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ABSTRACT 
 
 
 

ANALYSIS OF INDUSTRIAL OILSEEDS: PRODUCTION, CONVERSION TO BIOFUELS, 

AND ENGINE PERFORMANCE FROM LARGE TO SMALL SCALE 

 
 
Most of the biofuel produced in the U.S. as an alternative to petrodiesel is derived from 

soybean oil. Three major problems of using soy and other traditional biofuel feedstocks are: (1) 

the high commodity cost of the feedstock results in higher cost fuel than the petroleum 

equivalent, (2) land use requirements are too great to offset a significant portion of petroleum 

use, and (3) many traditional biofuel feedstocks also have food uses, which creates market 

competition and a “food versus fuel” debate. The problems above are addressed by exploring the 

feasibility of biofuel production from a new class of oilseeds known as industrial oilseeds, and 

industrial corn oil as a biofuel feedstock. 

Industrial oilseeds are alternative low-cost oilseeds also known in the literature as low-impact 

oilseeds or non-food oilseeds. Due to their non-food nature, they steer us clear of any food versus 

fuel debates. They have several advantages over conventional oilseeds, such as a short growing 

season, high oil yield and quality, ability to thrive on marginal lands, and low water and fertilizer 

inputs. These advantages can equate to lower oil costs. Since these oils can be optimized for fuel 

instead of food, plant scientists can maximize the erucic and other long chain fatty acids, which 

increase fuel conversion rates and fuel quality. For several of these plant species, little or no 

engine research has been done; some in the agronomic community still consider some of these 

plants weeds. This research includes compression ignition engine performance and emissions 

studies, measurement of important fuel properties, and investigation into the feasibility of several 

fuel pathways.  
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Corn is not classified as an oilseed by the USDA; however, the corn kernel contains a small 

amount of oil (~3.5%) which can be extracted during the production of ethanol. Only the starch 

portion of a corn kernel is converted to ethanol; the remaining solids (including the oil) remain in 

the distillers grain coproduct. Recently, the ethanol industry has discovered economical methods 

to extract this corn oil from the meal stream. As corn oil extraction technology has matured and 

ethanol margins have tightened, the ethanol industry has started widely adapting this technology 

as an additional revenue-generating coproduct. Since most ethanol plants are non-food grade 

facilities, corn oil from an ethanol plant can also be categorized as an industrial oilseed. Corn oil 

represents a relatively new, abundant, and inexpensive source of biofuel feedstock. This research 

includes compression ignition engine performance and emissions of corn oil based fuels, 

feasibility of using corn oil as an on-farm biofuel feedstock, research into fuel production and 

processing methods, and measurement of important fuel properties.  
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Chapter 1. INTRODUCTION AND RESEARCH MOTIVATION 

 
 
 

1.1 Use, Demand, and Cost of Energy 

The world’s increased use, demand, and cost of energy in terms of economic and 

environmental impact are all compelling motivations for this research. The United States (U.S.) 

consumes more than 18 million barrels of liquid fuel per day, primarily in the transportation 

sector [1]. Like the U.S. transportation sector, the U.S. Department of Defense (DOD) is a large 

consumer of liquid fuel. With use topping 12 million gallons per day, the DOD is the single 

largest consumer in the world, with the United States Air Force (USAF) accounting for more 

than 50% of the DOD’s consumption [2]. 

Demand and competition for the world’s energy has also increased in recent years. For 

example, in 2007 the world’s energy consumption increased by 2.4%, with China’s share of the 

growth at 52% [3]. India is another country with ever-increasing energy demands, with energy 

use increasing at the same pace with increases in gross domestic product (GDP). India’s energy 

consumption nearly doubled from 2003-2013, and they are now the fourth largest user in the 

world [4]. Projections are for 56% growth in world energy consumption between 2010 and 2040. 

By 2035, China's projected energy consumption is 68% higher than the U.S.’ [5]. These trends 

are shown in Figure 1-1. 
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Figure 1-1. Projected global energy growth [5]. 

As competition for energy resources increases, another area of concern for the U.S. is the 

source of transportation fuels. The U.S.’ proportion of imported oil increased from about 30% of 

consumption in 1970 to 56% in 2000, raising concerns about energy security and the 

vulnerability of the economy to disruption of oil supplies [6]. For the DOD, domestically sourced 

alternative fuels represent a reliable, secure and affordable supply of fuel for military missions. 

As stated by U.S. Navy (USN) Secretary Raymond Mabus: "Reliance on fossil fuels is simply 

too much of a vulnerability for a military organization to have" [7].  

The large economic cost of liquid fuel is staggering. The U.S. transportation sector spends 

over $0.5 trillion annually on petroleum fuel [1]. For the DOD, the USAF alone spends nearly $9 

billion per year on energy with more than 80% of expenditures for liquid fuel [8]. Due to the 

extreme quantities of fuel needed for military operations, price fluctuations heavily affect the 

DOD. Each time the price of oil goes up $10 per barrel, it costs the USAF an additional $600 

million and the DOD $1.3 billion annually [9], [10]. 

The cost of petroleum fuel can also scrutinized from an environmental impact point of view, 

and is another reason to increase use of biofuels. In 2013, the World Meteorological 
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Organization (WMO) reported the highest atmospheric greenhouse gas (GHG) levels ever 

recorded, with levels increasing at an alarming rate. GHG levels in the atmosphere grew faster in 

2012 than in the previous decade, and have increased to levels unprecedented in at least the last 

800,000 years [11]. The WMO says the warming effect on our climate has increased by almost a 

third since 1990 [12]. As a result, global average temperatures might be 4.6 degrees higher by 

the end of the century than pre-industrial levels, leading to a more-extreme climate and rising sea 

levels [11]. Biofuels play an important role in reducing GHG emissions. Biofuels are created by 

converting biomass, biological material from living or recently living organisms, directly into 

liquid fuels. Biofuels are considered a carbon neutral fuel since plants intake the same amount of 

carbon dioxide (CO2) during growth as released during combustion. Although exact level of 

reduction of life cycle emissions is under scientific debate, biofuels emit less GHG than the 

equivalent petroleum fuel [13]. 

In addition to GHG reductions, combustion of biofuels can have other net emission benefits 

(i.e. “tailpipe” emissions). For example, using the biofuel known as biodiesel (defined in section 

1.7.4) typically reduces the amount of particulate matter (PM), carbon dioxide (CO), and 

hydrocarbons (HC) in the exhaust stream as compared to petrodiesel. In 2002, the EPA 

conducted a comprehensive analysis of the emission impacts of biodiesel using publicly 

available data, most of which was collected on heavy-duty highway engines, with curve fit 

values for the data collected shown in Figure 1-2.  
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Figure 1-2. Average emission effects of biodiesel for heavy-duty highway engines [14]. 

To combat the issues outlined above, the U.S. Environmental Protection Agency (EPA) 

passed the Renewable Fuels Standard (RFS) program, created under the Energy Policy Act 

(EPAct) of 2005, and established the first renewable fuel volume mandate in the U.S. The 

program was expanded (RFSII) under the Energy Independence and Security Act (EISA) of 

2007 to include diesel, in addition to gasoline. EISA increased the volume requirement of 

renewable fuel blending into transportation fuel from 9 billion gallons in 2008 to 36 billion 

gallons by 2022. RFSII lays the foundation for achieving significant reductions of GHG 

emissions, for reducing imported petroleum, and encouraging the development and expansion of 

the U.S.’ renewable fuels sector [15]. Several states have also mandated the use of biofuels. 

Minnesota first mandated biodiesel use in 2005, increased its blend requirements to B10 in 2014 

(10% biodiesel and 90% petrodiesel), and will increase the requirement to B20 in 2018 [16]. In 

addition to usage requirements, many states have tax breaks and exemptions for biofuels. 

California recently passed a low carbon fuel standard (LCFS), which is a climate change driven 

standard, and may be the single largest emerging biodiesel market [17]. The LCFS considers the 

entire life cycle of fuel production and use and seeks to decrease overall CO2 emissions.  



 

5 

 

The U.S. military has also initiated several measures to reduce its dependence on foreign 

sources of petroleum [18]. The USAF announced in 2008 that it plans to use alternative fuels for 

50% of domestic aviation by 2016, approximately 400 million gallons per year [19]. The 

USAF’s goal by 2030 is to be flying on alternative fuel blends that are cost competitive, 

domestically produced, and have a lifecycle GHG footprint equal to or less than petroleum [20]. 

The USN’s goal for 2020 is to use alternative sources for half of all energy consumption afloat, 

which will require 300 million gallons of biofuels per year [21]. Due to the magnitude of 

consumption, any actions taken by the U.S. military to reduce energy consumption and procure 

alternative energy sources are significant in their potential impact for enhancing energy trends 

for the entire transportation sector [20].  

1.2 Research Target Audience 

This work will focus on biofuels made from oilseeds, grains that produce oil valuable for 

human use, with a concentration on industrial (non-food) oilseeds used to produce petrodiesel 

substitutes. The target audience for this research is both large-scale and small-scale users of 

biofuels. Large-scale includes the U.S. transportation sector and the U.S. military users as 

described above. The use of fuel in agriculture is significant, but smaller in scale as compared to 

the transportation and military end users. Although smaller in scale, farmers represent a very 

important role in the spread of the industrial oilseeds used in this research and the overall 

increased use of biofuels. Despite the motivation for increased use of biofuels from industrial 

oilseeds, the industry’s commercial-scale crushing, fuel processing, and distribution 

infrastructure all need to mature. Some of the oilseeds discussed are so new that no commercial 

market exists [22]. If these new industrial oilseeds are ever going to be adopted, farmers will 
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need to take the lead in their production. Farm-scale fuel production could provide a local use for 

an oilseed until a commercial market matures. 

1.3 Problem Statement and Research Objectives 

As demand for domestically sourced fuels increased, the production of biofuel doubled from 

2000 to 2005 and more than tripled from 2005 to 2010, and currently represents ~5% of U.S. 

consumption [23]. Despite these recent increases, most experts agree further expansion of biofuel 

use beyond mandated levels will be slow and most limited by feedstock costs, about 80% of the 

cost to make biodiesel [24], [25]. Soybeans represent 74% of the vegetable oil feedstock for 

biodiesel production. However, recent commodity costs in soybeans and other crops have been 

historically high, a major driving force behind the high cost of biofuels [26]. When the RFS 

came out in 2005, soybeans averaged $5.88 per bushel; in 2013, the average price of soybeans 

was $14.63 [27]. During this same period, corn prices went from $1.90 to $6.92 per bushel. Corn 

and soybeans also have food uses and face competition from those markets. Competition is not 

only from the food market; several hundred different products use soybeans. In 2012 alone, 45 

new soy-based products were commercialized [28].  

This research had several objectives. The first was to investigate the engine performance 

using biofuels produced from a category of oilseeds known as industrial oilseeds. Industrial 

oilseeds have several advantages over conventional oilseeds, which may reduce the cost of 

vegetable oil feedstock for biodiesel production. These industrial oilseeds only recently began 

use for commercial purposes and are still considered weeds by some in the agricultural 

community. Due to the newness of these vegetable oils, engine performance studies are limited 

or nonexistent. The second purpose was to investigate the effects of different biofuel types with 

respect to engine performance and fuel properties. An investigation into several fuel pathways 
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determined benefits and downsides to each. For reasons outlined above, the research was focused 

on farm-scale production and use of biofuels.  

1.4 Industrial Oilseed Overview 

Biofuel can be produced from various feedstocks, but the majority of petrodiesel substitutes 

are from plant oils. New sources of plant oil have emerged in recent years known as in the 

literature as “industrial oilseeds”, “low-impact oilseed crops”, or “non-food oilseeds” and 

include those oilseeds investigated in this research: carinata, camelina, and pennycress. This 

section outlines some of the benefits of industrial oilseeds. 

With grains making up 80% of the world’s food supply, some view food and fuel as 

competing interests, and are concerned biofuels drive up the cost of food [29]. Jean Ziegler, an 

independent expert for the United Nations on food policy, called producing biofuels from food 

sources a “crime against humanity” and a “growing catastrophe against the poor” [13]. Industrial 

oilseeds are not suitable for human consumption (not generally regarded as safe (GRAS)) due to 

their high erucic acid content, so they eliminate any food versus fuel issues and eliminate market 

competition and fluctuations from the food market.  

With respect to biofuel production, these industrial oilseeds offer many benefits over 

traditional oilseeds. For example, they have higher oil yield than soybeans, the most prominent 

traditional oilseed, resulting in more biofuel per acre. In addition to increased yield, oils designed 

for fuel requirements instead of food (high smoke point, taste, etc.) can have benefits of uniform 

long carbon fatty acid chains for increased fuel conversion rates and increased levels of 

monounsaturated fatty acid levels for better fuel quality [30].  

Certain industrial oilseeds may allow increased production on marginal lands as compared to 

conventional crops. These oilseeds can grow with limited water, fertilizer, pesticides and other 
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inputs, with ongoing research by plant scientists in several areas of the U.S. to determine 

performance in these areas. These favorable properties allow industrial oilseeds to grow over a 

larger portion of available farmland in harsher conditions. A recent study estimated that only 6% 

of petrodiesel demand would be satisfied if all U.S. soybean production were dedicated to 

biodiesel [31]. Clearly, biofuel feedstock needs to expand and diversify if oilseed derived 

biofuels are to replace a larger portion of petroleum.  

Due to the robustness of these new crops and short growing seasons, they are able to fit into 

several new cropping systems. These cropping systems better utilize the existing farmland in the 

U.S. and have the potential to produce millions of gallons per year of biofuel from the farmland 

already in production. A few examples of these cropping systems follow: 

• Off-season cropping is growing a crop during a normally dormant production period. For 

the U.S., this generally means over the winter season (fall planted and spring harvested). 

In addition to the increased production, research indicates an off-season oilseed crop may 

reduce leaching of residual nutrients into ground water from row cropland [32].  

• Oilseed cropping during a normally fallow period: Fallow cropland is land purposely kept 

out of production during a regular growing season, allowing one crop to grow using the 

moisture and nutrients of more than one crop cycle [33].  

• Double-cropping is the practice of growing two or more crops in the same space during a 

single growing season. Relay cropping is a form of double cropping where different crops 

are planted at different times in the same field, and both crops spend at least part of their 

season growing together in the field [34]. 

• A cover crop is a crop planted primarily to manage soil fertility, soil quality, water, 

weeds, pests, diseases, biodiversity and wildlife in an agriculture ecosystem [35].  
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• A reduced water demand crop rotation can be used as part of a water leasing 

arrangement. A portion of a farmer’s water allocation from irrigated farmland is leased 

for municipality uses, but the land can maintain productivity using dryland or limited 

irrigation methods [36]. 

• Oilseed cropping in the dryland portions of pivot irrigation: Much of the irrigation in the 

Western U.S. is by pivot irrigation; Nebraska alone has an estimated 43,000 pivot 

irrigation systems [37]. Without a corner system, pivot irrigation only covers π/4 (79%) 

of a square area. The remaining 21% of land would be a convenient area to grow 

oilseeds, since farm machinery is already in the area to farm the irrigated portion. 

When used in one or more of the above cropping systems, these industrial oilseeds avoid any 

indirect land use change (ILUC) impacts currently being studied for other biofuels. ILUC studies 

focus on the unintended consequence of releasing more carbon emissions due to land-use 

changes around the world induced by the expansion of croplands in response to the increased 

global demand for biofuels [38].  

Not competing with conventional cash crops not only helps keep the cost of production low, 

it might help increase the adaption of these oilseeds. Farmers are more apt to growing one of 

these oilseeds if it does not compete with their current cash crops, and the new crop involves low 

inputs (low risk).  

These oilseeds allow for flexibility in planting date, which can benefit farmers. For example, 

many U.S. farmers have traditionally rotated soybeans and corn. Both crops are planted in the 

spring and mature at about the same time in the fall. This constraint limits the amount of land a 

farmer can manage due to labor and machinery demands. Adding a third crop, like an oilseed 
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that would be ready for harvest in the summer allows a farmer to spread their workload. Often 

this model has residual benefits by increasing yield 3-7% for the follow-on cash crop [34]. 

The industrial oilseeds discussed in this work are compatible with traditional farming 

equipment, important for widespread adoption. Several recent studies have investigated biofuel 

production from a wide array of other underutilized plant species. For example, common 

milkweed (Asclepias syriaca) is a perennial plant that grows on roadsides and undisturbed 

habitat, and generally considered a nuisance weed by farmers. Milkweed oil is suitable for 

biofuel production and the silk and sap have commercial applications [39]. However, milkweed 

seeds are currently harvested by hand from wild plants; large scale planting and harvest is not 

possible using existing farming equipment. The industrial oilseeds discussed in this work do not 

require a farmer to buy additional planting or harvesting equipment. The plants are also 

compatible with conventional oil extraction technology and oil filtering methods. 

Unlike some other advanced biofuels in development, immediate implementation of these 

industrial oilseeds is possible without years of additional research and changes to the 

infrastructure of agriculture or transportation. The timeline for widespread adoption is much 

shorter than other more revolutionary forms of vegetable oils. For example, biofuel from 

microalgae lipids has a great deal of promise and received much attention in recent years. Algae 

are the most efficient biological producer of oil on the planet; some have estimated yield per acre 

potential as 200 times greater than conventional biofuel feedstock like soybeans [40]. Other 

positive attributes include the ability to grow in waste or salt water and recycle waste CO2 from a 

power plant [40]. However, most experts agree fuel from algae at a large scale is a decade away 

and currently large scale production of these fuels is not feasible due to high cost [41]. The DOD 

recognizes the potential for algae based fuel, but its price has limited testing and market 
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expansion. For example, the USN came under congressional scrutiny for paying $425/gallon for 

20,000 gallons of algae-based fuel in 2010 [42].  

1.5 Industrial Oilseeds Used In Research 

This section will provide a brief introduction and background for the industrial oilseeds used 

as feedstock for biofuel production in this research.  

1.5.1 Camelina  

Camelina (Camelina sativa) is a broadleaf oilseed flowering plant belonging to the 

Brassicaceae (mustard) family. It is in the same family as the more well-known oilseeds rape and 

canola and food crops like broccoli, cabbage, and cauliflower. Camelina was cultivated in 

Europe for oil and animal feed periodically for at least 3,000 years but declined in popularity by 

the 1940’s due to the introduction of the oilseed rape [43], [44]. Camelina, with its high content 

of unsaturated fatty acids (~ 90%), was more difficult and expensive to hydrogenate than rape oil 

and this led to its decline [43]. Camelina grows optimally in temperate climates and is well 

adapted to the more northerly regions of North America, Europe, and Asia. It can be grown in a 

variety of climatic and soil conditions as a spring or summer annual or as a biennual winter crop. 

Camelina has several beneficial agronomic attributes: a short growing season (85–100 days), 

tolerance of cold weather, drought, semi-arid conditions, and low-fertility or saline soils. 

Growing camelina uses less water, pesticide, and fertilizer than other traditional commodity 

oilseed crops [45].  

Camelina seeds typically contain 38-45% oil and produce a high quality meal with 

approximately 45% protein when crushed; revenue generation from the meal is an important 

factor in determining oilseed profitability [46]. Camelina has renewed attention in the U.S. and 

Europe, which is in part due to its positive agronomic attributes but also due to its high levels of 
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linolenic acid, one of the essential OMEGA-3 fatty acids generally found in substantial quantities 

only in linseed and fish oils [47].  

Camelina oil was first evaluated as a straight vegetable oil (SVO) fuel in a modified indirect 

injection naturally aspirated diesel engine in 2003 [48]. Camelina oil was later evaluated as a 

potential biodiesel feedstock in 2005, with successful conversion, measurement of key fuel 

properties, and a one oil-change interval vehicle trial [49]. The USAF and USN began 

experimenting with camelina biojet fuel in 2010 [50]. A comprehensive characterization of 

camelina biodiesel was performed based on the U.S. and European standards in 2013 [51]. 

Figure 1-3 shows camelina images.  

 
Figure 1-3. Camelina [52]. 

1.5.2 Carinata  

Carinata (Brassica carinata) is alternative energy crop belonging to the Brassicaceae 

(mustard) family. Carinata is originally from Ethiopia where it has been grown as an oilseed for 

many years. It is closely related to rapeseed (Brassica napus), the most common oilseed in 

Europe, and researchers have been developing it in recent years as an alternative to rapeseed and 

other traditional oilseeds. Many Canadian farmers are now planting it on their traditionally 

marginal canola farm ground [53]. Due to its background in Ethiopia, the plant is able to grow in 
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harsh growing conditions and is extremely well suited to production in semi-arid areas. It has 

shown good resistance to stressors such as insects, disease, heat, and drought [54]. Agronomic 

studies have confirmed that carinata adapted better and was more productive both in adverse 

conditions (clay- and sandy-type soils and semi-arid temperature climate), and under low input 

cropping systems when compared with rapeseed [55]. Researchers have also been improving the 

harvestability characteristics of carinata, such as lodging and pod shatter resistance, which makes 

it compatible with straight cutting [54].  

