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I. PURPOSE OF THE PRESENT RESEARCH 

The purpose of the present research is the numerical integration 

of Burgers' equation. 

As it is well known, Burgers1 proposed and studied the equation 

that now bears his name as a one-dimensional model for Navier-Stokes 

equation. 

The fact that such important quantity as the vorticity has no 

meaning outside a three-dimensional space is a strong limitation to 

the use that could be made of any results of Burgers equation as 

indicative of solutions of Navier-Stokes equations. Therefore from 

the physical viewpoint any inference should be regarded with suspicion. 

But the other fact that Burgers equation shares with Navier-

Stokes equations two essential mathematical features,namely 

a) strong nonlinearity, 

b) small coefficient of the highest order derivative, 

justifies the use of Burgers equation as a first step in numerical 

simulation. 

In the present numerical experiment Burgers equation has been 

Fourier-analyzed to obtain a system of a discrete infinity of equations 

in a discrete infinity of variables, and the numerical techniques have 

been used for such a system, being the author's belief that the wave-

. ld 11 1 11 
• 1 h number space yie s to a c eaner numerica approac . 
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II. BURGERS' EQUATION AND ITS FOURIER-MATE 

If u(x,t) is the velocity field at time ton a one-dimensional 

space measured by the abscissa x, Burgers' equation can be written 

( 1) 
ou ou -+ u - = ot ox 

2 
v o u 

ox2 

where vis th e viscosity of the fluid. In this form Burgers' equation 

is an approximate model of the real behavior of shock waves in gas 

dynamics. 

If we define 

a length scale L 

a velocity scale U 

and consider the following variables and parameters 

adimensional velocity 

adimensional abscissa 

adimensional time 

Reynolds number 

equation (1) can be rewritten as 

(2) 
ov ov 
OT + V OS = 

v = u/U 

S = x/L 

T = Ut/L 

R = UL/ V 

If the velocity field in its Fourier-expansion 

ex, 

(3) v( S, T) = L v (i-t , T)sin KS , 

i-t=l 

which implies a period 2TT in the velocity field, is substituted into 
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equation (2), we get the system of ordinary differential equations 

(4) 

(5) 

r 
\ 

K=l, co 

d ( rt T ) 11.
2 

V ' - (KT ) dT + R V ' 

co 

= I L v( rt 1
, T)v(Ylf. lt' , T) 

I{ I =l 
rt -1 -f [ v( rt ', T)v( rt - 1{ 1 , T) 

rt '=l 

Because of our definitions and the expansion (3), it is 

u(x, t) = 

co 

L Uv( rt , T) 

rt=l 

I{ 

sin 1 x 

which implies that the Fourier-coefficient of u(x,t) is 

(6) u(K,t) = lJv( K, T) , 

and the period in physical space is 2TTL. 

The following are the inverse transforms: 

2TT 
(7) v( rt,T ) = i J v( $ ,T) sin( rtS )ds 

' 0 

~L J 
2TTL 

K 
(8) u( K,t) = u(x,t) sin Cr:x) dx 

0 

The numerical solution of (4) with random initial conditions 

will be the aim of the present research. 
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III. DISCUSSION OF THE PROBLEMS ENCOUNTERED IN APPLYING 

TIIE NUMERICAL TECHNIQUES 

The system (4) being the object of our numerical experiment we 

will rewrite it, without explicit mention of the time dependence, as 

follows 

(4) { 
K= 1, 00 

/d rt
2

) - + - v( rt ) ,dT R 
\ 

K-1 £ L v(x ')v(X- K1
) 

rt '= l K'=l 

Even a cursory look to the above system shows that the numerical 

approximations we must use are two: 

1) finite increments of the time variable, 

2) a wave-number cut-off N (to replace the symbol 00 in the 

system (4)). 

Neglecting the errors introduced by the computer, and provided 

measures are taken to avoid numerical instabilities, the main sources 

of errors are just the above approximations. 

