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ABSTRACT

SOME TOPICS ON SURVEY ESTIMATORS UNDER SHAPE CONSTRAINTS

We consider three topics in this dissertation: 1) Nonresponse weighting adjustment using es-
timated response probability; 2) Improved variance estimation for inequality constrained domain
mean estimators in surveys; and 3) One-sided testing of population domain means in surveys.

Weighting by the inverse of the estimated response probabilities is a common type of adjust-
ment for nonresponse in surveys. In the first topic, we propose a new survey estimator under nonre-
sponse where we set the response model in linear form and the parameters are estimated by fitting a
constrained least square regression model, with the constraint being a calibration equation. We ex-
amine asymptotic properties of Horvitz-Thompson and Hajek versions of the estimators. Variance
estimation for the proposed estimators is also discussed. In a limited simulation study, the perfor-
mances of the estimators are compared with those of the corresponding uncalibrated estimators in
terms of unbiasedness, MSE and coverage rate.

In survey domain estimation, a priori information can often be imposed in the form of linear
inequality constraints on the domain estimators. Wu et al. (2016) formulated the isotonic domain
mean estimator, for the simple order restriction, and methods for more general constraints were
proposed in Oliva-Avilés et al. (2020). When the assumptions are valid, imposing restrictions on
the estimators will ensure that the a priori information is respected, and in addition allows infor-
mation to be pooled across domains, resulting in estimators with smaller variance. In the second
topic, we propose a method to further improve the estimation of the covariance matrix for these
constrained domain estimators, using a mixture of possible covariance matrices obtained from the
inequality constraints. We prove consistency of the improved variance estimator, and simulations
demonstrate that the new estimator results in improved coverage probabilities for domain mean

confidence intervals, while retaining the smaller confidence interval lengths.
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Recent work in survey domain estimation allows for estimation of population domain means
under a priori assumptions expressed in terms of linear inequality constraints. Imposing the con-
straints has been shown to provide estimators with smaller variance and tighter confidence inter-
vals. In the third topic, we consider a formal test of the null hypothesis that all the constraints are
binding, versus the alternative that at least one constraint is non-binding. The test of constant ver-
sus increasing domain means is a special case. The power of the test is substantially better than the
test with an unconstrained alternative. The new test is used with data from the National Survey of
College Graduates, to show that salaries are positively related to the subject’s father’s educational

level, across fields of study and over several years of cohorts.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Nonresponse Weighting in Surveys

The goal of conducting a survey is to estimate some characteristics of a target finite population.
These characteristics can take many forms. In real applications, quantitative summaries such as
means, totals and proportions of the study variable are of the most common interests. Without
loss of generality, we focus on the estimation of the finite population mean 3y = % Y icu Yio
where y; denote the non-random value of a variable of interest for the :th element in the finite
population U = {1,2,--- , N}. Since collecting data from the entire population is infeasible, we
usually randomly select sample units to measure, and then construct estimators that rely on the
random sampling design. Thus, the estimators we constructed will incorporate design information.
Let p be the sampling design and p(s) be the probability of selecting the particular sample s.
Define the sample membership indicator /; = 1if ¢« € s and I; = 0 otherwise. For i € U, let
m = E(l;) = Pr(i € s) = ), yc,p(s) denote the first-order inclusion probabilities of the
design p. Then the Horvitz-Thompson estimator (Horvitz and Thompson (1952)) incorporates

design information via inverse-probability weighting as follows:

1 yi 1 yili
yﬂ——.]\fzﬂ'z_]\[Z T
1€S €U
and ¥, is design unbiased for .
However, in real surveys, it is often the case that some sampled units do not respond (unit
nonresponse). Nonresponse will cause a loss in the precision of survey estimates due to reduced

sample size. Also, nonresponse bias generally does not decrease as the sample size increases and

thus bias is often the largest component of mean square error of the estimates. To deal with this



issue, weighting adjustment is widely used to correct for the potential biasing impact of nonre-
sponse. One way of weight adjustment is to model the response propensities for the sampled units
individually, and the adjustment factor is the inverse of the estimated propensities of the respon-
dents. The idea is to estimate the unknown probability of response. In many situations, response
propensity modeling may be the main tool to deal with nonresponse problem. Comprehensive de-
scriptions of nonresponse weighting adjustment (NWA) methods in survey sampling are provided
by Groves et al. (2002); Sarndal and Lundstrom (2006); and Cassel et al. (1983); Ekholm and
Laaksonen (1991); Folsom and Singh (2000); and Iannacchione (2003).

The response probabilities are usually estimated by logistic regression, but probit and non-
parametric methods are also used; see Little (1986), Silva and Opsomer (2009), Phipps and Toth
(2012) and so on for more details. However, the estimation procedure associated with these meth-
ods are complex and thus it is rare to implement these technique in real surveys. Also, we need
to specify the response model correctly. Because if the mechanisms that cause unit nonresponse
are not adequately reflected in the model specification, survey estimates may be biased even after
the weighting adjustments. Another approach is to use calibration estimation for adjustment, see
Deville and Sirndal (1992). One advantage of calibration method is that it has good performance
if the calibrated auxiliary variable is highly correlated to the study variable. Also, it is easy to
understand and implement for survey practitioners. Due to the attractive properties of calibration
method, we try to develop a new survey estimator under nonresponse where we set the response
model in linear form and we estimate the model by using a constrained least square criterion, with

the constraint being a calibration equation.

1.1.2 Variance Estimation of Shape Restricted Survey Domain Mean Esti-

mator
In many large-scale surveys, fine-scale domain estimates are of clear interest for many data
users, as they provide a lot of useful information. One of the most frequent parameters of interest

are the population domain means. For example, National Compensation Survey, conducted by the



U.S. Bureau of Labor Statistics, is designed to provide wage and salary estimates by occupation
for many metropolitan areas. The usual domain survey estimators depend only on the domain
specific sampled data. These survey estimators are design-based estimator, since the estimation
and inference are implemented by using certain survey weights that are determined by a specific
probability sampling design.

To establish the notation, a finite population is denoted as U = {1,2,--- , N} and let {Uj :
d =1,---,D} be a partition of the population U, where D is the number of domains. Let y be
the variable of interest and denote by y; the value for the ith unit in the population. Then, the

parameter of interest are Yy = (Jr,, -+ ,Jup) | » and Jy, is given by:

o ZieUd Yi

gUd— N, , d:lj...’D.

where N, is the population size of domain d.

Based on a sampling design p, a sample s of size n is drawn from U and p(s) is the probability
of drawing the sample s. The first order inclusion probability m; = Pr(i € s) = > ... p(s) = E(I;)
and the second order inclusion probability m;; = Pr(i,j € s) = >_, ., p(s) = E(l;I;) are both
assumed to be positive for all 7,7 € U. We denote by s, the intersection of s and Uy, and let ng
be the sample size for s;. Then, two common design-based estimators are the Horvitz-Thompson
estimator (Horvitz and Thompson (1952)) and the Hajek estimator (Hajek (1971)). Since the Hajek
estimator does not require information about the population domain size N; and is more popular
in practice, we will focus on the Héjek estimator s = (Js,, - , Us D)T as an illustration, where

the estimator ¢/, of domain d is given by:

Ny

and N, = Y ics, 1/mi- The ijth element of the asymptotic covariance matrix AV (g;) = X is:

ZZAM — Yu; (yz—QUj)’ i j=12-- D

TT
I keU; e, kT

1] N



where Ay, = cov(I1;) = m — mm. The corresponding estimator f]ij for 33;; is given by:

Akl Yk _ys )(yl _gS‘) .o
i' E E - ) Z, :1527"'7D'
’ NN T J

J kes; les;

In real large-scale surveys, although the overall sample size might be very large, it is very often that
there could be domains of interest with samples sizes that are too small to produce estimates with
acceptable precision. There exist several statistical methods to deal with this small area estimation
problem. One novel approach is to incorporate the shape-constrained regression techniques into the
survey domain estimation and inference. Shape restrictions, that can arise naturally in the survey
context, are often expected to be respected by population domain means. For example, younger
people are expected to have, on average, lower glucose level than older people, certain jobs might
be expected to receive higher salaries than others. The constrained domain mean estimators that
respect reasonable shape restrictions have the potential to improve precision and stability of the
estimators, while the unconstrained Hajek estimators are very likely to violate those constraints
and thus produce unstable and inaccurate estimates, especially when sample size n is small.

Wu et al. (2016) firstly proposed a constrained estimator that respects the monotone assumption
along the domains. Such isotonic survey estimators were shown to improve precision, compared
with the unconstrained design-based estimators, given that the monotonicity assumption is reason-
able. Recently, Oliva-Avilés et al. (2020) proposed the methods for more general constraints in
the estimation and inference of population domain means. In particular, for a given sample s, the

constrained domain mean estimator § = (9~1, 0 p) " has the following explicit form:

0= (Ipxp— W, A (AW TA)A)) gs, (1.1)
where W, is the diagonal matrix with elements Nl/N, NQ/N, ,ND/N, Aisthe m x D
constrained matrix in which each row defines a constraint on the domains, the observed J C

{1,---,m} is determined by the cone projection algorithm and A ; denote the matrix formed by

the rows of A indexed by J.



However, one drawback for the work of Oliva-Avilés et al. (2020) is that the variance of the
constrained estimator is implicit and hard to implement in practice. As was shown in Oliva-Avilés

et al. (2020), for the observed set J, the variance of 0, can be approximated by:

AVE) =303 Mt

kcU 1cU
where
D D
up =Y ol (k €U+ Y Bil(kels), k=12 N
i=1 i=1
and
00,
o = = R A N s
8251' (t1,,tp,N1,- ,Np)=(t1, ,tp,N1,- ,Np)
5__0%
’ 8]\7,- (i1, i, N1, ,Np)=(t1, tp, N1, ,Np)

t4 is the HT estimator of ¢, = > keu, Yk Thus, the consistent estimator of the approximated vari-

ance of 6, is given by:

A~ Akl ﬂk ﬁ,l
V(i)=Y Y SHd 1.2
( d) kes les Tkl Tk T ’ ( )

where

D D
i =Y dal(k € s)+ > BiI(k€s), k=12 N
=1 i=1

with &;, BZ obtained from «;, 3; by substituting the appropriate Horvitz-Thompson estimators for
each total population.

From (1.2), the expression of the variance estimator involves partial derivatives, which makes
it hard to be applied in real practice. To address this issue, we provided a simplified version
of the asymptotic variance estimator. The expression of the simplified covariance estimator is
quite classical and is preferred to the one in (1.2) from both an intuitive and a computational
viewpoint. Furthermore, we proposed a method to improve the estimation of the covariance matrix
for the constrained domain estimators. The improved variance estimator recognizes that a different

sample s with the same sample size and design might correspond to a different set J in (1.1) and it



takes advantage of the mixture of all possible .J sets, which better reflects the underlying variance

structure. See Chapter 3 for more details.

1.1.3 Validation of Shape Constrained Domain Mean Estimators

Although it has been shown that the constrained domain mean estimator proposed by Wu et al.
(2016), Oliva-Avilés et al. (2020) improves the precision of the usual design based survey esti-
mators, it has to be used with caution because invalid population shape assumptions could lead
to biased domain mean estimators. Oliva-Avilés et al. (2019) developed a diagnostic method to
detect population departures from monotone assumptions. They proposed the Cone Information
Criterion for Survey data (CICs) as a data-driven criterion for choosing between the monotone and
the unconstrained domain mean estimators. However, a more general shape constrained test needs

to be developed. Particularly, we are interested in testing:

Hy: Ayy =0 wvs H;:Ayy >0

and Ay has at least one positive element.

This one-sided test has been widely studied outside of the survey context. Under the normal-
error model assumption, the null distribution of the likelihood-ratio test statistic for the one-sided
test has been derived in many literatures, see Bartholomew (1961), McDermott and Mudholkar
(1993), Robertson et al. (1988), Meyer (2003), Silvapulle and Sen (2005) and so on for more de-
tails. In summary, when the model variance is known, the null distribution of the likelihood ratio
statistic is shown to have a mixture of chi-square distributions. When the model variance is un-
known, the test statistic has a mixture of beta distributions under the null. Also, it has been proved
that the one-sided test can provide higher power than the test using the unconstrained alternative.

In Chapter 4, we try to extend the techniques of one-sided test into the survey context. The
main goal is to formulate a formal testing procedure that can be used to validate the use of the

shape constrained domain estimator over the unconstrained estimator.



The following section of this chapter presents some key points on the shape-constrained esti-
mation, which plays an important role for understanding the materials in Chapter 3 and Chapter

4.

1.2 Preliminaries

Let z be an arbitrary vector in R” and A be the m x D irreducible constraint matrix (for
now assuming A is full row rank). Meyer (1999) defined a matrix as irreducible where none of
its rows is a positive linear combinations of the other rows, and the origin is not a positive linear
combination of its rows. Intuitively, a constraint matrix is irreducible when there is no redundant
constraints.

The solution (,5 to the following constrained least-squares problem:
m(gn |z — || suchthat A¢ >0
is exactly the projection of z onto the convex cone:
C={pcR”: Ap > 0}.

A set is a cone if for every ¢ in the set, all positive multiples of ¢ are also in the set. If C is convex
cone, then for any ¢4, ¢, in C, ag + (1 — a)¢p2 is in C for all & € (0,1). The necessary and

sufficient conditions for a vector éﬁ to be the projection of z onto C are

(z—¢,¢)=0, and (z—¢, ) <O0forall¢cC. (1.3)

Define 2 = C N V+,where V' refers to the orthogonal complement of V. Then it can be shown
that €2 is a closed convex cone and the projection of z onto C is the sum of the projections onto

2 and V, respectively. Furthermore, The convex cone 2 can be specified by a set of generators



o1, -, 0, € ; that is, we can express {2 as:

j=1
where the generators (or edges) of €2 are the columns of A" (AAT)~! when A is full row rank.

Hence, we can write the constraint cone C as:

C={pcR”:p=v+)» ;&b >0,j=1,---,m and veV}

j=1
Now, we define the polar cone C° as C° = {p € R” : (p, ¢) < 0,for all ¢ € C}. It can be shown

that the polar cone can be generated by the rows of — A, that is, we can express C° as:

COZ{pGRD:p:ijfyj,bj207j:1’...’m}7

j=1

where 7;, j = 1,--- ,m, are the rows of —A. Let p be the projection of z onto C°. Meyer (1999)
showed a very important fact that the projection of z onto C? is the residual of the projection of z
onto C and vice-versa. This result is quite useful in practice, because it allows us to compute the
projection onto C by finding first the projection onto the polar cone C°, which has known edges.
The necessary and sufficient conditions in (1.3) can be adapted to the polar cone as follows: the

vector p € C° to minimize ||z — p||* over C° are satisfying
(z—p,p)=0, and (z—p,v)<0 Vj=1--- m. (1.4)

Based on conditions (1.4), it can be shown that the projection p of z onto the polar cone C° is
exactly the projection of z onto the linear space generated by the edges «y; such that (z—p, ;) = 0.
That is, there exists a set J C {1,...,m} such that the projection of z onto C° coincides with the

projection of z onto the linear space spanned by ~;, for j € J. The R package coneproj (Liao



and Meyer (2014)) will perform the cone projection, returning both the projection and the set J. If
J is empty, then the constrained estimator coincides with the unconstrained estimator.

Therefore, if we project arbitrary z € RP onto C°, then there must exist a set .J such that we
can write p = Y | e b7V, bj > Ofor j € J, and this representation is unique by the Karush-Kuhn-

Tucker (KKT) conditions. Thus, for any z € RP, it can be expressed as:

z:v+ij'yj+ij6j, (1.5)
jeJ j¢J
where b; > 0 for j € J and b; > 0 for j ¢ J. Furthermore, v is the projection of z onto V,
Zjej b;~; is the projection of z onto C° and ij b;0; is the projection of z onto 2.
if A is not full row rank, especially when m > D, then the set .J in (1.5) may not be unique
anymore; that is, z might have more than one expression. However, Theorem 3.1 from Oliva-

Avilés et al. (2020) guarantees that the projection p = ) ._, b;~y; is the same for all such .J, and

j€J
that it is always possible to find J* that is a subset of all such J sets, and the vectors «;, j € J*
form a linearly independent set. In the following, we assume .J is this unique set. Then, we can

write the solution @ as follows:
p=z—p=2—A)(A,A)) Az,

where A ; denote the matrix formed by the rows of A indexed by J.
For the techniques regarding the constrained estimation, see Robertson et al. (1988), or Silva-

pulle and Sen (2005) for more details.

1.3 Overview
In Chapter 2, we propose a new survey estimator under nonresponse and we estimate the
propensity function by fitting a constrained least square regression model, with the constraint be-

ing a calibration equation. We examine asymptotic properties of the proposed estimator both in



Horvitz-Thompson type version and Hajek type version. The performance of the proposed estima-
tor is demonstrated through simulations.

Chapter 3 is a follow-up of the work in Oliva-Avilés et al. (2020). We first take a brief review
of the formulation of the constrained domain means estimator and its variance estimator presented
in Oliva-Avilés et al. (2020). Then, we provided a simplified version of the covariance estimator
of the constrained domain means estimator, which is practically useful from a computational point
of view. Further, a novel mixture variance estimator is proposed. It makes use of a mixture of
possible covariance matrices obtained from the inequality constraints. We rigorously proved the
consistency of the improved variance estimator. The simulations showed that the new estimator
leads to improved coverage probabilities for domain mean confidence intervals, while retaining
the smaller confidence interval lengths. Lastly, an application to the California School Data in
survey package is carried out.

A formal one-sided test procedure for the population domain means is presented in Chapter
4. Here, we consider a test of the null hypothesis that all the constraints are binding, versus the
alternative that at least one constraint is non-binding. We formulated the test statistic first and
then derived the asymptotic null distribution of the test statistics under design normal assumption.
Also, we showed the power of the test goes to 1 as sample size increases. The performance of the
proposed test was demonstrated under a variety of simulation scenarios and we applied our test to
the 2019 National Survey of College Graduates (NSCG) survey data.

A brief discussion of conclusions and future works is given in Chapter 5. All major proofs are

presented in the Appendix.
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Chapter 2
Nonresponse Weighting Adjustment Using

Estimated Response Probability

2.1 Introduction

Weighting adjustment is widely used to correct for the potential biasing impact of nonresponse.
Comprehensive overviews of nonresponse weighting adjustment methods in survey sampling are
provided by Groves et al. (2002), Sarndal and Lundstrom (2006). One way to perform weight
adjustment is to model the response propensities for the sampled units individually, and the adjust-
ment factor is the inverse of the estimated propensities of the respondents. The idea is to estimate
the unknown probability of response. General descriptions of the propensity weighting that ad-
just survey estimators for nonresponse are provided by Cassel et al. (1983). Applications of the
response propensity modeling can be found in Ekholm and Laaksonen (1991), Folsom and Singh
(2000) and Iannacchione (2003).

Aucxiliary variables are often available in surveys, either at the population or the sample level.
Commonly, the response probability is estimated by regressing on the auxiliary information para-
metrically, with logistic and probit regression models as common choices. See Alho (1990), Fol-
som (1991), Ekholm and Laaksonen (1991), and Iannacchione et al. (1991) for references. Another
approach is to estimate the response propensities through nonparametric methods. Estimation of
the response probabilities by kernel smoothing and local polynomial regression are considered by
Giommi (1984), Silva and Opsomer (2009).

An interesting characteristic of nonresponse weighting adjustment estimators is that they tend
to be more efficient than the unfeasible estimators on which they are based (i.e. those that use
the true but unknown probability of responding). A clear justification for reduced variance using

estimated response probability from a logistic regression model is given by Beaumont (2005). The

11



estimator that uses estimated response probability is generally more efficient than the estimator
using the true response probability as shown by Kim and Kim (2007).

When auxiliary variables are present in surveys, another approach is to use calibration estima-
tion for adjustment. The general concept and techniques on calibration weighting and estimation
are formalized by Deville and Sédrndal (1992). In recent years, using calibration weighting to adjust
for nonresponse bias have been investigated by Lundstrom and Siarndal (1999), Kott (2006), Chang
and Kott (2008), Kott and Chang (2010). Calibration weighting and estimation are very popular
nowadays. The primary reason is efficiency. Calibration over a set of carefully chosen auxiliary
variables has proven to be an effective way of using known auxiliary information. If the study
variable is highly correlated with the set of auxiliary variables, the gain of efficiency in estimation
can be substantial.

In this paper, we proposed a new nonresponse weighting adjustment estimator using the esti-
mated response probability by fitting a least square regression model that incorporates a calibra-
tion equation as a constraint. In theory, we show that the proposed estimators, both in Horvitz-
Thompson and H4jek type, are asymptotically unbiased for the population parameter and are
asymptotically normally distributed. From simulation study, we found that the performance of
the Horvitz-Thompson type estimator is better than the corresponding estimator without calibra-
tion equation in terms of MSE in some situations, depending on the specification of the response
model. On the other hand, the proposed Hajek type estimator is less affected by the specific settings
of the response model and thus is more robust in winning over its corresponding Hajek estimator
without calibration equation.

In Section 2.2, we introduce the new proposed estimator. In Section 2.3, the assumptions and
some preliminary results are given. The asymptotic properties of the Horvitz-Thompson type esti-
mator and H4jek estimator are provided in Section 2.4 and Section 2.5, respectively. In Section 2.6,
we perform a simulation study to evaluate the finite sample properties of the proposed estimator.

Conclusions are given in Section 2.7.
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2.2 Notations and the Proposed Estimator

Let the finite population be U = {1,2,..., N}, where N is assumed to be known. Let Fy =
{wy, Uy, ..., uy} be the population variable, where u; = (z;7, ;)" and «; is the vector of aux-
iliary variables for unit ¢, which is known over the population. Our parameter of interest is
Yu = % > iev i

Given a particular probability sampling design, the inclusion of an element ¢ in a sample S is a

random event indicated by the binary random variable /;, with:
1 ifiesS
0 ifies.

The simplest design-based estimator is the Horvitz-Thompson estimator, defined as:

_ 1 yi 1 Yi
oLyl Ly 2.1
Y N Z m N Z T @1
ies €U

where m; = Pr(i € S) = E,([;) and m; ! is called design weight of unit ;. Obviously, ¥, is an
unbiased estimator for ;; with respect to sampling design p.
Under nonresponse, the study variable y; may not be obtained for the entire set of element in

S. In order to describe the response mechanism, we define the response indicator variable of y; as:

1 if unit ¢ in the sample responds
Rl’ —

0 if unit ¢ in the sample does not respond

and denote E(R;) = Pr(R; = 1]i € S) = p; be the response probability of sampled unit i. If we

know the true response probability p;, then the Horvitz-Thompson type estimator

TiDi

_ 1 yiRi
o = EE; (2.2)
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will be unbiased for §;;. Instead of Horvitz-Thompson estimator, we can also use the Hajek es-
timator, which is useful when the population size is unknown and shown to be more efficient in
many situations. So we also consider Héjek type estimator in this paper. The Hajek type estimator

is in the form:
Z yi R
iES T3 P4

Y+ = R,
ZieS TiDi

and ¥z~ is asymptotically unbiased for ;. However, p; is unknown in practice, so we have to

estimate it based on some specified model.

Here, we specify the response model as F(R;) = p; = p(x;) = B;v*, where B; is a vector
in which each component is a function of x; and v* is the true unknown population parameter.
More specifically, we define B, = (1, x1;, fa(x;), -+, f,(x;))", where z; is the covariate to be
calibrated in the following criterion and supposed to be correlated with the survey variables, fi(x;)
(k =2,---,p) can be additional uncalibrated covariates or spline basis function of the uncalibrated
covariates. For simplicity, we denote z, instead of xy, as the calibrated variable in the following
context. Furthermore, instead of using the usual logistic model to estimate the response probabil-
ity, we specify the unknown response probability in linear form. Setting the response probability in
linear form is tolerable for several reasons. First, instead of trying to interpret the response model,
we just want to adjust for nonresponse. So response model specification is not that critical as
long as the specified response model has decent predictive value for the true response probability.
Secondly, we are cautious to apply logistic method since the logistic model may not reach con-
vergence in some instances such as multicollinearity. As multicollinearity increases, coefficients
remain unbiased but standard errors increase and the likelihood of model convergence decreases.
Another reason for linearity is that it is easier to calibrate. Mathematically, linear model is much
easier to deal with than logistic regression.

Now, we estimate v* by © using the following criterion:

min Z i(Rl — Bv)?

e
ies "
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subject to calibration equation:

- = - )
Z e m; B;v
ies * ies "t

where z; (short for x1;) is a variable that is an element of B; and on which the calibration is

implemented. In H4jek type scenario, the calibration equation is given by:

T z; R,
> ies 7 - Dics r By

ZiES ﬂ% Zies %ély .