Carinata seeds typically contain 45% oil with 35% protein content in the residual meal, and 

can produce 200 gallons of biofuel per acre [30], [53]. Carinata produces a 22-carbon erucic 

acid, as opposed to a typical 18-carbon oleic acid molecule found in canola and other oilseed 

crops, giving it more carbon in the fatty acids for fuel production [56].  

In 2003, carinata was converted to biodiesel and performance tested using a direct injection 

passenger car diesel engine [55]. In 2012, the USAF teamed with other research partners to 

evaluate carinata biojet fuel; the evaluation culminated in the world’s first jet aircraft flight 

powered by 100% renewable fuel [53], [57], [58]. Carinata is shown in Figure 1-4. 

 
Figure 1-4. Carinata [59]. 
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1.5.3 Pennycress  

Field Pennycress (Thlaspi arvense L.) is a winter annual found throughout the Americas 

belonging to the Brassicaceae (mustard) family. Pennycress is a common agricultural weed, 

listed as “noxious” in several U.S. states, and can cause serious yield losses in field crops and 

can contaminate hay and grain feed [60], [61]. Although still widely considered a weed, it has 

recently received attention for its potential as an alternative energy crop. Pennycress seeds 

typically contain 32-36% oil with 33-35% protein content in the residual deoiled meal [62]. 

Pennycress’ high seed yield, seed oil content, and suitability for off-season production make 

pennycress an ideal source of oil for biofuel [62]. The early harvest date of pennycress compared 

to other winter annual oilseed crops makes it suitable for harvesting two crops (pennycress and 

soybeans) in one year in most of the upper Midwestern U.S. [62]. Those farmers using 

pennycress as an off-season crop for the first time in 2012 saw an additional $100/acre in 

revenue, with future projections at $175/acre [63].  

Pennycress was studied as a potential replacement for rapeseed oil for certain industrial 

applications as early as 1944 [64], but was not evaluated as a potential biodiesel feedstock until 

2009 [65]. Pennycress seeds were crushed for the first time at a pilot scale in 2009 using seeds 

harvested from a wild stand in Illinois [62]. Pennycress is shown in Figure 1-5. 
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Figure 1-5. Pennycress [66]. 

1.6 Conventional Oilseeds Used In Research 

The focus of this research was on industrial oilseeds. However, conventional oilseeds 

continue to have a prominent place in the market. Along with industrial oilseeds, several of these 

conventional plants are now being used in nontraditional cropping systems. Like the industrial 

oils, these conventional oils were also converted to biofuel through new fuel pathways for this 

research.  

1.6.1 Corn  

Corn is the most widely grown crop in the U.S., with over 400,000 U.S. farms harvesting 84 

million acres annually [67]. Field corn (Zea mays L.) is a type of maize whose leafy stalk 

produces ears that contain the grain, called kernels. The dent corn variety (indentata) has many 

uses; it is an important source of livestock feed and had several food uses such as corn flour, 

corn oil, and high fructose corn syrup. The USDA does not classify field corn as an oilseed; 

however, the germ of its kernel contains a small amount of oil (~3.5%). During the production of 

ethanol, corn oil can be extracted and used for the production of biofuels. Most ethanol plants are 

nonfood-grade facilities so the extracted oil cannot be used for human consumption, and makes 

corn oil an industrial oil when processed at these facilities. Corn is shown in Figure 1-6. 
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Figure 1-6. Corn [68]. 

1.6.2 Soybeans  

The soybean (Glycine max) is a species of legume (Fabaceae family) widely grown 

worldwide for its edible bean, which has numerous uses. Its seeds are an important source of oil 

and protein for both human and animal consumption. Soybeans are the second most produced 

crop in the U.S., with nearly 74 million harvested acres annually. Soybeans represent 90% of 

U.S. oilseed production and 50% of oil production worldwide [67]. Soybeans dominate both the 

U.S. biodiesel and food-oil market, representing 74% of vegetable oil feedstock and 65% of oil 

consumed [67]. Soybean seeds contain ~40% protein and 20% oil and typically produce 65 

gallons of biofuel per acre (1 bushel ≈ 1.5 gallons of biofuel) [69], [70]. When soybean seeds are 

processed for oil, a valuable high protein meal remains and livestock consume nearly 30 million 

tons annually [71]. The soybean plant is shown in Figure 1-7 
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Figure 1-7. Soybean [72]. 

1.6.3 Canola  

Canola is a cultivar of rapeseed (Brassica napus). It was bred from rapeseed in the 1970s by 

researchers in Canada. These researchers were able to develop canola to have low levels of 

glucosinolates and erucic acid, enabling canola oil to become a widespread food oil. Canola 

seeds are high in oil content (40-44%) and produce a high quality livestock meal when crushed. 

Canola oil is also used to produce biodiesel, and is the third most used feedstock behind soy and 

corn oil in the U.S. Canola can be planted in the fall or spring, giving it great flexibility as a 

rotation crop. Several researchers have studied canola as a potential closed loop oilseed. For 

example, a city could pay local farmers to grow canola, extract the oil and incentivize its use by 

local restaurants, recollect used cooking oil from the restaurants, and finally convert the oil to 

biodiesel for use in the city bus system [73]. 

Researchers in the U.S. have been investigating the feasibility of relay cropping canola and 

soybeans. The cold tolerant canola is planted in the early spring and begins growing 

immediately. Later soybeans are planted to the same field. The canola’s shorter growing season 

allows it to be harvested in the summer. With the majority of canola seeds being high on the 

plant, the combine header can harvest the canola seeds but cuts above the soybeans. The young 
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soybeans continue to grow through the canola stubble and are ready for harvest in the fall. The 

combined biofuel yields of canola (~110 gallons per acre) and soybeans (~45 gallons per acre) 

greatly improve productivity on existing land [74]. In addition to the additional crop, this model 

may reduce erosion, and disrupt pest and weed cycles [34]. Canola is shown in Figure 1-8. 

 
Figure 1-8. Canola [75]. 

1.6.4 Sunflower  

Sunflower (Helianthus annuus) is an annual plant native to the Americas. It possesses a large 

flowering head. The heads consist of many individual flowers, which mature into seeds. 

Sunflower seeds and sunflower oil are widespread cooking ingredients. Sunflower (oilseed type) 

seeds contain 38-50% oil and approximately 20% percent protein [76]. Leaves of the sunflower 

plant can be used as cattle feed along with the residual meal from oil production. The stems have 

industrial uses, such as paper production.  

Sunflowers can efficiently use water, which may become very important in Colorado and 

other areas of the Western U.S. as water resources become more limited. Researchers with the 

USDA found that under limited and timed irrigation, sunflower has a unique ability to produce a 

higher yield than under unlimited irrigation as shown in Figure 1-9.  
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Figure 1-9. USDA Sunflower Trial: (L to R) unlimited irrigation, irrigation in R1-R5 growth 

stage, and irrigation in R4-R5 growth stage [77]. 
 

1.7 Fuel Pathways Used in Research 

Several vegetable oil to fuel conversion options, or fuel pathways, exist to create biofuels 

from vegetable oil. This section highlights the conversion options evaluated as petrodiesel 

substitutes in this research.  

1.7.1 Direct use of Straight Vegetable Oil (SVO) 

Using straight vegetable oil (SVO) as a diesel fuel substitute is not a fuel conversion – it is a 

lack of conversion. SVO has been used directly as a fuel in diesel engines since their inception, 

with the first documented use in 1900 [78], [79]. SVO performance has been well studied for 

many vegetable oils. The bulk of scientific literature has shown long term use of SVO can have 

negative effects in modern engines, most of which are tied to its high viscosity [80]. These 

effects can be partially mitigated by decreasing service intervals and through engine 

modifications. Typically fuel pumps are upgraded and fuel heaters are placed in auxiliary fuel 

tanks to reduce the viscosity of the oil [81].  
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1.7.2 Dilution of SVO  

The blending of SVO with petrodiesel is often referred to “dilution of SVO” or “SVO as a 

diesel fuel extender”. SVO and petrodiesel blends mixtures have also been well studied in the 

literature, with mixed recommendations on their use. For example, as a result of a 600-hour test 

using a John Deere 6-cylinder, 6.6 L, direct injection, turbocharged engine, it was found that a 

1:2 volumetric blend of soybean SVO to petrodiesel would be suitable as a fuel for agricultural 

equipment [82]. In contrast, a 200-hour test using a Ford 3-cylinder, 2.59 L, direct injection 

engine found a 1:3 volumetric blend of soybean SVO to petrodiesel would not be suitable as a 

fuel due to excessive carbon deposits [83].  

Like the direct use of SVO, the use of dilution of SVO has been found not satisfactory in 

several studies for both direct and indirect injection diesel engines over long intervals [84], [85], 

[86]. High fuel viscosity, poor cold flow characteristics, polymerization during combustion, 

carbon deposits in the combustion chamber, and lubricating oil thickening are problems observed 

during testing [80], [87]. For these reasons, the Engine Manufactures Association (EMA), U.S. 

Department of Energy (DOE), and U.S. EPA have released statements discouraging the use of 

SVO in neat form or mixed with petrodiesel regardless of blend level [88], [89], [90], [91]. 

Despite this, widespread use of SVO and dilution mixtures continues worldwide, with ongoing 

research for niche applications, such as the off-road use of fuel in agriculture, fuel for other 

remote users such as third world countries where users are isolated from fuel supplies but fuel is 

needed to run grain mills and local vehicles, or for use in times of fuel shortages [92]. 

1.7.3 Triglyceride Blend (TGB)  

To reduce the problems outlined in sections 1.7.1 and 1.7.2, SVO can also be blended with 

other less viscous fluids (other than petrodiesel). The literature shows SVO has been blended 
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with ethanol, methanol, n-butanol, 2-octanol, 2-propanol, other solvents, or combinations of 

these fluids [86], [93]. For some combinations, a surfactant is needed to ensure emulsion stability 

if a mixture contains two or more liquids that are normally immiscible [94]. Various naming 

conventions have been used for these blended fuels. 

A triglyceride blend (TGB) is the naming convention used at Colorado State University 

(CSU) for a biofuel formed when SVO is blended with another less viscous solvent and the 

resulting solution is used as a biofuel. This research uses motor gasoline with various ethanol 

contents (E0-E85) and renewable naphtha as blend agents. The U.S. DOE defines motor gasoline 

as a complex mixture of relatively volatile hydrocarbons blended to form a fuel suitable for use 

in spark-ignition engines with a boiling range of 122 to 158 °F [95]. Naphtha is defined as light 

distillates with an approximate boiling point range between 122 and 400 °F blended further or 

mixed with other materials to make high-grade motor gasoline, jet fuel, solvents, petrochemical 

feedstocks, and other uses [96]. The origin of SVO and gasoline mixtures is unclear and has not 

been extensively studied or documented in scientific literature, although TGBs have been in use 

by some U.S. farmers for several years [97]. Naphtha as a SVO blending agent is also previously 

undocumented in scientific literature. 

1.7.4 Biodiesel (B100) 

Triglycerides, often abbreviated as TG, are the main constituents of vegetable oil [98]. A 

triglyceride (i.e. triacylglycerol) is a molecule with a glycerol backbone to which are attached 

three fatty acid groups (esters), typically 14-22 carbons in length with varying degrees of 

unsaturation [99]. Biodiesel is produced by a reaction of the esters in vegetable oil (or animal fat) 

with an alcohol in the presence of a catalyst to yield mono-alkyl esters and glycerol, which is 

removed [100]. The resulting fuel, “biodiesel”, is comprised of mono-alkyl esters of long chain 
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fatty acids and is registered with the U.S. EPA as a fuel and a fuel additive under Section 211(b) 

of the Clean Air Act (40 CFR Part 79) [100]. Biodiesel has been extensively studied in the 

literature, with most finding engine performance generally favorable with emissions benefits in 

most categories except NOx [101]. Most OEMs now approve biodiesel and petrodiesel blends at 

varying levels (e.g. B5) in their vehicles and farm equipment [102]. Blending is recommended 

due to the difference in biodiesels’ energy content, cold flow properties, storability, materials 

compatibility, and other factors as compared to petroleum [102]. 

 
Figure 1-10. Converting triglyceride (TG) in vegetable oil to fatty acid methyl esters (FAME) via 

transesterification.  
 

1.7.5 Renewable Diesel (R100) 

Vegetable oil can also be converted into non-ester renewable fuels that are pure 

hydrocarbons and indistinguishable from their petroleum counterparts. These fuels, referred to as 

renewable diesel, meet the standards of ASTM D975 (Standard Specification for Diesel Fuel 

Oils) and are therefore considered “drop-in” alternatives to petroleum. Renewable diesel 

eliminates the need for blending, equipment modifications, or infrastructure changes. It has the 

same naming convention as biodiesel in that R20 is 20% renewable and 80% petrodiesel. There 

are three primary methods for creating renewable diesel: hydrotreating, hydrothermal processing, 
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and indirect liquefaction [103]. This section will briefly discuss hydrotreating since it was used 

to produce the R100 fuels in this study.  

Hydrotreating (hydrodeoxygenation) is the process of reacting a feedstock with hydrogen in 

the presence of a catalyst under elevated temperature and pressure in order to change the 

chemical properties of the feedstock and remove the oxygen [104]. Recently, several companies 

have begun to use hydrotreating to convert vegetable oils into distillate fuels (there are several 

variations and naming conventions for the process). Hydrotreating produces distillate fuel with 

properties very similar to petroleum. The main byproduct is propane, which has increased value 

compared to glycerol [104].  

 
Figure 1-11. Hydrodeoxygenation of triglyceride to non-ester renewable fuels [105].  

1.8 Conclusions 

The industrial and conventional oilseeds that were used in this research, and the motivation 

for their adoption, were introduced in this chapter. The industrial oilseeds may have advantages 

over conventional options, both in production and in fuel conversion. Cropping systems were 

also discussed to outline how these oilseeds can increase production on existing lands. Finally, 

the fuel pathways used in this research were also introduced.    
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Chapter 2. COMPRESSION IGNITION ENGINE PERFORMANCE AND EMISSION 

EVALUATION OF INDUSTRIAL OILSEED BIOFUEL FEEDSTOCKS CAMELINA, 

CARINATA, AND PENNYCRESS ACROSS THREE FUEL PATHWAYS1 

 
 
 

2.1 Introduction 

2.1.1 Need for biofuels and economical feedstocks 

As the world’s use, demand, and cost of energy in terms of economic and environmental 

impact steadily increase, the need for renewable fuels is greater than ever. The U.S. 

transportation sector’s mandated use of biofuels attempts to alleviate these energy impacts [106]. 

The U.S. military has also turned to biofuels as an important alternative to petroleum fuel. The 

purchase of fuel from foreign markets for military operations has been identified by senior 

military leadership as a key vulnerability [20]. All military branches have recently set use goals 

of alternative fuels that are cost competitive, domestically produced, and have a lifecycle 

greenhouse gas footprint equal to or less than petroleum. Additionally, Department of Defense 

(DOD) officials have said that any alternative fuels for DOD operational use must be derived 

from a non-food crop feedstock [18]. 

Like the larger scale U.S. transportation sector and military users, fuel is very important to 

the agriculture community. Farm use of distillate fuel oil is significant, especially in the 

agricultural centers of the U.S. and other parts of the world. For example, farm use represents 

more than 20% of total fuel consumption in Iowa [107]. The prices paid by farmers for fuel and 

other energy-based inputs nearly tripled from 2002 to 2005, and continue to steadily increase 

[108], [109]. The United States Department of Agriculture (USDA) found higher energy-related 

production costs generally lower agricultural output, raise prices of agricultural products, and 

                                                 
1 Manuscript published in Fuel 136 (2014) 143–155 by A.C. Drenth et al. [137] 
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reduce farm income [110]. In response to these increased fuel input costs, several farmers have 

decided to grow and produce their own biofuels on the farm. This gives them greater control 

over one of their largest input costs. Farm-scale fuel production allows a farmer to avoid retail 

margins and transportation costs of both the crop and fuel. It also has several collateral benefits, 

such as the ability to control the quality of their fuel and gives them protection from fuel 

shortages at critical times like planting and harvest [92], [111], [112], [113]. 

Despite the need for these biofuels, a few issues hinder future growth. One major issue is the 

high cost of traditional biofuel feedstock. Feedstock cost represents 75–80% of the cost to make 

biodiesel [24], [25], [114]. As shown in Figure 2-1, recent grain commodity costs in soybeans 

and other conventional feedstocks have been historically high and are driving this limitation. 

Another issue is that land use requirements of conventional feedstocks are too great to offset a 

significant portion of petroleum use. A recent study estimated that only 6% of petrodiesel 

demand would be satisfied if all U.S. soybean production were dedicated to biodiesel [31]. 

Finally, many traditional biofuel feedstocks also have food uses, creating a ‘‘food versus fuel’’ 

debate. With grains making up 80% of the world’s food supply, some view food and fuel as 

competing interests, and are concerned biofuels drive up the cost of food [13], [29]. 

 
Figure 2-1. U.S. prices received for soybeans [27]. 
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2.1.2 Industrial oilseeds 

Industrial oilseeds are alternative low-cost oilseeds that have great potential to increase 

biofuel use by alleviating the problems outlined above. Due to their non-food nature, they avoid 

any food versus fuel debates. In addition to their high oil yield and quality, industrial oilseeds 

have several agronomic advantages over conventional oilseeds such as a short growing season, 

cold weather tolerance, ability to thrive on marginal lands (salinity, fertility), and low input 

requirements (water, pesticide, fertilizer). These advantages can equate to lower oil production 

costs [13], [43], [44], [45], [48], [49], [55], [62], [65], [115], [116].  

The industrial oilseeds of primary focus for this research were camelina (Camelina sativa 

L.), carinata (Brassica carinata), and pennycress (Thlaspi arvense L.). These oilseeds were 

selected for their ability to grow well in much of the U.S., their compatibility with existing 

agriculture and fuel infrastructure, and potential to see widespread adoption in the near term. 

Several traditional oils used for biofuels were also included in the research: soybean, canola, 

sunflower, and corn. These traditional options were included, not only as a performance baseline, 

but also because this research included previously unexplored fuel pathways. 

The agronomic attributes of the industrial oilseeds camelina, carinata, and pennycress make 

them compatible with off-season cropping, fallow cropping, relay cropping, or other non-

traditional cropping systems. These cropping methods allow for the production of industrial 

oilseeds without competition with other major cash crops, and can increase biofuel feedstock 

production on existing farmlands at low input costs. Not competing with conventional cash crops 

not only helps to keep the cost of production low, it may help the popularity of these oilseeds 

spread. 
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A few examples of how oilseeds are integrated into these cropping systems are given below. 

However, some plant scientists are exploring other interesting alternatives for oilseeds in 

different cropping systems. Camelina is being grown by farmers in the Western U.S. and Canada 

during a period of the year that is normally the fallow portion of a winter wheat rotation. It has 

an estimated renewable fuel yield potential of an additional 100 million gallons per year (MGY) 

without increasing the total number of cultivated acres [117]. Carinata is being explored as an 

off-season crop to soybeans, peanuts, and cotton in the Southern U.S. Yield estimates from this 

cropping system in Florida alone is 40–100 MGY [32]. Pennycress is being explored in the 

Midwestern U.S. as an off-season crop separating a corn-soybean rotation. Yield potential for 

this rotation is 4 BGY, which would be a significant increase over current U.S. total biodiesel 

production [118]. 

The U.S. military has expressed interest in these industrial oilseed feedstocks, and began 

flight trials with camelina based jet fuel in 2010 and carinata based jet fuel in 2012 [58]. The 

United State Air Force (USAF) Chief Scientist recently identified the use of efficient and 

abundant non-food source biofuels as a game changing technology in energy generation for 

2011–2026 [119]. For this new class of oilseeds, the industry’s crushing, fuel processing, and 

distribution infrastructure all need to mature. Senior DOD leaders have called this the classic 

‘‘chicken and the egg’’ scenario. Defense Production Act Title III Programs have been 

established focusing on the creation of an economically viable production capacity for advanced 

drop-in biofuels [22]. Even with these programs, currently most U.S. farmers that would want to 

grow camelina, carinata, or pennycress would not be able to market the crop locally. Using the 

crop to produce on-farm fuel and livestock feed gives a grower a local market for these crops 

until a commercial market matures.  
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2.1.3 Fuel pathways for vegetable oil 

Vegetable oil can be converted to a biofuel for use in compression ignition (CI) engines 

through several fuel pathways. Using straight vegetable oil (SVO) directly as a diesel fuel 

substitute is one of the oldest biofuels [78]. SVO as a petrodiesel substitute has been well 

studied. Several studies have found SVO engine durability issues during long-term use. Carbon 

deposits in the combustion chamber and lubricating oil thickening are problems observed during 

testing [80]. SVO and petrodiesel mixtures have also been researched for several feedstocks and 

volumetric ratios. While recommendations on using SVO as a petrodiesel fuel extender have 

been mixed, several studies have also shown unfavorable results [82], [84], [120], [121], [122], 

[123], [124], [125], [126]. Due to the documented reduction in engine durability during long-

term use in unmodified engines, SVO and SVO + petrodiesel blends were not used in this engine 

performance study. 