While the errors introduced by t he use of finite increments for 

T may be checked by allowing the increments 6T to become smaller and 

smaller in subsequent trials; the influence of the wave-number cut-off 

is much more difficult to assess. By using a method analogous to the 

one suggested for the errors introduced by 6T, we should use first a 

very large wave-number cut-off N and decrease it gradua lly in successive 

experiments. 
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This is quite feasible but in this context the knowledge of an 

exact solution in wave-number space would be invaluable in order to 

shorten both computer time and programmer time. 

2 Such solution exists and was found by Benton . A short 

presentation of Benton's solution and a discussion of its merits 

follow. 

III-1. Benton's Solution to Burgers' Equation 

Benton finds that a solution to the system (4) is: 

(9) ~ v( tt , T) = 
2 T 

- - csch tt (a +-) 
R R ' 

"'k 
where a detennines the initial conditions. 

As it stands, in the solution (9) -- as well as in the equation 

(4) of which (9) is a solution -- the Reynolds number R is unspecified . 

In fact the velocity scale Uhas not been correlated yet with any 

velocity distribution. We will agree to call U an "initial" velocity 

scale and precisely we will call Uthe mean square velocity over the 

space interval 2TTL, that is 

The physical meaning 
infinite. Therefore -a 
Reynolds numbers, of an 
of viscosity, decays in 

~ of a is evident: for T= -a R, v(tt,T) becomes 
is the virtual time-origin, measured in 
infinite velocity field which, because 
time according to the law given by (9). 
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1 J 2
11 L ._; 

(10 ) lf = 2TIL 
·Lt ( x, O) dx 

0 

t, t [ f ~(", O) 

' > 

= sin ns dS 

0 n=l 

u2 
CXl - TT 

I: ,__;a J . 2 11.s dS = 2TT V ( i-t ,0) sin 

K=l 0 

u2 
CXl 

L -l c11.,o) = 2 
K=l 

that is 
CXl 

2 
4 L csch

2 
xa = it 

i-t=l 

or 

(11) R2 = 2 L csch
2

XO' 

11.=l 

The functional expression (11) allows us to find the initial 

Reynolds number (according to the criterion defined above) once a 

is given, or vice versa. 

In the figures 1 and 2 the initial Reynolds number is shown versus 

the parameter a . 

Besides being the only known solution in tenns of wave - number 

space, Benton's solution has an additional feature ~hich makes it 

particularly suitable as a test solution: the absolute value of the 

velocity amplitude, 

(12) I ';(K, T) I = 
2 T 
- csch K (a+ -) R R ' 

decreases monotonically with time and with i-t , 

Due to the effects of viscosity, no matter what initial conditions 

are given, we would expect to reach such qualitative state after some 
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time. In fact, the wave-numbers dissipate energy proportional to 

2 2 • 
K v ( K), and therefore the highest wave-numbers are bound to lose 

more energy than they can receive through the energy exchange wi t h 

the other modes. 

For these reasons Benton's solution will be used as a reference 

solution 

1) for the determination of the influence of the wave-number 

cut-off and the perfecting of the numerical techniques, 

2) for the determination of the statistical ensemble in the 

numerical experiment in Burgerlence proper. 

III-2. Plan of Approach 

Given that we will use a wave-number cut-off N, the system of 

equations to solve, starting from arbitrary initial conditions 

(13) v(K,0) 

is 

(14) { 
K=l,N 

K = l,N 

dv( K,T) = 
dT 

2 
K 

R 

N- K 

K2 \ v(K, T) + L v(K' )v(K+K') 

K '=l 

K-1 
K 2~ - - v(K')v(K-K 1

) 
4 __, 

K'=l 

We will consider time increments within which the cubic limited 

Taylor-expansions of the v(K)'s are good approximations to the real 

functions. 

