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ABSTRACT

IMPROVED INFERENCE IN HETEROSKEDASTIC REGRESSION MODELS WITH

MONOTONE VARIANCE FUNCTION ESTIMATION

The problems associated with heteroskedasticity often lead to incorrect inferences in a regres-

sion model, especially when the form of the heteroskedasticity is obscure. In this dissertation, I

present methods to estimate a variance function in a heteroskedastic regression model where the

variance function is assumed to be smooth and monotone in a predictor variable. Maximum like-

lihood estimation of the variance function is derived under normal or double-exponential error

distribution assumptions based on regression splines and the cone projection algorithm. A pe-

nalized spline estimator is also introduced, and the estimator performs well when there exists a

spiking problem at a boundary of domain. The convergence rates of the estimated variance func-

tions are derived, and simulations show that it tends to be closer to the true variance function in a

variety of scenarios compared to the existing method. The estimated variance functions from the

proposed methods provide improved inference about the mean function, in terms of a coverage

probability and an average length for an interval estimate. The utility of the method is illustrated

through the analysis of real datasets such as LIDAR data, abalone data, California air pollution

data, and U.S. temperature data. The methodology is implemented in the R package cgam. In

addition to the variance function estimation method, the hypothesis test procedure of a smooth and

monotone variance function is discussed. The likelihood ratio test is introduced under normal or

double-exponential error distribution assumptions. Comparisons of the proposed test with existing

tests are conducted through simulations.
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Chapter 1

Introduction

1.1 Review of Regression Splines

Regression splines have been widely used for approximating functions, and B-splines are a

standard choice for regression basis function because of its flexibility and smoothness. Basic

properties of B-splines are illustrated in de Boor (2001) and Schumaker (2007). Given the sample

size n andKn distinct knot points t1, . . . , tKn
where 0 = t1 < · · · < tKn

= 1, letBk,p(x) be the kth

B-spline basis function of degree p in a variable x for any 0 ≤ x ≤ 1. The B-spline basis function

of degree p is a piecewise polynomial function of degree p on an interval [0, 1]. The number of

interior knots Kn increases as n increases, and the number of basis functions is Ln = Kn + p− 1.

Based on the recurrence relation introduced in de Boor (2001), a B-spline basis function is defined

as

Bk,p(x) =
x− tk
tk+p − tk

Bk,p−1(x) +
tk+p+1 − x

tk+p+1 − tk+1

Bk+1,p−1(x),

where

Bk,0(x) =





1 if tk ≤ x < tk + 1

0 otherwise.

The first derivative of a B-spline basis function of degree p is defined as

B′
k,p(x) = p

(
−Bk+1,p−1(x)

tk+p+1 − tk+1

+
Bk,p−1(x)

tk+p − tk

)
,

which is a function of B-spline basis functions of degree p− 1. We can define a B-spline function

of degree p on the interval [0, 1] given by

S(x) =
Ln∑

k=1

αkBk,p(x),

1



where αk’s are coefficients. In this dissertation, we choose to use quadratic splines that correspond

to p = 2 because the quadratic B-spline basis functions are widely used to approximate monotone

functions. The kth quadratic B-spline basis, Bk,2, is consists of three nontrivial quadratic pieces

and vanishes outside the interval [tk−2, tk+1). The connection between the shape of a spline func-

tion S and the behavior of its coefficients are illustrated in the Section 4.9 of Schumaker (2007).

The function S is said to be monotone increasing (decreasing) if the first derivatives are positive

(negative) at all knots. It is because the first derivative of the spline function S(x) can be written

as

S ′(x) =
d

dx

(
Ln∑

k=1

αkBk,2(x)

)
= 2

Ln−1∑

k=1

αk+1 − αk

tk+3 − tk+1

Bk,1(x), (1.1)

if tk+2 − tk > 0. From (1.1), non-increasing (non-decreasing) quadratic B-spline function can be

obtained if αk+1 ≤ αk (αk+1 ≥ αk) because tk+3 − tk+1 is non-negative for every k ∈ [1, Kn − 2].

It is also possible to construct monotone function using higher order splines, but it requires more

complex constraints which is unnecessary. Figure 1.1 shows quadratic B-spline basis functions

with five knots and n = 100 and their first derivatives.

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x

0.0 0.2 0.4 0.6 0.8 1.0

−
5

0
5

x

Figure 1.1: Quadratic B-spline basis functions and their first derivatives. Left: Quadratic B-spline basis

functions with five knots and n = 100. Right: The first derivatives of quadratic B-spline basis functions in

the left panel. Gray dashed vertical lines mark knots.
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1.2 Review of Cone Projection

The cone projection algorithm is a special case of the quadratic programming algorithm which

is used in the process of optimizing a quadratic objective function subject to one or more con-

straints. The quadratic programming algorithm solves the problem of finding θ̂ that minimizes the

quadratic objective function

θTQθ − 2cTθ (1.2)

subject to A0θ ≥ d where Q is an n× n positive definite matrix, c ∈ R
n, A0 is an m× n matrix,

and d ∈ R
m.

Let Q = UTU by the Cholesky decomposition. For θ0 such that A0θ0 = d, define a vector

z = (U−1)T (c−Qθ0) and an irreducible matrix A = A0U
−1. The matrix A is called irreducible

if any row of A is not a positive linear combination of other rows of A, and the origin is not a

positive linear combination of rows of A. The quadratic programming algorithm is equivalent to

solve a problem of finding φ̂ that minimizes the objective function

||z − φ||2

subject to Aφ ≥ 0. A solution φ̂ is the projection of z onto the set

C = {φ ∈ R
n : Aφ ≥ 0}. (1.3)

It can be seen that the set C is a convex cone. The set C is a cone because c1φ ∈ C for any φ ∈ C

and a non-negative real number c1. Further, the set C is a convex because for any φ1,φ2 ∈ C and

c1, c2 ≥ 0, we have c1φ1 + c2φ2 ∈ C. Then, we can find a unique solution φ̂ that optimizes a

convex function over a convex set.

Figure 1.2 shows the two dimensional example of the projection of z onto the cone C and the

linear space L. The linear space L is a plane containing the EFGH . The cone C is included in L,

3



and contains AOB. The point D is the projection of z onto L, and the point C is the projection of

z onto C. The point C can be represent as the projection of D onto C.

L

G

FE

H

O

C
A

B

z

D

C

Figure 1.2: The projection of z onto the linear space L and the cone C ⊂ L.

Let the linear space V ∈ C be the null space of A; i.e, V is orthogonal to the space spanned

by the rows of A. Let the edges of the cone be δ1, . . . , δM for M ≥ m. The edges are orthogonal

to V , and they can be derived from the method introduced by Meyer (1999).

The set C consists of elements that can be written as the sum of a vector in V and a linear

combination of the edges of C with non-negative coefficients. Therefore, the cone defined in (1.3)

can be rewritten as

C =
{
φ ∈ R

n : φ = v +
M∑

j=1

bjδj, where v ∈ V , and b1, . . . , bM ≥ 0
}
.

We consider the projection of z onto a face of the cone defined as

FJ = {φ ∈ R
n : φ = v +

∑

j∈J

bjδj, v ∈ V , bj > 0 for j ∈ J}

4



where J is the subset of {1, . . . ,M}.

The cone projection algorithm to find φ̂ ∈ C introduced in Meyer (2013) can be summarized

in three steps. Let J0 be the initial guess of indices of edges: i.e. subset of {1, . . . ,M}. At the kth

iteration,

1 Project z onto the linear space spanned by {δj, j ∈ Jk}, to get φk =
∑

j∈Jk
b
(k)
j δj .

2 Check to see if φk satisfies the constraints, i.e. if all b
(k)
j are non-negative:

· If yes, go to step 3.

· If no, choose j for which b
(k)
j is smallest, and remove it from the set; go to step 1.

3 Compute < z − φk, δj > for each j /∈ Jk. If these are all nonpositive, then stop. If not,

choose j for which this inner product is largest, add it to the set, and go to step 1.

The proof of the convergence of the algorithm is provided in Meyer (2013). The computation of

the algorithm is efficiently coded in the qprog function available in an R package coneproj

(Liao and Meyer, 2014). The qprog function yields φ̂ that optimizes the objective function (1.2),

given Q, c, A0, and d.

1.3 Overview

The convergence rates for monotone regression splines has been established in Chapter 2. It is

shown that the constrained spline estimator attains the optimal rate of convergence when the true

function satisfies the monotonicity constraints. In Chapter 3, I propose the methods for estimating a

smooth monotone variance function in a heteroskedastic regression model. The method introduced

in Chapter 3 is based on the maximum likelihood principle and regression splines, and its com-

putation is carried out through the convex programming. The convergence rates of the monotone

spline approximant are derived, and the same optimal rate is preserved as an unconstrained spline

approximant. Further, the application of the proposed method is illustrated through the analysis

of several real datasets such as LIDAR data, abalone data, California air pollution data, and U.S.

5



temperature data. In Chapter 4, I introduce an alternative variance function estimation method by

including a penalty term to handle a problem at a boundary of domain. In Chapter 5, our focus

shifts from the estimators of variance functions to hypothesis testing. I present a hypothesis test

of a constant variance versus a smooth monotone variance function. The test is based on the like-

lihood ratio and the proposed test is comparable or outperforms existing methods under various

settings. Chapter 2 is based on the published paper by Meyer et al. (2018), and Chapter 3 is based

on the submitted paper (Kim et al., 2018).
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Chapter 2

Convergence Rates for Constrained Regression

Splines1

2.1 Introduction and Background

We consider maximum likelihood estimation of a real-valued function f with domain [0, 1],

where f is assumed to have sufficient smoothness and be monotone. Given observed data, f is

estimated using regression splines. Huang (2001) showed that, under mild conditions the uncon-

strained regression spline estimators in concave extended linear models attained optimal rates as

established by Stone (1980). Monotone regression splines were developed by Ramsay (1988), and

Meyer (2008) extended the idea to convex function estimation. The set of shape-constrained spline

functions is a convex polyhedral cone that is a subset of the linear space of spline functions. The

purpose of this chapter is to show that the constrained splines also attain optimal rates.

We will begin with the notation similar to that of Huang (2001). The regression function f will

be estimated from i.i.d. random observations W1, . . . ,Wn with probability density p(f,w). Let

l(f ;w) = log p(f,w) and Λ(f) = E(l(f ;W )) be the log-likelihood and expected log-likelihood

functions, respectively, and let

ℓ(f) =
1

n

n∑

i=1

l(f ;Wi)

be the scaled log-likelihood. The linear space G of regression splines is determined by the spline

order and the knots. Let ‖ · ‖ be the L2 norm. Throughout Chapter 2, the following assumptions

hold.

(A1) The true function f lies in H, the space of real-valued functions on [0, 1] with the third

continuous derivative.

1Chapter 2 is based on the published paper (Meyer et al., 2018).
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(A2) The number Kn of knots grows with n; the knots 0 = t1 < t2 < · · · < tKn
= 1 have

bounded mesh ratio; that is, there is an M0 ∈ (1,∞) not depending on n, such that for all n,

M−1
0 K−1

n ≤ ti − ti−1 ≤M0K
−1
n , for all i = 2, . . . , Kn.

(A3) The true function satisfies the constraints: f
′

(x) ≤ 0 for x ∈ [0, 1].

(A4) The assumptions about the model are similar to those for the concave extended linear model

as defined in Huang (2001).

(i) The expected log-likelihood function Λ is smooth; that is, for any K1 > 0 there are

M1,M2 ∈ (0,∞), such that for any h1 and h2 in H with maxx∈[0,1] |h1(x)| ≤ K1 and

maxx∈[0,1] |h2(x)| ≤ K1,

−M1‖h2 − h1‖2 ≤
d2

dα2
Λ(h1 + α(h2 − h1)) ≤ −M2‖h2 − h1‖2

(ii) The maximizer f̄ of Λ in G exists and maxx∈[0,1] |f̄(x)| ≤ K0 for some K0 ∈ (0,∞).

(iii) The log-likelihood is sufficiently flat at f̄ :

sup
g∈G

| d
dα
ℓ(f̄ + αg)|α=0|

‖g‖ = Op

(
(Kn/n)

1/2
)
.

(iv) For any positive constant K2, there exist M3 ∈ (0,∞) and M4 ∈ (0,∞) such that for

any g1, g2 ∈ G with maxx∈[0,1] |g1(x)| ≤ K2 and maxx∈[0,1] |g2(x)| ≤ K2,

−M3‖g1 − g2‖2 ≤
d2

dα2
ℓ(g1 + α(g2 − g1)) ≤ −M4‖g1 − g2‖2

except on an event with probability tending toward zero as n increases without bound.
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2.2 Convergence Rates

Let f̃ maximize the likelihood over G; under the above conditions, Huang (2001) established

rates for the approximation error f̄ − f and estimation error f̃ − f̄ , based on the number of knots

and spline order. Because increasing the number of knots tends to improve the approximation error

and decreasing the number of knots improves the estimation error rate, the optimal rate for the

estimator is achieved when the rates for each type of error are equal. This occurs when Kn ≍ n1/7.

To obtain the estimation error rate, Huang (2001) determined a constant a so that ‖g − f̄‖ =

a(Kn/n)
1/2 implies ℓ(g) < ℓ(f̄) under the conditions given. Because ℓ(f̃) ≥ ℓ(f̄) by definition

of f̃ , and by concavity of ℓ, we must have ‖f̃ − f̄‖ ≤ a(K/n)1/2, and the estimation error rate

is established for the unconstrained spline estimator. For the constrained estimator, we let f̂ max-

imize ℓ over the subset C of G that contains the constrained spline functions. If the constraints

hold for f̄ , then ℓ(f̂) ≥ ℓ(f̄) using the same argument as for the unconstrained case, and thus

‖f̂ − f̄‖ ≤ a(Kn/n)
1/2.

If the constraints hold strictly for f , the approximant f̄ will be in C for a fine enough mesh, but

if f has intervals over which the constraints do not hold strictly, i.e., flat spots for the increasing

assumption or linear stretches for the convex assumption, there is no guarantee that f̄ ∈ C as n

gets large. To establish the convergence rate for the constrained splines, we will find an f ∗ ∈ C

such that for all x ∈ [0, 1], |f ∗(x) − f̄(x)| ≤ cK−3
n = c(Kn/n)

1/2 for Kn ≍ n1/7, where c does

not depend on Kn. Then, using concavity of ℓ, we can show that the constrained splines attain the

same optimal rate as the unconstrained splines.

Theorem 6.25 of Schumaker (2007) states that, under (A1) and (A2), there is an g̃ ∈ G and

constants C0, C1, and C2 not depending on Kn, such that

max
x∈[0,1]

|g̃(x)− f(x)| ≤ C0K
−3, (2.1)

max
x∈[0,1]

|g̃′(x)− f ′(x)| ≤ C1K
−2, (2.2)

max
x∈[0,1]

|g̃′′(x)− f ′′(x)| ≤ C2K
−1. (2.3)
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In the next section, we will prove the following theorem.

Theorem 1. Suppose that f ∈ H and satisfies the constraints. There exists a function f ∗ ∈ C such

that, for all x ∈ [0, 1], ‖f ∗(x)− f(x)‖ ≤ cK−3
n = O(Kn/n)

1/2 where Kn = O(n1/7), and c does

not depend on Kn.

The above theorem quantifies the approximation error of f with smoothness and shape con-

straints. In addition, because f is close to f̄ , g̃, and f̃ , by the triangle inequality the L2 distance

between any pair of g̃, f ∗, f̄ , f , and f̃ is on the order of (Kn/n)
1/2. Therefore, there is an A > 0

not depending on n, so that ‖f ∗ − f̃‖ ≤ AK−3
n .

By Taylor’s expansion, we have for g1, g2 ∈ G,

ℓ(g1) = ℓ(g2) +
d

dα
ℓ(g2 + α(g1 − g2))|α=0 +

∫ 1

0

(1− α)
d2

dα2
ℓ(g2 + α(g1 − g2))dα.

Because d
dα
ℓ(f̃ + α(g − f̃))|α=0 = 0 for all g ∈ G, by (A4(iv)) we have

M4

2
‖f̃ − g‖2 ≤ ℓ(f̃)− ℓ(g) ≤ M3

2
‖f̃ − g‖2.

Therefore

‖f̂ − f̃‖2 ≤ 2

M4

[ℓ(f̃)− ℓ(f̂)] ≤ 2

M4

[ℓ(f̃)− ℓ(f ∗)] ≤ M3

M4

‖f̃ − f ∗‖2 ≤ A2M3

M4

K−6.

Finally, we have the following result on the estimation error.

