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I. PURPOSE OF THE PRESENT RESEARCH

The purpose of the present research is the numerical integration
of Burgers' equation.

As it is well known, Burgers1 proposed and studied the equation
that now bears his name as a one-dimensional model for Navier-Stokes
equation.

The fact that such important quantity as the vorticity has no
meaning outside a three-dimensional space is a strong limitation to
the use that could be made of any results of Burgers equation as
indicative of solutions of Navier-Stokes equations. Therefore from
the physical viewpoint any inference should be regarded with suspicion.

But the other fact that Burgers equation shares with Navier-
Stokes equations two essential mathematical features, namely

a) strong nonlinearity,

b) small coefficient of the highest order derivative,
justifies the use of Burgers equation as a first step in numerical
simulation.

In the present numerical experiment Burgers equation has been
Fourier-analyzed to obtain a system of a discrete infinity of equations
in a discrete infinity of variables, and the numerical techniques have
been used for such a system, being the author's belief that the wave-

number space yields to a''cleaner''numerical approach.



II. BURGERS' EQUATION AND ITS FOURIER-MATE

If u(x,t) is the velocity field at time t on a one-dimensional

space measured by the abscissa x, Burgers' equation can be written

Jou du *u
(1 et = Ve

where V is the viscosity of the fluid. In this form Burgers' equation
is an approximate model of the real behavior of shock waves in gas
dynamics.
If we define
a length scale L
a velocity scale U

and consider the following variables and parameters

adimensional velocity v = u/U
adimensional abscissa € = x/L
adimensional time T = Ut/L
Reynolds number R = UL/V ,

equation (1) can be rewritten as

2

dv ov _ 19y
(2) a_T+V'a_€ = Ragz .

If the velocity field in its Fourier-expansion

@

(3) v(E,T) = Z v(*,T)sin % ,

n=1

which implies a period 2T in the velocity field, is substituted into



equation (2), we get the system of ordinary differential equations

I

2 @
noT "
(4) 1 glé?4_l + 3 v(n,T) = % z;‘ v(r', T)v(en', T)
=1, 1
n-1
'2 vt Tye(r-nt,T)
n'=1

Because of our definitions and the expansion (3), it is
[ee]
"
(5) u(x,t) = EZ:UV(%,T) sin T x ,
n=1
which implies that the Fourier-coefficient of u(x,t) is
(6) u(K,t) = UV(M:T) ]
and the period in physical space is 2TL.

The following are the inverse transforms:

21T
Q) v(6,T) = = v(,T) sin(#9)ds ,
0
21
: 1 r i n
(8) u(®,t) = & Jo u(x,t) sin (7x) dx .

The numerical solution of (4) with random initial conditions

will be the aim of the present research.



III. DISCUSSION OF THE PROBLEMS ENCOUNTERED IN APPLYING
THE NUMERICAL TECHNIQUES

The system (4) being the object of our numerical experiment we

will rewrite it, without explicit mention of the time dependence, as
follows

) { 4.2

1
1’(.:]_,m \

i y &1
vO) = ) vy < £ v ueeerty
n'=1

n'=1

Even a cursory look to the above system shows that the numerical
approximations we must use are two:

1) finite increments of the time variable,

2) a wave-number cut-off N (to replace the symbol ® in the

system (4)).

Neglecting the errors introduced by the computer, and provided
measures are taken to avoid numerical instabilities, the main sources
of errors are just the above approximations.

While the errors introduced by the use of finite increments for
T may be checked by allowing the increments AT to become smaller and
smaller in subsequent trials; the influence of the wave-number cut-off
is much more difficult to assess. By using a method analogous to the
one suggested for the errors introduced by AT, we should use first a
very large wave-number cut-off N and decrease it gradually in successive

experiments.



This is quite feasible but in this context the knowledge of an
exact solution in wave-number space would be invaluable in order to
shorten both computer time and programmer time.

Such solution exists and was found by Benton.” A short

presentation of Benton's solution and a discussion of its merits

follow.

III-1. Benton's Solution to Burgers' Equation

Benton finds that a solution to the system (4) is:

) VoL = - Zesehn (@4 g)

ol

where @ determines the initial conditions.’