In general the time increments may vary with time and be different 

for different wave-numbers; we will use for them the notation tT ( K,T), 

neglecting one of the arguments whenever it is implicitly evident. 
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We will consider therefore, together with the system above, the 

systems 

f 2 

(15)'l dd~K, T) = 
K=l,N 

K2 dv(K, T) K t (dv(K
1

) v(rt+K 1 ) + v(X1 ) dv(x+~ ')) + -R dT 2 dT dT 

(16){ 
K=l,N 

(17) 

K1=l 

11.- 1 
( dv( X' ) v(X-11. 1 ) + v( X') dv( X- i-t ')) -£[ dT dT 

= i-t
2 

d
2
vJ K, T ) 

R dT 

+ I t (d:¾i-t') 

11.=l 

Once the quantities 

d( K T) ~ dv(K,T) 
' dT 

11.: 1 

v(x+x. ') + 2 dv(K') dv(x+ K' ) (11.') d
2

¥J14 i-t ')) 
dT d'I' + v d 

are found for a certain x. and T the value of v(K 1 r+~T) is found by 

means of 

(18) 

III-3. 

= v(K, T) + d(K, T)liT(K, T) + ½ f( K, T)L1T2 ( 11. , T) 

+ ¼ g(K, T) 6i3 ( K, T) . 

Criterion for the Determination of the Wave-Number Cut-Off 

Several criteria could be devised. The criterion used in the 

present study is the following: 

Consider the initial conditions of the reference solution 
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(19) 
2 
R csch xa, 

where a and Rare conjugated with respec t to (11) . 

Call N the wave-number cutoff. Then 

a, 

and 
2 2 

11. csch xa 

i-t=N+ 1 

represent respectively the dissipation taking place between wave-number 1 

and wave-number N, and the dissipation of the wave-numbers above N. 

We will fix a small value€ for the ratio 

a, 

L 11.
2 csch2 xa 

(20) rt=N+l 
a, 

I 2 2 
11. csch xa 

),{,: 1 

and agree that N is the lowest wave number that makes such ratio less 

than €. 

Different values of€ may be chosen. In our research we will fix 

€ = 0.01 with the belief that the discard of 1% of the tota l dissipation 

should affect very little the total behavior of the solution. The effec t s 

of the wave-number cut-off will be studied later. 

In the figures 3, 4, 5, 6, 7 the wave-number cut-off is plotted 

against the Reynolds number. 
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Criterion for the Estimate of the Maximum Time Interval 
of Integration 

The most reasonable criterion for the determination of the total 

time of integration seems to be the following : 

Given the initial conditions 

2 - - csch )-IQ' , 
R 

according to which the initial kinetic energy is 

N tr 
11.: 1 

z csch xa, 

consider the ratio 

(21) 

co L csch
2

11.(a + I) 
11.:: 1 

between the total kinetic energy at T = T and T = 0. T may be calculate1 

if we assign to the above ratio a value~< 1 and assign a value to R. 

It seems reasonable to assign to~ the value .1, with the belief 

that, by the time the kinetic energy has decayed to 1/10 of its originaL 

value, the wave-numbers greater than the very first ones will have 

sufficiently interacted exchanging their energy. 

In the figures 8, 9, 10, 11 T has been plotted against R for 

~ = • 5, . 1, . 01, . 001. 
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Criterion for the Detennination of the Time-Increment 
to Assign to Each Wave-Number 

The best criterion seems to be given by the following recipe: 

Start from some initial conditions at T = 0 and find the firs t 

three derivatives d(K,O), f( K,0), g( K,0) by means of the systems 

(14), (15), (16). The linear, quadratic and cubic limited Taylor­

expansions around T = 0 are respectively 

v(K,T) 

\ 

v(K,0) + d(K,O)T 

\ V ( K , 0) + d ( K, 0) T ½f ( K, Q) T
2 

\ v( K,O) + d( K,O)T + ½f(K,O)T2 + ¼g(K,O)T°3 

T 
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We will consider only time increments within which the cubic 

limited expansion is a good approximation to the exact solution and 

therefore we will fix a small number t and determine 6T such that 

(22) 

or 

(23) 

I CB I 

I BA I = * 

¼ I g(K,0)6-r3(K,0) I = t ½ lf(K,0)61'2(K,0) I 

6T(K 0) = 3tl f( K,O) I 
' g( K,0) 

We will find that there is a K = K1 for which the above expression 

is a minimum. Take 6T(K1 ,0) as the reference time step and calculate 

n( K,0) as the lower integer approximating 6T(K,0)/6T(K1 ,0). 

