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ABSTRACT

SOME TOPICS ON SURVEY ESTIMATORS UNDER SHAPE CONSTRAINTS

We consider three topics in this dissertation: 1) Nonresponse weighting adjustment using es-

timated response probability; 2) Improved variance estimation for inequality constrained domain

mean estimators in surveys; and 3) One-sided testing of population domain means in surveys.

Weighting by the inverse of the estimated response probabilities is a common type of adjust-

ment for nonresponse in surveys. In the first topic, we propose a new survey estimator under nonre-

sponse where we set the response model in linear form and the parameters are estimated by fitting a

constrained least square regression model, with the constraint being a calibration equation. We ex-

amine asymptotic properties of Horvitz-Thompson and Hájek versions of the estimators. Variance

estimation for the proposed estimators is also discussed. In a limited simulation study, the perfor-

mances of the estimators are compared with those of the corresponding uncalibrated estimators in

terms of unbiasedness, MSE and coverage rate.

In survey domain estimation, a priori information can often be imposed in the form of linear

inequality constraints on the domain estimators. Wu et al. (2016) formulated the isotonic domain

mean estimator, for the simple order restriction, and methods for more general constraints were

proposed in Oliva-Avilés et al. (2020). When the assumptions are valid, imposing restrictions on

the estimators will ensure that the a priori information is respected, and in addition allows infor-

mation to be pooled across domains, resulting in estimators with smaller variance. In the second

topic, we propose a method to further improve the estimation of the covariance matrix for these

constrained domain estimators, using a mixture of possible covariance matrices obtained from the

inequality constraints. We prove consistency of the improved variance estimator, and simulations

demonstrate that the new estimator results in improved coverage probabilities for domain mean

confidence intervals, while retaining the smaller confidence interval lengths.
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Recent work in survey domain estimation allows for estimation of population domain means

under a priori assumptions expressed in terms of linear inequality constraints. Imposing the con-

straints has been shown to provide estimators with smaller variance and tighter confidence inter-

vals. In the third topic, we consider a formal test of the null hypothesis that all the constraints are

binding, versus the alternative that at least one constraint is non-binding. The test of constant ver-

sus increasing domain means is a special case. The power of the test is substantially better than the

test with an unconstrained alternative. The new test is used with data from the National Survey of

College Graduates, to show that salaries are positively related to the subject’s father’s educational

level, across fields of study and over several years of cohorts.
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theoretical asymptotic variance, based on 10,000 samples. For response model (3):

pi = 0.1 + 0.25x1i + 0.65x2i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.18 Relative biases of the variance estimator of ȳe and ȳH , compared with its corresponding
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theoretical asymptotic variance, based on 10,000 samples. For response model (6):

pi = 0.1 + 0.8x1i + 0.1x2i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.21 Relative biases of the variance estimator of ȳe and ȳH , compared with its corresponding
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Nonresponse Weighting in Surveys

The goal of conducting a survey is to estimate some characteristics of a target finite population.

These characteristics can take many forms. In real applications, quantitative summaries such as

means, totals and proportions of the study variable are of the most common interests. Without

loss of generality, we focus on the estimation of the finite population mean ȳU = 1
N

∑

i∈U yi,

where yi denote the non-random value of a variable of interest for the ith element in the finite

population U = {1, 2, · · · , N}. Since collecting data from the entire population is infeasible, we

usually randomly select sample units to measure, and then construct estimators that rely on the

random sampling design. Thus, the estimators we constructed will incorporate design information.

Let p be the sampling design and p(s) be the probability of selecting the particular sample s.

Define the sample membership indicator Ii = 1 if i ∈ s and Ii = 0 otherwise. For i ∈ U , let

πi = E(Ii) = Pr(i ∈ s) =
∑

s⊂U,i∈s p(s) denote the first-order inclusion probabilities of the

design p. Then the Horvitz-Thompson estimator (Horvitz and Thompson (1952)) incorporates

design information via inverse-probability weighting as follows:

ȳπ =
1

N

∑

i∈s

yi
πi

=
1

N

∑

i∈U

yiIi
πi

and ȳπ is design unbiased for ȳU .

However, in real surveys, it is often the case that some sampled units do not respond (unit

nonresponse). Nonresponse will cause a loss in the precision of survey estimates due to reduced

sample size. Also, nonresponse bias generally does not decrease as the sample size increases and

thus bias is often the largest component of mean square error of the estimates. To deal with this

1



issue, weighting adjustment is widely used to correct for the potential biasing impact of nonre-

sponse. One way of weight adjustment is to model the response propensities for the sampled units

individually, and the adjustment factor is the inverse of the estimated propensities of the respon-

dents. The idea is to estimate the unknown probability of response. In many situations, response

propensity modeling may be the main tool to deal with nonresponse problem. Comprehensive de-

scriptions of nonresponse weighting adjustment (NWA) methods in survey sampling are provided

by Groves et al. (2002); Sarndal and Lundstrom (2006); and Cassel et al. (1983); Ekholm and

Laaksonen (1991); Folsom and Singh (2000); and Iannacchione (2003).

The response probabilities are usually estimated by logistic regression, but probit and non-

parametric methods are also used; see Little (1986), Silva and Opsomer (2009), Phipps and Toth

(2012) and so on for more details. However, the estimation procedure associated with these meth-

ods are complex and thus it is rare to implement these technique in real surveys. Also, we need

to specify the response model correctly. Because if the mechanisms that cause unit nonresponse

are not adequately reflected in the model specification, survey estimates may be biased even after

the weighting adjustments. Another approach is to use calibration estimation for adjustment, see

Deville and Särndal (1992). One advantage of calibration method is that it has good performance

if the calibrated auxiliary variable is highly correlated to the study variable. Also, it is easy to

understand and implement for survey practitioners. Due to the attractive properties of calibration

method, we try to develop a new survey estimator under nonresponse where we set the response

model in linear form and we estimate the model by using a constrained least square criterion, with

the constraint being a calibration equation.

1.1.2 Variance Estimation of Shape Restricted Survey Domain Mean Esti-

mator

In many large-scale surveys, fine-scale domain estimates are of clear interest for many data

users, as they provide a lot of useful information. One of the most frequent parameters of interest

are the population domain means. For example, National Compensation Survey, conducted by the

2



U.S. Bureau of Labor Statistics, is designed to provide wage and salary estimates by occupation

for many metropolitan areas. The usual domain survey estimators depend only on the domain

specific sampled data. These survey estimators are design-based estimator, since the estimation

and inference are implemented by using certain survey weights that are determined by a specific

probability sampling design.

To establish the notation, a finite population is denoted as U = {1, 2, · · · , N} and let {Ud :

d = 1, · · · , D} be a partition of the population U , where D is the number of domains. Let y be

the variable of interest and denote by yi the value for the ith unit in the population. Then, the

parameter of interest are ȳU = (ȳU1 , · · · , ȳUD
)⊤, and ȳUd

is given by:

ȳUd
=

∑

i∈Ud
yi

Nd

, d = 1, · · · , D.

where Nd is the population size of domain d.

Based on a sampling design p, a sample s of size n is drawn from U and p(s) is the probability

of drawing the sample s. The first order inclusion probability πi = Pr(i ∈ s) =
∑

i∈s p(s) = E(Ii)

and the second order inclusion probability πij = Pr(i, j ∈ s) =
∑

i,j∈s p(s) = E(IiIj) are both

assumed to be positive for all i, j ∈ U . We denote by sd the intersection of s and Ud, and let nd

be the sample size for sd. Then, two common design-based estimators are the Horvitz-Thompson

estimator (Horvitz and Thompson (1952)) and the Hájek estimator (Hájek (1971)). Since the Hájek

estimator does not require information about the population domain size Nd and is more popular

in practice, we will focus on the Hájek estimator ỹs = (ỹs1 , · · · , ỹsD)⊤ as an illustration, where

the estimator ỹsd of domain d is given by:

ỹsd =

∑

i∈sd yi/πi

N̂d

and N̂d =
∑

i∈sd 1/πi. The ijth element of the asymptotic covariance matrix AV (ỹs) = Σ is:

Σij =
1

NiNj

∑

k∈Ui

∑

l∈Uj

∆kl

(yk − ȳUi
)(yl − ȳUj

)

πkπl

, i, j = 1, 2, · · · , D.

3



where ∆kl = cov(IkIl) = πkl − πkπl. The corresponding estimator Σ̃ij for Σij is given by:

Σ̃ij =
1

N̂iN̂j

∑

k∈si

∑

l∈sj

∆kl

πkl

(yk − ỹsi)(yl − ỹsj)

πkπl

, i, j = 1, 2, · · · , D.

In real large-scale surveys, although the overall sample size might be very large, it is very often that

there could be domains of interest with samples sizes that are too small to produce estimates with

acceptable precision. There exist several statistical methods to deal with this small area estimation

problem. One novel approach is to incorporate the shape-constrained regression techniques into the

survey domain estimation and inference. Shape restrictions, that can arise naturally in the survey

context, are often expected to be respected by population domain means. For example, younger

people are expected to have, on average, lower glucose level than older people, certain jobs might

be expected to receive higher salaries than others. The constrained domain mean estimators that

respect reasonable shape restrictions have the potential to improve precision and stability of the

estimators, while the unconstrained Hájek estimators are very likely to violate those constraints

and thus produce unstable and inaccurate estimates, especially when sample size n is small.

Wu et al. (2016) firstly proposed a constrained estimator that respects the monotone assumption

along the domains. Such isotonic survey estimators were shown to improve precision, compared

with the unconstrained design-based estimators, given that the monotonicity assumption is reason-

able. Recently, Oliva-Avilés et al. (2020) proposed the methods for more general constraints in

the estimation and inference of population domain means. In particular, for a given sample s, the

constrained domain mean estimator θ̃ = (θ̃1, · · · , θ̃D)⊤ has the following explicit form:

θ̃ =
(

ID×D −W−1
s A′

J(AJW
−1
s A′

J)
−1AJ

)

ỹs, (1.1)

where Ws is the diagonal matrix with elements N̂1/N̂ , N̂2/N̂ , · · · , N̂D/N̂ , A is the m × D

constrained matrix in which each row defines a constraint on the domains, the observed J ⊂

{1, · · · ,m} is determined by the cone projection algorithm and AJ denote the matrix formed by

the rows of A indexed by J .
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However, one drawback for the work of Oliva-Avilés et al. (2020) is that the variance of the

constrained estimator is implicit and hard to implement in practice. As was shown in Oliva-Avilés

et al. (2020), for the observed set J , the variance of θ̃d can be approximated by:

AV (θ̃d) =
∑

k∈U

∑

l∈U
∆kl

uk

πk

ul

πl

,

where

uk =
D
∑

i=1

αiykI(k ∈ Ui) +
D
∑

i=1

βiI(k ∈ Ui), k = 1, 2, · · · , N.

and

αi =
∂θ̃d

∂t̂i

∣

∣

∣

(t̂1,··· ,t̂D,N̂1,··· ,N̂D)=(t1,··· ,tD,N1,··· ,ND)
,

βi =
∂θ̃d

∂N̂i

∣

∣

∣

(t̂1,··· ,t̂D,N̂1,··· ,N̂D)=(t1,··· ,tD,N1,··· ,ND)
,

t̂d is the HT estimator of td =
∑

k∈Ud
yk. Thus, the consistent estimator of the approximated vari-

ance of θ̃d is given by:

V̂ (θ̃d) =
∑

k∈s

∑

l∈s

∆kl

πkl

ûk

πk

ûl

πl

, (1.2)

where

ûk =
D
∑

i=1

α̂iykI(k ∈ si) +
D
∑

i=1

β̂iI(k ∈ si), k = 1, 2, · · · , N.

with α̂i, β̂i obtained from αi, βi by substituting the appropriate Horvitz-Thompson estimators for

each total population.

From (1.2), the expression of the variance estimator involves partial derivatives, which makes

it hard to be applied in real practice. To address this issue, we provided a simplified version

of the asymptotic variance estimator. The expression of the simplified covariance estimator is

quite classical and is preferred to the one in (1.2) from both an intuitive and a computational

viewpoint. Furthermore, we proposed a method to improve the estimation of the covariance matrix

for the constrained domain estimators. The improved variance estimator recognizes that a different

sample s with the same sample size and design might correspond to a different set J in (1.1) and it

5



takes advantage of the mixture of all possible J sets, which better reflects the underlying variance

structure. See Chapter 3 for more details.

1.1.3 Validation of Shape Constrained Domain Mean Estimators

Although it has been shown that the constrained domain mean estimator proposed by Wu et al.

(2016), Oliva-Avilés et al. (2020) improves the precision of the usual design based survey esti-

mators, it has to be used with caution because invalid population shape assumptions could lead

to biased domain mean estimators. Oliva-Avilés et al. (2019) developed a diagnostic method to

detect population departures from monotone assumptions. They proposed the Cone Information

Criterion for Survey data (CICs) as a data-driven criterion for choosing between the monotone and

the unconstrained domain mean estimators. However, a more general shape constrained test needs

to be developed. Particularly, we are interested in testing:

H0 : AȳU = 0 vs H1 : AȳU ≥ 0

and AȳU has at least one positive element.

This one-sided test has been widely studied outside of the survey context. Under the normal-

error model assumption, the null distribution of the likelihood-ratio test statistic for the one-sided

test has been derived in many literatures, see Bartholomew (1961), McDermott and Mudholkar

(1993), Robertson et al. (1988), Meyer (2003), Silvapulle and Sen (2005) and so on for more de-

tails. In summary, when the model variance is known, the null distribution of the likelihood ratio

statistic is shown to have a mixture of chi-square distributions. When the model variance is un-

known, the test statistic has a mixture of beta distributions under the null. Also, it has been proved

that the one-sided test can provide higher power than the test using the unconstrained alternative.

In Chapter 4, we try to extend the techniques of one-sided test into the survey context. The

main goal is to formulate a formal testing procedure that can be used to validate the use of the

shape constrained domain estimator over the unconstrained estimator.
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The following section of this chapter presents some key points on the shape-constrained esti-

mation, which plays an important role for understanding the materials in Chapter 3 and Chapter

4.

1.2 Preliminaries

Let z be an arbitrary vector in RD and A be the m × D irreducible constraint matrix (for

now assuming A is full row rank). Meyer (1999) defined a matrix as irreducible where none of

its rows is a positive linear combinations of the other rows, and the origin is not a positive linear

combination of its rows. Intuitively, a constraint matrix is irreducible when there is no redundant

constraints.

The solution φ̂ to the following constrained least-squares problem:

min
φ

||z − φ||2 such thatAφ ≥ 0

is exactly the projection of z onto the convex cone:

C = {φ ∈ RD : Aφ ≥ 0}.

A set is a cone if for every φ in the set, all positive multiples of φ are also in the set. If C is convex

cone, then for any φ1, φ2 in C, αφ1 + (1 − α)φ2 is in C for all α ∈ (0, 1). The necessary and

sufficient conditions for a vector φ̂ to be the projection of z onto C are

〈

z − φ̂, φ̂
〉

= 0, and
〈

z − φ̂,φ
〉

≤ 0 for all φ ∈ C. (1.3)

Define Ω = C ∩ V ⊥,where V ⊥ refers to the orthogonal complement of V . Then it can be shown

that Ω is a closed convex cone and the projection of z onto C is the sum of the projections onto

Ω and V , respectively. Furthermore, The convex cone Ω can be specified by a set of generators
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δ1, · · · , δm ∈ Ω; that is, we can express Ω as:

Ω = {φ ∈ RD : φ =
m
∑

j=1

bjδj, bj ≥ 0, j = 1, · · · ,m},

where the generators (or edges) of Ω are the columns of A⊤(AA⊤)−1 when A is full row rank.

Hence, we can write the constraint cone C as:

C = {φ ∈ RD : φ = v +
m
∑

j=1

bjδj, bj ≥ 0, j = 1, · · · ,m and v ∈ V }.

Now, we define the polar cone Co as Co = {ρ ∈ RD : 〈ρ,φ〉 ≤ 0, for all φ ∈ C}. It can be shown

that the polar cone can be generated by the rows of −A, that is, we can express Co as:

Co = {ρ ∈ RD : ρ =
m
∑

j=1

bjγj, bj ≥ 0, j = 1, · · · ,m},

where γj , j = 1, · · · ,m, are the rows of −A. Let ρ̂ be the projection of z onto Co. Meyer (1999)

showed a very important fact that the projection of z onto Co is the residual of the projection of z

onto C and vice-versa. This result is quite useful in practice, because it allows us to compute the

projection onto C by finding first the projection onto the polar cone Co, which has known edges.

The necessary and sufficient conditions in (1.3) can be adapted to the polar cone as follows: the

vector ρ̂ ∈ Co to minimize ||z − ρ||2 over Co are satisfying

〈

z − ρ̂, ρ̂
〉

= 0, and
〈

z − ρ̂,γj

〉

≤ 0 ∀j = 1, · · · ,m. (1.4)

Based on conditions (1.4), it can be shown that the projection ρ̂ of z onto the polar cone Co is

exactly the projection of z onto the linear space generated by the edges γj such that 〈z−ρ̃,γj〉 = 0.

That is, there exists a set J ⊆ {1, . . . ,m} such that the projection of z onto Co coincides with the

projection of z onto the linear space spanned by γj , for j ∈ J . The R package coneproj (Liao
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and Meyer (2014)) will perform the cone projection, returning both the projection and the set J . If

J is empty, then the constrained estimator coincides with the unconstrained estimator.

Therefore, if we project arbitrary z ∈ RD onto Co, then there must exist a set J such that we

can write ρ̂ =
∑

j∈J bjγj, bj > 0 for j ∈ J , and this representation is unique by the Karush-Kuhn-

Tucker (KKT) conditions. Thus, for any z ∈ RD, it can be expressed as:

z = v +
∑

j∈J
bjγj +

∑

j /∈J
bjδj, (1.5)

where bj > 0 for j ∈ J and bj ≥ 0 for j /∈ J . Furthermore, v is the projection of z onto V ,

∑

j∈J bjγj is the projection of z onto Co and
∑

j /∈J bjδj is the projection of z onto Ω.

if A is not full row rank, especially when m > D, then the set J in (1.5) may not be unique

anymore; that is, z might have more than one expression. However, Theorem 3.1 from Oliva-

Avilés et al. (2020) guarantees that the projection ρ̂ =
∑

j∈J bjγj is the same for all such J , and

that it is always possible to find J∗ that is a subset of all such J sets, and the vectors γj , j ∈ J∗

form a linearly independent set. In the following, we assume J is this unique set. Then, we can

write the solution φ̂ as follows:

φ̂ = z − ρ̂ = z −A⊤
J (AJA

⊤
J )

−

AJz,

where AJ denote the matrix formed by the rows of A indexed by J .

For the techniques regarding the constrained estimation, see Robertson et al. (1988), or Silva-

pulle and Sen (2005) for more details.

1.3 Overview

In Chapter 2, we propose a new survey estimator under nonresponse and we estimate the

propensity function by fitting a constrained least square regression model, with the constraint be-

ing a calibration equation. We examine asymptotic properties of the proposed estimator both in
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Horvitz-Thompson type version and Hájek type version. The performance of the proposed estima-

tor is demonstrated through simulations.

Chapter 3 is a follow-up of the work in Oliva-Avilés et al. (2020). We first take a brief review

of the formulation of the constrained domain means estimator and its variance estimator presented

in Oliva-Avilés et al. (2020). Then, we provided a simplified version of the covariance estimator

of the constrained domain means estimator, which is practically useful from a computational point

of view. Further, a novel mixture variance estimator is proposed. It makes use of a mixture of

possible covariance matrices obtained from the inequality constraints. We rigorously proved the

consistency of the improved variance estimator. The simulations showed that the new estimator

leads to improved coverage probabilities for domain mean confidence intervals, while retaining

the smaller confidence interval lengths. Lastly, an application to the California School Data in

survey package is carried out.

A formal one-sided test procedure for the population domain means is presented in Chapter

4. Here, we consider a test of the null hypothesis that all the constraints are binding, versus the

alternative that at least one constraint is non-binding. We formulated the test statistic first and

then derived the asymptotic null distribution of the test statistics under design normal assumption.

Also, we showed the power of the test goes to 1 as sample size increases. The performance of the

proposed test was demonstrated under a variety of simulation scenarios and we applied our test to

the 2019 National Survey of College Graduates (NSCG) survey data.

A brief discussion of conclusions and future works is given in Chapter 5. All major proofs are

presented in the Appendix.
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Chapter 2

Nonresponse Weighting Adjustment Using

Estimated Response Probability

2.1 Introduction

Weighting adjustment is widely used to correct for the potential biasing impact of nonresponse.

Comprehensive overviews of nonresponse weighting adjustment methods in survey sampling are

provided by Groves et al. (2002), Sarndal and Lundstrom (2006). One way to perform weight

adjustment is to model the response propensities for the sampled units individually, and the adjust-

ment factor is the inverse of the estimated propensities of the respondents. The idea is to estimate

the unknown probability of response. General descriptions of the propensity weighting that ad-

just survey estimators for nonresponse are provided by Cassel et al. (1983). Applications of the

response propensity modeling can be found in Ekholm and Laaksonen (1991), Folsom and Singh

(2000) and Iannacchione (2003).

Auxiliary variables are often available in surveys, either at the population or the sample level.

Commonly, the response probability is estimated by regressing on the auxiliary information para-

metrically, with logistic and probit regression models as common choices. See Alho (1990), Fol-

som (1991), Ekholm and Laaksonen (1991), and Iannacchione et al. (1991) for references. Another

approach is to estimate the response propensities through nonparametric methods. Estimation of

the response probabilities by kernel smoothing and local polynomial regression are considered by

Giommi (1984), Silva and Opsomer (2009).

An interesting characteristic of nonresponse weighting adjustment estimators is that they tend

to be more efficient than the unfeasible estimators on which they are based (i.e. those that use

the true but unknown probability of responding). A clear justification for reduced variance using

estimated response probability from a logistic regression model is given by Beaumont (2005). The
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estimator that uses estimated response probability is generally more efficient than the estimator

using the true response probability as shown by Kim and Kim (2007).

When auxiliary variables are present in surveys, another approach is to use calibration estima-

tion for adjustment. The general concept and techniques on calibration weighting and estimation

are formalized by Deville and Särndal (1992). In recent years, using calibration weighting to adjust

for nonresponse bias have been investigated by Lundström and Särndal (1999), Kott (2006), Chang

and Kott (2008), Kott and Chang (2010). Calibration weighting and estimation are very popular

nowadays. The primary reason is efficiency. Calibration over a set of carefully chosen auxiliary

variables has proven to be an effective way of using known auxiliary information. If the study

variable is highly correlated with the set of auxiliary variables, the gain of efficiency in estimation

can be substantial.

In this paper, we proposed a new nonresponse weighting adjustment estimator using the esti-

mated response probability by fitting a least square regression model that incorporates a calibra-

tion equation as a constraint. In theory, we show that the proposed estimators, both in Horvitz-

Thompson and Hájek type, are asymptotically unbiased for the population parameter and are

asymptotically normally distributed. From simulation study, we found that the performance of

the Horvitz-Thompson type estimator is better than the corresponding estimator without calibra-

tion equation in terms of MSE in some situations, depending on the specification of the response

model. On the other hand, the proposed Hájek type estimator is less affected by the specific settings

of the response model and thus is more robust in winning over its corresponding Hájek estimator

without calibration equation.

In Section 2.2, we introduce the new proposed estimator. In Section 2.3, the assumptions and

some preliminary results are given. The asymptotic properties of the Horvitz-Thompson type esti-

mator and Hájek estimator are provided in Section 2.4 and Section 2.5, respectively. In Section 2.6,

we perform a simulation study to evaluate the finite sample properties of the proposed estimator.

Conclusions are given in Section 2.7.
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2.2 Notations and the Proposed Estimator

Let the finite population be U = {1, 2, ..., N}, where N is assumed to be known. Let FN =

{u1,u2, ...,uN} be the population variable, where ui = (xi
T , yi)

T and xi is the vector of aux-

iliary variables for unit i, which is known over the population. Our parameter of interest is

ȳU = 1
N

∑

i∈U yi.

Given a particular probability sampling design, the inclusion of an element i in a sample S is a

random event indicated by the binary random variable Ii, with:

Ii =















1 if i ∈ S

0 if i ∈ S.

The simplest design-based estimator is the Horvitz-Thompson estimator, defined as:

ȳπ =
1

N

∑

i∈S

yi
πi

=
1

N

∑

i∈U

yi
πi

Ii, (2.1)

where πi = Pr(i ∈ S) = Ep(Ii) and πi
−1 is called design weight of unit i. Obviously, ȳπ is an

unbiased estimator for ȳU with respect to sampling design p.

Under nonresponse, the study variable yi may not be obtained for the entire set of element in

S. In order to describe the response mechanism, we define the response indicator variable of yi as:

Ri =















1 if unit i in the sample responds

0 if unit i in the sample does not respond

and denote E(Ri) = Pr(Ri = 1|i ∈ S) = pi be the response probability of sampled unit i. If we

know the true response probability pi, then the Horvitz-Thompson type estimator

ȳe∗ =
1

N

∑

i∈S

yiRi

πipi
(2.2)
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will be unbiased for ȳU . Instead of Horvitz-Thompson estimator, we can also use the Hájek es-

timator, which is useful when the population size is unknown and shown to be more efficient in

many situations. So we also consider Hájek type estimator in this paper. The Hájek type estimator

is in the form:

ȳH∗ =

∑

i∈S
yiRi

πipi
∑

i∈S
Ri

πipi

and ȳH∗ is asymptotically unbiased for ȳU . However, pi is unknown in practice, so we have to

estimate it based on some specified model.

Here, we specify the response model as E(Ri) = pi = p(xi) = Biν
∗, where Bi is a vector

in which each component is a function of xi and ν∗ is the true unknown population parameter.

More specifically, we define Bi = (1, x1i, f2(xi), · · · , fp(xi))
T , where x1 is the covariate to be

calibrated in the following criterion and supposed to be correlated with the survey variables, fk(xi)

(k = 2, · · · , p) can be additional uncalibrated covariates or spline basis function of the uncalibrated

covariates. For simplicity, we denote x, instead of x1, as the calibrated variable in the following

context. Furthermore, instead of using the usual logistic model to estimate the response probabil-

ity, we specify the unknown response probability in linear form. Setting the response probability in

linear form is tolerable for several reasons. First, instead of trying to interpret the response model,

we just want to adjust for nonresponse. So response model specification is not that critical as

long as the specified response model has decent predictive value for the true response probability.

Secondly, we are cautious to apply logistic method since the logistic model may not reach con-

vergence in some instances such as multicollinearity. As multicollinearity increases, coefficients

remain unbiased but standard errors increase and the likelihood of model convergence decreases.

Another reason for linearity is that it is easier to calibrate. Mathematically, linear model is much

easier to deal with than logistic regression.

Now, we estimate ν∗ by ν̂ using the following criterion:

min
ν

∑

i∈S

1

πi

(Ri −Biν)
2
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subject to calibration equation:
∑

i∈S

xi

πi

=
∑

i∈S

xi

πi

Ri

Biν
,

where xi (short for x1i) is a variable that is an element of Bi and on which the calibration is

implemented. In Hájek type scenario, the calibration equation is given by:

∑

i∈S
xi

πi
∑

i∈S
1
πi

=

∑

i∈S
xi

πi

Ri

Biν
∑

i∈S
1
πi

Ri

Biν

.

However, for simplicity, we only derive the asymptotic results for Hájek estimator ȳH , in which

the parameter ν is estimated from above least square criterion subject to
∑

i∈S
xi

πi
=
∑

i∈S
xi

πi

Ri

Biν
,

not from calibration

∑
i∈S

xi
πi∑

i∈S
1
πi

=
∑

i∈S

xi
πi

Ri
Biν∑

i∈S
1
πi

Ri
Biν

.

Lemma 1. Based on the criterion, the estimate ν̂ is the solution to:

S(ν) =
∂L(ν)

∂ν

=
∑

i∈S

2

πi

(Ri −Biν)(−Bi) +

∑

i∈S
xi

πi
[ Ri

Biν
−Ri − 1 +Biν]

∑

i∈S
xi

2Ri

2πi(Biν)2

∑

i∈S

xiRiBi

πi[−(Biν)2]
= 0.

Proof of Lemma 1. Based on the criterion, the Lagrange function is given by:

L(ν) =
∑

i∈S

1

πi

(Ri −Biν)
2 + λ

∑

i∈S

xi

πi

(
Ri

Biν
− 1).

Taking derivative with respect to ν and λ respectively and setting the derivatives equal to 0, we

have:

∂L(ν)

∂ν
=
∑

i∈S

2

πi

(Ri −Biν)(−Bi) + λ
∑

i∈S

xiRiBi

πi[−(Biν)2]
= 0 (2.3)

and
∑

i∈S

xi

πi

=
∑

i∈S

xi

πi

Ri

Biν
. (2.4)
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Let SR denote the set that the selected individual i in the sample responds. From (2.4), we have:

∑

i∈SR

xi

πi

(

1

Biν
− 1

)

=
∑

i/∈SR

xi

πi

. (2.5)

Focus on the row of
∂L(ν)
∂ν

in which the predictor x is calibrated, we get
∑

i∈S
2
πi
(Ri −Biν)xi =

−∑i∈S
λxi

2Ri

πi(Biν)2
, which, through some algebra, implies:

∑

i/∈SR

xi

πi

=
∑

i∈S

xi

πi

+
∑

i∈S

λxi
2Ri

2πi(Biν)2
−
∑

i∈S

xiBiν

πi

. (2.6)

Plugging (2.6) into (2.5), we have:

∑

i∈SR

xi

πi

(
1

Biν
− 1) =

∑

i∈S

xiRi

πi

(

1

Biν
− 1

)

= λ
∑

i∈S

xi
2Ri

2πi(Biν)2
+
∑

i∈S

xi

πi

(1−Biν).

Solving for λ, we get:

λ =

∑

i∈S
xiRi

πi
( 1
Biν

− 1)−∑i∈S
xi

πi
(1−Biν)

∑

i∈S
xi

2Ri

2πi(Biν)2

=

∑

i∈S
xi

πi
[ Ri

Biν
−Ri − 1 +Biν]

∑

i∈S
xi

2Ri

2πi(Biν)2

.

Plugging λ into (2.3), we get the desired result.

Thus, pi is estimated by p̂i = Biν̂ and plugging the p̂i into ȳe∗ = 1
N

∑

i∈S
yiRi

πipi
, we get our

Horvitz-Thompson type proposed estimator:

ȳe =
1

N

∑

i∈S

yiRi

πip̂i
. (2.7)

The Hájek type estimator is given by:

ȳH =

∑

i∈S
yiRi

πip̂i
∑

i∈S
Ri

πip̂i

. (2.8)
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2.3 Assumptions and Preliminary Results

First, we state the assumptions we will use in obtaining the theoretical results. The assumptions

on the probability sampling design and population distribution of ui are listed as follows:

(D.1) We assume that the sequence of finite populations of ui = (xi
T , yi)

T have bounded fourth

moments.

(D.2) We assume the sample size n is non-random and as N → ∞, n
N

→ π∗ ∈ (0, 1). For all N ,

mini∈U πi ≥ λ1 > 0, mini,j∈U πij ≥ λ2 > 0 and we have:

lim
N→∞

supn max
i,j∈U,i 6=j

|∆ij| < ∞,

where ∆ij = cov(Ii, Ij) = πij − πiπj .

(D.3) We assume the Horvitz-Thompson estimator is asymptotically normally distributed. That is,

ȳπ − ȳU
√

Var(ȳπ)

d−→ N(0, 1).

In addition to above assumptions, we also need the following assumptions on the response model.

(R.1) The response indicator variables Ri and Rj are independent for i 6= j and

E(Ri) = pi,

Var(Ri) = pi(1− pi).

(R.2) The inverse true response probability is bounded. That is:

p−1
i < K

for all i ∈ U , where K is a fixed constant.
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(R.3) We specify the response model in the form of:

pi = Biν
∗,

where Bi is observable over the population and the parameter is evaluated at ν = ν∗. Also,

we assume that the response model is continuously differentiable with respect to ν.

(R.4) We assume the matrices I(ν∗), I(ν∗), J(ν∗) and Ĵ(ν̂), defined in the following context,

are nonsingular and thus invertible.

