marginal density function and a 

conditional longitudinal density function. The marginal density func-

tion gives the vertical spread of the material. This function has 

been derived from the semiempirical equation of dispersion, by using 

logarithmic velocity distribution for mean velocity and a linear 

variation for eddy diffusivity in the vertical direction. Longitudinal 

density function, which gives the longitudinal distribution of material 

within a given horizontal layer of the cloud, is constructed from the 

statistical properties of dispersion. Utilizing the Lagrangian simi-

larity hypothesis for the concentration field, the semiempirical 

equation has been transformed into a similarity coordinate plane. 

Moment equations are derived from this equation using suitable boundary 

conditions. From these equations statistical properties are derived 

for mean, variance and skewness coefficients of the longitudinal density 

function. It is shown that the longitudinal density function can be 

well represented by the Gram-Charlier density simply by substituting 

the derived statistical p~operties. Ground level concentrations 

obtained by integration of this proposed density function agree 

qualitatively with observations in wind tunnels and field experiments. 
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CHAPTER I 

INTRODUCTION 

Among a wide variety of problems concerning turbulent diffusion, 

studies of atmospheric diffusion occupy a central place in the litera-

ture. In recent studies, diffusion in the surface layer of the 

atmosphere has been of greatest interest, as the air in this layer is 

directly related to the life and vital activity of man. Examinations 

of air quality indicate an increased demand for pollution studies. It 

is important to understand the dynamics of the atmosphere in order to 

regulate or relocate the sources of pollution, so that the contaminants 

may be dispersed effectively. Fortunately, the atmosphere is turbulent 

most of the time, which helps in dispersing the matter more rapidly. 

However, in certain geographical locations where atmospheric motions 

are inhibited by natural restrictions or artificial creations, it 

becomes essential to position the sources and regulate the releases, 

so that the concentration level of contaminants are kept within per-

missible limits. In the past two decades considerable progress has 

been made towards the understanding of dispersion processes in turbu-

lent shear flows. Applications of these studies to numerous pollution 

control problems, mechanism of pesticide and insecticide spreads, city 

and industrial plannings are in progress. 

Pollutants from industrial smokestacks are continuous point 

sources. In the past two decades considerable work has been done, 

to give reliable estimates of concentration levels of pollution in 

the vicinity of a source, as an aid to planning industrial stacks. 

Important results are: the maximum ground level concentration i s 
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inversely proportional to the square of the he i ght of the s t ack; and, 

the location of maximum concentration from the stack center is directly 

proportional to the height of the stack. Various formulae are available 

for plume rise calculations, depending on the exit velocity and buoyancy 

level of the gases. A comprehensive formula for dispersion estimates 

has been published by Turner [1969]. 

Radioactive effluents from atomic tests and volcanic ashes, gases 

from aircraft and automobiles, pollen from plants and the spread of 

agricultural insecticides and pesticides belong to a class of instan-

taneous sources. There are hardly any formula available from which to 

make reliable estimates about the dispersion of effluents f~om these 

kinds of sources. Some equations were suggested by Sutton [1932] for 

ground level concentrations due to instantaneous sources. These 

equations contain dispers ion parameters such as a 
X 

o and o , for y z 

which there are no analytical estimates available. Frenkiel and Katz 

[1953] conducted experiments on dispersion of smoke puffs in the sur-

face layer of atmosphere. By analyzing the visible diameters of 

dispersing smoke puffs, they concluded that the dispersion parameters 

' o ' are proportional to the square of time of dispersion. 

Analytical studies of dispersion of instantaneous sources in the 

atmosphere have been published by Monin [1959], Saffman [1963] and 

Chatwin [1968]. Monin derived a marginal density function which 

determines the vertical spread of material released from an instantaneous 

point source. Saffman derived solutions for the first two statistical 

moments of density function for an instantaneous point source, by using 

linear velocity distribution for the surface shear flow. Chatwin 

derived solutions for the zero, first and second moments for the 
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concentration distribution at ground level . Density function for 

the spatial distributions of concentration within the smoke puffs is 

not available for the sources released in the surface layer of atmo-

sphere. A complete knowledge of the statistical properties of concen-

tration distribution within the smoke puffs is essential to specify 

a function for a two or three dimensional density and to determine 

the probable shapes of smoke puffs. 

It is the purpose of this present work to determine the statistical 

properties of the dispers ion of contaminants released from an instan-

taneous line source and to specify a realistic probability density 

function for the spatial distribution of concentrations within the 

smoke puff. A probable shape of smoke puff will be presented for a 

source released at ground level. However, for sources released at a 

height 'h' above the ground, the results will still be valid for 

time 't' greater than t 1 , where t 1 is of the order of h/u* . 

The formulae developed in this theory can be utilized in estimating 

the ground level exposures in farm fields where insecticides and 

pesticides are spread by aircraft. 
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CHAPTER II 

THEORETICAL BACKGROUND 

Problems of turbulent diffusion are complex and many sided. They 

have been subjected to theoretical and experimental investigation in the 

past few decades. Studies are mainly oriented towards the prediction 

of average concentration distribution of contaminants, released from 

various kinds of sources. As mentioned earlier, various formula are 

available for the dispersion of contaminants from continuous sources. 

But there are hardly any formula available for the estimation of con-

centration levels due to instantaneous sources. In this chapter a 

review of pertinent theories is presented. Eulerian equations of 

dispersion are derived. Lagrangian similarity theory is discussed. 

Governing equations for dispersion of contaminants from instantaneous 

sources are formulated, by coupling the Lagrangian simi larity theory 

with Eulerian equations. 

2.1. Description of Turbulent Diffusion 

When an admixture is introduced into a turbulent flow, it is 

rapidly spread in the volume occupied by the fluid as a result of trans-

fer mechanism of the flow. This phenomenon called turbulent diffusion 

is an important characteristic of turbulent flows. The admixture can 

be in the form of liquid, gaseous additive or in the form of large num-

bers of fine particles. 

In each individual realization of turbulent flow, the field of 

concentration C(x. ,t) in regions which do not contain sources 
1 

or sinks, satisfies the equation of 
ac auic 
-+--= v at ax. 

1 

molecular diffusion 

(2. 1) 
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For a pass ive admixture the velocity· field does not depend on the con-

cen t ration fie ld. Hence the equation remai ns linear wi t h regard to 

concentration. More often the boundary conditions are a l so linear with 

respec t to ' C'. They are of the form 

K_ + ¢C = f ( t) -1-,1 cl n (2.2) 

where 'n' is normal to th e boundary and ¢ is a constant. In the 

case of s olid wa ll s which bound t he flow, the boundary conditions are 

homogeneous, that is f(t) = 0 

ac \1 an + ¢C = 0 

¢ = 00 

¢ = 0 

0 <¢<oo 

at solid wall 

f or completely absorbing 
boundary 

completely reflecting 
boundary 

partia l abs orbing boundary 

(2. 3) 

For the flow which is unl i mited in any direction, the boundary condition 

becomes 

C 0 as x. 00 

1 

Boundary condit i ons of the t ype f(t) f O , correspond to continuous l y 

active sources . We wi ll l imit out discussion to homogeneous boundary 

_conditions only. 
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2.2. Eulerian Equation of Turbulent Diffusion 

Determination of the average concentration field ccx. ,t) 
1 

is the 

most important and desirable problem of turbulent diffusion. The gov-

erning equation for such a field is obtained by averaging all the terms 

in equation (2.1) using the following perturbation theory. 

where 

ac - + at 
au.c 

1 

ax. 
1 

C = C + c' 

U. = U. + u.' 
1 1 1 

= v . ~vc 

c' = 0 

ii:= 0 . 
1 

Using the above averaging process, we obtain 

au .c 
1 +--ax . 
1 

au! c' 
1 = - ---ax . 

1 

(2.4) 

c'u! are not known a priori, but they may be related to a gradient of 
1 

mean concentration by the we ll known gradient transfer relation as 

suggested by G. I. Tayl or [1915] and Schmidt [1917]. The eddy transfer 

of material across a plane is represented as a product of gradient of 

material and the eddy diffusivity Kr, 

-c'u! K ac 
= 

1 T .. ax . (2.5) 
lJ J 

Now equation (2.4) becomes 

ac au.c a ac + 1 = Kr .. -- + 'v KMVC at ax. ax . ax. 
1 1 lJ J 

(2 .6) 
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The processes of molecular and turbulent diffusion are independent 

and therefore additive [Mickelson 1960] 

K . . ( x . ) = KT + 
l) l ij 

(2.7) 

K . . lJ is a diffusion tensor which can be replaced by scalar K. , by 
l 

taking axes of the coordinate system as the principle axes of the tensor. 

Then K. = 1j 

= 

0 

K. 
l 

for i f j 

for i = j 

Then the dispersion equation becomes (eliminating the overbars for 

the sake of expedience): 

ac 
at 

aui c a 
+ = ax. ax. 

l l 

(K. ~) lax . 
l 

(2. 8) 

Integrating the equation (2.8) for the lateral direction 'y' , a 

dispersion equation for infinite crosswind line source is obtained. 
00 

Writing JC dy = x (x,z,t) we obtain 
- 00 

= a (K ~) 
ax X ax + lK ~) a z · z a z (2.9) 

In the absence of vertical velocity •u3 • , and horizontal velocity 
au1 gradient ax (under the adiabatic conditions of the atmosphere in the 

surface layer), we can write the dispersion equation as 

+ u 
1 

ax a ax= ax (K 
X 

a (K ~) 
a z z az (2.10) 
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2.3. Lagrangian Characteris tics of Turbulent Diffusion in the Boundary 
Layer 

Consider a particle released in turbulent flow at a point 

(x,y,z) = (0,0,h) respectively, at time t = t , where x 
0 

is the 

direction of mean flow, y is the crosswind direction and z is 

vertical direction . Let x(t) , y( t ) , z(t) be the coordinates of 

this particle at time t +t , and U(t) , V(t) , W(t) 
0 

be the components 

of velocity V(t) of the particle in the x,y,z directions. As time 

increases the particle rises significantly and the hori zontal velocity 

U(t) increases strongly. Hence, the random function V(t) is not 

stationary. Generally speaking, there is no basis for considering that 

the function V(t) may be transformed into stationary function with 

the help of a simple transition to new scales of length and time. In 

addition to the parameters, length ' £' and time 't' , Lagrangian 

characteristics of turbulence depend upon a few external parameters 

which determine the turbulent condition. As stated by Monin and Yaglom 

[1966], it is natural to assume that these parameters enter into the 

expression for Eulerian statistical characteristics. Hence, some 

information can be obtained by coupling the Lagrangian equations of 

diffusion with the Eulerian equations . One possible way of coupling 

thes e equations is by subs titut i ng the results of Lagrangi an similarity 

theory into the Eulerian equations (2.8). The author feels that this 

is a more conveni ent way of obtaining any statistical information about 

turbulent diffusion of i ns tantaneous sources. Such an evaluation of 

statistical properties is essential for making any estimates about 

dispersion of mas s from ins tantaneous sources. 
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In the next section, Lagrangian similarity theory is presented 

Results of this theory will be utilized to derive statistical properties 

of dispersion, from the Eulerian equations. 

2.4. Similarity Theories on Turbulent Diffusion 

The concept of similarity of various statistical functions 

describing turbulent velocity fluctuations has proved to be exceedingly 

useful in the theory of turbulent jets, wakes and mixing layers. Such 

an observation led the scientists, particularly A. S . Monin and G. K. 

