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Neural Network Decision Directed Edge-Adaptive structure was used for this classification task. The training set for this
Kalman Filter for Image Estimation network consisted of different possible edge patterns. To guarantee the
generalization of the BPNN, noisy edge patterns were also included

Mahmood R. Azimi-Sadjadi, Rongrui Xiao, and Xi Yu in the training set. A total of 260 cases were selected as the training

patterns for all the five edge types with 40 for each of the 0, 45, 90,
. _ and 138 cases, and 100 for the nonedge case. The BPNN converged
Abstract—A neural network-based scheme for decision directed edge- tg a predefined error goal (0.01), after about 22 000 training epochs.

adaptive Kalman filtering is introduced in this work. A backpropagation . : - - -
neural network makes the decisions about the orientation of the edges The trained BPNN was then used in conjunction with the RUKF to

based on the information in a window centered at the current pixel being perf(?rm edge gdaptive filt.ering. ) _

processed. Then based upon the neural network output an appropriate It is worthwhile to mention the relationship between our BPNN-
image model which closely matches the local statistics of the image ispased edge classification scheme and the MAP-based method in [1].
chosen for the Kaiman filter. This prevents the oversmoothing of the |, {he BPNN training, the minimum squared error (MSE) criterion is
edges, which would have otherwise been caused by the standard Kalman d and the desired output f . t bel ing to di tt

filter. Simulation results are presented which show the effectiveness of US€d @nd the desired output for an Input belonging to aiassset 1o

the proposed scheme. one, while the desired outputs for the other output neurons are zero.
If the global minimum is reached in the training, then it has been
shown in [8] that the output of the neural network would provide the
a posterioriprobability of each class. Consequently, the performance

I. INTRODUCTION of the BPNN reaches that of MAP which is optimal. However, the

Adaptive Kalman filtering schemes which use spatial-varying in@ain benefit of using BPNN-based methc_:d over t_he MAP classifier is
age models [1]-[3] take into account the local statistical informatiottt?at one does not need to assume Gaussian distributions. Furthermore,

within a processing window and thus preserve edges with a grea% rNN oﬁe:stpettelr ge?grallzatr:()ln n preffent(;]e (;f h.lg.h Ieyel n0|s|etarcljd
noise reduction in nonedge regions. This obviously leads to a p|I € computational cost IS much lower after the training Is completed.

cessed image with better visual appearance. In [1], an edge-adaptive
Kalman filter was introduced that uses multiple image models to

. - L . ) Ill. REDUCED UPDATE KALMAN FILTER (RUKF
reduce the ringing artifacts caused by spatial-invariant filters. The ) o . ( ). .
selection of the appropriate model is done using the maximum ' "€ RUKF [5], [6] is a scalar minimum variance estimator which
a posteriori (MAP) method. A similar idea is exploited in this under the constraint that the updating occurs on the closest neighbors

paper to develop a neural network-based decision directed edgERvides suboptimal estimates very efficiently. ,
adaptive Kalman filter. An edge detection method for noisy images”SSUme that the original image(m,n), is modeled by a first-

is developed using the stochastic gradient [4] algorithm. To classffjder 2-D autoregressive (AR) process with a nonsymmetric half
the detected edges of the image into five classes correspon e (NSHP) region of support [3], [6], i.e.

to 0, 45, 90, 135 edge orientation and nonedge (background), a

backpropagation neural network (BPNN) is used. The selection of s(m,n) =cios(m—1,n)+c_11s(m+1,n-1)

the image model can then be made based upon the output of the T eons(mn — 1)+ eras(m—1,n—1)

network. A bank of five reduced update Kalman filter (RUKF) [5], ‘

[6] is used to perform the filtering operation. The combined results +w(m,n) @
of these filters when used in conjunction with the BPNN provide

restored images with substantially improved quality. wherec; ;s are the model coefficients, amt{m,n) is a zero-mean
white Gaussian random field with variane€, which drives the
process. The scalar observation model for the no blur case is

Index Terms—mage restoration, Kalman filtering, neural networks.