However, for simplicity, we only derive the asymptotic results for Hijek estimator %, in which

the parameter v is estimated from above least square criterion subjectto >, o % = > . = gf"/ ,
Lo TiesE Ties Hog

not from calibration ==>7 — DB

Zies 7\% Zies’ %Bi;u

Lemma 1. Based on the criterion, the estimate v is the solution to:

OL(v)
Sv) =
W) =—_
i[_ 1
2 > ies %[Biu — R; — 1+ By z; R; B;

ies ! ZiGS 2m; (Biv)? ies Tt '

Proof of Lemma 1. Based on the criterion, the Lagrange function is given by:

Lw) =Y %(RZ- —Bw)+2Y i—(]fy ~).

ies ! ies

Taking derivative with respect to v and A respectively and setting the derivatives equal to 0, we

have:

oL 2 iR B;
) S 2 h- BBy Y P 2:3)

€S i icS Wl[_(BIV>2]

and

Z_. :ZEBW' (2.4)

T
ies * ieS
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Let Sk denote the set that the selected individual 7 in the sample responds. From (2.4), we have:

T; 1 - zi
Z <BV 1>_ o (2.5)

1ESR

Focus on the row of 8L( ) in which the predictor z is calibrated, we get >.._o 2(R; — Biv)x;

€S m;

. Tri\écéilj;Q’ which, through some algebra, implies:

; T; )\xZ i z; B;v
> Z Z —Z — (2.6)

i¢Sk T €S

Plugging (2.6) into (2.5), we have:

S g =2 (e 1) A S gmap T o B

i1€SR i€S

Solving for A\, we get:

)\—Ziesr;}?(%ﬂ/—l)_zzesw( BV)_ZieS%[Bi;u_R 1+Bl/]
- zi R o z;2R;
ZZGS 271'1(Bﬂ/)2 ZZES m

Plugging A into (2.3), we get the desired result. [

Thus, p; is estimated by p; = B;¥ and plugging the p; into ye- = ZZGS —

Horvitz-Thompson type proposed estimator:

Jo= = > pilts 2.7)

ies TP
The Héjek type estimator is given by:

Z yili
€S TiDi

= —. (2.8)
ZieS 7'('12%;)1
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2.3 Assumptions and Preliminary Results

First, we state the assumptions we will use in obtaining the theoretical results. The assumptions

on the probability sampling design and population distribution of u,; are listed as follows:

(D.1) We assume that the sequence of finite populations of u; = (x;7,y;)? have bounded fourth

moments.

(D.2) We assume the sample size n is non-random and as N — oo, v — 7 € (0,1). For all N,

minieU > A >0, minmeU Ty > X2 > 0 and we have:

lim supn max |A;;| < oo,
N-voo i,j€U i

where Aij = COV(Ii7 Ij> = T — T;T5.
(D.3) We assume the Horvitz-Thompson estimator is asymptotically normally distributed. That is,

24y N(0, 1),
Var(gr)

In addition to above assumptions, we also need the following assumptions on the response model.

(R.1) The response indicator variables 1?; and R; are independent for ¢ # j and
E(R;) = pi,
Var(R;) = pi(1 — pi).
(R.2) The inverse true response probability is bounded. That is:
pi <K
for all ¢ € U, where K is a fixed constant.
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(R.3) We specify the response model in the form of:
bi = Biy*7

where B, is observable over the population and the parameter is evaluated at v = v*. Also,

we assume that the response model is continuously differentiable with respect to v.

(R.4) We assume the matrices Z(v*), I(v*), J(v*) and J (), defined in the following context,

are nonsingular and thus invertible.

The assumption D.1 is a mild condition. Usually, bounded fourth moments of the study variable
are required to show the variance consistency of the Horvitz-Thompson estimator.

By assuming the ratio &+ — 7 € (0,1), we are excluding vanishing sampling fraction to
stay within the finite population framework, which is often done in the design-based context. It
is reasonable to say that the ratio § is bounded below by 7* since usually, the ratio is decreasing
in N. We need this condition to prove the asymptotic normality of our proposed estimator later.
The condition min;cpy m; > Ay > 0 implies that the design is a probability sampling design.
The condition min; jepy m; > A2 > 0 indicates that the design is measurable, which ensures

that V() = 3z 3 jes 7t is unbiased for Var(je) = 33 2, jer

zgyzyj .
i,j€S Tymim, . The assumption

T
on the A;; states that the covariance between sample membership indicators is sufficiently small.
Assumptions in D.2 are satisfied for many classical sampling designs, including simple random
sampling with and without replacement, and also holds for some unequal probability samplings.

Under assumption D.1 and D.2, we can derive the following result as presented in Breidt and

Opsomer (2017):

— 1 2 : y? max; jEU z;ﬁ] |A“’ 2 : ‘yz 1 1 1
\/a < v ) — . _|_ _ — .
) < N icU N N © n 0 n

€U
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Taken together with the unbiasedness of ¢, this implies that:

Yi _1
NZE_N yi = Op(n™2) (2.9)

by applying Corollary 5.1.1.1 in Fuller (1996). Using the similar bounding argument, we can show
the variance consistency of Horvitz-Thompson estimator. This argument for showing (2.9) will be
used heavily later in proving the asymptotic variance consistency of the proposed estimator.

D.3 is usually assumed explicitly and is satisfied for many specific sampling designs, including
simple random sampling without replacement, Poisson sampling and unequal probability sam-
pling with replacement. The design asymptotic normality assumption, together with the variance

consistency of the Horvitz-Thompson estimator, implies that:

In terms of the assumptions for response mechanism, R.1 and R.2 are assumed for tractability
and these two conditions ensure that the order of sampling and response mechanism are inter-
changeable. For R.3, we specify the response model in linear form. Though the assumption for
the linear expression of the response probability may not be appropriate in some cases, it is easy to
implement the least square criterion in practice and we could have a closed-form solution for the
parameters. Also, even though we mis-specify the response model to some degree, the estimate
will be adjusted towards the “correct" value by the calibration equation, leading to an efficient
estimate. R.4 is used to ensure existence of the estimator.

Before stating the main theorems of the paper, we present some preliminary results that will be

used in the next section in deriving the properties of the proposed estimator.

Theorem 1. Under the assumption D.1-D.2 and R.1-R.4, the estimator U satisfies:

U — vt =[IW")] ' SL(v") + o,(n2),
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where the S1,(v*) is the linearized version of S(v*), given by:

~Ri—1+ B’

i 2 . Yiev Choy i [ R
Suw') =3 — (R Bar)(=By) + S 2

0 — Yy
ics 't ZieU 2(B;,v*) €S !

and I(v*) is the matrix evaluated at v*, defined by:

I(v')=—E (8;/(?

u:u*)

Proof of Theorem 1. Apply Taylor expansion to function S(v), yielding:

S(v) = S(*) + (a;/(;)

,,-,) (v —v*) +o0,(v — V).

Plugging in & and using the fact that S(&) = 0, we have 0 = S(v*) + <88515’T’) ) (0 —v*)+
0,(P — v*), which can be written as:
08 !
v—v= (— 81/(:) ,,:,,*) S(v*) + o0,(v — V")
19S(v) 1, .
_ (_N o :,,*> S ) 0,0 ). (2.10)

Note that the term +.S(v*) is not in linearized form, so we apply Taylor linearization to it, yielding:

N % {; %(Ri - Bv*)(=Bi) + ;iz—fg_a
‘ ;% [% —Ri—1+ Bﬂ/*] } +0,(n"?)

1 . 1
= S5L) +oy(n )
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z; B;

Define Spy(v*) = ) ,cp 2(Ri — Biv*)(—B;) + ZEU(—*?;) Y icu Ti [% — R, — 1+ Bv*|,

2iev 2(B,;v¥)

then we have:

1 1 1 1
NSL(V*) = NSL(V*> — NSLU(V*>} + NSLU(U )
= 0p(n72) + Oy(N"2)
—0,(n"}), 2.11)

where (LS (v*) — LS (v*)) = O,(n"2) by using a analogous argument for showing (2.9).

__98()

Now, let Z(v*) = — =7 and denote Z;;(v™*) to be the population version of Z(v*). That is,

v=r*

the sampling design is a census. Then:

where (+Z(v*) — +Zy(v*)) = O,(n"2) by the similar argument for showing (2.9). Assume

Z(v*) is continuous, so applying the Taylor expansion to above result, we will have:

L) =L} o0 @.12)

Plugging (2.11) and (2.12) into (2.10), we have:
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Finally, we have:

O

In order to compute the asymptotic variance of (£ — v*), we have to calculate the variance of
S (v*). Before giving its variance in explicit form, we need to rewrite the form of Sy (v*) first.

Let’s denote B;v* = p; for simplicity, then S7,(v*) can be written as follows:

2 Dicv (ffaslf*) z; | R
Suv7) = 30 2R~ Bar) (B + S TP B 1 B

; Tt m; | B;v*
ies 't ZieU 2(B;v*) €S ¢

I po(-By+ e End 5 (R =) =)

ZES ZieU 2p; €S i 7
! B
- Z —(Ri — pi) { 2B; + 22;(1 — _)ZkeU L k/pk}
ies ZkeU T2 /i

Lemma 2. Under the assumption D.1-D.2 and R.1-R.4, we have:

Var (S (v sz WVVzT,

€U

where W; = 2x;(1 — l)—Z’CEU oeBi/pe 2B,.

Pi’ Ypev $i/pk
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Proof of Lemma 2. Var(Sp(v

Var(SL(v*)) = Cov (S (v

*)) can be expressed as:

"), SL(v?))
= E{Cov (S,(v"), SL(v7)[5)} + Cov {E(SL(v")|5), E(SL(¥7)[5)} ,

where S denotes the selected sample. Since E(S.(v*)|S) = E(> .4 %;p)m)\S) = 0, so the

second term of above expression is zero. Thus;

Var (S (v

")) =E |Cov (Z Py, ) )]
L €S €S
S Coy ( pz)W“ (Ri—pi)u/—i)]
— W, w,”
=E 126; m pi(1 —p;) o ]
—E sz WWT]
LieS
Zpl WWT
el

2.4 Main Results for Horvitz-Thompson Type Estimator

In this section, we list several properties of the proposed Horvitz-Thompson type estimator.

Theorem 2. Under the assumption D.1-D.2 and R.1-R.3, the Horvitz-Thompson type non-response

weighting adjustment estimator y. = Ly

€S 7rp

the sampling mechanism and the response mechanism. That is,

Ye = Yu + Op(nia)-
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Proof of Theorem 2. By definition in (2.1) and (2.2), we can express . — ¥y as:

ge_gU

:(ge - ge*) + (ge* - gw) + (gw - gU)

%@ yilt; yiRi 1 v yi 1
rsorn) GEm sz GRi e

€S zeU

1€

i i 1 i 1
o (———,) N i~ *(ﬁi %‘NZ%)

i€S pi pi

=A+B+C.

Apply Taylor expansion to (— — i), we have:
2., —1
(0 —v*)+ 050 — v’ ( b

pi p
1 1 8}%‘71 ( ~ *)
—_ )= Uv—v
Di  Di ov ovovT | _,
1
=|—-—=B;| (v—-v* +0.519—1/*T( B;B; ) —vY),
( p; ) ( )03l ) (V) w=v)
where v is on the line segment joining ¥ and v*. Thus, we have:
%z( ’>
ZES i

+0.5(0 [ Zyﬂ(—

€S

v=v*

(r—v")
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For B, it’s easy to see that E(% Y, ¢ - (R; — p;)) = 0, its variance is given by:

€S 7sz7,

i 1 Yi

icS T Pi

+ Var

S)

JEDIETLE

T
= iPi

’)

=k Var ( ) +0
L ; ﬂ_lp’b
:—E pl pZ yl >
(; =
pz pz ?Jz

So by Corollary 5.1.1.1 in Fuller (1996), B = Op(N_%). By (2.9), C = Op(n_%), so overall we
have:

e — v = Op(n72) + Op(N~2) + Op(n" %) = Op(n"2).
]

In order to perform inference for 4., we derive an expression for the variance of its linearized

approximation. By the definition of ¢, in (2.2), we can write 4, — Y.+ as:

o= e = —zy;j( = i)]w—u*)wp(n-l)

€S

- |-% Z yi(R; — pi;_pi)Bi] (& — ") + Op(n_l)

T
i€es ili

= |- Z B L Z o ._zpiBiyi] (0 —v") + 0y(n7").

ipi = T

Since B; satisfies the same population moments as z; itself, by the analogous argument for showing

(2.9), we have >, ¢ ﬂ’;“ = > p”” + O,(n"2). Also, using the same procedure for
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proving B = O,(N~ 2), it’s easy to show that - v Bipi By, = O (N*%). Hence:

€S 7rp

G — or = ——Z Zy’+o )L O,(N )| (0 - ) + Oy
= -5 pr (0= 1") + Oyn)

: 1 Bz'yi: -1 * _1 —1
=727, [ (OIS0 + 0,780} 4+ 007
=2 Bt | (1) 18,0) + o) + Opn~)

L €U pi |
=5 Bt | 1,18, (0) + oy},

L €U pi |

fa (V)

Direct and careful computation o yields:

T z; R B,
=2 BB B

ZGS €S
Lq a T4 i 331'2 ; iT
{Zies 7T_1[<1 - (B?V)Q)BlT] i Zies n_l[é%lu o R -1+ BV] ZiES ﬂl(%lf)?’ }
Ii2R2’ €T RZ
ZiES 2m;(B;v)? [2265’ 2m;(B;v)? ]2
Yies Zlgs — Ri— 1+ By

_|_

i’R; . . 3
ZieS QTFf(BiI/)Q ieS (BZV)

E(2W|,_.), resulting:

ovT

After plugging the v*, we linearize the % I(v*) = _%

Zg
= ieU Pi ZZEU 2p;

oz (E-1)B;T
Let J(l/*) _ (_ ZieU 2B1B,T _ ZieU x;?z X ZzeUZ (piﬁ)
€U 2p;

{%I(u*)}_l _ {%J(v*)}_l L0 (%) |

~I(v*), we have:
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J— 1 Zyl T
Denote A = —5 >~y =2, then we can rewrite J — Y as

R B ) 1
ho e = AT{ 100} 5810 4 o7

oy {{%J(u*)}_1 L0 (%) } S o (n )

= AT[J(W)] ' SL(V7) + op(n2).
Thus, the 7. can be expresses as:
e = Jor + AT[T W] SL(") + 0p(n"2) = Jur + 0p(n"2), (2.13)

where ¢, is the linearized ., and the variance of the proposed estimator can be approximated by

variance of ;.

Lemma 3. Under assumptions D.1, D.2 and R.1-R.4, the variance of Var(ye;) is given by:

1 1 /1
Var(fe) = 53 > - <— - 1) y; + Var(g)

ieu Di
+ sz pz 02
ZEU
N ; T

where C; = ATJ Y (v*)W,.

Proof of Lemma 3. Direct computation of the variance of ¥, yields:

Var(7e;) = Var(ge- + AT [J(v*)]71SL(v*))

= Var(ge-) + Var(AT [T (v*)] 71 SL(v*)) + 2Cov(ge-, AT [T ()] 1S (vY)).
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We will compute each term in above expression.

_ 1 Riyi
Var(ye-) = Var (N Z . )

s
ics TiPi

_ L {E Var (Z Ry

e
icS iPi

pi(l pzyz Yi
] e )

_ 1 pzyl Yi
N{ S (2]

1 L= py)yi’ _
Z —pJy; + Var(y,).

TiDi

+ Var

)

+ Var

sy

T
ies iPi

i

Denote C; = ATJ~}(v*)W;, by Lemma 2, we have:

Var(AT[J(v")] 1S, (v7)) = AT[T (") Var(S, (V*))[J(V*)]”A

_ AT Z pl T[J(V*)]—IA
el

_ Z pz pz 02

€U
Now we compute the covariance between 3, and AT [J (v*)] 71 S (v*) as follows:
= T *\1—1 Ry
Cov(ger, A" [J(v")] 7" SL(v")) = Cov — Z
(7’ GS 'L

l (s

= E E (R — )\
+5 Cov (Z o s), (26; m(RZ pi)Ci S)
1 T C KA
= —E [Zp —p)Ci|
€S i pl
N 1 (1 —pi)Ciyi
€U
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Combining the above results, we get the desired variance. O]

By plugging in the ¥ to the response model, we can obtain the estimated response probability
p; for each individual 7 in the sample. Then, we are able to define the variance estimator V(gel)
appropriately. The following theorem states that the defined variance estimator is consistent for
Var(y.;) under both the sampling mechanism and the response mechanism. The proof is in the

appendix.

Theorem 3. Under assumption D.1, D.2 and R.1-R.4, the variance estimator V(gjel) is consistent

for Var(ye). That is:

n(V(a) — Var(ga)) = 0,(1),

where Var(ye;) is given in Lemma 3 and is expressed as:

1 1 /1
Var(fer) = N2 Z p (]7 - 1) y; + Var(yr)
+AT[J Zp’ P) Wi T ()] A
icU
2 AT (N1 (1 — Di)Yivrr
+NA [J(v7)] ; - Wi

=Vi+Va+ VitV

and \A/(gjel) = Vi + Vo + Vs + Vi, where:

~ 1 1 1 2Ri ~ 1 (1 — 7T2)yz2 Rz 1 Aijyiyj RZR]
%:WZ_(__Q%E’ %:mz—gAA'f'm Z —

ieS v pi i£jigjes WU Pip;

T2 -)EBT

1€S 7 \ p;

22 R;
€S mib; Zies 27r1-p12
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Sics 2400 i

A e T N A

Wi (1 D) 22 p o (12 D)poan,
Di Zkes m;_ﬁi Di

By 2 B Ry,
ZkeU Tk 2es T D7
——2— is estimated by D= —ka’Z

kes Tkﬁi

The following theorem gives the asymptotic normality of the proposed Horvitz-Thompson type

estimator. The proof is in the appendix.

Theorem 4. Under the condition D.1-D.3 and R.1-R.4, we obtain the following asymptotic nor-

mality, jointly with respect to the sampling design and the response mechanism

L 5 N(0,1),
V(?el)

(yel) is defined in Theorem 3.

where . = ZzES —

2.5 Main Results for Hajek Type Estimator

In this section, we list several properties of the proposed Hajek type estimator.

Theorem S. Under the assumption D.1-D.2 and R.1-R.3, the Hdjek type nonresponse weighting

, , i} Sies B3t , .
adjustment estimator g = ZGS—R” is root-n consistent for iy with respect to both sampling
€S m;p;

mechanism and response mechanism. That is

1
Yo = Yy + Op(n_2).
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Proof of Theorem 5. Apply Taylor expansion to 4z around Z’ETUy, we have:

i _Z ) _ Z}\e/gyz <Z Rf —N) +Op(n_1)

Yo —Yu = (Zyl

szz icU icS TP
11l _ Rz _
( yilt oy — ) +0,(nY)
icS szl icS TiDi
=We—Yv) =y |~ ——1]1+0,(n").
R £ E ) R

By Theorem 2, §. — yy = Op(n_%), and by a similar proof of Theorem 2, we have:

—1=0,(n"?).

—Z

szz

Hence, we have:

1 R; _
yr —yv = (Y — v) — Yu (NZ > —1) +0y(n7")

ics MiPi
= 0,(n"2) + 0(1)0,(n"2) + Op(n" 1)

= 0,(n"?).

]

Wizgw)Bi 4 ) b(n~ 1). In order to do inference for

Note that we can write yg = Yy + & ZzGS -

Y, we need to obtain the linearized approximation of the term % Y ics (yi:f;g_)Ri first. We have

1
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the following:

N ieS TiPi N ieS TiPi
_ I W — o) R (i B l)
N ieS Uy ﬁz Di
1 (yz B yU)Rz 1 N T 2 T R
= — —-—B * . — v
N 4 - ;B ( )+ 0.5( ) p?(ﬁ)BZBZ (» —v")
) i€S
1 (yz - yU)Rsz ~ % _
- _NZ - (& —v") + Op(n")
L i€S v
_ 1 (yi — Ju)Bi 1 (vi — yv)(R; — p;)B N * —1

Since B; satisfies the same population moments as z; itself, by a similar argument for showing

(2.9), we have that - >, ¢ i=6u0)B; mpz =% % +0,(n"2). Also, by a similar argument

of showing B = O,(N~2) in Theorem 2, we have & 3", @=#0)F=piBi _ 0 (N=3), thus:

€S ﬂip%

_Z 7T7/p’l __Z Wlpl

_ __% ; % +0,(n"3) + O,AN‘%] (0 —v") +0,(n7")

. _% W (0 —1") + 0,

_ _% W I (") SL(v7) + 0, (n %) + Oy (n~)

_ —_% W {{%J@*)}_l +o(5) } LS+ oyn)
_|-L W TS, + o)

1

= AL[T(v)])'SL(v*) +o,(n"2),
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where Af, = =% >, W and J (v*), Sy (v*) are as defined previously. Therefore, we can

write yy as:
1 i — Yu) R v N 1 _
=g+ 3 LI A0 8007 + oy + O,
i€s we
1 1 Y, R’L *\1— * -1
=gt S I A8, + o)
icS iPi
= Ju + Jur + 0p(n"2), (2.14)

where Jir, = v e (s wyg i+ AL I (v*)]71SL(v*), so the variance of 7z can be approximated

by the variance of .

Lemma 4. Under assumption D.1, D.2 and R.1-R.4, the variance of g, is given by:

) 1 1 /1 — 9u)(Y; — Iv)
Var(ymr) = N2 Z ) (_ - 1) (vi — Z Au :J”T ’
iy

T \Di

€U i,j€U
pi(1 —pi)
+ ZW—C}%H
zeU
C 7 ]- - Vi ]
L Z H p ZUU)7
zGU

where Cr; = AL[J (v*)]'W,.

Proof of Lemma 4. Direct computation of Var(yy ) yields:

Var(y_HL) = Var (lzw +AT [J( )]_ISL(V*)>

N T
i€S iPi

-V (% S ok yU)Ri) + Var(AGLT ()] Sp(v)

-
€S iPi

1 2Cov (N > J, AE[J(V*)]_ISL(V*)> )

e
icS iPi
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where we have:

1 g )
ics TiPi
1 Ri(yi —y Ri(yi —y
L {E var (ZM 5> v |B (ZM S)] }
TiDi : T Pi
L i€S i€S
1 7 1 - M 7 U )? T 7]
- {E ZP pi)(yi — Juv) + Var Z (y yU)] }
LieS i pl ieS i
1 (1 —pi)(yi — Jv)? —yu)(y; — Ju)
- A,
2 {Z TiD; IR T
€U 1]€U
1 1 /1 (i —yu)(y; — ¥
" N? F(f_l) (yi — ZAU (;ﬂj w)
ieu ! pi i,5€U v

By Lemma 2, we have:

Var(AL[J (V)] 7' SL(v")) = Aﬁ[J(V*)]_lVar(SL(V*))[J(V*)]_lAH

_AT sz pz WWT[ sz CH“

€U €U

where Cy; = AL [J(v*)]"'W;. Now, the covariance is given by:

o GZ—(‘% E yU)RﬂA%[J(v*)PSL(V”)

icS TiPi
B 1 Ri(yi — yu) 1
= Cov (N Z sz" Z ﬂ__i(Rz - pz)CHz
i€S €S
1 Ri(yi — yv) 1
= —F COV —_—, —RZ—pZCZS
N [ (; Ur% ; 7Tz‘( ) "
1 Ri(yi — yv) 1
—|——COVE ——| 5 ,E —RZ—ZOZS
N [ (; TP ; 7Ti( b ) "
_ _E [Z pill =p)Crrily: =90) |
€S i pl
1 (1 - pi)CHi(yi - Z/U)
N N Z 5 ‘

ielU
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Combining the above results, we get the variance of yy.. [

In the following, we showed that the variance estimator V(gHL) is consistent for Var(ypyyz).
Also, we derived the asymptotic normality of the Hajek type estimator. The proofs are in the

appendix.

Theorem 6. Under assumption D.1, D.2 and R.1-R.4, the variance estimator V(g]H 1) is consistent

for Var(ygyr). That is:

n(V(Gre) = Var(gues)) = op(1),

where Var(ygy) is given in Lemma 4 and V(ngL) = Vigr + Vigo + Vigs + Vi, in which each term

is defined as follows:
1 1 /1 _ o R
VH1 sz_ <——1) (Yi — Yn) pT7

~ 1 1 —m)(y; —yr)? R 1 Aii(yi — 1y i — ) RiR;
Dy — Z( i) (W = gr)” Bi 3 (i — Ur)(y; — Ju) RiR;

2= 7 P N% 5= T T pib;
> pz FaN1—1 A
Uiy = s P g oy A,
€S
. 9 . (1—p:)(yi —yu) R
Vs = —=AL[T (D) ! Wi,
i = AR ) Z 2 p

where N = Sies 2o <, Ay = —% D ies Bsz J(©) and W are defined in Theorem 3.

Theorem 7. Under the condition D.1-D.3 and R.1-R.4, we obtain the following asymptotic nor-
mality for the Hdjek type estimator, jointly with respect to the sampling design and the response

mechanism,

== 5 N(0.1),

~

V(yur)

o viBy ~
ZGS—’};’ and V (Y1) is defined in Theorem 6.

1

where Yy =
ZiES i D;

35



2.6 Simulation Study

A simulation study was conducted to evaluate the finite-sample performance of the proposed
estimators. Here, we set the population size N = 10000. The response model is generated by linear
model p; = Y9 + 7171 + Y272;, Where x1 and x5 are independently and identically distributed
uniform (0,1) variables. Letting 79 = 0.1 and setting the values of v, and -, differently, we

considered the following 7 response models:

(1) pi = 0.1 4 0x1; + 0.929;; (2) p; = 0.1 + 0.1x; + 0.8
(3)pi = 0.1 +0.25z1; + 0.6572;; (4) p; = 0.1 + 0.4521; + 0.45x9;;

First note that by setting the parameter value appropriately, we make the p; € (0.1,1),Vi. Also,
from (1) to (7), we make the contribution of covariate x; to the response model increase and
thus the contribution of x5 to the response model decreases accordingly. In doing so, we want
to see whether the importance of the calibrated variable towards the response model affect the
performance of the proposed estimator.