The assumption D.1 is a mild condition. Usually, bounded fourth moments of the study variable

are required to show the variance consistency of the Horvitz-Thompson estimator.

By assuming the ratio n
N

→ π∗ ∈ (0, 1), we are excluding vanishing sampling fraction to

stay within the finite population framework, which is often done in the design-based context. It

is reasonable to say that the ratio n
N

is bounded below by π∗ since usually, the ratio is decreasing

in N . We need this condition to prove the asymptotic normality of our proposed estimator later.

The condition mini∈U πi ≥ λ1 > 0 implies that the design is a probability sampling design.

The condition mini,j∈U πij ≥ λ2 > 0 indicates that the design is measurable, which ensures

that V̂ (ȳπ) = 1
N2

∑

i,j∈S
∆ijyiyj
πijπiπj

is unbiased for Var(ȳπ) = 1
N2

∑

i,j∈U
∆ijyiyj
πiπj

. The assumption

on the ∆ij states that the covariance between sample membership indicators is sufficiently small.

Assumptions in D.2 are satisfied for many classical sampling designs, including simple random

sampling with and without replacement, and also holds for some unequal probability samplings.

Under assumption D.1 and D.2, we can derive the following result as presented in Breidt and

Opsomer (2017):

Var(ȳπ) ≤
1

Nλ1

∑

i∈U

y2i
N

+
maxi,j∈U,i 6=j |∆ij|

λ2
1

(

∑

i∈U

|yi|
N

)2

= O

(

1

N

)

+O

(

1

n

)

= O

(

1

n

)

.

18



Taken together with the unbiasedness of ȳπ, this implies that:

1

N

∑

i∈S

yi
πi

− 1

N

∑

i∈U
yi = Op(n

− 1
2 ) (2.9)

by applying Corollary 5.1.1.1 in Fuller (1996). Using the similar bounding argument, we can show

the variance consistency of Horvitz-Thompson estimator. This argument for showing (2.9) will be

used heavily later in proving the asymptotic variance consistency of the proposed estimator.

D.3 is usually assumed explicitly and is satisfied for many specific sampling designs, including

simple random sampling without replacement, Poisson sampling and unequal probability sam-

pling with replacement. The design asymptotic normality assumption, together with the variance

consistency of the Horvitz-Thompson estimator, implies that:

ȳπ − ȳU
√

V̂ (ȳπ)

d−→ N(0, 1).

In terms of the assumptions for response mechanism, R.1 and R.2 are assumed for tractability

and these two conditions ensure that the order of sampling and response mechanism are inter-

changeable. For R.3, we specify the response model in linear form. Though the assumption for

the linear expression of the response probability may not be appropriate in some cases, it is easy to

implement the least square criterion in practice and we could have a closed-form solution for the

parameters. Also, even though we mis-specify the response model to some degree, the estimate

will be adjusted towards the “correct" value by the calibration equation, leading to an efficient

estimate. R.4 is used to ensure existence of the estimator.

Before stating the main theorems of the paper, we present some preliminary results that will be

used in the next section in deriving the properties of the proposed estimator.

Theorem 1. Under the assumption D.1-D.2 and R.1-R.4, the estimator ν̂ satisfies:

ν̂ − ν∗ = [I(ν∗)]−1SL(ν
∗) + op(n

− 1
2 ),
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where the SL(ν
∗) is the linearized version of S(ν∗), given by:

SL(ν
∗) =

∑

i∈S

2

πi

(Ri −Biν
∗)(−Bi) +

∑

i∈U
xiBi

(−Biν∗)
∑

i∈U
xi

2

2(Biν∗)

∑

i∈S

xi

πi

[

Ri

Biν∗ −Ri − 1 +Biν
∗
]

and I(ν∗) is the matrix evaluated at ν∗, defined by:

I(ν∗) = −E

(

∂S(ν)

∂νT

∣

∣

∣

∣

ν=ν∗

)

.

Proof of Theorem 1. Apply Taylor expansion to function S(ν), yielding:

S(ν) = S(ν∗) +

(

∂S(ν)

∂νT

∣

∣

∣

∣

ν=ν∗

)

(ν − ν∗) + op(ν − ν∗).

Plugging in ν̂ and using the fact that S(ν̂) = 0, we have 0 = S(ν∗) +
(

∂S(ν)
∂νT

∣

∣

∣

ν=ν∗

)

(ν̂ − ν∗) +

op(ν̂ − ν∗), which can be written as:

ν̂ − ν∗ =

(

−∂S(ν)

∂νT

∣

∣

∣

∣

ν=ν∗

)−1

S(ν∗) + op(ν̂ − ν∗)

=

(

− 1

N

∂S(ν)

∂νT

∣

∣

∣

∣

ν=ν∗

)−1(
1

N
S(ν∗)

)

+ op(ν̂ − ν∗). (2.10)

Note that the term 1
N
S(ν∗) is not in linearized form, so we apply Taylor linearization to it, yielding:

1

N
S(ν∗) =

1

N

{

∑

i∈S

2

πi

(Ri −Biν
∗)(−Bi) +

E[
∑

i∈S
xiRiBi

πi[−(Biν∗)2]
]

E[
∑

i∈S
xi

2Ri

2πi(Biν∗)2
]

×
∑

i∈S

xi

πi

[

Ri

Biν∗ −Ri − 1 +Biν
∗
]

}

+ op(n
− 1

2 )

=
1

N

{

∑

i∈S

2

πi

(Ri −Biν
∗)(−Bi) +

∑

i∈U
xiBi

[−Biν∗]
∑

i∈U
xi

2

2(Biν∗)

×
∑

i∈S

xi

πi

[

Ri

Biν∗ −Ri − 1 +Biν
∗
]

}

+ op(n
− 1

2 )

=
1

N
SL(ν

∗) + op(n
− 1

2 ).
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Define SLU(ν
∗) =

∑

i∈U 2(Ri −Biν
∗)(−Bi) +

∑
i∈U

xiBi
(−Biν

∗)
∑

i∈U

xi
2

2(Biν
∗)

∑

i∈U xi

[

Ri

Biν∗ −Ri − 1 +Biν
∗
]

,

then we have:

1

N
SL(ν

∗) =

[

1

N
SL(ν

∗)− 1

N
SLU(ν

∗)

]

+
1

N
SLU(ν

∗)

= Op(n
− 1

2 ) +Op(N
− 1

2 )

= Op(n
− 1

2 ), (2.11)

where
(

1
N
SL(ν

∗)− 1
N
SLU(ν

∗)
)

= Op(n
− 1

2 ) by using a analogous argument for showing (2.9).

Now, let I(ν∗) = −∂S(ν)
∂νT

∣

∣

∣

ν=ν∗

and denote IU(ν
∗) to be the population version of I(ν∗). That is,

the sampling design is a census. Then:

1

N
I(ν∗)− 1

N
I(ν∗) =

(

1

N
I(ν∗)− 1

N
IU(ν

∗)

)

+

(

1

N
IU(ν

∗)− 1

N
I(ν∗)

)

= Op(n
− 1

2 ) +Op(N
− 1

2 )

= Op(n
− 1

2 ),

where
(

1
N
I(ν∗)− 1

N
IU(ν

∗)
)

= Op(n
− 1

2 ) by the similar argument for showing (2.9). Assume

I(ν∗) is continuous, so applying the Taylor expansion to above result, we will have:

{

1

N
I(ν∗)

}−1

=

{

1

N
I(ν∗)

}−1

+Op(n
− 1

2 ). (2.12)

Plugging (2.11) and (2.12) into (2.10), we have:

ν̂ − ν∗ =

{

[

1

N
I(ν∗)

]−1

+Op(n
− 1

2 )

}

Op(n
− 1

2 ) + op(ν̂ − ν∗)

= Op(n
− 1

2 ).
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Finally, we have:

ν̂ − ν∗

=

{

1

N
I(ν∗)

}−1
1

N
S(ν∗) + op(ν̂ − ν∗)

=

{

[

1

N
I(ν∗)

]−1

+Op(n
− 1

2 )

}

{

1

N
SL(ν

∗) + op(n
− 1

2 )

}

+ op(n
− 1

2 )

=

{

1

N
I(ν∗)

}−1{
1

N
SL(ν

∗)

}

+

{

1

N
I(ν∗)

}−1

op(n
− 1

2 ) +Op(n
− 1

2 )

{

1

N
SL(ν

∗)

}

+ op(n
− 1

2 )

=

{

1

N
I(ν∗)

}−1{
1

N
SL(ν

∗)

}

+ op(n
− 1

2 ) +Op(n
−1) + op(n

− 1
2 )

= {I(ν∗)}−1 {SL(ν
∗)}+ op(n

− 1
2 ).

In order to compute the asymptotic variance of (ν̂ − ν∗), we have to calculate the variance of

SL(ν
∗). Before giving its variance in explicit form, we need to rewrite the form of SL(ν

∗) first.

Let’s denote Biν
∗ = pi for simplicity, then SL(ν

∗) can be written as follows:

SL(ν
∗) =

∑

i∈S

2

πi

(Ri −Biν
∗)(−Bi) +

∑

i∈U
xiBi

(−Biν∗)
∑

i∈U
xi

2

2(Biν∗)

∑

i∈S

xi

πi

[

Ri

Biν∗ −Ri − 1 +Biν
∗
]

=
∑

i∈S

2

πi

(Ri − pi)(−Bi) +

∑

i∈U
xiBi

(−pi)
∑

i∈U
xi

2

2pi

∑

i∈S

xi

πi

[

(Ri − pi)(
1

pi
− 1)

]

=
∑

i∈S

1

πi

(Ri − pi)

{

−2Bi + 2xi(1−
1

pi
)

∑

k∈U xkBk/pk
∑

k∈U xk
2/pk

}

.

Lemma 2. Under the assumption D.1-D.2 and R.1-R.4, we have:

Var(SL(ν
∗)) =

∑

i∈U

pi(1− pi)

πi

WiWi
T ,

where Wi = 2xi(1− 1
pi
)
∑

k∈U xkBk/pk∑
k∈U x2

k
/pk

− 2Bi.
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Proof of Lemma 2. Var(SL(ν
∗)) can be expressed as:

Var(SL(ν
∗)) = Cov (SL(ν

∗),SL(ν
∗))

= E {Cov (SL(ν
∗),SL(ν

∗)|S)}+ Cov {E(SL(ν
∗)|S),E(SL(ν

∗)|S)} ,

where S denotes the selected sample. Since E(SL(ν
∗)|S) = E(

∑

i∈S
(Ri−pi)

πi
Wi)|S) = 0, so the

second term of above expression is zero. Thus;

Var(SL(ν
∗)) = E

[

Cov

(

∑

i∈S

(Ri − pi)

πi

Wi,
∑

i∈S

(Ri − pi)

πi

Wi

∣

∣

∣

∣

∣

S

)]

= E

[

∑

i∈S
Cov

(

(Ri − pi)

πi

Wi,
(Ri − pi)

πi

Wi

)

]

= E

[

∑

i∈S

Wi

πi

pi(1− pi)
Wi

T

πi

]

= E

[

∑

i∈S

pi(1− pi)

πi
2

WiWi
T

]

=
∑

i∈U

pi(1− pi)

πi

WiWi
T .

2.4 Main Results for Horvitz-Thompson Type Estimator

In this section, we list several properties of the proposed Horvitz-Thompson type estimator.

Theorem 2. Under the assumption D.1-D.2 and R.1-R.3, the Horvitz-Thompson type non-response

weighting adjustment estimator ȳe =
1
N

∑

i∈S
yiRi

πip̂i
is root-n consistent for ȳU with respect to both

the sampling mechanism and the response mechanism. That is,

ȳe = ȳU +Op(n
− 1

2 ).
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Proof of Theorem 2. By definition in (2.1) and (2.2), we can express ȳe − ȳU as:

ȳe − ȳU

=(ȳe − ȳe∗) + (ȳe∗ − ȳπ) + (ȳπ − ȳU)

=

(

1

N

∑

i∈S

yiRi

πip̂i
− 1

N

∑

i∈S

yiRi

πipi

)

+

(

1

N

∑

i∈S

yiRi

πipi
− 1

N

∑

i∈S

yi
πi

)

+

(

1

N

∑

i∈S

yi
πi

− 1

N

∑

i∈U
yi

)

=
1

N

∑

i∈S

yiRi

πi

(

1

p̂i
− 1

pi

)

+
1

N

∑

i∈S

yi
πipi

(Ri − pi) +

(

1

N

∑

i∈S

yi
πi

− 1

N

∑

i∈U
yi

)

=A+B + C.

Apply Taylor expansion to
(

1
p̂i
− 1

pi

)

, we have:

(

1

p̂i
− 1

pi

)

=
∂pi

−1

∂ν

∣

∣

∣

∣

ν=ν∗

(ν̂ − ν∗) + 0.5(ν̂ − ν∗)T
(

∂2pi
−1

∂ν∂νT

∣

∣

∣

∣

ν=ν̈

)

(ν̂ − ν∗)

=

(

− 1

p2i
Bi

)

(ν̂ − ν∗) + 0.5(ν̂ − ν∗)T
(

2

p3i (ν̈)
BiBi

T

)

(ν̂ − ν∗),

where ν̈ is on the line segment joining ν̂ and ν∗. Thus, we have:

A =

[

1

N

∑

i∈S

yiRi

πi

(

− 1

p2i
Bi

)

]

(ν̂ − ν∗)

+ 0.5(ν̂ − ν∗)T

[

1

N

∑

i∈S

yiRi

πi

(

2

p3i (ν̈)
BiBi

T

)

]

(ν̂ − ν∗)

= Op(1)Op(n
− 1

2 ) +Op(n
− 1

2 )Op(1)Op(n
− 1

2 )

= Op(n
− 1

2 ).
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For B, it’s easy to see that E( 1
N

∑

i∈S
yi

πipi
(Ri − pi)) = 0, its variance is given by:

Var

(

1

N

∑

i∈S

yi
πipi

(Ri − pi)

)

=E

[

Var

(

1

N

∑

i∈S

yi
πipi

(Ri − pi)

∣

∣

∣

∣

∣

S

)]

+Var

[

E

(

1

N

∑

i∈S

yi
πipi

(Ri − pi)

∣

∣

∣

∣

∣

S

)]

=E

[

1

N2

∑

i∈S
Var

(

yiRi

πipi

∣

∣

∣

∣

S

)

]

+ 0

=
1

N2
E

(

∑

i∈S

pi(1− pi)y
2
i

π2
i p

2
i

)

=
1

N2

∑

i∈U

pi(1− pi)y
2
i

πip2i

=O

(

1

N

)

.

So by Corollary 5.1.1.1 in Fuller (1996), B = Op(N
− 1

2 ). By (2.9), C = Op(n
− 1

2 ), so overall we

have:

ȳe − ȳU = Op(n
− 1

2 ) +Op(N
− 1

2 ) +Op(n
− 1

2 ) = Op(n
− 1

2 ).

In order to perform inference for ȳe, we derive an expression for the variance of its linearized

approximation. By the definition of ȳe∗ in (2.2), we can write ȳe − ȳe∗ as:

ȳe − ȳe∗ =

[

1

N

∑

i∈S

yiRi

πi

(

− 1

p2i
Bi

)

]

(ν̂ − ν∗) +Op(n
−1)

=

[

− 1

N

∑

i∈S

yi(Ri − pi + pi)Bi

πip2i

]

(ν̂ − ν∗) +Op(n
−1)

=

[

− 1

N

∑

i∈S

Biyi
πipi

− 1

N

∑

i∈S

Ri − pi
πip2i

Biyi

]

(ν̂ − ν∗) +Op(n
−1).

Since Bi satisfies the same population moments as xi itself, by the analogous argument for showing

(2.9), we have 1
N

∑

i∈S
Biyi
πipi

= 1
N

∑

i∈U
Biyi
pi

+ Op(n
− 1

2 ). Also, using the same procedure for
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proving B = Op(N
− 1

2 ), it’s easy to show that 1
N

∑

i∈S
Ri−pi
πip2i

Biyi = Op(N
− 1

2 ). Hence:

ȳe − ȳe∗ =

[

− 1

N

∑

i∈U

Biyi
pi

+Op(n
− 1

2 ) +Op(N
− 1

2 )

]

(ν̂ − ν∗) +Op(n
−1)

=

[

− 1

N

∑

i∈U

Biyi
pi

]

(ν̂ − ν∗) +Op(n
−1)

=

[

− 1

N

∑

i∈U

Biyi
pi

]

{[I(ν∗)]−1SL(ν
∗) + op(n

− 1
2 )}+Op(n

−1)

=

[

− 1

N

∑

i∈U

Biyi
pi

]

[I(ν∗)]−1SL(ν
∗) + op(n

− 1
2 ) +Op(n

−1)

=

[

− 1

N

∑

i∈U

Biyi
pi

]

[I(ν∗)]−1SL(ν
∗) + op(n

− 1
2 ).

Direct and careful computation of
∂S(ν)
∂νT yields:

∂S(ν)

∂νT
=
∑

i∈S

2

πi

BiBi
T +

∑

i∈S

xiRiBi

πi[−(Biν)2]
×

{
∑

i∈S
xi

πi
[(1− Ri

(Biν)2
)Bi

T ]
∑

i∈S
xi

2Ri

2πi(Biν)2

+

∑

i∈S
xi

πi
[ Ri

Biν
−Ri − 1 +Biν]×

∑

i∈S
xi

2RiBi
T

πi(Biν)3

[
∑

i∈S
xi

2Ri

2πi(Biν)2
]2

}

+

∑

i∈S
xi

πi
[ Ri

Biν
−Ri − 1 +Biν]

∑

i∈S
xi

2Ri

2πi(Biν)2

×
∑

i∈S

2xiRi

πi(Biν)3
BiBi

T .

After plugging the ν∗, we linearize the 1
N
I(ν∗) = − 1

N
E(∂S(ν)

∂νT |ν=ν∗), resulting:

1

N
I(ν∗) = − 1

N

∑

i∈U
2BiBi

T − 1

N

∑

i∈U

xiBi

pi
×
∑

i∈U xi(
1
pi
− 1)Bi

T

∑

i∈U
xi

2

2pi

+O

(

1

N

)

.

Let J(ν∗) = (−∑i∈U 2BiBi
T −∑i∈U

xiBi

pi
×

∑
i∈U xi(

1
pi

−1)Bi
T

∑
i∈U

xi
2

2pi

) and apply Taylor expansion to

1
N
I(ν∗), we have:

{

1

N
I(ν∗)

}−1

=

{

1

N
J(ν∗)

}−1

+O

(

1

N

)

.
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Denote A = − 1
N

∑

i∈U
Biyi
pi

, then we can rewrite ȳe − ȳe∗ as:

ȳe − ȳe∗ = AT

{

1

N
I(ν∗)

}−1
1

N
SL(ν

∗) + op(n
− 1

2 )

= AT

{

{

1

N
J(ν∗)

}−1

+O

(

1

N

)

}

1

N
SL(ν

∗) + op(n
− 1

2 )

= AT [J(ν∗)]−1SL(ν
∗) + op(n

− 1
2 ).

Thus, the ȳe can be expresses as:

ȳe = ȳe∗ +AT [J(ν∗)]−1SL(ν
∗) + op(n

− 1
2 ) = ȳel + op(n

− 1
2 ), (2.13)

where ȳel is the linearized ȳe, and the variance of the proposed estimator can be approximated by

variance of ȳel.

Lemma 3. Under assumptions D.1, D.2 and R.1-R.4, the variance of Var(ȳel) is given by:

Var(ȳel) =
1

N2

∑

i∈U

1

πi

(

1

pi
− 1

)

y2i +Var(ȳπ)

+
∑

i∈U

pi(1− pi)

πi

C2
i

+
2

N

∑

i∈U

Ci(1− pi)yi
πi

,

where Ci = ATJ−1(ν∗)Wi.

Proof of Lemma 3. Direct computation of the variance of ȳel yields:

Var(ȳel) = Var(ȳe∗ +AT [J(ν∗)]−1SL(ν
∗))

= Var(ȳe∗) + Var(AT [J(ν∗)]−1SL(ν
∗)) + 2Cov(ȳe∗ ,A

T [J(ν∗)]−1SL(ν
∗)).
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We will compute each term in above expression.

Var(ȳe∗) = Var

(

1

N

∑

i∈S

Riyi
πipi

)

=
1

N2

{

E

[

Var

(

∑

i∈S

Riyi
πipi

∣

∣

∣

∣

∣

S

)]

+Var

[

E

(

∑

i∈S

Riyi
πipi

∣

∣

∣

∣

∣

S

)]}

=
1

N2

{

E

[

∑

i∈S

pi(1− pi)y
2
i

π2
i p

2
i

]

+Var

[

∑

i∈S

yi
πi

]}

=
1

N2

{

∑

i∈U

(1− pi)y
2
i

πipi
+Var

[

∑

i∈S

yi
πi

]}

=
1

N2

∑

i∈U

(1− pi)y
2
i

πipi
+Var(ȳπ).

Denote Ci = ATJ−1(ν∗)Wi, by Lemma 2, we have:

Var(AT [J(ν∗)]−1SL(ν
∗)) = AT [J(ν∗)]−1Var(SL(ν

∗))[J(ν∗)]−1A

= AT [J(ν∗)]−1
∑

i∈U

pi(1− pi)

πi

WiWi
T [J(ν∗)]−1A

=
∑

i∈U

pi(1− pi)

πi

C2
i .

Now we compute the covariance between ȳe and AT [J(ν∗)]−1SL(ν
∗) as follows:

Cov(ȳe∗ ,A
T [J(ν∗)]−1SL(ν

∗)) = Cov

(

1

N

∑

i∈S

Riyi
πipi

,
∑

i∈S

1

πi

(Ri − pi)Ci

)

=
1

N
E

[

Cov

(

∑

i∈S

Riyi
πipi

,
∑

i∈S

1

πi

(Ri − pi)Ci

∣

∣

∣

∣

∣

S

)]

+
1

N
Cov

[

E

(

∑

i∈S

Riyi
πipi

∣

∣

∣

∣

∣

S

)

,E

(

∑

i∈S

1

πi

(Ri − pi)Ci

∣

∣

∣

∣

∣

S

)]

=
1

N
E

[

∑

i∈S

pi(1− pi)Ciyi
π2
i pi

]

+ 0

=
1

N

∑

i∈U

(1− pi)Ciyi
πi

.
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Combining the above results, we get the desired variance.

By plugging in the ν̂ to the response model, we can obtain the estimated response probability

p̂i for each individual i in the sample. Then, we are able to define the variance estimator V̂(ȳel)

appropriately. The following theorem states that the defined variance estimator is consistent for

Var(ȳel) under both the sampling mechanism and the response mechanism. The proof is in the

appendix.

Theorem 3. Under assumption D.1, D.2 and R.1-R.4, the variance estimator V̂(ȳel) is consistent

for Var(ȳel). That is:

n(V̂(ȳel)− Var(ȳel)) = op(1),

where Var(ȳel) is given in Lemma 3 and is expressed as:

Var(ȳel) =
1

N2

∑

i∈U

1

πi

(

1

pi
− 1

)

y2i +Var(ȳπ)

+AT [J(ν∗)]−1
∑

i∈U

pi(1− pi)

πi

WiWi
T [J(ν∗)]−1A

+
2

N
AT [J(ν∗)]−1

∑

i∈U

(1− pi)yi
πi

Wi

= V1 + V2 + V3 + V4

and V̂(ȳel) = V̂1 + V̂2 + V̂3 + V̂4, where:

V̂1 =
1

N2

∑

i∈S

1

π2
i

(

1

p̂i
− 1

)

y2i
Ri

p̂i
, V̂2 =

1

N2

∑

i∈S

(1− πi)y
2
i

π2
i

Ri

p̂i
+

1

N2

∑

i 6=j i,j∈S

∆ijyiyj
πijπiπj

RiRj

p̂ip̂j
,

V̂3 = ÂT [Ĵ(ν̂)]−1
∑

i∈S

p̂i(1− p̂i)

π2
i

Ri

p̂i
ŴiŴ

T
i [Ĵ(ν̂)]−1Â,

V̂4 =
2

N
ÂT [Ĵ(ν̂)]−1

∑

i∈S

(1− p̂i)yi
π2
i

Ri

p̂i
Ŵi and Â = − 1

N

∑

i∈S

BiyiRi

πip̂2i
,

Ĵ(ν̂) = −
∑

i∈S

2

πi

BiBi
T −

∑

i∈S

xiBiRi

πip̂2i
×
∑

i∈S
xi

πi
( 1
p̂i
− 1)Ri

p̂i
Bi

T

∑

i∈S
x2
iRi

2πip̂2i

,
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Ŵi = 2xi

(

1− 1

p̂i

)

∑

k∈S
xkBkRk

πkp̂
2
k

∑

k∈S
x2
k
Rk

πkp̂
2
k

− 2Bi = 2xi

(

1− 1

p̂i

)

D̂ − 2Bi,

where D =
∑

k∈U

xkBk
pk

∑
k∈U

x2
k

pk

is estimated by D̂ =

∑
k∈S

xkBkRk

πkp̂2
k

∑
k∈S

x2
k
Rk

πkp̂2
k

.

The following theorem gives the asymptotic normality of the proposed Horvitz-Thompson type

estimator. The proof is in the appendix.

Theorem 4. Under the condition D.1-D.3 and R.1-R.4, we obtain the following asymptotic nor-

mality, jointly with respect to the sampling design and the response mechanism,

ȳe − ȳU
√

V̂ (ȳel)

d−→ N(0, 1),

where ȳe =
1
N

∑

i∈S
yiRi

πip̂i
and V̂ (ȳel) is defined in Theorem 3.

2.5 Main Results for Hájek Type Estimator

In this section, we list several properties of the proposed Hájek type estimator.

Theorem 5. Under the assumption D.1-D.2 and R.1-R.3, the Hájek type nonresponse weighting

adjustment estimator ȳH =
∑

i∈S

yiRi
πip̂i∑

i∈S

Ri
πip̂i

is root-n consistent for ȳU with respect to both sampling

mechanism and response mechanism. That is,

ȳH = ȳU +Op(n
− 1

2 ).
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Proof of Theorem 5. Apply Taylor expansion to ȳH around
∑

i∈U yi
N

, we have:

ȳH − ȳU =
1

N

(

∑

i∈S

yiRi

πip̂i
−
∑

i∈U
yi

)

−
∑

i∈U yi

N2

(

∑

i∈S

Ri

πip̂i
−N

)

+Op(n
−1)

=
1

N

(

∑

i∈S

yiRi

πip̂i
− ȳU

∑

i∈S

Ri

πip̂i

)

+Op(n
−1)

= (ȳe − ȳU)− ȳU

(

1

N

∑

i∈S

Ri

πip̂i
− 1

)

+Op(n
−1).

By Theorem 2, ȳe − ȳU = Op(n
− 1

2 ), and by a similar proof of Theorem 2, we have:

1

N

∑

i∈S

Ri

πip̂i
− 1 = Op(n

− 1
2 ).

Hence, we have:

ȳH − ȳU = (ȳe − ȳU)− ȳU

(

1

N

∑

i∈S

Ri

πip̂i
− 1

)

+Op(n
−1)

= Op(n
− 1

2 ) +O(1)Op(n
− 1

2 ) +Op(n
−1)

= Op(n
− 1

2 ).

Note that we can write ȳH = ȳU + 1
N

∑

i∈S
(yi−ȳU )Ri

πip̂i
+ Op(n

−1). In order to do inference for

ȳH , we need to obtain the linearized approximation of the term 1
N

∑

i∈S
(yi−ȳU )Ri

πip̂i
first. We have
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the following:

1

N

∑

i∈S

(yi − ȳU)Ri

πip̂i
− 1

N

∑

i∈S

(yi − ȳU)Ri

πipi

=
1

N

∑

i∈S

(yi − ȳU)Ri

πi

(

1

p̂i
− 1

pi

)

=
1

N

∑

i∈S

(yi − ȳU)Ri

πi

[(

− 1

p2i
Bi

)

(ν̂ − ν∗) + 0.5(ν̂ − ν∗)T
(

2

p3i (ν̈)
BiBi

T

)

(ν̂ − ν∗)

]

=

[

− 1

N

∑

i∈S

(yi − ȳU)RiBi

πip2i

]

(ν̂ − ν∗) +Op(n
−1)

=

[

− 1

N

∑

i∈S

(yi − ȳU)Bi

πipi
− 1

N

∑

i∈S

(yi − ȳU)(Ri − pi)Bi

πip2i

]

(ν̂ − ν∗) +Op(n
−1).

Since Bi satisfies the same population moments as xi itself, by a similar argument for showing

(2.9), we have that 1
N

∑

i∈S
(yi−ȳU )Bi

πipi
= 1

N

∑

i∈U
(yi−ȳU )Bi

pi
+Op(n

− 1
2 ). Also, by a similar argument

of showing B = Op(N
− 1

2 ) in Theorem 2, we have 1
N

∑

i∈S
(yi−ȳU )(Ri−pi)Bi

πip2i
= Op(N

− 1
2 ), thus:

1

N

∑

i∈S

(yi − ȳU)Ri

πip̂i
− 1

N

∑

i∈S

(yi − ȳU)Ri

πipi

=

[

− 1

N

∑

i∈U

(yi − ȳU)Bi

pi
+Op(n

− 1
2 ) +Op(N

− 1
2 )

]

(ν̂ − ν∗) +Op(n
−1)

=

[

− 1

N

∑

i∈U

(yi − ȳU)Bi

pi

]

(ν̂ − ν∗) +Op(n
−1)

=

[

− 1

N

∑

i∈U

(yi − ȳU)Bi

pi

]

I−1(ν∗)SL(ν
∗) + op(n

− 1
2 ) +Op(n

−1)

=

[

− 1

N

∑

i∈U

(yi − ȳU)Bi

pi

]{

{

1

N
J(ν∗)

}−1

+O

(

1

N

)

}

1

N
SL(ν

∗) + op(n
− 1

2 )

=

[

− 1

N

∑

i∈U

(yi − ȳU)Bi

pi

]

[J(ν∗)]−1SL(ν
∗) + op(n

− 1
2 )

= AT
H [J(ν

∗)]−1SL(ν
∗) + op(n

− 1
2 ),
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where AT
H = − 1

N

∑

i∈U
(yi−ȳU )Bi

pi
and J(ν∗), SL(ν

∗) are as defined previously. Therefore, we can

write ȳH as:

ȳH = ȳU +
1

N

∑

i∈S

(yi − ȳU)Ri

πipi
+AT

H [J(ν
∗)]−1SL(ν

∗) + op(n
− 1

2 ) +Op(n
−1)

= ȳU +
1

N

∑

i∈S

(yi − ȳU)Ri

πipi
+AT

H [J(ν
∗)]−1SL(ν

∗) + op(n
− 1

2 )

= ȳU + ȳHL + op(n
− 1

2 ), (2.14)

where ȳHL = 1
N

∑

i∈S
(yi−ȳU )Ri

πipi
+AT

H [J(ν
∗)]−1SL(ν

∗), so the variance of ȳH can be approximated

by the variance of ȳHL.

Lemma 4. Under assumption D.1, D.2 and R.1-R.4, the variance of ȳHL is given by:

Var(ȳHL) =
1

N2

∑

i∈U

1

πi

(

1

pi
− 1

)

(yi − ȳU)
2 +

1

N2

∑

i,j∈U
∆ij

(yi − ȳU)(yj − ȳU)

πiπj

+
∑

i∈U

pi(1− pi)

πi

C2
Hi

+
2

N

∑

i∈U

CHi(1− pi)(yi − ȳU)

πi

,

where CHi = AT
H [J(ν

∗)]−1Wi.