Batchelor, to extend similarity concept to diffusion processes in turbu-

lent flows. They noted that the motion of fluid particles in the con~ 

stant stress region of the turbulent boundary layer have certain simi-

larity properties, which can be used to predict some features of turbulent 

diffusion. Monin [1959] demonstrated that turbulent diffusion in a 

horizontally homogeneous, stationary, surface layer of air, obeys the 

similarity theory in which, the values of shear velocity 'u*' and 

the stability length 'L', are the only scales of velocity and length. 

For neutral flows where the scale 'L' does not exist, Batchelor [1959] 

proposed the following similarity hypothesis, which is Lagrangian in 

nature. Statistical properties of the velocity of a marked fluid parti-

cle depend on l y on u* and the time of travel 't' . Assuming this 

hypothesis to be valid, he obtained the following results. Center of mass 

of a cloud of diffusing particles (x,z) satisfies the equation 

dx ctt = U(cz) (2. 11) 
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where b and c are universal cons t ants. With t hese results in mind 

he proposed a probability density function for positions (x ,y,z) 

of dispersing particles (released at or near ground level at t ime t = 0) 

as 

C(x, y , zl t ) = 
__ 1 _ _ f (x-x 

3 but 
(bu* t) * 

For a two dimensional s ituation the density funct ion becomes, 

00 

x (x ,z lt) = J c(x , y ,zlt) dy = 
00 

1 F (x-x 
but 

* 

The forms of density functi ons 'f' and F are not known . 

During the l as t ten years, considerable work has been done on the 

validi t y and app l i cat ion of similarity theory to turbulent diffusion in 

th e atmospheric surface l ayer . Batchelor [1964] and Ellison [1 959 ] 

applied the similarity hypothesis for adiabatic flows in the surface 

l ayer and derived equations for the relative ground level concentrations 

downwi nd of continuous point and crosswind l ine sources. Gifford 

[1 962] derived expressions for s ome s tatistical properties for diffusion 

in stratified f lows . Cermak [1 963 ) has derived formulae for concentration 

decay rat es and for plume width of continuous sources in both strati-

fied and neutr al flows . He compared his results wi th experimenta l 

data from Porton [196 2], Project Prairie grass [1957) and with wind 

tunnel data at Colorado State Universi t y (reported by Ma lhotra 

[1962), Davar [1961] and Poreh [1962]) Saffman [196 2] derived 

expressions for statistical properties of longi tudinal density function 

by using linear velocit y profil e in the surface l ayer. Panofsky and 
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Prasad [1965] anal yzed the results of similarity theories on statistical 

properties of turbulent veloc ities with, the observations that the 

lateral velocity fluctuations do not support similarity theory in the 

case of stratified flows. However, no objection was raised against 

similarity theory in the case of neutral flows. Pasquill [1966] and 

Klugg [1968] compared the vertical standard deviation 0 of concen-z 

tration from diffusion experiments with the results of similarity 

theory. Iordanov [1966] obtained equations for vertical transfer of 

material for an instantaneous crosswind line source, by assuming a 

function for eddy diffusivity K z that contains two expressions for 

two regions of height. Chatwin [1968] derived expressions for 

statistical properties of dispersing material released from an 

instantaneous line source. He solved for the first and second 

moments of longitudinal density function by assuming Lagrangian 

similarity for the density function. 

In all these published works, there appears very little progress 

towards the determination of density functions for 1 C1 and x. It 

is the purpose of the present work to specify the density function for 

' x', for dispersion of materi al in the surface layer of atmosphere. 

Lagrangian similarity will be assumed for the solution of Eulerian 

equations. Various statistical properties will be derived from the 

resulting equations of mot i on. Wi th the knowledge of these properties, 

a probable density function will be specified. Shape of the 

diffusing cloud will be presented in sui tabl e figures. 
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CHAPTER III 

THEORETICAL ANALYSIS 

In this chapter statistical properties of a di spersing cloud are 

obtained for a source released at ground level. Eulerian dispersion 

equation (2.10) r epresented the mechanism of the dispersing field. 

Batchelor's constants 'b' and 'c' are derived, using logarithmic 

and power laws for the velocity profile, and conjugate laws for the 

eddy diffusivity. Utilizing Batchelor's [1964] Lagrangian similarity 

hypothesis, the uns teady state dispersion equation is reduced to a 

steady state. This steady state equation has been utilized to determine 

the moments of the density function. These central moments, namely, 

0th, 1st, 2nd and 3rd moments are used in specifying the density 

function for the concentration field within the dispersing cloud. 

3.1. Density Function 

In homogeneous turbulent flow, Batchelor [1958] has shown that the 

eddy velocities u', v' and w' are distributed according to Guassian 

law. For small dispersion times, since the particle trajectories coincide 

with the instantaneous wind, any passive contaminant released instanta-

neously into the flow is also distributed Gaussian. In the case of shear 

flow, distribution of contaminants released at the wall or near the 

wall may not be Gaussian. Velocity gradient present in the flow might 

interact with the turbulent intensity and introduce considerable skew-

ness into the density function. In such cases it becomes necessary to 

evaluate higher order statistical moments, in order to specify a density 

function for a dispersing cloud of material released instantaneously in 

a turbulent shear flow. 
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For instantaneously released cross wind line source as shmvn in 

Fig. 1, the dispersing field of concentrations can be represented by a 

three dimensional density function as 

x(x,z,t) = f(xl z ,t) x*(z,t) 

where 
00 

x*(z,t) = J x(x , z,t) dx (3.1) 
- oo 

is a marginal density function and f(xjz,t) is a conditional density 

function for the direction of mean flow, given z and t. These 

density functions satisfy the following relation for mass conservation. 

00 00 00 00 

f J x(x,z,t) dx dz= J J f(x jz ,t) x*(z,t) dx dz 
0 00 0 _ oo 

00 

= f x*(z,t) dz= 1.0 
0 

(3.2) 

These density functions are now in a convenient form to determine 

their functional forms by using the dynamic equations of turbulent 

dispersion. 

3.2 . . Density Function for the Direction of Mean Flow 

Consider the Fourier transform of f(xlz,t) given by 

00 

cp (a. ;z,t) = f 
- 00 

Its inverse transform gives 

f(x jz,t) = ½.rr 

i ax 
e 

00 

f(xjz,t) dx i ax 
= e 

f -iax e ¢ (a ,z,t) da 
- 00 

(z,t) (3.3) 

(3.4) 
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Derivatives of ¢ (a ;z,t) at the origin a = 0 are proportional to 

the moments. So the moments determine the series expansion of 

¢ (a ; z ,t), hence the density function f(x lz ,t ). 

;l --- <P(a ;z,t) 
a (ia / 

I 
a= O 

n = X (z,t) = µ (z,t) n = n 

Taylor's expansion for ¢ (a ;z,t) gives 

1, ... n 

cp(a ;z,t) 
µ 1 (z,t ) 

=1+----
1! 

µ2 (z,t) µ3 (z,t) 
(ia ) + --- (ia) 2 + --- (ia ) 3 + ... 2! 3! 

Consider now the cumulant function for convenience 

K(a ;z,t) = ln cp( a ; z , t ) 

Taylor's expansion for K (a ;z,t) gives n 

K(a ;z,t) = 
k1 (z,t) 

(ia ) + 
k2(z,t) 

(ia) 2 + 
1 ! 2 ! 

where k (z,t) = n l n ¢(a ; z , t) are cumulants. 
a=O 

It can be shown that moments of the density function can be expressed 

by cumulants such as: 

µl (z , t) acp(a;z ,t) I a [ln cp(a ;z,t) k1 (z,t) = a (ia ) = a (ia) exp = 
a=O a=O 

µ2 (z ,t) = a2¢Ca ;z,t) = k2 (z,t) + k2 (z,t) 
a (ia ) 2 a=O 1 

µ3(z,t) = a3cp(a ;z,t) = k3 + 2k2 k1 + k3 
a (ia) 4 a=O 1 
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The coefficient of skewness and kurtosis can now be defined as 

> = k /k 3/2 
' 3 3 2 and 

, ow the integral for the density function (3.8) becomes 

,,, 
f(x lz,t) = ;TI J 

= 
1 
2n 

00 

- i C/. X e 'l,(a ;z,t)da 

J exp [K(a ;z,t) - i ax]da 
- U', 

(3.5) 

Subs ti tu ting for and k 
= k 2 2 it can be shown that 

00 

f(xjz,t) = -
1
- k J Exp [-; (s 2 + 2i~s) + ¼ A3 (is) 3 + ; 4 A4 (is) 4 

2nk2 2 - oo 

+ ..•...• ] ds. 

Exp anding the second group under the exponent it can be shown that 

00 

f(xjz,t) = Exp [- ; (s 2 + 2i~s)] [l + ¼ A3 (is) 3 + ; 4 A4 (is) 4 

Using the identity 

k oo 
1 2 1 ( ) J Exp [- -2 (s 2 + 2i ~s)] (is)" ds 2TT 

(-1)" an 00 1 
= Yi n f Exp ( - I (s2 + 2Hs) ds 

(2n) a~ - 00 
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( -1) n 
dn - E, 2/2 - E,2 /2 

= e = e H ( E,) 
dE,n n 

where 

n(n-1) n-2 n(n-l)(n-2)(n-3) n- 4 
H ( E, ) = E,n - E, + _E, _ -

n 1 ! -2- 2 ! 22 

are the Hermite polynomials of degree 'n' , the density function 

'f' can be written as 

f(x lz,t) 

(3.6) 

(3. 7) 

One finds here that f(xjz,t) will be a normal density function when 

A3 = A4 =O. Different values of , 3 and A4 give different forms 

to the density function. 

Hermite polynomial H3 = ( E, 3-3 E, ) introduces skewness into the 

density function by shifting the mass from one side to the other accord-

ing to the sign of the skewness coefficient A3 . 

-4 

Hermite polynomial 

3 t 

H = E, 4 -6E,2 + 3 4 

-3 3 t 

increases or reduces the peak of 

the density function depending on the sign of the flatness factor A4 . 
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Hence, this type of density function i s capable of handling any 

distortions in a rea~istic distribution of concentration fi e l d within 

a dispersing cloud, by having appropriat e values f or A3 and A4 
The values of k2 , A3 and A4 are determined by the cumul ants. These 

cumulants which can be obtained from the equations of dispers ion, will 

be discussed in section 3.5. 