In terms of the outcome model, we consider the simple linear models. Since we want to cali-

brate on different covariates in the response model, so we set the outcome model as follows:

(1) vy =4a, + € (2) i =102y, + €;

(3) yi =4we + € (4) v = 109 + €;;

where ¢; are generated from N (0, 1) independently. Here, study variable is thought to be weakly
correlated with z;(¢ = 1,2) when coefficient is 4 and strongly correlated with z;(i = 1,2) when

coefficient equals 10. Intuitively, strong correlation between calibrated variable and study variable
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implies good effect of the calibration equation, which in turn indicate the good performance of the
proposed estimator.

From each of the realized finite populations, a simple random sample of size n = 400 is gen-
erated without replacement. The response indicator variable R; are generated from the Bernoulli
distribution with probability p; = 7o + Y121; + Y2%2;. The finite populations of (y;; x1;; xo;) are
fixed and R; is random in the Monte Carlo sampling. The study variable y; is observed if and only
if R; = 1. The auxiliary variables z; and - are observed throughout the sample. The Monte Carlo
sample sizes are all set to be B = 10,000. In terms of the algorithm, since we are faced with a
nonlinear constrained optimization problem, we use the algorithms from “NLopt" package to get
the estimates of the parameters in the response model. In detail, we used the global optimization
algorithm “ISRES" to find the global optimum. Then, setting the global optimum as a starting
point, we applied the local optimization algorithm “LBFGS" to "polish" the optimum to a greater
accuracy. The details for algorithms “ISRES" and “LBFGS" can be found in Runarsson and Yao
(2000) and Liu and Nocedal (1989), respectively.

Using the Monte Carlo samples generated above, we computed: (1) Relative bias of ¥z, e, ¥,
yu and y. The estimators . and yy are defined in (2.7) and (2.8), respectively. In terms of the

estimator %z, the response probability is estimated only by least square criterion without calibra-

: . L e : _ Ties 5
tion. The estimator 3 is the “Hajek type" of y.. We define the estimator y, = ZES—ZIQ’Z_H, where
€S TPy
ZiES 7"% o Eies :T,ZL BR:V

py = B;vy and vy is estimated by the least square criterion subject to .

ZiES % Zies 7 B
In practice, we prefer this “Hdajek type" calibration equation since it may be more efficient in real

MSE(ge) MSE(n) o0q MSE@gy

applications; (2) The ratio of ;; (3) Relative biases of the variance
estimator for ¢, and 4, compared with corresponding theoretical asymptotic variance; (4) Cover-
age of 95 percent confidence interval for ¥, ¥y and . All the simulation results are reported in
the following tables.

The tables for the 7 response models present the Monte Carlo relative biases of the 5 non-

response weighting adjustment estimators obtained from the simulation study. The Monte Carlo
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Table 2.1: Relative biases of the 5 nonresponse weighting adjustment estimator, based on 10,000 samples.
For response model (1): p; = 0.1 4+ 0z1; + 0.929;

calibrate on x; calibrate on x5

estimator modell model2 model3 model4 modell model2 model3 model4

Ve -0.1808 -0.2218 0.0474 0.0063 -0.1808 -0.2218 0.0474 0.0063
Ve -0.2994 -0.3333 0.1386  0.0981 -0.1456 -0.1847 0.0596 0.0197
Ui 0.1561 0.1160 0.4307 0.3905 0.1561 0.1160 0.4307 0.3905
Y 0.0793  0.0384 0.5199 0.4782 0.1559 0.1147 0.4188 0.3765
Yg 0.1072  0.0732 0.8183 0.7789 0.1527 0.1066 0.4999 0.4573

Table 2.2: Relative biases of the 5 nonresponse weighting adjustment estimator, based on 10,000 samples.
For response model (2): p; = 0.1 4+ 0.1xz1; 4+ 0.8x9;

calibrate on z; calibrate on x4

estimator modell model2 model3 modeld modell model2 model3 model4

Ve 0.1296  0.1044 -0.0044 -0.0297 0.1296 0.1044 -0.0044 -0.0297
Ve 0.0395 0.0143 0.0399 0.0149 0.1598 0.1349 0.0076 -0.0175
Ui 0.1943 0.1695 0.0790 0.0541 0.1943 0.1695 0.0790 0.0541
Y 0.1568 0.1311 0.1512 0.1275 0.1930 0.1682 0.0697  0.0457
g 0.1769  0.1530 0.3585 0.3336 0.2596 0.2358 0.1319 0.1033

Table 2.3: Relative biases of the 5 nonresponse weighting adjustment estimator, based on 10,000 samples.
For response model (3): p; = 0.1 4+ 0.25x1; + 0.65x29;

calibrate on z; calibrate on x4

estimator modell model2 model3 modeld modell model2 model3 model4

Ve 0.0868 0.0667 -0.0065 -0.0267 0.0868 0.0667 -0.0065 -0.0267
Ve 0.0781 0.0581 0.0195 -0.0012 0.0934 0.0729 -0.0055 -0.0257
U 0.1337 0.1139 0.0447 0.0249 0.1337 0.1139 0.0447 0.0249
Y 0.1302 0.1099 0.0659 0.0470 0.1343 0.1142 0.0453 0.0252
Ug 0.1460 0.1254 0.2443 0.2221 0.2458 0.2230 0.055 0.0341

relative bias is computed by the following:

E()—19
Percentage Relative Bias = M x 100%.

Yu
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Table 2.4: Relative biases of the 5 nonresponse weighting adjustment estimator, based on 10,000 samples.
For response model (4) p; = 0.1 4 0.45z1; + 0.45x9;

calibrate on x; calibrate on x5

estimator modell model2 model3 model4 modell model2 model3 modeld

Ve 0.0745 0.0635 -0.0290 -0.0399 0.0745 0.0635 -0.0290 -0.0399
Ve 0.0717 0.0619 -0.0242 -0.0334 0.0859 0.0745 -0.0251 -0.0354
Ui 0.1109 0.0998 0.0077 -0.0033 0.1109 0.0998 0.0077 -0.0033
Y 0.1129 0.1020 0.0143 0.0034 0.1145 0.1045 0.0088 -0.003

Yg 0.1277 0.1147 0.1574 0.1385 0.2574 0.2513 0.0307 0.0170

Table 2.5: Relative biases of the 5 nonresponse weighting adjustment estimator, based on 10,000 samples.
For response model (5) p; = 0.1 4+ 0.65x1; + 0.25x9;

calibrate on z; calibrate on x4

estimator modell model2 model3 modeld modell model2 model3 model4

Ve 0.0511 0.0559 -0.0480 -0.0433 0.0511 0.0559 -0.0480 -0.0433
Ve 0.0511 0.0560 -0.0427 -0.0384 0.0764 0.0830 -0.0588 -0.0526
Ui 0.1113 0.1161 0.0076 0.0125 0.1113 0.1161 0.0076  0.0125
Y 0.1115 0.1169 0.0086 0.0134 0.1327 0.1358 0.0002  0.0050
g 0.1167 0.1171 0.1186 0.1206  0.310 0.3113 0.0112 0.0204

Table 2.6: Relative biases of the 5 nonresponse weighting adjustment estimator, based on 10,000 samples.
For response model (6) p; = 0.1 + 0.8x1; + 0.1x9;

calibrate on z; calibrate on x4

estimator modell model2 model3 modeld modell model2 model3 model4

Ve 0.0620 0.0608 -0.0241 -0.0254 0.062  0.0608 -0.0241 -0.0254
Ve 0.0676  0.0655 -0.0019 -0.0026 0.1234 0.1125 -0.0906 -0.0889
U 0.1591 0.1588 0.0554 0.0551 0.1591 0.1588 0.0554 0.0551
Y 0.1516 0.1512 0.0560 0.0541 0.2144 0.2196 0.0193  0.019
Ug 0.1859 0.1892 0.1237 0.1274 0.4459 0.4438 0.0411 0.0417

The results from Table 2.1 to Table 2.7 reveal that the relative biases of the five estimators are all
very small with absolute values less than 1 percent, across all 7 settings of the response model.
In term of the ratio of MSEs, from Table 2.8 to Table 2.14, we found that the performance of

7o WIns over ¥z in some scenario, depending both on response model specification and outcome

39



Table 2.7: Relative biases of the 5 nonresponse weighting adjustment estimator, based on 10,000 samples.
For response model (7): p; = 0.1 4+ 0.921; + 0z2;

calibrate on x; calibrate on x5

estimator modell model2 model3 model4 modell model2 model3 modeld

Ye 0.0882 0.0866 -0.3976 -0.3993 0.0882 0.0866 -0.3976 -0.3993
Ve 0.0917 0.0904 -0.3735 -0.3728 0.2022 0.2077 -0.4615 -0.4522
Ui 0.5082 0.5087 -0.0223 -0.0218 0.5082 0.5087 -0.0223 -0.0218
Y 0.4989 0.4968 -0.0246 -0.0213 0.5662 0.5666 -0.0896 -0.087

Yg 0.5448 0.5475 -0.0232 -0.0239 0.9057 0.8998 -0.0543 -0.0553

model. While, the performance of i, compared with ¥, only depends on the outcome model,
regardless of the simple linear form response model. More specifically, for the Horvitz-Thompson
type estimator y., when the calibrated variable contributes less to the linear response model and
correlates more with the study variable, the performance of the ¢., compared with ¢z, will be better.
If there is a strong correlation between calibrated variable and the response probability, the perfor-
mance of ¥, is close (or slightly better) to the performance of ; when study variable depends on
the calibrated variable and slightly weaker than the performance of 4z when study variable does
not depends on the calibrated variable. The reason may be that the less the calibrated variable con-
tributes to the linear response model, the more the calibration equation will twist the estimate from
the least square criterion, which eventually makes our proposed estimator perform better. For the
Hajek type estimator 7, no matter how the simple linear response model is specified, 7/ ; has much
smaller MSE, compared with %, when the study variable correlates with the calibrated variable
and y, performs close to §; when study variable does not depend on the calibrated variable.

We also computed the relative bias of the variance estimator of ¢, and %, compared with the
corresponding theoretical asymptotic variance, from the Monte Carlo samples. The relative bias is

calculated by the following formula:

N

mean(V(-)) — V()

70 x 100%.

Relative Bias =
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Table 2.8: The ratio of MSEs, based on 10,000 samples. For response model (1): p; = 0.1 + Ox1; + 0.9x9;

calibrate on x; calibrate on z,

modell model2 model3 model4 modell model2 model3 modeld

%gggﬁ; 079  0.68 1.06 1.14 1.06 1.09 099 098
%gg(w 096 092 092  0.87 1.00 1.00 1.01 1.02
yH)
MSE(gH)

MSE() 0.87 0.76 1.01 1.04 1.00 1.00 0.85 0.72

Table 2.9: The ratio of MSEs, based on 10,000 samples. For response model (2): p; = 0.1+0.121; 4+ 0.8z9;

calibrate on x calibrate on x-

modell model2 model3 model4 modell model2 model3 modeld

el 087 076 104 109 106 LIl 099 097
MSE(yx)
TSR 097 096 095 092 100 100 101 1.01
MSE(y

(

—gfI; 0.89 0.80 0.99 1.00 1.00 1.00 0.87 0.76
H

Table 2.10: The ratio of MSEs, based on 10,000 samples. For response model (3): p; = 0.1 + 0.25z1; +

0.65x2;
calibrate on x; calibrate on z,
modell model2 model3 model4 modell model2 model3 model4
%ggggg) 096 092 102 104 103 106 099 098
MSE(ym
S 0o om0 o o 0 o om
MSE() . . . . . . . .

Table 2.11: The ratio of MSEs, based on 10,000 samples. For response model (4): p; = 0.1 + 0.4521; +

0.45$2i
calibrate on x; calibrate on x5
modell model2 model3 model4 modell model2 model3 model4
Tel4 098 097 101 103 101 103 098 097
MSPwnl 099 099 100  1.00 1.0 1.0 099  0.99
yH)

7)
ng) 0.91 0.84 0.97 0.94 0.97 0.95 0.91 0.84

41



Table 2.12: The ratio of MSEs, based on 10,000 samples. For response model (5): p; = 0.1 + 0.65z1; +
0.251’2i

calibrate on x calibrate on x5
modell model2 model3 model4 modell model2 model3 modeld
MSE(g.)
er) 0.99 0.98 1.03 1.06 1.02 1.05 0.95 0.91
) 1.00 1.00 1.0 0.99 0.99 0.98 0.99 0.98
MSEG.) 0.90 0.82 0.98 0.96 0.98 0.97 0.91 0.84

Table 2.13: The ratio of MSEs, based on 10,000 samples. For response model (6): p; = 0.14-0.8x1;+0.1x9;

calibrate on x; calibrate on z,

modell model2 model3 model4 modell model2 model3 modeld

el 099 098 106 110 109 108 087 077
MSPlwn) 1,00 1.01 0.99 100 096 093 097 096
yH)

;)
ng) 0.88 0.77 1.00 0.99 1.00 1.00 0.89 0.79

Table 2.14: The ratio of MSEs, based on 10,000 samples. For response model (7): p; = 0.140.921; + 0x9;

calibrate on x1 calibrate on x2

modell model2 model3 model4 modell model2 model3 modeld

TPl 099 098 105 109 106 121 078 065
%gg(@zﬁg 1.01 1.02 1.00 1.0 094  0.89 0.95 0.92
MSE(%Z)

TeEel 086 074 100 101 102 105 085 074

Based on the results from Table 2.15 to Table 2.21, we see that the relative biases of the variance
estimator for all combinations of response model and outcome model are less than 9%, with most
of the relative biases less than 2%, which coincide with Theorem 3 and Theorem 6.

We also computed interval estimators for 95% nominal coverage for g, ¥y and ;. The Ta-
ble 2.22 to Table 2.28 displays the actual coverages of 95% confidence intervals. The confidence
intervals are calculated by (é — 1.96\/? ,é + 1.96ﬁ ), where 0 a point estimate and V is its

estimated variance. Note that here we use the variance estimate of 4/ as a substitution for the vari-
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Table 2.15: Relative biases of the variance estimator of . and ¥z, compared with its corresponding theo-
retical asymptotic variance, based on 10,000 samples. For response model (1): p; = 0.1 4+ 0z1; + 0.929;

calibrate on z; calibrate on x5

estimator modell model2 model3 model4 modell model2 model3 modeld

~

V(Ye) -1.49 0.88 -2.79 -1.70 2.63 4.51 -0.56 0.14
V(yg) -1.16 0.59 -1.76 -0.27 0.43 1.69 0.12 1.64

Table 2.16: Relative biases of the variance estimator of . and ¥z, compared with its corresponding theo-
retical asymptotic variance, based on 10,000 samples. For response model (2): p; = 0.1 4+ 0.1z1; 4+ 0.8z2;

calibrate on z; calibrate on x5

estimator modell model2 model3 model4 modell model2 model3 modeld

~

V(7e) 0.29 1.00 -0.14 0.21 4.89 8.25 0.62  0.5334
V(ym) 1.00 2.30 0.63 1.70 1.60 271 3.14 5.69

Table 2.17: Relative biases of the variance estimator of . and ¢z, compared with its corresponding theo-
retical asymptotic variance, based on 10,000 samples. For response model (3): p; = 0.1+0.25x1; +0.65x2;

calibrate on x; calibrate on x,

estimator modell model2 model3 model4 modell model2 model3 model4

V(Ye) 0.69 0.86 0.64 0.83 1.94 3.04 0.64 0.57
V(ym) 1.75 2.97 1.44 2.44 1.60 2.50 2.48 4.25

Table 2.18: Relative biases of the variance estimator of ¢, and %z, compared with its corresponding theo-
retical asymptotic variance, based on 10,000 samples. For response model (4) p; = 0.1 +0.45x1; + 0.45x9;

calibrate on x; calibrate on x,

estimator modell model2 model3 model4 modell model2 model3 model4

~

V(Ye) 0.54 0.59 0.94 1.44 0.97 1.40 0.53 0.62
V(ym) 2.04 3.49 1.56 2.62 1.61 2.64 2.05 3.54

ance estimate of y/;. There are two reasons for this substitution. First, the theoretical asymptotic
variance of ¥ is very hard to derive and thus we don’t have the explicit expression for variance

estimator of y/;. Second, the simulation study shows that the v is very close to vy, so it’s safe to
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Table 2.19: Relative biases of the variance estimator of . and ¥z, compared with its corresponding theo-
retical asymptotic variance, based on 10,000 samples. For response model (5) p; = 0.1 + 0.65x1; + 0.25x9;

calibrate on z; calibrate on x5

estimator modell model2 model3 model4 modell model2 model3 modeld

~

V(Ye) 0.42 0.44 1.80 3.08 0.49 0.76 0.50 0.82
V(yg) 2.17 4.03 1.29 2.32 1.18 2.24 1.47 2.82

Table 2.20: Relative biases of the variance estimator of . and ¥z, compared with its corresponding theo-
retical asymptotic variance, based on 10,000 samples. For response model (6): p; = 0.1 4+ 0.8z1; 4+ 0.1z9;

calibrate on z; calibrate on x5

estimator modell model2 model3 model4 modell model2 model3 modeld

~

V(7e) 0.46 0.41 4.77 8.16 -0.08 0.21 0.22 1.01
V(ym) 2.93 5.51 1.36 2.50 0.53 1.53 0.82 2.15

Table 2.21: Relative biases of the variance estimator of . and ¢z, compared with its corresponding theo-
retical asymptotic variance, based on 10,000 samples. For response model (7): p; = 0.1 4+ 0.9x1; + 0xz2;

calibrate on x; calibrate on x,

estimator modell model2 model3 model4 modell model2 model3 model4

V(Ye) -0.71 0.05 1.97 4.05 -2.61 -1.55 -1.60 0.88
V(ym) 0.31 1.68 0.09 1.42 -1.68 -0.31 -1.31 0.46

make this substitution. In fact, in most cases, the Monte Carlo variance of ¥y is larger than that
of yg, so we are “conservative" to replace the variance estimate of i with variance estimate of
Y. From the results in Table 2.22 through Table 2.28, for all combinations of response model and
outcome model, the coverage probabilities are all above 91.5%, with most coverage probabilities
around 95%, which agree with the asymptotic normality of ¢, and 7y in Theorem 4 and Theorem

7.
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Table 2.22: Coverage of 95 percent confidence interval for proposed estimators, based on 10,000 samples.
For response model (1): p; = 0.1 4+ 0z1; + 0.929;

calibrate on x calibrate on x5

estimate modell model2 model3 model4 modell model2 model3 model4

Ve 94.08 93.16 9397 94.11 94.71 95.02  94.67 94.74
Y 9452 9453 9385 93.89 9476 94.8 94.1 94.15
Ug 9548 9658  92.67 9122 94.66 94.62 9587 97.25

Table 2.23: Coverage of 95 percent confidence interval for proposed estimators, based on 10,000 samples.
For response model (2): p; = 0.1 4+ 0.1z1; 4+ 0.8x9;

calibrate on z; calibrate on zo

estimator modell model2 model3 model4 modell model2 model3 model4

Ye 9486 9499 9461 94.61 9498  95.21 9492  94.92
Un 9499 9522 9483 9464 95.02 9529 9493 9496
Ug 95.72  96.59 94.1 93.69 9489 95.03 96.18  97.29

Table 2.24: Coverage of 95 percent confidence interval for proposed estimators, based on 10,000 samples.
For response model (3): p; = 0.1 4+ 0.25x1; + 0.65x2;

calibrate on x; calibrate on x5

estimate modell model2 model3 model4 modell model2 model3 modeld

Ve 95 95.16 94.6 94.8 9493 9499 9473  94.95
YH 9479  95.02 9474 9488  94.81 9494 9472  94.99
Ui 95.67 9647 94.66 9483 95.09 9526 9574  96.69

Table 2.25: Coverage of 95 percent confidence interval for proposed estimators, based on 10,000 samples.
For response model (4) p; = 0.1 4+ 0.45x1; + 0.45x9;

calibrate on x calibrate on x5

estimate modell model2 model3 model4 modell model2 model3 modeld

Ve 95.06 95.02 9456 9473 9494  95.07  94.53 94.8
Y 9494 9499 9427 9489 9485 9492 9443 9492
g 95.74  96.44  94.61 95.16 95.2 95.15 9535  96.15
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Table 2.26: Coverage of 95 percent confidence interval for proposed estimators, based on 10,000 samples.
For response model (5) p; = 0.1 4+ 0.65x1; + 0.25x9;

calibrate on x calibrate on x5

estimate modell model2 model3 model4 modell model2 model3 model4

Ve 94.81 95.01 9429 9456  94.79 95 9435  94.68
YH 94.81 94.7 9435 9471 94.69 9458 9437  94.76
Ug 95.66  96.77 9447 9502 94.63 94.61 95.25 96.3

Table 2.27: Coverage of 95 percent confidence interval for proposed estimators, based on 10,000 samples.
For response model (6): p; = 0.1 4+ 0.8z1; + 0.1x9;

calibrate on x; calibrate on z,

estimate modell model2 model3 model4 modell model2 model3 modeld

Ve 94.71 95.25  94.18  94.76 94.5 94.81 9432 94.77
s 94.62 94.8 9433 9445 9453 9465 9436  94.63
g 96.01 9738 9422 9456 93.82 9351 95.17  96.65

Table 2.28: Coverage of 95 percent confidence interval for proposed estimators, based on 10,000 samples.
For response model (7): p; = 0.1 4+ 0.9x1; + 0x2;.

calibrate on x; calibrate on x5

estimate modell model2 model3 model4 modell model2 model3 modeld

Ve 94.72  95.11 94.17 9441 94.4 9443 93775  93.34
Y 94.61 94.45  94.31 9458 94.13 9385 9428  94.58
Ui 96.28 97.6 9419 9429 93.03 91.55 9551 96.43

2.7 Conclusion

In this chapter, we studied the properties of the nonresponse weighting adjustment estimators
where the response probability is modeled in linear form and the parameters are estimated by
fitting a constrained least square regression model, with the constraint being a calibration equation.
Both Horvitz-Thompson type estimator and Héjek type estimator are considered in this article.
In theory, both estimators are shown to be asymptotically unbiased for the population mean and

variance estimators of ¢, and 4y are also shown to be consistent to the corresponding asymptotic
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variance. Furthermore, under the regular design assumptions, we proved that both estimators are
asymptotically normally distributed. All the asymptotic properties are supported by the simulation
study, where we set the response probability model to be a simple linear model.

From simulation study, our proposed Horvitz-Thompson type estimator works significantly
better than its corresponding unconstrained estimator when the calibrated variable is highly cor-
related with the study variable and contribute less to the response model. In contrast, under the
simple linear response model setting, the H4jek type estimator perform better, as long as the cali-
brated variable is correlated with the study variable to some degree.

The method we proposed is simple and easy to be implemented in real surveys, compared with
other complex estimation technique. Also, the response model can be specified very flexibly. Yet,
response model selection and how to bound the estimated response probability may be the topics

we need to look into in the future.
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Chapter 3
Improved Variance Estimation for Inequality
Constrained Domain Mean Estimators Using Survey

Data

3.1 Statement of the Problem and Literature Review

We begin by reviewing the classical domain means estimator and establishing notation. Let
U = {1,2,---, N} denote the finite population of size N. For example, this might represent all
salaried employees in the United States. A sample s C U is to be drawn from the population
according to probability sampling design p, where p(s) is the probability of drawing the sample
s. The design determines the first order inclusion probability m; = Pr(i € s) = > ... p(s),
which is assumed to be positive for all ¢ = 1,..., N. The second order inclusion probability is
mij = Pr(i,j € s) = >, ;c, p(s), which is assumed to be positive for all 4, j € U. We denote the
sample membership indicator /;(s) = 1if i € s and I;(s) = 0 otherwise.

To define the domains of interest, let {U, : d = 1,--- , D} be a partition of the population U
and N, be the population size of domain Uy, where D is the fixed number of domains. These do-
mains might be formed by a single variable, such as job level, or might be a grid of domains formed
by several variables, such as job level, job type, and location. We denote by s, the intersection of
s and Uy. Let n be the sample size, and let n, be the sample size for s;.

Next we consider a study variable y, for which we are interested in estimating the population

domain means. For example, y might be salary, and we denote by y; the salary of the sth individual

in the population. The population domain means are Yy = (yu,, - - - , Ju,,) >, Where g, is given by:
D ieu, Yi
ju, = =€ g1 ... D.
YUa = TN,
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The goal is to estimate the ¥, and provide inference such as confidence intervals. When no qual-
itative information such as ordering is available about the population domain means, the Horvitz-
Thompson (HT) type (Horvitz and Thompson (1952)) estimator y,, or the Hdjek estimator g,
(Hajek (1971)) may be used. These are

A Ziesd yl/ﬂ-l

. ZiESd yl/ﬂ-l
ySd - Nd 9 ~

.=

and 7,
¥ N,

respectively, where Ny = 3 ics, 1/mi. The Hdjek estimator is often more useful in practice because
it does not require information about the population domain size N, so we will focus only on
properties based on the Hdjek type estimator in this paper, which we refer to as the unconstrained
estimators of ;7,. The results for HT estimator, however, can be derived analogously.