II. BPNN FOR EDGE CLASSIFICATION

Before using the neural network to perform edge classification from
a noisy image, preprocessing needs to be done in order to efficiently r(m,n) = s(m,n) + v(m,n) (2)
extract the edge information. The stochastic gradient method [4]
is used here owing to its robustness in presence of noise. TRRerev(m,n) represents the observation noise which is also a white

gradients are calculated by using the forward and backward estimatgg,ssian noise, with zero-mean and varianceThe state dynamical

swept pixel by pixel across the image and an edge extracted map
is generated. The extracted edge map of the noisy image in each
window can then be applied as the input to the neural network, s(m,n) =Cs(m —1,n) +w(m,n) ®)
which classifies them into one of the five possible classes namely r(m,n) =hs(m,n) +v(m,n) (4)
nonedge (background) and four edge classes for 0, 45, 90, and

135’ edge orientations. A three-layer BPNN [7] with 9-15-25-8 hore the “global state vector(m,n), consists of two parts:

%%ém’ n) which is called the “local state vector,” agd(,n) which

Manuscript received June 26, 1997; revised July 16, 1998. The associ . h L . h h . f
editor coordinating the review of this manuscript and approving it forontains the remaining part efmn,n). Fig. 1 shows the regions o

publication was Prof. Stephen E. Reichenbach. support forsi(m,n) and sz(m,n) in the image for a first-order
The authors are with the Department of Electrical Engineering, Caiwo-dimensional (2-D) NSHP model. Thus, we have

orado State University, Fort Collins, CO 80523 USA (e-mail: az-

imi@engr.colostate.edu).
Publisher Item Identifier S 1057-7149(99)02675-5. s(m,n) = [s1(m,n), s5(m,n)]' (5)

1057-7149/99$10.00 1999 IEEE



590 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 8, NO. 4, APRIL 1999

m
=
n
NSHP region of support —‘[m—|

r (m.n) )
Ad _l Kalman Filter #3 - s {mun)
L.
-

——| Kaltan Filter :M}————
Current pivel (mu)
dge Detection
St(m,n)
Kalman Filter #5

S2(mm) ]
Fig. 1. Local and global states and region of support for the image model. BPN
Edge Cilassifier
wheresq(m,n) and sz (m,n) are defined as Fig. 2. BPNN decision directed edge-adaptive Kalman filtering scheme.

si(m,n) =[s(m,n),s(m —1,n),s(m+1n—1),

s(m,n—1),s(m —1,n—1)] TABLE |
AR MobDEL COEFFICIENTS FORFIVE EDGE ORIENTATIONS [5]

sa(m,n) =[s(m —2,n),s(m —3,n),---,s(1,n); .

; Iedge Edge Model Coefficients

S(]\/, n — 1), S(f\’ — 1, n — 1), Orientation 3] [ €3 Cy Uf,
cs(m 2, — 1) I 0 0.96977 | 0.00643 | -0.00180 [ 0.02461 | 32.2131
2 15° 0.01819 | 0.96874 | 0.01183 | 0.00088 | 32.1013
Also 3 90° 20.00263 [ 0.03650 | 0.92556 | 0.03989 | 31.8116
1 135° 0.03029 | 0.00085 | 0.02923 | 0.93956 | 31.2378

— 7 .. f

w(m,n) =[w(m,n),0.,0,0,---,0] 5 non-edge | 0.24573 | 0.24430 | 0.24658 | 0.26217 | 32.2035

h:[l0.0,0,,O]
C — |:Cll 012 :|
Co1 Cx of coefficients is chosen. In [1], five sets of AR model coefficients
The constituent blocks in matri€', i.e., C11.C1» contain alle; Were computed for a test image. These coefficients are used here to

terms, andCa1, C2> contain only zeros and ones for shift operationgenerate an edge-dependent model, i.e.,