Theorem 2. Suppose that f ∈ H. The maximizer f̂ of ℓ over C satisfies that, for all x ∈ [0, 1],

‖f ∗(x)− f̂(x)‖ = Op(Kn/n)
1/2, where K = O(n1/7).
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2.3 Technical Details

2.3.1 Useful Lemmas

For the proofs of the Theorem 1 in Section 2.3.2, Lemmas 1 through 4 are used with the

assumption that f is a monotone function. For all x ∈ [0, 1], there exists coefficients α̃1, · · · , α̃Ln

so that g̃(x) =
∑Ln

k=1 α̃kBk,2(x) ∈ G. Let Bk,2 = Bk for simplification.

Lemma 1. Let g̃ ∈ G be the approximant satisfying (2.1). If 0 ≤ a < b ≤ 1, then g̃(b) − g̃(a) ≤

2C0K
−3
n .

Proof. Since the function f is non-increasing, we have

0 ≤ f(a)− f(b) = f(a)− g̃(a) + g̃(a)− g̃(b) + g̃(b)− f(b).

As a consequence of (2.1), we can obtain

g̃(b)− g̃(a) ≤ f(a)− g̃(a) + g̃(b)− f(b) ≤ |f(a)− g̃(a)|+ |g̃(b)− f(b)| ≤ 2C0K
−3
n .

♦

Lemma 2. Let g̃ ∈ G be the approximant satisfying (2.1) and (2.2). For any x ∈ [0, 1], we have

g̃′(x) ≤ C1K
−2
n .

Proof. If g̃(x) is decreasing at any x ∈ [0, 1], we have g̃′(x) < 0. Suppose g̃ is non-decreasing on

[a, b] where 0 ≤ a ≤ b ≤ 1. Since f is a non-increasing function, f ′(x) ≤ 0 for all x. Thus, if

g̃′(x) ≥ 0 for some x ∈ [a, b], then the desired result is a direct consequence of (2.2).

♦

Lemma 3. Let g̃ ∈ G be the approximant satisfying (2.1) and (2.2). Then, we have α̃k+1 − α̃k ≤

M0C1K
−3
n for k = 1, . . . , Ln − 1.

Proof. First suppose that g̃ is decreasing at tj for any j ∈ [1, Kn]. Then, we have α̃j+1 − α̃j < 0

from the properties of B-splines and (1.1). Next, suppose that g̃ is non-decreasing at tj for any
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j ∈ [1, Kn]. Then, from (1.1) and Lemma 2, we have

0 ≤ g̃′(tj) =
2(α̃j+1 − α̃j)

tj+3 − tj+1

Bj,1(tj) ≤ C1K
−2
n . (2.4)

From (A2) and (2.4), we conclude that α̃j+1 − α̃j ≤M0C1K
−3
n . Note that 0 ≤ Bk,p(x) ≤ 1 by the

property of B-spline basis functions for any p and k for x ∈ [0, 1]. Therefore, we obtained required

results.

♦

Lemma 4. Let g̃ ∈ G be the approximant satisfying (2.1) and (2.2). Let ℓ be an index such that

g̃′(tℓ) > 0. Suppose there exists m > ℓ which is the smallest index such that α̃m < α̃ℓ. Then, we

have 0 ≤ α̃k − α̃ℓ ≤ 2(C0 +M0C1)K
−3
n for all k = ℓ+ 2, . . . ,m− 1.

Proof. From Lemma 1, for any j = ℓ+ 1, · · · ,m− 2,

2C0K
−3
n ≥ g̃(tj)− g̃(tℓ)

= α̃jBj(tj) + α̃j+1Bj+1(tj)− α̃ℓBℓ(tℓ)− α̃ℓ+1Bℓ+1(tℓ)

= α̃jBj(tj) + α̃j+1Bj+1(tj)− α̃ℓ

(
Bℓ(tℓ) + Bℓ+1(tℓ)

)
−
(
α̃ℓ+1 − α̃ℓ

)
Bℓ+1(tℓ)

=
(
α̃j − α̃ℓ

)
Bj(tj) +

(
α̃j+1 − α̃ℓ

)
Bj+1(tj)−

(
α̃ℓ+1 − α̃ℓ

)
Bℓ+1(tℓ) (2.5)

The last equality in (2.5) holds from the property of quadratic B-splines

1 = Bℓ(tℓ) + Bℓ+1(tℓ) = Bj(tj) + Bj+1(tj).

If α̃j ≥ α̃j+1, then from (2.5) and Lemma 3,
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2C0K
−3
n +M0C1K

−3
n ≥

(
α̃j − α̃ℓ

)
Bj(tj) +

(
α̃j+1 − α̃ℓ

)
Bj+1(tj)

≥
(
α̃j+1 − α̃ℓ

)(
Bj(tj) + Bj+1(tj)

)

= α̃j+1 − α̃ℓ

≥ 0. (2.6)

Similarly, for α̃j < α̃j+1, we have

2C0K
−3
n +M0C1K

−3
n ≥

(
α̃j − α̃ℓ

)
Bj(tj) +

(
α̃j+1 − α̃ℓ

)
Bj+1(tj)

=
(
α̃j+1 − α̃ℓ

)
Bj+1(tj) +

(
α̃j+1 − α̃ℓ

)
Bj(tj)

−
(
α̃j+1 − α̃j

)
Bj(tj)

= α̃j+1 − α̃ℓ −
(
α̃j+1 − α̃j

)
Bj(tj). (2.7)

Then, from Lemma 3 and (2.7), we have

2(C0 +M0C1)K
−3
n ≥ α̃j+1 − α̃ℓ ≥ 0, (2.8)

when α̃j < α̃j+1. From Lemma 3, (2.6), and (2.8), we obtained the required results.

♦

2.3.2 Proof of Theorem 1

In this section, we will given the intuition and ideas of the proof for the existence of f ∗ for

monotone splines. The alternative proof of Theorem 1 when the true function f is non-decreasing

is available in Meyer et al. (2018).

Recall that we use quadratic splines for monotone constraints. Such a choice is due to the fact

that a quadratic spline function is non-increasing if and only if the slopes at the knots are non-

positive. Thus, we have linear inequality constraints that are necessary and sufficient conditions
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for monotonicity. Without loss of generality, we will treat explicitly the case in which f is non-

increasing. It does not follow that its approximant g̃ is non-increasing.

We construct a function f ∗ that is non-increasing and |f ∗(x)− g̃(x)| ≤ CK−3
n for all x ∈ [0, 1]

for a constant C > 0 not depending onKn. A quadratic spline function g is non-increasing in [0, 1]

if and only if g′(tj) ≤ 0, for all j = 1, . . . , Kn.

There are three scenarios to construct function f ∗ by modifying g̃ based on the sign of g̃′ at

each knot. The three scenarios are described as below.

Scenario 1. If g̃′(tj) ≥ 0 for all j = 1, . . . , Kn, define f ∗(x) = g̃(0) for x ∈ [0, 1]; then |f ∗(x)−

g̃(x)| ≤ 2C0K
−3
n = O(K−3

n ) for all x ∈ [0, 1].

Proof. Because g̃ is non-decreasing over [0, 1], for any x ∈ [0, 1], we have

0 ≤ g̃(x)− f ∗(x) = g̃(x)− g̃(0) ≤ 2C0K
−3
n

by Lemma 1.

♦

Scenario 2. If g̃′(tj) > 0 for j = 1, . . . , ℓ − 1 but g̃′(tℓ) ≤ 0 for some ℓ ∈ {2, . . . , Kn}, there

is a quadratic spline function g such that |g(x) − g̃(x)| ≤ (C1M0 + 2C0)K
−3
n = O(K−3

n ) for all

x ∈ [0, 1] and g′(x) ≤ 0 on [0, tℓ].

Proof. Define a spline function g(x) =
∑Ln

k=1 αkBk(x) on [0, 1] such that g(x) = g̃(x) on [tℓ, 1]

and g′(tj) = 0 for j = 1, . . . , tℓ−1 (as depicted on the left in Figure 2.1). The coefficients are

defined as follows:

αj =





α̃ℓ for j = 1, . . . , ℓ− 1

α̃j for j = ℓ, . . . , Ln.
(2.9)

Then for x ∈ [0, tℓ−1], g(x) = g(tℓ−1). Because g̃(x) is increasing on [0, tℓ−1], we have on this

range g(x)− g̃(x) ≥ 0 and
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g(x)− g̃(x) = g(x)− g̃(tℓ−1) + g̃(tℓ−1)− g̃(x)

= g(tℓ−1)− g̃(tℓ−1) + g̃(tℓ−1)− g̃(x)

= (αℓ−1 − α̃ℓ−1)Bℓ−1(tℓ−1) + (αℓ − α̃ℓ)Bℓ(tℓ−1) + g̃(tℓ−1)− g̃(x)

= (α̃ℓ − α̃ℓ−1)Bℓ−1(tℓ−1) + g̃(tℓ−1)− g̃(x)

≤ (C1M0 + 2C0)K
−3
n

by Lemmas 1 and 3. For x ∈ [tℓ−1, tℓ],

g(x)− g̃(x) = (αℓ−1 − α̃ℓ−1)Bℓ−1(x) + (αℓ − α̃ℓ)Bℓ(x) + (αℓ+1 − α̃ℓ+1)Bℓ+1(x)

= (α̃ℓ − α̃ℓ−1)Bℓ−1(x)

≤ C1M0K
−3
n ,

by Lemma 3.

♦

In Scenario 2, if g̃ is non-decreasing on [tℓ, 1], set f ∗ = g, as g is a spline function that

is sufficiently close to g̃ and non-increasing on [0, 1]. This is shown on the left in Figure 2.1.

Otherwise, replace g̃ with g, and continue. That is, we now assume that g̃′(0) ≤ 0.

Scenario 3. If g̃′(tj) ≤ 0 for j = 1, . . . , ℓ−1, but g̃′(tℓ) > 0, find the smallest indexm ≥ ℓ+1 such

that α̃m ≤ α̃ℓ. If there is such an m, then there is a quadratic spline function g where g′(x) ≤ 0

for x ∈ [0, tm] and |g(x) − g̃(x)| ≤ 4(C0 + C1M0)K
−3
n for x ∈ [0, 1]. Otherwise, we can find a

spline function g such that g′(x) ≥ 0 and |g(x)− g̃(x)| ≤ (2C0 + C1M0)K
−3
n for x ∈ [0, 1].

Proof. For the first part, where such anm exists, set g(x) = g̃(x) for x ∈ [0, tℓ−1]∪ [tm, 1]. Further

set g′(tℓ) = · · · = g′(tm−2) = 0; for g(x) =
∑Ln

k=1 αkBk(x), this is equivalent to set

αj =





α̃j for j = 1, . . . , ℓ− 1,m, . . . , Ln

α̃ℓ for j = ℓ, . . . ,m− 1.
(2.10)
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Figure 2.1: On the left is the Illustration of Scenario 2 ; on the right is the illustration of Scenario 3. For

each, the solid curve is g̃ and the dashed curve is g.

Then, g is non-increasing on [0, tm], and g(x) = g(tℓ) for x ∈ [tℓ, tm−2]. See the right-hand plot of

Figure 2.1 for an illustration. For x ∈ [tℓ−1, tℓ], we have

0 ≤ g̃(x)− g(x) = (α̃ℓ−1 − αℓ−1)Bℓ−1(x) + (α̃ℓ − αℓ)Bℓ(x) + (α̃ℓ+1 − αℓ+1)Bℓ+1(x)

= (α̃ℓ+1 − αℓ+1)Bℓ+1(x)

= (α̃ℓ+1 − α̃ℓ)Bℓ+1(x)

≤ M0C1K
−3
n ,

by Lemma 3 and (2.10). Next, denote b = argmaxx∈[tℓ,tm] g̃(x). For x ∈ [tℓ, tm−2], we have
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0 ≤ g̃(x)− g(x) = g̃(x)− g(tℓ)

≤ g̃(b)− g(tℓ)

= g̃(b)− g̃(tℓ) + g̃(tℓ)− g(tℓ)

= g̃(b)− g̃(tℓ) + (α̃ℓ − αℓ)Bℓ(tℓ) + (α̃ℓ+1 − αℓ+1)Bℓ+1(tℓ)

= g̃(b)− g̃(tℓ) + (α̃ℓ+1 − α̃ℓ)Bℓ+1(tℓ)

≤ (2C0 +M0C1)K
−3
n ,

by (2.10), Lemmas 1 and 3. For x ∈ [tm−2, tm−1], from (2.10), and Lemma 4:

g̃(x)− g(x) = (α̃m−2 − αm−2)Bm−2(x) + (α̃m−1 − αm−1)Bm−1(x)

= (α̃m−2 − α̃ℓ)Bm−2(x) + (α̃m−1 − α̃ℓ)Bm−1(x)

≤ 4(C0 +M0C1)K
−3
n .

Lastly, for x ∈ [tm−1, tm], we have

g̃(x)− g(x) ≤ (α̃m−1 − αm−1)Bm−1(x) + (α̃m − αm)Bm(x) + (α̃m+1 − αm+1)Bm+1(x)

= (α̃m−1 − α̃ℓ)Bm−1(x)

≤ 2(C0 +M0C1)K
−3
n ,

by (2.10), and Lemma 4. Therefore, we have 0 ≤ g̃(x)−g(x) ≤ 4(C0+M0C1)K
−3
n for x ∈ [0, tm],

and we have the required result.

For the second Scenario, where such an m does not exist, define g(x) = g̃(x) for x ∈ [0, tℓ−1]

and g′(tj) = 0 for j = ℓ, . . . , Kn. That is equivalent to set:

αj =





α̃j for j = 1, . . . , ℓ− 1

α̃ℓ for j = ℓ, . . . , Ln.
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Then g is non-decreasing in [0, 1], and for x ∈ [tℓ−1, tℓ], the same argument as for the first

Scenario will show g and g̃ are sufficiently close. For x > tℓ, g(x) = g(tℓ). For x ∈ [tj, tj+1],

j = ℓ, . . . , Kn − 1, again the same argument as for the first Scenario will show g and g̃ are

sufficiently close.

♦

In the case where such an m does not exist, we are finished because the function g is non-

decreasing on [0, 1] and sufficiently close to g̃. For the case where such an m exists (illustrated on

the right in Figure 2.1 where the solid curve is g̃ and the dashed curve is g), we have a g that is

nondecreasing on [0, tm]. If there is an index m′ > m where g̃(tm′) > 0, we can repeat Scenario 3

as many times as necessary to produce a g that is non-decreasing on [0, 1].
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Chapter 3

Monotone Variance Function Estimation

3.1 Literature Review

Various methods for estimating variance functions in heteroskedastic regression models have

been developed over the years because ignoring heteroskedasticity in the regression analysis may

lead to substantial loss of efficiency and incorrect inference. Parametric variance function estima-

tion methods based on absolute residuals or squared residuals were introduced by Davidian and

Carroll (1987). Carroll and Ruppert (1988) summarized the methods to fit the heteroskedastic

regression model including transformation and weighting techniques. These methods are useful;

however, in general, a parametric form of the variance function is unknown.

Both kernel and spline methods have been used for nonparametric variance function estima-

tion. Carroll (1982) proposed a nonparametric method using kernel smoothing to estimate the

variance, when it is modeled as a function of the mean response. Müller and Stadtmuller (1987)

introduced local variance estimators using kernel smoothers without the assumption of a paramet-

ric form of the mean function. Hall and Carroll (1989) and Wang et al. (2008) studied the effect of

the smoothness of the unknown mean function on the rate of convergence for kernel estimators of

the variance functions. Ruppert et al. (1997) proposed the local polynomial estimate of the mean

and variance functions using a standard bandwidth select method. For example, one could use

the bandwidth introduced in Ruppert et al. (1995) or Fan and Gijbels (1996). Liu et al. (2007)

proposed smoothing splines to estimate variance functions for chi-squared distributed response

variables. Staudenmayer et al. (2008) estimated the density of a random variable in the presence

of heteroskedastic measurement errors, using a spline method based on the Metropolis-Hastings

algorithm and Gibbs sampling. Gijbels et al. (2010) considered the extended double-exponential

family models and P-splines to estimate the mean function and the dispersion function simulta-
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neously. Lian et al. (2015) developed an estimation method for the mean and variance functions

where the mean function is in a partially linear single-indexed model.

Monotonicity of the variance function is often a more reasonable assumption, compared to ho-

mogeneity or linearity assumptions. Dette and Pilz (2009) implemented a two-step kernel-based

method to estimate a monotone variance function, where in step one, an unconstrained estimate

of the variance function is a kernel smooth (bandwidth kr) of the pseudo residuals or the residuals

from an estimate of the mean function. Step two monotonizes the estimate using another ker-

nel with bandwidth kd. The estimate seems to be sensitive to the choice of the two bandwidths,

and sometimes yields negative values of the variance function. The monotone variance function

estimation method is conveniently coded in an R package monreg by Pilz and Titoff (2015).