The unconstrained estimators might have large variance, especially when the sample sizes ng
are small. In practice, some of the n, can be small even with large surveys, if there is a grid of
many domains. It is helpful to use a priori knowledge regarding the population domain means.
For example, the population domain means might be expected to increasing with respect to a given
ordering based on job level. Wu et al. (2016) gave a derivation of this isotonic estimator and showed
that it has smaller variance, compared with the unconstrained estimator. A diagnostic procedure
was given by Oliva-Avilés et al. (2019); this can be used to verify that the imposed constraints are
indeed satisfied by the population domain means.

More recently, estimation and inference with more general shape constraints was proposed by
Oliva-Avilés et al. (2020). They considered assumptions that can be represented by a constraint
matrix A, where each of its rows defines a linear constraint on the domain means. For example,
suppose we may assume that salaries in major metropolitan areas are higher than salaries in rural
areas, for the same job type and level, but we do not have a complete ordering of areas. At the
same time, we can impose some inequality restrictions on salaries by job type, or we can impose
monotonicity constraints on a two-dimensional grid of domains. We assume that A is an m x D
irreducible constraint matrix, which was defined by Meyer (1999). Intuitively, a constraint matrix

is irreducible if the constraints are not redundant; see Oliva-Avilés et al. (2020) for more details.
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/

The constrained estimator § = (51, e ,ép) is the solution to the following constrained

weighted least squares problem

mein(:ljS —0)W,(y, —0) suchthat A0 >0 (3.1)

where §; = (ijs,,- - - ,Js,, )’ and W, is the diagonal matrix with elements N, /N, N /N, --- ,Np/N.

If the constraints are satisfied by the Hajek estimator vy, then the minimizer of (3.1) coincides with

Ys.

Oliva-Avilés et al. (2020) gave an expression for the estimated covariance of 0; we provide
an equivalent but simpler expression in Section 3.2. This estimated covariance matrix is used to
construct confidence intervals for the population domain means, which are typically tighter than
those for the unconstrained estimator. We use the simplified expression to derive a new estimated
covariance matrix that is a mixture of possible covariance matrices of the previous type. This
new covariance estimator takes into account the fact that the set of binding constraints, i.e. the
elements of A@ that are zero, are random and for different samples the set of binding constraints
may be different. In contrast, the classical constrained covariance estimator uses the observed set of
binding constraints only. Simulations in Section 3.3 show that the new covariance estimator results

in improved confidence interval coverage without sacrificing improvements in interval length.

3.2 Mixture Variance Estimation for the Domain Means Esti-

mator

3.2.1 Review of the Formulation of the Constrained Domain Means Estima-

tor

The following is a summary of the work in Oliva-Avilés et al. (2020). The first step is to
transform the weighted constrained least-squares problem (3.1) into an unweighted projection, by

letting z, = w 23}5, ¢ = W./?0 and A, = AW, % Define & to be the unique vector that
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solves the least-squares problem:
min |2, — ¢||> such that A, > 0,

and subsequently 6=w," 2q,’~).

The R package coneproj (Liao and Meyer (2014)) finds qg given Z; and A,, and also returns
the set of binding constraints. Let J; C {1,...,m} indicate the zero elements of ASQB. If J; is
empty, then the constrained estimator coincides with the unconstrained estimator.

Let A, denote the matrix formed by the rows of A indexed by J;, where A ;_ is a zero matrix
if J, is empty. Otherwise, the rows of A ; will form a linearly independent set of vectors in R”
even if A is not full row rank. Let Z;(s) = 1if J = J; and Z,(s) = 0 otherwise, and write the

constrained estimator as:
0=> [(Ipxp — W, A (A, WAL AY) 4 T5(s), (3.2)
J

where the sum is over all subsets J C {1,...,m} such that the rows of A, form a linearly
independent set. For each sample s, there is only one subset J for which Z;(s) = 1; this is Js.
The brief introduction of the formulation of the expression in (3.2) is in Appendix and refer to
Oliva-Avilés et al. (2020) for more details. This expression of the constrained estimator is used to

derive the improved covariance matrix estimator.

3.2.2 Assumptions

Before we present our theoretical results, we list and discuss our assumptions on the probability

sampling design:

(A1) The number D of domains is a fixed integer. Ford = 1,2,--- , D, liminfy_, % > (0 and

lim supy_, o % <L
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(A2) For the study variable {y;},.,,, we have

limsup N ~* Z:yi4 < 00.

N—o0 i€l

(A3) The sample size is non-random and there is a 7 € (0, 1) such that ming % > .

(A4) Forall N, min;ey m; > A1 > 0and miﬂi,je(] Tij > Ao > 0, and

limsupn max |A;] < oo
N—oo ’L,jGU,Z#j

where Aij = COV(IZ‘, ]]) = TG — T;T5.

(AS) Let p = (1, -+ , up)’ be a vector of limiting domain means, where gy, — jtg = O(N~2)

ford=1,...,D. We assume Ap > 0.

(A6) The assumption involving higher-order inclusion probability:

lim - nax |E[(Ii1]i2 - 7Ti17ri2)<]i3]i4 - 7Ti37ri4)]| = 07
N—oo (7,1,7,2,23,7,4)€D47N

where D, y denotes the set of all distinct ¢-tuples ¢1, 4, - - - , %, from U.

(A7) For any vector of D variables  with finite fourth population moment, we have:

SIS

var(2,) 2 (&, — Zu) — N(0,Ip)

where &, is the HT domain mean estimator of Zy = (N7 ' >, ., @4, -+, Np' > kery Tk)'s
I is the identity matrix of dimension D, the design covariance matrix var(&;) is positive

definite.

The assumption (A1) states that the number of domains remains constant when the population size

N changes and guarantees that there is no asymptotically vanishing domains. Assumption (A2)
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is one of the conditions for showing the unbiasedness and variance consistency of the Horvitz-
Thompson estimator and this can be applied to most types of survey data. In (A3) we are excluding
vanishing sampling fraction to stay within the finite population framework, which is common in
the design-based context. The assumption in (A3) may exclude small area estimation, if n;/Ny
becomes negligible.

Assumption (A4) ensures that the design is both a probability sampling design and a measur-
able design. The assumption on the A;; states that the covariance between sample membership
indicators is sufficiently small. These are satisfied for classical sampling designs, including sim-
ple random sampling with and without replacement, and also holds for rejective sampling (Héjek
(1964)). This condition does not generally hold for multistage sampling designs. Under (A2) and
(A4), using the same bounding arguments presented in Section 3 in Breidt and Opsomer (2017),
together with the unbiasedness of HT type estimator, we can show the sample moments converge

to population moments. That is, for example in terms of study variable y, we have:

1 Yi 1 _1
N ;_Nzyi:Op(n 2).

1€8 €U
Assumptions in (AS) ensure that the limiting domain means satisfy the shape constraints, although
the population domain means may deviate slightly from the constraints.

Assumptions in (A6) involve conditions on correlations up to order four, which are difficult to
check for complex sampling designs. They are similar to the higher order assumptions considered
by Breidt and Opsomer (2000), which are needed for proving the consistency and the asymptotic
normality of some complex estimators. Boistard et al. (2012) proved that these assumptions hold
for rejective sampling, which is an unequal probability sampling design with fixed sample size.
Simple random sampling without replacement is a particular case of rejective sampling.

Assumption (A7) is satisfied for many specific sampling designs, including simple random
sampling with or without replacement, Poisson sampling and unequal probability sampling with
replacement. This ensures asymptotic normality for a general finite fourth moment vector of vari-

ables . The design asymptotic normality assumption, together with the variance consistency of
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the Horvitz-Thompson estimator, can be used to obtain the asymptotic distribution of the shape-
restricted estimator. This assumption is used when estimating the mixture probabilities in our
proposed mixture variance estimator; see Section 3.2.4 and the proof of Theorem 9.

Overall, the assumptions in this paper are almost the same as the ones in Oliva-Avilés et al.
(2020), except that Oliva-Avilés et al. (2020) explicitly assumed the variance consistency of the
HT estimator, while in this paper, we relaxed that assumption. Instead, we formally proved the
consistency of the variance estimator of the HT estimator by using the higher-order inclusion prob-
ability assumption in (A6), which is a required condition in proving the variance consistency of

the HT estimator.

3.2.3 Linearized Variance Estimation of the Domain Mean Estimator

The following is proved in Appendix B.

Proposition 1. The following expression for the asymptotic covariance matrix of 0 is equivalent

to the expression in Oliva-Avilés et al. (2020):

AV(6) = " [(I - P))S,(I - Py)]Zy(s) (3.3)

where Py = Wit AL [A; W' A')| "L A and the ijth element of 3 is given by

1 (e —0i0) o — 05.0) .
S = A : J =1,2.---.D.
{ J}J NiNj ZZ kl LT ’ bl T ’
keU; leU;
and 05,5 = v, — 5 { AL (AW AT Asgu )

If the observed J; = (), then AV (0) reduces to AV (ys) = X, and the ijth element of X is:

1 (e — Gu) (i — Ju,) .
Eij:NANAZZAM g . i,j=1,2---,D.
N keu; lev; ki

Expression (3.3) is preferred to (B.1), the expression from Oliva-Avilés et al. (2020), from both an

intuitive and a computational viewpoint. From (3.3), we can define the estimator of the asymptotic
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covariance matrix of 0 as follows:

A

Vr(0) =Y (1= PS, (I = ByY | T(s)

where P; = W, ' A,[A;W; ' A"] "' A and the elements of 3 are given by:

- A _QZ _
{EJ}iijNZZ (0= 00 =000) 5y p

J
LT
J kes; les; Tkl k7

An even simpler estimator is
-y [ I-P)S(I- P)) ] T, (s) (3.4)
J

where the ijth element of 3 is given by:

{S}” _ ZZ Akl ysz ( gs]-)’ i,j _ 172’ . ,D.

LT
] kes; lEs] kT

That s, 3 is the covariance estimator of the unconstrained estimator ¢,. The proof of the following

is in Appendix B.

Theorem 8. Under assumptions (Al)-(A6), the covariance estimator V(é) is consistent for AV(é)

in the sense that:

n(V(0) — AV(6)) = 0,(1) (3.5)

where AV(0), V(0) are given in (3.3), (3.4), respectively.
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3.2.4 The Proposed Mixture Covariance Estimator

From (3.2), the constrained domain mean estimator can be expressed as:

é = Z (IDXD - Ws_lAf](AJWs_lAf])_lAJ) gsIJ(S)
J

= Z (IDXD - PJ) YsL;(s)

Instead of using only the observed J to compute the estimated covariance matrix, we propose

the following mixture covariance of the constrained domain mean estimator.

AV™(0) => (I — P))S,(I - Py)P(g, € C)) (3.6)
J
where we define the C; to be the set of points g, € R” such that, based on those points, the
corresponding unweighted projection algorithm will return the set of binding constraints .J.

This estimator recognizes that a different sample with the same sample size and design might
correspond to a different J, and an improved variance estimator uses a mixture of the possible .Js
in roughly the proportions corresponding the probabilities of observing the Js. In theory, there
are a large number of J sets. Asymptotically, the probability of y; € C; goes to zero for most of
the J sets, and for moderate-to-large sample sizes we will observe only a few J with substantial
probabilities. For example, if the elements of Ap are strictly positive, the consistency of the
estimator guarantees that as n and /V increase without bound, all of the constraints must become
unbinding, and the probability that J is the empty set goes to one. If one or more of the elements
of Ap are zero, the J sets that correspond to these constraints being binding or not become the
only J sets with nonzero probability. By constructing our estimator of AVm(é) in (3.6), we are

no longer conditioning on the J;. This will tend to increase the estimated variance but this better

reflects the underlying variance of the constrained estimator.
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To estimate the mixture probabilities, we generate many y¥’s identically and independently

from a multivariate normal distribution with mean @ and covariance matrix 2, i.e.,
d ~ ~
y® L MVN(, ).

Thus the y*) have approximately the distribution of g,, and can be used to simulate the distribution
of the set of binding constraints .J. From each simulated y*), we observe the corresponding set .J,
and with repeated sampling we can tally the number of times each set .J is observed. Specifically,
if B is the number of simulations, then for a particular J set, we use B~ 7 I(y® € C;) to
estimate the mixture probability P(g, € Cy).

The use of the normal distribution for the y*)s is motivated by the asymptotic normality of
ys. Hence, this simulated distribution is an approximation that improves as n and N increase.
Since y, has asymptotic multivariate normal distribution with mean y; and covariance 3 by as-
sumption (A7), taken together with the fact that 6 and 3 are consistent for yu and X respectively,
P(y™ € C;) should approach P(¢j, € C;) as the sample size increases. As we set B to be large,
B'YF I(y" € C;) approaches P(y') € C;) by the law of large numbers.

Finally, the proposed mixture covariance estimator for AVm(é) 1s expressed as:

B

V6) = (T - S - Py > 10 e )
_ éz <Z(I —P)S(I-Py)I(y" ec ))
Z (I — Py»)S(I — Py S

The following result is proved in the Appendix B.
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Theorem 9. If Ap > 0, then under assumptions (Al)-(A6), the proposed mixture covariance

estimator is consistent for the asymptotic mixture covariance of 0 in the sense that, as B — co:
n(V™(8) — AV™()) = 0,(1).

where AV™(0), V™(0) are given in (3.6), (3.7), respectively.

It is useful to note that inference based on the mixture variance estimator remains design-based.
Only the design variability is accounted for by the asymptotic variance in Theorem 9. The con-
sistent estimator of the design variance uses a parametric bootstrap approach, with the asymptotic
normal distribution of the estimator serving as bootstrap distribution. While the qualitative con-
straints can be viewed as “model-like” assumptions, they do not imply a random structure for the

population and the inference does not involve any type of model variability.

3.3 Simulation Studies

We compare the length and coverage probabilities of domain mean confidence intervals, using
three methods: the unconstrained Hijek domain means estimator with its covariance estimator,
the constrained domain means estimator with the covariance estimate based on the observed J, as
in Oliva-Avilés et al. (2020), and the constrained estimator with the proposed mixture covariance
estimator. The simulation scenarios involve one- or two-dimensional grids, with various constraints
and . values. We report results from three scenarios: for each, we generate a population, then
we draw 10,000 samples from the population according to a sampling design. For each sample
we compute the three confidence intervals; we present the coverage rates (proportion of intervals
capturing the population mean, for each domain) and average interval lengths in graphical form.
The results show that the proposed estimator has coverage probabilities that meet or exceed the
target 95%, and indeed have higher coverage than those for the unconstrained estimator, while

retaining the smaller confidence interval length of the intervals of Oliva-Avilés et al. (2020).
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3.3.1 Isotonic in One Variable

As in Wu et al. (2016) and Oliva-Avilés et al. (2020), we choose the limiting domain means for

generating the population elements to be in a sigmoidal shape across the domains:

exp(20d/D — 10)

- ford=1,2,---,D
1+ exp(20d/D —10) 4T HE T

Hd

where D = 20 is the number of domains. The population size is set to be N = 8000, with domain
population size N; = N/D. The study variables y, . .., yy are generated by adding independent
and identically distributed N (0, 1) errors to the y4 values.

Samples are drawn without replacement from a stratified simple random sampling design, with
H = 4 strata that cut across the D domains. The strata are determined by a variable z, which
is correlated with y. The values of z are generated by adding standard normal errors to (d/D).
Then, the stratum membership is determined by sorting the population based on the corresponding
ranked z, so that there are N/H elements for each stratum. Finally, the total sample size n = 200
is assigned to each strata with sample size (25, 50, 50, 75) in each strata accordingly.

Simulation results are summarized in Figure 3.1, along with a typical sample. The population
means are shown as black dots; due to randomness in generating the population, these do not quite
satisfy the constraints. The coverage is highest for the intervals computed using the mixture covari-
ance estimator. The average length of the confidence interval for the constrained estimators, either
based on non-mixture variance or mixture variance, are narrower than that of the unconstrained

estimator.

3.3.2 Block Isotonic in One Variable

We consider the scenario in which only a partial ordering is known a priori. For a “block
isotonic” ordering, we assume the population means are ordered among blocks, but no ordering is
assumed within blocks. In particular, we have D = 20 domains, organized in four blocks of five

domains, and the population mean for each of the domains in block 7 is assumed to be at least as
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Figure 3.1: Isotonic in one variable: On the left is a typical sample, with the population means shown as
black dots. On the right are the coverage probabilities and average lengths for 10,000 samples, for a target
95%.

large as those in block 7 — 1, for 7 = 2, 3, 4. In particular,

M=<—.1 0.10 —-1}]2 .1 2 3 2|3 4 3 4 5|5 6 5 .7 .6)

where the blocks are separated by the vertical lines. We use the same stratified sampling design as
in the previous example.

The results in Figure 3.2 show that again the coverage is highest for the mixture constrained
estimator. The confidence interval lengths are smallest for the middle two blocks, because the

estimators for these domains are able to use information from all four blocks.

3.3.3 Isotonic in Two Variables

Here we consider a grid of domains, which represent two variables such as job type and job
level, with the a priori assumption that the y values are non-decreasing in each. In particular, we

consider that there are six levels of one variable and five of the other, so there are D = 30 domains.
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Figure 3.2: Block isotonic in one variable: On the left is a typical sample, with the population means shown
as black dots. On the right are the coverage probabilities and average lengths for 10,000 samples, for a target
95%.

We choose v values according to the array

o0

4 1.1 14 18
1 3 5 8 1.0 1.2

The procedure for generating y and the sampling mechanism are the same as that in one di-
mensional case, except that we set N = 12000 and n = 240, which is divided among the strata as
(30,60, 60,90). A typical sample is displayed on the left in Figure 3.3, where the numbering for
the domains is “by row” of the p matrix; that is, the first six domains have means in the top row
of the the p matrix, the next six have means from the second row, and the last six domains have
limiting mean zero.

The simulation results in the right plot of the figure demonstrate similar properties as the pre-
vious scenarios: the lengths of the confidence intervals of the constrained estimator are smaller

while the coverage is the highest when using the mixture variance estimator.
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Figure 3.3: Isotonic in two variables: On the left is a typical sample, with the population means shown as
black dots. On the right are the coverage probabilities and average lengths for 10,000 samples, for a target
95%.

3.4 Application to California School Data

The survey package in R provides the data set apipop, with information about the popula-
tion of California schools, including average standardized test scores and demographic variables.
This data set is convenient for demonstrating survey methods, because we can sample from the
population of over 6000 schools, apply our methods to the sample, and at the same time we can
compute the true population values. For our purpose, we use the variables api00 and meals;
the former is the average standardized test score at the school, and the latter is the percent of stu-
dents who are eligible for subsided or free meals (breakfast and lunch). We categorize the meals
variable into 20 domains, where domain one indicates 0-4% free meals, domain two is 5-9%, etc.
Percent subsidized meals is a measure of poverty, which in the United States is connected with ed-
ucational and health disadvantages (to our shame). Hence, we can assume a priori that the average
test score is decreasing over these domains, and in fact we see that this is true in the population.

We collect a sample that is stratified by type of school (elementary, middle, high), with sample
sizes 80, 80, and 120, respectively. A typical data set is shown in Figure 3.4, where the gray
dots represent the sample. The population mean standardized test scores are the black dots, which

decrease over these domains. The unconstrained sample means are decreasing overall, but have
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some deviations from monotonicity. The constrained estimators reflect our a priori knowledge,
and in addition, imposing the constraints gives smaller confidence intervals and better coverage.

As was seen in the simulations, using the mixture covariance matrix further improves the coverage

rates.
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Figure 3.4: Decreasing in poverty levels: On the left is a typical sample, with the population means shown
as black dots. On the right are the coverage probabilities and average lengths for 10,000 samples, for a target
95%.

3.5 Discussion

This paper provides an improvement in the theoretical foundation for inference with survey
data while utilizing a priori information in the form of inequality constraints, such as for ordering
or shape. The simpler form of the estimated covariance matrix in (3.7) readily allows computa-
tion, with 3 obtained from survey software such as the survey package in R, and a constrained
least-squares routine such as coneproj used to find J for simulated samples. The paper also
provides an improved estimator of the design-based variance that results in increased coverage

compared to previous results, exceeding the nominal level in most cases.
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Chapter 4
One-sided Testing of Population Domain Means in

Surveys

4.1 Introduction

Methods for estimation of population domain means under a priori assumptions in the form
of linear inequality constraints have been recently established. Suppose interest is in estimating
yu € RP, a vector of population domain means. Wu et al. (2016) derived an isotonic survey
estimator, where it is assumed that g, < --- < yy7,,. They showed that the constrained estimator
is equivalent to a “pooled” estimator, where weighted averages of adjacent sample domain means
are used to form an isotonic vector of domain mean estimates. Advantages to the ordered mean
estimates are that they “make sense” in terms of satisfying the assumptions, and the confidence
intervals for the estimates are typically reduced in length. Oliva-Avilés et al. (2020) proposed
a framework for the estimation and inference with more general shape and order constraints in
survey contexts. Examples include block orderings, and orderings of domain means arranged in
grids. For example, average cholesterol level may be assumed to be increasing in age category
and BMI level, but decreasing in exercise category. In another context, suppose average salary is
to be estimated by job rank, job type, and location, with average salary assumed to be increasing
with rank, and block orderings imposed on job type and location. More recently, Xu et al. (2021)
formulated a mixture covariance matrix for constrained estimation that was shown to improve
coverage of confidence intervals while retaining the smaller lengths.

The desired linear inequality constraints may be formulated using an m X D constraint matrix
A, where the assumption is Ayy > 0. For the isotonic domain means, m = D — 1, and the
nonzero elements of the constraint matrix are A;; = —1 and A, ;1 = 1. For block orderings,

where domains are grouped by ordered blocks, each domain in block one, for example, is assumed
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to have a population mean not larger than each domain in block two, and in block two, each
population domain mean does not exceed any of those in block three, etc. Here the number of
constraints is m = Z,B:El Zf:i 41 kikj, where B is the number of blocks and £; is the number
of domains in the ith block, ¢ = 1,..., B. For a third example, consider domains arranged in
a grid; for a context suppose the population units are lakes in a state, and y; is the level of a
certain pollutant in lake 7. We are interested in average levels by county and by distance from an
industrial plant. If there are 60 counties and 5 categories of distance, there are 300 domains. If we
know that the level of pollutant is non-increasing in the distance variable, then there are 60 x4=240
constraints, formulated as antitonic within each county.

We propose a test where the null hypothesis is that Ay, = 0, versus the alternative Ay > 0,
and Ayy has at least one positive element. The simplest example is the null hypothesis of constant
domain means, versus the alternative of increasing domain means. For the third example above, we
can test the null hypothesis that, within each county, the domain means are constant in distance.
Using the constraints for a one-sided alternative results in improved power over the equivalent
two-sided test.

This test has been widely studied outside of the survey context; see Bartholomew (1959),
Bartholomew (1961), Chacko (1963), McDermott and Mudholkar (1993), Robertson et al. (1988),
Meyer (2003), Silvapulle and Sen (2005), Sen and Meyer (2017) and others. The null distribution
of the likelihood-ratio test statistic for the one-sided test has been derived based on the normal-
errors model. In brief, when the model variance is known, the null distribution of the likelihood
ratio statistic is shown to be a mixture of chi-square distributions, while for the unknown model
variance, the test statistic has the null distribution of a mixture of beta distributions. Similar results
for the one sided likelihood ratio test were obtained by Perlman (1969) where the completely
unknown model variance was considered. Meyer and Wang (2012) formally proved that the one-
sided test will provide higher power than the test using the unconstrained alternative.

In this paper we extend this test to the survey context. In the next section, the test is derived,

and in Section 4.3 some large sample theory is given. Simulations in Section 4.4 show that the test
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performs well compared to the test with the unconstrained alternative, with better power and a test
size closer to the target. In Section 4.5 the methods are applied to the National Survey of College
Graduates, to test whether salaries are higher for people whose father’s education level is higher,
controlling for field of study, highest degree attained, and year of degree. The test is available in

the R package csurvey.

4.2 Formulation of the Test Statistic

To establish the notation, let U = {1,2,---, N} be the finite population. A sample s C U
of size n is to be drawn based on a probability sampling design p, where p(s) is the probability
of drawing the sample s. The first order inclusion probability 7; = Pr(i € s) = > .. p(s)
and the second order inclusion probability m;; = Pr(i,j € s) = >, ;. p(s), determined by
the sampling design, are both assumed to be positive. In terms of the domains of interest, let
{Uyg:d=1,---,D} be a partition of the population U and NN, be the population size of domain
d, where D is the number of domains. We denote by s, the intersection of s and Uy, and let ny be
the sample size for s,.

Let y be the variable of interest and denote by y; the value for the sth unit in the population.
The population domain means are yy = (Ju,," -+ , Ju,,) | » and gy, is given by:

Two common design-based estimators of the population means are the Horvitz-Thompson esti-
mator (Horvitz and Thompson (1952)) or the Héjek estimator (Hajek (1971)); because the Ha-
jek estimator g5, does not require information about the population domain size N; and has
other advantages in practice, we will focus on the Hajek estimator. The results for the Horvitz-
Thompson estimator, however, can be derived analogously. The Héjek estimator for domain means

isYs = (Usys - - -, Usp )» Where
~ _ Z’L'Esd yl/ﬂl
Ny
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and Ny =S, 1/m;.

1€Sq

We are concerned with testing:

Hy:yp €V versus Hy:gy €C\V 4.1)

where V' = {y : Ay = 0} is the null space of A and the alternative set is the convex cone
C ={y: Ay > 0}. A set C is a convex cone if for any 6; and 0, in C, o167 + 20, is in C for any
non-negative o, and aw.