They are defined as follows: s(m,n) = e1,0(Teage)s(m — 1, 1)

rcio 0 cor cin O + 1,1 (Teage)s(m+1,n — 1)
1 0 0 0 0
Cu=10 0 o0 0 0 + 0,1 (Tedge)s(m,n — 1)
00 1 0 0 + c11(leage)s(m —1Ln — 1)+ w(m,n)  (6)
Lo 0 0 1 0 . — . .
0 0 o for the adaptive Kglman filtering, v.vheredgo is an |pteger number
0 0 0’ betwgen one and five, corrt_aspondmg to the five dlffer_ent edge types
C=lo o 1 mentioned above. Table | gives; (I.a,.) values and variance of the
white noisew(m,n) for each case.
g 8 g After normalization, the content of the window will be applied to
i} the BPNN to perform the classification. According to the value of
0 1000 0 0 0 I.q¢. determined based upon the edge presence and orientation, the
00000 10 0 corresponding image model for the RUKF will be chosen to perform
Co=1(0 0 0 0 0f; Coy= [0 1 0 the filtering operation. The procedure is repeated for all the pixels
SRR T in the image.
O 0 0 0 0 0o o0 --- 1 Both the BPNN and MAP-based edge-adaptive Kalman filters

were applied to the Lena images in Fig. 3 which is corrupted by
dditive noise to generate SNR 5.2 dB. For the MAP-based edge
'gssification scheme, as suggested in [1], piieri probabilities

or different edge scenario are computed by finding their relative

in this case. The RUKF [5], [6] for the scalar observation and iﬂ'ﬁguency over the entire image. The resulting probabilities were
presence of additive noise alone can then be applied to est|matef hd to be 0.03, 0.02, 0.12, 0.15, and 0.68 corresponding to O,

image. This filtering procedure can easily be extended to the gene él 90, 135 and nonedge region, respectively for this test image

!mage restoration problem by moQifying the observation equation IT:?g 4 shows the processed image using the MAP-based edge adaptive
incorporate the point spread function (PSF) of the blur [1], [6]. Kalman filter. The SNR for this image was measured to be 8.7dB.
The processed image of the BPNN-based edge adaptive Kalman filter
IV.  EDGE-ADAPTIVE KALMAN FILTERING SCHEME is shown in Fig. 5. The SNR for this image was found to be 10.7
The block diagram of the BPNN-based decision directed edgéB which indicates 3 dB improvement over the result in Fig. 4.
adaptive Kalman filtering scheme is depicted in Fig. 2 which showshe visual comparison of the two images also reveal the fact that
a bank of RUKF’s that activate by the BPNN edge classifier. Fehe proposed BPNN-based edge-adaptive Kalman filtering scheme
each edge scenario, a first-order 2-D AR model with different segmoves the noise more efficiently without causing considerable

The Kalman gain vector and thee priori and a posteriori error
covariance matrices are also partitioned in a similar manner [
Note that the Kalman gain vector has only five nonzero elemer}
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Fig. 3. Noisy Lena image, SNR- 5.2 dB. Fig. 5. BPNN-based edge adaptive RUKF processed image, SH®R7 dB.

Fig. 4. MAP-based edge adaptive RUKF processed image, SNi7 dB. Fig. 6. Standard RUKF processed image, SNR8.2 dB.