In this chapter, we obtain maximum likelihood estimators of the variance function using quadratic

regression splines, when either normal or double-exponential errors are assumed. Constraining the

slope of the spline function to be positive (negative) at the knots provides a necessary and suffi-

cient condition for an increasing (decreasing) function over the range of knots. (Unconstrained

regression splines can be sensitive to the number and placement of knots, but constrained splines

are robust to knot choices.) Our focus is on improving estimation and inference about the regres-

sion function through weighting provided by the estimated variance function. We first compute

the unweighted regression function using least squares for the normal errors assumption or least

absolute deviations for the double-exponential errors assumption. The residuals from this fit are

used to estimate the variance function, which in turn is used to obtain an improved weighted re-

gression function estimate, the residuals from which can be used to incrementally improve the

variance function estimate. We show formally that this procedure of alternate improvements of

the mean and variance functions produces consistent estimators; in practice two or three iterations

are sufficient. As shown in the simulations, if the errors are “heavy-tailed” the double-exponential

assumptions provide better inference about the mean function. The method has been incorporated

within the R package cgam.
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3.2 Model Setup and Monotone Variance Function Estimator

Consider a random sample {(xi, yi, zi), i = 1, ..., n}, from the model

yi = µ(zi) + σ(xi)ǫi, i = 1, . . . , n (3.1)

where the ǫi’s are i.i.d. mean-zero random errors, independent of the (xi, zi)s. We assume xi ∈

[a, b], i = 1, . . . , n for −∞ < a < b < ∞ and without loss of generality, a = 0 and b = 1. The

design vector zi ∈ R
q+1 might include xi but not necessarily where q is the number of predictors

for the mean function. To begin with, we assume the mean function is known, and for simplicity,

assume µ(zi) ≡ 0 in (3.1). Throughout the paper, we assume that the variance function σ2(x) is

non-decreasing on [0, 1]. Denote f(x) = 1/σ2(x) for the normal errors assumption and f(x) =

1/σ(x) for double-exponential errors. It will be seen that the log-likelihood function (for either

error distribution) is concave in f ; thus the maximum likelihood variance function is obtained

through estimating f , a non-increasing function.

To obtain a spline estimate of f , define knots 0 = t1 < · · · < tKn
= 1 and quadratic spline

basis functions B1(x), . . . , BLn
(x) where Ln = Kn + 1. Let G be the linear space spanned by

B1, . . . , BLn
, and let C ⊂ G be the collection of non-increasing, positive spline functions. The

spline function f(x) =
∑Ln

j=1 αjBj(x) is non-increasing and positive if and only if Aα ≥ 0, where

A is an Ln × Ln constraint matrix and α = (α1, . . . , αLn
)⊤. The constraint matrix is defined as

follows:

A = −




B′
1(t1) B′

2(t1) . . . B′
Ln
(t1)

B′
1(t2) B′

2(t2) . . . B′
Ln
(t2)

...
...

...

B′
1(tKn

) B′
2(tKn

) . . . B′
Ln
(tKn

)

B1(1) B2(1) . . . BLn
(1)




Given observed x1, . . . , xn, let B be an n×Ln matrix where Bij = Bj(xi), and θ = (θ1, . . . , θn)
⊤

with θi = f(xi) for i = 1, . . . , n. The following subset of Rn has a one-to-one mapping with the
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set C of constrained spline functions:

C = {θ ∈ R
n : θ = Bα, where Aα ≥ 0}. (3.2)

The set C is a convex cone because for any θ1,θ2 ∈ C and c1, c2 ≥ 0, we have c1θ1 + c2θ2 ∈ C.

Adding parametrically-modeled covariates to the inverse variance function is straight forward.

Suppose the vector ui ∈ R
r contains the covariate values for the ith observation, and β ∈ R

r is

an unknown parameter vector. If we define θi = f(xi) + u⊤
i β, i = 1, . . . , n, then θ = Bα+Uβ

where the rows of the n × r matrix U are u⊤
1 , . . . ,u

⊤
n . In addition to the monotonicity constraint

for α, we add linear inequality constraints to ensure the variance function is positive for all values

of (x,u). Let

Bc = [B|U ] =




u⊤
1

B
...

u⊤
n




and γ = (α1, . . . , αLn
, β1, . . . , βr)

⊤

Then the cone can be written as

C = {θ ∈ R
n : θ = Bcγ, where Acγ ≥ 0}, (3.3)

where Ac is a constraint matrix which constrains the estimated function f to be non-increasing

and the estimated reciprocal variance function to be positive.

For a simple example (which will be seen in the analysis of the abalone data in Chapter 3.6),

let the covariate be a group indicator that correspond to r = 1, so that U is n× 1 with elements in

{0, 1} and β ∈ R
1. The coefficient vector is γ⊤ = [α⊤|β] and the (Ln + 1)× (Ln + 1) matrix Ac

is defined as Ac(i,j) = Aij for i = 1, . . . , Ln and j = 1, . . . , Ln; further, Ac(Ln+1,j) = Bj(1) for

j = 1, . . . , Ln, Ac(Ln+1,Ln+1) = 1, and Ac(j,Ln+1) = 0 for j = 1; , . . . , Ln. That is,
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Ac =




0

A 0

0

B1(1) . . . BLn
(1) 1




3.3 Maximum Likelihood Estimation

For maximum likelihood estimation of the variance function, it is necessary to assume a dis-

tribution for the εi. We consider both normal and double-exponential errors, as the methods and

large sample theory are straight forward and remarkably similar. In either case, the log-likelihood

function is concave in f , the reciprocal of the variance function for normal errors or the reciprocal

of the standard deviation function for double-exponential errors.

3.3.1 Likelihood Functions

For the normal errors assumption, f = 1/σ2. For observed {(xi,ui, yi), i = 1, . . . , n}, with

knots 0 = t1 < · · · < tKn
= 1, construct the spline basis functions and the cone C as in (3.2)

or (3.3), with θi = f(xi) or θi = f(xi,ui), respectively. The log-likelihood function with µ ≡ 0 is

defined by

ℓ(θ;y) =
1

2n

n∑

i=1

[
log(θi)− y2i θi

]
. (3.4)

The maximum likelihood estimator θ̂ is the maximizer of ℓ(θ;y) in (3.4) over C.

If we assume the ǫi’s are independent random errors from the double-exponential distribution

with mean zero and variance one, we let f be 1/σ instead of 1/σ2. The log-likelihood function

with µ ≡ 0 is

ℓ(θ;y) =
1

n

n∑

i=1

[
log(θi)−

√
2|yi|θi

]
, (3.5)

and θ̂ is the maximizer of ℓ(θ;y) in (3.5) over C.
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3.3.2 Estimation Procedure: Iterative Quadratic Programming

Let ψ(θ) = −ℓ(θ;y) for ℓ in either (3.4) or (3.5). In Appendix A.1, we prove that the sequence

θ(k) generated by following algorithm will converge to θ̂.

Step 0. Initialize θ(0) ∈ C.

Step 1. At kth iteration, evaluate the gradient and the Hessian of ψ(θ;y) at θ(k), denoted by

∇ψ(θ(k)) and H(θ(k)), respectively.

Step 2. Find the minimizer a of ψk(θ) over C, where

ψk(θ) = ψ(θ(k)) +∇ψ(θ(k))
⊤(θ − θ(k)) +

1

2
(θ − θ(k))

⊤H(θ(k))(θ − θ(k)). (3.6)

Evaluate ψ(a). If ψ(a) < ψ(θ(k)), let θ(k+1) = a. Otherwise, find θ(k+1) which minimizes

ψ(θ) over the line segment connecting θ(k) and a.

Step 3. Repeat Step 1 and Step 2 until the convergence criterion below is satisfied.

In Step 2, minimizing the quadratic function in (3.6) with linear constraints can be efficiently

carried out through quadratic programming conveniently coded in the qprog function available in

an R package coneproj (Liao and Meyer, 2014). For the normal errors model the convergence

criterion is
(∑n

i=1 |σ̂2
(k+1),i − σ̂2

(k),i|
)/(∑n

i=1 |σ̂2
(k),i|

)
≤ δ where σ̂2

(k+1),i = θ(k+1),i
−1, and for

double-exponential errors we use the criterion
(∑n

i=1 |σ̂(k+1),i − σ̂(k),i|
)/(∑n

i=1 |σ̂(k),i|
)
≤ δ

where σ̂(k+1),i = θ(k+1),i
−1.

In practice, it is more common that the mean function is unknown. In this case, we can estimate

the mean function and the variance function alternately for several iterations. First, the unknown

mean function is estimated ignoring heteroskedasticity, using least-squares for the normal errors

assumption and least absolute deviations under the assumption of double-exponential errors. Let

the estimated mean function be µ̂(x), then the log-likelihood function with normal errors in (3.4)
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can now be replaced by

ℓµ̂(θ;x,y, z) =
1

2n

n∑

i=1

[
log(θi)−

(
yi − µ̂(zi)

)2
θi

]
.

The variance function is estimated using the above algorithm with yi− µ̂(zi) in place of yi in (3.4)

or (3.5). Next, the mean function can be updated using the weighted regression model, using

the estimated variance function, and the mean function and the variance function are updated

iteratively. For the simulations and examples in this paper, the mean function is updated twice.

3.4 Large Sample Properties

The following assumptions are used for the theorems in this section.

(A1) Assume f is a positive and non-increasing function in H, the space of all three times differ-

entiable, real-valued functions on [0, 1], and there exists M0 > 1 such that for all x ∈ [0, 1]

1

M0

≤ f(x) ≤M0.

(A2) Assume that the number of distinct knots Kn grows as O(n1/7) with bounded mesh ratio.

That is, there exists M1 > 1 such that for all n, and any j ∈ {1, . . . , Kn − 1},

1

M1

K−1
n ≤ tj+1 − tj ≤M1K

−1
n .

(A3) The observed xi follow a design density pX(x) that is bounded away from zero: pX(x) ≥

p0 > 0 for all x ∈ [0, 1].

For any h ∈ H, we define the norm as ||h||2 = 〈h, h〉 where 〈h1, h2〉 =
∫
h1(x)h2(x)pX(x)dx.

Let the monotone maximum likelihood estimator of f be f̂ , which maximizes the log-likelihood

ℓ(g;y) in (3.4) over g ∈ C. The following theorems are presented for the convergence rate for the

estimated monotone variance functions.
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Theorem 3. Suppose that Assumptions (A1) through (A3) hold. In the known-mean case, if f̂ is

the MLE of f in C, then ||f − f̂ || = Op(n
−3/7).

Proof. For a positive function h ∈ H and normal errors, the log-likelihood is a constant plus

l(h; x, y) =
1

2
log
(
h(x)

)
− 1

2
y2h(x), (3.7)

which is concave in h for each value x and y. The expected log-likelihood can be expressed as

Λ(h) = E[l(h;X, Y )] =
1

2

∫ 1

0

[
log
(
h(x)

)
− h(x)

f(x)

]
pX(x) dx, (3.8)

where pX(x) is a probability density function, and Λ(h) is concave in h as well. The true reciprocal

variance function f maximizes the expected log-likelihood function Λ(h) over h ∈ H.

Let the unconstrained maximum likelihood estimator of f in G be f̃ , which maximizes ℓ(g)

over g ∈ G, and let f̄ = argmaxg∈G Λ(g). Recall that G = G(n) has increasing dimension

as n increases. Following ideas from Huang (2001), the total error can be decomposed as |f̃ −

f | ≤ |f̄ − f | + |f̃ − f̄ |, and the rates of convergence for the approximation error |f̄ − f | and

the estimation error |f̃ − f̄ | can be determined separately. With increasing numbers of knots,

the approximation error decreases while the estimation error increases, so we obtain the optimal

rate of convergence by setting equal the approximation and estimation errors. In the proofs, let

||h||∞ = supx∈[0,1] |h(x)|. For vectors u,v ∈ R
n, the vector norm is defined as ||u||2n = 〈u,u〉n,

where 〈u,v〉n = 1
n

∑n
i=1 uivi.

We start with the approximation error rate. From Theorem 6.25 of Schumaker (2007) and (A2),

there exists a sequence of functions g∗ ∈ G such that ρn := ||f−g∗||∞ = Op(K
−3
n ). Since G ⊂ H,

we have Λ(g∗) ≤ Λ(f̄) ≤ Λ(f). From (3.8), we have for h ∈ H,

Λ((1− α)f + αh) =
1

2

∫ 1

0

[
log
(
(1− α)f(x) + αh(x)

)
− (1− α)f(x) + αh(x)

f(x)

]
pX(x)dx,

and
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d2

dα2
Λ((1− α)f + αh) = −1

2

∫ 1

0

[ [
h(x)− f(x)

]2
[
f(x) + α

(
h(x)− f(x)

)]2

]
pX(x)dx. (3.9)

Consider h ∈ H such that M−1
0 ≤ h(x) ≤M0 for x ∈ (0, 1). From (A1), we have

1

M2
0

≤
[
f(x) + α

(
h(x)− f(x)

)]2 ≤M2
0 ,

so we can bound (3.9) as

− 1

2
M2

0 ||h− f ||2 ≤ d2

dα2
Λ((1− α)f + αh) ≤ − 1

2M2
0

||h− f ||2. (3.10)

Integrating by parts, the expected log-likelihood can be expanded about f as

Λ(h) = Λ(f) +
d

dα
Λ((1− α)f + αh)

∣∣
α=0

+

∫ 1

0

[
(1− α)

d2

dα2
Λ((1− α)f + αh)

]
dα. (3.11)

Since f maximizes Λ(h), (d/dα)Λ((1− α)f + αh)|α=0 = 0. Therefore, from (3.10) and (3.11)

1

2M2
0

||h− f ||2 ≤ Λ(f)− Λ(h) ≤ 1

2
M2

0 ||h− f ||2. (3.12)

Fix a > 4M2
0 . For g ∈ G such that ||g − f || = aρn,

Λ(f)− Λ(g) ≥ 1

2M2
0

||g − f ||2 = 1

2M2
0

a2ρ2n > 8M2
0ρ

2
n.

Since we have Λ(f)−Λ(f̄) ≤ Λ(f)−Λ(g∗) ≤ 8M0ρ
2
n by (3.12), we must have ||f−f̄ || ≤ a1ρn

by concavity of Λ. Hence, we have the required rate of convergence as ||f − f̄ || = Op(K
−3
n ).

Next, we tackle the estimation error. The goal is to show that for g “far” from f̄ , ℓ(g;x,y)

must be smaller than ℓ(f̄ ;x,y); then since we know ℓ is larger at f̃ , we must have that f̃ is “close”

to f̄ . Using the same ideas as in the proof of approximation error, we expand ℓ about f̄ :
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ℓ(g;x,y) = ℓ(f̄ ;x,y)+
d

dα
ℓ(f̄ +α(g− f̄);x,y)

∣∣∣
α=0

+

∫ 1

0

(1−α)
d2

dα2
ℓ(f̄ +α(g− f̄);x,y)dα.

(3.13)

We consider g0 ∈ G such that M−1
0 ≤ g0(x) ≤M0 for x ∈ [0, 1]; then

− 1

2
M2

0 ||g0 − f̄ ||2 ≤ d2

dα2
ℓ(f̄ + α(g0 − f̄)) ≤ − 1

2M2
0

||g0 − f̄ ||2 (3.14)

using the same reasoning as for the approximation error. For the middle term of the right side

of (3.13),

d

dα
ℓ(f̄ + α(g0 − f̄);x,y)

∣∣∣
α=0

=
1

n

n∑

i=1

(g0(xi)− f̄(xi))

[
1

f̄(xi)
− y2i

]
.

Let wi = f̄(xi)
−1 − y2i , then

∑n
i=1(g0(xi)− f̄(xi))wi[∑n
i=1(g0(xi)− f̄(xi))2

]1/2 ≤ sup
g∈G

〈g,w〉n
‖g‖ = ‖Π(w|G)‖

where Π(w|G) is the projection of w onto the vector space G ⊂ R
n. We have ‖E(w)‖n = O(K−3

n )

and there is an M not depending on n such that var(wi) ≤M . If P is the projection matrix for G,

‖Pw‖n ≤ ‖P (w − E(w))‖n + ‖PE(w)‖n = Op((Kn/n)
1/2) +O(K−3

n ).

Because Kn increases as n1/7, the two rates are n−3/7; therefore, there is an a0 not depending on n

so that
∣∣∣ d
dα
ℓ(f̄ + α(g − f̄);x,y)

∣∣∣
α=0

∣∣∣ ≤ a0n
−3/7‖g − f̄‖. (3.15)

Choose a1 > 2a0M
2
0 , and consider g ∈ G such that ‖g − f̄‖ = a1n

−3/7. Then combining (3.13),

(3.14), and (3.15), we have ℓ(g;x,y) ≤ ℓ(f̄ ;x,y). Because ℓ(f̃ ;x,y) ≥ ℓ(f̄ ;x,y), and by

concavity of ℓ, we have ‖f̃ − f̄‖ ≤ a1n
−3/7.