3.3. Marginal Density Function X*(z,y) 

A differential equation for instantaneous cross wind line source 

is obtained by integrating the dispersion equation (2.8) for the lateral 

direction. In the absence of mean vertical velocity and hori zontal ve-

locity gradient (au1/ ax) , such an equation has been shown in(2 .10) as 

ax u ax a ( K ax) + CK ~ ) at + 1 ax = ax X ax a Z Z dZ 

Integration of this equation for the direction of 'x' yields a 

differential equation for x* as 

00 

J 
_ oo 

u
1 

dx = ax 
00 

J 
- 00 

Using the boundary condition 

K 0 
X ax 

it can be shown that 

as 

00 

a (K ~ ) dx + ax X ax 

a X oo 

_i + f Ul at ax = J : z (K z dx. 
_ oo - 00 

00 

J !z (Kz !;) dx 
- 00 

(3.8) 

(3.9 a) 

(3. 9) 
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Here the functional forms for u1 and K should be obt a ined from th e z 

characteristics of the representing flow field. l:nder adiabatic con-

ditions, in the surface of the atmosphere there is enough support for 

the mean velocity distribution, that 

l n z 
z 

0 

when mass and momentum transfers are identically equal (Reynold's 

analogy; when the stress in the surface layer is constant it can 

be shown that 

K = K u*z z 

(3.10) 

(3.11) 

Substituting (3.10) and (3.11) for u1 and Kz , respectively, 

into (3.9) and performing the integration using the following boundary 

conditions 

X 0 as z 00 

K 0 
z dZ 

(3.12) 
as z 0 

it can be shown that 

d [K u z ~ ] 
dz * dZ (3.12a) 

and the marginal density function as 

(3 . 13) 

Now the density function for the dispersion of contaminants from an 

instantaneous line source can be 1vri tten as 
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x (x,z,t) = f(xlz,t) x*(z,t) 

= 
1 + --1152 

z 
KU t) 

* 
(3.14) 

The process of determining the first few moments of the density function 

'f' and to obtain the parameters µ 1 , o and \ 3 , is dealt with in 

the following sections. 

3.4. Center of Mass of the Cloud-Determination of Batchelor's 
Constants 'b' and 'c' 

Center of mass of the cloud is defined as 

00 00 00 00 

z = J J z x dz dx and x = J f x x dx dz 
- 00 0 0 - 00 

Multiplying the equation (3.8) by 'z' and performing the 

gration as in (3.14) it can be shown that 

00 00 00 00 

az fz l n z ( I dx) dz I a [Ku*z a ( f xdx)] dz + - = z at K z ax az d Z 0 0 - 00 0 - 00 

(3.14) 

inte-

(3.15) 

The second integral on the left hand side vanishes as ' x ' is zero at 

either of the limits of integration. Performing the integration on the 

right hand side of (3.15) using the boundary conditions (3.12) and the 

relation (3.13), it can be shown that 

and 

dz 
dt = 

00 

(3.16) 

comparing (3.16) with Batchelor' s relation for z in (2 .11) it can be 

shown that b = K . The average vertical velocity is a cons tant in 
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sp ite of the fact that t he aver age ve rtical Eul er velocity i s :era a t 

al 1 points in the flow. This i s due to th e fact t hat the par ticle is 

free t o rise but i s prevented fr om a downward motion by t he wall. Center 

of mass of th e cloud ris es linearly with time as predicted by G.K. 

Batche lor. The above results are obtained by Elli son [195 7), Chatwin 

(1968) and Chaudhry [1969), etc. 

Comment - By the us e of power law relation for the mean velocity 

and conjugate law for the vertica l eddy diffusivity, namel y, 
2( u ,:c z 

and K z 
a: z (1- a ) in eq. (3.8) the following results are obtained. 

a 1 

dz l+a l+a 
dt 

a: t z a: t 

2 
l+ a 

z2 a: t (3.17) 

It shows that the rate of rise of center of mass of the cloud 

decreases with time for a> 0 

Conside r the dispersion equation (3.8). For long times after 

release.Manin [1966) and Saffman [1962] have shown that the longitudinal 

diffusion term (a K 2 ) 
ax X ax contributes very little to the horizontal 

scattering compared to that caused by the interaction of vertical 

gradient of mean velocity with the vertical turbulence transfer. Hence, 

when thi s t erm is neglected equation (3.8) will be in a convenient form 

for de t erm i ning the statistical properties of the density function. 

(~ R.n ~) ax a 
( KU*Z ~ ) (3.18) + -= at K z ax a z az 

0 

Multiplying (3.8) by 'x' and performing the integrations in space as 

in (3.14), a differential equation for X is obtained:, 



dx 
dt + 

00 

f l n 
0 

z 
z 

0 
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00 

( f x dx) dz= ax 
00 

f 
0 

00 

f x dx) dz 3x 

Using boundary conditions (3.12), it can be shown that the integral 

on the right hand side is zero. Also it can be shown using boundary 

condition (3.9a) 

dx 
dt = 

= ~ 
K 

00 

f l n 
0 

00 

f l n 
0 

z 
z 

0 

z 
z 

0 

00 

( J xdx) dz 
- 00 

Substituting (3.13) for x* it can be shown that 

dx 
dt = 

00 

f (l n ~) z 
0 0 

= ~K [ 
00! l n __ z_ exn (-z/Ku*t) - ln zo 

00

J exp (~) dz J 
KU* KU* KU* t ' t t O KU*t KU*t 

and 

= ~ 
K 

[- y + l n KU*t] 
z 

0 

where y = Euler constant _ 0.57721 

X for t > 
4z 

0 (3 . 20) 

Batchelor's Constant 'c' - Batchelor [1964] showed the following for 

the speed of the center of mass of the cloud in the directing mean flow: 

dx dt = U(cz ) 
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Comparing the r esul t of Equati on (3.1 9) and (3. 10) , i t can be shown that 

c = e - y = 0.S615 (3.21) 

The above results also are obtained by Chatwin [1968) . 

Comment - By the use of power l aw relation for t he mean ve locity 

and conjugat e l aw for 

Batchelor's constant 

the 

'c' 

C = 

vertical 

can be 

r C-1-) l+a 

1 
1-a 

Cl. 

for 1 
a = 7 we ge t C = 0.654 

eddy diffusivity i n Eq. (3 . 8), 

shown equal to 

r( l:a ) 

Trajectory Equatio n - From equations (3.16) and (3.19) the 

traj ectory equation can be wri tt en as 

or 

dz 
dx 

X 
z 

K2 
[l n 

z 
z 

0 

-1 
ku*t] 

Y+l z e 
0 

z 
Y+l] 

z e 
0 

for 

[l n z 
z 

0 

- Y-1) 

Y+l z > z e 
0 

3.S . The Firs t Few Stati s t ical Pr operties of the Cloud 

The procedure adopted by Chatwin [1968), name l y , "Aris moment 

(3.22) 

(3. 23 ) 

t ransformat ion" is followe d for de termining th e s tatistica l properti es 

of a cloud of material re l eased instantaneousl y in a turbulent shear 

l ayer. Lagrangian simi l arity hypothesis is utili zed in solving the 

equation (3 .1 8) f or the concentration fie l d in space and t ime. 



Equations (3.13) and (3. 16) sho~ 

( _ z_ ) exp -
,< U* t 

Vertical variance of the cloud can be obtained as 

0 2 (t) = f (z-z) 2 ;. *(z,t) dz = (v u*t ) 2 
7. 

0 

(3.24) 

In the constant stress layer where th e turbul ent intensities are of 

the same order as reported by Panofsky [1970), and Klebanoff [1955), the 

following assumption can be made. 

The above results and the following Lagrangian hypothesis aid in 

tracking the solution for the equation (3.13). On dimensional grounds 

Batchelor [1964) has shown the solution of this equation as 

x (x,z,t) = 
1 F (x-x 

au t * 

Now defining the similarity variables as 

B = and 

equation (3.18) is transformed to (see Appendix pages 53,54) 

n 
J F 

+ (n+l) an 

(3.25) 

(3.26) 

(3.27) 

This equation is in a convenient form to determine the statistical 

properties of the density function F. Moments of 'F' about x are 

defined as 



24 

00 

e (n) = f Sn F dS n for n = 0, 1,2, .. . n. 
- 00 

e (n) is the nth moment about the center of mass of the cloud. n 

Boundary conditions to be satisfied by ' F' 

F 0 as s ±00 

and n oo 

and e (n) are: n 

e (n) n 00 n = 0,1,2 ... n 
de 

(3.28) 

n dnn 0 as n 0 (3 . 29) 

Multiplying the equation (3.27) by 1, S, s2, s3 , •• , Sn respectively 

and then integrating , using the boundary conditions (3.29), the fo llowing 

differential equat ions are obtained for the moments. 

d2e de 
0 (n+ 1) 0 + e 0 n + dn = 

dn2 0 
(3.30a) 

d 2e de1 e 1 (n+ 1) 0 n ey n + dn = - l n 
dn2 aK (3.30b) 

d2e de2 281 2 (n+ 1) 82 ln n ey n + dn - = 
dn2 aK (3.30c) 

d 2 e de3 382 3 (n+l) - 28 ln n ey n + dn = 
dn2 3 aK (3.30d) 

d2e de ne n-1 n ( n+ 1) n (n-1) 8 l n n ey n + dn - = ---
dn2 n aK (3.30e) 

Solutions for 8
0

(n) and e1 (n) are obtained by P . C. Chatwin [1968] as 

e Cn) 
0 

- n = e (3.31) 



and 

where 

e1 (n) = 
-n e 

aK 
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E1 ( n) 
[ln n + y -1] + aK 

E1 (n) is exponential integral given by 

00 

I 
n 

-n e 
n dn 

3.6. Dispersion Integral Equation 

(3.32) 

The author's major contributions are made in this section. The 

dispersion integral equation has been derived from the Eulerian equa-

tion of dispersion. This equation is solved to determine the second 

moment and its variation with height above the ground. Variance of 

the longitudinal density function is obtained for each horizontal layer 

of the cloud, from the distribution of second and first moments. This 

is an important statistical property of a dispersing cloud, which is 

directly related to the width of the cloud. The mean and the variance 

of a density function in each horizontal layer of the cloud are neces-

sary to make quantitative estimates about concentration levels in a 

dispersing cloud . Such statistical properties are derived in this 

section for an instaneous line source in the surface shear layer. 

These estimat~s are not available in previous published works. 

Substituting the expressions for e1 (n) from (3.32) into 

equation (3.30c) we obtain the dispersion integral equation: 

d 20 de2 -2 l n n e Y - ri (3.33a). 2 + E1 (n)] n + (n+ 1) dn - e = [e (in n+y-1) 
dn2 ' 2 a2K2 

(3 33) b (n +l) en and 1·ntegrating we obtain Multiplying · . Y 

- n(l- 1) 2 - n ] ( nl-" l) + ne 2 -2e (l- 1) 

(3.33b) 
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where l = ln(ney) (see Appendix pages 54-56). 

Now it can be shown that (see Appendix pages 56-57). 

= 2 (n+l) f [El (n)+l e- n)(nl-1) 

a2K2 n n (n+l) 2 2(n+l) 2 
-n l 2e ( -1)] dn 

(n+l) 2 

(3.33c) 

This integration has been performed, term by term using the boundary 

conditions (3.29). It is shown that (see Appendix pages 57-59), 

where 

n r (a, n) 

1 [2E1 (n)l + l 2 e - n (n+2)- 2nE1 (n) + 3e -n_ (n+l) (r" (1, n) + 
a2K2 

= 

ex, 

r"(l ,n) = J e-t (l n t) 2 dt, 
n 

ex, 

-t r 1 (l, n) = f e l n ~Jt , and 
n 

n ex, a r(a, n) f n -t ta-l dt = (ln t) e 
aan n 

(3.34) 

are the derivatives of incomplete gamma functions w.r.t. the parameter 

'a'. These derivatives were obtained by the author for all 'n' (see 

Appendix pages 70-72). 

ex, 

r " (1 , n ) = J e -n ( ln n) 2 d n 
n 

is not tabulated elsewhere 

to the author's knowledge and is difficult to evaluate as such. This 

integral was transformed as shown in Appendix, page 71 to evaluate it, 



where 

ex, 

J e n 
n 
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(l n n) 2 dn = r" ( 2 , n) - n e - n ( l n n) 2 - 2 r ' (1 , n) 

ex, ex, 

r " ( 2 , n ) = J n e - t ( l n n ) 2 d n = J e - n (f.n n ) 2 d n -
n 0 

1T2 
= - + 

6 

n 
y 2 -2y - J n e-n (l n n) 2 dn 

0 

The second integral was performed numerically by utilizing 

Romburg's iteration technique, correcting the end points to the eighth 

decimal place. They were tabulated by the author for the value of ' n ' 

equal to 10.0 with an interval of 0.001. 

e2 (n) has the following properties 

at n = o (see Appendix page 60) 

as n -+ 00 (Appendix Page 60) 

ex, 

and 1 (see Appendix page 61) (3.35) 

In obtaining the above integrals we utilize the following property: 

-n + e l] -+ O as n -+ O 

Reference can be made to the tables referred to in the bibliography. 

