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ABSTRACT 

 

 

MUTAGENESIS OF THE DENGUE VIRUS ENVELOPE GLYCOPROTEIN GENE 

CAN SIGNIFICANLTLY ALTER VIRUS INFECTIVITY PHENOTYPES IN 

CULTURED CELLS AND LIVE MOSQUITOES 

 The dengue virus (DENV) envelope (E) glycoprotein is the primary determinant 

for initiation of host cell infection.  To date, studies investigating the contribution of 

DENV genetics to mosquito infection are limited.  A infectious clone cDNA of DENV 

type 2 strain 16681 (30P-NBX) provided the ability to introduce site-specific amino acid 

(AA) mutations into the E protein.  The results of the studies herein analyze the effects 

that AA mutations in the E protein have on infectivity of cultured cells and live 

mosquitoes. 

 The ability of 30P-NBX to infect Aedes aegypti RexD strain mosquitoes after oral 

infectious blood-meal was investigated and showed that both 30P-NBX and the parent 

virus 16681 have low, but equivalent midgut infection rates (MIRs).  Mosquito midgut 

infection with 30P-NBX is not affected by the virus titer in the blood-meal as long as 

titers are above 6 log10 pfu/ml or 7 log10 TCID50/ml.  Additionally, multiple experimental 

repetitions with at least 20 mosquitoes per infectious blood-feed were required to obtain 

an accurate average MIR for 30P-NBX. 

 Serial passage of 30P-NBX in RexD mosquito midguts identified a single AA 

mutation at position 122 in domain II of the E protein from lysine to glutamic acid that 
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correlated with increased MIRs.  Introduction of this AA mutation into the infectious 

clone (mutant virus K122E) reproduced the results from the serial passage experiment. 

Compared to 30P-NBX, K122E was not only shown to infect a higher proportion of 

mosquitoes as early as day 2 post blood-feed, but also to produce a disseminated 

infection in a higher proportion of mosquitoes by day 6 post blood-feed.  Also, K122E 

consistently produced a midgut infection that spread throughout the entire tissue while 

30P-NBX stayed restricted by comparison.  Virus attachment to midgut cells was 

compared and showed that 30P-NBX and K122E could attach with equal efficiencies via 

our midgut-virus attachment assay.  Additionally, incorporation of a single AA mutation 

into the infectious clone at E protein AA 120 from arginine to threonine significantly 

enhanced mosquito midgut infection compared to 30P-NBX.  This is the first time that 

mosquito infection determinants have been identified in the DENV E protein. 

 Amino acid mutations were engineered into the E protein on the lateral ridge of 

domain III, the fusion peptide at the distal end of domain II, and the molecular hinge 

region between domains I and II.  Mutant virus phenotypes were analyzed in cell culture 

and live mosquitoes.  In contrast to previous suggestions, domain III mutant virus 

phenotypes showed that the FG loop structure (previously suggested as a mosquito-

specific infection determinant) and not the specific AA sequence is important for 

infection of mammalian cells and live mosquitoes, while the structure and sequence of 

the FG loop is dispensable for infection of cultured C6/36 cells.  Additionally, mutations 

that remove positively charged residues from the A strand in DIII significantly attenuate 

infection of mosquitoes after oral infectious blood-meal and completely abrogate 
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infection in mammalian cells.  The results of this study suggest that there may be multiple 

structures in the E protein that are contributing to virus-receptor interactions. 

 Viruses with mutations in the fusion peptide and hinge region of the E protein 

were intrathoracically (IT) inoculated into mosquitoes and showed variable infectivity 

phenotypes.  All of the mutants except for one virus from both the fusion peptide and 

hinge region viruses attenuated infection of mosquito tissues outside the midgut.  

Importantly, considering that almost all of these viruses were able to replicate as 

efficiently as wild type in C6/36 cells, the IT inoculation results provide evidence that 

C6/36 cells are not a complete surrogate for DENV replication in mosquitoes. 
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CHAPTER 1 

LITERATURE REVIEW 

 The history of arbovirology is linked to the creation of the field of virology itself, 

when viruses were not yet called viruses but filterable agents with the ability to cause 

disease; a “contagium vivum fluidum” as described by Martinus Beijerinck in 1898 

(Beijerinck, 1898).  Two of the first human diseases to be attributed to “filterable agents” 

were arboviruses, yellow fever and dengue fever.  Observations concerning the cause of 

these diseases led to the inextricable link of disease with the bite of a mosquito (Ashburn 

and Craig, 1907; Bancroft, 1906; Graham, 1903; Henchal and Putnak, 1990; Reed et al., 

1983), and hence arbovirology stems back to the birth of the field of virology. 

 Arbovirology concerns the study of arthropod-borne viruses (arboviruses).  These 

are viruses that are biologically transmitted via hematophagous arthropod vectors to 

vertebrate hosts.  Blood-feeding has evolved at least 21 separate times in disparate 

arthropod taxa (Black, 2005) and the exploitation of blood-feeding as a method for virus 

transmission has likewise arisen numerous times in unrelated virus taxa.  Virus families 

consisting of arboviruses have an assortment of RNA genomes and replication strategies 

that include single stranded positive sense genomes (Flaviviridae, and Togaviridae), 

negative sense genomes (Bunyaviridae, Rhabdoviridae, and Orthomyxoviridae), and 

double stranded genomes (Reoviridae) and one virus with a DNA genome (African swine 

fever virus, family Asfaviridae).  Biological transmission requires that virus must infect 
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and replicate in the invertebrate host (including mosquitoes, biting flies, and ticks) prior 

to transmission to the vertebrate host (mostly avian and mammalian species).  There is a 

myriad of transmission cycles for clinically relevant arboviruses that include enzootic 

infection and amplification in intermediate hosts prior to spill over into humans (e.g. 

West Nile virus [WNV]) as well as direct vector to human transmission cycles that 

eliminate the necessity for intermediate hosts (e.g. endemic/epidemic dengue virus).  

Adding further complexity to arbovirus transmission dynamics, some of these viruses 

(e.g. La Crosse virus) can be transmitted vertically from an infected female to its 

progeny.  The exploitation of hematophagy for virus transmission has had a tremendous 

impact on public health. 

 We need only look at yellow fever virus (YFV) and dengue virus (DENV) to 

appreciate the impact of arbovirology on public health.  Both viruses have long been a 

significant cause of human morbidity and mortality.  Devastating epidemics of YFV 

ravaged a number of American cities prior to 1905 including New York City, 

Philadelphia, Memphis, Charleston, New Orleans, and one in the lower Mississippi 

valley that alone claimed 20,000 lives (Barrett and Higgs, 2007).  Vector control 

strategies and the development of YFV vaccines contributed immensely to the 

suppression of YFV outbreaks after the turn of the century.  No vaccines are currently 

available for DENV and this pathogen is considered the most medically important 

arbovirus infecting humans today.  There are an estimated 50 to 100 million cases a year 

and ca. 500,000 cases of the more severe manifestation of the disease caused by this 

virus, dengue hemorrhagic fever (DHF) /dengue shock syndrome (DSS) 

(http://www.who.int/mediacentre/factsheets/fs117/en/index.html). 

http://www.who.int/mediacentre/factsheets/fs117/en/index.html


3 

 

 Many factors contribute to the emergence and sustained transmission of 

arboviruses including ecological changes and agricultural development, changes in 

human demographics and behavior, international travel and commerce, and microbial 

adaption and change (Morse, 1995).  These factors are most often not mutually exclusive.  

Rising temperatures can enlarge the ecological niches of arthropod vectors, which can in 

turn increase the opportunity for contact between viruses and previously naïve human 

populations.  Changes in the environment that induce heavy rainfall can raise the water 

table in areas of eastern Africa that can fill grassland depressions called dambos, thereby 

triggering the emergence of mosquitoes.  These events correlate directly with large 

outbreaks of Rift Valley fever virus in these regions (Davies, Linthicum, and James, 

1985).  The creation of dams and modern agricultural techniques including irrigation and 

flooding produce more breeding grounds for vector mosquitoes and have consequently 

enhanced Japanese encephalitis virus (JEV) transmission in Asia (Morse, 1995).   

 Deforestation and human encroachment into areas virgin to human activity 

facilitates the intersection of humans and vector animals that would otherwise be spatially 

disconnected.  Peridomestic A. aegypti aegypti species mosquitoes (the primary vector 

for DENV) are suspected to have originated in West Africa from forest dwelling A. 

aegypti formosus mosquitoes (Sylla et al., 2009; Tabachnick and Powell, 1979).  

Urbanization, high human density, and unstable public health infrastructure have 

produced favorable breeding grounds for A. aegypti aegypti mosquitoes, which adopted 

domestic behaviors and prefers man-made artificial containers holding standing water for 

reproduction; this further creates situations where large human populations are integrated 

with high vector populations.  International travel and commerce contributes to the 
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introduction of vectors and viruses into new niche environments.  The Asian tiger 

mosquito, A. albopictus, was introduced into the United States via used tires from Asia 

(Hawley et al., 1987) and is a secondary vector for DENV.  WNV was introduced from 

the Old World into the Americas and generated an unprecedented outbreak in New York 

State in 1999 (Lanciotti et al., 1999; Nash et al., 2001), which then subsequently 

proliferated and dispersed across the United States to the West coast.  Similarly, a person 

traveling from India introduced Chikungunya virus (CHIKV ) into Italy where a high 

density of A. albopictus mosquitoes facilitated an unexpected outbreak of the virus in a 

previously naïve population (Bonilauri et al., 2008; Rezza et al., 2007). 

 Changes in viral genetics and the introduction of new virus strains with high 

replication and transmission kinetics augment the potential for arbovirus emergence.  The 

introduction of the DENV2 Asian/American genotype in the Americas coincided with 

increases in DHF cases and the eventual displacement of the DENV2 American genotype 

with viruses from the Asian/American genotype (Rico-Hesse et al., 1997).  A similar 

phenomenon was recently observed in Vietnam with DENV2 (Ty Hang et al., 2010) and 

in Sri Lanka with DENV serotype 3 (Hanley et al., 2008).  Large scale outbreaks of 

CHIKV on Reunion island and other Indian Ocean islands between 2004-2006 were 

instigated by a virus strain with a single amino acid (AA) mutation in its structural E1 

protein that facilitated enhanced replication and transmission kinetics in secondary vector 

A. albopictus mosquitoes (Schuffenecker et al., 2006; Tsetsarkin et al., 2007; Vazeille et 

al., 2007).  This was the origin of the CHIKV introduced into Italy as mentioned above.  

With the constant emergence and sustained transmission of arboviruses throughout the 
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world, understanding how these viruses emerge, transmit, and cause disease is 

paramount. 

Dengue viruses 

 As defined by their antigenic characteristics there are four serotypes of DENV 

(DENV1-4) that comprise the dengue virus serocomplex in the genus Flavivirus, family 

Flaviviridae.  There are three other virus serocomplexes in the Flavivirus genus that are 

transmitted by arthropod vectors that include the JEV serocomplex, YFV serocomplex, 

and the tick-borne encephalitis virus (TBEV) serocomplex (Calisher and Gould, 2003).  

Generally speaking, the DENVs and YFVs are transmitted by Aedes mosquitoes and 

cause viscerotropic disease while members of the JEV serocomplex of viruses are 

transmitted by Culex mosquitoes and cause neurologic disease (Gaunt et al., 2001; 

Gubler, 2007).  The DENV genome is a single stranded messenger (positive) sense RNA 

molecule ca. 10.7 kb in length.  The genome encodes 10 functional genes (from 5’ to 3’ 

directionality) including 3 structural genes (capsid [C], prM/M, and envelope [E]) and 7 

nonstructural genes (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5).  In addition to a 

5’ m
7
GpppAmpN2 cap, the ORF is flanked with 5’ and 3’ non-coding regions (NCR) 

containing conserved secondary sequence structures necessary for replication and 

translation.  The genome does not have a 3’ polyadenylate tail.  Nucleotide sequence 

analysis of DENV genomes corroborates their distinction as four separate antigenic types 

and coupled with phylogenetic analysis, suggests that each serotype emerged 

independently at different times less than 600 years ago (Rico-Hesse, 1990; Twiddy, 

Holmes, and Rambaut, 2003; Wang et al., 2000; Weaver and Vasilakis, 2009).  Genetic 

analysis of virus sequences also revealed genotype differences within each of the 

serotypes (Rico-Hesse, 1990).  For example, DENV2 has five endemic/epidemic 
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genotypes named Asian I, Asian II, Southeastern Asian/American, Cosmopolitan, and 

American and an additional sylvatic genotype consisting of viruses engaged in a 

transmission cycle between forest-dwelling mosquitoes and non-human primates 

(Twiddy et al., 2002).  DENV genotype distinctions are based on E gene sequence 

variations. 

 

Figure1.1. DENV2 phylogenetic tree.  Maximum-likelihood phylogeneic tree of the DENV2 E 

gene showing genotype distinctions.  Figure is borrowed from Twiddy, S. S., Woelk, C. H., and 

Holmes, E. C. (2002).  Phylogenetic evidence for adaptive evolution of dengue viruses in nature. 

Journal of General Virology 83, 1679-1689. 

 The DENV E glycoprotein is essential for almost all aspects of the virus life cycle 

and a detailed description of its structure and function is relevant to this dissertation.  
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DENV virions are characterized by a smooth surface of ca. 500 Å (50 nm) in diameter.  

The outer shell of the mature virion is composed of 180 copies of the E protein arranged 

in an icosohedral scaffold of 90 herringbone orientated homodimers that lay extended and 

parallel to a host cell derived lipid bilayer (Figure 1.1 D); also associated with the lipid 

bilayer are 180 copies of the M protein (Kuhn et al., 2002; Rey et al., 1995).  Within the 

lipid bilayer is a capsid protein core complexed with the RNA genome.  The 2 Å 

molecular structure of the mature E protein ectodomain of TBEV was first solved in 1995 

(Rey et al., 1995) followed by the mature E protein structures for DENV2 (Modis et al., 

2003; Modis et al., 2004) (Figure 1.1), DENV3 (Modis et al., 2005), and WNV (Kanai et 

al., 2006).  The E protein crystal structures revealed three distinct structural domains (DI, 

DII, and DIII), which correlate with monoclonal antibody (MAb) mapping data that 

defined three antigenic domains (C, A, and B) in the E protein (Guirakhoo, Heinz, and 

Kunz, 1989; Roehrig, Bolin, and Kelly, 1998).  MAb characteristics can be divided into 

four classifications based on their reactivity to DENV: flavivirus group-specific 

antibodies recognize multiple viruses in the genus Flavivirus, dengue complex-specific 

antibodies recognize all four serotypes of DENV, dengue subcomplex-specific antibodies 

recognize some but not all DENV serotypes, and lastly, dengue type-specific antibodies 

recognize only one serotype of DENV (Henchal et al., 1982). 
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Figure 1.2.  Molecular structure of DENV2 envelope glycoprotein. (A) Linear view of E protein 

monomer with DI in red, DII in yellow, and DIII in blue.  (B) Top-down  and (C) side view of the 

DENV2 E protein homodimer with glycans represented as spheres, the fusion peptide (CD loop, 

AA 98-111) in green, the molecular hinge region between DI and DIII marked by a solid triangle, 

and the lateral ridge of DIII marked with an asterisk.  (D) E protein herringbone arrangement in 

the DENV2 mature virion.  Protein structures were obtained from the protein database bank 

(DENV2 E protein homodimer ID: 1oan) and were rendered in Polyview-3D (Porollo, 
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Adamczak, and Meller, 2004).  A, B, and C are modified from Modis et al. (2004) and D is 

modified from Zhang et al. (2004). 

 Prior to solving the molecular structure of the flavivirus E protein, MAb were 

used to determine the antigenic structure of the E protein in a topological model.  Murine 

hybridomas secreting MAbs that target the E protein for TBEV (Guirakhoo, Heinz, and 

Kunz, 1989; Heinz et al., 1982; Heinz et al., 1983; Mandl et al., 1989), Saint Louis 

encephalitis virus (SLEV) (Roehrig, Mathews, and Trent, 1983), JEV (Kimura-Kuroda 

and Yasui, 1983; Kimura-Kuroda and Yasui, 1986), and DENV (Henchal et al., 1982; 

Henchal et al., 1985) provided antibodies that showed reactivity patterns in 

hemagglutination inhibition, neutralization, passive transfer, cross-reactivity, and 

competitive binding assays that helped illustrate the topological relationships between 

epitopes on the flavivirus E protein.  The first E protein topological epitope model was 

proposed by Heinz et al. (1982) for TBEV, and revealed two non-overlapping protein 

domains, A and B.  By using a larger panel of MAb with different functional activities 

and serological specificities in competitive binding assays, this work was extended and 

defined the three non-overlapping antigenic domains recognized currently, A, B, and C 

(Guirakhoo, Heinz, and Kunz, 1989).  By considering the locations of conserved disulfide 

bonds in the WNV E protein (Nowak and Wengler, 1987), locations of epitopes in the 

antigenic topological model, and MAb reactivity for the E protein after enzymatic 

treatment and under reducing, and non-reducing conditions (Guirakhoo, Heinz, and 

Kunz, 1989), a preliminary structural model of the TBEV E protein was proposed (Mandl 

et al., 1989).  Despite the structural inaccuracy of this model compared to the solved 

molecular structure of the TBEV E protein (Rey et al., 1995), mapped antigenic epitopes 

corresponded well to the three distinct structural domains.  Further confirmation of the 
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antigenic domains was provided by a more complete and detailed study of the antigenic 

structure of the DENV2 E protein and showed that again, the three antigenic domains 

correlated directly with the three structural domains revealed by the crystal structure 

(Roehrig, Bolin, and Kelly, 1998).  Even though the molecular structures currently 

available are limited to TBEV, DENV2 and 3, and WNV, the locations of flavivirus 

conserved cysteine residues suggest that all flaviviruses have analogous E protein 

structures (Rey et al., 1995; Roehrig, 2003), as evidenced by the close similarity between 

TBEV and DENV E protein structures in spite of having only 37% sequence identity at 

the AA level (Modis et al., 2003). 

DENV2 E protein structure 

 The flavivirus E protein consists of three distinct structural domains and 12 fully 

conserved cysteine residues that make up 6 structurally dependent disulfide bonds 

(Nowak and Wengler, 1987; Roehrig et al., 2004).  DI is a linearly discontinuous 

structure located centrally in the protein monomer (Figure 1.1).  It contains two disulfide 

bonds (4 cysteine residues, cysteine 3 bonded to 30, and 185 bonded to 285), the amino 

terminus, and AA residues 1-52, 132-192, and 280-295.  DI folds into an 8-stranded β-

barrel and is connected to DII via four peptide strands that comprise a molecular hinge 

region (Figure 1.1, solid triangle) that facilitates molecular conformational changes 

during membrane fusion (Guirakhoo, Bolin, and Roehrig, 1992; Modis et al., 2003; Rey 

et al., 1995).  DI also contains a potential N-linked glycosylation motif (N-X-T/S, where 

X = any AA) at E protein residue N153.  MAb targeted to DI (antigenic domain C) tend 

to lack biological function and vary in their antigenic specificity (Guirakhoo, Heinz, and 

Kunz, 1989; Roehrig, Bolin, and Kelly, 1998).   
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 DII is a linearly discontinuous structure connected to DI via the hinge region and 

is recognized as the dimerization domain (Figure 1.1).  It contains three disulfide bonds 

(6 cysteine residues, cysteine 60 bonded to 121, 74 bonded to 105, and 92 bonded to 

116), and is comprised of AA residues 53-131, and 193-279.  DII is an elongated finger-

like structure with 12 β-strands, 2 alpha helices, and the flavivirus conserved fusion 

peptide (CD loop, AA 98-111) that is necessary for membrane fusion and is located at its 

distal end.  DII also contains an N-linked glycosylation motif at E protein residue N67, 

and this glycan can bind to DC-SIGN on monocyte-derived dendritic cells (Navarro-

Sanchez et al., 2003; Tassaneetrithep et al., 2003).  MAb targeted to DII (antigenic 

domain A) can recognize the E protein in neutral and low pH conformations, have 

neutralizing and anti-hemagglutination activity, and can exhibit flavivirus group-specific 

reactivity (Guirakhoo, Heinz, and Kunz, 1989; Roehrig, Bolin, and Kelly, 1998).  

Flavivirus group-specific MAbs 4G2 and 6B6C-1 target AA in the fusion peptide (Crill 

and Chang, 2004; Huang et al., 2010). 

 DIII makes up the carboxy-terminal end of the soluble E protein and is an 

immunoglobulin-like structure (Bork, Holm, and Sander, 1994) connected to DI by a 

single linker peptide (Figure 1.1).  It has one stabilizing disulfide bond (cysteine 302 

bonded to 333) and is comprised of AA 296-394.  One major structural difference in the 

E protein between DENV2 and TBEV is located in DIII on the lateral ridge (Figure 1.1, 

asterisk), where DENV2 has an extended loop motif between the F and G beta strands 

(FG loop) while TBEV does not (Modis et al., 2004; Rey et al., 1995; Zhang et al., 

2004).  A detailed description of the FG loop and its contribution to DENV2 biology is 

provided in Chapter 4 of this dissertation.  Antibodies with high neutralizing activity have 
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been mapped to DIII (antigenic domain B) and soluble DIII has been used to block 

infection of cells with whole virus, both suggesting DIII contains receptor-ligand epitopes 

(Abd-Jamil, Cheah, and AbuBakar, 2008; Chin, Chu, and Ng, 2007; Chu et al., 2005; 

Crill and Roehrig, 2001; Huerta et al., 2008; Roehrig, Bolin, and Kelly, 1998). 

DENV life cycle and the E protein 

 The initial events involved with DENV infection of host cells are attachment to a 

cell-surface receptor, entry into the cell, and virus-mediated cell membrane fusion within 

host cell endosomes.  Several putative cell receptors capable of binding DENV E protein 

on mammalian and invertebrate host cells have been identified and include 

glycosaminoglycans (Vero and BHK21) (Chen et al., 1997; Hung et al., 2004; Hung et 

al., 1999), heat shock proteins (U937 and C6/36) (Salas-Benito et al., 2007; Valle et al., 

2005), stress response protein Grp78 (HepG2) (Jindadamrongwech, Thepparit, and 

Smith, 2004), DC-SIGN (monocyte-derived dendritic cells) (Navarro-Sanchez et al., 

2003; Tassaneetrithep et al., 2003), mannose receptor (macrophages) (Miller et al., 

2008), prohibitin (C6/36, CCL-125, and A. aegypti whole mosquitoes) (Kuadkitkan et al., 

2010), and other as yet unidentified proteins of various sizes (Vero, C6/36, and mosquito 

midgut cells) (Martinez-Barragan and Del Angel, 2001; Mercado-Curiel et al., 2006).  

The multitude of identified cellular receptors suggests that the DENV E protein is 

capable of attaching to different receptors via several structural motifs (Erb et al., 2010) 

(discussed in Chapter 4).  An additional mode of virus entry into permissive cells is 

referred to as antibody-dependent enhancement (ADE) (Halstead, 1970; Halstead and 

O'Rourke, 1977; Kliks et al., 1988), whereby virus opsinized by subneutralizing 

concentrations of cross-reactive antibodies can bind to Fc-receptor (FcR) bearing cells 
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including monocytes, macrophages, dendritic cells, and B cells and enter into these cells 

via FcR-mediated endocytosis (Goncalvez et al., 2007; Lin et al., 2002; Lindenbach, 

2007; Littaua, Kurane, and Ennis, 1990).  While earlier studies utilizing electron 

microscopy suggested that DENV entered cells by direct penetration with the plasma 

membrane (Hase, Summers, and Eckels, 1989; Lim and Ng, 1999), recent studies have 

shown that DENV (Acosta, Castilla, and Damonte, 2008; Krishnan et al., 2007; Mosso et 

al., 2008; van der Schaar et al., 2008), WNV (Chu, Leong, and Ng, 2006; Mizutani et al., 

2003), and JEV (Nawa, 1998; Nawa et al., 2003) enters cells via receptor-mediated, 

clathrin-dependent endocytosis.  Single-particle tracking of DENV on infected cells 

showed that after attachment to a host cell the virus moves through the plasma membrane 

or rolls over multiple receptors before being captured by a clathrin-coated pit (van der 

Schaar et al., 2008).  Following this endocytic pathway, mature clathrin-coated pits pinch 

off into the cytoplasm and these vesicles deliver the virus to Rab5-positive early 

endosomes, which mature into late endosomes by accumulation of Rab7 (Huang et al., 

2010; Krishnan et al., 2007; Rink et al., 2005; van der Schaar et al., 2008).  DENV2 

strain New Guinea C was shown to fuse with early endosomes (Rab5-positive) (Krishnan 

et al., 2007) in contrast to strain S1, which was shown to fuse with late endosomes 

(Rab7-positive) (van der Schaar et al., 2008), indicating that DENV2 strains can have 

different entry characteristics.  As the pH of the endosome decreases, virus-mediated cell 

membrane fusion is initiated, resulting in the release of the virus nucleocapsid into the 

cytoplasm.  Differences in DENV2 fusion pH thresholds may determine at which stage 

particular virus strains initiate membrane fusion (Huang et al., 2010; Krishnan et al., 

2007; van der Schaar et al., 2008). 
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 The flavivirus E protein is a Class II fusion protein and is structurally similar to 

the E1 surface protein in alphaviruses (Lescar et al., 2001).  Solving the crystal structures 

for DENV2 and TBEV in their post fusion conformations illuminated the mechanism 

[illustrated in Figure 1.2 (Kaufmann and Rossmann, 2011)] by which these proteins cause 

membrane fusion (Bressanelli et al., 2004; Modis et al., 2004).  Acidification of 

endosomes causes dramatic molecular conformational and transitional changes to the E 

protein.  Mildly acidic pH (ca. < 6.5) loosens E protein homodimer interactions causing 

them to dissociate (Figure 1.2 B) (Allison et al., 1995; Gollins and Porterfield, 1986b; 

Stiasny et al., 1996).  Protonation of histidine residues located in the hydrophic pocket 

between DI and DIII is hypothesized to trigger the initial protein conformational changes 

for TBEV (Fritz, Stiasny, and Heinz, 2008).  However, mutation of relevant histidine 

residues in the E protein of WNV subviral particles does not support this requirement 

(Nelson et al., 2009).  Nevertheless, upon acidification, the fusion peptide is released 

from the hydrophobic pocket formed by the opposite monomer between DI and DII, 

which allows DII to project towards the endosomal membrane by flexing at the hinge 

region by ca. 37⁰ (Zhang et al., 2004).  At the same time, the soluble E-stem region (C-

terminal end of the E protein, AA 396-447) extends away from the viral membrane 

(Kaufmann et al., 2009; Schmidt, Yang, and Harrison, 2010).  The dissociation of the 

homodimers and the insertion of the fusion peptide into the outer leaflet of the endosomal 

membrane drives the rearrangement and trimerization of E protein monomers into a “pre-

hairpin” intermediate structure (Figure 1.2 C) (Modis et al., 2004).  Trimer contacts 

spread from the fusion peptide down towards the base of DI while DIII experiences a 

significant displacement by ca. 30 Å up towards DII.  DIII rotates ca. 20⁰ with its 
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translocation causing the C-terminus to fold towards the fusion peptide (Modis et al., 

2004; Mukhopadhyay, Kuhn, and Rossmann, 2005).  This allows the E-stem to zipper up 

in the hydrophobic groove between DII trimer contacts, bringing the viral and endosomal 

membranes into close proximity, and thus driving the formation of the fusion pore 

(Figure 1.2 C-E).  The formation of a hemifusion stalk intermediate is necessary for the 

final configuration of the post-fusion E timer, which is the most energy stable molecular 

conformation of the E protein (Modis et al., 2004). 
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Figure 1.3.  Proposed events involved in Class II protein membrane fusion.  (A) Mature flavivirus 

virus prior to conformational changes with DI in red, DII in yellow, DIII in blue, and the E-stem 

and transmembrane domains in green.  (B) Acidic pH causes E homodimers to dissociate, allows 

the fusion peptide to move into close proximity with the endosomal membrane, and mediates the 

extension of the E-stem away from the virion membrane.  (C) E protein trimerization and the 

translocation of DIII towards the fusion peptide.  (D) Zippering up of the stem region along the 

DII trimer contacts induces a hemifusion pore.  (E) Post fusion E protein trimer opens a fusion 

pore allowing for the release of the virus nucleocapsid.  This figure is borrowed from Kaufmann 

B., and Rossmann MG.  (2011) “Molecular mechanisms involved in the early steps of flavivirus 

cell entry.”  Microbes and Infection, 13(1): 1-9.  

 After virus entry and membrane fusion the nucleocapsid is disassembled and the 

virus genome is translated into a large polyprotein that is co- and post translationally 

processed (polyprotein: NH2-C-prM-E-NS1-NS2A-NS2B-NS3-NS4A-NS4B-NS5-

COOH).  The C protein contains a hydrophobic signal sequence at its carboxy-terminus 

that will translocate prM into the ER during translation.  prM contains two 

transmembrane-spanning domains that contain a stop transfer and signal sequence that 

also allows for the E protein to be translocated into the ER (Lindenbach, 2007; 
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Mukhopadhyay, Kuhn, and Rossmann, 2005).  The E protein contains two 

transmembrane domains, of which the carboxy-terminal domain acts as a signal sequence 

for translocation of NS1 protein into the ER lumen.  After translocation of prM and E 

into the ER, the NS2B/NS3 serine protease complex cleaves the carboxy-terminus of the 

C protein on the cytosolic side of the ER.  This step was shown to be critical for the 

subsequent cleavage of the N-terminus of prM on the luminal side of the ER by host cell 

signalase (Lobigs, 1993; Lobigs and Lee, 2004; Lobigs et al., 2010; Stocks and Lobigs, 

1998).  Virus replication complexes containing virus RNA amplification machinery are 

associated with virus-induced intracellular membrane structures at the rough ER, which 

localize viral proteins and RNA, and potentially protect the virus genome from being 

targeted by the host cell interferon pathway and RNAi machinery (Mackenzie, Jones, and 

Young, 1996; MacKenzie and Westaway, 2001; Welsch et al., 2009; Westaway et al., 

1997). 

 Inside the ER lumen, the prM protein will rapidly fold immediately after signalase 

cleaves its N-terminus, freeing it up to act as a chaperon protein to assist in the proper 

folding of the E protein, indicating that E protein folding is dependent on co-expression 

with prM protein (Courageot et al., 2000; Konishi and Mason, 1993; Lorenz et al., 2002).  

Proper folding of the prM and E proteins catalyzes the association of prM and E into 

heterodimers.  ER host chaperon proteins BiP, calnexin, and calreticulin are necessary for 

biosynthesis and assembly of prM and E in the ER lumen (Limjindaporn et al., 2009; 

Wati et al., 2009).  The prM of flaviviruses contains one to three potential N-linked 

glycosylation sites and at least one of these sites was found to be necessary for productive 

release of JEV mature virions (Kim et al., 2008).  However, it is currently unclear how 
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these results translate to DENV.  The DENV2 E protein has two potential N-linked 

glycosylation sites at N67 and N153 and individual DENV2 strains vary in their 

utilization of these two sites.  Although glycosylation of N67 was at first found to be 

critical for virus survival and maturation in mammalian and insect cell cultures (Bryant et 

al., 2007; Mondotte et al., 2007), it was recently shown that ablation of this glycosylation 

site can be tolerated for replication in both cell types depending on the AA mutation 

engineered at this position, albeit with reductions in the amount of virus released from 

infected cells (Lee et al., 2010).  Also, eliminating both glycosylation sites had no effect 

on infection of adult female mosquitoes after intrathoracic (IT) inoculation (Bryant et al., 

2007).  It is not yet clear how these glycosylation sites influence DENV infection of 

midgut cells after oral infectious blood-meal.  Virions express structurally different N-

linked glycans when produced in either mammalian or mosquito cells.  N-linked glycans 

produced in insect cells have high mannose terminal residues while glycans produced in 

mammalian cells have more complex terminal sugars with no mannose residues.  Despite 

that DC-SIGN preferentially binds high mannose sugars (Feinberg et al., 2007), DENV 

virions produced in both C6/36 cells and Vero cells could bind and enter DC-SIGN 

expressing human monocytes and dendritic cells similar efficiencies (Hacker, White, and 

de Silva, 2009).   The contribution of these glycosylation sites to host cell infection, 

protein maturation and virus morphogenesis remains unclear.     

 Nucleocapsid formation is mediated by the association of viral RNA with the 

highly basic capsid protein on the cytosolic side of the ER membrane, where 

nucleocapsids bud into the ER and virions acquire their host cell-derived lipid envelope 

and surface structural proteins (Kiermayr et al., 2004; Welsch et al., 2009).  These non-
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infectious and immature particles then travel through the ER, Golgi, and trans-Golgi 

network (TGN) secretory pathway.  The immature DENV has 60 prominent spike 

projections each containing trimers of prM-E heterodimers (Zhang et al., 2003).  The 

prM protein prevents premature fusion of the E protein with intracellular host cell 

membranes during E protein maturation through the secretory pathway by capping the 

fusion peptide at the distal end of DII, which projects away from the virion surface by ca. 

25⁰ in the immature virion (Guirakhoo, Bolin, and Roehrig, 1992; Zhang et al., 2003).  

Acidification of vesicles containing virus particles in the TGN induces a conformational 

change that exposes a furin cleavage site in prM that is cleaved by host cell furin, which 

releases pr from the M protein (Randolph, Winkler, and Stollar, 1990; Shapiro, Brandt, 

and Russell, 1972; Shapiro et al., 1997; Stadler et al., 1997; Yu et al., 2008).  After furin 

cleavage, pr stays associated with the E protein, now in its homodimer conformation, to 

prevent membrane fusion until it disassociates from E when particles are released into the 

extracellular milieu (Li et al., 2008a; Yu et al., 2008; Zheng, Umashankar, and Kielian, 

2010).  Immature DENV particles are not infectious for mammalian or insect cultured 

cells (Zybert et al., 2008) and DENV amplified in insect C6/36 cells produce a higher 

proportion of immature virions than DENV amplified in Vero cells (Murray, Aaskov, and 

Wright, 1993).  FcR-bearing cells can become infected by prM containing virions by 

binding to the DENV cross-specific MAb that target the prM protein (Dejnirattisai et al., 

2010; Huang et al., 2006).  These virions either contain partial amounts of uncleaved prM 

on their surface (Dejnirattisai et al., 2010; Junjhon et al., 2010) or presumably, upon 

entry and acidification of the endosome, host cell furin can cleave the prM protein and 

free up the E protein fusion peptide for subsequent membrane fusion. 
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DENV pathology in humans 

 The clinical manifestations of disease caused by DENV range from self-limiting 

symptomatic DF to more severe disease characterized as DHF and DSS.  Following the 

bite of an infected mosquito, virus is deposited into the skin where local Langerhans 

dendritic cells (DCs) are the first cell type to become infected (Wu et al., 2000).  Infected 

DCs migrate to regional lymphnodes for antigen presentation to T lymphocytes, where 

infected cells will release virus that can infect other cell types in the draining lymphnode 

such as monocyte/macrophages, B cells, and other DCs.  From the draining lymphnodes, 

virus can enter the bloodstream, possibly via infected B cells (Lin et al., 2002), which 

mediates infection of secondary organs such as the liver, kidneys, endothelium, and 

spleen (Hall et al., 1991; Jessie et al., 2004).  Symptomatic infections leading to DF are 

preceded by an incubation period generally ranging from 4 to 7 days (WHO, 2009).  