As it stands, in the solution (9) -- as well as in the equation
(4) of which (9) is a solution -- the Reynolds number R is unspecified.
In fact the velocity scale U has not been correlated yet with any
velocity distribution. We will agree to call U an "initial'" velocity
scale and precisely we will call U the mean square velocity over the

space interval 2TL, that is

The physical meaning of @ is evident: for T= -%R, v(%,T) becomes
infinite. Therefore -@ is the virtual time-origin, measured in
Reynolds numbers, of an infinite velocity field which, because

of viscosity, decays in time according to the law given by (9).



. ‘2”1,
(10) U = 5= 0 (x,0) dx
21, 0
v 2 R 2
ol o J ZLJV(M’O) sin ng| df
0 lie1 J
2 -T
= lzrg—ﬂ- z ¥ (1,0) [ sin® #E df
n=1 0
IR
= 92 ZV (*,0) ,
n=1
that is
4 ©
2 = g chch nor
N=
or
(11) R =2 E::cschena "
n=1

The functional expression (11) allows us to find the initial
Reynolds number (according to the criterion defined above) once o
is given, or vice versa.

In the figures 1 and 2 the initial Reynolds number is shown versus
the parameter @,

Besides being the only known solution in terms of wave-number
space, Benton's solution has an additional feature which makes it
particularly suitable as a test solution: the absolute value of the
velocity amplitude,

(12) |Yeu,my | = % csch # (¥ + %) :
decreases monotonically with time and with *.
Due to the effects of viscosity, no matter what initial conditions

are given, we would expect to reach such qualitative state after some



time. In fact, the wave-numbers dissipate energy proportional to
H?ve(%), and therefore the highest wave-numbers are bound to lose
more energy than they can receive through the energy exchange with
the other modes.

For these reasons Benton's solution will be used as a reference
solution

1) for the determination of the influence of the wave-number
cut-off and the perfecting of the numerical techniques,

2) for the determination of the statistical ensemble in the

numerical experiment in Burgerlence proper.

III-2. Plan of Approach

Given that we will use a wave-number cut-off N, the system of

equations to solve, starting from arbitrary initial conditions

(13)  v(,0) %=1\
is
N-#
2
as | BOLD - TvnT 5 ) VOO
%=1’N K':l
 t=l
e > v v (n-n')
K_'J=1

We will consider time increments within which the cubic limited
Taylor-expansions of the v(*)'s are good approximations to the real
functions.

In general the time increments may vary with time and be different
for different wave-numbers; we will use for them the notation A4T(%,T),

neglecting one of the arguments whenever it is implicitly evident.



We will consider therefore, together with the system above, the

systems

(15)1 g;¥én - - %? dZTK d + 5 ii
n'=1

D Gty 4 ynt) _m_z)

=1,N

Q%éﬁll v(r-n') + v(n') Q%éﬁ;ﬂil

3 2 2
(16){ ddxgan! - . % ddz n, T
K:l’N
N 2
n d n dv(n') d n! d n!
+3 5 o viun') 4 2 X$ ) X$K+ L 4wty s = )
n=1
N 2 2
no dv(n") dv(n') dv(n-n' d v(n-n'
-7 LD gty 4o WD RO ey S¥0R) )
ni=1

Once the quantities
an  agem = 8SD g 2 SYUD gy L Sueun)
are found for a certain % and T the value of v(®;, T+AT) is found by
means of

(18) vt TAT) = v(,T) + d(4TIAT(HT) + 3 £, IO (1, T)

+ 2 804, MAT (1,T)

III-3. Criterion for the Determination of the Wave-Number Cut-Off

Several criteria could be devised. The criterion used in the
present study is the following:

Consider the initial conditions of the reference solution



(19) -4 csch o,
R
where @ and R are conjugated with respect to (11).
Call N the wave-number cutoff. Then

[e0]
2 2 2 2
i“ csch™ Mo and Z n csch o

n=]1 M=N+1

w) e
RI=

represent respectively the dissipation taking place between wave-number 1
and wave-number N, and the dissipation of the wave-numbers above N.

We will fix a small value € for the ratio

(o o]
%zcschzka
(20) =l '
Z " csch® na
U=1

and agree that N is the lowest wave number that makes such ratio less
than €.