Numerical values of e2 (n) were obtained utilizing the above 

results. The nature of e2 (n) with increasing height was shown in Fig . 2. 

The mean and variance of the density function for the direction of mean flow 

can now be derived as follows. 
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00 

J xx dx 
- 00 

00 

f X dx 
- 00 

Transforming the variables as shown 

x = au*t f3 + x X = 
1 

i t can be shown that 

00 00 

f X dx = J l Fd(3 
KU t = 

00 

f x X dx 
- oo 

and 

JJ (n) = 

Similarly, 
00 

- 00 * 

= 
a 
K 

(au*t) 
0

1 
(n) 

8 (n) 
0 

x8 (n) 
0 

+ X 

F( f3 ,n) 

J (x-µ) 2 xdx 
2 

0 2 (n) 01 (n) 
o 2 (n) 

- 00 

(au,t) [eo('l ) - ( eo(nl) = = X 00 

J X dx 
00 

(3.36) 

'] (3.37) 

Figures (3) and (4) show the results, )J and o2 as a function of n . 
X 

They show that the variance of the cloud remains approximately as constant 

with height in the region of the bol.ll1dary layer under consideration. 

This result follows the constancy of the shear stress in the surface 

layer. 

3.7. Skewness Properties of the Cloud 

Solution of the equation (3.30) for the third central moment will 

reveal the skewness properties of the density function for the direction 
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of mean flow at all planes above the boundary . . Multip l ying t he equation 

(3.30d) by en(n 2+4n+2) for convenience and integrating i t can be shown 

(see Appendix pages 62-63). 

de 
(n2+4n+2) dn3 - 2(n+2) e3 = 

3 - n e 
aK n 

n J e2en l (n2+4n+2) dn 
0 

Integration of this equation (3.38) between the limits of zero and 

infinity using the boundary condit i ons (3.29) leads to 

00 

f 
0 

- n n 
\ [f e2en l (n2 +4n+2) dn] dn 

0 

(3 . 38 ) 

(3.39 ) 

The integral on the right hand s ide of the equation (3.39) i s compl i cated 

for analytical work. It has been solved by numerical methods to obtain 

the following value (This result is shown in Fig. 7). Now it can be 

shown that 
00 00 

[5.715 - 4 (3 . 40) 
0 0 

To obtain the value s of the second and third integrals on the 

right hand side of the equation (3.40), multiply the equation (3.30d) 

by unity and ' n ' respectivel y and integrate them between the limi t s of 

zero and infinity. Using the boundary condit i ons (3.29), it can be 

shown that (see Appendix pages 64-70). 
00 

00 

f e3dn = 1 aK 
1T2 

[4 - 6 + iµ"(l)] 
0 

00 00 00 

and f n8i n 
1 [f e3dn + 3 f n l ein ] = 4 aK 

0 0 0 

1 [ ( 4 - 1T 2 
iµ"(l ) ) + 3 1T 2 5 .!..!_ iµ "(l )) ] = -+ (2 - - - + 

4a 3K3 6 6 9 9 

::: (3 . 41 ) 
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Substituting these values in equation (3. 40), it can be shown that 

8 (O) ::: _ 2.267 
3 

The skewness coefficient 

3 E[(x-x) ] 
>- 3 (n) m = 

[E(x-x )2]3/2 
= 

m 

of the 

1 
a 3 (z,t) 

density function is given by 
00 

J 3 x dx (x-x) m 
- 00 

00 

J X dx 
00 

(3.42) 

(

81 (n))2 3/2 
-

80
(n) ] (3.42) 

At ground level the value of n = 0. Substituting the values for 03(0), 

8 (0) in the equation (3.42), the skewness coefficient 
0 

at the ground level can be obtained as 

0.215 
(0.355) 312 = - 1. 02 (3.43) 

Further integration of the equation (3.38) to obtain the skewness 

coefficient as a function of height has been found to be unnecessary. 

This effect is discussed in Section 4.1.3. 
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CHAPTER IV 

RESULTS AND DISCUSSIONS 

In this chapter, the statistical properties of di spersion of 

materials released from an instantaneous line source are di s cussed. 

Based on these properties, namely the mean, variance and skewness 

coefficient, a descriptive field of concentrations and a probab l e 

shape of the cloud are presented. Spatial distribution of material 

due to a quasi-continuous source, and ground level concentrations 

downwind of a continuous line source are also presented. The result s 

for a continuous line source are compared with the available dat a. 

4.1. Discussion of the Statistical Properties of the Cloud 

In this section, the mean, variance and the skewness properties 

of the cloud are presented. Mean and variance of the longitudinal 

distribution of the material within the cloud are found to vary 

with height above the boundary. They also vary with time of fli ght 

of the cloud. An expression derived for the variance shows qual i-

tative agreement with the exi s ting experimental results. 

4.1.1. Mean of the concentration distribution - Mean of the 

concentration distribution is defined in the context of the present 

work as, the mean of longitudinal distribution of the mater ial in a 

horizontal layer of the cloud parallel to the surface. This mean is 

a function of height above the surface and increased with hei ght. 

Variation of the mean with height is discussed in this section. 

Mean of the concentration distribution is given in equat ion 

(3.36) as 
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00 

f xxdx e 1 ( n) - 00 

X = = au*t + X m 00 8 ( n) 
f xdx 0 

- 00 

Variation of the mean with height is shown in Fig. 3, with the 

following nondimensional coordinates. 

X - X m and z n = ---Ku*t 

Mean coincides with the center of mass at a height where 

( 4 .1) 

( 4. 2) 

n = 0.7362 . Above this characteristic height, the could leads its 

center of mass, and be low this height it lags behind the center of 

mass . This variation of mean with height introduces profound skew-

ness in the shape of the cloud, which will be discussed in Section 

(4.3). Velocity gradient present in the surface layer is primarily 

responsible for this nonsymmetry in the shape of the cloud. 

4.1.2. Variance of the cloud - For any passive matter released 

in a two dimensional turbulent shear flow, the center of mass of the 

cloud of material disperses in two directions. The cloud disperses 

and diffuses around the center of mass due to shear, turbulent and 

molecular diffusion properties of the characteristic flow field. 

Variance of a diffusing cloud of contaminant in a turbulent shear 

flow characterizes these properties. G.I. Taylor [19 21] demonstrated 

that the variances are related to the Lagrangian correlation function 

of turbulent motion. These functions are not es tablished due to in-

herent difficulties involved in obtaining them. However, variances 

are obtained in thi s present work (Section 3.6) by assuming Lagran -

gian similarity for the solutions of Eulerian equations of turbulent 

dispers ion. 
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Variance of the cloud fur the vertical direction was gi ven in 

equation (3. 24) as 

o2 = E[z-z] 2 = z (4.3) 

Variance for the longitudinal direction of the cloud was obtained in 

equation (3.37) as a function of height. Variation of this variance 

with height is present ed in r-ig. 4, on a nondimensional coordinate 

plane. In a horizontal plane, variance increased proportionally to 

the square of time. At any given time variance increased slowly wi th 

hei ght up to n = 2.75 and then decreased monotonically. These pro-

perties are similar to those of longitudinal oscillations 
,--2, 
u' or 

turbulent shearing stress 1n a two dimensional turbulent shear flow 

[Klebanoff , P.S., 1955]. 

Rate of variation with height of the longi tudinal variance was 

very sma ll within the height of the surface layer of the atmosphere. 

Hence it was assumed to be a constant for the computation of the 

concentration field . 

4.1.3. Skewness property of longitudinal density function -

Skewness properties of a diffusing cloud were treated ana l ytically 

in Section 3.7. Skewness coeffi cient for the longitudinal density 

function was expressed by the equation (3.42) . This coefficient was 

obtained for ground level distribution. It was assumed to remain 

constant within the height of th e surface l ayer of atmosphere for the 

following reasons: Lagrangian similarity is assumed for th e solution 

of a t wo-dimensional dispersion equation in the presen t analysis . This 

simi lari ty hypothesis results in providing a density function for the 

concentrat ion, which remains similar for all points in space . Skewness 
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coefficient is a nondimensional parameter which should remain 

constant, since the density function should remain similar for all 

space -time configurations. 

Shape of an instantaneous line source, a descriptive field of 

concentrations for a quasi continuous source and ground level concen-

trations for a continuous line source are presented in the following 

sections, treating the skewness coefficient as a constant. 

4 . 2. Density Funct ion for Concentration 

Exac t solutions obtained in Chapter III for the statistical 

properties of the cloud a llowed us to specify the density function. 

This is obtained by truncating the derived density function (3 . 13) to 

the third Hermite polynomial and substituting the statistical parameters 

as shown. 

x (x,z,t) = 1 3 ~2 Z (~ - 3~)] Exp(- - - ) 6 2 KU t 
* 

2 Variance of longi tudinal density function, 0 = given by Eq. (3.37) X 

2 Variance of marginal density function, 0 = given in Eq. (3.24) z 

= (x - X )/o m X 

A = 1.01 is a constant, makes the density integrate to unity. 

A typical density curve for the concentration at ground level 

is presented in Fig . 6 . However, the concentrations at other levels 

above the ground can be obtained from the same figure. The density 

curve may be slid along the mean curve to a required height, •n• , and 

multiplied by the marginal density function, , -n , 
e Conc entration 

versus time curves can also be obtained from the above density function. 
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4.3. Shape of the Instantaneous Line Source Cloud 

The shape of line source cloud was obtained from the descriptive 

field of concentrations. A typical shape of the diffusing cloud is 

given in Fig. 7, employing similarity coordinates. The shape is given 

by isocontour lines; these contour lines beyond the 10 percent l i ne 

exhibit a hump at the back of the cloud. The reason for such a be -

havior is exp lained as the effect of truncation of the density function. 

Apparantly the truncation does not give a good approximation at the 

tail of the longitudinal densi ty function. 
A cross-section of the cloud is found to be asymmetric about its 

mean. This effect is due to the presence of profound shear in the 

surface layer of the atmosphere . The top of the cloud is stretched 

forward with a greater speed while it is simultaneously diffusing in 

the vertical and longitudinal directions. Experimental verification 

of these properties is possible by using photographic techniques. 