Proof of Lemma 4. Direct computation of Var(ȳHL) yields:

Var(ȳHL) = Var

(

1

N

∑

i∈S

(yi − ȳU)Ri

πipi
+AT

H [J(ν
∗)]−1SL(ν

∗)

)

= Var

(

1

N

∑

i∈S

(yi − ȳU)Ri

πipi

)

+Var(AT
H [J(ν

∗)]−1SL(ν
∗))

+ 2Cov

(

1

N

∑

i∈S

(yi − ȳU)Ri

πipi
,AT

H [J(ν
∗)]−1SL(ν

∗)

)

,
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where we have:

Var

(

1

N

∑

i∈S

(yi − ȳU)Ri

πipi

)

=
1

N2

{

E

[

Var

(

∑

i∈S

Ri(yi − ȳU)

πipi

∣

∣

∣

∣

∣

S

)]

+Var

[

E

(

∑

i∈S

Ri(yi − ȳU)

πipi

∣

∣

∣

∣

∣

S

)]}

=
1

N2

{

E

[

∑

i∈S

pi(1− pi)(yi − ȳU)
2

π2
i p

2
i

]

+Var

[

∑

i∈S

(yi − ȳU)

πi

]}

=
1

N2

{

∑

i∈U

(1− pi)(yi − ȳU)
2

πipi
+
∑

i,j∈U
∆ij

(yi − ȳU)(yj − ȳU)

πiπj

}

=
1

N2

∑

i∈U

1

πi

(

1

pi
− 1

)

(yi − ȳU)
2 +

1

N2

∑

i,j∈U
∆ij

(yi − ȳU)(yj − ȳU)

πiπj

.

By Lemma 2, we have:

Var(AT
H [J(ν

∗)]−1SL(ν
∗)) = AT

H [J(ν
∗)]−1Var(SL(ν

∗))[J(ν∗)]−1AH

=AT
H [J(ν

∗)]−1
∑

i∈U

pi(1− pi)

πi

WiWi
T [J(ν∗)]−1AH =

∑

i∈U

pi(1− pi)

πi

C2
Hi,

where CHi = AT
H [J(ν

∗)]−1Wi. Now, the covariance is given by:

Cov

(

1

N

∑

i∈S

(yi − ȳU)Ri

πipi
,AT

H [J(ν
∗)]−1SL(ν

∗)

)

= Cov

(

1

N

∑

i∈S

Ri(yi − ȳU)

πipi
,
∑

i∈S

1

πi

(Ri − pi)CHi

)

=
1

N
E

[

Cov

(

∑

i∈S

Ri(yi − ȳU)

πipi
,
∑

i∈S

1

πi

(Ri − pi)CHi

∣

∣

∣

∣

∣

S

)]

+
1

N
Cov

[

E

(

∑

i∈S

Ri(yi − ȳU)

πipi

∣

∣

∣

∣

∣

S

)

,E

(

∑

i∈S

1

πi

(Ri − pi)CHi

∣

∣

∣

∣

∣

S

)]

=
1

N
E

[

∑

i∈S

pi(1− pi)CHi(yi − ȳU)

π2
i pi

]

+ 0

=
1

N

∑

i∈U

(1− pi)CHi(yi − ȳU)

πi

.
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Combining the above results, we get the variance of ȳHL.

In the following, we showed that the variance estimator V̂ (ȳHL) is consistent for Var(ȳHL).

Also, we derived the asymptotic normality of the Hájek type estimator. The proofs are in the

appendix.

Theorem 6. Under assumption D.1, D.2 and R.1-R.4, the variance estimator V̂ (ȳHL) is consistent

for Var(ȳHL). That is:

n(V̂ (ȳHL)− Var(ȳHL)) = op(1),

where Var(ȳHL) is given in Lemma 4 and V̂ (ȳHL) = V̂H1 + V̂H2 + V̂H3 + V̂H4, in which each term

is defined as follows:

V̂H1 =
1

N̂2

∑

i∈S

1

π2
i

(

1

p̂i
− 1

)

(yi − ȳH)
2Ri

p̂i
,

V̂H2 =
1

N̂2

∑

i∈S

(1− πi)(yi − ȳH)
2

π2
i

Ri

p̂i
+

1

N̂2

∑

i 6=j i,j∈S

∆ij(yi − ȳH)(yj − ȳH)

πijπiπj

RiRj

p̂ip̂j
,

V̂H3 = ÂT
H [Ĵ(ν̂)]

−1
∑

i∈S

p̂i(1− p̂i)

π2
i

Ri

p̂i
ŴiŴ

T
i [Ĵ(ν̂)]−1ÂT

H ,

V̂H4 =
2

N̂
ÂT

H [Ĵ(ν̂)]
−1
∑

i∈S

(1− p̂i)(yi − ȳH)

π2
i

Ri

p̂i
Ŵi,

where N̂ =
∑

i∈S
Ri

πip̂i
, ÂH = − 1

N̂

∑

i∈S
Bi(yi−ȳH)Ri

πip̂2i
, Ĵ(ν̂) and Ŵi are defined in Theorem 3.

Theorem 7. Under the condition D.1-D.3 and R.1-R.4, we obtain the following asymptotic nor-

mality for the Hájek type estimator, jointly with respect to the sampling design and the response

mechanism,

ȳH − ȳU
√

V̂ (ȳHL)

d−→ N(0, 1),

where ȳH =
∑

i∈S

yiRi
πip̂i∑

i∈S

Ri
πip̂i

and V̂ (ȳHL) is defined in Theorem 6.
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2.6 Simulation Study

A simulation study was conducted to evaluate the finite-sample performance of the proposed

estimators. Here, we set the population size N = 10000. The response model is generated by linear

model pi = γ0 + γ1x1i + γ2x2i, where x1 and x2 are independently and identically distributed

uniform (0,1) variables. Letting γ0 = 0.1 and setting the values of γ1 and γ2 differently, we

considered the following 7 response models:

(1) pi = 0.1 + 0x1i + 0.9x2i; (2) pi = 0.1 + 0.1x1i + 0.8x2i;

(3) pi = 0.1 + 0.25x1i + 0.65x2i; (4) pi = 0.1 + 0.45x1i + 0.45x2i;

(5) pi = 0.1 + 0.65x1i + 0.25x2i; (6) pi = 0.1 + 0.8x1i + 0.1x2i;

(7) pi = 0.1 + 0.9x1i + 0x2i.

First note that by setting the parameter value appropriately, we make the pi ∈ (0.1, 1), ∀i. Also,

from (1) to (7), we make the contribution of covariate x1 to the response model increase and

thus the contribution of x2 to the response model decreases accordingly. In doing so, we want

to see whether the importance of the calibrated variable towards the response model affect the

performance of the proposed estimator.

In terms of the outcome model, we consider the simple linear models. Since we want to cali-

brate on different covariates in the response model, so we set the outcome model as follows:

(1) yi = 4x1i + ǫi; (2) yi = 10x1i + ǫi;

(3) yi = 4x2i + ǫi; (4) yi = 10x2i + ǫi;

where ǫi are generated from N(0, 1) independently. Here, study variable is thought to be weakly

correlated with xi(i = 1, 2) when coefficient is 4 and strongly correlated with xi(i = 1, 2) when

coefficient equals 10. Intuitively, strong correlation between calibrated variable and study variable
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implies good effect of the calibration equation, which in turn indicate the good performance of the

proposed estimator.

From each of the realized finite populations, a simple random sample of size n = 400 is gen-

erated without replacement. The response indicator variable Ri are generated from the Bernoulli

distribution with probability pi = γ0 + γ1x1i + γ2x2i. The finite populations of (yi; x1i; x2i) are

fixed and Ri is random in the Monte Carlo sampling. The study variable yi is observed if and only

if Ri = 1. The auxiliary variables x1 and x2 are observed throughout the sample. The Monte Carlo

sample sizes are all set to be B = 10, 000. In terms of the algorithm, since we are faced with a

nonlinear constrained optimization problem, we use the algorithms from “NLopt" package to get

the estimates of the parameters in the response model. In detail, we used the global optimization

algorithm “ISRES" to find the global optimum. Then, setting the global optimum as a starting

point, we applied the local optimization algorithm “LBFGS" to "polish" the optimum to a greater

accuracy. The details for algorithms “ISRES" and “LBFGS" can be found in Runarsson and Yao

(2000) and Liu and Nocedal (1989), respectively.

Using the Monte Carlo samples generated above, we computed: (1) Relative bias of ȳẽ, ȳe, ȳH̃ ,

ȳH and ȳĤ . The estimators ȳe and ȳH are defined in (2.7) and (2.8), respectively. In terms of the

estimator ȳẽ, the response probability is estimated only by least square criterion without calibra-

tion. The estimator ȳH̃ is the “Hájek type" of ȳẽ. We define the estimator ȳĤ =
∑

i∈S

yiRi
πip̂H∑

i∈S

Ri
πip̂H

, where

p̂H = Biν̂H and ν̂H is estimated by the least square criterion subject to

∑
i∈S

xi
πi∑

i∈S
1
πi

=
∑

i∈S

xi
πi

Ri
Biν∑

i∈S
1
πi

Ri
Biν

.

In practice, we prefer this “Hájek type" calibration equation since it may be more efficient in real

applications; (2) The ratio of
MSE(ȳe)
MSE(ȳẽ)

,
MSE(ȳH)
MSE(ȳ

H̃
)

and
MSE(ȳ

Ĥ
)

MSE(ȳ
H̃
)
; (3) Relative biases of the variance

estimator for ȳe and ȳH , compared with corresponding theoretical asymptotic variance; (4) Cover-

age of 95 percent confidence interval for ȳe, ȳH and ȳĤ . All the simulation results are reported in

the following tables.

The tables for the 7 response models present the Monte Carlo relative biases of the 5 non-

response weighting adjustment estimators obtained from the simulation study. The Monte Carlo
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Table 2.1: Relative biases of the 5 nonresponse weighting adjustment estimator, based on 10,000 samples.

For response model (1): pi = 0.1 + 0x1i + 0.9x2i

calibrate on x1 calibrate on x2

estimator model1 model2 model3 model4 model1 model2 model3 model4

ȳẽ -0.1808 -0.2218 0.0474 0.0063 -0.1808 -0.2218 0.0474 0.0063

ȳe -0.2994 -0.3333 0.1386 0.0981 -0.1456 -0.1847 0.0596 0.0197

ȳH̃ 0.1561 0.1160 0.4307 0.3905 0.1561 0.1160 0.4307 0.3905

ȳH 0.0793 0.0384 0.5199 0.4782 0.1559 0.1147 0.4188 0.3765

ȳĤ 0.1072 0.0732 0.8183 0.7789 0.1527 0.1066 0.4999 0.4573

Table 2.2: Relative biases of the 5 nonresponse weighting adjustment estimator, based on 10,000 samples.

For response model (2): pi = 0.1 + 0.1x1i + 0.8x2i

calibrate on x1 calibrate on x2

estimator model1 model2 model3 model4 model1 model2 model3 model4

ȳẽ 0.1296 0.1044 -0.0044 -0.0297 0.1296 0.1044 -0.0044 -0.0297

ȳe 0.0395 0.0143 0.0399 0.0149 0.1598 0.1349 0.0076 -0.0175

ȳH̃ 0.1943 0.1695 0.0790 0.0541 0.1943 0.1695 0.0790 0.0541

ȳH 0.1568 0.1311 0.1512 0.1275 0.1930 0.1682 0.0697 0.0457

ȳĤ 0.1769 0.1530 0.3585 0.3336 0.2596 0.2358 0.1319 0.1033

Table 2.3: Relative biases of the 5 nonresponse weighting adjustment estimator, based on 10,000 samples.

For response model (3): pi = 0.1 + 0.25x1i + 0.65x2i

calibrate on x1 calibrate on x2

estimator model1 model2 model3 model4 model1 model2 model3 model4

ȳẽ 0.0868 0.0667 -0.0065 -0.0267 0.0868 0.0667 -0.0065 -0.0267

ȳe 0.0781 0.0581 0.0195 -0.0012 0.0934 0.0729 -0.0055 -0.0257

ȳH̃ 0.1337 0.1139 0.0447 0.0249 0.1337 0.1139 0.0447 0.0249

ȳH 0.1302 0.1099 0.0659 0.0470 0.1343 0.1142 0.0453 0.0252

ȳĤ 0.1460 0.1254 0.2443 0.2221 0.2458 0.2230 0.055 0.0341

relative bias is computed by the following:

Percentage Relative Bias =
E(·)− ȳU

ȳU
× 100%.
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Table 2.4: Relative biases of the 5 nonresponse weighting adjustment estimator, based on 10,000 samples.

For response model (4) pi = 0.1 + 0.45x1i + 0.45x2i

calibrate on x1 calibrate on x2

estimator model1 model2 model3 model4 model1 model2 model3 model4

ȳẽ 0.0745 0.0635 -0.0290 -0.0399 0.0745 0.0635 -0.0290 -0.0399

ȳe 0.0717 0.0619 -0.0242 -0.0334 0.0859 0.0745 -0.0251 -0.0354

ȳH̃ 0.1109 0.0998 0.0077 -0.0033 0.1109 0.0998 0.0077 -0.0033

ȳH 0.1129 0.1020 0.0143 0.0034 0.1145 0.1045 0.0088 -0.003

ȳĤ 0.1277 0.1147 0.1574 0.1385 0.2574 0.2513 0.0307 0.0170

Table 2.5: Relative biases of the 5 nonresponse weighting adjustment estimator, based on 10,000 samples.

For response model (5) pi = 0.1 + 0.65x1i + 0.25x2i

calibrate on x1 calibrate on x2

estimator model1 model2 model3 model4 model1 model2 model3 model4

ȳẽ 0.0511 0.0559 -0.0480 -0.0433 0.0511 0.0559 -0.0480 -0.0433

ȳe 0.0511 0.0560 -0.0427 -0.0384 0.0764 0.0830 -0.0588 -0.0526

ȳH̃ 0.1113 0.1161 0.0076 0.0125 0.1113 0.1161 0.0076 0.0125

ȳH 0.1115 0.1169 0.0086 0.0134 0.1327 0.1358 0.0002 0.0050

ȳĤ 0.1167 0.1171 0.1186 0.1206 0.310 0.3113 0.0112 0.0204

Table 2.6: Relative biases of the 5 nonresponse weighting adjustment estimator, based on 10,000 samples.

For response model (6) pi = 0.1 + 0.8x1i + 0.1x2i

calibrate on x1 calibrate on x2

estimator model1 model2 model3 model4 model1 model2 model3 model4

ȳẽ 0.0620 0.0608 -0.0241 -0.0254 0.062 0.0608 -0.0241 -0.0254

ȳe 0.0676 0.0655 -0.0019 -0.0026 0.1234 0.1125 -0.0906 -0.0889

ȳH̃ 0.1591 0.1588 0.0554 0.0551 0.1591 0.1588 0.0554 0.0551

ȳH 0.1516 0.1512 0.0560 0.0541 0.2144 0.2196 0.0193 0.019

ȳĤ 0.1859 0.1892 0.1237 0.1274 0.4459 0.4438 0.0411 0.0417

The results from Table 2.1 to Table 2.7 reveal that the relative biases of the five estimators are all

very small with absolute values less than 1 percent, across all 7 settings of the response model.

In term of the ratio of MSEs, from Table 2.8 to Table 2.14, we found that the performance of

ȳe wins over ȳẽ in some scenario, depending both on response model specification and outcome
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Table 2.7: Relative biases of the 5 nonresponse weighting adjustment estimator, based on 10,000 samples.

For response model (7): pi = 0.1 + 0.9x1i + 0x2i

calibrate on x1 calibrate on x2

estimator model1 model2 model3 model4 model1 model2 model3 model4

ȳẽ 0.0882 0.0866 -0.3976 -0.3993 0.0882 0.0866 -0.3976 -0.3993

ȳe 0.0917 0.0904 -0.3735 -0.3728 0.2022 0.2077 -0.4615 -0.4522

ȳH̃ 0.5082 0.5087 -0.0223 -0.0218 0.5082 0.5087 -0.0223 -0.0218

ȳH 0.4989 0.4968 -0.0246 -0.0213 0.5662 0.5666 -0.0896 -0.087

ȳĤ 0.5448 0.5475 -0.0232 -0.0239 0.9057 0.8998 -0.0543 -0.0553

model. While, the performance of ȳĤ , compared with ȳH̃ , only depends on the outcome model,

regardless of the simple linear form response model. More specifically, for the Horvitz-Thompson

type estimator ȳe, when the calibrated variable contributes less to the linear response model and

correlates more with the study variable, the performance of the ȳe, compared with ȳẽ, will be better.

If there is a strong correlation between calibrated variable and the response probability, the perfor-

mance of ȳe is close (or slightly better) to the performance of ȳẽ when study variable depends on

the calibrated variable and slightly weaker than the performance of ȳẽ when study variable does

not depends on the calibrated variable. The reason may be that the less the calibrated variable con-

tributes to the linear response model, the more the calibration equation will twist the estimate from

the least square criterion, which eventually makes our proposed estimator perform better. For the

Hájek type estimator ȳĤ , no matter how the simple linear response model is specified, ȳĤ has much

smaller MSE, compared with ȳH̃ , when the study variable correlates with the calibrated variable

and ȳĤ performs close to ȳH̃ when study variable does not depend on the calibrated variable.

We also computed the relative bias of the variance estimator of ȳe and ȳH , compared with the

corresponding theoretical asymptotic variance, from the Monte Carlo samples. The relative bias is

calculated by the following formula:

Relative Bias =
mean(V̂ (·))− V (·)

V (·) × 100%.
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Table 2.8: The ratio of MSEs, based on 10,000 samples. For response model (1): pi = 0.1 + 0x1i + 0.9x2i

calibrate on x1 calibrate on x2

model1 model2 model3 model4 model1 model2 model3 model4

MSE(ȳe)
MSE(ȳẽ)

0.79 0.68 1.06 1.14 1.06 1.09 0.99 0.98
MSE(ȳH)
MSE(ȳ

H̃
)

0.96 0.92 0.92 0.87 1.00 1.00 1.01 1.02
MSE(ȳ

Ĥ
)

MSE(ȳ
H̃
)

0.87 0.76 1.01 1.04 1.00 1.00 0.85 0.72

Table 2.9: The ratio of MSEs, based on 10,000 samples. For response model (2): pi = 0.1+0.1x1i+0.8x2i

calibrate on x1 calibrate on x2

model1 model2 model3 model4 model1 model2 model3 model4

MSE(ȳe)
MSE(ȳẽ)

0.87 0.76 1.04 1.09 1.06 1.11 0.99 0.97
MSE(ȳH)
MSE(ȳ

H̃
)

0.97 0.96 0.95 0.92 1.00 1.00 1.01 1.01
MSE(ȳ

Ĥ
)

MSE(ȳ
H̃
)

0.89 0.80 0.99 1.00 1.00 1.00 0.87 0.76

Table 2.10: The ratio of MSEs, based on 10,000 samples. For response model (3): pi = 0.1 + 0.25x1i +

0.65x2i

calibrate on x1 calibrate on x2

model1 model2 model3 model4 model1 model2 model3 model4

MSE(ȳe)
MSE(ȳẽ)

0.96 0.92 1.02 1.04 1.03 1.06 0.99 0.98
MSE(ȳH)
MSE(ȳ

H̃
)

0.99 0.98 0.99 0.98 1.00 1.0 1.00 1.0
MSE(ȳ

Ĥ
)

MSE(ȳ
H̃
)

0.91 0.83 0.97 0.96 0.98 0.97 0.90 0.82

Table 2.11: The ratio of MSEs, based on 10,000 samples. For response model (4): pi = 0.1 + 0.45x1i +

0.45x2i

calibrate on x1 calibrate on x2

model1 model2 model3 model4 model1 model2 model3 model4

MSE(ȳe)
MSE(ȳẽ)

0.98 0.97 1.01 1.03 1.01 1.03 0.98 0.97
MSE(ȳH)
MSE(ȳ

H̃
)

0.99 0.99 1.00 1.00 1.0 1.0 0.99 0.99
MSE(ȳ

Ĥ
)

MSE(ȳ
H̃
)

0.91 0.84 0.97 0.94 0.97 0.95 0.91 0.84
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Table 2.12: The ratio of MSEs, based on 10,000 samples. For response model (5): pi = 0.1 + 0.65x1i +

0.25x2i

calibrate on x1 calibrate on x2

model1 model2 model3 model4 model1 model2 model3 model4

MSE(ȳe)
MSE(ȳẽ)

0.99 0.98 1.03 1.06 1.02 1.05 0.95 0.91
MSE(ȳH)
MSE(ȳ

H̃
)

1.00 1.00 1.0 0.99 0.99 0.98 0.99 0.98
MSE(ȳ

Ĥ
)

MSE(ȳ
H̃
)

0.90 0.82 0.98 0.96 0.98 0.97 0.91 0.84

Table 2.13: The ratio of MSEs, based on 10,000 samples. For response model (6): pi = 0.1+0.8x1i+0.1x2i

calibrate on x1 calibrate on x2

model1 model2 model3 model4 model1 model2 model3 model4

MSE(ȳe)
MSE(ȳẽ)

0.99 0.98 1.06 1.10 1.09 1.08 0.87 0.77
MSE(ȳH)
MSE(ȳ

H̃
)

1.00 1.01 0.99 1.00 0.96 0.93 0.97 0.96
MSE(ȳ

Ĥ
)

MSE(ȳ
H̃
)

0.88 0.77 1.00 0.99 1.00 1.00 0.89 0.79

Table 2.14: The ratio of MSEs, based on 10,000 samples. For response model (7): pi = 0.1+0.9x1i+0x2i

calibrate on x1 calibrate on x2

model1 model2 model3 model4 model1 model2 model3 model4

MSE(ȳe)
MSE(ȳẽ)

0.99 0.98 1.05 1.09 1.06 1.21 0.78 0.65
MSE(ȳH)
MSE(ȳ

H̃
)

1.01 1.02 1.00 1.0 0.94 0.89 0.95 0.92
MSE(ȳ

Ĥ
)

MSE(ȳ
H̃
)

0.86 0.74 1.00 1.01 1.02 1.05 0.85 0.74

Based on the results from Table 2.15 to Table 2.21, we see that the relative biases of the variance

estimator for all combinations of response model and outcome model are less than 9%, with most

of the relative biases less than 2%, which coincide with Theorem 3 and Theorem 6.

We also computed interval estimators for 95% nominal coverage for ȳe, ȳH and ȳĤ . The Ta-

ble 2.22 to Table 2.28 displays the actual coverages of 95% confidence intervals. The confidence

intervals are calculated by (θ̂ − 1.96
√

V̂ , θ̂ + 1.96
√

V̂ ), where θ̂ a point estimate and V̂ is its

estimated variance. Note that here we use the variance estimate of ȳH as a substitution for the vari-
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Table 2.15: Relative biases of the variance estimator of ȳe and ȳH , compared with its corresponding theo-

retical asymptotic variance, based on 10,000 samples. For response model (1): pi = 0.1 + 0x1i + 0.9x2i

calibrate on x1 calibrate on x2

estimator model1 model2 model3 model4 model1 model2 model3 model4

V̂ (ȳe) -1.49 0.88 -2.79 -1.70 2.63 4.51 -0.56 0.14

V̂ (ȳH) -1.16 0.59 -1.76 -0.27 0.43 1.69 0.12 1.64

Table 2.16: Relative biases of the variance estimator of ȳe and ȳH , compared with its corresponding theo-

retical asymptotic variance, based on 10,000 samples. For response model (2): pi = 0.1 + 0.1x1i + 0.8x2i

calibrate on x1 calibrate on x2

estimator model1 model2 model3 model4 model1 model2 model3 model4

V̂ (ȳe) 0.29 1.00 -0.14 0.21 4.89 8.25 0.62 0.5334

V̂ (ȳH) 1.00 2.30 0.63 1.70 1.60 2.71 3.14 5.69

Table 2.17: Relative biases of the variance estimator of ȳe and ȳH , compared with its corresponding theo-

retical asymptotic variance, based on 10,000 samples. For response model (3): pi = 0.1+0.25x1i+0.65x2i

calibrate on x1 calibrate on x2

estimator model1 model2 model3 model4 model1 model2 model3 model4

V̂ (ȳe) 0.69 0.86 0.64 0.83 1.94 3.04 0.64 0.57

V̂ (ȳH) 1.75 2.97 1.44 2.44 1.60 2.50 2.48 4.25

Table 2.18: Relative biases of the variance estimator of ȳe and ȳH , compared with its corresponding theo-

retical asymptotic variance, based on 10,000 samples. For response model (4) pi = 0.1+0.45x1i+0.45x2i

calibrate on x1 calibrate on x2

estimator model1 model2 model3 model4 model1 model2 model3 model4

V̂ (ȳe) 0.54 0.59 0.94 1.44 0.97 1.40 0.53 0.62

V̂ (ȳH) 2.04 3.49 1.56 2.62 1.61 2.64 2.05 3.54

ance estimate of ȳĤ . There are two reasons for this substitution. First, the theoretical asymptotic

variance of ȳĤ is very hard to derive and thus we don’t have the explicit expression for variance

estimator of ȳĤ . Second, the simulation study shows that the ν̂ is very close to ν̂H , so it’s safe to
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Table 2.19: Relative biases of the variance estimator of ȳe and ȳH , compared with its corresponding theo-

retical asymptotic variance, based on 10,000 samples. For response model (5) pi = 0.1+0.65x1i+0.25x2i

calibrate on x1 calibrate on x2

estimator model1 model2 model3 model4 model1 model2 model3 model4

V̂ (ȳe) 0.42 0.44 1.80 3.08 0.49 0.76 0.50 0.82

V̂ (ȳH) 2.17 4.03 1.29 2.32 1.18 2.24 1.47 2.82

Table 2.20: Relative biases of the variance estimator of ȳe and ȳH , compared with its corresponding theo-

retical asymptotic variance, based on 10,000 samples. For response model (6): pi = 0.1 + 0.8x1i + 0.1x2i

calibrate on x1 calibrate on x2

estimator model1 model2 model3 model4 model1 model2 model3 model4

V̂ (ȳe) 0.46 0.41 4.77 8.16 -0.08 0.21 0.22 1.01

V̂ (ȳH) 2.93 5.51 1.36 2.50 0.53 1.53 0.82 2.15

Table 2.21: Relative biases of the variance estimator of ȳe and ȳH , compared with its corresponding theo-

retical asymptotic variance, based on 10,000 samples. For response model (7): pi = 0.1 + 0.9x1i + 0x2i

calibrate on x1 calibrate on x2

estimator model1 model2 model3 model4 model1 model2 model3 model4

V̂ (ȳe) -0.71 0.05 1.97 4.05 -2.61 -1.55 -1.60 0.88

V̂ (ȳH) 0.31 1.68 0.09 1.42 -1.68 -0.31 -1.31 0.46

make this substitution. In fact, in most cases, the Monte Carlo variance of ȳH is larger than that

of ȳĤ , so we are “conservative" to replace the variance estimate of ȳĤ with variance estimate of

ȳH . From the results in Table 2.22 through Table 2.28, for all combinations of response model and

outcome model, the coverage probabilities are all above 91.5%, with most coverage probabilities

around 95%, which agree with the asymptotic normality of ȳe and ȳH in Theorem 4 and Theorem

7.
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Table 2.22: Coverage of 95 percent confidence interval for proposed estimators, based on 10,000 samples.

For response model (1): pi = 0.1 + 0x1i + 0.9x2i

calibrate on x1 calibrate on x2

estimate model1 model2 model3 model4 model1 model2 model3 model4

ȳe 94.08 93.16 93.97 94.11 94.71 95.02 94.67 94.74

ȳH 94.52 94.53 93.85 93.89 94.76 94.8 94.1 94.15

ȳĤ 95.48 96.58 92.67 91.22 94.66 94.62 95.87 97.25

Table 2.23: Coverage of 95 percent confidence interval for proposed estimators, based on 10,000 samples.

For response model (2): pi = 0.1 + 0.1x1i + 0.8x2i

calibrate on x1 calibrate on x2

estimator model1 model2 model3 model4 model1 model2 model3 model4

ȳe 94.86 94.99 94.61 94.61 94.98 95.21 94.92 94.92

ȳH 94.99 95.22 94.83 94.64 95.02 95.29 94.93 94.96

ȳĤ 95.72 96.59 94.1 93.69 94.89 95.03 96.18 97.29

Table 2.24: Coverage of 95 percent confidence interval for proposed estimators, based on 10,000 samples.

For response model (3): pi = 0.1 + 0.25x1i + 0.65x2i

calibrate on x1 calibrate on x2

estimate model1 model2 model3 model4 model1 model2 model3 model4

ȳe 95 95.16 94.6 94.8 94.93 94.99 94.73 94.95

ȳH 94.79 95.02 94.74 94.88 94.81 94.94 94.72 94.99

ȳĤ 95.67 96.47 94.66 94.83 95.09 95.26 95.74 96.69

Table 2.25: Coverage of 95 percent confidence interval for proposed estimators, based on 10,000 samples.

For response model (4) pi = 0.1 + 0.45x1i + 0.45x2i

calibrate on x1 calibrate on x2

estimate model1 model2 model3 model4 model1 model2 model3 model4

ȳe 95.06 95.02 94.56 94.73 94.94 95.07 94.53 94.8

ȳH 94.94 94.99 94.27 94.89 94.85 94.92 94.43 94.92

ȳĤ 95.74 96.44 94.61 95.16 95.2 95.15 95.35 96.15
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Table 2.26: Coverage of 95 percent confidence interval for proposed estimators, based on 10,000 samples.

For response model (5) pi = 0.1 + 0.65x1i + 0.25x2i

calibrate on x1 calibrate on x2

estimate model1 model2 model3 model4 model1 model2 model3 model4

ȳe 94.81 95.01 94.29 94.56 94.79 95 94.35 94.68

ȳH 94.81 94.7 94.35 94.71 94.69 94.58 94.37 94.76

ȳĤ 95.66 96.77 94.47 95.02 94.63 94.61 95.25 96.3

Table 2.27: Coverage of 95 percent confidence interval for proposed estimators, based on 10,000 samples.

For response model (6): pi = 0.1 + 0.8x1i + 0.1x2i

calibrate on x1 calibrate on x2

estimate model1 model2 model3 model4 model1 model2 model3 model4

ȳe 94.71 95.25 94.18 94.76 94.5 94.81 94.32 94.77

ȳH 94.62 94.8 94.33 94.45 94.53 94.65 94.36 94.63

ȳĤ 96.01 97.38 94.22 94.56 93.82 93.51 95.17 96.65

Table 2.28: Coverage of 95 percent confidence interval for proposed estimators, based on 10,000 samples.

For response model (7): pi = 0.1 + 0.9x1i + 0x2i.

calibrate on x1 calibrate on x2

estimate model1 model2 model3 model4 model1 model2 model3 model4

ȳe 94.72 95.11 94.17 94.41 94.4 94.43 93.75 93.34

ȳH 94.61 94.45 94.31 94.58 94.13 93.85 94.28 94.58

ȳĤ 96.28 97.6 94.19 94.29 93.03 91.55 95.51 96.43

2.7 Conclusion

In this chapter, we studied the properties of the nonresponse weighting adjustment estimators

where the response probability is modeled in linear form and the parameters are estimated by

fitting a constrained least square regression model, with the constraint being a calibration equation.

Both Horvitz-Thompson type estimator and Hájek type estimator are considered in this article.

In theory, both estimators are shown to be asymptotically unbiased for the population mean and

variance estimators of ȳe and ȳH are also shown to be consistent to the corresponding asymptotic
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variance. Furthermore, under the regular design assumptions, we proved that both estimators are

asymptotically normally distributed. All the asymptotic properties are supported by the simulation

study, where we set the response probability model to be a simple linear model.

From simulation study, our proposed Horvitz-Thompson type estimator works significantly

better than its corresponding unconstrained estimator when the calibrated variable is highly cor-

related with the study variable and contribute less to the response model. In contrast, under the

simple linear response model setting, the Hájek type estimator perform better, as long as the cali-

brated variable is correlated with the study variable to some degree.

The method we proposed is simple and easy to be implemented in real surveys, compared with

other complex estimation technique. Also, the response model can be specified very flexibly. Yet,

response model selection and how to bound the estimated response probability may be the topics

we need to look into in the future.
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Chapter 3

Improved Variance Estimation for Inequality

Constrained Domain Mean Estimators Using Survey

Data

3.1 Statement of the Problem and Literature Review

We begin by reviewing the classical domain means estimator and establishing notation. Let

U = {1, 2, · · · , N} denote the finite population of size N . For example, this might represent all

salaried employees in the United States. A sample s ⊂ U is to be drawn from the population

according to probability sampling design p, where p(s) is the probability of drawing the sample

s. The design determines the first order inclusion probability πi = Pr(i ∈ s) =
∑

i∈s p(s),

which is assumed to be positive for all i = 1, . . . , N . The second order inclusion probability is

πij = Pr(i, j ∈ s) =
∑

i,j∈s p(s), which is assumed to be positive for all i, j ∈ U . We denote the

sample membership indicator Ii(s) = 1 if i ∈ s and Ii(s) = 0 otherwise.