Clinical features of DF vary according to the age of the patient but manifest as flu-like 

symptoms marked by sudden onset of fever, severe headache, retro-orbital pain, body 

aches, joint pains, and rash (Gubler, 1998; Whitehead et al., 2007).  The acute phase of 

illness will last for 3 to 7 days post onset of symptoms and is generally self-limiting 

(Gubler, 1998; WHO, 2009).  Resolution of DENV infection is associated with virus 

clearance by cytotoxic T cells (Bukowski et al., 1989; Kurane, Meager, and Ennis, 1989; 

Yauch et al., 2009) and virus neutralization by antibodies that can block virus-mediated 

cell membrane fusion or virus attachment by targeting DII and DIII of the E protein, 

respectively (Crill and Roehrig, 2001; Gollins and Porterfield, 1986a; Kaufman et al., 

1987; Roehrig, Bolin, and Kelly, 1998; Whitehead et al., 2007).  As mentioned earlier, 

microbial adaptation and change can contribute to the emergence of more virulent strains 
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of arboviruses and this adaptation can be driven by selective pressure imposed by the 

human immune response (Roehrig, 2003).  Mapping the location of amino acid mutations 

in the E protein of viruses grown in the presence of neutralizing antibody has identified 

regions of the flavivirus E protein that are targeted by neutralizing antibodies that are 

often subtype and type specific; these regions include amino acids pertinent to this 

dissertation: 123-128, 307-311, and 384-385 (Cecilia and Gould, 1991; Lok, Ng, and 

Aaskov, 2001; Mandl et al., 1989; McMinn et al., 1995; Roehrig, 2003).  In the context 

of pathogenesis, both the T cell and antibody response can contribute to disease 

progression from DF to DHF and DSS. 

 Around the time of defervescence, DF can progress to DHF and DSS, which are 

characterized by thrombocytopenia, hemorrhagic manifestations, and increased vascular 

permeability that can lead to hypovolemic shock (Gubler, 1998; Whitehead et al., 2007; 

WHO, 2009).  There are two theories explaining why disease pathogenesis can progress 

to DHF and DSS, which include ADE and virus genetics that result in increased 

virulence; these are most likely not mutually exclusive.  The ADE hypothesis states that 

upon secondary infection with a heterologous DENV serotype, pre-existing, sub-

neutralizing, and non-protective antibodies will bind to viruses and will enhance their 

uptake in FcR-bearing monocytic cells, resulting in enhanced infection and greater 

burden of disease.  Concurrent with the antibody response to heterologous infection, 

activation of memory T-cells specific for the previous infection (original antigenic sin) is 

postulated to delay viral clearance and increase cytokine production, thereby skewing the 

immune response away from the current infection (Mongkolsapaya et al., 2003).  

Memory CD4+ T cells activated by infection can release IFN gamma, which will up-
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regulate the expression of FcR on monocytes, and further perpetuate the infection of 

these cells (Pang, Cardosa, and Guzman, 2007).  Infected monocytes release tumor 

necrosis factor-alpha (TNF-alpha) that in turn can induce vascular leakage by increasing 

the permeability of endothelial cell monolayers (Espina et al., 2003).  TNF-alpha is 

strongly implicated in DENV pathogenesis (Atrasheuskaya et al., 2003; Prestwood et al., 

2008; Shresta et al., 2006).  Original antigenic sin is not always associated with ADE 

disease progression, considering that infants can develop DHF without experiencing a 

prior infection, suggesting ADE associated disease in infants is mediated primarily by 

maternal antibodies (Halstead et al., 2002; Kliks et al., 1988).  

 Virus genetics is also associated with DHF and DSS.  The infecting DENV 

serotype (Balmaseda et al., 2006; Fried et al., 2010) and genotype (Messer et al., 2003; 

Rico-Hesse et al., 1997; Ty Hang et al., 2010) have been implicated as risk factors for the 

development of severe disease.  Disease severity has been associated with high viremia 

titers in the infected human (Vaughn et al., 2000) and differences in virus output from 

infected monocytes has been demonstrated between virus strains (Cologna and Rico-

Hesse, 2003; Pryor et al., 2001); aspartic acid at E protein position 390 in conjunction 

with 5’ and 3’ NCR specific nucleotide sequences (Leitmeyer et al., 1999) were shown to 

attenuate DENV2 American genotype virus replication in monocytes compared to viruses 

in the Asian genotype.  AA mutations at N124 and K128 in DII of the E protein were 

found to be associated with increased vascular permeability in a mouse model (Prestwood 

et al., 2008; Shresta et al., 2006).  The contribution of virus genetics and ADE to the 

development of DHF and DSS are most likely not mutually exclusive and are important 

considerations for DENV vaccine design. 
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DENV vaccine considerations 

 Despite its impact on public health, there are currently no licensed vaccines 

available for DENV.  Efforts to create a DENV vaccine have been hampered by lack of 

an appropriate animal model that does not include immunocompromised animals or 

adapted virus strains (Yauch and Shresta, 2008), the need to design four individual 

vaccines, one against each serotype, and the necessity of producing robust antibody 

responses against all four serotypes in a tetravalent formulation in order to reduce the risk 

of inducing ADE by vaccination (Durbin and Whitehead, 2010).  The most promising 

and leading vaccine candidates for DENV are live attenuated virus formulations.  Live 

virus vaccines have the advantage over killed or subunit vaccines because they can 

induce humoral as well as cellular immune responses that mimic infections by wild type 

viruses.  Additionally, live vaccines require fewer booster immunizations than their 

counterparts (Whitehead et al., 2007).  Favorable characteristics for live-attenuated 

DENV vaccines include balanced replication kinetics between each virus serotype in the 

tetravalent vaccine formulation so that the immune response is targeting and creating 

sufficient levels of neutralizing antibody against each virus equally; defined genetic 

mutations that confer attenuating phenotypes that are stable during replication in humans 

and can be monitored during vaccine production; and the inability of each virus to infect 

mosquitoes.  An excellent example of a successful live attenuated arbovirus vaccine is 

YFV 17D.  Highly virulent YFV strain Asibi was passaged 176 times in mouse brain and 

chicken tissue to produce the 17D strain (Theiler, 1937a; Theiler, 1937b).  Vaccination 

with 17D results in viremia titers less than 10
2
 pfu/ml, produces a robust and long-term 

neutralizating antibody response that is protective against all known YFV strains for 
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decades (Barrett and Teuwen, 2009), and is unable to disseminate from mosquito midguts 

to secondary mosquito tissues (McElroy et al., 2006; Miller and Adkins, 1988; Whitman, 

1939), thereby precluding transmission of the vaccine strain to naïve individuals.  Despite 

the tremendous success of the YFV 17D vaccine, viscerotropic and neurological disease 

has been associated with YFV 17D vaccination (Barrett and Teuwen, 2009; Engel et al., 

2006; Guimard et al., 2009; Jennings et al., 1994; McMahon et al., 2007).  Augmented 

neurovirulence of one of the 17D vaccine strains was mediated by a single AA mutation 

in DIII of the E protein; however, this particular mutation did not provide the virus with 

the ability to disseminate from mosquito midguts (Jennings et al., 1994).  Understanding 

how mutations affect virulence in humans as well as in mosquitoes is important to the 

design of safe and efficacious live attenuated virus vaccines. 

Infection of mosquitoes with DENV 

 DENV are maintained in nature in a mosquito-human-mosquito transmission 

cycle and A. aegypti mosquitoes are the primary vector (Bancroft, 1906; Gubler and 

Rosen, 1976).  A. albopictus and A. polynesiensis are also capable vectors for DENV 

(Gubler, 1988).  As a highly domesticated mosquito, A. aegypti prefers to breed in 

artificial containers and feed almost exclusively on humans, often more than once during 

a single gonotrophic cycle (Scott et al., 2000; Scott et al., 1993), a trait that has been 

associated with higher reproductive rates for this species and for the viruses it transmits 

(Scott et al., 1997).  A. aegypti is susceptible to each DENV serotype and co-circulation 

of multiple serotypes in the same region is common (Gubler, 1998). 

 Mosquitoes become infected with DENV when feeding on a viremic host.  After 

an extrinsic incubation period (the length of time it takes for virus to reach the salivary 
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glands and be transmissible [EIP]) of ca. 7 to 14 days, the mosquito can infect a naïve 

host upon subsequent blood-feeding (Gubler and Rosen, 1976; Salazar et al., 2007; Watts 

et al., 1987).  The length of the EIP can vary for individual mosquito and virus strains.  

Also, new experimental (Irma Sanchez-Vargas, personal communication) and field based 

evidence is accumulating to suggest that DENV can transmit vertically from infected 

females to their progeny (Arunachalam et al., 2008; Gunther et al., 2007; Vilela et al., 

2010).  The epidemiological implications of this phenomenon are unclear. 

 Upon blood-feeding, the blood-meal is deposited into the posterior midgut of the 

mosquito (Figure 1.3).  The mosquito midgut is the site of blood-meal digestion and 

absorption, and the nutrients obtained from vertebrate blood are necessary for the process 

of egg production (Pennington, 2005).  The A. aegypti midgut is composed of a single 

layer of epithelial cells surrounded by a basement membrane and muscle fibers.  The cell 

types that make up this layer include columnar epithelial cells that are extensively 

microvillated, secretory cells, and endocrine cells.  Each is involved with blood-meal 

digestion and is thought to be polarized, consisting of an apical cell surface exposed to 

the midgut lumen and a basal surface that faces the porous basal lamina.  Zieler and 

colleagues (2000) examined the luminal surface of the A. aegypti midguts pre- and post 

blood-meal by scanning electron microscopy and showed that the surface of this tissue is 

covered by a dense layer of branching fibers they identify as the microvilli-associated 

network (MN).  The majority of cells on the luminal surface of the midgut are extensively 

covered by the MN except for a few that account for approximately 1% of all midgut 

cells; these were designated as bare cells.  The MN is distinct from the peritrophic matrix 

(Zieler et al., 2000).  The peritrophic matrix is a semi-permeable extracellular layer 
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comprosed of chitin, proteins, and proteoglycans that surrounds a blood-meal to protect 

the epithelial cells against pathogens, abrasion, and toxic compounds in the vertebrate 

blood (Davenport, 2005; Richards and Richards, 1971).  It is formed ca. 4 to 8 hours post 

blood-feeding (Perrone and Spielman, 1988).  Furthermore, the midgut is separated from 

the mosquito hemolymph by the basal lamina, which serves as a barrier for the movement 

of macromolecules between these two areas.  Molecules no larger than 15 nm can move 

through this barrier structure (Reddy and Locke, 1990), which suggests that DENV (ca. 

50 nm) would not be able to passively escape the midgut and penetrate the hemolymph 

directly through this barrier.  Virus has also been detected in secondary tissues without 

establishment of infection in the midgut following an infectious blood-feed (Hardy et al., 

1983; Richardson et al., 2006; Weaver and Scott, 1990; Weaver et al., 1991), although 

this may be an artifact of challenging mosquitoes by artificial means. 
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Figure 1.4.  Mosquito anatomy and barriers to infection by arboviruses.  Borrowed from Black et 

al. (2002). 

 Arboviruses are biologically transmitted by their vectors and this requires that 

virus must first infect and replicate in the invertebrate host prior to transmission to the 

vertebrate host.  The steps involved and the barriers to vector transmission of arboviruses 

are outlined in Figure 1.3.  Barriers to infection by arboviruses include the midgut 

infection barrier (MIB), midgut escape barrier (MEB), and two transmission barriers 

called the salivary gland infection barrier (SIB) and the salivary gland escape barrier 

(SEB).  Vector competence is the intrinsic permissiveness of a vector for infection, 

replication, and transmission of a virus and A. aegypti strains vary in their vector 

competence for DENV (Bennett et al., 2002; Black et al., 2002; Bosio, Beaty, and Black, 

1998; de Oliveira et al., 2003; Failloux, Vazeille, and Rodhain, 2002; Gubler et al., 1979; 
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Tardieux et al., 1990; Vazeille-Falcoz et al., 1999).  Similarly, DENV strains also vary in 

their ability to successfully be transmitted by mosquitoes (Armstrong, 2001; Armstrong 

and Rico-Hesse, 2003; Lambrechts et al., 2009).  Vector competence is affected by both 

extrinsic environmental (discussed in Chapter 2) and intrinsic genetic factors (Bosio, 

Beaty, and Black, 1998).  Quantitative genetic studies analyzing the ability of A. aegypti 

to become infected with and transmit DENV identified quantitative trait loci (QTL) that 

condition DENV infection of mosquito midguts and dissemination to secondary tissues 

(Bennett et al., 2005; Bosio, Beaty, and Black, 1998; Bosio et al., 2000; Gomez-

Machorro et al., 2004).  Known mosquito genes associated with QTL regions are 

carboxypeptidase, apolipophorin 2, early trypsin, and late trypsin.  Currently, only the 

contribution of trypsin enzymes to DENV infectivity has been investigated 

experimentally by QTL mapping. 

 Trypsins are integral for blood-meal digestion in the mosquito midgut.  How these 

enzymes affect DENV infectivity of midguts remains unclear.  Proteolytic processing of 

LACV structural genes in the mosquito midgut is necessary for enhancement of midgut 

infectivity (Ludwig et al., 1989; Ludwig et al., 1991), and initially early trypsin was 

found to enhance DENV infection of mosquito midguts (Molina-Cruz et al., 2005).  A 

subsequent study using RNAi knockdown of trypsin showed that suppression of early 

trypsin had no effect on DENV midgut infectivity, and that late trypsin actually reduced 

DENV midgut infectivity (Brackney, Foy, and Olson, 2008; Lu et al., 2006).  

Furthermore, association mapping showed that there were no consistent associations 

between the segregating sites in the early trypsin gene and DENV susceptibility 

(Gorrochotegui-Escalante et al., 2005).  QTL encode hundreds of genes that could 
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contribute to DENV2 susceptibility and although not entirely conclusive, these studies 

analyzing trypsin and mosquito vector competence are the first to investigate the QTL 

data.  

 Mosquito midgut protein R67/R64 was shown to bind DENV2 and is also 

suggested to be a marker of vector competence (Mercado-Curiel, Black, and Munoz, 

2008).  Comparison of midgut R67/R64 protein expression between highly susceptible 

and refractory mosquito strains showed that the refractory strain expressed significantly 

less protein then its counterparts.  However, DENV protein expression in each mosquito 

strain was equivalent at 5 hours post blood-feed until it decreased significantly in the 

refractory strain compared to the susceptible strains (Mercado-Curiel, Black, and Munoz, 

2008), suggesting that despite the difference in R67/R64 expression between the 

mosquito strains, a step downstream from initial attachment to a host cell receptor in the 

midgut lumen is influencing refractoriness. 

 Mosquito innate immunity has also been shown to affect infection of mosquitoes 

by DENV.  Host cell RNAi machinery recognizes flavivirus double stranded RNA 

intermediates produced during replication in infected cells and then targets specific virus 

sequences for degradation.  The RNAi pathway has been shown to have anti-viral activity 

against infection by DENV2 in A. aegypti (Barbosa-Solomieu et al., 2007; Franz et al., 

2006; Sanchez-Vargas et al., 2009; Sanchez-Vargas et al., 2004), O’nyong nyong virus in 

Anopheles gambiae (Keene et al., 2004), and WNV in Culex pipiens quinquefasciatus 

(Brackney, Beane, and Ebel, 2009).  Specific virus genome regions are targeted by the 

RNAi machinery at higher frequencies than others and this has been suggested to drive 

genetic diversification of viruses (Brackney, Beane, and Ebel, 2009).  Invertebrate C6/36 
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cells are often used as a surrogate for studying mosquito-virus interactions.  These cells 

were originally isolated from Singh’s A. albopictus larval line (Singh, 1967) for their 

ability to replicate DENV and CHIKV to high titers (Igarashi, 1978).  Recent evidence 

has shown that these cells have a defective RNAi pathway (Brackney et al., 2010; Scott 

et al., 2010).  C6/36 cells infected with different arboviruses including DENV (Scott et 

al., 2010), WNV, Sindbis virus, and LACV do not effectively cleave double stranded 

RNA due to inefficient Dicer 2 activity, a protein integral to the RNAi pathway.  While 

C6/36 cells remain an important tool for amplifying viruses to high titer, their status as an 

surrogate for studying molecular interactions between arboviruses and mosquitoes is 

coming into question (Brackney et al., 2010; Scott et al., 2010).  The mosquito Toll 

pathway (Ramirez and Dimopoulos, 2010; Xi, Ramirez, and Dimopoulos, 2008b) and 

JAK-STAT pathways (Souza-Neto, Sim, and Dimopoulos, 2009) have also been shown 

to induce anti-virus responses in the mosquito after infection by DENV2.  Research 

investigating the importance of these two pathways to DENV infectivity of mosquitoes is 

in its infancy. 

 The replication and tropisms of DENV2 in orally infected A. aegypti mosquitoes 

have been described thoroughly (Richardson et al., 2006; Salazar et al., 2007).  DENV2 

antigen is detected in midguts as early as day 2 post blood-feed (pbf) and virus titers and 

antigen expression continue to increase until ca. day 10 pbf, when they start to decline.  

While virus titers and antigen expression decreases in the midgut after day 10 pbf, viral 

RNA levels stay relatively high, suggesting that while viral RNA can persist in midgut 

cells, these cells begin to repress virus translation (Richardson et al., 2006; Salazar et al., 

2007).  Virus dissemination kinetics varies by virus and mosquito strain but can occur as 
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early as day 2 pbf.  The tracheal system has been implicated as a conduit for virus to 

escape from the midgut (Romoser et al., 2005; Romoser et al., 2004; Salazar et al., 

2007), although in general, virus dissemination from mosquito midguts is not well 

understood.  Secondary tissues that have been shown to express virus antigen are fat body 

in the abdomen, dorsal diverticulum, cardia, crop, hemocytes, nervous system tissue, and 

salivary glands (Figure 1.3) (Salazar et al., 2007). 

Dissertation Project 

 An area of DENV research that has not received sufficient attention is the 

contribution of virus genetics to mosquito infection.  Studies have been limited to 

comparing mosquito infectivity between virus strains and mosquito strains and have not 

specifically identified virus genetic factors that determine mosquito infectivity 

phenotypes.  The overall goal of this dissertation was to investigate the contribution of 

the E protein to infection of mosquitoes. 

 A infectious clone cDNA of DENV2 strain 16681 (30P-NBX) provides the ability 

to introduce site-specific AA mutations into the E protein.  The ability of 30P-NBX to 

infect mosquito midguts was investigated in Chapter 2, showing that this virus has a low 

infectivity phenotype for infection of midguts in multiple mosquito strains.  In Chapter 3, 

30P-NBX was serially passaged in mosquito midguts and adaptive mutations in the E 

protein that enhance midgut infection were identified.  AA mutations identified in the 

serial passage experiments were introduced into the infectious clone and the increased 

infectivity phenotype was confirmed, showing for the first time that DENV2 mosquito 

infection determinants are located in the E protein.  In Chapter 4, the effect of E protein 

DIII FG loop mutations were analyzed in cell culture and in mosquitoes, and in Chapter 5 
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the effect of E protein fusion peptide and hinge region mutations on the infectivity of 

mosquitoes after IT inoculation were analyzed.  The work described herein significantly 

enhances our knowledge of flavivirus E protein biology and mosquito interactions.   
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CHAPTER 2 

INFECTION OF AEDES AEGYPTI BY DENGUE VIRUS TYPE 2 STRAIN 16681 

Introduction 

 Dengue viruses (DENVs) are the most medically important arthropod-borne 

viruses infecting humans today.  The DENVs comprise a serocomplex in the family 

Flaviviridae, genus Flavivirus that includes DENV serotypes 1-4 (DENV1-4) and are the 

etiological agents of dengue fever and dengue hemorrhagic fever/dengue shock 

syndrome.  Approximately one third of the world’s population is at risk of becoming 

infected by DENV due to the distribution of their primary vector, Aedes aegypti (Gubler, 

1998).  DENVs are maintained in nature via a human to mosquito transmission cycle.  

The first mosquito tissue to become infected after a mosquito feeds on a viremic host is 

the midgut epithelium.  Amplification of the virus in midgut cells can result in 

dissemination to other tissues where the virus will amplify in cells in the hemocoel, fat 

body, and finally the salivary glands.  The transmission cycle is continued when a 

mosquito with a salivary gland infection feeds on a new host.  The two most important 

barriers to infection and dissemination in the mosquito that affect vector competence 

include the midgut infection barrier (MIB) and midgut escape barrier (MEB) (Bennett et 

al., 2002; Black et al., 2002; Bosio, Beaty, and Black, 1998).  If a virus is able to 

overcome both barriers, virus transmission can occur.  While there are licensed vaccines 

for other medically important flaviviruses such as Japanese encephalitis virus (JEV), 
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yellow fever virus (YFV), and tick-borne encephalitis virus (TBEV), no currently 

licensed vaccines or antiviral drugs are available for DENV. 

 Serial passage of DENV2 strain 16681 in primary dog kidney cells resulted in a 

virus (DENV2 PDK-53) with attenuated phenotypes in cell culture, AG129 mice, 

mosquitoes, and humans and provides the nonstructural gene backbone for a promising 

live-attenuated tetravalent DENV vaccine candidate (Butrapet et al., 2000; Huang et al., 

2000; Huang et al., 2003; Khin et al., 1994; Kinney et al., 1997b; Vaughn et al., 1996; 

Yoksan S, 1986).  A favorable characteristic of a live-attenuated flavivirus vaccine is its 

inability to infect and disseminate in its primary vector and it is vital that all precautions 

should be made to prevent such an event.  One of the most successful arbovirus vaccines, 

yellow fever 17D strain, has a MEB phenotype, which terminates the transmission cycle 

of the virus should a mosquito feed on a viremic vaccinee (Barrett and Higgs, 2007; 

Jennings et al., 1994).  This feature should be mirrored in dengue vaccine candidates.  

Domain III of the yellow fever virus E protein is suggested to be a determinant of 

dissemination and seems to work in close synergism with the nonstructural genes and the 

3’NCR of the virus (McElroy et al., 2006).  This indicates that there is no one 

determinant of mosquito dissemination in flaviviruses and analysis of all attenuating 

mutations should be closely analyzed in invertebrate systems as well as mammalian 

systems.  Evaluation of DENV attenuation in mammalian or mosquito cell culture via 

temperature sensitivity, fusion inefficiency, and plaque phenotype do not always translate 

to reliable biological markers for attenuation in mosquitoes (Erb et al., 2010; Huang et 

al., 2010).  Some dengue vaccine candidate viruses have been found to replicate in 

mosquitoes as efficiently as the parent (Schoepp, Beaty, and Eckels, 1990; Schoepp, 
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Beaty, and Eckels, 1991).  Therefore, investigating virus attenuation in mosquitoes is an 

important facet to vaccine candidate development and the necessity of including multiple 

attenuating mutations into the candidate virus without compromising vaccine antigenicity 

should not be overlooked. 

 As stressed above, it is important to investigate the ability of vaccine candidate 

viruses to infect their vector mosquitoes.  In this study, virus derived from vaccine 

candidate DENV2 parent strain 16681 infectious cDNA clone 30P-NBX was 

characterized for its ability to infect Aedes aegypti mosquito midguts.  To date, there has 

been only one report regarding the infection of mosquitoes with this virus and our results 

show 16681 is less efficient at infecting mosquito midguts than previously reported (Khin 

et al., 1994).  Furthermore, our results suggest that this phenotype is most likely 

determined by the virus itself.  Published literature regarding DENV genetic determinants 

for infection of mosquitoes is lacking.  The low mosquito infection rate of strain 16681 

and the availability of an infectious clone for this virus presented us with the opportunity 

to investigate if mosquito infection determinants can be identified in the DENV E 

protein. 

Methods and Materials 

Cell Culture and viruses 

 C6/36 cells used for virus propagation and assays were grown at 28⁰C in 

Leibovitz L-15 medium with 10% fetal bovine serum (FBS), 100 U/ml of penicillin and 

100 g/ml of streptomycin (p/s), and 2mM of L-glutamine (L-glut).  C6/36 cells used for 

virus propagation were maintained in L15 infection medium with 2% FBS, 1X non-

essential amino acids, 100 U/ml of penicillin and 100 g/ml of streptomycin, and 2 mM 
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L-glut or YE-LAH/BSS (YE-LAH) medium with 2% FBS (2.0 g/100 ml yeast extract, 

10.0 g/100 ml lactalbumin hydrolysate mixed with Earle’s Balanced Salts Solution).  

C6/36 cells used for titration were maintained in DMEM with 2% FBS, 1X non-essential 

amino acids, 100 U/ml of penicillin and 100 g/ml of streptomycin, 2 mM L-glut, and 

3% (35.0 g/L) sodium bicarbonate.  LLCMK2 cells used for titration were grown in 

DMEM with 10% FBS, 100 U/ml of penicillin and 100 g/ml of streptomycin, 2 mM L-

glut. 

 DENV2 strain 16681 (16681) was first isolated from serum of a dengue 

hemorrhagic fever/dengue shock syndrome patient in Bangkok, Thailand in 1964 

(Halstead and Simasthi.P, 1970).  16681 is a member of the DENV2 Asian 1 genotype 

and has been extensively passaged since isolation.  16681 has been passaged multiple 

times in BS-C-1 cells, six times in LLC-MK2 cells, once in a rhesus macaque monkey, 

and twice in Toxiorhynchites amboinensis mosquitoes (Halstead and Simasthi.P, 1970; 

Kinney et al., 1997b).  After these initial passages, the virus was passaged once in Vero 

cells, twice in LLC-MK2 cells, and four times in C6/36 cells (Kinney et al., 1997b). 

 Construction of DENV2 strain 16681 infectious clone virus has been described 

previously and the virus used in this study was derived from a modified version of 

infectious clone D2/IC-30P-A (Huang et al., 2010; Kinney et al., 1997b).  To introduce 

select amino acid mutations into the E gene of DENV2 strain 16681 infectious cDNA 

clone for E protein mutagenesis studies, pD2/IC-30P-A was modified to contain a BspE1 

restriction site that results in silent mutations for introduction of unique cloning sites.  

The insertion and change of BspE1 site between the E gene and NS1 gene at genome 

nucleotide position 2425 splits pD2/IC-30P-A into two intermediate clones, pD2/I-
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5’NBAX and pD2/I-3’ABX, containing the structural genes and nonstructural genes, 

respectively.  Ligation of these two intermediate clones yields the full length modified 

infectious clone pD2/IC-30P-NBX (Chapter 3, Figure 3.1).  The clone derived virus, 30P-

NBX, was passaged once in C6/36 cells and exhibits the same phenotypes in mammalian 

and invertebrate cell cultures as parent 16681. 

 DENV2 strain Jamaica 1409 (J1409) was isolated from a human with DF in 1983 

and is a member of the American/Asian genotype.  J1409 was first plaque purified in 

LLC-MK2 cells and then passaged extensively (> 25 times) in C6/36 cells (Deubel, 

Kinney, and Trent, 1986; Deubel, Kinney, and Trent, 1988; Pierro et al., 2006) before 

construction of the infectious clone (J1409-ic) by Pierro and colleagues.  After 

transfection and virus recovery in C6/36 cells completed by Pierro and colleagues, J1409-

ic derived virus was passaged once in C6/36 cells for our use. 

Aedes aegypti mosquito midgut infection by bloodfeeding 

Aedes aegypti RexD strain laboratory colony mosquitoes (RexD) originating from 

Rexville, Puerto Rico, and a DENV2 susceptible strain, D2S3 (Bennett, Beaty, and 

Black, 2005), were reared from eggs and maintained as adults at 28
o
C, 80% relative 

humidity with a photocycle of 12h light: 12h dark.  Adult female mosquitoes were 

maintained in one-pint cartons with organdy covering, and given water and sugar until 

infection.  To obtain DENV2 for infectious blood-feeds, C6/36 cells were infected at a 

MOI of 0.001 in L15 or YE-LAH infection medium and maintained for 12-14 days with a 

medium change at 7 days pi (no medium change was performed for YE-LAH grown 

virus).  Infected cells were scraped into the medium, mixed with an equal volume of 

defibrinated sheep blood, and then supplemented with ATP to a final concentration of 1 
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mM.  Adult female mosquitoes 4-6 days post-emergence were starved for 24 hours, 

deprived of water for 4 hours, and then exposed to the infectious blood-meal for 45 

minutes using a 37
o
C water-jacketed glass feeding device with a hog gut membrane.  

Virus titers in the blood-meals ranged from 6.3 to 8.2 log10 pfu/ml or 7.45 to 9.45 log10 

TCID50/ml.  Fully engorged mosquitoes were selected and maintained for 7 days, when 

midguts were dissected in PBS, fixed in 4% paraformaldehyde in PBS overnight, and 

analyzed for virus antigen via immunofluorescence (IFA) to determine midgut infection 

rates.  Each bloodfeed experiment was repeated at least three times with a minimum of 19 

mosquito midguts analyzed per experiment. 

Indirect immunofluorescence assay for mosquito tissues 

Midgut IFAs were performed as described previously (Brackney, Foy, and Olson, 

2008).  Virus antigen in midguts was detected using flavivirus E protein DII group-

reactive mouse MAb 4G2 (HB-112, ATCC, Manassas, VA) in wash buffer (PBS, 0.05% 

TritonX-100).  Secondary antibody was ImmunoPure biotin-labeled goat anti-mouse IgG 

(Thermo Scientific, Waltham, MA) with 0.005% Evan’s Blue counter-stain, followed by 

streptavidin-fluorescein (GE Healthcare, Little Chalfont, Buckinghamshire, United 

Kingdom).  MIRs and head squash infectivity rates were determined by dividing the 

number of virus antigen-positive midguts or head squashes by the total number analyzed.  

Student’s t tests (p-value ≤ 0.05) were performed using Excel 2007. 

Virus titration by plaque assay or 50% tissue culture infectious dose 

 Plaque assays were performed on LLC-MK2 cells according to methods described 

previously (Sanchez-Vargas et al., 2009).  Briefly, confluent LLC-MK2 cell monolayers 

in 12-well plates were infected with 10-fold serial dilutions of virus, overlaid with 
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agarose (1%) nutrient medium, and maintained for 12 days at 37⁰C.  Wells were stained 

with 5 mg/ml MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) 

solution, incubated for 4 hours, and plaques were counted to determine plaque-forming 

units (pfu) per ml.   

 Infectious virus TCID50 titers were determined by titration on C6/36 cells and 

detection of virus antigen by ELISA as described previously (Bryant et al., 2007).  C6/36 

cells were seeded into the inner 60 wells of a 96 well flat-bottom plate at 1.2 x 10
5
 

cells/well.  Cells were infected the next day with 10-fold serial dilutions of virus and 

maintained for 7 days at 28⁰C with 5% CO2.  Cells were fixed with 85% cold acetone 

overnight at 4⁰C and then wells were blocked with blocking buffer (3% goat serum in 

PBS with 0.1% Tween20).  Virus antigen was detected by ELISA using DENV2 strain 

New Guinea C M30197 polyclonal antiserum at 1:8000 in wash buffer (PBS with 0.05% 

Tween20), goat anti-mouse alkaline phosphatase conjugate (Jackson Laboratory, Bar 

Harbor, ME) in blocking buffer, and Sigma 104 substrate (Sigma, St. Louis, MO) in 1 M 

Tris-HCl pH 8.0.  Reactions were stopped with 3M NaOH.  Absorbences were read at 

405 nm and 630 nm and the difference was determined to obtain the delta optical density 

(ΔOD).  ΔOD values greater than 2-fold of the negative control ΔOD values were 

considered positive.  Virus titers were calculated by the method of Reed and Muench 

(Reed and Muench, 1938). 
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Results 

30P-NBX midgut infection of Aedes aegypti mosquitoes 

 Kinney et al. (1997) constructed a full-length infectious cDNA clone of DENV2 

strain 16681 designated D2/IC-30P-A (30P-A).  In order to make the introduction of 

select amino acid (AA) mutations into the E gene easier, a secondary infectious clone, 

D2/IC-30P-NBX (30P-NBX) was derived from 30P-A and virus produced from this 

infectious clone was used for all subsequent studies.  Although 30P-NBX cell culture 

phenotypes were found to be equivalent to the parent strain 16681, 30P-NBX infection of 

Aedes aegypti RexD strain mosquitoes has not yet been elucidated and are expected to be 

similar to the parental strain. 

 Before adult female mosquitoes received an infectious blood-meal, 30P-NBX was 

amplified in C6/36 cells using YE-LAH or L15 infection medium.  Virus was treated the 

same way for both infections except virus cultures grown in L15 medium had the 

medium changed at day 7 post infection (pi) while virus cultures grown in YE-LAH did 

not.  It was assumed that virus grown in YE-LAH medium did not need a medium change 

because the pH was stable throughout the infection compared to L15 virus cultures.  30P-

NBX has a low midgut infection rate (MIR) in RexD mosquitoes (Figure 2.1).  

Cumulative data for infection of RexD mosquitoes with virus grown in either YE-LAH 

and L15 gave a MIR of 20.4% (1160 mosquitoes total) (cumulative data from Figure 2.1 

A).  Virus grown in L15 (29.6%) has a significantly higher MIR compared to virus grown 

in YE-LAH medium (6.7%) (Figure 2.1 A).  Differences in virus titers in the blood-meals 

ranging from 6 to 8 log10 pfu/ml did not affect midgut infection for virus grown in L15 
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and YE-LAH as evidenced by no significant differences in MIRs between each titer 

range (ANOVA and individual student’s t tests) (Figure 2.1 B-D). 

 

 

Figure 2.1.  MIRs for 30P-NBX grown in YE-LAH and L15 infection media in RexD strain 

mosquitoes.  Aedes aegypti RexD strain mosquitoes were given an infectious blood-meal with 

30P-NBX cultured in C6/36 cells in either L15 or YE-LAH infection medium, maintained for 7 

days when midguts were dissected, and MIRs were determined.  MIR data for virus cultured in 

YE-LAH and L15 (A).  Cumulative data from YE-LAH and L15 (A) are separated by virus 

blood-meal titer (log10 6: 6.0-6.99; 7: 7.0-7.99; and 8: 8.0-8.99) versus MIR (B).  Virus blood-

meal titer versus MIRs for virus cultured in YE-LAH (C) and L15 (D) infection medium. 

 Given the low MIR of 30P-NBX in RexD mosquitoes, an infectious blood-meal 

of 30P-NBX amplified in either L15 or YE-LAH medium was given to D2S3 highly 

susceptible to DENV2 strain mosquitoes with expectations that virus MIRs would be 

higher in this strain.  Cumulative data for both medium types showed there was a 

significantly higher MIR in D2S3 mosquitoes compared to RexD mosquitoes; however, 

  * 
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the MIRs were still very low, especially when compared to another DENV2 strain used 

routinely in our laboratory, Jamaica 1409 (Bennett, Beaty, and Black, 2005).  MIRs for 

virus grown in YE-LAH medium were also significantly higher in D2S3 mosquitoes 

compared to RexDs in contrast to virus grown in L15 infection medium, which had no 

significant difference between the two mosquito strains.  The inability of 30P-NBX to 

infect a high proportion of D2S3 or RexD mosquitoes suggests the virus and not the 

mosquito may be the determining factor for inefficient midgut infection. 

 

Figure 2.2.  30P-NBX MIRs in RexD and D2S3 strain mosquitoes.  Aedes aegypti RexD and 

D2S3 strain mosquitoes were given an infectious blood-meal with 30P-NBX cultured in either 

L15 or YE-LAH infection medium, maintained for 7 days when midguts were dissected and 

MIRs were determined.  MIR data are separated by media type, with L15/YE-LAH representing 

the average cumulative MIR for both media types combined. 

