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Neural Network Decision Directed Edge-Adaptive
Kalman Filter for Image Estimation

Mahmood R. Azimi-Sadjadi, Rongrui Xiao, and Xi Yu

Abstract—A neural network-based scheme for decision directed edge-
adaptive Kalman filtering is introduced in this work. A backpropagation
neural network makes the decisions about the orientation of the edges
based on the information in a window centered at the current pixel being
processed. Then based upon the neural network output an appropriate
image model which closely matches the local statistics of the image is
chosen for the Kalman filter. This prevents the oversmoothing of the
edges, which would have otherwise been caused by the standard Kalman
filter. Simulation results are presented which show the effectiveness of
the proposed scheme.

Index Terms—Image restoration, Kalman filtering, neural networks.

I. INTRODUCTION

Adaptive Kalman filtering schemes which use spatial-varying im-
age models [1]–[3] take into account the local statistical information
within a processing window and thus preserve edges with a greater
noise reduction in nonedge regions. This obviously leads to a pro-
cessed image with better visual appearance. In [1], an edge-adaptive
Kalman filter was introduced that uses multiple image models to
reduce the ringing artifacts caused by spatial-invariant filters. The
selection of the appropriate model is done using the maximum
a posteriori (MAP) method. A similar idea is exploited in this
paper to develop a neural network-based decision directed edge-
adaptive Kalman filter. An edge detection method for noisy images
is developed using the stochastic gradient [4] algorithm. To classify
the detected edges of the image into five classes corresponding
to 0, 45, 90, 135� edge orientation and nonedge (background), a
backpropagation neural network (BPNN) is used. The selection of
the image model can then be made based upon the output of the
network. A bank of five reduced update Kalman filter (RUKF) [5],
[6] is used to perform the filtering operation. The combined results
of these filters when used in conjunction with the BPNN provide
restored images with substantially improved quality.

II. BPNN FOR EDGE CLASSIFICATION

Before using the neural network to perform edge classification from
a noisy image, preprocessing needs to be done in order to efficiently
extract the edge information. The stochastic gradient method [4]
is used here owing to its robustness in presence of noise. The
gradients are calculated by using the forward and backward estimates
of the image based on the noisy observations. A 3� 3 window is
swept pixel by pixel across the image and an edge extracted map
is generated. The extracted edge map of the noisy image in each
window can then be applied as the input to the neural network,
which classifies them into one of the five possible classes namely
nonedge (background) and four edge classes for 0, 45, 90, and
135� edge orientations. A three-layer BPNN [7] with 9-15-25-5

Manuscript received June 26, 1997; revised July 16, 1998. The associate
editor coordinating the review of this manuscript and approving it for
publication was Prof. Stephen E. Reichenbach.

The authors are with the Department of Electrical Engineering, Col-
orado State University, Fort Collins, CO 80523 USA (e-mail: az-
imi@engr.colostate.edu).

Publisher Item Identifier S 1057-7149(99)02675-5.

structure was used for this classification task. The training set for this
network consisted of different possible edge patterns. To guarantee the
generalization of the BPNN, noisy edge patterns were also included
in the training set. A total of 260 cases were selected as the training
patterns for all the five edge types with 40 for each of the 0, 45, 90,
and 135� cases, and 100 for the nonedge case. The BPNN converged
to a predefined error goal (0.01), after about 22 000 training epochs.
The trained BPNN was then used in conjunction with the RUKF to
perform edge adaptive filtering.

It is worthwhile to mention the relationship between our BPNN-
based edge classification scheme and the MAP-based method in [1].
In the BPNN training, the minimum squared error (MSE) criterion is
used and the desired output for an input belonging to classk is set to
one, while the desired outputs for the other output neurons are zero.
If the global minimum is reached in the training, then it has been
shown in [8] that the output of the neural network would provide the
a posterioriprobability of each class. Consequently, the performance
of the BPNN reaches that of MAP which is optimal. However, the
main benefit of using BPNN-based method over the MAP classifier is
that one does not need to assume Gaussian distributions. Furthermore,
BPNN offers better generalization in presence of high level noise and
the computational cost is much lower after the training is completed.

III. REDUCED UPDATE KALMAN FILTER (RUKF)

The RUKF [5], [6] is a scalar minimum variance estimator which
under the constraint that the updating occurs on the closest neighbors
provides suboptimal estimates very efficiently.