To define the domains of interest, let {Ud : d = 1, · · · , D} be a partition of the population U

and Nd be the population size of domain Ud, where D is the fixed number of domains. These do-

mains might be formed by a single variable, such as job level, or might be a grid of domains formed

by several variables, such as job level, job type, and location. We denote by sd the intersection of

s and Ud. Let n be the sample size, and let nd be the sample size for sd.

Next we consider a study variable y, for which we are interested in estimating the population

domain means. For example, y might be salary, and we denote by yi the salary of the ith individual

in the population. The population domain means are ȳU = (ȳU1 , · · · , ȳUD
)′, where ȳUd

is given by:

ȳUd
=

∑

i∈Ud
yi

Nd

d = 1, · · · , D.
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The goal is to estimate the ȳUd
and provide inference such as confidence intervals. When no qual-

itative information such as ordering is available about the population domain means, the Horvitz-

Thompson (HT) type (Horvitz and Thompson (1952)) estimator ŷsd or the Hájek estimator ỹsd

(Hájek (1971)) may be used. These are

ŷsd =

∑

i∈sd yi/πi

Nd

, and ỹsd =

∑

i∈sd yi/πi

N̂d

respectively, where N̂d =
∑

i∈sd 1/πi. The Hájek estimator is often more useful in practice because

it does not require information about the population domain size Nd, so we will focus only on

properties based on the Hájek type estimator in this paper, which we refer to as the unconstrained

estimators of ȳUd
. The results for HT estimator, however, can be derived analogously.

The unconstrained estimators might have large variance, especially when the sample sizes nd

are small. In practice, some of the nd can be small even with large surveys, if there is a grid of

many domains. It is helpful to use a priori knowledge regarding the population domain means.

For example, the population domain means might be expected to increasing with respect to a given

ordering based on job level. Wu et al. (2016) gave a derivation of this isotonic estimator and showed

that it has smaller variance, compared with the unconstrained estimator. A diagnostic procedure

was given by Oliva-Avilés et al. (2019); this can be used to verify that the imposed constraints are

indeed satisfied by the population domain means.

More recently, estimation and inference with more general shape constraints was proposed by

Oliva-Avilés et al. (2020). They considered assumptions that can be represented by a constraint

matrix A, where each of its rows defines a linear constraint on the domain means. For example,

suppose we may assume that salaries in major metropolitan areas are higher than salaries in rural

areas, for the same job type and level, but we do not have a complete ordering of areas. At the

same time, we can impose some inequality restrictions on salaries by job type, or we can impose

monotonicity constraints on a two-dimensional grid of domains. We assume that A is an m × D

irreducible constraint matrix, which was defined by Meyer (1999). Intuitively, a constraint matrix

is irreducible if the constraints are not redundant; see Oliva-Avilés et al. (2020) for more details.
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The constrained estimator θ̃ = (θ̃1, · · · , θ̃D)′ is the solution to the following constrained

weighted least squares problem

min
θ

(ỹs − θ)′Ws(ỹs − θ) such thatAθ ≥ 0 (3.1)

where ỹs = (ỹs1 , · · · , ỹsD)′ and Ws is the diagonal matrix with elements N̂1/N̂ , N̂2/N̂ , · · · , N̂D/N̂ .

If the constraints are satisfied by the Hájek estimator ỹs, then the minimizer of (3.1) coincides with

ỹs.

Oliva-Avilés et al. (2020) gave an expression for the estimated covariance of θ̃; we provide

an equivalent but simpler expression in Section 3.2. This estimated covariance matrix is used to

construct confidence intervals for the population domain means, which are typically tighter than

those for the unconstrained estimator. We use the simplified expression to derive a new estimated

covariance matrix that is a mixture of possible covariance matrices of the previous type. This

new covariance estimator takes into account the fact that the set of binding constraints, i.e. the

elements of Aθ̃ that are zero, are random and for different samples the set of binding constraints

may be different. In contrast, the classical constrained covariance estimator uses the observed set of

binding constraints only. Simulations in Section 3.3 show that the new covariance estimator results

in improved confidence interval coverage without sacrificing improvements in interval length.

3.2 Mixture Variance Estimation for the Domain Means Esti-

mator

3.2.1 Review of the Formulation of the Constrained Domain Means Estima-

tor

The following is a summary of the work in Oliva-Avilés et al. (2020). The first step is to

transform the weighted constrained least-squares problem (3.1) into an unweighted projection, by

letting z̃s = W
1/2
s ỹs, φ = W

1/2
s θ and As = AW

−1/2
s . Define φ̃ to be the unique vector that
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solves the least-squares problem:

min
φ

||z̃s − φ||2 such thatAsφ ≥ 0,

and subsequently θ̃ = W
−1/2
s φ̃.

The R package coneproj (Liao and Meyer (2014)) finds φ̃ given z̃s and As, and also returns

the set of binding constraints. Let Js ⊆ {1, . . . ,m} indicate the zero elements of Asφ̃. If Js is

empty, then the constrained estimator coincides with the unconstrained estimator.

Let AJs denote the matrix formed by the rows of A indexed by Js, where AJs is a zero matrix

if Js is empty. Otherwise, the rows of AJs will form a linearly independent set of vectors in IRD

even if A is not full row rank. Let IJ(s) = 1 if J = Js and IJ(s) = 0 otherwise, and write the

constrained estimator as:

θ̃ =
∑

J

[
(

ID×D −W−1
s A′

J(AJW
−1
s A′

J)
−1AJ

)

ỹs]IJ(s), (3.2)

where the sum is over all subsets J ⊆ {1, . . . ,m} such that the rows of AJ form a linearly

independent set. For each sample s, there is only one subset J for which IJ(s) = 1; this is Js.

The brief introduction of the formulation of the expression in (3.2) is in Appendix and refer to

Oliva-Avilés et al. (2020) for more details. This expression of the constrained estimator is used to

derive the improved covariance matrix estimator.

3.2.2 Assumptions

Before we present our theoretical results, we list and discuss our assumptions on the probability

sampling design:

(A1) The number D of domains is a fixed integer. For d = 1, 2, · · · , D, lim infN→∞
Nd

N
> 0 and

lim supN→∞
Nd

N
< 1.
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(A2) For the study variable {yi}i∈U , we have

lim sup
N→∞

N−1
∑

i∈U
yi

4 < ∞.

(A3) The sample size is non-random and there is a π ∈ (0, 1) such that mind
nd

Nd
≥ π.

(A4) For all N , mini∈U πi ≥ λ1 > 0 and mini,j∈U πij ≥ λ2 > 0, and

lim sup
N→∞

n max
i,j∈U,i 6=j

|∆ij| < ∞

where ∆ij = cov(Ii, Ij) = πij − πiπj .

(A5) Let µ = (µ1, · · · , µD)
′ be a vector of limiting domain means, where ȳUd

− µd = O(N− 1
2 )

for d = 1, . . . , D. We assume Aµ ≥ 0.

(A6) The assumption involving higher-order inclusion probability:

lim
N→∞

max
(i1,i2,i3,i4)∈D4,N

|E[(Ii1Ii2 − πi1πi2)(Ii3Ii4 − πi3πi4)]| = 0,

where Dt,N denotes the set of all distinct t-tuples i1, i2, · · · , it from U .

(A7) For any vector of D variables x with finite fourth population moment, we have:

var(x̂s)
− 1

2 (x̂s − x̄U)
d→ N(0, ID)

where x̂s is the HT domain mean estimator of x̄U = (N−1
1

∑

k∈U1
xk, · · · , N−1

D

∑

k∈UD
xk)

′,

ID is the identity matrix of dimension D, the design covariance matrix var(x̂s) is positive

definite.

The assumption (A1) states that the number of domains remains constant when the population size

N changes and guarantees that there is no asymptotically vanishing domains. Assumption (A2)
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is one of the conditions for showing the unbiasedness and variance consistency of the Horvitz-

Thompson estimator and this can be applied to most types of survey data. In (A3) we are excluding

vanishing sampling fraction to stay within the finite population framework, which is common in

the design-based context. The assumption in (A3) may exclude small area estimation, if nd/Nd

becomes negligible.

Assumption (A4) ensures that the design is both a probability sampling design and a measur-

able design. The assumption on the ∆ij states that the covariance between sample membership

indicators is sufficiently small. These are satisfied for classical sampling designs, including sim-

ple random sampling with and without replacement, and also holds for rejective sampling (Hájek

(1964)). This condition does not generally hold for multistage sampling designs. Under (A2) and

(A4), using the same bounding arguments presented in Section 3 in Breidt and Opsomer (2017),

together with the unbiasedness of HT type estimator, we can show the sample moments converge

to population moments. That is, for example in terms of study variable y, we have:

1

N

∑

i∈s

yi
πi

− 1

N

∑

i∈U
yi = Op(n

− 1
2 ).

Assumptions in (A5) ensure that the limiting domain means satisfy the shape constraints, although

the population domain means may deviate slightly from the constraints.

Assumptions in (A6) involve conditions on correlations up to order four, which are difficult to

check for complex sampling designs. They are similar to the higher order assumptions considered

by Breidt and Opsomer (2000), which are needed for proving the consistency and the asymptotic

normality of some complex estimators. Boistard et al. (2012) proved that these assumptions hold

for rejective sampling, which is an unequal probability sampling design with fixed sample size.

Simple random sampling without replacement is a particular case of rejective sampling.

Assumption (A7) is satisfied for many specific sampling designs, including simple random

sampling with or without replacement, Poisson sampling and unequal probability sampling with

replacement. This ensures asymptotic normality for a general finite fourth moment vector of vari-

ables x. The design asymptotic normality assumption, together with the variance consistency of
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the Horvitz-Thompson estimator, can be used to obtain the asymptotic distribution of the shape-

restricted estimator. This assumption is used when estimating the mixture probabilities in our

proposed mixture variance estimator; see Section 3.2.4 and the proof of Theorem 9.

Overall, the assumptions in this paper are almost the same as the ones in Oliva-Avilés et al.

(2020), except that Oliva-Avilés et al. (2020) explicitly assumed the variance consistency of the

HT estimator, while in this paper, we relaxed that assumption. Instead, we formally proved the

consistency of the variance estimator of the HT estimator by using the higher-order inclusion prob-

ability assumption in (A6), which is a required condition in proving the variance consistency of

the HT estimator.

3.2.3 Linearized Variance Estimation of the Domain Mean Estimator

The following is proved in Appendix B.

Proposition 1. The following expression for the asymptotic covariance matrix of θ̃ is equivalent

to the expression in Oliva-Avilés et al. (2020):

AV(θ̃) =
∑

J

[(I − PJ)ΣJ(I − PJ)
′] IJ(s) (3.3)

where PJ = W−1
U A′

J [AJW
−1
U A′

J ]
−1AJ and the ijth element of ΣJ is given by

{ΣJ}ij =
1

NiNj

∑

k∈Ui

∑

l∈Uj

∆kl
(yk − θi,J)(yl − θj,J)

πkπl

, i, j = 1, 2, · · · , D.

and θj,J = ȳUj
− N

Nj

{

A′
J(AJW

−1
U A′

J)
−1AJ ȳU

}

j
.

If the observed Js = ∅, then AV (θ̃) reduces to AV (ỹs) = Σ, and the ijth element of Σ is:

Σij =
1

NiNj

∑

k∈Ui

∑

l∈Uj

∆kl

(yk − ȳUi
)(yl − ȳUj

)

πkπl

, i, j = 1, 2, · · · , D.

Expression (3.3) is preferred to (B.1), the expression from Oliva-Avilés et al. (2020), from both an

intuitive and a computational viewpoint. From (3.3), we can define the estimator of the asymptotic
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covariance matrix of θ̃ as follows:

V̂J(θ̃) =
∑

J

[

(I − P̂J)Σ̃J(I − P̂J)
′
]

IJ(s)

where P̂J = W−1
s A′

J [AJW
−1
s A′

J ]
−1AJ and the elements of Σ̃J are given by:

{Σ̃J}ij =
1

N̂iN̂j

∑

k∈si

∑

l∈sj

∆kl

πkl

(yk − θ̃i,J)(yl − θ̃j,J)

πkπl

, i, j = 1, 2, · · · , D.

An even simpler estimator is

V̂ (θ̃) =
∑

J

[

(I − P̂J)Σ̃(I − P̂J)
′
]

IJ(s) (3.4)

where the ijth element of Σ̃ is given by:

{Σ̃}ij =
1

N̂iN̂j

∑

k∈si

∑

l∈sj

∆kl

πkl

(yk − ỹsi)(yl − ỹsj)

πkπl

, i, j = 1, 2, · · · , D.

That is, Σ̃ is the covariance estimator of the unconstrained estimator ỹs. The proof of the following

is in Appendix B.

Theorem 8. Under assumptions (A1)-(A6), the covariance estimator V̂ (θ̃) is consistent for AV(θ̃)

in the sense that:

n(V̂ (θ̃)− AV(θ̃)) = op(1) (3.5)

where AV(θ̃), V̂ (θ̃) are given in (3.3), (3.4), respectively.
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3.2.4 The Proposed Mixture Covariance Estimator

From (3.2), the constrained domain mean estimator can be expressed as:

θ̃ =
∑

J

(

ID×D −W−1
s A′

J(AJW
−1
s A′

J)
−1AJ

)

ỹsIJ(s)

=
∑

J

(

ID×D − P̂J

)

ỹsIJ(s)

Instead of using only the observed J to compute the estimated covariance matrix, we propose

the following mixture covariance of the constrained domain mean estimator.

AV m(θ̃) =
∑

J

(I − PJ)ΣJ(I − PJ)
′P (ỹs ∈ CJ) (3.6)

where we define the CJ to be the set of points ỹs ∈ IRD such that, based on those points, the

corresponding unweighted projection algorithm will return the set of binding constraints J .

This estimator recognizes that a different sample with the same sample size and design might

correspond to a different J , and an improved variance estimator uses a mixture of the possible Js

in roughly the proportions corresponding the probabilities of observing the Js. In theory, there

are a large number of J sets. Asymptotically, the probability of ỹs ∈ CJ goes to zero for most of

the J sets, and for moderate-to-large sample sizes we will observe only a few J with substantial

probabilities. For example, if the elements of Aµ are strictly positive, the consistency of the

estimator guarantees that as n and N increase without bound, all of the constraints must become

unbinding, and the probability that J is the empty set goes to one. If one or more of the elements

of Aµ are zero, the J sets that correspond to these constraints being binding or not become the

only J sets with nonzero probability. By constructing our estimator of AV m(θ̃) in (3.6), we are

no longer conditioning on the Js. This will tend to increase the estimated variance but this better

reflects the underlying variance of the constrained estimator.
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To estimate the mixture probabilities, we generate many y(i)’s identically and independently

from a multivariate normal distribution with mean θ̃ and covariance matrix Σ̃, i.e.,

y(i) iid∼ MVN(θ̃, Σ̃).

Thus the y(i) have approximately the distribution of ỹs, and can be used to simulate the distribution

of the set of binding constraints J . From each simulated y(i), we observe the corresponding set J ,

and with repeated sampling we can tally the number of times each set J is observed. Specifically,

if B is the number of simulations, then for a particular J set, we use B−1
∑B

i=1 I(y
(i) ∈ CJ) to

estimate the mixture probability P (ỹs ∈ CJ).

The use of the normal distribution for the y(i)s is motivated by the asymptotic normality of

ỹs. Hence, this simulated distribution is an approximation that improves as n and N increase.

Since ỹs has asymptotic multivariate normal distribution with mean ȳU and covariance Σ by as-

sumption (A7), taken together with the fact that θ̃ and Σ̃ are consistent for ȳU and Σ respectively,

P (y(i) ∈ CJ) should approach P (ỹs ∈ CJ) as the sample size increases. As we set B to be large,

B−1
∑B

i=1 I(y
(i) ∈ CJ) approaches P (y(i) ∈ CJ) by the law of large numbers.

Finally, the proposed mixture covariance estimator for AV m(θ̃) is expressed as:

V̂ m(θ̃) =
∑

J

(I − P̂J)Σ̃(I − P̂J)
′ 1

B

B
∑

i=1

I(y(i) ∈ CJ)

=
1

B

B
∑

i=1

(

∑

J

(I − P̂J)Σ̃(I − P̂J)
′I(y(i) ∈ CJ)

)

=
1

B

B
∑

i=1

(I − P̂J(i))Σ̃(I − P̂J(i)) (3.7)

The following result is proved in the Appendix B.
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Theorem 9. If Aµ > 0, then under assumptions (A1)-(A6), the proposed mixture covariance

estimator is consistent for the asymptotic mixture covariance of θ̃ in the sense that, as B → ∞:

n(V̂ m(θ̃)− AV m(θ̃)) = op(1).

where AVm(θ̃), V̂ m(θ̃) are given in (3.6), (3.7), respectively.

It is useful to note that inference based on the mixture variance estimator remains design-based.

Only the design variability is accounted for by the asymptotic variance in Theorem 9. The con-

sistent estimator of the design variance uses a parametric bootstrap approach, with the asymptotic

normal distribution of the estimator serving as bootstrap distribution. While the qualitative con-

straints can be viewed as “model-like” assumptions, they do not imply a random structure for the

population and the inference does not involve any type of model variability.

3.3 Simulation Studies

We compare the length and coverage probabilities of domain mean confidence intervals, using

three methods: the unconstrained Hájek domain means estimator with its covariance estimator,

the constrained domain means estimator with the covariance estimate based on the observed J , as

in Oliva-Avilés et al. (2020), and the constrained estimator with the proposed mixture covariance

estimator. The simulation scenarios involve one- or two-dimensional grids, with various constraints

and µ values. We report results from three scenarios: for each, we generate a population, then

we draw 10,000 samples from the population according to a sampling design. For each sample

we compute the three confidence intervals; we present the coverage rates (proportion of intervals

capturing the population mean, for each domain) and average interval lengths in graphical form.

The results show that the proposed estimator has coverage probabilities that meet or exceed the

target 95%, and indeed have higher coverage than those for the unconstrained estimator, while

retaining the smaller confidence interval length of the intervals of Oliva-Avilés et al. (2020).
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3.3.1 Isotonic in One Variable

As in Wu et al. (2016) and Oliva-Avilés et al. (2020), we choose the limiting domain means for

generating the population elements to be in a sigmoidal shape across the domains:

µd =
exp(20d/D − 10)

1 + exp(20d/D − 10)
for d = 1, 2, · · · , D,

where D = 20 is the number of domains. The population size is set to be N = 8000, with domain

population size Nd = N/D. The study variables y1, . . . , yN are generated by adding independent

and identically distributed N(0, 1) errors to the µd values.

Samples are drawn without replacement from a stratified simple random sampling design, with

H = 4 strata that cut across the D domains. The strata are determined by a variable z, which

is correlated with y. The values of z are generated by adding standard normal errors to (d/D).

Then, the stratum membership is determined by sorting the population based on the corresponding

ranked z, so that there are N/H elements for each stratum. Finally, the total sample size n = 200

is assigned to each strata with sample size (25, 50, 50, 75) in each strata accordingly.

Simulation results are summarized in Figure 3.1, along with a typical sample. The population

means are shown as black dots; due to randomness in generating the population, these do not quite

satisfy the constraints. The coverage is highest for the intervals computed using the mixture covari-

ance estimator. The average length of the confidence interval for the constrained estimators, either

based on non-mixture variance or mixture variance, are narrower than that of the unconstrained

estimator.

3.3.2 Block Isotonic in One Variable

We consider the scenario in which only a partial ordering is known a priori. For a “block

isotonic” ordering, we assume the population means are ordered among blocks, but no ordering is

assumed within blocks. In particular, we have D = 20 domains, organized in four blocks of five

domains, and the population mean for each of the domains in block i is assumed to be at least as
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Figure 3.1: Isotonic in one variable: On the left is a typical sample, with the population means shown as

black dots. On the right are the coverage probabilities and average lengths for 10,000 samples, for a target

95%.

large as those in block i− 1, for i = 2, 3, 4. In particular,

µ =

(

−.1 0 .1 0 −.1 .2 .1 .2 .3 .2 .3 .4 .3 .4 .5 .5 .6 .5 .7 .6

)

where the blocks are separated by the vertical lines. We use the same stratified sampling design as

in the previous example.

The results in Figure 3.2 show that again the coverage is highest for the mixture constrained

estimator. The confidence interval lengths are smallest for the middle two blocks, because the

estimators for these domains are able to use information from all four blocks.

3.3.3 Isotonic in Two Variables

Here we consider a grid of domains, which represent two variables such as job type and job

level, with the a priori assumption that the µ values are non-decreasing in each. In particular, we

consider that there are six levels of one variable and five of the other, so there are D = 30 domains.
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Figure 3.2: Block isotonic in one variable: On the left is a typical sample, with the population means shown

as black dots. On the right are the coverage probabilities and average lengths for 10,000 samples, for a target

95%.

We choose µ values according to the array

µ =

























.2 .4 .8 1.1 1.4 1.8

.1 .3 .5 .8 1.0 1.2

.1 .2 .3 .5 .7 .8

.1 .2 .3 .4 .5 .6

0 0 0 0 0 0

























.

The procedure for generating y and the sampling mechanism are the same as that in one di-

mensional case, except that we set N = 12000 and n = 240, which is divided among the strata as

(30, 60, 60, 90). A typical sample is displayed on the left in Figure 3.3, where the numbering for

the domains is “by row” of the µ matrix; that is, the first six domains have means in the top row

of the the µ matrix, the next six have means from the second row, and the last six domains have

limiting mean zero.

The simulation results in the right plot of the figure demonstrate similar properties as the pre-

vious scenarios: the lengths of the confidence intervals of the constrained estimator are smaller

while the coverage is the highest when using the mixture variance estimator.
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Figure 3.3: Isotonic in two variables: On the left is a typical sample, with the population means shown as

black dots. On the right are the coverage probabilities and average lengths for 10,000 samples, for a target

95%.

3.4 Application to California School Data

The survey package in R provides the data set apipop, with information about the popula-

tion of California schools, including average standardized test scores and demographic variables.

This data set is convenient for demonstrating survey methods, because we can sample from the

population of over 6000 schools, apply our methods to the sample, and at the same time we can

compute the true population values. For our purpose, we use the variables api00 and meals;

the former is the average standardized test score at the school, and the latter is the percent of stu-

dents who are eligible for subsided or free meals (breakfast and lunch). We categorize the meals

variable into 20 domains, where domain one indicates 0-4% free meals, domain two is 5-9%, etc.

Percent subsidized meals is a measure of poverty, which in the United States is connected with ed-

ucational and health disadvantages (to our shame). Hence, we can assume a priori that the average

test score is decreasing over these domains, and in fact we see that this is true in the population.

We collect a sample that is stratified by type of school (elementary, middle, high), with sample

sizes 80, 80, and 120, respectively. A typical data set is shown in Figure 3.4, where the gray

dots represent the sample. The population mean standardized test scores are the black dots, which

decrease over these domains. The unconstrained sample means are decreasing overall, but have
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some deviations from monotonicity. The constrained estimators reflect our a priori knowledge,

and in addition, imposing the constraints gives smaller confidence intervals and better coverage.

As was seen in the simulations, using the mixture covariance matrix further improves the coverage

rates.
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Figure 3.4: Decreasing in poverty levels: On the left is a typical sample, with the population means shown

as black dots. On the right are the coverage probabilities and average lengths for 10,000 samples, for a target

95%.

3.5 Discussion

This paper provides an improvement in the theoretical foundation for inference with survey

data while utilizing a priori information in the form of inequality constraints, such as for ordering

or shape. The simpler form of the estimated covariance matrix in (3.7) readily allows computa-

tion, with Σ̃ obtained from survey software such as the survey package in R, and a constrained

least-squares routine such as coneproj used to find J (i) for simulated samples. The paper also

provides an improved estimator of the design-based variance that results in increased coverage

compared to previous results, exceeding the nominal level in most cases.
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Chapter 4

One-sided Testing of Population Domain Means in

Surveys

4.1 Introduction

Methods for estimation of population domain means under a priori assumptions in the form

of linear inequality constraints have been recently established. Suppose interest is in estimating

ȳU ∈ IRD, a vector of population domain means. Wu et al. (2016) derived an isotonic survey

estimator, where it is assumed that ȳU1 ≤ · · · ≤ ȳUD
. They showed that the constrained estimator

is equivalent to a “pooled” estimator, where weighted averages of adjacent sample domain means

are used to form an isotonic vector of domain mean estimates. Advantages to the ordered mean

estimates are that they “make sense” in terms of satisfying the assumptions, and the confidence

intervals for the estimates are typically reduced in length. Oliva-Avilés et al. (2020) proposed

a framework for the estimation and inference with more general shape and order constraints in

survey contexts. Examples include block orderings, and orderings of domain means arranged in

grids. For example, average cholesterol level may be assumed to be increasing in age category

and BMI level, but decreasing in exercise category. In another context, suppose average salary is

to be estimated by job rank, job type, and location, with average salary assumed to be increasing

with rank, and block orderings imposed on job type and location. More recently, Xu et al. (2021)

formulated a mixture covariance matrix for constrained estimation that was shown to improve

coverage of confidence intervals while retaining the smaller lengths.

The desired linear inequality constraints may be formulated using an m×D constraint matrix

A, where the assumption is AȳU ≥ 0. For the isotonic domain means, m = D − 1, and the

nonzero elements of the constraint matrix are Ai,i = −1 and Ai,i+1 = 1. For block orderings,

where domains are grouped by ordered blocks, each domain in block one, for example, is assumed
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to have a population mean not larger than each domain in block two, and in block two, each

population domain mean does not exceed any of those in block three, etc. Here the number of

constraints is m =
∑B−1

i=1

∑B
j=i+1 kikj , where B is the number of blocks and ki is the number

of domains in the ith block, i = 1, . . . , B. For a third example, consider domains arranged in

a grid; for a context suppose the population units are lakes in a state, and yi is the level of a

certain pollutant in lake i. We are interested in average levels by county and by distance from an

industrial plant. If there are 60 counties and 5 categories of distance, there are 300 domains. If we

know that the level of pollutant is non-increasing in the distance variable, then there are 60×4=240

constraints, formulated as antitonic within each county.

We propose a test where the null hypothesis is that AȳU = 0, versus the alternative AȳU ≥ 0,

and AȳU has at least one positive element. The simplest example is the null hypothesis of constant

domain means, versus the alternative of increasing domain means. For the third example above, we

can test the null hypothesis that, within each county, the domain means are constant in distance.

Using the constraints for a one-sided alternative results in improved power over the equivalent

two-sided test.

This test has been widely studied outside of the survey context; see Bartholomew (1959),

Bartholomew (1961), Chacko (1963), McDermott and Mudholkar (1993), Robertson et al. (1988),

Meyer (2003), Silvapulle and Sen (2005), Sen and Meyer (2017) and others. The null distribution

of the likelihood-ratio test statistic for the one-sided test has been derived based on the normal-

errors model. In brief, when the model variance is known, the null distribution of the likelihood

ratio statistic is shown to be a mixture of chi-square distributions, while for the unknown model

variance, the test statistic has the null distribution of a mixture of beta distributions. Similar results

for the one sided likelihood ratio test were obtained by Perlman (1969) where the completely

unknown model variance was considered. Meyer and Wang (2012) formally proved that the one-

sided test will provide higher power than the test using the unconstrained alternative.

In this paper we extend this test to the survey context. In the next section, the test is derived,

and in Section 4.3 some large sample theory is given. Simulations in Section 4.4 show that the test
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performs well compared to the test with the unconstrained alternative, with better power and a test

size closer to the target. In Section 4.5 the methods are applied to the National Survey of College

Graduates, to test whether salaries are higher for people whose father’s education level is higher,

controlling for field of study, highest degree attained, and year of degree. The test is available in

the R package csurvey.

4.2 Formulation of the Test Statistic

To establish the notation, let U = {1, 2, · · · , N} be the finite population. A sample s ⊂ U

of size n is to be drawn based on a probability sampling design p, where p(s) is the probability

of drawing the sample s. The first order inclusion probability πi = Pr(i ∈ s) =
∑

i∈s p(s)

and the second order inclusion probability πij = Pr(i, j ∈ s) =
∑

i,j∈s p(s), determined by

the sampling design, are both assumed to be positive. In terms of the domains of interest, let

{Ud : d = 1, · · · , D} be a partition of the population U and Nd be the population size of domain

d, where D is the number of domains. We denote by sd the intersection of s and Ud, and let nd be

the sample size for sd.

Let y be the variable of interest and denote by yi the value for the ith unit in the population.

The population domain means are ȳU = (ȳU1 , · · · , ȳUD
)⊤, and ȳUd

is given by:

ȳUd
=

∑

i∈Ud
yi

Nd

d = 1, · · · , D.

Two common design-based estimators of the population means are the Horvitz-Thompson esti-

mator (Horvitz and Thompson (1952)) or the Hájek estimator (Hájek (1971)); because the Há-

jek estimator ỹsd does not require information about the population domain size Nd and has

other advantages in practice, we will focus on the Hájek estimator. The results for the Horvitz-

Thompson estimator, however, can be derived analogously. The Hájek estimator for domain means

is ỹs = (ỹs1 , . . . , ỹsD), where

ỹsd =

∑

i∈sd yi/πi

N̂d

66



and N̂d =
∑

i∈sd 1/πi.

We are concerned with testing:

H0 : ȳU ∈ V versus H1 : ȳU ∈ C\V (4.1)

where V = {y : Ay = 0} is the null space of A and the alternative set is the convex cone

C = {y : Ay ≥ 0}. A set C is a convex cone if for any θ1 and θ2 in C, α1θ1 +α2θ2 is in C for any

non-negative α1 and α2.

For testing (4.1), we propose the following weighted least squares test statistic:

T̂ =
minθ0∈V (ỹs − θ0)

⊤
Σ̃

−1(ỹs − θ0)−minθ1∈C(ỹs − θ1)
⊤
Σ̃

−1(ỹs − θ1)

minθ0∈V (ỹs − θ0)⊤Σ̃−1(ỹs − θ0)

where Σ̃ is the covariance estimator of ỹs. We will reject H0 if T̂ is large.

This is similar in structure to the classical test. If ỹs were normal with cov(ỹs) = Σ̃, then

T̂ would be distributed as a mixture of beta random variables, under the null hypothesis. In the

survey context, we approximate the distribution of T̂ .

4.3 Asymptotic Distribution of the Test Statistic

The assumptions needed to derive an approximate distribution of T are listed in Appendix C,

and are similar to those in Xu et al. (2021). We start with a brief review of the properties of the

unconstrained estimator ỹs. By the Taylor expansion, we can linearize the ỹs as follows:

ỹs = ȳU + ŷcenter +Op(n
−1)

where

ŷcenter =

(

1

N1

∑

k∈s1

(yk − ȳU1)

πk

, · · · , 1

ND

∑

k∈sD

(yk − ȳUD
)

πk

)⊤

.
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The properties of ỹs− ȳU can be approximated by ŷcenter and we have that E(ŷcenter) = 0 and the

variance of ŷcenter is Σ, the asymptotic variance of ỹs. The ijth element of Σ is:

Σij =
1

NiNj

∑

k∈Ui

∑

l∈Uj

∆kl

(yk − ȳUi
)(yl − ȳUj

)

πkπl

, i, j = 1, 2, · · · , D.

By the design normal assumption (A5) in the appendix, we have Σ
− 1

2 ŷcenter d→ N(0, I), hence:

Σ
− 1

2 (ỹs − ȳU) = Σ
− 1

2 ŷcenter + op(1)
d→ N(0, I).