blurring artifacts. A standard RUKF with the same region of suppoleads to better generalization and thus better noise tolerance of this
was also applied to the noisy test image. In this case, the ARheme over the MAP-based method.
model coefficients were obtained using the Yule—Walker methodFinally, to study the relationship between the number of classes,
[4]. The coefficients of this model were estimated to 4y = and SNR performance improvement several experiments were con-
0.5453, c—1,1 = 0.1003, ¢o,1 = 0.6390,¢,,;1 = —0.2823, and the ducted. Table Il gives the results of the BPNN-based edge adaptive
variance of the driving process wa$, = 41.9962. The processed Kalman filter using different edge dependent RUKF’s. The first five
image for this case is shown in Fig. 6. As can be seen, the BPNbases in this table correspond to a single class case where only one
based edge adaptive RUKF provides 2.5 dB SNR improvement owslge dependent RUKF is used to process the image. In these cases,
the standard RUKEF filter. the highest SNR was obtained for a nonedge case. The reason being
Fig. 7 shows the performance comparison of the BPNN and MARie nonedge regions form most of the image, with edge blocks making
based edge adaptive Kalman filtering schemes for different SNIR only a small part of the whole image. For the sixth case in the
values of the original image namely 1, 5.2, 10, 20, 30, and 40 dible, three edge classes namely 0] @dd nonedge were allowed
The upper curve corresponds to the BPNN-based method. As candsaling to a bank of three RUKF’s. The SNR of the resultant image
observed from these operating characteristic plots, the BPNN-basedthis case was only 0.22 dB better than the nonedge case. This
adaptive Kalman filter provides better SNR improvement, especialijight improvement is due to the addition of the two edge directions,
at lower SNR. This is due to the fact that the training set used to traie., 0, 90. When the number of classes increased from three to five,
the BPNN consisted of several noisy edge patterns. Consequently, #risadditional 0.05 dB improvement was achieved as evident from the
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Fig. 7. Performance comparison of the BPNN and MAP-based edge adaptive Statistical Texture Characterization
Kalman filters. . .
from Discrete Wavelet Representations

TABLE 1l G. Van de Wouwer, P. Scheunders, and D. Van Dyck
RELATIONSHIP BETWEEN THE NUMBER OF CLASSES AND THE SNR RERFORMANCE
Edge dependent RUKF Performance
0° [ 45° ] 90° | 135° | non-edge (SNR) Abstract—We conjecture that texture can be characterized by the
X T 65231 statistics of the wavelet detail coefficients and therefore introduce two
T feature sets: 1) the wavelet histogram signatures which capture all
X 7.6004 N o .
—t % 77300 first order statistics using a model based approach and 2) the wavelet
- S R co-occurrence signatures, which reflect the coefficients’ second-order
X 7.6331 et
" statistics.
X 104502 The introduced feature sets outperform the traditionally used energy.
X X X 10.6684 Best performance is achieved by combining histogram and co-occurrence
X| X | X | X X 10.7166 signatures.

Index Terms—~Feature extraction, multiscale representation, texture
) o ] analysis, wavelets.
result in the last row of Table Il. This improvement is much lower

than the case from one class to three classes. As a result, one can not

expect to get noticeable improvement by increasing the number of I. INTRODUCTION

the classes beyond five. In addition, ianeaSing the number of C|asq'exture ana|ysis p|ays an important role in many image processing
increases the computational time. Thus, five classes appear to bet#faks, ranging from remote sensing to medical imaging, robot vision
optimal choice for this problem. and query by content in large image databases. Various methods for
texture feature extraction have been proposed during the last decades
(e.g., [1]), but the texture analysis problem remains difficult and

A | network-based decision directed ed daptive Kal subject to intensive research.
neural network-based decision directed edge-adaplive naimarn, major class of feature extractors relies on the assumption that

Elte”gg schek:n €S !ntrodsced_lr;thls Paper. A BPNN dmakes dec'so'lof&ture can be defined by the local statistical properties of pixel gray
ased on the noisy edge information In a window centere I@i/els. From the image histogram, first-order statistics can be derived

the current pixel being processed. Once the edge orientation |2y sed as texture features. It was soon argued that they did not

determined, an image model for Kalman filter can be chosen §8fﬁce for adequate texture description and that second-order statistics

closely match th_e local statistics O.f the image. Simulation resu_U\?ere required, as efficiently reflected in features computed from the
are provided which show the effectiveness of our scheme for nois,

- : : i -occurrence matrix [2]. The conjecture that second-order statistics
removal without causing noticeable smearing of the edges. A de‘ﬁy

. . ; ) ffice for texture analysis was later rejected [3] and various other
comparison with the MAP-based edge adaptive Kalman filter and Sture analysis schemes were introduced (e.g., based on Markov
standard Kalman filter was also provided. '

V. CONCLUSION
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