The estimation error rate of convergence for the constrained estimator f̂ can be derived using

the rate of convergence for f̃ . If f̄ ∈ C, then we can use the same argument, because ℓ(f̂ ;x,y) ≥
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ℓ(f̄ ;x,y). For the case where f̄ is not in C, from Theorem 1 in Meyer et al. (2018), there is a

function f ∗ ∈ C such that ||f̄ − f ∗||∞ = O(K−6
n ), and ℓ(f̂ ;x,y) ≥ ℓ(f ∗;x,y). Expanding ℓ

around f̃ , we have

ℓ(g) = ℓ(f̃) +
d

dα
ℓ(f̃ + α(g − f̃))

∣∣∣
α=0

+

∫ 1

0

(1− α)
d2

dα2
ℓ(f̃ + α(g − f̃))dα, g ∈ G. (3.16)

Since f̃ maximizes ℓ(·) in G, we have (d/dα)ℓ(f̃ + α(g − f̃))|α=0 = 0 and for g such that

M−1
0 ≤ g(x) ≤M0 for x ∈ [0, 1], we have

2

M2
0

||f̃ − g||2 ≤ ℓ(f̃)− ℓ(g) ≤ 2M2
0 ||f̃ − g||2.

Therefore, we have

||f̃ − f̂ ||2 ≤ 1

2
M2

0 [ℓ(f̃)− ℓ(f̂)] ≤ 1

2
M2

0 [ℓ(f̃)− ℓ(f ∗)] ≤M4
0 ||f̃ − f ∗||2.

Finally, ||f̃ − f ∗|| ≤ ‖f̃ − f̄ || + ‖f̄ − f ∗|| = Op(K
−3
n ), and again by the triangle inequality we

have ||f − f̂ || = Op(K
−3
n ).

Similarly, the rate of convergence for the model with double-exponential errors can be derived,

and it is the same as that for the model with normal errors. For the double-exponential errors, the

likelihood function in (3.7) can be replaced by

l(h; x, y) = log
(
h(x)

)
−

√
2|y|h(x),

which is concave in h for each value x and y. The expected log-likelihood defined in (3.8) is

replaced by

Λ(h) = E[l(h;X, Y )] =

∫ 1

0

[
log
(
h(x)

)
− h(x)

2f(x)

]
pX(x) dx, (3.17)

where pX(x) is a probability density function. From (3.17), we have
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Λ((1− α)f + αh) =

∫ 1

0

[
log
(
(1− α)f(x) + αh(x)

)
− (1− α)f(x) + αh(x)

2f(x)

]
pX(x)dx,

the second derivative of Λ((1− α)f + αh) is the same as (3.9).

By following the same steps as mentioned above, we have the same optimal rate of convergence

for approximation error.

For the estimation error, we have

d

dα
ℓ(f̄ + α(g0 − f̄);x,y)

∣∣∣
α=0

=
1

n

n∑

i=1

(g0(xi)− f̄(xi))

[
1

f̄(xi)
−

√
2|yi|

]
.

Let wi = f̄(xi)
−1−

√
2|yi|, then we have ||E(w)||n = O(K−3

n ) and there exists a positive constant

M such that var(wi) ≤M . The remainder of the proof follows the same steps as that of the normal

error model, and we have the same rate of convergence for estimation error.

♦

The maximum likelihood estimator is σ̂2(x) = f̂(x)−1 for the normal errors assumption, and

is σ̂2(x) = f̂(x)−2 for the double-exponential errors assumption; either is one-to-one function on

[0, 1]. The rate of convergence of the variance function is ||σ2 − σ̂2|| = Op(n
−3/7), from Remark

2.2 in Huang (2001) and Assumption (A1). The optimal rate of convergence for the proposed

monotone estimator is maintained when the mean function is unknown, if the rate of convergence

of the estimated mean function is fast enough.

Theorem 4. Suppose that Assumptions (A1) through (A3) hold. If f̂µ̂ is the MLE of f in C when µ

is unknown and estimated with µ̂, for which ‖µ̂− µ‖ = Op(n
−3/7) then ||f − f̂µ̂|| = Op(n

−3/7).

Proof. When the mean function is unknown, the proof of the optimal rate of convergence for the

variance function is similar to the proof of Theorem 3.

For the normal errors, we can rewrite the normalized log-likelihood as

ℓµ̂(f ;x,y) =
1

2n

n∑

i=1

(
log f(xi)− (yi − µ̂i)

2f(xi)
)
,
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and

d

dα
ℓµ̂(f̄ + αg;x,y)

∣∣∣
α=0

=
1

2n

n∑

i=1

[
g(xi)

f̄(xi)
−
(
yi − µ̂i

)2
g(xi)

]
=

1

2

〈
w̃, g

〉
n
,

where w̃i = f̄(xi)
−1 − (yi − µ̂i)

2. For wi = f̄(xi)
−1 − (yi − µi)

2, we have

||E(w̃)||2n = n−1

n∑

i=1

[
E(w̃i)

]2

= n−1

n∑

i=1

[
E
(
f̄(xi)

−1 − (yi − µ̂i)
2
)]2

= n−1

n∑

i=1

[
E
(
f̄(xi)

−1 − (yi − µi)
2
)
− E

(
µi − µ̂i)

2

]2

= n−1

n∑

i=1

[
E
(
wi

)
− E(µi − µ̂i)

2

]2

= n−1

n∑

i=1

[
E(wi)

]2
+ n−1

n∑

i=1

[
E
(
µi − µ̂i)

2

]2
− 2n−1

n∑

i=1

E(wi)E
(
µi − µ̂i)

2

= ||E(w)||2n + ||E(µ− µ̂)||2n − 2n−1

n∑

i=1

E(wi)E
(
µi − µ̂i)

2, (3.18)

and ||E(w)||n = O(K−3
n ) from the proof of Theorem 3. For µ̂ which satisfies ||E(µ − µ̂)||n =

O(K−3
n ), we have

[∑n
i=1E(wi)E

(
µi−µ̂i)

2
]2 ≤∑n

i=1

[
E(wi)

]2∑n
i=1E

[(
µi−µ̂i)

2
]2

by Cauchy-

Schwarz inequality and
∣∣n−1

∑n
i=1E(wi)E

(
µi− µ̂i)

2
∣∣ = O(K−6

n ). From (3.18), we have E(w̃) =

O(K−3
n ). Using the proof of Theorem 3 with yi replaced by yi − µi, we find

∣∣∣ d
dα
ℓ(f̄ + α(g − f̄);x,y)

∣∣∣
α=0

∣∣∣ ≤ a0n
−3/7‖g − f̄‖,

and the rest of the proof is identical to the proof of Theorem 3.

The same argument as for the model with normal errors will show the rate of convergence for

the model with double-exponential errors. The normalized likelihood function can be written as

ℓµ̂(f ;x,y) =
1

n

n∑

i=1

(
log f(xi)−

√
2|yi − µ̂i|f(xi)

)
,
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and we have

d

dα
ℓµ̂(f̄ + αg;x,y)

∣∣∣
α=0

=
1

n

n∑

i=1

[
g(xi)

f̄(xi)
−

√
2
∣∣yi − µ̂i

∣∣g(xi)
]
=

1

2

〈
w̃, g

〉
n
,

where w̃i = f̄(xi)
−1 −

√
2|yi − µ̂i| and ||E(w̃)||n = O(K−3

n ). From the proof of Theorem 3, we

find
∣∣∣ d
dα
ℓ(f̄ + α(g − f̄);x,y)

∣∣∣
α=0

∣∣∣ ≤ a0n
−3/7‖g − f̄‖,

and the rest of proof is identical to proof of Theorem 3. ♦

3.5 Simulation Study

We compare the finite sample accuracy of the spline variance function estimators with the

kernel estimators introduced by Ruppert et al. (1997) and Dette and Pilz (2009). Ruppert et al.

(1997) proposed the variance function estimation method without shape constraints by smoothing

of squared residuals using local polynomial smoother matrices. Dette and Pilz (2009) implemented

the two-step kernel based method for estimating monotone variance function. Datasets were gen-

erated with different scenarios of standard deviation function, mean trend and sample size, using

the model yi = µ(i/n) + σ(i/n)ǫi for i = 1, · · · , n. For the standard deviation function σ(·), we

consider following functions.

1. Convex: σ1(x) = .1 + x2

2. Sigmoid: σ2(x) = .1 + exp(15x−8)
1+exp(15x−8)

The first standard deviation function is convex and increasing. The second standard deviation

function is a sigmoid shape which increases rapidly in the middle, but slowly at the beginning and

the end. For each standard deviation function, we used three error distributions, four sample sizes,

and three mean functions. The errors are generated from following distributions:

1. ǫ[1] ∼ N(0, 1) : Normal distribution with mean 0 and variance 1.

2. ǫ[2] ∼ DE(0, 2−1/2) : Double-exponential distribution with mean 0 and variance 1.

32



3. ǫ[3] ∼ Contaminated normal distribution: 90% of errors are from N(0, 0.652) and 10% of

errors are from N(0, 2.52).

Three mean trends were considered as below:

1. For µ1(x) = 0, we assume the mean trend is known.

2. For µ2(x) = 3x+ 5, we assume the trend is a linear function.

3. For µ3(x) = 50(x− .5)4I(x ≥ 0.5), we assume the trend is smooth and increasing.

The sample sizes are n = 50, 100, 200, and 500, and for each scenario, M=10,000 data sets were

generated. For the proposed spline methods, the numbers of knots for estimating the variance

functions are 4, 5, 6 and 8 when n = 50, 100, 200, and 500 respectively.

For the data sets generated with known mean µ1, the variance function is estimated directly for

both spline and kernel methods. For µ2 and µ3 and the spline method, the mean and variance func-

tions are estimated iteratively as described in Section 3.3.2. However, for the kernel methods, the

mean function is estimated ignoring the heteroskedasticity, then the variance function is estimated

using this estimated mean function. It is not feasible to iterate the estimation as in spline method,

because the kernel method frequently yields negative values for the estimated variance function.

The slope and intercept for µ2 are estimated using weighted least squares when normal errors

are assumed and the weighted least absolute deviations method when double-exponential errors are

assumed. The least-squares estimates of the smooth increasing µ3 are obtained using the R package

cgam (Liao and Meyer, 2017) when normal errors are assumed, and the function optim is used

to obtain constrained spline least absolute deviations estimators when the errors are assumed to

be double-exponential. In either case, the total number of knots for estimating the spline mean

functions of µ3 are 4, 5, 6, and 8 for n = 50, 100, 200, and 500, respectively. For both Ruppert

and Dette methods, the simple linear regression method is used to estimate µ2 for comparing the

performance of estimated variance function. The kernel based method with the monotonicity con-

straint introduced by Dette et al. (2006) estimates µ3 and the monotone variance function through

an R package monreg.
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To estimated mean and variance functions suggested in Ruppert et al. (1997), the matrices are

defined as

Xp(x) =




1 x1 − x . . . (x1 − x)p

...
...

. . .
...

1 xn − x . . . (xn − x)p




and Wh(x) = diag
1≤i≤n

K
(xi − x

h

)
,

where K is a pdf, and diag1≤i≤n ai denotes the n by n diagonal matrix with a1, . . . , an on the

diagonal. Then, the (i, j) element of the local polynomial smoother matrix Sp,h with degree p and

bandwidth h is defined as

(Sp,h)i,j = eT1 {Xp(xi)
TWh(xi)Xp(xi)}−1Xp(xi)

TWh(xi)ej,

where ej ∈ R
n is the column vector with one in the j the position and zeros elsewhere and e1 ∈ R

p

is the column vector with one in the the first position and zeros elsewhere. The mean function can

be estimated as µ̂ = Sp1,h1
y with the degree of polynomial p1 and the bandwidth h1. The estimated

variance function at xi with the degree p2 and the bandwidth h2 is obtained as

v̂(xi) =
eT1 {Xp2(xi)

TWh2
(xi)Xp2(xi)}−1Xp2(xi)

TWh2
(xi)r

2

1 + eT1 {Xp2(xi)
TWh2

(xi)Xp2(xi)}−1Xp2(xi)
TWh2

(xi)∆
=

S∗
p2,h2

(xi)r
2

1 + S∗
p2,h2

(xi)∆
,

where r = y − µ̂, ∆ = diag(Sp1,h1
ST
p1,h1

− 2Sp1,h1
), and

S∗
p2,h2

(xi) = eT1 {Xp2(xi)
TWh2

(xi)Xp2(xi)}−1Xp2(xi)
TWh2

(xi).

Let Sv be a n× b matrix where the ith row is S∗
p2,h2

(xi), then the estimated variance can be written

as v̂ = Svr
2. For the data sets with µ2, the hat matrix of simple linear regression model is used

for Sp1,h1
. Further, the kernel method without the monotonicity constraints suggested in Ruppert

et al. (1997) is used to estimate both µ3 and the variance function. As suggested in Ruppert et al.
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(1997), we set p1 = 3 and p2 = 1. The bandwidths are chosen based on Fan and Gijbels (1996)

using the function pluginBw in an R package locpol (Cabrera, 2018).

To compare the performance of different variance etimation methods, the root mean squared

error (RMSE) and the mean absolute error (MAE) are computed as follows:

RMSE =

[
1

nM

n∑

i=1

M∑

j=1

(
σ̂2
j (xi)− σ2(xi)

)2
]1/2

,

and

MAE =
1

nM

n∑

i=1

M∑

j=1

∣∣∣σ̂2
j (xi)− σ2(xi)

∣∣∣,

where σ̂2
j (xi) is the estimated variance at xi for the jth data set. Simulation results of RMSE and

MAE are shown in Table 3.1. Ruppert and Dette columns show results for the kernel estimator

without the shape constraints and the kernel estimator with the shape constraints, respectively.

Even though the kernel estimator with the shape constraint tends to have smaller RMSE for smaller

n, its MAE is always comparable or larger than for the spline estimator. It happens that a few data

sets estimate the reciprocal of the variance function to be close to zero at x = 1, and for these

few data sets (σ̂2(1) − σ2(1))2 can be very large. In addition, if we compare f̂ with f , the spline

estimator always has smaller RMSE and MAE. Moreover, the kernel based methods have the

serious disadvantage of yielding negative values of the variance.

Next, we turn to the more interesting question of the effect of the variance function on inference

for the mean function. First, we simulated datasets using the linear mean trend µ2 and computed

confidence intervals for the slope. With the normal errors assumption, let β̂1 be the estimated

(least-squares) slope and let σ̂2(xi) be the estimated variance at xi. The 95% confidence intervals

are computed as

β̂1 ± t(0.975)(n− 2− Ln)
√
(X⊤WX)−1

[2,2], (3.19)

where the matrix X = (1,x) and W = diag(σ̂−2(x1), . . . , σ̂
−2(xn)) where 1 = (1, . . . , 1)⊤ ∈ R

n.

Under the double-exponential error assumption, let β̂D,1 be the estimated (least absolute devia-
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Table 3.1: RMSE (MAE) from 10,000 estimated variance functions of the proposed spline estimators and

the kernel estimators.