To derive the asymptotic null distribution of T̂ , we first do the following transformation:

T̂ =
minθ0∈V (ỹs − θ0)

⊤
Σ̃

−1(ỹs − θ0)−minθ1∈C(ỹs − θ1)
⊤
Σ̃

−1(ỹs − θ1)

minθ0∈V (ỹs − θ0)⊤Σ̃−1(ỹs − θ0)

=
minθ̂0∈V̂ (Ẑs − θ̂0)

⊤(Ẑs − θ̂0)−minθ̂1∈Ĉ(Ẑs − θ̂1)
⊤(Ẑs − θ̂1)

minθ̂0∈V̂ (Ẑs − θ̂0)⊤(Ẑs − θ̂0)

where Â = AΣ̃
1
2 , Ẑs = Σ̃

− 1
2 ỹs, θ̂0 = Σ̃

− 1
2θ0, θ̂1 = Σ̃

− 1
2θ1, V̂ = {θ̂0 : Âθ̂0 = 0} and Ĉ = {θ̂1 :

Âθ̂1 ≥ 0}. Notice that minθ̂0∈V̂ (Ẑs − θ̂0)
⊤(Ẑs − θ̂0) is the squared length of the projection of Ẑs

onto V̂ ⊥ and the projection of Ẑs onto V̂ has the explicit expression θ̂∗
0 = (I−Â⊤(ÂÂ⊤)

−

Â)Ẑs,

where (ÂÂ⊤)
−

is the generalized inverse of ÂÂ⊤. Also, from (2.1) in Xu et al. (2021), the

projection of Ẑs onto the cone Ĉ can be expressed as:

θ̂∗
1 =

∑

J

(I − Â⊤
J (ÂJÂ

⊤
J )

−

ÂJ)ẐsIJ(s) (4.2)

where J ⊆ {1, . . . ,m} such that the rows of ÂJ form a linearly independent set and for each

sample s, there is only one subset J for which IJ(s) = 1. In addition, by the consistency of Σ̃, we
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have the following:

min
θ̂0∈V̂

(Ẑs − θ̂0)
⊤(Ẑs − θ̂0) = (Ẑs − θ̂∗

0)
⊤(Ẑs − θ̂∗

0)

= (Â⊤(ÂÂ⊤)
−

ÂẐs)
⊤Â⊤(ÂÂ⊤)

−

ÂẐs

= Ẑ⊤
s Â

⊤(ÂÂ⊤)
−

ÂẐs

= ỹ⊤
s A

⊤(AΣ̃A⊤)
−

Aỹs

= ỹ⊤
s A

⊤(AΣA⊤)
−

Aỹs + op(1)

= min
θ0∈V

(ỹs − θ0)
⊤
Σ

−1(ỹs − θ0) + op(1). (4.3)

By (4.3) and Lemma 12 in the Appendix, T̂ can be rewritten as:

T̂ =
minθ0∈V (ỹs − θ0)

⊤
Σ

−1(ỹs − θ0)−minθ1∈C(ỹs − θ1)
⊤
Σ

−1(ỹs − θ1)

minθ0∈V (ỹs − θ0)⊤Σ−1(ỹs − θ0)
+ op(1)

The denominator in above expression must be bounded away from zero in probability, which

is indeed the case because it can be shown that the minθ0∈V (ỹs − θ0)
⊤
Σ

−1(ỹs − θ0) has, asymp-

totically, χ2(m) distribution under the null and design normal assumption; hence the denominator

is bounded away from zero in probability.

Next, let Z̃s = Σ
− 1

2 ỹs, ZU = Σ
− 1

2 ȳU , θ̃0 = Σ
− 1

2θ0, θ̃1 = Σ
− 1

2θ1 and define Ṽ = {θ̃ : Ãθ̃ =

0}, C̃ = {θ̃ : Ãθ̃ ≥ 0}, where Ã = AΣ
1
2 . Then

T̂ =
minθ̃0∈Ṽ ||Z̃s − θ̃0||2 −minθ̃1∈C̃ ||Z̃s − θ̃1||2

minθ̃0∈Ṽ ||Z̃s − θ̃0||2
+ op(1)

=
minθ̃0∈Ṽ ||Z̃s −ZU +ZU − θ̃0||2 −minθ̃1∈C̃ ||Z̃s −ZU +ZU − θ̃1||2

minθ̃0∈Ṽ ||Z̃s −ZU +ZU − θ̃0||2
+ op(1).

Let Zcenter = Z̃s − ZU , and recall that under H0, ZU ∈ Ṽ , so that, in the above expression,

minimizing over θ̃0 is equivalent to minimizing over −ZU + θ̃0, and similarly for minimizing over
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θ̃1. Then our test statistic may be expressed as

T̂ =
minθ̃0∈Ṽ ||Zcenter − θ̃0||2 −minθ̃1∈C̃ ||Zcenter − θ̃1||2

minθ̃0∈Ṽ ||Zcenter − θ̃0||2
+ op(1).

Let Z ∼N(0, I), and define

T =
minθ̃0∈Ṽ ||Z − θ̃0||2 −minθ̃1∈C̃ ||Z − θ̃1||2

minθ̃0∈Ṽ ||Z − θ̃0||2

The random variable T has been shown to be distributed as a mixture of beta random variables

under H0, and the mixing distribution can be found (to within a desired precision) via simulation.

Specifically,

Pr(T ≤ c) =
m
∑

d=0

Pr

{

Be

(

m− d

2
,
d

2

)

≤ c

}

pd,

where p0, . . . , pD are approximated through simulations, and Be(α, β) represents a Beta random

variable with parameters α and β, respectively. By convention, Be(0, β) = 0 and Be(α, 0) = 1.

If the irreducible constraint matrix A is not full row rank, say m > D, then the above result

still holds by substituting m1 for m and d = 0, 1, · · · ,m1, where m1 is denoted to be the dimension

of the space spanned by the rows of the constraint matrix A.

Finally, we have T̂
D→ T . This follows from the Lipschitz continuity of the projection of Z

onto a convex cone; that is, if θ̂ is the projection of Z onto the cone C, then θ̂ is a continuous

function of Z; see Proposition 1 and its proof in Meyer and Woodroofe (2000).

The mixture probabilities are approximated as follows:

(1) Generate Z from standard multivariate normal distribution N(0, I).

(2) Project the generated Z onto the convex cone Ĉ = {θ : Âθ ≥ 0} to obtain the J set, where

Â = AΣ̃
1
2 . Specifically, let θ̂ be the projection of Z onto the Ĉ, then J = {j : Âjθ̂ = 0}.

The R package coneproj (Liao and Meyer (2014)) finds θ̂ given the generated Z and Â,

and also returns the set of binding constraints J .
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(3) Repeat the previous steps B times (say B = 1000).

(4) Estimate pd by the proportion of times that the set J has d elements, d = 0, 1, · · · ,m. When

the matrix A has more constraints than dimensions, then, the set J has at most m1 elements.

In fact, the cone projection routine in coneproj can always find a minimal unique J set.

4.3.1 The Properties of the Test

In this section, we prove consistency and monotonicity of the power function of this test. Under

the alternative, if T̂ is a good test statistic, then we would expect that the probability of rejecting

null increase to one as n increases.

Theorem 10. Let α be the test size and cα be the corresponding critical value of the test. Then,

the power of the test converges to 1 under the alternative. That is:

P (T̂ > cα|ȳU ∈ C\V ) → 1, as n → ∞.

Proof. Since T̂ = 1− minθ1∈C(ỹs−θ1)⊤Σ̃
−1(ỹs−θ1)

minθ0∈V (ỹs−θ0)⊤Σ̃−1(ỹs−θ0)
, it suffices to show that:

minθ1∈C(ỹs − θ1)
⊤
Σ̃

−1(ỹs − θ1)

minθ0∈V (ỹs − θ0)⊤Σ̃−1(ỹs − θ0)
= op(1)

under the the alternative. For the numerator, we have

min
θ1∈C

(ỹs−θ1)
⊤
Σ̃

−1(ỹs−θ1) ≤ (ỹs− ȳU)
⊤
Σ̃

−1(ỹs− ȳU) = Op

(

1√
n

)

Op(n)Op

(

1√
n

)

= Op(1)
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where we use the fact that ỹs − ȳU = Op(n
− 1

2 ) and Σ̃ = Op(n
−1) element-wise. For the denomi-

nator, we have:

min
θ0∈V

(ỹs − θ0)
⊤
Σ̃

−1(ỹs − θ0) = min
θ̂0∈V̂

||Ẑs − θ̂0||2

=
[

Ẑs − (I − Â⊤(ÂÂ⊤)
−

Â)Ẑs

]⊤ [
Ẑs − (I − Â⊤(ÂÂ⊤)

−

Â)Ẑs

]

=Ẑ⊤
s Â

⊤(ÂÂ⊤)
−

ÂẐs

=ỹ⊤
s A

⊤(AΣ̃A⊤)
−

Aỹs

Hence, we have:

minθ1∈C(ỹs − θ1)
⊤
Σ̃

−1(ỹs − θ1)

minθ0∈V (ỹs − θ0)⊤Σ̃−1(ỹs − θ0)
=

minθ1∈C(ỹs − θ1)
⊤(nΣ̃)−1(ỹs − θ1)

minθ0∈V (ỹs − θ0)⊤(nΣ̃)−1(ỹs − θ0)

= Op(n
−1)

1

ỹ⊤
s A

⊤(AnΣ̃A⊤)−Aỹs

= Op(n
−1)

1

ȳ⊤
UA

⊤(AnΣA⊤)−AȳU + op(1)

= Op(n
−1)Op(1) = op(1)

because ỹs and Σ̃ are consistent for ȳU and Σ respectively. Therefore, under the alternative, T̂

goes to 1 asymptotically.

The following is a result on the monotonicity of the power for the test.

Theorem 11. Suppose that −Ω ⊆ Co, where Ω = C ∩ V ⊥, then for any vector θ ∈ Ω, the value

of the test statistic associated with the data vector ỹs + θ is bigger than the value for ỹs. Hence,

the power for the test with alternative H∗
1 : AθU ≥ 0 is larger than the power of the test with

alternative H1 : AȳU ≥ 0, where θU = ȳU + θ.
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Proof. Denote:

T (1) =
minθ0∈V (ỹs − θ0)

⊤
Σ

−1(ỹs − θ0)−minθ1∈C(ỹs − θ1)
⊤
Σ

−1(ỹs − θ1)

minθ0∈V (ỹs − θ0)⊤Σ−1(ỹs − θ0)

=
minθ̃0∈Ṽ (Z̃s − θ̃0)

⊤(Z̃s − θ̃0)−minθ̃1∈C̃(Z̃s − θ̃1)
⊤(Z̃s − θ̃1)

minθ̃0∈Ṽ (Z̃s − θ̃0)⊤(Z̃s − θ̃0)

= 1− ||Z̃s − θ̃(1)||2
||Z̃s − ṽ||2

where Z̃s, θ̃0, θ̃1, Ṽ and C̃ were defined previously, ṽ is the projection of Z̃s onto Ṽ and θ̃(1) is

the projection of Z̃s onto C̃. Similarly, we can define:

T (2) = 1− minθ1∈C((ỹs + θ)− θ1)
⊤
Σ

−1((ỹs + θ)− θ1)

minθ0∈V ((ỹs + θ)− θ0)⊤Σ−1((ỹs + θ)− θ0)

= 1− minθ̃1∈C̃((Z̃s + θ̃)− θ̃1)
⊤((Z̃s + θ̃)− θ̃1)

minθ̃0∈Ṽ ((Z̃s + θ̃)− θ̃0)⊤((Z̃s + θ̃)− θ̃0)

= 1− ||Z̃s + θ̃ − θ̃(2)||2
||Z̃s + θ̃ − ṽ||2

where θ̃ = Σ
− 1

2θ and θ̃(2) is the projection of Z̃s + θ̃ onto C̃. Because θ is orthogonal to V , so θ̃

is also orthogonal to Ṽ . Thus, the projection of Z̃s + θ̃ onto Ṽ is the same as the projection of Z̃s

onto Ṽ , which is ṽ. Further, let ρ̃(1) be the projection of Z̃s onto C̃o and ρ̃(2) be the projection of

Z̃s + θ̃ onto C̃o. Then,

T (2) − T (1) =
||Z̃s − θ̃(1)||2
||Z̃s − ṽ||2

− ||Z̃s + θ̃ − θ̃(2)||2
||Z̃s + θ̃ − ṽ||2
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To show T (2) − T (1) ≥ 0, it is suffices to show the following is non-negative:

||Z̃s − θ̃(1)||2||Z̃s + θ̃ − ṽ||2 − ||Z̃s − ṽ||2||Z̃s + θ̃ − θ̃(2)||2

=||Z̃s − θ̃(1)||2||Z̃s + θ̃ − θ̃(2) + θ̃(2) − ṽ||2 − ||Z̃s − ṽ||2||Z̃s + θ̃ − θ̃(2)||2

=||ρ̃(1)||2||ρ̃(2) + θ̃(2) − ṽ||2 − ||Z̃s − ṽ||2||ρ̃(2)||2

=||ρ̃(1)||2||ρ̃(2)||2 + ||ρ̃(1)||2||θ̃(2) − ṽ||2 − ||Z̃s − ṽ||2||ρ̃(2)||2

=||ρ̃(1)||2
(

||θ̃(2)||2 − ||ṽ||2
)

− ||ρ̃(2)||2
(

||Z̃s − ṽ||2 − ||ρ̃(1)||2
)

=||ρ̃(1)||2
(

||θ̃(2)||2 − ||ṽ||2 −
(

||Z̃s||2 − ||ṽ||2 − ||ρ̃(1)||2
))

=||ρ̃(1)||2
(

||θ̃(2)||2 − ||ṽ||2 −
(

||θ̃(1)||2 − ||ṽ||2
))

=||ρ̃(1)||2
(

||θ̃(2)||2 − ||θ̃(1)||2
)

=||ρ̃(1)||2
(

||Z̃s − (ρ̃(2) − θ̃)||2 − ||θ̃(1)||2
)

≥||ρ̃(1)||2
(

||Z̃s − ρ̃(1)||2 − ||θ̃(1)||2
)

=||ρ̃(1)||2
(

||θ̃(1)||2 − ||θ̃(1)||2
)

= 0

Here, we use the fact that ρ̃(1) = ρ̃(2), because θ̃ ∈ Ω̃ is orthogonal to C̃o and thus the projection

of Z̃s + θ̃ onto C̃o is the same as the projection of Z̃s onto C̃o, where Ω̃ = C̃ ∩ Ṽ ⊥. Also, when

−θ ∈ Co, then −θ̃ ∈ C̃o by transformation. Further, the vector ρ̃(2) − θ̃ will be in C̃o and must be

farther from Z̃s than ρ̃(1).

Let cα be the critical value for this one-sided test for a specific significance level α. Then we

must have:

P (T (1) > cα|H1) ≤ P (T (2) > cα|H∗
1 )

The power of the test increases.

The above result essentially concludes that as the effect size increases, the power of the test

increases. In other words, larger effects are easier to detect reliably. Also, the proposed test statistic

T̂ will inherit above property asymptotically due to the consistency of the covariance estimator.
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4.4 Simulation Studies

The simulations involve one or two dimensional grids, with several constraints and population

domain means. We present the results in table form from three scenarios: for each, we record the

proportions of times the null is rejected in various cases, with different sample sizes, significance

levels and the variances for generating the study variables. In each case, we generate a population

of size N , then we draw 10,000 samples from the population according to a sampling design. For

each sample, we compute the test statistic value and compare it with the critical values under differ-

ent significance levels, where the critical values are obtained from the asymptotic null distribution

of the test statistics. Further, we compare the power of this one sided test with that of ANOVA F

test using the unconstrained alternative. That is,

H0 : AȳU = 0 versus H2 : AȳU 6= 0

Here, we use svyglm function in survey package to fit the ANOVA model and compute the

P-values of the ANOVA F test by applying the anova function in survey package.

4.4.1 Monotonicity in One Variable

As in Xu et al. (2021) and Oliva-Avilés et al. (2020), the limiting domain means for generating

the study variables are given by the functions as follows:

µ
(0)
d ≡ 1, for d = 1, 2, · · · , D.

µ
(1)
d =

exp(12d/D − 6)

3.5(1 + exp(12d/D − 6))
, for d = 1, 2, · · · , D.

µ
(2)
d =

exp(12d/D − 6)

2.5(1 + exp(12d/D − 6))
, for d = 1, 2, · · · , D.

where D = 12 is the number of domains. The study variables y1, . . . , yN are generated by adding

independent and identically distributed N(0, σ2
i ) (i = 1, 2) errors to the µd values from above three

functions, respectively, with σ1 = 1 and σ2 = 1.5. We compare the test size and power for the
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test of constant versus increasing domain means, with the standard ANOVA test of constant versus

non-constant domain means.

We draw the samples from a stratified simple random sampling design without replacement,

with H = 4 strata that cut across the D domains. The strata are determined using an auxil-

iary variable z, which is correlated with study variable y. The values of z are created by adding

i.i.d. standard normal errors to (d/D). By ranking the values of z, we can create 4 blocks of

N/H elements. Then, the stratum membership of the population element is determined by the

corresponding ranked z, Finally, the population sizes are set to be N = 9600, N = 19200,

N = 57600 and N = 76800, respectively, with domain population size Nd = N/D. The to-

tal sample sizes n = 200, n = 400, n = 1200 and n = 1600 are assigned to each strata with

sample size (25, 50, 50, 75), (50, 100, 100, 150), (150, 300, 300, 450), (200, 400, 400, 600) in each

strata, respectively.

The results in Table 4.1 show that the test size for the proposed one-sided test is closer to the

target, while the two-sided test size is somewhat inflated even for the larger sample sizes. For

the simulations where the alternative hypothesis is true, the one-sided test has substantially higher

power.

4.4.2 Block Monotonic in One Variable

In “block monotonic" ordering case, we assume the population means are ordered among

blocks, but there is no ordering imposed within the blocks. Specifically, we organize the limit-

ing domain means in four blocks of three domains as following:

µ(0) =

(

.05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05

)

µ(1) =

(

−.06 0 .06 .12 .06 .18 .18 .24 .30 .30 .36 .30

)

µ(2) =

(

−.08 0 .08 .16 .08 .24 .24 .32 .40 .40 .48 .40

)
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Table 4.1: Monotonicity in one variable: the proportions of times null is rejected under various settings and

power comparison between the constrained one sided test and the unconstrained test

One sided test

σ n
α1 = 0.1 α2 = 0.05 α3 = 0.01

µ(0) µ(1) µ(2) µ(0) µ(1) µ(2) µ(0) µ(1) µ(2)

σ = 1

n=200 0.0996 0.4689 0.6686 0.0533 0.3218 0.5055 0.0134 0.1194 0.2230

n=400 0.0840 0.6352 0.8529 0.0403 0.4780 0.7268 0.0085 0.2028 0.4054

n=1200 0.1039 0.9657 0.9986 0.0537 0.9027 0.9941 0.0121 0.6444 0.9133

n=1600 0.0981 0.9867 0.9999 0.0489 0.9550 0.9988 0.0110 0.7533 0.9654

σ = 1.5

n=200 0.0994 0.3128 0.4370 0.0528 0.2008 0.2938 0.0133 0.0625 0.1056

n=400 0.0839 0.4101 0.5946 0.0402 0.2740 0.4338 0.0084 0.0873 0.1770

n=1200 0.1037 0.7838 0.9461 0.0532 0.6327 0.8679 0.0120 0.3142 0.5773

n=1600 0.0980 0.8544 0.9751 0.0488 0.7253 0.9334 0.0109 0.3900 0.6928

ANOVA F test

σ n
α1 = 0.1 α2 = 0.05 α3 = 0.01

µ(0) µ(1) µ(2) µ(0) µ(1) µ(2) µ(0) µ(1) µ(2)

σ = 1

n=200 0.1412 0.2677 0.4017 0.0746 0.1627 0.2685 0.0147 0.0457 0.0973

n=400 0.1280 0.3618 0.6034 0.0658 0.2385 0.4627 0.0147 0.0835 0.2259

n=1200 0.1123 0.8139 0.9854 0.0590 0.7121 0.9694 0.0117 0.4736 0.8943

n=1600 0.1111 0.9253 0.9986 0.0576 0.8633 0.9964 0.0126 0.6868 0.9814

σ = 1.5

n=200 0.1412 0.1909 0.2502 0.0746 0.1087 0.1495 0.0147 0.0261 0.0408

n=400 0.1280 0.2195 0.3278 0.0658 0.1296 0.2094 0.0147 0.0313 0.0661

n=1200 0.1123 0.4670 0.7538 0.0590 0.3320 0.6361 0.0117 0.1397 0.3902

n=1600 0.1111 0.5947 0.8795 0.0576 0.4602 0.8014 0.0126 0.2367 0.5932

where the blocks are separated by the vertical lines. Hence, under the alternative, we expect the

population mean for each of the domains in block i would be at least as large as those in block

i − 1, for i = 2, 3, 4. Also, the effect size of ȳ
(2)
U generated from µ(2) would be larger than that

of ȳ
(1)
U from µ(1). We use exactly the same stratified simple random sampling design as in the

previous example.

The results in Table 4.2 show again that one sided test has substantially higher power for sim-

ulations where the alternative is true, and for simulations under the null hypothesis, the test size is

approximately correct for the one-sided test and the two-sided ANOVA test has inflated test size.

4.4.3 Monotonicity in Two Variables

Here we take into consideration a grid of domains, which represent two variables. In particular,

we set the limiting domain means as follows:
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Table 4.2: Block monotonicity in one variable: the proportions of times null is rejected under various

settings and power comparison between the constrained one sided test and the unconstrained test

One sided test

σ n
α1 = 0.1 α2 = 0.05 α3 = 0.01

µ(0) µ(1) µ(2) µ(0) µ(1) µ(2) µ(0) µ(1) µ(2)

σ = 1

n=200 0.1013 0.5114 0.6795 0.0568 0.3590 0.5216 0.0119 0.1397 0.2391

n=400 0.1036 0.7368 0.8856 0.0534 0.5838 0.7878 0.0109 0.2840 0.4722

n=1200 0.0964 0.9718 0.9978 0.0487 0.9224 0.9880 0.0089 0.6671 0.8801

n=1600 0.0976 0.9877 0.9998 0.0492 0.9635 0.9958 0.0098 0.7668 0.9339

σ = 1.5

n=200 0.1014 0.3421 0.4535 0.0567 0.2191 0.3124 0.0117 0.0731 0.1144

n=400 0.1031 0.4992 0.6616 0.0534 0.3544 0.5028 0.0109 0.1335 0.2235

n=1200 0.0965 0.8187 0.9422 0.0485 0.6794 0.8672 0.0091 0.3474 0.5661

n=1600 0.0974 0.8830 0.9743 0.0497 0.7652 0.9232 0.0099 0.4367 0.6746

ANOVA F test

σ n
α1 = 0.1 α2 = 0.05 α3 = 0.01

µ(0) µ(1) µ(2) µ(0) µ(1) µ(2) µ(0) µ(1) µ(2)

σ = 1

n=200 0.1412 0.2941 0.4368 0.0746 0.1847 0.2951 0.0147 0.0551 0.1155

n=400 0.1280 0.4220 0.6556 0.0658 0.2912 0.5231 0.0147 0.1123 0.2712

n=1200 0.1123 0.8940 0.9921 0.0590 0.8177 0.9840 0.0117 0.6099 0.9363

n=1600 0.1111 0.9678 0.9995 0.0576 0.9293 0.9986 0.0126 0.8094 0.9911

σ = 1.5

n=200 0.1412 0.2052 0.2611 0.0746 0.1173 0.1583 0.0147 0.0281 0.0431

n=400 0.1280 0.2445 0.3543 0.0658 0.1457 0.2333 0.0147 0.0389 0.0787

n=1200 0.1123 0.5399 0.8012 0.0590 0.4099 0.6932 0.0117 0.1926 0.4549

n=1600 0.1111 0.6799 0.9091 0.0576 0.5539 0.8468 0.0126 0.3153 0.6589

µ(0) =



















.01 .01 .01 .01 .01

.02 .02 .02 .02 .02

.03 .03 .03 .03 .03

.04 .04 .04 .04 .04



















,

µ(1) =



















0 .04 .16 .24 .28

.04 .08 .20 .32 .40

.04 .12 .12 .20 .28

.04 .04 .12 .24 .28



















,
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µ(2) =



















0 .05 .20 .30 .35

.05 .10 .25 .40 .50

.05 .15 .15 .25 .35

.05 .05 .15 .30 .35



















.

here there are five levels of one variable and four of the other, so there are D = 20 domains.

By the setting, the µ values are non-decreasing in one variable and there is no constraint on the

other variable. It is quite useful in practice. For instance, in National Compensation Survey, the

population domain means of the salary are expected to be monotone in job level, but there might

be no shape restriction on job type. Further, we expect ȳ
(2)
U from µ(2) will have larger effect size

than that of ȳ
(1)
U from µ(1).

The sampling mechanism and the way we generate the study variable y are the same as that in

one dimensional case. However, because there are more number of domains in this case, we set

the sample size to be n = 400, n = 800, n = 1200 and n = 2000, respectively, corresponding to

the population size N = 8000, N = 16000, N = 24000 and N = 40000, where the sample sizes

are divided among the strata as (50, 100, 100, 150), (100, 200, 200, 300), (150, 300, 300, 450) and

(250, 500, 500, 750), respectively.

The simulation results in Table 4.3 demonstrate similar properties as those in the previous sce-

narios: the tests have higher power as sample size gets larger and the effect size of the population

domain means is larger.

4.5 Application to NSCG 2019 Data

To demonstrate the utility of the proposed one sided test procedure in real survey data, we

consider the 2019 National Survey of College Graduates (NSCG), which is conducted by the U.S.

Census Bureau. The NSCG provides data on the characteristics of the nation’s college graduates,

with a focus on those in the science and engineering workforce. The data and relevant documenta-

tion are available to the public on the NSF website (https://www.nsf.gov/statistics/srvygrads/).
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Table 4.3: Monotonicity in two variables: the proportions of times null is rejected under various settings

and power comparison between the constrained one sided test and the unconstrained test

One sided test

σ n
α1 = 0.1 α2 = 0.05 α3 = 0.01

µ(0) µ(1) µ(2) µ(0) µ(1) µ(2) µ(0) µ(1) µ(2)

σ = 1

n=400 0.1770 0.7738 0.8755 0.1000 0.6415 0.7757 0.0255 0.3460 0.4907

n=800 0.1203 0.8732 0.9576 0.0590 0.7677 0.8975 0.0129 0.4706 0.6598

n=1200 0.1097 0.9571 0.9921 0.0562 0.8972 0.9762 0.0102 0.6556 0.8523

n=2000 0.1093 0.9929 0.9994 0.0558 0.9794 0.9975 0.0103 0.8661 0.9700

σ = 1.5

n=400 0.1778 0.5837 0.6840 0.1006 0.4301 0.5382 0.0255 0.1844 0.2586

n=800 0.1210 0.6512 0.7783 0.0594 0.4967 0.6399 0.0133 0.2257 0.3421

n=1200 0.1098 0.7701 0.8908 0.0565 0.6247 0.7881 0.0100 0.3235 0.4909

n=2000 0.1089 0.9019 0.9725 0.0560 0.8040 0.9292 0.0103 0.5150 0.7236

ANOVA F test

σ n
α1 = 0.1 α2 = 0.05 α3 = 0.01

µ(0) µ(1) µ(2) µ(0) µ(1) µ(2) µ(0) µ(1) µ(2)

σ = 1

n=400 0.1584 0.4337 0.5642 0.0828 0.3005 0.4255 0.0184 0.1075 0.1886

n=800 0.1338 0.5817 0.7748 0.0703 0.4407 0.6600 0.0154 0.2165 0.4058

n=1200 0.1273 0.7028 0.8922 0.0662 0.5773 0.8149 0.0140 0.3224 0.6055

n=2000 0.1289 0.9174 0.9912 0.0697 0.8577 0.9789 0.0149 0.6664 0.9198

σ = 1.5

n=400 0.1584 0.2899 0.3578 0.0828 0.1759 0.2285 0.0184 0.0510 0.0732

n=800 0.1338 0.3283 0.4443 0.0703 0.2138 0.3133 0.0154 0.0717 0.1274

n=1200 0.1273 0.3803 0.5358 0.0662 0.2606 0.4009 0.0140 0.1014 0.1883

n=2000 0.1289 0.5759 0.7811 0.0697 0.4434 0.6683 0.0149 0.2148 0.4215

We choose the annual salary as the study variable (denoted by SALARY in the dataset). In

order to prevent the impact of the extreme annual salary, we only consider those who reported an

annual salary between $30,000 and $900,000. Also, as the annual salary variable distribution is

skewed, a log transformation is implemented. Four predictor variables are considered:

• Field (denoted by NDGMEMG in the dataset): This nominal variable defines the field of

study for the highest degree. There are six levels: (1) Computer and mathematical sci-

ences; (2) Biological, agricultural and environmental life sciences; (3) Physical and related

sciences; (4) Social and related sciences; (5) Engineering; (6) Other.

• Father’s education level (denoted by EDDAD in the dataset): This ordinal variable denotes

the highest level of education completed by the respondents’ father (or male guardian). The

six levels are: (1) Less than high school completed; (2) High school diploma or equivalent;

(3) Some college, vocational, or trade school (including 2-year degrees); (4) Bachelors de-
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gree (e.g. BS, BA, AB); (5) Masters degree (e.g. MS, MA, MBA); (6) Professional degree

(e.g. JD, LLB, MD, DDS, etc.) and Doctorate (e.g. PhD, DSc, EdD, etc.).

• Academic year of award for the highest degree (denoted by HDACYR): This variable gives

information about which year each respondent was awarded for their highest degree.

• Highest degree type (denoted by DGRDG): This ordinal variable denotes the highest degree

type the respondents earned. The four levels are: (1) Bachelor’s; (2) Master’s; (3) Doctorate;

(4) Professional.

Suppose interest is in the question: for wage-earners whose highest degree is a bachelor’s,

does the father’s education level influence the salary, when controlling for field of study and time

since degree? To answer this, we perform separate tests for cohorts in years that the degree was

attained, as in Table 4.4. Within each cohort, there are 36 domains, with six levels each of field

and father’s education level. We test the null hypothesis that the salary is constant over father’s

education level, within each field, against the alternative that the salary is increasing in father’s

education level. We compare the p-values for this test with constrained alternative to the ANOVA

test with unconstrained alternative. The svyglm function in survey package is used for the

unconstrained alternative, and the F test by applying the anova function in survey package

gives the p-value. The results of the tests for five recent cohorts are in Table 4.4.

Table 4.4: p-values for the null hypothesis that salary is constant in father’s education level, controlling for

field of study.

year 2007-2009 2010-2011 2012-2013 2014-2015 2016-2017

one-sided mixture beta test 0.0037 0.0119 0.0004 0.0204 0.0018

ANOVA F test 0.0601 0.3601 0.0236 0.2223 0.0655

For each cohort, the p-value for the one-sided test is below .05, indicating that salaries increase

significantly with father’s education level, consistently across years. In contrast, the p-value for

the two-sided test is consistently larger, and does not indicate a significant trend for some of the

cohorts, and for other years the test results could be considered “borderline.” Using the a priori
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knowledge that if father education level affects salary, it must be a positive effect, helps increase

the power to see the trend.

4.6 Discussion

In this paper, we developed a testing procedure for testing the linear inequality restrictions of

the population domain means within the survey context. Under the design normal assumption of

the survey domain means, the proposed test statistic T̂ has the asymptotic mixture beta densities,

where the mixing probabilities (or the weights) can be easily computed via simulations. The test

statistic readily allows computation, with the covariance estimator Σ̃ and the unconstrained es-

timator ỹs obtained from the survey package in R and the constrained least square projection

obtained by using the coneA function in coneproj package. In theory, we showed that the

power of the test tends to be one as the sample size increases. Also, larger effect size of the popu-

lation domain means can boost the power of the test. The simulation studies confirm the properties

of the proposed test and find that the test is an exact test in moderate to large-sized samples.

The implementation of the test in the csurvey package borrows from the survey package.

For example, suppose we have a grid of domains in two variables x1 and x2 and study variable

y. The survey design is specified with the svydesign command in the survey package, and

the design object ds is used in the implementation of the test. The p-value for the test of constant

versus increasing domain means along the x1 variable, without constraining the domain means in

the x2 variable, is obtained as follows.

ansc = csvy(y~incr(x1)*x2, data=data_set_name, design=ds,

nD=M, test=TRUE)

ansc$pval

For more information and examples, see the csurvey manual.
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Chapter 5

Conclusion and Future Work

In this dissertation, we first proposed a new survey estimator under nonresponse, in which the

propensity function is fitted by a constrained least square regression model, with the constraint

being a calibration equation. In this manner, we can take advantage of the calibration equation

as well as the readily implementation of the least square criterion. Even though we may mis-

specify the response model to some degree, the estimate will be adjusted towards the true value

by the calibration equation, making the estimate more efficiency. We showed that both Horvitz-

Thompson type and Hájek type estimators are asymptotic unbiased for the population mean. Also,

the asymptotic variance estimators are derived for the proposed estimator and they are proved to be

consistent for the corresponding true asymptotic variance. Furthermore, under the design normal

assumption, we showed that both estimators are asymptotic normally distributed, regardless of the

random response mechanism. In a simulation study, the proposed estimators are shown to have a

good performance in terms of unbiasedness, coverage probability and mean square error, compared

with other competitive uncalibrated estimators.