For testing (4.1), we propose the following weighted least squares test statistic:

ming,ev (gs — 00) X" (gs — Op) — ming,cc(gs — 61) "X (g, — 6,)
ming,ey (gs — 0o) "X (ys — o)

T =

where ¥ is the covariance estimator of ¢,. We will reject Hy, if T is large.
This is similar in structure to the classical test. If g, were normal with cov(ys) = 3, then
T would be distributed as a mixture of beta random variables, under the null hypothesis. In the

survey context, we approximate the distribution of T.

4.3 Asymptotic Distribution of the Test Statistic

The assumptions needed to derive an approximate distribution of 7" are listed in Appendix C,
and are similar to those in Xu et al. (2021). We start with a brief review of the properties of the

unconstrained estimator y,. By the Taylor expansion, we can linearize the y, as follows:
'gs —_ 'gU 4 ,gcenter 4 Op(nfl)
where

-
- 1 (yr — Juy) 1 (k. — Jup)
center __ _ 1 L D

o (s )

1 kesy D kesp
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The properties of g, — gy can be approximated by g“***" and we have that E(g“"") = 0 and the

ncenter

variance of y is X, the asymptotic variance of y,. The 7jth element of 3 is:

—yu) i —yu;)
1 = A ’ ) ) :1727"'>D'
=y Y e i

Y keu, leU;

By the design normal assumption (A5) in the appendix, we have 2_%1}“”’5” AN (0, I), hence:
—1/~ -~ — 1 ~center d
Y72 (g5 —yu) = X2 +05(1) = N(0, ).

To derive the asymptotic null distribution of T, we first do the following transformation:

7o ming,ev (§s — 6o) "X (g — 6o) — mjn91€C(gs —0)'S (g, — 6)
ming,ev (Ys — 60o) " X7 (Ys — o)
ming, - (Z; — 00)"(Z, — 6y) — ming, o(Z, — 6:)"(Z, — 6))
- minéoev(zs —00)7(Z, — 6,)

where A = AY3, Z, = fl_%gjs, 0, = 2_%00, 0, =220,V = {éo - Af, = 0} and C = {él :
A@, > 0}. Notice that ming, ev( —6,)T(Z, — 6,) is the squared length of the projection of Z,
onto V- and the projection of Z, onto V has the explicit expression 8 = (I — AT(AAT) A)Z,,
where (AAT)f is the generalized inverse of AAT. Also, from (2.1) in Xu et al. (2021), the

projection of Z, onto the cone C can be expressed as:

01 =) (I-AJ(A,A]) A))Z.1,(s) (42)
J
where J C {1,...,m} such that the rows of A form a linearly independent set and for each

sample s, there is only one subset .J for which Z;(s) = 1. In addition, by the consistency of 3, we
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have the following:

min(Z, — 60)"(Z: — 60) = (Z: - 6;)" (Z. - 6;)
=(AT(AAT) AZ,)TAT(AAT) AZ,
=Z]AT(AAT) Az,
=y AT(AZAT) Ay,
=9, A'(AZA") Ag. +0y(1)
— _ T —
= %1611{1/( 00) "= (gs — 6p) + 0,(1). 4.3)

By (4.3) and Lemma 12 in the Appendix, T can be rewritten as:

P ming, ey (s — 0o) ' X1 (gs — 0p) — ming, cc(gs — 01) ' (g, — 01)
mlnGUEV(gs - BO)TE (ys - 00)

+ 0p(1)

The denominator in above expression must be bounded away from zero in probability, which
is indeed the case because it can be shown that the ming,cy (gs — 6y) ' X7 (g, — 0y) has, asymp-
totically, x?(m) distribution under the null and design normal assumption; hence the denominator
is bounded away from zero in probability.

Next, let Z, = X723, Zy = X 24y, Oy = £20), 8, = X720, and define V = {0 : A9 =
0},C ={6: A8 > 0}, where A = AXz. Then

+ _ Wing,cy [1Zs — Goll” — ming, ¢ [ Z, — 611"

. _ ) + 0,(1)

ming, .o || Zs — Oy|”

_ ming . [|Zs — Zv + Zy — 6|2 — ming ¢ ||Zs — Zy + Zy — 01]? o)
min§06‘~/||Z5—ZU+ZU_90||2 ’

Let Zcenter — Zs — Zy, and recall that under Hy, Z; € ‘7 so that, in the above expression,

minimizing over 0 is equivalent to minimizing over —Zy; + 6y, and similarly for minimizing over
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6:. Then our test statistic may be expressed as

minéoeff Hzcente’r _ é0| ’2 _ minéle(f HZcenter _ él ‘ |2

minégEV ||Zcenter _ é0| |2

T = +0,(1).

Let Z ~N(0, I'), and define

~ ming ¢ || Z — 6p[|* — ming +[|Z — 6,]]?

ming .- [|Z — 6p|[?

The random variable 7" has been shown to be distributed as a mixture of beta random variables

under Hy, and the mixing distribution can be found (to within a desired precision) via simulation.

Specifically,
Pr(T<c)—iPr Be m—d d <c
> — 9 ) 9 = Dd,
d=0
where py, ..., pp are approximated through simulations, and Be(«, (3) represents a Beta random

variable with parameters « and /3, respectively. By convention, Be(0, ) = 0 and Be(«,0) = 1.
If the irreducible constraint matrix A is not full row rank, say m > D, then the above result
still holds by substituting m; formandd = 0,1, - - - , my, where m; is denoted to be the dimension
of the space spanned by the rows of the constraint matrix A.
Finally, we have 7 2 T. This follows from the Lipschitz continuity of the projection of Z
onto a convex cone; that is, if 0 is the projection of Z onto the cone C, then 0 is a continuous
function of Z; see Proposition 1 and its proof in Meyer and Woodroofe (2000).

The mixture probabilities are approximated as follows:
(1) Generate Z from standard multivariate normal distribution N (0, I).

(2) Project the generated Z onto the convex cone C = {6 : A9 > 0} to obtain the J set, where

A = Az, Specifically, let 8 be the projection of Z onto the C, then J = {j : Ajé =0}.

The R package coneproj (Liao and Meyer (2014)) finds ] given the generated Z and A,

and also returns the set of binding constraints .J.
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(3) Repeat the previous steps B times (say B = 1000).

(4) Estimate py by the proportion of times that the set J has d elements, d = 0,1,--- ;m. When
the matrix A has more constraints than dimensions, then, the set J has at most m; elements.

In fact, the cone projection routine in conepro j can always find a minimal unique J set.

4.3.1 The Properties of the Test

In this section, we prove consistency and monotonicity of the power function of this test. Under
the alternative, if T is a good test statistic, then we would expect that the probability of rejecting

null increase to one as n increases.

Theorem 10. Let o be the test size and c,, be the corresponding critical value of the test. Then,

the power of the test converges to 1 under the alternative. That is:
P(T > co|gy € C\V) = 1, asn — oco.

i H_ 1 _ ming ec(gs—61) S (gs—01) . )
Proof. Since T' =1 ity cy (5. —00) 751 oy 1t suffices to show that:

ming, cc (s — 01) TS (g, — 61)
minBOEV(gs - 90>T271(gs - 00)

= 0p(1)

under the the alternative. For the numerator, we have

pin(d.~0) 2 (5:-00) < (590" .- w0) = 0, (=) 0,0, (=) = 0,0
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where we use the fact that y, — ypy = Op(n*%) and ¥ = O,(n"!) element-wise. For the denomi-

nator, we have:

min(gs - OO)TE_I(QS —0y) = mlr& HZAS - éOHQ

6oV 6o

S _ A A

—|2,-(I-AT(AAT) A)z,] |2,-(I-AT(AAT) A)z
=Z]AT(AA") AzZ,

=g/ AT(ATAT) Ag,

Hence, we have:

ming,ec(gs — 01)' (g — 01)  ming,ec(Ps — 01) T (nE) (g, — 6))

1
gT AT(AnXAT) Ag,

1
YL AT(AnZAT)” Agy + 0,(1)

= 0p(n"1)0y(1) = 0,(1)

= Op(n7")

because ¢, and 3 are consistent for g and 2 respectively. Therefore, under the alternative, T

goes to 1 asymptotically. [
The following is a result on the monotonicity of the power for the test.

Theorem 11. Suppose that —Q2 C C°, where Q = C NV, then for any vector 0 € €, the value
of the test statistic associated with the data vector ys + 0 is bigger than the value for y,. Hence,
the power for the test with alternative HY : AOy > 0 is larger than the power of the test with

alternative H, : Ayy > 0, where 0y = yy + 0.
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Proof. Denote:

ming,cv (gs — 6o) 'S (gs — 8o) — ming, cc(gs — 1) ' X7 (gs — 61)
ming,ev (Ys — 6o) "X (ys — 6o)
ming .y (Z; — 60) " (Z, — 6p) — ming o(Z, — 6:)"(Z, - 6))
minéoef/(zs - éO)T(Zs . éO)
1Z, — 62
1Z, — o

71 —

where ZS, éo, él, V and C were defined previously, v is the projection of Zs onto V and 00 is

the projection of Z, onto C. Similarly, we can define:

7o) _ o _ Mingcc((gs+0) — 01) TS (g + 0) — 61)
ming,ey ((gs + 0) — 60) =1 ((gs + 0) — 6p)
_,_ ming,e((Z,+0) —6)7((Z,+6) - 6))
ming, oy ((Zs +60) — 6)" ((Z; +6) — 6)
L Z,+ 662
S 2.+ 6- |

where 8 = X726 and 0@ is the projection of Z, + 6 onto C. Because 0 is orthogonal to V, so 0
is also orthogonal to V. Thus, the projection of Z,+ 6 onto V is the same as the projection of Z,
onto V, which is @. Further, let p() be the projection of Z, onto C° and p? be the projection of
ZS + 6 onto C°. Then,

w _ N2 —6W[P |Z,+6 - 67|
1Z,~3l>  ||Z,+6 ol

T2 _
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To show T® — T > 0, it is suffices to show the following is non-negative:

1Z, — 00|21 Z, + 6 — &> — || Z. — ||| Z. + 6 — 6P| |2

=12, = 6V|Z, + 6 — 09 + 0P — &[> — || Z, — 9| Z, + 0 — 6|
=[16M1P6 + 6@ — &|* — || Z, — |]*|5|?

=BV + 16711216 — 812 — || Z, — 5|62
:|‘/3(1)H2(Hé(2)“2_|’1~)H2>_Hﬁ(2)|’2(HZS_{}H2_H/3(1)H2)

{16112 (118112 = 118112 = (112112 ~ 18112 = 16V112) )

(
A1 (1921 — 18l — (11621~ 11512))
=B (1161 — 16 1)
—1pW2 (HZS 9)!!2—|10~(”H2)
> (16012 (112, — 5V — 116 ?)
(118

(15112 (11612~ 116]2) =0

Here, we use the fact that () = p(?), because 6 cQis orthogonal to C° and thus the projection
of Z, + 0 onto C° is the same as the projection of Z, onto C°, where Q@ = C N V. Also, when
—6 € C°, then —6 € C° by transformation. Further, the vector 5® — @ will be in C° and must be
farther from Z, than p).

Let ¢, be the critical value for this one-sided test for a specific significance level o. Then we
must have:

P(TW > ¢ |H,) < P(T® > c,|H})
The power of the test increases. [

The above result essentially concludes that as the effect size increases, the power of the test
increases. In other words, larger effects are easier to detect reliably. Also, the proposed test statistic

T will inherit above property asymptotically due to the consistency of the covariance estimator.
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4.4 Simulation Studies

The simulations involve one or two dimensional grids, with several constraints and population
domain means. We present the results in table form from three scenarios: for each, we record the
proportions of times the null is rejected in various cases, with different sample sizes, significance
levels and the variances for generating the study variables. In each case, we generate a population
of size IV, then we draw 10,000 samples from the population according to a sampling design. For
each sample, we compute the test statistic value and compare it with the critical values under differ-
ent significance levels, where the critical values are obtained from the asymptotic null distribution
of the test statistics. Further, we compare the power of this one sided test with that of ANOVA F

test using the unconstrained alternative. That is,
Hy: Ayy =0 versus Hy: Ayy #0

Here, we use svyglm function in survey package to fit the ANOVA model and compute the

P-values of the ANOVA F test by applying the anova function in survey package.

4.4.1 Monotonicity in One Variable

Asin Xu et al. (2021) and Oliva-Avilés et al. (2020), the limiting domain means for generating

the study variables are given by the functions as follows:

,uglo)zl, ford=1,2,---,D.

(1) exp(12d/D — 6) for d

- ~1,2,---,D.

Hi" = 3501 +exp(12d/D —6)) 4T 0T
12d/D — 6

u? = exp(12d/ ) ford=1,2,--- . D.

~ 2.5(1 +exp(12d/D — 6))’
where D = 12 is the number of domains. The study variables y1, . .., yy are generated by adding

independent and identically distributed N (0, 0?) (i = 1, 2) errors to the j4 values from above three

functions, respectively, with 01 = 1 and 05 = 1.5. We compare the test size and power for the
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test of constant versus increasing domain means, with the standard ANOVA test of constant versus
non-constant domain means.

We draw the samples from a stratified simple random sampling design without replacement,
with H = 4 strata that cut across the D domains. The strata are determined using an auxil-
iary variable z, which is correlated with study variable y. The values of z are created by adding
i.i.d. standard normal errors to (d/D). By ranking the values of z, we can create 4 blocks of
N/H elements. Then, the stratum membership of the population element is determined by the
corresponding ranked z, Finally, the population sizes are set to be N = 9600, N = 19200,
N = 57600 and N = 76800, respectively, with domain population size N; = N/D. The to-
tal sample sizes n = 200, n = 400, n = 1200 and n = 1600 are assigned to each strata with
sample size (25, 50, 50, 75), (50, 100, 100, 150), (150, 300, 300, 450), (200, 400, 400, 600) in each
strata, respectively.

The results in Table 4.1 show that the test size for the proposed one-sided test is closer to the
target, while the two-sided test size is somewhat inflated even for the larger sample sizes. For
the simulations where the alternative hypothesis is true, the one-sided test has substantially higher

power.

4.4.2 Block Monotonic in One Variable

In “block monotonic" ordering case, we assume the population means are ordered among
blocks, but there is no ordering imposed within the blocks. Specifically, we organize the limit-

ing domain means in four blocks of three domains as following:

“(0)_('05 05 .05|.05 05 05|.05 .05 .05/.05 .05 .05)

u(”:<—.06 0 .06|.12 .06 .18|.18 .24 .30 (.30 .36 .30

u@):(—.os 0 .08/.16 .08 .24|.24 .32 .40|.40 .48 .40)
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Table 4.1: Monotonicity in one variable: the proportions of times null is rejected under various settings and
power comparison between the constrained one sided test and the unconstrained test

One sided test

) s L) ) s e I s e
n=200 | 0.0996 | 0.4689 | 0.6686 | 0.0533 | 0.3218 | 0.5055 | 0.0134 | 0.1194 | 0.2230
n=400 | 0.0840 | 0.6352 | 0.8529 | 0.0403 | 0.4780 | 0.7268 | 0.0085 | 0.2028 | 0.4054

n=1200 | 0.1039 | 0.9657 | 0.9986 | 0.0537 | 0.9027 | 0.9941 | 0.0121 | 0.6444 | 0.9133

n=1600 | 0.0981 | 0.9867 | 0.9999 | 0.0489 | 0.9550 | 0.9988 | 0.0110 | 0.7533 | 0.9654
n=200 | 0.0994 | 0.3128 | 0.4370 | 0.0528 | 0.2008 | 0.2938 | 0.0133 | 0.0625 | 0.1056
n=400 | 0.0839 | 0.4101 | 0.5946 | 0.0402 | 0.2740 | 0.4338 | 0.0084 | 0.0873 | 0.1770

n=1200 | 0.1037 | 0.7838 | 0.9461 | 0.0532 | 0.6327 | 0.8679 | 0.0120 | 0.3142 | 0.5773

n=1600 | 0.0980 | 0.8544 | 0.9751 | 0.0488 | 0.7253 | 0.9334 | 0.0109 | 0.3900 | 0.6928

ANOVA F test

a; =0.1 as = 0.05 a3 = 0.01

dO T g0 T g@ [ g [ g@ [ g@ [ g™ [ g [ g®
n=200 | 0.1412 | 0.2677 | 0.4017 | 0.0746 | 0.1627 | 0.2685 | 0.0147 | 0.0457 | 0.0973
n=400 | 0.1280 | 0.3618 | 0.6034 | 0.0658 | 0.2385 | 0.4627 | 0.0147 | 0.0835 | 0.2259

n=1200 | 0.1123 | 0.8139 | 0.9854 | 0.0590 | 0.7121 | 0.9694 | 0.0117 | 0.4736 | 0.8943

n=1600 | 0.1111 | 0.9253 | 0.9986 | 0.0576 | 0.8633 | 0.9964 | 0.0126 | 0.6868 | 0.9814
n=200 | 0.1412 | 0.1909 | 0.2502 | 0.0746 | 0.1087 | 0.1495 | 0.0147 | 0.0261 | 0.0408
n=400 | 0.1280 | 0.2195 | 0.3278 | 0.0658 | 0.1296 | 0.2094 | 0.0147 | 0.0313 | 0.0661

n=1200 | 0.1123 | 0.4670 | 0.7538 | 0.0590 | 0.3320 | 0.6361 | 0.0117 | 0.1397 | 0.3902
n=1600 | 0.1111 | 0.5947 | 0.8795 | 0.0576 | 0.4602 | 0.8014 | 0.0126 | 0.2367 | 0.5932

o n

where the blocks are separated by the vertical lines. Hence, under the alternative, we expect the
population mean for each of the domains in block ¢ would be at least as large as those in block
1 — 1, for i = 2,3,4. Also, the effect size of gl(f ) generated from p(®) would be larger than that
of g,(} ) from p. We use exactly the same stratified simple random sampling design as in the
previous example.

The results in Table 4.2 show again that one sided test has substantially higher power for sim-
ulations where the alternative is true, and for simulations under the null hypothesis, the test size is

approximately correct for the one-sided test and the two-sided ANOVA test has inflated test size.

4.4.3 Monotonicity in Two Variables

Here we take into consideration a grid of domains, which represent two variables. In particular,

we set the limiting domain means as follows:
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Table 4.2: Block monotonicity in one variable: the proportions of times null is rejected under various
settings and power comparison between the constrained one sided test and the unconstrained test

One sided test

) s L) ) s e I s e
n=200 | 0.1013 | 0.5114 | 0.6795 | 0.0568 | 0.3590 | 0.5216 | 0.0119 | 0.1397 | 0.2391
n=400 | 0.1036 | 0.7368 | 0.8856 | 0.0534 | 0.5838 | 0.7878 | 0.0109 | 0.2840 | 0.4722

n=1200 | 0.0964 | 0.9718 | 0.9978 | 0.0487 | 0.9224 | 0.9880 | 0.0089 | 0.6671 | 0.8801

n=1600 | 0.0976 | 0.9877 | 0.9998 | 0.0492 | 0.9635 | 0.9958 | 0.0098 | 0.7668 | 0.9339
n=200 | 0.1014 | 0.3421 | 0.4535 | 0.0567 | 0.2191 | 0.3124 | 0.0117 | 0.0731 | 0.1144
n=400 | 0.1031 | 0.4992 | 0.6616 | 0.0534 | 0.3544 | 0.5028 | 0.0109 | 0.1335 | 0.2235

n=1200 | 0.0965 | 0.8187 | 0.9422 | 0.0485 | 0.6794 | 0.8672 | 0.0091 | 0.3474 | 0.5661

n=1600 | 0.0974 | 0.8830 | 0.9743 | 0.0497 | 0.7652 | 0.9232 | 0.0099 | 0.4367 | 0.6746

ANOVA F test

a; =0.1 as = 0.05 a3 = 0.01

dO T g0 T g@ [ g [ g@ [ g@ [ g™ [ g [ g®
n=200 | 0.1412 | 0.2941 | 0.4368 | 0.0746 | 0.1847 | 0.2951 | 0.0147 | 0.0551 | 0.1155
n=400 | 0.1280 | 0.4220 | 0.6556 | 0.0658 | 0.2912 | 0.5231 | 0.0147 | 0.1123 | 0.2712

n=1200 | 0.1123 | 0.8940 | 0.9921 | 0.0590 | 0.8177 | 0.9840 | 0.0117 | 0.6099 | 0.9363

n=1600 | 0.1111 | 0.9678 | 0.9995 | 0.0576 | 0.9293 | 0.9986 | 0.0126 | 0.8094 | 0.9911
n=200 | 0.1412 | 0.2052 | 0.2611 | 0.0746 | 0.1173 | 0.1583 | 0.0147 | 0.0281 | 0.0431
n=400 | 0.1280 | 0.2445 | 0.3543 | 0.0658 | 0.1457 | 0.2333 | 0.0147 | 0.0389 | 0.0787

n=1200 | 0.1123 | 0.5399 | 0.8012 | 0.0590 | 0.4099 | 0.6932 | 0.0117 | 0.1926 | 0.4549
n=1600 | 0.1111 | 0.6799 | 0.9091 | 0.0576 | 0.5539 | 0.8468 | 0.0126 | 0.3153 | 0.6589

.01 .01 .01 .01 .01
02 .02 .02 .02 .02
03 .03 .03 .03 .03
04 .04 .04 .04 .04

04 .08 .20 .32 .40
04 .12 12 .20 .28

04 .04 12 24 28
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0 .05 .20 .30 .35
05 .10 .25 .40 .50
05 .15 15 .25 .35

05 .05 .15 .30 .35

here there are five levels of one variable and four of the other, so there are D = 20 domains.
By the setting, the p values are non-decreasing in one variable and there is no constraint on the
other variable. It is quite useful in practice. For instance, in National Compensation Survey, the
population domain means of the salary are expected to be monotone in job level, but there might
be no shape restriction on job type. Further, we expect gj((f ) from 12 will have larger effect size
than that of g} from p(V).

The sampling mechanism and the way we generate the study variable y are the same as that in
one dimensional case. However, because there are more number of domains in this case, we set
the sample size to be n = 400, n = 800, n = 1200 and n = 2000, respectively, corresponding to
the population size N = 8000, N = 16000, N = 24000 and N = 40000, where the sample sizes
are divided among the strata as (50, 100, 100, 150), (100, 200, 200, 300), (150, 300, 300,450) and
(250, 500, 500, 750), respectively.

The simulation results in Table 4.3 demonstrate similar properties as those in the previous sce-

narios: the tests have higher power as sample size gets larger and the effect size of the population

domain means is larger.

4.5 Application to NSCG 2019 Data

To demonstrate the utility of the proposed one sided test procedure in real survey data, we
consider the 2019 National Survey of College Graduates (NSCG), which is conducted by the U.S.
Census Bureau. The NSCG provides data on the characteristics of the nation’s college graduates,
with a focus on those in the science and engineering workforce. The data and relevant documenta-

tion are available to the public on the NSF website (https://www.nsf.gov/statistics/srvygrads/).
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Table 4.3: Monotonicity in two variables: the proportions of times null is rejected under various settings
and power comparison between the constrained one sided test and the unconstrained test

One sided test

) s L) ) s e I s e

n=400 | 0.1770 | 0.7738 | 0.8755 | 0.1000 | 0.6415 | 0.7757 | 0.0255 | 0.3460 | 0.4907
n=800 | 0.1203 | 0.8732 | 0.9576 | 0.0590 | 0.7677 | 0.8975 | 0.0129 | 0.4706 | 0.6598
n=1200 | 0.1097 | 0.9571 | 0.9921 | 0.0562 | 0.8972 | 0.9762 | 0.0102 | 0.6556 | 0.8523
n=2000 | 0.1093 | 0.9929 | 0.9994 | 0.0558 | 0.9794 | 0.9975 | 0.0103 | 0.8661 | 0.9700
n=400 | 0.1778 | 0.5837 | 0.6840 | 0.1006 | 0.4301 | 0.5382 | 0.0255 | 0.1844 | 0.2586
n=800 | 0.1210 | 0.6512 | 0.7783 | 0.0594 | 0.4967 | 0.6399 | 0.0133 | 0.2257 | 0.3421
n=1200 | 0.1098 | 0.7701 | 0.8908 | 0.0565 | 0.6247 | 0.7881 | 0.0100 | 0.3235 | 0.4909
n=2000 | 0.1089 | 0.9019 | 0.9725 | 0.0560 | 0.8040 | 0.9292 | 0.0103 | 0.5150 | 0.7236
ANOVA F test
a; =0.1 as = 0.05 a3 = 0.01
dO T g0 T g@ [ g [ g@ [ g@ [ g™ [ g [ g®

n=400 | 0.1584 | 0.4337 | 0.5642 | 0.0828 | 0.3005 | 0.4255 | 0.0184 | 0.1075 | 0.1886
n=800 | 0.1338 | 0.5817 | 0.7748 | 0.0703 | 0.4407 | 0.6600 | 0.0154 | 0.2165 | 0.4058
n=1200 | 0.1273 | 0.7028 | 0.8922 | 0.0662 | 0.5773 | 0.8149 | 0.0140 | 0.3224 | 0.6055
n=2000 | 0.1289 | 0.9174 | 0.9912 | 0.0697 | 0.8577 | 0.9789 | 0.0149 | 0.6664 | 0.9198
n=400 | 0.1584 | 0.2899 | 0.3578 | 0.0828 | 0.1759 | 0.2285 | 0.0184 | 0.0510 | 0.0732
n=800 | 0.1338 | 0.3283 | 0.4443 | 0.0703 | 0.2138 | 0.3133 | 0.0154 | 0.0717 | 0.1274
n=1200 | 0.1273 | 0.3803 | 0.5358 | 0.0662 | 0.2606 | 0.4009 | 0.0140 | 0.1014 | 0.1883
n=2000 | 0.1289 | 0.5759 | 0.7811 | 0.0697 | 0.4434 | 0.6683 | 0.0149 | 0.2148 | 0.4215

o n

We choose the annual salary as the study variable (denoted by SALARY in the dataset). In
order to prevent the impact of the extreme annual salary, we only consider those who reported an
annual salary between $30,000 and $900,000. Also, as the annual salary variable distribution is

skewed, a log transformation is implemented. Four predictor variables are considered:

e Field (denoted by NDGMEMG in the dataset): This nominal variable defines the field of
study for the highest degree. There are six levels: (1) Computer and mathematical sci-
ences; (2) Biological, agricultural and environmental life sciences; (3) Physical and related

sciences; (4) Social and related sciences; (5) Engineering; (6) Other.

e Father’s education level (denoted by EDDAD in the dataset): This ordinal variable denotes
the highest level of education completed by the respondents’ father (or male guardian). The
six levels are: (1) Less than high school completed; (2) High school diploma or equivalent;

(3) Some college, vocational, or trade school (including 2-year degrees); (4) Bachelors de-
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gree (e.g. BS, BA, AB); (5) Masters degree (e.g. MS, MA, MBA); (6) Professional degree

(e.g. JD, LLB, MD, DDS, etc.) and Doctorate (e.g. PhD, DSc, EdD, etc.).

e Academic year of award for the highest degree (denoted by HDACYR): This variable gives

information about which year each respondent was awarded for their highest degree.

e Highest degree type (denoted by DGRDG): This ordinal variable denotes the highest degree
type the respondents earned. The four levels are: (1) Bachelor’s; (2) Master’s; (3) Doctorate;

(4) Professional.