σ1 : Convex σ2: Sigmoid

Error n
Spline Spline Kernel Kernel Spline Spline Kernel Kernel

N(0,1) DE Ruppert Dette N(0,1) DE Ruppert Dette

µ1 = 0

NM
(ǫ[1])

50 .27 (.10) .45 (.15) .31 (.13) .23 (.12) .31 (.16) .52 (.23) .40 (.20) .31 (.22)

100 .19 (.07) .32 (.12) .21 (.09) .16 (.09) .23 (.12) .41 (.20) .28 (.15) .24 (.17)

200 .13 (.06) .23 (.10) .15 (.06) .11 (.07) .16 (.09) .31 (.16) .20 (.11) .18 (.14)

500 .09 (.04) .18 (.08) .10 (.04) .08 (.04) .11 (.06) .25 (.15) .13 (.07) .13 (.10)

DE
(ǫ[2])

50 .43 (.14) .55 (.14) .45 (.17) .32 (.16) .50 (.22) .55 (.22) .59 (.28) .44 (.28)

100 .36 (.11) .35 (.11) .36 (.13) .25 (.13) .40 (.18) .37 (.17) .45 (.21) .34 (.23)

200 .24 (.08) .22 (.08) .24 (.09) .17 (.10) .27 (.13) .25 (.12) .31 (.16) .25 (.18)

500 .14 (.06) .13 (.05) .15 (.06) .11 (.06) .17 (.09) .16 (.08) .19 (.10) .18 (.13)

CN
(ǫ[3])

50 .72 (.18) .80 (.15) .70 (.22) .48 (.21) .82 (.30) .70 (.23) .89 (.36) .63 (.36)

100 .52 (.14) .41 (.11) .50 (.17) .33 (.17) .59 (.24) .39 (.17) .64 (.28) .45 (.29)

200 .39 (.11) .26 (.08) .36 (.13) .24 (.13) .42 (.17) .27 (.13) .46 (.22) .34 (.23)

500 .22 (.08) .14 (.06) .22 (.09) .16 (.09) .25 (.12) .17 (.09) .29 (.15) .23 (.17)

µ2 = 3x+ 5

NM
(ǫ[1])

50 .28 (.10) .45 (.15) .30 (.13) .25 (.18) .31 (.16) .51 (.23) .39 (.20) .36 (.27)

100 .19 (.07) .31 (.12) .21 (.09) .19 (.15) .23 (.12) .40 (.20) .28 (.15) .29 (.22)

200 .13 (.06) .23 (.10) .15 (.06) .16 (.12) .16 (.09) .31 (.16) .20 (.11) .24 (.19)

500 .09 (.04) .18 (.08) .10 (.04) .12 (.10) .11 (.06) .25 (.15) .13 (.07) .19 (.16)

DE
(ǫ[2])

50 .43 (.14) .56 (.15) .44 (.17) .30 (.20) .50 (.22) .55 (.22) .58 (.28) .44 (.31)

100 .36 (.11) .35 (.11) .35 (.13) .24 (.17) .40 (.18) .37 (.17) .45 (.21) .35 (.26)

200 .24 (.08) .22 (.08) .24 (.09) .19 (.14) .27 (.13) .25 (.12) .31 (.16) .28 (.22)

500 .14 (.06) .13 (.05) .15 (.06) .14 (.11) .17 (.09) .16 (.08) .19 (.10) .22 (.17)

CN
(ǫ[3])

50 .73 (.18) .81 (.15) .67 (.21) .40 (.23) .83 (.30) .71 (.23) .86 (.38) .58 (.37)

100 .52 (.14) .41 (.11) .49 (.17) .30 (.19) .59 (.24) .39 (.17) .63 (.28) .44 (.30)

200 .39 (.11) .26 (.08) .36 (.13) .23 (.16) .42 (.17) .27 (.13) .45 (.21) .34 (.25)

500 .22 (.08) .14 (.06) .22 (.09) .17 (.12) .25 (.12) .17 (.09) .28 (.15) .26 (.20)

µ3 = 50(x− .5)4I(x ≥ 0.5)

NM
(ǫ[1])

50 .36 (.11) .36 (.12) .37 (.14) .24 (.16) .35 (.16) .40 (.18) .48 (.23) .33 (.24)

100 .20 (.08) .25 (.10) .23 (.09) .18 (.14) .22 (.12) .32 (.16) .29 (.15) .26 (.20)

200 .13 (.06) .19 (.08) .15 (.07) .14 (.11) .16 (.09) .26 (.14) .20 (.11) .21 (.17)

500 .09 (.04) .15 (.08) .10 (.04) .10 (.08) .11 (.06) .23 (.13) .13 (.07) .16 (.13)

DE
(ǫ[2])

50 .49 (.14) .52 (.13) .50 (.18) .30 (.18) .52 (.22) .47 (.20) .65 (.29) .44 (.29)

100 .35 (.11) .31 (.10) .36 (.13) .24 (.16) .38 (.17) .32 (.16) .46 (.21) .34 (.24)

200 .23 (.08) .20 (.08) .24 (.09) .18 (.13) .26 (.13) .23 (.11) .31 (.16) .27 (.20)

500 .14 (.06) .12 (.05) .15 (.06) .13 (.09) .17 (.09) .15 (.08) .19 (.10) .19 (.15)

CN
(ǫ[3])

50 .75 (.18) .77 (.15) .75 (.23) .41 (.22) .82 (.29) .66 (.22) .97 (.37) .59 (.36)

100 .50 (.14) .39 (.11) .49 (.17) .31 (.18) .56 (.23) .37 (.17) .63 (.28) .45 (.30)

200 .38 (.11) .24 (.08) .35 (.13) .24 (.15) .40 (.17) .26 (.13) .45 (.22) .34 (.24)

500 .22 (.08) .14 (.06) .22 (.09) .16 (.11) .25 (.12) .17 (.10) .28 (.15) .24 (.18)
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tions) slope. Bassett and Koenker (1978) showed the asymptotic normality of the estimator that

minimizes the sum of absolute errors for the linear model. Based on this, the confidence interval

is obtained as

β̂D,1 ± 1.96
√

(2f̂ǫ(0))−2(X⊤WX)−1
[2,2]

where f̂ǫ(0) is the kernel density estimation of the error distribution at x = 0 using a Gaussian

kernel.

For the kernel method (Ruppert) without the monotonicity constraint, the estimated mean func-

tion of µ2 is updated only once using weighted least squares method because of the negative values

in the estimated variance function. The 95% confidence intervals are also computed as (3.19) with

a trace of Sv as a replacement of Ln, after removing the data sets with negative estimated variance

values. Table 3.2 shows the percentage of removed data sets out of 10,000 data sets due to the

negative variance values for computing the confidence interval of the slope parameter. The kernel

method (Dette) with the monotonicity constraint can not be used to compare the performance of

the mean function because all the estimators of variance functions contain at least one negative

value.

Table 3.2: The percentage of removed data sets to compare the estimated slope parameter of the linear mean

function (µ2 = 3x+ 5) for the kernel method without the shape constraint (Ruppert et al., 1997).

σ n NM (ǫ[1]) DE (ǫ[2]) CN(ǫ[3])

σ1

50 11.15 18.20 21.43

100 5.28 12.66 17.53

200 1.54 5.61 11.82

500 0.06 0.89 3.64

σ2

50 9.92 17.59 22.60

100 3.74 10.51 17.06

200 0.79 3.90 10.22

500 0.01 0.54 2.29

The coverage probabilities and widths of the confidence intervals are shown in Table 3.3 for

the two standard deviation functions, three error distributions, and four sample sizes described for
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Table 3.3: 95% coverage probability (width of CI) of the estimated slope parameter of the linear mean

function (µ2 = 3x + 5). The OLS and LAE estimators and confidence intervals (incorrectly) assume

homoskedasticity. The Kernel (Ruppert) method obtains estimators and confidence intervals without shape

restrictions.

σ Error n OLS
Spline

LAE
Spline Kernel

N(0,1) DE Ruppert

σ1

NM
(ǫ[1])

50 .890 (.98) .931 (.63) .824 (.69) .921 (.77) .880 (.64)

100 .891 (.71) .937 (.45) .820 (.48) .933 (.57) .919 (.46)

200 .895 (.50) .940 (.32) .814 (.34) .942 (.41) .936 (.33)

500 .896 (.32) .948 (.21) .805 (.21) .953 (.26) .950 (.21)

DE
(ǫ[2])

50 .892 (.97) .938 (.61) .883 (.52) .952 (.57) .906 (.60)

100 .895 (.70) .940 (.44) .895 (.36) .965 (.40) .930 (.44)

200 .900 (.50) .945 (.32) .891 (.25) .969 (.28) .944 (.32)

500 .894 (.32) .947 (.20) .870 (.15) .969 (.17) .951 (.21)

CM
(ǫ[3])

50 .909 (.96) .944 (.58) .835 (.50) .925 (.55) .904 (.56)

100 .903 (.69) .942 (.42) .837 (.35) .935 (.40) .926 (.42)

200 .895 (.49) .944 (.30) .822 (.24) .942 (.29) .935 (.31)

500 .890 (.32) .945 (.20) .813 (.15) .946 (.18) .949 (.20)

σ2

NM
(ǫ[1])

50 .927 (1.32) .935 (.73) .738 (.72) .922 (.84) .892 (.77)

100 .926 (.95) .944 (.52) .727 (.49) .937 (.62) .931 (.55)

200 .927 (.68) .941 (.36) .708 (.34) .943 (.44) .948 (.39)

500 .932 (.42) .948 (.23) .688 (.20) .951 (.28) .956 (.24)

DE
(ǫ[2])

50 .928 (1.30) .941 (.70) .820 (.55) .946 (.62) .909 (.72)

100 .931 (.94) .946 (.50) .819 (.38) .962 (.44) .935 (.52)

200 .930 (.67) .945 (.35) .816 (.25) .967 (.31) .952 (.38)

500 .929 (.43) .948 (.23) .780 (.15) .967 (.19) .959 (.24)

CM
(ǫ[3])

50 .938 (1.29) .946 (.67) .765 (.53) .924 (.59) .914 (.68)

100 .930 (.94) .946 (.48) .750 (.36) .935 (.44) .933 (.50)

200 .932 (.67) .946 (.34) .729 (.25) .941 (.31) .943 (.37)

500 .926 (.43) .944 (.22) .698 (.15) .946 (.20) .955 (.24)

the previous simulations. For each scenario, 10,000 data sets were generated. For each data set,

confidence intervals were computed: the OLS and LAE columns show results for standard least-

squares and least absolute deviations, where homoskedasticity is assumed. For normal errors, the

confidence interval computed using the spline variance estimator as weights, assuming normality,

performs best. With the heavier-tailed errors, the proposed method with the double-exponential
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assumption outperforms the others. Although the method using splines with the assumption of

normal errors has good coverage probability, the interval widths are larger.

The histograms of the estimated slope of β1 are shown in Figures 3.1, 3.2, and 3.3 for nor-

mal errors, double-exponential errors, and contaminated normal errors, respectively. From the

histograms, it can be seen that the range of estimate slope ignoring heteroskedasiticity is wider

compare to the range of estimate slope incorportation heteroskedasiticity. Also, the distribution of

estimated slope parameters from the kernel method based on Ruppert et al. (1997) is skewed.

We also simulate data sets with mean trend µ3 and normal errors, to consider the effect of

the variance function for inference for a non-parametrically estimated mean function. For each

standard deviation function, we simulated 10,000 data sets with equally spaced x-values. For each

data set, the mean and variance functions were estimated using monotone regression splines, and

the point-wise confidence intervals at each x-value were computed using the method introduced

by Meyer (2018). The coverage probabilities (top curves, left scale) and average interval widths

(bottom curves, right scale) are shown in Figure 3.4. Black dashed lines and red dash-dot lines

show the coverage probability and the mean interval length using the splines estimator and the

kernel estimator (Ruppert), respectively. For the kernel estimator, 315 data sets for σ1 and 154

data sets for σ2 are removed before calculating the coverage probability and the mean interval

length due to the negative values of estimated variances. At boundaries, the spline estimator has

better coverage probabilities with a narrower interval length. Gray solid lines show the coverage

probability and mean interval length when we ignore heteroskedasticity. It shows that the coverage

probability of the mean function is substantially improved by accounting for the estimated variance

function.
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(a) OLS with σ1 (convex).
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(b) OLS with σ2 (sigmoid).
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(c) Spline N(0,1) with σ1 (convex).
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(d) Spline N(0,1) with σ2 (sigmoid).
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(e) Kernel (Ruppert) with σ1 (convex).
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(f) Kernel (Ruppert) with σ2 (sigmoid).

Figure 3.1: Histogram of estimated slope parameters of β1 simulated with normal errors (ǫ[1]) and n = 200.
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(a) LAE with σ1 (convex).
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(b) LAE with σ2 (sigmoid).
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(c) Spline DE with σ1 (convex).
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(d) Spline DE with σ2 (sigmoid).
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(e) Kernel (Ruppert) with σ1 (convex).
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(f) Kernel (Ruppert) with σ2 (sigmoid).

Figure 3.2: Histogram of estimated slope parameters of β1 simulated with double-exponential errors (ǫ[2])

and n = 200.
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(f) Kernel (Ruppert) with σ2 (sigmoid).

Figure 3.3: Histogram of estimated slope parameters of β1 simulated with contaminated normal errors (ǫ[3])

and n = 200.
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Figure 3.4: Simulation with µ2 = 50(x − .5)4I(x ≥ 0.5), n = 200, and normal errors. The results in the

left use the true variance functions σ2
1(convex), and for the right panel, σ2

2(sigmoid) is used. Coverage prob-

ability (top curve, left scale) and average interval length (bottom curves, right scale) using spline variance

estimator (dashed lines) and kernel variance estimator (dash-dot lines). Gray solid lines show the coverage

probability and mean interval length ignoring heteroskedasticity.

3.6 Real Data Analysis

3.6.1 LIDAR Data

The LIDAR data set described in Ruppert et al. (2003) contains 221 observations from a light

detection and ranging (LIDAR) experiment. The LIDAR experiment provides information about

the shape of the surface of the source. The response variable is a logarithm of the ratio of received

light from two laser sources, and the predictor variable is the distance traveled before the light is

reflected back to its source. It is reasonable to model the mean function as smooth and decreasing,

and the variance function as smooth and increasing. Figure 3.5 shows the estimated mean function

(solid line) and the 95% confidence bands (dashed lines) from (a) the proposed spline method when

normal errors are assumed, and from (b) the kernel method (Ruppert) without the monotonicity

constraint. For the spline method, the R package cgam is used for the mean and confidence bands

with six evenly spaced knots marked as ‘x’. The suggested bandwidth for the kernel method

(Ruppert) is computed through an R function pluginBw in locpol package with the Gaussian

kernel. There are spurious bumps and wiggles in the estimated mean and bands from the kernel
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method (Ruppert) after an range of 600. The squared residuals from the spline fit in (a) are shown in

Panel (c). The squared residuals should be randomly and evenly scattered if the homoskedasticity

assumption is satisfied. However, panel (c) apparently shows that the squared residual increases

as the predictor variable increases, and the homoskedasticity assumption is violated. Panel (d)

shows the estimated variance functions from the kernel method (Ruppert) without the monotonicity

constraint, and the solid line shows the estimated variance function with suggested bandwidth.

The curves are shown to have wiggles after an range of 600 even with a large bandwidth. The

estimated variance functions from the proposed splines method under the normal errors assumption

and the kernel method (Dette) with the monotonicity constraint are shown in Panels (e) and (f),

respectively, showing that the spline estimator is more robust to tuning parameters. Since the

kernel method (Dette) yields the negative values for estimated variance function when the range is

small, it is not able to construct the confidence intervals of the mean function.

To confirm our assumption about the error distribution, we look at the normal quantile-quantile

plot using the weighted residuals, shown at the left in Figure 3.6. When the mean and variance

functions are estimated using the double-exponential errors assumption, the quantile plot of the

weighted residuals (on the right) shows deviations from this assumption. Therefore, it is appropri-

ate to assume that errors follow the normal distribution.

3.6.2 Abalone Data

The Abalone data set, available in an R package PivotalR, was used by Dette and Pilz (2009)

to illustrate the kernel method, assuming that that interest is in estimating physical measurements as

a function of age (indicated by the number of rings). The physical measurements of each abalone in

the data set consist of the length, diameter, height, whole weight, shucked weight, viscera weight,

and shell weight. There are 4177 observations, and we remove 21 obvious erroneous entries (sam-

ples which have the smaller whole weight compared to the sum of shell weight and shucked weight

or the smaller length than diameter or with zero height). The first principal component of physical

measurements accounts for 97.53% of the variability in the physical measurements. The log trans-
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Figure 3.5: LIDAR data. (a) The scatter plot of LIDAR data with the estimated mean function (solid line)

and point-wise confidence bands (dashed line) from the proposed spline method. Knots are marked as ‘x’.

(b) The fit (solid line) with point-wise confidence bands (dashed line) from the kernel method (Ruppert et al.,

1997). (c) Squared residuals; squared value of difference between observed value and estimated mean value

in (a). (d) The estimated variance using the kernel method (Ruppert et al., 1997) with different bandwidths.

(e) Estimated variance functions using the proposed splines method with different number of knots. (f)

The estimated variance using the kernel method (Dette and Pilz, 2009) with three different combinations of

bandwidths.
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Figure 3.6: Quantile plots of the weighted residuals from the spline fit to the LIDAR data. The residuals

follow a normal distribution (left) much more closely than a double-exponential distribution (right).

formation of the first principal components after adding a constant is used as a predictor variable.

The coefficients are all positive and approximately equal, indicating that this linear combination

of measurements can be labeled “overall size” of the abalone. It seems reasonable to assume that

overall size is increasing in age, and that the variance of the size tends to increase as well. Panel

(a) in Figure 3.7 shows the scatter plot and the estimated mean function (solid line) with the point-

wise 95% confidence bands (dashed line) based on the splines method. Again, cgam is used to

obtain the mean function and the bands with evenly spaced eleven knots. Knots are marked as ‘x’.