For all those K's for which n( K,0) = 1 the cubic limited expansion 

is a good approximation for the first time interval 6T(K1,0); for all 

those K's for which n( K,0) = 2 the cubic limited expansion is a good 

approximation till time T = 26T(X-i ,0), and so on. 

For those K's for which n(K,0) t- 1 then 

g( K,6T) = g(K,0) 

f(K,6T) = f(K,0) + g(K,0)6T 

d(K,M) = d(K,0) + f(K,Q)6T + ½ g(K,0)61'2 

We want to calculate now 6T(K,6T) for K = 

had n(K ,0) = n. 
n 

In this case 

(24) = 3t --- = nliT 

K ' n 
a K for which we 
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and 

6T(lin' 6T) 3,j, 
f(lin,LlT) 

= 
g(lin, D.T) 

I f(li ,0) + g(K ,0)6T I 
= 3,j, n n 

lg(K,O)i 
n 

< 
/ £(Kn, O) 

3,j,6T 3,j, + 
I g(Kn,O) I 

(25) = nC!T + 3~l1T 

if ,j, is very small then 

~ 6T(Kn,Ln) = n6T 

(26) 6T(K 6T) = 6T(li ,0). 
n' n 

We will therefore compare the newly calculated .6T(K1 ,6T)'s with 

6t(K,6T) - 6T (for K ~ K1 ); we choose the minimum of them and go as 

in the previous step. 

By this criterion, at each step ~e have to solve the systems 

(14), (15), (16) only for some of the N wave-numbers and the computer 

time is considerably reduced. 

While it is thought that this criterion should be utilized for 

cases of three-dimensional turbulence in order to avoid numerical 

instabilities, for our case it has been deemed expedient to devise a 

criterion which could be used for all realizations, in the sense of 

using standard 6T's, in order that the computed values of different 

realizations be ready for averaging without having to go through the 

process of interpolations. 

The following criterion has been devised as an alternate. 
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It seems evident that we cannot use Benton's solution as it stands . 

In fact in this solution the amplitude of the wave-numbers is a "smooth" 

function of x and therefore the energy exchange among the wave-numbers 

is already in a sort of equilibrium. 

In order to find the characteristic relaxation time Of each wave­

number we will put ourselves in the most demanding conditions for each 

wave-number. We will assume that at T = 0 all the wave-numbers have 

zero amplitude but the Xth, which is of our contern. 

In this case the equation for x at T = 0 is 

dv(X) 
dT 

T:0 

... xa 
- - v(X) 

R 

We will assume that the characteristic time of decay for ~ach 

wave-number is inversely proportional to the above expression, that 

is 

~ AT(X) = R 
x2 \v(x) I 

or, relative to AT(l) assumed to be 1, 

AT(x) = 1 lillll °;? v(X) 

Being interested in the statistical properties of Burgers equation, 

the v's appearing in the above expression will be random. We will 

therefore assign to v(l) and v(x) the value of the respective standard 

deviations (see Chapter V), obtaining in so doing 

(27) 
1 

= }tz 

xa -xa 
e - e 
a -a 

e - e 

The figures 12-16 show the results for several Reynolds numbers. 

The number of time intervals per AT(l) is linear with x in the beginning 

and reaches a maximum for roughly N/2. 
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A program according to this scheme has been worked out and used 

for one realization. The time saving with respect to the constant 

time increment scheme has been 15%. Nevertheless this criterion has 

not been used for the generation of the statistical ensemble because 

some realizations had already been taped with a modified equal-increment 

method (to be explained just below) and the reworking of them would 

have not brought to an appreciable saving in computer-time. 

The criterion mentioned has been the following: the time increment 

has been set equal for all wave-nwnbers but the last 50 (for R = 90 

and N = 200) for which the time increment has been halved in order to 

take into account the effects of the wave-nwnber cut-off. 

The time increment has been allowed to vary in time according 

to the following. 

III-6. Criterion for the Determination of the Variation 
of the Time Increment with Time 

This problem is strictly connected with the one of the preceding 

paragraph in the case we used the second or third method. For reasons 

already mentioned it seems advisable to find a general rule that can 

be used for all realizations of the ensemble. We will take therefore 

as a "representative" amplitude 

N 
(28) u = L v2 ( 11.) 