Suppose interest is in the question: for wage-earners whose highest degree is a bachelor’s,
does the father’s education level influence the salary, when controlling for field of study and time
since degree? To answer this, we perform separate tests for cohorts in years that the degree was
attained, as in Table 4.4. Within each cohort, there are 36 domains, with six levels each of field
and father’s education level. We test the null hypothesis that the salary is constant over father’s
education level, within each field, against the alternative that the salary is increasing in father’s
education level. We compare the p-values for this test with constrained alternative to the ANOVA
test with unconstrained alternative. The svyglm function in survey package is used for the
unconstrained alternative, and the F test by applying the anova function in survey package
gives the p-value. The results of the tests for five recent cohorts are in Table 4.4.

Table 4.4: p-values for the null hypothesis that salary is constant in father’s education level, controlling for
field of study.

year 2007-2009 | 2010-2011 | 2012-2013 | 2014-2015 | 2016-2017
one-sided mixture beta test 0.0037 0.0119 0.0004 0.0204 0.0018
ANOVA F test 0.0601 0.3601 0.0236 0.2223 0.0655

For each cohort, the p-value for the one-sided test is below .05, indicating that salaries increase
significantly with father’s education level, consistently across years. In contrast, the p-value for
the two-sided test is consistently larger, and does not indicate a significant trend for some of the

cohorts, and for other years the test results could be considered “borderline.” Using the a priori
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knowledge that if father education level affects salary, it must be a positive effect, helps increase

the power to see the trend.

4.6 Discussion

In this paper, we developed a testing procedure for testing the linear inequality restrictions of
the population domain means within the survey context. Under the design normal assumption of
the survey domain means, the proposed test statistic T has the asymptotic mixture beta densities,
where the mixing probabilities (or the weights) can be easily computed via simulations. The test
statistic readily allows computation, with the covariance estimator 3 and the unconstrained es-
timator y, obtained from the survey package in R and the constrained least square projection
obtained by using the coneA function in coneproj package. In theory, we showed that the
power of the test tends to be one as the sample size increases. Also, larger effect size of the popu-
lation domain means can boost the power of the test. The simulation studies confirm the properties
of the proposed test and find that the test is an exact test in moderate to large-sized samples.

The implementation of the test in the csurvey package borrows from the survey package.
For example, suppose we have a grid of domains in two variables x1 and x2 and study variable
y. The survey design is specified with the svydesign command in the survey package, and
the design object ds is used in the implementation of the test. The p-value for the test of constant
versus increasing domain means along the x1 variable, without constraining the domain means in

the x2 variable, is obtained as follows.

ansc = csvy (y~incr (xl)xx2, data=data_set_name, design=ds,
nD=M, test=TRUE)

anscSpval

For more information and examples, see the csurvey manual.
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Chapter 5

Conclusion and Future Work

In this dissertation, we first proposed a new survey estimator under nonresponse, in which the
propensity function is fitted by a constrained least square regression model, with the constraint
being a calibration equation. In this manner, we can take advantage of the calibration equation
as well as the readily implementation of the least square criterion. Even though we may mis-
specify the response model to some degree, the estimate will be adjusted towards the true value
by the calibration equation, making the estimate more efficiency. We showed that both Horvitz-
Thompson type and Hajek type estimators are asymptotic unbiased for the population mean. Also,
the asymptotic variance estimators are derived for the proposed estimator and they are proved to be
consistent for the corresponding true asymptotic variance. Furthermore, under the design normal
assumption, we showed that both estimators are asymptotic normally distributed, regardless of the
random response mechanism. In a simulation study, the proposed estimators are shown to have a
good performance in terms of unbiasedness, coverage probability and mean square error, compared
with other competitive uncalibrated estimators.

Next, we tackled the problem in estimating the variance of inequality constrained domain mean
estimators in the finite population context. The proposed mixture variance estimator takes into ac-
count the fact that the constrained domain means estimator can be expressed through a projection
matrix on a unique linear space derived from the linear constraints. This linear space is sample-
dependent and thus so is the covariance of the constrained estimator. This improved variance esti-
mator better reflects the covariance structure of the underlying constrained domain mean estimator
by taking into account all possible covariance matrices obtained from the inequality constraints.
Also, we formally proved the consistency of the mixture variance estimators.

In the third topic, we proposed a testing procedure for testing the linear inequality constraints
of the population domain means within the survey context. The null distribution of the proposed

test statistics has been shown to have the asymptotic mixture beta densities. In theory, we proved
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that the power of the test goes to one as the sample size increases. Also, larger effect size of the
population domain means can boost the power of the test. This one-side test is easy to conduct in
real practice and the simulations, as well as the real data analysis, confirm the properties of this
proposed one-sided test.

Applying the shape constrained methods in survey domain estimation is a new area in survey
research. Recently, Wu et al. (2016), Oliva-Avilés et al. (2019), Oliva-Avilés et al. (2020), Xu
etal. (2021) proposed a lot of methods on the survey domain estimation and inference under shape
restrictions. In the future, to make those work more applicable to survey practitioners, we will
work on developing a new csurvey package that allows users to implement shape and order
constraints on domain mean estimates in surveys. The new package csurvey will incorporate
the existing methods on constrained domain estimation and inference, with commands to impose
a variety of useful constraints in real surveys. Also, we plan to work on the relaxed monotone
estimator in surveys. Under some circumstance, imposing strict monotone ordering might not be
appropriate, then a relaxed ordering can be used instead. We will try to propose a method that may
be used if the domain means can be assumed to be approximately monotone. Specifically, a type of
weighted moving average can be assumed to be monotone. we will formulate the moving average

with a single tuning parameter, and try to propose a data-driven choice of this parameter.
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Appendix A

Supplemental Materials for Chapter 2

This appendix contains all the proofs of the theoretical results in Chapter 2.

Proof of Theorem 3. We will complete the proof by showing n(f/; —Vi) =o0,(1), Vi=1,234

S
= a1+ as + as

1 zyl 1 1 Zyl 1 1 . ..
We write a1 as a1 = §z ) ;e 2 ( P p%) N D ies 2 (5; — ;). Using the similar argument

for showing A = Op(n_%), it’s easy to see that:

n Ry? 1 1 n 1 Riy?

REP P R O P

1 1
Di Di

(

Apply similar argument to the first term of a;, yielding 7% >, ¢ F? (52 — 72) = 0,(1), Hence we
have a; = 0,(1) 4+ 0,(1) = 0,(1).
We write as as az = 37 D ;e g FZ—;(Rl —Di) — D ies o ( — p;). By Kolmogorov’s Law of

Large Numbers, we have:
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1

Hence as = O(1)o,(1) + O(1)o,(1) = 0,(1). By the analogous argument for showing (2.9),
az = 0(1)0p(n"2) = Op(n_%

) = 0,(1). Thus, we have shown that:

n(vl = V1) = 0,(1) + 0,(1) + 0p(1) = 0,(1)

n (I1-m)y; Ri  n Ayyy; iR, n Yil;
(Vz Va) = WZ—QE-FW Z ==l = _ — A==

2
ies l i#jijes Wt Pib; i,jeu *ha
{ [ S Ui z]}
N = Wi pi N ieU

1 nAZ-j YilY; RZR] YilY;
| o B 5 2

ijeSizs W TV BT Geuits B
=by + by

Using the same argument for showing n(V; —V}) = 0,(1), it’s easy to verify that b; = O(1)o,(1) =

0p(1). Now, we can rewrite by as:

2
,j€8,iF]

bg = F ~ A
Tij TiTj PiPj Tij TiTj PiPj

i, €S5i#]

2
ijesizg 4 Tii PiPj ijeSizj W Tt

1 nAi yiy; 1 %%]
=l 2 ot 2y
N i,jE€S i#] Tij Tl N i,jeUi#] 7r17r]

= bay + Dag + b3

1 TLAZ 3
by =~ - JnyRR(

1 1 >
i €S i 5 T5Ty ﬁzpj DiPj
1 TLAZ i 1
X eling s
i,JES i] Tij Tl

Ga) G
P +_ _—— —
Di  Di bi \P;j Dy
1
p

X Muvtipp L (L 1) Ly mpmpp L1 1)
N2 i 4Ty ﬁj ) Di N2 Ti5 T4T p p; b

s
1,j€S,i#£] 1,JES,i#j
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By a similar argument for showing A = 0,(1) in Theorem 2, we have:

N|=
~—
I
S

bS]
—
N
N
~—
I
’UQ
—~
—
~—

bo1 = O,(1)0y(n"2) + 0,(1)0,(n~

Also, by Kolmogorov’s Law of Large Numbers, we get:

b= 20D L5 1B Ul (g = O(1)0(1) = 0,(1)

N2 n(n-—1) iiesizy Tig TTDID]

By assumption D.1, D.2 and applying Corollary 5.1.1.1 in Fuller (1996), we can show that by3 =

0p(1), hence by = 0,(1) + 0,(1) + 0,(1) = 0,(1) and thus:

(Ve = V2) = 0,(1) + 0,(1) = 0,(1)

Before proving n(Vs — V3) = 0,(1) and n(V; — Vi) = 0,(1), we first need the following result:

A—A=0,1) (A.1)
N(J YD) — T H ")) = 0y(1) (A.2)
D — D =o,(1) (A.3)

Using the same procedure for proving n(V; — V1) = 0,(1), (A.1) can be easily verified. For (A.2),

since J(.) matrix is continuous and invertible, it suffice to show:

1

J(0) = I (W) = 0,(1) (A.4)

1
N

Again, using the similar procedure for proving n(V; — V;) = 0,(1), we have that:

€U i€S icU
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sz

icU
Hence, by Slutsky’s Theorem, &J () — +.J(v*), so (A.4) and thus (A.2) are verified.

Similarly, we apply Slutsky’s Theorem to the following results, yielding (A.3).

%Zkalfsz p _Zkak:’ _Zii}?kz p _Z%

wes kP keU kesS ﬂ-kpk ev P
Now, based on the expression of Vs and Vs, we write n(Vg —V3) as
n(Vy — V4)
_% {ATN[.f(ﬁ)]‘lD (% ;pi(lﬂg ﬁ“)% {2 ; <1 %)} ) DTN[J() A
—~A"N[J(v*)]"'D (fv Z“(lm P [2:1:@- (1 — ;)1 > DTN[J(v*>]1A}
_ ) ATNIF ()] 1§ pd—p) B _ L )
N{A N[J ()] D( ; T {41<1 i)B DNJ( A
_ AT UL 1 pi(1 —pi) I T UL
ATN[J(v")] D(N;; - [4 ,(1 pi)B, DN[J( )] A}
- % {ATN[j(ﬁ)]‘l (% ze; Mlm; ﬁi)% [4 ; ( - %) BD DTN[J(0) A
—ATN[J ()™ (; sz(lm Pi) {4@- 1— —1> BD DT N[J( )]1A}
2 {ATN ( S, ) NU@) A

=C1 —Cy — C3+ 4
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In terms of ¢;, we have:

PR (-] - -2

422(1 — 3p; + 3}512 — PR, 1 422(1 — 3p; + 3p? — p3)
iy S

P Tip? p TiPi
1 422 R; 4z 1222 R; 1222
-(yrp iy i) (LR Ly
1222 R, 1227 p; Aa? Rzpz 1 Ax?p?
(AR Ry (L R s
€S €U €S €U

=Cy11 — C12 + €13 — C14

Using the same argument for showing (Vi — ;) = 0,(1), we obtain that ¢;; = 0,(1), ¢12 = 0,(1),

c13 = 0,(1) and ¢14 = 0,(1). Thus, we have:

R R e (1= )] 2 2 2 o (1= )]

Together with the result A % A, NJ (&) & NJ'(v*) and D % D from (A.1), (A.2) and

(A.3), respectively. We have the following result by Slutsky’s Theorem:

ATN(I () ( sz 2) pi {2@ (1 - i)r) DTNJ(#)] A 2>

€S pi
ATN[J(v* ( ZEZU“ b { <1 - pl)D D N[Jw")] A

That is ¢; = 0,(1). Using the analogous argument for proving ¢; = 0,(1), we have c; = 0,(1),
3 = 0,(1), ¢4 = 0,(1) and thus we get n(Vs — V3) = 0,(1).
Since the expressions of \74 and V, have the similar structure as that for 173 and V3, so using the

analogous argument as for showing n(Vs — V3) = 0,(1), we can obtain that n(V; — V;) = 0,(1).
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Therefore, we have:

n(V () — Var(ga)) = Z (Vi = Vi) = 0,(1) + 0,(1) + 05(1) + 0,(1) = 0(1)

O
Proof of Theorem 4. Using the result in (2.13), we compute v/n(J. — 7,) as follows:
VilGe = ) = Vi { e + AT[J(u*)]*ls (V") + opw%) - yw}
Vn Yi AT(N V)W,
= WZ?mi Z (Ri — pi) +0p(1)
i iPi €S
- v Z [% + AN (NI (v ))VVz} (Ri — pi) + 0p(1)
\/_ZD — i) + 0p(1) (A.5)
€S
where D; = = [3’” + AT(NJ (v ))VVZ} and we assume that, for all ¢, 0 < |D;| < M for some
constant M. Now, we want to show the following result:
Va(ge = gu) == N(O,Vx + Vi) (A6)
where Vi = limyoc 75 3, oy 259225 and Vi = limy oo 25 Yy mD20i(1 — pi).
By assumption D.3, we have /n(y. — yv) BN N(0,V;), if we can show:
V(e = G)|S =5 N(0,Vg) a.s (A7)

then by Theorem 1.3.6 in Fuller (2009), (A.6) is proved.
Givensample S = {1,2,--- ,n},denote T, = Y, s D;(R;—p;) and S2 = Var(}_, s Di(R;

Pi)) = Dics D?p;(1 — p;), we will prove:



by showing that the Lyapunov condition holds.

Set 6 = 1, then:

E(|Di(Ri - pi)|2+6) = E(|Di(Ri - pi)|3)
= |Di|3[pi<1 - Pi)g +(1— pi)p?]
< |Di|*pi(1 — p1)

< MDZ'Zpi(l — ;)

Thus, Y, E(|Di(R; — pi)|?) < M Y, . Dipi(1 — p;) = MSZ. So we have that:

s BIDi(R; —p)I) _ MS2 M
Sics BUD(R—pdl') _ MSE_ M0 o

S8 =g T35,

Hence, Lyapunov condition is satisfied. By Lyapunov central limit theorem, we have:

_ e ER P) _ N 2uesDiBimp) a4y
V2 ies Dipi(1 — pi) ¥z D ies Divi(1 — p;)

T,
S

Y ies Di(Ri—pi)
V/Zies Dipi(1-pi)
By Berry Esseen Theorem, for any value ¢, there exists a absolute constant Cy, such that:

s}—¢m

Now, we are ready to show s -4 N(0,1) a.s.

<t

\/Zz‘eS Dgpz‘(l - pi)
> ies BUDi(R; — pi)[?)
S3

< CoM
B \/Zz’eS D?pi(l — i)

‘P { ZieS Di(Rz’ - Pi)

<Cp
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where ®(-) denote the cumulative distribution function of the standard normal distribution. Hence,

s} e
CoM ]4
\/Z'LES D? pz )

-2
CiM? 1
— 3\[2 E (NZIiDgpi(l—pi)>

el

CiM*
<n 2[min; D?p;(1 — p; < ZI)

by assumption D.2 and above inequality, we have that:

E

\/Zies Dipi(1 - p;)

p { Y ics Di(Ri — i)

<E

eU
C |
~ [min; D?p;(1 — p;)]?(7*)2? n?

5}-@@

Given any € > 0, by Markov’s inequality and (A.8), we have:

which implies:

C4M4 e 1
< 0 -
< fuf, D2 (L= P 2 2 <

ZE

<t

{ S, Di(R; — pi)
Vi Dipi(1 — pi)

> [ Y Di(Ri — p |
ZP{P 2ies g P <t|S —<I>(t)>5}
n=1 L \/ZiES Dipi(1 — pi) ]
- _ 4
- es Di(Ri — pi
=> Pq|P 2ies g P <t|S| —o@t)] >
n=1 L \/ZiES Dipi(1 — pi) ]
4
ad " DAR, — p:
<>E Zﬁl@lem <t S mw//&
n=1 \/Zizl D; pi(1 — ps)
<00
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By Borel-Cantelli lemma, we have:

|

which is equivalent to:

Zieg Di(Ri —Pz’)
\/Zies D?pi(l — i)

P <t

> g, i.o.} =0

s] — (1)

es Di(Ri — pi
Lies g P) |s 4 N@0.1) as (A.9)
\/ZieS Dipi(1 —pi)
By similar proof for (2.9), we have:
~ Z Dipi(1—pi) = — Z mD}pi(1 — p;) (A.10)
zES zGU

Using (A.10), (A.9), (A.5) and applying Slutsky’s Theorem, we can get (A.7) and thus (A.6) is

proved.

Notice that V; + Vi = limy_eo {ﬁ >ijev ;ij] + v Doier TiDIpi(1 — pi)}, where:

AT Z ;_Jli_zjy] N2 Z 7TzD2pz 11— pz)

ieU
— 1 1 [ Yi T -1 * ?
= Var(y,) + — — | =4+ A (NT (W))W, | pi(1—pi)
N? iev i LPi
Var() + 5 S L AT W+ ATV )W - )
™ N2 ZEU ﬂ'l -pZQ (A pZ (A T (A
_ 1 1 'yz o 2Yi
— . i . . (1 —
Var (i) + 5 ;W K + (C;N)? + - CiN | pi(1 = p;)
— 1 yz‘2 1 —p; pz( pz 2 y;iC, 1 - pz
:Var(yﬂ)—i—mzﬂ—iTﬂLZ—C Z
ieU ieU zEU
= Var(ye)

So by the result: % LN N(0,1) from (A.6), we have that:

nVar(yel)
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Apply Theorem 3 and Slutsky’s Theorem to above result, yielding:

V(e —Ju) _ Je—Ju a, N(0,1)
nV (Ger) V(5et)

Proof of Theorem 6. By Lemma 4, Var(yy ) is expressed as:

1 1 /1 -,
Var(yur) = Nz Z — (— - 1) (y; — Z A” yl; 7T?JJ yu)
i

€U i \Pi 1,j€U

sz pz CQ NZCHz 1_p1>(yi_gU>

icU icU i
= Vi1 + Vo + VH3 + Via

We will show n(Viz; — Virs) = 0,(1), Vi = 1,2, 3, 4.
n(VHl — Vi)
- Ry n 1 /1
— 2y + ) — — 5 > — | —— 1) (W — 2yiv +7;
N2 vl ( ) y Yiym + Y) E Z T (pi ) (v viyu + Up)
1
pi

N2 n 1 R, n 1 /1
— —1 )Pt - — — = =1
{NQNQZ ( )yzﬁz N2iz7ri<pi )yl}

€S

{ N2 Nziezsﬂzz (ﬁz‘ )ypz‘ N? izﬂ'i Di Y

yaN? n 1 /1 R PPn~~—1[1
— N (-1 2N (-1
+{ N2 N2;W? Pi pi NQZZM pi

=d; +dy + ds

Using a similar proof for Theorem 2, it’s easy to show that N -5 1, and thus %—z 5 1 by

Slutsky’s theorem. By Theorem 5, i — 5 = 0,(1), so we also have 77, — 77 by Slutsky’s

theorem.
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From Theorem 3, we have n(V; — V;) = 0,(1), together with the result %—z %5 1, we have:

dy = 0,(1). By a similar argument for showing n(V; — V1) = 0,(1), we get the following results:

n 1 /1 R, » n 1 (1 )
b e B e e e B B (A11)
NQ;W? (pz‘ ) Di sz’ T \ Pi

n 1 /1 R » n 1 /1
— ) S (=-1 =) —(—=-1 A.12
NQZW-Q(@' )ﬁ NZZM(' ) ( )

ies "t v ieU

Apply Slutsky’s theorem to (A.11), %—z 25 1and i — §u = 0,(1), we have dy = 0,(1). Also,

apply Slutsky’s theorem to (A.12), %—z 25 1 and 53 -2 7%, we have ds = 0,(1). Therefore, we

have:
n(Vin = Vi) = 0p(1) + 0p(1) + 0p(1) = 0p(1)

Now, we rewrite n(Vys — Viyo) as:

n<‘7H2 - VHQ)
_ {lz (=)= ) By 0~ (=m0 W}
N2 5 i b N? el i
n { n Z Ay (vi — yu)y; — n) f?zf?y B % Z A (vi — yu)(y; — yU>}
N2, esizs T i pip; N i eV T
=e1 t+ e
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Using the same argument for proving n(VHl — Vi) = 0,(1), it’s easy to show that e; = 0,(1).

‘We now write e5 as:

Ay RiR;

A Z
N? 5.1 7sz 7T’L7ij’bp]
eU,i#

——— (VY5 — Vi — Y;Un + U)

—(viy; — viv — y;Ju + Up)
Ty

N2 1 nlA;; RiR; 1 1
S L L N
NG Z gy — s )y L
N> N S5ty T TTiDiD; N et g

[ N2 gy ndi; RiR, T 1
|5 2 (it y) g Y Ay —(yi ;)
| N2 N viesasy T T DiD; N Tt T

N2 yH nAij RlR] g?] 1
+ X2 N2 Z T mabh. N2 Z'nAij

N ijesizj 9 PP JEU,i#] v
= €21 + €22 + €23
. nAl_j R; R]yzyj oYY
By the result in Theorem 3, we have by = 7 >, LESiA] T mme T W D ez M =

0p(1), together with ]]\Vf—z 5 1, we can get ey = 0,(1). By the same argument for proving

by = 0,(1), we have:

1 ndy RR, 1 1
- 2 — (it ) s Y, nAy—— (i + ) (A.13)
N i,jE€S,i#] Tij mﬂ]p’pﬂ N i,j€Ui#] Ty

ijesizj 4 TiTGPiP] i Ui i

Apply Slutsky’s theorem to (A. 13) 5 1and g — 5 = 0,(1), we have egy = 0,(1). Also,

7N2

apply Slutsky’s theorem to (A.14), 5 2+ 1 and 7% = 7%, we have ey3 = 0,(1). Therefore, we

’N2

have: ey = 0,(1) 4+ 0,(1) + 0,(1) = 0,(1). Thus,

n(Virz — Virz) = 0p(1) + 0,(1) = 0,(1)
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Before showing n(VH3 — Vis) = 0,(1) and n(VH4 — Vi) = op(1), we first need to show

AH — AH = OP(]_).