 During the early bloodfeed experiments with 30P-NBX, a C6/36 cell ELISA-

based TCID50 assay became available to titrate DENV2 blood-meal samples and this 

assay was used for all subsequent blood-meal titrations.  30P-NBX infectious virus titer 

by TCID50 tends to be 1 log higher than titer by plaque assay.  There is no significant 

difference between MIRs whether virus blood-meal samples are titrated by plaque assay 
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or TCID50 (Figure 2.3 A).  Given the previous infection medium comparison, a 

standardized protocol was established for infection of Aedes aegypti mosquitoes by oral 

infectious blood-meal with 30P-NBX.  C6/36 cells were infected using L15 infection 

medium with a medium change on day 7 pi, and harvest of infected cells and medium at 

12 to 14 days pi were titrated by TCID50.  After this standardization, a data set 

representing all values for MIRs for 30P-NBX in RexD mosquitoes was accumulated and 

is shown in Figure 2.3 B.  The average MIR for this data set is 33.29% (17 individual 

experiments, blood-meal titer range 7.45 to 9.45 log10 TCID50/ml, with 517 mosquitoes 

total) and is the representative MIR for 30P-NBX in RexD mosquitoes.  Breaking down 

the data in Figure 2.3 B into blood-meal titer versus MIR shows that the virus titer in the 

blood-meal does not seem to affect the MIR (Figure 2.4).  This data set was used for all 

subsequent MIR statistical comparisons between 30P-NBX and other viruses in RexD 

mosquitoes.  Additionally, to examine the effect of virus titer on midgut infection, 10-

fold serial dilutions of 30P-NBX were included in infectious blood-meals for RexD 

mosquitoes and the results show that infection rates decreased with titer, but with 

dilutions greater than 1:10 (Table 2.1).   
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Figure 2.3.  30P-NBX blood-meal titration method versus MIR comparison in RexD mosquitoes, 

and representative MIR.  Aedes aegypti RexD strain mosquitoes were given an infectious blood-

meal with 30P-NBX cultured in L15 infection medium, maintained for 7 days when midguts were 

dissected and MIRs were determined.  Average MIR for virus blood-meals titrated by plaque 

assay or TCID50 (A).  Box plot showing MIRs from 17 individual blood-feed experiments that 

generate the average MIR for 30P-NBX (B). 

 

 

Figure 2.4.  30P-NBX MIRs in RexD mosquitoes versus blood-meal virus titer.  Aedes aegypti 

RexD strain mosquitoes were given an infectious blood-meal with 30P-NBX cultured in L15 

infection medium, maintained for 7 days when midguts were dissected and MIRs were 

determined.  MIRs versus virus blood-meal titer are from the 17 individual blood-feed 

experiments that generate the average MIR for 30P-NBX shown in Figure 2.3 B. 
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Table 2.1.  MIRs of RexD mosquitoes orally infected with serial dilutions of 30P-NBX. 

Blood-meal 

Dilution
a
 

Midgut 

Positive 

Total 

Midguts 
MIR 

1:1 7 30 23.33% 

10
-1

 6 28 21.43% 

10
-2

 2 31 6.45% 

10
-3

 1 36 3.85% 
   a

Blood-meal 1:1 titer = 8.2 log10 TCID50/ml 

 Finally, parent strain 16681 and clone-derived 30P-NBX were compared for their 

ability to infect RexD mosquito midguts.  Similar to their phenotypes in cell culture, there 

was no significant difference in MIR between the parent and clone-derived virus.  

However, DENV2 strain J1409-ic had a significantly higher MIR than both viruses 

(Figure 2.4), further highlighting that 16681 is inefficient at infecting RexD mosquito 

midguts. 

 

Figure 2.5.  DENV2 strains J1409-ic, 16681, and 16681 clone-derived 30P-NBX MIRs in RexD 

mosquitoes.  Aedes aegypti RexD strain mosquitoes were given an infectious blood-meal with 

virus cultured in L15 infection medium, maintained for 7 days when midguts were dissected and 

MIRs were determined.  Significant differences were determined by comparison with 30P-NBX 

via student’s t test (*p value < 0.05). 
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Discussion 

 The results of this study show that strain 16681 is not very efficient at infecting A. 

aegypti mosquitoes and in combination with the availability of an infectious clone for this 

virus, provides us with the opportunity to investigate whether the low infectivity can be 

attributed to virus genetics.  There has been only one report concerning infection of 

Aedes aegypti mosquitoes by DENV2 strain 16681 (Khin et al., 1994) in which the 

authors report an infection rate of 59% (114/194 mosquitoes) via whole body squash, 

which is in contrast to the 33.79% (517 total mosquitoes analyzed) average MIR for 

infectious clone 30P-NBX determined in this study.  Infectious clone 30P-NBX was 

found to have comparable infection rates to the parent virus strain 16681 in our system as 

expected.  Two notable differences that exist between methodologies used by Khin et al. 

(1994) and those used in this study include how the virus was prepared and the specific 

mosquito strain used.   

 Khin et al. (1994) used virus amplified in LLC-MK2 cells and/or virus amplified 

in Toxorhynchites splendens mosquitoes but do not distinguish which preparation gave 

the higher infection rates.  Virus cultures prepared in mammalian cells tend to give lower 

infection rates compared to virus cultures prepared in insect cell cultures (Miller et al., 

1982) so it is interesting that the average infection rate in our study with virus grown in 

mosquito cell cultures is lower by comparison.  However, when 30P-NBX was amplified 

in Vero or LLC-MK2 cells and then included in an infectious blood-meal for RexDs we 

obtained lower MIRs compared to virus amplified in C6/36 cells (20.52% for Vero and 

4.44% for LLC-MK2 cells).  An evaluation of mosquito infection rates using virus from 

three different preparations, virus amplified in C6/36 cells for 7 days, virus amplified in 
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C6/36 cells for 14 days with a medium change at day 7 p.i., and virus amplified in 

Toxorhynchites splendens mosquitoes showed that virus grown for 14 days with a 

medium change at day 7 pi gave the highest infection rates (Black, 2010; Schoepp, Beaty, 

and Eckels, 1990).  The protocol in our study that gave the highest MIR utilized a similar 

virus preparation.  Virus that was amplified in YE-LAH medium gave significantly lower 

MIRs compared to L15 infection medium (Figure 2.1A).  This difference may be the 

result of not changing the YE-LAH infection medium at 7 days pi and not a difference 

between virus production, considering both medium types gave comparable virus titers.  

Twelve day growth curve experiments in C6/36 cells show that 30P-NBX reaches peak 

infectious titers between days 5 and 8 pi and then begins to decline (Chapter 3, Figure 

3.9).  It is unclear why virus harvested at day 7 pi infects a lower proportion of 

mosquitoes than virus harvested on day 14 that had a prior medium change.  Replacing 

medium could remove harmful byproducts produced by dead and infected cells that can 

adversely affect mature virus or resupplying cultures with fresh nutrients may help 

infected cells produce higher quality virus.  Midgut epithelial cell susceptibility to DENV 

may be more sensitive to harmful cellular byproducts than cultured cells or to slight 

changes in the proportion of mature virus produced by C6/36 cells, which could reduce 

MIRs. 

 Khin et al. (1994) used a laboratory colonized Aedes aegypti mosquito strain from 

Bangkok, Thailand and our study utilized a strain originating from Rexville, Puerto Rico.  

It is not unusual to find variation in the susceptibility of geographically disparate strains 

of Aedes aegypti to DENVs (Armstrong, 2001; Armstrong and Rico-Hesse, 2003; 

Bennett et al., 2002; Gubler et al., 1979; Lambrechts et al., 2009; Tardieux et al., 1990).  
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DENV2 strain 16681 was isolated from a DHF/DSS patient in Bangkok, Thailand so both 

the virus and the mosquito used in the study by Khin et al. (1994) are from the same 

geographical region, which may account for the higher infection rate compared to our 

infection rate in mosquitoes colonized from the Caribbean.  However, we found that the 

average MIR for 30P-NBX in an Aedes aegypti mosquito strain isolated in Thailand in 

2004 (Higgs et al., 2006) is 43.63%; although results using these mosquitoes were highly 

variable and had a standard deviation of 38.41% (Appendix 6.1).  In addition, when these 

mosquitoes were orally challenged with J1409, a strain of virus isolated in the Caribbean, 

the average MIR was 94.44% (2 repetitions, 120 mosquitoes total).  Furthermore, 

variation in vector competence for J1409 was found among 24 collections of Aedes 

aegypti mosquito strains isolated throughout Mexico (Bennett et al., 2002), highlighting 

that variations in vector competence are a product of the combination between vector 

genotype and virus genotype (Lambrechts et al., 2009).  Despite its limitations (see 

below), without directly testing vector competence in the laboratory, it is difficult to 

make predictions about vector susceptibility.  The importance of this suggestion is 

exemplified by 30P-NBX’s inability to efficiently infect DENV2 highly susceptible 

D2S3 strain mosquitoes (Figure 2.2).  D2S3 mosquitoes were selected for their high 

susceptibility to DENV2 (Bennett, Beaty, and Black, 2005).  Despite there being a 

statistical difference between infection of RexD and D2S3 mosquitoes with 30P-NBX, 

the infection rate is far below those achieved for other DENV2s and other dengue 

serotypes (Bennett, Beaty, and Black, 2005), further showing that viruses within the same 

serotype vary in their ability to infect mosquitoes (Armstrong, 2001; Armstrong and 

Rico-Hesse, 2003; Hanley et al., 2008; Lambrechts et al., 2009).  The low efficiency for 
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infection of Aedes aegypti mosquitoes by 30P-NBX seems to be determined by the virus 

and not the mosquito strain used in the analysis.  Furthermore, in addition to mosquito 

genetics, differences in vector competence and virus infectivity as determined in the 

laboratory by artificial systems are under the influence of uncontrollable experimental 

variables influenced by environmental factors. 

 There is a multitude of extrinsic environmental factors and intrinsic genetic 

factors that affect the vector competence of mosquitoes for DENV (Black, 2010; Black et 

al., 2002; Bosio, Beaty, and Black, 1998).  Bosio et al. (1998) concluded that 

approximately 60% of the variance in vector competence of Aedes aegypti for DENV can 

be attributed to environmental factors, leaving the remaining 40% of the variance being 

attributed to the genetics of the mosquito.  The long colonized and therefore highly 

inbred laboratory RexD mosquito strain was used to phenotype 30P-NBX in this study 

and theoretically the genetics of this mosquito strain should be homogeneous from 

experiment to experiment (Miller and Mitchell, 1991).  Therefore, extrinsic 

environmental factors apart from mosquito genetics may be influencing our artificial 

blood-feed experiments to a greater extent.  Larval competition has been found to 

increase mosquito susceptibility to arboviruses (Alto et al., 2005; Grimstad and Walker, 

1991), including DENV2 in Aedes albopictus and to a lesser extent Aedes aegypti (Alto 

et al., 2008).  This may in turn affect the size of the mosquito, which has also been found 

to alter vector susceptibility to arboviruses (Alto, Reiskind, and Lounibos, 2008; Paulson 

and Hawley, 1991; Schneider et al., 2007); a higher proportion of mosquitoes with small 

body size are infected compared to mosquitoes with large body size.  However, this is 

contradicted by a separate study (Sumanochitrapon et al., 1998), again showing that the 
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particulars of the mosquito system used help determine the outcome of the experiment.  

Also, decreasing the amount of endogenous bacteria in the mosquito midgut reduces 

basal levels of antimicrobial gene expression and therefore increases susceptibility to 

DENV infection (Xi, Ramirez, and Dimopoulos, 2008a), which could add to the 

variability in infection rates if the levels of endogenous bacteria are different between 

mosquito preparations.  Although genetic factors cannot be definitively ruled out, the 

contribution of these extrinsic environmental factors may have contributed to the 

relatively high degree of variation in MIRs for 30P-NBX displayed in Figure 2.3 B, 

asserting the fact that per os challenge of Aedes aegypti mosquitoes with DENV2 strain 

16681 requires a large sample size and many repetitions.  Khin et al. (1994) did not 

specify how many (if any) repetitions were performed in their study and this may also be 

reflected in our differences in MIRs for this virus strain.   

 The high degree of variation made it difficult early on to determine the true MIR 

for 30P-NBX and therefore complicated efforts to statistically compare 30P-NBX derived 

mutant viruses to the parent (see remaining chapters).  All mutant virus MIRs were 

statistically compared to the 30P-NBX data set presented in Figure 2.3B to determine 

significant differences.  Each individual challenge experiment included a 30P-NBX 

internal control.  In our system the virus titer in the blood-meal was not found to 

influence mosquito infection rates (Figure 2.1 B-D, and Figure 2.5).  Table 2.1 shows 

MIRs decreased in a graded fashion after more than a 1:10 dilution and this is 

corroborated by other studies (Gubler et al., 1985; Schoepp, Beaty, and Eckels, 1990; 

Schoepp, Beaty, and Eckels, 1991).  However, even though high-titered virus increases 

the chance of obtaining higher infection rates, the quality of the virus at the time of 
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challenge seems to be a more important determinant.  This is supported by Figure 2.5 

(and Figure 2.1 B-D), in which each individual experimental data point from Figure 2.3 B 

is broken down into blood-meal titer versus MIR.  Figure 2.5 shows that achieving a high 

virus titer does not always confer a high MIR (Figure 2.5; compare individual MIRs that 

have blood-meal virus titers 9 log10 TCID50/ml).  Since virus must be amplified in cell 

culture prior to each mosquito challenge experiment, the virus blood-meal titer is another 

extrinsic environmental factor that is difficult to control in our artificial bloodfeed 

system; including freeze-thawed virus in infectious blood-meals results in low mosquito 

infection rates (Miller, 1987; Miller et al., 1982; Richards et al., 2007).  Despite the 

contribution of extrinsic and intrinsic factors that can influence mosquito midgut 

susceptibility to 30P-NBX in our system, these data suggest that 30P-NBX is not very 

efficient at infecting Aedes aegypti mosquito midguts.  

 A favorable phenotype for arbovirus vaccine formulations that use live-attenuated 

viruses is their inability to infect mosquitoes and this makes investigating viral 

determinants of mosquito infection a vital aspect of vaccine design.  The infectious clone 

30P-NBX, derived from the parent virus used to create a live-attenuated tetravalent 

vaccine candidate provides a powerful tool to elucidate E protein determinants that 

attenuate or enhance infectivity of mosquitoes and was used in further studies towards 

this end.  Mutations that attenuate the virus could be included in vaccine formulations 

and mutations that enhance virus infectivity could be excluded and/or serve as a marker 

for identifying DENVs with enhanced vector pathogenesis.   
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CHAPTER 3 

THE DENGUE VIRUS TYPE 2 ENVELOPE PROTEIN CONTAINS MOSQUITO 

INFECTION DETERMINANTS 

Introduction 

 Dengue viruses (DENVs) (Flaviviridae:Flavivirus) are the most medically 

important arboviruses infecting humans today.  There are four genetically and 

antigenically distinct subtypes of DENV (DENV1-4) that comprise the DENV 

serocomplex.  These viruses have a single stranded positive sense RNA genome (~11 kb) 

encapsidated in a capsid protein core surrounded by a lipid envelope.  In the envelope 

there are 180 copies of the envelope (E) structural protein arranged in an icosahedral 

scaffold of 90 homodimers that lie parallel to the virion surface (Kuhn et al., 2002).  The 

flavivirus E protein is a Class II fusion protein, the primary determinant of host cell 

tropism, and is responsible for host cell attachment, entry, and virus-mediated cell 

membrane fusion.  The DENV2 E protein 2 Å crystal structure has been solved (Modis et 

al., 2003) and revealed three distinct structural domains (DI, DII, and DIII), which 

correlate with three previously described antigenic domains defined by monoclonal 

antibody (MAb) mapping data (Heinz, 1986; Mandl et al., 1989; Roehrig, Bolin, and 

Kelly, 1998; Roehrig et al., 1990).  Several important structures spanning each of the 

domains are vital to the virus replication cycle.  Domains I and II are linearly 

discontinuous structures connected by a molecular hinge region that permits the 
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translocation and insertion of the flavivirus-conserved DII fusion peptide into the host 

cell endosomal membrane; a process required for virus-mediated cell membrane fusion.  

DIII is an immunoglobulin-like structure and is postulated to have host-cell receptor 

binding properties. 

 DENVs are maintained in nature via a human-to-mosquito transmission cycle and 

approximately one third of the world’s population is at risk of becoming infected due to 

the widespread distribution of the primary vector, Aedes aegypti mosquitoes (Gubler, 

1998).  There are multiple steps integral to the transmission of mosquito-borne viruses to 

vertebrate hosts.  Mosquitoes come into contact with virus when taking an infectious 

blood-meal from a viremic host.  Virus must first infect and replicate in midgut epithelial 

cells and then disseminate into the hemocoel to amplify in secondary target tissues that 

include the salivary glands.  The transmission cycle is continued when a salivary gland-

infected mosquito inoculates a new host with virus during a subsequent blood-feed.   

 To date there has been limited research focusing on flavivirus genetic 

determinants that influence infection of mosquitoes.  The introduction of the DENV2 

Asian/American genotype in the Americas coincided with increases in DHF cases and the 

eventual displacement of the DENV2 American genotype with viruses from the 

Asian/American genotype (Rico-Hesse et al., 1997).  A similar phenomenon was recently 

observed with DENV2 in Vietnam and with DENV3s in Sri Lanka (Hanley et al., 2008; 

Ty Hang et al., 2010).  The DENV2 Asian/American genotype was shown to not only 

produce higher infectious virus titers in dendritic cells than the American genotype but 

also to infect and disseminate more efficiently in field-caught A. aegypti mosquitoes 

(Armstrong and Rico-Hesse, 2003; Cologna and Rico-Hesse, 2003).  Sequence 
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comparison of the two genotypes revealed several genome differences in the 5’ and 3’ 

non-coding regions and one mutation in the E protein (N/D390) (Leitmeyer et al., 1999).  

Recombinant viruses containing combinations of these 5’ and 3’ non-coding regions and 

E genome differences showed viruses containing American genotype sequences (N390) 

had decreased virus output from mammalian cells (Cologna and Rico-Hesse, 2003).  

However, significant attenuation could not be attributed to any single sequence change 

and these recombinant viruses were not phenotyped in mosquitoes (Cologna and Rico-

Hesse, 2003).  Similarly, recombinant viruses utilizing yellow fever virus (YFV) virulent 

strain Asibi and vaccine strain 17D showed that DIII was a determinant for dissemination 

of virus from the midgut, albeit again not the sole determinant as it required synergism 

with the nonstructural genes (McElroy et al., 2006). 

 While DENV2 strain 16681 infectious clone 30P-NBX (30P-NBX) infects and 

replicates efficiently in A. aegypti RexD strain mosquitoes after intrathoracic (IT) 

inoculation, infection of the midgut epithelium after introduction of virus by infectious 

blood-meal is less efficient (Erb et al., 2010).  Given the E protein’s importance to virus 

tropism, and that 30P-NBX has a relatively low midgut infection rate (MIR) after oral 

infectious challenge but not after IT inoculation, we hypothesized that mosquito infection 

determinants were located in the E protein.  We serially passaged 30P-NBX four times in 

A. aegypti RexD strain mosquito midguts and identified an adaptive amino acid (AA) 

mutation in DII of the E protein that significantly enhanced midgut infectivity.  Further 

analysis identified a second AA mutation in the same region of DII that conferred a 

similar phenotype.  This study demonstrates for the first time that mosquito infection 

determinants are located in DII of the DENV2 E protein. 



55 

 

Methods and Materials 

Cell culture 

Vero cells were grown at 37
o
C in Dulbecco’s modified Eagle’s medium (DMEM) 

with 10% fetal bovine serum (FBS).  C6/36 cells used for virus phenotyping experiments 

were grown in YE-LAH medium (Huang et al., 2000) and C6/36 cells used for virus 

propagation to infect mosquitoes were grown in Leibovitz L-15 infection medium (2% 

FBS, 1mM non-essential amino acids, 1mM penicillin-streptomycin, and 1 mM L-

glutamine), both at 28
o
C.. 

Aedes aegypti mosquito infection by blood-feeding and intrathoracic inoculation 

Aedes aegypti RexD strain laboratory mosquitoes (RexD) originating from 

Rexville, Puerto Rico and A. aegypti Chetumal strain mosquitoes (Chet) originating from 

Chetumal, Mexico were reared from eggs and maintained as adults at 28
o
C, 80% relative 

humidity with a photocycle of 12h light: 12h dark.  Adult female mosquitoes were 

maintained in one-pint cartons with organdy covering, and given water and sugar until 

infection.  To obtain DENV2 for infectious blood-feeds, C6/36 cells were infected at a 

multiplicity of infection (MOI) of 0.001 and maintained for 12-14 days with a medium 

change at 7 days.  Infected cells were scraped into the medium mixed with an equal 

volume of defibrinated sheep blood and then supplemented with ATP to a final 

concentration of 1mM.  Adult female mosquitoes 4-6 days post-emergence were starved 

for 24 hours, deprived of water for 4 hours, and then exposed to the infectious blood-

meal for 45 minutes using a 37
o
C water-jacketed glass feeding device with a hog gut 

membrane.  Virus titers in the blood-meals for all experiments ranged from 6.2 to 9.2 

log10 TCID50/ml.  In our previous experience with 30P-NBX and E protein mutant 
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viruses, there was no correlation between virus titer at this range and midgut infectivity 

(Chapter 2).  Although the 30P-NBX MIR data set from Chapter 2 were used for all 

statistical comparisons between mutant and parent virus, a 30P-NBX internal control was 

included for every blood-feed experiment performed.  Fully engorged mosquitoes were 

selected and maintained for 7 days, when midguts were dissected in PBS, fixed in 4% 

paraformaldehyde in PBS overnight, and analyzed for virus antigen via 

immunofluorescence (IFA) to determine midgut infection rates.  Each blood-feed 

experiment was repeated at least three times with at least 19 mosquito midguts analyzed 

per experiment.  To investigate mosquito infection rate kinetics, dissected mosquito 

midguts and head tissues assays were performed every two days for 14 days post 

bloodfeed (pbf).  Virus antigen was detected in midguts and head squashes to determine 

infection rates as described below.  Experiments were repeated three times and 17-30 

mosquitoes were dissected on each day pbf.   

Indirect immunofluorescence assay (IFA) for mosquito tissues 

Midgut and head squash IFAs were performed as described previously (Brackney, 

Foy, and Olson, 2008).  Virus antigen in midguts and head squashes was detected using 

flavivirus E protein DII group-reactive mouse MAb 4G2 (HB-112, ATCC, Manassas, 

VA) in wash buffer (PBS, 0.05% TritonX-100) or PBS, respectively.  Secondary 

antibody was ImmunoPure biotin-labeled goat anti-mouse IgG (Thermo Scientific, 

Waltham, MA) with 0.005% Evan’s Blue counter-stain, followed by streptavidin-

fluorescein (GE Healthcare, Little Chalfont, Buckinghamshire, United Kingdom).  MIRs 

and head tissue infectivity rates were determined by dividing the number of virus 

antigen-positive midguts or head squashes by the total number analyzed.  The relative 
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infection intensity (RII) ratio is a quantitative measure of infection intensity in the midgut 

(Brackney, Foy, and Olson, 2008).  Positive midguts were scored for infection intensity 

on a scale of 0.5 to 4, where 0.5 denotes less than 25% of the midgut surface area is 

positive for viral antigen, 1 denotes 25%, 2 denotes 50%, 3 denotes 75%, and 4 denotes 

100% of the midgut surface area is positive for viral antigen.  The RII ratio was 

determined by adding the infection intensity scores of positive midguts and dividing by 

the total number of positive midguts.  Student’s t tests (p-value 0.05) were performed 

using Excel 2007 and chi-square analysis (p-value 0.05) was done using SAS 9.1. 

Envelope glycoprotein gene sequencing 

 DENV2 RNA was isolated from infected C6/36 cell cultures with the QIAamp 

Viral RNA Isolation Kit (Qiagen), and the E gene was amplified using Titan One-Step 

RT-PCR system (Roche, Indianapolis, IN) per the manufacturer’s instructions.  RT 

primers were used at 20 µM (Forward primer: D2 841 5’--atg atg gca gca atc ctg gca tac-- 

3’; Reverse primer: cD2 2688 5’--cat gat tcc ttt gat gtc tcc tgt c-- 3’).  The reaction 

parameters were one reverse transcription step (RT) at 50
o
C for 30 min, followed by 

96
o
C for 2 min, and then 35 cycles at 96

o
C for 20 sec, 55

o
C for 30 sec, and 68

o
C for 2 

min.  PCR products were gel extracted using QIAquick Gel Extraction kit (Qiagen) and 

sequencing reactions were performed using ABI Prism BigDye Terminator v3.1 Cycle 

Sequencing Kit (Applied Biosystems, Carlsbad, CA) according to the manufacturer’s 

instructions with one notable exception.  BigDye Termination Ready mix was diluted for 

one reaction as follows, 1 µl of BigDye Termination Ready Mix, 3.5 µl of 5x BigDye 

reaction buffer, and 3.5 µl of dH2O.  Reaction parameters were one exposure to 96
o
C for 

1 min, and then 25 cycles at 96
o
C for 10 sec, 50

o
C for 5 sec, and 60

o
C for 4 min.  Viral 
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genome sequencing was performed at the Centers for Disease Control and Prevention, 

Fort Collins, CO.  Sequences were analyzed using Lasergene Seqman (DNASTAR, 

Madison, WI). 

DENV2 viruses and their passage in Aedes aegypti mosquito midguts 

 Infectious virus derived from DENV2 strain 16681 infectious cDNA clone 30P-

NBX, 30P-NBX derived FG loop mutants VEPG and RGD (Chapter 4), and DENV2 

strain Jamaica 1409 infectious cDNA clone (J1409-ic) (Chapter 2) were serially passaged 

in A. aegypti RexD midguts and C6/36 cells.  To start the passage experiment, virus was 

amplified in C6/36 cells and the cell-virus suspension was included in an infectious 

blood-meal as described above.  The remaining virus culture was stored at -80
o
C for 

sequencing of the DENV E gene.  RexD mosquitoes were challenged with the infectious 

blood-meal and fully engorged mosquitoes were maintained for 10 days.  Mosquito 

midguts were dissected and placed into 4% paraformaldehyde for IFA analysis to 

determine MIRs (19-36 mosquitoes) or pooled on dry ice for trituration (at least 20 

mosquitoes).  Midguts were triturated in L15 infection medium and filtered through a 0.2 

µm membrane syringe filter.  The filtrate was placed directly onto naïve C6/36 cells to 

start the next passage.  Four passages were completed for each virus. 

Mutant virus construction 

Construction of DENV2 strain 16681 infectious clone virus has been described 

previously (Huang et al., 2010; Kinney et al., 1997b).  To introduce select amino acid 

mutations into the E gene of DENV2 strain 16681 infectious cDNA clone, pD2/IC-30P-A 

was modified to contain a BspE1 restriction site that results in silent mutations for 

introduction of unique cloning sites.  The insertion of BspE1 between the E gene and 
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NS1 gene at genome nucleotide position 2425 splits pD2/IC-30P-A into two intermediate 

clones, pD2/I-5’NBAX and pD2/I-3’ABX, containing the structural genes and 

nonstructural genes, respectively.  Ligation of these two intermediate clones yields the 

full length modified infectious clone pD2/IC-30P-NBX (Figure 3.1).  The clone derived 

virus, 30P-NBX, exhibits all of the same phenotypes as the 16681 parent virus.  Splitting 

up the full length infectious clone made it easier to introduce mutations into the E gene 

located in the smaller D2/I-5’NBAX plasmid via site-directed mutagenesis. 

QuikChange
®

 Lightning Site-directed Mutagenesis kit (Stratagene, Santa Clara, 

CA) was used to introduce mutations into the E gene of D2/I-5’NBAX per the 

manufacturer’s instructions.  Engineered mutations were targeted to DII of the E protein 

and included KK122/123EE and R120T.   Primers used to make the KK122/123EE 

change included nucleotide substitutions a1300g and a1303g and the primers used to 

mutate R120T included g1295c (Forward primer: 5’--gtg acc tgt gct atg ttc aca tgc aaa 

aag aac atg gaa--3’; Reverse primer: 5’--ctt cca tgt tct ttt tgc atg tga aca tag cac agg tca c-

-3’).  Amplified, mutated pD2/I-5’NBAX and its sister plasmid, pD2/I-3’ABX, were 

digested with BspI and XbaI restriction endonucleases, and gel purified via the QIAquick 

Gel Extraction kit (Qiagen, Valencia, CA).  pD2/I-3’ABX insert (excluding vector) was 

ligated to pD2/I-5’NBAX via the BspI restriction site at DENV2 nucleotide position 2425 

and inserted via the unique XbaI restriction site located at the 3’ terminus of the DENV2 

genomic cDNA (Fig 3.1) to create full length infectious clone pD2/IC-30P-NBX cDNA.  

Recombinant cDNA was amplified in electroporation-competent Escherichia coli XL1-

Blue cells (Stratagene) and plasmid cDNA was isolated via HiSpeed Plasmid Midi kit 

(Qiagen) per the manufacturer’s instructions with the exception that selected bacterial 
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colonies were amplified in 2xYT broth with ampicillin (0.1 mg/ml) prior to plasmid 

purification. 

 

Figure 3.1.  D2/IC-30P-NBX clone construction.  Insertion of intermediate clone pD2/I-3’ABX 

(B) into pD2/I-5’NABX (A) at BspE1 and Xba1 restriction sites yields the full length infectious 

clone pD2/IC-30P-NBX (C); remaining vector sequence between AvaI and SspI not shown.  Site-

directed mutagenesis of pD2/I-5’NABX introduced desired nucleotide substitutions into the E 

gene prior to construction of the full length clone. 

In vitro transcription of infectious RNA and transfection of cultured cells 

 In vitro transcription and transfection of Vero and C6/36 cells was performed as 

described previously (Huang et al., 2010; Huang et al., 2000; Kinney et al., 1997b).  

Recombinant cDNA was linearized with XbaI and treated with 500 µg/ml proteinase K 

(GIBCO, Carlsbad, CA).  Linearized cDNA was extracted once with 

phenol/chloroform/isoamyl alcohol, pH 8.0 (Ameresco, Framingham, MA), once with 

chloroform, and precipitated with ethanol.  Approximately 80-100 ng of linearized cDNA 
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was used to transcribe genomic RNA via the AmpliScribe™ T7 kit (Epicentre 

Technologies, Madison, WI) according to the manufacturer’s instructions with two 

notable changes; the transcription reaction (total volume 40 µl) contained 1.5 mM ATP, 

and 3 mM m
7
-GpppA cap analog (New England Biolabs, Ipswich, MA) in order to 

increase the incorporation of A cap analog on the 5’ end of the genome.  The reaction 

was treated with DNaseI and the RNA was extracted once with 

phenol/chloroform/isoamyl alcohol, pH 6.8 (Ameresco, Framingham, MA), once with 

chloroform, and precipitated with ethanol.  Since little RNA was recovered after the 

procedure, total resuspended RNA was split in half for transfection into Vero and C6/36 

cells. 

 Positive-sense vRNA was transfected into Vero and C6/36 cells using a Bio-Rad 

Gene Pulser Xcell system (Bio-Rad, Hercules, CA) as described previously (Huang et al., 

2010).  Vero and C6/36 cells were grown to 80-100% confluency, detached from flasks, 

washed twice with cold PBS, and resuspended to the desired concentration.  Vero cells (4 

x 10
6
/0.4 ml) were mixed with RNA, transferred into a cold 0.4 cm gap cuvette, subjected 

to one square-wave pulse at 225 Volts for 25 milliseconds, and pipetted into 30 ml 

10DMEM20 (DMEM, 10% FBS, 1X non-essential amino acids, 100 µg/ml penicillin-

streptomycin, and 0.15% sodium bicarbonate) in a 75 cm
2
 tissue culture flask.  C6/36 

cells (8 x 10
6
/0.4 ml) were mixed with RNA, transferred into a cold 0.4 cm gap cuvette, 

subjected to two square-wave pulses at 225 Volts for 1 millisecond with a 5 second 

interval, and pipetted into 30 ml 10DMEM10 (DMEM, 10% FBS, 1X non-essential amino 

acids, 100 µg/ml penicillin-streptomycin, and 0.075% sodium bicarbonate) in a 75 cm
2
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tissue culture flask.  Transfected cells were maintained at 37⁰C and 28⁰C with 5% CO2 

for Vero and C6/36 cells, respectively. 

 Medium harvested from transfected Vero cells (day 12 post infection (pi), 

designated V-0) or C6/36 cells (day 14 pi, designated C-0) was centrifuged to remove 

cell debris, supplemented with 20% FBS, and stored at -80
o
C.  An aliquot of V-0 and C-0 

was used to infect naïve Vero and C6/36 cells to produce V-1 and C-1 seeds, 

respectively.  Genome cDNA of V-1 and C-1 seeds were fully sequenced to evaluate 

their genomic stability as described previously (Huang et al., 2010).  Viral antigen was 

detected in acetone-fixed cells (day 8 post transfection/infection) by IFA using polyclonal 

anti-DENV2 New Guinea C hyperimmune mouse ascitic fluid (HMAF) and fluorescein 

isothiocynate-conjugated (FITC) goat anti-mouse IgG (Jackson Immunoresearch 

Laboratories, West Grove, PA). 

Assay of virus growth kinetics in cell culture 

 Twelve to fourteen day growth curves were performed to investigate mutant virus 

growth kinetics in various cell types.  Cell cultures were infected in duplicate at a MOI of 

0.001.  Virus genomic equivalents were measured by quantitative (q)RT-PCR using 3’-

NCR primers and probes via iScript™ One-Step RT-PCR Kit (Bio-Rad, Hercules, CA) as 

previously described (Butrapet, Kinney, and Huang, 2006), and samples were assayed for 

infectious virus by TCID50 in C6/36 cells (Chapter 2).   

Mosquito midgut-virus attachment assay 

 Aedes aegypti RexD mosquitoes were challenged orally with 30P-NBX or K122E 

as described above with the exception that virus was mixed 1:1 with heat-inactivated FBS 

instead of sheep’s blood.  Control mosquitoes were fed L15 infection medium mixed 1:1 
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with heat-inactivated FBS.  Bloodfeeding was stopped after 30 minutes and mosquito 

cartons were placed on ice and put at 4⁰C.  Two sets of midgut samples were dissected in 

three pools of five midguts for each virus.  For the first set of samples, fully engorged 

mosquito midguts were dissected out, cut open, and the virus-meal was removed.  Each 

midgut was then washed three times in ice-cold PBS to remove residual unattached virus 

and then placed on dry ice.  For the second set of samples, fully engorged midguts were 

dissected in ice-cold PBS without removing the virus-meal.  Total RNA was extracted 

from each pool using TRIzol® (Invitrogen, San Diego, CA) and viral RNA was 

quantified by qRT-PCR.  Engorged mosquitoes not dissected to determine attachment 

efficiencies were maintained for 7 days post-bloodfeed to obtain MIRs. 

Results 

Serial passage of DENV2 in Aedes aegypti mosquito midguts 

DENV2 strain 16681 infectious clone 30P-NBX, 30P-NBX-derived FG loop 

mutants VEPG and RGD (Erb et al., 2010), and infectious clone J1409-ic viruses were 

serially passaged in A. aegypti RexD strain mosquitoes to see if adaptive mutations would 

accumulate in the virus genome; the focus of our study was on the E gene because of its 

importance to virus tissue tropism.  Pre-passaged virus MIRs show 30P-NBX and mutant 

virus RGD have similar MIRs while mutant virus VEPG and J1409-ic have 

significantly lower and higher MIRs compared to 30P-NBX, respectively (Figure 3.2). 
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Figure 3.2.  Virus MIRs in A. aegypti RexD mosquito midguts.  RexD mosquitoes were orally 

challenged with each virus, maintained for seven days until midguts were dissected, and MIRs 

were determined by IFA.  Data are the average of at least three experiments and significance was 

determined by comparison with 30P-NBX via student’s t test (*p value < 0.05). 