Panel (b) shows the fit and bands form the kernel method (Ruppert). The confidence interval in (b)

is wider than the confidence interval in (a) at the boundaries. Panel (c) shows the squared residu-

als, squared values of difference between the first principal components of physical measurements

and its estimated value, calculated by using the estimated mean values in (a). It shows that the

error assumption of homoskedasticity is violated. Panel (d) shows the estimated variance func-

tions from the kernel method (Ruppert) without the monotonicity constraint, and the dashed line

shows the estimated variance function with suggested bandwidth. The estimated variance function

varies after the age of 25 based on the bandwidths. With the bandwidths 0.6480 and 1.1255, the

kernel method (Ruppert) yields the negative values for the estimated variance function. Therefore,

the bandwidth 0.5815 is used to construct the confidence bands in (b) even though it is not the

suggested bandwidth. The estimated variance functions using the proposed spline method and the
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kernel method from Dette and Pilz (2009) are shown in Panel (e) and Panel (f), respectively. Three

different number of equally spaced knots are used as knots for the proposed spline method and the

different choices of bandwidths are used for the kernel method (Dette). The variance functions

estimated by the kernel method (Dette) vary more with the choice of bandwidths, and they violate

the assumption that the variances are positive. The solid curve with bandwidths (.003, .0045) uses

the recommended bandwidths from Dette and Pilz (2009).

3.6.3 Abalone Data with an Indicator Variable

The abalone dataset includes a categorical covariate Sex that has three levels: Male, Female

and Infant. An abalone is labeled as Infant if it is not mature enough to categorize into either

male or female. The scatter plot in Panel (a) of Figure 3.8 shows that infant abalones tend to

have smaller mean and variance compared to adults (male and female) abalones if they are the

same age. Let z be the indicator variable for adult abalones, that is, zi = 0 for infants and zi =

1 for adults for i = 1, . . . , n. We model the reciprocal of the variance as θi = f(xi) + βzi,

where β is the coefficient for the indicator variable and f(x) will be approximated by a non-

increasing spline function. Along with the monotonicity constraints, we need an extra constraint

that f(1) + β > 0 to satisfy the assumption of the positive variance. The estimated mean function

is shown in Panel (a) of Figure 3.8, along with the 95% point-wise confidence bands from the

proposed spline method under the normal errors assumption. Nine evenly spaced points over the

range of age, a minimum age of adults abalones, and a maximum age of infants abalones are used

as knots, and they are marked as ‘x’. Both kernel methods do not have the option for incorporating

the parametric covariate in the variance function. Panel (b) of Figure 3.8 shows the estimated

variance functions with three different number of knot choices. It shows that the estimated variance

function is robust to the tuning parameter. Panel (c) of Figure 3.8 shows the normal Q-Q Plot of

standardized residuals, confirming that the normal errors assumption is reasonable compared to the

double-exponential errors assumptions.
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Figure 3.7: Abalone data. (a) The scatter plot of Abalone data with the estimated mean function (solid line)

and point-wise confidence bands (dashed line) using cgam function in an R package. Knots are marked as

‘x’. (b) The fit (solid line) with point-wise confidence bands (dashed line) from the kernel method (Ruppert

et al., 1997). (c) Squared residuals; squared value of difference between observed value and estimated

mean value in (a). (d) The estimated variance using the kernel method (Ruppert et al., 1997) with different

bandwidths. (e) Estimated variance functions from the proposed splines method with 9, 11, 13 number of

knots. (f) The estimated variance from the kernel method (Dette and Pilz, 2009) with three combinations of

bandwidths.
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Figure 3.8: Abalone data with an infant indicator variable. (a) Scatter plot of Abalone data with the esti-

mated mean and 95% confidence bands from the proposed spline method under the normal errors assump-

tion. Knots are marked as ‘x’. (b) The estimated variance functions from the proposed splines method

with the different number of knots for adults and infants separately. (c) Normal Q-Q plot of standardized

residuals.

3.6.4 California Air Pollution Data

California Air Pollution Data (Breiman and Friedman, 1985), available in a SemiPar package,

consists of daily ozone level and other meteorological measurements for 345 days in California

in 1976. We are interested in the relationship between air pollution (ozone) and the meteorologi-

cal quantity as a function of temperature. The response variable is a Ozone concentration which

records the daily maximum one hour average ozone concentration (ppm) at Sandburg Air Force

Base. The predictor variable is the inversion base temperature in degrees Fahrenheit. Figure 3.9

shows the scatter plot with estimated mean function (solid line) with point-wise confidence bands

(dashed line) form (a) the proposed spline method under the normal errors assumption, and (b) the

kernel method (Ruppert et al., 1997) without the monotonicity constraints. Form the scatter plot,

we can see that both mean and variance are increases as the inversion of temperature increases.

The panels (a) and (b) show that the estimated mean and bands wiggle more for the kernel method

(Ruppert) when the inversion base temperature is greater than 80. Panel (c) shows squared resid-

uals using the fit in (a). It is clear that the homoskedasticity assumption for variance is violated

because the squared residual tends to increase as the predictor variable increases. Figure 3.9 shows

the estimated variance functions using the kernel methods ((d) Ruppert et al. (1997) and (f) Dette
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and Pilz (2009)), and (e) our proposed spline method under the normal errors assumption. The

solid line shows in Figure 3.9 (d) uses the suggested bandwidth introduced in Fan and Gijbels

(1996). The estimated variance function with the largest bandwidth in Figure 3.9 (d) yields a

negative value even though it is much smoother than the estimated variance functions with larger

bandwidth. In Figure 3.9 (f), the estimated variance function using the kernel method (Dette) with

the suggested bandwidths from is represented in the solid line. It is clear that the variance is not

linearly increasing, so the estimated variance with the smaller bandwidths might be more convinc-

ing. Similar to the previous examples, Figure 3.9 (e) depicts that the estimated variance function

from the proposed spline method is quite stable even though the number of knots is different. The

estimated variances using four number of knots has lager estimates compare to the others when

the inversion of temperature is greater than 80, but it became stable when we use the large enough

number of knots. Moreover, the ambiguity might arises because of the small number of data when

Temperature is greater than 80.

We also confirm that the error distribution follows the normal distribution from quantile-

quantile plots of weighted residuals in Figure 3.10. The quantile plot of the weighted residuals

(on the right) under the double-exponential errors assumption shows deviations from the linear

line while the quantile plot of the weighted residuals (on the left) under the normal errors assump-

tion shows the approximately linear line.
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Figure 3.9: California air pollution data. (a) The scatter plot of California air quality data with estimated

mean function (solid line) and point-wise confidence intervals (dashed line) from the proposed spline method

under the normal errors assumption. (b) The estimated fit (solid line) with point-wise confidence bands

(dashed line) from the kernel method (Ruppert et al., 1997). (c) Squared residuals; squared value of dif-

ference between observed value and estimated mean value in (a). (d) The estimated variance using local

polynomial kernel method Ruppert et al. (1997) with three bandwidths. (e) Estimated variance functions

using the proposed method with different number of knots. (f) The estimated variance using kernel method

(Dette and Pilz, 2009) with three different combinations of bandwidths.
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Figure 3.10: California air pollution data: Quantile plots of the weighted residuals from the spline fit.

The residuals follow a normal distribution (left) much more closely than a double-exponential distribution

(right).
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Chapter 4

Monotone Variance Function Estimation with a

Penalty Term

4.1 Motivation

The proposed splines estimators are consistent and converge to the true variance function as

mentioned in Chapter 3. However, a problem arises at a boundary of domain for a few data sets in

the simulation studies. The estimated non-decreasing variance function spikes when f̂(1) is close

to zero for a couple of unlucky data sets. If f̂(1) is close to zero, the estimated variance at 1 (which

is the reciprocal of f̂(1)) become larger. The left panel of Figure 4.1 shows the example of the

unlucky data set generated with µ1 ≡ 0, σ1 = 0.1 + x2, n = 200, and normal errors. The right

panel of Figure 4.1 shows the true variance function (solid line) and estimated variance function

(Spline(N), dotted line) from the proposed spline method in Chapter 3 under the normal error

assumption. The estimate variance function is much larger than the true variance function around

x = 1. Even though there are only a few data sets out of 10,000 simulated data sets, RMSE values

are much higher for these data sets compared to the other data sets. In this chapter, the penalized

maximum likelihood estimator of a monotone variance function is considered as an alternative to

ameliorate this problem at the boundary. The dashed line in the right panel of Figure 4.1 shows the

penalized maximum likelihood estimator, and it shows that the estimated variance function around

x = 1 is close to the true variance function compare to the maximum likelihood estimator without

the penalty parameter. The penalized likelihood estimation method is described in the following

section.
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Figure 4.1: Example of the simulated data with µ1 = 0, σ1 = .1 + x2, and n = 200 when the estimated

variance function spike at the boundary of domain. Left: Scatter plot, Right: True variance function (solid

line) and estimated variance functions from the proposed spline methods without a penalty them (dotted

line) and with a penalty term (dashed line).

4.2 Penalized Maximum Likelihood Estimation

Under the normal errors assumption, we suggest to maximize the penalized likelihood function

of the form

ℓλ(θ;x,y) =
1

2n

{
n∑

i=1

[
log(θi)− (yi − µ̂(xi))

2θi

]
+

n∑

i=n−(k−1)

λiθi

}
(4.1)

where k is about 20% of the number of observations in the last knot interval, and λi’s are penalty

parameters. The penalty parameter λi is defined as

λi =
1

2
(yi − µ̂(xi))

2.

The same algorithm proposed in Section 3.3.2 is used to find the maximizer of (4.1). We suggest

the penalty parameter because it reduces the influence of only k data points around the bound-

ary. Further, the penalized estimator attains the same optimal rate of convergence as unpenalized

estimator, and it is proved in the Appendix A.2.

Similarly, the method can be easily adjusted for the double-exponential errors assumption.

We can obtain the penalized maximum likelihood estimator with double-exponential errors by
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maximizing

ℓλ(θ;x,y) =
1

n

{
n∑

i=1

[
log(θi)−

√
2|yi − µ̂(xi)|θi

]
+

n∑

i=n−(k−1)

√
2λiθi

}
, (4.2)

where

λi =
1

2
|yi − µ̂(xi)|.

Again, we can use the same procedure suggested in Section 3.3.2 to optimize the penalized like-

lihood functions in (4.2). The proposed penalty term is easy to set and does not affect the rate of

convergence. The proof of the rate of convergence for the penalized maximum likelihood estimator

is provided in the Appendix A.2.

The performances of the proposed penalized estimator are demonstrated through simulations

with the same data sets generated in Chapter 3.5. Table 4.1 shows RMSE and MAE from the

penalized splines estimators with the normal error assumption and the double-exponential error

assumption. Both RMSE and MAE from the penalized estimation methods are substantially im-

proved for both error assumptions.

Table 4.2 shows the 95% coverage probability and the average width of confidence intervals of

the estimated slope parameter of the linear mean function (µ2) from the penalized spline estimator.

The average width of confidence intervals from the penalized spline estimator is narrower than that

from the spline estimators without the penalty term.

The histograms of estimated slope parameter in the linear mean trend µ2 from the penalized

spline method are presented in Figures 4.2, 4.3, and 4.4. The range of histograms from the penal-

ized spline method is similar to the those from the spline method without the penalty term.
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Table 4.1: RMSE (MAE) from 10,000 estimated variance functions using the proposed penalty parameters.

µ1(x) = 0 µ2(x) : Linear µ3(x) : Quartic

Error σ n
Spline(λ) Spline(λ) Spline(λ) Spline(λ) Spline(λ) Spline(λ)

N(0,1) DE N(0,1) DE N(0,1) DE

NM
(ǫ[1])

σ1

50 .18 (.09) .20 (.10) .19 (.09) .20 (.10) .20 (.10) .20 (.10)

100 .14 (.07) .16 (.09) .15 (.07) .16 (.09) .15 (.08) .16 (.09)

200 .11 (.06) .13 (.07) .11 (.06) .13 (.07) .12 (.06) .13 (.07)

500 .09 (.04) .11 (.07) .09 (.04) .11 (.06) .09 (.04) .11 (.06)

σ2

50 .24 (.14) .31 (.16) .25 (.14) .30 (.16) .25 (.14) .27 (.14)

100 .19 (.11) .26 (.14) .19 (.11) .25 (.14) .19 (.11) .22 (.12)

200 .14 (.08) .20 (.11) .14 (.08) .20 (.11) .14 (.08) .18 (.10)

500 .10 (.06) .18 (.11) .10 (.06) .17 (.11) .10 (.06) .16 (.10)

DE
(ǫ[2])

σ1

50 .28 (.12) .23 (.12) .28 (.13) .24 (.12) .29 (.13) .24 (.12)

100 .22 (.10) .18 (.09) .22 (.10) .18 (.09) .22 (.10) .19 (.10)

200 .16 (.08) .15 (.07) .16 (.08) .15 (.07) .16 (.08) .15 (.08)

500 .11 (.06) .11 (.06) .11 (.06) .11 (.06) .11 (.06) .12 (.06)

σ2

50 .39 (.20) .33 (.18) .39 (.21) .34 (.18) .38 (.20) .32 (.18)

100 .30 (.16) .24 (.14) .30 (.16) .25 (.14) .29 (.16) .24 (.14)

200 .21 (.12) .18 (.10) .21 (.12) .18 (.11) .21 (.12) .18 (.11)

500 .14 (.08) .12 (.07) .14 (.08) .12 (.07) .14 (.08) .13 (.07)

CN
(ǫ[3])

σ1

50 .45 (.16) .27 (.12) .45 (.16) .27 (.13) 43. (.16) .27 (.13)

100 .32 (.13) .20 (.10) .32 (.13) .20 (.10) .31 (.13) .21 (.11)

200 .24 (.10) .17 (.08) .24 (.10) .17 (.09) .23 (.10) .18 (.09)

500 .15 (.07) .14 (.07) .15 (.07) .14 (.07) .15 (.07) .14 (.07)

σ2

50 .61 (.28) .36 (.19) .61 (.28) .37 (.20) .58 (.27) .36 (.20)

100 .44 (.22) .26 (.16) .44 (.22) .27 (.16) .43 (.22) .27 (.17)

200 .31 (.16) .21 (.12) .31 (.16 ) .21 (.13) .30 (.16) .22 (.13)

500 .21 (.11) .16 (.10) .21 (.11) .16 (.10) .20 (.11) .17 (.10)

56



Table 4.2: 95% coverage probability (width of CI) of the estimated slope parameter of the linear mean

function using the penalized spline variance estimator.

σ1(x) : Convex σ2(x) : Sigmoid

ǫ n N(0,1) DE N(0,1) DE

NM
(ǫ[1])

50 .925 (.62) .923 (.78) .933 (.72) .924 (.85)

100 .933 (.45) .933 (.57) .943 (.51) .940 (.63)

200 .937 (.32) .940 (.41) .939 (.36) .944 (.45)

500 .946 (.21) .954 (.26) .947 (.23) .953 (.29)

DE
(ǫ[2])

50 .934 (.60) .954 (.57) .939 (.70) .949 (.63)

100 .937 (.43) .965 (.40) .944 (.50) .964 (.45)

200 .944 (.31) .969 (.28) .945 (.35) .969 (.31)

500 .945 (.20) .969 (.17) .947 (.22) .968 (.19)

CN
(ǫ[3])

50 .941 (.57) .925 (.55) .944 (.67) .927 (.60)

100 .940 (.41) .936 (.40) .945 (.48) .938 (.44)

200 .941 (.30) .942 (.29) .944 (.34) .942 (.31)

500 .943 (.20) .946 (.18) .944 (.22) .947 (.20)
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(a) Spline N(0,1) with σ1 (convex).
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(b) Spline N(0,1) with σ2 (sigmoid).

Figure 4.2: Histogram of estimated slope parameters of β1 with normal errors (ǫ[1]) and n = 200.
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(a) Spline DE with σ1 (convex).

β^1

F
re

q
u

e
n

c
y

2.6 2.8 3.0 3.2 3.4

0
4

0
0

8
0

0
1

2
0

0

(b) Spline DE with σ2 (sigmoid).

Figure 4.3: Histogram of estimated slope parameters of β1 with double-exponential errors (ǫ[2]) and n =
200.
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(a) Spline DE with σ1 (convex).
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(b) Spline DE with σ2 (sigmoid).

Figure 4.4: Histogram of estimated slope parameters of β1 with contaminated normal errors (ǫ[3]) and

n = 200.
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4.3 Real Data Analysis

The penalized splines method can be applied to the U.S. temperature data (Peixoto, 1990)

available in a SemiPar package within R. The data set contains average January minimum tem-

perature, latitude, and longitude of 56 U.S. cities. The average January minimum temperature

(Temperature) is obtained by adding the average minimum temperatures for January 1931 through

January 1960 and dividing the total by 30. In Peixoto (1990), the response variable is the aver-

age January minimum temperature and the predictor variables are the latitude and the longitude in

degrees. The ordinary regression models including the higher order terms, such as quadratic and

cubic terms of predictor variables, are considered under the homoskedasitic errors assumption in

Peixoto (1990). However, the average January minimum temperature can be estimated in terms of

the latitude by accounting for the estimated variance function, and the model interpretability can

be improved. The scatter plot in Figure 4.5 shows the estimated mean function (solid line) and the

95% confidence bands (dashed lines) from (a) the spline method with the penalized estimator of

the variance function and (b) the kernel method (Ruppert) without the monotonicity constraints.