One of the main concerns with using SVO directly as a fuel in CI engines is that several fuel 

properties, especially viscosity, vary considerably from petrodiesel. One way researchers have 

addressed this is by blending SVO with various thinning agents other than petrodiesel such as 

ethanol, methanol, 1-butanol, other solvents, or a combination thereof. In some cases, the 

blending agent is normally immiscible with SVO and a surfactant is required. There are other 

names and variations in the literature for this type of blend including hybrid fuels, cosolvents, 

emulsions, and others [93], [94], [127], [128]. In addition to the reduction in viscosity, research 

indicates other potential combustion, fuel property, and emission benefits for some blend types 

[80], [127], [129].  

A triglyceride-blend (TGB), is a variation of this blending/dilution method, formed when 

SVO is mixed with another less viscous fuel (other than petrodiesel), and the resulting solution 



 

29 

 

used as a petrodiesel substitute. E10 gasoline was used to form the TGBs in this study. TGB is a 

naming convention/abbreviation used at Colorado State University (CSU) for this type of 

biofuel, and was used throughout this report. Peer reviewed literature found on this type of blend 

is extremely limited, although several U.S. farmers have been successfully using SVO-gasoline 

blends for several years [97]. Using gasoline as a blending agent has several benefits: it is readily 

available, has high energy content, inexpensive, and is completely miscible and stable with SVO. 

Like other blends of this nature, as compared to biodiesel, producing TGBs are fast, have low 

energy inputs, do not create waste products, and do not require a catalyst [94]. TGBs change the 

physical properties of SVO to be more similar to petrodiesel so they can be used directly in 

unmodified engines. This research investigates the feasibility of TGBs as a suitable on-farm fuel, 

and compares engine performance to petrodiesel and other biofuels. 

Biodiesel was also used as fuel pathway during this evaluation. Conversion of triglycerides to 

esters (biodiesel) also changes fuel properties to be more similar to petrodiesel. Biodiesel from 

conventional feedstocks has been well studied, but engine performance testing using industrial 

oilseeds camelina, carinata, and pennycress as a biodiesel feedstock is limited. Most research has 

focused on biodiesel conversion and quantification studies [53], [65], [118], with some CI engine 

performance data studies using camelina SVO [118]. 

Recently, another alternative method use to convert triglycerides to fuel known as renewable 

diesel holds great promise as a renewable drop-in alternative to petroleum. The U.S. military has 

already identified this fuel pathway as most compatible with military operations [18]. CI engine 

testing using these industrial oilseeds as a renewable diesel feedstock is also limited.  

The main objectives of this research project were to conduct compression ignition engine 

performance testing and emissions evaluation using industrial oilseeds (camelina, carinata, and 
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pennycress) and conventional oilseeds feedstocks (soybean, canola, sunflower, and corn) 

comparing multiple fuel pathways. The research explored if using industrial oilseeds have any 

engine performance differences as compared to conventional biofuel feedstocks. The research 

also investigated how underexplored fuel pathways like TGB and renewable diesel compared to 

petroleum and biodiesel. 

2.2 Experimental setup 

2.2.1 Test fuel preparation 

All testing was performed at the Engines and Energy Conversion Laboratory (EECL) at 

CSU. The vegetable oils used in this evaluation were obtained from various sources; most oils 

were mechanically extracted via screw or expeller oilseed presses and lightly filtered. The 

sources of oil and other testing materials are shown in Table 2-1. Oil extraction and fuel 

preparation methodology was kept consistent with typical farm-scale fuel procedures. Since most 

farm-scale producers do not have access to large scale refining, crude oil was used as the biofuel 

feedstock unless otherwise noted. To evaluate oil feedstock refinement’s effect on engine 

performance and emissions, biofuels produced from both crude and refined, bleached, and 

deodorized (RBD) soybean and corn oil were used in testing. Since vegetable oil quality and 

properties can vary with season, location, and other factors, the same batch of oil was used to 

produce each type of biofuel. 

The TGBs used in the evaluation were formed by filtering SVO with a 10 µm polypropylene 

filter, then blending the SVO with E10 at a 3:1 volumetric ratio. The resulting TGB was 

vigorously agitated in a high-density polyethylene (HDPE) container before filtering again to 1 

µm.  
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SVO was converted to biodiesel in via transesterification (alcoholysis) in a research-scale 

reactor in the EECL. Crude vegetable oil was added to the reactor, recirculated, and heated to 60 

°C. In a separate container, methoxide was prepared from methanol and potassium hydroxide 

(KOH) at a 1:5 M ratio and 1 wt. % KOH. After adding the methoxide to the oil, the mixture was 

recirculated for two hours to help the conversion to fatty acid methyl esters. Following the 

reaction and settling, the lower glycerol layer was separated. The biodiesel was then water 

washed until a neutral pH was obtained, air dried, and filtered to 1 µm before engine testing. 

Applied Research Associates (ARA) and Chevron Corporation created the renewable diesels 

in this evaluation. ARA provided two variations of their Renewable, Aromatic, Drop-in Diesel 

(ReadiDiesel™) produced through their Catalytic Hydrothermolysis (CH) process. One ARA 

described as ‘‘heavy’’ and is intended to meet the Navy Distillate Diesel Fuel specification 

(NATO symbol F-76). The other was described as their ‘‘full boiling range’’ fuel, and is 

intended as a drop-in, #2 petrodiesel substitute. Both were created using carinata oil as feedstock. 

Chevron labeled their renewable diesel as ‘‘experimental hydrotreated renewable diesel’’, and 

was created from camelina oil. Hydrotreating of vegetable oils and the Catalytic 

Hydrothermolysis (CH) process is described in other publications [130]. 
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Table 2-1. Source of testing materials.

 
 

2.2.2 Test engine setup 

Engine performance and emission assessments were conducted using a 4-cylinder, 16 valve, 

turbocharged and intercooled, 4.5 l, 175 hp, John Deere 4045 PowerTech Plus test engine. The 

test engine, shown in Figure 2-2, is configured with a variable geometry turbocharger (VGT), 

exhaust gas recirculation (EGR), and electronically controlled high-pressure common rail 

(HPCR) fuel injection and meets Tier 3/Stage IIIA emissions specifications. The test engine is 

connected to an eddy current dynamometer (Midwest Inductor Dynamometer 1014A). The 

dynamometer and dynamometer controller (Dynesystems Dyn-LocIV) were used to load the 

engine and maintain a constant engine speed and load for each test fuel. The engine’s standard 

fuel tank was filled with dyed off-road petrodiesel used for engine warm-up and cool-down, and 

was use to flush the engine between test fuel runs. A three way solenoid valve and lift pump is 

used to deliver test fuels from an auxiliary fuel tank. Fuel flow is measured by a coriolis meter 

(Micro Motion 2700R11BBCEZZZ) and verified gravimetrically by a precision balance 

(Mettler-Toledo MS32000L). A Kistler Instrument Corporation PiezoStar® pressure sensor 

(6056A41) with glow plug adaptor (6542Q128) was installed in the glow plug port of cylinder 1 
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to record in-cylinder pressure data. A custom system designed in the EECL uses a National 

Instruments PXI-1002 connected to Kistler Type 5010 charge amplifiers to record high-speed 

combustion data from the in-cylinder pressure. An incremental encoder is connected to the 

crankshaft on the engine to provide crankshaft position as well as instantaneous engine RPM. 

Pressure and temperature values for several engine locations can be independently controlled and 

values logged via National Instrument’s data acquisition hardware (DAQ) and LabVIEW virtual 

instrument (VI) software. Engine control unit (ECU) data was also recorded. 

 
Figure 2-2. 4.5 L 175 HP John Deere 4045 at the EECL.  

2.2.3 Exhaust gas sampling and emissions measurement  

The test engine exhaust stream is sampled by two different probes. One averaging probe 

extracts exhaust for gaseous emissions measurement. Criteria pollutant measurements were made 

using a Rosemount 5-gas emissions analysis system that includes chemiluminescence 

measurement of nitric oxide (NO), nitrogen dioxide (NO2) and total oxides of nitrogen (NOx) 

(Siemens NOx-MAT 600), flame ionization detection (FID) of total hydrocarbons (THC) 

(Siemens FIDAMAT 6 Total Hydrocarbon Analyzer), paramagnetic detection of oxygen (O2) 

(Rosemount NGA 2000 PMD), and non-dispersive infrared (NDIR) detection of carbon 

monoxide (CO) and carbon dioxide (CO2) (Siemens ULTRAMAT 6). In addition to the 5-gas 
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emissions analysis system, a Fourier Transform Infrared (FTIR) spectrometer (Thermo Fisher 

Scientific Nicolet 6700) was used to obtain speciated measurement of hydrocarbons through C4, 

and a variety of hazardous air pollutants and volatile organic compounds (VOCs) such as 

formaldehyde, acetaldehyde, and acrolein.  

2.2.4 Particulate matter sampling and measurement  

The second exhaust probe samples a small portion of the exhaust stream for particulate 

measurements. All of the PM measurements were taken after the exhaust sample is diluted with 

clean air in a mini dilution tunnel. The dilution air was first cleaned by a high-efficiency 

particulate absorption (HEPA) filter and then filtered by an activated charcoal filter. A turbine 

flow meter was used to measure the flow rate of clean dilution air. A valve located downstream 

of the turbine flow meter was used to control the dilution ratio. The mixture is passed through a 

residence chamber to simulate particulate mixing with ambient air. Then a portion of the flow is 

pulled from the base of the residence chamber through a PM10 cyclone, which eliminates 

particulates larger than 10 µm.  

The remaining particulates (PM10) are collected on 46.2 mm Teflon filters (Whatman PLC 

7592-104) filter downstream cyclone. The Teflon filters are weighed before and after the test 

using a microbalance (Mettler-Toledo MX5) with a precision of 1 µg. A second cyclone, also at 

the base of the residence chamber, is used to collect PM onto 46.2 mm quartz filters (Whatman 

PLC 1851-047). The quartz filters were subsequently analyzed using a Sunset Labs OC/EC 

Analyzer to determine elemental carbon (EC) and organic carbon (OC) ratios. Finally, a Grimm 

Technologies Sequential Mobility Particle Sizer (SMPS) was also connected to the dilution 

tunnel. The SMPS was used to measure particle size distributions from 10 to 1000 nm. The basic 
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engine test schematic is shown in Figure 2-3 and the mini dilution tunnel schematic is shown in 

Figure 2-4.  

 
Figure 2-3. Basic schematic of engine performance test setup. 

 
Figure 2-4. Schematic of mini dilution tunnel at EECL [131]. 

2.2.5 Testing procedure, operating conditions, and fuel properties  

Engine performance and emissions data was recorded at 50% load and intermediate speed 

setpoints (250 N-m and 1700 rpm), which corresponds to mode 7 of ISO 8178 Non-Road Steady 

Cycle (NRSC) [132]. After switching to test fuel, fuel flow was adjusted to hold desired load, 

and the engine was allowed to stabilize. Once steady state was achieved, data was collected for 
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5-min intervals. Between each run, the engine was operated on petrodiesel to purge the system of 

test fuel. Petrodiesel data was recorded at the beginning, middle, and end of the evaluation. 

Seven feedstocks were evaluated, using three fuel pathways, and for two refinement levels as 

shown in Table 2-2. Not every combination was available due to feedstock availability. Engine 

operating conditions during the testing period are shown in Table 2-3. Several physical 

properties of the test fuels were measured in the Advanced Biofuel Combustion and 

Characterization Laboratory (ABC2) in the EECL. These fuel properties, and the instrument used 

to measure them, are shown in Table 2-4.  

Table 2-2. Engine performance test runs. 
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Table 2-3. Engine operating conditions during testing period. 
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Table 2-4. Physical properties of test fuels.

 
 

2.3 Results and discussion 

2.3.1 Brake specific fuel consumption results 

Brake specific fuel consumption (bsfc) is a frequently used metric to describe engine 

efficiency. A low value for bsfc is desirable since at a given power level less fuel will be 

consumed. Figure 2-5 shows the bsfc for all fuels used in the evaluation grouped by fuel type. 

Error bars indicate the standard deviation in each run. For the petrodiesel runs, the graph 

indicates the median value of the three petroleum runs. The three petrodiesel runs had nearly 
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identical bsfc results, indicating low variability throughout the testing period and a valid 

comparison of feedstocks and fuel types. 

The industrial oilseed derived fuels have very similar performance as compared to the 

traditional oilseeds. Average bsfc for the industrial oilseed biofuels was within ±1.3% of the 

conventional oilseed biofuels for each fuel pathway. Refinement level did not have a significant 

effect on bsfc. Only minor differences were observed between the crude and RBD runs for the 

two feedstocks tested. 

Fuel pathway did have an effect on bsfc. The biodiesel run had a higher bsfc than the TGB 

run for every feedstock. The average bsfc for all biodiesel runs was 246.9 g/kW-hr while the 

average for TGB runs was 239.1 g/kW-hr, a 3.2% reduction. The renewable diesels had lower 

bsfc values than the other biofuel types, with results very similar to the petroleum runs. The 

three-run average for the R100 biofuels was 219.2 g/kW-hr and the three-run average for 

petrodiesel was 222.7 g/kW-hr. The bsfc results are related to the energy content differences of 

the test fuels shown in Table 2-4. 

The bsfc results described above were for fuel flow measured on a mass flow basis. In 

practice, operators typically measure engine efficiency and fuel economy (fuel flow) on a 

volumetric basis – miles per gallon or gallons per hour. When taking in account the density 

differences of the fuel types, the biofuels generally had performance closer to that of petrodiesel 

than on a mass flow basis, due to their higher density. Several TGBs have a volumetric bsfc only 

slightly higher than petrodiesel fuel, with the mean value for all TGBs only 1.9% higher than the 

petroleum runs.  
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Figure 2-5. Brake specific fuel consumption (grouped by fuel type). 

2.3.2 Brake thermal efficiency results  

Brake thermal efficiency can be used to compare two engines if using the same fuel, or 

compare efficiency of an engine using multiple fuels. In general terms, thermal efficiency is how 

efficient an engine can convert the energy in the fuel into useful power. As shown in Figure 2-6, 

all biofuels had higher thermal efficiencies than petrodiesel. Error bars indicate the standard 

deviation in each run. For the petrodiesel runs, the graph indicates the median value of the three 

petroleum runs. The TGBs had a higher thermal efficiency than the B100 fuels for all seven 

feedstocks, with an average thermal efficiency 2% higher than petroleum. Other researchers have 

found biodiesel thermal efficiency similar to petroleum, or in some cases higher than petroleum 

especially at lower speeds [101]. The increased lubricity of the biofuels could cause a reduction 

in engine friction and improved efficiency at this load [101]. For the TGB fuels, the 

improvements in efficiency could also be tied to the improved spray patterns in combustion due 

to explosive vaporization of the low boiling constituents [80]. Additionally, since the heating 
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value of the biofuels is lower, more mass needs to be injected into the combustion chamber. At 

low load, this may be realized as improved jet penetration and air utilization. 

 
Figure 2-6. Brake thermal efficiency. 

2.3.3 Brake specific emission results  

Brake specific emissions (BSE) relate emission mass flow to engine loading. BSE takes into 

account different power levels and fuel composition. Biofuel feedstock type had minimal impact 

on emissions, indicating the industrial oilseeds had similar performance to the traditional 

feedstocks. Fuel pathway did have an effect on emissions. 

The emissions of carbon monoxide for the engine testing are shown in Figure 2-7. The 

biodiesels had a reduction in CO emissions compared to petrodiesel, which is common for 

biodiesel use [133]. The renewable diesels also had slight reductions as compared to petroleum. 

The TGB biofuels had performance similar to petrodiesel for most runs. For all emission 

measurements, the graphs indicate the median value of the three petroleum runs with the high 
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and low values indicated by error bars. The errors bars indicate a small amount of variability in 

the three petrodiesel runs for CO measurements.  

The emissions of oxides of nitrogen for the engine testing are shown in Figure 2-8. The 

biodiesels had a small increase in NOx emissions compared to petrodiesel, which is common for 

biodiesel use [133]. The TGB and R100 biofuels had performance similar to petrodiesel, or slight 

reductions for some runs. In one of the few categories of emissions where petrodiesel typically 

outperforms biodiesel, the renewable diesel average was 6% lower for NOx emissions than 

petroleum. The errors bars indicate a small amount of variability in the three petrodiesel runs.  

The emissions of non-methane hydrocarbons (NMHC) for the engine testing are shown in 

Figure 2-9. The biodiesels had similar or slight decreases in NMHC emissions compared to 

petrodiesel. A decrease in NMHC emissions is common for biodiesel use, although emissions 

can vary with engine speed and load [133]. Some TGB biofuels had higher NMHC emissions 

than petrodiesel. The R100 biofuels had performance similar to petrodiesel. The errors bars 

indicate a higher amount of variability in the three petrodiesel runs as compared to other 

emission measurements. There was no trending with time of day, or other known factors, that 

may have contributed to this increased variability over other emission measurements.  

The emissions of volatile organic compounds (VOCs) during the engine testing are shown in 

parts per million (ppm) in Figure 2-10. The EECL’s FTIR groups VOCs as non-methane, non-

ethane, and non-aldehydes hydrocarbons below C4. The biodiesels had a slight decrease 

compared to the other fuels. TGB and R100 emissions were similar to petrodiesel. VOCs can 

create photochemical smog under certain conditions, so it important that biofuels have similar or 

reduced VOC emissions as petrodiesel [134]. The emissions of formaldehyde (CH20) during the 

engine testing are shown in ppm in Figure 2-11. B100 and R100 emissions were similar to 
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petrodiesel. The TGB biofuels had increased emissions of CH20 as compared to the other fuels. 

The gasoline used as a blending agent for the TGB fuels contained 10% ethanol (E10). Ongoing 

TGB testing at the EECL will evaluate ethanol’s contribution to formaldehyde and other 

emissions by sweeping ethanol in the blend from 0% to 85% (E85). Despite the increase for the 

TGBs, the overall levels were small, with all test runs less than 5 ppm. The remaining 

hydrocarbons measured by the FTIR were all small in concentration, and did not show 

significant differences between feedstocks or fuel pathways. 

 
Figure 2-7. Brake specific carbon monoxide results. 
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Figure 2-8. Brake specific oxides of nitrogen (NOx) results. 

 
Figure 2-9. Brake specific non-methane hydrocarbon results. 
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Figure 2-10. Emissions of volatile organic compounds. 

 
Figure 2-11. Emissions of formaldehyde. 

2.3.4 Particulate matter results  

Particulate matter (PM) measurements included total mass emissions (g/hr), elemental carbon 

(EC) to organic carbon (OC) ratio, and particle size distribution using a scanning mobility 
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particle sizer (SMPS). Total PM mass emissions were measured gravimetrically via collection 

onto Teflon filters. The resulting brake specific particulate matter results are shown in Figure 

2-12. At this engine load and speed, most biofuels had PM emissions slightly higher than 

petrodiesel. Typically, biofuels use shows a reduction in PM emissions [133]. Due to limited 

feedstock availability, data collection was limited to 5 min points and the resulting PM collected 

was near the limit of quantification (LOQ) for each run. Increased run times during future testing 

will increase the understanding of PM emission from these feedstocks and fuel pathways. PM 

emissions can also change with engine operating parameters; further study using additional 

engine operating points would also give a better comparison of feedstock and fuel types with 

respect to PM emissions. 

Elemental carbon (EC) and organic carbon (OC) were measured via collection on quartz 

filters, which were subsequently analyzed using a Sunset Labs OC/EC Analyzer. Unfortunately, 

due to the small amount of PM collected on the quartz filters during each run, all the 

measurements were above the LOQ.  

A Grimm Technologies Sequential Mobility Particle Sizer (SMPS) was used to measure 

particle size distributions from 10 to 1000 nm – note that in the subsequent figure, the 

distribution is only shown to 100 nm for increased resolution. In general, each fuel feedstock and 

type produced trends in size and distribution that were similar to petroleum. Figure 2-13 shows 

the results for soybean biofuels. There was no significant difference in crude and refined fuel 

particle results for the soybean biodiesel runs, but a small reduction in peak particle count for the 

RBD TGB run.  
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Figure 2-12. Brake specific particulate matter. 