Each virus was serially passaged four times (SP0-4) in RexD mosquito midguts 

and C6/36 cells (Table 3.1).  Comprehensive serial passage data for each virus is 

provided in Tables 3.2, 3.3, 3.4 and 3.5.  Any mutations that occur in the E gene are 

suspected to be the result of adaptation to midgut epithelial cells because the E gene of 

30P-NBX is genetically stable after successive passages in C6/36 cells (Huang et al., 

2010).  SP0 MIRs are similar to the average MIRs for each of the viruses (Table 3.1 and 

Figure 3.2); 30P-NBX SP0 is lower than the average MIR for 30P-NBX but falls within 

the range of 30P-NBX MIRs in RexD mosquitoes found previously (Chapter 2).  The 

MIRs of 30P-NBX and mutant virus RGD significantly increased after one passage in 

RexD midguts and in both cases this increase correlated with an amino acid change in the 

E protein (Table 3.1).  Consensus sequencing of the E gene of SP1 virus showed there 

was a mixed nucleotide (nt) base population of adenine (wild type [wt]) and guanine 

(mutant) at nt position 1300 for both viruses.  A change to guanine causes a non-
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conservative AA change from lysine to glutamic acid in DII of the E protein at AA 

position 122 (Figure 3.3).  As revealed by consensus sequencing, it took four passages of 

30P-NBX in mosquito midguts before glutamic acid completely substituted lysine at 

position 122, while it took RGD only two passages before this complete AA change 

occurred.  Two serial passage experiments were completed for 30P-NBX in RexD 

midguts and both experiments yielded the same results (data not shown).  In contrast, 

VEPG and J1409-ic MIRs did not demonstrate any discernable pattern after four serial 

passages in mosquito midguts and no nt changes were found in the E gene.  VEPGΔ virus 

was lost after four passages and there was an insufficient amount of vRNA present in SP4 

samples for sequencing.  RGD-SP3 virus included in the infectious blood-meal was 

incubated in C6/36 cells for 17 days before it was harvested to challenge mosquitoes and 

this may account for why the MIR dropped from 93% to 57% between passages 2 and 3.  

It is unclear why the MIR for 30P-NBX-SP3 decreased to 44%, but it may be due to 

individual variation found in DENV blood-feed experiments, considering it increased 

again to 95% for SP4; the unpassaged 30P-NBX internal control for SP3 also had a 

below average MIR of 16% (data not shown).  An adaptive AA mutation located in DII 

of the E protein that significantly enhances mosquito midgut infection was unexpected 

and is to our knowledge the first observation of its kind. 



 

 

 

6
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Table 3.1.  Serial passage of 30P-NBX, VEPGΔ, RGD, and J1409-ic in A. aegypti RexD mosquitoes. 

 

a
 AA present at DENV2 E protein position 122.  Mixed consensus sequence verified by cDNA sequencing in both directions.  The first AA labeled 

is present in greater amounts than the second AA; as determined by the sequence chromatogram. 
b 
There was an insufficient amount of vRNA present for sequencing.

a 

n/a
b 
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Table 3.2.  30P-NBX serial passage in A. aegypti RexD strain mosquito midguts. 

30P-NBX Passage Number 

 
0 1 2 3 4 

Log10 blood-meal titer 7.67 9.2 7.82 7.55 8.95 

Positive Midguts 6 13 22 15 18 

Total Midguts 34 19 36 34 19 

MIR 18% 68% 61% 44% 95% 

Confidence Interval (%) 8-34 46-86 45-75 29-61 75-99 

E protein AA 

substitutions 
none K122K/E K122E/K K122E/K K122E 

 

Table 3.3.  VEPGΔ serial passage in A. aegypti RexD strain mosquito midguts. 

VEPGΔ Passage Number 

 
0 1 2 3 4 

Log10 blood-meal titer 7.45 7.2 7.95 6.95 5.45 

Positive Midguts 1 5 4 1 0 

Total Midguts 24 31 34 27 35 

MIR 4% 16% 12% 4% 0% 

Confidence Interval (%) 1-20 7-33 5-27 1-18 0.1-10 

E protein AA 

substitutions 
none none none none none 

 

Table 3.4.  RGD serial passage in A. aegypti RexD strain mosquito midguts. 

RGD Passage Number 

 
0 1 2 3 4 

Log10 blood-meal titer 8.45 9.2 8.45 8.2 8.2 

Positive Midguts 11 25 27 12 26 

Total Midguts 33 30 29 21 30 

MIR 33% 83% 93% 57% 87% 

Confidence Interval (%) 20-51 66-93 78-98 36-76 70-95 

E protein AA 

substitutions 
none K122K/E K122E K122E K122E 
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Table 3.5.  J1409-ic serial passage in A. aegypti RexD strain mosquito midguts. 

J1409-ic Passage Number 

 
0 1 2 3 4 

Log10 blood-meal titer 9.45 8.95 8.45 8.2 6.45 

Positive Midguts 17 15 22 24 25 

Total Midguts 19 28 35 31 29 

MIR 89% 54% 63% 77% 86% 

Confidence Interval (%) 68-97 36-71 46-77 60-89 69-94 

E protein AA 

substitutions 
none none none none none 

Site-directed mutagenesis, transfection and mutant virus recovery in C6/36 and Vero 

cells 

 Serial passage of 30P-NBX and mutant virus RGD in RexD mosquito midguts 

selected for AA mutation K122E in DII of the E protein.  AA sequence alignment of the 

E proteins shows there is high sequence variability in DII AA 120 to 130 between DENV 

serotypes and other arthropod-borne flaviviruses (Table 3.3).  This region of the E protein 

was targeted previously for a different set of mutagenesis experiments where K122 and 

K123 were both mutated to glutamic acid (virus designated as K122/3E).  This double 

mutation abolishes putative heparan sulfate binding sites and changes the AA charge 

from positive to negative.  It was interesting that J1409-ic did not accrue any adaptive 

mutations after passage in mosquito midguts and DENV2 E protein AA sequence 

alignment shows that strain 16681 is the only DENV2 strain with arginine at position 

120; all of the other DENV2 strains analyzed in this study have threonine (Table 3.3, 

Appendix Table 7.3).  Comparison of E protein AA sequences shows there are nine 

differences between strains 16681 and J1409 and the difference at position 120 is the 

most interesting between the two strains because of its surface exposed location in the E 

protein and its difference in charge.  Site-directed mutagenesis was used to introduce 

mutation R120T into the E protein of D2/IC-30P-NBX (virus designated as R120T). 
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Figure 3.3.  E protein structure and location of relevant AAs in DII.  (A) Top-down view of the 

DENV2 E protein homodimer with D1 in red, DII in yellow, and DIII in blue.  AAs identified in 

this study (T120, K122, and K123 in green) and in the literature (K63, K64, N124, E126, and 

K128 in magenta) are specified.  Note, AA 120 is threonine in the published DENV2 E protein 

structure (Modis et al., 2003).  (B) Side-view of the DENV2 E protein homodimer.  (C)  Top-

down view of the surface model of the DENV2 E protein homodimer.  Specified AAs are colored 

the same as in A.  Protein structures were obtained from the protein database bank (DENV2 E 

protein homodimer ID: 1oan) and were rendered in Polyview-3D (Porollo, Adamczak, and 

Meller, 2004). 

 After introduction of nucleotide substitutions into the E gene of the DENV2 

infectious cDNA clone via site-directed mutagenesis, infectious RNA was transcribed in 
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vitro and transfected into C6/36 cells (C-0) and virus produced in the transfection was 

used to infect naïve C6/36 cells (C-1).  Both K122/3E and R120T mutant viruses were 

able to replicate after transfection and one passage in C6/36 cells as evidenced by 

detectable viral antigen in cells.  Consensus sequencing the genomes of C-1 viruses 

showed both mutant viruses had the expected full length genome sequence (Table 3.7), 

and therefore C-1 seeds were used for all subsequent phenotypic studies.  Recovery of 

both mutant viruses from C-0 and C-1 samples demonstrated that these mutations have 

no effect on infectivity of or replication in C6/36 cells. 

Table 3.7.  Transfection and recovery of infectious virus in C6/36 or Vero cells. 

Virus C6/36 cells   Vero cells 

 C-0/C-1
a
 

virus 

recovery 

C-0/C-1
  

E protein
 

sequence
 

 
V-0/V-1

a
 

virus 

recovery 

V-0
b
           

E protein 

sequence 

V-1
b            

E protein
 

sequence
 

K122/3E +/+ correct
b
  +/+ K122E

c
; 

K123K/E 

par. rev.
c
 

K122E
c
; 

E123K 

full rev.
c
 

R120T +/+ correct
b
  +/+ correct

b
 correct

b 

a 
Transfection (C-0 or V-0 ) and passage (C-1 or V-1) was considered positive if virus antigen was detected 

by IFA.  
b
 Sequencing verified all mutants contained the desired mutations and had no additional changes in the 

genome.  
c 

Mutants with secondary mutations, partial reversions (par. rev.) or full reversions (full rev.) in the E 

protein are specified. 
 

 To investigate the ability of these mutant viruses to infect and replicate in 

mammalian cells, mutant virus RNA was transfected into (V-0) and resulting virus was 

passaged once in Vero cells (V-1).  Full-length genome sequencing of K122/3E V-0 virus 

showed a partial reversion from glutamic acid at position 123 to lysine, while glutamic 

acid at position 122 remained unchanged (Table 3.7).  V-1 consensus sequencing 
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revealed a complete reversion to lysine at position 123 while glutamic acid at position 

122 continued to remain unchanged (Table 3.7).  V-1 seed virus contains the desired 

mutation discovered in the serial passage experiments with no other differences in the 

virus genome compared to 30P-NBX, and was used in all subsequent phenotypic studies 

(virus designated as K122E).  Virus recovery and genome sequencing showed that K123 

is essential for virus replication in Vero cells, while threonine at position 120 has no 

effect on virus infectivity and replication in this cell type (Table 3.7). 

Virus growth kinetics in C6/36 and Vero cells and temperature sensitivity 

 Mutant virus growth kinetics were analyzed by infecting cell cultures in duplicate 

with virus at a MOI of 0.001 and measuring virus genomic equivalents in medium by 

qRT-PCR (Figures 3.4 and 3.7) or infectious virus by TCID50 (Figure 3.6) every two 

days.  Growth kinetics for all three viruses was similar to 30P-NBX in C6/36 cells, 

corroborating the transfection data and the ability of these viruses to replicate efficiently 

in this cell type.  Interestingly, 30P-NBX consistently presented more CPE in the form of 

syncytium formation, cell rounding, and cell detachment than K122E in our C6/36 cells 

used to amplify virus for blood-feed experiments (Figure 3.5).  In Vero cells, K122E 

replicated similarly to 30P-NBX and had equivalent infectious virus titers in contrast to 

mutant K122/3E, which showed no virus replication and no infectious virus production 

(Figure 3.7).  Sequencing virus RNA at the conclusion of the growth curves showed 

K122E was genetically stable, while there was not enough K122/3E viral RNA for 

sequencing at the conclusion of the experiment.  R120T reached peak titers faster than 

30P-NBX in Vero cells (Figure 3.6 B).  However, these results do not mirror data 
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obtained previously, where the growth kinetics for 30P-NBX in Vero cells are more 

similar to those obtained for R120T (C.Y-H. Huang, personal communication). 

 

Figure 3.4.  Virus growth kinetics in C6/36 cells.  C6/36 cell cultures were infected in duplicate 

with virus at an MOI of 0.001 and sampled every two days for 14 days.  Data presented are 

geometric mean titers of virus genome equivalents determined by qRT-PCR. 

 

Figure 3.5.  30P-NBX and K122E CPE in C6/36 cells.  C6/36 cells were inoculated at a MOI of 

0.001 and maintained for 12 days with a medium change on day 7 pi.  Pictures were taken on day 

12 pi prior to harvesting for blood-feeding under bright light at 10x magnification.  The medium 

for both infections had a pH of 6.5 to 7.  MIRs for this experiment were 35.7% and 81.8% for 

30P-NBX and K122E, respectively. 

 Temperature sensitivity was investigated for K122/3E by comparison of growth at 

28⁰C and 37⁰C (Figure 3.7 B).  Virus replication at 37⁰C, at first slower than virus grown 

at 28⁰C, increased at a more dramatic rate between days 4-8 pi when the rate of virus 
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replication became similar between the two temperatures.  Virus genome sequencing 

revealed no addition nucleotide changes in mutant K122/3E at 28⁰C, while mutant 

K122/3E grown at 37⁰C partially or fully (results from duplicate cultures) reverted at 

position 123 from glutamic acid back to lysine.  Infectious virus titers were similar at 

both temperatures.  These results suggest that changing both lysines to glutamic acid is 

not tolerated for replication at 37⁰C and replication at this temperature requires only 

reversion at position 123; interestingly, reversion of AA 123 and not AA 122 occurred in 

the transfection, passage, and growth curve assays. 
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Figure 3.6.  Virus growth kinetics in C6/36 and Vero cells.  Cell cultures were infected with 30P-

NBX and R120T at a MOI of 0.001 and virus replication was measured by TCID50 for infectious 

virus in medium every two days for 14 days.  The data presented are geometric means (in log10 

TCID50/ml) from duplicate flasks of C6/36 (A) and Vero (B) cell cultures. 

 

Figure 3.7.  Virus growth kinetics in Vero cells at 37
o
C and 28

o
C.  Vero cells grown at 37

o
C and 

28
o
C were infected with 30P-NBX or mutant viruses at a MOI of 0.001 and replication was 

measured via qRT-PCR for virus genome RNA in medium every two days for twelve days.  (A) 

The data presented are geometric mean titers (in log10 genome equivalents/ml) from duplicate 

flasks infected and maintained at 37
o
C.  (B) Temperature sensitivity of K122/3E; data are 

geometric mean titers from duplicate Vero cell flasks infected and maintained at 37
o
C or 28

o
C.  

Sequencing virus RNA at the end of the growth curve verified the status of engineered mutations 

(specified where applicable). 

Mutant virus infection rates in A. aegypti mosquitoes 

 Adult female A. aegypti mosquitoes were presented with an infectious blood-meal 

to determine if mutations in DII of the E protein enhance infection of the mosquito 

midgut compared to 30P-NBX.  Mutant viruses K122/3E, K122E, and R120T each have 
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significantly higher MIRs than 30P-NBX in RexD mosquitoes (Figure 3.8 A).  The only 

difference in AA sequence between K122E and 30P-NBX is glutamic acid at position 

122, confirming this mutation alone is responsible for the enhanced infection rates found 

during the serial passage experiment.  K122E also had a significantly higher MIR 

compared to 30P-NBX in Chetumal mosquitoes (compare 30P-NBXa to K122E, Figure 

3.8 B and Table 3.8)), and these results are from 4 independent experiments, each 

completed at least one month apart.  When R120T was assessed for its ability to infect 

Chetumal mosquitoes, the blood-feed experiments were completed concurrently in 

triplicate, with one additional experiment completed two weeks later (Table 3.8).  30P-

NBX internal controls for these data showed high MIRs (30P-NBXb, Figure 3.8 B and 

Table 3.8), which is in contrast to the average MIR found for 30P-NBX internal controls 

in the previous Chetumal challenge experiments with K122E (30P-NBXa, Figure 3.8 B).  

Completing each of the R120T challenge experiments concurrently would have utilized 

mosquito eggs that were oviposited by the same parents.  Also, all of the extrinsic 

environmental factors would have been similar for each of the repetitions, which would 

further reduce our previously observed general experimental variation.  Despite 30P-

NBX having a higher average MIR in the second set of experiments compared to the first, 

R120T still had a significantly higher MIR compared to 30P-NBX in those experiments 

(30P-NBXb compared to R120T, student’s t test p value = 0.038).  This shows that 30P-

NBX is still limited in its capacity to infect mosquito midguts compared to R120T even 

when mosquito susceptibility is high, and also suggests that laboratory colonized 

mosquito strains can change their susceptibility for virus infection over time; however, 

more replicates are needed to verify that susceptibility has indeed changed. 
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Figure 3.8.  Virus MIRs and Relative Infection Intensity ratios in A. aegypti RexD and Chetumal 

mosquito midguts.  RexD (A) and Chetumal (B) mosquitoes were orally challenged with virus, 

maintained for seven days until midguts were dissected, and MIRs and RII ratios were 

determined by IFA.  30P-NBXa and 30P-NBXb are data for the internal controls for K122E and 

R120T, respectively.  Data are the average of at least three experiments and MIR (*) and RII ratio 

(**) significance differences were determined by comparison with 30P-NBX via student’s t test 

(p value < 0.05). 

Table 3.8.  30P-NBX MIR in A. aegypti Chetumal strain mosquitoes. 

Date Log TCID50/ml MG pos MG total MIR RII ratio 

1
st
 Set

a 
     12/4/2009 8.45 18 34 52.94% 0.53 

1/20/2010 8.45 11 24 45.83% 0.77 

2/23/2010 8.2 6 33 18.18% 0.50 

4/6/2010 8.2 10 26 38.46% 0.55 

 
Totals 45 117 

  

   
Average 38.85% 0.59 

   
std dev 15.00% 0.12 

   
Std Error 7.50% 0.06 

2
nd

 Set
b 

     9/17/2010 8.45 13 18 72.22% 0.54 

9/17/2010 8.95 18 19 94.74% 0.67 

9/17/2010 8.95 16 18 88.89% 0.625 

10/29/2010 8.45 31 36 86.11% 1.16 

 
Totals 78 91 

  

   
Average 85.49% 0.75 

   
Std dev 9.55% 0.28 

   
Std Error 4.77% 0.14 

a
30P-NBX was the internal control for comparison of MIRs with K122E. 

b
30P-NBX was the internal control for comparison of MIRs with R120T. 

 

* 

** 

** 
 * 

* 

** 

 * 
** 

** 
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 IFA analysis of infected mosquito midguts showed that on average K122E, 

K122/3E, and R120T virus antigen encompassed the entire midgut more significantly 

than 30P-NBX at 7 days pbf as evidenced by their RII ratios (Figure 3.8) and even in 

spite of the elevated Chetumal mosquito susceptibility for the R120T comparisons, the 

30P-NBX control virus still did not produce an infection that spread throughout the 

midgut (30P-NBXb, Figure 3.8 B).  To further investigate K122E infection kinetics in the 

mosquito, RexD mosquitoes were presented an infectious blood-meal (titer ranging from 

7 to 9 log10 pfu/ml) and midguts were dissected and head squashes were performed every 

two days for 14 days.  The experiment was repeated 3 times with 17 to 31 mosquitoes 

being dissected per sampling day.  MIRs for mutant K122E starting on day 2 pbf through 

day 14 are significantly higher than 30P-NBX, indicating that K122E infects a higher 

proportion of mosquitoes at an earlier time point than 30P-NBX (Figure 3.9).  Similarly, 

the RII ratios for K122E are significantly higher than 30P-NBX starting on day 4 pbf and 

continuing to increase until day 14.  In contrast, 30P-NBX maintained a low RII ratio 

throughout the time course (Figure 3.9 and 3.10).  These results suggest that K122E 

generates a continuous and more productive infection in the mosquito midgut than 30P-

NBX, which does not seem to spread throughout the midgut like K122E (Figure 3.9). 
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Figure 3.9.  30P-NBX and K122E MIR and RII ratio kinetics in A. aegpyti RexD mosquitoes.  

RexD mosqutioes were orally challenged with virus, midguts were dissected every other day for 

14 days, and MIRs and RII ratios were determined by IFA.  Challenge experiments were repeated 

three times and averaged 17-30 mosquitoes per day.  MIRs were significantly different on days 2 

to 14 (*) via chi-square (p value < 0.05) and RII ratios were significantly different on days 4 to 14 

(**) via student’s t test (p value < 0.05). 

 

   
 

Figure 3.10.  Infected midguts from the time course experiment.  RexD mosqutioes were 

orally challenged with 30P-NBX or K122E, midguts were dissected every other day for 

14 days, and virus antigen was detected by IFA.  Midguts displaying virus antigen 

(green) are representative of the infection intensity seen for the days presented. 
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 Virus dissemination from the midgut was also investigated.  Head squash IFA 

analysis showed that both K122E and 30P-NBX escape the midgut after 4 days pbf; 

however, K122E has a significantly higher infection rate than 30P-NBX in tissues outside 

the midgut by day 6 pbf and until the end of the time course (Figure 3.11).  In an 

independent experiment, dissemination rates determined by IFA analysis on paired 

midguts and heads showed that despite there being a distinct difference in dissemination 

rates between K122E (average 68.15%, standard deviation 28.66%) and 30P-NBX 

(average 31.75%, 16.89%), there is statistically no significant difference between the two 

viruses in RexD mosquitoes on day 14 pbf due to the high degree of variation between 

the three experiments (Table 3.9).  Mosquito midguts and heads were not paired in the 

time course experiment shown in Figure 3.11, so it is difficult to determine whether the 

significantly different infection rates in tissues outside the midgut between K122E and 

30P-NBX are the result of actual differences in dissemination or the result of K122E 

infecting a higher proportion of mosquitoes, although it is of note that K122E head tissue 

infection rates are close to the percent of mosquitoes with an infected midgut after day 12 

pbf, while 30P-NBX are not (Figure 3.11).  Either way, it is obvious that K122E infects 

and disseminates from a higher proportion of mosquito midguts than 30P-NBX. 
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Figure 3.11.  30P-NBX and K122E MIR and dissemination kinetics in A. aegpyti RexD 

mosquitoes.  RexD mosqutioes were orally challenged with virus, midguts were dissected and 

head squashes were performed every other day for 14 days, and MIRs and percent mosquitoes 

with a disseminated infection were determined by IFA.  Challenge experiments were repeated 

three times and averaged 17-30 mosquitoes per day.  MIRs were significantly different on days 2 

to 14 (*) via chi-square (p value < 0.05) and percent mosqutioes with a disseminated infection 

were significantly different on days 4 to 14 (**) via student’s t test (p value < 0.05). 

Table 3.9.  30P-NBX and K122E dissemination rates in A. aegypti RexD strain mosquitoes. 

 30P-NBX Dissemination  K122E Dissemination 

Exp. Pos 

HS 

Pos 

Midgut 

Diss. 

Rate 

HS pos 

MG neg 

 Pos 

HS 

Pos 

Midgut 

Diss. 

Rate 

HS pos 

MG neg 

A 1 6 16.67% 3  8 18 44.44% 1 

B 1 2 50.00% 0  9 15 60.00% 0 

C 2 7 28.57% 4  5 5 100.00% 1 

  Average 31.75%    Average 68.15%  

  Std dev 16.89%    Std dev 28.66%  

  Std Error 9.75%    Std Error 16.55%  

 Mosquito midgut-virus attachment assay 

 The first rate-limiting step in infection of any cell type with DENV is attachment 

to a cellular receptor and we hypothesized that the amino acid mutation from lysine to 
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glutamic acid might be increasing the efficiency of this step, considering that K122E 

infected a significantly higher proportion of midguts a short time after an infectious 

blood-meal.  To test our hypothesis we developed a mosquito midgut-virus attachment 

assay.  RexD mosquitoes were presented an infectious blood-meal for 30 minutes to 

ensure we obtained the desired number of fully engorged mosquitoes and were then 

placed on ice at 4⁰C to pause the replication cycle.  After removal of the virus-containing 

blood-meal, dissected midguts were mechanically washed three times in ice-cold PBS by 

submersion and swishing to remove residual virus not attached to midgut epithelial cells.  

qRT-PCR for virus genome RNA was used to quantify the virus still attached to midgut 

cells.  There was no significant difference between 30P-NBX and K122E in the number 

of virus genome copies associated with midguts (Figure 3.12).  The MIRs for 30P-NBX 

(35.7%) and K122E (81.8%) were similar to their averages reported above.  Infectious 

virus concentrations were equivalent for both viruses as were the number of virus 

genome copies associated with unwashed, fully engorged midguts (Figure 3.12).  These 

results suggest that at least initial virus attachment to midgut cells is not affected by 

K122E mutation.  
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Figure 3.12.  Virus attachment to A. aegypti RexD midgut cells.  RexD mosquitoes in 3 pools of 5 

were orally challenged with DENV2 for 30 mins, knocked down on ice at 4⁰C, and midguts were 

dissected and the virus-meal was removed with three washes in ice-cold PBS (washed midguts) 

or retained (engorged midguts).  RNA was isolated via TRIzol and vRNA was measured via qRT-

PCR.  Data presented are the average of the three pools and there was no significant difference 

between 30P-NBX and K122E for either preparation.  Mosquitoes that were not dissected after 

the oral challenge were maintained for seven days, when midguts were dissected and MIRs were 

determined by IFA.  MIRs for each virus were equivalent to their reported averages (30P-NBX 

MIR 35.71%, virus-meal titer 8.2 log10 TCID50/ml; K122E MIR 81.82%, virus-meal titer 8.2 log10 

TCID50/ml).   

Discussion 

 In this study we demonstrate that single amino acid mutations in DII of the 

DENV2 E protein can result in significantly enhanced infection of A. aegypti mosquito 

midguts.  Serial passage of 30P-NBX in RexD mosquitoes identified an adaptive 

mutation in DII of the E protein at position 122 from lysine to glutamic acid that 

correlated with increased infection rates in mosquito midguts.  Incorporation of this 

mutation into the infectious clone recapitulated the results of the serial passage 

experiment, showing that this single amino acid mutation is responsible for the enhanced 

infectivity phenotype.  In addition, a single mutation of neighboring amino acid R120 to 

threonine significantly enhanced mosquito midgut infection compared to the parent virus.  
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To our knowledge this is the first time mosquito infection determinants have been 

mapped to DII of the DENV E protein. 

 The identification of single AA mutations that enhance virus infectivity for 

mosquitoes is not unprecedented.  Whereas few studies have investigated specific 

mosquito infection determinants in flaviviruses, mosquito infection determinants have 

been identified in the structural genes of zoonotic alphaviruses.  Single AA mutations in 

the E2 protein of an enzootic VEEV subtype IE strain resulted in increased infectivity of 

the epizootic mosquito vector Ochlerotatus taeniorhynchus, which was responsible for 

outbreaks in Mexico in 1993 and 1996 (Brault et al., 2002; Brault et al., 2004; Weaver et 

al., 2004).  More recently, a large scale outbreak of Chikungunya virus (CHIKV) on 

Reunion island and additional Indian Ocean islands between 2004-2006 was instigated by 

a virus strain with a single AA mutation in the E1 class II fusion protein (Schuffenecker 

et al., 2006; Tsetsarkin et al., 2007; Vazeille et al., 2007).  The effects of this mutation 

were enhanced by mutations acquired previously in the receptor-binding E2 protein 

(Tsetsarkin et al., 2009).  These findings are consistent with studies conducted in our 

laboratories that have shown AA mutations in the E2 receptor binding protein of Sindbis 

virus can influence vector susceptibility (Myles, Pierro, and Olson, 2003; Pierro, Powers, 

and Olson, 2007; Pierro, Powers, and Olson, 2008).  It is clear that point mutations in the 

structural genes of arboviruses can significantly enhance vector infectivity. 

 DIII of the flavivirus E protein is widely accepted to have receptor binding 

properties and the FG loop specifically was proposed to bind to mosquito cells (Hung et 

al., 2004).  This was further suggested by the absence of this loop structure in the tick-

borne viruses.  Previously we showed that deletion of the FG loop attenuated virus 
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infection in mosquito midguts, while mutation of the FG loop sequence from VEP to 

RGD did not significantly affect MIRs.  These results showed that the FG loop structure 

itself and not the AA sequence is important for midgut infection (Erb et al., 2010) 

(Chapter 4).   

 Mutant virus VEPGΔ was included in the serial passage experiments to see if 

deletion of this motif would place selective pressure on other regions of the E protein to 

compensate for its absence.  Serial passage of VEPGΔ in mosquito midguts did not select 

for any enhancing adaptive mutations and the virus was lost between the third and fourth 

passages.  Although this virus was able to infect mosquito midguts and secondary tissues 

(albeit at a significantly lower rate than 30P-NBX), our inability to continuously passage 

VEPGΔ in midguts indicates that the presence of the FG loop is vital to the overall life 

cycle of the virus in vivo.  In contrast, the RGD mutant virus acquired the K122E 

mutation sooner than 30P-NBX, after only two passages in mosquito midguts.  This may 

suggest that the RGD substitutions imposed greater selective pressure for the 122E 

mutation.  We previously found that RGD virus (and VEPGΔ virus) derived from 

transfection and one passage in Vero cells acquired a K122I mutation (Erb et al., 2010).  

Additionally, multiple passages of wild type DENV2 strain 16681 in Vero cells resulted 

in a mixed K122K/E population (C.Y-H Huang unpublished data).  These findings at first 

suggested mutation of AA 122 was primarily a primate cell culture-adaptive mutation for 

DENV2, but the results of this study show the K122E mutation is also relevant to 

invertebrate systems.  Whatever the selective pressure, it is clear that replacing positively 

charged AAs in this region may constitute a mutational hot spot in the E protein of 

DENV2 strain 16681. 
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 The high MIR of J1409-ic may have precluded the necessity for this DENV2 

strain to accumulate mutations after passage in mosquito midguts.  DENV2 E protein AA 

sequence alignments show that strain 16681 has arginine at position 120 while all other 

DENV2 strains including J1409 have threonine at this position (Table 3.6).  R120T had a 

significantly higher MIR than 30P-NBX showing that this AA mutation alone could also 

result in the increased midgut infectivity phenotype.  Arginine at this position is therefore 

an attenuating determinant of midgut infection.  Strain 16681 has been extensively 

passaged in different mammalian and invertebrate systems since isolation and the 

positively charged arginine could be the result of those passages.  This is in congruence 

with findings that showed passage of DENV2 strain PUO-218 in BHK-21 cultured 

mammalian cells selected for a T120 to lysine change that resulted in higher binding 

capacity for glycosaminoglycans (GAGs) and reduced neurovirulence in mice (Lee et al., 

2006).  The high MIR resulting from mutation of R120 to threonine may explain why 

J1409 did not accrue any adaptive mutations in the E gene and similarly, the absence of 

R120 in other DENV2 strains may explain why glutamic acid at position 122 is not 

present in any natural isolates.  The ability of K122E to replicate as efficiently as 30P-

NBX in mammalian cells suggests that this mutation could emerge and persist in DENV2 

transmission cycles so it is intriguing that it has not been found before.  Perhaps E protein 

AA sequence requirements for infection of mosquitoes are already satisfied with the 

threonine residue at position 120 and this could explain why 30P-NBX was not efficient 

at infecting highly susceptible Chetumal (Figure 3.8) and D2S3 strain mosquitoes 

(Chapter 2).  It would be interesting to conduct mosquito and mammalian cell infection 

competition studies with K122E and R120T.  DENV2s from the Asian/American 
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genotype were found to infect, disseminate, and out-compete viruses from the American 

genotype in A. aegypti mosquitoes as well as replicate to higher titers in isolated human 

dendritic cells (Anderson and Rico-Hesse, 2006; Armstrong, 2001; Armstrong and Rico-

Hesse, 2003; Cologna, Armstrong, and Rico-Hesse, 2005), so it would be instructive to 

see if these single amino acid mutations can provide a replication advantage over other 

virus strains not included in this study. 

 Mutation of K122 to glutamic acid or R120 to threonine removes a positive 

charge at a surface exposed location on the E protein already crowded with positively 

charged amino acids (R120, K122, K123, K128, and K64) (Modis et al., 2003) (Figure 

3.3).  AA mutations in this region are associated with increases and decreases in virus 

affinity for GAGs and neurovirulence in mice for TBEV, MVEV, JEV, and DENV2 

(Bray et al., 1998; Gualano et al., 1998; Mandl et al., 2001; McMinn et al., 1995; 

Prestwood et al., 2008; Shresta et al., 2006; Tajima et al., 2010).  More interestingly, 

serial passage of DENV2 strain PL046 in AG129 mice and C6/36 cultured cells selected 

for virus with E protein K128E and N124D substitutions (in the same virus) that 

produced disease manifestations more akin to those produced in humans (Shresta et al., 

2006).  These mutations reduce both the positive charge in this DII region and the affinity 

of the virus for GAGs.  Reduced GAG binding resulted in increased systemic viral loads 

(Prestwood et al., 2008).  It would be fascinating to see if mutation of K122 to glutamic 

acid in the PL046 infectious clone could produce a similar disease phenotype to their 

K128E and N124D mutant virus.  Additionally, it would be illuminating to see if their 

mutant virus can efficiently infect A. aegypti mosquitoes, which would provide a fruitful 

animal model system to analyze DENV transmission dynamics. 
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 To date there has been no evidence to suggest that DENV binds to GAGs in 

mosquitoes or invertebrate cell cultures (Hung et al., 2004) so it is intriguing that our 

mutations provide a fitness advantage in mosquito midguts.  K122E and R120T 

substitutions remove positive charges on the E protein and may be increasing its 

availability for infection of midgut cells similar to how the N124D and K128E 

substitutions increase viremia in mice by reducing the virus affinity for heparan sulfate.  

Heparan sulfate has been identified in the midguts of Anopheles stephensi and is 

postulated to be present in A. aegypti as well (Sinnis et al., 2007).  If heparan sulfate 

plays no role in functional virus attachment and entry into midgut cells but is still non-

specifically binding to virus it could possibly be sequestering virus on non-permissive 

midgut cells and/or preventing virus attachment to primary or secondary receptors.  This 

could reduce the ability of 30P-NBX to infect a higher proportion of mosquitoes and 

spread throughout the midgut like K122E and R120T, and would also account for the 

equivalent attachment efficiencies shown in our attachment assay.   

 Time course experiments in mosquitoes showed that K122E infects a higher 

proportion of mosquitoes than 30P-NBX as soon as 2 days post blood-feeding (pbf) and 

suggested to us that early stage events including attachment and entry were enhanced by 

the K122E mutation.  We tested this hypothesis by developing a mosquito midgut-virus 

attachment assay and showed that there was no significant difference in attachment to 

midgut cells using our assay.  There are a few limitations to our experimental design.  

Artificial blood-feed experiments with DENV require fresh virus preparations (Miller, 

1987; Richards et al., 2007) and this precluded standardizing the virus concentration in 

the blood-meal, although the number of virus genomes in engorged midguts and the 
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infectious virus titers in the blood-meals were similar for both viruses (Figure 3.11).  

Midgut washing was completed mechanically, making it possible that unbound virus 

and/or vRNA non-specifically bound to midgut tissue was not washed away sufficiently 

before RNA isolation.  Differences in attachment kinetics may have been masked by 

blood-feeding mosquitoes for 30 min and could have precluded our ability to see 

differences in attachment between the two viruses at an earlier time point.  Additionally, 

challenging mosquitoes with such a high concentration of virus could have saturated the 

midgut with virus, which would make it difficult to discern differences in attachment 

between the two viruses.  Several proteins of different molecular mass have been 

identified as DENV receptor proteins in the mosquito midgut (Mercado-Curiel, Black, 

and Munoz, 2008; Mercado-Curiel et al., 2006) and it is possible that K122E and 30P-

NBX could have different attachment affinities for a secondary receptor that we cannot 

detect using our assay.  This could contribute to differences in infectivity rates.   

Furthermore, mosquitoes are challenged with virus that is maintained at 37⁰C and this 

higher temperature might have accelerated attachment and entry kinetics in the mosquito 

while they were allowed to feed for 30 min.  Measuring the amount of virus negative 

strand RNA at short increments after oral challenge may help elucidate whether the two 

viruses are internalized at different rates.   