However, it is extremely difficult to design instrumentation which 

can collect and measure the instantaneous concentrations. Samples of 

measurabl e concentration are difficult to obtain while the cloud is 

diffusing and simultaneously convecting rapidly in a turbul ent atmo-

sphere. Chandra [1968] measured the instantaneous concentrations and 

obtained the cros s -section of a point source cloud . In hi s experi-

ments the uncertainty in the measurements was explained by the distor-

tion and compres si on effects of the diffusing cloud in the samp ling 

tubes. There is no r eport availab le on the longitudina l distribution 

of the material. 

The variances obtained in equation (3.24) and (3.37) r eflect th e 

gross characteristics of the diffusing cloud . Experimental results 

on variance of instantaneous sources have been report ed by Frcnkiel 
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and Katz [1 956]. They concl uded from their field data that 11article 

variances for instantaneous sources arc proportional to the square of the 

time of their trave l. Sources were released at various hei ghts wi thin 

the firs t one hundred meters of the planetary boundary layer. Gifford's 

analysis [1 957 ] based on Kellogg's [1956 ] data a lso supports the above 

conclusions, i . e., the variances of the dispersing puffs are proportional 

to the square of the dispersion time. 

4 . 4 Quasi-Continuous Source 

Instantaneous source is a fictitious one, in which the contaminants 

have to be released within a zero interval of time. Such a source does 

not exis t in practice. Most of the sources in practice are quasi-

continuous . Dispersion of matters due to such sources cannot be eas-

ily treated analytically . llowever, semianalytical predictions can be 

made for these sources, by integration of the distribution function of 

an instantaneous source, for their total life time. 

Equation (3.33) is integrated numerical ly for a specified time 

of rel ease and the results obtained are presented in Figs. 8, 9 and 10. 

In thes e figures spatial distribution of the material is shown in real 

coordinates . The concentration curves are extremely nonsymmetri ca l 

due to shear effects in the surface l ayer. These figures indicate that 

there is a horizontal l ayer in which the concentration remains constant 

with distance downs tream. On th e other hand, in the layers below this, 

the concentration decreases with increasing distance. In the layers 

above this, the concentration increases with downwind distance. These 

results can be visualized better when the lifetime of the source is 

increased. Computer programs, to obtain these spatial distribution 

curves, are given in Appendix II. 
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Plume height can be predicted from the isoconcentration lines of 

a prolonged quasi -continuous source. However, an optical threshhold 

on the densit r, of the plume has to be defined in such cases. 

Experimental verifi cation of predictions made about quasi-continuous 

source is possible under careful instrumentation techniques. In some 

experiments dosages were measured for elevated instantaneous line 

sources. MacCready, Smith and Wolf [1961] reported the results for 

sources released from a low flying aircraft. Similar experimental 

results were reported by Smith and Wolf [1963]. In all these cases, 

sources were located at heights beyond the surface layer and dosage s 

at ground level were measured. No data was reported of the i nst an-

taneous distribution of the material. The marked effect of irregular 

terrain on diffusion patterns is also reflected in these experiments. 

The dat a shows a large s catter and offers little help in establishing 

any theoretical deve lopment. Experiments under controlled conditions 

are not available . Such experimental results can be obtained only 

i n wind tunnel studies. Sophisticated instrumentation capable of mea-

suring instantaneous concentrations are still in a development stage. 

Progress on instrumental techniques to measure the concentrations of 

a diffusing cloud are reported by Lumley [1970]. 

4.5 . Monin -Pasquill's Constant b ' 

Monin [1959] proposed a similarity relation for dispersion in 

neutral flows, to determin~ the extent of vertical spread of smoke 

wi thin the surface layer. He defined 

w* = 
dz max 
dt (4.5) 
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He reported a value for b' = 0.75 by analyzing his experiments on 

smoke puffs. The R.M.S. value of vertical components of wind velocity 

was shown to be 

Q= 0.86 u* ( 4. 6) 

Pasquill [1966) obtained a value of b' = 1.2 on the analysis of 

experimental data at Porton. However, in his analysis he defined 

z as the height at which the concentration level x = 0.1 x max max 
Such an assumption for z is essential to avoid any specification max 
of optical threshold and visibility conditions in the field. 

In the present theoretical analysis, the value of b' is estimated. 

Utilizing the results in Fig. 7, and defining z max the same way as 

Pasquill did, i.e., the value of b' is estimated as follows: 

z max 2. 3 at 0.1 --- X = Xmax KU*t 
( 4. 7) 

z = 2.3 KU*t max (4.8) 

az max 2.3 0.92 b'u* = KU* = u* = at ( 4. 9) 

Hence b' = 0.92 

This value of b' lies in between the experimental estimates of Monin 

and Pasquill. 

4.6. Cloud-Length at the Ground Level 

The length of a diffusing cloud of an instantaneously released 

mass at ground level is defined as follows: It is the range of 
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distance at the ground level which is exposed to the contaminant by 

at least 10 percent of the maximum concentration level present in the 

cloud at any given time after release. Length increases with time or 

distance of travel of the cloud. This length is obtained from Fig. 7 

by the 10 percent isoconcentration line as 

w = --- = --- -
4.35 
au*t 

( 4 . 10) 

x1 -xm x2-x 
where --- and __ m_ are the points of intersection of the 10 

au*t au*t 
percent concentration line at the ground level. 

This distance can be related to the mean distance traveled by the 

cloud at the ground level as follows: From (3.36) it can be shown that, 

(4.11) 

Using the expression for X from equation (3.20) it can be 

written that 

xml z=0 
= u*t [i n KU*t - y - 2] K z 

0 

(4.12) 

= u*t i n KU*t 
K y+2 z e 

0 

and 
X 1 m i n(KU*t ) (4.13) --w-- 4.35 aK y +2 z e 

0 

where a :: 1.5 

K = 0.4 

4. 7. Ground .Level Concentrations Due to a Continuous Line Source 

In order to obtain the ground level concentrations for a continuous 

line source, numerical integration of density function with respect to 
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time was performed in the computer CDC 6400 at Colorado State University. 

!~re stationary conditions were assumed for the turbulent flow field. 

as: 

Writing the ground level concentr1tion for continuous line source 

xc .Q. (x,z)j 
z=O 

tl 
= J x (x,z,t)dt 

0 

t2 
+ J x (x,z,t)dt 

tl 

00 

+ J x(x,z,t)dt 
t2 

(4.14) 

the numbers 't ' and 1 
1 t 2

1 were found such that the contribution 

from the integrals one and three on the right hand side of the above 

equation were negligible. Hence, the integration was performed for the 

interval of time between t 1 and t 2 only. This truncation reduced 

the computing time considerably. Integration performed for any further 

length of time contributed no significant increase of accuracy. 

The time interval chosen for the integration was an optimum one, so 

that steady state answers were obtained . A smaller interval did not 

produce any significant deviation. 

Ground level concentrations ·11ere obtained for different topo-

graphical conditions by varying the roughness coefficient I z I • 
0 

Concentrations were also computed for different values of mean velocity . 

This was done by varying the values of shear velocity. These results 

are shown in Fig. 12. Concentrations at different sites downstream 

of a continuous line source gave a definite relationship between the 

shear velocity, roughness coefficient and downwind distance as 

(4.15) 
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I t was found that exponent m :: 0.1 . The exponent 'p' varied with 

location. For value of 'x' of the order n 10 feet, 'p' increased 

as 'n' increased and reached an asymptotic value of one for large 

'n' of the order of four. This asymptotic value for 'p' was pre-

dicted by Batchelor [1964]. 

Continuous line source experiments in the wind tunnel by Poreh 

[1963] and Quarashi [1963] compare well with the present results of the 

exponent 'p' . Field experiments at Porton, reported by Pasquill 

[196 2] gave va lues for the exponent 'p' in the range of 0.9 - 1.0 

4.8 . Qualitative Comparison Between the Observat i ons in t he Atmosphere 
and the Results Obtained by the Simi larity Theory 

Observations made in the atmosphere on the dispersion of radio-

active materials released from i nstantaneous and quasi-continuous point 

sources are available from the atomic energy publication by P. W. Nickola 

et al., [1970]. Instantaneous sources were simulated by crushing glass 

ampules filled with Kriplon-85 gas, by rifle shots. Experiments were 

conducted on a flat terrain under various stability conditions in the 

atmosphere. Data were collected for mean velocity, temperature distri-

bution, standard deviation of wi nd speed and direction. Ground level 

concentrations were obtained at 200 m. and 800 m. from the source by 

radioactive detectors. Data stored and printed by computer are 

available. Basical ly speaking, this data cannot be used as such for 

comparison, because observations are made f or instantaneous point 

source and the theoretical development in this study is for an instan-

taneous line source. However, if the assumption is made that the 

flow is laterally homogeneous, it is possible to integrate the data 

for lateral direction to represent line source data. 
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Test number PS has been selected from the eight tests conducted 

for instantaneous sources, because the velocity distribution of wind was 

very nearly logatithmic during this test in the field. Velocity distri-

bution plotted on a semi-logarithmic paper provided a best fit, giving 

the values of shear velocity u* = 0.836 m/sec and roughness coefficient 

z = 0.0536 m. Substituting these values into (3.13), (3.16) and 
0 

(3 . 20), the marginal density and center of mass of th e c , oud w,~re 

obtained for the dispersing material for any given time after release. 

These results are shown in Fig . 13. Observations on the ground level 

exposers of material are also shown in this figure. It can be seen 

from this figure that there is not promising agreement between the 

predictions and observations. Reasons for this disagreement were, 

however, investigated. End window type detectors were used as sensors 

to measure the instantaneous concentrations in a dispersing cloud of 

radioactive gas. These detectors were calibrated in the gas enclosed 

in a balloon. Calibration provides a relation between the concentra-

tion and the number of counts per second. However, when these detectors 

are placed in a dispersing cloud, they may count less than they could 

have counted in a stationary cloud of the same concentration. Second-

ly, the observations reported are not for instantaneous concentrations. 

They are for an average over 2.4 seconds. When the cloud is convecting 

and diffusing, the measured average will be less than the instantaneous 

concentration present at any spatial point. Also, stability of the 

atmosphere was slightly unstable during this test. Such a stability 

condition enhances the vertical transfer and reduces the ground level 

exposures when compared to the adiabatic atmosphere. The above rea-

soning indicates that the theoretical estimates would be expected to be 
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higher compared to the experiments . Estimat i on of errors due to 

calibration defects and unstableness of the flow are possible 

when details about the flow and complete description of the con-

centration field are known. Such detail s are not available . However, 

it can be seen that the time of peak ground level exposure has been 

well predicted. Given a distance, ' x 1 , from the source, exposure 

time of the contamination at ground level can also be well predicted 

when the distribution of wind is known. 

Observations about the dispersion of instantaneous point sources 

within the first one hundred meters of the atmosphere were also re-

ported by Frenkiel and Katz [1953). By analyzing the visual diameters 

of dispersing smoke puffs, they concluded that the particle variances 

were proportional to the square of time of their travel. Gifford's 

[1957] analysis, based on Kellogg's [1956) data, also concludes that 

the variances of concentration within the dispersing puffs are propor-

tional to the square of time of dispersion. In the present work, 

variance characteristics of the instantaneous line source were derived 

from the semi-empirical equation of dispersion by utilizing the 

Lagrangian similarity hypothesis. Results shown in equation (3.24) 

and (3.37) are in agreement with the above conclusion drawn from 

field observations. 