Assume that the original image,s(m;n); is modeled by a first-
order 2-D autoregressive (AR) process with a nonsymmetric half
plane (NSHP) region of support [5], [6], i.e.

s(m;n) = c1;0s(m� 1; n) + c�1;1s(m+ 1; n� 1)

+ c0;1s(m;n� 1) + c1;1s(m� 1; n� 1)

+ w(m;n) (1)

wherec0i;js are the model coefficients, andw(m;n) is a zero-mean
white Gaussian random field with variance�2w which drives the
process. The scalar observation model for the no blur case is

r(m;n) = s(m;n) + v(m;n) (2)

wherev(m;n) represents the observation noise which is also a white
Gaussian noise, with zero-mean and variance�2v : The state dynamical
model and the observation equation then become [5]

sss(m;n) =CCCsss(m� 1; n) +www(m;n) (3)

r(m;n) =hhhsss(m;n) + v(m;n) (4)

where the “global state vector,”sss(m;n); consists of two parts:
sss1(m;n) which is called the “local state vector,” andsss2(m;n) which
contains the remaining part ofsss(m;n): Fig. 1 shows the regions of
support forsss1(m;n) and sss2(m;n) in the image for a first-order
two-dimensional (2-D) NSHP model. Thus, we have

sss(m;n) = [ssst1(m;n); ssst2(m;n)]t (5)
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Fig. 1. Local and global states and region of support for the image model.

wheresss1(m; n) andsss2(m;n) are defined as

sss1(m;n) = [s(m;n); s(m� 1; n); s(m+ 1; n� 1);

s(m;n� 1); s(m� 1; n� 1)]t

sss2(m;n) = [s(m� 2; n); s(m� 3; n); � � � ; s(1; n);

s(N; n� 1); s(N � 1; n� 1);

� � � ; s(m+ 2; n� 1)]t

:

Also

www(m;n) = [w(m;n); 0; 0; 0; � � � ; 0]t

hhh = [1; 0; 0; 0; � � � ; 0]

CCC =
CCC11 CCC12

CCC21 CCC22
:

The constituent blocks in matrixCCC; i.e., CCC11;CCC12 contain allci
terms, andCCC21;CCC22 contain only zeros and ones for shift operations.
They are defined as follows:

CCC11 =

c1;0 0 c0;1 c1;1 0
1 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 1 0

;

CCC12 =

0 0 � � � c
�1;1

0 0 � � � 0
0 0 � � � 1
0 0 � � � 0
0 0 � � � 0

CCC21 =

0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
...

...
...

...
...

0 0 0 0 0

; CCC22 =

0 0 � � � 0
1 0 � � � 0
0 1 � � � 0
...

...
. . .

...
0 0 � � � 1

:

The Kalman gain vector and thea priori and a posteriori error
covariance matrices are also partitioned in a similar manner [1].
Note that the Kalman gain vector has only five nonzero elements
in this case. The RUKF [5], [6] for the scalar observation and in
presence of additive noise alone can then be applied to estimate the
image. This filtering procedure can easily be extended to the general
image restoration problem by modifying the observation equation to
incorporate the point spread function (PSF) of the blur [1], [6].

IV. EDGE-ADAPTIVE KALMAN FILTERING SCHEME

The block diagram of the BPNN-based decision directed edge-
adaptive Kalman filtering scheme is depicted in Fig. 2 which shows
a bank of RUKF’s that activate by the BPNN edge classifier. For
each edge scenario, a first-order 2-D AR model with different set

Fig. 2. BPNN decision directed edge-adaptive Kalman filtering scheme.

TABLE I
AR MODEL COEFFICIENTS FORFIVE EDGE ORIENTATIONS [5]

of coefficients is chosen. In [1], five sets of AR model coefficients
were computed for a test image. These coefficients are used here to
generate an edge-dependent model, i.e.,

s(m;n) = c1;0(Iedge)s(m� 1; n)

+ c
�1;1(Iedge)s(m+ 1; n� 1)

+ c0;1(Iedge)s(m;n� 1)

+ c1;1(Iedge)s(m� 1; n� 1) + w(m;n) (6)

for the adaptive Kalman filtering, whereIedge is an integer number
between one and five, corresponding to the five different edge types
mentioned above. Table I givesci;j(Iedge) values and variance of the
white noisew(m;n) for each case.

After normalization, the content of the window will be applied to
the BPNN to perform the classification. According to the value of
Iedge determined based upon the edge presence and orientation, the
corresponding image model for the RUKF will be chosen to perform
the filtering operation. The procedure is repeated for all the pixels
in the image.

Both the BPNN and MAP-based edge-adaptive Kalman filters
were applied to the Lena images in Fig. 3 which is corrupted by
additive noise to generate SNR= 5.2 dB. For the MAP-based edge
classification scheme, as suggested in [1], thepriori probabilities
for different edge scenario are computed by finding their relative
frequency over the entire image. The resulting probabilities were
found to be 0.03, 0.02, 0.12, 0.15, and 0.68 corresponding to 0,
45, 90, 135� and nonedge region, respectively for this test image.
Fig. 4 shows the processed image using the MAP-based edge adaptive
Kalman filter. The SNR for this image was measured to be 8.7dB.
The processed image of the BPNN-based edge adaptive Kalman filter
is shown in Fig. 5. The SNR for this image was found to be 10.7
dB which indicates 3 dB improvement over the result in Fig. 4.
The visual comparison of the two images also reveal the fact that
the proposed BPNN-based edge-adaptive Kalman filtering scheme
removes the noise more efficiently without causing considerable
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Fig. 3. Noisy Lena image, SNR= 5.2 dB.