Different values of € may be chosen. In our research we will fix
€ = 0,01 with the belief that the discard of 17 of the total dissipation
should affect very little the total behavior of the solution. The effects
of the wave-number cut-off will be studied later.

In the figures 3, 4, 5, 6, 7 the wave-number cut-off is plotted

against the Reynolds number.
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III-4. Criterion for the Estimate of the Maximum Time Interval
of Integration

The most reasonable criterion for the determination of the total
time of integration seems to be the following:

Given the initial conditions
2
- = csch
R b)

according to which the initial kinetic energy is

4 N 2
s E: csch™ na
n=1

consider the ratio

o]

}: cschek(a + %)
(21) fml
csch® na
=1

between the total kinetic energy at T=T and T = 0. T may be calculated
if we assign to the above ratio a value T < 1 and assign a value to R.

It seems reasonable to assign to T| the value .1, with the belief
that, by the time the kinetic energy has decayed to 1/10 of its original
value, the wave-numbers greater than the very first ones will have
sufficiently interacted exchanging their energy.

In the figures 8, 9, 10, 11 T has been plotted against R for

N=.5 .1, .01, .001.
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III-5. Criterion for the Determination of the Time-Increment
to Assign to Each Wave-Number

The best criterion seems to be given by the following recipe:

Start from some initial conditions at T = 0 and find the first
three derivatives d(®,0), £(®,0), g(#*,0) by means of the systems
(14), (15), (16). The linear, quadratic and cubic limited Taylor-

expansions around T = 0 are respectively

v(®,0) + d(#,0)T

\ v (r,0) + d(1,0)TF FE(%,0)T

\

| v (5,0) + dOL0)T + FE(,0)T + £8(%,0)T

Y

At(n,0)
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We will consider only time increments within which the cubic
limited expansion is a good approximation to the exact solution and

therefore we will fix a small number | and determine AT such that

(22) = ¥

or

£(%,0)AT° (%,0)

%{g(n,owa(n,m‘ -y

N | =

| £(7,0)
(23) AT(n,0) = 3V18("30)l

We will find that there is a # = #; for which the above expression
is a minimum. Take AT(#;,0) as the reference time step and calculate
n(#,0) as the lower integer approximating AT(%,0)/AT(%,,0).

For all those "'s for which n(#,0) = 1 the cubic limited expansion
is a good approximation for the first time interval AT(#;,0); for all
those n's for which n(#,0) = 2 the cubic limited expansion is a good
approximation till time T = 2A4T(%,,0), and so on.

For those #'s for which n(#,0) # 1 then

g(K,AT) = g(%so)
f(K’AT) = £(n,0) + g(%,O)AT
d(1,4T) = d(1,0) + £(,0)AT + 3 g(%,0)A7°

We want to calculate now AT(#,AT) for = %n, a " for which we
had n(Kn,O) = n.

In this case
f(nn,o)
(24) AT(1_,0) = 3§|————| = noT
g(",,0)
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and
f(%n,AT)

AT(%n,AT) 3y

g(nn’AT)

| £0%,0) + g( ,0)4T |

3y

| 8(x,0) |
| £(%y,0) |
< 3§ ———— 4 3yAT
l g(%,,0) l

(25)

nAT 4 3YAT
if V is very small then
At(n,AT) = nAT

(26) AT(ny,AT) = ATk ,0).

We will therefore compare the newly calculated AT(#; ,AT)'s with
AT(n,AT) - AT (for % # n); we choose the minimum of them and go as

in the previous step.

By this criterion, at each step we have to solve the systems
(14), (15), (16) only for some of the N wave-numbers and the computer
time is considerably reduced.

While it is thought that this criterion should be utilized for
cases of three-dimensional turbulence in order to avoid numerical
instabilities, for our case it has been deemed expedient to devise a
criterion which could be used for all realizations, in the sense of
using standard AT's, in order that the computed values of different
realizations be ready for averaging without having to go through the
process of interpolations.

The following criterion has been devised as an alternate.
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It seems evident that we cannot use Benton's solution as it stands.
In fact in this solution the amplitude of the wave-numbers is a ''smooth"
function of % and therefore the energy exchange among the wave-numbers
is already in a sort of equilibrium.

