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ABSTRACT

BAYESIAN TREED DISTRIBUTED LAG MODELS

In many applications there is interest in regressing an outcome on exposures observed over a

previous time window. This frequently arises in environmental epidemiology where either a health

outcome on one day is regressed on environmental exposures (e.g. temperature or air pollution)

observed on that day and several proceeding days or when a birth or children’s health outcome is

regressed on exposures observed daily or weekly throughout pregnancy. The distributed lag model

(DLM) is a statistical method commonly implemented to estimate an exposure-time-response func-

tion by regressing the outcome on repeated measures of a single exposure over a preceding time

period, for example, mean exposure during each week of pregnancy. Inferential goals include

estimating the exposure-time-response function and identifying critical windows during which ex-

posures can alter a health endpoint.

In this dissertation, we develop novel formulations of Bayesian additive regression trees that

allow for estimating a DLM. First, we propose treed distributed lag nonlinear models to estimate

the association between weekly maternal exposure to air pollution and a birth outcome when the

exposure-response relation is nonlinear. We introduce a regression tree-based model that accom-

modates a multivariate predictor along with parametric control for fixed effects. Second, we pro-

pose a tree-based method for estimating the association between repeated measures of a mixture of

multiple pollutants and a health outcome. The proposed approach introduces regression tree pairs,

which allow for estimation of marginal effects of exposures along with structured interactions that

account for the temporal ordering of the exposure data. Finally, we present a framework to es-

timate a heterogeneous DLM in the presence of a potentially high dimensional set of modifying

variables. We present simulation studies to validate the models. We apply these methods to esti-
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mate the association between ambient pollution exposures and birth weight for a Colorado, USA

birth cohort.
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Chapter 1

Introduction

Humans are continuously exposed to thousands of chemicals and pollutants. Many chemicals

are known to be detrimental to human health. Harmful chemicals are present in our indoor home

and workplace environments (e.g. cook stove exhaust, lead paint, cleaning products, industrial

compounds) as well as in the outdoor air we breath (e.g. automotive and industrial exhausts,

wildfire smoke, dust, agricultural products, smog). Some pollutants, such as fine particulate matter

(PM2.5) or semi-volatile organic compounds, are small enough that they can enter our bloodstream

through inhalation or skin absorption (Weschler and Nazaroff, 2012; Morrison et al., 2016). For

an expectant mother, chemical exposures may pose risks to a developing fetus and alter birth

and health outcomes. In particular, air pollution exposure during pregnancy has been linked to

detrimental birth outcomes including decreased birth weight (Bell et al., 2007), increased risk of

preterm birth (Stieb et al., 2012), increased risk of asthma (Lee et al., 2018; Bose et al., 2017), and

altered neurological outcomes (Chiu et al., 2016), among others (Šrám et al., 2005).

1.1 Perinatal Critical Windows

Fetal development occurs in distinct stages throughout gestation. As a specific example in lung

development, bronchial tree formation during the pseudoglandular stage in weeks 5 − 17 builds

from trachea and lung analge developed during late embryonic stage in weeks 4 − 7 (Schittny,

2017). Each developmental stage incorporates specific biological mechanisms, which if interrupted

may alter future processes and later outcomes. In the context of lung development, an expectant

mother’s exposure to pollutants may induce non-regular mechanisms including hypoxia, oxidative

stress, and epigenetic influences (Veras et al., 2017). These mechanisms can alter the trajectory of

lung development and predispose an unborn child to certain diseases such as asthma and wheezing.

To better understand the nuance in how maternal exposure to air pollution during pregnancy is

related to changes in developmental processes, research focuses on identifying critical windows, or
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time periods when exposure can alter phenotypes observed in birth or health outcomes of the child.

Critical windows can be as short as a week or span many months and are hypothesized to align

with sensitive developmental stages. Identifying these windows can shed light on the mechanism

by which an exposure effects an outcome. An equally important goal is to estimate the exposure-

response relationship to give insight into the magnitude of the effects. The effect magnitude at

different time points throughout the exposure period will influence the overall exposure-response

function.

Traditionally, most research on perinatal exposures estimates the relationship between air pol-

lution exposure and birth outcomes using pregnancy average or trimester average exposure to a

single pollutant or mixtures of chemicals. While this approach gives a broad understanding of

the impact of pollution on fetal development, the true relationship may be more nuanced and

there is potential for bias in the results when critical windows do not align with clinically defined

trimesters. To explore developmentally driven windows, Hazlehurst et al. (2021) modeled PM2.5

exposure aligned to four specific stages of lung development and found exposure during the sac-

cular phase (24 − 36 weeks gestation) to be associated with increased risk of asthma. However,

the true biological critical windows are unlikely to perfectly align with predefined windows such

as clinically defined trimesters or developmentally identified windows. In contrast to the lung

development example provided here, there are not clearly defined developmental stages for many

endpoints. Moreover, methods that rely on exposure averaged over predefined time periods such as

trimesters or the entire pregnancy are likely to mischaracterize or completely miss critical windows

(Wilson et al., 2017b).

Advances in exposure assessment have allowed for more flexible models that leverage high

resolution exposure data to better identify windows and estimate the exposure-time-response func-

tion (Wright, 2017; Buckley et al., 2019). Here, high resolution refers to weekly or daily exposure

measurement taken in close proximity to the mother’s residence. These data allow for more pre-

cise identification of periods during the gestation process when exposure is associated with altered

health outcomes for the child. Distributed lag models (DLMs), which are more flexible and al-
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low the data to determine the location of the critical windows can more precisely identify critical

windows and more completely characterize the exposure-time-response relation.

In this dissertation, we consider additional complexities around estimating perinatal critical

windows. First we address is the assumption that pollution effects are linear in the exposure con-

centration. Second, we consider the effect of simultaneous exposure to multiple pollutants, which

may create a more realistic picture of the exposure-response relationship (Hoskovec et al., 2021;

Davalos et al., 2017). For multiple pollutants, critical windows may exist as interactions across

time, where an early exposure to one pollutant increases susceptibility to another exposure at a

later time point. Finally, individual differences may alter exposure susceptibility during gestation.

We consider critical window and exposure effect heterogeneity due to a range of the characteristics

of the mother and child.

1.2 Distributed Lag Models

A key challenge in estimating critical windows is dealing with correlation in high temporal

resolution exposure data. A commonly applied method to identify perinatal critical windows and

estimate the exposure-response relationship between maternal exposures and an outcome is the

DLM. Wilson et al. (2017b) showed that a constrained DLM outperforms more naive methods

such as using average exposure over each of the trimesters because DLMs adjust for exposures

at other time points throughout pregnancy and provide a data driven approach to identify critical

windows even when they do not align with clinically defined trimesters.

Figure 1.1 presents an example of the correlation across weekly PM2.5 exposures measurements

taken during gestation for a Colorado birth cohort. Correlations in this example range from -0.04

to 0.42. We note higher correlations at nearby weeks, but also increased correlation at around 24

weeks due to seasonal trends in pollution.

The single exposure DLM involves estimating the effects of a time-resolved vector of exposures

to an individual pollutant on a scalar health endpoint. For a sample i = 1, . . . , n, let yi denote a

continuous response, xi = [xi1, . . . , xiT ]
′ represent a vector of exposures measurements taken at

3



Figure 1.1: Correlation of weekly PM2.5 exposures from a Colorado birth cohort. The color represents the
correlation between exposures at the weeks given by the x- and y-coordinates with lighter color indicating
stronger positive correlation.

equally spaced times t ∈ {1, . . . , T}, and zi represent a vector of covariates including model

intercept. The single exposure DLM is

yi =
T∑

t=1

xitθt + z′iγ + ǫi. (1.1)

Here, θt is the linear effect of exposure at time t; γ is a vector of regression coefficients; and ǫi rep-

resents independent errors distributed N (0, σ2). In the context of exposure during pregnancy, as

used throughout this dissertation, we consider weekly exposure measurements for the first T = 37

weeks of gestation. We limit analyses to full term births, which we define as at least 37 weeks of

gestation at birth, and make note of the limitation in our analyses that stratifying by time of birth

may introduce potential collider bias (Hernán et al., 2014). The distributed lag effects, θt, corre-

spond to each measurement period. An example is visualized in Figure 1.2. Time points when the

confidence interval of θt does not include zero designates a critical window and identifying these

are of key scientific interest. To account for the temporal correlation in the exposure data, θt is con-

strained to vary smoothly in time. Methods for estimating DLMs include splines (Zanobetti et al.,
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2000; Gasparrini et al., 2010), Gaussian processes (Warren et al., 2012), and principal components

(Wilson et al., 2017a).

Figure 1.2: Visualization of a distributed lag model. The solid line describe the mean effect at each week
and the grey area captures the 95% credible interval.

The distributed lag nonlinear model (DLNM) is an extension of the DLM that allows for non-

linear effects in exposure-concentration at each time point (Gasparrini et al., 2010, 2017). The

single exposure DLNM is written

yi =
T∑

t=1

w(xit, t) + z′iγ + ǫi. (1.2)

The exposure-response function w(xit, t) relates the exposure concentration xit for individual i at

week t of gestation to the outcome. Methods for estimating a DLNM typically represent w as

a bivariate basis expansion in the exposure concentration and time dimensions. Estimation with

splines or penalized spline regression allows for a range of assumptions to be made regarding the

structure of the exposure-time-response function.

A common issue with current smoothing methods for estimating DLMs and DLNMs, such as

splines, is that estimates may generalize critical windows beyond the true period of effect (Figure

1.3). Critical windows are hypothesized to be defined by biological mechanisms during a devel-

opmental process that may be altered by environmental exposures. Methods that can identify the

5



discrete time spans of these events will be more precise in estimating critical windows. To improve

critical window identification for DLMs, Warren et al. (2020a) proposed a hierarchical Bayesian

framework for DLMs that performs variables selection to select weeks in or out of the critical win-

dows. No similar approach has been proposed to avoid oversmoothing in DLNMs. In Chapter 2

of this dissertation we propose a method that relaxes the smoothness constraint for a DLNM and

show that it outperforms spline-based methods and reduces overgeneralizing the critical windows.

Figure 1.3: Penalized spline estimation (solid line) and confidence interval (grey area) of distributed lag
effect, compared to true distributed lag effect (dashed line). Critical windows are identified when confidence
interval does not contain zero.

The DLM allows for estimation of the exposure-time-response for a single environmental expo-

sure. While DLMs can be used additively to account for multiple pollutants, this approach leaves

out possible interactions between these exposures. Interactions between exposures may occur at

the same time period or at different time periods where early exposure to one pollutant increases

susceptibility to the same or another pollutant at a later time period. Adding flexibility to accom-

modate time-sensitive interactions poses a challenge of increasing dimensionality in the required

parameter space. As an example, for vectors of two time-resolved exposure measurements xi1 and
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xi2, the two-exposure DLM with interactions is

yi =
T∑

t=1

xit1θt1 +
T∑

t=1

xit2θt2 +
T∑

t1=1

T∑

t2=1

xit11xit22θt1t2 + z′iγ + ǫi. (1.3)

Here, θt1 and θt2 parameterize the main effects of exposures 1 and 2, respectively, while θt1t2

parameterizes the interactions over time. Chen et al. (2019) proposed a method for estimating

the joint effects and interactions of two exposures observed at high temporal resolution, but their

method does not extend to mixtures of three or more pollutants. Chapter 3 of this dissertation

defines a generalized distributed lag mixture model (DLMM), which considers a larger number

of exposures and their interactions across time. We propose a method for estimating the DLMM

that performs exposure component selection and effect shrinkage. We show in simulation that

this method can precisely identify critical windows and outperforms single exposure methods in a

single exposure setting while allowing for additional potential exposures in the data.

There is evidence that exposure effects, including critical window timing and effect magnitude,

vary across a population. Several methods have sought to estimate DLMs that allow for effect het-

erogeneity. Wilson et al. (2017a) proposed a Bayesian distributed lag interaction model (BDLIM)

to estimate differences in the exposure-response function for a set of predetermined subgroups.

Warren et al. (2020b) developed a spatially-varying DLM to account for changes in pollution com-

position or demographics over a study region. Both papers highlight the bias incurred due to an

assumption of homogeneous effects across a population when the effect are truly heterogeneous.

BDLIM has been applied in several epidemiological analyses, including two that found an in-

creased risk of asthma due to prenatal exposures to both fine particulate matter and nitrate for a

subgroup of boys concurrently exposed to high prenatal stress (Lee et al., 2018; Bose et al., 2017).

Despite these advances in estimating DLM heterogeneity, the methods of Wilson et al. (2017a) and

Warren et al. (2020b) remain limited in their scope and interpretability. A spatially-varying DLM

is unable to identify the specific features associated with changes in the underlying distributed lag

function. BDLIM is limited to predefined categorical subgroups. In an age of big data, we have
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access to a potentially high dimensional set of categorical and continuous modifiers where the

true modifiers responsible for differences in distributed lag effects are unknown. Harnessing this

information in precision models can lead to personalized environmental health decision making.

In Chapter 4, we define the heterogeneous DLM (HDLM) and propose three methods allowing

for estimation of individualized distributed effects and critical windows. We show in simulation

that our proposed HDLM approach precisely identifies critical windows for a individual, estimates

the distributed lag effects and selects the correct modifiers responsible for changes in the DLM

structure and effects.

1.3 Bayesian Additive Regression Trees

In this dissertation, we propose methods for DLMs using Bayesian additive regression trees

(BART). BART is popular supervised machine learning method developed by Chipman et al.

(2010) for estimating a non-parametric function due to a vector of covariates, xi. The BART

model for an ensemble of A regression trees is written

yi = f(xi) + ǫi, ǫi ∼ N (0, σ2), (1.4)

f(xi) =
A∑

a=1

g(xi, Ta). (1.5)

The function g is a weak-learner based on tree Ta and the regression function f is constructed as

an additive ensemble of weak-learners, which are each based off unique tree structures T1, . . . , TA.

Priors on the regression trees and tree-specific effects regularize the model by encouraging shallow

trees to prevent over fitting.

A regression tree divides the data into subgroups defined by binary splitting rules on internal

nodes resulting in a partition of the sample located at tree terminal nodes. Figure 1.4 diagrams a

regression tree. Each terminal node receives a partial effect estimate. Specifically, for tree Ta with
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Ba terminal nodes denoted ηab,

g(xi, Ta) = µab if xi ∈ ηab. (1.6)

For each observation, the effect estimate is determined by the sum of partial effects due to all trees

in the ensemble, that is

f(xi) =
A∑

a=1

Ba∑

b=1

µabI(xi ∈ ηab) (1.7)

where I is the indicator function.

Figure 1.4: A regression tree (left) divides a sample based on two covariates, x1 and x2. The terminal
nodes, denoted ηb for b ∈ {1, 2, 3, 4}, correspond to the resulting partition of the covariate space (right).
An observation at a given point in the covariate space will be associated with a single terminal node and
terminal node effects.

Estimation of BART proceeds through Bayesian backfitting (Hastie and Tibshirani, 2000) and

standard MCMC procedures. Trees are updated via a stochastic process that considers four possi-

ble steps: grow, prune, change, and swap. Steps are accepted using the independent Metropolis-

Hastings algorithm after integrating over terminal node parameters to deal with changes in dimen-

sionality.

The general BART framework is well documented (Tan and Roy, 2019), shown to have optimal

posterior concentration properties (Ročková et al., 2020) and extended for application to a range

of different problems. Several notable BART extensions include a method for high dimensional
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sets of predictors (Linero and Yang, 2018), causal inference (Hahn et al., 2020), varying coefficient

models (Deshpande et al., 2020) and estimation of a smooth function in a single covariate (Starling

et al., 2020). The BART framework has also been adapted to accommodate various data types in-

cluding logistic and count outcomes (Murray, 2020), survival analysis (Sparapani et al., 2016), lon-

gitudinal data (Spanbauer and Sparapani, 2021), and heteroscedastic errors (Pratola et al., 2020).

1.4 Outline

This remainder of this dissertation will proceed as follows: In Chapter 2 we develop a novel

regression tree-based method for identifying critical windows and incorporating exposure mea-

surement uncertainty in a DLNM. We show our treed DLNM outperforms spline-based methods

for estimating distributed lag effects and identifying critical windows. We apply our method to a

Colorado-based birth cohort to estimate the association between fine particulate matter exposure

and birth weight, and find critical windows throughout pregnancy.

In Chapter 3 we define the distributed lag mixture model and propose a BART method based

on an ensemble of tree pairs for estimating the main and interaction effects of environmental mix-

tures observed at high temporal resolution. Our proposed approach performs variable selection

to identify exposures correlated with the outcome and effect shrinkage to reduce the variance of

estimated main and interaction effects not associated with the outcome. We apply this method to

estimate the relationship between weekly exposures to a mixture of temperature and four ambi-

ent pollutants and birth weight. Our analysis finds critical windows due to four exposures and an

interaction between fine particulate matter and temperature.

We next propose a method for estimating heterogeneous critical windows and distributed lag

effects in Chapter 4. Our approach utilizes regression trees for modification and considers three

methods for estimating the DLM. We show our proposed approach can develop individualized

distributed lag effect estimates based on a set of modifying covariates and performs well in two

simulation scenarios. We apply our heterogeneous DLM to identify susceptible populations in the

association between fine particulate matter exposure and birth weight. We consider ten modifying
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covariates, including continuous, categorical, and binary modifiers. The analysis suggests that

Hispanic designation, mother’s age, body mass index, and educational attainment are responsible

for changes in the distributed lag effects and critical windows.

Finally, we summarize our work in Chapter 5. We propose several future directions for research

in the area of Bayesian treed distributed lag models and describe the potential impact of this work

on environmental health epidemiology.

11



Chapter 2

Treed Distributed Lag Nonlinear Models

2.1 Introduction

In many applications there is interest in regressing an outcome on exposures observed over a

previous time window. This frequently arises in environmental epidemiology applications where

either a health outcome on one day is regressed on exposures (e.g. temperature or air pollution)

observed on that day and several proceeding days or when a birth or children’s health outcome is

regressed on exposures observed daily or weekly throughout pregnancy (Stieb et al., 2012).

In the context of maternal exposure to air pollution, which we consider in this paper, there

are generally two inferential goals. The first is to estimate the critical windows of susceptibility–

periods in time during which an exposure can alter a future phenotype. The second goal is to

estimate the exposure-time-response function. Recent studies have identified critical windows and

associations between maternal exposure to air pollution and several outcomes including preterm

birth (Chang et al., 2012, 2015) adiposity (Chiu et al., 2017), asthma and wheeze (Bose et al.,

2018; Lee et al., 2018), neurodevelopment (Chiu et al., 2016), among other outcomes (Stieb et al.,

2012; Šrám et al., 2005). This includes studies that have found that the linear (Chiu et al., 2017;

Chang et al., 2015) and nonlinear (Wu et al., 2018) association vary across weeks of gestation.

A popular approach to estimate the association between maternal exposure to air pollution

during pregnancy and a birth outcome is a distributed lag model (DLM) (Schwartz, 2000; Zanobetti

et al., 2000). In a DLM, the outcome is regressed on the exposures at each of the time points,

e.g. mean exposure during each week of pregnancy. Most commonly, the model is constrained

so that the exposure effect varies smoothly over time. Constraining the model adds stability to

the estimator in the presence of typically high temporal correlation in the exposure. Methods

of regularization include penalized spline regression (Zanobetti et al., 2000), Gaussian processes

(Warren et al., 2012), principal components or splines (Wilson et al., 2017a). Wilson et al. (2017b)
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showed that a constrained DLM outperforms more naive methods such as using average exposure

over each of the trimesters because DLMs adjust for exposures at other time points throughout

pregnancy and provide a data driven approach to identify critical windows even when they do not

align with clinically defined trimesters.

To extend the DLM to estimate non-linear associations in the exposure-response function at any

given time, a class of distributed lag non-linear models (DLNMs) has been proposed (Gasparrini

et al., 2010, 2017). DLNM methods typically operate by cross-basis smoothing with splines or

penalized spline regression. This results in a unique non-linear exposure-response function at each

time point that varies smoothly over the lagged exposures.

A consequence of imposing smoothness over time in a DLM or DLNM is that estimates may

generalize the critical window(s) to a wider set of times than is appropriate. Critical windows are

hypothesized to be defined by biological events in the fetal developmental process that may be al-

tered by environmental exposures. Methods that can adapt to the discrete time spans of these events

are needed to better estimate critical windows. Motivated by this, Warren et al. (2020a) proposed

a hierarchical Bayesian framework to improve critical window characterization for DLMs using a

variable selection approach that selected weeks in or out of the critical window. However, there

are no DLNM methods that relax the smoothness constraint for a non-linear exposure-response

function.

In this paper, we propose a method for DLNM that relaxes the smoothness assumption and can

more precisely identify critical windows. The proposed approach, which we call treed distributed

lag non-linear models (TDLNM), is based on the Bayesian additive regression trees (BART)

framework developed by Chipman et al. (2010). Applied to estimating a distributed lag func-

tion, TDLNM treats the time series of exposures as a single multivariate predictor and uses a

tree structure to partition the exposure concentration and time dimensions to construct a flexible

exposure-time-response surface.

We propose two forms of TDLNM. The first form uses a dichotomous tree structure to form

a piecewise constant exposure-time-response function. By using an ensemble of trees, the model
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can approximate both smooth and non-smooth functions. The second form imposes smoothness

only in the exposure-concentration dimension but not over time. This forces smoothness in the

exposure-response, while maintaining precision in critical window identification. We also discuss

how the smooth version can be used to incorporate exposure uncertainty into the model.

Following development of TDLNM, we perform a simulation study that compares our pro-

posed method to spline-based methods across a variety of settings. These simulations demonstrate

that our method excels in the estimation of the exposure-time-response function for non-smooth

settings, but also adapts well to estimating scenarios with a smooth exposure-time-response. Im-

portantly, we find that TDLNM more precisely identifies critical windows and has an extremely

low rate of critical window misspecification. In addition, simulations show that TDLNM has nar-

rower confidence intervals, especially near the boundaries, while maintaining nominal coverage.

Finally, we apply TDLNM to estimating the association between the fine particulate matter (PM2.5)

experienced by a mother during pregnancy and the resulting birth weight of the child. Software to

implement this method is available in the R package dlmtree.

2.2 Data

We analyze birth records from Colorado, USA, vital statistics data. The data includes live,

singleton, full term (≥ 37 weeks gestation) births from Colorado with estimated conception dates

between 2007 and 2015, inclusive, with no known birth defects. We limited the analysis data to

the northern front range counties (those immediately east of the Rocky Mountains roughy extended

from Colorado Springs to the Wyoming border). This area contains the majority of the Colorado

population. We further limited the analysis to census tracts with elevation less than 6000 feet above

sea level. This both reduces the potential confounding by altitude and the impact of mountainous

terrain on exposure data.

The primary outcome of interest in this paper is birth weight for gestational age z-score (BWGAZ).

We obtained BWGAZ using the Fenton birth charts (Fenton and Kim, 2013). BWGAZ measures

birth weight as the number of standard deviations above or below the expected birth weight of
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a child with the same fetal age and sex. The data contain individual level covariate information

including mother’s age, weight, height, income, education, marital status, prenatal care habits and

whether they smoked before or during pregnancy, as well as race and Hispanic designations. We

limit the analysis to observations with complete covariate information, resulting in 300,463 births.

We use PM2.5 exposure data from the US Environmental Protection Agency fused air quality

surface using downscaling data. This data is publicly available at www.epa.gov/hesc/rsig-related-

downloadable-data-files. The statistical methodology for construction of the data files has been

described in Berrocal et al. (2010). We linked the exposure data to the birth records based on the

census tract of maternal residence at birth. We then constructed weekly average exposures for each

week of gestation. A map detailing the number of births in each county is shown in Figure A.1.

This study was approved by the Institutional Review Board of Colorado State University.

2.3 Methods

2.3.1 DLNM Framework

Before introducing our proposed method we briefly recap the DLNM framework and standard

methodology. Let yi be the continuous outcome for person i from a sample i = 1, . . . , n. Let

xi = [xi1, . . . , xiT ]
T denote a vector of exposures observed at equally spaced times t = 1, . . . , T .

In our case, yi indicates BWGAZ while xit represents the ith mother’s exposure to PM2.5 in week

t of pregnancy. We control for a vector of covariates, denoted zi. The Gaussian DLNM model is

yi ∼ N
[
f(xi) + zTi γ, σ

2
]
, (2.1)

where f(xi) is the distributed lag function and γ is a vector of regression coefficients.

The distributed lag function f(xi) can take several linear as well as non-linear forms. The

DLNM allows a unique non-linear association between exposures at each time point and the out-
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come. In general, the distributed lag function is defined as

f(xi) = f(xi1, . . . , xiT ) =
T∑

t=1

w(xit, t) (2.2)

where w(x, t) is the exposure-response function relating exposure at week t of gestation to the

outcome. Existing frameworks for the DLNM (Gasparrini et al., 2010, 2017) utilize a cross-basis

where w is represented as a bivariate basis expansion in the exposure concentration and time di-

mensions. Penalized spline implementations allow for a range of assumptions to be made regarding

the structure of the exposure-time-response. For example, varying ridge penalties target shrinkage

at specific times, while varying difference penalties control the smoothness along the curve. Basis

expansion methods, such as splines, regularize the model to improve stability of the estimated ef-

fect in the presence of multicollinearity in the predictor. However, these methods also impose the

assumption of smoothness in the DLNM.

2.3.2 Treed DLNM Approach

We introduce a sum-of-trees model based on the BART framework (Chipman et al., 2010) to

estimate the exposure-time-response function, f(xi). The general approach is to build dichoto-

mous trees that partition the time-varying exposure xi in both the exposure concentration and time

dimensions. Figure 2.1 illustrates the approach for a single tree. Figure 2.1(a) is a diagram of a tree

showing binary rules defined on the exposure and time values. These rules divide the exposure-

time space into five terminal nodes, denoted η1, . . . , η5. Figure 2.1(b) shows the exposure-time

space partitioned into five regions with each region corresponding to a single terminal node. A tree

and corresponding parameters define a piecewise constant exposure-response function,

w(xit, t) = µb if xit ∈ ηb. (2.3)

16



The distributed lag function for tree T takes a form similar to that in (2.2) and is defined as

g(xi, T ) =
T∑

t=1

w(xit, t). (2.4)

(a) (b)

Figure 2.1: Example of tree, T , with terminal nodes ηb, b ∈ {1, 2, 3, 4, 5}. Panel (a) diagrams the tree with
dichotomous splits on time or exposure concentration while panel (b) represents the resulting partition of
the exposure-time space for a single observation.

In our TDLNM framework, we consider an ensemble of A regression trees. For tree Ta,

a ∈ {1, . . . , A}, denote the Ba terminal nodes as ηa1, . . . , ηaBa
. Each terminal node, ηab has a

corresponding set of limits in time and exposure concentration given by the rules defined as splits

of the tree and a corresponding parameter µab. Collectively, the terminal nodes of each tree define a

partition of the exposure-time-space and allow for flexible estimation of the exposure-time surface.

As in (2.3), we define the effect of each exposure-time combination in tree Ta to bewa(xit, t) = µab

if xit ∈ ηab. Each regression tree in the ensemble provides a partial estimate of the distributed lag
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non-linear function f . Formally, the exposure-time-response function for TDLNM is

f(xi) =
A∑

a=1

g(xi, Ta), (2.5)

where g(xi, Ta) represents the partial estimate contributed by tree a given in (2.4).

TDLNM foregoes the basis-imposed smoothness assumption. However, when different time

and exposure breaks are staggered across trees the ensemble of trees can approximate smooth

functions. Model regularization is a result of the tree prior, which prefers trees having only a few

splits. Smaller trees ensure that the model is stable in the presence of temporal correlation because

each terminal node averages across multiple time points.

2.3.3 Smoothing in exposure concentration

Most epidemiological studies assume that the exposure-response relationship is smooth in ex-

posure concentration. The TDLNM methods presented above assume a piecewise linear structure

that can approximate a smooth function, but it is never truly smooth. In this subsection we propose

a TDLNM model that is truly smooth in exposure (TDLNMse). Importantly, TDLNMse does not

force smoothness in time to allow for accurate critical window estimation.

To allow for smoothing in the exposure-response, we introduce a weight function on the

terminal-node specific effects. A similar idea was introduced by Linero and Yang (2018), which

assigned a node-specific probability to each observation using a gating function at each dichoto-

mous split on a covariate. TDLNMse differs in that we desire smoothing only in the exposure-

concentration dimension. To accomplish this, we define smoothing parameter σx and modify (2.3)

to be

wa (xit, t) =
Ba∑

b=1

µab · ψ(xit; ηab, σx). (2.6)

The weight function ψ(xit; ηab, σx) allows each observation xit to be distributed across all terminal

nodes that contain time point t. For the weight function we use a normal kernel with bandwidth
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σx. Hence, the weight for xit assigned to node ηab is

ψ(xit; ηab, σx) =

{
Φ

(
⌈xab⌉ − xit

σx

)
− Φ

(
⌊xab⌋ − xit

σx

)}
· I(t ∈ ηab), (2.7)

where ⌈xab⌉ and ⌊xab⌋ refers to the maximum and minimum exposure concentration limits of node

ηab, respectively, and Φ is the standard normal cumulative distribution function. The inclusion

of the indicator function allows TDLNMse to retain a piecewise constant effect in time at each

exposure concentration value. The kernel smoother requires fewer terminal nodes to estimate a

smooth effect in exposure-concentration as observations near the boundary of two terminal nodes

will have an estimated effect that is in between estimates of observations located centrally in the

nodes.