' 
11.= 1 

v<11.) 
2 T 

where = csch 11. (a + R) 
' R 



16 

and consider its derivative in time as proportional to the inverse 

of the time increment 6T. 

With respect to a unit time increment for T = 0, we have 

N N L ,i (x., T) !t [v2 
(K, T) 

(29) 6T K=l 11.::1 t=O 
= 

f v2 
(K,0) s!__ f ~2 cx. T) dt V , 

x..,,1 K=l 

f csch
2 

K(O' + 
T f K 

cos h w::r 
--) 

sin hz w:x R 
Kz=l 11.cl 

= t csch
2

W:X f11. 
cos h 11.~0'.f-T /R} 
sin h2 11.(0'+ T /R) 

11.=l 11.= 1 

For'T1=0.l 6T has been plotted against T for R = 90 in 

figure 11. Figure 18 shows the total number of time steps required 

ifi order to cover the total time of integration Ta 4. as a function 

of the initial time step. 6T a .0017, corresponding to 1000 time steps, 

has been chosen and verified for the generation of the statistical 

ensemble. 
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IV. INFLUENCE OF THE WAVE-NUMBER CUT-OFF 

In this chapter, as well as in the following ones, we will present 

some results of the numerical experiments. We will avoid the tendency 

of preambling with theoretical considerations and showing later how well 

the numerical experience matches the results of our speculations. On 

the contrary we will present the results of our numerical experiments 

and try to justify them by means of analytical arguments. 

For the study of the effects of the wave-number cut-off a ow 

Reynolds number (R = 17, conjugated to a= .1) has been chosen so 

that it would be possible to integrate the systems (14), (15), (16) 

for a very large time interval taking only 40 minutes of computer-time. 

The reference exact solution has been plotted, for several instants 

~ in the figures 19-23. The ratio v( K)/v(K)-1, where v( K) is the exact 

solution and v( K) the numerical experiment, has been plotted in figure 

24, for several instants. 

At the very beginning of the numerical experiment a build-up of 

energy is noticed with respect to the exact solution, especially at 

the highest wave-number (where the error introduced by the wave-number 

cut-off may be as high as 70%). The wave-numbers below 37th ( 49 

is the wave-number cut-off) present an error less than 1%. The error 

tends to decrease in time and become negative for the lowest wave­

number. Toward the end of the integration the error is confined to 

.0001%. 
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In order to justify such behavior, we will assume that a true 

energy cascade from lower to higher wave-numbers takeg place at high 

wave-numbers (close to the wave-number cut off), 

We will call 

E1 ( , ) the energy contained in the first N wav~-numbers; 

D1 (T) the dissipation of the same wave-numbers; 

the energy contained in the wave-numbers above 

D2 (,) the dissipation of the same wave-numbers; 

T ( T) the energy flux through N. 

N• 
' 

We will add an index ES or NE to make reference either to the 

exact solution or to the numerical experiment, 

At,= O, a configuration similar to the following exists: 

T=O 

E1 (0) 

~(O) 
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Fo r the exact solution it is 

(30) dEi {02 
= -Di (0 ) - T(O) dT 

(31) dE~ {02 = -D2 ( O) + T(O) dT 

For the numerical experiment it is 

(32) dEi {02 
= -Di (O) 

dT 

Therefore: 

\dE~(O)I < (~ d ES dT NE 
(both negative). 

This means that for a short time Ei( T)NE is larger than Ei( T)ES 

and, because of the cascade, this extra energy will be accumulated 

around N. 

Call T any instant of this new configuration. Obviously the 

configuration of the numerical experiment requires more energy dissipation 

than the coinstantaneous configuration of the exact solution and theref ore 

it will be 

> 

Bec ause of the con tinuous accumulation due to the cascade in the 

NE it will eventua l l y be , a t a later time, 

that is 

= 
E NE 

always with 
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and, at a lat er t ime still 

(33) 
(
dE~ ( T) ) . 

d NE 

We will even tua lly reach a time f or which 

In the meanwhile energy has been acct.mtulated around N; t herefore 

by now we should have the followi ng configuration 

ES 

----------
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We will call Ti the instant at which the graph for NE has started 

to cross the graph for ES. 