Next, we tackled the problem in estimating the variance of inequality constrained domain mean

estimators in the finite population context. The proposed mixture variance estimator takes into ac-

count the fact that the constrained domain means estimator can be expressed through a projection

matrix on a unique linear space derived from the linear constraints. This linear space is sample-

dependent and thus so is the covariance of the constrained estimator. This improved variance esti-

mator better reflects the covariance structure of the underlying constrained domain mean estimator

by taking into account all possible covariance matrices obtained from the inequality constraints.

Also, we formally proved the consistency of the mixture variance estimators.

In the third topic, we proposed a testing procedure for testing the linear inequality constraints

of the population domain means within the survey context. The null distribution of the proposed

test statistics has been shown to have the asymptotic mixture beta densities. In theory, we proved
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that the power of the test goes to one as the sample size increases. Also, larger effect size of the

population domain means can boost the power of the test. This one-side test is easy to conduct in

real practice and the simulations, as well as the real data analysis, confirm the properties of this

proposed one-sided test.

Applying the shape constrained methods in survey domain estimation is a new area in survey

research. Recently, Wu et al. (2016), Oliva-Avilés et al. (2019), Oliva-Avilés et al. (2020), Xu

et al. (2021) proposed a lot of methods on the survey domain estimation and inference under shape

restrictions. In the future, to make those work more applicable to survey practitioners, we will

work on developing a new csurvey package that allows users to implement shape and order

constraints on domain mean estimates in surveys. The new package csurvey will incorporate

the existing methods on constrained domain estimation and inference, with commands to impose

a variety of useful constraints in real surveys. Also, we plan to work on the relaxed monotone

estimator in surveys. Under some circumstance, imposing strict monotone ordering might not be

appropriate, then a relaxed ordering can be used instead. We will try to propose a method that may

be used if the domain means can be assumed to be approximately monotone. Specifically, a type of

weighted moving average can be assumed to be monotone. we will formulate the moving average

with a single tuning parameter, and try to propose a data-driven choice of this parameter.
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Appendix A

Supplemental Materials for Chapter 2

This appendix contains all the proofs of the theoretical results in Chapter 2.

Proof of Theorem 3. We will complete the proof by showing n(V̂i−Vi) = op(1), ∀i = 1, 2, 3, 4.

n(V̂1 − V1) =
n

N2

∑

i∈S

1

π2
i

(

1

p̂i
− 1

)

y2i
Ri

p̂i
− n

N2

∑

i∈U

1

πi

(

1

pi
− 1

)

y2i

=

{

n

N2

∑

i∈S

1

π2
i
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1

p̂i
− 1

)

y2i
Ri
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π2
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1

pi
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Ri

pi

}
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∑
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1

π2
i

(

1

pi
− 1

)

y2i
Ri

pi
− n

N2

∑

i∈S

1

π2
i

(

1

pi
− 1

)

y2i

}

+

{

n

N2

∑

i∈S

1

π2
i

(

1

pi
− 1

)

y2i −
n
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∑

i∈U

1

πi

(

1

pi
− 1

)

y2i

}

= a1 + a2 + a3

We write a1 as a1 =
n
N2

∑

i∈S
Riy

2
i

π2
i

( 1
p̂2i
− 1

p2i
)− n

N2

∑

i∈S
Riy

2
i

π2
i

( 1
p̂i
− 1

pi
). Using the similar argument

for showing A = Op(n
− 1

2 ), it’s easy to see that:

n

N2

∑

i∈S

Riy
2
i

π2
i

(
1

p̂i
− 1

pi
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n

N

1
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Riy
2
i

π2
i

(
1

p̂i
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pi
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− 1
2 ) = Op(n

− 1
2 ) = op(1)

Apply similar argument to the first term of a1, yielding n
N2

∑

i∈S
Riy

2
i

π2
i

( 1
p̂2i
− 1

p2i
) = op(1), Hence we

have a1 = op(1) + op(1) = op(1).

We write a2 as a2 = n
N2

∑

i∈S
y2i

π2
i p

2
i

(Ri − pi) − n
N2

∑

i∈S
y2i

π2
i pi

(Ri − pi). By Kolmogorov’s Law of

Large Numbers, we have:

1
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1
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Hence a2 = O(1)op(1) + O(1)op(1) = op(1). By the analogous argument for showing (2.9),

a3 = O(1)Op(n
− 1

2 ) = Op(n
− 1

2 ) = op(1). Thus, we have shown that:

n(V̂1 − V1) = op(1) + op(1) + op(1) = op(1)
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= b1 + b2

Using the same argument for showing n(V̂1−V1) = op(1), it’s easy to verify that b1 = O(1)op(1) =

op(1). Now, we can rewrite b2 as:
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By a similar argument for showing A = op(1) in Theorem 2, we have:

b21 = Op(1)Op(n
− 1

2 ) +Op(1)Op(n
− 1

2 ) = Op(n
− 1

2 ) = op(1)

Also, by Kolmogorov’s Law of Large Numbers, we get:

b22 =
n(n− 1)
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i,j∈S,i 6=j

n∆ij

πij

yiyj
πiπjpipj

(RiRj − pipj) = O(1)op(1) = op(1)

By assumption D.1, D.2 and applying Corollary 5.1.1.1 in Fuller (1996), we can show that b23 =

op(1), hence b2 = op(1) + op(1) + op(1) = op(1) and thus:

n(V̂2 − V2) = op(1) + op(1) = op(1)

Before proving n(V̂3 − V3) = op(1) and n(V̂4 − V4) = op(1), we first need the following result:

Â−A = op(1) (A.1)

N(Ĵ−1(ν̂)− J−1(ν∗)) = op(1) (A.2)

D̂ −D = op(1) (A.3)

Using the same procedure for proving n(V̂1 − V1) = op(1), (A.1) can be easily verified. For (A.2),

since J(.) matrix is continuous and invertible, it suffice to show:

1

N
Ĵ(ν̂)− 1

N
J(ν∗) = op(1) (A.4)

Again, using the similar procedure for proving n(V̂1 − V1) = op(1), we have that:
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Hence, by Slutsky’s Theorem, 1
N
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p−→ 1
N
J(ν∗), so (A.4) and thus (A.2) are verified.

Similarly, we apply Slutsky’s Theorem to the following results, yielding (A.3).
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Now, based on the expression of V̂3 and V3, we write n(V̂3 − V3) as:
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In terms of c1, we have:
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=c11 − c12 + c13 − c14

Using the same argument for showing n(V̂1−V1) = op(1), we obtain that c11 = op(1), c12 = op(1),

c13 = op(1) and c14 = op(1). Thus, we have:
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Together with the result Â
p→ A, N Ĵ−1(ν̂)

p→ NJ−1(ν∗) and D̂
p→ D from (A.1), (A.2) and

(A.3), respectively. We have the following result by Slutsky’s Theorem:
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That is c1 = op(1). Using the analogous argument for proving c1 = op(1), we have c2 = op(1),

c3 = op(1), c4 = op(1) and thus we get n(V̂3 − V3) = op(1).

Since the expressions of V̂4 and V4 have the similar structure as that for V̂3 and V3, so using the

analogous argument as for showing n(V̂3 − V3) = op(1), we can obtain that n(V̂4 − V4) = op(1).
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Therefore, we have:

n(V̂(ȳel)− Var(ȳel)) =
4
∑

i=1

n(V̂i − Vi) = op(1) + op(1) + op(1) + op(1) = op(1)

Proof of Theorem 4. Using the result in (2.13), we compute
√
n(ȳe − ȳπ) as follows:
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where Di =
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[
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]

and we assume that, for all i, 0 < |Di| ≤ M for some

constant M . Now, we want to show the following result:
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By assumption D.3, we have
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d−→ N(0, Vπ), if we can show:

√
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then by Theorem 1.3.6 in Fuller (2009), (A.6) is proved.

Given sample S = {1, 2, · · · , n}, denote Tn =
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i∈S Di(Ri−pi) and S2
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2
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by showing that the Lyapunov condition holds.

Set δ = 1, then:

E(|Di(Ri − pi)|2+δ) = E(|Di(Ri − pi)|3)
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Hence, Lyapunov condition is satisfied. By Lyapunov central limit theorem, we have:
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By Berry Esseen Theorem, for any value t, there exists a absolute constant C0, such that:
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where Φ(·) denote the cumulative distribution function of the standard normal distribution. Hence,

by assumption D.2 and above inequality, we have that:

E

∣

∣

∣

∣

∣

P

{

∑

i∈S Di(Ri − pi)
√
∑

i∈S D
2
i pi(1− pi)

< t

∣

∣

∣

∣

∣

S

}

− Φ(t)

∣

∣

∣

∣

∣

4

≤E

[

C0M
√
∑

i∈S D
2
i pi(1− pi)

]4

=
C4

0M
4

N2
E





(

1

N

∑

i∈U
IiD

2
i pi(1− pi)

)−2




<
C4

0M
4

n2[mini D2
i pi(1− pi)]2

E





(

1

N

∑

i∈U
Ii

)−2




≤ C4
0M

4

[mini D2
i pi(1− pi)]2(π∗)2

1

n2

which implies:

∞
∑

n=1

E

∣

∣

∣

∣

∣

P

{

∑n
i=1 Di(Ri − pi)

√
∑n

i=1 D
2
i pi(1− pi)

< t

∣

∣

∣

∣

∣

S

}

− Φ(t)

∣

∣

∣

∣

∣

4

≤ C4
0M

4

[infi D2
i pi(1− pi)]2(π∗)2

∞
∑

n=1

1

n2
< ∞

(A.8)

Given any ε > 0, by Markov’s inequality and (A.8), we have:

∞
∑

n=1

P

{∣

∣

∣

∣

∣

P

[

∑

i∈S Di(Ri − pi)
√
∑

i∈S D
2
i pi(1− pi)

< t

∣

∣

∣

∣

∣

S

]

− Φ(t)

∣

∣

∣

∣

∣

> ε

}

=
∞
∑

n=1

P







∣

∣

∣

∣

∣

P

[

∑

i∈S Di(Ri − pi)
√
∑

i∈S D
2
i pi(1− pi)

< t

∣

∣

∣

∣

∣

S

]

− Φ(t)

∣

∣

∣

∣

∣

4

> ε4







≤
∞
∑

n=1

E

∣

∣

∣

∣

∣

P

[

∑n
i=1 Di(Ri − pi)

√
∑n

i=1 D
2
i pi(1− pi)

< t

∣

∣

∣

∣

∣

S

]

− Φ(t)

∣

∣

∣

∣

∣

4/

ε4

<∞
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By Borel-Cantelli lemma, we have:

P

{∣

∣

∣

∣

∣

P

[

∑

i∈S Di(Ri − pi)
√
∑

i∈S D
2
i pi(1− pi)

< t

∣

∣

∣

∣

∣

S

]

− Φ(t)

∣

∣

∣

∣

∣

> ε, i.o.

}

= 0

which is equivalent to:

∑

i∈S Di(Ri − pi)
√
∑

i∈S D
2
i pi(1− pi)

∣

∣

∣

∣

∣

S
d−→ N(0, 1) a.s (A.9)

By similar proof for (2.9), we have:

1

N

∑

i∈S
D2

i pi(1− pi)
p−→ 1

N

∑

i∈U
πiD

2
i pi(1− pi) (A.10)

Using (A.10), (A.9), (A.5) and applying Slutsky’s Theorem, we can get (A.7) and thus (A.6) is

proved.

Notice that Vπ + VR = limN→∞ n
{

1
N2

∑

i,j∈U
∆ijyiyj
πiπj

+ 1
N2

∑

i∈U πiD
2
i pi(1− pi)

}

, where:

1

N2

∑

i,j∈U

∆ijyiyj
πiπj

+
1

N2

∑

i∈U
πiD

2
i pi(1− pi)

= Var(ȳπ) +
1

N2

∑

i∈U

1

πi

[

yi
pi

+AT (NJ−1(ν∗))Wi

]2

pi(1− pi)

= Var(ȳπ) +
1

N2

∑

i∈U

1

πi

[

y2i
p2i

+ (AT (NJ−1(ν∗))Wi)
2 +

2yi
pi

AT (NJ−1(ν∗))Wi

]

pi(1− pi)

= Var(ȳπ) +
1

N2

∑

i∈U

1

πi

[

y2i
p2i

+ (CiN)2 +
2yi
pi

CiN

]

pi(1− pi)

= Var(ȳπ) +
1

N2

∑

i∈U

y2i
πi

1− pi
pi

+
∑

i∈U

pi(1− pi)

πi

C2
i +

2

N

∑

i∈U

yiCi(1− pi)

πi

= Var(ȳel)

So by the result:
√
n(ȳe−ȳU )√
Vπ+VR

d−→ N(0, 1) from (A.6), we have that:

√
n(ȳe − ȳU)
√

nVar(ȳel)

d−→ N(0, 1)
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Apply Theorem 3 and Slutsky’s Theorem to above result, yielding:

√
n(ȳe − ȳU)
√

nV̂(ȳel)
=

ȳe − ȳU
√

V̂ (ȳel)

d−→ N(0, 1)

Proof of Theorem 6. By Lemma 4, Var(ȳHL) is expressed as:

Var(ȳHL) =
1

N2

∑

i∈U

1

πi

(

1

pi
− 1

)

(yi − ȳU)
2 +

1

N2

∑

i,j∈U
∆ij

(yi − ȳU)(yj − ȳU)

πiπj

+
∑

i∈U

pi(1− pi)

πi

C2
Hi +

2

N

∑

i∈U

CHi(1− pi)(yi − ȳU)

πi

= VH1 + VH2 + VH3 + VH4

We will show n(V̂Hi − VHi) = op(1), ∀i = 1, 2, 3, 4.

n(V̂H1 − VH1)

=
n

N̂2

∑

i∈S

1

π2
i

(

1

p̂i
− 1

)

(y2i − 2yiȳH + ȳ2H)
Ri

p̂i
− n

N2

∑

i∈U

1

πi

(

1

pi
− 1

)

(y2i − 2yiȳU + ȳ2U)

=

{

N2

N̂2

n

N2

∑

i∈S

1

π2
i

(

1

p̂i
− 1

)

y2i
Ri

p̂i
− n

N2

∑

i∈U

1

πi

(

1

pi
− 1

)

y2i

}

−
{

2ȳHN
2

N̂2

n

N2

∑

i∈S

1

π2
i

(

1

p̂i
− 1

)

yi
Ri

p̂i
− 2ȳUn

N2

∑

i∈U

1

πi

(

1

pi
− 1

)

yi

}

+

{

ȳ2HN
2

N̂2

n

N2

∑

i∈S

1

π2
i

(

1

p̂i
− 1

)

Ri

p̂i
− ȳ2Un

N2

∑

i∈U

1

πi

(

1

pi
− 1

)

}

=d1 + d2 + d3

Using a similar proof for Theorem 2, it’s easy to show that N̂
N

p−→ 1, and thus N̂2

N2

p−→ 1 by

Slutsky’s theorem. By Theorem 5, ȳH − ȳU = op(1), so we also have ȳ2H
p−→ ȳ2U by Slutsky’s

theorem.
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From Theorem 3, we have n(V̂1 − V1) = op(1), together with the result N̂2

N2

p−→ 1, we have:

d1 = op(1). By a similar argument for showing n(V̂1 − V1) = op(1), we get the following results:

n

N2

∑

i∈S

1

π2
i

(

1

p̂i
− 1

)

yi
Ri

p̂i

p−→ n

N2

∑

i∈U

1

πi

(

1

pi
− 1

)

yi (A.11)

n

N2

∑

i∈S

1

π2
i

(

1

p̂i
− 1

)

Ri

p̂i

p−→ n

N2

∑

i∈U

1

πi

(

1

pi
− 1

)

(A.12)

Apply Slutsky’s theorem to (A.11), N̂2

N2

p−→ 1 and ȳH − ȳU = op(1), we have d2 = op(1). Also,

apply Slutsky’s theorem to (A.12), N̂2

N2

p−→ 1 and ȳ2H
p−→ ȳ2U , we have d3 = op(1). Therefore, we

have:

n(V̂H1 − VH1) = op(1) + op(1) + op(1) = op(1)

Now, we rewrite n(V̂H2 − VH2) as:

n(V̂H2 − VH2)

=

{

n

N̂2

∑

i∈S

(1− πi)(yi − ȳH)
2

π2
i

Ri

p̂i
− n

N2

∑

i∈U

(1− πi)(yi − ȳU)
2

πi

}

+

{

n

N̂2

∑

i,j∈S,i 6=j

∆ij

πij

(yi − ȳH)(yj − ȳH)

πiπj

RiRj

p̂ip̂j
− n

N2

∑

i,j∈U,i 6=j

∆ij
(yi − ȳU)(yj − ȳU)

πiπj

}

=e1 + e2
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Using the same argument for proving n(V̂H1−VH1) = op(1), it’s easy to show that e1 = op(1).

We now write e2 as:

e2 =
N2

N̂2

n

N2

∑

i,j∈S,i 6=j

∆ij

πij

RiRj

πiπj p̂ip̂j
(yiyj − yiȳH − yj ȳH + ȳ2H)

− n

N2

∑

i,j∈U,i 6=j

∆ij
1

πiπj

(yiyj − yiȳU − yj ȳU + ȳ2U)

=

[

N2

N̂2

1

N2

∑

i,j∈S,i 6=j

n∆ij

πij

RiRj

πiπj p̂ip̂j
yiyj −

1

N2

∑

i,j∈U,i 6=j

n∆ij
1

πiπj

yiyj

]

−
[

N2

N̂2

ȳH
N2

∑

i,j∈S,i 6=j

n∆ij

πij

RiRj

πiπj p̂ip̂j
(yi + yj)−

ȳU
N2

∑

i,j∈U,i 6=j

n∆ij
1

πiπj

(yi + yj)

]

+

[

N2

N̂2

ȳ2H
N2

∑

i,j∈S,i 6=j

n∆ij

πij

RiRj

πiπj p̂ip̂j
− ȳ2U

N2

∑

i,j∈U,i 6=j

n∆ij
1

πiπj

]

= e21 + e22 + e23

By the result in Theorem 3, we have b2 =
1
N2

∑

i,j∈S,i 6=j
n∆ij

πij

RiRjyiyj
πiπj p̂ip̂j

− 1
N2

∑

i,j∈U,i 6=j n∆ij
yiyj
πiπj

=

op(1), together with N̂2

N2

p−→ 1, we can get e21 = op(1). By the same argument for proving

b2 = op(1), we have:

1

N2

∑

i,j∈S,i 6=j

n∆ij

πij

RiRj

πiπj p̂ip̂j
(yi + yj)

p−→ 1

N2

∑

i,j∈U,i 6=j

n∆ij
1

πiπj

(yi + yj) (A.13)

1

N2

∑

i,j∈S,i 6=j

n∆ij

πij

RiRj

πiπj p̂ip̂j

p−→ 1

N2

∑

i,j∈U,i 6=j

n∆ij
1

πiπj

(A.14)

Apply Slutsky’s theorem to (A.13), N̂2

N2

p−→ 1 and ȳH− ȳU = op(1), we have e22 = op(1). Also,

apply Slutsky’s theorem to (A.14), N̂2

N2

p−→ 1 and ȳ2H
p−→ ȳ2U , we have e23 = op(1). Therefore, we

have: e2 = op(1) + op(1) + op(1) = op(1). Thus,

n(V̂H2 − VH2) = op(1) + op(1) = op(1)
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Before showing n(V̂H3 − VH3) = op(1) and n(V̂H4 − VH4) = op(1), we first need to show

ÂH −AH = op(1).

ÂH −AH = −
(

N

N̂

1

N

∑

i∈S

BiRiyi
πip̂2i

− 1

N

∑

i∈U

Biyi
pi

)

+

(

N

N̂

ȳH
N

∑

i∈S

BiRi

πip̂2i
− ȳU

N

∑

i∈U

Bi

pi

)

= f1 + f2

Since we have Â − A = op(1) and N̂
N

p−→ 1, so f1 = op(1). Apply Slutsky’s theorem to

N̂
N

p−→ 1, ȳH − ȳU = op(1) and 1
N

∑

i∈S
BiRi

πip̂2i

p−→ 1
N

∑

i∈U
Bi

pi
, we get f2 = op(1), therefore, we

have:

ÂH −AH = op(1)

Using exactly the same procedure for showing n(V̂3 − V3) = op(1) in Theorem 3 (just replace A

with AH and replace Â with ÂH), we have that:

n(V̂H3 − VH3) = op(1)

Now, we write n(V̂H4 − VH4) as:

n(V̂H4 − VH4)

=2
N

N̂

n

N
ÂT

H [Ĵ(ν̂)]
−1
∑

i∈S

(1− p̂i)

π2
i

Ri

p̂i
Ŵi(yi − ȳH)

− 2
n

N
AT

H [J(ν
∗)]−1

∑

i∈U

(1− pi)

πi

Wi(yi − ȳU)

=

(

2
N

N̂

n

N
ÂT

H [Ĵ(ν̂)]
−1
∑

i∈S

(1− p̂i)

π2
i

Ri

p̂i
Ŵiyi − 2

n

N
AT

H [J(ν
∗)]−1

∑

i∈U

(1− pi)

πi

Wiyi

)

−
(

2ȳH
N

N̂

n

N
ÂT

H [Ĵ(ν̂)]
−1
∑

i∈S

(1− p̂i)

π2
i

Ri

p̂i
Ŵi − 2ȳU

n

N
AT

H [J(ν
∗)]−1

∑

i∈U

(1− pi)

πi

Wi

)

=g1 + g2
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Using the similar proof for showing n(V̂3 − V3) = op(1), we have:

n

N
ÂT

H [Ĵ(ν̂)]
−1
∑

i∈S

(1− p̂i)

π2
i

Ri

p̂i
Ŵiyi

p−→ n

N
AT

H [J(ν
∗)]−1

∑

i∈U

(1− pi)

πi

Wiyi

n

N
ÂT

H [Ĵ(ν̂)]
−1
∑

i∈S

(1− p̂i)

π2
i

Ri

p̂i
Ŵi

p−→ n

N
AT

H [J(ν
∗)]−1

∑

i∈U

(1− pi)

πi

Wi

together with the result N̂
N

p−→ 1 and ȳH− ȳU = op(1), we have g1 = op(1) and g2 = op(1). Hence,

we get:

n(V̂H4 − VH4) = op(1)

Overall, n(V̂ (ȳHL)− Var(ȳHL)) = op(1) + op(1) + op(1) + op(1) = op(1)

Proof of Theorem 7. From (2.14), we have:

ȳH − ȳU

=ȳHL + op(n
− 1

2 )

=
1

N

∑

i∈S

(yi − ȳU)Ri

πipi
+AT

H [J(ν
∗)]−1SL(ν

∗) + op(n
− 1

2 )

=
1

N

∑

i∈S

(yi − ȳU)(Ri − pi)

πipi
+AT

H [J(ν
∗)]−1SL(ν

∗) +
1

N

∑

i∈S

(yi − ȳU)

πi

+ op(n
− 1

2 )

=
1

N

∑

i∈S

1

πi

[

(yi − ȳU)

pi
+AT

HN [J(ν∗)]−1Wi

]

(Ri − pi) +
1

N

∑

i∈S

(yi − ȳU)

πi

+ op(n
− 1

2 )

=
1

N

∑

i∈S
DHi(Ri − pi) +

1

N

∑

i∈S

(yi − ȳU)

πi

+ op(n
− 1

2 ) (A.15)

where DHi =
1
πi

[

(yi−ȳU )
pi

+AT
HN [J(ν∗)]−1Wi

]

and we assume that, for all i, |DHi| ≤ MH for

some constant MH .

Now, we want to prove the following result:

√
nȳHL

d−→ N(0, VHπ + VHR) (A.16)
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where VHπ = limN→∞
n
N2

∑

i,j∈U
∆ij(yi−ȳU )(yj−ȳU )

πiπj
and VHR = limN→∞

n
N2

∑

i∈U πiD
2
Hipi(1−pi).

Denote ȳHπ = 1
N

∑

i∈S
(yi−ȳU )

πi
, From assumption D.3, we have

√
nȳHπ

d−→ N(0, VHπ), if we can

show:

√
n(ȳHL − ȳHπ)|S d−→ N(0, VHR), a.s (A.17)

then by Theorem 1.3.6 in Fuller (2009), (A.16) is proved. Given sample S = {1, 2, · · · , n}, denote

THn =
∑

i∈S DHi(Ri − pi) and S2
Hn = Var(

∑

i∈S DHi(Ri − pi)) =
∑

i∈S D
2
Hipi(1− pi), we will

prove:

THn

SHn

d−→ N(0, 1)

by showing that the Lyapunov condition holds. Let δ = 1, then:

E(|DHi(Ri − pi)|2+δ) = E(|DHi(Ri − pi)|3)

= |DHi|3[pi(1− pi)
3 + (1− pi)pi

3]

≤ |DHi|3pi(1− pi)

≤ MHD
2
Hipi(1− pi)

Thus,
∑

i∈S E(|DHi(Ri − pi)|3) ≤ MH

∑

i∈S D
2
Hipi(1− pi) = MHS

2
Hn. So we have that:

∑

i∈S E(|DHi(Ri − pi)|3)
S3
Hn

≤ MHS
2
Hn

S3
Hn

=
MH

SHn

−→ 0, as n → ∞

Hence, by Lyapunov central limit theorem, we have:

THn

SHn

=

∑

i∈S DHi(Ri − pi)
√
∑

i∈S D
2
Hipi(1− pi)

=

√
n

N

∑

i∈S DHi(Ri − pi)
√

n
N2

∑

i∈S D
2
Hipi(1− pi)

d−→ N(0, 1)
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Now, it’s ready to show
∑

i∈S DHi(Ri−pi)√∑
i∈S D2

Hi
pi(1−pi)

∣

∣

∣

∣

S
d−→ N(0, 1) a.s. By Berry-Esseen Theorem, for

any value t, there exists a absolute constant C0, such that:

∣

∣

∣

∣

∣

P

{

∑

i∈S DHi(Ri − pi)
√
∑

i∈S D
2
Hipi(1− pi)

< t

∣

∣

∣

∣

∣

S

}

− Φ(t)

∣

∣

∣

∣

∣

≤C0

∑

i∈S E(|DHi(Ri − pi)|3)
S3
Hn

≤ C0MH
√
∑

i∈S D
2
Hipi(1− pi)

where Φ(·) denote the cumulative distribution function of the standard normal distribution. Hence,

by assumption D.2 and above result, we have that:

E

∣

∣

∣

∣

∣

P

{

∑

i∈S DHi(Ri − pi)
√
∑

i∈S D
2
Hipi(1− pi)

< t

∣

∣

∣

∣

∣

S

}

− Φ(t)

∣

∣

∣

∣

∣

4

≤E

[

C0MH
√
∑

i∈S D
2
Hipi(1− pi)

]4

=
C4

0M
4
H

N2
E





(

1

N

∑

i∈U
IiD

2
Hipi(1− pi)

)−2




<
C4

0M
4
H

n2[mini D2
Hipi(1− pi)]2

E





(

1

N

∑

i∈U
Ii

)−2




≤ C4
0M

4
H

[mini D2
Hipi(1− pi)]2(π∗)2

1

n2

which implies:

∞
∑

n=1

E

∣

∣

∣

∣

∣

P

{

∑n
i=1 DHi(Ri − pi)

√
∑n

i=1 D
2
Hipi(1− pi)

< t

∣

∣

∣

∣

∣

S

}

− Φ(t)

∣

∣

∣

∣

∣

4

≤ C4
0M

4
H

[infi D2
Hipi(1− pi)]2(π∗)2

∞
∑

n=1

1

n2
< ∞

(A.18)
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Therefore, for any ε > 0, by Markov’s inequality and (A.18):

∞
∑

n=1

P

{∣

∣

∣

∣

∣

P

[

∑

i∈S DHi(Ri − pi)
√
∑

i∈S D
2
Hipi(1− pi)

< t

∣

∣

∣

∣

∣

S

]

− Φ(t)

∣

∣

∣

∣

∣

> ε

}

=
∞
∑

n=1

P







∣

∣

∣

∣

∣

P

[

∑

i∈S DHi(Ri − pi)
√
∑

i∈S D
2
Hipi(1− pi)

< t

∣

∣

∣

∣

∣

S

]

− Φ(t)

∣

∣

∣

∣

∣

4

> ε4







≤
∞
∑

n=1

E

∣

∣

∣

∣

∣

P

[

∑n
i=1 DHi(Ri − pi)

√
∑n

i=1 D
2
Hipi(1− pi)

< t

∣

∣

∣

∣

∣

S

]

− Φ(t)

∣

∣

∣

∣

∣

4/

ε4

<∞

By Borel-Cantelli lemma, we have:

P

{∣

∣

∣

∣

∣

P

[

∑

i∈S DHi(Ri − pi)
√
∑

i∈S D
2
Hipi(1− pi)

< t

∣

∣

∣

∣

∣

S

]

− Φ(t)

∣

∣

∣

∣

∣

> ε, i.o.

}

= 0

which is equivalent to:

∑

i∈S DHi(Ri − pi)
√
∑

i∈S D
2
Hipi(1− pi)

∣

∣

∣

∣

∣

S
d−→ N(0, 1) a.s (A.19)

By an analogous proof for (2.9), we have:

1

N

∑

i∈S
D2

Hipi(1− pi)
p−→ 1

N

∑

i∈U
πiD

2
Hipi(1− pi) (A.20)

By (A.19), (A.20), (A.15) and apply Slutsky’s theorem, we can obtain (A.17) and thus (A.16) is

proved. Notice that:

VHπ + VHR = lim
N→∞

n

{

1

N2

∑

i,j∈U

∆ij(yi − ȳU)(yj − ȳU)

πiπj

+
1

N2

∑

i∈U
πiD

2
Hipi(1− pi)

}
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where:

1

N2

∑

i,j∈U

∆ij(yi − ȳU)(yj − ȳU)

πiπj

+
1

N2

∑

i∈U
πiD

2
Hipi(1− pi)

= Var(ȳHπ) +
1

N2

∑

i∈U

1

πi

[

(yi − ȳU)
2

p2i
+ (AT

H(NJ−1(ν∗))Wi)
2

+
2(yi − ȳU)

pi
AT

H(NJ−1(ν∗))Wi

]

pi(1− pi)

= Var(ȳHπ) +
1

N2

∑

i∈U

1

πi

[

(yi − ȳU)
2

p2i
+ (CHiN)2 +

2(yi − ȳU)

pi
CHiN

]

pi(1− pi)

= Var(ȳHπ) +
1

N2

∑

i∈U

(yi − ȳU)
2

πi

1− pi
pi

+
∑

i∈U

pi(1− pi)

πi

C2
Hi +

2

N

∑

i∈U

(yi − ȳU)CHi(1− pi)

πi

= Var(ȳHL)

So by the result
√
nȳHL√

VHπ+VHR

d−→ N(0, 1), we have that:

√
nȳHL

√

nVar(ȳHL)

d−→ N(0, 1)

By Theorem 6 and Slutsky’s theorem, we have:

√
nȳHL

√

nV̂(ȳHL)

d−→ N(0, 1)

Finally, from (2.14), we get the desired result:

√
n(ȳH − ȳU)
√

nV̂(ȳHL)
=

ȳH − ȳU
√

V̂(ȳHL)

d−→ N(0, 1)
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Appendix B

Supplemental Materials for Chapter 3

B.1 Proof of Proposition 1

B.1.1 Derivation of the Expression in (3.2)

From the unweighted constrained least square problem in Section 3.2.1, the solution φ̃ is the

projection of z̃s onto the set

Ωs = {φ ∈ IRD : Asφ ≥ 0},

which defines a convex cone in IRD. The necessary and sufficient conditions for a vector φ̃ to be

the projection of z̃s onto Ωs can be found in Robertson et al. (1988), Chapter 1, or Silvapulle and

Sen (2005), Chapter 3.