For TDLNMse, we propose fixing the bandwidth σx a priori. Alternatively, we could assign a

prior to σx and estimate the bandwidth.

2.3.4 Incorporating exposure uncertainty with TDLNMse

A situation that has not been addressed in the DLNM literature is uncertainty in the exposure.

Many exposure models including climate models and spatially kriged exposure models provide

measurement of uncertainty. Most commonly these occur in one of two forms—standard errors for

the exposure data or multiple realizations from a model such as draws from a posterior predictive

distribution or an ensemble method. This uncertainty is not accommodated for in the health effect

estimates from standard DLNMs.

Exposure uncertainty can be incorporated into TDLNM by using a weight function to spread

the exposure across multiple terminal nodes according to the probability that the exposures is in

each of those nodes. The result is similar to TDLNMse, using a weight function corresponding

to the uncertainty in each observation. In the case of reported standard errors for the exposure

data, we use (2.7) with observation specific smoothing parameter σxi that is equal to the standard

error for each observation. If instead we have multiple draws of exposures from an ensemble or

Bayesian model we replace Φ in (2.7) with the empirical cumulative distribution function.
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2.3.5 Interpretation of TDLNM and relation to spline-based DLNMs

To gain some insight into the exposure-response function characterized by TDLNM we con-

sider the DLNM relation at a single time point. The distributed lag function in TDLNM is given

by combining (2.4) and (2.5), i.e. the sum over trees and the sum of each tree over time. Reversing

the order of the summation we get

f(xi) =
T∑

t=1

A∑

a=1

wa(xit, t). (2.8)

At time t, the exposure-response function,
∑A

a=1wa(xit, t), is equivalent to the BART model

with univariate predictor xit. In the case of TDLNM this implies a piecewise-constant exposure-

response function across the exposure concentration levels at time t. For TDLNMse, the weight

function ψ acts as a linear smoother over exposure concentration for the exposure-response func-

tion at each time.

2.4 Prior Specification and Computation

Our prior specification is based on that of Chipman et al. (2010); however, some modifications

and a different MCMC algorithm are needed to accommodate or improve performance with the

multivariate predictor and parametric control for covariates. In this section we specify key dif-

ferences in the priors and computation approach from that of Chipman et al. (2010), including

a horseshoe-like shrinkage prior on tree-specific effects and an altered prior for tree splits on a

multivariate predictor. Full details on the priors and computation are in Appendix A.2.

2.4.1 Prior Specification

We apply a tree-specific, horseshoe-like prior to the effects at the terminal nodes µab (Carvalho

et al., 2010). The prior for terminal node b on tree a is

µab|σ
2, ω2, τ 2a ∼ N

(
0, σ2ω2τ 2a

)
. (2.9)
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Here τa ∼ C+(0, 1) and ω ∼ C+(0, 1) define the horseshoe prior on trees. We specify prior

σ ∼ C+(0, 1) and γ ∼ MVN (0, σ2cI), where c is fixed at a large value.

For the half-Cauchy priors on all variance parameters we adopt the hierarchical framework

of Makalic and Schmidt (2015), where r2|s ∼ IG(1/2, 1/s) and s ∼ IG(1/2, 1) gives that

marginally r ∼ C+(0, 1). This allows for Gibbs sampling of all variance components.

The tree-specific shrinkage prior on µab results in better mixing throughout the MCMC sam-

pler. This occurs by allowing shrunken trees with a small variance component and smaller effects

µa1, . . . , µaBa
to more easily explore splitting locations in the exposure-time space. After recon-

figuration, these trees have the ability to contribute larger partial estimates.

Our stochastic tree generating process largely follows Chipman et al. (1998). The probability

a tree splits at node η with depth dη equals psplit(η) = α(1 + dη)
−β , where hyperpriors α ∈ (0, 1)

and β ≥ 0. In our data setting the number of potential splits in the time direction is T −1 while the

number of potential split points in the exposure direction is equal to the number of unique exposure

values minus one which is substantially larger than T − 1. To address this imbalance we limit the

potential exposure split points a priori and propose an alternative prior on potential split points.

By limiting the exposure split points we also avoid situations where a split in one dimension limits

future splits in another dimension due to empty nodes. For example, if TDLNM has a tree that splits

on an extreme value in the exposure-concentration dimension, it may be unable to further split on

the time dimension due to lack of data in one partition of the exposure-time space. We restrict

the potential split locations in the exposure dimension to a predefined set of quantiles or values.

Specification of potential splitting values also improves computational efficiency by allowing for

precalculation of counts or weights for the limited number of potential splits.

We assign prior probabilities uniformly across potential time splits and uniformly across po-

tential exposure splits such that there is a 0.5 probability of selecting either a time or exposure

split as the first splitting rule in a tree. Hence, for sx and st total potential exposure and time

splitting values, respectively, the probability of the first split in a tree being on exposure equals

1/(2sx) or 1/(2st) if the split is on time. For a splitting decision further down the tree, the splitting
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rule probability is proportional to the probabilities of the potential remaining splits in a selected

node. Following a split in time, there are fewer potential remaining splits in time, increasing the

probability that the next split will take place in the exposure dimension.

2.4.2 MCMC Sampler

We estimate TDLNM using MCMC. The MCMC approaches used for BART do not apply to

the current model for two reasons. First, the algorithm of Chipman et al. (2010) relied on the fact

that any specific vector of predictors xi is contained in a single terminal node on each tree, whereas

TDLNM divides the exposures related to each observation across the terminal nodes. Second, we

modify the algorithm to allow for parametric control of the confounding variables z. Due to these

differences we propose an alternative MCMC approach for the TDLNM model. In particular, we

integrate out γ using standard analytical techniques. Then, we apply Bayesian backfitting (Hastie

and Tibshirani, 2000) to simultaneously estimate the effects of the partial exposure-time-response

based on the partition defined by each tree, Ta. Full details of the MCMC sampler can be found in

Appendix A.2.

2.4.3 Hyperprior selection and tuning

Tree splitting hyperpriors were set to the defaults used in Chipman et al. (2010) with α =

0.95 and β = 2; different settings did not improve results. Trees in TDLNM explore only two

dimensions, which requires fewer trees to adequately explore the predictor space. In preliminary

work, we found that 10 to 20 trees was sufficient. Results did not change using more than 20

trees. We used A = 20 trees for our simulation and data analysis. We assigned the stochastic

tree process to grow or prune with probability 0.3 each and change with probability 0.4. The fixed

smoothing parameter in TDLNMse, σx, is data dependent: too large and the estimated effect will

appear linear, too small and the model reverts to TDLNM (no smooth effect). For our simulation

and data analysis, we set σx to half the standard deviation of the exposure data. We found this

setting to balance a smooth effect while also clarifying non-linearity in the exposure-concentration

effects.
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2.4.4 Estimating the exposure-time-response function

The distributed lag non-linear function f includes the model intercept. To ease interpretation

we remove the intercept by centering f at a reference exposure value, x0, at each time. As f is

estimated as a sum of tree, we center each tree at the reference value and we use the centered trees

for posterior inference.

2.5 Simulation

We conduct a simulation study to compare the empirical performance of TDLNM and TDL-

NMse to established DLNM methods that use penalized and unpenalized splines. Key to the

simulation is that we compare performance on simulation scenarios representing both smooth and

non-smooth exposure-time-response functions.

We simulate data according to (2.1) and (2.2), using a sample size equivalent to our exposure

data (n = 300, 463). To accurately represent the autocorrelation found in air pollution exposure

data, we use PM2.5 exposures from our data analysis. We simulate the DLNM surface using 37

consecutive weeks from each observation to simulate a full-term pregnancy. We consider four

simulated exposure-time-response functions. Each corresponds to a different true model (TDLNM,

TDLNMse, smooth DLNM with splines, and linear DLM). The four DLNM scenarios are: A)

piecewise constant effect in exposure across weeks 11 − 15; B) linear effect in exposure across

weeks 11 − 15; C) smooth, non-linear effect (logistic shape) in exposure across weeks 11 − 15;

D) smooth, non-linear effect (logistic shape) in exposure with a smooth effect in time peaking at

week 13 and extending approximately five weeks in either direction. We generate the outcomes

using log-transformed exposure data. All scenarios are centered at log-exposure value 1. Several

cross-sections of the exposure-time surfaces are shown in Figures 2.2 and 2.3. Algebraic details of

the DLNM surface for each scenario and a graphic representation can be found in Appendix A.3.1.

We generate a set of covariates (five standard normal, five binomial with probability 0.5) and

corresponding coefficients from standard normal. We include a seasonal trend by using ozone

data. Specifically, we add a random ozone effect for every 5th week (5, 10, . . . , 35), where ozone
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measurement at each time is centered mean zero, scaled to have standard deviation one and mul-

tiplied against a draw from N (0, σ2 = 0.04). This allows for a different seasonal trend for each

simulated dataset that is correlated with both the exposure, PM2.5, and the outcome. We set the

error variance σ2 such that Var[f(xi)]/σ2 = 1/1000 to represent a realistic signal to noise ratio

and run 500 simulation replicates in each scenario. The simulation design can be reproduced with

the R package dlmtree.

2.5.1 Simulation estimators and comparisons

TDLNM and TDLNMse used the prior settings described in section 2.4.3. Thirty evenly spaced

values ranging between the 0.01 percentile and the 99.9 percentile of all log-exposure value were

designated as potential splits in the exposure-dimension. After a burn-in period of 5,000 iterations,

we ran each model for 15,000 iterations, thinning to every tenth draw.

We compare TDLNM and TDLNMse to several spline-based penalized and unpenalized DLNM

models. The models are described as follows with more detail given in Gasparrini et al. (2017).

• GAM: base model defined by penalized cubic B-spline smoothers of rank 10 in both expo-

sure and time dimensions, with second-order penalties, estimated with REML;

• DLM: using GAM with a linear assumption in exposure concentration;

• GLM-AIC: optimal number of unpenalized, quadratic B-splines in both exposure and time

dimensions (df 1 to 10) selected by minimizing AIC;

• GAMcr: defined by replacing the cubicB-spline basis in GAM with cubic regression splines

and penalties on the second derivatives;

• GAM-exp: GAM, replacing the second-order penalties with a varying ridge penalty.

To assess model performance, we center the DLNM for each model at log-exposure value 1 and

evaluate the estimated DLNM over a grid of points.

In each model we include all 10 simulated covariates as well as indicators for year and month

to control for the additional seasonal trend. We log-transform the exposure concentration values
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to reduce skew in the exposure data and allow for equally spaced knots in the spline basis models.

The decision to log-transform the response has no impact on TDLNM as the model will produce

identical results with or without a log-transform; it does impact the smoothing with TDLNMse.

2.5.2 Simulation Results

Summary measures of model performance are shown in Table 2.1.

Here, we compare each model by the root mean square error (RMSE) of the entire exposure-

time surface and broken down to the RMSE within and outside the simulated critical windows.

We also show the empirical coverage of 95% confidence intervals along with average confidence

interval width. In addition, the models are compared on the probability of identifying a non-zero

effect across grid points inside the simulated critical window (TP), the probability of incorrectly

placing a non-zero effect across grid points outside the simulated critical window (FP), and the

precision of correct identification of a non-zero effect: TP/(TP+FP). We designate a non-zero

effect in the true exposure-time surface as any effect outside of the interval from −0.005 to 0.005 to

account for scenario B and C, which have a non-zero effect everywhere between weeks 11-15 and

scenario D, which has a non-zero effect everywhere. Figures 2.2 and 2.3 show cross-sections of the

exposure-time-response surface using estimates from models TDLNM, TDLNMse, and GAMcr.

A non-zero estimate in the plots indicates a change in the response for any observation with that

particular time and exposure-concentration value.

TDLNM and TDLNMse have as good or better overall RMSE in scenarios A, C and D. In all

scenarios, the tree-based methods have the lowest RMSE in areas of zero effect in the exposure-

time-response surface. Figure 2.2 highlights the ability of TDLNM and TDLNMse to find a sharp

distinction between times with or without effects. The shrinkage prior on the tree-specific parame-

ters reduces variance leading to lower RMSE in areas of no effect. In areas of non-zero effect, our

models have lower RMSE than spline based models in scenario A and are comparable in scenarios

C and D. In scenario B the RMSE in areas of non-zero effect is higher for TDLNM and TDL-

NMse, as the spline based models do a better job interpolating into the extreme exposure values
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Table 2.1: Simulation results, showing RMSE for estimation of the exposure-time-surface with no-effect
and effect separated. Coverage and CI width is based on 95% confidence intervals. Effect identification
considers the likelihood of identifying a non-zero effect (TP) or incorrectly designating a non-zero effect
(FP) over the DLNM surface. Precision is calculated within each simulation as TP/(TP+FP). Standard errors
are available in Table A.2.

DLNM RMSE DLNM Coverage Effect Identification

Model Overall No Effect Effect Overall CI Width TP FP Precision
Scenario A: Piecewise in Exposure and Time

TDLNM 0.086 0.066 0.213 1.00 0.43 0.87 0.00 1.00
TDLNMse 0.100 0.077 0.252 0.99 0.46 0.82 0.00 0.98
GAM 0.294 0.258 0.584 0.95 1.08 0.47 0.03 0.90
DLM 0.370 0.342 0.626 0.68 0.53 1.00 0.30 0.77
GLM-AIC 1.531 1.536 1.462 0.84 3.35 0.49 0.15 0.55
GAMcr 0.263 0.241 0.454 0.98 1.10 0.62 0.01 0.96
GAM-exp 0.241 0.165 0.669 0.94 0.67 0.32 0.01 0.87
Scenario B: Linear in Exposure

TDLNM 0.292 0.081 0.768 0.87 0.37 0.56 0.01 0.99
TDLNMse 0.270 0.073 0.712 0.87 0.34 0.64 0.01 0.99
GAM 0.312 0.257 0.547 0.73 0.48 0.90 0.18 0.84
DLM 0.299 0.257 0.489 0.64 0.36 1.00 0.26 0.79
GLM-AIC 0.267 0.253 0.346 0.79 0.46 0.99 0.18 0.85
GAMcr 0.248 0.206 0.426 0.84 0.54 0.87 0.09 0.90
GAM-exp 0.283 0.226 0.518 0.76 0.37 0.94 0.15 0.86
Scenario C: Smooth in Exposure

TDLNM 0.077 0.033 0.223 0.94 0.18 0.58 0.01 0.99
TDLNMse 0.070 0.032 0.201 0.97 0.17 0.67 0.01 0.99
GAM 0.142 0.126 0.241 0.91 0.36 0.60 0.06 0.91
DLM 0.138 0.120 0.245 0.64 0.18 1.00 0.31 0.77
GLM-AIC 0.186 0.167 0.309 0.82 0.40 0.53 0.14 0.80
GAMcr 0.113 0.104 0.176 0.95 0.37 0.64 0.03 0.96
GAM-exp 0.126 0.103 0.255 0.92 0.28 0.62 0.05 0.93
Scenario D: Smooth in Exposure and Time

TDLNM 0.105 0.041 0.203 0.80 0.26 0.40 0.00 0.99
TDLNMse 0.098 0.038 0.190 0.95 0.24 0.45 0.01 0.99
GAM 0.120 0.100 0.171 0.97 0.44 0.54 0.01 0.98
DLM 0.122 0.090 0.193 0.69 0.23 0.94 0.23 0.80
GLM-AIC 0.284 0.277 0.306 0.81 0.52 0.45 0.14 0.77
GAMcr 0.110 0.092 0.156 0.97 0.41 0.57 0.01 0.98
GAM-exp 0.099 0.068 0.164 0.97 0.35 0.47 0.00 0.99
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(a) (b)

(c) (d)

Figure 2.2: Simulation results of TDLNM, TDLNMse, and GAMcr comparing the exposure-time-response
(y-axis) cross-section across all times (x-axis) fixed at two different exposure concentrations. Grey lines
show 15 random simulation replicates, red dashed line indicates average across all simulations and solid
black lines indicates the true simulated response.
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(a) (b)

(c) (d)

Figure 2.3: Simulation results of TDLNM, TDLNMse, and GAMcr comparing the exposure-time-response
(y-axis) cross-section across all exposure concentrations (x-axis) fixed at two different times. Grey lines
show 15 random simulation replicates, red dashed line indicates average across all simulations and solid
black lines indicates the true simulated response.
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where few data points reside. Figure 2.3 contrasts how tree-based models attenuate the effect at

the boundaries of exposure values, while GAMcr continues the trend linearly.

The tree-based models have near nominal coverage, except in scenario B. All models show

below nominal coverage in scenario B, however, TDLNM and TDLNMse perform best, each hav-

ing 87% surface coverage. In addition, our models have the smallest average confidence interval

width, which is particularly notable at the boundaries in time or extreme exposure concentration

where the ‘wiggliness’ of spline-based models becomes more pronounced (Figures 2.2 and 2.3).

The lack of ‘wiggliness’ in the tree-based model estimates contributes to narrow confidence in-

tervals as well as decreased RMSE, especially in areas of zero-effect. Furthermore, the variation

between simulation replicates is much smaller for TDLNM and TDLNMse.

Scenario B, while seemingly natural for a DLM, poses several difficult situations. First, a

proper estimate by TDLNM would require trees with many breaks spanning the exposure con-

centration during the correct critical window. Second, TDLNM attenuates the effect when data is

sparse (e.g. high and low concentrations in this scenario). Third, at high concentration, there is

a jump from zero to a large effect that smooth methods cannot accommodate; in particular, DLM

extends the critical window well beyond the true period of effect as a result of the smoothness

assumption.

Precision with TDLNM and TDLNMse is the highest across all simulation scenarios (Table

2.1). The high precision is a result of near zero FP, but with a tradeoff of lower TP in scenarios

B and D. The cross-sectional plots in Figure 2.2 shows the ability of TDLNM and TDLNMse

to adapt to non-smooth exposure-time response surfaces. Figure A.3 indicates the probability

detecting a non-zero effect in at least one exposure value in each week. These results shows that

the spline-based methods have a much higher probability of misclassifying weeks just outside of

the true critical windows. On the other hand, the tree-based models adapt to changing smoothness

in the exposure-time-response surface and rarely detect non-zero effects outside of the true critical

window. The key takeaway is that the critical windows detected by TDLNM and TDLNMse have

a high probably of being correct.
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2.6 Data Analysis

We use TDLNM and TDLNMse to estimate the relationship between a mother’s exposure to

PM2.5 during the first 37 weeks of pregnancy and child BWGAZ. By using weekly exposures,

we limit the temporal resolution at which critical windows can be identified with any method to

correspond to weeks. For comparison, we also apply DLNM using penalized cubic regression

splines (GAMcr) and DLM. We control for maternal baseline characteristics and season and long-

term trends. The maternal characteristics are: pre-pregnancy age (quadratic fit), weight, smoking

(if done before or during pregnancy), income, education, prenatal care (when first received), race

and Hispanic designations, elevation, and county of residence. We do not control for fetal sex or

gestational age as the outcome, BWGAZ, is already adjusted for these factors. In addition, we

adjust for seasonal effects using indicators for year and month of conception.

For TDLNM and TDLNMse, we use the same hyperparameters as in our simulation, running

the models for a burn-in period of 5, 000 iterations followed by 15, 000 iterations retaining every

tenth draw from our MCMC sampler. We specify 30 equally spaced potential splits in the exposure

dimension ranging from the 0.1 percentile to the 99.9 percentile of log-exposure values. Different

numbers of potential splits were considered, but showed no differences in the result. In TDLNMse

we set the smoothing parameter σx equal to half the standard deviation of the log-exposures. Mod-

els GAMcr and DLM used the same settings as in simulation. The DLNM estimates for all models

are centered at the median exposure value (approximately 7 µg/m3). Critical windows are defined

as any week containing a region in the exposure-time-response where the 95% confidence interval

does not contain zero.

2.6.1 DLNM Results

The posterior mean exposure-time-response estimates for TDLNMse is shown in Figure 2.4(a).

PM2.5 exposure below the median is associated with an increase in BWGAZ. Exposure concentra-

tion above the median value indicate a slight decrease in BWGAZ, but the 95% credible intervals

do not give reason to believe this is different from zero. This pattern is present across all gesta-
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tional weeks. Cross-sections of the exposure-time-response surface at weeks 5, 15, 25, and 35 are

shown in Figure 2.4(b) and indicate a critical window spanning the entire pregnancy.

Based on TDLNMse, a change from median (7.0 µg/m3) to the 25th percentile of PM2.5 expo-

sure (5.89 µg/m3) across the pregnancy would result in a cumulative mean increase in BWGAZ

of 0.0132 (95% CI: 0.0003, 0.0354) or approximately 5.74g (95% CI: 0.11, 15.41) when translated

to actual birth weight (this is approximate because BWGAZ accounts for gestational age and fetal

sex). The non-linear association shows that a further decrease in PM2.5 exposure to the 10th per-

centile (5.02 µg/m3) would result in a 0.055 (95% CI: 0.016, 0.090) mean increase in BWGAZ,

or an approximate increase of 24.1g (95% CI: 7.155, 39.10). These results suggest that decreasing

PM2.5 below the current national ambient air quality standards would result in higher average birth

weights in this population.

The mean exposure-time-response estimate for GAMcr, shown in Figure 2.4(a), closely resem-

bles the estimates of TDLNMse. As in our simulations, we see a difference in the tail behavior.

GAMcr continues the trend in the effect with large intervals. Despite the large point estimate with

GAMcr at low exposure levels the larger confidence intervals include zero. In contrast, TDLNMse

tapers off and estimates a smaller effect with substantially smaller intervals that do not contain

zero. The smaller intervals found in TDLNMse near the boundaries are a result of these boundary

regions being grouped in terminal nodes that also contain internal regions and therefore receive the

same estimates.

Our findings of an association between increased PM2.5 and decreased BWGAZ are consis-

tent with previous literature. A meta-analysis by Sun et al. (2016) found a 10 µg/m3 increase in

PM2.5 across pregnancy to be associated with 15.9g decrease in birth weight (95% CI: −26.8,−5);

increased exposures in the second and third trimesters were also determined to have a nonzero

negative association with birth weight. Zhu et al. (2015) reported similar results in a separate

meta-analysis. Strickland et al. (2019) found that the magnitude of associations between PM2.5 and

birth weight increased for higher percentiles of the birth weight distribution across all trimesters.

Finally, a study investigating individual chemical components of PM2.5 found non-zero increased
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(a) Exposure-time-response surface

(b) Exposure-response function at weeks 5, 15, 25, and 35

Figure 2.4: Panel (a) shows the estimated exposure-time-response surface for models TDLNMse and
GAMcr. Panel (b) shows cross sections of the estimated exposure-time-response with columns showing the
estimated effect at four times: t = 5, 15, 25, 35, while rows compare models TDLNMse and GAMcr. All
plots indicate the exposure-time-response relative to the median exposure concentration value (7.0µg/m3).
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risk of low birth weight for maternal exposures during each trimester of pregnancy (Ebisu and Bell,

2012).

2.6.2 Comparing less flexible model alternatives

For comparison, we fit TDLNM, a DLM and several linear models to compare results. Each

of these models was consistent with the TDLNMse results. More details on these methods can be

found in Appendix A.4.

2.7 Discussion

In this work we have proposed a tree-based method for a DLNM to estimate the association

between a time-resolved series of pollution exposures and a continuous birth outcome. TDLNM

eliminates the smoothness assumption in the exposure-time response surface. TDLNMse imposes

smoothness only in the exposure-concentration dimension but not over time. TDLNM also has the

potential to account for measurement error within the exposure-response function. By relaxing the

smoothness assumption in the time dimension, our new methods more precisely identify critical

windows of susceptibility.

TDLNM provides several extensions to tree-based regression models. First, we allow for

a multivariate predictor with temporal correlation. Second, we provide a computationally effi-

cient method for estimating a tree-based function while controlling for a fixed effect. Finally, we

eliminate the need for cross-validation to select variance hyperpriors through the application of a

horseshoe-like prior on tree-specific effects.

In simulation scenarios, we show that TDLNM and TDLNMse have a low false positive rate of

critical window identification, while spline-based DLNMs have a tendency to over-generalization

the time periods containing critical windows. Furthermore, our tree-based methods can approxi-

mate both smooth and non-smooth exposure-time-response functions. As the smoothness assump-

tion in time changes, TDLNM and TDLNMse allow for information sharing at the same exposure

levels across time, so that the piecewise constant steps are distributed across adjacent times allow-
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ing for near-smooth estimates. The shrinkage priors reduce the variance of estimates, reducing

RMSE in areas of no effect and decreasing the rate of false positives. In the presence of a linear

trend, DLNM models are overly flexible. While penalized spline DLNM can revert to an approx-

imately linear model, TDLNM requires a large number of splits in the exposure-concentration

dimension to accomplish the same results. As seen in simulation Scenario B, TDLNMse attenu-

ated the linear trend in areas of few exposure observations. The simulations indicate that TDLNM

and TDLNMse have high precision in identifying critical windows.

We applied TDLNM and TDLNMse to a Colorado birth cohort. We found a non-linear effect of

PM2.5 on BWGAZ. Specifically, we found that below median levels of PM2.5 throughout pregnancy

were associated with higher BWGAZ. We found no change in BWGAZ due to above median PM2.5

exposure.
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Chapter 3

Estimating Perinatal Critical Windows to

Environmental Mixtures via Structured Bayesian

Regression Tree Pairs

3.1 Introduction

Maternal exposure to environmental chemicals during pregnancy is an important public health

concern due to potential impact on children’s health. Increased exposure to environmental chemi-

cals has been linked to decreased birth weight, increased risk of asthma, and altered neurological

development, among other outcomes (Bosetti et al., 2010; Stieb et al., 2012; Jacobs et al., 2017).

There is also evidence that changes in temperature are associated with birth weight (Jakpor et al.,

2020; Kloog et al., 2015). Recent research has focused on leveraging exposure data that is observed

at high temporal resolution throughout pregnancy to identify critical windows of susceptibility dur-

ing the gestational process (Wright, 2017). Critical windows are periods in time when an exposure

can alter a future health outcome and could be as short as a week or span many months. Estimating

the exposure-response relationship over the course of pregnancy is an equally important goal. Most

studies that leverage repeated measurements of exposure consider the effects of only a single envi-

ronmental chemical. While understanding the effects of a single exposure is essential, considering

a mixture is necessary to develop a more realistic picture of the exposure-response relationship

because it accounts for interactions and controls for confounding by co-exposures (Davalos et al.,

2017). In this paper, mixture refers to simultaneous exposure to multiple environmental factors.

As an example of the importance of considering interactions and mixtures, Anenberg et al. (2020)

documented evidence of a synergistic effect of heat and air pollution on cardiovascular and respi-

ratory disease among adults. However, estimating critical windows for mixtures has been elusive

due to an absence of statistical methods.
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A distributed lag model (DLM) is commonly used to estimate the association between a sin-

gle time-resolved exposure and a health outcome (Zanobetti et al., 2000; Warren et al., 2012;

Wilson et al., 2017a; Gasparrini et al., 2017). A DLM regresses the outcome on the exposure mea-

surements at multiple time points, e.g. regressing birth weight on weekly mean exposure during

gestation. Because of high temporal correlation between repeated measures of exposure there is a

need to regularize the DLM. This is most commonly done with a constrained DLM that smooths

the effect over the exposure time and allows for sharing of information between parameters at

different times during gestation. Common constraints include splines (Zanobetti et al., 2000; Gas-

parrini et al., 2017), Gaussian processes (Warren et al., 2012) and principal components (Wilson

et al., 2017a). Compared to using average exposure over pregnancy or each of the trimesters, the

DLM has been shown to reduce bias in estimates as well as improve critical window estimation

(Wilson et al., 2017b). To account for multiple exposures, the DLM can be used additively and

extended to include interactions between two time-resolved predictors (Chen et al., 2019; Muggeo,

2007). However, methods to identify critical windows and estimate exposure-time-response func-

tions with mixtures of more than two time-resolved predictors are lacking.

Estimating DLMs with interactions requires flexibility to identify interactions between expo-

sures across time. Interactions at different time points correspond to the ‘priming’ hypothesis.

Priming posits that prenatal exposure leads to phenotype changes (Bolton et al., 2014). These

changes may result in altered biological mechanisms that increase susceptibility to later exposures.

Extending DLMs to include time-sensitive interactions poses a challenge of increasing dimension-

ality in the required parameter space. As the number of exposures and temporal resolution of

measurements increase, the number of possible interactions increases at a quadratic rate. In ad-

dition, data for mixtures observed at multiple time points typically exhibit high collinearity both

over repeated measures and across mixture components at a single time point. A key challenge is,

therefore, regularizing the model while allowing for flexibility to identify critical windows.