In order to find the characteristic relaxation time 6f each wave-
number we will put ourselves in the most demanding conditions for each
wave-number. We will assume that at T = 0 all the wave-numbers have
zero amplitude but the %th, which is of our concern.

In this case the equation for # at T = 0 is

dv(®) e = Eomy

daT T=0 R

We will assume that the characteristic time of decay for each
wave-number is inversely proportional to the above expression, that
is

AT(n) = R
O]

or, relative to AT(1l) assumed to be 1,

AT(n) = -}1? %%%

Being interested in the statistical properties of Burgers equation,
the v's appearing in the above expression will be random. We will
therefore assign to v(l) and v(#) the value of the respective standard

deviations (see Chapter V), obtaining in so doing

1 ena e-"a
(27) TRy = o S
e - e

The figures 12-16 show the results for several Reynolds numbers.
The number of time intervals per AT(l) is linear with # in the beginning

and reaches a maximum for roughly N/2.
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A program according to this scheme has been worked out and used
for one realization. The time saving with respect to the constant
time increment scheme has been 15%. Nevertheless this criterion has
not been used for the generation of the statistical ensemble because
some realizations had already been taped with a modified equal-increment
method (to be explained just below) and the reworking of them would
have not brought to an appreciable saving in computer-time.

The criterion mentioned has been the following: the time increment
has been set equal for all wave-numbers but the last 50 (for R = 90
and N = 200) for which the time increment has been halved in order to
take into account the effects of the wave-number cut-off.

The time increment has been allowed to vary in time according

to the following.

III-6. Criterion for the Determination of the Variation
of the Time Increment with Time

This problem is strictly connected with the one of the preceding
paragraph in the case we used the second or third method. For reasons
already mentioned it seems advisable to find a general rule that can
be used for all realizations of the ensemble. We will take therefore

as a ''representative' amplitude

(28)

e
]

N
L%(m,
n=1

~ 2 T
where v(n) = - R csch n(o + i) s
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and consider its derivative in time as proportional to the inverse
of the time increment AT,

With respect to a unit time increment for T = 0, we have

R 2 d N 2
Y Foun g ) Veun
A=

M=1

(29) AT =

g
i

2 T cos h nx
Foerh fome
- =1 =1
2 cos h n(4T/R)
csch™ nx in sin D2 A(4T/R)

N=1 n=1

For T = 0.1 AThas been plotted against T for R = 90 in
figure 17. Figure 18 shows the total number of time steps required
in order to cover the total time of integration T = 4. as a function
of the initial time step. AT = .0017, corresponding to' 1000 time steps,
has been chosen and verified for the generation of the statistical

ensemble.
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Iv. INFLUENCE OF THE WAVE-NUMBER CUT-OFF

In this chapter, as well as in the following ones, we will present
some results of the numerical experiments. We will avoid the tendency
of preambling with theoretical considerations and showing later how well
the numerical experience matches the results of our speculations. On
the contrary we will present the results of our numerical experiments
and try to justify them by means of analytical arguments.

For the study of the effects of the wave-number cut-off a low
Reynolds number (R :’17, conjugated to @ = .1) has been chosen so
that it would be possible to integrate the systems (14), (15), (16)
for a very large time interval taking only 40 minutes of computer-time.

The reference exact solution has been plotted, for several instants
in the figures 19-23. The ratio V(K)/;k“)-l, where ;k%) is the exact
solution and v(*) the numerical experiment, has been plotted in figure
24, for several instants.

At the very beginning of the numerical experiment a build-up of
energy is noticed with respect to the exact solution, especially at
the highest wave-number (where the error introduced by the wave-number
cut-off may be as high as 70%). The wave-numbers below 37th ( 49
is the wave-number cut-off) present an error less than 1%. The error
tends to decrease in time and become negative for the lowest wave-
number. Toward the end of the integration the error is confined to

.00017%.
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In order to justify such behavior, we will assume that a true
energy cascade from lower to higher wave-numbers takes place at high
wave-numbers (close to the wave-number cut off),.