 
Figure 2-13. Particle size versus counts – soybean feedstock. 
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2.3.5 Heat release results  

A high-speed pressure transducer was installed in the glow plug port of cylinder 1 as 

described in Section 2.2.2. The in-cylinder high-speed pressure data can be plotted as a function 

of crank angle. The known geometry of the cylinder and connecting rod can then be used to 

calculate the cylinder volume as a function of crank angle. Pressure versus volume curves can 

then be used to calculate the apparent rate of heat release (J/deg) due to fuel combustion in the 

cylinder. A low pass Inverse Chebyshev filter was used to filter the oscillations due to the time 

derivative of pressure in the heat release curves. 

Standard injection timing for this engine was used during testing. Except during startup, the 

John Deere 4045 test engine uses a single injection event. The engine ECU uses a lookup table 

based on throttle position, engine speed, and engine temperatures to determine injection timing. 

Even though the same engine speed and torque set points were used for each run, there were 

small injection timing differences due to differences in physical properties of fuels [135] and 

small fluctuations in operating conditions. The injection timing averages for each fuel type are 

shown in Table 2-5. The R100 runs had injection timing similar to petrodiesel. The B100 and 

TGB biofuels both had slight injection delays of 0.70° and 0.92° respectively.  

The heat release curves of the biofuels were similar to petrodiesel with a few differences. 

Figure 2-14 shows the results for carinata biofuels, as compared to petrodiesel. The peak of the 

heat release profile is slightly smaller for the biofuels. Reductions in the peak rates of heat 

release were expected due to the lower energy contents of the biofuels [136]. The B100 and TGB 

heat releases are very similar. The renewable diesel peak is more similar in peak and shape to 

petroleum than the other biofuels. The heat release curves for the soybean biofuels as compared 

to petrodiesel are shown in Figure 2-15. The trends in fuel type are similar to the carinata results 
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in Figure 2-14. The refinement level of the vegetable oil feedstock did not have a significant 

effect on the heat release curves. The crude and RBD results were very similar.  

The location of 10% mass fraction burn duration is shown in Figure 2-16. The test engine 

was insensitive to fuel type, with similar results for each fuel pathway. The 50% and 10–90% 

burn duration were also analyzed, and similarly did not show major differences between fuel 

pathway or feedstock.  

Table 2-5. Injection timing of test fuels. 

 

 
Figure 2-14. Heat release of carinata biofuels. 
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Figure 2-15. Heat release of soybean biofuels. 

 
Figure 2-16. 10% mass fraction burn duration for test fuels. 
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2.4 Conclusions 

Industrial oilseeds camelina, carinata, and pennycress had very similar engine performance to 

the traditional oils in this evaluation. Fuel consumption, thermal efficiency, and emissions were 

all were typical as compared to traditional oilseed feedstocks. For example, average bsfc for the 

industrial oilseed biofuels was within ±1.3% of the conventional oilseed biofuels for each fuel 

type. A recent camelina biodiesel conversion study found camelina biodiesel did not meet ASTM 

D6751 standards for cetane number, distillation temperature, and oxidation stability, which was 

suggested as serious drawbacks for camelina as a biodiesel feedstock [51]. However, this engine 

performance study found no engine operability, performance, or emissions issues when using 

camelina fuels or significant differences from the other feedstocks. Durability testing would 

better quantify engine performance of using camelina biodiesel in the long term.  

Fuel pathway did have small impacts on engine performance. The engine performance of 

TGBs was of special interest since they are easy to produce and inexpensive in farm-scale 

scenarios. Overall engine performance was favorable in all categories tested. TGBs had lower 

fuel consumption and a higher thermal efficiency than biodiesel for each feedstock tested. For 

several performance categories, TGB performed similar to petrodiesel. For example, the mean 

value for TGBs volumetric bsfc was only 1.9% higher than the petroleum runs. TGB combustion 

characteristics were similar to biodiesel. Initial research with TGBs indicates it may be an ideal 

candidate for farm-scale fuel production, which will bridge the gap for these industrial oils until 

the commercial market matures. The farm-scale fuel production procedures (i.e. crude oil, no 

pretreatments) did not negatively affect engine performance or emissions in a modern Tier 3 CI 

engine. Besides the on-farm use, TGBs may also be an ideal fuel pathway for using locally 
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produced plant oils worldwide in other niche markets, such as rural areas or in developing 

nations.  

Biodiesel is also a viable fuel pathway for farm-scale scenarios. Biodiesel use offers several 

emission benefits. Biodiesel runs had reductions in CO, NMHC, VOC, and CH20 emissions as 

compared to TGB runs. Biodiesel performance is much better understood than TGBs during 

long-term use. Most engine manufactures also certify their engines biodiesel compatible, which 

may be a major factor for farmers using modern equipment under warranty when choosing 

between biodiesel and TGB options. 

The renewable diesels in the evaluation had performance as good as or better than petrodiesel 

in nearly category. These fuels are intended as ‘‘drop-in’’ alternatives, and this study shows they 

meet their goal. The renewable diesels offer petroleum-like engine performance and combustion 

characteristics, while still maintaining some of the benefits of biodiesel such as reduced CO 

emissions. NOx emissions were also 6% lower for renewable diesel runs than petroleum.  

Additional studies should focus on investigating TGB fuel properties for multiple blend 

ratios. In this study a 75% vegetable oil to 25% gasoline volumetric ratio, which was compatible 

with a modern CI engine without modification, was used. An extensive fuel property evaluation 

should be used to indicate how important fuel properties like density, viscosity, flash point and 

cold flow characteristics change with TGB blend ratio. Future engine testing at the EECL should 

involve changing ethanol content in the gasoline, to quantify ethanol’s effect on engine 

performance. While the initial engine performance testing was favorable, on-going long-term 

durability testing at the EECL should assess the impact of using TGBs in the combustion 

chamber, fuel system, and after-treatment components as compared to using SVO, biodiesel, and 

petrodiesel fuels.   
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Chapter 3. FUEL PROPERTY QUANTIFICATION OF TRIGLYCERIDE BLENDS 

WITH AN EMPHASIS ON INDUSTRIAL OILSEEDS CAMELINA, CARINATA, AND 

PENNYCRESS2 

 
 
 

3.1 Introduction 

3.1.1 Industrial oilseed’s role in a constrained agronomic environment 

Industrial oilseeds camelina (Camelina sativa L.), carinata (Brassica carinata), and 

pennycress (Thlaspi arvense L.) are alternative non-food oilseeds which have great potential to 

increase biofuel use and reduce cost. The positive agronomic attributes of these oilseeds allow 

them to fit into cropping systems and rotations that increase biofuel production on existing lands 

[137]. One example is fitting into the wheat-fallow rotation common in the Western U.S. Due to 

their short growing season and low water demands, camelina and carinata could be grown during 

this normally fallow period. Instead of a fallow period, an oilseed offers growers additional 

revenue from the energy crop as well as increased weed control, decreased soil erosion, carbon 

sequestration, disruption of undesirable pest cycles, and other benefits for the follow-on crop 

[138].  

Oilseeds may also play an important role in the future of agriculture in areas that face harsh 

growing conditions. Industrial oilseeds have shown reduced water demand compared to 

traditional oilseed crops in some scenarios [45]. For example, agronomic trials have found 

camelina is better able to compensate for early water deficits [139] and has less aggressive soil 

water extraction than some traditional oilseeds [140]. Another benefit is fall planted and spring 

harvested oilseeds have peak water needs during a traditionally low water demand period [141]. 

Finally, these industrial oilseeds may also work well in fields that are under water leasing 

                                                 
2 Manuscript published in Fuel 153 (2015) 19–30 by A.C. Drenth et al. [179] 
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arrangements. This arrangement may be especially important to Colorado and other regions with 

water constraints. More than 80% of Colorado’s 5.2 million population lives in the 12 county 

region of the Front Range [142]. The population growth in this region has been higher than the 

national average for over 20 years, with projected population to nearly double between year 2000 

and 2040 [143]. Population growth can create a struggle for water between agriculture and 

municipal uses. Rotational fallowing or other water leasing arrangements are alternatives that 

would allow water resource availability for municipal use while still sustaining agricultural 

production. For example, this type of ag/urban water sharing agreement is under study in 

Colorado’s Arkansas River Basin and would provide an estimated 9,100 acre-feet of water 

annually by 2050 [144].  

Despite the promise of these industrial oilseeds, the commercial market for them is still 

maturing. For example, it was recently estimated camelina is only grown on ~1% of the wheat-

fallow acreage it is well suited for, with 95% of camelina oil production used in biofuel test 

programs [145]. Until the commercial market matures, the use of these oilseeds to produce on-

farm fuel may be the only viable market in some areas. Recent studies have found the economics 

for farm-scale fuel production can be favorable in some scenarios [92], [112]. The quantity of 

fuel used on farms is significant; in some Midwestern U.S. states farm use of distillate fuel 

represents more than 20% of total consumption [146].  

3.1.2 Fuel pathways for vegetable oil 

Due to the great potential of oilseeds camelina, carinata, and pennycress in this region, the 

Engines and Energy Conversion Laboratory (EECL) at CSU recently completed a compression 

ignition engine (diesel engine) performance and emission evaluation of these feedstocks using 

multiple biofuel pathways [137]. The objective of the study reported herein is to build on the 
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engine testing results with a comprehensive evaluation of several fuel properties for these 

promising oilseeds, including three industrial oilseeds (camelina, carinata, pennycress) and four 

conventional (soybean, canola, sunflower, corn) biofuel feedstocks. Fuel property evaluation 

compared the more traditional biofuel pathways of straight vegetable oil (SVO), biodiesel 

(B100), and renewable diesel (R100) [116], [130] with the less known triglyceride blends (TGB) 

pathway. A triglyceride-blend (TGB) is formed when SVO is mixed with another less viscous 

fuel (other than petrodiesel), and the resulting solution used as a petrodiesel substitute [137]. E10 

gasoline was used to form the TGBs in this study unless otherwise noted. Peer reviewed 

literature found on this type of blend is extremely limited, although several U.S. farmers have 

been successfully using SVO–gasoline blends for several years [97]. Using E10 gasoline as a 

blending agent has several benefits: it is readily available, has high energy content, inexpensive, 

and has shown complete miscibility and stability with SVO during EECL testing. Like other 

blends/emulsions of this nature, as compared to biodiesel, producing TGBs is fast, requires low 

energy inputs, does not create waste products, and does not require a catalyst [94], [137]. They 

can be splash blended, and do not need changes in temperature, pressure, or large amounts of 

agitation to form a solution. TGBs change the physical properties of SVO to be more similar to 

petrodiesel; the recent engine testing at the EECL has found this type of blend compatible with 

modern direct injection (DI) engines without modification [137]. Fuel property evaluations for 

these industrial oilseed feedstocks have been completed for the biodiesel (B100) fuel pathway 

[49], [51], [53], [65], but not for the R100 and TGB pathways. TGB fuel property data has also 

not been reported for the conventional oils of this study. This research explores how several key 

fuel properties of industrial oilseeds compare to conventional biofuel feedstocks. There is no 

ASTM standard for TGB fuels, so the results of the properties tested are directly compared to 
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petrodiesel and to the other renewable fuel pathways. Previously mentioned engine testing used 

TGBs formed using a 75% SVO to 25% E10 gasoline volumetric ratio. The fuel property study 

also explored how other blend ratios affect fuel properties. 

3.2 Materials and methods 

3.2.1 Test fuel preparation 

Oil extraction and fuel preparation methodologies for SVO, B100, and TGB fuels were kept 

consistent with typical farm-scale fuel procedures. Since most farm-scale producers do not have 

access to large scale refining, crude (unrefined) vegetable oil was used as the biofuel feedstock 

unless otherwise noted. To evaluate the effect of oil feedstock refinement on fuel properties, 

biofuels produced from both crude and refined, bleached, and deodorized (RBD) soybean and 

corn oil were used in testing. The sources of oil and other testing materials are shown in Table 

3-1. 

The TGBs used in the evaluation were formed by initially filtering the SVO with a 10 µm 

polypropylene filter, then blending with E10 gasoline at various volumetric ratios. The resulting 

TGB was transferred to a high-density polyethylene (HDPE) container, and then agitated by 

manually shaking the container for ~30 s to ensure adequate mixing before filtering again to 1 

µm.  

Biodiesel is defined by ASTM as fuel comprised of mono-alkyl esters of long chain fatty 

acids derived from vegetable oils or animal fats [100]. For this study, SVO was converted to 

biodiesel (B100) via transesterification (alcoholysis) in a research-scale reactor in the EECL. 

Vegetable oil was added to the reactor, recirculated, and heated to 60 °C. In a separate container, 

methoxide was prepared from methanol and potassium hydroxide (KOH) at a 1:5 molar ratio and 

1 wt. % KOH. After adding the methoxide to the oil, the mixture was recirculated for two hours 



 

57 

 

to promote the conversion to fatty acid methyl esters. Following the reaction and settling, the 

lower glycerol layer was separated. The biodiesel was then water washed until a neutral pH was 

obtained, air dried, and filtered to 1 µm.  

Renewable diesel is a non-ester renewable fuel that is pure hydrocarbons and 

indistinguishable from petrodiesel but made from biomass [130]. Applied Research Associates 

(ARA) and Chevron Corporation provided the renewable diesels (R100) in this evaluation. ARA 

provided two variations of Renewable, Aromatic, Drop-in Diesel (ReadiDiesel). ReadiDiesel is 

produced using the Biofuels ISOCONVERSION (BIC) process, which combines ARA’s 

Catalytic Hydrothermolysis (CH) process and Chevron Lummus Global’s (CLG) 

hydroprocessing technology. One ReadiDiesel sample was described as their ‘‘heavy blend’’ and 

is intended to meet the Navy Distillate Diesel Fuel specification (NATO symbol F-76). The other 

sample was described as their ‘‘full boiling range’’ fuel, and is intended as a drop-in, #2 

petrodiesel substitute. Both were produced using carinata oil as feedstock. Chevron Corporation 

labeled their renewable diesel as ‘‘experimental hydrotreated renewable diesel’’, which was 

produced from camelina oil. Hydrotreating of vegetable oils and the catalytic hydrothermolysis 

process is described in other publications [130].  

Table 3-1. Source of testing materials. 
MATERIAL SOURCE LOCATION 

Carinata Oil Agrisoma Bioscience, Inc. Saskatoon, SK, Canada 

Camelina Oil ClearSkies, Inc. Bozeman, MT, USA 

Pennycress Oil Arvens Technology, Inc. Peoria, IL, USA 

Soybean Oil South Dakota Soybean Processors, LLC Volga, SD, USA 

Corn Oil Glacial Lakes Energy Watertown, SD, USA 

Canola Oil Painted Rock Farms Stratton, CO, USA 

Sunflower Oil Prairie View Farms Penokee, KS, USA 

Carinata R100 Applied Research Associates, Inc. Panama City, FL, USA 

Camelina R100 Chevron Corporation Richmond, CA, USA 

Diesel Fuel, Grade No. 2-D S15 Team Petroleum, LLC Fort Collins, CO, USA 

Ethanol, ACS/USP Grade Pharmco-Aaper Brookfield, CT, USA 

E0 Gasoline, 87 octane Hill Sinclair Greeley, CO, USA 

E10 Gasoline, 87 octane  Agfinity Cooperative Eaton, CO, USA 
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3.2.2 Fuel property test runs 

Biofuels should have similar physical properties to the petroleum fuels they intend to replace. 

Several important fuel properties were measured for all test fuels. Seven feedstocks were 

evaluated, using four fuel pathways, and for two refinement levels as shown in Table 3-2.  

To test how the blend ratio of SVO to E10 gasoline affects TGB fuel properties, a blend 

sweep of the three industrial oilseeds and one traditional oilseed (canola) was also performed for 

some of the physical properties for the following SVO to E10 volumetric ratios: 95/5, 85/15, 

75/25, 65/35, 55/45. Blends of SVO and petrodiesel, or dilution mixtures, have also been 

researched for some oilseeds [93]. This fuel option was not included in the engine performance 

study, but was included in this fuel property evaluation to compare E10 gasoline and petrodiesel 

as blending agents for SVO. Canola oil was also blended with petrodiesel at the same five ratios 

to determine how fuel properties compare to blending canola SVO and E10.  

Table 3-2. Fuel property evaluation test runs. 

 
 

3.2.3 Fuel property test methods 

An Anton Paar SVM3000 Viscometer was used to measure viscosity of the test fuels of 

Table 3-2 and blend sweeps in accordance with ASTM test method D445. Viscosity is a very 

important quality of fuel. A high viscosity, often thought of as fluid thickness, will result in 
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increased wear or malfunction of engine components. High viscosity fuels have been linked to 

incomplete combustion that in turn causes ring sticking and engine deposits [93]. Reducing 

viscosity to levels suitable for engine use is the primary reason vegetable oil is converted to 

biodiesel through transesterification or reduced through another fuel pathway [93], [103].  

The density and speed of sound of the test fuels of Table 3-2 and blend sweeps was 

determined by an Anton Paar DSM5000 in accordance with ASTM D4052. It is important 

petrodiesel substitutes have similar density and speed of sound to petrodiesel for compatibility 

with the engine fuel system. 

A Petrolab 12-1771 Automatic Flashpoint Tester was used to determine flashpoint of the test 

fuels of Table 3-2 in accordance with ASTM D93. The flash point specification is not directly 

related to engine performance, but of importance in connection with legal requirements and 

safety precautions involved in fuel handling and storage [100]. 

Energy content of the test fuels of Table 3-2 was determined by an IKA C200 bomb calorimeter 

in accordance with ASTM D240. IKA C 723 benzoic acid calibration pellets were used to verify 

the calibration of the calorimeter. All calibration runs had errors less than 1%. IKA C 9 gelatin 

capsules were used to contain the test fuel to prevent any volatility loss of fuel during the 

calorimeter testing prior to ignition. Calorific values were also obtained for a blend sweep of 

carinata TGB. 

Cold Filter Plugging Point (CFPP) was measured for the test fuels of Table 3-2 

and blend sweeps in accordance to ASTM D6371 using a Lawler Manufacturing Company’s 

Automatic Cold Flow Property Tester to give an indication of cold weather performance. The 

CFPP of a fuel provides an estimate of the low temperature vehicle operability [147], and gives a 

relative comparison of cold weather performance for all test fuels.  
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TGB lubricity has not previously been tested. To evaluate TGB lubricity, a High Frequency 

Reciprocating Rig (HFRR) test was performed in accordance with ASTM D6079 (60 °C) and 

compared to published data. A 75% crude soybean oil + 25% E10 gasoline based TGB was used 

in the HFRR. Soybean oil was used as the feedstock since more published data was available for 

comparison than the industrial oils in this study. A PCS Instruments (London, UK) Model 

HFRHCA8 HFRR lubricity tester was used to evaluate TGB lubricity. At the conclusion of each 

test, the ball was visually inspected for wear and the dimensions of an observed wear scar (µm) 

on the ball were averaged. All wear scar data are the averages of two replicates. A summary of 

the fuel property test methods is shown in Table 3-3. 

Table 3-3. Fuel property test methods. 
FUEL PROPERTY MEASUREMENT INSTRUMENT METHOD 

Viscosity Anton Paar SVM3000 ASTM D445 

Density Anton Paar DSM5000 ASTM D4052 

Speed of sound Anton Paar DSM5000 ASTM D4052 

Heating value IKA C200 ASTM D240 

Flashpoint Petrolab 12-1771 ASTM D93 

Cold Filter Plugging Point Lawler DR4-14  ASTM D6371 

Lubricity PCS Instruments HFRHCA8 ASTM D6079 

 

3.2.4 Test methods to evaluate the physical and chemical stability of TGBs 

TGBs (mixtures of SVO, gasoline, and ethanol) must be homogenous and stable to be 

considered a viable petrodiesel substitute. If a blend of the three components were to separate 

during storage or in the engine fuel system, it could cause damage to engine components. The 

previously mentioned engine tests and fuel property tests in this paper all used E10 as a blending 

agent, which has shown complete solubility with SVO during storage and previous engine 

testing. The gasoline acts as a co-solvent for the blend to solubilize the otherwise nearly 

immiscible vegetable oil–alcohol (ethanol) mixture into a single-layer (isotropic) solution [94]. 

This study explored solubility of TGBs at several ratios of the three components to determine if 

higher levels of ethanol could be used. TGBs are a way to use ethanol in a diesel engine. Other 
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researchers have found ethanol blends can reduce engine emissions in some cases [148]. Blender 

pumps, now available at many locations in the U.S., would allow TGB users to easily select the 

amount of ethanol in their gasoline at the pump.  