4.9. Practical Applications of the Investigation 

The investigation reported in the present study is mainly oriented 

towards understanding the effect of the dispersion of pes ticides and 

insecticides, released by aircrafts, on vegetation in f arm l ands and 

forest areas. It is very important to es timate the ground l eve l 
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exposures due to the spread of these materials. Excessive exposures 

are very dangerous. Recent studies on food quality indicate that 

an excess use of pesticides and insecticides are responsible for food 

poisoning. If they are present in excess they may be absorbed by 

plants during osmotic processes and inspiration. They may also enter 

food products by direct contact. So it is very important to under-

stand the mechanism of spread of these materials in order to provide 

reliable estimates of ground level exposures. These materials are 

always released across the direction of the wind to ensure even spread 

and maximum coverage of land. Such a source can be well represented 

by an instantaneous line source. The present study has accomplished 

in providing a primary solution for the spread of materials released 

from such a source when the density of the material is not very much 

different than the density of air. Ground level exposures can be 

easily estimated when the distribution of wind velocity is known. 

Such estimates can be used to set standards on the strength of the 

releases to ensure not exceeding allowable exposure levels on the 

vegetation. 

This study can also be used to estimate ambient air pollution 

levels from automobile exhausts, when the wind direction is across the 

highway system. Automobiles release exhaust gases at ground level. 

When the wind blows across the highway, these releases from each 

automobile can be treated as a separate instantaneous line source. 

Distribution of the material released from each source can be obtained 

using the proposed density function in the present study. However, 

when the frequency of the automobiles and their corresponding strength 
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of releases is known, pollution level downwind of the highway due 

to the automobiles can be estimated by summation of the contribution 

from each automobile at any given location. Such estimates can be 

easily obtained using the present high speed computers. 
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CHAPTER V 

CONCLUSIONS 

1. Dispersion of mass from an instantaneous line source, in the 

atmospheric surface layer is investigated. An exact solution for the 

marginal density function is obtained from the Eulerian equations of 

dispersion. This function gives the exact amount of material present 

in each horizontal layer of the dispersing cloud, at any time after 

release. 

2. Moment equations are derived from the Eulerian equations by 

assuming Lagrangian similarity density function for concentration 

field. These equations are solved to obtain the statistical proper-

ties, namely the mean, the varinace and the skewness coefficient of 

the longitudinal density function. The vertical distribution of the 

variance property of the cloud indicates a striking similarity with 

the distribution of shear stress in the surface layer of the atmosphere. 

3. The Gram-Charlier density is shown to be suitable for the 

longitudinal distribution of the material. Substituting the statis-

tical properties into this function a longitudinal density function 

is developed. 

4. Utilizing these density functions, spacial distribution of 

concentration is obtained. The shape of the cloud is obtained by 

drawing the isoconcentration lines. The cloud is found to be asym-

metrical with the upper layers of the cloud pulled more in the direc-

tion of wind than the lower layers. 
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S. The maximum height of the cloud is found to be increasing 

linearly with time. The proportionality constant b' in the relation 

Z = b'u t has been found to be equal to 0.92. This value lies max * ' 
in between the experimental observations of Monin [1959] and Pasquill 

[1966]. 

6. The length of the cloud is found to be always greater than 

the height. The length to height ratio, which can be obtained as 

the ratio of the two standard deviations a / a is shown to be equal 
X Z 

to 3.75. This result is in good agreement with the experimental 

estimation of 4.0, obtained by Kazanski and Monin (Monin 1959). 

7. It is demonstrated that the concentration field due to finite 

length releases can be obtained by the numerical integration of the 

density function for the total time of release. However, in such 

cases, stationary conditions are assumed for the flow. 

8. The density function is integrated with respect to time to 

obtain ground level concentrations due to a continuous line source. 

These integrations are performed numerically for various downwind 

distances with different values for shear velocity u* and roughness 

coefficient z 
0 

u* and 

as x 

z 
0 

1 
m p 

U*ZO X 
the value of p 

The results showed a systematic variation with 

A relation for the concentration decay rate is obtained 

The value of 'm' is found to be 0.1 and 

is found to vary with the distance 'x' . For 

the values of 'x' of the order of 10n feet, p increased as 

'n' increased and reached an asymptotic value of 1.0 for 'n' or 

the order of four. This value is predicted by Batchelor [1964] by 

utilizing Lagrangian similarity principles. For values of 'n' in 

between 2 and 3 the value of p is found to be 0.92. This result 
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is in good agreement with the observations in wind tunnels and 

field experiments. 
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APPENDIX I 

Derivation of Equation (3.27) in the Text 

Consider the dispersion equation (3.18): 

ox [~ ln ~] ~ = a ~) -+ - (K u* z at K Z ax oz oz 
0 

(1) (2) (3) 

Equation (3.25) gives 

x (x,z,t) = 1 F x-x z 
(au t' KU t) 

* * 

Substitutions from (3.26) and (3.20): 

B = 
X - X 

au*t 
x = u* t [ln - l] 

K Z e y 
0 

From equation (3.25) , the following relations are derived: 

(1) 

(2) 

ax 1 
at= 

2 (- -) 1 F + ---- oF ( -z ) 
an Ku t 2 

* 

= 

aKU 2 
* 

1 

t 3 

+----
aK(U*t) 2 

oF [ _ 
as 

1 [- 2F - n oF 

aK(u* t) 2 

X ---
au t 2 

* 

_l_ {~ [ln KU*t _ l] + ~}] 
au*t K z ey K 

0 

oF 1 ( B + - (ln KU*t))] an -
aK(u*t) 2t as aK z eY 

0 

~= 1 1 oF 1 1 oF --- = [au* as] ax aK(u*t) 2 au*t as aK(U*t) 2t 

[~ ln ~] 
K Z 

0 

ax 1 [.!.__ ln z ~] ax = aK ( u* t) 2 t aK z O a s 

(3.18) 

(3.25) 
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(3) a 
( KU*Z ~) az az 

an 1 aF = = az an az aK2(u*t) 3 an 

a ( KU>l:Z ~) 1 1 a aF 1 [n 
a2 F ~] = KU* t an [ n anl = --+ az aK2 (u*t) 3 an au t 2 aK(U*t) 2t an 2 an 

* 

Substituting (1), (2) and (3) into equation (3.18) it can be shown that 

1 
[ 

a 2 F a F 1 z Ku t ] - + (n+l) - + [B - - (fn - - fn :..:..::x_::_)] + 2F = 0 
an2 an aK zo z ey 

0 

Derivation of Equation (3.33b) 

Consider the dispersion integral equation (3 .33a): 

d 2 e 2 n --+ 
dn 2 

(3.27) 

Multip lying the above equation by (n+l)en and integrating it, the 

following results are obtained. First consider the integral of the left 

hand side of the above equation: 
n d 2 e 
J (n+l) en [ 2 
0 dn2 
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[ (n+l) 
dn 2 
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de2 + --dn 
de2 -] dn 

y writing l = ln (ne ), (3.33a) can now be written as 

n -2 J n -n = -- (n+l) e l [e (ln n+y-1) + E1 (n)]dn 
a 2 K 2 0 

= - 2 [ J (n+l)en l E1 (n)dn + (y-1) J (n+l)en l dn + J (n+l) l l n n dn] 
a2 K 2 0 0 0 

(a) (b) (c) 

The integrals (a), (b), and (c) are performed as follows: 

n n n 
(a) J (n+l) en l E1 (n)dn = J nen l E1(n)dn + f en l E1(n)dn 

0 0 0 

n n 
= - n(l-l)en E1 (n) + fl dn + J nen E1 (n)d 

0 0 

= - n(l-l)en E1 (n) + n(l- 1) + (en(n-l)E1 (n) + n - l) 

= en E 1 ( n ) ( nl- 1 ) + n l - n - l 
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n 
(y-1) J (n+l) £, dn = (y-1) 

0 

= (y-1) - (£,- -) [ n2 
I 2 2 - n(l-l)] 

n 
f (n+l) £, fn n dn 
0 

n n 
= f n £, fn n dn + f £_ (f-y) 

0 0 
dn 

1 n2 
= 2 [n 2 £, ( - 1 + fn n) + 2 (y+l)] + [nf2-yn(f-l) - 2n(f-l)] 

Adding (a), (b) and (c) it can be shown that: 

ne" [ (n+ !J 
d82 8 

2] 
-2 [ n +f)(nf-1) +n 2 dn- = -- (e E1 (n) 

a2K2 

d02 ___:l_[ El (n)•t 
-n e 

(n+ 1) 82 (nf-1) + -n 
dn - = ne 

a2K2 n 

Derivation of Equation (3.33c) 

Consider the equation (3.33b): 

d8 2 8 
= __ 2_ [(E1 (n)+f e-n) 

(n+l) dn - 2 2 2 n 
a K 

Writing the above equation as 

d02 (n+l) dn - 02 = G(n) 

82 d82 G(n) 
4> ( n) n+l = dn - (n+ 1) = (call) 

it can be shown that 
8 = 2 (n+ 1) 4> ( n) 

(f-1) 2 
- 2n(f-l)] 2 

(f-1) 2 -n j - 2e (f-1) 2 
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and 
d02 di,"' = 02 = (n+ l) ~' + 

therefore, 

~• = (02 -~)/(n+l) = G(n)/(n+l) 2 

Integrating the equation for ~ ' as shown below, 

00 00 

f ~'dn = J G(n)/(n+l) 2 dn 
n n 

00 00 

I = J G(n)/(n+l ) 2 dn 
n n 

where 
82 

and 82(00 ) = 0. =- ' n+l 

It is obtained that 
00 

02 (n) = - (n+l) J G(n)/(n+l) 2 dn 
n 

Derivation of Equation (3.34) 

Consider equation (3.33c) : 

j [ (El (n)+.t e-n 

n n(n+1) 2 

ne- n(l-1) 2 (nl-1) + ____ __,_ 
2(n+l) 2 

oof e-n 
Recall that E1(n) = -n- dn 

n 
and .t = ln (ney); 

(3.33c) 

The integration in (3.33c) is performed ter~ by term as shown below: 

(a) 

(b) 

j E1(n)l d = 

n (n+l) 2 

E1 (n)l 00 E (n) - e-n.t 
J l d n+l + n (n+l) n 
n 

- f 
E1 (n) 

n(n+l) 2 

E1 (n) 
dn = - f n(n+l) 

E1 (n) 
dn + J --- dn 

(n+1) 2 



(c) 

(d) 

(e) 

(f) 

(g) 

(h ) 

(i) 

.e,2 e-n f -- dn 
(n+l) 2 

- J .e_ e-n 

n (n+l) 2 

J n 
-n .e,2 

e dn 
2(n +l ) 2 

- J ne- 11l 
dn 

(n+l) 2 

I ne-n 
dn 

n (n +l) 2 

- I z 
e - n l 

(n+ 1) 2 

2 J 
e- n 

(n+l) 2 
dn 
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dn - J .e_ e- n 
J 

.e_ e- n 
= dn + dn n (n+ 1) (n+ l) 2 

e - n - n 2 e- n.e_ 
= l 2 - f e l dn + J dn 2 (n+l) (n+l ) 2 n (n+l ) 

-n e-n - n 
= _e_ .e, - J dn + 2 f e l dn n+l n (n+l) (n+l ) 2 

- n e- n e - I = dn 2(n+l) (n+l) 2 

dn 

Substituting these r esult s i n (3 . 33c) it can be wr itten that , 

.e_ e- n 

n (n+ 1) 

e- n 
---+ n (n+ 1) 