We propose a regression tree approach to estimate a constrained DLM for a single exposure

or mixture of exposures observed at multiple time points. Regression trees have been applied in
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numerous fields including the study of chemical mixtures observed at a single time point in envi-

ronmental epidemiology (Park et al., 2017). Bayesian additive regression trees (BART), introduced

by Chipman et al. (2010), has been adapted for a wide variety of data generating situations such as

high dimensional prediction (Linero and Yang, 2018) or for causal inference (Hahn et al., 2020).

While BART is generally focused on out-of-sample prediction, our goal is to adapt this framework

to the estimation of distributed lag effects. Applied to exposure observations taken repeatedly over

time, current regression tree techniques are lacking in several respects. First, the regression trees

would treat the measurements for a single exposure at adjacent times as independent predictors.

This is equivalent to fitting an unconstrained DLM which is unstable due to high collinearity. Sec-

ond, regression trees would not account for the structure in mixture data where one measurement

from each exposure is taken at the same time point. To account for temporal ordering in a single

time-resolved predictor, Mork and Wilson (2021b) proposed a tree based model to estimate a dis-

tributed lag nonlinear model that subdivides the time and exposure-concentration dimensions of

the exposure-time response surface, but fails to generalize to mixtures.

In this paper, we define the distributed lag mixture model (DLMM), which extends the DLM

to estimate the main effects of multiple exposures along with all two-way interactions. We pro-

pose regression-tree based methods for estimating both DLM and DLMM. Our DLM method uses

regression trees that split on time to construct a constrained DLM that is piecewise constant with

breakpoints determined by binary splits in the tree. Combined in an additive ensemble of trees,

the resulting DLM can be approximately smooth or have piecewise constant distributed lag ef-

fects. Our proposed DLMM further builds on the tree literature. We introduce the concept of tree

pairs—two trees that collectively define DLM structures of main effects and interactions between

two time-resolved exposure measurements. We develop a computational framework to estimate an

additive ensemble of tree pairs that allows for both the tree structures and the exposures to which

the tree structures are applied to be learned from the data. Furthermore, our method conducts ex-

posure selection and effect shrinkage to remove time-resolved predictors or interactions that do not

influence the outcome.
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We apply our models to a Colorado-based administrative birth cohort. This analysis inves-

tigates changes to birth weight associated with five environmental exposures measured weekly

during gestation. Software is made available in the R package dlmtree.

3.2 Colorado Birth Cohort Data

We analyze birth weight for gestational age z-score, BWGAZ, using birth vital statistics records

from Colorado, USA. The data include all births from Colorado with estimated conception dates

between 2007 and 2015, inclusive. We limit the analysis to the Denver metropolitan area. Besides

birth outcomes, the data include individual covariates including mother’s age, weight, height, in-

come, education, marital status, prenatal care habits, smoking habits, as well as race and Hispanic

indicators.

We are interested in the association between birth weight and a mother’s weekly exposure

to particulate matter smaller than 2.5 microns in diameter (PM2.5), nitrogen dioxide (NO2), sulfur

dioxide (SO2), carbon monoxide (CO), and temperature. We limited our analysis to singleton, full-

term births (≥ 37 weeks) and observations with complete covariate and exposure data, resulting

in 195,701 births. This study was approved by the Institutional Review Board of Colorado State

University. Demographic breakdowns and additional data details are described in Appendix B.1.

3.3 Model

3.3.1 Distributed lag mixture models

For a sample i = 1, . . . , n, let yi denote a continuous response, xi = [xi1, . . . , xiT ]
′ represent a

vector of exposure measurements taken at equally spaced times t ∈ {1, . . . , T}, and zi represent a

vector of covariates including model intercept. The single exposure DLM is

yi =
T∑

t=1

xitθt + z′iγ + ǫi. (3.1)
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In (3.1), θt is the linear effect of exposure at time t; γ is a vector of regression coefficients; and ǫi

represents independent errors distributed N (0, σ2).

We consider a model involving M exposures. Let xim = [xim1, . . . , ximT ]
′ represent the vector

of measurements for exposure m corresponding to individual i. A DLMM with pairwise interac-

tions can be written

yi =
M∑

m=1

T∑

t=1

ximtθmt +
M∑

m1=1

M∑

m2=m1

T∑

t1=1

T∑

t2=1

xim1t1xim2t2θm1m2t1t2 + z′iγ + ǫi. (3.2)

Here, θmt is the main effect of exposure to pollutantm at time t. Interactions are considered at every

time combination t1 for exposurem1 with t2 for exposurem2 and parameterized by θm1m2t1t2 . This

includes interactions within the same exposure. Within-exposure interactions at t1 = t2 represents

a quadratic main effect. In total, the DLMM requires MT +
(
M+1
2

)
T 2 parameters, which quickly

becomes a ‘large-p’ problem as the number of exposures grows. For example, the DLMM in our

data analysis involving 5 exposures and 37 time points requires estimating 20,720 parameters.

3.3.2 Treed DLM

We first introduce our proposed method of estimating a DLM for a single exposure with no

interactions. In our treed distributed lag model (TDLM), binary trees partition the entire exposure

time span, T , into non-overlapping segments. Figure 3.1(a) illustrates the approach. Each binary

tree is characterized by a set of internal nodes that split on available time points and a set of

terminal nodes, which are the endpoints of the tree structure. The terminal nodes define the time

partition and are denoted ηb for b ∈ {1, . . . , B}. We define the linear relationship between each of

the exposure measurements in terminal node ηb and the outcome by a single coefficient, denoted δb.

The distributed lag effects in (3.1) are, therefore, defined by the terminal nodes and node specific

effects as θt = δb if t ∈ ηb. This represents a piecewise constant DLM such that all times within

the same terminal node have the same effect on the outcome. In our proposed model, both the tree

structure and the effects are learned from the data.
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(a) (b) (c)

Figure 3.1: Diagram of structured regression trees. Binary tree structures in panels (a) and (c) partition
the time period for an individual exposure and each terminal node ηaibj corresponds to an estimated effect
δaibj (dashed lines). The interaction surface in panel (b) depicts how the tree structures intersect; the inter-
section of terminal nodes ηa1b1 in panel (a) and ηa2b2 in panel (c) has corresponding effect δa1b1a2b2 (with
independent magnitude indicated by shading).

By keeping the number of terminal nodes small, TDLM introduces a necessary constraint on

the distributed lag function to account for temporal correlation by assuming that the effect of

exposures within the same terminal node are equal. This framework also allows for sharp changes

in effect estimates across times at the boundary between different terminal nodes where the effect

estimates can quickly change in magnitude or sign.

We propose an additive model with an ensemble of A regression trees. This allows for smooth-

ness in the DLM as each tree may partition the time span of exposure differently. For tree Ta,

a ∈ {1, . . . , A}, denote terminal nodes {ηab}
Ba

b=1 with corresponding effects {δab}
Ba

b=1. The dis-

tributed lag effect θt =
∑A

a=1

∑Ba

b=1 δabI(t ∈ ηab), where I(·) is the indicator function.

3.3.3 Treed DLMM

The treed distributed lag mixture model (TDLMM) extends TDLM to multiple time-resolved

predictors by replacing each individual tree with a pair of trees. A pair of trees is composed of two

binary trees, as described in Section 3.3.2, which define the main effects of two exposures and the

interaction between these same exposures. The interactions are structured based on the time parti-

tions of each tree. Exposures in each time-segment of the first tree are interacted with exposures
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in each time-segment of the second tree. A diagram representing the structured regression trees

and interaction surface is shown in Figure 3.1. The exposures partitioned by a tree pair may be

two different exposures or the same exposure twice. In the case both trees partition the same expo-

sure, we are able to estimate within-exposure interactions as well as potential nonlinear effects via

quadratic terms created by same-time interactions. This maintains a hierarchical structure where

an interaction is only included when the corresponding main effects are part of the model. Both

the structures of the trees and exposures are learned in our proposed model.

In TDLMM we use an ensemble of A tree pairs. The ensemble allows for different pairs of

exposures to be included in the model, which correspond to the main effects and interactions that

may be present. Consider tree-pair {Ta1 , Ta2} with sets of terminal nodes {ηa1b}
Ba1

b=1 and {ηa2b}
Ba2

b=1 ,

respectively. Let Sa1 = m if exposure m is partitioned by tree Ta1 . Similarly Sa2 = m if exposure

m is partitioned by tree Ta2 . The main effect of exposure m at time t is

θmt =
A∑

a=1

[ Ba1∑

b=1

δa1b1I(Sa1 = m, t ∈ ηa1b1) +

Ba2∑

b=1

δa2b2I(Sa2 = m, t ∈ ηa2b2)

]
(3.3)

and the interaction between exposure m1 and m2 at times t1 and t2 is

θm1m2t1t2 =
A∑

a=1

Ba1∑

b1=1

Ba2∑

b2=1

δa1b1a2b2I(Sa1 = m1, Sa2 = m2, t1 ∈ ηa1b1 , t2 ∈ ηa2b2). (3.4)

The main effects for terminal nodes ηa1b1 and ηa2b2 are parameterized by δa1b1 and δa2b2 , re-

spectively. The interaction effect between exposures in terminal nodes ηa1b1 and ηa2b2 is given by

δa1b1a2b2 .

TDLMM can be reduced into two simpler models. The first drops within-exposure interaction

by fixing these interactions to zero. The second simplification drops all interactions which is

equivalent to an additive DLM. In the remainder of this paper we refer to these simplifications as

TDLMMns (no-self interactions) and TDLMMadd (additive).
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3.4 Prior Specification and Computation

3.4.1 TDLM priors and posterior computation

The prior for TDLM consists of two parts: a prior on trees and a prior on the regression param-

eters conditional on the trees. We apply a normal prior to the regression parameters:

δab|τ
2
a , ν

2, σ2 ∼ N (0, τ 2aν
2σ2). (3.5)

Here, τa ∼ C+(0, 1) and ν ∼ C+(0, 1) define a horseshoe-like prior on tree-specific effects (Car-

valho et al., 2010). This is a global-local shrinkage prior that performs shrinkage overall and at

the tree level. The additional tree-specific variance component τa allows for the effects on poor

fitting trees to be shrunk. When shrunk, the trees can more easily reconfigure before regaining

larger terminal node effects. In practice, we find including this tree-specific variance results in

more precise estimates of the distributed lag function. We specify global prior σ ∼ C+(0, 1) and

γ ∼MVN(0, σ2cI), where c is fixed at a large value.

The prior on trees is a stochastic tree generating process based off the approach of Chipman

et al. (1998). Complete details are given in Appendix B.2.

3.4.2 TDLMM priors and posterior computation

For TDLMM with multiple predictors and tree pairs the prior involves three components: 1)

the prior on trees; 2) the prior on node effects; and 3) the prior on which exposures appear in

each tree pair. One goal of TDLMM is to shrink or remove exposure and interaction effects that

are uncorrelated with the response. We specify a prior that uses two approaches to achieve this

goal. First, we add a prior on node specific effects that allows for effects of unique exposures and

interactions to be shrunk. Second, we specify a prior on which exposures are included into each of

the A tree pairs. This avoids having to pre-specify pairs of exposures into each tree pair and allows

for variable selection because an exposure that is not included into any tree pair is selected out of

the model.

42



In TDLMM each of the trees in tree-pair a is defined by a tree structure Tai , i ∈ {1, 2}, and

an exposure Sai that the tree structure is applied to. The prior on Tai is the same as described in

Section 3.4.1. The prior distribution on exposure Sai is

Sai |E ∼ Categorical(E), E ∼ Dirichlet(κ, . . . , κ). (3.6)

Here, E = [E1, . . . , EM ], where Em is the probability that a tree splits on exposure m and κ is

a hyperprior that controls the sparsity of exposures. This prior is motivated by Linero and Yang

(2018) but differs in that we select an exposure for the entire tree, while the former selects a

variable to split on at a particular node of a tree. Details on setting κ and a Bayes factor approach

for exposure selection are give in Appendix B.3.

Both Tai and Sai are updated via Markov chain Monte Carlo (MCMC). New proposals for

the structure of each tree in a tree-pair are the same as in TDLM. We also introduce a new pro-

posal mechanism that switches the exposure, Sai , considered by a tree. For each tree, we select

with equal probability one of four different proposals: grow, prune, change, and switch-exposure.

When switch-exposure is the update step we propose a new exposure S ′
ai

from (3.6). The deci-

sion to accept any of the four possible moves is made with the Metropolis-Hastings algorithm.

Alternatively, the exposure, Sai , can be updated with Gibbs sampler but at a high computational

cost.

The node-specific priors described in (3.5) shrinks tree-specific effects, but would apply the

same variance parameters for all exposures. We introduce an alternative variance component per-

taining specifically to each exposure or pair of two exposures. The prior on the node-specific effect,

δaib, at terminal node ηaib, which splits exposure Sai , is defined as

δab|µ
2
Sai
, ν2, σ2 ∼ N (0, µ2

Sai
ν2σ2). (3.7)

Here, µSai
is a local variance prior corresponding to the exposure, Sai , being used by tree Tai . The

prior for an interaction effect between terminal nodes ηa1b1 and ηa2b2 that split exposures Sa1 and
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Sa2 , respectively, is

δa1b1a2b2 |µ
2
Sa1

Sa2
, ν2, σ2 ∼ N (0, µ2

Sa1
Sa2
ν2σ2). (3.8)

Here, µm ∼ C+(0, 1) and µm1m2
∼ C+(0, 1) represent the variance components for the main

effects of exposure m or the interaction of exposures m1 and m2, respectively. Because the same

variance components are used in every tree or tree-pair that estimates the same exposure main or

interaction effects, it allows the model to separate shrinkage on the main and interaction effects.

Priors on γ, ν, and σ are the same as in TDLM. Full details on the fitting of TDLMM are given in

Appendix B.2.

Selection and shrinkage are complementary in TDLMM. Shrinkage can apply to either the

interaction effect, main effect, or both. Selection removes exposures from the model entirely.

3.4.3 Marginal DLM effects with TDLMM

Due to the interactions between exposures in TDLMM, the effects of each exposure are depen-

dent on the levels of the other exposures. To estimate the main effect of each exposure m on the

outcome while accounting for co-exposures, we marginalize the DLMM at specified levels of all

exposures. Fixing the levels of all exposures to be x̃1, . . . , x̃M , the marginal effect of exposure m

at time t is defined as

θ̃mt(x̃1, . . . , x̃M) = θmt +
m∑

m′=1

T∑

t′=1

x̃m′θm′mt′t +
M∑

m′=m

T∑

t′=1

x̃m′θmm′tt′ . (3.9)

Marginalization by integrating out other exposure effects amounts to evaluating (3.9) at the empiri-

cal mean of each exposure. Because the within-exposure interaction represents a possible nonlinear

effect, this can cause interpretation problems when calculating θ̃mt (a linear effect). In this case,

estimating a contrast, such as effect due to an inter-quartile range (IQR) change in exposure, is a

more reasonable approach.
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3.4.4 Logistic regression

We propose a logistic regression method for TDLM and TDLMM. Details are available in

Appendix B.2.5.

3.4.5 Prior selection

For tree structure parameters we follow Chipman et al. (2010) setting α = 0.95 and β = 2.

Altering these parameters did not improve performance. For TDLM we set A = 20 trees. For

TDLMM we set A and κ to achieve a desired prior inclusion probability for exposure m. Settings

A = 20 and κ = 1.089 gives prior inclusion probability of 0.9. Additional details are provided in

Appendix B.3.

3.5 Simulation

We considered two simulation scenarios. The first validated TDLM and compared to estab-

lished DLM methods. The second evaluated TDLMM for a mixture of five exposures. In Ap-

pendix B.4 we provide additional simulations to justify shrinkage components of our models. All

simulations can be reproduced with R package dlmtree.

3.5.1 Single exposure and binary outcome

We first considered a binary outcome with a single exposure (PM2.5) generated by

yi|pi ∼ Bernoulli(pi), logit(pi) = c1 + 0.1 · [f1(xi) + zTi γ], (3.10)

with simulated DLM effect f1(xi) =
∑s+7

t=s xit. This defines a DLM such that θt = 0.1 from times

s to s+7 and zero otherwise. Starting time s was drawn uniformly from {1, . . . , T −7}. We set c1

for each simulation replicate such that the mean of pi, denoted p, was approximately 0.5 or 0.05.

In Appendix B.4.3 we replicated this simulation using a smooth DLM effect.

We simulated 100 data sets of sample size n = 5,000. For each data set we sampled exposure

observations from the cohort described in Section 3.2 with lengths T = 37, and centered and
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scaled all exposure data. We also generated ten covariates (five standard normal, five binomial

with probability 0.5) and corresponding regression coefficients from standard normal.

In this scenario, we compared single exposure models TDLM to penalized spline DLM (Gas-

parrini et al., 2017) with cubic regression splines and the critical window variable selection (CWVS)

method (Warren et al., 2020a). In addition, we compared to TDLMM with all 5 exposures from

our data analysis. For TDLMM, we included time-resolved measurements of four additional expo-

sures that were not included in any other model and have no effect on the outcome in this design.

Using the multi-exposure model in a single exposure setting explored the loss of efficiency that

results when only one of five correlated predictors affects the outcome. The results for CWVS are

based on the DLM estimation when a critical window is identified (DLM|cw) and when the prob-

ability of a critical window is greater than 0.5 (Pr(cw)>.5), as described by Warren et al. (2020a).

MCMC chains were run for 10,000 iterations after a burn-in period of 5,000 and thinned to every

5th iteration.

The objective of our method is to estimate the distributed lag effect and identify critical win-

dows. We therefore focus our simulation on estimation of these quantities rather than predictive

performance, which is the focus of many BART models.

Results from scenario one are given in Table 3.1. We calculated the marginal DLM root mean

square error (RMSE) =
√∑37

t=1(θ̃t −
̂̃
θt)2

/
37 and coverage based on the estimated marginal dis-

tributed lag effect,
̂̃
θt. For TDLMM we calculated RMSE and coverage of PM2.5 only. We also

evaluated the probability that a model detects a true critical window (TP) or places a critical win-

dow where the true effect is zero (FP). For TDLMM, FP considered the marginal effects of all ex-

posures. Finally, we evaluated precision of critical window identification, calculated TP/(TP+FP).

The tree-based methods were the most accurate in estimating the distributed lag function; they

had lowest RMSE and maintained near 95% coverage. The penalized DLM had low RMSE, but

poor coverage due to the wiggliness of splines, which also resulted in misclassification of critical

windows. The CWVS model maintained high coverage of the distributed lag function, but was not

as accurate in estimating the effects as evidenced by RMSE.
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Table 3.1: Results for simulation scenario one: binary outcome with single exposure DLM effect. We
compare Gaussian process (CWVS) and penalized cubic regression spline (DLMcr) DLMs with our treed
DLM and DLMM methods under conditions of a frequent (p = 0.5) or infrequent (p = 0.05) binary
outcome. The first two columns describe DLM estimation, which refers to estimation of the marginal
exposure effects, θ̃t, for the active exposure. The final three columns describe critical window identification,
which is summarized by the probability DLM 95% credible intervals do not contain zero at correct (TP) or
incorrect (FP) time periods, as well as Precision = TP/(TP + FP).

DLM Estimation Window Identification

Model RMSE ×100 Coverage TP FP Precision
p = 0.5

CWVS: dlm|cw 2.10 0.97 0.99 0.03 0.97
CWVS: p>0.5 2.10 0.97 0.99 0.07 0.93

DLMcr 1.83 0.77 1.00 0.17 0.85
TDLM 1.22 0.98 0.98 0.01 0.99

TDLMMadd 1.31 0.97 0.99 0.02 0.98
TDLMMns 1.47 0.96 1.00 0.03 0.97

TDLMM 1.39 0.96 0.99 0.03 0.97
p = 0.05

CWVS: dlm|cw 3.36 0.99 0.72 0.02 0.97
CWVS: p>0.5 3.36 0.99 0.94 0.11 0.90

DLMcr 2.64 0.72 1.00 0.21 0.83
TDLM 2.19 0.96 0.88 0.02 0.98

TDLMMadd 2.39 0.93 0.91 0.03 0.97
TDLMMns 2.49 0.93 0.88 0.04 0.96

TDLMM 2.59 0.91 0.83 0.04 0.95
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In both p settings, the mixture models outperformed the single exposure spline-based DLM and

CWVS models in terms of RMSE while maintaining near nominal coverage. These are important

findings because the cost of including additional exposures into the treed models is minimal in

terms of distributed lag function estimation. In TDLMMns when p = 0.5 the posterior inclusion

probability of PM2.5 was 1. This decreased slightly (0.89) when p = 0.05. For other exposures,

the posterior inclusion probability was < 0.01 in both p settings.

Comparing models in terms of critical window detection, TDLM, TDLMM, and CWVS: dlm|cw

were the most precise models at identifying critical windows. In the more difficult p = 0.05 set-

ting, the increased complexity of TDLMM was associated with a slight decrease in TP, but the

method retained high precision due to the very low FP rate. CWVS: p > 0.5 had higher TP at the

cost of higher FP. Spline methods were less precise with higher FP.

Results from the supplemental simulation with a smooth distributed lag function were simi-

lar and are presented in Appendix B.3. In both the current and smooth simulations, TDLM and

TDLMM had lower RMSE, closer to nominal coverage, and higher precision in identifying critical

windows compared to the alternative estimators.

3.5.2 Multiple exposures and a continuous outcome

We considered a continuous response with an exposure main effect from PM2.5 and an interac-

tion effect between PM2.5 and NO2. The outcome was generated as

yi = c2f2(xi1,xi2) + zTi γ + ǫi (3.11)

where c2 is a scalar such that the variance of c2f2 equals one. The simulated effect was

f2(xi1,xi2) =

s1+7∑

t=s1

xi1t + 0.025

s1+7∑

t1=s1

s2+7∑

t2=s2

xi1t1xi2t2 (3.12)

for starting times s1 and s2 each drawn uniformly from {1, . . . , T − 7}. This scenario consists

of a main effect with a critical window of length eight for the PM2.5 exposure and an interaction
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Table 3.2: Results for simulation scenario two: main effect of PM2.5 with PM2.5−NO2 interaction. The first
four columns describe RMSE and coverage of the estimated marginal distributed lag effects, θ̃t, for PM2.5

and NO2 compared to the true simulated marginal effects. The final four columns compare critical window
detection for marginal effects of PM2.5 and NO2, which are summarized by the probability that the 95% CI
does not include zero at a correct (TP) or incorrect (FP) time period.

RMSE ×100 Coverage TP FP

Model PM NO2 PM NO2 PM NO2 PM NO2 Other
σ2 = 25

TDLMMadd 3.59 4.19 0.95 0.84 0.94 0.82 0.03 0.07 0.00
TDLMMns 3.57 4.27 0.97 0.96 0.91 0.63 0.02 0.03 0.00

TDLMM 3.55 4.33 0.98 0.97 0.87 0.51 0.01 0.02 0.00
σ2 = 50

TDLMMadd 4.62 4.64 0.92 0.83 0.86 0.52 0.04 0.05 0.00
TDLMMns 4.61 4.75 0.96 0.97 0.76 0.31 0.02 0.02 0.00

TDLMM 4.50 4.79 0.97 0.97 0.62 0.22 0.01 0.01 0.00
σ2 = 100

TDLMMadd 5.75 5.07 0.89 0.84 0.47 0.22 0.03 0.03 0.00
TDLMMns 5.85 5.21 0.93 0.95 0.29 0.10 0.02 0.01 0.00

TDLMM 5.73 5.21 0.94 0.96 0.24 0.05 0.01 0.01 0.00

effect between exposure to PM2.5 at times s1 to s1 + 7 and NO2 at times s2 to s2 + 7. We drew ǫi

independently for each observation from N (0, σ2) such that σ2 ∈ {25, 50, 100}. In this scenario,

we compared TDLMM, TDLMMns (no-self interactions) and TDLMMadd (additive DLMs) using

all exposure measurements from our data analysis. No other methods are currently available that

would offer a direct comparison.

Table 3.2 compares the marginal DLM RMSE and coverage for active exposures PM2.5 and

NO2. As in scenario one, we describe TP and FP for critical window detection. We found that

all variants of TDLMM had low RMSE for estimating the marginalized effects of PM2.5 and NO2.

The additive model had below nominal coverage for the marginal effect of NO2 due to lack of

appropriate interaction terms. We found that TDLMMns had higher power than full TDLMM.

Additive TDLMM had the highest TP rate, but increased FP for NO2. All TDLMM variants

show zero FP for nonactive exposures. Overall, the tree-based DLMMs had high precision for

identifying critical windows.
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Table 3.3: Exposure and interaction posterior inclusion probabilities. The values in this table describe the
probability at least one tree or tree-pair in the ensemble estimates the effects for a specific exposure or
interaction, respectively. Nonactive exposures or interactions are summarized together as ‘Other’.

Main Effect Interaction

Model PM NO2 Other PM−NO2 Other
σ2 = 25

TDLMMadd 1.00 1.00 0.78 - -
TDLMMns 1.00 1.00 0.17 0.94 0.06

TDLMM 1.00 0.99 0.39 0.85 0.22
σ2 = 50

TDLMMadd 1.00 0.99 0.82 - -
TDLMMns 0.99 0.95 0.26 0.83 0.10

TDLMM 0.99 0.96 0.43 0.80 0.23
σ2 = 100

TDLMMadd 0.98 0.96 0.85 - -
TDLMMns 0.88 0.81 0.38 0.61 0.15

TDLMM 0.89 0.85 0.52 0.58 0.25

Table 3.3 summarizes exposure and interaction posterior inclusion probabilities averaged across

simulation replicates. For the correct exposures, all variants of TDLMM had posterior inclusion

probability above the prior inclusion probability (0.9) in low and medium noise settings. For non-

active exposures, the posterior inclusion probability was below that of the correct exposures. The

differences were less pronounced in TDLMMadd. Posterior inclusion probabilities for the correct

interaction were consistently higher than for other interactions.

3.6 Analysis of Colorado Birth Cohort Data

We applied TDLMM to BWGAZ for our Denver, CO metro area dataset. The analysis included

five exposures and covariates described in Section 3.2 with T = 37 weeks of exposure measure-

ments corresponding to the first 37 weeks of gestation. In addition, our analysis controlled for

year and month of conception, census tract elevation, and a county-specific intercept. TDLMM

used the prior specification described in Section 3.4.5. The model ran for 100,000 iterations after

10,000 burn-in and was thinned to every 5th iteration. For this analysis, we used TDLMMns for
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ease of interpretation of the linear effects. We compared to TDLMM and found few differences

(see Appendix B.5.2).

3.6.1 Exposure and interaction selection

Four exposures had posterior inclusion probabilities above the prior inclusion probability (0.9):

PM2.5 (> 0.99), SO2 (> 0.99), CO (0.989), and temperature (> 0.99). NO2 was included into the

model at a much lower rate (0.428). The posterior inclusion probability for the PM2.5−temperature

interaction was 0.988. The next highest posterior inclusion probabilities for interactions were

CO−temperature (0.69) and SO2−CO (0.6). The seven remaining interactions had posterior in-

clusion probabilities below 0.5.

3.6.2 Marginal exposure associations with BWGAZ

The top row of Figure 3.2 shows the estimated marginal distributed lag function of each expo-

sure with other exposures fixed to their empirical means. The results identify critical windows to

PM2.5 during weeks 6− 34, SO2 during weeks 10− 29, CO during weeks 9− 11 and temperature

across the entire pregnancy. The critical windows show that increased exposure is associated with

decreased BWGAZ.

TDLMM allows us to estimate interactions between time-resolved predictors. Figure 3.3(a)

shows the presence of an interaction between log PM2.5 and temperature. This interaction indicates

that elevated exposure to PM2.5 during weeks 15 − 25 results in an increase in the magnitude of

the temperature effect during weeks 19 − 35. These interactions occur at the same times (e.g.

weeks 19 − 25) as well as different times (e.g. log PM2.5 in week 20 and temperature in week

30) and may be explained by the priming hypothesis. Figure 3.3(b) shows the marginal distributed

lag functions for PM2.5 and temperature at varying percentiles of co-exposures. We see a larger

effect of PM2.5 and changes in critical windows when temperature and other exposures are fixed at

a higher percentile. The effect of temperature also shows changes in the magnitude and timing of

critical windows at increased levels of other exposures. Additional interaction plots are included

in Appendix B.5 and show no evidence of meaningful interactions.
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Figure 3.2: Posterior mean distributed lag distributed lag function (black line) for each exposure (columns)
with 95% credible interval (grey area) of the effect. The top row shows the estimated marginal effect for
an IQR increase in exposure, holding other exposures at their empirical mean. The bottom row shows the
estimated change in BWGAZ for a first to third quartile change in one exposure along with the expected
changes in all other exposures due to correlation with the exposure of interest.

3.6.3 Accounting for changes in co-exposures

Due to high correlation among exposures in our analysis (ranging from −0.55 to 0.69 at the

same week), a change in any one exposure will likely be accompanied by simultaneous changes

in co-exposures. This suggests that the marginal results in Section 3.6.2, which assumes that co-

exposures are held at their empirical means, should only be interpreted in a narrow range. As

an alternative, we estimate distributed lag functions that account for simultaneous changes in co-

exposures. This provides another way to look at the results from the same model.