If the sense of (33) persists we will eventually have 

> 

and if, by this time, the field has decayed enough such that a cut-off 

is ineffectual, then we will reach a point where the whole NE curve is 

below the ES curve and will stay like that forever. 

The effect of the wave-number cut-off in the whole is such as 

to accelerate the process of decay, and the result of the numerical 

experiment will be retarded with respect to the coetaneous 

exact solution. 

We might calculate the amount of such delay by means of the following 

considerations. By the time the wave-number cut-off is ineffectual, 

the time Tis so large that the exact solution 

2 T 
- - csch K(a + -) R R 

may be approximated by 

4 - K( a+T/R) 
- - e 

R 

A solution retarded of 6T will be therefore 

4 - K( a + T/R + ilT/R) 
- - e 

R 

and the ratio of their difference to the first 
L'.T _ ;,, -
R 

e - 1 

which, if L'.T is small and R large, can be approximated by 
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A behavior like this is in fact shown (not much evidently because 

of the particular scale of the ordinate ) in the figure mentioned above. 

In our case the time delay of NE with respect to ES is 6T 

- 6 
= .35(10 ), which is indeed very small with respect to 78., instant 

at which the delay has been measured. 

As a conclusion we may say that, provided a sufficiently high 

wave-number cut-off is given (according to the criterion presented 

in this paper), its effects are limited to the last few wave-numbers 

close to the wave number cut-off. 
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V. THE STATI STICAL EXPERIMENT 

We have seen that with a proper choice of the wave-number cut­

off,it is possible to limit its influence to the wave-numbers close 

to it. 

Once the maximum time of integration Tis chosen (almost invariab l e 

with R),the nurnber of time steps (varying in time) will generally be 

an increasing function of R. 

At this point,we should choose a Reynolds number. Our only upper 

limit is given by considering the computer ti.me. In our cas~ the total 

core utilized is very small. With the experimental knowledge that the 

computer time grows roughly as the square of the wave-number cut-off 

and with a prefixed maxi.mum of 40 minutes per realization, we have 

found that we could use a maximum Reynolds number of 90 with a wave­

number cut-off of 200. The total adi.mensional time of integrati on 

is T = 4., at which instant the energy has decayed to one tenth of its 

original value. 

V-1. Criterion for the Choice of the Initial Conditions 

The initial amplitudes of the wave-numbers are independently 

and Caussianly distributed with zero mean and standard devi a tion 

2 - csch 11.a R , 

Q' and R being conjugated according to (11). 
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The number of realizat i ons cons idered i n t his report is 60 , 

The reason f or the choice of the standard deviation has been given 

in paragraph I I I-1, 

V-2. Check of the Random Number Generator 

The random number generator of the computer's library furnishes 

random numbers uniformly distributed bet~een -1 and 1, A subroutine 

has been used to transform the uniform distribution into a Gaussian 

distribution with mean 0, and variance 1., 

The results of the tests are shown in figures 25-28 for samples 

of increasirtg sizes. 

The random number generator seems satisfactory• but, due to the 

small size of our ensemble, it has been deemed Opportune to develop 

the following. 

V-3. Criterion for the Determination of the Best Quasi-Gaussian 
Distribution Fitting a Certain Sample 

With reference to the above mentioned figures, we see that for a 

sample of size 10,000 picked from a much larger populat i on, the Gaussian 

distribution seems to fit very well. If we now consider a sample of 

size 60, we can argue that, notwi thstanding its having been picked from 

a normally distributed population, there might be density distribution 

functions that better fit the particular sample. By this, we mean that 

the sample might have non-zero mean, non-one variance, non-zero skewness, 

non-three flatness, and so on, while there might be probability 

distribution functions satisfying these requirements. 
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Being inter ested in the development of a certain distribution 

we will be mainly interested in the development of the moments of 

this distribution and, therefore, if we wish to fit the particular 

histogram of our sample with a smooth curve, it is better to take 

into account the "significant" moments of our sample and from them 

to build up a smooth density distribution. 