A B N1 B;Ryy; 1 B;y; N gy B,R; yu B;
Aw = An = - (WZ—‘NZ ) + (ﬁmzs 5 _FZE>

~2
ies ili ieU pi icU

Since we have A — A = 0p(1) and % 25 1,50 fi = 0,(1). Apply Slutsky’s theorem to

v P v o BiR, _P B; _
L L gy —gu =op(1)and + 3, ¢ g ~ D iew o1, we get fo = 0y(1), therefore, we

have:

AH — AH = Op(l)

Using exactly the same procedure for showing n(V3 — Vi) = 0,(1) in Theorem 3 (just replace A

with Ay and replace A with A i), we have that:

TL(VHQ, — VH&) = 0p(1)

Now, we write n(VH4 — Vi) as:

n(VH4_VH4)
Nn L (1 —p;) Ri s _
ZQ—A—AT J 1 74 1 N W/z 3
S AT S P )
n 1 1—p; _
ieU '
Nn 0o (1—1pi) Ri 5 n - (1—pi)
= 2A—AT 1 - ii—2—AT * ! 1Y
( RARIO S T W - AT W S W,
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Using the similar proof for showing n(Vs — V3) = 0,(1), we have:

noarr i N~ (L= D) Bis n o1 (= i)
VAR O D g W =5 AR W
ieS ? v ieU ¢
ST §iaN— (1-p)Ris, » 1 _ (1—p;)
_AT 1 W. _AT * 1 E : ]
N H[J(V)] ZEZS 7Ti2 ]51 7 e N H[J(l/ )] 2 —ﬂ_i ‘/‘/l

together with the result % 5 1and gy — gy = 0,(1), we have g; = 0,(1) and g = 0,(1). Hence,

we get:

n(Vigs — Via) = 0,(1)
Overall, n(V (§u1) — Var(fr)) = 0p(1) + 0,(1) + 0,(1) + 0,(1) = 0,(1) O
Proof of Theorem 7. From (2.14), we have:

Y — Yu

1
=yur + 0op(n"2)

1 (yi — yv) R - » _1
= AT L) o)
i€S we
1 (yi — yu) (i — pi) T -1 oo A (yi — Yu) _1
=2 AR S ) + D o ()
€S i€S
I 1 [wi—9) - ¢ (Wi —9v) 1
es €S
:lsz(Ri—pi)-i-i Wi=g) (n72) (A.15)
N ¢4 N 4 M 8
€S iesS
where Dy; = = [(y;—gU) + AEN[J(I/*)]”VVZ-] and we assume that, for all i, |Dy;| < My for
some constant M.
Now, we want to prove the following result:
Vg == N(0, Vitx + Virg) (A.16)
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A (yi—gu) (Y —Fu)

T

where VHﬂ- = llmNA)OO % Zi,jEU and VHR = thﬁoo % ZiEU WZD%—I'Lpl(l_pz)
Denote 7, = % Yics @, From assumption D.3, we have \/ng N N(0, Vi), if we can
show:

\/ﬁ(gHL — gHﬂ)|S i) N(O, VHR), a.s (A17)

then by Theorem 1.3.6 in Fuller (2009), (A.16) is proved. Given sample S = {1,2,--- ,n}, denote
THn = ZieS DH,(RZ — pz) and S%In = Var(zies DHz(Rz — pz)) = ZiES D%[sz(l — pi), we will
prove:

Trn
fn 2, N(0,1)
SHn

by showing that the Lyapunov condition holds. Let 6 = 1, then:

E(|Dpi(Ri — pi)I’*°) = E(| D R; — pi) )
= [Dyi*[pi(1 — pi)® + (1 — pi)pi”]
< |Dyi’pi(1 — pi)

< MyD3,pi(1 — pi)

Thus, Y, s E(|Dui(Ri — pi)[?) < My Y ,cs Dipi(1 — pi) = My SE,. So we have that:

> ics B(|Dui(Ri — pi)°) < My St, _ My

— 0, as n—o0

Hence, by Lyapunov central limit theorem, we have:

Trn _ > ies Dri(Ri — pi) _ “%‘Zies Dpi(R; — pi) 4y N(0,1)
Stn /Pies Dhipi(1 — pi) \/% > ics Diipi(1 — p;)
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> ics Dri(Ri—pq)
\/ZiES D%Iipi(l_pi)
any value ¢, there exists a absolute constant Cj, such that:

Now, it’s ready to show

s -4 N(0,1) a.s. By Berry-Esseen Theorem, for

s}—@@

. { Dics Dini(Ri —p)
\/Zies D?ﬁpi(l — i)
<Cy D ies E(’DH;(Rz' —pi)l?)
SHn
CoMu
B \/Zzes DHsz( pi)

where ®(-) denote the cumulative distribution function of the standard normal distribution. Hence,

by assumption D.2 and above result, we have that:

4
e Dui(R; — p;
. P{ Lies DlBi—p) ) o\ g
\/Zies Dyipi(1 — p;)
4
[ CoMy ]
\/ZZES Hzpl( pz)
—2
C’4M4
( Z[DHzpl ))
€U
CiM}
< - I
n?[min; D%.p;(1 — p;)] ( ; )
< CiM} 1
= [min; D3pi(1 — pi)](7%)% n?
which implies:
4
i1 Dri(Ri — p; SM} >
ZE Zzl I'IQ(R p) <tS _(I)(t) S 200 H - *QZ%<OO
Vi Diapi(1 = pi) [inf; Dfypi(1 — pi)|(7*)* £ n
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Therefore, for any € > 0, by Markov’s inequality and (A.18):

- Dpi(R; — pi
> pep Lies HQ( P <t|S| =) >¢
n=1 \/Zzes DHsz( pl)
4
- ies Dui(Ri — p
=> Pq|P Lies HQ< P <t| S| —d(t)] >
n=1 \/Zies Dipi(1 = pi)
4
- Dpi(R; — pi
<> E|P Liy Dnilfi —pi) S]—CI)(t) /a4
n=1 \/Zz lDHsz( )
<0
By Borel-Cantelli lemma, we have:
pllp| s H2< P _yls —®(t)| >, i0. b =0
\/Zies Dipi(1 = pi)
which is equivalent to:
ies Dui(Ri — pi
2 ies H2( P) |g 4, N(0,1) a.s (A.19)
\/Zies Diypi(1 = pi)
By an analogous proof for (2.9), we have:
—ZDHlpz —p) ZmDHlpz(l —pi) (A.20)
€S zGU

By (A.19), (A.20), (A.15) and apply Slutsky’s theorem, we can obtain (A.17) and thus (A.16) is

proved. Notice that:

. 1 ANij(yi —gu)(y; —gu) 1
Vir + Vg = ]\}l_ffloon {m Z 2 o 2 + N2 Z WiD%{ipi(l — i)

1,J€U ieU
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where:

1 Aii(yi — yu)(y; — ¥ 1
WZ il — ol U) FZW@-D@pi(l—pi)

T
ijeU v iceU

= V) + 5 IR AR e W

MAE(NJ_l(V*))M} pi(1 —pi)

= Var(yp~) + 1 Zl [(%TQEUP + (CuiN)* + MC}MN] pi(1—pi)

+

N2 l 7 pZ
€U
_ 1 (yz yU) 1— Di p’L - 2 yU CHz pz)
= Var(Jr) + 57 > m- o + CHZ N Z
ieU €U €U
= Var(yuL)
ny d
So by the result ﬁ — N(0, 1), we have that:
\/ﬁ—yH_L ~45 N(0,1)
nVar(yur)
By Theorem 6 and Slutsky’s theorem, we have:
—\/?y“ ~4 N(0,1)
nV(Jur)
Finally, from (2.14), we get the desired result:
nV(ynur) V(ynr)
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Appendix B

Supplemental Materials for Chapter 3

B.1 Proof of Proposition 1

B.1.1 Derivation of the Expression in (3.2)

From the unweighted constrained least square problem in Section 3.2.1, the solution @ is the
projection of 2z, onto the set

Q. ={pcR”: A,¢ >0},

which defines a convex cone in R”. The necessary and sufficient conditions for a vector ¢ to be
the projection of 2z, onto €2, can be found in Robertson et al. (1988), Chapter 1, or Silvapulle and
Sen (2005), Chapter 3.

When the constraint matrix A, is not full row rank, the cone projection is more efficiently

solved by computing the projection onto the polar cone €22, defined by

Q) ={peR’:p=> ajv,a;20,j=1,--- ,m},
j=1
where v;, j = 1,--- ,m, are the rows of —A; and it can be shown that b=z, — p, where p
is the projection of Z, onto the polar cone 2. Further, we have the fact that the projection of Z,
onto the polar cone is exactly the projection of 2z, onto the linear space generated by the edges ~;
such that <2s - p, 'yj> = 0. That is, for a given sample s, there is a set J; C {1,...,m} such that
the projection of Z, onto Q20 coincides with the projection of 2z, onto the linear space spanned by
v;, for 7 € Js. Let L, be the linear space generated by «,, j € J; and M, be the projection

matrix corresponding to this linear space, where M is the matrix of zeros by convention. Then
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p = M z, and we have:

0

,gs . stl/QMJ W31/2 ~s

g, — W PAL (A, AL ) TTA, W

(ID><D 1Ai]S(AJs Ws_lAiIs)_lAJs) Ys

where A ., A;, denotes the matrix formed by the rows of A, and A in positions J,, respectively.

Define C;, to be the set of points Z, € IR” where the projection of Z, onto the polar cone
coincides with the projection onto L, and let Z;(s) = 1 if 2, € C;, and Z,;(s) = 0 otherwise. If
A is not full row rank, then the set J; may not be unique. Theorem 3.1 from Oliva-Avilés et al.
(2020) guarantees, however, that the projection p is the same for all such Jg, and that it is always
possible to find a minimal J; that is a subset of all J, such that 2, € C;,, and the vectors ~;,
j € J: form a linearly independent set. Assuming .J; is this unique set and taking into account
that different sample s might correspond to a different ./, the general expression of the constrained

estimator in (3.2) is obtained.

B.1.2 Review of the Covariance Estimator in Oliva-Avilés, et al. (2020)

We derive an expression for the asymptotic variance of the constrained domain mean estimator,
similarly to the derivation in Oliva-Avilés et al. (2020). Based on the expression of 0 in (3.2), we

have that for each domain d:

N 3 N B B ~
9d = Z [ysd — N_ {A&(AJWS 1Af]) 1AJyS}d IJ(S)
d

J

where 0; = 7, , if J = (. By Taylor expansion, for each domain d, we can linearize the 0, as

follows:

D
Ous+ > gt — 1)+ Bas(Nj — N+ Op(n") | Zy(s)

j=1 j=1
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where

N
Oa,; = Yu, — N, {ATJ(AJwU_lAf])_lAJgU}da

and W7, is the diagonal matrix with elements Ny /N, Ny /N, --- | Np/N. In addition,

t; is the HT estimator of t; = Z Yk
keU;

00,
qgjg = | . o . )
8tj (t1,,tp,N1,-,Np)=(t1,,tp,N1,-,Np)
and
5 80d
dj,J — PN . .
aN (tlz'":tDlev""ND):(tlz'":tDle""7ND)

Direct computation through matrix differentiation yields:

1
Oédd”] = Fd N2 {Al (AJW 1A/ ) 1AJ}dd7
. _ N / 1 / 1
Qgj,J = NN {A (AJW Al)” AJ}dj,
d
Ny N
Baa,; = Vs ysz {AL(AWAN) T A i+ 5 { A (AW AY) A g
Ny Nd Nd
N2

- W{AQ(AJWU_IAS)_1AJ}dd{AfJ(AJWJIAS)_lAJ}dﬂU

_ _ngj + 2{A;(AJngAg)*lAJ}dded,J,
d d

and

N?JU
NqN;
N2

B W{A'J<AJW6 LA A LAY (AW AL T ALY, g

Baj.s = ~—{A (AW A)) T Aty

Nd {A’ (A;WitA) LAY 40,5,
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The variance of the constrained estimator for domain d can be approximated by the variance of
(Zle gty —t5) + Z]-D:1 B4.7(N; — N;)) for the observed set .J. The dd'th element of the

asymptotic covariance matrix of 0 is given by:

(AV(8)}aar =Acov(fi, )

—cov Z Z (Cajryr + 5dg J ’i Z (aaj sy + Bd’] 7)

j=1 kes; Jj=1 les;

:Z Z A ad]Jyk+ijJ)<Oéd’]Jyl+ﬁd’jJ)

- TR
j=1 | k,leU;
(i gy + Baj.g) (i gy + Bari, J)
Ay —2 S B.1
j#i keU; leU;

B.1.3 Some Lemmas

Lemma 5. Assume Ap > 0 and let J, = {j : Ajpu = 0}, then for J # O and J £ J,,, we have
that:

P(g,€C;)=0(n").
In other words, the probability for J # O and J € J,, has measure 0 asymptotically.

Proof of Lemma 5. 1f J  J,,, then there must exist j € J, but j € J,,. So we have A;y; < 0 and

A;p > 0. Using Markov’s inequality, we have the following:

P(g, € Cy) < P(—A;g, > 0)

=P(—A;g,+ Ajp > Ajp)
E(A;gs — Ajp)°

- (Ajp)

E(Zfﬂ “?d@Sd — pa)® + Zd;éd’ ajadja (Jsy — fa)(Ys, — far))
- (Ajm)
- ZdDzl a3 B (Jsy — p1a)” + >z @ida B (s, — 11a)(Fs, — par)
B (Ajm)?
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where a4 is the jdth element of A. Further, we have the following result in survey context.

E(gsd - Md)Q = E(gsd - gUd + gUd - /J“d)2

= E(fs, — 9v,)? + E@u, — pa)® + 2E[(Fs, — Gu,) v, — 11a)]
<0(3) () () )
of})

And Cauchy Schwarz inequality yields E(7,, — fta)(¥s, — par) < O (n1), so we finally have:

P(g. €C) =0 (1) .

n

By using the same technique, we can prove the following result.

Lemma 6. Assume Ap > 0 strictly, then for J # (), we have that:
P(g}s € C]) =0 (n_l) .

In other words, the probability for J # () has measure 0 asymptotically.

Lemma 7. Under assumptions (Al)-(AS), the constrained estimator 0 is consistent for yy with

respect to the sampling mechanism. That is,

. 1
6 =gy +0, (%) (B.2)

112



Proof of Lemma 7. For each domain d, we can write éd — Yy, as:

Oa — Ju, =(Usy — Do) Zo=0y + Y (Bas — Ju)Tur0ac,)
JA0,IC T,

+ > (Oas — Gu)Tr00gs)
JA#D,JL I

By Lemma 5, P(J # 0,J € J,) = O(n™"), that is, Z(;2p,5¢,,) = Op(n~"). Also, we know that

Us, — Yu, = Op(n‘%). So we only need to look at the second term of 6 — 7. When J # @ and

J C Ju,
Ou,; — v, = (Usy — Ju,) — AW, T AL(A WP A) T A g ta
= 0,(n72) — {W LA (AW LA) T Ag(p+ Op(n7 7)) 4
= 0,(n7%) + O0,(n"2)
= 0,(n"?)
So overall, ; — ju, = O,(n"2) and (B.2) is verified. O

By using the result in Lemma 7, together with the assumption in (A5) that gy, — g = O(N ‘%),

we have the following result.

Lemma 8. Under assumptions (Al)-(AS), the constrained estimator 0 is consistent for p with

respect to the sampling mechanism. That is,

0=p+0, (%)
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B.1.4 Proof of Propostion 1

Proof. For the observed set J, denote B; = A’;[A, W, 'A’]7' A ;. Then, we have:

1 1 N N .
Aqdd,j = Fd — Fd (E{BJ}dd) y A g = —W{Bj}dj ford ;é ]
1 N N
=——90 —{B ) g = Bjl.0,;, ford # 4
Bad, s N, 4,7 + Ng{ 7 Yddfa.7, Baj.s Nde{ staib;s ford # j

First, we show that the asymptotic cov(6y, 6,) is the ddth element of (I — P;)X,(I — Py)'.

D D D D
ACOV(ed, Gd) = COV Z Oédj,JLtj + Z ijJNj, Z Oédj’ﬂgj + Z ﬂ@'JNj)
j=1 j=1 7=1 7=1

= cov i Z (O‘dj’Jy’;T: Baj.1) , i Z (Oédj,Jy;jr Baj.r)

j:1 kGS]' ]:1 lGS]'

Z (Oédd,in;: Bad.s) Z (aa, sy + ﬂdd,J))

= cov ,
T
k€Esgq lesq
(ad, sy + Bad,r) (e gy + Bajg)

2 ) ) ) )

+ 2cov Z - ) Z Z .
k€Esqg Jj#d les;
(ovaj1yx + Baj.) (aaj sy + Baj,g)

cov

Foov| D Dy ) D

Jj#£d kESj j#£d lESj
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where

(Cad, sy + Bad,s) (aa, yi + Bad,r)
) P

kESd lGSd

Ay [/1 N ) 1 N
== I - T TS B ——8 +_ Bj}ddeJ
)3 g, KNd N2{ 7}aa ) Y N, Ng{

k€U,

1
KN N? {BJ}dd) Y — FedJ + 3{Bj}dd€d,J:|

1
= Z Su | (ke — ba.s) — Q{BJ}dd(yk — ed,J)} [ﬁ(yz —0a.7) — N2 {BJ}dd(yl 0a,.7)
kiU, Tk Na Ny d

={3;}aa — %{BJ}dd{EJ}dd + (%) {BJ}aa{2s}aa{ B} aa

=A; + Ay + As.

and

2cov Z (ad, sy + Bad,r) ’ Z Z (caj sy + Bajg)

kEsq Tk jAd l€s; m
Akl 1 B B N B 0,
_QZ Z o [ (yp — ba.y) — 3{BJ}dd(yk 9d,J)i| [ NN, {By}ai(yr — 0;.1)
j£d keUg,leU;

=-2)" —{BJ}dJ{EJ}d] +2) ( ) {Bs}ai{ Brai{%}a

Jj#d j#d
=By + B
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and the third term is:

cov ZZ Oéngyk-Fﬁng ZZ adeyl+/6dj 7)

j#d kes; JAd les;
A N
=>. > W;Tll { {BJ}dJ< JJ)} [_Nd { B}y — yJ)}
j#d kleU;

+> > Ak;ll [ {BJ}dy( %J)] [_NiVNi{BJ}di(yl —91'7J):|

j#itd keU; leU;

_Z( ) {BJ}dJ{BJ}dJ{EJ}J]+ Z ( ) {BJ}dj{BJ}di{EJ}ji

Jj#d J#i#d
=C1 + (),

Now, we can write the {(I — P;)X (I — Pj)'}4q as follows:

{(I - P))2,(I - Py)'}aa
- (eg - E{BJ}d.) s, (ed - ﬁ{BJ}.d)
={Xs}taa — —{BJ}d {Xs}a— —{ZJ}d {By}a+ (]]\\[[ ) {Bs}eXs{Bs}.d

={Xs}ad — QE{EJ}CL{BJ}'d + <%> {Bs}aX{Bs}a

:-[iid + Igd + I§ld

Obviously, I{? = A;.

D

It =~ 2%{2J}d-{BJ}-d = —2% ;{EJ}dj{BJ}jd
- _ 2—{2J}dd{BJ}dd - 2_d Z{EJ}dJ{BJ}]d
Jj#d

=Ay + By
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2 D D
N

f§d=<m)2{BJ}d.zJ{BJ}.d=( ) LS BB

i=1 j=1

z;édj 1

= <%> Z Z{BJ}dJ{EJ}]Z{BJ} id + Z{Bj}dj{EJ}]d{BJ}dd]

= <%> Z Z{BJ}dj{EJ}ji{BJ}id + Z{BJ}dd{EJ}di{BJ}id

L id j£d i#d

+H{ B }aa{X s} aa{ B }taa + Z{BJ}dj{EJ}dj{BJ}dd
Jj#d

= <%> [Z{B]}dj{zj}jj{BJ}jd + Z {BJ}dj{ZJ}ji{BJ}id

i#d i#j#d
+{Bj}ia{2 s }aa{ B }aa + 2 Z{Bj}dj{EJ}dj{BJ}dd]
Jj#d
:Cl+OQ+A3+BQ

Hence, we verified that {(I — P;)X,(I — Py) }aa = AV(éd). Now, we will show that the dd'th
element of {(I — P,)X,(I — P;)'} is exactly Acov(0y, ) for d # d'.

Acov 9 ,O0a)

D D
cov Z (Caj yr + 5(1; J ’Z Z (aarj gy + @i/; 7)

Jj=1 les;

—cov (Cvga, s yr + 5dd ) n Z (aa sy + Baa.) n Z Z (egj gyr + ij,J))

Tk

. Tk

kesy j#d,d’ kes;
Z (oqra, yr + ﬁd'd J) n Z (oqar gyr + ﬁd/d/ Z Z (i sy + 5d/; 7)
k€Esg keEs gy j#d,d" kEs;
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We compute above 9 terms one by one as follows:

(ad, Yk + Bad,r) (aaasyi + Bara.s)
) P

k€sg lGSd
A 1 N
= Z =K {Nd( Y — Oa.g) — N2 {BJ}dd(yk - Hd,J):| {— Nd/Nd{BJ}d’d(yl —04,7)
kieUy
N2
N Ny N,
=D+ Dy

Ccov

9

Z (ad, sy + Bad,r) Z (awa gy + Baa,r)

kE€sq Tk l€sy m
A 1
e Q{BJ}dd(yk —0a,r)
T Nd Nd
keU 1V
1 N
X {N_d/@l —Ou.y) — N_C%/{BJ}d’d’ (i — 9d’,J):|
N N 2
={X,}aw — N_d/{BJ}d’d’{EJ}dd’ - E{Bj}dd{zj}dd’ NoN; {BJ}aa{Bs}taa{X s} aa
=D3+ Dy + D5+ Dg
(ad, Yk + Bad,r) (i gy + Barjg)
Sd j#d,d' l€s;
Z Z (aa, Yk + Bad.r) Z (aearj gy + Bajr)
j#d, ke Tk 7 les; m
Sq €5;
A 1 N N
=2 e )~ Bt )] |~ (B,
A keUgeu, TR LAYd d '
N2
=) [——{BJ}d' {Zs}a + {BJ}dd{BJ}d/j{ZJ}dj]
jAdd Na
=D7 + Ds
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(ovaar, gyr + ﬁddf J) Z (aaa sy + Baa.y)

Uy
kESd/ l€sq
[Bsbaa (r — 00.0)| |~ A B baalvs — ba,)
= P, NdN J sdd' \Yk d’ N N, Jsdd\Yr — Vd,g
kEUd/IEUd
N2
B /B !/ 2 !
N N{ J}dd{ J}dd{ J}dd
:El

Z (aar, gy + Bad.)

s
keEs gy k lesyr

Z (awa sy + Barar,y)

Ty

cov ,

A 1 N
= Z i { {BJ}dd’(?/k — O, )] |:_(3/l —Op.5) — _Q{BJ}d/d’(yl —04.7)
kicU, kT NaN Na Ny

2

Nde/

N
= F{BJ}dd’{EJ}d’d’ =+ {BJ}dd/{BJ}d’d’{EJ}d’d’
d

=FE> + E3

kesy j#d,d' les;

cov Z (Cdar Yk +5dd' Z Z (aarj sy —l—,@’dfjj )
N

:Z Z 2];,{ NN, {BJ}dd'(Z/k Ou.1) }[ NN {BJ}d' (yi — 0,.5)

j#d,d k€U leU;

N2
=y m{BJ}dd/{BJ}d/j{EJ}d/j
iFdd

—E,
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cov Z Z adj JYk + 5@ J) Z (Oéd'd JYL + ﬂd’d J

j#d,d' kE€s; l€sg

-r ¥ A“[

A kel 1eU, TR
N2

= {BJ}d]{BJ}d’d{EJ}Jd

(0 emH S Bl 60)

Z Z ()éd]’Jyk + ij J) Z (aaa sy + Baa,s)

j#d,d' kes, lesy m

> > N

j#d,d keU;,leUy

1
( 9]’,])] {N_d/@l - Qd',J) Nd2/ {BJ}d’d’(yl 9d',J)

— Y N2 |
;:d/ [ {BJ}d]{EJ}jd’ Nd/{BJ}d]{BJ}d,d,{zJ}jd,]
=F; + I3
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cov Z Z @ngyk+5dyJ Z Z Oéd'JJZ/l+5d'JJ)

j#d,d kEs; j#d,d' les;

_ Z cov Z (aaj sy + Baj.g) 7 Z (aaj sy + Bajg) I

. , Tk ™
j#£d,d kEs; les;

Z cov Z (adj,Jyk + 5dj,J) 7 Z (i yi + Barig)

jitdd kes; Tk les; i
Akl N
=>. > — {By}as (v — 0.1) (Buas(n = 00)
A kgeu; TR Nd - NuN.

+ > ) Akl;ll [_—{BJ}dJ@k —0;, J)} {— NiYNz- (g — 9,,(,)]

];éz;éd d keU] 1eU;

= > o BB St Y s (Bolu (Bl 2

j£d, d’ jitd,d
=F, + F}

So, for d # d', we have that:

ACOV(éd,éd/) :Dl + DQ + D3 + D4 + D5 + D6 + D7 + Dg
+ b+ Ey+ Es+ By

+ P+ Fy+ Fs+ Fy+ Fs

Now, we compute the dd'th element of (I — P;)X;(I — P;)’ as follows:

{(I—-P)X,(I—P))}aa

= (e; - %{Bj}d.) 2, (ed/ - N%,{BJM’)

(5 b = - {BledSaba — 1 AZa{Brba +

2

Nde/

{B;}aX{Bs}.a

:]iid' + ]gd’ + ]?()id’ + Lclid’
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It is clear that we have 1% = Dy directly.