 Mosquito challenge studies using West Nile virus, VEEV, and Sindbis virus 

showed that only a small number of midgut cells are initially infected after oral challenge 

(Foy et al., 2004; Scholle et al., 2004; Smith et al., 2008), which is consistent with our 

observations for day 2 infected midguts (data not shown).  Scanning electron microscopy 

of the luminal side of A. aegypti showed that microvilli found on the majority of midgut 
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cells are covered by a network of fine strands called the microvilli-associated network 

(MN); some cells have less or no microvilli and are named bare-cells (Zieler et al., 2000).  

This MN is suggested to protect midgut cells from phagocytes and other cells/proteins 

present in blood-meals.  The high quantity of both viruses associated with midguts after 

washing could be the product of virus being trapped or nonspecifically bound to the MN.  

Additionally, bare-cells may account for the limited number of cells that become infected 

shortly after blood-feeding due to the accessibility of the cell surface to virus.  Cells with 

an extensive MN on their surface may prevent virions from coming into contact with the 

cell surface and therefore preclude entry into the cell.  Culex tarsalis mosquitoes have ca. 

1x10
4
 cells per mosquito midgut (Houk et al., 1990), and if this estimation is similar for 

A. aegypti mosquitoes, our results suggest that while high quantities of virus can attach to 

midgut cells, fewer cells are susceptible to infection.  

 It is possible that other steps in the virus replication cycle including maturation 

are affected by mutations in this DII region.  DENV midgut infections generally start at a 

focus of infection and spread laterally from a single infected cell either by direct infection 

of neighboring cells at the edges of a focus or by budding out of cells and infecting local 

cells (Salazar et al., 2007).  K122E RII ratios in the midgut are significantly higher than 

30P-NBX as early as day 4 pbf, showing that K122E produces an extremely productive 

infection that eventually encompasses the rest of the organ.  30P-NBX midgut infections 

stay relatively restricted by comparison.  The midgut lumen of A. aegypti mosquitoes is 

basic (pH 8.5-9.5) (Corena et al., 2005) and may increase the negative charge on the 

surface of the E protein of K122E, assuming that DENV is released from infected cells 

into the luminal space.  This could contribute to attachment to a host cellular receptor or, 
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given the proximity of AA 122 to the dimer interface, could assist in E protein 

homodimer stability on mature virions.  Likewise, mutation at position 122 may stabilize 

the E protein at various stages during protein maturation through the secretory pathway, 

helping to produce a higher infectious virus to particle ratio.  Prestwood et al. (2008) 

suggest that their double K128E, N124D mutant virus produces a more equivalent 

particle to pfu ratio than the parent virus in BHK-21 cells; perhaps a similar phenomenon 

is occurring in mosquito midgut cells.   

 Two phenotypically distinct DENV2s with an AA difference at E protein position 

62 were isolated from K562 and C6/36 cells inoculated with serum from the same DHF 

patient (Kinoshita et al., 2009).  Virus isolated from C6/36 cells had glutamic acid at this 

position and could not bind to and infect B cells while conversely, virus isolated from 

K562 cells had lysine at this position and was able to bind to and efficiently infect B 

cells.  The K562 cell-derived virus was capable of infecting C6/36 cells but with low 

efficiency.  AA 62 is located just below and slightly in between AAs 122 and 123 at the 

homodimer interface and Kinoshita et al. (2009) speculate that lysine (compared to 

glutamic acid) at this position causes high electrostatic repulsive effects with its sister AA 

on the opposite monomer, causing a loosening effect favorable to B cell binding.  K122, 

K123, and R120T do not seem close enough in proximity to their equivalent AAs on the 

opposite monomer for contact (Figure 3.3 C) so it is unlikely that electrostatic repulsion 

is affecting these AAs.  It is certain however, that engineering a double mutation at K122 

and K123 to glutamic acid renders the virus unstable in Vero cells at 37⁰C (Figure 3.5 B).  

Interestingly, the double mutant was able to infect a significantly higher proportion of 
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mosquito midguts compared to 30P-NBX, suggesting this mutant is stable during 

replication in midgut cells. 

 Given the ability of the double mutant to infect a higher proportion of mosquito 

midguts than 30P-NBX and considering that the K122E mutation was the preferential 

mutation discovered in the serial passage experiments, it would be intriguing to see if a 

single mutation from K123 to glutamic acid provides the same phenotypes as K122E and 

R120T.  This could again suggest that losing the positive charge is enough to change the 

phenotype rather then there being a specific mechanistic function for the K122E 

mutation.  Additionally, it is speculated that E protein homodimers have varying 

dimerization affinities and can shift between monomeric and dimeric forms at 

physiologically relevant temperatures, thus facilitating the opening of otherwise cryptic 

neutralizing antibody sites (Nybakken et al., 2006).  If these DII mutations loosen the 

dimer interface, this phenomenon could be opening receptor binding sites for mosquito 

cell receptors or in contrast, could be increasing dimer affinity and stabilizing the 

homodimer during different stages in the virus life cycle. 

 A TBEV neutralizing antibody escape variant generated under selection with 

MAb IE3 had one AA change in the E protein (A123K) compared to the wild type 

(Holzmann et al., 1997).  TBEV has two additional AA in this region compared to other 

flaviviruses (Table 3.6).  A later study investigating the quaternary structure of the TBEV 

E protein showed that individual AA mutations engineered into the TBEV E protein at 

positions 120, 122, 123, 124, and 126 were each found to disrupt binding of the MAb IE3 

(Kiermayr, Stiasny, and Heinz, 2009).  Interestingly, these mutations are too distant to be 

a part of the same Fab footprint, which suggests that mutations in this region disrupt the 
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overall secondary structure of E protein in this region.  Changes in secondary structure 

created by mutations K122E and R120T may be influencing infectivity of mosquito 

midguts.  The human neutralizing antibody response to DENV is not as exclusive for 

DIII as previously thought (Wahala et al., 2009), and antibodies directed to epitopes in 

other domains, including DII, may be just as important.  This AA region of DII is 

variable among the DENV serotypes and other flaviviruses and AA mutations in this 

region have been identified in flavivirus MAb neutralizing escape variants for DENV, JE, 

MVE, TBE, and YFV [summarized in Table 1, (Roehrig, 2003)].  Neutralizing escape 

variant mutations are located on surface accessible regions of the E protein and must be 

affecting the association of neutralizing antibody with its binding site suggesting that the 

AA variability in this region of the E protein and may be reflective of enhanced immune 

pressure.    

  Substitution of lysine and arginine residues could remove potential trypsin 

cleavage sites on the E protein.  Brackney et al. (2008) showed suppression of late 

trypsin (5G1) expression (expressed ca. 5 to 6 hours pbf) resulted in increased RexD 

mosquito infection by J1409 virus but did not decrease RII ratios later on.  This could 

explain the lower MIR of 30P-NBX compared to mutants K122E and R120T, but it does 

not explain why 30P-NBX does not productively infect the rest of the midgut.  5G1 is 

expressed approximately five hours after a mosquito ingests a blood-meal and unless 

30P-NBX was unable to enter into cells to escape enzymatic digestion after an initial 

binding event, it is unlikely that detrimental cleavage of the E protein would occur.   

Additionally, introduction of a potential trypsin cleavage site by mutation of DIII surface 

exposed AA 304 from glycine to lysine did not reduce the ability of this mutant virus to 
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infect mosquito midguts compared to parent 30P-NBX (SM Erb, unpublished data, 

Chapter 4) suggesting that the differences in infection rates between 30P-NBX and the 

mutant viruses are not influenced by trypsin enzyme activity.   

 Although arboviruses generally produce very little cytopathic effects (CPE) in 

C6/36 cells (Knipe, 2006), CPE presented as syncytium formation, cell rounding, and cell 

detachment is commonly observed in our C6/36 cells infected with 30P-NBX after 10 

days pi.  We observed that C6/36 cells infected with K122E consistently present less CPE 

than 30P-NBX infected cells (Figure 3.5).  The pH of the medium at the time of mosquito 

challenge (12 to 14 days pi) for both viruses is usually 6.5 to 7.0 in our system and the 

fusion threshold for 30P-NBX is pH 6.3 to 6.5.  This implies that E protein in mature 

virus would not be prematurely transitioning to the fusion conformation prior to infecting 

new cells.  30P-NBX and K122E have comparable fusion indexes in C6/36 cells via the 

fusion from within assay (data not shown) so it is unlikely that differences in CPE are due 

to differences in fusion efficiency; considering both viruses have similar fusion indexes, 

we would expect K122E to show similar levels of syncytium formation to 30P-NBX.  

Apoptosis in midgut epithelial cells was found to limit infection and transmission of 

WNV in a refractory strain of Culex pipiens mosquitoes (Vaidyanathan and Scott, 2006).  

If the elevated CPE exhibited by 30P-NBX infected C6/36 cells compared to K122E is 

occurring in midgut epithelial cells, this virus may be inducing midgut cell death, thus 

preventing a productive infection that spreads throughout the midgut epithelium as 

observed with K122E.  However, J1409-ic (and mutant virus R120T) exhibited CPE 

similar to 30P-NBX starting around day 10 pi.  Unless J1409-ic is able to produce and 

release more infectious virus than 30P-NBX prior to inducing cell death, it is unlikely 
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that apoptosis is causing low 30P-NBX infection rates and limited virus spread 

throughout the midgut.  It is puzzling how mutation of these AAs are enhancing DENV 

infection of midguts, but it is obvious that this region of the E protein contains important 

infection determinants.  

 DENV2 are suggested to have evolved only recently from sylvatic-DENV2 

viruses sustained in nature between non-human primates and canopy-dwelling Aedes spp. 

mosquitoes (Holmes and Twiddy, 2003; Wang et al., 2000).  Phylogenetic analysis of 

DENV2 E proteins suggested that a mutation from leucine to lysine at E protein position 

122 (Table 3.6) was predicted to accompany DENV2 E protein evolution, possibly under 

immune selection (Leclerc et al., 1993; Twiddy, Woelk, and Holmes, 2002; Vasilakis et 

al., 2008; Wang et al., 2000).  Most of the AA mutations proposed to correlate with 

emergence of endemic/epidemic DENV1-4 from sylvatic progenitors were located in 

DIII, so it is unclear from the phylogenetic analysis whether the AA 122 change occurred 

independently or in combination with changes in DIII.  If this mutation was necessary for 

the transition from the sylvatic to the human cycle, it could explain why no natural 

DENV2 endemic/epidemic isolates have mutations at position 122. 

 The epidemiological implications of our findings are highlighted by the 

dissemination data from the time course experiment.  Head squash IFA analysis, used as 

a surrogate for transmission potential, showed that K122E disseminated from the 

mosquito midgut in a higher proportion of mosquitoes compared to 30P-NBX.  Even 

though this may correlate more with the higher proportion of mosquitoes exhibiting a 

midgut infection than with increased dissemination capacity over 30P-NBX virus, the 

ability of this mutant virus to disseminate from the midgut and infect secondary tissues is 
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clearly greater than 30P-NBX.  It will be interesting to see if K122E can infect field-

caught or genetically diverse laboratory strain A. aegypti mosquitoes as efficiently as the 

laboratory colonized strains used in this study.  Gradual increases in viral fitness that 

increase transmission rates in mosquitoes and produce higher viremias in humans can 

lead to genotype and strain displacements (Armstrong and Rico-Hesse, 2003; Cologna, 

Armstrong, and Rico-Hesse, 2005; Hanley et al., 2008; Ty Hang et al., 2010).  Given that 

the K122E mutation does not result in fitness costs to replication in mammalian cells, the 

epidemic potential of a virus that accumulates this point mutation would likely be high.   

 We have shown for the first time that single AA mutations in DII of the DENV2 

E protein can significantly enhance infection of A. aegypti mosquitoes.  Natural mosquito 

isolates of DENV2 should be monitored for variations in gene sequence at this surface 

exposed region of DII and could provide biological markers for virus emergence in the 

future.  Inclusion of arginine at position 120 in DII of live-attenuated DENV2 vaccine 

viruses in conjunction with other attenuating mutations could reduce the transmission 

potential of vaccine viruses from vaccinees.  Further research investigating the 

contribution of this AA region to protective immunity, DENV transmission, and viral 

pathogenesis in mammals should not be overlooked and merits further study.   
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CHAPTER 4 

DOMAIN III FG LOOP OF THE DENGUE VIRUS TYPE 2 ENVELOPE 

PROTEIN IS IMPORTANT FOR INFECTION OF MAMMALIAN CELLS AND 

AEDES AEGYPTI MOSQUITOES 

Introduction 
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 Dengue viruses (DENVs) are the most medically important arthropod-borne 

viruses infecting humans today.  The DENVs comprise a serocomplex in the family 

Flaviviridae, genus Flavivirus that includes DENV serotypes 1-4 (DENV1-4) and are the 

etiological agents of dengue fever and dengue hemorrhagic fever/dengue shock 

syndrome.  Approximately one third of the world’s population is at risk of becoming 

infected by DENV due to the distribution of their primary vector, A. aegypti (Gubler, 

1998).  While there are licensed vaccines for other medically important flaviviruses such 

as Japanese encephalitis virus (JEV), yellow fever virus (YFV), and tick-borne 
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encephalitis virus (TBEV), no currently licensed vaccines or antiviral drugs are available 

for dengue. 

 Flaviviruses are composed of a capsid protein core complexed with a positive 

sense RNA genome (~11 kb), surrounded by a lipid envelope.  The envelope contains 

180 copies of the envelope (E) protein, which are arranged in an icosohedral scaffold of 

90 homodimers that lie parallel to the virion surface (Kuhn et al., 2002).  The DENV E 

protein is a class II fusion protein responsible for host cell attachment, entry, and virus-

mediated cell membrane fusion.  The 2 angstrom crystal structure has been solved for the 

ectodomain of the TBEV (Rey et al., 1995), DENV2  (Modis et al., 2003), DENV3 

(Modis et al., 2005), and West Nile virus (Kanai et al., 2006) E proteins revealing three 

important structural domains (DI, DII, and DIII), which correlate with earlier monoclonal 

antibody (MAb) mapping data that defined three antigenic domains (C, A, and B) in the 

E protein (Heinz, 1986; Mandl et al., 1989; Roehrig, Bolin, and Kelly, 1998; Roehrig et 

al., 1990).  Domains I and II are linearly discontinuous structures separated by four 

peptide strands that comprise a molecular hinge region.  The flavivirus-conserved fusion 

peptide (CD loop, amino acids [AAs] 98-111), located at the distal end of DII is 

responsible for E protein insertion into the endosomal membrane and subsequent fusion 

of the host membrane and viral envelope (Modis et al., 2004).  DIII is an 

immunoglobulin-like structure connected to DI by a single linker peptide and is 

postulated to have host-cell receptor binding properties.  Antibodies with high 

neutralizing activity have been mapped to DIII and soluble DIII has been used to block 

infection of cells with whole virus, both suggesting DIII contains receptor-ligand epitopes 
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(Abd-Jamil, Cheah, and AbuBakar, 2008; Chin, Chu, and Ng, 2007; Chu et al., 2005; 

Crill and Roehrig, 2001; Huerta et al., 2008; Roehrig, Bolin, and Kelly, 1998). 

 The DENV2 and TBEV E protein structures only differ noticeably at surface 

exposed loops.  One major difference in surface structure is located in DIII, where 

DENV2 has an extended loop motif between the F and G beta strands (FG loop) while 

TBEV does not (Figure 1) (Rey et al., 1995; Zhang et al., 2004).  The extended portion of 

this loop is composed of four AAs that are present in all mosquito-borne flaviviruses but 

absent in tick-borne flaviviruses (Table 4.1, Figure 4.1).  The absence of the extended 

loop in the tick-borne viruses has implicated the FG loop as a mosquito cell-specific 

binding motif.  In addition, the four central AAs comprising this loop vary between each 

DENV serotype and are suggested to be involved with binding to mosquito cells in a 

serotype-specific manner, while binding of DIII to mammalian cell lines is suspected to 

be independent of the FG loop (Hung et al., 2004). 

 In this study we investigated the importance of the DENV2 FG loop for infection 

of mammalian and mosquito cell cultures and live mosquitoes.  Site-directed mutagenesis 

was used to delete or substitute AAs in the FG loop of DIII in an infectious cDNA clone 

of DENV2 strain 16681 to mimic the tick-borne viruses, JEV, and YFV17D.  The results 

of this study show that the FG loop is critical for virus infectivity of cultured mammalian 

cells and A. aegypti midguts. 
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Figure 4.1. E protein structure and location of AA on the lateral ridge of DIII.  (A) Top-down 

view of the DENV2 E protein dimer with DI in red, DII in yellow, and DIII in blue on one 

monomer.  (B) Side-view of the DENV2 E protein monomer.  (C) Side-view of DENV2 E protein 

DIII and Omsk hemorrhagic fever virus (OHFV) E protein DIII.  The A beta strand (cyan), the 

FG loop (green), and K122 (magenta) are highlighted.  Protein structures were obtained from the 

protein database bank (DENV2 E protein homodimer ID: 1oan, DENV2 DIII ID: 2jsf, and OHFV 

DIII ID: 1z3r) and were rendered using Polyview-3D (Porollo, Adamczak, and Meller, 2004). 

Methods and Materials 

Cell Culture 

 Vero, HepG2, and K562 cells were grown at 37
o
C in Dulbecco’s modified 

Eagle’s medium with 10% fetal bovine serum (FBS).  C6/36 cells used for virus 

phenotyping experiments were grown in YE-LAH medium with 10% FBS (Huang et al., 
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2000) and C6/36 cells used for virus propagation to infect mosquitoes were grown in 

Leibovitz L-15 medium, with 2% FBS, both at 28
o
C. 

Mutagenesis, transfection, and virus recovery 

 DENV2 strain 16681 infectious cDNA plasmid, pD2/IC 30P-NBX (Huang et al., 

2010) was modified from pD2/IC-30P-A (Kinney et al., 1997a) and used to construct all 

mutant viruses.  QuikChange site-directed Mutagenesis kit (Stratagene) was utilized to 

engineer desired mutations into the envelope (E) gene of the cDNA plasmid.  Mutations 

engineered into the E gene were a VEPG382 motif deletion, VEP382RGD, 

VEPG382RGDK, VEPG382RGDS, K305/307/310E, and G304K.  Virus derived from 

the parental plasmid (30P-NBX) has a similar phenotype to DENV2 strain 16681 and 

was used as the positive control for all experiments. 

 Transfection of Vero and C6/36 cells with infectious vRNA has been described 

previously (Huang et al., 2010; Huang et al., 2003).  Briefly, 200 ng of linearized 

infectious clone cDNA was transcribed in vitro using the Ampliscribe T7 High-yield 

transcription kit (EPICENTRE Biotechnologies) and the recovered RNA was 

electroporated into 4 x 10
6
 Vero cells or 8 x10

6
 C6/36 cells using the BioRad Gene Pulser 

Xcell system.  Electroporated cells were seeded into a 75 cm
2
 flask and maintained for 

10-14 days until virus was harvested.  Medium harvested from transfected Vero cells (V-

0) or C6/36 cells (C-0) was centrifuged to remove cell debris, supplemented with 20% 

FBS, and stored at -80
o
C.  An aliquot of V-0 and C-0 was used to infect naïve Vero and 

C6/36 cells to produce V-1 and C-1 seeds, respectively.  Genome cDNA of V-1 and C-1 

seeds were fully sequenced to evaluate their genomic stability as described before (Huang 

et al., 2010).  Medium from transfected and infected cells was subjected to RT-PCR to 
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detect the presence of viral genomes.  Viral antigen was detected in acetone-fixed cells 

by IFA using polyclonal anti-DENV2 New Guinea C hyperimmune mouse ascitic fluid 

(HMAF) and fluorescein isothiocynate-conjugated (FITC) goat anti-mouse IgG (Jackson 

Immunoresearch Laboratories). 

Assay of DENV2 growth kinetics in cell cultures  

 Twelve day growth curves were performed to investigate mutant virus growth 

kinetics in different cell types.  Cell cultures were infected in duplicate at a MOI of 0.001 

and virus genomic equivalents were measured by qRT-PCR (Butrapet, Kinney, and 

Huang, 2006).  Samples with peak qRT-PCR titers were assayed for infectious virus by 

TCID50 in C6/36 cells (Bryant et al., 2007; Huang et al., 2010).   

Aedes aegypti mosquito infection by blood-feeding and intrathoracic inoculation 

 A. aegypti RexD strain laboratory mosquitoes (RexD) originating from Rexville, 

Puerto Rico were reared from eggs and maintained as adults at 28
o
C, 80% relative 

humidity with a photocycle of 12h light: 12h dark.  Adult female mosquitoes were 

maintained in one-pint cartons with organdy covering, and given water and sugar until 

infection.  To obtain DENV2 for infectious blood-feeds, C6/36 cells were infected at a 

MOI of 0.001 and maintained for 12-14 days with a medium change at 7 days.  Infected 

cells were scraped into the medium, mixed with an equal volume of defibrinated sheep 

blood and then supplemented with ATP to a final concentration of 1mM.  Adult female 

mosquitoes 4-6 days post-emergence were starved for 24 hours, deprived of water for 4 

hours, and then exposed to the infectious blood-meal for 45 minutes using a 37
o
C water-

jacketed glass feeding device with a hog gut membrane.  Virus titers in the blood-meals 

ranged from 7.2 to 9.45 log10 TCID50/ml.  In our experience with 30P-NBX and E protein 
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mutant viruses, there was no correlation between virus titer at this range and midgut 

infectivity (Chapter 2).  Fully engorged mosquitoes were selected and maintained for 7 

days, when midguts were dissected in PBS, fixed in 4% paraformaldehyde in PBS 

overnight, and analyzed for virus antigen via IFA to determine midgut infection rates.  

Each blood-feed experiment was repeated three times with at least 23 mosquito midguts 

analyzed per experiment.   

 IT inoculations were performed as described previously (Huang et al., 2010).  C-1 

virus seeds were diluted to 1x10
5
 TCID50/ml and adult female mosquitoes were IT 

inoculated with 0.3-0.5 l of inoculum.  Injected mosquitoes were maintained for 7 days 

until head squashes were performed.  Virus antigen was detected in head tissues by IFA 

to determine infection rates.  Each IT injection experiment was repeated three times for a 

total of 76-100 mosquitoes for each virus.   

Indirect immunofluorescence assay for mosquito tissues 

 Midgut and head squash IFAs were performed as described previously (Brackney, 

Foy, and Olson, 2008).  Virus antigen in midguts and heads was detected using flavivirus 

E protein DII group-reactive mouse MAb 4G2 (ATCC, HB-112) in wash buffer (PBS, 

0.05% TritonX-100) or PBS, respectively.  Secondary antibody was ImmunoPure biotin-

labeled goat anti-mouse IgG (Thermo Scientific) with 0.005% Evan’s Blue counter-stain, 

followed by streptavidin-fluorescein (GE Healthcare).  MIRs and head infectivity rates 

were determined by dividing the number of virus antigen-positive midguts or heads by 

the total number analyzed.  The relative infection intensity (RII) ratio was created by Dr. 

Doug Brackney and is a quantitative measure of infection intensity in the midgut.  

Positive midguts were scored for infection intensity on a scale of 0.5 to 4, where 0.5 
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denotes that less than 25% of the midgut surface area is positive for viral antigen, 1 

denotes 25%, 2 denotes 50%, 3 denotes 75%, and 4 denotes 100% of the midgut surface 

area is positive for viral antigen.  The RII ratio was determined by adding the infection 

intensity scores of positive midguts and dividing by the total number of positive midguts.  

Student’s t tests (p-value 0.05) were performed using Excel 2002 and chi-square analysis 

(p-value < 0.05) was done using SAS 9.1. 

Epitope mapping of the E protein 

 The antigenic structure of the DENV E protein was analyzed using a well defined 

panel of DENV Mabs (Roehrig, Bolin, and Kelly, 1998), which included MAbs reactive 

with the E protein DI (1B4C-2), DII (6B6C-1 and 2H3), DIII (3H5, 9A3D-8, and 1A1D-

2), and prM (2H2).  Antibody reactivity was assessed by IFA on acetone-fixed C6/36 

cells infected with each mutant virus.  Antibody endpoint concentrations with a greater 

than 4-fold difference from that of parent virus 30P-NBX were considered significant. 

Fusion from within assay 

 The capacity of the mutant viruses to fuse with host cell lipid membranes was 

assessed using infected C6/36 cells exposed to pH 5.5 in the FFWI assay (Guirakhoo et 

al., 1993).  Briefly, C6/36 cells in 24-well plates were infected with virus at a MOI of 0.1 

and maintained for 7 days in culture medium buffered to pH 7.7.  Medium was removed 

and the infected cells were exposed to fusion medium buffered with MES to pH 5.5 for 2 

hours.  After the incubation period, cells were re-exposed to the pH 7.7 culture medium 

for an additional 24 hours.  Cells were stained with Hema-3 quick stain (Fisher) and the 

number of cells and nuclei were counted for calculation of the fusion index and percent 

fusion (Huang et al., 2010). 
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Results 

Rationale for mutagenesis of the FG extended loop 

 DENV type-specific antibodies have been mapped to a surface exposed amino 

acid motif in the E protein located on the lateral ridge of DIII that forms the FG extended 

loop (Gentry et al., 1982; Gromowski, Barrett, and Barrett, 2008; Hiramatsu et al., 1996; 

Sukupolvi-Petty et al., 2007).  To investigate the involvement of the DENV2 FG loop 

(specifically AAs 382-385; VEPG) in viral replication, we used site-directed mutagenesis 

of the E protein gene of DENV2 strain 16681 infectious clone 30P-NBX to alter the 

VEPG sequence (Huang et al., 2010).  The flaviviruses in the JEV serocomplex and YFV 

have a semi-conserved RGD integrin binding motif as part of the FG loop, and changes to 

this motif have been shown to affect the ability of viruses to infect vertebrate and 

invertebrate cells (Hahn et al., 1987; Lee and Lobigs, 2000; Lobigs et al., 1990; van der 

Most, Corver, and Strauss, 1999).  The mutations we introduced into the E gene of the 

full length DENV2 infectious clone were VEPGdeletion), VEP382RGD (RGD), 

VEPG382RGDK (RGDK), VEPG382RGDS (RGDS), KKK305/307/310EEE (triple 

substitution, K305/7/10/E), and G304K (substitutions).  Changing VEP to RGD inserts a 

known integrin-binding motif and changes the DENV2 type-specificity of the FG loop.  

More specifically, mutating VEPG to RGDK or RGDS imitates the FG loops found in 

JEV and YFV17D, respectively (Table 1).  Furthermore, we deleted completely the FG 

loop, mimicking the tick-borne flaviviral E protein.  The triple mutant removes putative 

heparan sulfate and receptor binding sites, and conversely the G304K mutation adds a 

heparan sulfate binding site to the A strand of DIII. 
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Table 4.1.  Domain III FG extended loop amino acid sequences for vector-borne flaviviruses. 

  *E protein AA position in DENV-2 16681 

Transfection and recovery of infectious virus from C6/36 cells 

 After site-directed mutagenesis to introduce nucleotide substitutions into the E 

gene of the DENV2 infectious cDNA clone, infectious RNA was transcribed in vitro and 

transfected into C6/36 cells (C-0).  All mutant viruses were able to replicate in C6/36 

cells after transfection as evidenced by detectable virus antigen in cells and virus genome 

in medium.  After passage of resulting C-0 virus to naive C6/36 cells (C-1), virus antigen 

and virus genome were again detected, confirming the ability of all mutant viruses to 

infect this cell type.  Sequencing the genomes of C-1 viruses showed each mutant had the 

expected full length genome sequence (Table 4.2), and therefore C-1 seeds were used for 

all subsequent phenotypic studies.  The recovery of all mutant viruses from C-0 and C-1 

samples demonstrated that DENV2 infectivity of C6/36 cells is not solely dependent on 

the presence or sequence of the FG loop or the A strand. 

Virus Strain FG loop Sequence  

(AA 381-386)* 

Accession 

Number 

DENV-2 16681 G VEPG Q AAB58782 

DENV-1 16007 G AGEK A AAF59976 

DENV-3 PhMH-J1-97 G IGDK A AAS49486 

DENV-4 Thailand/1985 G VGDS A AAV49746 

    

YFV Asibi G TGDS R AAT58050 

YFV 17D G RGDS R AAX47570 

    

JEV Nakayama G RGDK Q AAB40688 

MVE NG156 G RGDK Q ABM65594 

WNV NY99 G RGEQ Q AAF20092 

SLEV Laderle G RGTT Q ACA28960 

    

TBEV Neudoerfl G ---- E AAA86870 

OHFV S-4-7/9867 G ---- E AAO65829 
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Table 4.2.  Transfection and recovery of infectious virus in C6/36 or Vero cells. 

Virus C6/36 cells   Vero cells 

 C-0/C-1
a
 

virus 

recovery 

C-0/C-1
b 

E protein 

sequence 

 

V-0/V-1
a
 

virus 

recovery 

V-0
b
           

E protein 

sequence 

V-1
b 

E protein 

sequence 

VEPG +/+ correct  +/+ +K122I/K 

+K388K/E 

+K122I/K 

+K388E/K 

RGD +/+ correct  +/+ correct +K122K/I 

RGDK +/+ correct  +/+ +K122K/I +K122I/K 

RGDS +/+ correct  +/+ correct +K122I/K 

       

K305/7/10E +/+ correct  -/- lethal lethal 

G304K +/+ correct  +/+ reversion reversion 
a 
Transfection (C-0 or V-0 ) and passage (C-1 or V-1) was considered positive if virus antigen and virus 

genome was detected by IFA and RT-PCR, respectively.  
b
 Sequencing verified all mutants contained the desired mutations.  Mutants that could not be recovered 

from transfection or passage (lethal), with no additional changes in the genome (correct), a reversion of the 

engineered mutation (reversion), and secondary mutations in the E protein are specified. 

Transfection and recovery of virus from Vero cells 

 To investigate the ability of these mutant viruses to infect and replicate in 

mammalian cells, mutant virus RNA was transfected into Vero cells (V-0) and resulting 

virus was passaged once in Vero cells (V-1).  Full-genome sequencing of V-1 samples 

revealed that all of the FG loop mutant viruses retained the desired mutation and gained a 

partial mutation in the envelope gene, K122I/K (mixed populations, consensus sequence 

verified by cDNA sequencing in both directions).  V-0 genome sequencing showed that 

mutants VEPG and RGDK acquired this additional mutation following transfection 

while mutants RGD and RGDS did not have this change until the subsequent passage.  

Mutant VEPG had a partial mutation in the envelope protein, K388E/K (mixed 

populations), which appeared in V-0 and was retained in the V-1 seed.  Mutant 

K305/7/10E virus could not be recovered after transfection of vRNA into Vero cells and 

therefore no passage could be completed in this cell type, demonstrating that this set of 
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mutations is lethal for infection of Vero cells.  Mutant G304K virus was recovered after 

transfection of vRNA in Vero cells but consensus sequencing revealed a full reversion 

back to wild type sequence.  Consequently, passage in Vero cells also replicated virus 

with the wild type sequence.  Due to the instability of these mutants in Vero cells, all the 

mutant seeds used for further phenotype studies were derived from C6/36 cells (C-1). 

Epitope mapping of mutant viruses 

 A well-defined panel of murine MAbs that recognize all three distinct antigenic 

domains of the E protein was used to investigate whether epitopes in the E protein are 

affected by mutation of AAs in DIII (Roehrig, Bolin, and Kelly, 1998).  Antibody 

reactivity was assessed by immunofluorescent assays (IFA) on acetone-fixed C6/36 cells 

infected with each virus.  MAb 3H5 was the only antibody to show a decrease in binding 

greater than 4-fold for all FG loop mutants compared to wild type 30P-NBX (Table 4.3).  

In addition, reduction in 3H5 binding to the triple mutant was also found, which 

corroborates findings from researchers who have shown that the FG loop and the A 

strand contribute to the binding site for this type-specific antibody (Gromowski, Barrett, 

and Barrett, 2008; Hiramatsu et al., 1996; Sukupolvi-Petty et al., 2007; Trirawatanapong 

et al., 1992).  Binding of subcomplex-specific MAb 1A1D-2 was affected by mutation of 

residues K305/7/10 (Table 4.3), which is consistent with reports that show these are 

critical residues for binding of this MAb, specifically residues K307 and K310.  

(Gromowski et al., 2010; Lok et al., 2008; Roehrig, Bolin, and Kelly, 1998; Sukupolvi-

Petty et al., 2007).  Type-specific MAb 9A3D-8 binding to the K305/7/10E mutant was 

also reduced and is consistent with a study that showed reduced binding when residue 

K307 was mutated to glutamic acid (Sukupolvi-Petty et al., 2007).  Sukupolvi-Petty et al. 
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(2007) also showed that mutation of G304 to tyrosine resulted in reduced binding to 

9A3D-8.  However, considering that this antibody was able to bind to our G304K mutant 

suggests this residue may not be absolutely critical for binding of 9A3D-8.  

Table 4.3.  Epitope mapping of DIII virus mutants. 

Virus Monoclonal antibody reactivity
a 

  2H2 6B6C-1 1B4C-2 2H3 9A3D-8 3H5 1A1D-2 

 

prM
 

A1
b 

C1 A4 B2 B1 B4 

30P-NBX 0.16 0.12 0.12 0.94 0.94 0.47 0.31 

VEPGΔ 0.24 0.2 0.12 1.25 1.25 >10 0.31 

RGD 0.16 0.12 0.12 0.94 1.25 >10 0.47 

RGDK 0.12 0.12 0.12 1.25 1.25 >10 0.31 

RGDS 0.16 0.12 0.08 1.25 0.94 >10 0.47 

K305/7/10/E 0.12 0.12 0.12 0.94 >10 >10 7.5 

G304K 0.12 0.12 0.24 0.47 1.88 0.63 0.12 
a
MAb reactivity was assessed by IFA on acetone-fixed C6/36 cells infected with each virus.  

Numbers indicate endpoint concentration of purified antibody and numbers equal to or greater 

than 4-fold endpoint differences compared to 30P-NBX are specified (bold). 
b
MAbs were described previously (Roehrig, Bolin, and Kelly, 1998). 

Virus growth kinetics in C6/36, Vero, and HepG2 cells 

 Mutant virus growth kinetics were determined by infecting cell cultures in 

duplicate with each virus at a multiplicity of infection (MOI) of 0.001 and measuring 

virus genomic equivalents in medium by quantitative (q)RT-PCR every two days.  Given 

the genetic stability of these mutant viruses in C6/36 cells and their genetic instability in 

Vero cells, infectious virus titers of selected samples were determined using a C6/36 cell-

based 50% tissue culture infectious dose (TCID50) assay.  Genome equivalents achieved 

by day 8 and peak infectious titers are reported in Table 4.4. 
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Table 4.4.  Genome equivalents and peak infectious virus titers in invertebrate and vertebrate cell 

lines. 

Virus C6/36 
 

Vero 
 

HepG2 
 

   

 ge/ml
a 

TCID50/ml
b 

 ge/ml TCID50/ml  ge/ml TCID50/ml  

30P-NBX 10.81 8.75  10.16 6.88  9.06 6.25  

VEPG 10.85 8.50  5.07
c 

4.50
c 

 6.38 Lethal  

RGD 10.93 9.00  9.21 7.25  9.14 5.75  

RGDK 10.68 8.63  8.60
c 

5.75
c 

 7.46 3.25  

RGDS 10.56 9.13  9.19 6.63  8.01 4.75  
a
Geometric mean Log10 ge/ml on day 8 post infection 

b
Peak Log10 TCID50/ml achieved during growth curves 

c
Virus acquired a K122I mutation in the E protein 

   

 All four mutant viruses had similar replication kinetics and peak infectious titers 

in invertebrate C6/36 cells compared to 30P-NBX, corroborating the C6/36 cell 

transfection data and the ability of the FG loop mutant viruses to infect and replicate 

efficiently in these cells.  This includes both K305/7/10E and G304K viruses (data not 

shown in Table 4.4).  In contrast, mutant virus growth kinetics in mammalian cells was 

more variable.  By day 10 pi in Vero cells, mutants RGD, RGDK, and RGDS reached 

similar genome equivalent (ge) levels to 30P-NBX, although  replication before this day 

was delayed compared to 30P-NBX (Figure 4.2A).  Sequencing genomes of virus 

harvested at the completion of each growth curve showed that mutants RGD and RGDS 

were genetically stable, while RGDK acquired an additional mixed K122K/I mutation 

during growth.  Mutant VEPG replication kinetics differed greatly from the other 

mutants in Vero cells.  Duplicate growth curves for VEPG yielded two different results.  