Let xm(q) represent the qth quantile of the empirical distribution of exposure m. The expected

change in the outcome for an IQR change in exposure m at time t, conditional on the expected

co-occurring changes in all other exposures can be written

E
[
Y
∣∣∣X̃t = E

{
Xt

∣∣xmt = xm(0.75)

}
, X̃[t] = x, z = z0

]

− E
[
Y
∣∣∣X̃t = E

{
Xt

∣∣xmt = xm(0.25)

}
, X̃[t] = x, z = z0

]
. (3.13)
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(a) PM2.5−temperature interaction surface. (b) Marginal DLMs showing interaction.

Figure 3.3: Panel (a) shows the estimated PM2.5−temperature interaction effects. The color of each cell
indicates the sign and direction of the interaction effect between PM2.5 at one time and temperature at
another time. The points indicate estimated interactions where the credible interval does not contain zero and
the point size represents the credible interval probability. Panel (b) shows the estimated marginal distributed
lag function for an IQR increase in the indicated exposure, when all other exposures are fixed at a given
percentile (color of lines) of their empirical distributions. Points on each line indicate where the 95%
credible interval of the marginal effect does not include zero.

Here, X̃t = {x̃1t, . . . , x̃Mt} defines the values of all exposures at time t while X̃[t] is the collection

of exposure measurements at all time points except t. We set each element of X̃[t] equal to the

empirical mean for that exposure to isolate the effect only at the time of interest. The value of z

does not influence the expected change because it does not interact with exposure measurements.

To estimate the values of co-exposures at time t, given by E[Xt

∣∣xmt = xm(q)], we fit penalized

spline models (cubic splines with 5 degrees of freedom) between pairs of exposures, estimated

using restricted maximum likelihood as described by Wood (2017). Specifically, we considered

measurements for exposure m as the only predictor and fit separate models for each co-exposure

(e.g. log PM2.5 was used as the predictor for NO2, SO2, CO, and temperature in four separate

models). Using the model fits, we predicted all co-exposures at the 25th and 75th percentiles of

exposure m. This process was repeated for every m ∈ {1, . . . , 5}.
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The results of this analysis adjusting for changes in co-exposures are shown in the bottom row

of Figure 3.2. This can be interpreted as the expected change in BWGAZ associated with an IQR

change in one pollutant and the expected change in the four other co-exposures at the same time

point. There are several important takeaways. First, the shape of estimated distributed lag functions

are similar. Second, the confidence intervals take into account the uncertainty in the estimated main

effects and interactions of co-exposures. That uncertainty is not included in the estimates presented

in the top row of Figure 3.2 because the level of co-exposures remain fixed. Third, the associations

between BWGAZ and exposure to PM2.5, SO2 and temperature are persistent after accounting for

expected changes in co-exposures.

A change in PM2.5 from the 25th to 75th percentile of exposure is an increase from 6.12 to

8.67 µg/m3. Considering the association between PM2.5 and BWGAZ after adjusting for co-

exposures finds a critical window during weeks 6 − 33, which is similar to the critical window

found in the marginal distributed lag function. The cumulative effect of PM2.5, or the effect of a

simultaneous IQR increase in every week of pregnancy, adjusting for co-exposures is associated

with an average change in BWGAZ of −0.064 (95% CI: −0.094,−0.035). The cumulative effect

of an IQR increase in SO2 (0.94 to 1.90 ppb) is associated with a change in BWGAZ of −0.049

(95% CI: −0.076,−0.019), with a critical window during weeks 9− 25.

Our findings of an inverse relationship between PM2.5 and birth weight are consistent with a

meta-analysis done by Stieb et al. (2012). Similar findings exist for a relationship between SO2 and

birth weight (Dugandzic et al., 2006), but are less consistent (Stieb et al., 2012). We note that the

majority of comparison studies do not account for effects of co-occurring exposures or interactions

over time and no previous study has considered time-resolved measures of five exposures including

interactions.

3.7 Discussion

In this work we propose TDLMM to estimate the association between mixtures of environ-

mental exposures observed at high-temporal resolution on birth and children’s health outcomes.
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TDLMM, and the reduced version TDLM, have several innovative statistical features. The mod-

els introduce structured regression trees that estimate a constrained DLM. The mixtures approach,

TDLMM, uses an ensemble of tree pairs that parameterize both main effects and pairwise interac-

tions between time-resolved predictors.

In a simulation study we demonstrated that our single exposure tree-based DLM outperformed

established methods for estimating the DLM in terms of estimation of the exposure-response func-

tion and precision in identifying critical windows. Moreover, our tree-based mixture approach,

TDLMM, that included additional exposures not associated with the outcome also outperformed

the established single exposure methods in the single exposure setting. This is in large part due

to the methods’ ability to select out or shrink the effects of exposures that are not associated with

the outcome. Using real exposure data, TDLMM identifies critical windows, selects the proper

exposures, and estimates the exposure-response function in a simulation scenario with five time-

resolved predictors.

We applied TDLMM to analyze associations between Denver, CO area birth weight and five

environmental exposures experienced weekly by mothers during gestation. This data set included

195,701 full term births with estimated conception dates from 2007 through 2015. This data anal-

ysis to estimate the main and interaction effects due to a mixture of five environmental exposures

observed weekly during the first 37 weeks of gestation produced several key takeaways. We iden-

tified PM2.5, SO2 and temperature effects based on the effect of one exposure conditional on fixed

co-exposures and based on a change in one exposure accounting for simultaneous changes in co-

exposures. In addition, we found substantial evidence of an interaction between PM2.5 and tem-

perature. Independently, birth weight changes due to exposure appear small, but when combined

with other risk factors (including those often correlated with increased pollution) may have a sub-

stantial impact on birth weight, which may increase the prevalence of associated comorbidities.

Furthermore, there is evidence that the effects of air pollution are larger at the lower quantiles of

birth weight—arguably the more susceptible population (Lamichhane et al., 2020).
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Our analysis of five pollutants observed weekly throughout pregnancy and birth weight is the

first analysis to identify critical windows to a mixture observed at high-temporal resolution within a

distributed lag mixture model framework. Previous studies have either estimated critical windows

for a mixture observed at high temporal resolution in an additive DLM setting (Figueroa-Romero

et al., 2020; Horton et al., 2018) or to a mixture observed at one or a small number of time points

(Levin-Schwartz et al., 2019; Chiu et al., 2018). Data driven methods that allow for precision in

identifying critical windows due to environmental mixtures have the potential to open doors to

discovery and understanding in biological science (Wright, 2017). As the size and resolution of

the exposure data available continues to grow, our method fills a critical research gap in statistical

methods for epidemiology and environmental health in being able to estimate the effects of time-

resolved measures of a mixture on a continuous or binary health outcome.
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Chapter 4

Heterogeneous Distributed Lag Models to Estimate

Personalized Effects of Maternal Exposures to Air

Pollution

4.1 Introduction

A growing body of research has found maternal exposure to environmental chemicals during

pregnancy to be associated with changes in children’s birth and health outcomes. Detrimental out-

comes linked to increased exposure include decreased birth weight (Bell et al., 2007), increased

risk of preterm birth (Stieb et al., 2012), increased risk of asthma (Lee et al., 2018; Bose et al.,

2017), and altered neurological outcomes (Chiu et al., 2016), among others (Šrám et al., 2005).

Recently, research has focused on determining the time periods during fetal development, or crit-

ical windows of susceptibility, when increased exposure can alter future health outcomes. Identi-

fication of critical windows gives insight into how biological processes involved in development

may be impacted by exposure to environmental chemicals (Wright, 2017). However, exposure ef-

fects, including critical window timing and effect magnitude, are likely to vary across a population.

Effect heterogeneity may be governed by biological (e.g., sex of child), socioeconomic (e.g., ma-

ternal income), or other non-chemical environmental factors (e.g., neighborhood characteristics).

Estimating individualized exposure effects will better inform precision environmental health inter-

ventions. Furthermore, this brings attention to vulnerable populations, which the Environmental

Protection Agency (EPA) is required to protect through the 2016 update to the Toxic Substances

Control Act (Krimsky, 2017).

A commonly applied method to identify perinatal critical windows and estimate the exposure-

response relation between maternal exposures and an outcome is the distributed lag model (DLM).

In a DLM, an outcome is regressed on repeated measures of an exposure assessed over a time
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period prior to the outcome. DLMs are typically constrained so the exposure-response function

varies smoothly over the time period of exposure. These constraints yield effect estimates that are

more biologically plausible as well as add stability to the estimator in the presence of high autocor-

relation in the exposure data, which is typical with repeated measures of environmental exposures,

such as the air pollution exposure considered in this paper. Methods for constraining DLMs include

splines (Zanobetti et al., 2000; Gasparrini et al., 2010), Gaussian processes (Warren et al., 2012),

principal components (Wilson et al., 2017a), and regression trees (Mork and Wilson, 2021a). The

majority of studies that apply these methods assume a homogeneous exposure-response relation-

ship across the population.

Several methods have sought to estimate DLMs that vary across a population. Wilson et al.

(2017a) proposed a Bayesian distributed lag interaction model (BDLIM) to estimate differences in

the exposure-response function for a parsimonious set of predetermined subgroups. Warren et al.

(2012) and Warren et al. (2020b) developed spatially-varying DLMs to account for changes in pol-

lution composition or demographics over a study region. These papers highlight the bias incurred

by a homogeneous effects assumption when effects are truly heterogeneous. BDLIM has been

applied in several epidemiological analyses, including two that found an increased risk of asthma

due to prenatal exposures to fine particulate matter and nitrate for a subgroup of boys concurrently

exposed to high prenatal stress (Lee et al., 2018; Bose et al., 2017). Despite these advances in esti-

mating DLM heterogeneity, the methods of Wilson et al. (2017a), Warren et al. (2012), and Warren

et al. (2020b) remain limited in their scope and interpretability. A spatially-varying DLM is un-

able to identify the subject characteristics associated with changes in the underlying distributed lag

function. BDLIM is limited to predefined categorical subgroups and is most reasonably applied

to data having only a small number of subgroups. In the age of big data, we have access to a

potentially high dimensional set of categorical and continuous modifiers, and the true modifiers

responsible for differences in distributed lag effects are unknown. Harnessing this information can

lead to personalized environmental health decision making.
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We propose a Bayesian additive regression tree (BART) method for estimating distributed lag

effect heterogeneity due to a set of modifying covariates. The BART framework of Chipman et al.

(2010) is a popular method for estimating non-parametric functions. Extensions of BART allow

for estimating distributed lag nonlinear (Mork and Wilson, 2021b) and mixture models (Mork and

Wilson, 2021a). The treed DLM approach of Mork and Wilson (2021a) outperforms competing

spline and Gaussian process methods when the goal is distributed lag effect estimation and critical

window identification. However, both of these approaches assume a common distributed lag effect

for all individuals.

Chipman et al. (2002) proposed treed regression models that modify a vector of regression co-

efficients using a single Bayesian tree. More recently, several approaches have used an ensemble

of multiple Bayesian trees to modify a single predictor. For example, Starling et al. (2020) intro-

duced BART with targeted smoothing (tsBART), which allows a smooth risk function of a single

univariate predictor to vary across a population. Deshpande et al. (2020) proposed a varying co-

efficient BART model that uses a separate ensemble of regression trees to modify each regression

coefficient in the model. In a non-Bayesian approach to estimating effect heterogeneity, Odden

et al. (2020) applied a random forest algorithm to identify heterogeneous exposure associations.

However, no method has been proposed to modify a structured vector of regression coefficients,

such as a constrained distributed lag function, using an ensemble of trees.

In this paper, we define the heterogeneous DLM (HDLM). HDLM extends the DLM to estimate

a personalized distributed lag function that varies across the population according to a possibly

high dimensional set of potential modifying factors. Our additive regression tree method intro-

duces individualized functional predictors through a vector of structured regression coefficients

on the terminal nodes of a modifier tree. Specifically, an ensemble of regression trees divides the

sample based on a set of modifying covariates and estimates a DLM unique to each subgroup.

We introduce three methods for estimating the distributed lag effects on the modifier tree termi-

nal nodes. The first considers a Gaussian process DLM for each subgroup and assumes the same

smoothness in the distributed lag effects for all observations. The second method incorporates the
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treed DLM method of Mork and Wilson (2021a) and defines a nested tree structure where the treed

DLM is used to estimate unique critical windows and effect sizes for the subgroup at each terminal

node of the modifier tree. This approach relaxes the smoothness assumption imposed by Gaussian

processes and improves performance when the magnitude of the effect varies over the population

or there are subgroups with no exposure effect. The third method also uses a treed DLM whose

structure is shared across all subgroups and allows for variation in only the magnitude of the effect,

but not the location of the critical window. This approach shares information on the structure of

the DLM across subgroups. We develop a computational framework for our methods that selects

modifying covariates responsible for changes in the exposure-response relationship. In addition,

our method extends the tree literature by introducing the concept of a nested tree model, where a

tree-based functional estimator is given to subgroups defined by a traditional regression tree.

We provide a comprehensive simulation of our method and show it is able to estimate individu-

alized critical windows and effects as well as identify the covariates responsible for modifying the

distributed lag function. The simulation also shows that the nested and shared tree HDLMs outper-

form the Gaussian Process HDLM in terms of HDLM estimation and critical window detection.

We apply our method to a Colorado-based administrative birth cohort and explore differences in the

relationship between fine particulate matter (PM2.5) and birth weight across a range of continuous,

categorical, and binary modifiers specific to individuals. We identify age, body mass index (BMI),

Hispanic designation, and education as potential modifiers of the distributed lag effects. The anal-

ysis indicates that non-Hispanics with increased BMI are more susceptible to PM2.5 exposures and

early- and late-gestation are potential critical windows. In addition, we find individual variability

within subgroups due to other modifying characteristics. Software to replicate our simulation and

use our method in other applications is available in the R package dlmtree.

4.2 Colorado Birth Cohort Data

We analyze birth weight for gestational age z-score (BWGAZ) using birth vital statistics

records from Colorado, USA. BWGAZ is the birth weight adjusted for gestational age and fe-
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tal sex using a standard reference table (Fenton and Kim, 2013). Besides birth outcomes, the data

include individual covariate information including mother’s age, weight, height, income, educa-

tion, marital status, prenatal care habits, smoking before and during pregnancy, as well as race

and Hispanic designations. The data include all births from Colorado with estimated conception

dates between 2007 and 2015, inclusive. We limit the data to the northern front range counties

(those immediately east of the Rocky Mountains roughy extending from Colorado Springs to the

Wyoming border). This area contains the majority of the Colorado population. We further restrict

our analysis to census tracts with elevation lower than 6000 feet above sea level. This restriction

both reduces the potential confounding by altitude and the impact of mountainous terrain on ex-

posure data. We analyze singleton, full-term births (≥ 37 weeks) with complete covariate and

exposure data, resulting in 310,236 births.

We are interested in the association between a mother’s weekly exposure to particulate matter

smaller than or equal to 2.5µm in diameter (PM2.5) and resulting birth weight. In addition, we wish

to identify vulnerable populations with increased susceptibility to PM2.5 exposures and estimate

each individual’s critical windows and distributed lag effects. To answer these questions, we con-

sider heterogeneous distributed lag effects that differ across a set of modifying covariates specific

to each observation. Potential modifiers in our analysis include continuous variables: maternal age

and body mass index (BMI); ordinal variables: income classification, highest educational attain-

ment, and smoking (never, former, less than 10 cigarettes/day, at least 10 cigarettes/day); nominal

variables: marital status, prenatal care, and race; and binary variables: sex and Hispanic indicators.

The distribution of the modifiers are described in Appendix C.1.

At each census tract in our study, daily PM2.5 measurements were obtained from EPA com-

munity multiscale air quality modeling system (CMAQ) using downscaled data (Berrocal et al.,

2010). We then created 37 consecutive weekly average exposures for each pregnancy beginning

on the date of conception for the census tract of residence. The weekly average PM2.5 data were

log-transformed to reduce skew. The weekly average log-transformed PM2.5 measurements range

from 0.68 to 3.53 with mean 1.97 and standard deviation 0.30. Pregnancy average log PM2.5 ex-
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posure ranged from 1.34 to 2.33. To account for potential spatial and temporal confounding, we

included a fixed intercept for county, year, and month of conception, and controlled for census tract

elevation and trimester average temperature. This study was approved by the Institutional Review

Board of Colorado State University.

4.3 Methods

4.3.1 Heterogeneous DLM Framework

We consider a sample i = 1, . . . , n with continuous outcome yi, a vector of exposure measure-

ments xi = [xi1, . . . , xiT ]
′ taken at equally spaced times t ∈ {1, . . . , T}, and a vector of covariates,

zi, which includes the model intercept. In this paper, yi refers to BWGAZ while xit is the PM2.5

exposure measurement for individual i during week t of pregnancy (considering T = 37 weeks of

gestation). When there is no heterogeneity in the exposure effect across the sample population, the

discrete time DLM takes the form

yi =
T∑

t=1

xitθt + z′iγ + εi. (4.1)

Here, θt represents the linear effect due to exposure at time t, γ is a vector of regression coefficients

and εi represents independent errors distributed N (0, σ2).

We consider a DLM where the exposure effects θ1, . . . , θT vary across the population. Let the

modifiers, mi, be a subset of the covariates, zi. The heterogeneous DLM is

yi =
T∑

t=1

xitθt(mi) + z′iγ + εi (4.2)

where θt(mi) is the exposure effect at time t specific to an observation with modifiers mi.

Our method for modeling heterogeneity due to a set of modifying covariates uses an ensemble

of regression trees combined with functional estimators of the distributed lag effect. We denote

a modifier regression tree by Ma for a ∈ {1, . . . , A} that partitions the population based on

62



a set of modifiers mi. Terminal nodes are denoted ηab where b = 1, . . . , Ba distinguishes the

subgroups partitioned by tree a. Each terminal node is associated with a T -dimensional vector of

parameters θab. Considering all trees in the ensemble, the distributed lag function for observation

i, θ(mi) = [θ1(mi), . . . , θT (mi)]
′, is

θ(mi) =
A∑

a=1

Ba∑

b=1

θabI(mi ∈ ηab) (4.3)

where θab = [θab1, . . . , θabT ]
′ parameterizes the partial distributed lag function for the subgroup

represented by terminal node ηab in tree Ma and I(·) is the indicator function.

4.3.2 Gaussian Process HDLM

We first propose a method for estimating the HDLM using Gaussian processes, which is an es-

tablished approach for DLMs (e.g. Warren et al. (2012)). Consider a single modifier tree terminal

node, ηab, containing a subset of observations. Let the corresponding T−dimensional set of DLM

parameters θab follow a Gaussian process with covariance function Σφ(t, t
′) where φ are parame-

ters defining the covariance. We consider the exponential covariance, Σφ(t, t
′) = exp{−φ|t− t′|}.

An inherent assumption of this approach is that all observations share the same value of φ and

therefore have the same smoothness over time in their distributed lag effects. Having a common

φ for all nodes on a tree is required due to model computation, which requires integration over

the distributed lag effects for each subgroup. The equal smoothness assumption may be beneficial

if the distributed lag effects for all observations have a similar magnitude and window length. In

the case where there is a nonzero exposure effect in only a small proportion of the population, the

smoothness of the distributed lag effect imposed by the remaining sample will make this critical

window difficult to estimate. This is because estimation of the smoothing parameter will largely

reflect the null group and cause oversmoothing of the active group.

We define the Gaussian process prior for the distributed lag effects as

θab|τa, ν, σ, φ ∼ GP [0, τ 2aν
2σ2Σ(φ)]. (4.4)
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(a) Nested Tree HDLM (b) Shared Tree HDLM

Figure 4.1: Panel (a) diagrams the nested tree HDLM. Modifier tree Ma is structured with binary splitting
rules on modifiers BMI, sex, and age. Each terminal node ηab has a unique treed DLM structure Dab with
corresponding piecewise effects given by δabc, shown as dashed lines. Panel (b) diagrams the shared tree
HDLM. Here, each terminal node of the modifier tree ηab uses the same treed DLM structure Da. The
time points where the distributed lag effects change are shared across all trees while the effect magnitude is
unique to each subgroup.

The variance parameters follow a half-Cauchy prior, τa, ν ∼ C+(0, 1), to define a local-global

horseshoe-like estimator on tree specific effects (Carvalho et al., 2010). This differs from previ-

ous BART implementations (Chipman et al., 2010; Starling et al., 2020), which apply a uniform

variance across all trees. The horseshoe variance prior will shrink the effects of misspecified trees

reducing variance and false window detection. A similar prior specification was shown to improve

DLM estimation in the treed DLM method of Mork and Wilson (2021a). We restrict the range of φ

to exp{−φ} ∈ (0.05, 0.95) and assign prior φ ∼ Gamma(1/2, 1/2), which gives higher probability

to smoother distributed lag effects.

4.3.3 Nested Tree HDLM

Mork and Wilson (2021a) showed that treed DLMs outperform competing spline and Gaussian

process-based methods in terms of distributed lag effect estimation and precision of critical win-

dow identification. We propose using a treed DLM as a parametric model at each terminal node of

the modifier tree. This results in a nested tree structure visualized in Figure 4.1(a). Here, each sub-

group of the modifier tree is paired with a unique distributed lag tree structure and corresponding

effects.
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Before describing the nested tree HDLM we give an overview of the treed DLM. The notation

presented here distinguishes the DLM regression tree from the modifier regression tree presented

in Section 4.3.1. Consider binary tree D, which partitions the exposure time span, T , into C non-

overlapping time segments. Internal nodes of D are assigned binary rules at time points within

the period of exposure (e.g. t < t1 and t ≥ t1 for t1 ∈ {2, . . . , T}). The terminal nodes of D,

denoted λc for c ∈ {1, . . . , C}, bin together time points to define a piecewise constant distributed

lag effect (see Figure 4.1(a)). That is, θt = δc if t ∈ λc, where δc is a distributed lag effect for

all exposure observations within the time period of λc. The binning of distributed lag effects adds

structure to the distributed lag function and stabilizes the model in the presence of autocorrelation

in the exposure data.

In the nested tree DLM, each modifier tree subgroup has a unique treed DLM structure. As a

result, there is no sharing of information across terminal nodes concerning the timing of the critical

window, the effect size, or the smoothness of the DLM. This creates a highly flexible model that

allows structures of the treed DLM to adapt to the subgroup whose exposure-response is being

estimated. Keeping the number of treed DLM terminal nodes small introduces constraints in the

distributed lag function to account for temporal correlation in the exposure measurements.

To formally define the nested tree DLM in the context of an ensemble of modifier trees, denote

Dab as the treed DLM associated with terminal node ηab in modifier tree Ma. Treed DLM Dab

contains Cab terminal nodes, denoted λabc, with corresponding distributed lag effects δabc, c =

1, . . . , Cab. To calculate the HDLM, as in (4.3), let θabt = δabc if mi ∈ ηab and t ∈ λabc. Then the

distributed lag effect for individual i at time t is

θt(mi) =
A∑

a=1

Ba∑

b=1

Cab∑

c=1

δabcI(mi ∈ ηab, t ∈ λabc). (4.5)

4.3.4 Shared Tree HDLM

The shared tree HDLM is a simplification of the nested tree HDLM that pairs a single treed

DLM with each modifier tree. All subgroups of a modifier tree receive the same treed DLM
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structure but distributed lag effects with different magnitudes. The shared tree HDLM is visualized

in Figure 4.1(b). The modifier tree and treed DLM structures are learned from the data, but a

change in the treed DLM structure is applied to all subgroups of a modifier tree. This assumes that

the DLM has the same change points for critical windows. For our data problem involving prenatal

development, this could relate to an assumption that developmental stages always occurring during

the same weeks, although the magnitude of effects may differ. In contrast, the nested tree HDLM

allows for the possibility that the onset and duration of the effects varies for each subgroup.

Notation for the shared tree HDLM is similar to the nested tree HDLM. For each modifier

tree Ma with terminal nodes ηab, we consider a single treed DLM Da with terminal nodes λac,

c ∈ {1, . . . , Ca}. The treed DLM Da is utilized as the distributed lag function at all terminal nodes

ηab of Ma. The distributed lag effects, δabc, are specific to each modifier tree terminal node and

treed DLM terminal node. As in the nested tree DLM, we calculate the heterogeneous DLM by

setting θabt = δabc if t ∈ λac.

4.3.5 Prior Specification

Here we detail the prior specification of nested tree HDLM. The approach for other methods

are similar and details are available in Appendix C.2. The nested tree HDLM prior consists of

five components: modifier tree structure, treed DLM structure, distributed lag effects, fixed effects

of covariates, and the error variance. We have several goals in mind when shaping priors. First,

as with BART, trees with fewer terminal nodes will help to stabilize the model. This is partic-

ularly true for the treed DLM where few terminal nodes provide a necessary constraint on the

distributed lag effects. Second, the model should prioritize rules on modifiers that result in differ-

ent DLM structures or effects to remove modifiers that do not differentiate subgroups. Third, we

want to lower false window detection rates by shrinking the effects pertaining to subgroups and

treed DLMs that poorly fit the data.
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Modifier Tree Priors

The prior on modifier tree structures is defined in two parts: a prior probability that a node will

have a split and a prior probability of the binary rule defined at that split. We adopt the BART

prior for a node split. That is, for node η with depth dη (the first node in a tree has depth zero)

the probability the node is an internal node equals psplit(η) = α(1 + dη)
−β where α ∈ (0, 1) and

β > 0. Following Chipman et al. (2010) we set α = 0.95 and β = 2, which encourages smaller

trees. Changes to these priors did not improve performance in simulations. Priors on tree splitting

rules in the modifier tree follow Linero and Yang (2018). Complete details are given in Appendix

C.2.

Treed DLM Priors

The treed DLM also uses the BART prior for node splits, with α = 0.95 and β = 2. For the

splitting rule prior, we assign a uniform prior across all available time points, resulting in T − 1

possible splits for a tree with a single node.

The distributed lag effects are assigned the conjugate normal prior,

δabc|τa, ν, σ ∼ N (0, τ 2aν
2σ2) (4.6)

where τa, ν ∼ C+(0, 1) define a horseshoe-like estimator on tree specific effects. We include the

error variance σ2 in this prior, allowing it to be integrated out during tree updates. This prior

specification differs from previous BART implementations (Chipman et al., 2010; Starling et al.,

2020), which apply a uniform variance prior across all trees. The modifier-tree-specific variance

prior improves performance in treed DLM because it shrinks the effects of misspecified trees,

which serves to reduce variance and false window detection (Mork and Wilson, 2021a).
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Other Priors

To complete a fully Bayesian specification of the nested tree DLM we assign a non-informative

prior to the fixed effects, γ ∼ MVN (0, dσ2Ip), where Ip is a p× p identity matrix and d is fixed

at a large value. Finally, we specify prior σ ∼ C+(0, 1).

4.3.6 Computation

The nested tree DLM is estimated by sampling from the posterior distribution using MCMC.

As in BART, we apply Bayesian backfitting (Hastie and Tibshirani, 2000) to estimate the effects

for each modifier tree and apply the independent Metropolis-Hastings (MH) algorithm to update

modifier trees and treed DLMs. Our algorithm differs from BART in several ways. First, we

control for a set of fixed effects when estimating the heterogeneous DLMs. Second, each terminal

node of the modifier tree has a unique treed DLM structure that is learned from the data and must

be updated. We briefly outline our algorithm and provide full details in Appendix C.3.

To improve estimates of the distributed lag function we integrate the fixed effect parameters,

γ, out of the data likelihood. Updates to the modifier tree occur through the four proposal steps

described in Chipman et al. (1998): grow, prune, change, and swap. The grow step adds an addi-

tional split at a terminal node, and prune removes a split from an internal node connected to two

terminal nodes. The change step modifies a binary splitting rule at an internal node. Swap reverses

the order of rules in two adjacent internal nodes.

Each terminal node of the modifier tree has a unique treed DLM. In a grow proposal, a terminal

node becomes an internal node and the corresponding treed DLM is eliminated and replaced by

two new treed DLMs at the new modifier tree terminal nodes. For each new terminal node, a new

treed DLM is drawn from the tree prior. Likewise for a prune proposal, an internal node becomes

a terminal node. In this case the two existing treed DLMs are discarded and a new treed DLM is

drawn from the tree prior. During a change or swap step in the modifier tree the terminal nodes

retain the same treed DLM. To account for the potential change in dimensionality during modifier
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tree updates we integrate over all terminal node effects, δabc, and model variance, σ2. The update

can then proceed with a MH step similar to that used in previous BART implementations.

After an update to the modifier tree, we update the treed DLM associated with each subgroup.

Updates to treed DLMs use only grow, prune, and change proposals. A swap results in empty

treed DLM terminal nodes and is not used. Conditionally conjugate normal priors allow for Gibbs

updates of terminal node effects. Following updates to tree structures and terminal node effects,

the remaining parameters are updated with standard MCMC procedures.

4.4 Simulation

We developed three simulation scenarios to evaluate estimation of the heterogeneous dis-

tributed lag function and the ability to identify correct modifiers. The first simulation scenario

relates to the nested tree HDLM and considered subgroups with three different distributed lag ef-

fects: an early window, a late window, and no effect. The second scenario mimics the shared tree

HDLM and had two groups: a distributed lag effect that does not change in time but was scaled by

a continuous modifier and a group with no effect. Scenario 3 compared the HDLM to traditional

DLM methods when there was no effect modification.