We will call

E; (t) the energy contained in the first N wave-numbers;

D; (1) the dissipation of the same wave-numbersj

E, (1) the energy contained in the wave-numbers above N;

D, (1) the dissipation of the same wave-numbersj

T (1) the energy flux through N.

We will add an index ES or NE to make reference either to the

exact solution or to the numerical experiment,

At t= 0, a configuration similar to the following exists:

|V 00

Tm0

E1 (0) |
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For the exact solution it is

oy &L - p0) - w0 ,

(31) dEz (0)

aT 'DQ(O) + T(O) .

For the numerical experiment it is

(32) d—g-}rigl = =Dy (0) .

Therefore:
d—?:r—(g)- < d(ElT : (both negative).
ES NE

This means that for a short time El(T)NE is larger than E1(T)Es
and, because of the cascade, this extra energy will be accumulated
around N.

Call T any instant of this new configuration. Obviously the
configuration of the numerical experiment requires more energy dissipation
than the coinstantaneous configuration of the exact solution and therefore

it will be

DI(T%NE > D1(T))ES :

Because of the continuous accumulation due to the cascade in the

NE it will eventually be, at a later time,

(D) + (Mg = DMy

that is

dE; (T
dT

dE; (T
dT

E NE

always with

B(T), < Ea(Tg
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and, at a later time still

(33) dE; (1)) > [dEi(T)
T E & NE.

We will eventually reach a time for which

T = T
El( )E El( )NE &
In the meanwhile energy has been accumulated around N; therefore
by now we should have the following configuration
V' ()
|
T>T
NE i
—
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We will call T, the instant at which the graph for NE has started
to cross the graph for ES.

If the sense of (33) persists we will eventually have

B(Mpg 7 BNy

and if, by this time, the field has decayed enough such that a cut-off
is ineffectual, then we will reach a point where the whole NE curve is
below the ES curve and will stay like that forever.

The effect of the wave-number cut-off in the whole is such as
to accelerate the process of decay, and the result of the numerical
experiment will be retarded with respect to the coetaneous
exact solution.

We might calculate the amount of such delay by means of the following
considerations. By the time the wave-number cut-off is ineffectual,
the time T is so large that the exact solution

2 T
- — n 1 —
R csch n(o + R)

may be approximated by
4 -n(4+T/R)
-—e
R
A solution retarded of AT will be therefore

4 %%+ T/R+ OT/R)

R
and the ratio of their difference to the first
AT
- ——
e L 1

which, if AT is small and R large, can be approximated by

-nAT
—35-.
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A behavior like this is in fact shown (not much evidently because
of the particular scale of the ordinate) in the figure mentioned above.
In our case the time delay of NE with respect to ES is AT
= .35(10-6), which is indeed very small with respect to 78., instant
at which the delay has been measured.
As a conclusion we may say that, provided a sufficiently high
wave-number cut-off is given (according to the criterion presented
in this paper), its effects are limited to the last few wave-numbers

close to the wave number cut-off.
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V. THE STATISTICAL EXPERIMENT

We have seen that with a proper choice of the wave-number cut-
off,it is possible to limit its influence to the wave-numbers close
to it.

Once the maximum time of integration T is chosen (almost invariable
with R),the number of time steps (varying in time) will generally be
an increasing function of R.

At this point we should choose a Reynolds number. Our only upper
limit is given by considering the computer time. In our case the total
core utilized is very small. With the experimental knowledge that the
computer time grows roughly as the square of the wave-number cut-off
and with a prefixed maximum of 40 minutes per realization, we have
found that we could use a maximum Reynolds number of 90 with a wave-
number cut-off of 200. The total adimensional time of integration
is T = 4., at which instant the energy has decayed to one tenth of its

original value.

v-1. Criterion for the Choice of the Initial Conditions

The initial amplitudes of the wave-numbers are independently
and Gaussianly distributed with zero mean and standard deviation

U(K) = % csch n@ 3

@ and R being conjugated according to (11).
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The number of realizations considered in this report is 60.
The reason for the choice of the standard deviation has been given

in paragraph III-1.

V-2, Check of the Random Number Generator

The random number generator of the computer's library furnishes
random numbers uniformly distributed between -1 and 1. A subroutine
has been used to transform the uniform distribution into a Gaussian
distribution with mean 0. and variance 1.,

The results of the tests are shown in figures 25-28 for samples
of increasing sizes.

