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LAMINAR HEAT CONVECTION IN PIPES AND DUCTS

ABSTRACT
Laminar heat convection in pipes and ducts is treated rather ex-
haustively for different boundary conditions. Eigenvalues and eigen-
functions are computed for certain simple boundary conditionse Ex-

tensions to more complicated boundary conditions are explicitly given.

1. Laminar Heat Conveection in Pipes

‘ae The Graetz Solution
With x taken along the pipe and r radially from the center of the pipe
section, the temperature distribution in the pipe when the wall is kept at
a temperature T, for x £ O and another temperature T; for x >0 and
when the flow is laminar has been solved by Graetz (1, 1885). Since in the
following sections Graetz'!s general development will be followed, his solution
will be briefly presented here.

With T denoting the temperature at any point, the parameter

T-T1
-
i To= Tl
is required to satisfy the boundary-layer equation of heat diffusion:
Upax (1 = Z)20 o (304128 (2)
. 32 B X a r2 5 5-;

where Ynax is the maximup velocity in the pipe, a is the radius of the

pipe, and U the thermal diffusivity of the fluid, Using the new variables

Eeg. b amg

one can transform Eq 2 to the form

A € 36 N (3)
P \’ )L = == 4 —
Uiy = o * 77 5
where P is the Peclet number up..-a/of |, Agsuming

6(3.n) = %x(3) R() .



2
one has, upon substitution into Eq 3,

PX'___,R"-&%R'_ 2
A A

which gives
S et N3/p (3)
and
R" 4 2R 4 A (1 =-nR =0 (6)
1
Eq 6 is to be solved with the conditions that
(#) R'(0) = 0O
(i1) R(1) = O
the latter of which determines the eigenvalues A,. A, . A, --=- 5 of which

P2

the first three have been found by Graetz, Drew, and Nusselt to be
Ny = 2.705, b 6.66 N % 10,6
The corresponding eigenfunctions are given in Table 1 and represented in
Fig. 1, which are taken from p. LS5 of Jakob's extensive book on heat transfer

(2,19L9). The solution is then

2
[}

xs/p N3/P

-ag/ s
B(E.q)one ?PR‘,(Y\)‘PA,E R.(']H'AZE Rz('])*’“‘ (7

where the coefficients Ags A Ap, etc. are determined in such a way that
O(O,rp =1 and the first three are found to be equal to 1.L477, =0.810, and
0.385 respectively, Concerning the calculation of these coefficients and
of the eigenvalues and eigenfunctions, one is referred to the footnotes on
pages L53 and LSL of (2)., This.determination is possible since the eigen-
functions Rn(ﬂ) are orthogonal for n= 0y 1, 2, ¢ae »

The Sturm~Liouville system consisting of Eq 6 and the conditions

(1) Rr'(0) =0 (8)

(ii) BR(1) + cR'(1) = O (9)

will now be studieds In Graetz'!s solution ¢ - 0. There are other



physically significant cases where ¢ =z O, or b=z 0, or b and ¢ both
differ from zero.
b. Generalization of Graetz's Result
--~Variable Wall Temperature
If the tempersture on the wallhas the distribution
T=T, (5¢0)
T=T1(8) (370)

with T1(0) = Ty, the temperature distribution in the pipe can be obtained
from Graetz's solution by superposition. Since

e =1~ 9
; legdiad To"il Ogr‘)) )

where ©( g ,q) is given by Eq 7, the solution for the present problem is
T- g (1-805-5, )] 2 ~d§

:T.@H_o"g O(%- Sq\ (5) dg

or

5 dT(5)

curve

3.

Physically, this solution amounts to slicing the temperature T = Tl( t) (§>O)

fnto strips each of thickness dTy( E) starting from E =0 s and superposing
the effects due to all the infinitesimal strips the effect of each of which
bring given by Graetz's solution.

This case of course still corresponds to ¢ = O in the Sturm-Liouville

system mentioned in the last section.