Both infections showed no genome replication until day 6 pi, then only one of two 

cultures demonstrated increased replication kinetics (Figure 4.2A) and attained a low 

peak infectious virus titer of 4.50 log10 TCID50/ml (Table 4.4).  Virus genome sequences 
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from the culture exhibiting genome replication contained a K122I mutation, similar to 

mutant RGDK and the V-0 virus resulting from transfection.  The temperature sensitivity 

of mutant VEPG in Vero cells was investigated by comparison of growth at 28
o
C and 

37
o
C.  Replication of mutant VEPG from day 2-6 pi was slower at 37

o
C than at 28

o
C, 

but the replication rate was more rapid at 37
o
C than at 28

o
C after day 8 pi (Fig 4.2B).  

Viral genome sequencing revealed no additional genome sequence changes in mutant 

VEPG at 28
o
C, while additional E protein mutations occurred in both samples cultured 

at 37
o
C.  One culture acquired K122K/I and N390H mutations, and the other had 

additional K122K/I, N390N/H, and Q400H/Q mutations.  These data suggest that the 

VEPGdeletion may have rendered the virus thermally unstable at 37
o
C until extra 

mutations were evolved. 
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Figure 4.2.  Virus growth kinetics in Vero cells at 37
o
C and 28

o
C.  Vero cells grown at 37

o
C and 

28
o
C were infected at a MOI of 0.001 and virus replication was measured via qRT-PCR every 

two days for twelve days.  (A) The data presented are geometric mean titers from duplicate flasks 

infected and maintained at 37
o
C except for VEPG and VEPG+K122I, which represent results 

from individual flasks.  (B) Temperature sensitivity of VEPGΔ data are geometric mean titers 

from duplicate flasks infected and maintained at 37
o
C or 28

o
C. 

 Mutant virus phenotypes also were analyzed in HepG2 cells.  Replication kinetics 

and peak infectious titer of mutant RGD were similar to 30P-NBX after infection of 

HepG2 cells, in stark contrast to mutant VEPG, which was unable to produce infectious 

virus in this cell type.  Although there was no detectable infectious virus, low level 

increases (12-fold) of viral genome equivalents were detected by qRT-PCR between day 

0 and day 8 pi, suggesting that virus could enter these cells but could not complete a 

productive infectious cycle.  All other mutants had 10
2
 to 10

4
-fold viral RNA increases, 
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while 30P-NBX viral RNA increased more than 10
5
-fold between day 0 and day 8.  

Genome replication of mutants RGDK and RGDS was reduced by 32- and 10-fold 

compared to 30P-NBX, respectively.  Also, their peak infectious titers were lower than 

30P-NBX by 50- to 1000-fold (Table 4.3).  Replication kinetics were additionally 

analyzed for all mutant viruses in K-562 cells.  All mutants replicated in K-562 cells, but 

at significantly lower levels (2-4 logs lower titers) than the 30P-NBX (data not shown).  

Mutant virus phenotypes in A. aegypti mosquitoes 

 Adult female A. aegypti RexD mosquitoes were presented with an infectious 

blood-meal to determine if mutations in DIII affected mosquito midgut infectivity.  RGD, 

RGDK, RGDS, and G304K mutant viruses did not have statistically different midgut 

infection rates (MIRs) from 30P-NBX.  However, mutants VEPG and K305/7/10E had 

significantly lower MIRs than 30P-NBX, in contrast to the ability of these viruses to 

efficiently infect C6/36 cells (Figure 4.3 A).  The intensity of infection for each mutant 

virus was similar to 30P-NBX (Figure 4.3 A). 
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Figure 4.3.  Mosquito MIR post-oral infection and mosquito head infection rates post IT 

inoculation.  Aedes aegypti RexD strain mosquitoes were presented an infectious bloodmeal (A) 

or IT inoculated with virus (B), and maintained for seven days until midguts or heads were 

dissected.  IFA analysis was used to detect virus antigen and infection rates were calculated.  

Experiments were repeated at least three times.  Student’s t test was used to calculate significance 

(* p-value < 0.05) for MIR and RII ratio and chi-square analysis was used to calculate 

significance for head infection rates (* p-value < 0.05) as compared to 30P-NBX, respectively. 

 The low MIR of the parent virus 30P-NBX made it difficult to analyze differences 

in dissemination rates between 30P-NBX and mutant viruses and we wanted to 

investigate whether these mutants could infect tissues outside the midgut.  Therefore, 

midgut infection was bypassed by intrathoracic (IT) inoculation of mosquitoes with 30-

* 
* 

* 
* * 
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50 TCID50 of virus, a concentration previously used to show significant differences in 

mutant virus infectivity of tissues outside the midgut (Huang et al., 2010).  Virus will 

first infect and amplify in tissues in the mosquito hemocoel and then spread to the head 

by 7 days pi, where there do not seem to be any barriers to infection that would require 

the accumulation of adaptive mutations.  Mutants VEPG, RGDK, and RGDS were less 

efficient at infecting mosquito tissues outside the midgut compared to 30P-NBX, as 

indicated by their significantly different head infection rates.  Mutant RGD infection rate 

for tissues in the head was similar to 30P-NBX (Figure 4.3 B).  No IT inoculations were 

completed for the triple mutant or G304K because the available virus stocks had titers 

below 1x10
5
 TCID50/ml.  These data clearly show a disparity between mutant virus 

infection of C6/36 cells and infection of mosquito tissues.  

Fusion competence of FG extended loop mutant viruses 

 The ability of the dengue virion to escape the host cell endosome before 

degradation in lysosomes is an important step in the life cycle of the virus and is 

mediated by the CD loop located at the distal end of DII of the E protein monomer.  Our 

fusion from within (FFWI) assay results using infected C6/36 cells showed no significant 

difference in fusion activity at a pH range of 5.5 to 7.5 for any of the FG loop mutant 

viruses compared to 30P-NBX (data not shown), confirming that these FG loop 

mutations in DIII did not affect the CD loop fusion function. 

Discussion 

 Previous studies have implied that DIII of the flaviviral E protein is required for 

attachment to and infection of susceptible cells.  Soluble DIII of the DENV E protein can 

block binding of multiple cultured cell types by homologous and heterologous DENV 
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serotypes (Chin, Chu, and Ng, 2007; Hung et al., 2004).  Hung et al. (2004) found that 

binding of DENV2 soluble DIII to C6/36 cells can be blocked by a peptide (AA380-389) 

containing the homologous FG loop sequence, but not by heterologous peptides 

containing FG loop sequences of other DENV serotypes.  Additionally, these peptides 

were unable to block either homologous or heterologous DIII binding to BHK-21 cells.  

These results and the absence of the FG loop in the tick-borne viruses (Table 1), which 

typically are not able to infect C6/36 cells, led to speculation that the FG loop plays a 

specific role in binding invertebrate cells but not mammalian cells.  However, the results 

of our study suggest that the DIII FG loop structure is important for infection and 

replication in mammalian cells as well as mosquito tissues but a specific amino acid 

sequence is not required.   

 Other studies have indicated that the receptors and/or entry pathways for DENV 

infection of C6/36 cells might be atypical.  A previous report utilizing a chimera 

containing Langat virus (tick-borne flavivirus) prM/E genes on a DENV4 nonstructural 

gene backbone showed that this virus was able to infect and replicate efficiently in C6/36 

cells, while the wild type Langat virus could not, implying that the C6/36 cell infection 

restriction for Langat virus is due to the nonstructural genes and not the E glycoprotein 

(Pletnev and Men, 1998).  Both our results and those of Pletnev and Men (1998) suggest 

that other structures or sequence motifs in the E protein are responsible for binding to and 

entry of C6/36 cells.  Additionally, although there is evidence that flaviviruses enter 

C6/36 cells by receptor mediated endocytosis (Acosta, Castilla, and Damonte, 2008; Chu 

and Ng, 2004a; Chu and Ng, 2004b; Mosso et al., 2008), it has also been suggested that 
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flaviviruses can infect these cells by direct fusion with the plasma membrane (Hase, 

Summers, and Cohen, 1989; Hase, Summers, and Eckels, 1989; Nawa et al., 2007). 

 It is widely assumed that DENV replication in C6/36 cells is a useful model for 

predicting viral replication in live adult mosquitoes; however, our studies and others have 

shown that this is not necessarily the case.  Previous studies showed that E protein 

glycosylation was critical for growth in Vero and C6/36 cells but not for growth in A. 

aegypti mosquitoes (Bryant et al., 2007).  Additionally, we found that DENV2 E protein 

fusion peptide mutants could replicate to high titer in C6/36 cells but had significantly 

lower infection rates in mosquitoes after IT inoculation (Huang et al., 2010). 

 We showed that the AA sequence of the FG loop is unimportant compared to the 

presence of the structure itself for mosquito midgut infection.  Similarly, engineering 

multiple mutations into the A strand also reduces infection of mosquito midguts.  The 

low MIR resulting from deletion of the FG loop and mutation of the A strand may be due 

to one of the following:  (i) Absence or mutation of these motifs may reduce viral 

attachment/entry to midgut cells, suggesting either the FG loop and/or the A strand is 

directly involved in interactions with midgut cell receptors or manipulation of these two 

motifs results in changes in other DIII structures necessary for efficient receptor 

binding/cell entry.  (ii) Absence of the FG loop and mutation of the A strand may affect 

proper E protein folding/maturation in midgut cells, resulting in reduced assembly of 

infectious progeny virions.   

 IT inoculation of virus into mosquitoes has been shown to be a sensitive method 

for growing DENVs that cannot be cultured readily in other systems (Rosen and Gubler, 

1974) and it was employed in this study to analyze the infection rates of the FG loop 
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mutant viruses in tissues outside the midgut.  In addition to mutant VEPG, mutants 

RGDS and RGDK also had significantly lower infection rates than 30P-NBX in mosquito 

head tissues.  Mutant RGDK and RGDS FG loop motifs mimic those found in DIII of 

JEV and YFV17D, respectively, and both of these viruses are capable of replicating in A. 

aegypti mosquitoes after IT inoculation (Bhatt et al., 2000; McElroy et al., 2006).  Since 

the RGD virus had similar infection rates to 30P-NBX virus in head tissues, it appears 

that in the context of DENV2 DIII, substitution of glycine at position 385 is most 

detrimental to virus replication in these tissues.   

 A surprising finding in this study was that the FG loop affects DENV2 infection 

of mammalian cells.  All of our FG loop mutants replicated more slowly than the 30P-

NBX virus in Vero, HepG2, and K562 cells during the first 8 days pi.  Productive 

replication of VEPGin Vero cells was only observed after the acquisition of a K122I 

mutation in DII of the E protein (Figures 4.1 and 4.2).  Our results indicated that deletion 

of AA 382-385 significantly impaired virus replication in mammalian cells, although 

VEPGwas able to enter cells to initiate virus replication.  This finding is consonant 

with the previous report that the FG loop is not important for DENV2 binding to 

mammalian cells (Hung et al., 2004).  VEPG and the other FG loop mutants acquired 

the K122I mutation after transfection (RGDK) or passage (RGD and RGDS) in Vero 

cells implying that this mutation is an adaptation for replication in Vero cells at 37
o
C.  

Interestingly, viruses with engineered mutations in the molecular hinge region of the E 

protein also acquired this K122I mutation following transfection of Vero cells, suggesting 

that this mutation may not specifically compensate for alterations in the FG loop (C.Y-H 

Huang, unpublished data).  We have also previously found a K122E mutation in wild 
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type DENV2 strain 16681 after multiple Vero cell passages (C.Y-H Huang personal 

communication) as well as after passage of 30P-NBX in Aedes aegypti mosquito midguts 

(Chapter 3).  The K122E mutation identified in the serial passage experiments was an 

adaptive mutation for enhanced infectivity of mosquito midguts.  It is unclear why this 

mutation was selected for after passage of wild type virus in Vero cells considering both 

K122E mutant virus and 30P-NBX virus replicate with equivalent efficiencies in this cell 

type.  In a separate study, mutations introduced into the FG loop of YFV17D were found 

to affect protein stability at 37
o
C, but not mammalian host cell attachment (van der Most, 

Corver, and Strauss, 1999).   

 Our study also identified possible compensatory mutations to VEPG deletion at 

DIII K388E (Table 1), N390H, and Q400H (Fig. 2B).  AAs K388 and N390 sit below the 

FG loop and mutations to these residues may serve to stabilize the lateral ridge of DIII 

itself or could cause changes to the tertiary structure of DIII that can compensate for the 

space left behind after deletion of the FG loop.  Since the amino acids seem to project 

from the lateral ridge, they may also provide stability for the 5-fold axis of symmetry at 

37⁰C.  DENV2 strains in the Asian/American genotype have asparagine at position 390 

and replicate to higher titers in human dendritic cells compared to strains in the American 

genotype, which have aspartic acid at this position (Cologna and Rico-Hesse, 2003; 

Leitmeyer et al., 1999).  A mechanism has yet to be elucidated for the increased 

replication capacity of viruses with asparagines at position 390.  Mutation at AA Q400 to 

H is more puzzling considering its position at the start of helix 1 in the conserved 

membrane proximal “stem” region located underneath the E protein (Schmidt, Yang, and 

Harrison, 2010).   



 

120 

 

 Substitution of VEP by the integrin-binding motif RGD did not affect DENV2 

infection of mosquitoes and had minimal effects on growth in cultured cells, suggesting 

that the integrin binding motif could also be utilized by DENV2 in host infection.  

However, additional substitutions at AA 385 significantly reduced infection of mosquito 

head tissues, suggesting that RGDK or RGDS motifs are not optimal for DENV infection 

in A. aegypti.  Also, when single AAs in the RGD motif of YFV-17D and Murray Valley 

encephalitis virus were mutated, mutant viruses were still able to infect cultured 

vertebrate and invertebrate cells (Hurrelbrink and McMinn, 2001; van der Most, Corver, 

and Strauss, 1999).  These data taken together with the fact that none of the DENV 

serotypes has the RGD motif, and that other flaviviruses have variations of the RGD 

motif (Table 4.1), suggest that integrin-dependent binding may not play a major role in 

Aedes spp. mosquito infection.  It is possible that the AA motif in the FG loop is a 

determinant of vector selection/preference considering that none of the DENV serotypes 

has the RGD motif, whereas most of the flaviviruses with the RGD motif in the FG loop 

are transmitted primarily by Culex spp. mosquitoes.   

 If the FG loop contributes to receptor binding, it may be either in concert with or 

independently from another ligand on the E protein.  Several groups have identified 

putative cell receptors capable of binding DENV E protein on mammalian and 

invertebrate host cells that include glycosaminoglycans (Vero and BHK21) (Chen et al., 

1997; Hung et al., 2004; Hung et al., 1999), heat shock proteins (U937 and C6/36) 

(Salas-Benito et al., 2007; Valle et al., 2005), stress response protein Grp78 (HepG2) 

(Jindadamrongwech, Thepparit, and Smith, 2004), DC-SIGN (monocyte-derived 

dendritic cells) (Navarro-Sanchez et al., 2003; Tassaneetrithep et al., 2003), mannose 



 

121 

 

receptor (macrophages) (Miller et al., 2008), prohibitin (C6/36, CCL-125, and A. aegypti 

whole mosquitoes) (Kuadkitkan et al., 2010), and other as yet unidentified proteins of 

various sizes (Vero, C6/36, and mosquito midgut cells) (Martinez-Barragan and Del 

Angel, 2001; Mercado-Curiel et al., 2006) indicating that the E protein may be capable of 

attaching to different cellular receptors via several E protein motifs.   

 In this study we showed that binding of type-specific, strongly neutralizing MAb 

3H5 is abolished by deletion or substitution of AA in the FG loop.  MAb 3H5 was found 

to bind to the DENV2 conserved FG loop AAs E383 and P384 as well as semi-conserved 

G304 and K305 on the neighboring A beta strand (Gromowski and Barrett, 2007; 

Gromowski, Barrett, and Barrett, 2008; Roehrig, Bolin, and Kelly, 1998; Sukupolvi-Petty 

et al., 2007).  Interestingly, 3H5 binding was not affected by mutation of G304 to lysine 

suggesting that K305 is more critical than G304 for binding of this MAb.  Binding of 

subcomplex-specific MAb 1A1D-2, which targets AAs on the A strand (more specifically 

307 and 310) was not affected by mutation of the FG loop in this study, demonstrating 

that the antigenic structure of the A strand was still intact (Lok et al., 2008; Roehrig, 

Bolin, and Kelly, 1998; Sukupolvi-Petty et al., 2007).  However, this was not the case for 

the triple mutant, which was not bound by either 1A1D-2 or 3H5 as expected. 

 Evidence that a peptide containing the DENV2 FG loop sequence did not reduce 

binding of DENV2 DIII to mammalian cells (Hung et al., 2004) suggests that a common 

attachment site apart from the FG loop in DIII has a role in binding to vertebrate cells.  In 

addition to 1A1D-2, two other MAbs (9F12 and 4E11) have also been mapped to the A 

strand and can bind to and neutralize all four DENV serotypes (Lisova et al., 2007; 

Rajamanonmani et al., 2009; Thullier et al., 2001).  Furthermore, a group using phage 
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display technology showed evidence that phages expressing different truncated portions 

of DENV2 DIII (specifically AAs 297-423 and AAs 380-423) both bound to C6/36 cells 

with high affinity and found that there was no competitive binding between the phages 

(Abd-Jamil, Cheah, and AbuBakar, 2008).  They suggest that DENV2 DIII binding to 

C6/36 cells could be a multistep process that includes binding to the A strand in addition 

to the FG loop and this may explain how the VEPG mutant can successfully bind to and 

enter this cell type.  However, this multistep binding suggestion may be more relevant for 

infection of Vero cells, considering the K305/7/10E mutations were lethal for replication 

in this cell type but not C6/36 cells.  Even the G304K mutation in the A strand was not 

tolerated in Vero cells as evidenced by the reversion of this mutation after transfection of 

vRNA in this cell type.  This would suggest that Vero cell infection may be dependent on 

the integrity of both the A strand and the FG loop while infection of C6/36 cells seems 

dependent on the integrity of at least one of these motifs.  In a separate study analyzing 

virus attachment to host cells, the triple mutant was capable of attaching to Vero cells at 

4⁰C but unable to enter cells when the temperature was returned to 37⁰C (C.Y-H Huang, 

unpublished data).  This suggests that there may be a secondary binding event necessary 

for internalization of the virus that is disrupted by mutation of the A strand or the protein 

structure is rendered unstable by the elevated temperature.  In fact, it should be 

highlighted that engineering three non-conservative amino acid mutations to opposite 

charge changes within close proximity may have profound effects on all aspects of the 

biology of the virus, which could very well include temperature sensitivity at 37⁰C.  

Nevertheless, evidence for the A strand being important for mammalian cell receptor 

binding is also supported by groups who have mapped neutralization escape mutants to 
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this region of DIII (Lin et al., 1994; Lok, Ng, and Aaskov, 2001).  Additionally, as 

depicted in Figure 4 by Zhang et al. (2004), the FG loop may also be important for 

forming a hydrogen bond network with the A strand around the 5-fold axis in the mature 

virion that could help maintain the structural integrity of the icosohedral protein scaffold, 

aiding in thermal stability and providing a concentration of multiple attachment sites 

within close proximity. 

 If the FG loop were responsible for binding to one particular receptor, it is 

possible that other structures in DIII such as the A strand, or other sites in DII could bind 

to co-receptors and partially compensate for the absence of the FG loop in the VEPG 

mutant.  However, deletion of VEPG may decrease the overall efficiency of virus entry, 

resulting in suboptimal virus infection in vertebrate cells.  The presence of other receptor 

binding sites outside DIII could have implications for vaccine design and may explain 

why DIII-specific antibodies seem to play a minor role in neutralization of DENV by 

human sera (Wahala et al., 2009).  Binding assays using mutant VEPG may be 

successful in discerning what other E protein structures contribute to receptor binding and 

could help determine if DENV E protein attachment to host cells is indeed a multistep 

process.  

 The findings of this study emphasize the importance of the FG loop and A strand 

in DENV infection of mosquitoes, however they do not determine if the presence of the 

FG loop alone is sufficient for mosquito infection, nor why tick-borne flaviviruses lack 

this structure. The results provide additional evidence that C6/36 cells are not a complete 

surrogate for DENV replication in mosquitoes and also point to the importance of using 

whole virus particles for analyzing the effect of mutations on the biology of the E protein.   
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CHAPTER 5 

DENGUE VIRUSES WITH MUTATIONS IN THE FUSION PEPTIDE AND 

HINGE REGION OF THE ENVELOPE PROTEIN VARY IN THEIR ABILITY 

TO INFECT AEDES AEGYPTI AFTER INTRATHORACIC INOCULATION 

Fusion mutant virus data has been published: 
Claire Y.-H Huang, Sirritorn Butrapet, Kelly J. Moss, Thomas Childers, Steven M. Erb, Amanda 

E. Calvert, Shawn J. Silengo, Richard M. Kinney, Carol D. Blair, John T. Roehrig.  (2010).  The 

dengue virus type 2 envelope protein fusion peptide is essential for membrane fusion.  Virology, 

396(2): 305-15. 

 

Hinge mutant virus data has been published: 

Siritorn Butrapet, Thomas Childers, Kelley J. Moss, Steven M. Erb, Betty E. Luy, Amanda E. 

Calvert, Carol D. Blair, John T. Roehrig, and Claire Y.-H. Huang
. 
 (2011).  Amino acid changes 

within the E protein hinge region that affect Dengue virus type 2 infectivity and fusion.  Accepted 

to Virology, January 2011. 

Introduction 

 Aedes aegypti is a highly domesticated mosquito that is distributed throughout the 

tropical and subtropical regions of the world.  This mosquito prefers to breed in artificial 

containers and feeds almost exclusively on humans, often more than once during a single 

reproductive cycle (Scott et al., 2000; Scott et al., 1993).  The four serotypes of dengue 

virus (DENV1-4) are the most medically important arboviruses infecting humans today 

and they are transmitted to humans by Aedes aegypti mosquitoes.  Due to combined 

global human population growth, uncontrolled urbanization, air travel, and poor public 

health infrastructure in developing countries that results in ineffective mosquito control 

programs, DENV is endemic and epidemic in many countries throughout the world 

(Gubler, 1989; Gubler, 1998). 
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 DENV is cycled in nature between humans and mosquitoes.  There has been little 

published information regarding the contribution of DENV genetics to mosquito 

infection.  DENV have a single stranded positive sense RNA genome (~11 kb) 

encapsidated in a capsid protein core surrounded by a lipid envelope.  In the envelope 

there are 180 copies of the envelope (E) structural protein arranged in an icosahedral 

scaffold of 90 homodimers that lie parallel to the virion surface (Kuhn et al., 2002) as 

well as 180 copies of the M protein.  The soluble DENV2 E protein 2 Å crystal structure 

has been solved (Modis et al., 2003) and revealed three distinct structural domains (DI, 

DII, and DIII) (Figure 5.1 A). 

 The E protein is a class II fusion protein that is responsible for host cell 

attachment, entry, and virus-mediated cell membrane fusion.  Following internalization 

of a virion into a host cell endosome, the E protein will experience a pH-catalyzed 

molecular reorganization where E protein homodimers disassociate and DII moves away 

from the virion surface.  The fusion peptide at the distal end of DII (CD loop, amino 

acids [AA] 98-111) (Figure 5.1 C) and the hinge region (composed of four peptide 

strands that connect DI and DII) (Figure 5.1 B) are vital to the function of the E protein 

during low pH-catalyzed molecular rearrangement.  The fusion peptide is a highly 

conserved AA motif among flaviviruses and mediates fusion of virus and host cell 

endosomal membranes when it is inserted into a target membrane (Modis et al., 2004).  

The hinge region allows the movement of the fusion peptide towards the endosomal 

membrane by flexing DII ca. 37⁰ during the molecular conformational shifts (Modis et 

al., 2004).  Mutations engineered into the fusion peptide affect the fusion pH threshold of 

the protein and can result in a lethal phenotype (Huang et al., 2010).  Mutations 
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introduced into the molecular hinge region have variable effects on virus phenotypes that 

include adaptation to cell culture, escape from neutralizing antibody, and neurovirulence 

in mice (Butrapet et al., 2011; Hurrelbrink and McMinn, 2001; Lee, Weir, and Dalgarno, 

1997; McMinn, Weir, and Dalgarno, 1996).  The hinge region is also a target for antiviral 

compounds (Li et al., 2008b; Modis et al., 2003).  The contribution of these two 

structures to infection of mosquitoes has not yet been investigated. 

 Invertebrate C6/36 cells are used in the laboratory as a surrogate for live 

mosquitoes and results obtained for virus infectivity of this cell type do not always 

translate to infection of live mosquitoes (Erb et al., 2010; Huang et al., 2010).  

Intrathoracic (IT) inoculation of virus into mosquitoes is a sensitive method of growing 

DENV that cannot be cultured in other systems (Rosen and Gubler, 1974) and was 

employed in this study to analyze the effect that fusion peptide and hinge region AA 

mutations have on virus infectivity of live mosquitoes.  The results of this study show 

that infection of C6/36 cells with DENV is not an accurate model for predicting virus 

infectivity of live mosquitoes. 
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Figure 5.1.  DENV2 E protein structure in mature virus and after membrane fusion.  (A) Top 

down view of the DENV2 E protein homodimer (protein database bank ID: 1oan) with D1 in red, 

DII in yellow, and DIII in blue.  (B) Magnified view of the four hinge peptide strands in green 

with L135 in cyan.  AA that comprise H1 to H4 are specified.  (C) DENV2 E protein homotrimer 

after membrane fusion and magnified view of the fusion peptide (protein database bank ID: 1ok8) 

with the same coloring as in A, except for the fusion peptide, which is magenta (picture is 

borrowed from Huang et al., 2010).  Protein structures were obtained from the protein database 

bank and were rendered in Polyview-3D (Porollo, Adamczak, and Meller, 2004). 

Methods and Materials 

Mutagenesis, transfection, and virus recovery 

 DENV2 strain 16681 infectious cDNA plasmid pD2/IC 30P-NBX (Huang et al., 

2010) was modified from pD2/IC-30P-A (Kinney et al., 1997a) and used to construct all 

mutant viruses.  QuikChange site-directed Mutagenesis kit (Stratagene) was utilized to 

engineer desired mutations into the envelope (E) gene of the cDNA plasmid.  Two sets of 

mutations were engineered into the E gene.  The first set was targeted at the CD fusion 

loop in DII and includes G102S, G104S, G106A, G106L, L107F, L107M, and F108W 
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(Huang et al., 2010), and the second set was targeted to hinge region 2 between DI and 

DII and includes L135W, L135G, L135K, and L135M (Butrapet et al., 2011).  Virus 

derived from the parental plasmid (30P-NBX) has a similar phenotype to DENV2 strain 

16681, and was used as the positive control for all experiments.  Viruses used in all 

experiments were obtained after transfection and one passage in C6/36 cells. 

Mosquito maintenance and intrathoracic inoculation  

 Aedes aegypti RexD strain laboratory mosquitoes (RexD) originating from 

Rexville, Puerto Rico, were reared from eggs and maintained as adults at 28
o
C, 80% 

relative humidity with a photocycle of 12h light: 12h dark.  Adult female mosquitoes 

were maintained in one-pint cartons with organdy covering, and given water and sugar 

until infection. 

 IT inoculations were performed as described previously (Huang et al., 2010).  C-1 

virus stocks with measured infectious virus concentrations were diluted to 1x10
5
 

TCID50/ml and adult female mosquitoes (5-7 days post emergence) were IT inoculated 

with 0.3-0.5 µl of diluted virus.  Injected mosquitoes were maintained for 7 days until 

head squashes were performed.  Virus antigen was detected in head tissues by IFA to 

determine infection rates.  Each IT injection experiment was repeated three times for a 

total of 76-100 mosquitoes for each virus.  To verify that mutation L135G was stable 

after replication in live mosquitoes, virus RNA was isolated via TRIzol® from the body 

of a mosquito that was positive for virus antigen in its head tissue, and then sequenced 

according to procedures described previously (Huang et al., 2010). 

 

 



 

129 

 

Indirect immunofluorescence assay 

 Head squash IFAs were performed as described previously (Brackney, Foy, and 

Olson, 2008).  Virus antigen in head squashes was detected using flavivirus E protein DII 

group-reactive mouse MAb 4G2 (HB-112, ATCC, Manassas, VA) or DENV2 type 

specific mouse MAb 3H5 (Henchal et al., 1985) in PBS.  Secondary antibody was 

ImmunoPure biotin-labeled goat anti-mouse IgG (Thermo Scientific, Waltham, MA) with 

0.005% Evan’s Blue counter-stain, followed by streptavidin-fluorescein (GE Healthcare, 

Little Chalfont, Buckinghamshire, United Kingdom).  Infectivity rates were determined 

by dividing the number of virus antigen-positive head tissues by the total number 

analyzed.  Chi-square analysis (p-value 0.05) was done using SAS 9.1. 

Results 

 30P-NBX has a low midgut infection rate in A. aegypti RexD strain mosquitoes 

and this made it difficult to analyze differences in mosquito infectivity between the 30P-

NBX and mutant viruses in oral challenge experiments.  For that reason we bypassed 

midgut infection by IT inoculation of virus in order to assess the ability of mutant viruses 

to infect live mosquitoes.  In Chapter 4 we demonstrated that after IT inoculation of 

mosquitoes with 30 to 50 TCID50, FG loop mutant viruses showed significant differences 

in infectivity of mosquito tissues compared to 30P-NBX.  When these viruses were 

inoculated into mosquitoes at 3000 to 5000 TCID50, an alphavirus concentration used in a 

previous study with Anopheles gambiae (Keene et al., 2004), we found that mutant virus 

infectivity rates were equivalent to 30P-NBX (≥ 96% for each mutant virus) (data not 

shown).  The fact that 30P-NBX consistently exhibited high infection rates at both virus 

inoculation doses and that mutant viruses showed reduced infectivity rates at lower doses 
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suggested that inoculating high concentrations of mutant virus can preclude the ability to 

see differences in virus infectivity rates.  Therefore, we proceeded to check mutant virus 

mosquito infectivity rates by IT inoculation with 30 to 50 TCID50 of virus. 

 The results of the IT inoculation experiments for fusion peptide mutant viruses are 

shown in Table 5.1 and graphically in Figure 5.2 (Huang et al., 2010).  Each of the fusion 

mutant viruses included in this study replicates with similar growth kinetics and peak 

infectious titers compared to 30P-NBX in C6/36 cells.  With the exception of mutant 

L107F, each of the mutant viruses had a significantly lower infection rate than 30P-NBX 

after IT inoculation into mosquitoes, contrary to their ability to efficiently infect 

invertebrate C6/36 cells. 

Table 5.1.  Infectivity of fusion peptide mutant viruses after IT inoculation in A. aegypti 

mosquitoes. 

Virus Exps.
a Negative Positive Total % infected p value

b Significance
c 

30P-NBX 7 6 161 167 96.41% n/a n/a 

G102S 5 46 94 140 67.14% <0.0001 * 

G104S 5 63 58 121 47.93% <0.0001 * 

G106A 4 43 65 108 60.19% <0.0001 * 

G106L 4 49 62 111 55.86% 0.013 * 

L107F 4 3 82 85 96.47% >0.05 none 

L107M 3 19 93 112 83.04% <0.0001 * 
F108W 4 29 78 107 72.90% <0.0001 * 

a 
Number of experimental repetitions. 

b 
Significance was determined by chi-square analysis (p value ≤ 0.05) and is marked by asterisks.   

c 
Significant p value ≤ 0.05 is marked by *. 

 



 

131 

 

 

Figure 5.2.  Infectivity rates of fusion peptide mutant viruses after IT inoculation in A. aegypti 

mosquitoes.  Infection of adult mosquitoes by IT inoculation was evaluated via IFA assay for 

DENV2 E protein in head tissues 7 days post inoculation.  Percent infectivity rates are the same 

numbers presented in Table 5.1.  Chi-square analysis was used to compare each mutant virus to 

30P-NBX (* p value ≤ 0.05). 

 The results for hinge region mutant viruses are shown in Table 5.2 and 

graphically in Figure 5.3 (Butrapet et al., 2011).  Hinge mutant viruses with mutations at 

AA 135 were chosen for IT inoculation experiments because they showed variable 

replication kinetics in C6/36 and Vero cultured cells compared to 30P-NBX (Butrapet et 

al., 2011).  With the exception of L135M, each of the mutant viruses had significantly 

lower mosquito infection rates than 30P-NBX.  Additionally, sequencing the E protein of 

L135G virus after replication in mosquito tissues revealed that the engineered mutation 

was unchanged and no compensatory mutations were acquired.   
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Table 5.2.  Infectivity of hinge region mutant viruses after IT inoculation in A. aegypti 

mosquitoes. 

Virus Exps.
a Negative Positive Total % infected p value

b Significance
c 

30P-NBX 6 8 149 157 94.90% n/a n/a 

L135W 5 141 21 164 12.80% <0.0001 * 

L135G 4 25 88 113 77.88% <0.001 * 

L135K 3 16 73 89 82.02% 0.0228 * 
L135M 3 8 88 94 93.62% >0.05 none 

a 
Number of experimental repetitions. 

b 
Significance was determined by chi-square analysis (p value ≤ 0.05) and is marked by asterisks.   

c 
P value ≤ 0.05 is marked by *. 

 

Figure 5.3.  Infectivity rates of hinge region mutant viruses after IT inoculation in A. aegypti 

mosquitoes.  Infection of adult mosquitoes by IT inoculation was evaluated via IFA assay for 

DENV2 E protein in head tissues 7 days post.  Percent infectivity rates are the same numbers 

presented in Table 5.2.  Chi-square analysis was used to compare each mutant virus to 30P-NBX 

(* p value ≤ 0.05). 

 IT inoculation of viruses with mutations in the E protein produces results with a 

relatively high degree of variation as evidenced by the standard deviations presented in 

Table 5.3; the data shown in this table are the same as in Tables 5.1 and 5.2.  30P-NBX 

infection rates were relatively stable after each IT inoculation experiment and this low 

variance made it difficult to statistically compare infectivity rates via student’s t test with 

mutant viruses that have high variance.  The student’s t test, unequal variance was used to 
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analyze the data in Butrapet et al. (2011) and showed that mutant L135G is not 

significantly different from 30P-NBX (p value of 0.052).  This value is technically not 

considered significant although the raw data show there is a difference between 

infectivity rates.  Therefore, in this dissertation, chi-square analysis for proportions was 

utilized because it takes into account the raw data shown in Tables 5.1 and 5.2.  Our null 

hypothesis states that mosquito infectivity rates are independent of mutations in the E 

protein.  This improved the significance level between 30P-NBX and mutant viruses 

without considerably changing the conclusions. 

Table 5.3.  Infectivity rates of fusion peptide and hinge region mutant viruses after IT inoculation 

in A. aegypti mosquitoes. 

