

2017 Graduate Student Showcase, Fort Collins, CO

Economic Algal Biofuel Process Results

Braden D. Beckstrom, Jesse R. Cruce, Michael D. Somers, Peter H. Chen, Jason C. Quinn Department of Mechanical Engineering, Colorado State University, Fort Collins, CO Email: braden.beckstrom@colostate.edu | Phone: 801 - 910 - 0545

METHODS

Life-Cycle Harmonization

Figure 1: The growth scaling equation used to harmonize growth rates across studies to 25 g/m²/day. The curve was fit to reported data across more than 20 papers and was verified against several papers that reported multiple growth rates for the same process. The (a/x)term corresponds to the energy required for biomass growth (such as mixing energy), which decreases on a per mass basis as productivity increases. The constant (b) term is independent of the growth rate, and includes processes such as harvesting, downstream conversion, and CO_2 delivery.

Figure 2: The two-step harmonization process for techno-economic models. Models were developed from both DOE design reports and other literature publications. They were then harmonized by: (1) productivity and TEA methodology, using the standard Bioenergy Technologies Office (BETO) nth plant assumptions; followed by (2) a growth-platform-neutral biomass cost of \$450 / ton ash-free dry weight, to compare downstream conversion technologies only. 22 models from 9 different sources were developed and harmonized. Here, CAPX and OPX are capital and annual operating costs, respectively.

Figure 3: Results of applying the growth scaling equation (y=a/x+b) to the following papers. Color indicates growth platform and pattern indicates reported vs. harmonized data.

Figure 4: Results of Global Warming Potential before and after the harmonization. Color indicates growth platform and pattern indicated reported vs. harmonized data. Assumptions made for harmonization include, productivity of 25 g/m²/day and a Well-to-Wheel system boundary.

Conclusions

Adjusting system boundaries to Wellto-Wheels better for allow comparison to standard fuels.

Figure 5: The change in calculated TEA result (minimum fuel selling price \$/gallon-gasoline-equivalent, GGE) with each harmonization step. The lines connect results from single models, with each color representing a different technology.

Figure 6: The change in TEA result for different productivities (12, 25, and 50 g/m²/day) after the first harmonization. Lines connect the results from representative studies with the best growth-through-downstream process and TEA models.

- The Growth Scaling equation gives a reliable option for comparing studies.
- Standardization of TEA assumptions help decrease the range of results
- A growth rate of 25 g/m²/day is a good target baseline for modeling work.
- Harmonization helps us select the future with processes more potential.

DOE Funding Number: DE-FE0029623