Knots are marked as ‘x’ in (a). The bands in the panel (b) are wiggly compare to the bands in the

panel (a). The fit in the panel (b) shows the temperature increases as the latitude the increase when

the latitude is greater 45, and it is contradictory to common knowledge that the temperature de-

crease is mainly due to the increase in latitude. Panels (c) and (d) in Figure 4.5 show the estimated

variance functions from the proposed spline method without the penalty term and the proposed

spline method with the penalty term, respectively. The penalty term reduce the influence of the

data values at the boundary of domain, and handle the spiking problem. The variance functions es-

timated from the kernel methods introduced by Ruppert and Dette are shown in panels (e) and (f),

respectively. Solid lines in panels (e) and (f) are the estimate variance functions with the suggested

bandwidths, and both curves yield negative values. The estimated variance functions from the ker-

nel method (Ruppert) with larger bandwidths yield positive variances, but the estimated variance

function form kernel method (Dette) yields the negative values even with the smaller bandwidths.
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Figure 4.5: U.S. temperature data: (a) Scatter plot of average January minimum temperature (Temperature)

and latitude with the estimated mean function and point-wise confidence bands from the proposed penalized

spline method. Knots are marked as ‘x’. (b) Fit and bands from the kernel method (Ruppert). Estimated

variance functions using the proposed spline method (c) without the penalty term and (d) with the penalty

term. (e) Estimated variance functions using local polynomial kernel method (Ruppert et al., 1997) with

three different bandwidths. (f) Estimated variance functions using kernel method (Dette and Pilz, 2009)

with three different combinations of bandwidths.
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Chapter 5

Hypothesis testing

5.1 Literature Review

In this chapter, our focus is on the hypothesis test for the heteroskedastic regression model.

Several test statistics have been introduced for testing the homoskedasticity against monotone vari-

ance functions under the normal errors distribution assumption by Goldfeld and Quandt (1965) and

Szroeter (1978). Goldfeld and Quandt (1965) proposed the parametric and the nonparametric test

(GQ test) for testing homoskedasticity against the alternative that the variance function is mono-

tonic in an independent variable. The parametric GQ test is widely used when the errors are

assumed to be normally distributed. The test is constructed by following process. To begin with,

the observations are ordered by the value of the independent variable xwhich is called the potential

deflator. Then, choose the number of central observations, k for the sample size n, to be omitted.

After omitting the k observations in the middle, we fit the linear regression model separately to

the first (n − k)/2 observations and the last (n − k)/2 observations. Denote S1 and S2 to be the

sum of squares of the residuals from the regression models based on the relatively small and rela-

tively large value of x, respectively. The test statistic can be defined as R = S2/S1, and it follows

F-distribution with
(n− k − 2q − 2

2
,
n− k − 2q − 2

2

)

degrees of freedom under the null hypothesis where q is the number of covariates to fit the mean

trend. The nonparametric GQ test is constructed based on the number of peaks in the ordered

sequence of absolute residuals. It assume that the number of observed peaks will tend to be large if

the variance increases with a deflated parameter. For the residuals ê1, · · · , ên, define a peak at j-th

observation where |êj| ≥ |êi| for all i < j. The cumulated probabilities of yielding 0, 1, · · · , n− 1

peaks are computed under the null hypothesis, and are used to compare with the confidence level.
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Szroeter (1978) introduced the parametric bound tests as an alternative to the parametric test

proposed by Goldfeld and Quandt (1965). It is assumed that the variances have been ordered

such as σ(xi) ≤ σ(xi+1) for i = 1, . . . , n − 1. The variance functions are no need to be a smooth

monotonic function of an independent variable. Let êi be the ith residual. The Szroeter test statistic

is defined by

Q =

√
6n

n2 − 1

(
h− n+ 1

2

)
where h =

∑n
i=1 iê

2
i∑n

i=1 ê
2
i

,

and it follows the approximate standard normal distribution.

Fujino (1979) introduced tests for testing the homogeneity of a set of variances of normal

populations against ordered alternatives based on the normal distribution. In this paper, we are

interested in testing a constant variance against alternatives of heteroskedasticity in the form of

monotone variance function in regression models. We propose a likelihood ratio test of the null

hypothesis that the variance is constant, versus the alternative that it is a smooth non-decreasing

function.

5.2 The Proposed Test

We assume that the sample data {(xi, yi, zi), i = 1, ..., n} are generated from the model

yi = µ(zi) + σ(xi)ǫi, (5.1)

where σ(·) is a smooth non-decreasing function. Assume xi’s are equally spaced in [0, 1], and

ordered from the smallest to the largest. For the error term ǫ, we consider the normal error distri-

bution and the double-exponential error distribution with mean zero and variance one. The design

vector zi ∈ R
q+1 might include xi but not necessarily where q is the number of predictors for the

mean function. We proposed the likelihood ratio test (LRT) for homogeneous variance against the

heteroskedastic variance with the monotonicity constraints in the regression model. That is

H0 : σ
2(xi) ≡ σ2 versus H1 : σ

2(x) is monotone in x,
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where σ is a positive constant. The proposed test statistics are depend on the error distribution as

follows.

5.2.1 Normal Errors Case

Assume that the errors follow the standard normal distribution. For the non-decreasing vari-

ances, a vector θ = (θ1, . . . , θn) is defined where θi = σ−2(xi) for i = 1, . . . , n. The variance

function estimation method introduced in Chapter 3 under the normal errors assumption is used

to compute the likelihood functions. Let the sets Θ0 = {θ : θi ≡ σ−2 for i = 1, . . . , n} and

Θ1 = {θ ∈ R
n : θ = Bα, where Aα ≥ 0} from (3.2). From the model assumption (5.1) with

the assumption of normal errors, the likelihood function of θ can be written as

L(θ;y) = 2π−n/2
( n∏

i=1

√
θi

)
exp

(
− 1

2

n∑

i=1

(
yi − µ̂(zi)

)2
θi

)
. (5.2)

The LRT statistic is defined as

T (y) = −2 lnΛ(θ,y), (5.3)

where the likelihood ratio for the hypothesis test can be written as

Λ(θ,y) =
supθ∈Θ0

L(θ;y)

supθ∈Θ1
L(θ;y)

. (5.4)

Note that the likelihood ratio Λ(θ,y) is smaller than or equal to 1 because Θ0 ⊂ Θ1. The proof

that the LRT statistic is scale invariant is found in Appendix A.3.

5.2.2 Heavy-Tailed Errors Case

When the true error distribution is heavy-tailed, the double-exponential distribution is consid-

ered. Here, let θi = σ(xi)
−1 for i = 1, . . . , n. The variance function estimation method introduced

in Chapter 3 under the double-exponential errors assumption is used to compute the likelihood

functions. Suppose the sets Θ0 = {θ : θi ≡ σ−1 for i = 1, . . . , n} and Θ1 = {θ ∈ R
n : θ =

Bα, where Aα ≥ 0}. The likelihood function under the double-exponential error assumption
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can be written as

L(θ;y) = 2−n/2
( n∏

i=1

θi

)
exp

(
−

√
2

n∑

i=1

|yi − µ̂(zi)|θi
)
. (5.5)

Similar to the normal error case, the LRT statistic for the heavy-tailed errors case, T (y), can be

obtained as (5.3) using the double-exponential likelihood function and the ratio in (5.4) and (5.5).

5.3 Simulation study

In this section, we explore the performances of the proposed LRT test under both normal and

double-exponential error assumptions through a series of simulations.

For the critical values of the proposed test, we generate M0 = 100, 000 samples of size n under

the null hypothesis assuming µ ≡ 0; i.e., yi = σǫi where σ is a positive constant. Note that the

choice of a constant value of σ does not affect the critical values of the proposed methods because

of the scale-invariant property which is shown in Appendix A.3. For each of the sample size

n = 50, 100, 200, and 500, the LRT statistics, T1, . . . , TM0
, were computed under both normal and

double-exponential error assumptions. For α = .01, .05, and .10, the critical value T(1−α) for each

sample size is obtained as the (1− α)100th percentile of M0 simulated test statistics and shown in

Table 5.1. Further, simulation studies were carried out to determine the test size and the power, and

Table 5.1: Empirical critical values for the test statistics of the propose LRT when the errors follow the

normal distribution and the double-exponential distribution.

Normal errors Double-exponential errors

n

α
0.10 0.05 0.01 0.10 0.05 0.01

50 3.3873 4.7339 7.8953 3.3609 4.7246 7.9882

100 3.7431 5.2088 8.5491 3.7753 5.2320 8.6702

200 4.0623 5.5717 9.0177 4.0473 5.5234 8.9622

500 4.5564 6.1213 9.5640 4.5521 6.0900 9.6896

to compare it with existing hypothesis tests; the parametric and the nonparametric Goldfeld and

64



Quandt (GQ) test and Szroeter’s test. For the nonparametric GQ test, we obtained the empirical

cumulative probabilities of the distribution of peaks from 100, 000 samples for each sample size to

compare it with the confidence level. For the parametric GQ test, we consider k = 0 and k is the

Table 5.2: Empirical cumulative probabilities of the distribution of peaks of absolute residuals for the

nonparametric GQ test.

P (number of peaks ≤ x)

n

x
0 1 2 3 4 5 6 7 8 9 10 11 12

50 0.019 0.108 0.295 0.530 0.739 0.879 0.953 0.984 0.995 0.999 1.000 1.000 1.000

100 0.010 0.061 0.187 0.379 0.591 0.769 0.887 0.951 0.981 0.994 0.998 0.999 1.000

200 0.005 0.035 0.117 0.263 0.453 0.642 0.795 0.895 0.952 0.981 0.993 0.998 0.999

500 0.002 0.016 0.061 0.156 0.302 0.475 0.644 0.783 0.881 0.940 0.972 0.989 0.996

30% of the sample size. For k = 0, the first half of data points are used for the first group and the

last half of data points are used for the second group. When k is the 30% of the sample size, the

first 35% of data values are used for the first group and the last 35% of the data values are used for

the second group after removing 30% of the data values in the middle.

The data sets are generated with following error distributions:

1. ǫ[1] ∼ N(0, 1) : Normal distribution with mean 0 and variance 1.

2. ǫ[2] ∼ DE(0, 2−1/2) : Double-exponential distribution with mean 0 and variance 1.

3. ǫ[3] ∼ Contaminated normal distribution : 90% from N(0, .652) and 10% from N(0, 2.52).

The mean trends considered are:

1. For µ1(x) = 0, we assume the mean trend is known.

2. For µ2(x) = 3x+ 5, we assume the trend is a linear function.

3. For µ3(x) = 50(x− .5)4I(x ≥ 0.5), we assume the trend is smooth and increasing.

For the parametric GQ test and the Szroter test, the unknown mean function (µ2 or µ3) is estimated

using the linear regression.
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For the power curves, the data sets are generated using following standard deviation functions

with a slope a:

1. Convex : σ1(x) = .1 + ax2,

2. Sigmoid : σ2(x) = .1 + a exp(15x− 8)/(1 + exp(15x− 8))

3. Quartic : σ3(x) = 2− a(x− .5)4I(x ≤ .5).

5.3.1 Test Size

The test size is the probability of rejecting the true null hypothesis. To describe the superiority

in test size of the proposed test, data sets are generated from the model yi = µ(xi) + σǫi where

σ = 0.1. Test size with 95% confidence level are shown in Table 5.3. For the normal errors, the

proposed LRT under the normal errors assumption is comparable to the GQ test or the Szroter

test. The test sizes of nonparametric GQ test are always larger than 0.05. For the heavy tailed

errors, the proposed LRT based on the double-exponential assumption performs consistently well

compared to GQ test and the Szroter test. The test sizes for the parametric GQ test and the Szroter’s

test are inflated even with the large sample sizes, especially for the data sets generated with the

contaminated normal errors (ǫ[3]).

5.3.2 Power Study

For each standard deviation function, we choose 10 values for slope a to demonstrate the per-

formances of our proposed tests. Figures 5.1, 5.2, and 5.3 show the power curves along with the

slope a when we generate the data with µ1 = 0 and n = 200. The increasing patterns of the power

are similar with different mean functions or different sample sizes. Figure 5.1 shows the power

curves for the data sets generated with normal errors. The proposed LRT based on the normal like-

lihood function (circle points, solid curve) is comparable to other method when the true variance

function is (a) convex (σ2
1) or (b) sigmoid (σ2

2). When the true variance function is quartic (σ2
3)

in Figure 5.1 (c), the power of the proposed test with the normal errors assumption (circle points,

solid curve) increases faster than others as the slope a increases. It means that the proposed test
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Table 5.3: Test size: the probability of rejecting the true null hypothesis with 95% confidence level.

µ ǫ n LR LR GQ GQ Szroter GQ

N(0,1) DE k = 0 k = .3n NP

µ1 = 0

NM (ǫ[1])

50 0.047 0.009 0.046 0.042 0.046 0.124

100 0.051 0.008 0.050 0.049 0.051 0.111

200 0.048 0.006 0.047 0.050 0.049 0.104

500 0.053 0.007 0.052 0.052 0.051 0.065

DE (ǫ[2])

50 0.177 0.051 0.133 0.125 0.126 0.122

100 0.202 0.054 0.143 0.135 0.140 0.123

200 0.219 0.052 0.154 0.146 0.148 0.102

500 0.234 0.044 0.144 0.147 0.139 0.060

CN (ǫ[3])

50 0.300 0.073 0.227 0.208 0.198 0.125

100 0.361 0.072 0.243 0.234 0.220 0.115

200 0.404 0.081 0.251 0.245 0.238 0.099

500 0.457 0.083 0.238 0.240 0.235 0.056

µ2 : Linear

NM(ǫ[1])

50 0.060 0.018 0.050 0.049 0.046 0.130

100 0.057 0.011 0.051 0.050 0.051 0.120

200 0.051 0.008 0.048 0.052 0.050 0.105

500 0.052 0.008 0.052 0.053 0.051 0.066

DE (ǫ[2])

50 0.183 0.064 0.128 0.127 0.123 0.124

100 0.205 0.058 0.143 0.136 0.136 0.123

200 0.222 0.054 0.152 0.144 0.146 0.106

500 0.235 0.044 0.144 0.144 0.140 0.060

CN (ǫ[3])

50 0.306 0.091 0.223 0.206 0.194 0.130

100 0.366 0.081 0.242 0.233 0.217 0.114

200 0.405 0.086 0.250 0.246 0.237 0.102

500 0.458 0.084 0.237 0.238 0.235 0.057

µ3: Quartic

NM (ǫ[1])

50 0.077 0.018 0.050 0.050 0.043 0.140

100 0.050 0.014 0.050 0.052 0.041 0.122

200 0.045 0.007 0.049 0.049 0.044 0.113

500 0.045 0.006 0.050 0.049 0.043 0.059

DE (ǫ[2])

50 0.189 0.055 0.123 0.115 0.096 0.135

100 0.177 0.057 0.136 0.127 0.109 0.120

200 0.203 0.047 0.146 0.139 0.118 0.110

500 0.229 0.049 0.146 0.150 0.126 0.060

CN (ǫ[3])

50 0.315 0.078 0.210 0.191 0.161 0.130

100 0.337 0.090 0.225 0.219 0.186 0.118

200 0.396 0.079 0.241 0.237 0.209 0.106

500 0.441 0.080 0.244 0.244 0.221 0.062
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outperforms the other test. In Figures 5.2 and 5.3, both power and test size for the proposed LRT

based on the double-exponential likelihood function (triangle points, dashed curve) outperforms

other existing methods. Even though the test sizes for the contaminated normal errors with sample

size 500 from the nonparametric GQ test are also close to 0.05 in Table 5.3, the proposed LRT

under the double-exponential errors assumption is more favorable because of the power curve.
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Figure 5.1: Power curves for normal errors (ǫ[1]). Data sets are generated with µ1 = 0 and n = 200.

The proposed LRT based on the normal error assumption (circle points, solid curves) is comparable or

outperforms other tests.
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(c) Data sets generated with σ3(quartic) and ǫ[2](DE)

Figure 5.2: Power curves for double-exponential errors (ǫ[2]). Data sets are generated with µ1 = 0 and

n = 200. The proposed LRT based on the double-exponential error assumption (triangle points, dashed

curves) performs consistently well and outperforms other tests.
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Figure 5.3: Power curves for contaminated normal errors (ǫ[3]). Data sets are generated with µ1 = 0 and

n = 200. The proposed LRT based on the double-exponential error assumption (triangle points, dashed

curves) performs consistently well and outperforms other tests.