Virus Exps.
a
 % Infected

b
 Std Dev.

b
 

30P-NBX 13 95.70% 4.05% 

G102S 5 67.14% 16.61% 

G104S 5 47.93% 21.38% 

G106A 4 72.90% 18.49% 

G106L 4 60.19% 13.77% 

L107F 4 55.86% 4.98% 

L107M 4 96.47% 4.07% 

F108W 3 83.04% 10.80% 

L135W 5 12.80% 10.05% 

L135G 4 77.88% 12.87% 

L135K 3 82.02% 5.73% 

L135M 3 93.62% 12.83% 
 a 

Number of experimental repetitions. 
 b 

Standard deviation of all experimental repetitions. 

Discussion 

 IT inoculation of virus into mosquitoes has been shown to be a sensitive method 

for growing DENVs that cannot be cultured readily in other systems (Rosen and Gubler, 

1974).  Bypassing the midgut infection barrier will result in a systemic infection in the 

mosquito where virus will infect and amplify in tissues in contact with the hemocoel and 
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then spread to the head by 7 days pi.  In contrast to the mosquito midgut, the types of 

cells and tissues outside the midgut are varied and provide a myriad of cellular 

environments for virus replication; including tissues in the head.  Cell types outside of the 

midgut will likely have different degrees of susceptibility to viruses and similarly, the 

mutant viruses included in this study will most likely have different replication kinetics in 

varying cell types.  Therefore, IT inoculation of mosquitoes with 30 to 50 TCID50 of 

virus would be able to show differences in mutant virus infectivity of tissues outside the 

midgut. 

 Comprehensively, the results of this study show that the ability of viruses to 

replicate in C6/36 cells does not always correlate with the ability to infect and replicate in 

live adult mosquitoes.  All of the fusion peptide mutants and hinge mutant L135W 

replicated with similar efficiency to 30P-NBX in C6/36 cells and in contrast, each of 

these viruses (except hinge mutant L107F) had significantly lower infection rates in live 

adult mosquitoes compared to 30P-NBX (Huang et al., 2010).  C6/36 cultured cells were 

isolated from Singh’s A. albopictus larval line (Singh, 1967) for their ability to replicate 

DENV and Chikungunya viruses to high titers (Igarashi, 1978).  The tissue origin of these 

cells is unknown so it is not entirely surprising that A. aegypti mosquito infection rates 

may not reflect the same susceptibility as C6/36 cells.  Researchers investigating DENV 

infectivity phenotypes in C6/36 cells should take note. 

 Mutations engineered into the fusion peptide were designed to change the 

biochemistry of the structure and a detailed analysis and description of their phenotypic 

properties has been published (Huang et al., 2010).  Each of the fusion peptide mutants 

included in this study was less efficient by at least 50% at inducing cell-cell fusion in 
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C6/36 cells compared to 30P-NBX via the fusion from within (FFWI) assay (Huang et 

al., 2010).  This defect in fusion efficiency may have reduced the ability of these viruses 

to infect mosquito tissues (Table 5.1 and Figure 5.2).  However, L107F infected 

mosquitoes at an equivalent rate to 30P-NBX (Table 5.1 and Figure 5.2).  There may be 

different microenvironments and pH threshold requirements for virus-mediated cell 

membrane fusion in different mosquito tissues and this could be reflected by the different 

infection rates.  Similarly, differences in virus replication kinetics caused by mutating the 

fusion peptide may account for the lower infection rates recorded at day 7 post 

inoculation compared to 30P-NBX.  Additionally, antigen presentation in head tissues at 

day 7 post inoculation was variable between mutant viruses and usually less than 30P-

NBX (data not shown), suggesting that these viruses are replicating at different rates.  

Performing a virus growth curve analysis by measuring virus RNA quantities or 

infectious virus titers after IT inoculation might discern answers to some of these 

questions.  However, experiments using live mosquitoes are subject to high variability 

and demand the use of high numbers and multiple repetitions.  This would make growth 

curve assays labor intensive and not very cost-effective if the replication kinetics for each 

one of these viruses were going to be analyzed.  For this reason, mosquito infectivity was 

analyzed by the detection of virus antigen by IFA at a standard time post inoculation.  

Although reading head squash IFA samples can be subjective, simple analysis of positive 

and negative control slides greatly diminishes false positive/negative readings. 

 Mutations engineered into the hinge region were designed to evaluate which AA 

are determinants for DENV replication and a detailed phenotypic analysis for these 

viruses has been submitted for publication (Butrapet et al., 2011).  L135W had 
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comparable replication kinetics and peak infectious virus titers to 30P-NBX in C6/36 

cells (Butrapet et al., 2011), but this particular mutation produced the most significant 

attenuation in mosquitoes (Table 5.2 and Figure 5.3).  L135G and L135K produced 

significantly lower peak infectious virus titers than 30P-NBX in C6/36 cells (Butrapet et 

al., 2011) and also had lower infection rates compared to 30P-NBX in mosquitoes, 

although not as drastic as L135W.  L135G was the most attenuated of the hinge mutant 

viruses in invertebrate and mammalian cultured cells and was completely fusion 

defective at all pH’s tested in the FFWI assay (Butrapet et al., 2011).  It is interesting that 

this virus was able to infect mosquitoes relatively well considering its attenuation in 

C6/36 cells and mammalian cells and for this reason, we sequenced the E gene of L135G 

from an infected mosquito 7 days post IT inoculation.  The L135G mutation was present 

without the addition of secondary mutations in the E gene showing that this virus is 

capable of infecting and replicating in mosquito tissues.  When we tried to recover 

L135K after transfection in Vero cells, the lysine substitution evolved into methionine 

during replication in this cell type.  L135M mutant virus was recovered and included in 

IT inoculation experiments to see how this mammalian cell adaption would influence 

virus fitness in live mosquitoes.  Interesting, L135M had a similar mosquito infection rate 

compared to 30P-NBX (Table 5.2 and Figure 5.3).  The results of these hinge mutant IT 

inoculations reveal that there are different AA requirements at position 135 for 

replication in invertebrate and mammalian systems. 

 IT inoculation of virus into mosquitoes has identified AA mutations G102S, 

G104S, G106A, G106L, L107M, F108W, L135W, L135G, and L135K as determinants 

for reduced infection of mosquito tissues outside the midgut.  It should be noted that each 
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of these viruses were still able to infect mosquito tissues after IT inoculation and no 

single AA mutation completely abrogated infection.  Mutations of G104 to serine and 

L135 to tryptophan caused the most dramatic reductions in mosquito infectivity, while 

mutations of L107 to phenylalanine and L135 to methionine had no effect on virus 

infectivity of live mosquitoes.  These four mutations should be evaluated for their ability 

to infect mosquito midguts after oral infectious challenge.  
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CHAPTER 6 

EXTENDED PROJECT DISCUSSION AND PROSPECTS FOR FUTURE 

RESEARCH 

 The DENV E protein is the primary determinant for initiation of host cell 

infection.  To date, studies investigating mosquito infection determinants for DENV2 are 

limited.  The results of the studies herein analyze the effects that AA mutations in the E 

protein have on infectivity of mosquitoes and cultured cells.  We show that (1) DENV2 

strain 16681 has a low MIR, (2) single AAs in DII of the E protein are mosquito infection 

determinants, (3) the FG loop in DIII of the E protein is important for mammalian cell 

and mosquito infection and (4) virus phenotypes in insect cell culture do not necessarily 

translate to live mosquitoes.  These findings significantly enhance our understanding of 

DENV biology. 

 Our experiments investigating DENV2 strain 16681 infectious clone 30P-NBX 

infectivity for A. aegypti RexD strain mosquitoes reveal that this virus has a low 

infectivity phenotype for mosquitoes.  This was in contrast to one existing report (Khin et 

al., 1994) that suggested strain 16681 had an infection rate more similar to another virus 

strain (J1409) consistently used in our laboratory.  Repeated mosquito challenge 

experiments confirm that in our system 30-NBX has a mean MIR of 33.79%.  Continuous 

repetition of these challenge experiments highlighted the variability that exists in the 

laboratory when performing artificial blood-feed experiments and groups investigating 

mosquito infection rates with DENV should take note.  Challenge experiments with 30P-
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NBX require at least three repetitions, each consisting of ≥ 20 mosquitoes to obtain data 

with statistical relevance and even then more repetitions may be necessary to see 

significant differences when comparing infectivity of two DENV strains.  Minimum 

infectious virus titers required for successful artificial challenge of mosquitoes with 30P-

NBX were shown to be 6 log10 pfu/ml or 7 log10 TCID50/ml.  Infecting virus titers higher 

than those did not correlate with increased mosquito infection rates.   

 The results from Chetumal mosquito strain challenge experiments show that 

colonized mosquitoes can change in their susceptibility to 30P-NBX infection over time 

(Appendix, Table 7.8).  As discussed in Chapter 3, Chetumal mosquito challenge 

experiments comparing 30P-NBX and K122E infectivity showed 30P-NBX had an 

average MIR of 38.85% after 4 experiments, each completed ca. 1 month apart from 

December to April of 2009-2010.  Approximately 6 months later, challenge experiments 

comparing 30P-NBX and R120T infectivity showed 30P-NBX had an average MIR of 

85.49% in 4 experiments, this time completed in the span of 1 month.  Maintenance of 

colonized mosquitoes may need to include periodic challenge experiments with the same 

virus strain to verify that their susceptibility is not changing.  Despite 30P-NBX having a 

higher average MIR in the second set of experiments compared to the first, R120T still 

had a significantly higher MIR compared to 30P-NBX (student’s t test p value = 0.038), 

showing that 30P-NBX is still limited in its capacity to infect mosquito midguts 

compared to R120T even when mosquito susceptibility is higher. 

 It should be noted that the in vitro transcription protocol employed to make 

infectious virus RNA reduces the concentration of ATP (by 1/5) included in the assay in 

order to increase the likelihood of A-cap analog binding to the 5’ end of the RNA for 
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translation (Contreras et al., 1982).  The reduced amount of ATP could have instigated 

the introduction of nucleotide substitutions into areas of the genome that have stretches of 

adenines, such as the virus genome region at nts 1300 to 1305.  This may have increased 

the propensity of producing virus populations with mutations at E protein AA position 

122, including mutations to isoleucine (codon aua) and glutamic acid (codon gaa).  

Transfection and passage of several mutant viruses (with mutations in different locations 

throughout the E protein) in Vero cells resulted in a K122I mutation.  Any change to one 

of the three nucleotides in the codon encoding for lysine at 122 (aaa) can result in 6 

potential non-synonymous substitutions (isoleucine, threonine, asparagine, glutamine, 

arginine, and glutamic acid) and K122I (nt substitution a1301u) and K122E (nt 

substitution a1300g) were the only AA mutations selected for at this position.  It is 

unclear how K122I stabilizes E protein mutant viruses in vitro at 37⁰C (see VEPGΔ 

temperature sensitivity, Chapter 4).  Even more interesting is that a mixed K122K/E 

mutation was identified in 30P-NBX strain 16681 after passage in Vero cells (C.Y-H. 

Huang personal communication).  This mutation was acquired during passage in cultured 

cells and not by manipulation via molecular biology techniques, indicating that this 

region of DII is structurally important to replication in mammalian cells.  Regardless of 

whether the cloning process produced virus populations with mutations at position 122, 

results from the serial passage experiments show that the K122E mutation was specific 

for adaptation to replication in mosquito midgut cells. 

    Identifying the specific mechanism by which mutations to 122 and 120 are 

enhancing midgut infection may be complicated.  Cell culture assays used to investigate 

the virus life cycle are difficult to translate to the mosquito midgut.   The limitations to 
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our mosquito midgut-virus attachment assay were discussed in Chapter 4.  Experiments 

can build on this assay.  Viruses with extremely low MIRs like VEPGΔ or K305/7/10E 

might show more significant differences in attachment compared to 30P-NBX and 

K122E, and would suggest that our assay can in fact show differences in virus attachment 

to midgut cells.  A more robust method of washing midguts after removal of the blood-

meal may also help resolve differences in this assay.  Since the only difference between 

K122E and 30P-NBX is a single nucleotide and AA change in the E gene, it can be 

assumed that there will be no differences in genome replication between the two viruses.  

Therefore, measuring the amount of negative strand viral RNA at short time intervals 

after blood-feeding could lead to inferences about the amount of virus entering midgut 

cells.  Additionally, using radiolabeled virus in a midgut attachment assay might enable 

us to show differences in midgut cell binding between viruses, although this might be 

hampered by the necessity of using fresh virus for mosquito challenge experiments.  

Radiolabeling virus would involve purification steps and these could negatively affect 

virus binding.  It is unclear by what mechanism freeze-thawing virus reduces midgut 

infection but it is most likely influencing virus attachment and entry, which would 

preclude being able to store radiolabeled virus after its production and purification. 

 There has been no published evidence to suggest that DENV is binding to 

glycosaminoglycans (GAGs) in mosquitoes.  Heparan sulfate has been shown to be a 

determinant of mammalian cell infection (Chen et al., 1997; Germi et al., 2002; Hung et 

al., 1999), but not important for attachment and infection of invertebrate C6/36 cells 

(Hung et al., 2004).  Heparan sulfate and chondroitin sulfate can bind circumsporozoite 

protein, the major surface protein of Plasmodium, and both molecules have been 
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identified in the midguts and salivary glands of Anopheles stephensi mosquitoes 

(Dinglasan et al., 2007; Sinnis et al., 2007).  It is postulated that heparan sulfate is also 

present in Aedes aegypti mosquitoes considering that the genes necessary to produce 

heparan sulfate in Anopheles stephensi have homologs present in the A. aegypti genome 

(Sinnis et al., 2007).  Therefore, it is conceivable that DENV can also bind to negatively 

charged heparan sulfate on mosquito midgut cells via positively charged surfaced 

exposed AA.  K122E and R120T mutations remove a positive charge on a surface 

exposed region in the E protein and could potentially reduce virion binding to GAGs in 

the mosquito midgut.  If heparan sulfate plays no role in attachment and entry of DENV 

into midgut cells, non-specific binding to heparan sulfate could sequester virus and 

prohibit it from entering cells.  This could happen by either preventing virus from 

attaching to a primary or secondary receptor or by sequestering virus on non-permissive 

cells in the midgut.  Similar to the mutant virus engineered by Prestwood and colleagues 

(2008), which had reduced heparan sulfate binding affinity and therefore increased serum 

half-life, K122E and R120T mutant viruses may have reduced affinity for heparan sulfate 

in the mosquito midgut, which could in turn increase midgut infectivity rates and enhance 

virus spread throughout the midgut (two phenotypes not characteristic of 30P-NBX).  

DENV binding to heparan sulfate and midgut cell receptors are most likely not 

differentiated by our midgut-virus attachment assay.  Potentially, RNAi can be used to 

knock down heparan sulfate in adult mosquitoes.  By identifying genes that are necessary 

for the biosynthetic processing of heparan sulfate in A. aegypti mosquitoes and targeting 

them via RNAi, mosquitoes with low levels of heparan sulfate can be challenged orally 

with our viruses (Brackney, Foy, and Olson, 2008; Dinglasan et al., 2007; Sinnis et al., 
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2007).  If heparan sulfate is negatively affecting 30P-NBX infection of midguts, 30P-

NBX MIRs should increase in these mosquitoes and be more comparable to mutants 

K122E and R120T.  Similarly, infection rates for K122E and R120T would be unaffected 

by RNAi knockdown of heparan sulfate. 

 Engineering more AA mutations into the DII region of the E protein could 

provide information about this region.  It was interesting that reversion of AA E123 and 

not AA 122 occurred in the transfection, passage, and growth curve assays for double 

mutant K122/3E, and that serial passage of 30P-NBX in mosquito midguts selected for 

virus with a mutation at K122.  Engineering a single K123E mutation could show if the 

loss of a positively charged residue in this region is sufficient to enhance mosquito 

infectivity similar to K122E.  Introduction of K122/123/128E mutations into the 

infectious clone was lethal for virus replication in C6/36 and Vero cells, indicating that 

too many AA mutations with charge changes in this region is lethal (C.Y-H. Huang 

unpublished data).  It would also be interesting to see if engineering both R120T and 

K122E into the infectious clone would cause temperature sensitivity at 37⁰C, similar to 

K122/3E, or lethality similar to the triple mutant.  The identification of mosquito 

infection determinants in this AA 120 to 130 region in DII is new to the field and is a 

fruitful area for future exploration. 

 Shresta et al (2006) passaged non-mouse adapted DENV2 strain PL046 in AG129 

mice and C6/36 cells and identified two AA mutations (N124D and K128E) in the E 

protein that mediated viscerotropic disease and high viremia in mice.  DENV2 strain 

16681 is not adapted to mice so it could be valuable to see what type of disease K122E 

will produce in AG129 mice.  If the virus pathology is similar to that of the N123/K128E 
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mutant, this system could provide a unique and much desired model to study dengue 

virus transmission.  Since an infectious clone is also available for strain PL046, a K122E 

mutation could be engineered into this virus and analyzed in the model created by Shresta 

and colleagues (2006).  Conversely, it might be instructive to introduce the 

N124D/K128E mutations into our infectious clone and assess the ability of that mutant 

virus to infect mosquitoes. 

 The structural protein prM prevents premature fusion of the E protein with 

intracellular host cell membranes during E protein maturation from the ER through the 

secretory pathway.  Host cell furin cleaves pr from M after virions exit the trans-Golgi 

network and instead of dissociating immediately after cleavage, the pr protein stays 

bound to the E protein to prevent membrane fusion until the particles are released from 

the infected cell (Yu et al., 2008).  Pr protein residues E46 and D47 are suggested to 

contact E protein residue K52 via charge interactions due to their close proximity (atoms 

less than 4.5 Å apart) (Li et al., 2008a).  Published E protein structures show that K122 

does not seem to interfere with prM/E contacts at low or neutral pH (Figure 6.1 B and C).  

However, K64 neighbors both K122 and R120 forming a patch of positively charged AA 

in DII (3.12 B and C).  It is difficult to say how these AA are influencing this part of the 

virus life cycle, if at all.  It is interesting to speculate that if 122E were to interact with 

K64 via charge interactions, this could potentially reduce the affinity of pr for E at this 

protein-protein contact point, thus increasing the amount of mature K122E virus 

production compared to 30P-NBX.  This does not give any insight as to how mutation of 

R120 can influence pr binding and it is difficult to speculate on how this AA change 

would influence maturation in relation to pr.  It might be beneficial to measure how much 
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pr protein is still associated with K122E and 30P-NBX after amplification in C6/36 cells 

(taking into consideration these cells are used to produce fresh virus for blood-feed 

experiments).  Also, K122 does not seem to interfere with contact points in the trimer 

necessary for membrane fusion; it is located on the outside of DII in the fusion 

conformation (Modis et al., 2004) (Figure 6.1 A), suggesting it could potentially be 

bound by a host cell receptor without obstructing the fusion process.  Currently, it is 

unclear how receptor binding influences the conformational changes necessary for fusion.  

Obviously, these points are based entirely on conjecture and are pointed out in this 

dissertation solely for discussion about how K122E and R120T mutations are influencing 

the virus life cycle.  Just as it cannot be denied that K122 may be involved with important 

contacts during the molecular conformational transitions necessary to generate the 

snapshot structures in the published literature, it also cannot be denied that K122 may 

have no influence on any of the molecular conformational changes necessary for fusion 

or maturation via prM. 
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Figure 6.1.  DENV2 E protein structures and location of relevent AAs.  (A) Side view of the 

DENV2 E protein monomer in post fusion intermediate conformation (protein database bank ID: 

1ok8) with D1 in red, DII in yellow, and DIII in blue.  K122 and K123 are colored green, and 

R120 is colored magenta.  (B) Side-view of pymol surface rendition of the E monomer 

complexed with pr at low pH post furin cleavage (protein database bank ID: 3c5x) with the same 

coloring as in A with two exceptions: K64 is colored blue and the pr protein is colored purple.  

(C)   Side-view of pymol surface rendition of the E monomer complexed with pr at neutral pH 

post furin cleavage (protein database bank ID: 3c5x) with the same coloring as in B.  Protein 

structures were obtained from the protein database bank and were rendered in Polyview-3D 

(Porollo, Adamczak, and Meller, 2004). 

  

 There are nine AA differences in the E protein between DENV2 strains 16681 

and J1409 (Appendix, Figure 6.3) and one of them has been investigated previously.  

Pierro et al. (2006) showed that continuous passage of J1409 in C6/36 cells resulted in an 

AA mutation from isoleucine to methionine at E protein position 6 (16681 has 

methionine at this position).  This mutation was introduced into the J1409 infectious 

clone and, while it was observed to form reduced syncytia in C6/36 cells, it had no effect 

on mosquito infectivity via oral infectious blood-meal (Pierro et al., 2006).  It is 

interesting that J1409-ic (has I6) and 30P-NBX (has M6) caused similar CPE in C6/36 
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cells despite I6 being suggested as a determinant for syncytium formation in this cell type 

(Chapter 3 discussion).  In addition, VEPGΔ produced hardly any CPE in C6/36 cells 

compared to 30P-NBX (data not shown).  Infectious virus titers produced in this cell type 

were similar for both viruses so it is unclear how mutations in areas like the FG loop and 

in DII of the E protein cause attenuation or increase of CPE in C6/36 cells. 

 As discussed in the Chapter 3, R120T was the most interesting AA difference 

between DENV2 strains 16681 and J1409-ic given its surface exposed location and 

difference in charge.  This mutation was introduced to make the 30P-NBX E protein 

“like” J1409, so future studies comparing mutant R120T and strain J1409 in parallel 

should be pursued.  This mutation is also relevant to other DENV2 strains, since 

threonine at position 120 is present in E protein AA sequence alignments of 53 other 

DENV2 strains (data not shown).  The 16681 cDNA infectious clone used in this study  

is much easier to manipulate than the one created by Pierro et al. (2006) and, combined 

with the R120T mutation introduced, provides a useful tool to analyze how virus genetics 

contribute to mosquito infectivity.  Additionally, both K122E and R120T viruses can be 

used in studies requiring a DENV2 strain that consistently infects a high proportion of 

mosquitoes (i.e. challenging transgenic mosquitoes that have engineered resistance to 

DENV). 

 The FG loop has widely been assumed to have receptor binding properties, and 

while this still may be the case, the ability of the VEPGΔ virus to infect mammalian and 

insect cell cultures and live mosquitoes suggests it is not the only structure required for 

attachment and entry into cells.  In contrast to the findings of Hung et al. (2004), we 

showed that the FG loop was important for infection of mammalian cells but dispensible 
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for infection of C6/36 cells.  A common theme suggested by the results of this study is 

that the FG loop is more important for general structure than for a sequence specific 

function.  Furthermore, although VEPGΔ was significantly less efficient at infecting 

mosquito midguts, consensus sequencing of this virus during the serial passage 

experiment verified that it is capable of infecting mosquito midguts without the 

acquisition of compensatory mutations.  All of the mosquito-borne flaviviruses have an 

extended FG loop while the tick-borne flaviviruses do not so it is interesting that deletion 

of this loop does not completely abrogate mosquito infection.  These results point to other 

structures in the E protein being involved with attachment and entry into host cells and 

further illustrates the fact that the E protein is extremely dynamic in its ability to 

compensate for mutations to its sequence and structure.  

 These studies show that virus phenotypes in cell culture do not necessarily 

translate in vivo.  A large number of viruses in this study were engineered to have 

mutations in the E protein and most of them were able to infect and replicate in C6/36 

cells similar to the 30P-NBX.  However, after IT inoculation into adult mosquitoes, many 

of these viruses were shown to have reduced infectivity rates compared to 30P-NBX.  

Researchers investigating DENV phenotypes should not assume that there is any 

connection between virus infectivity of C6/36 cells and live mosquitoes.  Without 

directly comparing the two in the laboratory, assumptions in the published literature can 

only be regarded as conjecture.  
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APPENDIX 

Table 7.1.  30P-NBX MIR data in A. aegypti RexD strain mosquitoes. 

Infection Medium YE-LAH L15 L15 

Titer method Plaque Plaque TCID50 

Titer range/ml
a 

6.3-7.52 6.67-8.27 7.45-9.45 

Positive midguts 40 166 172 

Total midguts 553 607 517 

MIR 7.23%
b 

27.35%
c 

33.27%
c 

a
 Log10 pfu or TCID50/ml 

b 
MIR is significantly different from L15 plaque by student’s t test 

c
 No statistical difference between L15 plaque and L15 TCID50 MIRs 

 

 

Table 7.2.  30P-NBX MIR in A. aegypti Thailand strain mosquitoes. 

Exp. # 
Log10 

pfu/ml 

Midgut 

Positive 

Total 

Midguts 
MIR 

1 8.03 14 17 82.35% 

2 8 1 14 7.14% 

3 7.82 5 35 14.29% 

4 7.6 29 41 70.73% 

   

Average 43.63% 

   

Std Dev 38.41% 

   

Std Error 19.21% 
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Figure 7.1.  DENV2 FG loop mutant virus infected C6/36 cells stained with MAb 3H5 or 4G2.  

C6/36 cells were infected with each virus (specified on left) at a MOI of 0.001, fixed in acetone 

on day 7 pi, and stained with MAb 3H5 (left panel) or 4G2 (right panel). 
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Table 7.3.  Viruses included in the DENV2 and flavivirus E protein AA sequence alignment. 

DENV2
a Virus Strain Country GenBank 

Genotype   of Origin accession no. 

Asian 1 16681 Thailand U87411 

 
PUO-218 Thailand D00345 

 
M1 Malaysia X15434 

Asian 2 New Guinea C New Guinea AF038403 

 
PL046 Taiwan ABQ18242 

 
K0005 Thailand AY158336 

Asian/American Jamaica 1409 Jamaica M20558 

 
13382-Tizimin Mexico AY449684 

 
China-04 China AF119661 

American PR159 Puerto Rico L10046 

 
Ven2 Venezuela AF100465 

 
IQT2913 Peru AF100468 

Cosmopolitan SL714 Sri Lanka L10055 

 
CAMR5 Australia AF410370 

 
CAMR16 Saudi Arabia AF410378 

Sylvatic Guinea-81-ON33974 Guinea AF231719 

 
IC80-DAKAr578 Ivory Coast AF231718 

 
Mal70-P8-1407 Malaysia AF231717 

Flavivirus
b 

   DENV2 16681 
 

U87411 

DENV1 16007 
 

AF180818 

DENV3 PhMH-J1-97 
 

AA549486 

DENV4 Thailand-1985 
 

AAV49746 

YFV Asibi 
 

AAT58050 

 
17D 

 
AAX47570 

JEV Nakayama 
 

AAB40688 

MVEV NG156 
 

ABM65594 

WNV NY99 
 

AAF20092 

SLEV Laderle 
 

ACA28960 

TBEV Neudoerfl 
 

AAA02739 
POWV LB 

 

AAA86870 
a
 Viruses designated in the alignment below are in the order of this Table and begin with a virus 

abbreviation followed by the virus strain (e.g. DENV2 [D2-], DENV1 [D1-], DENV3 [D3-], 

DENV4 [D4-], YFV-, JEV-, MVEV-, WNV-, SLEV-, TBEV-, and POWV-).  E protein AAs 

were aligned and colored using ClustalX.  One blank row was inserted in between DENV2 

Sylvatic strain Mal70-P8-1407 and DENV2 Asian 1 strain 16681.  Virus strain 16681 was 

included a second time above DENV1 for ease of comparison. 
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D2-16681          MRCIGMSNRDFVEGVSGGSWVDIVLEHGSCVTTMAKNKPTLDFELIKTEAKQPATLRKYC 60 

D2-PUO-218        MRCIGISNRDFVEGVSGGSWVDIVLEHGSCVTTMAKNKPTLDFELIKTEAKQPATLRKYC 60 

D2-M1             MRCIGISNRDLVEGVSGGSWVDIVLEHGSCVTTMAKNKPTLDFELIKTEAKQPATLRKYC 60 

D2-New Guinea C   MRCIGISNRDFVEGVSGGSWVDIVLEHGSCVTTMAKNKPTLDFELIKTEAKQPATLRKYC 60 

D2-PL046          MRCIGISNRDFVEGVSGGSWVDIVLEHGSCVTTMAKNKPTLDFELIKTEAKQLATLRKYC 60 

D2-K0005          MRCIGISNRDFVEGVSGGSWVDIVLEHGSCVTTMAKNKPTLDFELIKTEAKQPATLRKYC 60 

D2-Jamaica 1409   MRCIGISNRDFVEGVSGGSWVDIVLEHGSCVTTMAKNKPTLDFELIKTEAKQPATLRKYC 60 

D2-13382/Tizimin  MRCIGISNRDFVEGVSGGSWVDIVLEHGSCVTTMAKNKPTLDFELIKTEAKQPATLRKYC 60 

D2-China-04       MRCIGVSNRDFVEGVSGGSWVDIVLEHGSCVTTMAKNKPTLDFELIKTEAKQPVTLRKYC 60 

D2-PR159          MRCIGISNRDFVEGVSGGSWVDIVLEHGSCVTTMAKNKPTLDFELIKTEAKQPATLRKYC 60 

D2-Ven2           MRCIGISNRDFVEGVSGGSWVDIVLEHGSCVTTMAKNKPTLDFELIKTEAKQPATLRKYC 60 

D2-IQT2913        MRCIGISNRDFVEGVSGGSWVDIVLEHGSCVTTMAKNKPTLDFELIKTEAKQPATLRKYC 60 

D2-SL714          MRCIGISNRDFVEGVSGGSWVDIVLEHGSCVTTMAKNKPTLDFELIKTEAKQPATLRKYC 60 

D2-CAMR5          MRCIGISNRDFVEGVSGGSWVDIVLEHGSCVTTMAKNKPTLDFELIKTEAKQPATLRKYC 60 

D2-CAMR16         MRCIGISNRDFVEGVSGGSWVDIVLEHGSCVTTMAKNKPTLDFELIKTEAKQPATLRKYC 60 

D2-DAKAr578       MRCIGISNRDFVEGVSGGSWVDIVLEHGSCVTTMAKNKPTLDFELIKTEAKQLATLRKFC 60 

D2-PM33974        MRCIGISNRDFVEGVSGGSWVDIVLEHGSCVTTMAKNKPTLDFELIKTEAKQPATLRKFC 60 

D2-P8-1407        MRCIGISNRDFVEGVSGGSWVDIVLEHGSCVTTMAKNKPTLDFELIKTEAKQPATLRKFC 60 

 

D2-16681          MRCIGMSNRDFVEGVSGGSWVDIVLEHGSCVTTMAKNKPTLDFELIKTEAKQPATLRKYC 60 

D1-16007          MRCVGIGNRDFVEGLSGATWVDVVLEHGSCVTTMAKNKPTLDIELLKTEVTNPAVLRKLC 60 

D3-PhMH-J1-97     MRCVGVGNRDFVEGLSGATWVDVVLEHGGCVTTMAKNKPTLDIELQKTEATQLATLRKLC 60 

D4-Thailand/1985  MRCVGVGNRDFVEGVSGGAWVDLVLEHGGCVTTMAQGKPTLDFELIKTTAKEVALLRTYC 60 

YFV-Asibi         AHCIGITDRDFIEGVHGGTWVSATLEQDKCVTVMAPDKPSLDISLETVAIDGPAEARKVC 60 

YFV-17D           AHCIGITDRDFIEGVHGGTWVSATLEQDKCVTVMAPDKPSLDISLETVAIDRPAEVRKVC 60 

JEV-Nakayama      FNCLGMGNRDFIEGASGATWVDLVLEGDSCLTIMANDKPTLDVRMINIEAVQLAEVRSYC 60 

MVEV-NG156        FNCLGMSSRDFIEGASGATWVDLVLEGDSCITIMAADKPTLDIRMMNIEATNLALVRNYC 60 

WNV-NY99          FNCLGMSNRDFLEGVSGATWVDLVLEGDSCVTIMSKDKPTIDVKMMNMEAANLAEVRSYC 60 

SLEV-Laderle      FNCLGTSNRDFVEGASGATWIDLVLEGGSCVTVMAPEKPTLDFKVMKMEATELATVREYC 60 

TBEV-Neudoerfl    SRCTHLENRDFVTGTQGTTRVTLVLELGGCVTITAEGKPSMDVWLDAIYQENPAKTREYC 60 

POWV-LB           TRCTHLENRDFVTGTQGTTRVSLVLELGGCVTITAEGKPSIDVWLEDIFQESPAETREYC 60 

                   .*    .**:: *  * : :  .** . *:*  :  **::*. :        .  *  * 

 

 

D2-16681          IEAKLTNTTTESRCPTQGEPSLNEEQDKRFVCKHSMVDRGWGNGCGLFGKGGIVTCAMFR 120 

D2-PUO-218        IEAKLTNTTTESRCPTQGEPSLNEEQDKRFVCKHSMVDRGWGNGCGLFGKGGIVTCAMFT 120 

D2-M1             IEAKLTNTTTESRCPTLGEPSLNEEQDKRLVCKHSMVDRGWGNGCGLFGKGGIVTCAMFT 120 

D2-New Guinea C   IEAKLTNTTTDSRCPTQGEPSLNEEQDKRFVCKHSMVDRGWGNGCGLFGKGGIVTCAMFT 120 

D2-PL046          IEAKLTNTTTESRCPTQGEPSLNEEQDKRFVCKHSMVDRGWGNGCGLFGKGGIVTCAMFT 120 

D2-K0005          IEAKLTNTTTESRCPTQGEPSLKEEQDKRFVCKHSMVDRGWGNGCGLFGKGGIVTCAMFT 120 

D2-Jamaica 1409   IEAKLTNTTTESRCPTQGEPSLNEEQDKRFLCKHSMVDRGWGNGCGLFGKGGIVTCAMFT 120 

D2-13382/Tizimin  IEAKLTNTTTESRCPTQGEPSLNEEQDKRFICKHSMVDRGWGNGCGLFGKGGIVTCAMFT 120 

D2-China-04       IKAKLTNTTTESRCPTQGEPSLNEEQDKRFVCKHSMVDRGWGNGCGLFGKGGIVTCATFT 120 

D2-PR159          IEAKLTNTTTDSRCPTQGEPTLNEEQDKRFVCKHSMVDRGWGNGCGLFGKGGIVTCAMFT 120 

D2-Ven2           IEAKLTNTTTDSRCPTQGEPTLNEEQDKRFVCKHSMVDRGWGNGCGLFGKGGIVTCAMFT 120 

D2-IQT2913        IEAKLTNTTTDSRCPTQGEPTLNEEQDKRFVCKHSMVDRGWGNGCGLFGKGGIVTCAMFT 120 

D2-SL714          IEAKLTNTTTASRCPTQGEPSLNEEQDKRFVCKHSMVDRGWGNGCGLFGKGGIVTCAMFT 120 

D2-CAMR5          IEAKLTNTTTASRCPTQGEPSLNEEQDKRFVCKHSMVDRGWGNGCGLFGKGGIVTCAMFT 120 

D2-CAMR16         IEAKLTNTTTASRCPTQGEPSLNEEQDKRFVCKHSMVDRGWGNGCGLFGKGGIVTCAMFT 120 

D2-DAKAr578       IEAKLTNTTTESRCPTQGEPSLVEEQDKRFVCRHSMVDRGWGNGCGLFGKGGIVTCAMFT 120 

D2-PM33974        IEAKLTNTTTESRCPTQGEPSLVEEQDKRFVCRHSMVDRGWGNGCGLFGKGGIVTCAMFT 120 

D2-P8-1407        IEAKLTNTTTESRCPTQGEPSLVEEQDKRFVCKHSMVDRGWGNGCGLFGKGGVVTCAMFT 120 

 

D2-16681          IEAKLTNTTTESRCPTQGEPSLNEEQDKRFVCKHSMVDRGWGNGCGLFGKGGIVTCAMFR 120 

D1-16007          IEAKISNTTTDSRCPTQGEATLVEEQDANFVCRRTFVDRGWGNGCGLFGKGSLITCAKFK 120 

D3-PhMH-J1-97     IEGKITNVTTDSRCPTQGEAILPEEQDQNYVCKHTYVDRGWGNGCGLFGKGSLVTCAKFQ 120 

D4-Thailand/1985  IEASISNITTATRCPTQGEPYLKEEQDQQYICRRDVVDRGWGNGCGLFGKGGVVTCAKFS 120 

YFV-Asibi         YNAVLTHVKINDKCPSTGEAHLAEENEGDNACKRTYSDRGWGNGCGLFGKGSIVACAKFT 120 

YFV-17D           YNAVLTHVKINDKCPSTGEAHLAEENEGDNACKRTYSDRGWGNGCGLFGKGSIVACAKFT 120 

JEV-Nakayama      YHASVTDISTVARCPTTGEAHNEKRADSSYVCKQGFTDRGWGNGCGLFGKGSIDTCAKFS 120 

MVEV-NG156        YAATVSDVSTVSNCPTTGESHNTKRADHNYLCKRGVTDRGWGNGCGLFGKGSIDTCAKFT 120 

WNV-NY99          YLATVSDLSTKAACPTMGEAHNDKRADPAFVCRQGVVDRGWGNGCGLFGKGSIDTCAKFA 120 

SLEV-Laderle      YEATLDTLSTVARCPTTGEAHNTKRSDPTFVCKRDVVDRGWGNGCGLFGKGSIDTCAKFT 120 

TBEV-Neudoerfl    LHAKLSDTKVAARCPTMGPATLAEEHQGGTVCKRDQSDRGWGNHCGLFGKGSIVACVKAA 120 

POWV-LB           LHAKLTNTKVEARCPTTGPATLPEEHQANMVCKRDQSDRGWGNHCGFFGKGSIVACAKFE 120 

                    . :   .    **: * .   :. :    *::   ****** **:****.: :*.    