The solubility of the three-component blend was tested using phase diagrams. The 

volumetric content of SVO to gasoline to ethanol was varied in 10% increments using an 

Eppendorf Reference pipette. Certified ethanol free gasoline (E0) was used as well as 99% purity 

ethanol. Anhydrous ethanol was used as a starting point, with 1% distilled water by mass added 

to precisely control water content. This water content corresponds with the maximum allowed by 

ASTM standard for ethanol fuel blends [149]. The resulting blend was stored in Chase Scientific 

screw thread glass culture tubes and shaken until thoroughly mixed. The tubes were left 

motionless for 10 days at room temperature and then visually inspected for separation. Diagrams 

were constructed for industrial oilseeds camelina, carinata, and pennycress, and traditional oil 

canola. This procedure was then repeated at a reduced (0 °C) and elevated (40 °C) temperature to 

simulate temperature ranges that could occur during fuel storage or during engine operation. 

In addition to the phase (physical) stability of TGBs, the chemical stability of the fuel was 

tested to ensure no degradation of the blends over the expected timescale of use. Users of diesel 

fuels should strive to minimize storage, with ASTM defining long-term storage of biodiesel as 

greater than 6 months [100] and petrodiesel fuel as greater than 12 months [147]. Chemical 

reactions in TGBs could cause the formation of gums or sediments and plug filters or cause 

damage to the fuel injectors. Visual inspection of TGB samples stored for one year at the EECL 

did not reveal any sediments or separation. 1H Nuclear magnetic resonance (NMR) spectroscopy 

was selected as an analysis tool to determine if there were any chemical changes or degradation 

in the components that were not visual. 1H NMR has been used by others as an analytic tool to 
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determine vegetable oil quality and origin [150] and as a biodiesel production monitoring 

mechanism [151]. 1H NMR has also been used to determine the concentration measurement of 

aromatic, olefinic and aliphatic fractions in gasoline samples [152]. The primary goal for this 

NMR testing was to determine if making TGBs (mixing SVO + E10 gasoline) can cause any 

chemical changes in any of the blend components, or if they remain only physically bonded 

when in solution. 

To test the chemical stability, TGBs were formed from carinata oil and E10 gasoline. Five 

volumetric vegetable oil to E10 ratios (v/v) of TGBs were used in NMR testing including 95/5, 

85/15, 75/25, 65/35, and 55/45. Approximately 24 h after the blends were mixed, 75 µL of the 

blends were dissolved in 675 µL deuterated chloroform. 1H NMR spectra were collected on a 

500 MHz Varian Inova (Santa Clara, CA) NMR spectrometer equipped with VJ-4.x software and 

using a 5 mm broadband probe. The following parameters were used: 5.477 µs 90 pulse lengths, 

8003 Hz spectral widths, 32 transients with 32 k data points and 30 s relaxation delays. Chemical 

shifts were referenced in parts per million (ppm) relative to the signal of chloroform at 7.26 ppm. 

Carinata SVO and E10 were also analyzed by themselves to determine a baseline of each blend 

component. Finally, carinata biodiesel (B100) and carinata renewable diesel (R100) samples 

were also used in the analysis.  

3.3 Results and discussion 

3.3.1 Solubility and stability of triglyceride blends 

The results of the TGB solubility testing described in the previous section are shown for 

carinata in Figure 3-1. The oil type had a small effect on solubility, but the general trends were 

the same for each feedstock. The results show ethanol content in the gasoline (higher E#) can 

induce phase separation in TGBs due to the differences in chemical structure of the oil and 
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alcohol [94], [148], [153]. The E# by TGB phase position is ethanol %/{ethanol % + gasoline 

%} by volume. For example, the TGB on the second row from the bottom, fifth from the left is 

formed by mixing 50% SVO, 10% ethanol, and 40% gasoline; the E# of this blend is E20. 

Previous engine testing of TGBs used E10 gasoline since most of the U.S. fuel supply now 

contains 10% ethanol. Based on our results, we recommend users of TGBs to limit ethanol 

content in the gasoline–ethanol portion of the blend to 10% (E10) to ensure no TGB phase 

separation over a wide temperature range. Both elevated and reduced temperatures induced 

further phase separation as compared to room temperature. At the lower temperature, some 

TGBs with high vegetable oil content began to crystalize or gel.  

Previous research using blends of petrodiesel, biodiesel, and ethanol found water content in 

the ethanol has a significant effect on blend solubility [148]. During that study, the three-

component blend was completely soluble across the phase diagram using 99.9% and 99.5% 

purity ethanol, but the blends were completely insoluble for 95% purity hydrous ethanol. The 

high polarity of water enhances the polar part in an ethanol molecule and decreases compatibility 

with non-polar molecules [148]. The TGB phase diagrams for this study were constructed with 

the highest water content allowed by ASTM standard for gasoline–ethanol blends, and should 

represent the worst case scenario for TGB separation - although users should be aware that 

additional moisture could be introduced through the feedstock oil or be absorbed from the 

ambient air due to the hygroscopic nature of ethanol. National Renewable Energy Laboratory 

(NREL) fuel surveys have found all samples of gasoline–ethanol blends met the water 

specification [154]. The 1% water content used in this study should represent the worst-case 

scenario found in gasoline–ethanol blends at the pump, and is higher than would be expected in 

gasoline with low ethanol content. 
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To test the long-term phase physical stability of TGBs, camelina, carinata, pennycress, and 

canola TGBs made from 75% oil and 25% E10 were also stored for 1 year at room temperature 

and visually inspected. No separation was observed.  

 
Figure 3-1. Carinata TGB phase diagrams at: room temperature (A), 40 °C (B), 0 °C (C), and 

legend (D). 
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3.3.2 Chemical stability of triglyceride blends 

Figure 3-2 shows the 1H NMR spectra for carinata SVO, E10, and carinata TGB overlaid. 

The proton resonances of the triglyceride fatty acid chains and glycerol backbone of the carinata 

oil in SVO correspond to what was reported in the literature [155], with olefinic protons of 

unsaturated fatty acids resonating at 5.3–5.5 ppm, glycerol protons resonating at 5.26, 4.1 and 

4.3 ppm, methylene protons of polyunsaturated and unsaturated acyl chains at 2.78 and 2.05, 

protons of acyl moieties in triacylglycerols at 2.3 and 1.6 ppm, methylene envelope protons at 

1.2 ppm, and methyl protons of polyunsaturated acids at 0.91 ppm and of saturated and 

unsaturated acids at 0.88 ppm. The proton resonances of aromatic (6.7–8.0 ppm), olefinic (4.6–

6.0 ppm) and aliphatic (0.5–3.3 ppm) hydrocarbon protons in the E10 correspond to those 

reported for gasoline and ethanol (multiplets around 3.7 and 1.3 ppm) [152]. Comparing the 

different 1H NMR spectra in Figure 3-2 demonstrate that TGBs are a sum of the constituent parts 

without any chemical changes. The TGB in Figure 3-2 was formed with a 75/25 volumetric ratio 

of SVO to E10. The other volumetric ratios used in testing had similar results. 

This procedure was then repeated with samples from storage to ensure no chemical changes 

occurred over a longer timescale. First, the NMR process was repeated on the same sample three 

days after it was initially blended. Finally, a one year old sample was also analyzed. The time 

sequence testing described here all used a 75/25 blend. The results were overlaid in Figure 3-3 

and confirm the chemical stability of TGBs through one year of storage. A sub-objective of the 

NMR time sequence testing was also to try to capture the outgassing phenomenon of TGBs. As 

described in Section 3.2.1, when mixing the TGBs, E10 and SVO were agitated in a HDPE 

container. This mixing can increase the pressure in the container due to the volatility of gasoline, 

and thus should be outgassed (vented) before storage. The samples in the aging and outgassing 
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experiments were not dissolved in deuterated chloroform as a locking solvent to ensure no 

interference on results and the results were manually referenced relative to the ethanol signal 

(multiplet at 3.6 ppm) for comparison. Evidence of venting was obtained from a relative decrease 

after 1 year in the ethanol peak integral at 3.6 ppm, normalized against one of the glycerol proton 

peak areas at 5.1 ppm, due to volatility of the ethanol. The aliphatic proton peaks near 0.88 ppm 

also show a reduction in normalized peak integral between day 0 and day 2, which was likely 

due to the more volatile short chain hydrocarbons of the gasoline venting to atmosphere during 

the aging and venting process. 

The carinata B100 and R100 samples were also analyzed and compared to SVO. The 

biodiesel results are shown in Figure 3-4, and show the chemistry changes through 

transesterification to break the glycerine section from the fatty acid section and produce fatty 

acid methyl esters with a methoxy proton singlet at 3.65 ppm. These NMR results for carinata 

B100 were similar to other NMR research where caster and soy-based biodiesel were studied 

[156]. The change in chemistry for the R100 fuel from SVO is also shown in Figure 3-4. The 

Catalytic Hydrothermolysis process used to make the R100 converts triglycerides to a mixture of 

unsaturated straight chain, branched, and cyclic hydrocarbons [130]. 
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Figure 3-2. Carinata TGB and blend components NMR results. 

 
Figure 3-3. Carinata TGB time sequence NMR results. 
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Figure 3-4. Carinata B100 and R100 NMR results. 

3.3.3 Viscosity 

The viscosity results for the fuels of Table 3-2 are displayed in Figure 3-5. The TGB results 

in Figure 3-5 were from a 75% SVO to 25% E10 blend. The acceptable range for kinematic 

viscosity by ASTM standard for B100 fuels @ 40 °C is 1.9–6.0 mm2/s and for Grade No. 2-D 

S15 petrodiesel @ 40 °C is 1.9–4.1 mm2/s [100], [147]. As shown by Figure 3-5, the conversion 

of SVO to B100 and TGB both reduced the viscosity, but there was a greater reduction through 

the transesterification process than by blending the oil with 25% E10. TGB viscosity results were 

also more variable than the B100 results; a higher viscosity SVO resulted in a higher viscosity 

TGB. The R100 fuels had viscosity values similar to petrodiesel. There were no significant 

differences between the crude and RBD results. As displayed by Figure 3-6 for the TGB sweeps, 

the viscosity of the blend decreased as E10 content increased. The mean value and the standard 

deviation for the four oil types tested are shown. The level of viscosity reduction tends to taper 
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off with the higher blend ratios. The use of E10 as a blending agent has a greater reduction in 

viscosity for each blend ratio than using petrodiesel (dilution method). A 55% canola SVO + 

45% petrodiesel still had over 3X higher viscosity than the highest acceptable level for 

petrodiesel by ASTM standard.  

The viscosity data in Figure 3-5 and Figure 3-6 was recorded at 40 °C. The viscosity of the 

TGBs was also recorded at a range of temperatures for carinata biofuels as shown in Figure 3-7. 

At some of the higher TGB blend ratios and temperatures, the gasoline volatility caused an error 

in the Anton Paar SVM3000 and those data points are not displayed. Figure 3-7 shows that the 

viscosity of petrodiesel did not vary as much as the TGBs. The change in viscosity over the 

temperature range was greater for the lower TGB blend ratios. 

 
Figure 3-5. Viscosity (grouped by fuel type). 
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Figure 3-6. Viscosity versus percent SVO in blend. 
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Figure 3-7. Viscosity versus temperature for carinata test fuels. 

3.3.4 Density 

The density results for the fuels of Table 3-2 are displayed in Figure 3-8. The biodiesels and 

TGBs both had reduced density compared to the SVO feedstock. There is no ASTM 

specification for density of biodiesel; B100 fuels that meet the other specifications in ASTM 

D6751 fall between 0.86 and 0.90 g/cm3 [100], as was true for all biodiesels in this study. 

European Biodiesel Standard EN 14214 for Vehicle Use does specify densities between 860 and 

900 kg/m3 [157]. 

TGBs with 25% E10 used as a blending agent had density values similar, but slightly lower 

than biodiesel from the same feedstock. In practice, farmers using TGB biofuels either blend the 

fuel volumetrically, as was done in this study, or gravimetrically. For the gravimetric process, 

gasoline is added to SVO until the resulting TGB has a specific gravity (SG) near 0.865 [97]. 
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The farmer uses a hydrometer as a quick and inexpensive way to measure SG and uses density to 

control E10 content when mixing TGBs in large quantity. Farmers using the hydrometer method 

have had favorable results with using TGBs as an on-farm fuel, but those new to using TGBs 

should be aware the SVO produced on their farm might have different fuel properties, and 

monitor the gasoline percentage they add to SVO with this in mind. SVO physical properties can 

vary by location and with agricultural practices [158]. The TGB blend sweeps in Figure 3-9 

showed that density decreases approximately linearly with increasing E10 content. TGB density 

is similar to B100 fuels near a 75/25 ratio and near petrodiesel at a 55/45 ratio. 

During engine testing, due to the lower energy content of the B100 and TGB fuels, more fuel 

flow was required to the engine as compared to petroleum for the same power setting. However, 

due to the higher density of the B100 and TGB fuels, the difference in brake specific fuel 

consumption (bsfc) between those biofuels and petroleum was smaller on a volumetric flow 

basis than on a mass flow basis. As shown in Figure 3-8, the renewable diesels in this evaluation 

had lower densities than petrodiesel. In the case of the R100 fuels, the engine testing 

performance was similar to petrodiesel on a mass flow basis, which could have performance 

advantages over other types of biofuels in some military applications where weight is a concern.  
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Figure 3-8. Density (grouped by fuel type). 

 
Figure 3-9. Density versus percent SVO in blend. 
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3.3.5 Speed of sound 

The speed of sound results for the fuels of Table 3-2 are displayed in Figure 3-10. The 

biodiesels and TGBs both had a reduction in speed of sound as compared to the SVO feedstock. 

The 75/25 TGBs had speed of sound values closer to petrodiesel than biodiesels of the same 

feedstock, but also had more variability in the results. Differences in speed of sound of biofuels 

as compared to petroleum have been linked to changes in fuel injection timing [136]. The blend 

sweep of TGBs showed speed of sound decreased nearly linearly with increased gasoline, with a 

greater reduction for TGBs than the dilution method (similar to density results).  

 
Figure 3-10. Speed of Sound (grouped by fuel type). 

3.3.6 Flash point 

The flash point is the lowest temperature at atmospheric pressure at which application of a 

test flame will cause the vapor of a sample to ignite under specified test conditions. The B100 

specification for flash point is 93 °C min while the Grade No. 2-D S15 petrodiesel specification 

for flashpoint is 52 °C min [100], [147]. Flash point results are shown in Figure 3-11. All B100 

fuels in this evaluation met the ASTM specification and R100 fuels had similar flash points to 
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petrodiesel. Gasoline, by definition, is a mixture of relatively volatile hydrocarbons, so users of 

TGBs should use additional caution to prevent accidental electrostatic discharge ignition during 

their production, storage, and distribution [159]. The volatility of the gasoline caused all TGBs to 

have flashpoints less than 40 °C in neat form due to the low flashpoint of the gasoline (-40 °C) 

and ethanol (13 °C) components [160]. Even a small amount of E10 in a TGB will drive the 

flashpoint to a low value. When testing the blend sweeps, the 95/5 TGBs had flashpoints above 

40 °C only after blended with petrodiesel as shown in Figure 3-12. Low flashpoints have also 

been recorded for other blends and emulsions containing ethanol currently under study, and are 

relatively independent of the amount of ethanol in the blend [148], [153]. The low flashpoint of 

these blends is typically dominated by the fuel component in the blend with the lowest flash 

point [148], [160], [161], [162], [163], [164]. The vapor above the fuel level in a gasoline storage 

container at normal ambient temperature exceeds the upper flammability limit while the vapor 

above the fuel level of ethanol in storage can be within the flammability limit [161], which 

would be another reason to limit ethanol content in the gasoline used to manufacture TGBs, in 

addition to the solubility concerns outlined previously. Due to flammability concerns, like other 

blends of this nature, TGB handling, storage, and transportation must be afforded the same 

cautions as neat gasoline. 
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Figure 3-11. Flash point (grouped by fuel type). 

 
Figure 3-12. Flash point TGB + petrodiesel sweep. 
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3.3.7 Heating value 

It is important that biofuels have energy content near the petroleum fuel it displaces. A 

reduced energy content of the fuel will translate into a reduction in fuel economy and in key 

performance parameters such as maximum horsepower and torque. The biodiesels had higher 

energy content than the SVO of the same feedstock as shown in Figure 3-13. The blending of 

SVO with higher energy gasoline (46,599 J/g) at a 75/25 ratio resulted in an overall TGB biofuel 

with energy content higher than biodiesel. This higher energy content contributed to lower brake 

specific fuel consumption (bsfc) of TGBs over biodiesels during the engine performance testing 

[137]. The renewable diesel fuels had energy content higher than the other biofuels and similar to 

petrodiesel. TGB blend sweep testing showed that energy content increased approximately 

linearly as gasoline content was increased.  

 
Figure 3-13. Calorific value (grouped by fuel type). 

3.3.8 Cold flow properties 

Cold flow properties are extremely important for any fuel used in cold climates. When SVO 

is converted to B100 or TGB, one of the purposes is to improve the cold flow properties. The 
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SVOs in this study all had CFPP values at or near room temperature. For all feedstocks, the 

conversion to biodiesel improved the CFPP by approximately 25 °C. One positive outlier was 

biodiesel produced from pennycress oil which had a CFPP result of -18 °C, (-17 °C [45]). This is 

good news for widespread adaption in the Midwestern U.S. where the crop is being developed as 

an off-season crop in a traditional corn and soybean rotation. Farmers using pennycress biodiesel 

could continue to use this biofuel through much of the year. Pennycress TGBs had a CFPP more 

similar to the other feedstocks. The renewable diesels performed similar to the petroleum fuel 

they intend to displace. The results are shown graphically in Figure 3-14. 

The cold flow properties of the 75/25 TGBs were much improved over SVO, and slightly 

better than biodiesel for most feedstocks. A blend sweep of TGBs, displayed in Figure 3-15, 

shows a small amount of gasoline greatly improved the cold flow properties. The benefit to plug 

point tapers off with gasoline content higher than 25%. Figure 3-15 also shows the CFPP for the 

dilution method. Gasoline was much more effective as a blending agent than petrodiesel for 

reducing CFPP.  

 
Figure 3-14. Cold filter plug point (grouped by fuel type). 
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Figure 3-15. Cold filter plug point versus percent SVO in blend. 

3.3.9 Lubricity 

Lubricity of fuel is important for the proper long-term functionality of engine components 

such as fuel pumps and injectors [165]. Biodiesel and SVO have shown inherent lubricity in both 

neat form and when used as an additive to petrodiesel [166].When the U.S. Environmental 

Protection Agency phased in use of Ultra Low Sulfur Diesel (ULSD), removal of the sulfur-

containing components caused the lubricity of the conventional petrodiesel fuel to be 

significantly reduced or even eliminated. Adding biodiesel or SVO to ULSD conventional 

petrodiesel fuel has been shown to restore the lubricity, even in small amounts (1–2%) [167]. 

Use of SVO and biodiesel as lubricity additives has an advantage over some lubricity additives 

due to their inherent fuel value. 



 

80 

 

Lubricity of SVO and biodiesel has been tested for several conventional feedstocks and 

blends. In previous testing, biodiesel was slightly more effective than SVO for equal treatment 

rates [168]. Past research also showed biofuels made from crude oil also had better lubricity than 

biofuels made from RBD oil [169]. The results of the lubricity evaluation of a TGB formed from 

a 75% crude soybean oil + 25% E10 is shown in Table 3-4 along with petrodiesel standards and 

previously published lubricity data for other soy-based biofuels. Note that the historical results 

cited here for the petrodiesel + biofuel blends depend strongly on the lubricity of the base 

petrodiesel. 

The TGB lubricity result of 108 µm show TGB maintains the inherent lubricity found in 

other types of biofuels. Additional testing using TGB blend sweeps would reveal how lubricity 

changes with gasoline and ethanol content in the TGB. Previous research using fuel blends 

containing ethanol (ethanol + biodiesel + petrodiesel) showed that increasing ethanol content in 

the blend did not result in significant loss of lubricity until the ethanol content was near 100% 

[170].  

Table 3-4. Lubricity test results. 

FUEL TYPE 
FEEDSTOCK 

AVERAGE WEAR 

SCAR DIAMETER 

(WSD) @ 60 °C 

REFERENCE 

TYPE  REFINEMENT (μm)   

Diesel standard for maximum wear scar  Petroleum 520 ASTM D975 [147] 

TGB 

Soybean 

Crude 

 108  

98% Diesel1 + 2% B100 Blend  375 Hu et al. [169] 

B100 155   Hughes et al. [171] 

99% Diesel2 + 1% SVO Blend 

RBD 

319  Van Gerpen et al. [168] 

99% Diesel2 + 1% B100 Blend 251 Van Gerpen et al. [168] 

98% Diesel1 + 2% B100 Blend 540 Hu et al. [169] 

B100 136, 159  Holser et al. [39], Moser [172] 

Notes:     Subscripts:   

SVO = straight vegetable oil  1 = basof study had WSD of 720 μm 

B100 = 100% biodiesel 2 = base diesel of study had WSD of 376 μm 
TGB = triglyceride blend (75% vegetable oil + 25% E10 gasoline (v/v) 
RBD = refined, bleached, deodorized  

 

3.3.10 Fatty acid profiles 

The fatty acid (FA) profile of the seven oils used in this evaluation is provided for reference 

in Table 3-5. The chromatography was performed on an Agilent Technologies 7890A Gas 
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Chromatograph. One advantage of industrial oils is their FA profiles can be optimized for fuel 

conversion and quality instead of favorable food characteristics. The production of very long-

chain fatty acids (VLCFAs), with chain length of 20 carbon (C20) or more, have a wide variety 

of industrial uses [53].  