N N
I =~ M{BJ}d-{EJ}-d’ TN, > AB{Z b
j=1

N
= - N, {By}aa{2s}taw + {Bstaa{Zs}aa + Z {Bs}ai{Zs}ja
d J#d.d
=D;5 + Es + F

N N <
1 == o AZa{Bshe = =5 3o ASbw(Bobie
j=1

N
Y {Zs}aa{ Bstaw + {3 aa{Bs}aa + Z {Zs}a{Bs}ja
vl jAdd ]
N B -
=- % {Bj}oa{Zs} aa + {Bstaa{Zs} aa + Z (B, }ai{Z s}y
vl jtdd ]
:-Dl + D4 + D7
dd’ N2 N2 D D
I :Nde/{BJ}d,EJ{BJ}-d/ = NN ZZ{BJ}dj{EJ}ji{BJ}id,
i=1 j=1
N2 & D
=5 | 2o (Bs (ShalBybar + 3 (B)a () {Bobou
Jj=1 j=1
D
+ Z Z{BJ}dj{EJ}ji{BJ}id’
i#dd j=1

_gdd | pdd | pdd
=l + 135 + 133
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where:

y N?
I = NN, Z{BJ}dJ{EJ}Jd{BJ}dd'
N2

:Nde/ {Bs}aa{Xs}aad Bstar + {Bs}taa{Zstaa{Bs}aa

+ Z {BJ}ai{Zs}jal Brtaa

jdd
:D2 + E1 + F1
Similarly, we have:
dd/ N2
Ly =N, Z{BJ}d]{EJ}]d/{BJ}d/d'
N2

N N, {BstaitEstaa{Brtaa + {Bstaw{Zstaa{Bstaa

T Z {Bs}a{Zs}ja{Brtaa

j#d,d’

=Dg + E3 + F3

]4(115(51, N N/ Z Z{BJ}dJ{EJ}jz{BJ}zd’

i#d,d j=1
Nde/ [Z {BJ}dd{EJ}dz{BJ}zd’ + Z {BJ}dd’{EJ}d’ {BJ}zd’
#d.d' idd’
+ Z Z {Bsta{XZs}ii{ Brtia
itd,d’ j£d,d
Nde [Z {Bs}a{Xs} a{Bs}tja + Z {BYaa{Zs}ai{Bs}ja
Ad,d’ fory”

+ 3 {B}a{Z}i{BoYia + D {Bs}a{Z,}{ Bt

Jj#d,d’ i£jAd,d

=Dg+ Ey+ Fy + F5
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Hence, we verified that {(I — P;)3,(I — P;)'}qo = Acov(fy, 04), and thus overall, we have:
AV(0) = (I — P))Z,(I — Py)

This completes the verification of (3.3). [

B.2 Proof of Theorem 8

Proof. Define J,, = {j : A;ju = 0}. Then, we can write n(V (0) — AV(8)) as follows:

> (I =P)E(I —P))Ty(s) = Y (I—P)S,(I— Py)Iy(s)

(I — P)nS(I — Py) — (I — Py)nS,(I — PJ)'} T,(s)

.

“n(E-D)Tyls) + Y [(I —P)nE(I - Py — (I — P)nS,(I - PJ)'} T,(s)

J#0,JC
+ > [T Py - PyY — (1= PnSy(I - Py)| Ty(s)
J#D,TL
:Il + _[2 + I3

For I, we will prove the convergence of diagonal and non-diagonal elements of > separately.

Apy (yk*gsd)(yl*gsd) We
Tkl TR ’

Let us consider the diagonal element first. Denote 345 = oz D lesy
d ’

will prove n(2qq — X44) = 0,(1) by showing:

nE|Yy — g = 0 as Ny — oo (B.3)
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where

nE\ﬁdd — Edd’

I

1 Z At (Y = Yoo + va — Usa) Wi — Yua + Yug — Ysa)

=nE |—
2

T LT

d pieu, H k7

= Z Ay gUd)(yl_gUd)

Ng k,leUy e
U — 1 I.1
<nB|-L Z Ay — Jua) W — Yu.) ( Wl 1)
Ng k,lcU, Tk Tkl
1 JANY! B _ 5 _ - I
0B | Y = 2 — Ju,) Wu, — Fsa) + Gua — Gs0)7] =
d piev, Tk Tkl
_pdd | pgid
Now,
J i) (I ’
Z Ay — Ju) (Y — Yu,) ( el 1)
Ni k€U, Tk Tkl
2 Z 1—me 1= (ye — Gu,)*(Yi — Yu,)* T — T3
- Tk T N4 T,
k,i€Uqg
1—7Tk i (e — 90, Wi — Ju) (W — Jua) o (e — ™ L —Wij)
2 E
oy Y - 8 e —

keUy 'L,]EUdJ#]

Z Z Ap Ay (yk — Ju) e — Yu,) Wi — Ju,) (Y5 — Yu,)

1
T T N
U bl injeUgizy R TET d

< E (Ikll — Tkl 11[] — Wij)
Tkl T

dd dd
=Al" + AJ" + Af
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But

2 1—m\°
qdd — k =4
PN &= (v = )
d

2 l—ml—m _ = Api
+n__2 Z L 7r(yk:—?JUCI)Z(,?Jz‘—?JUd)2 ;

Ng Nj kicUgkzi i ki
1 n? 1
< o (32) | 7 D=
— 3 2 d
N\ NG| Na &
1 n > wev, Uk — Ju,)?
I A 4
* |:Nd)\il (Nd> nkzé%%#‘ ‘ ‘} Na

which goes to 0 as N; — o0, and:

2 5 Y Ry o
Agld < (n MaXg 1cU,,k#l |Akl|) Z Z |(ykz yUd)(yl yUd)(?Jz yUd)(y] yUd)|

A e Nj
k7l€Ud7k7él zvjeUdﬂ’?/:J
% ’E <]chl — Tkl ]zI] — Wij)

Tkl Uy

(n maxy jev, kzt | Awl)?
DY E[(I], — mg) (L1 — 7,
N s B{Td = ma) (1 = )|

1 _
N, Z (yx — Gu,)"

4 Len,

<O(N; ')+

which converges to 0 by assumption (A6) as N; — oo. Also, the Cauchy Schwarz inequality
implies that A% — 0 as N; — oo, and thus it follows that A% — 0 as N; — oo.

Next,

T T T
k€U, kN kl

1 - _ ) . 1.1,
W |:2<yk - yUd)(yUd - ysd> + (yUd - ysd>2] —
d

1
2

> e, Uk — Jua)”
Ny

< 2n n 2n maxy jcv, kAl | Al
- Nd)\% )\%)\2

E (gsd - gUd )2]

n N MaXg lcUy, k#1 ’Akl| ~ 52
+ + Efsy —

—0
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using the fact that E(g,, — 9,)? — 0 as Ny — oo. So, (B.3) is verified. Hence, we have:

n(de — ) = n(idd - gdd) + n(gdd — Xad)

N? n A (Y = Usa) (W — Jsa)
= = — 1 —a I . 4 1
(Nf ) <N Z Tkt TR Foll)

2
d klesy

= 0,(1)0p(1) + 0,(1) = 0,(1)

Now, when d # d',d,d = 1,--- , D, define

~ 1 Akl (yk - g&z)(yl - gs /)
S = — ‘
dd Nde/ Z Z Tkl KT
k€sq lesy

We will prove n(f]dd/ — X44) = 0,(1) by showing:

nE’ﬁ]dd/ — Edd” — 0 as Nd, Nd/ — Q0 (B4)
and
nE|Xar — Zaa|
1 Akl (Z/k—ﬂsd)(yz—gjs,) 1 (yk:_gU )(yl_gU,)
=nE Z Z - - Z Z A 4 d
NN hesalesy M kT NalNa keUy €U, T
1 Ay ~ B I,
<nE kL o B It
=N N,;N, Z Z LT (yk yUd)(yl yUd/) (Wkl
k€Uq 1€Uy
1 A o ~
ik N, Ny Z Z P [y = Jv.,)Wuy — Usy)
diid kEUdZEUd/ k7
- 1.1,

+<yl - gUd/>(gUd - g&z) + (gUd - ng)(gUd/ - ysd/)]ﬂ__kl
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Now,

Y3 Py - LA
" Nde oy Y B0 = G ) (m
keUqg leUy
Akl _ 2 _ 2 ‘[k"[l 2
> - g
NQNC% (Wl) ) (e = Go )" { 7o
keUqg leUy

n? A Ay - -
+N2Nd2,E Z Z ( 51 kj) (yk_yUd>2(yl_yUd/)

T T4
keUg LjeUy i) N k71N

_ I
- Ky
(y] yUd/) 7Tkl > <7Tkj )

|
|-
|

T, 70
kiicUghileUy, kTN

_ 1.1, I],
U — yUd/>2 ( - 1) ( )
Tkl T3
n2

ApAi; _ _
+ N2N2 E Z Z <—kl ’ > (Y — Jua) ( — yUd/)
dtVa

T T T,
kicUgk#iljeUy i#5 N FTETI

- B 1.1, [zlj
i )\ !
(vi — v, (Y5 — Yu,) ( Thl ) ( Tij )]

=AM + AT 4 A5T 4 A

where:

Add’ < (n MaXg 1cU,, k#l |Akl’
1

_ 1., 2
Nde/)\zll Z Z Yk — yUd yUd’) B (_ — 1)

s
4 yevy1eU, kil

(nmaxy eu, k| Aul)? [ 1 o . o
< 7 : NT - pE—
NNy Nix2 N, >k — Ju,) N > i —u,)

keUy lEUd/

—0

as Ny, Ny — oc. Agd' can be bounded as follows:
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2
dd’ N~ MaXg lcU, k£l |Akz| maXxg jet,k+#j |Ak | 1
At < sl mossin Bl oS S -’
a1 NG keUq Ljely, l;éj
~ _ Ii.1y Ii.1;
— . — E|ll— -1 — —1
o0 = 70,05 = ) [E | (22 - 1) (22
< n? maXxg 1ev,k+#l |Akz| maXxg jet,k+#j |Akj| (i Z (yk — >2>
= 432 d
2
X Z v — Y|
/ leUy
n® maxy, jev ko | Ap| maxy jeupzj | Al ( 1 1
< — JEURET h) = =) |+ D e —ww,)’
— 44\2 d ’
NaAiA; Na keUy Na keU,y !

which goes to 0 as N; — co. Similarly, we have A9Y — 0 as Ny — oco. Now, we bound A as

follows:

, _ n?’max Aplmax; icyizi [Nl 1 ~
Aid < klcU k#l ’ kl| i,j€U,i#] ‘ z]| Z Z yk . ?/Ud (yl _ yUd/)

1 2 N\T2
Al NiNg ki€Uq,k#i 1,j€U g1 1#]
B _ IkIl I’LI
v ) ’ E — -1 - - 1
(Wi = Ju)(Y; — Yu, )| [( Tkl ) ( Tij )1
n® maxy jevpz [Ap| Max; jevizs | Al
< 1€, i JEUi#] |2 E[([.I; — 1) (LI, —1
) ) | X e,
Nd g v Nd’ * b
keUy keUy
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which goes to 0 by assumption (A6). Hence, we have A% — 0 asymptotically. Now,

! Akl
B* =nE N Z Z (Y — Yv.) (v, — s)
e
N T 18

W = v, ) Gog — Usa) + (Gug — Ysa) (Gu, — ySd/)]ﬂ-_kl
nmaxy jev kel | Ak 1 i

< —

o )\%)\2 Nde, Z Z yUd (yUd/ ysd/)’

keUg leUy

+|(yl - gUd/)(gUd - gsd)| + |(gUd - gsd)(gUd/ - g%/)”

_ nmaxyevz Al

1
~ Z e — v B |Ju, — s,

2
+— Z \vi — v, | E v, — su| + E |, — 0s,) Wo, — Ts,)
lGUd/

We have that, ford = 1,--- ., D, E|yy, — ¥s,| — 0 asymptotically since E (g, — gsd)2 — 0, and

— 0. Hence, we have B — () as

by Cauchy Schwarz inequality, E !(QU L — Us d)(ngd, — gsd,)
Nd, Nd/ — OQ. (B4) is verified. Thus n(idd/ — 2dd’) = n(idd, — 2dd’> + n(ﬁdd/ — de/) =
0p(1)Op(1) + 0,(1) = 0,(1). So, by (B.3) and (B.4), we have:

n(X —3) =o0,(1) (B.5)

and thus:

Iy = n(X = X)Zy(s) = 0p(1)O0y(1) = 0p(1)

Now, if the observed J # () and J C Ju, we have the following result:

In(2—-%,)| =0, asN — o0 (B.6)
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because the difference of the 7jth element of above two matrices can be expressed as:

[n({%}i; -
N > nag

Y keu, leU;

Trye

N J k€U, leU;

{Z5}i)l

— Ju,) (Y —
TT

nAkl

+ {AiI(AJWUilAiI)ilAJ'gU}Z- (yi — Ju,)

N ZZTLA

Y keu, leU;

)(yl

TET

—0;.7)

= )y {ASA W A A,
]

N2 ! ! — ! — 7\ — —
NN {AL (AW A Ay} { AL (AW LAY 1AJ?JU}]”
N / — nA
< |5 AW A Ao} ZZ “ (g — Gv,)
N; NiN; keU; leU; T
N / — / TLA
+ ﬁ{AﬂAJWUlA )" 1AJyU} ZZ %y — G,
v NiN; keU; 1eU; T
N? ' 1 14 ' 1 Ar\-1 4 nAy
+ {A (AW A Ay b { AL (AW AY) AJyU} Z Z
NN z ]kUllU]TrkTrl
0 (L> 0(1) + 0 (L> O(1) + 0 (L) 0 (L> o)
T \WN VN VN VN
1
(%)

where we use the fact that:

A (AW LAY T Ay

—0+ O(N~
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So, for the dd'th element of 3 and Y5 dd=1,---,D, we have:

nE|2dd’ — X jqa :nE‘ﬁdd’ — X + Bag — Xjaa|

SnE|2dd’ — Edd’| + n|2dd’ - 2Jcld"

— 0
by using (B.3), (B.4) and (B.6). Hence, we have n(f) —X) = 0,(1) and thus
n(E -3, =nE-%)+n(E - 2;) = 0,(1)0,(1) 4 0,(1) = 0,(1)

Next, by Taylor expansion, we have W, ! % W, ! and thus P; % P;. Hence:

(I — P))nS(I — P)) — (I — P)nS,(I — Py
=(I — Py)nX(I — Py) +0,(1) — (I — Py)nE;(I — Py)
=(I — P))n(2 — 2;)(I — Py) + 0,(1)

—0,(1) + 0p(1) = 0,(1).

and thus

By Lemma 5, we have P(J # (,J € J,) = O(n™'). So, if observed J # () and J £ J,,, then
Z;(s) = Oy(n~") = 0,(1). Thus:

Iy = (Op(1) + O(1))0y(1) = 0p(1)

Overall, (3.5) is verified. ]
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B.3 Proof of Theorem 9

Lemma 9. Assume Ap > 0 strictly, then for J # (), we have that:

Py e Cyls) =0, (n71).

In other words, for the observed .J set that corresponds to a simulated y"), the probability of J # ()

has measure 0 asymptotically.

Proof. Suppose J # (), then for j € J, we must have A;y") < 0 and A > 0. Under a given

sample s, using Markov’s inequality, we have the following:

Py e Cyls) < P(—A;yMY + Aju > A;pls)
E[(A;y" — A;p)?|s]
(A;p)?
_ E[(A;(0 — p) + Aje)?s]
(Ajp)?

Notice that by the way we generate y(V’s, we can express y!) as

yY =0+¢€ €~MVN(O,X)

and the numerator in above fraction can be expressed as:

%z

E[(A;(0 — p) + Aje)’|s]

E[(A;(0 — p))*|s] + E[(Aje)*|s] + 2E[(A;(6 — p) Aje)|s]

(
D

=E [( afd 9d — liq) - Z ajatq ‘9d - Ud)(ed’ Md/)) S
d

=1 dd’

+ var(Ae|s) + 0

D

— 3 (00 — p1a)*[s] + Y ajaa;aE[(Ba — pa) (O — par)|s] + A; S A
d#£d’

:Op(n_l) + Op(n_l) = Op(n_l)
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where, conditioning on the s, (0 — 114)? = O,(n™') by Lemma 8 and > has order n=1. Also,

E[(fq — p1a) (00 — par)|s] < O, (n~1) by the Cauchy Schwarz inequality. so we finally have:

Py ecyls) =0, (n).

Proof of Theorem 9

Proof. We can express n(V'™(8) — AV™(8)) as

n(V"(8) — AV™(8))

=n E Z I PJ(Z I PJ(Z)) — Z(I — _PJ)EJ(I — PJ)/P(QS € CJ)]
=n E Z (Z (I—-P)XI - P)) Iy e cJ]s)>

> (I-P)S,(I-P))P(g. € c»]

—”Z

B
EEZI (y(i) c C@|S) — EP(QS € C@)]

IP]IPJ

IIMUU

€ Cyls) — (I —Py)S,(I - Py)P(g, € CJ)]

+ny [(I —P)X(I - P)) = e Z I(y" eCyls) — (I — P)E,(I - P;)P(y, € cJ)]
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By (B.5), we can express L; as:

B

Z (¥ € Cyls) — =P(g, € Cy)

B
=nX Z ) € Cyls) — P(gs € Co) | + 0p(1)

and we have the following result:

y' € Cyls) — P(gs € Cy) = 0,(1) (B.7)

||MU:1

because
1< -
E|5 §i:1jf (¥ € Cyls) — P(gs € Cy)
1< -
<5 D B (" €Cils) - P(g: € Cy)|

1

~.
I

[P (y € Cyls) |1 — P(gs € Co)| + (1 — P (y € Cyls)) P(gs € Cp)] — 0

|
| =
-MU:J

1

7

where we use the fact that 1 — P(g, € Cj) = O(n~') and 1 — P (y) € Cy|s) = O(n™') by
Lemma 6 and Lemma 9. Thus, it follows that L; = o0,(1).

Now, if the observed J # 0, we have = 3°7 T (y® € C;|s) = 0,(1), since by Lemma 9;

1 (y% ecyls) <—ZE|I Vels)| =Py eCyls) =0

@[ =
NG

Also, using the same argument for showing (B.7), we have:

B

1 < -
EZI (¥ € Cils) — P(g. € Cy)| = 0p(1)
=1
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Hence, in Lo

n|(I—P)S( - PJ)% Y I(yW ecyls) - (I - P)E,(I- PPy, € cJ)]

i=1

=n ((I —P)X(I-P) —-(I-P)x,(I- PJ)’> %Z I(y"e cJ\s)]

=1

&~
M=

+n(I - P)X,(I - Py I(y" ecyls) — Py, € CJ)]

=1

=(0p(1) = O(1))o,p(1) + O(1)0,(1) = 0,(1)

It follows that Ly = 0,(1) and the proof is complete.
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Appendix C

Supplemental Materials for Chapter 4

C.1 Assumptions

(A1) The number of domains D is a known fixed integer and lim inf y_, o % > 0, limsupy_, o, % <

lford=1,2,---,D.

(A2) The boundedness property of the finite population fourth moment holds. That is, we have:

limsup N~* ny < 00.

N—o0 icU

(A3) The sample size n is non-random and there exists a 7 € (0, 1) such that min, ]T\‘,—Z > 7 for

d=1,---,D.

(A4) For all N, min;cy m; > Ay > 0 and min, jep m; > Ao > 0, and

limsupn max [A;] < oo
N—)oo l’]€U717é.]

where Az’j = COV(Ii7 I]> = T — T;T5.

(A5) For any vector z € R” with finite fourth population moment, we have:
var(d,) 2 (&, — Zu) = N(0, Ipxp)

A . . . - 1 1 T
where &, is the HT domain mean estimator of yy = (Ny >y, Thy -+, Np' D pcp, T) s
Iy, p is the identity matrix of dimension D, the design covariance matrix var(&;) is positive

definite.

The assumption (A1) states that the number of domains remains constant as the population size

N changes and ensures that there is no asymptotically vanishing domains. Assumption (A2) is
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a condition needed for showing the variance consistency of the Horvitz-Thompson estimator and
this condition generally can be satisfied for most survey data. In (A3) we guarantee that no matter
how NN and n changes, there is no vanishing sampling fraction for each domain d, which is a mild
condition in the design-based context.

Assumption (A4) illustrates that the design is both a probability sampling design and a mea-
surable design. The assumption on the A;; states that the covariance between sample membership
indicators is sufficiently small, which goes to zero at rate of n~!. These conditions hold in many
classical sampling designs, including simple random sampling with and without replacement, and
many other unequal probability sampling designs.

The asymptotic normal assumption in (AS) is usually assumed explicitly and it is satisfied for
many specific sampling designs, including simple random sampling with or without replacement.
Also, it holds for Poisson sampling and unequal probability sampling with replacement. The
design asymptotic normal assumption, taken together with the variance consistency of the Horvitz-
Thompson estimator, can be used to derive the asymptotic distribution of the constrained domain
mean estimator. More importantly, it is this normal assumption that makes it possible for us to
take advantage of the available techniques in the one sided test literatures and obtain the null
distribution of the test statistics approximately. Otherwise, we have to resort to the bootstrap
method to get the empirical distribution of the test statistics when the properties of the design

estimator are completely unknown.

C.2 Supplemental Materials for Section 4.3

Lemma 10. Denote p to be the super-population domain means. Let J be the set that is as-

sociated with é{ in (4.2) and JB be the corresponding set for the solution 0}, that minimizes
_1

(Z, — 60,)"(Z,, — 6,) subjectto 0, € C,, = {60 : A0 > 0}, where Z,, = ¥,°u, Cu, I,

are super-population versions of Z,, C, ¥ and A, = AX}. Define J}L ={j: Ajpu =0} and let
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Ju = Jg U J}L, Then, we have:

Pr(J ¢ Ju)=o(1) and Pr(J), Z J)=o(1)

Proof. Firstly, consider the event J ¢ J,,. Define

SSE0;) = (Z,— 6))(Z, - ;)

A N A A A Tra A N A Ao
=2, - (I- Aj(A,A)) Az |2,- (I-Aj(A,A)) A))z,)

- ZAJA}—<AJA:]|—)_AJZAS

=9, Aj(A;ZA]) A5,
Similarly, we define:
*\ *\ T *\ _ T AT T\~
SSE(G;L) - (ZH - Ou) (ZIL - Ou) =H AJB(AJBEILAJEL) Angl’

Note that the projection of Z,, onto the linear space spanned by rows of A,, in position J' 2 is the

same as the projection onto the linear space spanned by rows of A, in position .J,,, so we have:
SSE0,)=p"Aj(ApS,AL) App=p"A] (A,L,S,A]) Ajp
Further, denote:

SSE(0..,) = (Z,— 0.,,) (Z, — 6.,,) = 9] A] (A, £A] ) A7,

SSE(%,J) - (Zu - eu,J)T(Zu - eu,J) - NTA;(AJEALAD_AJIJ
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where 8, ;, = (I — A}M(AJ“A}HYAJH)ZAS and @, ;= (I - A} (A, A, ;) Aus)Z,. Then,
we must have

SSE(6%) < SSE(8,,) and SSE(6;) < SSE(8..,)

and due to the consistency of y, and 3, respectively, we also have:
SSE(6;) — SSEB,.) = 0,(1) and SSE(6,,,) — SSE(8,) = 0,(1)
Finally, by Markov’s inequality, we get:

Pr(J ¢ J,)
<Pr (S”SVE@LJM) — SSE(6;) + SSE(6,.,) — SSE(8’,) > SSE(8,,.) — SSE(@;))
E (§§E(éw> — SSE(0;) + SSE(8,.;) — SSE(Q;))
SSE(6,,.) — SSE(O;;)
E (§§E(é1,h) - 553(0;;)) "y (é@ﬁ(é{) - SSE(BMJ))
- SSE(®,.,) — SSE(67,)

<

— 0

since (EEE(éU“) . SSE(e;;)) —o(1) and E (EEE(&;) . SSE(G,L,J)> — o(1).

Using the similar argument, we can also show that:
Pr(Jg ¢ J)=o(1)

This completes the proof. ]

By the same argument as in Lemme 10, we also have the following result.

Lemma 11. Let Jx, (unknown) be the corresponding set of the solution éi‘ that minimizes (Zs —

01)T(ZS — 61) subject to 0, € C. Then, we have:

Pr(Js € Ju) =o(1) and Pr(J, € Js)=o(1)
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where J,, and .J), are defined in Lemma 10.

Lemma 12. For the selected sample s, we have:

min(g, — 6,) S (g, — 6;) — min(g, — 0,) =g, — 0,) = 0,(1)

0:eC 0:eC

Proof. Let J be the observed set for a given sample s. We can write the difference as follows:

min(g, — 1) 7 (gs — 6:) — min(g, —61) Y. — 61)
=Z]AJ(A;A)) A;Z, - Z[A] (A, A]) AL Z,
=9, AJ(AZA]) Ayg, — 9] AJ (ARSA]) AL
=g, AJ(A;SA)) Asgs (I(Jggg,t) + Ls¢, orJggJ))

- g;l—A.—]rE (AJEEA;E)iAJEQS (I(JBQJEQJ“) + I(ngju OTJBgJE)>

By Lemma 10 and Lemma 11, we have that /(¢ ors0¢.7) = 0p(1) and I (¢, or 102 15) = 0p(1).

Then, we have:

min (g, - 0,)' =" (g, — 61) — min (g, — 6,)" X7 (g, — 61)
:gJA}(AJEAT) Ayyslincicy) — A:];(AJEEA ) AsYsligocisci,) + 0,(1)
=" A (ASZLA)) Aspligcics) — 1 AL (ARSuAL) Amplicrsc,) +op(1)
=p' A (ApSuAL) App—p' A (ApZuAg) Apgp+oy(l)

=0y(1)
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where we use the fact that for any set J with J 2 C J C J,, we have that:

SSB(0,) =uT AT(A,2,A]) Ap
:HTAIB (AJB,EILA}—B)_ AJB/J/

—u A} (A, B,A}) Ajp
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