71



Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this dissertation, the convergence rate of the constrained spline estimator has been estab-

lished when the true function is a monotone function. In addition, we develop the constrained

spline estimation methods and the hypothesis test for a smooth monotone variance function in a

regression model. The convergence rates of proposed estimators are established, and they attained

the optimal rate. Simulation results show that our proposed methods are comparable or outper-

forms existing methods under various settings. The proposed estimators have a bigger advantage

when the variance function is close to zero compare to the existing kernel estimators. The pro-

posed estimators always satisfy the assumption of positive variances, and provide the substantially

improved inference about the mean trend in a heteroskedastic regression model. Application to

real data sets, such as LIDAR data, abalone data, California air pollution data, and US temperature

data, demonstrates that the proposed method provide more accurate and robust results compared

with existing ones. Further, the proposed methods allow to incorporate the parametrically modeled

covariate in the variance structure. The penalized estimator is also presented for improving the

performance when there exists a spike at the boundary, by reducing the effect of the observation

near the boundary. Hypothesis test for the monotone variance function is also discussed, and the

performance of the proposed test is favorable in terms of the test size and the power.

6.2 Future Work

In Chapter 3.6, our proposed method for monotone variance function estimation is applied

to various data sets. There are some other interesting shapes of the variance function that have

not been discussed. For example, we could develop the method to consider convex, convex and

increasing, or V-shaped variance functions. Other types of splines could be considered, such as
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I-splines (Ramsay, 1988) for monotone functions or C-splines (Meyer, 2008) for convex functions.

We will add more shape options for the variance function estimation method and the hypothesis

testing procedure in an R package.

Moreover, the method could be extended to include the construction of confidence bands under

a heavy-tailed error distribution in a heteroskedastic regression model.

Further development could include the application of the proposed method to more complex

models, such as quantile regression models and generalized linear models. In addition, investi-

gation of overdispersion for discrete data sets and the theoretical properties of estimators could

be pursued. Finally, the estimation problem could also be reframed to consider the effect of a

heteroskedastic regression model with correlated errors.
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Appendix A

Technical Details

A.1 Proof of the Convergence of the Algorithm.

For both normal and double-exponential error distributions, the minimizer θ̂ of the convex

function ψ over the closed convex set C is unique, and the necessary and sufficient conditions for

θ̂ are

∇ψ(θ̂)⊤θ̂ = 0 and ∇ψ(θ̂)⊤θ ≥ 0, (A.1)

for all θ ∈ C (proposition 3.12.3 of Silvapulle and Sen (2005)). We first show that θ̂ is a fixed

point of the algorithm. That is, if θ(k) = θ̂, then θ(k+1) = θ̂ where θ(k) is the kth solutions from

the algorithm. If θ(k) = θ̂, then, from (3.6), we have

ψk(θ) = ψ(θ̂) +∇ψ(θ̂)⊤(θ − θ̂) +
1

2
(θ − θ̂)⊤H(θ̂)(θ − θ̂). (A.2)

Since the Hessian matrix H is positive definite, the last term of (A.2) is positive. From (A.1),

∇ψ(θ̂)⊤(θ − θ̂) ≥ 0. Therefore, θ(k+1) = θ̂, and θ̂ is the fixed point of an algorithm.

Next, assume θ(k) 6= θ̂. Consider θ = pθ̂ + (1 − p)θ(k) where p ∈ (0, 1]. Then, from

θ − θ(k) = p(θ̂ − θ(k)) and (3.6), we have

ψk(θ) = ψ(θ(k)) +∇ψ(θ(k))
⊤(θ − θ(k)) +

1

2
(θ − θ(k))

⊤H(θ(k))(θ − θ(k))

= ψ(θ(k)) + p∇ψ(θ(k))
⊤(θ̂ − θ(k)) +

1

2
p2(θ̂ − θ(k))

⊤H(θ(k))(θ̂ − θ(k)). (A.3)

By convexity, we have ψ(θ̂) > ψ(θ(k)) + ∇ψ(θ(k))
⊤(θ̂ − θ(k)), and it follows that 0 > ψ(θ̂) −

ψ(θ(k)) > ∇ψ(θ(k))
⊤(θ̂ − θ(k)). We can choose p in (A.3) such that

0 < p < 2
∣∣∣∇ψ(θ(k))

⊤(θ̂ − θ(k))
∣∣∣
[
(θ̂ − θ(k))

⊤H(θ(k))(θ̂ − θ(k))
]−1

.
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There exists a θ 6= θ(k) in C such that ψk(θ) < ψ(θ(k)), and θ(k) is not a fixed point of the

algorithm.

In step 2 of the algorithm, the vector a is a minimizer of ψk(θ) over C. We know that ψ(θ)

is strictly decreasing at θ(k) in the direction towards a. Therefore, there is a solution θ(k+1) that

minimizes ψ over the line segment between θ(k) and a. Hence, ψ(θ(k+1)) < ψ(θ(k)).

Now, we have a sequence θ(k) of distinct points in R
n (unless θ(k) = θ̂). If the points are

in a compact set in R
n, there must be a limit point for the sequence by the Bolzano-Weierstrass

theorem, and this must be θ̂, the only fixed point of the algorithm. To show compactness, we show

that the set S = {θ : ψ(θ) ≤ ψ(θ(0))} is bounded, or equivalently if ψ(θ) ≤ ψ(θ(0)), there exists

a positive constant M2 such that 0 < θn ≤ · · · ≤ θ1 ≤M2. For the normal error assumption, ψ(θ)

is minimized when θi = 1/y2i for i = 1, . . . , n, and ψ(θ) ≥ n +
∑n

i=1 log(y
2
i ). For fixed y, the

function y2θ − log θ is above the line tangent at θ = 2/y2, and we have

y2θ − log θ ≥ 1 + log
(y2
2

)
+
y2

2
θ. (A.4)

From (A.4), we have

ψ(θ(0)) ≥ ψ(θ) =
n∑

i=1

(y2i θi − log(θi))

≥
n∑

i=1

(1 + log(y2i )− log 2 +
1

2
y2i θi)

≥ n+
n∑

i=1

log(y2i )− n log 2 +
1

2
y21θ1, (A.5)

for all θ ∈ S . The upper bound for θ1 can be obtained as

θ1 ≤
2
[
ψ(θ(0))−

(
n+

∑n
i=1 log(y

2
i )
)
+ n log 2

]

y21
. (A.6)

Therefore, for all θ ∈ S , we have
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0 < θn ≤ · · · ≤ θ1 ≤
2
[
ψ(θ(0))−

(
n+

∑n
i=1 log(y

2
i )
)
+ n log 2

]

y21
,

which is finite by the assumption that the observed y21, . . . , y
2
n are strictly positive.

Similarly, we can also find the upper bound for the double-exponential distribution. Note that

ψ(θ) is minimized when θi = 1/(
√
2|yi|) for i = 1, . . . , n, we have ψ(θ) ≥ n+

∑n
i=1 log(

√
2|yi|).

For fixed y, the function
√
2|y|θ − log θ is above the line tangent at θ =

√
2/|y|, and we have

√
2|y|θ − log θ ≥ 1 + log

( |y|√
2

)
+

|y|√
2
θ. (A.7)

From (A.7), we have

ψ(θ(0)) ≥ ψ(θ) =
n∑

i=1

(
√
2|yi|θi − log(θi))

≥
n∑

i=1

(1 + log(|yi|)− log
√
2 +

1√
2
|yi|θi)

≥ n+
n∑

i=1

log(|yi|)− n log
√
2 +

1√
2
|y1|θ1, (A.8)

for all θ ∈ S . From (A.8), the upper bound for θ1 can be obtained as

θ1 ≤
√
2
[
ψ(θ(0))−

(
n+

∑n
i=1 log(|yi|)

)
+ n log

√
2
]

|y1|
.

Therefore, for all θ ∈ S , we have

0 < θn ≤ · · · ≤ θ1 ≤
√
2
[
ψ(θ(0))−

(
n+

∑n
i=1 log(|yi|)

)
+ n log

√
2
]

|y1|
,

which is finite by the assumption that the observed |y1|, . . . , |yn| are strictly positive.
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A.2 Proof of the Rate of Convergence for the Penalized Esti-

mator in Section 4

From (4.1), for normal erros, we have

∣∣∣ d
dα
ℓλ(f̄ + αg;x,y)

∣∣∣
α=0

∣∣∣ ≤ a0n
−3/7‖g − f̄‖+

∣∣∣ 1
4n

n∑

i=n−k+1

(
yi − µ̂i

)2
g(xi)

∣∣∣.

For g such that M−1
0 ≤ g(x) ≤M0, we have

E
[ 1

4n

n∑

i=n−k+1

(
yi − µ̂i

)2
g(xi)

]
≤ E

[ 1

4n

n∑

i=n−k+1

(
yi − µi

)2
g(xi)

]

≤ E
[ 1

4n

n∑

i=1

(
yi − µi

)2
g(xi)

]

=
1

4

〈
f−1, g

〉
n

≤ 1

4
M2

0 ,

from Assumptions (A1). Then, we have

∣∣∣ d
dα
ℓλ(f̄ + αg;x,y)

∣∣∣
α=0

∣∣∣ ≤ a0n
−3/7‖g − f̄‖+Op(1),

and the remainder of the proof is identical to the proof of Theorem 3.

For double-exponential errors, we have

∣∣∣ d
dα
ℓλ(f̄ + αg;x,y)

∣∣∣
α=0

∣∣∣ ≤ a0n
−3/7‖g − f̄‖+

∣∣∣ 1√
2n

n∑

i=n−k+1

∣∣yi − µ̂i

∣∣g(xi)
∣∣∣.

Similarly, from Assumptions (A1),
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E
[ 1√

2n

n∑

i=n−k+1

∣∣yi − µ̂i

∣∣g(xi)
]

≤ E
[ 1√

2n

n∑

i=n−k+1

∣∣yi − µi

∣∣g(xi)
]

≤ E
[ 1√

2n

n∑

i=1

∣∣yi − µi

∣∣g(xi)
]

=
〈
f−1, g

〉
n

≤ M2
0 ,

and the same rate of convergence is attained from the proof of Theorem 3.

A.3 Proof of Invariance Property of the LRT Statistics

In this section, we will show the scale invariant property of LRT statistics. Under the null

hypothesis, we assume that µi ≡ 0 without loss of generality. The normal likelihood function can

be written as

L(θ0;y) =

(
θ0
2π

)n/2

exp
(
− θ0

2

n∑

i=1

y2i

)
, (A.9)

and the maximum likelihood estimator of θ0 is

θ̂0 =
n∑n
i=1 y

2
i

. (A.10)

Let the maximum likelihood estimator of θ under the alternative hypothesis be θ̂1 = (θ̂11, · · · , θ̂1n).

This estimator θ̂ can be obtained through the convex programming using the constrained quadratic

splines. From (5.4), (A.9), and (A.10), the likelihood ratio has the form

Λ(θ,y) =
L(θ̂0;y)

L(θ̂1;y)

= θ̂
n

2

0

( n∏

i=1

θ̂1i

)− 1

2

exp

(
− 1

2
θ̂0

n∑

i=1

y2i +
1

2

n∑

i=1

y2i θ̂1i

)

=
( n∑n

i=1 y
2
i

)n

2

( n∏

i=1

θ̂1i

)− 1

2

exp

(
− n

2
+

1

2

n∑

i=1

y2i θ̂1i

)
(A.11)

Then, the LR statistics has the form
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T (y) = −2 lnΛ(θ,y) = −n lnn+ n ln
( n∑

i=1

y2i

)
+

n∑

i=1

ln θ̂1i + n−
n∑

i=1

y2i θ̂1i. (A.12)

Now, we will show that the LR statistic (A.12) is independent from the unknown scale parameter

θ0 under the null hypothesis and θ under the alternative hypothesis . To show the property of scale-

invariance, suppose there are two sets of sample y1 = (y11, · · · , y1n) and y2 = (y21, · · · , y2n)

where y1i ∼ N(0, σ2
1) and y2i = ky1i ∼ N(0, k2σ2

1) for i ∈ 1, . . . , n. Let θ1 = 1/σ2
1 and

θ2 = 1/(k2σ2
1). Under the null hypothesis, the ML estimators of θ1 can be defined as

θ̂01 =
n∑n

i=1 y
2
1i

, (A.13)

and the ML estimators of θ2 can be written as

θ̂02 =
n∑n

i=1 y
2
2i

=
n∑n

i=1 k
2y21i

=
1

k2
θ̂01. (A.14)

Similarly, suppose the ML estimates of the reciprocal of variances for y1 and y2 under the alterna-

tive hypothesis are θ̂11 and θ̂12, respectively. Then, we can show that θ̂11 = k2θ̂12. We have θ̂11

which maximizes the log-likelihood function

ℓ(θ;y1) = −n
2
ln(2π) +

1

2

n∑

i=1

[
ln(θ1i)− y21iθ1i

]
, (A.15)

while satisfies the monotonic constraints. Similarly, θ̂12 maximizes the function

ℓ(θ;y2) = −n
2
ln(2π) +

1

2

n∑

i=1

[
ln(θ2i)− y22iθ2i

]

= −n
2
ln(2π) +

1

2

n∑

i=1

[
ln(k2θ2i)− ln(k2)− k2y21iθ2i

]

= −n
2
ln(2π)− n

2
ln(k2) +

1

2

n∑

i=1

[
ln(k2θ2i)− y21i(k

2θ2i)

]
. (A.16)
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Since k is a constant, we can conclude that k2θ̂12 = θ̂11. Then, from (A.22), (A.23), (A.15) and

(A.24),

T (y2) = −n lnn+ n ln
( n∑

i=1

y22i

)
+

n∑

i=1

ln θ̂2i + n−
n∑

i=1

y22iθ̂2i

= −n lnn+ n ln
( n∑

i=1

k2y21i

)
+

n∑

i=1

ln(
1

k2
θ̂1i) + n−

n∑

i=1

(k2y21i)
1

k2
θ̂1i

= −n lnn+ n ln
( n∑

i=1

y21i

)
+

n∑

i=1

ln(θ̂1i) + n−
n∑

i=1

y21iθ̂1i

= T (y1). (A.17)

Therefore, the LR test statistic is scale-invariant. From the scale-invariant property, the critical

value for the hypothesis test is not depends on the scale parameter θ0 and can be obtained from the

simulations in section 5.3.

Similarly, the double-exponential likelihood function under the null hypothesis can be written

as

L(θ0;y) = 2−n/2θn0 exp
(
−

√
2θ0

n∑

i=1

y2i

)
, (A.18)

and the maximum likelihood estimator of θ0 is

θ̂0 =
n∑n

i=1

√
2|yi|

. (A.19)

Λ(θ,y) =
L(θ̂0;y)

L(θ̂1;y)

=
( n∑n

i=1

√
2|yi|

)n( n∏

i=1

θ̂1i

)−1

exp
(
− n+

√
2

n∑

i=1

|yi|θ̂1i
)
. (A.20)

Then, the LR statistics has the form
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T (y) = −2 lnΛ(θ,y) = −2

(
n lnn+ n ln

( n∑

i=1

√
2|yi|

)
+

n∑

i=1

ln θ̂1i + n−
√
2

n∑

i=1

|yi|θ̂1i
)
.

(A.21)

Assume y1i’s are generated from the double-exponential distribution with mean zero and stan-

dard deviation σ1, and y2i = ky1i . Let θ1 = 1/σ1 and θ2 = 1/σ2 = θ1/|k|. Then,

Under the null hypothesis, the ML estimators of θ1 can be defined as

θ̂01 =
n∑n

i=1

√
2|y1i|

, (A.22)

and the ML estimators of θ2 can be written as

θ̂02 =
n∑n

i=1

√
2|y2i|

=
n∑n

i=1

√
2|ky1i|

=
n∑n

i=1

√
2|k||y1i|

=
θ̂01
|k| . (A.23)

Similarly, suppose the ML estimates of the reciprocal of standard deviation for y1 and y2 under

the alternative hypothesis are θ̂11 and θ̂12, respectively. Then, we can show that θ̂11 = |k|θ̂12.

From (A.18), θ̂11 maximizes the log-likelihood function

ℓ(θ;y1) = −n ln(n) +
n∑

i=1

[
ln(θ1i)−

√
2|y1i|θ1i

]
, (A.24)

while satisfies the monotonic constraints. Similarly, from (A.24), θ̂12 maximizes the function

ℓ(θ;y2) = −n ln(n) +
n∑

i=1

[
ln(θ2i)−

√
2|y2i|θ2i

]

= −n ln(n)− n ln |k|+
n∑

i=1

[
ln(|k|θ2i)−

√
2|y1i||k|θ2i

]
(A.25)

Since k is a constant, we can conclude that |k|θ̂12 = θ̂11. Therefore, we have
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T (y2) = −2

(
n lnn+ n ln

( n∑

i=1

√
2|y2i|

)
+

n∑

i=1

ln θ̂2i + n−
√
2

n∑

i=1

|y2i|θ̂2i
)

= −2

(
n lnn+ n ln

( n∑

i=1

√
2|y1i|

)
+

n∑

i=1

ln(θ̂1i) + n−
√
2

n∑

i=1

|y1i|θ̂1i
)

= T (y1). (A.26)
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