In general, we found that the nested and shared tree HDLMs outperform the Gaussian process

HDLM in all settings and performed similarly to a standard DLM in scenario 3 with no effect

modification. For subgroups with no distributed lag effects, the nested tree HDLM was better than

the shared tree HDLM. In a low noise setting we saw a greater distinction between the nested and

shared tree approaches, while they were comparable in higher noise scenarios.

Each scenario involved 13 covariates. Two of these covariates were responsible for the DLM

heterogeneity in scenarios 1 and 2. All covariates were included as potential modifiers in the

HDLMs. Covariates zi = [zi1, . . . , zi13]
′ were independently generated: zi1 ∼ N (0, 1), zi2 ∼

Bernoulli(0.5), zi3 ∼ Uniform(0, 1), zip ∼ N (0, 1) for p ∈ {4, . . . , 8}, zip ∼ Bernoulli(0.5) for

p ∈ {9, . . . , 13}. We also include zi0 = 1 as a model intercept. A set of 37 consecutive weekly
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PM2.5 exposures, denoted xi = [xi1, . . . , xi37]
′ was drawn for each observation using real exposure

measurements from our data analysis.

The simulation generated continuous outcomes under the model

yi = r · x′
iθ(mi) + z′iγ + εi (4.7)

where γ are parameters drawn from standard normal, and θ(mi) represent the HDLM from each

simulation scenario. In the HDLM we let mi be all variables in zi except for the intercept, although

only two modifiers are actually responsible for the effect heterogeneity. Scaling factor r was

defined such that Var[r · x′
iθ(mi)] = 1, and εi was drawn independently from N (0, σ2) under

three different noise settings, σ2 ∈ {10, 25, 50}. Each simulation scenario and σ2 combination was

run 100 times with n = 5,000 observations. An additional 5000 observations were generated as a

testing dataset to evaluate out-of-sample model performance but not used for model fitting.

Each simulation replicate was estimated by three methods for HDLM: nested tree HDLM,

shared tree HDLM, and Gaussian process HDLM. We also used two methods for a standard DLM:

treed DLM and Gaussian process DLM. Simulation scenario 1 was also estimated using the nested

tree and Gaussian process HDLM where the modifier tree was fixed to use the true subgroups. All

models used 20 modifier trees in the ensemble and were run for 10,000 MCMC iterations thinned

to every 5th iteration, following 5,000 burn-in iterations. All simulations can be reproduced with

R package dlmtree.

4.4.1 Scenario 1: Early/Late Window

We simulated the heterogeneous distributed lag function with two true modifiers, zi1 and zi2,

θt(mi) =





I(t ∈ [11, 18]) if zi1 > 0 and zi2 = 1

I(t ∈ [17, 26]) if zi1 > 0 and zi2 = 0

0 if zi1 ≤ 0

. (4.8)
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The first group (zi1 > 0, zi2 = 1) had a nonzero distributed lag effect during weeks 11 − 18.

The second group (zi1 > 0, zi2 = 0) had a nonzero distributed lag effect during weeks 17 − 26,

overlapping with the first group by two weeks. The third group (zi1 ≤ 0) had no distributed lag

effect.

Pointwise DLM results averaged across simulation replicates are given in Table 4.1. We sep-

arately analyzed subgroups with an effect (zi1 > 0) from subgroups with no effect (zi1 ≤ 0). We

report DLM root mean square error (RMSE) =
√∑37

t=1[θt(mi)− θ̂t(mi)]2/37 and coverage of the

distributed lag effects by 95% pointwise credible intervals, averaged across observations in effect

and no effect subgroups. We also calculated the probability that the model detects a true critical

window (true positive, TP) when θt(mi) is nonzero as well as the probability a critical window is

identified where the true effect is zero (false positive, FP), both using the 95% pointwise credible

interval for the distributed lag effects. Finally we report the mean square prediction error (MSPE),

n−1
∑n

i=1(yi − ŷi)
2. We report MSPE as the ratio of MSPE for each model relative to the treed

DLM without modification using 5,000 additional out-of-sample observations for each simulation

replicate. The MSPE differences are small across all models because the signal of the HDLM is

small relative to the fixed effects and residual variance.

The nested tree HDLM yields distributed lag estimates with smaller RMSE than those from

shared tree and Gaussian process HDLMs across all error settings. For critical window identifica-

tion, the nested tree HDLM yields a similar or higher TP than the other models in all error settings.

The FP of the nested tree HDLM ranges from 0.02 in the lowest error setting to 0.08 in the highest

error setting; the shared tree HDLM has FP ranging from 0.04 to 0.09, respectively. The added

flexibility of the nested tree HDLM allowed for different change points for critical windows and

varying smoothness in the effect and no effect groups, features lacking in the shared tree and Gaus-

sian process HDLMs. Coverage of the distributed lag function was near nominal levels except in

the highest error setting, where coverage decreased in all HDLMs. The decreased coverage was

only evident in the subgroups with a true exposure effect and is due to two factors: shrinkage of

the exposure effect and in some cases combining the two groups with different critical windows
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Table 4.1: Simulation results for estimating the DLM in scenario 1 (early/late effect). Results are considered
pointwise across the DLM for each individual and broken down for individuals with a zero versus nonzero
effect. MSPE is calculated for the response using 5,000 out of sample observations and divided by the
MSPE for treed DLM without modification.

Effect (zi1 > 0) No Effect (zi1 ≤ 0)

Model RMSE∗ Coverage TP FP RMSE∗ Coverage FP MSPE

σ2 = 10
Nested Tree HDLM 4.36 0.95 0.94 0.02 2.32 1.00 0.00 0.938
Shared Tree HDLM 5.30 0.93 0.94 0.04 2.70 0.99 0.01 0.940
Gaussian Process HDLM 5.63 0.95 0.97 0.02 3.51 0.99 0.01 0.941

Nested Tree: Truth 3.08 0.97 0.98 0.02 1.21 1.00 0.00 0.933
Gaussian Process: Truth 5.24 0.95 1.00 0.03 3.05 1.00 0.00 0.941

Treed DLM 11.26 0.63 0.92 0.20 5.58 0.64 0.36 1.000
Gaussian Process DLM 11.28 0.65 0.84 0.17 5.61 0.69 0.31 0.998

σ2 = 25
Nested Tree HDLM 6.72 0.91 0.88 0.04 2.67 1.00 0.00 0.977
Shared Tree HDLM 7.39 0.90 0.86 0.05 3.18 0.99 0.01 0.978
Gaussian Process HDLM 7.14 0.95 0.90 0.02 3.94 1.00 0.00 0.978

Nested Tree: Truth 5.29 0.96 0.94 0.02 1.96 1.00 0.00 0.974
Gaussian Process: Truth 6.43 0.96 0.97 0.02 3.63 1.00 0.00 0.987

Treed DLM 11.45 0.64 0.84 0.18 5.52 0.68 0.32 1.000
Gaussian Process DLM 11.49 0.70 0.61 0.11 5.55 0.78 0.22 0.999

σ2 = 50
Nested Tree HDLM 9.70 0.80 0.71 0.08 3.37 1.00 0.00 0.993
Shared Tree HDLM 9.86 0.79 0.71 0.09 3.64 0.99 0.01 0.993
Gaussian Process HDLM 9.29 0.90 0.50 0.02 4.30 1.00 0.00 0.992

Nested Tree: Truth 7.26 0.92 0.91 0.04 2.56 1.00 0.00 0.989
Gaussian Process: Truth 7.53 0.96 0.83 0.01 4.04 1.00 0.00 0.990

Treed DLM 11.70 0.66 0.77 0.16 5.39 0.71 0.29 1.000
Gaussian Process DLM 11.73 0.74 0.40 0.06 5.46 0.87 0.13 1.000

RMSE∗ = RMSE×100

into a single group. Coverage in the no effect group was above the nominal level in all settings.

The nested tree DLM also had similar or lower MSPE than competing methods.

The treed DLM model with subgroups fixed at the truth outperformed the HDLM models.

However, the fixed subgroup Gaussian process approach had higher RMSE and MSPE than the

nested tree HDLM in the lowest error scenario. This is first due to the fact that the true distributed

lag function is not smooth. Second, the smoothness assumption of the Gaussian process was

homogeneous across all subgroups, leading to over-smoothing in the effect subgroups and under-

smoothing in the no effect subgroup. These results motivate the use of the treed DLM approaches

when considering heterogeneity. The DLM methods with no effect modification were consistently
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the worst performing models with low coverage of the distributed lag function, higher FP rates,

and the highest RMSE and MSPE.

In Appendix C.4 we present modifier posterior inclusion probabilities (PIP) for an individual

modifier or interactions of modifiers. The PIP for an individual modifier is the probability that the

modifier is used in at least one splitting rule across the ensemble of trees. We define a modifier

interaction to be when two modifiers are used as consecutive splitting rules in the same tree. The

average modifier PIPs will be a function of the number of modifiers and number of trees in the

model with larger PIPs for fewer modifier or more trees. Modifiers with a larger PIP relative to

other modifiers represent possible modification of the distributed lag effects and critical windows,

and give a starting point to comparing the exposure effects for individuals or subgroups.

In scenario 1, the true modifiers (z1 and z2) have PIPs that range from 0.97 to 1 in the low and

middle noise scenarios and 0.79 to 0.99 in the high noise scenario. The other modifiers have PIPs

ranging from 0.59 to 0.63, on average. The modifier that determines the critical window placement,

z2 has slightly lower PIP than the modifier that determines effect versus no effect groups, z1. For

scenario 1, we found an interaction between modifiers z1 and z2 to have PIP of 1 in the low error

setting, 0.88 in the middle error setting, and 0.46 in the highest error setting. The average PIP

for other modifier interactions was 0.11. We note that a model with more trees or fewer modifiers

would likely find higher PIPs for irrelevant modifiers because there are more chances for a splitting

rule to use each modifier.

4.4.2 Scenario 2: Scaled Effect

In scenario 2 we simulated the heterogeneous distributed lag function based on two continuous

covariates zi1 and zi3,

θt(mi) =





zi3I(t ∈ [11, 18]) if zi1 > 0

0 if zi1 ≤ 0

. (4.9)

The distributed lag function is nonzero during weeks 11 − 18 for the first group (zi1 > 0) and

scaled by the modifier zi3. The second group (zi1 ≤ 0) had no distributed lag effects. Here, we did
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not compare to a fixed subgroups model because the continuous modification does not allow for

true subgroups.

Table 4.2 summarizes model performance in term of estimation of the distributed lag function

and out-of-sample MSPE. The shared tree HDLM yielded lower RMSE on the distributed lag

function in low and middle error settings, higher TP rate for identifying windows, and similar

MSPE compared to other HDLM approaches. The added flexibility of the nested tree model was

not needed, which leads to slightly lower performance of this approach in this scenario. In order

for the Gaussian process model to perform better, the smoothness of the DLM would need to vary

due to the modifier z3, which is not possible in the current method.

Table 4.2: Simulation results for estimating the DLM in scenario 2 (scaled effect). Results are considered
pointwise across the DLM for each individual and broken down for individuals with a zero versus nonzero
effect. MSPE is calculated for the response using 5,000 out of sample observations.

Effect (zi1 > 0) No Effect (zi1 ≤ 0)

Model RMSE∗ Coverage TP FP RMSE∗ Coverage FP MSPE

σ2 = 10
Nested Tree HDLM 5.05 0.92 0.77 0.01 2.30 0.99 0.01 0.920
Shared Tree HDLM 4.60 0.93 0.86 0.01 2.37 0.99 0.01 0.919
Gaussian Process HDLM 6.23 0.94 0.69 0.02 3.58 1.00 0.00 0.923

Treed DLM 10.37 0.81 0.97 0.01 6.04 0.78 0.22 1.000
Gaussian Process DLM 10.71 0.82 0.99 0.02 5.94 0.77 0.23 1.000

σ2 = 25
Nested Tree HDLM 6.62 0.92 0.66 0.01 2.59 1.00 0.00 0.969
Shared Tree HDLM 6.53 0.93 0.76 0.01 2.85 0.99 0.01 0.969
Gaussian Process HDLM 7.53 0.94 0.63 0.01 3.98 1.00 0.00 0.971

Treed DLM 10.92 0.82 0.92 0.02 5.72 0.78 0.22 1.000
Gaussian Process DLM 11.12 0.84 0.86 0.01 5.71 0.80 0.20 1.000

σ2 = 50
Nested Tree HDLM 8.48 0.91 0.62 0.01 3.10 1.00 0.00 0.986
Shared Tree HDLM 8.59 0.91 0.64 0.02 3.42 0.99 0.01 0.987
Gaussian Process HDLM 9.02 0.93 0.53 0.00 4.26 1.00 0.00 0.988

Treed DLM 11.54 0.81 0.86 0.03 5.30 0.79 0.21 1.000
Gaussian Process DLM 11.54 0.85 0.58 0.01 5.44 0.87 0.13 1.000

RMSE∗ = RMSE×100

Appendix C.4 presents PIPs for individual modifiers and modifier interactions. The modifier

tree HDLMs correctly distinguish the true modifiers in all error settings with PIPs ranging from

0.87 to 1. The other modifiers have PIPs ranging from 0.55 to 0.63, on average. In the highest
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error setting the modifier responsible for effect size change, z3, has slightly lower PIP (0.88) than

the modifier responsible for effect or no effect subgroups, z1 (1). We found the interaction between

modifiers z1 and z3 to have PIP of 1 in the low error setting, 0.91 in the middle error setting, and

0.65 in the highest error setting. The average PIP for other modifier interactions was 0.11.

4.4.3 Scenario 3: No Effect Heterogeneity

In the final simulation scenario we considered a DLM without effect modification. The dis-

tributed lag effects were defined θt(mi) = max[0, (t − s)(s − t + 9)], where s is a starting time

drawn uniformly from {1, . . . , T −9}. That is, the distributed lag function is smooth with a critical

window over an 8-week time period. The distributed lag effect is identical for all observations in a

given dataset.

Table 4.3 presents results for estimation of the distributed lag function. The HDLM performs on

par with standard DLM methods without heterogeneity. The HDLM methods have higher RMSE

than the standard TDLM and similar to the Gaussian process DLM. Coverage of the true distributed

lag effects by 95% pointwise credible intervals meet the nominal level. The TP rates from the

HDLM methods are slightly below those from the DLM methods without effect heterogeneity

while the FP rate is near zero for all methods. The tree-based HDLMs outperformed the Gaussian

process DLM in the higher noise setting; these results encourage the use of tree-based approaches

for estimating a DLM or HDLM in general. In terms of modifier selection, the average PIP of any

given modifier ranges from 0.63 to 0.69. This is similar to the non-active modifiers in simulation

scenarios 1 and 2. Full details of modifier inclusion are given in Appendix C.4.

4.5 Data Analysis

We applied the nested tree, shared tree, and Gaussian process HDLMs to estimate the relation-

ship between BWGAZ and a mother’s exposure to PM2.5 during the first 37 weeks of pregnancy.

We allowed for effect heterogeneity due to ten modifiers and controlled for all demographic, spa-

tial, and temporal covariates described in Section 3.2. The covariates and modifiers are outlined
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Table 4.3: Simulation results for estimating the DLM in scenario 3 (no effect heterogeneity). Results are
considered pointwise across the DLM for each individual. MSPE is calculated for the response using 5,000
out of sample observations and divided by the MSPE for TDLM without modification.

Model RMSE×100 Coverage TP FP MSPE

σ2 = 10
Nested Tree HDLM 2.90 0.93 0.83 0.00 1.001
Shared Tree HDLM 2.83 0.94 0.83 0.00 1.001
Gaussian Process HDLM 2.86 1.00 0.94 0.00 1.001

Treed DLM 2.37 0.97 0.89 0.01 1.000
Gaussian Process DLM 2.81 0.99 0.96 0.01 1.007

σ2 = 25
Nested Tree HDLM 3.42 0.97 0.76 0.00 1.001
Shared Tree HDLM 3.35 0.97 0.76 0.00 1.001
Gaussian Process HDLM 3.84 1.00 0.76 0.00 1.001

Treed DLM 3.01 0.98 0.82 0.01 1.000
Gaussian Process DLM 3.64 0.99 0.89 0.01 1.003

σ2 = 50
Nested Tree HDLM 4.31 0.98 0.65 0.00 1.001
Shared Tree HDLM 4.21 0.98 0.67 0.00 1.001
Gaussian Process HDLM 4.73 1.00 0.54 0.00 1.001

Treed DLM 3.76 0.97 0.79 0.01 1.000
Gaussian Process DLM 4.41 0.99 0.80 0.01 1.001

in Table 4.4. We did not include a fixed effect for fetal sex as the outcome, BWGAZ, was already

adjusted for this factor. Each model ran for 15,000 iterations after 5,000 burn-in and was thinned

to every 5th iteration. Following a 10-fold cross-validation, the shared tree HDLM had slightly

lower MSPE. Because the results from the nested tree HDLM were similar, we defaulted to the

shared tree HDLM for the data analysis presented in the main text because it is a simpler model.

The Gaussian process HDLM had higher MSPE and higher uncertainty in the DLM estimates.

Results of our cross-validation and results from the nested tree and Gaussian process HDLMs are

provided in Appendix C.5. For comparison, we also modeled the exposure-time-response using a

treed DLM without effect modification.

4.5.1 DLM without effect modification

Figure 4.2 shows the estimated exposure effect using a treed DLM with no effect modification.

We found that increased PM2.5 exposure was associated with decreased BWGAZ during each week

of gestation. The DLM identifies critical windows during weeks 5-6 and 31-34. The cumulative

effect of an inter-quartile range (IQR) increase in PM2.5 at every week of pregnancy corresponds
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Table 4.4: Covariates included as fixed effects or modifiers (indicated by checks) of the HDLM. For co-
variates included as modifiers we report the posterior inclusion probability (PIP), which is defined as the
probability the modifier is used in at least one splitting rule in the ensemble.

Covariate Type Mean (IQR) Categories Fixed effect Modifier PIP
Age at conception Continuous 28.7 (24− 33) X X 0.93
Height Continuous 64.4 (62− 66) X −
Prior weight Continuous 151.3 (126− 169) X −
Body mass index Continuous 25.7 (21.6− 28.4) X X 0.95
Avg. temp/trimester Continuous 51.6 (38.2− 65.1) X −
Income range Ordinal 6 X X 0.74
Highest education Ordinal 5 X X 0.90
Smoking habits Ordinal 4 X X 0.78
Marital status Categorical 6 X X 0.50
Prenatal care Categorical 3 X X 0.48
Race Categorical 4 X X 0.61
County of residence Categorical 12 X −
Month of conception Categorical 12 X −
Year of conception Categorical 9 X −
Hispanic Binary 2 X X 0.95
Sex of child Binary 2 X 0.64

to a decrease in BWGAZ of −0.026 (95% CI: −0.044,−0.006). In a more interpretable context,

an increase from 5.9 to 8.5 µg/m3 PM2.5 (the 25th and 75th weekly exposure percentiles) relates

to an approximate decrease in birth weight of 11.3g; this is approximate because BWGAZ adjusts

for sex and gestational age.

Figure 4.2: Estimated distributed lag effects due to an IQR increase in PM2.5 using the treed DLM with
no effect modification. The solid line indicates the posterior mean while the gray area represents a 95%
credible interval. Weeks where the credible interval does not contain zero represent critical windows.
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(a) (b)

Figure 4.3: Panel (a) shows the density of splitting locations for two continuous modifiers: maternal age
and BMI. Panel (b) shows posterior inclusion probability (PIP) of modifier interactions.

4.5.2 Modifier selection to determine susceptible populations

The modifier PIPs from the shared tree HDLM are presented in Table 4.4. The modifiers with

the highest PIP include maternal BMI (0.95), Hispanic (0.95), age (0.93) and education (0.90).

The next highest PIP modifiers were smoking (0.78) and income (0.74). Considering empirical ev-

idence from our simulation scenarios, with a similar number of modifiers and trees, PIPs below 0.7

do not provide significant evidence of effect modification. For continuous modifiers, Figure 4.3(a)

describes the density of splitting values for age and BMI, with modes at 27 and 22.8, respectively.

Figure 4.3(b) illustrates the PIP of interactions between modifiers. In simulation, the average

PIP for non-active modifier interactions was 0.11. We found the highest interaction PIPs to be

education–BMI (0.65), education–age (0.64), and BMI–Hispanic (0.57).

When we consider effect modification, we can interpret the effect heterogeneity as an interac-

tion between the modifiers and the exposure effect. For instance, a subgroup that is the result of a

rule on a single modifier (59% of tree-specified subgroups) is a two-way interaction between that

modifier and PM2.5. The distributed lag effects for a subgroup that is the result of rules on two

modifiers (33% of tree-specified subgroups) is a three-way interaction between the two modifiers

as well as exposure to PM2.5. While the ensemble of trees should be able to incorporate interac-

tions via the additive nature of multiple trees, some complex interactions, such as the effect/no
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effect partition in our simulations, may only be captured with a single tree that splits on multiple

modifiers.

The modifier PIPs provide a starting point to explore potential susceptible populations, which

are characterized by their differential effects to exposure. In this analysis, we focus on four mod-

ifiers: maternal BMI, Hispanic, age, and education, along with interactions between these modi-

fiers. To simplify visualization of the results, we divided continuous modifiers, BMI and age, at

the splitting value modes. We present subgroup specific average effects along with personalized

distributed lag effect estimates for a sample of individuals in each subgroup to give a sense of the

remaining within-group heterogeneity.

4.5.3 Subgroup-specific distributed lag effects

Figures 4.4(a) and 4.5(a) compare subgroup-specific DLM estimates across pairs of modifiers

using the posterior analysis technique described in Appendix C.3.5. These subgroups are based on

some of the largest modifier PIPs. Other two-way combinations showed little or no evidence of

different subgroup distributed lag effects. More complex multi-way interactions are presented in

Appendix C.5. A consistent theme across subgroup analyses is a differential effect for Hispanic

and non-Hispanic subgroups. We see a consistent negative exposure effect at all time points for the

non-Hispanic groups and an early and late critical window that is present in many non-Hispanic

subgroups. For Hispanic subgroups the exposure effect hovers around zero, which is generally

consistent with no exposure effect.

Figure 4.4(a) offers evidence of early-gestation susceptibility among all non-Hispanics. For

non-Hispanics with BMI above 22.8, we detect a second critical window later in gestation during

which increased PM2.5 exposure is associated with lower birth weight. We also find differences

in critical windows among non-Hispanics based on their level of education, seen in Figure 4.5(a).

Non-Hispanics with less than a college education show a late-gestation critical window. Having

at most a high school education suggests the presence of an early-gestation critical window for

non-Hispanics. For Hispanics, there is no evidence of an association at any level of education.
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(a) (b)

Figure 4.4: Panel (a) shows subgroup-specific DLM estimates with 95% credible intervals. Panel (b) shows
DLM estimates for 1,000 individuals from our data analysis. Both panels are grouped by Hispanic designa-
tion (rows) and BMI above/below 22.8 (columns). Panel (b) DLMs are colored according to a Mother’s age
at conception with lighter color representing older individuals.

4.5.4 Personalized distributed lag effect estimates

The subgroup analysis in Section 4.5.3 highlights broad trends across modifiers and identifies

several susceptible subgroups: non-Hispanic, BMI above 22.8, and less than college education.

However, so far we have considered only two variables at a time. In reality, the individuals in these

subgroups vary across the entire observed range of the other modifiers considered in this analysis.

In this section, we explore remaining variability in the distributed lag effects among individuals

within these subgroups.

Figures 4.4(b) and 4.5(b) show the estimated DLMs for 1,000 individuals randomly selected

from our data set. Estimates for these individuals have been grouped according to the subgroup

analysis in Section 4.5.3 and colored to highlight differences in the distributed lag effects according

to a third modifier. This third modifier was selected based on noticeable variation in distributed lag

effects among individuals; however, other modifiers are also responsible for these differences.

Figure 4.4(b) colors the average distributed lag effects based on the age of the individual with

darker color representing younger mothers. We see a trend towards younger individuals having

a larger negative effect. This difference by age is more noticeable for Hispanics with younger
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(b)

Figure 4.5: Panel (a) shows subgroup-specific DLM estimates with 95% credible intervals, divided by
Hispanic and education modifiers. Panel (b) shows DLM estimates for 1,000 individuals from our data
analysis divided by Hispanic and education modifiers and colored by age, with lighter color representing
older women.

individuals showing a more consistently negative effect. Figure 4.5(b) visualizes differences by

education and Hispanic designation with color again representing continuous modification by ma-

ternal age. The distributed lag effects show pronounced differences between younger and older

individuals with less than a high school degree. Compared to their older counterparts, young His-

panic and non-Hispanic women with less than a high school education have consistently larger

negative effects. Younger women with less education appear to be a highly susceptible group to

PM2.5 exposure.
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4.5.5 Cumulative effect estimates and four-way interactions

We next explored the differences in total exposure susceptibility across three modifiers simul-

taneously: maternal BMI, age, and Hispanic designation. We randomly selected 5,000 individuals

from our data set and calculated the cumulative effect, or the sum of week-specific effects asso-

ciated with an IQR increase in PM2.5 exposure throughout pregnancy. The estimated cumulative

effect was averaged across bins of the continuous modifiers, BMI and age. Results are visualized

in Figure 4.6. For non-Hispanic individuals, higher BMI and lower age correspond to the larger

negative effects. Individuals who are older and have lower BMI had the smallest cumulative effect

of PM2.5. Consistently across the non-Hispanic subgroup, increased exposure was related to lower

BWGAZ. For Hispanic individuals, the cumulative effect of exposure was centered around zero.

We see evidence of a larger negative effect of exposure for younger Hispanic women; however this

effect is less than the cumulative effect for non-Hispanics of the same age and BMI. There is little

evidence of modification by BMI for Hispanics.

Figure 4.6: Heat map of average cumulative exposure effect for 5,000 individuals from data analysis. Each
colored block is the average cumulative effect for individuals with a particular body mass index (x-axis),
age (y-axis) and Hispanic designation (panels). Darker color indicates a larger negative effect on BWGAZ
associated with an IQR increase in PM2.5 exposure throughout pregnancy.
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The cumulative effect of PM2.5 exposure on BWGAZ for non-Hispanic individuals in this

sample ranged from −0.079 to 0.007, while for Hispanic individuals the cumulative effect ranged

from −0.052 to 0.051. In the context of birth weight, the cumulative effect of an IQR increase

in PM2.5 exposure ranges from −34.3g to 3.2g for non-Hispanic individuals in the sample and

from −22.8g to 22.1g for Hispanic individuals. These ranges are approximate because BWGAZ

is adjusted for sex and gestational age.

4.5.6 Model utility

In contrast to the population average effect described in Section 4.5.1, the HDLM analysis finds

evidence of heterogeneity across the population. In particular, we identified several subgroups with

increased susceptibility to PM2.5 exposure. These susceptible subgroups include non-Hispanic

mothers who are younger or have higher BMI as well as non-Hispanic mothers with lower educa-

tional attainment. Using HDLM, we isolated critical windows for these subgroups finding early-

and late-gestation to be time periods of higher susceptibility. A personalized analysis found addi-

tional variability within the subgroups due to the remaining modifiers. Critical windows for some

individuals were much wider than suggested by the population average effect, and for other indi-

viduals there was little evidence of any exposure effects. The cumulative effect estimates showed

a wide range of variability in the total change in birth weight due to increased PM2.5 exposure.

Compared to the population average, some individuals showed a 3 times larger decrease in birth

weight due to an IQR increase in PM2.5 exposure across pregnancy. For susceptible individuals or

populations, the HDLM gives the ability to create targeted interventions for precision environmen-

tal health. Personalized understanding of exposure effects on health also gives rise to streamlined

scientific understanding of biological mechanisms due to exposure.

4.6 Discussion

We proposed a framework for estimating effect heterogeneity in a distributed lag function due

to a possibly high dimensional set of individual modifiers. HDLM can estimate personalized criti-
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cal windows and effect sizes as well as perform modifier variable selection. In addition, we extend

the BART framework by allowing for modification in a multivariate predictor and define the nested

tree model composed of one regression tree for modification and a second regression tree unique

to a subgroup for estimating the distributed lag effects.

The nested tree and shared tree HDLMs outperform the Gaussian process HDLM in a simula-

tion study. When effect heterogeneity exists, all HDLM methods outperform methods that assume

homogeneity in the distributed lag effects, especially in subgroups with no effect. The difference

between standard DLM and HDLM highlights the bias incurred in estimating the distributed lag

function both for individuals with and without exposure effects. We also show that our methods

consistently estimate high PIPs for modifiers responsible for changes in the distributed lag effects

relative to the other potential modifiers. This differentiation in PIPs provides a pathway for select-

ing modifiers to explore when applying this method. Additional testing of our model suggested

modifier selection is insensitive to misspecification of the fixed effects.

We applied the shared tree HDLM to estimate personalized distributed lag effects due to PM2.5

exposure in a Colorado, USA birth cohort. This analysis considered ten modifiers of different data

types. The model identified four potential modifiers and posterior analysis showed variations in

the distributed lag effects for different levels of these modifiers. In particular, we note changes in

a late-term critical window due to BMI, overall changes in magnitude due to Hispanic designa-

tion, and larger negative effects for young individuals with less than a high school education. We

also explored strategies to summarize subgroup-specific distributed lag effects to compare broad

differences across the population.