In our case we will call "significant" the moments fr-0tn the zeroth 

to the fourth. We will try to fit a distribution of the type 

(34) f(x) = 
1 2 3 4 

(A:J + Ai~ + L\a~ + A,~ + ¾~4 ) 
-x2 /2if e , 

where 

X = y-µ, µ = ( X ) , and 

on our sample's histogram. 

The fit will be accomplished by saturating the five unknown 

parameters A:;, ... ,Iv., with the relations 

co 

(35) I n x f(x)dx = 
_ co 

From them we obtain the system 

Po + A2 + 3¾ = 1 

A:; + 3A,z + 15¾ = 1 

3A:; + 15,Az + 105"4 = ( x4
) / 0

4 

A1 + 3A, = 0 

3A1 + 15.t\:3 = < x
3

) / a
3 

and from it 

to = ½<5 + ~) 

A2 = ½<6 - z<i>) 
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~ = _l (-3 + (x4) ) 
24 cJ4 

A1 = - l ( x3) 
2 a3 

A3 
1 ( x3) 

= 603 

In order that f(x) be a probability density distribution function 

it should be everywhere non-negative. We should therefore check that 

the polynomial 

g(x) = 

has no real zero, or, equivalently, that its derivative 

g' (x) = 

has zeros corresponding to which g(x) has positive value. 

This notwithstanding, for purposes of illustration, we may neglect 

the unrealistic fact of slightly negative densities. By this means 

we may visualize the progress of a probability density distribution 

function in time. 

V-4. Presentation and Discussion of the Realizations 

As first in figure 29 we present Benton's solution for R = 90 

at several instants. 

The ordinate is 

~ v( 11. , T) 

~ v( }1, ,0) 

The figures 30-35 present the development of one realization in 

Fourier space while the figures 36-41 the corresponding development 
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in physical space. Four different patterns for the f inal configuration 

are clearly distinguishable: 

1 M one shock-wave figures 35 and 41 

1 F one shock wave figures 42 and 43 

2 F two shock-waves figures 44 and 45 

2 M two shock-waves figures 46 and 47. 

Few realizations show the trend toward a configuration with three 

shock-waves. 

We list here our observations and connnents. 

I. From the respective figures it is clear that the configurations 

lF and lM (and 2F and 2M) are only translated one with respect to the 

other of half a period. 

II. It seems worthy asking which are the factors in the initial 

random conditions that determine the development toward one of the 

above configurations. With this problem in mind we have plotted in 

figure 48 the initial values of v(l) and v(2) for all the realizations 

and in figure 49 their trajectory in time. From this plot one can see 

that the trajectories tend to remain in the same quadrant in which 

the initial point is. And, if at the final time T, 

lv(l,T)I 

l v(l,T)I 

< 

> 

v(2,T) 

v(l, T) 

we have two shock-waves, 

we have one shock-wave. 

More specifically, for each of the above configurations: 

1 F when 

1 M when 

2 F when 

2 M when 

v(l,T) < 0 

v(l,T) > o 

v(2,T) > 0 

v(2,T)<o 

and / v ( 2 , T) / 

and v(2,T) 

and v(2,T) 

and v(2,T) 

< 

< 

> 

> 

v(l, T) 

v(l,T) 

v(l,T) 

v(l, T) 
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In the long run we would expect that, unless v(l, O) is very c : ose 

to zero, the fin a l configuration presented only one shock . When v(l,O) 

~ 0 then the second wave-number becomes the leading one and (because 

of the higher dissipation of the higher wave-number) the odd wave-

numbers will have very rapidly zero amplitude. The period of the 

phenomenon is therefore one-half of the original. For similar reasons 

we would expect a final configuratiort with three shocks ~hen both 

v(l,O) and v(2,0) are very close to iero and v(3;0) is not. This 

explains the relative rarity of the three ~shock final configurations 

and the absence of four-shock ones in our experiment. The fact that 

two-shock configurations are less fr~quent than one-shock configurations 

is explained instead by the fact that the joint probabiltiy density 

distribution function of v(l,O) and v(2 10) is the product of the prob ability 

density dist-ribution function of v(l,O) and of the probability density 

distribution function of v(2,0) and v(2 10) has a smaller variance than 

v(l,O) becaus e of our criterion used for the initial conditions. 

v- 5. The Statistical Averages 

60 different realiz ations of the field v(S,T) with period o,zn 

have been computed. Such ensemble will not in general b~ homogeneous 

in S. An artifice for obtaining a homogeneous ensemble is the following. 

