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• Adjusting system boundaries to Well-

to-Wheels allow for better

comparison to standard fuels.

• The Growth Scaling equation gives a

reliable option for comparing studies.

• Standardization of TEA assumptions

help decrease the range of results

• A growth rate of 25 g/m2/day is a

good target baseline for modeling

work.

• Harmonization helps us select the

processes with more future

potential.

Figure 4: Results of Global Warming Potential before and after the harmonization. Color indicates
growth platform and pattern indicated reported vs. harmonized data. Assumptions made for
harmonization include, productivity of 25 g/m2/day and a Well-to-Wheel system boundary.

Figure 6: The change in TEA result for different productivities
(12, 25, and 50 g/m2/day) after the first harmonization. Lines
connect the results from representative studies with the best
growth-through-downstream process and TEA models.

Figure 3: Results of applying the growth scaling equation (y=a/x+b) to the following papers.
Color indicates growth platform and pattern indicates reported vs. harmonized data.

Figure 5: The change in calculated TEA result (minimum
fuel selling price $/gallon-gasoline-equivalent, GGE) with
each harmonization step. The lines connect results from
single models, with each color representing a different
technology.
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Figure 2: The two-step harmonization process for techno-economic models. Models were
developed from both DOE design reports and other literature publications. They were then
harmonized by: (1) productivity and TEA methodology, using the standard Bioenergy
Technologies Office (BETO) nth plant assumptions; followed by (2) a growth-platform-neutral
biomass cost of $450 / ton ash-free dry weight, to compare downstream conversion technologies
only. 22 models from 9 different sources were developed and harmonized. Here, CAPX and OPX
are capital and annual operating costs, respectively.
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Figure 1: The growth scaling equation used to harmonize growth rates across studies to 25
g/m2/day. The curve was fit to reported data across more than 20 papers and was verified
against several papers that reported multiple growth rates for the same process. The (a/x)
term corresponds to the energy required for biomass growth (such as mixing energy),
which decreases on a per mass basis as productivity increases. The constant (b) term is
independent of the growth rate, and includes processes such as harvesting, downstream
conversion, and CO2 delivery.
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Conclusions