Table 3-5. Fatty acid profile for oils in evaluation. 

Designation: Common Name: Formula: 
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C14:0 Myristic  C14H28O2 0.05 0.05 0.07 0.07 0.07 0.04 0.07 0.03 0.03 

C16:0 Palmitic  C16H32O2 2.95 5.25 2.57 10.03 10.02 3.31 6.31 11.36 11.12 

C16:1 Palmitoleic  C16H30O2  0.15 0.14 0.19 0.10 0.10 0.23 0.14 0.12 0.14 

C18:0 Stearic  C18H36O2  1.09 2.32 0.38 5.44 5.45 1.98 3.18 1.76 1.84 

C18:1 Oleic  C18H34O2  10.63 18.11 11.06 26.06 26.15 76.85 30.24 28.81 31.16 

C18:2 Linoleic  C18H32O2 15.03 19.41 19.52 49.41 49.36 12.72 58.47 52.60 53.06 

C18:3 Alpha α-Linolenic  C18H30O2 13.52 32.29 10.15 7.47 7.05 1.37 0.07 2.97 1.30 

C18:3 Gamma γ-Linolenic  C18H30O2  0.04 0.17 0.05 0.03 0.30 0.02 0.00 0.02 0.08 

C20:0 Arachidic  C20H40O2 0.87 1.31 0.22 0.41 0.42 0.67 0.24 0.43 0.42 

C20:1 Gadoleic  C20H38O2 7.69 13.35 9.58 0.22 0.23 1.31 0.17 0.33 0.35 

C20:2 Eicosadienoic  C20H36O2 0.98 1.60 1.68 0.04 0.04 0.05 0.00 0.03 0.03 

C20:3 Eicosatrienoic C20H34O2 0.31 1.02 0.32 0.00 0.00 0.00 0.00 0.00 0.00 

C22:0 Behenic  C22H44O2 0.74 0.30 0.14 0.36 0.36 0.34 0.66 0.13 0.14 

C22:1 Erucic  C22H42O2 39.67 2.48 36.55 0.02 0.00 0.11 0.00 0.00 0.00 

C22:2 Clupanodinic  C22H40O2 1.20 0.11 0.69 0.00 0.00 0.00 0.09 0.00 0.00 

C22:3 dihomo-γ-linolenic C20H34O2 0.08 0.22 1.42 0.00 0.00 0.00 0.00 0.00 0.00 

C23:0 Tricosylic  C23H46O2 0.28 0.27 0.08 0.00 0.00 0.00 0.00 0.00 0.00 

C22:4 Adrenic  C22H36O2 0.17 0.05 0.08 0.00 0.00 0.00 0.00 0.00 0.00 

C24:0 Lignoceric  C24H48O2 0.55 0.24 0.08 0.12 0.12 0.15 0.26 0.17 0.17 

C24:1 Tetracosenoic C24H46O2 2.04 0.69 3.56 0.00 0.00 0.13 0.04 0.14 0.04 

3.4 Conclusions 

This study focused on using industrial oils in combination with TGBs as an on-farm fuel 

pathway since the commercial market for these oils is still emerging. The TGB blend percentage 

of vegetable oil to E10 gasoline was varied to evaluate its effects on fuel properties. Many fuel 

properties were improved with the addition of gasoline to SVO. The exception was flash point, 

and users of TGBs should handle and store with the same caution as gasoline. The physical and 

chemical properties of TGBs were studied through phase diagrams and NMR spectroscopy. 

Users of TGBs should limit the ethanol content in the gasoline to E10 to ensure solubility. 

Chemical stability of TGBs was demonstrated for up to one year of storage. There were no 

significant differences in the fuel properties measured for the crude and refined fuels. Overall, 
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this fuel property evaluation and recent engine testing has shown the use of TGBs may fill a 

niche as a sustainable fuel pathway for farmers wanting to introduce these new crops into their 

rotation and use the oil for on-farm fuel needs. TGBs may also be well suited for local use of 

vegetable oils as fuel in remote areas. Future research will include long-term durability of TGBs 

in compression ignition engines.  
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Chapter 4. EVALUATION OF INDUSTRIAL CORN OIL AS AN ON-FARM 

BIOFUEL FEEDSTOCK3 

 
 
 

4.1 Introduction 

Farm use of petrodiesel fuel is significant, especially in the Midwestern U.S. region where 

consumption tops 1.5 billion gallons annually [173]. In Iowa, Nebraska, and South Dakota, farm 

use of distillate fuel oil is more than 20% of total consumption [173]. Fuel and other energy-

inputs (fertilizer, lube, and electricity) represent 60% of total operating expenses for some crop 

farmers [174]. The USDA found that increases in energy-related production costs generally 

lower agricultural output, raise prices of agricultural products, and reduce farm income [174]. 

One way to combat increased fuel input costs would be for farmers to produce their own 

biofuels. Like the transportation sector and military users, the agricultural use of locally sourced 

renewable fuels could help lower costs, improve energy security, bolster rural economics, and 

have positive environmental impacts.  

This research explores the feasibility of using corn oil as an on-farm biofuel feedstock. The 

yellow dent corn kernel contains a small amount of oil (~3.8%) which can be extracted during 

the production of ethanol. Only the starch portion of a corn kernel is converted to ethanol; the 

remaining solids (including the oil) remain in the distillers grain co-product. The ethanol industry 

has recently discovered economical methods to extract this corn oil from the meal stream. 

Industry experts estimate 85% of U.S. dry mill ethanol facilities are now using some form of 

corn oil extraction, producing 300 million gallons of corn oil annually [175], [176]. Since most 

ethanol plants are non-food grade (NFG) facilities, distillers corn oil from an ethanol plant is an 

industrial oil (not generally regarded as safe (GRAS) for human consumption). Industrial corn oil 

                                                 
3 Manuscript accepted for publication, Applied Engineering in Agriculture by A.C. Drenth et al. [202] 
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(ICO) represents a relatively new, abundant, and economical source of biofuel feedstock. The 

current price for this crude corn oil is $0.27 per pound, or about $2.06 per gallon (February 2015 

average FOB spot bids reported by ethanol plants) [177]. The use of ICO for local on-farm fuel 

would be mutually beneficial to the farmer and the ethanol plant as an additional market for the 

oil, with potential savings in storage, transportation, and retail margins for both parties. ICO 

from a local ethanol plant has several benefits over most conventional oilseed options like 

soybean, canola, and sunflower for farmers looking to produce their own fuel. No crushing/oil 

extraction hardware is necessary, saving significant costs and time investment. Another benefit is 

that fresh oil is available on a year round basis. Finally, the economics of on-farm fuel from 

conventional oilseeds often depend on using the coproduct meal at an animal feedlot [112]; the 

use of ICO would not depend on the value/need for meal and would open the door for grain 

farmers who do not own livestock. Many farmers and ethanol plants already have symbiotic 

relationships through the sale and delivery of corn, stover, and meal.  

The main objective of this research was to conduct compression ignition (CI) engine 

performance and fuel property evaluations of ICO based biofuels as compared to petrodiesel. 

The fuel pathways used were triglyceride blend (TGB), biodiesel (B100), and renewable diesel 

(R100). A TGB is a mixture of vegetable oil and another less viscous fuel (other than 

petrodiesel). Previous engine research using E10 gasoline as a blending agent at a 75% vegetable 

oil to 25% E10 volumetric ratio found this TGB compatible with CI engines without 

modification [137]. This research was focused on TGBs made from ICO due to the ease of 

creating this biofuel for farmers, and represents the first published engine performance data and 

fuel property data for multiple TGB blend types and ratios. Biodiesel is fuel comprised of mono-

alkyl esters of long chain fatty acids derived from vegetable oils or animal fats [100]. The B100 
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fuel pathway is also feasible at a farm-scale and biodiesel-petrodiesel blends are now covered 

under warranty by many engine manufactures. Additionally, there may be tax advantages or 

other incentives for farmers choosing this option [93]. Renewable diesel is a non-ester renewable 

fuel that is pure hydrocarbons and indistinguishable from petrodiesel but made from biomass 

[130]. R100 is not feasible to produce at a farm-scale but was included here for comparison and 

due to interest in this pathway by the military and transportation sector.  

4.2 Experimental setup 

4.2.1 Test fuel preparation 

All biofuels in this evaluation used ICO as feedstock. The TGBs were formed by first 

filtering ICO with a 10 µm polypropylene filter. The filtered oil was then mixed with the 

blending agent (gasoline with various ethanol contents or renewable naphtha) at three volumetric 

ratios. The resulting TGB was agitated in a high-density polyethylene (HDPE) container to 

ensure adequate mixing before filtering again to 1 µm. ICO was also converted to biodiesel via 

transesterification (alcoholysis) by Renewable Energy Group (REG-9000™ Biodiesel). Biodiesel 

is produced by a reaction of the esters in vegetable oil (or animal fat) with an alcohol in the 

presence of a catalyst to yield mono-alkyl esters of long chain fatty acids and glycerol, which is 

removed [100]. Renewable diesels are non-ester, petrodiesel-like fuels derived from biological 

sources which can be produced using various methods [79]. Applied Research Associates (ARA) 

provided the renewable diesel (ReadiDiesel®) for the evaluation. Renewable, Aromatic, Drop-in 

Diesel (ReadiDiesel®) is produced using the Biofuels ISOCONVERSION (BIC) process, which 

combines ARA’s Catalytic Hydrothermolysis (CH) process and Chevron Lummus Global’s 

(CLG) hydroprocessing technology. The BIC process allows the production of renewable diesel, 

jet, and naphtha fractions from the same batch. ARA also provided the renewable naphtha used 
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in the evaluation, also created with ICO via BIC. The approximate properties of the renewable 

naphtha are 1.5 mass % benzene, 60-65 mass % n-paraffins and ~30 mass % cycloparaffins. 

4.2.2 Engine performance test setup 

Engine performance and emission assessments of the test fuels were conducted using a 4.5 

liter, 175 hp, John Deere (Moline, Illinois) 4045 PowerTech Plus test engine that meets Tier 

3/Stage IIIA emissions specifications. A Dynesystems (Jackson, Wisconsin) Midwest 1014A 

eddy current dynamometer and Dynesystems Dyn-LocIV dynamometer controller was used to 

maintain a constant engine speed. The standard fuel tank is filled with petrodiesel and a three 

way solenoid valve and lift pump is used to deliver test fuels from an auxiliary fuel tank. Fuel 

flow is measured by a Micro Motion (Boulder, Colorado) 2700R11BBCEZZZ corriolis meter. A 

Kistler (Novi, Michigan) piezoelectric pressure transducer (type 6056A41: -20 pC/bar 

sensitivity) installed in the glow plug port of cylinder 1 using adaptor (6542Q128) was used to 

record in-cylinder pressure data. A National Instruments (Austin, Texas) PXI-1002 connected to 

a Kistler charge amplifier (type 5010) were used to record high speed combustion data from the 

in-cylinder pressure. Known geometry of the cylinder and connecting rod were used to calculate 

the cylinder volume as a function of crank angle. In-cylinder high speed pressure data versus 

volume curves were then used to calculate the apparent rate of heat release due to fuel 

combustion in the cylinder. A low pass Inverse Chebyshev filter with an order number of 7 and 

the low cutoff frequency of 0.25 was used to filter the oscillations due to the time derivative of 

pressure in the heat release curves. Pressure and temperature data for several engine locations 

were logged via National Instruments data acquisition software (DAQ) virtual instrument (VI) in 

LabVIEW. Engine control unit (ECU) data was also recorded. 
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The test engine exhaust stream is sampled by two different probes. One probe extracts 

exhaust for gaseous emissions measurements. Criteria pollutant measurements were made using 

a Rosemount (Chanhassen, Minnesota) 5-gas emissions analysis system (oxides of nitrogen 

(NOx), total hydrocarbons (THC), oxygen (O2), carbon monoxide (CO) and carbon dioxide 

(CO2)). A Thermo Fisher Scientific (Waltham, Massachusetts) Nicolet 6700 Fourier Transform 

Infrared (FTIR) spectrometer was used to obtain speciated measurement of a wide range of 

species including hydrocarbons through C4 and a variety of hazardous air pollutants and volatile 

organic compounds (VOCs). The second exhaust probe samples a small portion of the exhaust 

stream for particulate matter (PM). All of the PM measurements were taken after the exhaust 

sample is diluted with clean air in a mini dilution tunnel. PM is collected from the dilution tunnel 

on Whatman PLC (Piscataway, New Jersey) 7592-104 46.2 mm filters which are weighed before 

and after the test using a Mettler-Toledo (Columbus, Ohio) MX5 microbalance with a precision 

of 1 μg. Additional details about the hardware used in engine testing are available in other 

publications [97], [131], [137]. 

4.2.3 Engine performance testing procedure 

Engine performance and emissions data was recorded at 50% load and intermediate speed 

(250 N-m and 1700 rpm), which corresponds to mode 7 of ISO 8178 Non-Road Steady Cycle 

(NRSC). After switching to test fuel, fuel flow was adjusted by the ECU to hold desired load, 

and the engine was allowed to stabilize. Once steady state was achieved, data was collected for 

10-minute intervals. Between each biofuel run, the engine was operated on petrodiesel to purge 

the system of test fuel. Petrodiesel data was also recorded at intermediate points in the 

evaluation. The engine performance test runs are shown in Table 4-1 and sources of testing 

materials shown in Table 4-2. 
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Table 4-1. Engine performance and emissions test runs. 
RUN # FUEL TYPE BLEND TYPE 

1 DIESEL N/A 

2 TGB 85% Corn Oil + 15% E10 

3 TGB 85% Corn Oil + 15% E85 

4 TGB  85% Corn Oil + 15% NAP 

5 DIESEL N/A 

6 TGB             75% Corn Oil + 25% E0  

7 TGB 75% Corn Oil + 25% E10 

8 TGB 75% Corn Oil + 25% E30 

9 TGB 75% Corn Oil + 25% E50 

10 TGB 75% Corn Oil + 25% E85 

11 TGB  75% Corn Oil + 25% NAP 

12 DIESEL N/A 

13 TGB 65% Corn Oil + 35% E10 

14 TGB 65% Corn Oil + 35% E85 

15 TGB  65% Corn Oil + 35% NAP 

16 DIESEL N/A 

17 B100 N/A 

18 R100 N/A 

Notes:    

B100 = 100% biodiesel TGB = triglyceride blend   

R100 = 100% renewable diesel NAP = renewable naphtha  

 
Table 4-2. Source of testing materials. 

MATERIAL SOURCE LOCATION 

Industrial Corn Oil (ICO) Nebraska Corn Processing, LLC Cambridge, Nebraska, USA 

Renewable Diesel (R100) Applied Research Associates, Inc. Panama City, Florida, USA 

Biodiesel (B100) Renewable Energy Group Albert Lea, LLC Albert Lea, Minnesota, USA 

E0 Gasoline Hill Sinclair Greeley, Colorado, USA 

E10, E30, E50, E85 Gasoline  Agfinity Cooperative Eaton, Colorado, USA 

Anhydrous Ethanol, ACS/USP Grade Pharmco-Aaper Brookfield, Connecticut, USA 

Renewable Naphtha (NAP) Applied Research Associates, Inc. Panama City, Florida, USA 

Diesel Fuel, Grade No. 2-D S15 Team Petroleum, LLC Fort Collins, Colorado, USA 

4.2.4 Fuel analysis procedure 

Biofuels should have similar fuel properties as the petroleum fuels they intend to replace and 

must also be physically and chemically stable during the normal timescale of use. TGB physical 

stability (solubility of the blend components) was tested using phase diagrams. TGBs formed 

from ICO + E0 gasoline + anhydrous ethanol, ICO + E0 gasoline + 99% purity ethanol (1% 

water by mass), and ICO + naphtha were tested. The volumetric content of each component was 

varied in 10% increments using an Eppendorf (Hamburg, Germany) Reference pipette. The 

resulting blend was stored in Kimble Chase (Vineland, New Jersey) screw thread glass culture 

tubes and shaken until thoroughly mixed. The tubes were left motionless for 10 days at room 
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temperature and then visually inspected for separation. The process was repeated at reduced 

(0°C) and elevated temperature (40 °C).  

1H nuclear magnetic resonance (NMR) spectroscopy was used to determine if there were any 

chemical changes or degradation in the components. To test the chemical stability, TGBs were 

formed from ICO + E10 gasoline at five volumetric ICO to E10 ratios (v/v): 95/5, 85/15, 75/25, 

65/35, and 55/45. Approximately 24 hours after the blends were mixed, 75 µL of the blends were 

dissolved in 675 µL deuterated chloroform. 1H NMR spectra were collected on a 500 MHz 

Varian Inova (Santa Clara, California) NMR spectrometer equipped with VJ-4.x software and 

using a 5 mm broadband probe. The following parameters were used: 5.477 µs 90 pulse lengths, 

8003 Hz spectral widths, 32 transients with 32k data points and 30 s relaxation delays. Chemical 

shifts were referenced in parts per million (ppm) relative to the signal of chloroform at 7.26 ppm. 

The corn straight vegetable oil (SVO) and E10 were also analyzed by themselves to determine a 

baseline of each blend component. Finally, corn based B100 and R100 samples were also used in 

the analysis. 

Several important fuel properties were also measured in this evaluation. Of particular interest 

was the effects blend type and ratio had on important fuel properties. An Anton Paar (Graz, 

Austria) SVM3000 Viscometer was used to measure viscosity in accordance with ASTM test 

method D445. An Anton Paar DSM5000 was used to measure density in accordance with ASTM 

D4052. Energy content needed for engine performance calculations was determined by an IKA 

(Wilmington, North Carolina) C200 bomb calorimeter in accordance with ASTM D240. IKA C 

723 benzoic acid calibration pellets were used to verify the calibration of the calorimeter. All 

calibration runs had errors less than 1%. IKA C9 gelatin capsules were used to contain the test 

fuel to prevent any volatility loss of fuel during the calorimeter testing prior to ignition. Finally, 
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Cold Filter Plugging Point (CFPP) was measured in accordance to ASTM D6371 using a Lawler 

(Edison, New Jersey) DR4-14 Automatic Cold Flow Property Tester.  

4.3 Test results 

4.3.1 Brake specific fuel consumption and thermal efficiency results 

Brake specific fuel consumption (BSFC) is a frequently used metric to describe engine 

efficiency. A low value for BSFC is desirable since at a given power level less fuel will be 

consumed. Figure 4-1 shows the BSFC for all fuels used in the evaluation. Data was collected at 

2 hertz over the 10-minute run; the following graphs show the mean value of the run(s) with one 

standard deviation from the mean showing uncertainty and indicated by error bars. The results 

show the engine fuel consumption was fairly insensitive to blend percentage in the TGB. This 

may be due to the technologies of modern CI engines being able to somewhat compensate for 

differences in fuel types and properties, making the overall performance of some categories like 

fuel consumption fairly insensitive to blend percentage in the TGB. For example, the variable 

geometry turbocharger vane position desired by the ECU decreased approximately 5% for a 10% 

increase in TGB blend ratio. Most TGBs exhibited similar performance to B100. The TGBs 

containing E85 had the highest fuel consumption for each blend percentage which corresponds 

with its lower energy content. In addition to differences in energy content, the fuel consumption 

may be also tied to other physical property changes, such as the higher viscosity and density for 

some of biofuels. R100 fuel consumption was similar to petrodiesel.  

Brake thermal efficiency is also used to compare efficiency of an engine using multiple fuels. 

In general terms, thermal efficiency is how efficient an engine can convert the energy in the fuel 

into useful power. As shown in Figure 4-2, all biofuels had higher thermal efficiencies than 

petrodiesel. The increased lubricity of the biofuels could cause a reduction in engine friction and 
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improved efficiency at this load [101], with others in literature reporting a more complete 

combustion as compared to petrodiesel [178]. For the TGB fuels, the improvements in efficiency 

could also be tied to the improved spray patterns and atomization performance in combustion 

due to explosive vaporization of the low boiling constituents [80], [161]. Additionally, since the 

heating value of the biofuels is lower, more mass needs to be injected into the combustion 

chamber. At low load, this may be realized as improved jet penetration and air utilization [137]. 