The random number generator seems satisfactory, but, due to the
small size of our ensemble, it has been deemed opportune to develop

the following.

V-3. Criterion for the Determination of the Best Quasi-Gaussian
Distribution Fitting a Certain Sample

With reference to the above mentioned figures, we see that for a
sample of size 10,000 picked from a much larger population, the Gaussian
distribution seems to fit very well. If we now consider a sample of
size 60, we can argue that, notwithstanding its having been picked from
a normally distributed population, there might be density distribution
functions that better fit the particular sample. By this, we mean that
the sample might have non-zero mean, non-one variance, non-zero skewness,
non-three flatness, and so on, while there might be probability

distribution functions satisfying these requirements,
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Being interested in the development of a certain distribution
we will be mainly interested in the development of the moments of
this distribution and, therefore, if we wish to fit the particular
histogram of our sample with a smooth curve, it is better to take
into account the "significant' moments of our sample and from them
to build up a smooth density distribution.
In our case we will call "significant" the moments from the zeroth

to the fourth. We will try to fit a distribution of the type

1 3 4

- 2
(3%} k5) = g o % A2+ hZe + Ao + Az )

e-xe/zcgq

where
X =y-H, K= <x>, and O = <xﬁ%
on our sample's histogram.
The fit will be accomplished by saturating the five unknown

parameters Ao,...,As with the relations
@

(35) [ "E(x)ax = Z\x“‘) , n = 0,4 where <x°)= 1.

@

From them we obtain the system
Ao + A+ 34 =1
A + 3Ac + 15A = 1
3% + 15Ac + 105A: = <x4) /ot
Al + 3A3 =0
3 + 154 = (x°) /9
and from it
N
o =350+ )

(x)

1
Ao = 5(6 - 27577)
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4
A = 571;(-3+<§4>)
3
1 <x?\
A3 = 5 03/

In order that f(x) be a probability density distribution function
it should be everywhere non-negative. We should therefore check that

the polynomial

2 3 4
g(x) = &+ A+ a4k s AS

has no real zero, or, equivalently, that its derivative

3

g'(x) = &4 2§x+ 3:-3x2 + bhZ

has zeros corresponding to which g(x) has positive value.

This notwithstanding, for purposes of illustration, we may neglect
the unrealistic fact of slightly negative densities. By this means
we may visualize the progress of a probability density distribution

function in time.

V-4, Presentation and Discussion of the Realizations

As first in figure 29 we present Benton's solution for R = 90
at several instants.
The ordinate is
v(n,T)
v(*,0)
The figures 30-35 present the development of one realization in

Fourier space while the figures 36-41 the corresponding development
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in physical space. Four different patterns for the final configuration

are clearly distinguishable;

1 M one shock-wave figures 35 and 41
1 F one shock wave figures 42 and 43
2 F two shock-waves figures 44 and 45
2 M two shock-waves figures 46 and 47.

Few realizations show the trend toward a configuration with three
shock-waves.

We list here our observations and comments.

I. From the respective figures it is clear that the configurations
1F and IM (and 2F and 2M) are only translated one with respect to the
other of half a period.

II. It seems worthy asking which are the factors in the initial
random conditions that determine the development toward one of the
above configurations. With this problem in mind we have plotted in
figure 48 the initial values of v(1l) and v(2) for all the realizations
and in figure 49 their trajectory in time. From this plot one can see
that the trajectories tend to remain in the same quadrant in which
the initial point is. And, if at the final time T,

| v(l,T)I < | V(Z,T)l we have two shock-waves,

l v(l,T)| - ] v(l,T)| we have one shock-wave.
More specifically, for each of the above configurations:

1 F when v(1,T) <0 and |v(2,T)| < |v(1,T)]|

1M when v(1,T) - 0 and | v(2,T)| < | v(l,T)l

2 F when v(2,T) >0 and |v(2,T)| > |v(1,T) |

2M when v(2,T) <0 and |v(2,T)| > |v(1,T)]|
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In the long run we would expect that, unless v(1,0) is very close
to zero, the final configuration presented only one shock. When v(1,0)
~ 0 then the second wave-number becomes the leading one and (because
of the higher dissipation of the higher wave-number) the odd wave-
numbers will have very rapidly zero amplitude. The period of the
phenomenon is therefore one-half of the original. For similar reasons
we would expect a final configuration with three shocks when both
v(1,0) and v(2,0) are very close to zero and v(3,0) is not. This
explains the relative rarity of the three~shock final configurations
and the absence of four-shock ones in our experiment. The fact that
two-shock configurations are less frequent than one-shock configurations
is explained instead by the fact that the joint probabiltiy density
distribution function of v(1,0) and v(2,0) is the product of the probability
density distribution function of v(1,0) and of the probability density
distribution function of v(2,0) and v(2,0) has a smaller variance than
v(1,0) because of our criterion used for the initial conditions.

V- 5. The Statistical Averages

60 different realizations of the field v(5,T) with period 0,27
have been computed. Such ensemble will not in general be homogeneous
in S. An artifice for obtaining a homogeneous ensemble is the following.
Consider a particular realization (the nth)
v (§,7),
and all the realizations obtained by translating such realization of 1|
in the § axis

vn(§+ﬂ,T).
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T will be our second parameter, creating a more general ensemble,
(of which the first ensemble will be a subensemble) and will be
distributed uniformly from 0 to 2.

If gn(§ + T, T) is a physical quantity with ensemble parameters

of n and T the ensemble average will be
2T

N
JOUNEE I [ 8,4 T man
n=1

2m
Lg(§ + M°Tlam

[}
=3

1
T
. 0
where [ ] represent the subensemble average.

For the particular case of the two-point correlation

v(&, T)v(&+5,T)
1 P g ®
= o J LW‘»T)sin "(Qﬂ)z v(n',T)sin #' (5+64+T)|dTl
0 n=1 n'=1
= ) 211
- Z y V(“,T)V(H',T)ﬁf sin #(E+Msink' (E+C+M)an
n=1 M,'_':]_ 0
1 é& 2
= E Y Vv (%,T)COS }1,g
i

= % 2{: [Vz(K,T)] cos #é

n=1

and the correlation coefficient

zz;[vz(n,T)] cos 1§

£gec,my = b
‘/\_,“ [ve (1, T)]

H=1
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V-6. The following results are presented:

I. Figures 50-55. Development of the mean amplitudes. If the
size of the subensemble had been sufficiently large the mean amplitudes
would have been zero. Due to the limited number of realizations a

deviation from zero is noticeable.

II. Figures 56-61. Development of the average energy spectrum
with comparison to the parallel development of the energy spectrum of
the reference exact solution.

The final stage (see figures 60 and 61) shows a behavior like
#° for the first 16 wave-numbers and a behavior at least like ¥ *°
for high wave-numbers.

At this point it would seem mandatory to discuss about '"inertial
subrange," ''dissipation range,' and so on.

With our numerical experiment (and we believe that it is representative
of decaying Burgerlence) the dissipation curve versus wave-number does
show a maximum at #=1. It is therefore impossible to determine an
"inertial subrange" and therefore Kolmogoroff's dimensional

5/3

= o
argument for it (which leads to a % lpw) would not be applicable

in principle.

III. Figures 62-67. Skewness factor. There seems to be a clear
tendency for the low wave numbers to have positive skewness and for the
high wave-numbers to have negative skewness. In both cases the even
wave-numbers have a skewness with absolute value greater than the

absolute value of the skewness of the odd wave numbers.
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IV. Figures 68-73. Flatness factor. The flatness factor tends
to be less than 3 for the smallest wave-numbers and greater than 3
for the largest. Different patterns for even and odd wave-numbers are
clearly discernible.

V. Figures 74-79. Correlation function. The correlation
function of the general ensemble is shown together with the initial
correlation based on variances according to the reference solution. An
increase of the microscale in time is evident.

VI. Figures 80-85 and figures 86-91. The development of the
histogram and of the probability density distribution function for
wave-number 1 and wave-number 2 is shown.

All time-dependent results have been recorded on a computer
generated movie. Copies are available at the author's present address:
School of Civil Engineering, Purdue University, West Lafayette,

Indiana 47907.
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First realization in Fourier space at & =.937.
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