E1 (n) 

(n+l) 2 
+ 

-n 
e ] dn 

(n+l ) 2 

The integrations in the above equation are performed as shown below: 

(1) 
oo - n 
J l e dn 
n (n+l) 2 

e-n e- n.e_ 
(n+l) dn - J (n+l) dn 



(2) 

(3) 

( 4) 
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oo e-n l f --,----c- dn = n(n+l) 
-n - f _e - l dn 
n 

e-n l 
+ f (n+l) dn 

n 

j E1 (n) 

n (n+l) 2 

00 

f 
n (n+l) 2 

dn = 

= 

dn 

E1 (n) 

(n+ 1) 

E1 (n) 

(n+ 1) 

= 

00 

- I 
n 

e-n 
(n+l) dn 

e-n 
El (n) + f (n+l) dn 

J 
-n e 

n+l dn 

Substituting these resul ts in the equation for s2 (n), it can be 

written as 

where 

oo -n 
[2 E1 (n)l + e-nf2 + 3e-n - 2nE 1 (n) - 2 (~+l) f l dn 

n 

The last i ntegral in the previous equation can now be written as 

- f e-n l dn = 
n 

e-n2f2 j - f e-nfn22 (ney) dn 
n r, 

= •-; l
2 ½ [ I .-nln2 n dn + 2 y I .-n l n n dn + y~ 

e - n l 2 1 [ ] = 2 2 r"(l,n) + 2 y r 1 (l,n) + y2 

n r (a, n) = 
00 

an r(a , n) = J 
n 

are the 

derivatives of incomplete gamma function. It can now be written, 

2 -n n E1 (n)l + f e (n+2) - 2n E1(n) + 3e- -



61 

Asymptotic Properties of e2 (n) 

Consider equation (3.34): 

0 2 - n -n [ + ,{, e (n+2)-2nE1 (n)+3e - (n+l) f "(l, n) 

+2y f'{l, n) + y 2e-n] 1 
= 1 I 2l [E1 (n) + £e-n ] + n[£ 2 e- " -2E1 {n)] + 3e-n - (n+l) [ f "{l,n) + 

2yr '{l,n) + y2e-"J] 
Not i ng the following a symptotic properties , 

Li m 

Lim 

Lim 

r "(l,n) 
1T2 
- + y2 
6 

f '(l, n ) - y 

n E1 (n) O 

it can be shown that, 

Lim e2 (n) 1 (3 - n 2/6) = 
a 2K2 

and 

Lim e2 (n) o 

(3.34) 



00 
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00 

Derivation of J e2 (n) dn 
0 

Rearranging the terms in (3.34 ) it can be written that, 

1 =-- l[E1 (n) + e-n (l-1)] + 2le-n+ n 12 e-n -2nE 1 (n) 
(a) (b ) ( c) ( d) 

- n oof e-n o2 dn] dn + 3e - (n+ 1) ,{_ 
n 

(e) (f) 

Integrations in the above equation are performed as shown below: 

00 

(a) f 2 l [E1 (n) + e-n (l-l)]dn 
0 

00 

0 

7T 2 
= 2 (6 +y 2) - 2y (y-1) - 2 (y+l) 

00 

(b) f 2 l e-n dn = 2(-y+y) = 0 
0 

00 7T2 
(c) J n ,e_2 -n dn (-2y+y2 e = + - + 

6 
0 

00 

(d) J 2n E1 (n) dn = - n2 E1 (n) 
0 

00 

(e) J -n dn 3 3e = 

00 

0 

1 1 1 

0 

7T2 2y (1-y) +y) =6 

00 00 

- J n e-n dn = - 1 
0 0 
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00 00 

(f) - f [(n+l) f e- n .e_2 dn)dn 
0 n 

(n+1) 2 00 00 00 

(n+1) 2 
f -n f. 2 dn J -n l 2 dn = 2 e e 2 n 0 0 

00 00 00 2 ½ (1r 2/6) J !}-- e -n f. 2 dn J n -n f. 2 dn - ½I - n f. 2 dn = e e 
0 0 0 

Substituting these results into the integral for e2(n) it can be 

shown that, 

00 

J e2 (n)dn = 
0 

1 
[ 

1T2 7T 2 7T 2 } 2 (6 - 1) + 6 - 1 + 3 - (2 6 + 1) 

.. 
1 = 

Derivation of Equation (3.38) 

Consider equation (3.30d) for the third moment: 

n -- .e_ (3.30d) 

Multiplying the above equation by (n2 + 4n + 2)en and integrating 

we obtain: 

n J (n 2 +4n+2)en [n 
0 

d 2e 
3 --+ 

dn2 

Integration of L.H.S. of the above equation gives 

Check: Differentiating the result we get back the integrand · 



= (n+l)e 

Therefore, it can be written 
de3 (n 2 +4n+2) dn - 2(n+2) o3 = 

64 

... 
3 -n e 

n 
n f (n2 +4n+2)en e2 l dy 
0 

Derivation of Equation (3.41) 

Consider equation (3.30d) : 

n 
dn2 

(1) (2) (3) 

(3 . 30d) 

Integrating the above equation from n = 0 to 00 using the boundary 

conditions, the following results are obtained: 

n e3 (n) 0 n as n 00 

n de3 n dn 0 as n oo Boundary conditions 

de3 0 n o n dn as 

0 
00 d28 t 00 00 de 

(1) J n 
3 dn I f - 3 dn = -

dn 2 
n dn 

0 0 0 

00 

= e3 I = 8 3 (O) 
0 
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00 d83 
00 00 

(2) J (n+ l) dn = (n+l) 03 - f 03dn 
0 0 0 

00 

= - 83(0) - J 03dn 
0 

00 

(3) - J 20 3 dn 
0 

Substituting (1), (2) & (3) into the eq. (3.3Od) we get , 

00 00 

- 3 J 03dn = - 3 f 82 l n ney dn 
0 a 3K 3 0 

Therefore, it can be shown that, 

00 
... 

Consider the integral on the R.H.S. of the previous equation 
00 

00 00 

= J [2 E1(n) l+l2 e-n(n+2) - 2n E1(n) + 3 e-n_(n+l) J e-n l 2 dn]l dn 
o n 

(a) (b) ( c) (d) (e ) (f) 

The integrations in the above equation are performed term 

by term as shown below: 
00 00 

(a) J 2 l 2 E1 (n) dn = f 2 (ln2 n + 2y ln n + y2 ) E1 (n) dn 
0 0 

7T 2 
= 2 [(- + y2 + 2y + 2) - 2y(y+l) + y2 ] 

6 

7T2 
= 4 + 2 6 
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00 00 

(b) J 2 l 3e-ndn 2 J (ln 3 n + 3y ln2 n + 3 y2 inn+ y 3) - n dn = C 

0 0 

7T 2 00 7T 2 
2 (-y 3 I 1 ) y2) = 3y - - 2 + 6y (- + -6 m=O (1 +m) 3 6 

00 

6 y 3 + 2y 3 -4 I 1 = 
m=O (l+m) 3 

• 
00 c.o (XJ 3.e_ 2 

(c) J nl 3 c-ndn (n+l) c -n l 3 + J ( n+ 1) -n = - e -dn n 
0 0 0 

U) 00 00 

0 0 0 

00 3 
J c-n l dn 
0 

00 00 00 

nc -n .e_3 + J 3 e-n l 3 dn + J e-n .e_3 dn 
0 0 0 

31r 2 7T 2 00 7T2 [ ( -y 3 2 I 1 ) y2) 3y 3 + y 3] = -+ +3y - - + 3y (- + -6 6 m=O (1 +m) 3 6 

7T2 00 

2 I 1 
= 3 - -

6 m=O (1 +m) 3 

00 00 00 

(d) f 2n l E1 (n) dn = - 2 [ f n ln n E1(n) dn + y f n El(n) dn ] 
0 0 0 

2 00 00 
E1 (n) e-n 

dn + y/2] n2 ( - - ln n) 
= - 2 [~ l n n E1(n) - f 2 n n 2 

0 0 

1 = - 2 [- 4 + ( l -y)/2 + y/ 2] = - 1/2 
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co 

(e) I -n 3e .e. dn = 0 
0 

co co 

(f) f - (n+l) .e. [f e-n l 2 dn] dn 
0 n 

00 00 00 co 2 
= - f n ,e_ cf e-n .e.2 dn] dn - I .e. cf e-n .e. dn)dn 

0 n 0 n 

2 00 00 00 2 
n 1 J -n 2 I J n 1 -n 2 = - [- (l- -) e l dn + - (l - -) e l dn 2 2 2 2 n o o 

00 00 00 

+ n (l-1) f e- n l 2 dn I + J n (l-1 ) e-n l 2 dn 
n 0 0 

oo n2 n 7 !i_ 
00 

= - [ J -.e. 3 e- dn - e-n .t2 dn + f n .e. 3 e-n dn -
2 2 

0 0 0 

00 

J n .e. 2 e- n dn] 
0 

9 7!2 00 1 1 7!2 7!2 y 1 7!2 = - [ (- . - - 2 I ) - 2 (- + 1) + ( 3 - - 2 ) - -
2 6 m=O (l+m) 3 6 6 m=O (l+m) 3 6 

2 y 1 1 7!2 y 1 7!2 = - [ 7T - 4 - 2] - [3 6 - 2 - 6] 
m=O (l+m) 3 m=O (l+m) 3 

00 

= - [ 7!2 - 4 I 1 - .!_] 
m=O (l+m) 3 2 

Note: 

j 2 -n 3 n2 oo 1 n e .e. dn = 9 6 - 4 I 
(l+m) 3 o m=O 
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Therefore, it can be shown that 

00 

J e 3 dn = 
1 [(a)+ (h) + (c) + (d ) + (e) + (f)] 

0 

The term under 

(tabulated) 

00 

1 7f2 
[4 - 6 - 2 L 

m=O 
1 ---] 

(l+m) 3 

the summation is given by Eu ler's 

00 

'iµ ' function 

iµ " (1) 2 I 1 - -2.404 = - -
m=O (l+m) 3 

Therefore, it can be written 
00 

7f 2 f e3 dn 1 [4 iµ"(l)] = - -+ 
a 3K 3 6 

0 

Multiplying the equation (3.30d) by n, it is integrated as shown: 

(a) (b) (c) 

00 

= - - 3- J e2 n l dn 
a 3K 3 0 

The above integration is performed term by term by using the boundary 

conditions, as shown below: 

00 

(a) J n2 
0 dn 2 

de 00 

dn = n2 dn3 I -
0 

00 00 

00 

J 
0 

= - 2n8 3 + J 2 e3 dn 
0 0 
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00 d83 
00 co 

(b) J (n 2+n) dn dn = (n 2+n) 03 I - J (2n+l) 03 dn 
0 0 0 

co co 

= J 2n8 3 dn - J 03dn 
0 0 

co 

(c) - f 2n8 3 dn . 
0 

Substituting the results in (a), (b) & (c) into the above equation it 

can be shown 

co co co 

f 1 [ J 03 dn 3 f 02 n .t dn] n 03dn = 4 +--
0 0 a 3K3 0 

co 

Now, consider the integral J 02nQ.dn , 
0 

Substituting (3.34) for 02 , it can be shown 
co co 

J n .t [2 E1 (n) .t + .t2 e-n(n+2) - 2nE1 (n) + 3e-n- (n+l) J e- n .t2 dn]dn 
0 n 