 
Figure 4-1. Brake specific fuel consumption. 
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Figure 4-2. Brake thermal efficiency. 

4.3.2 Brake specific emission results 

Brake specific emissions (BSE) relate emission mass flow to engine loading. BSE takes into 

account different power levels and fuel composition. The emissions of carbon monoxide (CO) 

for the engine testing are shown in Figure 4-3. Both B100 and R100 showed a reduction in CO 

emissions compared to petrodiesel. Some TGBs had performance similar to petrodiesel, while 

some blends produced higher emissions. Higher ethanol content in the TGB increased CO 

emissions.  

The emissions of oxides of nitrogen (NOx) for the engine testing are shown in Figure 4-4. 

B100 showed a small increase in NOx emissions compared to petrodiesel, which is common for 

biodiesel use [14], while R100 showed a reduction in NOx as compared to petrodiesel. The 85/15 

blend ratio TGBs resulted in higher NOx emissions as compared to petrodiesel, while the 75/25 

and 65/35 TGBs were comparable to each other and lower in comparison to petrodiesel. As 

discussed in a later section, the two higher blend ratios also produced similar heat release curves 
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and more similar physical properties; the differences in NOx formation has been linked to these 

differences [136].  

The emissions of non-methane hydrocarbons (NMHC) for the engine testing are shown in 

Figure 4-5. NMHC emissions for R100 and B100 were similar and slightly lower than 

petrodiesel. The TGBs resulted in higher NMHC emissions than petrodiesel. Higher ethanol 

content in the TGB also increased NMHC emissions. 

Total PM mass emissions were measured gravimetrically via collection onto teflon filters. 

The resulting brake specific particulate matter results are shown in Figure 4-6. PM emissions 

from R100 and B100 were slightly lower in comparison to petrodiesel. TGB PM emissions were 

higher than petrodiesel with increased ethanol content also causing increased PM emissions, with 

a large increase for some blends. For example, TGBs formed from naphtha averaged 1.2 times 

the PM emissions of petrodiesel, while the 65/35 TGB mixed with E85 was 14 times higher. The 

higher emissions from the 65% ICO + 35% E85 blend may be a sign of phase separation in the 

engine fuel system, further discussed in a later section. The TGBs formed with E85 used in 

engine testing were soluble at room temperature, but the higher temperatures and pressures of the 

engine fuel system could have caused the components to begin to separate and be linked to 

increased emissions.  

The overall trends for the emissions of volatile organic compounds (VOCs) during the engine 

testing were similar to the NMHC results. The FTIR groups VOCs as non-methane, non-ethane, 

non-aldehydes hydrocarbons below C4. B100 exhibited the lowest VOC emissions (less than 20 

parts per million) and R100 also had a small reduction compared to petrodiesel. Some TGBs, 

like the 75% ICO + 25% E10 blend, had VOC emissions similar to petrodiesel, while some were 

higher depending on blend type and ratio with similar trends as the other emission categories. 
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VOCs can create photochemical smog under certain conditions, so it is important that biofuels 

have similar or reduced VOC emissions as petrodiesel [134]. The emissions of formaldehyde, 

hydrogen cyanide, and other hydrocarbons measured by the FTIR during the engine testing were 

small in concentration, with all test runs less than 5 ppm. 

 
Figure 4-3. Brake specific carbon monoxide results. 
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Figure 4-4. Brake specific oxides of nitrogen (NOx) results. 

 
Figure 4-5. Brake specific non-methane hydrocarbon results. 
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Figure 4-6. Brake specific particulate matter. 

4.3.3 Heat release results 

As discussed in the test setup section, a pressure transducer was used to record 1000 pressure 

cycles for each run. Peak pressure coefficient of varience (COV%) was less than 3% during the 

evaluation for each run. The subsequent heat release curves of the biofuels depicted some 

similarities as shown in Figure 4-7 - Figure 4-9. The peak of the heat release profile was slightly 

smaller for the biofuels. The blend rate did affect TGB heat release rate, with the 75/25 and 

65/35 blend ratios more petrodiesel shaped than the 85/15 TGBs, although the higher blends also 

had more variability in their results. The 75/25 TGB profiles show the engine was fairly 

insensitive to ethanol content in the TGB with respect to heat release rates. The biofuels were 

also smoother shaped (less defined premixed and mixing controlled combustion phases) than 

petrodiesel. These trends were common to other combustion research comparing biodiesel to 

petrodiesel and are attributed to differences in energy content and other physical property 

differences [135], [136], [178]. Standard injection timing for this engine (single event) was used 
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during testing. The engine ECU uses a lookup table based on throttle position, engine speed, and 

engine temperatures to determine injection timing. Even though the same engine speed and 

torque set points were used for each run, there were small injection timing differences due to 

differences in physical properties of fuels. Actual start of injection (SOI) for each fuel is shown 

in Figure 4-10.  

 
Figure 4-7. Heat release rate for TGB 85/15 fuels. 
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Figure 4-8. Heat release rate for TGB 75/25 fuels. 

 
Figure 4-9. Heat release rate for B100, R100, and TGB 65/35 fuels. 
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Figure 4-10. Injection timing. 

4.3.4 Physical stability of TGBs 

The resulting phase diagrams for TGBs made from ICO + gasoline + ethanol in Figure 4-11 

show ethanol can induce phase separation in TGBs due to the differences in chemical structure 

of the oil and alcohol [94]. Additionally, the high polarity of water enhances the polar part in an 

ethanol molecule and further decrease compatibility with non-polar molecules [148]. The 1% by 

mass water content tested here is the maximum allowed by ASTM standard for gasoline-ethanol 

blends and should represent the worst-case scenario for those blend components [149]. However, 

additional water can also be introduced from the vegetable oil; the ICO used for this study had 

0.65% water content. Changes in temperature also further decreased component compatibility 

over room temperature. At the lower temperature, some TGBs with high vegetable oil content 

began to crystalize or gel. The phase diagrams for TGBs made from ICO + renewable naphtha, 

shown in Figure 4-12, did not have any separation. 
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Figure 4-11. TGB phase diagrams (ICO + anhydrous/99% purity ethanol + gasoline) @ room 

temperature (A, B), 40 °C (C, D), and 0 °C (E, F). 

 
Figure 4-12. Corn TGB phase diagrams (ICO + renewable naphtha) @ room temperature (A), 40 

°C (B), 0 °C (C), and phase diagram legend (D). 
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4.3.5 Chemical of TGBs 

Figure 4-13 shows the 1H NMR spectra for corn SVO, E10, and corn TGB overlaid. TGBs 

did not show any chemical changes upon blending, and were simply a sum of their constituent 

parts. There was no evidence of chemical changes that could produce sediments or otherwise 

degrade the fuel. The proton resonances of the triglyceride fatty acid chains and glycerol 

backbone of the corn oil correspond to what has been reported in the literature [155], with 

olefinic protons of unsaturated fatty acids resonating at 5.3-5.5 ppm, glycerol protons resonating 

at 5.26, 4.1 and 4.3 ppm, methylene protons of polyunsaturated and unsaturated acyl chains at 

2.78 and 2.05, protons of acyl moieties in triacylglycerols at 2.3 and 1.6 ppm, methylene 

envelope protons at 1.2 ppm, and methyl protons of polyunsaturated acids at 0.91 ppm, and of 

saturated and unsaturated acids at 0.88 ppm. The proton resonances of aromatic (6.7-8.0 ppm), 

olefinic (4.6-6.0 ppm) and aliphatic (0.5-3.3 ppm) hydrocarbon protons in the E10 corresponded 

to those reported for gasoline and ethanol (multiplets around 3.7 and 1.3 ppm) [152]. The results 

in Figure 4-13 are for the 75/25 TGB with the other blend ratios tested having similar results. 

Previous NMR research using carinata TGBs also found chemical stability upon blending, and 

additionally no chemical changes after one year of storage [179]. Clear chemical changes were 

found due to transesterification (B100) and hydroprocessing (R100), as shown in Figure 4-13 

and also described in Drenth et al [179] for the carinata fuels. 
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Figure 4-13. Corn TGB NMR results. 

4.3.6 Fuel property results 

One benefit to TGBs is fuel properties can be somewhat tailored depending on the blend type 

and ratio. TGB fuel properties (SVO + E10 blends) were recently studied in detail, with results 

for viscosity, density, speed of sound, heating value, flashpoint, cold flow properties, and 

lubricity [179]. The results of the fuel properties measured during this study were similar, and 

are shown in Table 4-3 for the fuels used in engine testing. A brief discussion follows for the 

viscosity and cold flow properties, and includes important findings from the addition of E85 and 

naphtha as TGB blend agents.  

Viscosity is one of the most important fuel properties; high viscosity fuels are linked to both 

short-term engine performance issues such as startability and longer-term issues such as coking 

of injectors [93]. E10, E85, and renewable naphtha all reduced viscosity at approximately the 

same rate as blend percentage was increased, as shown in Figure 4-14. Figure 4-14 also shows 

TGBs are more effective at reducing viscosity than by mixing vegetable oil with petrodiesel 

(dilution method). For reference, the acceptable range for kinematic viscosity by ASTM standard 

for B100 fuels @ 40 °C is 1.9-6.0 mm2/s and for Grade No. 2-D S15 petrodiesel @ 40 °C is 1.9-

4.1 mm2/s [100], [147]. As was the case with previous research, changes in lower heating value 
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(LHV) were approximately linear with changes in blend ratio depending on the energy content of 

the blend component. TGB cold filter plugging point (CFPP) causes large reductions as a small 

amount of blend is added to the vegetable oil (~5%), then tapers off for higher blend ratios as 

shown in Figure 4-15. Like viscosity, the E10, E85, and naphtha blends give greater reductions 

to CFPP than the dilution method. One important observation made when cold flow testing was 

the TGB made with higher levels of E85 separated during the cold flow test. The blends were 

soluble at room temperature, but as the blend decreased in temperature, the components would 

separate. This explains why the CFPP did not continue to decrease with higher blend ratios the 

way the TGBs made with E10 and naphtha did.  

Table 4-3. Physical properties of fuels used in engine performance testing. 

 



 

104 

 

 
Figure 4-14. Viscosity versus % corn oil in blend. 

 
Figure 4-15. Cold Filter Plugging Point (CFPP) versus % corn oil in blend. 

4.4 Conclusions 

The use of ICO from a local ethanol plant combined with the TGB fuel pathway offers 

farmers a simple alternative for producing and using biofuels on-farm. Based on this research, 

some specific observations and conclusions about TGB blend components and ratios emerge. 

The study showed a modern agricultural petrodiesel engine was compatible with TGBs at the 

three ratios tested without modification. However, the 75/25 and 65/35 blend ratios performed 

better in some categories as compared to the 85/15 TGBs. This is likely tied to differences in fuel 

properties, especially the reduced viscosity for the higher blends. In addition to the blend ratio, 
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TGB blend component also showed some differences. High ethanol content in the blend (using 

E50 and E85) caused higher emissions in the test engine at the speed and load used in the test. 

Additional engine testing at other loads could better quantify ethanol’s effect on emissions; other 

research has found some emission benefits from ethanol blending in diesel engines are not 

realized until higher loads [148]. Another potential issue with using TGBs formed from high E# 

gasoline is the possibility of component separation, especially if water content of the components 

is not known. Unless water content can be assured, it is recommended that users of TGBs limit 

ethanol content in the gasoline portion of the blend to 10% (E10) to ensure no TGB phase 

separation over a wide temperature range. TGBs formed from renewable naphtha had favorable 

results. Naphtha blends showed a similar reduction in viscosity as using gasoline to form TGBs, 

but were cleaner burning for all emission categories tested. In addition, naphtha does not have 

any solubility issues inherent to the blends containing ethanol. Finally, a TGB formed from ICO 

+ renewable naphtha is 100% renewable.   

B100 performance was also favorable with reductions in emissions as compared to diesel in 

every category except NOx. B100, whether produced on farm-scale or produced commercially, 

might be preferential over TGBs for farmers looking to use biofuels but primarily operating 

newer machinery still under warranty. R100 performance was similar to petrodiesel in fuel 

consumption, yet had emission benefits over petrodiesel in several categories. The R100 pathway 

offers a true “drop-in” alternative to petrodiesel that is desired by the military and other users.  

TGBs formed from ICO feedstock allow farmers a simple yet effective method to produce 

on-farm fuel that can improve sustainability in agriculture. Mixing TGBs may be preferred by 

farmers who are disinclined, either financially or technically, to produce and utilize biodiesel at 

their operations. Several lessons were learned about TGBs that can be implemented and applied 
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to future research. Future research should also use long-term durability testing to assess the 

impact of using TGBs in the combustion chamber, fuel system, and after-treatment components.  
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Chapter 5. TRIGLYCERIDE BLENDS (TGBs) AS AN OPTION FOR ON-FARM 

FUEL PRODUCTION4  

 
 
 

5.1 Quick facts… 

• A Triglyceride Blend (TGB) is a biofuel pathway that is easy and economical to produce. 

• As compared to straight vegetable oil (SVO), TGBs improves viscosity, cold flow 

performance, and other physical properties to levels more similar to petrodiesel without 

the need for a fuel heater. 

• TGBs may be well suited to on-farm production of fuel for diesel engines, and would 

allow the use of oilseeds that may not have a nearby commercial market. 

• There are disadvantages to using TGBs, particularly warranty and safety concerns that 

need to be understood by potential users. 

5.2 Purpose and disclaimer 

The purpose of this fact sheet is to provide information about Triglyceride Blends (TGBs), 

the resultant product of mixing straight vegetable oil (SVO) with E10 gasoline as a thinning 

agent. The fact sheet is a way to share information and key findings with interested parties in an 

easy to understand and more accessible manner than technical publications. No ASTM standard 

exists for TGBs and the use of TGBs may void new engine warranties. Consult local and 

regional laws for off-road fuel production for agriculture use. Any use of this fuel production 

method is an assumption of risk; Colorado State University (CSU) is not liable for any damages, 

losses or causes of action of any nature.   

                                                 
4 Published as a CSU Extension Fact Sheet, Farm and Ranch Series by A.C. Drenth et al. [201] 
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5.3 What is a TGB? 

Straight vegetable oil (SVO) has been used as a fuel in diesel engines since their inception 

when Rudolph Diesel advocated vegetable oil fuels, hoping that farmers could supply their own 

fuel through oilseed cropping. However, in modern unmodified diesel engines, most experts 

agree that long-term use of SVO can cause problems that may decrease service intervals and 

reduce engine life. Many of these problems are tied to the high viscosity of SVO, which is 

typically 10-20 times greater than petrodiesel. Viscosity can be lowered through several 

methods, which are referred to as fuel conversion methods or fuel pathways. Among the more 

common biofuel pathways are those using chemical reactions. For example, biodiesel is 

produced through the transesterification of vegetable oils (or animal fats) into mono-alkyl esters 

of long chain fatty acids. Making biodiesel entails a controlled chemical reaction using an 

alcohol and a catalyst. As an alternative, TGB for biofuel is made through a physical, not 

chemical, conversion process. TGBs are made by mixing vegetable oil (triglycerides) with 

gasoline or other low viscosity fuel and using the resulting solution (blend) as a petrodiesel 

substitute. The reduction in viscosity through this blending process allows TGBs to be used in 

diesel engines without modification. The addition of gasoline will also increase the energy 

content of TGBs compared to SVO, which increases fuel economy and can increase engine 

performance parameters like maximum power [97]. Some U.S. farmers have been using TGBs 

successfully for several years (with various naming conventions for this biofuel [180], [181]), 

and the Engines and Energy Conversion Laboratory (EECL) at CSU has been conducting 

research on this pathway since 2010. The main advantage of TGBs are: they are economical, fast 

to make, and relatively easy to make. TGBs are produced with low energy inputs, and do not 

create waste products or require a catalyst. Cost of production and initial capital investment are 
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relatively low, making economy-of-scale of less concern than other biofuel production options. 

Due to the ease of production, TGBs may be well suited to on-farm fuel needs in rural areas. 

TGBs may also be relevant to farmers looking to grow a nontraditional oilseed crop that may 

work well in their rotation, but does not have a commercial market established in their area. This 

would create a use for oilseeds produced as cover crops, off-season crops, relay crops, fallow-

substitutes, or in other rotations that could be planted in concert with water rights leasing.  

5.4 TGB production 

A basic TGB production flow diagram is shown in Figure 5-1 and is described below in four 

steps:  

• Step 1: The starting point to make TGBs is virgin vegetable oil. The focus of this fact 

sheet is not on the on-farm crushing of oilseeds, with several other resources already 

dedicated to that topic (e.g. references [182] and [183]). Alternatively, some farmers may 

be able to readily obtain oil from a commercial source, such as a nearby oilseed 

processing facility or ethanol plant. The EECL has not done research on other sources of 

feedstock for TGB production, such as used cooking oil or animal fats.  

• Step 2: After extraction, an initial filtering of the oil is typical to remove residual meal 

particles. There are other references available (e.g. reference [184]) for additional details 

on filtering oil. The initial and final filtering steps shown in Figure 5-1 are for illustration 

purposes and other combinations or methods may be acceptable. Regardless of method, 

the importance of filtering cannot be overlooked. Poorly filtered TGBs will clog fuel 

filters and may reduce engine longevity. 

• Step 3: Once the vegetable oil is extracted and filtered, the blending agent is added.  
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o Blending Agent - The EECL has used gasoline with ethanol contents ranging 

from E0 to E85 during TGB testing, as well as renewable naphtha. When using 

gasoline as a blending agent, the recommendation is to limit ethanol content to 

10% (E10). Higher levels of ethanol in the blend could cause component 

separation due to differences in chemical structure of the vegetable oil and alcohol 

[179]. Engine performance was favorable when using renewable naphtha as a 

blending agent, but this fuel has limited availability compared to gasoline. For 

simplicity, the remainder of this document refers to the blending agent as E10.  

o Blending Agent Percentage - Short-term engine performance testing at the 

EECL using a direct injection, common rail, diesel engine was carried out using 

SVO to E10 volumetric ratios ranging from 100/0 to 20/80. EECL testing showed 

diesel engines are fairly insensitive to the blend ratio of TGBs, although 

performance degrades with high (>50%) and low (<15%) E10 contents [185]. The 

recommendation for best performance is to use volumetric ratios between 15-

35%. As shown in Figure 5-2, the viscosity is greatly reduced with a small 

amount of E10, and the benefit to viscosity tapers off above ~35% blend ratios 

[179]. All figures in this document show the average value for seven oils: 

camelina, canola, carinata, corn, pennycress, soy, and sunflower.  

o Blending Technique - The desired blend ratio between vegetable oil and the 

thinning agent can be achieved in two different ways. As was done in EECL 

testing, a known volume of SVO (e.g. 15 gallons) was blended with a known 

volume of E10 (e.g. 5 gallons) to make a 75/25 volumetric ratio. In practice, some 

farmers using TGBs and mixing them in bulk find a gravimetric approach more 
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convenient; using a hydrometer to control how much E10 is added to the SVO 

[97]. For the hydrometer method, E10 is added to SVO progressively until the 

resulting blend “floats” the hydrometer at a pre-determined level (e.g. SG ≈ 0.87). 

A hydrometer is an instrument that measures specific gravity (SG), which is the 

ratio of the density of a fluid to the density of water. Fuel property testing of 

TGBs has shown density varies approximately linearly with blend ratio as shown 

in Figure 5-3, making using a hydrometer (Figure 5-4) an effective approach 

[179]. Since density of vegetable oil increases with decreasing temperatures, more 

E10 is needed to achieve the same SG in the winter months than shown in Figure 

5-3 (measured at room temperature). Farmers should be also be aware the 

physical properties of vegetable oil can vary by region, and those produced on 

their farm may differ from what has been used in EECL testing.  

• Step 4: Once the desired ratio of SVO to E10 is achieved, the TGB should be agitated to 

ensure adequate mixing. TGBs do not require large amounts of agitation to form a 

solution, but hand or mechanical mixing ensures homogeneity. Due to the volatility of the 

gasoline component, this mixing process can increase the pressure in a sealed container, 

and thus should be outgassed (vented) before storage.  

• Step 5: A final filtration of TGBs to 1 micron after the blending process is recommended 

before use. The final TGB can be used in neat form or, similar to biodiesel (i.e. B20), can 

be mixed with petrodiesel to provide a good balance of cost, emissions, cold-weather 

performance, materials compatibility, and ability to act as a solvent [186]. EECL testing 

has shown TGBs (SVO + E10) are both physically stable (do not separate) and are 

chemically stable over the expected timescale of use [179]. Operators should still try to 
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minimize storage time, as TGBs contain oxygen and can degrade, undergoing rancidity 

with long term or improper storage.  

 
Figure 5-1. TGB production. 

 
Figure 5-2. TGB viscosity versus blend ratio [179]. 