Our proposed methods for estimating an HDLM provide new approaches to exploring individ-

ual differences in an exposure-time-response. These tools can lead to personalized environmental

health decision making and pinpoint at-risk individuals for intervention. Furthermore, personalized

exposure-response functions provide stakeholders with detailed information regarding the burden

of air pollution on health.
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Chapter 5

Conclusion

Maternal exposure to environmental chemicals has been linked to numerous detrimental birth

and children’s health outcomes. To better understand how exposure impacts fetal development, re-

search has focused on identifying critical windows, or time periods of development during which

increased exposure is associated with changes in the resulting health outcomes of the child. Under-

standing critical windows can give insight into the biological mechanisms impacted by exposure.

The primary tool for identifying critical windows is the distributed lag model (DLM), which can

account for temporal correlation in high resolution exposure data and identify critical windows

that may not align with clinically-defined periods of development. Research and statistical meth-

ods able to show how and when changes in exposure induce changes in fetal development can

inform new policy regarding air pollution standards, which have the potential to improve health

across a population.

In this dissertation we proposed novel methods extending DLMs using the Bayesian additive

regression trees (BART) framework. In Chapter 2, we proposed the treed distributed lag nonlin-

ear model (TDLNM) for precisely identifying critical windows when the effects are assumed to

be nonlinear at each time point of exposure. We showed that TDLNM outperformed competing

spline-based approaches. Furthermore, TDLNM can incorporate exposure measurement uncer-

tainty into the model. Previous implementations of DLNMs have not been able to accommodate

exposure uncertainty into the model.

In Chapter 3, we developed a novel tree-based method for DLM estimation that outperformed

spline and Gaussian process methods. We also defined the distributed lag mixture model (DLMM)

for estimating interactions between a mixture of exposures, and extended our treed DLM method

to estimating a DLMM. The DLMM incorporates interactions at different time points for two

exposures, which allows for study of the priming or two-hit hypotheses in environmental health

epidemiology. Our proposed method for estimating the DLMM performs exposure selection to
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determine which exposures are associated with the outcome and shrinks the effects of irrelevant

exposures or interactions. We showed that our method precisely identifies critical windows for the

marginal effect of exposures and selects the correct exposures. Furthermore, our model allows for

nonlinear exposure effects using within-exposure interactions at the same time points.

We defined the heterogeneous DLM (HDLM) in Chapter 4, which allows the distributed lag

effects and critical windows to vary across a population due to individual demographic or neigh-

borhood characteristics. We proposed three methods for estimating the HDLM using traditional re-

gression tree framework combined with Gaussian process or our treed DLM approach from Chap-

ter 3 in what we define as the nested tree or shared tree HDLM. We show that the nested tree

HDLM outperforms other methods when the critical windows vary across the population while

the shared tree method often does better when the distributed lag effects vary and the critical win-

dows stay the same. Our methods have high precision in identifying critical windows. In addition,

our methods for estimating the HDLM perform variable selection to determine characteristics re-

sponsible for changes to the distributed lag effects from a possibly high dimensional set of effect

modifiers.

Our methods were applied to a Colorado-based administrative birth cohort. We found critical

windows of susceptibility for birth weight due to changes in air pollution and temperature expo-

sure. Our DLNM analysis found significant decreases in birth weight associated with increased

fine particulate matter (PM2.5) levels. Importantly, we observed an association between PM2.5

exposure and birth weight at low levels of exposure including those below the current national

ambient air quality standards. An analysis of weekly exposure to four pollutants and temperature

found critical windows for PM2.5, sulfur dioxide (SO2), carbon monoxide (CO) and temperature

and an interaction between PM2.5 and temperature suggesting a priming effect. We also developed

an approach to adjust for the temporal correlation between exposures to assess the impact of an

individual exposure on the outcome. We found persistent decreases in birth weight due to increases

in PM2.5, SO2 and temperature. Finally, our heterogeneous DLM analysis accounted for ten po-

tential individual-specific modifiers of the distributed lag effect of PM2.5 exposure on birth weight.
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We found non-Hispanic and higher body mass index to be populations with higher susceptibility

to PM2.5 exposure, and individual in these groups had larger negative changes in birth weight due

to increased PM2.5 during early- and late-gestation compared to other individuals in the study. The

results of our data analyses showed overwhelming evidence that increased air pollution is associ-

ated with decreased birth weight. These findings reinforce the public health impact of maternal air

pollution exposure during pregnancy.

5.1 Future Work

We propose several directions for future work within the context of Bayesian treed distributed

lag models. First, our treed DLNM allows for exposure measurement uncertainty. However, in-

corporating exposure measurement uncertainty has not been formally tested in simulation and val-

idation of this technique is essential before application in an epidemiological (or other) study. A

further extension of the DLNM would assume monotonic effects in the exposure-response at each

time-point, which is consistent with our understanding of the effect of many air pollutants on birth

outcomes. Our DLMM currently allows only quadratic effects. Incorporating increased nonlinear-

ity and higher order interactions into the DLMM is a logical next step. One challenge in nonlinear

mixture effects is the increased complexity of the problem when considering nonlinear interactions

across a large number of exposures with many repeated measurements. Another consideration to

extend the DLMM in incorporating exposures with differing measurement schedules or thinking

about measurements in continuous time versus discrete time. With regard to the heterogeneous

DLM, we are also limited to a single exposure with linear effects. Allowing for heterogeneity

in a nonlinear exposure-time-response presents challenges in identifiability of the effect modifiers

when the fixed effects are misspecified. Further work is required to untangle the fixed effects and

modifiers responsible for heterogeneity in a DLNM. Developing a method for heterogeneity in a

DLMM is also possible within our current Bayesian treed DLM framework.
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5.2 Impact

Precise critical window identification is paramount to identifying stages of development and

biological mechanisms impacted by air pollution exposure. Our Bayesian treed methods consis-

tently outperform competing DLM techniques in identifying critical windows with high probability

as well as estimating exposure effects. Furthermore, we have extended the standard DLM to take

advantage of complex data scenarios involving multiple exposures, measurement uncertainty, and

individual effect modifiers. Our proposed methods open doors to environmental epidemiology re-

search not previously possible. The methods developed in this thesis have the potential to unlock

deeper understanding of the impact of pollution on human development and drive public health

policy that leads to beneficial birth outcomes and improved health at the population level.
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Appendix A

Treed Distributed Lag Nonlinear Models

A.1 Additional figures on birth data

Table A.1 provides demographic breakdowns of the data and covariates used in our data anal-

ysis. Figure A.1 details the number of births by census tract.

Figure A.1: Map of CO census tracts highlighted with color scale indicating number of births from each
census tract used in our data analysis.
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Table A.1: Demographic breakdown of the covariates used in the analysis of Colorado birth weights and
estimated effect from analysis using TDLNMse.

Demographic Category N % Estimate (95% CI)
Complete sample 300,463 100
Age at beginning of pregnancy 26.7 (23.444, 29.826)

Quadratic term -6.058 (-8.102, -4.07)
< 20 18,800 6.3
20− 29 144,597 48.1
30− 39 128,394 42.7
≥ 40 8,672 2.9

Weight (lb) at beginning of pregnancy 0.004 (0.004, 0.004)
< 100 4,971 1.7
100− 149 164,966 54.9
150− 199 100,148 33.3
≥ 200 30,378 10.1

Height 0.033 (0.032, 0.034)
Annual income (×$1000 USD)

< 15 74,432 24.8 -0.038 (-0.05, -0.025)
15− 24 36,308 12.1
25− 34 27,909 9.3 0.024 (0.003, 0.045)
35− 49 27,788 9.2 0.023 (0.006, 0.041)
50− 74 43,205 14.4 0.035 (0.02, 0.051)
≥ 75 90,821 30.2 0.035 (0.022, 0.049)

Race
American Indian 2,080 0.7
Asian or Pacific Islander 30,623 10.2 -0.133 (-0.242, -0.027)
Black 14,699 4.9 -0.283 (-0.313, -0.253)
White 253,061 84.2 -0.064 (-0.073, -0.056)

Hispanic
No 210,019 69.9 -0.057 (-0.071, -0.043)
Yes 90,354 30.1

Highest Education
Less than high school 46,506 15.5 0.071 (0.044, 0.101)
High school diploma 118,986 39.6 0.046 (0.03, 0.063)
Associate’s degree 21,808 7.3 0.036 (0.009, 0.063)
Bachelor’s degree 71,789 23.9 0.034 (0.023, 0.045)
Advanced degree 41,374 13.8

Marital Status
Married 229,492 76.4
Never married 63,379 21.1 -0.068 (-0.085, -0.051)
Other 7,592 2.5 -0.051 (-0.072, -0.029)

Prenatal Care
Yes 293,237 97.6 0.104 (0.085, 0.124)
No 3,625 1.2
Unknown 3,601 1.2 0.061 (-0.115, 0.242)

Smoking Before or During Pregnancy
No 281,093 93.6
Yes 19,370 6.4 -0.269 (-0.288, -0.25)

Child’s Sex
Female 147,693 49.2
Male 152,770 50.8
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A.2 Additional details on computation

A.2.1 Preprocessing

Before running the TDLNM algorithm, we perform the following operations to promote com-

putational precision and mitigate numerical overflow issues:

• The response, y, is centered to have mean zero and scaled to have a range equal to 1.

• Continuous covariates are centered to have mean zero and all covariates are scaled by their

ℓ2 norm such that ZTZ has a diagonal of ones.

Initial values for the MCMC algorithm are drawn from full conditional distributions where possible

and prior distributions otherwise.

A.2.2 Tree update

Prior to updating trees, we integrate out the fixed effect, γ, using standard analytical techniques,

p(y|f , σ2) =

∫

γ

p(y|f ,γ, σ2)p(γ|σ2)dγ. (A.1)

This results in the distribution

y|f , σ2 ∼ MVN n

(
f , σ2VZ

)
(A.2)

where

VZ =
(
I− ZVγZ

T
)−1

(A.3)

and

Vγ = (ZTZ+ I/c)−1. (A.4)

Here, y = [y1, . . . , yn]
T is a vector of our continuous response; f = [f(x1), . . . , f(xn)] where

f(xi) incorporates the estimates µa from all trees Ta for a = 1, . . . , A; and Z is a matrix of

covariates such that row i equals zTi .
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The update of each tree, a = 1, . . . , A, proceeds as follows. First, we calculate Ra, the partial

residuals after removing the effects of all other trees. We define Ra as

Ra = y −
A∑

a′=1
a′ 6=a

g(X, Ta′). (A.5)

Here, g(X, Ta) is the vector of partial distributed lag estimates,

g(X, Ta) = [g(x1, Ta), . . . , g(xn, Ta)]
T . We parameterize g(xi, Ta) = cTiaµa where cia = [#(xi ∈

ηa1), . . . ,#(xi ∈ ηaBa
)]T is the counts of exposures in each terminal node ηab and µa = [µa1, . . . ,

µaBa
]T is the node-specific effects. In the case of TDLNMse, #(xi ∈ ηab) is replaced by

∑T
t=1 ψ(xit; ηab, σx), the sum of weights across all observed times. Then for matrix Ca with rows

cia, we describe the distribution of the partial residuals as

Ra|µa, σ
2 ∼ MVNBa

(
Caµa, σ

2VZ

)
. (A.6)

Second, we update Ta using a Metropolis-Hastings algorithm. Following Kapelner and Bleich

(2016) we consider a proposal distribution with three options: grow, prune, or change as defined

in the Bayesian CART algorithm (Chipman et al., 1998). The transition steps from current tree Ta

to new tree T ∗
a are described as follows:

• Grow: Randomly select a terminal node, η, to grow. Randomly select a splitting rule accord-

ing to prule(ρ|η) and create two new terminal nodes using the new splitting rule along with

all previous rules.

• Prune: Randomly select an internal node with exactly two terminal nodes descending from

it and remove the splitting rule.

• Change: Randomly select any internal node, η, and define a new splitting rule according to

prule(ρ|η). Update the limits of all terminal nodes that branch from η.
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It is important to note that the grow and prune steps are counterparts to one another, while change

is its own counterpart that can reverse the Markov chain. The transition kernel p(T ∗|T ) is given

by the probability of selecting a step, multiplied by the probabilities associated with that step. For

our simulations and data analysis we set the step probabilities as p(grow) = p(prune) = 0.3 and

p(change) = 0.4.

After a new tree proposal, T ∗
a , is made, we accept it by a standard Metropolis-Hastings ratio.

To eliminate the need for complicated procedures due to the change in parameter dimension and

to make the trees invariant to the covariates and variance, we integrate over µa as well as σ2. In

BART, integrating out the vector µa can be done one parameter at a time, as each observation is

restricted to a single terminal node. However, in TDLNM, the exposure-time observations may

reside in several terminal nodes requiring us to simultaneously integrate over the entire vector, µa.

The marginal likelihood of Ra is given as

p(Ra|Ta, ω
2, τ 2a ) =

∫

σ2

∫

µa

p(Ra|µa, Ta,−)p(µa|Ta,−)p(σ2) dµa dσ
2

=
(
ω2τ 2a

)−Ba/2
∣∣Vµa

∣∣1/2

×

[
RT
a

(
In − ZTVγZ−V−1

Z
CaVµa

CT
aV

−1
Z

)
Ra

2
+

1

ξσ2

]−(n+1)/2

(A.7)

where ξσ2 is from the hierarchy σ2|ξσ2 ∼ IG(1/2, 1/ξσ2) and ξσ2 ∼ IG(1/2, 1) such that σ ∼

C+(0, 1). We then calculate p(Ra, Ta) = p(Ra|Ta)p(Ta) and accept T ∗
a according to the Metropolis-

Hastings ratio given by

r = min

{
1,
p(T ∗

a )p(Ra|T
∗
a , ω

2, τ 2a )p(Ta|T
∗
a )

p(Ta)p(Ra|Ta, ω2, τ 2a )p(T
∗
a |Ta)

}
. (A.8)

A.2.3 Full conditionals

After the tree update, we draw µa from the full conditional distribution,

µa|Ta,Ra, σ
2, ω2, τ 2a ∼ MVNBa

(
Vµa

CT
aV

−1
Z
Ra, σ

2Vµa

)
, (A.9)
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where

Vµa
=

(
CT
aV

−1
Z
Ca + ω−2τ−2

a IBa

)−1
. (A.10)

We note here that the computation time of Vµa
is no more than O(nB3

a). Since Ba is limited by

the size of the trees, computation time of our algorithm grows at the reasonable rate of O(n).

The update of each tree and corresponding partial DLNM is followed by a draw from the full

conditional for hyperparameter ξτa ,

ξτa |− ∼ IG

(
1, 1 +

1

τ 2a

)
(A.11)

and a draw from the full conditional for τ 2a ,

τa|− ∼ IG

(
Ba + 1

2
,
µTaµa
2σ2ω2

+
1

ξτa

)
. (A.12)

We update hyperparameter ξσ from full conditional

ξσ|− ∼ IG

(
1, 1 +

1

σ2

)
, (A.13)

as well as σ2 from full conditional

σ2|− ∼ IG

[
n+ u+ 1

2
,
‖V−1/2

Z
(y − f)‖22
2

+
U

2ω2
+

1

ξσ

]
, (A.14)

where u =
∑A

a=1Ba and U =
∑A

a=1 τ
−2
a ‖µa‖

2
2. We also update hyperparameter ξω from full

conditional

ξω|− ∼ IG

(
1, 1 +

1

ω2

)
, (A.15)

and ω2 from full conditional

ω2|− ∼ IG

(
u+ 1

2
,
U

2σ2
+

1

ξω

)
. (A.16)
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Finally we draw γ from its full conditional,

γ|y, f , σ2 ∼ MVN
[
VγZ(y − f), σ2Vγ

]
. (A.17)

A.3 Additional simulation details

A.3.1 Simulation scenarios

The exposure-time-response functions used in our simulations are constructed as follows:

• Scenario A:

w(xit, t) =





−1 if t ∈ [11, 15] and xit > 2

0 otherwise

• Scenario B:

w(xit, t) =





1− xit if t ∈ [11, 15]

0 otherwise

• Scenario C:

w(xit, t) =





{
1

1+exp(5xit−12.5)
− 1

}
if t ∈ [11, 15]

0 otherwise

• Scenario D:

w(xit, t) =

{
1

1 + exp(5xit − 12.5)
− 1

}
· exp

{
−
(t− 13)4

400

}

A graphical representation of the design is shown in Figure A.2.

A.3.2 Additional simulation results

Table A.2 shows simulation results from the main text, including standard errors for the simu-

lation replicates.
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(a) Scenario A (b) Scenario B (c) Scenario C (d) Scenario D

Figure A.2: Simulation scenarios representing the exposure-time-response functions. Panels (a), (b) and (c)
show the exposure-response function at times 11 − 15, while the DLNM surface is zero everywhere else.
Panel (d) shows a smooth exposure-response.

Table A.2: Simulation results with standard errors for simulation replicates, showing RMSE for estimation
of the exposure-time-surface with no-effect and effect separated. Coverage and CI width is based on 95%
confidence intervals. Effect identification considers the likelihood of identifying a non-zero effect (TP) or
incorrectly designating a non-zero effect (FP) over the DLNM surface. Precision is calculated within each
simulation as TP/(TP+FP).

DLNM RMSE DLNM Coverage Effect Identification

Model Overall No Effect Effect Overall CI Width TP FP Precision
Scenario A: Piecewise in Exposure and Time

TDLNM 0.086 (0.013) 0.066 (0.013) 0.213 (0.049) 1.00 (0.01) 0.43 (0.01) 0.87 (0.26) 0.00 (0.01) 1.00 (0.01)
TDLNMse 0.100 (0.016) 0.077 (0.011) 0.252 (0.110) 0.99 (0.02) 0.46 (0.02) 0.82 (0.29) 0.00 (0.01) 0.98 (0.10)

GAM 0.294 (0.044) 0.258 (0.037) 0.584 (0.281) 0.95 (0.04) 1.08 (0.04) 0.47 (0.30) 0.03 (0.04) 0.90 (0.24)
DLM 0.370 (0.041) 0.342 (0.028) 0.626 (0.237) 0.68 (0.07) 0.53 (0.07) 1.00 (0.00) 0.30 (0.07) 0.77 (0.04)

GLM-AIC 1.531 (4.470) 1.536 (4.790) 1.462 (1.670) 0.84 (0.11) 3.35 (0.11) 0.49 (0.46) 0.15 (0.10) 0.55 (0.39)
GAMcr 0.263 (0.031) 0.241 (0.029) 0.454 (0.177) 0.98 (0.02) 1.10 (0.02) 0.62 (0.26) 0.01 (0.02) 0.96 (0.14)

GAM-exp 0.241 (0.026) 0.165 (0.020) 0.669 (0.222) 0.94 (0.03) 0.67 (0.03) 0.32 (0.25) 0.01 (0.02) 0.87 (0.30)
Scenario B: Linear in Exposure

TDLNM 0.292 (0.027) 0.081 (0.016) 0.768 (0.179) 0.87 (0.04) 0.37 (0.04) 0.56 (0.07) 0.01 (0.04) 0.99 (0.05)
TDLNMse 0.270 (0.026) 0.073 (0.014) 0.712 (0.174) 0.87 (0.05) 0.34 (0.05) 0.64 (0.07) 0.01 (0.05) 0.99 (0.05)

GAM 0.312 (0.017) 0.257 (0.016) 0.547 (0.159) 0.73 (0.07) 0.48 (0.07) 0.90 (0.15) 0.18 (0.07) 0.84 (0.04)
DLM 0.299 (0.010) 0.257 (0.014) 0.489 (0.098) 0.64 (0.07) 0.36 (0.07) 1.00 (0.00) 0.26 (0.08) 0.79 (0.05)

GLM-AIC 0.267 (0.154) 0.253 (0.170) 0.346 (0.073) 0.79 (0.07) 0.46 (0.07) 0.99 (0.06) 0.18 (0.08) 0.85 (0.06)
GAMcr 0.248 (0.019) 0.206 (0.014) 0.426 (0.112) 0.84 (0.05) 0.54 (0.05) 0.87 (0.15) 0.09 (0.04) 0.90 (0.04)

GAM-exp 0.283 (0.019) 0.226 (0.015) 0.518 (0.213) 0.76 (0.06) 0.37 (0.06) 0.94 (0.15) 0.15 (0.06) 0.86 (0.04)
Scenario C: Smooth in Exposure

TDLNM 0.077 (0.004) 0.033 (0.002) 0.223 (0.033) 0.94 (0.03) 0.18 (0.03) 0.58 (0.11) 0.01 (0.03) 0.99 (0.03)
TDLNMse 0.070 (0.003) 0.032 (0.002) 0.201 (0.030) 0.97 (0.03) 0.17 (0.03) 0.67 (0.09) 0.01 (0.02) 0.99 (0.03)

GAM 0.142 (0.004) 0.126 (0.006) 0.241 (0.033) 0.91 (0.03) 0.36 (0.03) 0.60 (0.08) 0.06 (0.03) 0.91 (0.03)
DLM 0.138 (0.002) 0.120 (0.003) 0.245 (0.018) 0.64 (0.07) 0.18 (0.07) 1.00 (0.00) 0.31 (0.08) 0.77 (0.05)

GLM-AIC 0.186 (0.054) 0.167 (0.056) 0.309 (0.068) 0.82 (0.06) 0.40 (0.06) 0.53 (0.11) 0.14 (0.06) 0.80 (0.08)
GAMcr 0.113 (0.004) 0.104 (0.004) 0.176 (0.015) 0.95 (0.02) 0.37 (0.02) 0.64 (0.06) 0.03 (0.02) 0.96 (0.02)

GAM-exp 0.126 (0.003) 0.103 (0.004) 0.255 (0.042) 0.92 (0.03) 0.28 (0.03) 0.62 (0.12) 0.05 (0.03) 0.93 (0.03)
Scenario D: Smooth in Exposure and Time

TDLNM 0.105 (0.005) 0.041 (0.002) 0.203 (0.020) 0.80 (0.03) 0.26 (0.03) 0.40 (0.09) 0.00 (0.01) 0.99 (0.02)
TDLNMse 0.098 (0.004) 0.038 (0.002) 0.190 (0.018) 0.95 (0.03) 0.24 (0.03) 0.45 (0.08) 0.01 (0.02) 0.99 (0.03)

GAM 0.120 (0.005) 0.100 (0.005) 0.171 (0.012) 0.97 (0.03) 0.44 (0.03) 0.54 (0.09) 0.01 (0.02) 0.98 (0.03)
DLM 0.122 (0.004) 0.090 (0.004) 0.193 (0.009) 0.69 (0.08) 0.23 (0.08) 0.94 (0.06) 0.23 (0.10) 0.80 (0.06)

GLM-AIC 0.284 (0.275) 0.277 (0.333) 0.306 (0.120) 0.81 (0.08) 0.52 (0.08) 0.45 (0.10) 0.14 (0.09) 0.77 (0.12)
GAMcr 0.110 (0.004) 0.092 (0.004) 0.156 (0.010) 0.97 (0.03) 0.41 (0.03) 0.57 (0.09) 0.01 (0.02) 0.98 (0.03)

GAM-exp 0.099 (0.004) 0.068 (0.003) 0.164 (0.016) 0.97 (0.03) 0.35 (0.03) 0.47 (0.08) 0.00 (0.01) 0.99 (0.02)
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FigureA.3 indicates the probability of detecting a non-zero effect in at least one exposure value

in each week, for models TDLNM, TDLNMse, GAMcr, and DLM.

Figure A.4 shows slices of the DLNM surface and estimates by GAM and DLM. Figure A.5

shows slices of the DLNM surface and estimates by GLM-AIC and GAM-exp.

A.3.3 Tree-specific variance prior

To better understand the operating characteristics of the ensemble of trees, we analyzed the tree

structures from our simulation study. Specifically, we investigate the size of trees in the ensemble

and how influential each tree is. To investigate tree size we ordered the trees by number of terminal

nodes at each MCMC iteration. Then we found the median, 2.5, and 97.5 percentiles of terminal

nodes of the ordered trees across all MCMC iterations. Averages of each metric was calculated

from simulation replicates for each scenario. The results are shown in Figure A.6(a).

The largest tree had a median of 5 to 6 nodes in each of the scenarios. Other trees had medians

of between 2 and 4 nodes. Hence, all of the trees in the ensemble tend to have more than one

terminal node and therefore contribute the the outcome in some way.

We repeated the analysis looking at the ordered rank of τ 2a , which is the tree-specific variance

component. Results are shown in Figure A.6(b). This shows that there tends to be one tree that is

dominant and has the largest variance for node-specific effects and likely contains the major shape

of the exposure-time-response function. The other trees tend to have smaller effects and likely add

detail to the estimated function.

A.3.4 Impact on tree structure by smoothing

We investigate the impact of smoothing on the tree structure. The exposure interval within a

terminal node means that, for example, an exposure at the boundary of a terminal node will have an

effect that is primarily determined by the two adjacent terminal nodes. However, if the smoothing

parameter is large, then other terminal nodes (whose exposure-concentration interval is further

away) will also make a large contribution to the estimated effect. In practice, fewer terminal nodes

are needed to estimate smooth exposure-response functions with TDLNMse than with TDLNM.
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Figure A.3: Probability of detecting a critical window at each week of the exposure-time-response surface.
Panels A through D indicate simulation scenario with gray area indicating true critical window and lines
showing the probability of each model detecting a non-zero difference from the centering value in at least
one exposure concentration.
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As a result, smaller trees are used on average with TDLNMse. This is shown in Figure A.7, which

compares the average terminal nodes for TDLNM and TDLNMse for 100 simulation replicates.

The difference in terminal nodes is evident for scenarios B, C, and D, which have a smooth effect

exposure-response effect.

A.4 Additional data analysis results

For comparison, we fit TDLNM, a DLM and several linear models to compare results. Each

of these models was consistent with the TDLNMse results. A linear regression model found mean

log-exposure of PM2.5 across the entire pregnancy to be associated with decreased BWGAZ (effect

= −0.081, 95% CI: −0.129,−0.034). Analyzing the mean exposure throughout pregnancy as a

smooth effect (Figure A.8(c)) resembles the association found by TDLNMse, where below median

exposure concentration is associate with increase BWGAZ, while the effect is near zero for above

median exposure concentration.

Findings from TDLNM (Figure A.8(a)) show results similar to that of TDLNMse in the data

analysis, but with a more defined threshold of effect at around 5µg/m3 PM2.5 concentration. The

DLM (Figure A.8(b)) shows evidence of a negative association between increased log-exposure

and BWGAZ across the pregnancy. However, the 95% confidence intervals in the DLM indicate

the effect is non-zero in only the first and third trimester. A linear model with log-exposure ana-

lyzed by trimester finds similar results (trimester 1 effect = −0.043, 95% CI: −0.074,−0.012;

trimester 2 effect = −0.002, 95% CI: −0.035, 0.031; trimester 3 effect = −0.039, 95% CI:

−0.068,−0.010). While the DLM only indicates non-zero effects in the first and third trimester,

the ability of the DLNM methods to borrow strength across the more extreme exposure concentra-

tion values may lead to improved power in finding critical windows across the entire pregnancy. In

addition, the DLM and trimester model do not account for the nonlinearity present in the DLNM

results.
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(a) (b)

(c) (d)

Figure A.4: Results of our simulation study comparing GAM and DLM.
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(a) (b)

(c) (d)

Figure A.5: Results of our simulation study comparing GLM-AIC and GAM-exp.
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(a)

(b)

Figure A.6: Tree structure and variance metrics from simulation analysis. At each MCMC iteration, trees
were ordered by the number of terminal nodes (panel a) and size of variance parameter τ2a (panel b). The
median, 2.5, and 97.5 percentiles of these metrics were calculated across all MCMC iterations. The panels
show the average of these metrics across simulation replicates for each simulation scenario.
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Figure A.7: Average terminal nodes from 100 TDLNM and TDLNMse simulation replicates for each sim-
ulation scenario. The black lines indicate average across replicates while the red dashed line is y = x.
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(a) TDLNM

(b) DLM (c) Penalized Cubic Spline

Figure A.8: Estimated exposure-time-response between log-PM2.5 exposure and BWGAZ, using models
TDLNM (a), DLM (b), and penalized cubic spline on mean log-exposure throughout pregnancy (c) relative
to the median exposure-concentration value.
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Appendix B

Estimating Perinatal Critical Windows to

Environmental Mixtures via Structured Bayesian

Regression Tree Pairs

B.1 Colorado Birth Cohort Data

We analyze birth weight for gestational age z-score, BWGAZ, using birth vital statistics records

from Colorado, USA. BWGAZ is the birth weight adjusted for gestational age and fetal sex using

a standard reference table (Fenton and Kim, 2013).

Our data set is limited to births in the Denver metropolitan area, including the counties Adams,

Arapahoe, Broomfield, Denver, Douglas, and Jefferson. Tables B.1 and B.2 provide demographic

breakdowns of the covariates used in our data analysis and estimates from TDLMMns of their

linear association with BWGAZ.