 



 

178 

 

D2-16681          CKKN--MEGKVVQPENLEYTIVITPH-SGEEHAVGNDTGKHGKEIK----ITPQSSTTEA 173 

D2-PUO-218        CKKN--MEGKVVQPENLEYTIVVTPH-SGEEHAVGNDTGKHGKEIK----VTPQSSITEA 173 

D2-M1             CKKN--MEGKIVQPENLEYTIVVTPH-SGEEHAVGNDTGKHGKEIK----ITPQSSITEA 173 

D2-New Guinea C   CKKN--MKGKVVQPENLEYTIVITPH-SGEEHAVGNDTGKHGKEIK----ITPQSSITEA 173 

D2-PL046          CKKN--MEGKIVQPENLEYTIVITPH-SGEEHAVGNDTGKHGKEIK----ITPQSSITEA 173 

D2-K0005          CKKN--MEGKIVQPENLEYTIVVTPH-SGEEHAVGNDTGKHGKEIK----VTPQSSITEA 173 

D2-Jamaica 1409   CKKN--MEGKVVLPENLEYTIVITPH-SGEEHAVGNDTGKHGKEIK----ITPQSSITEA 173 

D2-13382/Tizimin  CKKN--MEGKVVQPENLEYTIVITPH-SGEEHAVGNDTGKHGKEIK----ITPQSSITEA 173 

D2-China-04       CKKN--MEGKIVQPENLEYTIVITPH-SGEEHAVGNDTGKHGKEIK----ITPQSSITEA 173 

D2-PR159          CKKN--MEGKIVQPENLEYTVVITPH-SGEEHAVGNDTGKHGKEVK----ITPQSSITEA 173 

D2-Ven2           CKKN--MEGKIVQPENLEYTVVITPH-SGEEHAVGNDTGKHGKEVK----ITPQSSITEA 173 

D2-IQT2913        CKKN--MEGKIVQPENLEYTVVITPH-SGEEHAVGNDTGKHGKEVK----ITPQSSITEA 173 

D2-SL714          CKKN--MEGKIVQPENLEYTIVITPH-SGEENAVGNDTGKHGKEIK----VTPQSSITEA 173 

D2-CAMR5          CKKN--MEGKIVQPENLEYTIVVTPH-SGEENAVGNDTGKHGKEIK----VTPQSSITEA 173 

D2-CAMR16         CKKN--MEGKIVQPENLEYTIVITPH-SGEENAVGNDTGKHGKEIK----VTPQSSITEA 173 

D2-DAKAr578       CLKK--MEGKVVQPENLEYTIVITPH-SGEEHAVGNDTGKHGKEVK----ISPQSSIAEA 173 

D2-PM33974        CLKK--MEGKVVQPENLEYTIVITPH-SGEEHAVGNDTGKHGKEVK----ITPQSSIAEA 173 

D2-P8-1407        CLKN--MEGKVVQPENLEYTIVITPH-SGEEHAVGNDTGKHGKEVK----ITPQSSITEA 173 

 

D2-16681          CKKN--MEGKVVQPENLEYTIVITPH-SGEEHAVGNDTGKHGKEIK----ITPQSSTTEA 173 

D1-16007          CVTK--LEGKIVQYENLKYSVIVTVH-TGDQHQVGNETTEHGTTAT----ITPQAPTSEI 173 

D3-PhMH-J1-97     CLES--IEGKVVQHENLKYTVIITVH-TGDQHQVGNET--QGVTAE----ITPQASTVEA 171 

D4-Thailand/1985  CSGK--ITGNLVQIENLEYTVVVTVH-NGDTHAVGNDTSNHGVTAT----ITPRSPSVEV 173 

YFV-Asibi         CAKS--MSLFEVDQTKIQYVIRAQLHVGAKQENWNTDIKTLKFDAL--------SGSQEA 170 

YFV-17D           CAKS--MSLFEVDQTKIQYVIRAQLHVGAKQENWNTDIKTLKFDAL--------SGSQEV 170 

JEV-Nakayama      CTSK--AIGRTIQPENIKYEVGIFVHGTTTSENHGNYSAQVGASQAAKFTVTPNAPSITL 178 

MVEV-NG156        CSSS--AAGRLILPENIKYEVGIFVHGSTDSTSHGNYSTQIGANQAARFTISPNAPAITA 178 

WNV-NY99          CSTK--AIGRTILKENIKYEVAIFVHGPTTVESHGNYSTQVGATQAGRFSITPAAPSYTL 178 

SLEV-Laderle      CKNK--ATGKTILRENIKYEVAIFVHGSTDSTSHGNYFEQIGKNQAARFTISPQAPSFTA 178 

TBEV-Neudoerfl    CEAKKKATGHVYDANKIVYTVKVEPH--TGDYVAANETHSGRKTAS----FTISSEKTIL 174 

POWV-LB           CEEAKKAVGHVYDSTKITYVVKVEPH--TGDYLAANETNSNRKSAQ----FTVASEKVIL 174 

                  *              :: * :    *         .                  :      

 

 

D2-16681          ELTGYGTVTMECSPRTGLDFNEMVLLQMENK------AWLVHRQWFLDLPLPWLPGADTQ 227 

D2-PUO-218        ELTGYGTVTMECSPRTGLDFNEMVLLQMENK------AWLVHRQWFLDLPLPWLPGADTQ 227 

D2-M1             ELTGYGTVTMECSPRTGLDFNEMVLLQMENK------AWLVHRQWFLDLPLPWLPGADTQ 227 

D2-New Guinea C   ELTGYGTVTMECSPRTGLDFNEMVLLQMENK------AWLVHRQWFLDLPLPWLPGADTQ 227 

D2-PL046          ELTGYGTVTMECSPRTGLDFNEMVLLQMENK------AWLVHRQWFLDLPLPWLPGADTQ 227 

D2-K0005          ELTGYGTVTMECSPRTGLDFNEMVLLQMENK------AWLVHRQWFLDLPLPWLPGADTQ 227 

D2-Jamaica 1409   ELTGYGTVTMECSPRTGLDFNEMVLLQMEDK------AWLVHRQWFLDLPLPWLPGADTQ 227 

D2-13382/Tizimin  ELTGYGTVTMECSPRTGLDFNEMVLLQMEDK------AWLVHRQWFLDLPLPWLPGADTQ 227 

D2-China-04       ELTGYGTVTMECSPRTGLDFNEMVLLQMEDK------AWLVHRQWFLDLPLPWLPGADTQ 227 

D2-PR159          ELTGYGTVTMECSPRTGLDFNEMVLLQMKDK------AWLVHRQWFLDLPLPWLPGADTQ 227 

D2-Ven2           ELTGYGTVTMECSPRTGLDFNEMVLLQMEDK------AWLVHRQWFLDLPLPWLPGADTQ 227 

D2-IQT2913        ELTGYGTVTMECSPRTGLDFNEMVLLQMEDK------AWLVHRQWFLDLPLPWLPGADTQ 227 

D2-SL714          ELTGYGTVTMECSPRTGLDFNEMVLLQMENK------AWLVHRQWFLDLPLPWLPGADTQ 227 

D2-CAMR5          ELTGYGTVTMECSPRTGLDFNEMVLLQMENK------AWLVHRQWFLDLPLPWLPGADTQ 227 

D2-CAMR16         ELTGYGTVTMECSPRTGLDFNEMVLLQMENK------AWLVHRQWFLDLPLPWLPGADTQ 227 

D2-DAKAr578       ELTDYGTITMECSPRTGLDFNEMVLLQMESK------AWLVHRQWFLDLPLPWLPGADTQ 227 

D2-PM33974        ELTGYGTITMECSPRTGLDFNEMVLLQMESK------AWLVHRQWFLDLPLPWLPGADTQ 227 

D2-P8-1407        ELTGYGTITMECSPRTGLDFNEMVLLQMEKK------AWLVHRQWFLDLPLPWLPGADTQ 227 

 

D2-16681          ELTGYGTVTMECSPRTGLDFNEMVLLQMENK------AWLVHRQWFLDLPLPWLPGADTQ 227 

D1-16007          QLTDYGTLTLDCSPRTGLDFNEMVLLTMKER------SWLVHKQWFLDLPLPWTSGASTS 227 

D3-PhMH-J1-97     ILPEYGTLGLECSPRTGLDFNEMILLTMKNK------AWMVHRQWFFDLPLPWTSGATTE 225 

D4-Thailand/1985  ELPDYGELTLDCEPRSGIDFNEMILMKMKKK------TWLVHKQWFLDLPLPWTAGADTS 227 

YFV-Asibi         EFTGYGKATLECQVQTAVDFGNSYIAEMEKE------SWIVDRQWAQDLTLPWQSGSGG- 223 

YFV-17D           EFTGYGKATLECQVQTAVDFGNSYIAEMETE------SWIVDRQWAQDLTLPWQSGSGG- 223 

JEV-Nakayama      KLGDYGEVTLDCEPRSGLNTEAFYVMTVGSK------SFLVHREWFHDLALPWTPPSST- 231 

MVEV-NG156        KMGDYGEVAVECEPRSGLNTEAYYVMTIGTK------HFLVHREWFNDLLLPWTSPSST- 231 

WNV-NY99          KLGEYGEVTVDCEPRSGIDTNAYYVMTVGTK------TFLVHREWFMDLNLPWSSAGST- 231 

SLEV-Laderle      DMGEYGTVTIDCEARSGINTEDYYVFTVKEK------SWLVNRDWFHDLNLPWTSPATT- 231 

TBEV-Neudoerfl    TMGEYGDVSLLCRVASGVDLAQTVILELDKTVEHLPTAWQVHRDWFNDLALPWKHEGAQ- 233 

POWV-LB           RLGDYGDVSLTCKVASGIDVAQTVVMSLDSSKDHLPSAWQVHRDWFEDLALPWKHKDNQ- 233 

                   :  **   : *   :.::     :  :          : *.::*  ** ***        
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D2-16681          GSNWIQKETLVTFKNPHAKKQDVVVLGSQEGAMHTALTGATEIQMSSG----NLLFTGHL 283 

D2-PUO-218        GSNWIQKETLVTFKNPHAKKQDVVVLGSQEGAMHTALTGATEIQMSSG----NLLFTGHL 283 

D2-M1             GSNWIQKETLVTFKNPHAKKQDVVVLGSQEGAIHTALTGATEIQMSSG----NLLFTGHL 283 

D2-New Guinea C   GSNWIQKETLVTFKNPHAKKQDVVVLGSQEGAMHTALTGATEIQMSSG----NLLFTGHL 283 

D2-PL046          GSNWIQKETLVTFKNPHAKKQDVVVLGSQEGAMHTALTGATEIQMSSG----NLLFTGHL 283 

D2-K0005          GSNWIQKETLVTFKNPHAKKQDVVVLGSQEGAMHTALTGATEIQMSSG----NLLFTGHL 283 

D2-Jamaica 1409   GSNWIQKETLVTFKNPHAKKQDVVVLGSQEGAMHTALTGATEIQMSSG----NLLFTGHL 283 

D2-13382/Tizimin  GSNWIQKETLVTFKNPHAKKQDVVVLGSQEGAMHTALTGATEIQMSSG----NLLFTGHL 283 

D2-China-04       GSNWIQKETLVTFKNPHAKKQDVVVLGSQEGAMHTALTGATEIQMSSG----NLLFTGHL 283 

D2-PR159          GSNWIQKETLVTFKNPHAKKQDVVVLGSQEGAMHTALTGATEIQMSSG----NLLFTGHL 283 

D2-Ven2           GSNWIQKETLVTFKNPHAKKQDVVVLGSQEGAMHTALTGATEIQMSSG----NLLFTGHL 283 

D2-IQT2913        GSNWIQKETLVTFKNPHAKKQDVVVLGSQEGAMHTALTGATEIQMSSG----NLLFTGHL 283 

D2-SL714          GSNWIQKETLVTFKNPHAKKQDVVVLGSQEGAMHTALTGATEIQMSSG----NLLFTGHL 283 

D2-CAMR5          GSNWIQKETLVTFKNPHAKKQDVVVLGSQEGAMHTALTGATEIQMSSG----NLLFTGHL 283 

D2-CAMR16         GSNWIQKETLVTFKNPHAKKQDVVVLGSQEGAMHTALTGATEIQMSSG----NLLFTGHL 283 

D2-DAKAr578       GSNWIQKEMLVTFKNPHAKRQDVVVLGSQEGAMHTALTGATEIQMSLG----NILFMGHL 283 

D2-PM33974        GSNWIQKEMLVTFKNPHAKRQDVVVLGSQEGAMHTALTGATEIQMSLG----NILFMGHL 283 

D2-P8-1407        GSNWIQKEMLVTFKNPHAKKQDVVVLGSQEGAMHTALTGATEIQMSSG----NLLFTGHL 283 

 

D2-16681          GSNWIQKETLVTFKNPHAKKQDVVVLGSQEGAMHTALTGATEIQMSSG----NLLFTGHL 283 

D1-16007          QETWNRQDLLVTFKTAHAKKQEVVVLGSQEGAMHTALTGATEIQTSGT----TTIFAGHL 283 

D3-PhMH-J1-97     TPTWNKKELLVTFKNAHAKKQEVVVLGSQEGAMHTALTGATEIQTSGG----TSIFAGHL 281 

D4-Thailand/1985  EVHWNHKERMVTFKVPHAKRQDVTVLGSQEGAMHSALTGATEVDSGDG----NHMFAGHL 283 

YFV-Asibi         --VWREMHHLVEFEPPHAATIRVLALGNQEGSLKTALTGAMRVTKDTNDNNLYKLHGGHV 281 

YFV-17D           --VWREMHHLVEFEPPHAVTIRVLALGNQEGSLKTALTGAMRVTKDTNDNNLYKLHGGHV 281 

JEV-Nakayama      --AWRNRELLMEFEEAHATKQSVVALGSQEGGLHQALAGAIVVEYSSS----VKLTSGHL 285 

MVEV-NG156        --EWRNREILMEFEEPHATKQSVVALGSQEGALHQALAGAVPVEFASST---LKLTSGHL 286 

WNV-NY99          --VWRNRETLMEFEEPHATKQSVIALGSQEGALHQALAGAIPVEFSSNT---VKLTSGHL 286 

SLEV-Laderle      --DWRNRETLVEFEEPHATKQTVVALGSQEGALHTALAGAIPATVSSST---LTLQSGHL 286 

TBEV-Neudoerfl    --NWNNAERLVEFGAPHAVKMDVYNLGDQTGVLLKALAGVPVAHIEGTK---YHLKSGHV 288 

POWV-LB           --DWNSVEKLVEFGPPHAVKMDVFNLGDQTAVLLKSLAGVPLASVEGQK---YHLKSGHV 288 

                     *   . :: *  .**    *  **.* . :  :*:*.              :  **: 

 

 

D2-16681          KCRLRMDKLQLKGMSYSMCTG-KFKVVKEIAETQHGTIVIRVQYEGDGSPCKIPFEIMD- 341 

D2-PUO-218        KCRLRMDKLQLKGMSYSMCTG-KFKVVKEIAETQHGTIVIRVQYEGDGSPCKIPFEIMD- 341 

D2-M1             KCRLRMDKLQLKGMSYSMCTG-KFKVVEEIAETQHGTIVIRVQYEGDGSPCKIPFEIMD- 341 

D2-New Guinea C   KCRLRMDKLQLKGMSYSMCTG-KFKVVKEIAETQHGTIVIRVQYEGDGSPCKIPFEIMD- 341 

D2-PL046          KCRLRMDKLQLKGMSYSMCTG-KFKVVKEIAETQHGTIVVRVQYEGDGSPCKIPFEIMD- 341 

D2-K0005          KCRLRMDKLQLKGMSYSMCTG-KFKVVKEIAETQHGTIVIRVQYEGDGSPCKVPFEIMD- 341 

D2-Jamaica 1409   KCRLRMDKLQLKGMSYSMCTG-KFKIVKEIAETQHGTIVIRVQYEGDGSPCKIPFEIMD- 341 

D2-13382/Tizimin  KCRLRMDKLQLKGMSYSMCTG-KFKIVKEIAETQHGTIVIRVQYEGDGSPCKIPFEITD- 341 

D2-China-04       KCRLRMDKLQLKGMSYSMCTG-KFKIVKEIAETQHGTIVIRVQYEGDGSPCKIPFEIMD- 341 

D2-PR159          KCRLRMDKLQLKGMSYSMCTG-KFKVVKEIAETQHGTIVIRVQYEGDGSPCKIPFEIMD- 341 

D2-Ven2           KCRLRMDKLQLKGMSYSMCTG-KFKIVKEIAETQHGTIVIRVQYEGDGSPCKIPFEIMD- 341 

D2-IQT2913        KCRLRMDKLQLKGMSYSMCTG-KFKIVKEIAETQHGTIVIRVQYEGDGSPCKIPFEIMD- 341 

D2-SL714          KCRLRMDKLQLKGMSYSMCTG-KFKVVKEIAETQHGTIVIRVQYEGDGSPCKIPFEIMD- 341 

D2-CAMR5          KCRLRMDKLQLKGMSYSMCTG-KFKVVKEIAETQHGTIVIRVQYEGDGSPCKIPFEIMD- 341 

D2-CAMR16         KCRLRMDKLQLKGMSYSMCTG-KFKVVKEIAETQHGTIVIRVQYEGDGSPCKIPFEIMD- 341 

D2-DAKAr578       KCRLRMDKLQLKGMSYSMCTG-KFKVVKEIAETQHGTIVIRVQYEGDDSPCKIPFEIMD- 341 

D2-PM33974        KCRLRMDKLQLKGMSYSMCTG-KFKVVKEIAETQHGTIVIRVQYEGDDSPCKIPFEIMD- 341 

D2-P8-1407        KCRLRMDKLQLKGMSYSMCTG-KFKVVKEIAETQHGTIVIRVQYEGEGAPCKIPFEIMD- 341 

 

D2-16681          KCRLRMDKLQLKGMSYSMCTG-KFKVVKEIAETQHGTIVIRVQYEGDGSPCKIPFEIMD- 341 

D1-16007          KCRLKMDKLTLKGMSYVMCTG-SFKLEKEVAETQHGTVLVQVKYEGTDAPCKIPFSTQD- 341 

D3-PhMH-J1-97     KCRLKMDKLELKGMSYAMCLN-TFVLKKEVSETQHGTILIKVEYKGEDAPCKIPFSTED- 339 

D4-Thailand/1985  KCKVRMEKLRIKGMSYTMCSG-KFSIDKEMAETQHGTTVVKVKYEGTGAPCKVPIEIRD- 341 

YFV-Asibi         SCRVKLSALTLKGTSYKMCTD-KMSFVKNPTDTGHGTVVMQVKVP-KGAPCKIPVIVADD 339 

YFV-17D           SCRVKLSALTLKGTSYKICTD-KMFFVKNPTDTGHGTVVMQVKVS-KGAPCRIPVIVADD 339 

JEV-Nakayama      KCRLKMDKLALKGTTYGMCTE-KFSFAKNPADTGHGTVVIELSYSGSDGPCKIPIVSVAS 344 

MVEV-NG156        KCRVKMEKLKLKGTTYGMCTE-KFTFSKNPADTGHGTVVLELQYTGSDGPCKIPISSVAS 345 

WNV-NY99          KCRVKMEKLQLKGTTYGVCSK-AFKFLGTPADTGHGTVVLELQYTGTDGPCKVPISSVAS 345 

SLEV-Laderle      KCRAKLDKVKIKGTTYGMCDS-AFTFSKNPTDTGHGTVIVELQYTGSNGPCRVPISVTAN 345 

TBEV-Neudoerfl    TCEVGLEKLKMKGLTYTMCDKTKFTWKRAPTDSGHDTVVMEVTFSGT-KPCRIPVRAVAH 347 

POWV-LB           TCDVGLEKLKLKGTTYSMCDKAKFKWKRVPVDSGHDTVVMEVSYTGSDKPCRIPVRAVAH 348 

                  .*   :. : :** :* :*    :       :: *.* ::.:       **::*.      
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D2-16681          LEKRHVLGRLITVNPIVTE--KDSPVNIEAEPPFGDSYIIIGVEPGQLKLNWFKKGSSIG 399 

D2-PUO-218        LEKRHVLGRLITVNPIVTE--KDSPVNIEAEPPFGDSYIIIGVEPGQLKLNWFKKGSSIG 399 

D2-M1             LEKRHVLGRLITVNPIVTE--KDSPVNVEAEPPFGDSYIIIGVEPGQLKLNWFKKGSSIG 399 

D2-New Guinea C   LEKRHVLGRLITVNPIVTE--KDSPVNIEAEPPFGDSYIIIGVEPGQLKLNWFKKGSSIG 399 

D2-PL046          LEKRHVLGRLITVNPIVTE--KDSPVNIEAEPPFGDSYVIIGVEPGQLKLNWFKKGSSIG 399 

D2-K0005          LEKRYVLGRLITVNPIVTE--KDSPVNIEAEPPFGDSYIIIGVEPGQLKLNWFKKGSSIG 399 

D2-Jamaica 1409   LEKRHVLGRLITVNPIVTE--KDSPVNIEAEPPFGDSYIIIGVEPGQLKLNWFKKGSSIG 399 

D2-13382/Tizimin  LEKRHVLGRLITVNPIVTE--KDSPVNIEAEPPFGDSYIIIGVEPGQLKLNWFKKGSSIG 399 

D2-China-04       LEKRHVLGRLITVNPIVTE--KDSPVNIEAEPPFGDSYIIIGVEPGQLKLNWVKKGSSIG 399 

D2-PR159          LEKRHVLGRLITVNPIVTE--KDSPVNIEAEPPFGDSYIIIGVEPGQLKLDWFKKGSSIG 399 

D2-Ven2           LEKRHVLGRLITVNPIVTE--KDSPVNIEAEPPFGDSYIIIGVEPGQLKLDWFRKGSSIG 399 

D2-IQT2913        LEKRHVLGRLITVNPIVTE--KDSPVNIEAEPPFGDSYIIIGAEPGQLKLDWFKKGSSIG 399 

D2-SL714          LEKRHVLGRLITVNPIVTE--KDSPVNIEAEPPFGDSYIIIGVEPGQLKLSWFKKGSSIG 399 

D2-CAMR5          LEKRHVLGRLITVNPIVTG--KDSPVNIEAEPPFGDSYIIIGVEPGQLKLSWFKKGSSIG 399 

D2-CAMR16         LEKRHVLGRLITVNPIVTE--KDSPVNIEAEPPFGDSYIIIGVEPGQLKLSWFKKGSSIG 399 

D2-DAKAr578       LEKKHVLGRLITVNPIVTE--KDNPINIEAEPPFGDSYIVIGVEPGQLKLNWFKKGSSIG 399 

D2-PM33974        LEKKHVLGRLITVNPIVTE--KDSPINIEAEPPFGDSYIIIGVEPGQLKLNWFKKGSSIG 399 

D2-P8-1407        LEKKHVLGRLITVNPIVTE--KDSPINIEAEPPFGDSYIVIGVEPGQLKLNWFKKGSSIG 399 

 

D2-16681          LEKRHVLGRLITVNPIVTE--KDSPVNIEAEPPFGDSYIIIGVEPGQLKLNWFKKGSSIG 399 

D1-16007          EKGATQNGRLITANPIVTD--KEKPVNIEAEPPFGESYIVVGAGEKALKLSWFKKGSSIG 399 

D3-PhMH-J1-97     GQGKAHNGRLITANPVVTK--KEEPVNIEAEPPFGESNIVIGIGDKALKINWYKKGSSIG 397 

D4-Thailand/1985  VNKEKVVGRIISSTPFAEN--TNSVTNIELEPPFGDSYIVIGVGDSALTLHWFRKGSSIG 399 

YFV-Asibi         LTAAINKGILVTVNPIAST--NDDEVLIEVNPPFGDSYIIVGTGDSRLTYQWHKEGSSIG 397 

YFV-17D           LTAAINKGILVTVNPIAST--NDDEVLIEVNPPFGDSYIIVGRGDSRLTYQWHKEGSSIG 397 

JEV-Nakayama      LNDMTPVGRLVTVNPFVATSSANSKVLVEMEPPFGDSYIVVGRGDKQINQHWHKAGSTLG 404 

MVEV-NG156        LNDMTPVGIMVTANPYVASSTANAKVLVEIEPPFGDSYIVVGRGDKQINHHWHKEGSSIG 405 

WNV-NY99          LNDLTPVGRLVTVNPFVSVATANAKVLIELEPPFGDSYIVVGRGEQQINHHWHKSGSSIG 405 

SLEV-Laderle      LMDLTPVGRLVTVNPFISTGGANNKVMIEVEPPFGDSYIVVGRGTTQINYHWHKEGSSIG 405 

TBEV-Neudoerfl    GSPDVNVAMLITPNPTIEN---NGGGFIEMQLPPGDNIIYVG----ELSHQWFQKGSSIG 400 

POWV-LB           GVPAVNVAMLITPNPTIET---NGGGFIEMQLPPGDNIIYVG----DLSQQWFQKGSTIG 401 

                         . ::: .*       :    :* : * *:. : :*     :.  * : **::* 

 

 

D2-16681          QMFETTMRGAKRMAILGDTAWDFGSLGGVFTSIGKALHQVFGAIYGAAFSGVSWTMKILI 459 

D2-PUO-218        QMFETTMRGAKRMAILGDTAWDFGSLGGVFTSIGKALHQVFGAIYGAAFSGVSWTMKILI 459 

D2-M1             QMFETTMIGAKRMAILRDTAWDFGSLGGVFTSIGKALHQVFGAIYGAAFSGVSWTMKILI 459 

D2-New Guinea C   QMIETTMRGAKRMAILGDTAWDFGSLGGVFTSIGKALHQVFGAIYGAAFSGVSWTMKILI 459 

D2-PL046          QMFETTMRGAKRMAILGDTAWDFGSLGGVFTSIGKALHQVFGAIYGAAFSGVSWTMKILI 459 

D2-K0005          QMFETTMRGAKRMAILGDTAWDFGSLGGVFTSIGKALHQVFGAIYGAAFSGVSWTMKILI 459 

D2-Jamaica 1409   QMFETTMRGAKRMAILGDTAWDFGSLGGVFTSIGKALHQVFGAIYGAAFSGVSWTMKILI 459 

D2-13382/Tizimin  QMFEITMRGAKRMAILGDTAWDFGSLGGVFTSIGKALHQVFGAIYGAAFSGVSWTMKILI 459 

D2-China-04       QMFETTMRGAKRMAILGDTAWDFGSLGGVFTSIGKALHQVFGAIYGAAFSGVSWTMKILI 459 

D2-PR159          QMFETTMRGAKRMAILGDTAWDFGSLGGVFTSIGKALHQVFGAIYGAAFSGVSWTMKILI 459 

D2-Ven2           QMFETTMRGAKRMAILGDTAWDFGSLGGVFTSIGKALHQVFGAIYGAAFSGVSWTMKILI 459 

D2-IQT2913        QMFETTMRGAKRMAILGDTAWDFGSLGGVFTSIGKALHQVFGAIYGAAFSGVSWTMKILI 459 

D2-SL714          QMFETTMRGAKRMAILGDTAWDFGSLGGVFTSIGKALHQVFGAIYGAAFSGVSWTMKILI 459 

D2-CAMR5          QMFETTMRGAKRMAILGDTAWDFGSLGGVFTSIGKALHQVFGAIYGAAFSGVSWTMKILI 459 

D2-CAMR16         QMFETTMRGAKRMAILGDTAWDFGSLGGVFTSIGKALHQVFGAIYGAAFSGVSWTMKILI 459 

D2-DAKAr578       QMFETTMRGAKRMAILGDTAWDFGSIGGVFTSVGKALHQVFGAIYGAAFSGVSWTMKILI 459 

D2-PM33974        QMFETTMRGAKRMAILGDTAWDLGSIGGVFTSVGKALHQVFGAIYGAAFSGVSWTMKILI 459 

D2-P8-1407        QMFETTMRGAKRMAILGDTAWDFGSLGGVFTSVGKALHQVFGAIYGVAFSGVSWTMKILI 459 

 

D2-16681          QMFETTMRGAKRMAILGDTAWDFGSLGGVFTSIGKALHQVFGAIYGAAFSGVSWTMKILI 459 

D1-16007          KMFEATARGARRMAILGDTAWDFGSIGGVFTSMGKLVHQVFGTAYGVLFSGVSWTMKIGI 459 

D3-PhMH-J1-97     KMFEATARGARRMAILGDTAWDFGSVGGVLNSLGKMVHQIFGSAYTALFSGVSWIMKIGI 457 

D4-Thailand/1985  KMFESTYRGAKRMAILGETAWDFGSVGGLLTSLGKAVHQVFGSVYSTMFGGVSWMVRILI 459 

YFV-Asibi         KLFTQTMKGAERLAVMGDAAWDFSSAGGFFTSVGKGIHTVFGSAFQGLFGGLNWITKVIM 457 

YFV-17D           KLFTQTMKGVERLAVMGDTAWDFSSAGGFFTSVGKGIHTVFGSAFQGLFGGLNWITKVIM 457 

JEV-Nakayama      KAFSTTLKGAQRLAALGDTAWDFGSIGGVFNSIGKAVHQVFGGAFRTLFGGMSWITQGLM 464 

MVEV-NG156        KAFSTTLKGAQRLAALGDTAWDFGSVGGVFNSIGKRVHQVFGGAFRTLFGGMSWISQGLL 465 

WNV-NY99          KAFTTTLKGAQRLAALGDTAWDFGSVGGVFTSVGKAVHQVFGGAFRSLFGGMSWITQGLL 465 

SLEV-Laderle      KALATTWKGAQRLAVLGDTAWDFGSIGGVFNSIGKAVHQVFGRAFRTLFGGMSWITQGLL 465 

TBEV-Neudoerfl    RVFQKTKKGIERLTVIGEHAWDFGSAGGFLSSIGKAVHTVLGGAFNSIFGGVGFLPKLLL 460 

POWV-LB           RMFEKTRRGLERLSVVGEHAWDFGSVGGVLSSVGKAIHTVLGGAFNTLFGGVGFIPKMLL 461 

                  : :  *  * .*:: : : ***:.* **.:.*:** :* ::*  :   *.*:.:  :  : 
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D2-16681          GVIITWIGMNSRSTSLSVTLVLVGIVTLYLGVMVQA 495 

D2-PUO-218        GVIITWIGMNSRSTSLSVSLVLVGIVTLYLGVMVQA 495 

D2-M1             GVIITWIGMNSRSTSLSVSLVLVGIVTLYLGVMCQA 495 

D2-New Guinea C   GVIITWIGMNSRSTSLSVSLVLVGVVTLYLGVMVQA 495 

D2-PL046          GVIITWIGMNSRSTSLSVSLVLVGVVTLYLGVVVQA 495 

D2-K0005          GVIITWIGMNSRSTSLSVSLVLVGIVTLYLGVMVQA 495 

D2-Jamaica 1409   GVIITWIGMNSRSTSLSVSLVLVGVVTLYLGAMVQA 495 

D2-13382/Tizimin  GVIITWIGMNSRSTSLSVSLVLVGVVTLYLGAMVQA 495 

D2-China-04       GVIITWIGMNSRSTSLSVSLVLVGVITLYLGAMVQA 495 

D2-PR159          GVIITWIGMNSRSTSLSVSLVLVGIVTLYLGVMVQA 495 

D2-Ven2           GVIITWIGMNSRSTSLSVSLVLVGIVTLYLGVMVQA 495 

D2-IQT2913        GVIITWIGMNSRSTSLSVSLVLVGIVTLYLGVMVQA 495 

D2-SL714          GVVITWIGMNSRSTSLSVALVLVGIVTLYLGVMVQA 495 

D2-CAMR5          GVVITWIGMNSRSTSLSVSLVLVGVVTLYLGVMVQA 495 

D2-CAMR16         GAVITWIGMNSRSTSLSVSLVLVGVVTLYLGVMVQA 495 

D2-DAKAr578       GVVITWIGMNSRSTSLSVTLVLVGFVTLYLGVMVQA 495 

D2-PM33974        GVVITWIGMNSRSTSLSVTLVLVGIVTLYLGVMVQA 495 

D2-P8-1407        GVIITWIGMNSRSTSLSVTLVIVGIVTLYLGVMVQA 495 

 

D2-16681          GVIITWIGMNSRSTSLSVTLVLVGIVTLYLGVMVQA 495 

D1-16007          GILLTWLGLNSRNTSLSMMCIAVGMVTLYLGVMVQA 495 

D3-PhMH-J1-97     GVLLTWIGLNSKNTSMSFSCIVIGIITLYLGTVVQA 493 

D4-Thailand/1985  GFLVLWIGTNSRNTSMAMSCIAVGGITLFLGFTVHA 495 

YFV-Asibi         GAVLIWVGINTRNMTMSMSMILVGVIMMFLSLGVGA 493 

YFV-17D           GAVLIWVGINTRNMTMSMSMILVGVIMMFLSLGVGA 493 

JEV-Nakayama      GALLLWMGVNARDRSIALAFLATGRVLVFLATNVHA 500 

MVEV-NG156        GALLLWMGVNARDKSIALAFLATGGVLLFLATNVHA 501 

WNV-NY99          GALLLWMGINARDRSIALTFLAVGGVLLFLSVNVHA 501 

SLEV-Laderle      GALLLWMGLQARDRSISLTLLAVGGILIFLATSVQA 501 

TBEV-Neudoerfl    GVALAWLGLNMRNPTMSMSFLLAGGLVLAMTLGVGA 496 

POWV-LB           GVALVWLGLNARNPTMSMTFLAVGALTLMMTMGVGA 497 

                  *  : *:* : :. :::.  :  * : : :     * 

 