When the constraint matrix As is not full row rank, the cone projection is more efficiently

solved by computing the projection onto the polar cone Ω
0
s, defined by

Ω
0
s = {ρ ∈ RD : ρ =

m
∑

j=1

ajγj, aj ≥ 0, j = 1, · · · ,m},

where γj , j = 1, · · · ,m, are the rows of −As and it can be shown that φ̃ = z̃s − ρ̃, where ρ̃

is the projection of z̃s onto the polar cone Ω
0
s. Further, we have the fact that the projection of z̃s

onto the polar cone is exactly the projection of z̃s onto the linear space generated by the edges γj

such that
〈

z̃s − ρ̃,γj

〉

= 0. That is, for a given sample s, there is a set Js ⊆ {1, . . . ,m} such that

the projection of z̃s onto Ω
0
s coincides with the projection of z̃s onto the linear space spanned by

γj , for j ∈ Js. Let LJs be the linear space generated by γj , j ∈ Js and MJs be the projection

matrix corresponding to this linear space, where M∅ is the matrix of zeros by convention. Then
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ρ̃ = MJs z̃s and we have:

θ̃ = ỹs −W−1/2
s MJsW

1/2
s ỹs

= ỹs −W−1/2
s A′

s,Js(As,JsA
′
s,Js)

−1As,JsW
1/2
s ỹs

=
(

ID×D −W−1
s A′

Js(AJsW
−1
s A′

Js)
−1AJs

)

ỹs

where As,Js , AJs denotes the matrix formed by the rows of As and A in positions Js, respectively.

Define CJs to be the set of points z̃s ∈ IRD where the projection of z̃s onto the polar cone

coincides with the projection onto LJs , and let IJ(s) = 1 if z̃s ∈ CJs and IJ(s) = 0 otherwise. If

As is not full row rank, then the set Js may not be unique. Theorem 3.1 from Oliva-Avilés et al.

(2020) guarantees, however, that the projection ρ̃ is the same for all such Js, and that it is always

possible to find a minimal J∗
s that is a subset of all Js such that z̃s ∈ CJs , and the vectors γj ,

j ∈ J∗
s form a linearly independent set. Assuming Js is this unique set and taking into account

that different sample s might correspond to a different Js, the general expression of the constrained

estimator in (3.2) is obtained.

B.1.2 Review of the Covariance Estimator in Oliva-Avilés, et al. (2020)

We derive an expression for the asymptotic variance of the constrained domain mean estimator,

similarly to the derivation in Oliva-Avilés et al. (2020). Based on the expression of θ̃ in (3.2), we

have that for each domain d:

θ̃d =
∑

J

[

ỹsd −
N̂

N̂d

{

A′
J(AJW

−1
s A′

J)
−1AJ ỹs

}

d

]

IJ(s)

where θ̃d = ỹsd if J = ∅. By Taylor expansion, for each domain d, we can linearize the θ̃d as

follows:

θ̃d =
∑

J

[

θd,J +
D
∑

j=1

αdj,J(t̂j − tj) +
D
∑

j=1

βdj,J(N̂j −Nj) +Op(n
−1)

]

IJ(s)
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where

θd,J = ȳUd
− N

Nd

{

A′
J(AJW

−1
U A′

J)
−1AJ ȳU

}

d
,

and WU is the diagonal matrix with elements N1/N,N2/N, · · · , ND/N . In addition,

t̂j is the HT estimator of tj =
∑

k∈Uj

yk,

αdj,J =
∂θ̃d

∂t̂j

∣

∣

∣

(t̂1,··· ,t̂D,N̂1,··· ,N̂D)=(t1,··· ,tD,N1,··· ,ND)
,

and

βdj,J =
∂θ̃d

∂N̂j

∣

∣

∣

(t̂1,··· ,t̂D,N̂1,··· ,N̂D)=(t1,··· ,tD,N1,··· ,ND)
.

Direct computation through matrix differentiation yields:

αdd,J =
1

Nd

− N

N2
d

{A′
J(AJW

−1
U A′

J)
−1AJ}dd,

αdj,J = − N

NdNj

{A′
J(AJW

−1
U A′

J)
−1AJ}dj,

βdd,J = − ȳUd

Nd

+
NȳUd

N2
d

{A′
J(AJW

−1
U A′

J)
−1AJ}dd +

N

N2
d

{A′
J(AJW

−1
U A′

J)
−1AJ}d·ȳU

− N2

N3
d

{A′
J(AJW

−1
U A′

J)
−1AJ}dd{A′

J(AJW
−1
U A′

J)
−1AJ}d·ȳU

= − 1

Nd

θd,J +
N

N2
d

{A′
J(AJW

−1
U A′

J)
−1AJ}ddθd,J ,

and

βdj,J =
NȳUj

NdNj

{A′
J(AJW

−1
U A′

J)
−1AJ}dj

− N2

NdN2
j

{A′
J(AJW

−1
U A′

J)
−1AJ}dj{A′

J(AJW
−1
U A′

J)
−1AJ}j·ȳU

=
N

NdNj

{A′
J(AJW

−1
U A′

J)
−1AJ}djθj,J .
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The variance of the constrained estimator for domain d can be approximated by the variance of

(
∑D

j=1 αdj,J(t̂j − tj) +
∑D

j=1 βdj,J(N̂j − Nj)) for the observed set J . The dd′th element of the

asymptotic covariance matrix of θ̃ is given by:

{AV(θ̃)}dd′ =Acov(θ̃d, θ̃d′)

=cov





D
∑

j=1

∑

k∈sj

(αdj,Jyk + βdj,J)

πk

,

D
∑

j=1

∑

l∈sj

(αd′j,Jyl + βd′j,J)

πl





=
D
∑

j=1





∑

k,l∈Uj

∆kl
(αdj,Jyk + βdj,J)(αd′j,Jyl + βd′j,J)

πkπl





+
∑

j 6=i

∑

k∈Uj

∑

l∈Ui

∆kl
(αdj,Jyk + βdj,J)(αd′i,Jyl + βd′i,J)

πkπl

. (B.1)

B.1.3 Some Lemmas

Lemma 5. Assume Aµ ≥ 0 and let Jµ = {j : Ajµ = 0}, then for J 6= ∅ and J 6⊆ Jµ, we have

that:

P (ỹs ∈ CJ) = O
(

n−1
)

.

In other words, the probability for J 6= ∅ and J 6⊆ Jµ has measure 0 asymptotically.

Proof of Lemma 5. If J 6⊆ Jµ, then there must exist j ∈ J , but j 6∈ Jµ. So we have Ajỹs < 0 and

Ajµ > 0. Using Markov’s inequality, we have the following:

P (ỹs ∈ CJ) ≤ P (−Ajỹs > 0)

= P (−Ajỹs +Ajµ > Ajµ)

≤ E(Ajỹs −Ajµ)
2

(Ajµ)2

=
E(
∑D

d=1 a
2
jd(ỹsd − µd)

2 +
∑

d 6=d′ ajdajd′(ỹsd − µd)(ỹsd′ − µd′))

(Ajµ)2

=

∑D
d=1 a

2
jdE(ỹsd − µd)

2 +
∑

d 6=d′ ajdajd′E(ỹsd − µd)(ỹsd′ − µd′)

(Ajµ)2
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where ajd is the jdth element of A. Further, we have the following result in survey context.

E(ỹsd − µd)
2 = E(ỹsd − ȳUd

+ ȳUd
− µd)

2

= E(ỹsd − ȳUd
)2 + E(ȳUd

− µd)
2 + 2E[(ỹsd − ȳUd

)(ȳUd
− µd)]

≤ O

(

1

n

)

+O

(

1

N

)

+ 2

√

O

(

1

n

)

O

(

1

N

)

= O

(

1

n

)

And Cauchy Schwarz inequality yields E(ỹsd − µd)(ỹsd′ − µd′) ≤ O (n−1), so we finally have:

P (ỹs ∈ CJ) = O

(

1

n

)

.

By using the same technique, we can prove the following result.

Lemma 6. Assume Aµ > 0 strictly, then for J 6= ∅ , we have that:

P (ỹs ∈ CJ) = O
(

n−1
)

.

In other words, the probability for J 6= ∅ has measure 0 asymptotically.

Lemma 7. Under assumptions (A1)-(A5), the constrained estimator θ̃ is consistent for ȳU with

respect to the sampling mechanism. That is,

θ̃ = ȳU +Op

(

1√
n

)

(B.2)
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Proof of Lemma 7. For each domain d, we can write θ̃d − ȳUd
as:

θ̃d − ȳUd
=(ỹsd − ȳUd

)I(J=∅) +
∑

J 6=∅,J⊆Jµ

(θ̃d,J − ȳUd
)I(J 6=∅,J⊆Jµ)

+
∑

J 6=∅,J 6⊆Jµ

(θ̃d,J − ȳUd
)I(J 6=∅,J 6⊆Jµ)

By Lemma 5, P (J 6= ∅, J 6⊆ Jµ) = O(n−1), that is, I(J 6=∅,J 6⊆Jµ) = Op(n
−1). Also, we know that

ỹsd − ȳUd
= Op(n

− 1
2 ). So we only need to look at the second term of θ̃d − ȳUd

. When J 6= ∅ and

J ⊆ Jµ,

θ̃d,J − ȳUd
= (ỹsd − ȳUd

)− {W−1
s A′

J(AJW
−1
s A′

J)
−1AJ ỹs}d

= Op(n
− 1

2 )− {W−1
s A′

J(AJW
−1
s A′

J)
−1AJ(µ+Op(n

− 1
2 ))}d

= Op(n
− 1

2 ) +Op(n
− 1

2 )

= Op(n
− 1

2 )

So overall, θ̃d − ȳUd
= Op(n

− 1
2 ) and (B.2) is verified.

By using the result in Lemma 7, together with the assumption in (A5) that ȳUd
−µd = O(N− 1

2 ),

we have the following result.

Lemma 8. Under assumptions (A1)-(A5), the constrained estimator θ̃ is consistent for µ with

respect to the sampling mechanism. That is,

θ̃ = µ+Op

(

1√
n

)

.
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B.1.4 Proof of Propostion 1

Proof. For the observed set J , denote BJ = A′
J [AJW

−1
U A′

J ]
−1AJ . Then, we have:

αdd,J =
1

Nd

− 1

Nd

(

N

Nd

{BJ}dd
)

, αdj,J = − N

NdNj

{BJ}dj for d 6= j

βdd,J = − 1

Nd

θd,J +
N

N2
d

{BJ}ddθd,J , βdj,J =
N

NdNj

{BJ}djθj,J for d 6= j

First, we show that the asymptotic cov(θ̃d, θ̃d) is the ddth element of (I − PJ)ΣJ(I − PJ)
′.

Acov(θ̃d, θ̃d) = cov

(

D
∑

j=1

αdj,J t̂j +
D
∑

j=1

βdj,JN̂j,
D
∑

j=1

αdj,J t̂j +
D
∑

j=1

βdj,JN̂j

)

= cov





D
∑

j=1

∑

k∈sj

(αdj,Jyk + βdj,J)

πk

,
D
∑

j=1

∑

l∈sj

(αdj,Jyl + βdj,J)

πl





= cov

(

∑

k∈sd

(αdd,Jyk + βdd,J)

πk

,
∑

l∈sd

(αdd,Jyl + βdd,J)

πl

)

+ 2cov





∑

k∈sd

(αdd,Jyk + βdd,J)

πk

,
∑

j 6=d

∑

l∈sj

(αdj,Jyl + βdj,J)

πl





+ cov





∑

j 6=d

∑

k∈sj

(αdj,Jyk + βdj,J)

πk

,
∑

j 6=d

∑

l∈sj

(αdj,Jyl + βdj,J)

πl




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where

cov

(

∑

k∈sd

(αdd,Jyk + βdd,J)

πk

,
∑

l∈sd

(αdd,Jyl + βdd,J)

πl

)

=
∑

k,l∈Ud

∆kl

πkπl

[(

1

Nd

− N

N2
d

{BJ}dd
)

yk −
1

Nd

θd,J +
N

N2
d

{BJ}ddθd,J
]

[(

1

Nd

− N

N2
d

{BJ}dd
)

yl −
1

Nd

θd,J +
N

N2
d

{BJ}ddθd,J
]

=
∑

k,l∈Ud

∆kl

πkπl

[

1

Nd

(yk − θd,J)−
N

N2
d

{BJ}dd(yk − θd,J)

] [

1

Nd

(yl − θd,J)−
N

N2
d

{BJ}dd(yl − θd,J)

]

={ΣJ}dd −
2N

Nd

{BJ}dd{ΣJ}dd +
(

N

Nd

)2

{BJ}dd{ΣJ}dd{BJ}dd

=A1 + A2 + A3.

and

2cov





∑

k∈sd

(αdd,Jyk + βdd,J)

πk

,
∑

j 6=d

∑

l∈sj

(αdj,Jyl + βdj,J)

πl





=2
∑

j 6=d

∑

k∈Ud,l∈Uj

∆kl

πkπl

[

1

Nd

(yk − θd,J)−
N

N2
d

{BJ}dd(yk − θd,J)

] [

− N

NdNj

{BJ}dj(yl − θj,J)

]

=− 2
∑

j 6=d

N

Nd

{BJ}dj{ΣJ}dj + 2
∑

j 6=d

(

N

Nd

)2

{BJ}dd{BJ}dj{ΣJ}dj

=B1 +B2
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and the third term is:

cov





∑

j 6=d

∑

k∈sj

(αdj,Jyk + βdj,J)

πk

,
∑

j 6=d

∑

l∈sj

(αdj,Jyl + βdj,J)

πl





=
∑

j 6=d

∑

k,l∈Uj

∆kl

πkπl

[

− N

NdNj

{BJ}dj(yk − θj,J)

] [

− N

NdNj

{BJ}dj(yl − θj,J)

]

+
∑

j 6=i 6=d

∑

k∈Uj ,l∈Ui

∆kl

πkπl

[

− N

NdNj

{BJ}dj(yk − θj,J)

] [

− N

NdNi

{BJ}di(yl − θi,J)

]

=
∑

j 6=d

(

N

Nd

)2

{BJ}dj{BJ}dj{ΣJ}jj +
∑

j 6=i 6=d

(

N

Nd

)2

{BJ}dj{BJ}di{ΣJ}ji

=C1 + C2

Now, we can write the {(I − PJ)ΣJ(I − PJ)
′}dd as follows:

{(I − PJ)ΣJ(I − PJ)
′}dd

=

(

e′
d −

N

Nd

{BJ}d·
)

ΣJ

(

ed −
N

Nd

{BJ}·d
)

={ΣJ}dd −
N

Nd

{BJ}d·{ΣJ}·d −
N

Nd

{ΣJ}d·{BJ}·d +
(

N

Nd

)2

{BJ}d·ΣJ{BJ}·d

={ΣJ}dd − 2
N

Nd

{ΣJ}d·{BJ}·d +
(

N

Nd

)2

{BJ}d·ΣJ{BJ}·d

=Idd1 + Idd2 + Idd3

Obviously, Idd1 = A1.

Idd2 =− 2
N

Nd

{ΣJ}d·{BJ}·d = −2
N

Nd

D
∑

j=1

{ΣJ}dj{BJ}jd

=− 2
N

Nd

{ΣJ}dd{BJ}dd − 2
N

Nd

∑

j 6=d

{ΣJ}dj{BJ}jd

=A2 +B1
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Idd3 =

(

N

Nd

)2

{BJ}d·ΣJ{BJ}·d =
(

N

Nd

)2 D
∑

i=1

D
∑

j=1

{BJ}dj{ΣJ}ji{BJ}id

=

(

N

Nd

)2
[

∑

i 6=d

D
∑

j=1

{BJ}dj{ΣJ}ji{BJ}id +
D
∑

j=1

{BJ}dj{ΣJ}jd{BJ}dd
]

=

(

N

Nd

)2
[

∑

i 6=d

∑

j 6=d

{BJ}dj{ΣJ}ji{BJ}id +
∑

i 6=d

{BJ}dd{ΣJ}di{BJ}id

+{BJ}dd{ΣJ}dd{BJ}dd +
∑

j 6=d

{BJ}dj{ΣJ}dj{BJ}dd
]

=

(

N

Nd

)2
[

∑

j 6=d

{BJ}dj{ΣJ}jj{BJ}jd +
∑

i 6=j 6=d

{BJ}dj{ΣJ}ji{BJ}id

+{BJ}dd{ΣJ}dd{BJ}dd + 2
∑

j 6=d

{BJ}dj{ΣJ}dj{BJ}dd
]

=C1 + C2 + A3 +B2

Hence, we verified that {(I − PJ)ΣJ(I − PJ)
′}dd = AV(θ̃d). Now, we will show that the dd′th

element of {(I − PJ)ΣJ(I − PJ)
′} is exactly Acov(θ̃d, θ̃d′) for d 6= d′.

Acov(θ̃d, θ̃d′)

=cov





D
∑

j=1

∑

k∈sj

(αdj,Jyk + βdj,J)

πk

,

D
∑

j=1

∑

l∈sj

(αd′j,Jyl + βd′j,J)

πl





=cov





∑

k∈sd

(αdd,Jyk + βdd,J)

πk

+
∑

k∈sd′

(αdd′,Jyk + βdd′,J)

πk

+
∑

j 6=d,d′

∑

k∈sj

(αdj,Jyk + βdj,J)

πk

,

∑

k∈sd

(αd′d,Jyk + βd′d,J)

πk

+
∑

k∈sd′

(αd′d′,Jyk + βd′d′,J)

πk

+
∑

j 6=d,d′

∑

k∈sj

(αd′j,Jyk + βd′j,J)

πk




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We compute above 9 terms one by one as follows:

cov

(

∑

k∈sd

(αdd,Jyk + βdd,J)

πk

,
∑

l∈sd

(αd′d,Jyl + βd′d,J)

πl

)

=
∑

k,l∈Ud

∆kl

πkπl

[

1

Nd

(yk − θd,J)−
N

N2
d

{BJ}dd(yk − θd,J)

] [

− N

Nd′Nd

{BJ}d′d(yl − θd,J)

]

=− N

Nd′
{BJ}d′d{ΣJ}dd +

N2

Nd′Nd

{BJ}dd{BJ}d′d{ΣJ}dd

=D1 +D2

cov





∑

k∈sd

(αdd,Jyk + βdd,J)

πk

,
∑

l∈sd′

(αd′d′,Jyl + βd′d′,J)

πl





=
∑

k∈Ud,l∈Ud′

∆kl

πkπl

[

1

Nd

(yk − θd,J)−
N

N2
d

{BJ}dd(yk − θd,J)

]

×
[

1

Nd′
(yl − θd′,J)−

N

N2
d′
{BJ}d′d′(yl − θd′,J)

]

={ΣJ}dd′ −
N

Nd′
{BJ}d′d′{ΣJ}dd′ −

N

Nd

{BJ}dd{ΣJ}dd′ +
N2

Nd′Nd

{BJ}dd{BJ}d′d′{ΣJ}dd′

=D3 +D4 +D5 +D6

cov





∑

k∈sd

(αdd,Jyk + βdd,J)

πk

,
∑

j 6=d,d′

∑

l∈sj

(αd′j,Jyl + βd′j,J)

πl





=
∑

j 6=d,d′

cov





∑

k∈sd

(αdd,Jyk + βdd,J)

πk

,
∑

l∈sj

(αd′j,Jyl + βd′j,J)

πl





=
∑

j 6=d,d′

∑

k∈Ud,l∈Uj

∆kl

πkπl

[

1

Nd

(yk − θd,J)−
N

N2
d

{BJ}dd(yk − θd,J)

] [

− N

Nd′Nj

{BJ}d′j(yl − θj,J)

]

=
∑

j 6=d,d′

[

− N

Nd′
{BJ}d′j{ΣJ}dj +

N2

Nd′Nd

{BJ}dd{BJ}d′j{ΣJ}dj
]

=D7 +D8
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cov





∑

k∈sd′

(αdd′,Jyk + βdd′,J)

πk

,
∑

l∈sd

(αd′d,Jyl + βd′d,J)

πl





=
∑

k∈Ud′ ,l∈Ud

∆kl

πkπl

[

− N

NdNd′
{BJ}dd′(yk − θd′,J)

] [

− N

Nd′Nd

{BJ}d′d(yl − θd,J)

]

=
N2

Nd′Nd

{BJ}dd′{BJ}d′d{ΣJ}d′d

=E1

cov





∑

k∈sd′

(αdd′,Jyk + βdd′,J)

πk

,
∑

l∈sd′

(αd′d′,Jyl + βd′d′,J)

πl





=
∑

k,l∈Ud′

∆kl

πkπl

[

− N

NdNd′
{BJ}dd′(yk − θd′,J)

] [

1

Nd′
(yl − θd′,J)−

N

N2
d′
{BJ}d′d′(yl − θd′,J)

]

=− N

Nd

{BJ}dd′{ΣJ}d′d′ +
N2

NdNd′
{BJ}dd′{BJ}d′d′{ΣJ}d′d′

=E2 + E3

cov





∑

k∈sd′

(αdd′,Jyk + βdd′,J)

πk

,
∑

j 6=d,d′

∑

l∈sj

(αd′j,Jyl + βd′j,J)

πl





=
∑

j 6=d,d′

∑

k∈Ud′ ,l∈Uj

∆kl

πkπl

[

− N

NdNd′
{BJ}dd′(yk − θd′,J)

] [

− N

Nd′Nj

{BJ}d′j(yl − θj,J)

]

=
∑

j 6=d,d′

N2

NdNd′
{BJ}dd′{BJ}d′j{ΣJ}d′j

=E4
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cov





∑

j 6=d,d′

∑

k∈sj

(αdj,Jyk + βdj,J)

πk

,
∑

l∈sd

(αd′d,Jyl + βd′d,J)

πl





=
∑

j 6=d,d′

∑

k∈Uj ,l∈Ud

∆kl

πkπl

[

− N

NdNj

{BJ}dj(yk − θj,J)

] [

− N

Nd′Nd

{BJ}d′d(yl − θd,J)

]

=
∑

j 6=d,d′

N2

Nd′Nd

{BJ}dj{BJ}d′d{ΣJ}jd

=F1

cov





∑

j 6=d,d′

∑

k∈sj

(αdj,Jyk + βdj,J)

πk

,
∑

l∈sd′

(αd′d′,Jyl + βd′d′,J)

πl





=
∑

j 6=d,d′

∑

k∈Uj ,l∈Ud′

∆kl

πkπl

[

− N

NdNj

{BJ}dj(yk − θj,J)

] [

1

Nd′
(yl − θd′,J)−

N

N2
d′
{BJ}d′d′(yl − θd′,J)

]

=
∑

j 6=d,d′

[

− N

Nd

{BJ}dj{ΣJ}jd′ +
N2

NdNd′
{BJ}dj{BJ}d′d′{ΣJ}jd′

]

=F2 + F3
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cov





∑

j 6=d,d′

∑

k∈sj

(αdj,Jyk + βdj,J)

πk

,
∑

j 6=d,d′

∑

l∈sj

(αd′j,Jyl + βd′j,J)

πl





=
∑

j 6=d,d′

cov





∑

k∈sj

(αdj,Jyk + βdj,J)

πk

,
∑

l∈sj

(αd′j,Jyl + βd′j,J)

πl



+

∑

j 6=i 6=d,d′

cov





∑

k∈sj

(αdj,Jyk + βdj,J)

πk

,
∑

l∈si

(αd′i,Jyl + βd′i,J)

πl





=
∑

j 6=d,d′

∑

k,l∈Uj

∆kl

πkπl

[

− N

NdNj

{BJ}dj(yk − θj,J)

] [

− N

Nd′Nj

{BJ}d′j(yl − θj,J)

]

+
∑

j 6=i 6=d,d′

∑

k∈Uj ,l∈Ui

∆kl

πkπl

[

− N

NdNj

{BJ}dj(yk − θj,J)

] [

− N

Nd′Ni

{BJ}d′i(yl − θi,J)

]

=
∑

j 6=d,d′

N2

NdNd′
{BJ}dj{BJ}d′j{ΣJ}jj +

∑

j 6=i 6=d,d′

N2

NdNd′
{BJ}dj{BJ}d′i{ΣJ}ji

=F4 + F5

So, for d 6= d′, we have that:

Acov(θ̃d, θ̃d′) =D1 +D2 +D3 +D4 +D5 +D6 +D7 +D8

+ E1 + E2 + E3 + E4

+ F1 + F2 + F3 + F4 + F5

Now, we compute the dd′th element of (I − PJ)ΣJ(I − PJ)
′ as follows:

{(I − PJ)ΣJ(I − PJ)
′}dd′

=

(

e′
d −

N

Nd

{BJ}d·
)

ΣJ

(

ed′ −
N

Nd′
{BJ}·d′

)

={ΣJ}dd′ −
N

Nd

{BJ}d·{ΣJ}·d′ −
N

Nd′
{ΣJ}d·{BJ}·d′ +

N2

NdNd′
{BJ}d·ΣJ{BJ}·d′

=Idd
′

1 + Idd
′

2 + Idd
′

3 + Idd
′

4
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It is clear that we have Idd
′

1 = D3 directly.

Idd
′

2 =− N

Nd

{BJ}d·{ΣJ}·d′ = − N

Nd

D
∑

j=1

{BJ}dj{ΣJ}jd′

=− N

Nd

[

{BJ}dd{ΣJ}dd′ + {BJ}dd′{ΣJ}d′d′ +
∑

j 6=d,d′

{BJ}dj{ΣJ}jd′
]

=D5 + E2 + F2

Idd
′

3 =− N

Nd′
{ΣJ}d·{BJ}·d′ = − N

Nd′

D
∑

j=1

{ΣJ}dj{BJ}jd′

=− N

Nd′

[

{ΣJ}dd{BJ}dd′ + {ΣJ}dd′{BJ}d′d′ +
∑

j 6=d,d′

{ΣJ}dj{BJ}jd′
]

=− N

Nd′

[

{BJ}d′d{ΣJ}dd + {BJ}d′d′{ΣJ}dd′ +
∑

j 6=d,d′

{BJ}d′j{ΣJ}dj
]

=D1 +D4 +D7

Idd
′

4 =
N2

NdNd′
{BJ}d·ΣJ{BJ}·d′ =

N2

NdNd′

D
∑

i=1

D
∑

j=1

{BJ}dj{ΣJ}ji{BJ}id′

=
N2

NdNd′

[

D
∑

j=1

{BJ}dj{ΣJ}jd{BJ}dd′ +
D
∑

j=1

{BJ}dj{ΣJ}jd′{BJ}d′d′

+
∑

i 6=d,d′

D
∑

j=1

{BJ}dj{ΣJ}ji{BJ}id′
]

=Idd
′

41 + Idd
′

42 + Idd
′

43
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where:

Idd
′

41 =
N2

NdNd′

D
∑

j=1

{BJ}dj{ΣJ}jd{BJ}dd′

=
N2

NdNd′
[{BJ}dd{ΣJ}dd{BJ}dd′ + {BJ}dd′{ΣJ}d′d{BJ}dd′

+
∑

j 6=d,d′

{BJ}dj{ΣJ}jd{BJ}dd′
]

=D2 + E1 + F1

Similarly, we have:

Idd
′

42 =
N2

NdNd′

D
∑

j=1

{BJ}dj{ΣJ}jd′{BJ}d′d′

=
N2

NdNd′
[{BJ}dd{ΣJ}dd′{BJ}d′d′ + {BJ}dd′{ΣJ}d′d′{BJ}d′d′

+
∑

j 6=d,d′

{BJ}dj{ΣJ}jd′{BJ}d′d′
]

=D6 + E3 + F3

Idd
′

43 =
N2

NdNd′

∑

i 6=d,d′

D
∑

j=1

{BJ}dj{ΣJ}ji{BJ}id′

=
N2

NdNd′

[

∑

i 6=d,d′

{BJ}dd{ΣJ}di{BJ}id′ +
∑

i 6=d,d′

{BJ}dd′{ΣJ}d′i{BJ}id′

+
∑

i 6=d,d′

∑

j 6=d,d′

{BJ}dj{ΣJ}ji{BJ}id′
]

=
N2

NdNd′

[

∑

j 6=d,d′

{BJ}dd{ΣJ}dj{BJ}jd′ +
∑

j 6=d,d′

{BJ}dd′{ΣJ}d′j{BJ}jd′

+
∑

j 6=d,d′

{BJ}dj{ΣJ}jj{BJ}jd′ +
∑

i 6=j 6=d,d′

{BJ}dj{ΣJ}ji{BJ}id′
]

=D8 + E4 + F4 + F5
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Hence, we verified that {(I − PJ)ΣJ(I − PJ)
′}dd′ = Acov(θ̃d, θ̃d′), and thus overall, we have:

AV (θ̃) = (I − PJ)ΣJ(I − PJ)
′

This completes the verification of (3.3).

B.2 Proof of Theorem 8

Proof. Define Jµ = {j : Ajµ = 0}. Then, we can write n(V̂ (θ̃)− AV (θ̃)) as follows:

n(V̂ (θ̃)− AV (θ̃))

=n

[

∑

J

(I − P̂J)Σ̃(I − P̂J)
′IJ(s)−

∑

J

(I − PJ)ΣJ(I − PJ)
′IJ(s)

]

=
∑

J

[

(I − P̂J)nΣ̃(I − P̂J)
′ − (I − PJ)nΣJ(I − PJ)

′
]

IJ(s)

=n(Σ̃−Σ)I∅(s) +
∑

J 6=∅,J⊆Jµ

[

(I − P̂J)nΣ̃(I − P̂J)
′ − (I − PJ)nΣJ(I − PJ)

′
]

IJ(s)

+
∑

J 6=∅,J 6⊆Jµ

[

(I − P̂J)nΣ̃(I − P̂J)
′ − (I − PJ)nΣJ(I − PJ)

′
]

IJ(s)

=I1 + I2 + I3

For I1, we will prove the convergence of diagonal and non-diagonal elements of Σ̃ separately.

Let us consider the diagonal element first. Denote Σ̂dd = 1
N2

d

∑

k,l∈sd
∆kl

πkl

(yk−ỹsd )(yl−ỹsd )

πkπl
. We

will prove n(Σ̂dd −Σdd) = op(1) by showing:

nE|Σ̂dd −Σdd| → 0 as Nd → ∞ (B.3)
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where

nE|Σ̂dd −Σdd|

=nE

∣

∣

∣

∣

∣

1

N2
d

∑

k,l∈Ud

∆kl

πkl

(yk − ȳUd
+ ȳUd

− ỹsd)(yl − ȳUd
+ ȳUd

− ỹsd)

πkπl

IkIl

− 1

N2
d

∑

k,l∈Ud

∆kl
(yk − ȳUd

)(yl − ȳUd
)

πkπl

∣

∣

∣

∣

∣

≤nE

∣

∣

∣

∣

∣

1

N2
d

∑

k,l∈Ud

∆kl
(yk − ȳUd

)(yl − ȳUd
)

πkπl

(

IkIl
πkl

− 1

)

∣

∣

∣

∣

∣

+ nE

∣

∣

∣

∣

∣

1

N2
d

∑

k,l∈Ud

∆kl

πkπl

[

2(yk − ȳUd
)(ȳUd

− ỹsd) + (ȳUd
− ỹsd)

2
] IkIl
πkl

∣

∣

∣

∣

∣

=Add +Bdd

Now,

n2E

(

1

N2
d

∑

k,l∈Ud

∆kl
(yk − ȳUd

)(yl − ȳUd
)

πkπl

(

IkIl
πkl

− 1

)

)2

=n2
∑

k,i∈Ud

1− πk

πk

1− πi

πi

(yk − ȳUd
)2(yi − ȳUd

)2

N4
d

πki − πkπi

πkπi

+ 2n2
∑

k∈Ud

∑

i,j∈Ud,i 6=j

1− πk

πk

∆ij

πiπj

(yk − ȳUd
)2(yi − ȳUd

)(yj − ȳUd
)

N4
d

E

(

Ik − πk

πk

IiIj − πij

πij

)

+ n2
∑

k,l∈Ud,k 6=l

∑

i,j∈Ud,i 6=j

∆kl

πkπl

∆ij

πiπj

(yk − ȳUd
)(yl − ȳUd

)(yi − ȳUd
)(yj − ȳUd

)

N4
d

× E

(

IkIl − πkl

πkl

IiIj − πij

πij

)

=Add
1 + Add

2 + Add
3
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But

Add
1 =

n2

N2
d

1

N2
d

∑

k∈Ud

(

1− πk

πk

)3

(yk − ȳUd
)4

+
n2

N2
d

1

N2
d

∑

k,i∈Ud,k 6=i

1− πk

πk

1− πi

πi

(

yk − ȳUd
)2(yi − ȳUd

)2 ∆ki

πkπi

≤
[

1

Ndλ3
1

(

n2

N2
d

)]

1

Nd

∑

k∈Ud

(yk − ȳUd
)4

+

[

1

Ndλ4
1

(

n

Nd

)

n max
k,i∈Ud,k 6=i

|∆ki|
]

∑

k∈Ud
(yk − ȳUd

)4

Nd

which goes to 0 as Nd → ∞, and:

Add
3 ≤(nmaxk,l∈Ud,k 6=l |∆kl|)2

λ4
1

∑

k,l∈Ud,k 6=l

∑

i,j∈Ud,i 6=j

|(yk − ȳUd
)(yl − ȳUd

)(yi − ȳUd
)(yj − ȳUd

)|
N4

d

×
∣

∣

∣

∣

E

(

IkIl − πkl

πkl

IiIj − πij

πij

)∣

∣

∣

∣

≤O(N−1
d ) +

(nmaxk,l∈Ud,k 6=l |∆kl|)2
λ4
1λ

2
2

max
(k,l,i,j)∈D4,Nd

|E [(IkIl − πkl)(IiIj − πij)]|

× 1

Nd

∑

k∈Nd

(yk − ȳUd
)4

which converges to 0 by assumption (A6) as Nd → ∞. Also, the Cauchy Schwarz inequality

implies that Add
2 → 0 as Nd → ∞, and thus it follows that Add → 0 as Nd → ∞.