 

113 

 

 
Figure 5-3. TGB density versus blend ratio [179]. 

 
Figure 5-4. Hydrometer. 

5.5 Engine performance and durability 

Engine performance has been generally acceptable for the TGBs discussed above. As shown 

in Figure 5-5, most categories (fuel consumption, thermal efficiency, carbon monoxide 
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emissions, and oxides of nitrogen emissions) were within ±10% of petrodiesel performance with 

slightly higher hydrocarbon and particulate matter emissions at the tested load and speed [137]. 

Engine durability is the testing of longer term effects of TGBs. Durability testing at the EECL is 

performed using a single cylinder, direct injection, diesel engine over extended intervals. 

Durability issues include oil degradation, combustion chamber carbon build-up, and fuel system 

compatibility. At the conclusion of the durability test interval, the engine is disassembled for 

post-test inspection of the injector and combustion chamber. Engine durability under TGB usage 

is an area of ongoing research at the EECL. Initial results show TGBs have significantly less 

carbon build-up on the injector and combustion chamber than when using SVO of the same 

feedstock over the same interval. Biodiesel exhibited less carbon build-up than a TGB (90/10 

blend), and petrodiesel. For the testing, biodiesel and TGB were produced from the same canola 

oil feedstock [187]. Figure 5-6 shows a relative comparison from some of the fuels evaluated for 

durability.     

 
Figure 5-5. TGB (75/25 blend) engine performance, John Deere 4.5L PowerTech (Tier 3 

compliant) at 1700 rpm and 250 N-m [179]. 
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Figure 5-6. 300-hour durability results of canola biofuels, Yanmar 0.76L TF140E at 1800 rpm 

and 4.5 kW [187]. 
 

5.6 Safety considerations 

Low volatility has been linked to poor atomization and combustion of SVO in diesel engines. 

In addition to the viscosity reduction, making TGBs (adding E10) also improves the volatility 

compared to SVO. A downside to this increased volatility is a corresponding reduction in flash 

point. Flash point is the lowest temperature at atmospheric pressure at which application of a test 

flame will cause the vapor of a sample to ignite under specified test conditions. The volatility of 

the E10 causes TGBs to have low flash points in neat form due to the low flash point of the 

gasoline (~-40 °C) and ethanol (~13 °C) components. For reference, the ASTM specification for 

biodiesel flash point is 93 °C minimum while petrodiesel is 52 °C minimum. Testing at the 

EECL has shown even a small amount of E10 (<5%) in a TGB will drive the flash point to a low 

value (<40 °C). Flash point, as specified by the ASTM standards, is not directly related to engine 

performance. It is, however, of importance in connection with legal requirements and safety 

precautions involved in fuel handling and storage that are normally specified to meet insurance 

and fire regulations [100].  
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Related to flash point are flammability limits in a fuel tank headspace. As the temperature 

rises in a fuel container, fuel vapors are produced and mix with air which progress from too-lean-

to-burn, to combustible, to too-rich-to-burn. Quantifying flammability of TGBs is an area of 

ongoing research at the EECL. Initial flash point and vapor pressure studies have shown that 

TGBs have similar flammability to neat gasoline. These findings are similar to the research of 

others on diesohol (petrodiesel + ethanol) and other biofuel blends containing ethanol (i.e. 

biodiesel + ethanol) because the flammability is dominated by the high volatility component. 

Besides temperature, the flammability limits of gasoline depend on several factors such as fill 

ratio, winter or summer blend, ethanol content, and are therefore difficult to summarize here. 

Published data showed the vapor above the fuel level in a gasoline storage container at normal 

ambient temperature exceeds the upper flammability limit (too-rich). The approximate 

flammable range for summer E10 (1/30 fill ratio) is from -48 to -16 °C [188].  

Flash point testing results indicates that, according to definitions by the National Fire 

Protection Association (NFPA), U. S. Department of Transportation (DOT), and U. S. 

Occupational Safety and Health Administration (OSHA), TGBs should be treated as a Class I 

(flammable) liquid as they have flash points below 100 °F (37.8 °C), while petrodiesel fuel is a 

Class II (combustible) liquid. Like other petrodiesel fuel substitutes that contain a high volatility 

fuel component, TGB handling, storage, and dispensing must be afforded the same cautions as 

neat gasoline (treated as a Class I liquid). Depending on the application, additional safety 

measures may be warranted for using TGBs, such as the fitting of flame arresters on fuel tanks 

[188], [189].  
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5.7 Other observations 

Like biodiesel, farmers using TGBs have reported some solvent properties that can break 

down the varnish deposits left by petrodiesel on the walls of the existing fuel storage tanks or 

fuel systems [186]. The breakdown of these deposits could be significant in older machinery, 

which can cause fuel filters to plug rapidly during the initial transition to biofuel use. Once the 

contaminant is removed from the fuel system, subsequent fuel filter service intervals should 

return to normal. 

Also like biodiesel, users of TGBs have reported quieter and smoother sounding engine 

operation at some loads compared to petrodiesel. Other researchers have linked this effect to the 

increased cetane number and lubricity of biodiesel. The EECL has not done cetane number 

testing on TGBs, but have noted injector timing and combustion heat release rate curves are 

similar for TGB (75/25 blend) and biodiesel [137]. One advantage to mixing SVO or biodiesel 

with ultra-low sulfur diesel (ULSD) is the biofuel improves the lubricity, even at low blend ratios 

(i.e. B2). Initial lubricity testing of a 75/25 TGB shows it also has inherent lubricity, and the E10 

is not negatively affecting lubricity at that ratio [179].  

5.8 Conclusions 

TGBs may help fill a niche role in farm-fuel production or other remote users. TGBs allow 

farmers a simple yet effective method to produce off-road fuel that can improve sustainability in 

agriculture. TGBs may be well suited for farmers who introduce an oilseed crop into their 

rotation, but do not have a nearby commercial market for the crop. Farm-fuel production also 

offers some protection from price volatility of petroleum fuels, and an option to produce their 

own fuel in times of fuel shortages. Operators of newer equipment should consult warranty 
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statements before using TGB fuel. The flammability concerns outlined above also must be well 

understood and mitigated by potential users.  
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Chapter 6. CONCLUSIONS AND RECOMMENDATIONS 

 
 
 

6.1 Introduction  

This chapter provides overall conclusions and recommendations from this research.  

6.2 Feedstock conclusions 

6.2.1 Camelina, carinata, and pennycress industrial oilseeds  

The industrial oilseeds discussed in this report grow well in the U.S., are compatible with 

existing agriculture and fuel infrastructure, and have potential to see widespread adoption in the 

near term. These oilseeds, teamed with new cropping systems, show great promise to increase 

the quantity of biofuel production on existing farmland.  

Department of Defense (DOD) officials have said that any alternative fuels for DOD 

operational use must be derived from a non-food crop feedstock [18]. The USAF has also 

identified the use of efficient and abundant non-food source biofuels as a game changing 

technology in energy generation for 2011-2026 [190]. Recent analysis by the USDA found using 

non-food feedstocks by the U.S. transportation sector can result in less direct impact on 

commodity markets, livestock feed, and food markets [191]. Clearly, there will be a demand for 

these non-food oilseeds in the near future from both the DOD and transportation sector. The use 

of these oilseeds for on-farm fuel can bridge the gap until the larger-scale markets mature. Due 

to the low input requirements of these crops, the economics may be more favorable than 

traditional feedstocks for farmers to produce their own on-farm fuel.  

The engine performance of camelina, carinata, and pennycress-based biofuels was similar to 

the traditional oils in this study. There were no performance or emission categories that would 

preclude their use on a wider scale.  
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The fatty acid profiles of these industrial oilseeds differ from traditional oils like soy and 

rape; these differences can create difficulties meeting certain parameters of the current biodiesel 

standards (ASTM D6751 & EN 14214). Potential issues have been noted for camelina in two 

recent biodiesel conversion studies, with camelina biodiesel not meeting ASTM D6751 standards 

for cetane number, distillation temperature, and oxidation stability, which is in part due to its 

high polyunsaturated fatty acid content, and was suggested as serious drawbacks for camelina as 

a biodiesel feedstock [51] [115]. However, this engine performance study found no engine 

operability, performance, or emissions issues when using camelina fuels or significant 

differences from the other feedstocks. The cetane number was not measured in this report, but 

when using camelina based fuels there were no combustion quality issues found during the 

analysis of heat release curves, no evidence of knocking, nor increased gaseous and particulate 

exhaust emissions due to incomplete combustion. The iodine value (IV), a measure of the degree 

of unsaturation, is another parameter found higher for camelina biodiesel than the EN 14214 

standard limit. ASTM D6751 standard does not contain an IV specification, but some engine 

manufacturers have suggested using B100 with a high iodine value tends to polymerize and form 

deposits on injector nozzles, piston rings and piston ring grooves [192]. Longer-term 

performance and durability testing of camelina-based fuels will add to the data collected here. 

The issues outlined by these researchers could be partially mitigated by cetane and antioxidant 

additives. Camelina could also be blended with other esters to form a B100 that meets ASTM 

D6751. In future years, plant scientist may be able to reduce the high degree of unsaturation and 

the molecular weight of camelina oil with genetic engineering or conventional plant breeding 

[51].  
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Other researchers have also found the oxidative stability of pennycress biodiesel is 

acceptable according to the limit contained in ASTM D6751, but not EN 14214 which is more 

restrictive [65]. Carinata biodiesel has also been found to have higher viscosity and iodine value 

than allowed by EN 14214 [193]. Like camelina, in the short term these issues for pennycress 

and carinata can be mitigated through additives and by blending, and may be able to be 

eliminated in the future by plant scientists’ breeding and genetics programs.  

In some categories, the industrial oilseeds outperformed the conventional oils. For example, 

pennycress’ biodiesel cold flow properties were superior to all other oils by approximately 10 

°C. With a cold filter plugging point result of -18 °C, the feedstock has great potential in the 

upper Midwest. Currently, the cold flow properties of soy and other traditional feedstocks limit 

its use in the winter months. For example, the mandated use of biodiesel in Minnesota is lowered 

from B10 to B5 for the colder weather months of October through March [16]. Using pennycress 

biodiesel may allow Minnesota and other northern states to maintain the same blend requirement 

year-round.  

Carinata and pennycress also have a higher percentage of very long-chain fatty acids 

(VLCFAs) with chain length of 20 carbon (C20) or more, than the other oils which can improve 

fuel conversion rates and has a wide variety of industrial uses [53]. For example, the eurcic fatty 

acid (C22:1) measured in this study was nearly 40% for carinata and 37% for pennycress, while 

the traditional oils were near 0%.  

6.2.2 Industrial corn oil  

Like the other industrial oilseeds, the use of industrial corn oil for on-farm fuel production 

has great promise. During engine testing there were no performance or emission categories that 

would preclude their use on a wider scale. The corn oil study also provided important lessons 
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learned about the engine performance of TGBs for different blend ratios and for ethanol contents 

within the blend. The 75/25 and 65/35 ratios had more petrodiesel like performance than the 

85/15 blends. Higher ethanol within the blend (E50-E85) caused increased emissions in some 

categories. Additional engine testing at other loads could better quantify ethanol’s effect on 

emissions; other research has found some emission benefits from ethanol blending in diesel 

engines are not realized until higher loads [148]. Although using higher ethanol contents might 

have economic and renewability benefits over using E10 gasoline to form corn TGBs, the 

increased emissions, additional safety concerns due to its flammability limits, and solubility 

concerns are all issues outlined in this research. 

Sourcing the corn oil from an ethanol plant has several benefits over other commercial 

sources (crushing facilities) and other on-farm options (on-farm extraction of traditional oilseed). 

If corn oil is sourced from an ethanol plant, the hardware, labor, and cost of oil extraction can be 

avoided. Industrial corn oil will typically be more economical than soybean, canola, sunflower or 

similar oils obtained from a local crushing facility since those oils can also be marketed as edible 

oils. A farmer using industrial corn oil can produce biofuel on farm without having to grow a 

traditional oilseed, a crop they may not be familiar with growing. Additionally, a farmer can 

produce biofuel without having to use the resulting meal, which opens the door for crop farmers 

who do not own livestock. 

Nearly ten years after the passage of the RFS, many U.S. farmers now have an ethanol plant 

in relatively close proximity. Figure 6-1 overlays the major corn producing areas of the U.S., the 

most widely grown crop, with the location of ethanol plants. The local use of corn oil produced 

at these ethanol plants for fuel needs in agriculture has great potential to improve both economics 

and sustainability.  
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Figure 6-1. U.S. corn production and ethanol plants 

6.3 Fuel pathway conclusions 

6.3.1 SVO and Dilution Mixtures  

SVO and dilution mixtures were not used in engine testing, only as baseline for the fuel 

property evaluation. Farmers looking to grow one of these oilseeds for on-farm fuel needs should 

also consider converting the fuel (physically or chemically) before using it in their equipment. 

Most scientific literature is in agreement that long-term use of SVO or dilution mixtures can be 

detrimental in a modern diesel engine. The fuel property testing done here found much higher 

viscosity for the SVOs than petrodiesel. Even after heating the SVO, as is done with many 

engine conversion kits, the viscosity is still much higher than petrodiesel [81] [91]. For the same 

blend ratio, TGBs were shown to be better at reducing viscosity and improving cold flow 

characteristics than the dilution method. 
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6.3.2  TGBs 

The main advantage to TGBs over the fuel pathways using a chemical conversion is that they 

are much easier to produce. Without a chemical conversion, the process of making fuel can 

continually flow without the need for batch production. The physical conversion to TGBs is also 

not as energy intensive, as they can be splash blended at atmospheric pressure and temperature. 

Equipment costs will be less to set up a TGB production plant than B100 plant (no reactor, no 

wash tank, no methoxide tank, etc.). The raw materials involved along with the low pressure and 

temperature also make for a safer conversion. Producing B100 involves using chemicals that can 

cause burns, blindness, and fire hazards and therefore may see storage or other restrictions in 

some areas [194] [195]. Gasoline as a blending agent is easier to find in rural areas than the raw 

products to make B100 (i.e. methanol and potassium hydroxide). TGB production does not 

produce the co-product glycerol, which may be difficult for farmers to market or dispose of. 

Finally, a wash step is not needed for TGB production, which in B100 production creates 

wastewater or filtering media that must be properly disposed of.  

Engine performance testing of TGBs was found to be generally acceptable. In many 

categories such as thermal efficiency, heat release rates, and fuel consumption, a 75/25 TGB 

performed similarly or slightly better than B100 of the same feedstock. The TGBs had lower 

NOx emissions than B100, but had higher HC and PM levels at the load and speed tested. 

Additional testing could further quantify TGB emissions at a wider range of engine operating 

conditions. 

Several important lessons learned were obtained about the blending ratio and blending type 

for TGBs during fuel property testing. Although blending SVO with higher levels of gasoline-

ethanol blends (i.e. E85) was shown to be technically feasible, the possibility of separation 



 

125 

 

necessitates limiting the level to E10. TGBs formed using E10 were shown to be chemically 

stable through one year of storage. Another unique trait about TGBs is that by changing the 

blend ratio, fuel properties can be somewhat tailored depending on time of year, engine 

application, and economics (cost of gasoline versus the oil).  

6.3.3 B100 

B100 engine performance was also favorable. Like other researchers have found, B100 has 

emission benefits in some categories as compared to petrodiesel.  

Most engine manufactures now certify their engines for biodiesel blends between 2-20% if 

the biodiesel used in the fuel blend meets the standards of ASTM D6751. This may be a major 

advantage for B100 over TGB if a farmer is primarily operating newer equipment still under 

warranty. Farmers considering industrial oilseed based biofuels of any type must consult their 

equipment manufacturer’s warranty statement.  

Additionally, if a producer gets their fuel certified and pays applicable taxes, they may be 

able to legally use the fuel on-road since B100 is an approved U.S. EPA fuel pathway for many 

feedstocks [196]. This may be significant for some farmers with large on-road diesel fuel needs. 

Historically, producers of B100 have been able to apply for a $1/gallon income tax credit, 

although that incentive is not guaranteed in future years [197]. There may be other incentives at 

the state or local level for B100 producers.  

6.3.4 R100  

The U.S. military and transportation sector would like biofuels to be “drop-in” alternatives to 

petroleum. The R100 engine performance during this study was nearly identical to petrodiesel, 

but with emissions benefits in some categories. The drop-in characteristics have several benefits. 

Not only is engine performance very similar to petrodiesel, the fuel can use the same 
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transportation infrastructure as petrodiesel. The lack of oxygen in the fuel results in excellent 

oxidative stability and cold weather flow properties.  

One downside to the R100 pathway is it may not be a feasible conversion for farm-scale fuel 

production. The complexity and initial cost of the conversion method may limit its use to larger 

commercial scale operations.  

6.4 Recommendations for future work 

6.4.1 Additional engine performance testing  

As discussed earlier, the TGBs had slightly elevated HC and PM emissions during engine 

testing. Future testing at other engine modes (load and speed) will better quantify its 

performance over a wider range of operating conditions.  

The use of renewable naphtha showed great potential in the engine performance studies and 

fuel property testing of this research. Future work should continue to investigate naphtha in 

parallel to E10 as blend agents for making TGBs.  

6.4.2 Durability studies  

Long-term durability testing is necessary to assess the impact of using TGBs in the 

combustion chamber, fuel system, and after-treatment components. Some durability studies have 

been already been completed at the EECL, and will be documented in future publications [187]. 

Future work should concentrate on how the blend ratio of the TGB affects durability. Other 

factors that should be explored in future research are the effect of filtering, refining, and 

pretreatments on TGB durability. During the short-term engine performance studies of this 

research, there were no statistical difference between using crude and refined, bleached, and 

deodorized (RBD) oils as feedstock. Durability testing would reveal if any differences arise after 

longer-term use.  
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Future durability testing should also monitor the effects of new fuel pathways on after-

treatment components through equivalent aging studies. Most modern diesel engines use 

sophisticated exhaust filters and catalysts to meet stringent requirement of later tiers of U.S. EPA 

emission standards. Many engine manufactures already limit the level of biofuel blends due to 

the sensitively of this equipment. For example, John Deere restricts biodiesel blends above B20 

for their engines with exhaust filters due to risks that “include, but are not limited to, more 

frequent regeneration, soot accumulation, and increased intervals for ash removal” [198]. Figure 

6-2 shows the complexity of a typical Tier 4 after-treatment system. These components must be 

protected, not only for the important job they perform for emissions control, but also for their 

large replacement cost. For heavy-duty engines, the estimated cost for emission controls is 1-3% 

of the total equipment price [199]. 

 
Figure 6-2. John Deere PowerTech 4.5L Tier 4 exhaust aftertreatment system [200] 
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6.4.3 Fuel property testing  

The fuel property testing of this report was fairly extensive. Several key parameters were 

measured for all fuel types. Since no ASTM standard exists for TGBs, the standards of 

petrodiesel and biodiesel were used as comparisons. However, some fuel properties in the ASTM 

standards were not measured due to equipment availability or financial constraints. Future work 

should include exploring other fuel properties not measured here. The measurement of cetane 

number for a blend sweep of TGBs would be beneficial to confirm recommendations made based 

on engine performance testing. The testing of TGBs for metals or other impurities known to 

poison exhaust system catalysts should also be done in future work. Initial testing of TGB 

lubricity was favorable; additional blend sweep testing would determine blend ratio’s effect on 

lubricity.  

6.4.4 Oil extraction studies  

Oil extraction is a vital step between the harvest of an oilseed and the conversion of that oil 

into a biofuel. Oils must readily extracted from the seeds in an efficient and economic manner. 

Future oil extraction studies would be beneficial to ensure the industrial oilseeds in this report 

are compatible with existing crushing and oil extraction methods used at farm-scale so they can 

be easily adapted. The resulting meal and other coproducts (straw, etc.) should also be analyzed 

to determine its value as animal feed or in other markets.  

6.4.5 Flammability and safety testing  

Future testing of the flammability limits of TGBs will be beneficial to better quantify the 

flammability of TGBs in a fuel tank and storage container. Initial flashpoint testing has shown 

TGBs should be treated as a Class I (flammable) liquid. Operators looking to use TGB must be 
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familiar with their fuel system and application to determine if any modifications are warranted 

such as the fitting of fire arresters on fuel tanks.  

6.4.6 Agronomic studies  

Plant scientists should continue to improve the genetics of these new industrial oilseeds. The 

fuel production of these oilseeds should be maximized, which includes overall yield and oil 

percentage within the seeds. Plant scientists should also be mindful of oil quality so in future 

years these oilseeds can fully meet all requirements of both ASTM D6751 and EN 14214 

without additives. Another area of focus is to help these plants fit into the cropping systems 

outlined in section 1.4. This would include reducing the growing season and selecting varieties 

that can best withstand low-input cropping systems.  
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