PM2.5 data was obtained from US Environmental Protection Agency (EPA) CMAQ models.

Other exposure measurements came from all available US EPA monitors in the study area. Daily

exposure measurements were assigned to each census track based on inverse distance weighting.

We then created weekly average exposures for each pregnancy based on the date of conception and

census tract of residence. The weekly average PM2.5 data was log-transformed to reduce skew.
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Table B.1: Demographic breakdown of the covariates used in the analysis of Colorado birth weights along
with estimated linear association with change in BWGAZ.

Demographic Category N % Est (95% CI)
Complete sample 195,702 100
Age at beginning of pregnancy 0.0259 (0.0202, 0.0316)

(quadratic term) -0.0003 (-0.0004, -0.0002)
< 20 11,301 5.8
20− 29 90,828 46.4
30− 39 87,636 44.8
≥ 40 5,936 3.0

Height (in) 0.0346 (0.0331, 0.0361)
< 60 6,215 3.2
60− 64 99,866 51.0
65− 69 82,330 42.1
≥ 70 7,290 3.2

Weight (lb) at beginning of pregnancy 0.0038 (0.0037, 0.0039)
< 100 3,338 1.7
100− 149 107,662 55.0
150− 199 65,206 33.3
≥ 200 19,495 10.0

Annual income (×$1000 USD)
< 15 50,073 25.6 -0.0312 -0.0447 -0.0178
15− 24 22,383 11.4
25− 34 17,076 8.7 0.0142 (-0.0026, 0.0311)
35− 49 16,464 8.4 0.0189 (0.0017, 0.0360)
50− 74 26,430 13.5 0.0284 (0.0122, 0.0445)
≥ 75 63,275 32.3 0.0230 (0.0071, 0.0387)

115



Table B.2: Demographic breakdown (continued) of the covariates used in the analysis of Colorado birth
weights along with estimated linear association with change in BWGAZ.

Demographic Category N % Est (95% CI)
Race

American Indian 1,349 0.7
Asian or Pacific Islander 20,707 10.6 -0.1518 (-0.1986, -0.1053)
Black 12,896 6.6 -0.2801 (-0.3281, -0.2325)
White 160,749 82.1 -0.0775 (-0.1238, -0.0326)

Hispanic
No 135,339 69.2 -0.0697 (-0.0796, -0.0597)
Yes 60,362 30.8

Highest Education
Less than high school 31,028 15.9 0.0711 (0.0535, 0.0886)
High school diploma 75,510 38.6 0.0467 (0.0326, 0.0607)
Associate’s degree 13,180 6.7 0.0319 (0.0135, 0.0500)
Bachelor’s degree 48,055 24.6 0.0331 (0.0208, 0.0458)
Advanced degree 27,928 14.3

Marital Status
Married 151,200 77.3
Never married 40,160 20.5 -0.0716 (-0.0824, -0.0607)
Other 4,341 2.2 -0.0385 (-0.0644, -0.0128)

Prenatal Care
Yes 191,067 97.6 0.1378 (0.0954, 0.1807)
No 1,516 0.8
Unknown 3,118 1.6 0.0959 (0.0447, 0.1474)

Smoking
Never 181,957 93 0.3310 (0.2856, 0.3765)
Former 3,073 1.6 0.2484 (0.1942, 0.3032)
< 10 Cig/day 9,356 4.8 0.0684 (0.0194, 0.1166)
≥ 10 Cig/day 1,315 0.7

Child’s Sex
Female 96,036 49.1
Male 99,665 50.9
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B.2 Additional details on computation

B.2.1 Preprocessing

Before running the TDLMM algorithm, we perform the following operations to promote com-

putational precision and mitigate numerical overflow issues:

• The response, y, is centered to have mean zero and scaled to have a range equal to 1.

• Continuous covariates are centered to have mean zero and all covariates are scaled by their

ℓ2 norm such that ZTZ has a diagonal of ones.

• All exposure data is scaled to have standard deviation 1.

B.2.2 Tree update

Consider the distribution of the data yi ∼ N [f(Xi) + zTγ, σ2], where f represents the dis-

tributed lag function as described in equations (1) or (2) of the main text which is evaluated for the

set of predictors associated with observation i. The full posterior of γ is

p(γ|y, f , σ2) ∝ σ−p/2|Vγ |
−1/2 exp

{
−σ−2(y − f)TZTV−1

γ Z(y − f)
}
. (B.1)

Here, y = [y1, . . . , yn]
T is a vector of our continuous response; f = [f(X1), . . . , f(Xn)] where

f(Xi); and Z is a matrix of covariates such that row i equals zTi . In addition,

Vγ = (ZTZ+ I/c)−1, (B.2)

where c is a fixed at a large value indicating a non-informative prior on γ. In TDLMM, the

distributed lag function f(Xi) is calculated using the parameter estimates based on equations (3)

and (4) in the main text. In order to account for the effect of covariates zi when estimating the

trees, we integrate over the parameters γ. This results in the marginal distribution for our data,

y|f , σ2 ∼ MVN (f , σ2VZ), (B.3)
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where

VZ = (I− ZVγZ
T )−1. (B.4)

The update of each tree, a = 1, . . . , A, proceeds as follows. First, we calculate Ra, the partial

residuals after removing the effects of all other trees. We define Ra as

Ra = y −
A∑

a′=1
a′ 6=a

g(X, Ta′
1
, Ta′

2
, Sa′

1
, Sa′

2
). (B.5)

Here, g(X, Ta′
1
, Ta′

2
, Sa′

1
, Sa′

2
) is the vector of partial distributed lag estimates which is parameter-

ized as

g(X; Ta1 , Ta2 , Sa1 , Sa2) =

Ba1∑

b1=1

x∗Sa1
a1b1

δa1b1 +

Ba2∑

b2=1

x∗Sa2
a2b2

δa2b2 (B.6)

+

Ba1∑

b1=1

Ba2∑

b2=1

x∗Sa1
a1b1

x∗Sa2
a2b2

δa1b1a2b2 . (B.7)

with x∗mab =
∑

t∈ηab
xmt. Then for matrix Xa with columns representing the parameterization

from (B.6) and rows representing individual observations, the conditional distribution of the partial

residuals is

Ra|− ∼ MVNBa

(
Xaδa, σ

2VZ

)
(B.8)

where δa represents a vector of parameters corresponding to g.

Second, we update each Taj , j ∈ {1, 2}, using a Metropolis-Hastings algorithm. We consider

a proposal distribution with transition steps as follows:

• Grow: Randomly select a terminal node, η, to grow. Randomly select a splitting rule accord-

ing to prule(ρ|η) and create two new terminal nodes using the new splitting rule along with

all previous rules.

• Prune: Randomly select an internal node with exactly two terminal nodes descending from

it and remove the splitting rule.
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• Change: Randomly select any internal node, η, and define a new splitting rule according to

prule(ρ|η). Update the limits of all terminal nodes that branch from η.

• Switch-exposure: Randomly select a new exposure from S|E and use exposure measure-

ments within existing tree structure.

The grow and prune steps are counterparts to one another, while change is its own counterpart

that can reverse the Markov chain. The transition kernel p(T ∗|T ) is given by the probability

of selecting a step, multiplied by the probabilities associated with that step. We also consider a

switch-exposure proposal, which exchanges S with new exposure data S ′. The switch-exposure

proposal reverses itself. For our simulations and data analysis we draw a new proposal from the

four options (grow, prime, change, switch-exposure) with equal probability. For TDLM, we only

consider grow, prune, and change proposals.

After a new tree proposal or switch-exposure proposal is made, we accept it by a standard

Metropolis-Hastings ratio. To eliminate the need for complicated procedures due to the change in

parameter dimension and to make the trees invariant to the covariates and variance, we integrate

over δa as well as σ2. In BART, integrating out the vector δa can be done one parameter at a time,

as each observation is restricted to a single terminal node. However, in TDLMM, the exposure

observations reside across all terminal nodes requiring us to simultaneously integrate over the

entire vector, δa. The marginal likelihood of Ra is calculated to be

p(Ra|Taj−) =

∫

σ2

∫

δa

p(Ra|δa, Taj ,−)p(δa|Ta,−)p(σ2) dδa dσ
2

=
(
ν2
)−(Ba1

+Ba2
+Ba1

Ba2
)/2

(
µ2
Sa1

)−Ba1
/2 (

µ2
Sa2

)−Ba2
/2 (

µ2
Sa1

Sa2

)−Ba1
Ba2

/2

× |Vδa |
1/2

[
RT
a

(
In − ZTVγZ−V−1

Z
XaVδaX

T
aV

−1
Z

)
Ra

2
+

1

ξσ2

]−(n+1)/2

(B.9)

where ξσ2 is from the hierarchy σ2|ξσ2 ∼ IG(1/2, 1/ξσ2) and ξσ2 ∼ IG(1/2, 1) such that σ ∼

C+(0, 1). We then calculate p(Ra, Taj |−) = p(Ra|Taj ,−)p(Taj) and accept T ∗
aj

according to the
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Metropolis-Hastings ratio given by

r = min

{
1,
p(T ∗

aj
)p(Ra|T

∗
aj
,−)p(Taj |T

∗
aj
)

p(Taj)p(Ra|Taj ,−)p(T ∗
aj
|Taj)

}
. (B.10)

The same technique is used to update exposure S to S ′, however the MH ratio simplifies to the

ratio of marginal likelihoods: p(Ra|S
′,−) and p(Ra|S,−).

B.2.3 Full conditionals

After the tree update, we draw δa (all parameters specific to tree pair a) from the full conditional

distribution,

δa|− ∼ MVNBa

(
VδaX

T
aV

−1
Z
Ra, σ

2Vδa

)
, (B.11)

where

Vδa =
(
XT
aV

−1
Z
Xa + ν−2τ−2

a Ua

)−1
. (B.12)

Here, Ua is a diagonal matrix of exposure-specific variances. The firstBa1 diagonal elements equal

µ−2
Sa1

, the next Ba2 elements equal µ−2
Sa2

and the final Ba1Ba2 diagonal elements equal µ−2
Sa1

Sa2
. We

note here that the computation time of Vδa is no more than O(n2(Ba1 + Ba2 + Ba1Ba2)
3). Since

Baj is limited by the size of the trees, computation time of our algorithm grows at the rate of

O(n2). Pre-computing many of the values reduces model run time.

The update of each tree and corresponding partial DLM is followed by a draw from the full

conditional of remaining parameters and hyperparameters:

ξσ|− ∼ IG

(
1, 1 +

1

σ2

)
; (B.13)

σ2|− ∼ IG

[
n+ b+ 1

2
,
‖V−1/2

Z
(y − f)‖22
2

+
D

2ν2
+

1

ξσ

]
; (B.14)
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where b =
∑A

a=1Ba1 +Ba2 +Ba1Ba2 and D =
∑A

a=1 δ
T
aUaδa. Also,

ξν |− ∼ IG

(
1, 1 +

1

ν2

)
; (B.15)

ν2|− ∼ IG

(
b+ 1

2
,
D

2σ2
+

1

ξν

)
; (B.16)

ξµm |− ∼ IG

(
1, 1 +

1

µ2
m

)
; (B.17)

µm|− ∼ IG

(
bm + 1

2
,
Dm

2σ2ν2
+

1

ξµm

)
; (B.18)

where bm =
∑A

a=1Ba1I(Sa1 = m) + Ba2I(Sa2 = m), Dm =
∑A

a=1 δ
T
a1
δa1I(Sa2 = m) +

δTa2δa2I(Sa2 = m) and δa1 is the portion of δa corresponding to tree Ta1 . Updates for µm1m2

follow similarly.

Updates of E come from full conditional

E|− ∼ Dirichlet
(
κ+N{S=1}, . . . , κ+N{S=M}

)
(B.19)

where N{S=m} is the number of trees that use exposure m.

Finally we draw γ from its full conditional,

γ|y, f , σ2 ∼ MVN
[
VγZ(y − f), σ2Vγ

]
. (B.20)

B.2.4 Posterior analysis of exposure and interaction variance

The exposure variance parameter µ2
m is subject to inferential issues due to differences in the

scale of exposure measurements and because it is included in the effect estimates across possibly

many trees. To make inference on the effect size of exposures or interactions, we scale each

exposure in TDLMM to have standard deviation one and devise an effect size metric based on

the prior distributions of the node specific effects. We define the exposure effect size metric for
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exposure m as

µ∗
m = µ2

m

A∑

a=1

[I(Sa1 = m) + I(Sa2 = m)] , (B.21)

which is the sum of variances for all trees using exposure m. After calculating µ∗
m for each expo-

sure m we determine the relative rank of exposure effect sizes, which is the ordered rank of the

effect size metrics scaled to fall in the range [0, 1]. The relative rank allows for interpretation of the

effect size of an exposure relative to that of other exposures. A relative rank near one represents

the largest effect size, a relative rank near 0.5 indicates average effect size and a relative rank near

zero indicates the smallest effect size.

For the interaction of exposures m1 and m2, the interaction effect size metric is defined simi-

larly as

µ∗
m1m2

= µ2
m1m2

A∑

a=1

I(Sa1 = m1, Sa2 = m2) (B.22)

where the indicator function equals 1 if exposures m1 and m2 are both included in the tree pair.

We determine the relative ranks of interaction effect sizes separately from the relative ranks of

exposure effects.

B.2.5 Logistic model

Consider a binomial response, yi, (i ∈ {1, . . . , N}) with log-odds of success ψi,

yi|ψi ∼ Bin

[
ni,

1

1 + exp(−ψi)

]
(B.23)

where

ψi = f(xi1, . . . ,xiM) + zTi γ (B.24)

indicates the DLMM plus a fixed effect. By Theorem 1 of Polson, Scott, and Windel (2013),

p(yi|ψi) =

(
ni
yi

)
exp(ψi)

yi

(1 + exp(ψi))ni
=

(
ni
yi

)
ekiψi

2ni
Eωi|ni,0[exp(−ωiψ

2/2)] (B.25)

where ki = yi − ni/2 and ωi|ni, 0 ∼ PG(ni, 0) refers to the Pólya Gamma distribution.
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We define a latent variable, ωi, specified by the distribution

ωi|ψi ∼ PG(ni, ψi). (B.26)

The density of ωi can be written

p(ωi|ψi) =
e−ωiψ

2/2p(ωi|ni, 0)

Eωi|ni,0[exp(−ωiψ
2/2)]

. (B.27)

Note that yi and ωi are conditionally independent. Consider their joint density,

p(yi, ωi|ψi) = p(yi|ψi)p(ωi|ψi) ∝ exp
(
−
ωi
2
(λi − ψi)

2
)

(B.28)

where λi = (yi − ni/2)/ωi. Also,

p(y,ω|ψ) =
N∏

i=1

p(yi, ωi|ψi) ∝ exp

{
−
1

2
(λ−ψ)TΩ(λ−ψ)

}
(B.29)

where Ω = diag{ω1, . . . , ωN} and y,ω,λ are column vectors of yi, ωi, and λi, respectively. We

may now develop a Bayesian model for γ and f conditional on observed y and latent variable ω,

where an MCMC algorithm consists of iterating updates of ω followed by ψ.

B.3 Prior inclusion probability

The prior inclusion probability is the probability an exposure is used in at least one tree in

the model. Let Cm =
∑A

a=1[I(Sa1 = m) + I(Sa2 = m)] be the count of trees using exposure

m. Then Cm follows the Beta-Binomial distribution with 2A draws and prior selection probability

based on the Dirichlet distribution with fixed parameter κ. The prior probability of inclusion,

Im = I(Cm > 0) is

P(Im = 1) = 1−
Γ(2A+Mκ) · Γ [(M + 1)κ]

Γ [2A+ (M + 1)κ] · Γ(Mκ)
. (B.30)
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Higher prior inclusion probability corresponds to a less informative prior belief regarding the num-

ber of exposures relevant to the outcome, while lower prior inclusion probability indicates more

sparsity. Examples of prior inclusion probabilities are shown in Figure B.1.

Figure B.1: Exposure prior inclusion probabilities (y-axis) for different settings of κ (x-axis), number of
trees (color and style of line), and number of exposures (panel). The horizontal black line at y = 0.9
corresponds to the prior inclusion probability used in our simulation and data analysis.

B.3.1 Setting A and κ

For a given number of exposures,M , we can set the number of trees,A, and Dirichlet parameter

κ to give the desired prior inclusion probability. A smaller number of trees will result in lower vari-

ance estimates and it may be desirable to use a smaller number of trees when possible as we have

validated that coverage is acceptable. We note that the Bayes factor selection approach described
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in Appendix B.3.2 is not sensitive to these settings, however inference using posterior inclusion

probability should be performed with more care and relate to the prior inclusion probabilities.

For our simulation and data analysis with 5 exposures and prior inclusion probability of 0.9,

we used 20 trees with kappa = 1.089 (in Figure B.1 note intersection of black and red solid lines

in top left panel). On the other hand, a model with 25 exposures would likely require 100 trees to

achieve the same prior inclusion probability.

B.3.2 Bayes factor method for exposure selection

Let I(r)m , r ∈ {1, . . . , R} refer to the inclusion of exposure m in MCMC sample r. Using the

method of Carlin and Chib (1995), the marginal posterior probability that exposure m is included

in the model can be estimated by

P̂(Im = 1|y) = R−1

R∑

r=1

I(I(r)m = 1). (B.31)

We apply the marginal posterior probability to approximate Bayes factors for exposure variable

selection. Specifically, the Bayes factor that exposure m is included in the model is estimated by

B̂Fm =
P̂(Im = 1|y)/P̂(Im = 0|y)

P(Im = 1)/P(Im = 0)
(B.32)

where the denominator refers to the prior odds given in (B.30). We consider log10 B̂Fm > 0.5 as a

criteria for substantial evidence that exposure m is associated with the response (Kass and Raftery,

1995).

B.4 Additional simulation results

B.4.1 Scenario 1: Comparing TDLM without tree-specific shrinkage

To justify the tree-specific shrinkage parameters (τa) in TDLM, we repeated simulation sce-

nario 1 fixing τa = 1. The results are given in Table B.3. Including this additional term results in

lower RMSE without changing coverage and precision.
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Table B.3: Simulation scenario 1 comparing TDLM with and without tree-specific shrinkage parameters
τa.

DLM Est. Critical Windows

Model RMSE ×100 Coverage TP FP Precision
p = 0.5

Original TDLM 1.22 0.98 0.98 0.02 0.98
Fix τa = 1 1.55 0.96 1.00 0.03 0.97

p = 0.05
Original TDLM 2.17 0.96 0.88 0.03 0.97

Fix τa = 1 2.32 0.95 0.94 0.03 0.97
∗ × 100

B.4.2 Scenario 2: Comparing TDLMM with different shrinkage priors

We repeat simulation scenario 2 to compare TDLMM without exposure- and interaction-specific

shrinkage priors as well as including tree-pair-specific shrinkage priors. Results are given in Ta-

bles B.4 and B.5. We note that excluding the exposure- and interaction-specific shrinkage priors

increases RMSE and creates below nominal coverage. In addition the FP rate increases and the

posterior inclusion probability on nonactive exposures and interactions increases. Including a tree-

pair-specific shrinkage parameter does not improve performance across all measures.

B.4.3 Single exposure with smooth DLM and binary outcome

We replicated simulation scenario one with a smooth distributed lag effect, defined

f1(x) =
2

21

s+7∑

t=s

xt ·max{0,−(t− s)(t− s− 8)}. (B.33)

Here, s is a random starting time and was drawn uniformly from {1, . . . , T − 7}. The distributed

lag effect, f1 is a quadratic function and the cumulative effect is equal to the cumulative effect

in simulation scenario one. Results are given in Table B.6. We see the tree-based models again

have lower RMSE than established single exposure DLMs. We also see that TDLM and TDLMM

maintain high coverage and TP with precision near one.
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B.4.4 Multiple exposures with continuous outcome

Appendix Table B.7 describes the average relative rank of the effect size metric for main and

interaction effects as described in Appendix B.2.4. The effect size for active exposures was higher

than for other exposures; the same was true comparing interactions.

Figures B.2 and B.3 show the variation of posterior inclusion and effect size results from sim-

ulation scenario two. These figures show the active exposures or interactions compared to the

non-active exposures or interactions with maximum or minimum posterior inclusion probability.

Figure B.2: Variation in exposure selection and shrinkage results from simulation scenario two. Points
show the average posterior inclusion (x-axis) and effect size (y-axis) while the error bars indicate the IQR of
the metric across simulation replicates. Other max and min refer to the non-active exposure in each replicate
with the largest or smallest posterior inclusion, respectively.
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Figure B.3: Variation in interaction selection and shrinkage results from simulation scenario two. Points
show the average posterior inclusion (x-axis) and effect size (y-axis) while the error bars indicate the IQR
of the metric across simulation replicates. Other max and min refer to the non-active interactions in each
replicate with the largest or smallest posterior inclusion, respectively.
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Table B.4: Scenario 2, comparing TDLMM and variants under different shrinkage parameters. Originally
specified is as described in the main text, tree-specific variance adds an additional local shrinkage parameter
to each tree pair, fix µm, µm1m2

= 1 removes local shrinkage parameters from the exposure.

RMSE ×100 Coverage TP FP

Model PM NO2 PM NO2 PM NO2 PM NO2 Other
σ2 = 25
Originally specified models

TDLMMadd 3.59 4.19 0.95 0.84 0.94 0.82 0.03 0.07 0.00
TDLMMns 3.57 4.27 0.97 0.96 0.91 0.63 0.02 0.03 0.00

TDLMM 3.55 4.33 0.98 0.97 0.87 0.51 0.01 0.02 0.00
Add tree-specific variance parameter, τa

TDLMMadd 3.38 4.17 0.96 0.83 0.91 0.84 0.02 0.08 0.00
TDLMMns 3.56 4.29 0.98 0.94 0.90 0.66 0.02 0.04 0.00

TDLMM 3.52 4.32 0.98 0.96 0.85 0.56 0.01 0.02 0.00
Fix µm, µm1m2

= 1
TDLMMadd 3.88 4.25 0.91 0.85 0.98 0.78 0.05 0.06 0.00

TDLMMns 4.02 4.46 0.93 0.91 0.95 0.51 0.05 0.03 0.00
TDLMM 4.45 4.27 0.86 0.92 0.93 0.63 0.02 0.03 0.00

RMSE ×100 Coverage TP FP

Model PM NO2 PM NO2 PM NO2 PM NO2 Other
σ2 = 50
Originally specified models

TDLMMadd 4.62 4.64 0.92 0.83 0.86 0.52 0.04 0.05 0.00
TDLMMns 4.61 4.75 0.96 0.97 0.76 0.31 0.02 0.02 0.00

TDLMM 4.50 4.79 0.97 0.97 0.62 0.22 0.01 0.01 0.00
Add tree-specific variance parameter, τa

TDLMMadd 4.51 4.65 0.93 0.81 0.82 0.56 0.03 0.07 0.00
TDLMMns 4.51 4.73 0.97 0.94 0.72 0.34 0.02 0.03 0.00

TDLMM 4.52 4.82 0.97 0.97 0.62 0.21 0.01 0.01 0.00
Fix µm, µm1m2

= 1
TDLMMadd 4.90 4.73 0.87 0.82 0.93 0.48 0.06 0.06 0.00

TDLMMns 5.17 4.90 0.89 0.91 0.83 0.32 0.06 0.04 0.00
TDLMM 5.34 4.73 0.83 0.89 0.80 0.36 0.03 0.03 0.00

RMSE ×100 Coverage TP FP

Model PM NO2 PM NO2 PM NO2 PM NO2 Other
σ2 = 100
Originally specified models

TDLMMadd 5.75 5.07 0.89 0.84 0.47 0.22 0.03 0.03 0.00
TDLMMns 5.85 5.21 0.93 0.95 0.29 0.10 0.02 0.01 0.00

TDLMM 5.73 5.21 0.94 0.96 0.24 0.05 0.01 0.01 0.00
Add tree-specific variance parameter, τa

TDLMMadd 5.75 5.09 0.90 0.84 0.43 0.23 0.03 0.03 0.00
TDLMMns 5.82 5.30 0.93 0.94 0.32 0.10 0.02 0.01 0.00

TDLMM 5.75 5.33 0.94 0.97 0.20 0.04 0.01 0.01 0.00
Fix µm, µm1m2

= 1
TDLMMadd 5.97 5.12 0.84 0.81 0.50 0.24 0.04 0.04 0.00

TDLMMns 6.25 5.19 0.86 0.91 0.33 0.18 0.03 0.03 0.00
TDLMM 6.26 5.10 0.82 0.88 0.35 0.17 0.02 0.02 0.00
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Table B.5: Scenario 2, exposure and interaction posterior inclusion probability for TDLMM and variants
using different shrinkage priors. Originally specified is as described in the main text, tree-specific variance
adds an additional local shrinkage parameter to each tree pair, fix µm, µm1m2

= 1 removes local shrinkage
parameters from the exposure.

Main Effect Interaction

Model PM NO2 Other PM−NO2 Other
σ2 = 25
Originally specified models

TDLMMadd 1.00 1.00 0.78 - -
TDLMMns 1.00 1.00 0.17 0.94 0.06

TDLMM 1.00 0.99 0.39 0.85 0.22
Add tree-specific variance parameter, τa

TDLMMadd 1.00 1.00 0.80 - -
TDLMMns 1.00 1.00 0.28 0.93 0.11

TDLMM 1.00 1.00 0.43 0.90 0.23
Fix µm, µm1m2

= 1
TDLMMadd 1.00 1.00 0.66 - -

TDLMMns 1.00 1.00 0.74 0.68 0.24
TDLMM 1.00 1.00 0.70 0.96 0.40

Main Effect Interaction

Model PM NO2 Other PM−NO2 Other
σ2 = 50
Originally specified models

TDLMMadd 1.00 0.99 0.82 - -
TDLMMns 0.99 0.95 0.26 0.83 0.10

TDLMM 0.99 0.96 0.43 0.80 0.23
Add tree-specific variance parameter, τa

TDLMMadd 1.00 0.99 0.83 - -
TDLMMns 0.99 0.96 0.36 0.85 0.14

TDLMM 0.99 0.96 0.49 0.79 0.25
Fix µm, µm1m2

= 1
TDLMMadd 1.00 0.99 0.77 - -

TDLMMns 0.99 0.98 0.77 0.79 0.36
TDLMM 1.00 0.99 0.79 0.91 0.45

Main Effect Interaction

Model PM NO2 Other PM−NO2 Other
σ2 = 100
Originally specified models

TDLMMadd 0.98 0.96 0.85 - -
TDLMMns 0.88 0.81 0.38 0.61 0.15

TDLMM 0.89 0.85 0.52 0.58 0.25
Add tree-specific variance parameter, τa

TDLMMadd 0.98 0.97 0.86 - -
TDLMMns 0.91 0.85 0.47 0.65 0.19

TDLMM 0.90 0.88 0.56 0.60 0.27
Fix µm, µm1m2

= 1
TDLMMadd 0.99 0.97 0.85 - -

TDLMMns 0.98 0.97 0.84 0.81 0.47
TDLMM 0.98 0.97 0.86 0.83 0.49
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Table B.6: Results for simulation scenario one with smooth DLM effect. The DLM estimation refers to
estimation of the active exposure effect only. Effect identification indicates when the DLM 95% CI does not
contain zero at correct (TP) or incorrect (FP) time periods and Precision = TP/(TP + FP).

DLM Estimation Effect Identification

Model RMSE×100 Coverage TP FP Precision
p = 0.5

CWVS: dlm|cw 2.16 0.98 0.94 0.02 0.98
CWVS: p>0.5 2.16 0.98 0.97 0.05 0.95

DLMcr 1.67 0.83 1.00 0.13 0.88
TDLM 1.38 0.98 0.87 0.01 0.99

TDLMMadd 1.37 0.98 0.88 0.01 0.99
TDLMMns 1.46 0.98 0.93 0.01 0.99

TDLMM 1.45 0.96 0.91 0.03 0.97
p = 0.05

CWVS: dlm|cw 3.58 0.99 0.72 0.01 0.99
CWVS: p>0.5 3.58 0.99 0.90 0.09 0.91

DLMcr 2.86 0.78 1.00 0.17 0.85
TDLM 2.21 0.98 0.78 0.02 0.98

TDLMMadd 2.43 0.96 0.82 0.02 0.98
TDLMMns 2.53 0.95 0.86 0.03 0.97

TDLMM 2.62 0.95 0.85 0.03 0.97

Table B.7: Exposure effect size results for simulation scenario two: main effect of PM2.5 with PM2.5−NO2

interaction. Relative rank of the effect size describes the average rank of the effect size metric on a scale
from 0 to 1, separately for main and interaction effects.

Effect Size Relative Rank
Main Effect Interaction

Model PM NO2 Other PM−NO2 Other
σ2 = 25
TDLMMadd 0.93 0.72 0.28 - -

TDLMMns 0.80 0.70 0.33 0.88 0.46
TDLMM 0.72 0.69 0.37 0.81 0.48

σ2 = 50
TDLMMadd 0.89 0.67 0.31 - -

TDLMMns 0.74 0.65 0.37 0.79 0.47
TDLMM 0.67 0.64 0.40 0.73 0.48

σ2 = 100
TDLMMadd 0.79 0.63 0.36 - -

TDLMMns 0.66 0.60 0.41 0.67 0.48
TDLMM 0.58 0.60 0.44 0.62 0.49

131



B.5 Additional data analysis results

B.5.1 Additional figures from data analysis

Figures B.4 and B.5 show additional interaction plots from the data analysis.