Next,

Bdd =nE

∣

∣

∣

∣

∣

1

N2
d

∑

k,l∈Ud

∆kl

πkπl

[

2(yk − ȳUd
)(ȳUd

− ỹsd) + (ȳUd
− ỹsd)

2
] IkIl
πkl

∣

∣

∣

∣

∣

≤
(

2n

Ndλ2
1

+
2nmaxk,l∈Ud,k 6=l |∆kl|

λ2
1λ2

)

[

∑

k∈Ud
(yk − ȳUd

)2

Nd

E(ỹsd − ȳUd
)2

] 1
2

+

(

n

Ndλ2
1

+
nmaxk,l∈Ud,k 6=l |∆kl|

λ2
1λ2

)

E(ỹsd − ȳUd
)2

→ 0
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using the fact that E(ỹsd − ȳUd
)2 → 0 as Nd → ∞. So, (B.3) is verified. Hence, we have:

n(Σ̃dd −Σdd) = n(Σ̃dd − Σ̂dd) + n(Σ̂dd −Σdd)

=

(

N2
d

N̂2
d

− 1

)(

n

N2
d

∑

k,l∈sd

∆kl

πkl

(yk − ỹsd)(yl − ỹsd)

πkπl

)

+ op(1)

= op(1)Op(1) + op(1) = op(1)

Now, when d 6= d′, d, d′ = 1, · · · , D, define

Σ̂dd′ =
1

NdNd′

∑

k∈sd

∑

l∈sd′

∆kl

πkl

(yk − ỹsd)(yl − ỹsd′ )

πkπl

We will prove n(Σ̂dd′ −Σdd′) = op(1) by showing:

nE|Σ̂dd′ −Σdd′ | → 0 as Nd, Nd′ → ∞ (B.4)

and

nE|Σ̂dd′ −Σdd′ |

=nE

∣

∣

∣

∣

∣

∣

1

NdNd′

∑

k∈sd

∑

l∈sd′

∆kl

πkl

(yk − ỹsd)(yl − ỹsd′ )

πkπl

− 1

NdNd′

∑

k∈Ud

∑

l∈Ud′

∆kl

(yk − ȳUd
)(yl − ȳUd′

)

πkπl

∣

∣

∣

∣

∣

∣

≤nE

∣

∣

∣

∣

∣

∣

1

NdNd′

∑

k∈Ud

∑

l∈Ud′

∆kl

πkπl

(yk − ȳUd
)(yl − ȳUd′

)

(

IkIl
πkl

− 1

)

∣

∣

∣

∣

∣

∣

+ nE

∣

∣

∣

∣

∣

∣

1

NdNd′

∑

k∈Ud

∑

l∈Ud′

∆kl

πkπl

[(yk − ȳUd
)(ȳUd′

− ỹsd′ )

+(yl − ȳUd′
)(ȳUd

− ỹsd) + (ȳUd
− ỹsd)(ȳUd′

− ỹsd′ )]
IkIl
πkl

∣

∣

∣

∣

=Add′ +Bdd′
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Now,

n2E





1

NdNd′

∑

k∈Ud

∑

l∈Ud′

∆kl

πkπl

(yk − ȳUd
)(yl − ȳUd′

)

(

IkIl
πkl

− 1

)





2

=
n2

N2
dN

2
d′
E





∑

k∈Ud

∑

l∈Ud′

(

∆kl

πkπl

)2

(yk − ȳUd
)2(yl − ȳUd′

)2
(

IkIl
πkl

− 1

)2




+
n2

N2
dN

2
d′
E





∑

k∈Ud

∑

l,j∈Ud′ ,l 6=j

(

∆kl∆kj

π2
kπlπj

)

(yk − ȳUd
)2(yl − ȳUd′

)

(yj − ȳUd′
)

(

IkIl
πkl

− 1

)(

IkIj
πkj

− 1

)]

+
n2

N2
dN

2
d′
E





∑

k,i∈Ud,k 6=i

∑

l∈Ud′

(

∆kl∆il

πkπiπ2
l

)

(yk − ȳUd
)(yi − ȳUd

)

(yl − ȳUd′
)2
(

IkIl
πkl

− 1

)(

IiIl
πil

− 1

)]

+
n2

N2
dN

2
d′
E





∑

k,i∈Ud,k 6=i

∑

l,j∈Ud′ ,l 6=j

(

∆kl∆ij

πkπlπiπj

)

(yk − ȳUd
)(yl − ȳUd′

)

(yi − ȳUd
)(yj − ȳUd′

)

(

IkIl
πkl

− 1

)(

IiIj
πij

− 1

)]

= Add′

1 + Add′

2 + Add′

3 + Add′

4

where:

Add′

1 ≤ (nmaxk,l∈Ud,k 6=l |∆kl|)2
NdNd′λ4

1

1

NdNd′

∑

k∈Ud

∑

l∈Ud′

(yk − ȳUd
)2(yl − ȳUd′

)2E

(

IkIl
πkl

− 1

)2

≤ (nmaxk,l∈Ud,k 6=l |∆kl|)2
NdNd′λ4

1λ
2
2

(

1

Nd

∑

k∈Ud

(yk − ȳUd
)2

)





1

Nd′

∑

l∈Ud′

(yl − ȳUd′
)2





→ 0

as Nd, Nd′ → ∞. Add′

2 can be bounded as follows:
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Add′

2 ≤ n2 maxk,l∈U,k 6=l |∆kl|maxk,j∈U,k 6=j |∆kj|
Ndλ4

1

1

NdN2
d′

∑

k∈Ud

∑

l,j∈Ud′ ,l 6=j

(yk − ȳUd
)2

|(yl − ȳUd′
)(yj − ȳUd′

)|
∣

∣

∣

∣

E

[(

IkIl
πkl

− 1

)(

IkIj
πkj

− 1

)]∣

∣

∣

∣

≤ n2 maxk,l∈U,k 6=l |∆kl|maxk,j∈U,k 6=j |∆kj|
Ndλ4

1λ
2
2

(

1

Nd

∑

k∈Ud

(yk − ȳUd
)2

)

×





1

N2
d′





∑

l∈Ud′

|yl − ȳUd′
|





2



≤ n2 maxk,l∈U,k 6=l |∆kl|maxk,j∈U,k 6=j |∆kj|
Ndλ4

1λ
2
2

(

1

Nd

∑

k∈Ud

(yk − ȳUd
)2

)





1

Nd′

∑

k∈Ud′

(yk − ȳUd′
)2





which goes to 0 as Nd → ∞. Similarly, we have Add′

3 → 0 as Nd′ → ∞. Now, we bound Add′

4 as

follows:

Add′

4 ≤ n2 maxk,l∈U,k 6=l |∆kl|maxi,j∈U,i 6=j |∆ij|
λ4
1

1

N2
dN

2
d′

∑

k,i∈Ud,k 6=i

∑

l,j∈Ud′ ,l 6=j

|(yk − ȳUd
)(yl − ȳUd′

)

(yi − ȳUd
)(yj − ȳUd′

)|
∣

∣

∣

∣

E

[(

IkIl
πkl

− 1

)(

IiIj
πij

− 1

)]∣

∣

∣

∣

≤ n2 maxk,l∈U,k 6=l |∆kl|maxi,j∈U,i 6=j |∆ij|
λ4
1λ

2
2

max
(k,l,i,j)∈D4,N

|E [(IkIl − 1)(IiIj − 1)]|
(

1

Nd

∑

k∈Ud

(yk − ȳUd
)2

)





1

Nd′

∑

k∈Ud′

(yk − ȳUd′
)2




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which goes to 0 by assumption (A6). Hence, we have Add′ → 0 asymptotically. Now,

Bdd′ =nE

∣

∣

∣

∣

∣

∣

1

NdNd′

∑

k∈Ud

∑

l∈Ud′

∆kl

πkπl

[(yk − ȳUd
)(ȳUd′

− ỹsd′ )

+(yl − ȳUd′
)(ȳUd

− ỹsd) + (ȳUd
− ỹsd)(ȳUd′

− ỹsd′ )]
IkIl
πkl

∣

∣

∣

∣

≤nmaxk,l∈U,k 6=l |∆kl|
λ2
1λ2

1

NdNd′

∑

k∈Ud

∑

l∈Ud′

E
[

|(yk − ȳUd
)(ȳUd′

− ỹsd′ )|

+|(yl − ȳUd′
)(ȳUd

− ỹsd)|+ |(ȳUd
− ỹsd)(ȳUd′

− ỹsd′ )|
]

=
nmaxk,l∈U,k 6=l |∆kl|

λ2
1λ2

[

1

Nd

∑

k∈Ud

|yk − ȳUd
|E
∣

∣ȳUd′
− ỹsd′

∣

∣

+
1

Nd′

∑

l∈Ud′

∣

∣yl − ȳUd′

∣

∣E |ȳUd
− ỹsd |+ E

∣

∣(ȳUd
− ỹsd)(ȳUd′

− ỹsd′ )
∣

∣





We have that, for d = 1, · · · , D, E |ȳUd
− ỹsd | → 0 asymptotically since E (ȳUd

− ỹsd)
2 → 0, and

by Cauchy Schwarz inequality, E
∣

∣(ȳUd
− ỹsd)(ȳUd′

− ỹsd′ )
∣

∣ → 0. Hence, we have Bdd′ → 0 as

Nd, Nd′ → ∞. (B.4) is verified. Thus n(Σ̃dd′ − Σdd′) = n(Σ̃dd′ − Σ̂dd′) + n(Σ̂dd′ − Σdd′) =

op(1)Op(1) + op(1) = op(1). So, by (B.3) and (B.4), we have:

n(Σ̃−Σ) = op(1) (B.5)

and thus:

I1 = n(Σ̃−Σ)I∅(s) = op(1)Op(1) = op(1)

Now, if the observed J 6= ∅ and J ⊆ Jµ, we have the following result:

|n(Σ−ΣJ)| → 0, asN → ∞ (B.6)
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because the difference of the ijth element of above two matrices can be expressed as:

|n({Σ}ij − {ΣJ}ij)|

=

∣

∣

∣

∣

∣

∣

1

NiNj

∑

k∈Ui

∑

l∈Uj

n∆kl

(yk − ȳUi
)(yl − ȳUj

)

πkπl

− 1

NiNj

∑

k∈Ui

∑

l∈Uj

n∆kl
(yk − θi,J)(yl − θj,J)

πkπl

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

1

NiNj

∑

k∈Ui

∑

l∈Uj

n∆kl

πkπl

[

(yk − ȳUi
)
N

Nj

{

A′
J(AJW

−1
U A′

J)
−1AJ ȳU

}

j

+
N

Ni

{

A′
J(AJW

−1
U A′

J)
−1AJ ȳU

}

i
(yl − ȳUj

)

+
N2

NiNj

{

A′
J(AJW

−1
U A′

J)
−1AJ ȳU

}

i

{

A′
J(AJW

−1
U A′

J)
−1AJ ȳU

}

j

]∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

N

Nj

{

A′
J(AJW

−1
U A′

J)
−1AJ ȳU

}

j

1

NiNj

∑

k∈Ui

∑

l∈Uj

n∆kl

πkπl

(yk − ȳUi
)

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

N

Ni

{

A′
J(AJW

−1
U A′

J)
−1AJ ȳU

}

i

1

NiNj

∑

k∈Ui

∑

l∈Uj

n∆kl

πkπl

(yl − ȳUj
)

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

N2

NiNj

{

A′
J(AJW

−1
U A′

J)
−1AJ ȳU

}

i

{

A′
J(AJW

−1
U A′

J)
−1AJ ȳU

}

j

1

NiNj

∑

k∈Ui

∑

l∈Uj

n∆kl

πkπl

∣

∣

∣

∣

∣

∣

=O

(

1√
N

)

O(1) +O

(

1√
N

)

O(1) +O

(

1√
N

)

O

(

1√
N

)

O(1)

=O

(

1√
N

)

where we use the fact that:

A′
J(AJW

−1
U A′

J)
−1AJ ȳU =A′

J(AJW
−1
U A′

J)
−1AJ(µ+O(N− 1

2 ))

=0 +O(N− 1
2 ) = O(N− 1

2 )
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So, for the dd′th element of Σ̂ and ΣJ , d, d′ = 1, · · · , D, we have:

nE|Σ̂dd′ −ΣJdd′ | =nE|Σ̂dd′ −Σdd′ +Σdd′ −ΣJdd′ |

≤nE|Σ̂dd′ −Σdd′ |+ n|Σdd′ −ΣJdd′ |

→ 0

by using (B.3), (B.4) and (B.6). Hence, we have n(Σ̂−ΣJ) = op(1) and thus

n(Σ̃−ΣJ) = n(Σ̃− Σ̂) + n(Σ̂−ΣJ) = op(1)Op(1) + op(1) = op(1)

Next, by Taylor expansion, we have W−1
s

p→ W−1
U and thus P̂J

p→ PJ . Hence:

(I − P̂J)nΣ̃(I − P̂J)
′ − (I − PJ)nΣJ(I − PJ)

′

=(I − PJ)nΣ̃(I − PJ)
′ + op(1)− (I − PJ)nΣJ(I − PJ)

′

=(I − PJ)n(Σ̃−ΣJ)(I − PJ)
′ + op(1)

=op(1) + op(1) = op(1).

and thus

I2 = op(1)Op(1) = op(1)

By Lemma 5, we have P (J 6= ∅, J 6⊆ Jµ) = O(n−1). So, if observed J 6= ∅ and J 6⊆ Jµ, then

IJ(s) = Op(n
−1) = op(1). Thus:

I3 = (Op(1) +O(1))op(1) = op(1)

Overall, (3.5) is verified.
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B.3 Proof of Theorem 9

Lemma 9. Assume Aµ > 0 strictly, then for J 6= ∅ , we have that:

P (y(1) ∈ CJ |s) = Op

(

n−1
)

.

In other words, for the observed J set that corresponds to a simulated y(i), the probability of J 6= ∅

has measure 0 asymptotically.

Proof. Suppose J 6= ∅, then for j ∈ J , we must have Ajy
(1) < 0 and Ajµ > 0. Under a given

sample s, using Markov’s inequality, we have the following:

P (y(1) ∈ CJ |s) ≤ P (−Ajy
(1) +Ajµ > Ajµ|s)

≤ E[(Ajy
(1) −Ajµ)

2|s]
(Ajµ)2

=
E[(Aj(θ̃ − µ) +Ajǫ)

2|s]
(Ajµ)2

Notice that by the way we generate y(i)’s, we can express y(1) as:

y(1) = θ̃ + ǫ, ǫ ∼ MVN(0, Σ̃)

and the numerator in above fraction can be expressed as:

E[(Aj(θ̃ − µ) +Ajǫ)
2|s]

=E[(Aj(θ̃ − µ))2|s] + E[(Ajǫ)
2|s] + 2E[(Aj(θ̃ − µ)Ajǫ)|s]

=E

[(

D
∑

d=1

a2jd(θ̃d − µd)
2 +

∑

d 6=d′

ajdajd′(θ̃d − µd)(θ̃d′ − µd′)

)

∣

∣

∣

∣

s

]

+ var(Ajǫ|s) + 0

=
D
∑

d=1

a2jdE[(θ̃d − µd)
2|s] +

∑

d 6=d′

ajdajd′E[(θ̃d − µd)(θ̃d′ − µd′)|s] +AjΣ̃A′
j

=Op(n
−1) +Op(n

−1) = Op(n
−1)
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where, conditioning on the s, (θ̃d − µd)
2 = Op(n

−1) by Lemma 8 and Σ̃ has order n−1. Also,

E[(θ̃d − µd)(θ̃d′ − µd′)|s] ≤ Op (n
−1) by the Cauchy Schwarz inequality. so we finally have:

P (y(1) ∈ CJ |s) = Op

(

n−1
)

.

Proof of Theorem 9

Proof. We can express n(V̂ m(θ̃)− AV m(θ̃)) as:

n(V̂ m(θ̃)− AV m(θ̃))

=n

[

1

B

B
∑

i=1

(I − P̂J(i))Σ̃(I − P̂J(i))′ −
∑

J

(I − PJ)ΣJ(I − PJ)
′P (ỹs ∈ CJ)

]

=n

[

1

B

B
∑

i=1

(

∑

J

(I − P̂J)Σ̃(I − P̂J)
′I(y(i) ∈ CJ |s)

)

−
∑

J

(I − PJ)ΣJ(I − PJ)
′P (ỹs ∈ CJ)

]

=n
∑

J

[

(I − P̂J)Σ̃(I − P̂J)
′ 1

B

B
∑

i=1

I(y(i) ∈ CJ |s)− (I − PJ)ΣJ(I − PJ)
′P (ỹs ∈ CJ)

]

=n

[

Σ̃
1

B

B
∑

i=1

I
(

y(i) ∈ C∅|s
)

−ΣP (ỹs ∈ C∅)
]

+ n
∑

J 6=∅

[

(I − P̂J)Σ̃(I − P̂J)
′ 1

B

B
∑

i=1

I
(

y(i) ∈ CJ |s
)

− (I − PJ)ΣJ(I − PJ)
′P (ỹs ∈ CJ)

]

=L1 + L2
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By (B.5), we can express L1 as:

L1 =n

[

Σ̃
1

B

B
∑

i=1

I
(

y(i) ∈ C∅|s
)

−ΣP (ỹs ∈ C∅)
]

=nΣ

[

1

B

B
∑

i=1

I
(

y(i) ∈ C∅|s
)

− P (ỹs ∈ C∅)
]

+ op(1)

and we have the following result:

1

B

B
∑

i=1

I
(

y(i) ∈ C∅|s
)

− P (ỹs ∈ C∅) = op(1) (B.7)

because

E

∣

∣

∣

∣

∣

1

B

B
∑

i=1

I
(

y(i) ∈ C∅|s
)

− P (ỹs ∈ C∅)
∣

∣

∣

∣

∣

≤ 1

B

B
∑

i=1

E
∣

∣I
(

y(i) ∈ C∅|s
)

− P (ỹs ∈ C∅)
∣

∣

=
1

B

B
∑

i=1

[

P
(

y(i) ∈ C∅|s
)

|1− P (ỹs ∈ C∅)|+
(

1− P
(

y(i) ∈ C∅|s
))

P (ỹs ∈ C∅)
]

→ 0,

where we use the fact that 1 − P (ỹs ∈ C∅) = O(n−1) and 1 − P
(

y(i) ∈ C∅|s
)

= O(n−1) by

Lemma 6 and Lemma 9. Thus, it follows that L1 = op(1).

Now, if the observed J 6= ∅, we have 1
B

∑B
i=1 I

(

y(i) ∈ CJ |s
)

= op(1), since by Lemma 9:

E

∣

∣

∣

∣

∣

1

B

B
∑

i=1

I
(

y(i) ∈ CJ |s
)

∣

∣

∣

∣

∣

≤ 1

B

B
∑

i=1

E
∣

∣I
(

y(i) ∈ CJ |s
)∣

∣ = P
(

y(i) ∈ CJ |s
)

→ 0

Also, using the same argument for showing (B.7), we have:

[

1

B

B
∑

i=1

I
(

y(i) ∈ CJ |s
)

− P (ỹs ∈ CJ)
]

= op(1)
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Hence, in L2

n

[

(I − P̂J)Σ̃(I − P̂J)
′ 1

B

B
∑

i=1

I
(

y(i) ∈ CJ |s
)

− (I − PJ)ΣJ(I − PJ)
′P (ỹs ∈ CJ)

]

=n

[

(

(I − P̂J)Σ̃(I − P̂J)
′ − (I − PJ)ΣJ(I − PJ)

′
) 1

B

B
∑

i=1

I
(

y(i) ∈ CJ |s
)

]

+ n(I − PJ)ΣJ(I − PJ)
′

[

1

B

B
∑

i=1

I
(

y(i) ∈ CJ |s
)

− P (ỹs ∈ CJ)
]

=(Op(1)−O(1))op(1) +O(1)op(1) = op(1)

It follows that L2 = op(1) and the proof is complete.

136



Appendix C

Supplemental Materials for Chapter 4

C.1 Assumptions

(A1) The number of domains D is a known fixed integer and lim infN→∞
Nd

N
> 0, lim supN→∞

Nd

N
<

1 for d = 1, 2, · · · , D.

(A2) The boundedness property of the finite population fourth moment holds. That is, we have:

lim sup
N→∞

N−1
∑

i∈U
y4i < ∞.

(A3) The sample size n is non-random and there exists a π ∈ (0, 1) such that mind
nd

Nd
≥ π for

d = 1, · · · , D.

(A4) For all N , mini∈U πi ≥ λ1 > 0 and mini,j∈U πij ≥ λ2 > 0, and

lim sup
N→∞

n max
i,j∈U,i 6=j

|∆ij| < ∞

where ∆ij = cov(Ii, Ij) = πij − πiπj .

(A5) For any vector x ∈ RD with finite fourth population moment, we have:

var(x̂s)
− 1

2 (x̂s − x̄U)
d→ N(0, ID×D)

where x̂s is the HT domain mean estimator of x̄U = (N−1
1

∑

k∈U1
xk, · · · , N−1

D

∑

k∈UD
xk)

⊤,

ID×D is the identity matrix of dimension D, the design covariance matrix var(x̂s) is positive

definite.

The assumption (A1) states that the number of domains remains constant as the population size

N changes and ensures that there is no asymptotically vanishing domains. Assumption (A2) is
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a condition needed for showing the variance consistency of the Horvitz-Thompson estimator and

this condition generally can be satisfied for most survey data. In (A3) we guarantee that no matter

how N and n changes, there is no vanishing sampling fraction for each domain d, which is a mild

condition in the design-based context.

Assumption (A4) illustrates that the design is both a probability sampling design and a mea-

surable design. The assumption on the ∆ij states that the covariance between sample membership

indicators is sufficiently small, which goes to zero at rate of n−1. These conditions hold in many

classical sampling designs, including simple random sampling with and without replacement, and

many other unequal probability sampling designs.

The asymptotic normal assumption in (A5) is usually assumed explicitly and it is satisfied for

many specific sampling designs, including simple random sampling with or without replacement.

Also, it holds for Poisson sampling and unequal probability sampling with replacement. The

design asymptotic normal assumption, taken together with the variance consistency of the Horvitz-

Thompson estimator, can be used to derive the asymptotic distribution of the constrained domain

mean estimator. More importantly, it is this normal assumption that makes it possible for us to

take advantage of the available techniques in the one sided test literatures and obtain the null

distribution of the test statistics approximately. Otherwise, we have to resort to the bootstrap

method to get the empirical distribution of the test statistics when the properties of the design

estimator are completely unknown.

C.2 Supplemental Materials for Section 4.3

Lemma 10. Denote µ to be the super-population domain means. Let J be the set that is as-

sociated with θ̂∗
1 in (4.2) and J0

µ be the corresponding set for the solution θ∗
µ that minimizes

(Zµ − θ1)
⊤(Zµ − θ1) subject to θ1 ∈ Cµ = {θ : Aµθ ≥ 0}, where Zµ = Σ

− 1
2

µ µ, Cµ, Σµ

are super-population versions of Ẑs, Ĉ, Σ̃ and Aµ = AΣ
1
2
µ. Define J1

µ = {j : Ajµ = 0} and let
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Jµ = J0
µ ∪ J1

µ, Then, we have:

Pr(J * Jµ) = o(1) and Pr(J0
µ * J) = o(1)

Proof. Firstly, consider the event J * Jµ. Define

S̃SE(θ̂∗
1) = (Ẑs − θ̂∗

1)
⊤(Ẑs − θ̂∗

1)

=
[

Ẑs − (I − Â⊤
J (ÂJÂ

⊤
J )

−

ÂJ)Ẑs

]⊤ [
Ẑs − (I − Â⊤

J (ÂJÂ
⊤
J )

−

ÂJ)Ẑs

]

= Ẑ⊤
s Â

⊤
J (ÂJÂ

⊤
J )

−

ÂJẐs

= ỹ⊤
s A

⊤
J (AJΣ̃A⊤

J )
−

AJ ỹs

Similarly, we define:

SSE(θ∗
µ) = (Zµ − θ∗

µ)
⊤(Zµ − θ∗

µ) = µ⊤A⊤
J0
µ
(AJ0

µ
ΣµA

⊤
J0
µ
)
−

AJ0
µ
µ

Note that the projection of Zµ onto the linear space spanned by rows of Aµ in position J0
µ is the

same as the projection onto the linear space spanned by rows of Aµ in position Jµ, so we have:

SSE(θ∗
µ) = µ⊤A⊤

J0
µ
(AJ0

µ
ΣµA

⊤
J0
µ
)
−

AJ0
µ
µ = µ⊤A⊤

Jµ(AJµΣµA
⊤
Jµ)

−

AJµµ

Further, denote:

S̃SE(θ̂1,Jµ) = (Ẑs − θ̂1,Jµ)
⊤(Ẑs − θ̂1,Jµ) = ỹ⊤

s A
⊤
Jµ(AJµΣ̃A⊤

Jµ)
−

AJµỹs

SSE(θµ,J) = (Zµ − θµ,J)
⊤(Zµ − θµ,J) = µ⊤A⊤

J (AJΣµA
⊤
J )

−

AJµ
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where θ̂1,Jµ = (I − Â⊤
Jµ
(ÂJµÂ

⊤
Jµ
)
−

ÂJµ)Ẑs and θµ,J = (I −A⊤
µ,J(Aµ,JA

⊤
µ,J)

−

Aµ,J)Zµ. Then,

we must have

SSE(θ∗
µ) < SSE(θµ,J) and S̃SE(θ̂∗

1) < S̃SE(θ̂1,Jµ)

and due to the consistency of ỹs and Σ̃, respectively, we also have:

S̃SE(θ̂∗
1)− SSE(θµ,J) = op(1) and S̃SE(θ̂1,Jµ)− SSE(θ∗

µ) = op(1)

Finally, by Markov’s inequality, we get:

Pr(J * Jµ)

≤Pr
(

S̃SE(θ̂1,Jµ)− S̃SE(θ̂∗
1) + SSE(θµ,J)− SSE(θ∗

µ) > SSE(θµ,J)− SSE(θ∗
µ)
)

≤
E
(

S̃SE(θ̂1,Jµ)− S̃SE(θ̂∗
1) + SSE(θµ,J)− SSE(θ∗

µ)
)

SSE(θµ,J)− SSE(θ∗
µ)

=
E
(

S̃SE(θ̂1,Jµ)− SSE(θ∗
µ)
)

− E
(

S̃SE(θ̂∗
1)− SSE(θµ,J)

)

SSE(θµ,J)− SSE(θ∗
µ)

→ 0

since E
(

S̃SE(θ̂1,Jµ)− SSE(θ∗
µ)
)

= o(1) and E
(

S̃SE(θ̂∗
1)− SSE(θµ,J)

)

= o(1).

Using the similar argument, we can also show that:

Pr(J0
µ * J) = o(1)

This completes the proof.

By the same argument as in Lemme 10, we also have the following result.

Lemma 11. Let JΣ (unknown) be the corresponding set of the solution θ̃∗
1 that minimizes (Z̃s −

θ1)
⊤(Z̃s − θ1) subject to θ1 ∈ C̃. Then, we have:

Pr(JΣ * Jµ) = o(1) and Pr(J0
µ * JΣ) = o(1)
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where Jµ and J0
µ are defined in Lemma 10.

Lemma 12. For the selected sample s, we have:

min
θ1∈C

(ỹs − θ1)
⊤
Σ̃

−1(ỹs − θ1)−min
θ1∈C

(ỹs − θ1)
⊤
Σ

−1(ỹs − θ1) = op(1)

Proof. Let J be the observed set for a given sample s. We can write the difference as follows:

min
θ1∈C

(ỹs − θ1)
⊤
Σ̃

−1(ỹs − θ1)−min
θ1∈C

(ỹs − θ1)
⊤
Σ

−1(ỹs − θ1)

=Ẑ⊤
s Â

⊤
J (ÂJÂ

⊤
J )

−

ÂJẐs − Z̃⊤
s Ã

⊤
JΣ
(ÃJΣÃ

⊤
JΣ
)
−

ÃJΣZ̃s

=ỹ⊤
s A

⊤
J (AJΣ̃A⊤

J )
−

AJ ỹs − ỹ⊤
s A

⊤
JΣ
(AJΣΣA⊤

JΣ
)
−

AJΣỹs

=ỹ⊤
s A

⊤
J (AJΣ̃A⊤

J )
−

AJ ỹs

(

I(J0
µ⊆J⊆Jµ) + I(J*Jµ or J0

µ*J)

)

− ỹ⊤
s A

⊤
JΣ
(AJΣΣA⊤

JΣ
)
−

AJΣỹs

(

I(J0
µ⊆JΣ⊆Jµ) + I(JΣ*Jµ or J0

µ*JΣ)

)

By Lemma 10 and Lemma 11, we have that I(J*Jµ or J0
µ*J) = op(1) and I(JΣ*Jµ or J0

µ*JΣ) = op(1).

Then, we have:

min
θ1∈C

(ỹs − θ1)
⊤
Σ̃

−1(ỹs − θ1)−min
θ1∈C

(ỹs − θ1)
⊤
Σ

−1(ỹs − θ1)

=ỹ⊤
s A

⊤
J (AJΣ̃A⊤

J )
−

AJ ỹsI(J0
µ⊆J⊆Jµ) − ỹ⊤

s A
⊤
JΣ
(AJΣΣA⊤

JΣ
)
−

AJΣỹsI(J0
µ⊆JΣ⊆Jµ) + op(1)

=µ⊤A⊤
J (AJΣµA

⊤
J )

−

AJµI(J0
µ⊆J⊆Jµ) − µ⊤A⊤

JΣ
(AJΣΣµA

⊤
JΣ
)
−

AJΣµI(J0
µ⊆JΣ⊆Jµ) + op(1)

=µ⊤A⊤
J0
µ
(AJ0

µ
ΣµA

⊤
J0
µ
)
−

AJ0
µ
µ− µ⊤A⊤

J0
µ
(AJ0

µ
ΣµA

⊤
J0
µ
)
−

AJ0
µ
µ+ op(1)

=op(1)
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where we use the fact that for any set J with J0
µ ⊆ J ⊆ Jµ, we have that:

SSE(θ∗
µ) =µ⊤A⊤

J (AJΣµA
⊤
J )

−

AJµ

=µ⊤A⊤
J0
µ
(AJ0

µ
ΣµA

⊤
J0
µ
)
−

AJ0
µ
µ

=µ⊤A⊤
Jµ(AJµΣµA

⊤
Jµ)

−

AJµµ
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