Fig. 4. MAP-based edge adaptive RUKF processed image, SNR= 8.7 dB.

blurring artifacts. A standard RUKF with the same region of support
was also applied to the noisy test image. In this case, the AR
model coefficients were obtained using the Yule–Walker method
[4]. The coefficients of this model were estimated to bec1;0 =

0:5453; c
�1;1 = 0:1003; c0;1 = 0:6390; c1;1 = �0:2823; and the

variance of the driving process was�2

w = 41:9962: The processed
image for this case is shown in Fig. 6. As can be seen, the BPNN-
based edge adaptive RUKF provides 2.5 dB SNR improvement over
the standard RUKF filter.

Fig. 7 shows the performance comparison of the BPNN and MAP-
based edge adaptive Kalman filtering schemes for different SNR
values of the original image namely 1, 5.2, 10, 20, 30, and 40 dB.
The upper curve corresponds to the BPNN-based method. As can be
observed from these operating characteristic plots, the BPNN-based
adaptive Kalman filter provides better SNR improvement, especially
at lower SNR. This is due to the fact that the training set used to train
the BPNN consisted of several noisy edge patterns. Consequently, this

Fig. 5. BPNN-based edge adaptive RUKF processed image, SNR= 10.7 dB.

Fig. 6. Standard RUKF processed image, SNR= 8.2 dB.

leads to better generalization and thus better noise tolerance of this
scheme over the MAP-based method.

Finally, to study the relationship between the number of classes,
and SNR performance improvement several experiments were con-
ducted. Table II gives the results of the BPNN-based edge adaptive
Kalman filter using different edge dependent RUKF’s. The first five
cases in this table correspond to a single class case where only one
edge dependent RUKF is used to process the image. In these cases,
the highest SNR was obtained for a nonedge case. The reason being
the nonedge regions form most of the image, with edge blocks making
up only a small part of the whole image. For the sixth case in the
table, three edge classes namely 0, 90� and nonedge were allowed
leading to a bank of three RUKF’s. The SNR of the resultant image
for this case was only 0.22 dB better than the nonedge case. This
slight improvement is due to the addition of the two edge directions,
i.e., 0, 90�: When the number of classes increased from three to five,
an additional 0.05 dB improvement was achieved as evident from the
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Fig. 7. Performance comparison of the BPNN and MAP-based edge adaptive
Kalman filters.

TABLE II
RELATIONSHIP BETWEEN THE NUMBER OF CLASSES AND THESNR PERFORMANCE

result in the last row of Table II. This improvement is much lower
than the case from one class to three classes. As a result, one can not
expect to get noticeable improvement by increasing the number of
the classes beyond five. In addition, increasing the number of class
increases the computational time. Thus, five classes appear to be the
optimal choice for this problem.

V. CONCLUSION

A neural network-based decision directed edge-adaptive Kalman
filtering scheme is introduced in this paper. A BPNN makes decisions
based on the noisy edge information in a window centered at
the current pixel being processed. Once the edge orientation is
determined, an image model for Kalman filter can be chosen to
closely match the local statistics of the image. Simulation results
are provided which show the effectiveness of our scheme for noise
removal without causing noticeable smearing of the edges. A detail
comparison with the MAP-based edge adaptive Kalman filter and the
standard Kalman filter was also provided.
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Statistical Texture Characterization
from Discrete Wavelet Representations

G. Van de Wouwer, P. Scheunders, and D. Van Dyck

Abstract—We conjecture that texture can be characterized by the
statistics of the wavelet detail coefficients and therefore introduce two
feature sets: 1) the wavelet histogram signatures which capture all
first order statistics using a model based approach and 2) the wavelet
co-occurrence signatures, which reflect the coefficients’ second-order
statistics.

The introduced feature sets outperform the traditionally used energy.
Best performance is achieved by combining histogram and co-occurrence
signatures.

Index Terms—Feature extraction, multiscale representation, texture
analysis, wavelets.

I. INTRODUCTION

Texture analysis plays an important role in many image processing
tasks, ranging from remote sensing to medical imaging, robot vision
and query by content in large image databases. Various methods for
texture feature extraction have been proposed during the last decades
(e.g., [1]), but the texture analysis problem remains difficult and
subject to intensive research.

A major class of feature extractors relies on the assumption that
texture can be defined by the local statistical properties of pixel gray
levels. From the image histogram, first-order statistics can be derived
and used as texture features. It was soon argued that they did not
suffice for adequate texture description and that second-order statistics
were required, as efficiently reflected in features computed from the
co-occurrence matrix [2]. The conjecture that second-order statistics
suffice for texture analysis was later rejected [3] and various other
texture analysis schemes were introduced (e.g., based on Markov
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