Figure B.6 describes variable selection and effect size results for the data analysis. We see

that NO2 had the smallest effect size, on average, while the other four exposures had similar effect

sizes. PM2.5−temperature had the largest effect size on average.

(a) PM2.5−NO2 (b) PM2.5−SO2

(c) PM2.5−CO (d) NO2−SO2

Figure B.4: Additional interaction plots from data analysis.
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(a) NO2−CO (b) NO2−temperature

(c) SO2−CO (d) SO2−temperature

(e) CO−temperature

Figure B.5: Additional interaction plots from data analysis.
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Figure B.6: Posterior inclusion probability (x-axis) and effect size relative rank (y-axis) results from the
data analysis. The left panel shows posterior inclusion and effect size results for the five main effects and
the right panel contains the same for the ten possible interactions. Exposures or interactions marked with an
‘*’ indicate selection based the Bayes factor analysis.
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B.5.2 TDLMM including within-exposure interactions

We reanalyze the data in the main text using TDLMM including all within-exposure interac-

tions. This model was run for 50,000 iterations thinned to every fifth iteration following 5,000

burn-in iterations. Figure B.7 shows the estimated marginal DLM (top row) and DLM adjusting

for changes in co-exposures (bottom row). We note the shape and effect sizes from TDLMM are

similar to the original data analysis. The DLM and effect of PM2.5 is nearly unchanged. Several

differences include:

• Shorter critical window for SO2: weeks 17-28

• No critical windows due to CO

In terms of exposure and interaction selection, PM2.5 and temperature have a posterior inclusion

of 1.00, while SO2 (0.9992) and CO (0.9851) also show very high posterior inclusion. NO2 has

a posterior inclusion of 0.5511, similar to the data analysis with TDLMMns. For interactions,

PM2.5−temperature has the highest posterior inclusion (0.9955) followed by CO−temperature

(0.8453) and temperature-temperature (0.7664). SO2−temperature (0.6697) and SO2−CO (0.5630)

also have posterior inclusion above 0.5.

Figure B.8 describes the posterior inclusion and effect size of the main and interaction effects

from the data analysis using TDLMM.

TDLMM also estimates within-exposure interaction effects, shown in Figure B.9. These plots

are folded to show interaction effects between an earlier and later time period. Effects along

the diagonal, at the time time period, represent possible non-linearities in the main effect of an

exposure.
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Figure B.7: Posterior mean distributed lag function (black-line) for each exposure (columns) with 95%
credible interval (grey area) of the effect from TDLMM (including within-exposure interactions). The top
row shows the marginal effect of an IQR increase in exposure, holding other exposures at their empirical
mean. The bottom row shows the estimated change in BWGAZ for a first to third quartile change in one
exposure along with expected changes in all other exposures due to correlation with the exposure of interest.

Figure B.8: Exposures selection (x-axis) and effect size (y-axis) results from TDLMM (including within-
exposure interactions). The left panel shows posterior inclusion and effect size results for main effects while
the right panel shows interaction effects. Exposures marked with an ’*’ indicate selection based on the
Bayes factor analysis.
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(a) PM2.5−PM2.5 (b) NO2−NO2

(c) SO2−SO2 (d) CO−CO

(e) Temperature−temperature

Figure B.9: Within-exposure interaction plots from data analysis using TDLMM. Plots are folded to show
the full interaction effect between an earlier and later time point. Effects at the same time point represent a
non-linear effect.
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Appendix C

Heterogeneous Distributed Lag Models to Estimate

Personalized Effects of Maternal Exposures to Air

Pollution

C.1 Colorado birth cohort data

Figures C.1 and C.2 present the distribution of modifying covariates used in the data analysis.

Age and BMI are continuous modifiers; income, education, and smoking are ordinal modifiers;

marital status, prenatal care, and race are categorical modifiers; Hispanic and sex are binary modi-

fiers.

(a) (b) (c)

(d) (e) (f)

Figure C.1: Distribution of modifying covariates used in HDLM.
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(a) (b) (c)

(d)

Figure C.2: Distribution of modifying covariates used in HDLM (continued).

C.2 Model Specification

In the shared tree and Gaussian process HDLMs, the modifier tree specification is identical

to the nested tree HDLM. That is, the probability of a split at terminal node η with depth dη is

psplit(η) = α(1 + dη)
−β where α ∈ (0, 1) and β > 0. We set α = 0.95 and β = 2.

For selecting a splitting rule in the modifier tree, let ρ = {mj, K} define a splitting rule on

modifying covariate mj with splitting set K. A splitting set refers to a binary rule that places

observations into one of two groups. For continuous mj , K is an inequality and for categorical

mj , K is a proper subset of the categories. Define ψj to be the probability of selecting modifying

covariate mj , j ∈ {1, . . . , J}, to be used for a binary rule. Then, the splitting rule prior is written

prule(ρ|η) = p(mj|η)p(K|mj, η). (C.1)

Here, p(mj|η) = ψj/
∑

j ψjI(mj ∈ Eη), where Eη is the set of eligible modifiers at node η. A mod-

ifier is eligible if the subgroup at node η can be divided into two nonempty subgroups using a binary
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rule based on that modifier. Also, p(K|mj, η) is the probability of splitting set K for modifier mj

at node η. For a continuous modifier, p(K|mj, η) = 1
/
(nmj ,η − 1) where nmj ,η is the number of

splitting locations available for mj at node η. If mj is categorical, p(K|mj, η) = 1
/
(2nmj,η

−1−1),

which is based on the the number of partitions of nmj ,η unique values into two non-empty groups.

Following Linero and Yang (2018), the prior on probabilities ψ = {ψ1, . . . , ψJ} is

ψ ∼ Dirichlet(κ/J, . . . , κ/J) (C.2)

κ

κ+ J
∼ Beta(ζ, 1) (C.3)

where ζ ∈ (0.5, 1). Smaller values of ζ correspond to increased sparsity of modifiers. We use

ζ = 0.5 in our simulations and data analysis.

The fixed effects receive a non-informative prior, γ ∼ MVN (0, cσ2Ip) where c is fixed at a

large value and Ip is a p× p identity matrix. The variance parameter σ is given a half-Cauchy prior

distribution and included in the fixed effects for integration during computation.

C.2.1 Shared Tree HDLM

As in the nested tree HDLM, the DLM effects are assigned the conjugate normal prior,

δabc|τa, ν, σ ∼ N (0, τ 2aν
2σ2). (C.4)

Variance parameters τa, ν, σ follow a half-Cauchy distribution with scale = 1 and define a global-

local horseshoe-like estimator on tree specific effects. Although the DLM structure and variance

is the same for all modifier tree terminal nodes in the shared tree HDLM, each subgroup receives

unique distributed lag effect estimates.
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C.2.2 Gaussian Process HDLM

The Gaussian process prior for DLM effects is

θab|τa, ν, σ, φ ∼ GP [0, τ 2aν
2σ2Σ(φ)]. (C.5)

Variance parameters τa, ν, σ follow a half-Cauchy distribution with scale = 1 and define a global-

local horseshoe-like estimator on tree specific effects. We use the exponential covariance matrix

Σ(φ) with range parameter φ and restrict the range such that exp{−φ} ∈ (0.05, 0.95). That is, the

lag-1 covariance is between 0.05 and 0.95. We assign prior φ ∼ Gamma(1/2, 1/2), which gives

higher probability to more smoothness in the HDLM.

C.3 Computational Approach

We describe the computation approach of the treed HDLMs in general and note where the

algorithm changes depending on the method. The algorithm is based on the approach described by

(Chipman et al., 2010) with differences to accommodate fixed effects, multivariate predictors, and

the treed DLM for estimation of a vector of structured regression coefficients.

C.3.1 Preprocessing

Before running the treed HDLM algorithm, we perform the following operations to promote

computational precision and mitigate numerical overflow issues:

• The response, y, is centered to have mean zero and scaled to have a range equal to 1.

• Continuous covariates are centered to have mean zero and all covariates are scaled by their

ℓ2 norm such that ZTZ has a diagonal of ones.

• Exposure data is scaled to have standard deviation 1.
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C.3.2 Modifier tree update

Marginalizing out fixed effect parameters

Consider the distribution of the data yi ∼ N [f(xi,mi) + zTγ, σ2], where f(xi,mi) = θ(mi)

is the heterogeneous distributed lag effects for individual i. The posterior distribution of γ is

p(γ|y, f , σ2) ∝ σ−p/2|Vγ |
−1/2 exp

{
−σ−2(y − f)TZTV−1

γ Z(y − f)
}
. (C.6)

Here, y = [y1, . . . , yn]
T is a vector of our continuous response; f = [f(x1,m1), . . . , f(xn,mn)]

′

where Z is a matrix of covariates such that row i equals zTi . In addition,

Vγ = (ZTZ+ I/c)−1, (C.7)

where c is a fixed at a large value indicating a non-informative prior on γ.

In the treed HDLMs, the heterogeneous distributed lag function f(xi,mi) is estimated by the

sum of partial distributed lag functions. In order to account for the effect of covariates zi when

estimating the trees, we integrate over the parameters γ. This results in the marginal distribution

for our data,

y|f , σ2 ∼ MVN (f , σ2VZ), (C.8)

where

VZ = (I− ZVγZ
T )−1. (C.9)

Bayesian backfitting

The update of each modifier tree, a = 1, . . . , A, proceeds using Bayesian backfitting (Hastie

and Tibshirani, 2000). First, we calculate Ra, the partial residuals after removing the effects of all

other trees. We define Ra as

Ra = y −
A∑

a′=1
a′ 6=a

g(X, Ta′). (C.10)
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Here, g(X, Ta) is the vector of partial distributed lag estimates due to modifier tree Ta and cor-

responding distributed lag effects for each modifier tree terminal node. In the case of nested tree

HDLM, Ta encompasses the nested treed DLMs: Da1, . . . ,DaBa
. In the case of shared tree HDLM,

Ta includes the shared treed DLM Da.

Let Xa = [Xa1, . . . ,XaBa
] denote a block-style exposure data matrix for modifier tree a. Each

Xab is a n × T matrix that corresponds to the exposure data for modifier terminal node ηab. The

non-zero rows of Xab are exposure observations for the subgroup defined by the rules leading to

ηab; other rows are equal to zero.

The distribution of the partial distributed lag effects is

Ra|− ∼ MVN
(
XaΘa, σ

2VZ

)
(C.11)

where Θa = [θ′a1, . . . ,θ
′
aBa

]′ represents a vector of distributed lag parameters parameters corre-

sponding to the subgroups of modifier tree Ta. In the case of nested and shared tree HDLMs, sets

of the θab parameters are equal based on the piecewise constant structure of the treed DLM (Mork

and Wilson, 2021a).

Tree prosposal

We update each Ta, using a Metropolis-Hastings algorithm. We consider a proposal distribution

with transition steps as follows:

• Grow: Randomly select a terminal node, η, to grow. Randomly select a splitting rule accord-

ing to prule(ρ|η) and create two new terminal nodes using the new splitting rule along with

all previous rules.

• Prune: Randomly select an internal node with exactly two terminal nodes descending from

it and remove the splitting rule.

• Change: Randomly select any internal node, η, and define a new splitting rule according to

prule(ρ|η). Update the limits of all terminal nodes that branch from η.

143



• Swap: Randomly select two connected internal nodes and reverse the rule ordering. That is,

the parent node splitting rule and the child node splitting rule trade places.

The grow and prune steps are counterparts to one another, while change and swap are their

own counterparts that can reverse the Markov chain. The transition kernel p(T ∗|T ) is given by the

probability of selecting a step, multiplied by the probabilities associated with that step. For our

simulations and data analysis we draw a new proposal from the four options (grow, prime, change,

swap). The probability of using a grow or prune proposal is 0.25, change is 0.4, and swap 0.1.

Nested tree proposal

In the nested tree HDLM, a grow and prune proposal also requires new nested treed DLMs.

In particular, a modifier tree grow proposal creates two new terminal nodes, requiring a new treed

DLM at each node. A prune proposal removes two previous terminal nodes and requires a new

treed DLM at the resulting pruned node.

A nested treed DLM is drawn from the tree prior using a stochastic growing process. At each

terminal node, λc of the treed DLM, a split occurs with probability psplit(λc) = α(1 + dλ)
−β (see

Section C.2). If a split occurs, a time-point split in the DLM is selected with uniform probability

over the remaining time points. This process repeats until no splits occur or there are no remaining

time points. The hyperparameters α and β encourage small trees, which is necessary to retain

constraints on the distributed lag effects.

Accepting a modifier tree proposal

After a new modifier tree proposal is made, we accept it by a standard Metropolis-Hastings

ratio. To eliminate the need for complicated procedures due to the change in parameter dimension

and to make the trees invariant to the covariates and variance, we integrate over Θa as well as σ2.

In BART, integrating out the vector Θa can be done one parameter at a time, as each observation is

restricted to a single terminal node. However, in the treed HDLMs, the resulting covariance after

integrating out fixed effect parameters γ, requires us to simultaneously integrate over all distributed
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lag parameters for modifier tree Ta. The marginal likelihood of Ra is calculated to be

p(Ra|Taj−) =

∫

σ2

∫

Θa

p(Ra|Θa, Ta,−)p(Θa|Ta,−)p(σ2) dΘa dσ
2

=
(
ν2τ 2a

)−Pa/2

× |VΘa
|1/2

[
RT
a

(
In − ZTVγZ−V−1

Z
XaVΘa

X
T
aV

−1
Z

)
Ra

2
+

1

ξσ2

]−(n+1)/2

(C.12)

where ξσ2 is from the hierarchy σ2|ξσ2 ∼ IG(1/2, 1/ξσ2) and ξσ2 ∼ IG(1/2, 1), which results

in σ ∼ C+(0, 1); and Pa is the number of unique parameters in Θa (for the Gaussian process

HDLM, Pa = TBa, for the shared tree HDLM, Pa = CaBa, and for the nested tree HDLM,

Pa =
∑Ba

b=1Cab). Finally,

VΘa
=

(
X
T
aV

−1
Z
Xa + ν−2τ−2

a Ua

)−1
, (C.13)

where Ua is a diagonal block matrix of Σ(φ) for the Gaussian process HDLM, or an identity matrix

for the shared and nested HDLMs. We note that use of the Woodbury matrix identity gives a more

efficient method of calculating VΘa
.

After integrating over tree-specific parameters, we calculate p(Ra, Ta|−) = p(Ra|Ta,−)p(Ta)

and accept T ∗
a according to the Metropolis-Hastings ratio given by

r = min

{
1,
p(T ∗

a )p(Ra|T
∗
a ,−)p(Ta|T

∗
a )

p(Ta)p(Ra|Ta,−)p(T ∗
a |Ta)

}
. (C.14)

C.3.3 Treed DLM update

For the shared tree HDLM, a single treed DLM, Da, is updated for every modifier tree, Ta. In

the nested tree HDLM, a nested treed DLM, Dab is updated for each modifier tree terminal node

ηab. Proposals for the treed DLMs occur through grow, prune, and change steps, and use a uniform

prior over the remaining time splitting points. See Mork and Wilson (2021a) for more details.
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After a new treed DLM has been proposed, it is accepted with the independent Metropolis-

Hastings algorithm. This process is identical to that described for modifier trees in Section C.3.2.

C.3.4 Full conditionals

After each modifier tree update (and treed DLM updates for shared and nested HDLMs), we

draw Θa (all parameters specific to modifier tree a) from the full conditional distribution,

Θa|− ∼ MVN Pa

(
VΘa

X
T
aV

−1
Z
Ra, σ

2VΘa

)
. (C.15)

The update of trees and corresponding partial HDLM is followed by a draw from the full

conditional of remaining parameters and hyperparameters:

ξσ|− ∼ IG

(
1, 1 +

1

σ2

)
; (C.16)

σ2|− ∼ IG

[
n+ P + 1

2
,
‖V−1/2

Z
(y − f)‖22
2

+
D

2ν2
+

1

ξσ

]
; (C.17)

where P =
∑A

a=1 Pa and D =
∑A

a=1 Θ
T
aUaΘa/τ

2
a . Also,

ξν |− ∼ IG

(
1, 1 +

1

ν2

)
; (C.18)

ν2|− ∼ IG

(
P + 1

2
,
D

2σ2
+

1

ξν

)
; (C.19)

ξτa |− ∼ IG

(
1, 1 +

1

τ 2a

)
; (C.20)

τ 2a |− ∼ IG

(
Pa + 1

2
,
ΘT
aUaΘa

2σ2ν2
+

1

ξτa

)
. (C.21)

Updates of modifier selection probabilities ψ come from full conditional

ψ|− ∼ Dirichlet
(
κ/J +N{mj=1}, . . . , κ/J +N{mj=M}

)
(C.22)
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where N{mj=m} is the number of splitting rules using modifier m. The hyperprior κ is updated by

the Metropolis-Hastings algorithm.

Finally we draw γ from its full conditional,

γ|y, f , σ2 ∼ MVN
[
VγZ(y − f), σ2Vγ

]
. (C.23)

C.3.5 Subgroup posterior analysis

The HDLM framework allows for inference on personalized distributed lag functions for a

specific level of modifiers or subgroup specific distributed lag estimates averaged over the levels

of modifiers within a particular subgroup. Let S be a set of observations based on a subgroup of

interest. For example, S may the the set of all babies born to Hispanic mothers or all boy babies

with obese mothers. Denote Sηab ⊂ S as the observations from S contained in modifier tree

terminal node ηab. Then, we define weights based on the proportion of S in each terminal node,

w(S, ηab) = |Sηab |
/
|S|. The DLM for subgroup S is calculated

θS =
A∑

a=1

Ba∑

b=1

θabw(S, ηab) (C.24)

where θab is the vector of DLM effects for modifier tree terminal node ηab.

C.4 Additional Simulation Results

C.4.1 Scenario 1: Early/Late Window

Table C.1 presents modifier posterior inclusion probabilities for Scenario 1.

Table C.2 presents modifier interaction posterior inclusion probabilities (PIP). An modifier

interaction occurs when two modifiers are used in consecutive splitting rules in the same tree. For

simulation scenario 1, we would expect modifiers z1 and z2 to be used in consecutive splitting

rules due to how the distributed lag effects are defined. We see in the lowest error setting the

modifier interaction PIP for z1/2 (interaction between modifiers z1 and z2) is 1 for all HDLMs. In
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Table C.1: Simulation results for modifier inclusion in scenario 1 (early/late effect). Results describe the
average posterior inclusion probability across simulation replicates for each potential modifier, (zi) or group
of modifiers (z[i−j]) in any tree of the model. A value of one indicates the modifier was always present in at
least one tree of the model.

Model z∗1 z∗2 z3 z[4−8] z[9−13]

σ2 = 10
Nested Tree HDLM 1.00 1.00 0.60 0.61 0.59
Shared Tree HDLM 1.00 1.00 0.60 0.61 0.58
Gaussian Process HDLM 1.00 1.00 0.62 0.62 0.60

σ2 = 25
Nested Tree HDLM 1.00 0.97 0.62 0.62 0.60
Shared Tree HDLM 1.00 0.97 0.62 0.62 0.60
Gaussian Process HDLM 1.00 0.99 0.62 0.62 0.60

σ2 = 50
Nested Tree HDLM 0.99 0.80 0.63 0.63 0.61
Shared Tree HDLM 0.99 0.79 0.63 0.63 0.61
Gaussian Process HDLM 0.99 0.85 0.63 0.63 0.61
∗ active modifiers in scenario 1

the medium error scenario this decreases slightly to a PIP of 0.88 for the nested tree HDLM; for

the highest error scenario this is 0.46.

Table C.2: Simulation results for modifier interaction posterior inclusion probabilities (PIP) in scenario 1
(early/late effect). Interaction PIP indicates the probability a pair of modifiers was used for two consecutive
splitting rules in the same tree at least once in the ensemble. We report the average across simulation
replicates of the correct interaction PIP, z1/2, the average PIP of other interactions, zi/j and the maximum
PIP of other interactions, max zi/j .

Model z1/2 zi/j max zi/j

σ2 = 10
Nested Tree HDLM 1.00 0.11 0.41
Shared Tree HDLM 1.00 0.11 0.44
Gaussian Process HDLM 1.00 0.12 0.41

σ2 = 25
Nested Tree HDLM 0.88 0.12 0.40
Shared Tree HDLM 0.89 0.12 0.42
Gaussian Process HDLM 0.93 0.12 0.41

σ2 = 50
Nested Tree HDLM 0.46 0.12 0.41
Shared Tree HDLM 0.43 0.12 0.42
Gaussian Process HDLM 0.54 0.12 0.40
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We also tracked the average PIP of other modifier interactions as well as the maximum PIP

of other modifier interactions. The average was around 0.12 while the maximum PIP of modifier

interactions ranged from 0.40 to 0.44. These results give a relative measure for modifier interaction

importance in our data analysis. That is, modifier interactions larger than 0.44 may represent

meaningful differences in the distributed lag effects.

C.4.2 Scenario 2: Scaled Effect

Table C.3 presents posterior inclusion probabilities for an individual modifier.

Table C.3: Simulation results for modifier inclusion in scenario 2 (scaled effect). Results describe the
average posterior inclusion probability across simulation replicates for each potential modifier (or group of
modifiers) in any tree of the model. A value of one indicates the modifier was always present in at least one
tree of the model.

Model z∗1 z2 z∗3 z[4−8] z[9−13]

σ2 = 10
Nested Tree HDLM 1.00 0.56 1.00 0.59 0.57
Shared Tree HDLM 1.00 0.57 1.00 0.60 0.58
Gaussian Process HDLM 1.00 0.55 1.00 0.59 0.56

σ2 = 25
Nested Tree HDLM 1.00 0.59 0.98 0.61 0.59
Shared Tree HDLM 1.00 0.59 0.98 0.62 0.59
Gaussian Process HDLM 1.00 0.58 0.98 0.61 0.59

σ2 = 50
Nested Tree HDLM 1.00 0.60 0.88 0.62 0.61
Shared Tree HDLM 0.99 0.60 0.88 0.62 0.60
Gaussian Process HDLM 0.99 0.60 0.87 0.63 0.61
∗ active modifiers in scenario 2

Table C.4 presents modifier interaction PIPs for simulation scenario 2. Here, we show the PIP

of the active interactions, z1/3 and z3/3. Because scenario 2 had a continuous effect, it is reasonable

that the tree may split on the modifier z3 multiple times. However, other trees in the ensemble that

split on z1 may split on z3 at a different location to build the scaled distributed lag effect.

We find that the modifier interaction PIP for z1/3 is 1 in the lowest error scenario, 0.91 in

the middle error case, and 0.65 in the largest error setting. The z3/3 modifier is larger than other
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Table C.4: Simulation results for modifier interaction posterior inclusion probabilities (PIP) in scenario 2
(scaled effect). Interaction PIP indicates the probability a pair of modifiers was used for two consecutive
splitting rules in the same tree at least once in the ensemble. We report the average across simulation
replicates of the correct interaction PIPs, z1/3 and z3/3, the average PIP of other interactions, zi/j and the
maximum PIP of other interactions, max zi/j .

Model z1/3 z3/3 zi/j max zi/j

σ2 = 10
Nested Tree HDLM 1.00 0.46 0.11 0.41
Shared Tree HDLM 1.00 0.58 0.11 0.38
Gaussian Process HDLM 1.00 0.49 0.11 0.45

σ2 = 25
Nested Tree HDLM 0.91 0.34 0.11 0.35
Shared Tree HDLM 0.94 0.36 0.11 0.38
Gaussian Process HDLM 0.91 0.37 0.11 0.41

σ2 = 50
Nested Tree HDLM 0.65 0.26 0.12 0.38
Shared Tree HDLM 0.66 0.27 0.12 0.39
Gaussian Process HDLM 0.60 0.26 0.12 0.40

modifiers on average, but does not always exceed the maximum value of other modifiers. Here, we

see average and maximum PIPs for other modifiers similar to results in scenario 1.

C.4.3 Scenario 3: No Effect Heterogeneity

Table C.5 presents modifier interaction PIPs for simulation scenario 3 (no effect heterogeneity).

In this scenario, no modifier interaction plays a role in modeling the distributed lag effect. We find

that the average PIP for modifier interactions is 0.12 and the maximum PIP ranges from 0.24 to

0.27 across all error settings. The fact that no one modifier interaction stands out bodes well for

the model estimating distributed lag effects without heterogeneity.

C.5 Additional Data Analysis Results

C.5.1 Effect modification

Table C.6 compares modifier posterior inclusion probabilities among shared, nested, and Gaus-

sian process HDLMs. We note that age, BMI, education, and Hispanic designation modifiers have

the highest posterior inclusion probabilities across all three models.
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Table C.5: Simulation results for modifier interaction posterior inclusion probabilities (PIP) in scenario
3 (no effect heterogeneity). Interaction PIP indicates the probability a pair of modifiers was used for two
consecutive splitting rules in the same tree at least once in the ensemble. We report the average across
simulation replicates of the average PIP of all interactions, zi/j , and the maximum PIP of all interactions,
max zi/j .

Model zi/j max zi/j

σ2 = 10
Nested Tree HDLM 0.12 0.24
Shared Tree HDLM 0.12 0.26
Gaussian Process HDLM 0.12 0.24

σ2 = 25
Nested Tree HDLM 0.12 0.26
Shared Tree HDLM 0.12 0.25
Gaussian Process HDLM 0.12 0.27

σ2 = 50
Nested Tree HDLM 0.12 0.27
Shared Tree HDLM 0.12 0.27
Gaussian Process HDLM 0.12 0.27

Table C.6: Modifying covariate posterior inclusion probabilities for three HDLM methods.

Modifier Shared Tree Nested Tree Gaussian Process
Age at conception 0.93 0.90 0.83
Body mass index 0.95 0.96 0.96
Income range 0.74 0.71 0.72
Highest education 0.90 0.88 0.86
Smoking habits 0.78 0.76 0.81
Marital status 0.50 0.46 0.45
Prenatal care 0.48 0.60 0.54
Race 0.61 0.48 0.54
Hispanic 0.95 0.98 0.90
Sex of child 0.64 0.43 0.53

C.5.2 Additional Figures

Figure C.3 shows the MSPE from 10-fold cross-validation of the three HDLMs relative to

a treed DLM without effect modification. On average, the MSPE of the shared tree HDLM

was smallest (0.99975) followed by nested tree HDLM (0.99979) and Gaussian process HDLM

(0.99982). The signal of the exposure effect is very small relative to the signal from the fixed

effects and residual error, leading to very small differences between the MSPE for these methods.

Figure C.4 shows subgroup-specific DLMs for Hispanic vs non-Hispanic.
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Figure C.3: MSPE relative to treed DLM without modification.

Figure C.4: Hispanic and non-Hispanic subgroup-specific DLMs.

Figures C.5 and C.6 show the Hispanic subgroup broken down by education and age, as well

as education and BMI, respectively.

Figures C.7 and C.8 show the non-Hispanic subgroup broken down by education and age, as

well as education and BMI, respectively.

The next largest modifier PIP was Smoking and the next largest modifier interaction PIP was

between smoking and BMI. Figures C.9 and C.10 show subgroup-specific DLMs for Hispanic and

non-Hispanic subgroups broken down by smoking (never vs. former or current) and BMI.

152



Figure C.5: Hispanic subgroup broken out by education and age.

Figure C.6: Hispanic subgroup broken out by education and BMI.
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Figure C.7: Non-Hispanic subgroup broken out by education and age.

Figure C.8: Non-Hispanic subgroup broken out by education and BMI.
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Figure C.9: Hispanic subgroup broken out by smoking (never vs former or current) and BMI.

Figure C.10: Non-Hispanic subgroup broken out by smoking (never vs former or current) and BMI.
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C.5.3 Nested Tree HDLM

We replicate the subgroup-specific analyses of the paper using the nested tree HDLM. Figure

C.11 shows subgroup specific DLMs broken down by Hispanic and BMI modifiers. Figure C.12

shows subgroup specific DLMs broken down by Hispanic and education modifiers.

Figure C.11: Subgroup-specific DLMs broken down by Hispanic and BMI, using the nested tree HDLM.

Figure C.12: Subgroup-specific DLMs broken down by Hispanic and education, using the nested tree
HDLM.
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C.5.4 Gaussian process HDLM

We replicate the subgroup-specific analyses of the paper using the Gaussian process HDLM.

Figure C.13 shows subgroup specific DLMs broken down by Hispanic and BMI modifiers. Figure

C.14 shows subgroup specific DLMs broken down by Hispanic and education modifiers. We note

the increased variance of the distributed lag effect estimates as well as decreased smoothness in

the DLM, which does not allow for critical window identification.

Figure C.13: Subgroup-specific DLMs broken down by Hispanic and BMI, using the Gaussian process
HDLM.
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Figure C.14: Subgroup-specific DLMs broken down by Hispanic and education, using the Gaussian process
HDLM.
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