Consider a particular realization (the nth) 

v ( S,T ), 
n 

and all the re a lizations obtained by translating such realization of ~ 

in the S axis 

v ( ~1- 'i1, T). 
n 
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11 will be our second parameter, creating a more genera l ensemble, 

(of which the fi rst ensemble will be a subens emble) and will be 

distributed uniformly from Oto 2n. 

If g (~+ Tl, T) is a physical quantity with ensemble parameters 
n 

of n and Tl the ensemble average will be 

where [ 

g( $,T) = 1? _l 
N L 2n 

n=l 

2TT 
J g (S + 11 , T)dTl 

0 n 

. 2TT 

= 2;; J [g(f + Tl)° T ] dTJ 
0 

J represent the subensemble average. 

For the particular case of the two-point correlation 

and the 

v(S, T)v(s+G, T) 

2TT ( CXl 1 ~ ,_......_ 
= Zn J L v( K, T)sin 

O K=l 

K(s+ Tl) t v( K', T)sin 11.' ($+-(,+ 11)) d 'll 

K'=l 

CXl 2 1T ) L v(K, T)v( K', T) 2;; J sin 11. (S+Tl)sinK' (S+C+Tl)d 'll 

11. '=l 0 

( 00 '") 
1 '"'2 

= 2 L v ( K, T)cos 

11.=l 

CXl 

1 f [v2 (11. ,T) ] cos 11.(; = 
2 

Y,=l 

correlation coefficient 

f((;,T) 

CXl L Cv2 ( K, T)] cos 11.(; 

K=l 
CXl 
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The following results are presented: 

I. Figures 50-55. Development of the mean amplitudes . If the 

size of the subensemble had been sufficiently large the mean amplitudes 

would have been zero. Due to the limited number of realizations a 

deviation from zero is noticeable. 

II. Figures 56-61. Development of the average energy spectnun 

with comparison to the parallel development of the energy spectrum of 

the reference exact solution. 

The final stage (see figures 60 and 61) shows a behavior like 

K-2 for the first 16 wave-numbers and a behavior at least like ~-is 

for high wave-numbers. 

At this point it would seem mandatory to discuss about "inertial 

subrange," "dissipation range," and so on. 

With our numerical experiment (and we believe that it is representative 

of decaying Burgerlence) the dissipation curve versus wave-number does 

show a maximum at K=l. It is therefore impossible to detennine an 

"inertial subrange" and therefore Kolmogoroff' s dimensional 

-5/3 (), 
argument for it (which leads to a K 1~) would not be applicable 

in principle. 

III. Figures 62-67. Skewness factor. There seems to be a clear 

tendency for the lav wave numbers to have positive skewness and for the 

high wave-numbers to have negative skewness. In both cases the even 

wave-numbers have a skewness with absolute value greater than the 

absolute value of the skewness of the odd wave numbers. 
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IV. Figures 68-73 . Flatness factor. The flatness factor tends 

to be less than 3 for the smallest wave-numbers and greater than 3 

for the largest. Different patterns f or even and odd wave-numbers are 

clearly discernible . 

V. Figures 74-79. Correlation function. The correlation 

function of the general ensemble is shown together with the initial 

correlation based on variances according to the reference solution. An 

increase of the microscale in time is evident. 

VI. Figures 80-85 and figures 86-91. The development of the 

histogram and of the probability density distribution funct ion for 

wave-number 1 and wave-number 2 is shown. 

All time-dependent results have been recorded on a computer 

generated movie. Copies are available at the author's present address: 

School of Civil Engineering, Purdue University, West Lafayette, 

Indiana 47907. 
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