(a) (b) ( c) (d) (e) (f) 

The above integration is performed term by term as shown below: 

co co co 
nf2 - n e- n.e_ ) (a) f 2n .t2 E1 (n) dn n2 1 E1 (n) J = (.t- -) + 2 (- e -n dn 2 2 4 

0 0 0 

7T2 1 7T2 1 = 6 - 2 (1-y+y) = 6- 2 

co 7T2 co 

(b) f n2 .e_3 -n dn 4 I 1 e = 9--
6 m=O (l+m) 3 0 
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00 

(c) f2n 3 e- n dn 
0 

1 
(1 +m) 3 

oo n 3 1 oo oof n2 1 - n 
(d) - ! 2 n2 R.. 2 E1 (n) dn = - [2 E1 (n) 3 (R..- 3)] 1+2

0 
3 (l- 3)e dn] 

= 2 [½ (3 - 2y + 2y - ½)J = - 14/9 

00 

( e) J 3n R.. e- n dn = 3 (1- y +y ) = 3 
0 

00 00 

(f) - J n(n+l) R.. ( J e- n R.. 2 dn) dn 
0 n 

00 00 00 00 

= - J n2 R.. ( J e- n R.. 2 dn) dn - J n R.. ( J e-n R.. 2 dn) dn 
0 n 0 n 

(1) (2) 

(1) - -
n 0 0 

00 

n3 -n ,e_~ d 
00 

e -n ,e_2 = J + J dn 3 e n 9 
0 0 

1 1!2 
00 1!2 00 

12 I 1 ] 1 I 1 ] = - - [33 - + 6 - + - [9 - - 4 3 6 m=O ( 1 +m) 3 9 6 m=O (l+m) 3 

00 00 

(2) = J n R.. ( J e-n R.. 2 dn) dn (see page 67) 
o n 



Therefore 

1T 2 
= - [4 6 -

00 

} - 2 I 
m=O 
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1 ---] 
(l+m) 3 

( f) = ( 1) + ( 2) = 7T 2 3 so 00 

[14 6 + 2 - 9 I 
m=O 

1 ---] 
(l+m) 3 

Substituting the results of (a), (b) .... (f) into the integral equation 

it can be shown that 

00 
1T 2 f n e2 i dn [2 5 .!..!. w"Cl)] = 6- -+ 9 9 

0 

00 

where w" Cl) -2 I 1 -2.404 = 
m=O (1 +m) 3 

Derivatives of Incomplete Gamma Functions 

00 

Gamma Function: r(a,x) = f e-t ta-l dt 
X 

th d . . n 00 n er1vat1ve a r (a, x) f -t (in t)n ta-l dt = = e w•r•t parameter 'a' aan X 

00 

r 1 (1,x) f -t int dt in X 
-x + E1(x) = e = e 

X 

00 

r 1 (2,x) f -t int t dt -x + r 1 (l,x) = e = e (x in x + 1) 
X 

00 

r"(l ,x) f -t (in t) 2 dt = e 
X 

00 

r"(2,x) f t -t (in t) 2 dt = e 
X 

00 X 

f t -t (in t) 2 dt - f t -t (in t) 2 dt = e e 
0 0 
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1T2 t 
y2 - 2y - J t -t (in t) 2 dt = -+ e 

6 
0 

00 00 00 

f "(2,x) J t e-t(in t) 2 dt (t+l) -t (in t) 2 + J - t = = - e (t+l)e 2 
X X X 

00 00 

i nt dt (x+l) -x (in x) 2 + f -t J -t = e 2 e int dt + 2 e t 
X X 

J 00 00 

-t (in t) 2 J -t (in t) 2 dt e + e 
X X 

00 00 

-x (i n x) 2 + f 2 -t int dt + J -t (in t) 2 dt = X e e e 
X X 

f"(2,x) -x (in x) 2 + 2 f '(l,x) + r"(l,x) = X e 

00 

r11 (l ,x) = J e-t (in t) 2 dt = 
X 

-x r 11 (2,x) - x e (in x) 2 - 2f'(l,x) 

-x = r , , ( 2 , x) - e in x [ x in x + 2 ] - 2 El ( x) 

Similarly the following derivatives can be derived, 

r11 (l ,x) -x 
= e (in x) 2 + 2r 1 (0,x) X = 0 r11 (1,0) 

r11 (2,x) = x e-x (in x) 2 + 2f' (l,x) + r 11 (l,x) 

r 11 ( 3 , x) = x 2 e - x ( i n x) 2 + 2 r ' ( 2 , x) + 2 r" ( 2 , x) 

r 11 ( 4 , x) = x 3 e - x ( in x) 2 + 2 r ' ( 3 , x) + 3 r 11 ( 3 , x) 

1T2 
= 6 + y2 

r11 (n,x) n-1 -x 
= X e (in x) 2 + 2r '((n-l),x) + (n-l)r 11 ((n-l),x) 

r 1 (1,x) x=O f'(l,O) = -x 

t n t d - t t 
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r 1 (2,x) -x -x + r 1 (l,x) = x e ln X + e 

r 1 (3,x) x2 -x (x+l) -x 2r 1 (2,x) = e ln X + e + 

r 1 (4,x) x3 -x ln x + (x2 + 2x + 2) -x + 3f'(3,x) = e e 

r 1 (S,x) x 4 e-x ln (x3 + 3x2 + 6x + 6) -x + 4f' (4,x) = X + e 

r 1 (n,x) n-1 e-x ln n-2 (n-2) n-3 n-4 1)) = X X + (x + X + (n-2) ! (x + 

+ (n-l)f'(n-1,x) 
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APPENDIX II 

QUASI-CONTINUOUS LINE SOURCE 

COMPUTER PROGRAM 
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APPENDIX II 
QUASICONTINUOUS LINE SOURCE 

DIMENSION E(2200),Q(120 ,P(320),X(120) 
C THIS PROGRAM CALCULATES THE CONCENTRATION FIELD DOWN 
C WIND OF A LINE SOURCE. CONTAMINANTS ARE PASSIVE 
C AND ARE RELEASED FOR A FINITE TIME (20 SEC) AT GROUND 
C LEVEL. ATMOSPHERE IS NEUTRALLY STABLE. VELOCITY 
C DISTRIBUTION IS LOGRITHAMIC WITH U*=2.5 AND Z0=0.1 FT 
C CONCENTRATION FIELD IS OBTAINED, 10 SECONDS AFTER 
C RELEASE OF CONTAMINANTS. 

READ(S,3)(E(I),I=l,2079) 
3 FORMAT(7Fll.9) 

C E(I) IS EXPONENTIAL INTEGRAL. (TABULATED). IT READS 
C E(I) FOR I=0.001 TO 2.00 AND THEN I=2.1 TO 10 .0 WITH 
C INTERVALS OF 0.001 AND 0.1 RESPECTIVELY. 

A=l.5 
C A=l.5 IS CONSTANT IN LONGITUDINAL VARIANCE 

B=0.4 
C=0.4 

C C=KARMAN CONSTANT 
USTAR=2.5 

C USTAR= SHEAR VELOCITY 
Z0=0.1 

C ZO= ROUGHNESS COEFFICIENT 
GM=0.5772156649 

C GM= EULER CONSTANT 
Z=O.O 

C Z= HEIGHT ABOVE GROUND LEVEL 
J=l 
L=lOO 
M=300 
I=L-1 
P(I)=O.O 
MM=l 

C DO LOOP CALCULATES CONCENTRATION LEVEL AT DISTANCES 
C FROM SOURCE X=20 TO 100 FT 

30 DO 15 K=l,50 
X(K)=K*20 
DO 10 N=l00,300 
T=FLOAT(N)/10. 

C T=TIME AFTER RELEASE. IN THIS CASE 20 SECOND RELEASE 
C IS DIVIDED INTO 200 SMALL PUFFS RELEASED ONE AFTER THE 
C OTHER CONTINUOUSLY. CONCENTRATIONS AT ALL POINTS IN 
C SPACE DUE TO EACH PUFF WERE OBTAINED USING EQUATION 
C (4.4). THEY ARE SUPER IMPOSED (ADDED) TO GET THE 
C EXPOSURE DUE TO THE FINITE RELEASE SOURCE. 

G=-1. 
D=B*USTAR*T 

C D= VERTICAL STANDARD DEVIATION 
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APPENDIX II - (Continued) 

QUASICONTINUOUS LINE SOURCE 

C ETA= VERTICAL SIMILARITY COORDINATE. 
C HERE E(I) IS OBTAINED FOR INTERMEDIATE VALUES OF ETA 
C BY LINEAR INTERPOLATION WHEN ETA LIES IN BETWEEN DATA 
C POINTS. 

NN=ETA*lOOO. 
IF(J.EQ.l)GO TO 13 
ER=FLOAT(NN)/1000. 
ERR=ETA-ER 
IF(NN.LE.2000)GO TO 16 
NNN=NN-2000 
LN=NNN/100 
NN=LN+2000 
AAA=NNN 
ER=LN*lOO 
ERR=(AAA-ER)/1000. 
EI=E(NN)+(E(NN+l)-E(NN))*ERR/0.1 
GO TO 55 

16 AA=NN 
El=E(NN)+(E(NN+l)-E(NN))*ERR/0.001 

55 G=ALOG(ETA)+GM-1.+EI*EXP(ETA) 
13 R=A*USTAR*T 

XE=X(K)/R-(ALOG(D/ZO)-GM-1.+G)/(A*C) 
F=0.2*(1.-(XE*(XE*XE-3.))/6.)*EXP(-(XE*XE/2.+Z/D))/(2.5*R*D) 

C F=CONTRIBUTION FROM EACH PUFF RELEASED AT A SPACIAL 
C POINT AT A GIVEN TIME. 

IF(F.LT.0.0) F=O.O 
10 P(N)=P(N-l)+F 

Q(K)=P(N-1) 
15 CONTINUE 

MM=MM+l 
IF(MM.EQ.2) GO TO 100 
GO TO 200 

C REST OF THE PROGRAM DOES THE PLOTTING CONCENTRATION 
C FIELD ON A MICRO FILM. 

100 CALL FRAME 
CALL SET(O.l,l.O,O.l,0.9,0.0,2000.,0.0,4.E-3,0,1) 
CALL SETLINE(O) 
CALL GRIDL(l0,2,8,5) 
CALL PWRT(288,1024,31H 20SEC.RELEASE-LINE SOURCE 
CALL PWRT(321,1,31H DISTANCE FROM SOURCE(FT) 
CALL PWRT(l,321,31H CONCENTRATION.(PPM/1,000,000) 
CALL CURVE(X,Q,50) 
GO TO 400 

,31,2,0) 
,31,1,0) 
,31,1,1) 
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APPENDIX II - (Continued) 

QUASICONTINUOUS LINE SOURCE 

200 CALL CURVE(X,Q,50) 
400 CONTINUE 

IF(Z.GT.3.)GO TO 500 
Z=Z+2. 
J=J+l 
IF(Z.LT.4.5.)GO TO 30 

500 Z=Z+4. 
IF(Z.LT.38.5)GO TO 30 
CALL FRAME 
END 
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FIGURES 
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