L.
¢, Insulated Pipe
Since there is no definite T, when the pipe is insulated for x > O,
the meaning of © should be redefined. The temperature flux into the in-
sulated section is '
H:lwalgo um“(\-q")‘l‘(o,\])qdq (11)
The asymptotic temperature for very large § will be uniform and have the

magnitude H/Q where Q is the discharge through the pipe:

|

Qm 2 TroPugax | (1) 0 an < (Cmex) ra? (12)

The asymptotic temperature T, is therefore
I
Tg= b | (1-12) T (0m)ye (13)
az b | -n2 oy

fne defines

e T2l (1kL)

a

so that asymptotically € -» 0 and initially (} =0) 8 is known,

With the @ thus defined and remembering Eq L, BEqs 6, 8, and 9 are to be
solved with b 5 O, The eigenvalues can be determined from R'(1) = O. The
first three eigenvalues have been calculated to be )&.: 5.07, A = 9.17,

Az = 13.271, and the pertaining eigenfunctions are given numerically in
Table 2 and graphically in Fig. 2. The coefficients Ay, Ay, Ap etc. in Eq 7
(which constitutes the solution) are determined in virtue of the orthogonality
of the eigenfunctions from thé preassigned v alue O(O,q); From the calculated
residues for the values of R'(1), it seems that the first two eigenvalues are
slightly too large, and the third one slightly too small. The residues
for the three eigenvslues are respectively -0,0002, +0.006, and <0.0030.

d. Pipe with Finite Wall-Thickness
When a pipe has a finite wall-thickness, it is impossible or at least

impracticable to keep the inner surface of the pipe at a certain temperature Tp.



Be
One considers the simplest case when the outside surface of the pipe is kept
at a constant temperature Ty for x > 0., Then x < O the wall as well as the
fluid is supposed to have the tempersture T,. The resulting temperature
distribution in the fluid is sought.

First, one defines @ by Eq 1, If the pipe is sufficiently long in com-
parison with its thickness, longitudinal conduction can be neglected. This is
especially true if the pipe is longitudinally insulated at § =0 wheré there
is a sudden change of temperature. If, therefore, only the radial conduction
is considered, the contribution to the inner-wall temperature being R for any
eigenfunction, the heat transfer through the wall contributed by this
eigenfunction is proportional to + kR(1)/[n (1 + h) where k is the thermal
conductivity of the pipe material and h = t/a, t being the thickness of the
pipe wall. The proof is as follows:

One writes the "boundary-lgyer" equation of conduction

46 }
o 7 =0 @

where ordinary differentiation is used since longitudinal conduction is
neglected. Solving Eq 15 with the boundaiy conditions (for any g )

8 (1) = R(), e(1+h) =0
one obtains

QaR(l-.—L.h)

{nld *

from which

e

Hence one has the required rate of heat transfer.

On the other hand, the rate of heat transfer from the fluid to the inner
surface of the wall is proportional to ~k'R?(1) (the factor of proportionality
being the same as for k R(l)/'Ln(1+h»,'where k! is the thermal conductivity

of the fluid, By continuity, one has
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K
: R(1) + RY(1) = 16)
g et oy :
where K = k/k'. This equation is a special form of Eq 9 (b ¥ 0 and ¢ % 0)
and determines the eigenvalues.

After the eigenvalues are obtained, the solution is found as before by

determining the coefficients A, 4;, Ay, etc, in Eq 7.

2. Laminar Heat Convection in Ducts

a, The Yih-Cermak Solution

Let the distance between the two parallel plates be 2a, the abscissa x
be taken in the direction of flow, and the ordinate y be taken perpendicular
to the plates, with the origin mid-way between the plates. If the approach-
ing fluid has a temperature To and at x>0 the inner surfaces of the duct
are kept at a constant temperature Tl :\'— To, the temperature in the fluid
will gradually change from T, to Ty and is a function of both x and y. The
solution has been given by Yih and Cermak (3), a brief account of which is
given below,

#ith © defined by Eq 1, and

[ b

g: 3 Y) S%

The boundary-layer equation of heat diffusion can be written

6 _ 20 (17)
o (VI G e G L
where F = umax'a/ of 1is again the Peclet number. Assuming

63,1 = X(3) Y (1) e
one has, upon substitution into Eq 17,
E—X.—l— \(/! >
R iy =
(\-n*Y
X=e 73/

e A=Y =0 19)

which gives

and
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Eq 19 is to be solved with the conditions that

(1) Y1(0) = 0

(i) Y1) =0
the latter of which determines the eigenvalues A, N\,, A\, - - - , of which
the first three have been found to be

A= 106815, )\ = 5.6699, A, = 9-6687

the corresponding eigenfunctions being given numerically in Table 3, and

graphically in Fig. 3. The solution ‘is then

2

A y/p M/p
Y,(r])+A‘€ Y‘(Q)J,-_- (20)

8G,1)= A€ g/PY,up LAE

where the coefficients A are determined by the condition &(0,y) = 1, and
the first three are found to be
Ay = 1.2008 Ay = -0.2993 Ay = 0.1596
The orthogonality of the eigenfunctions has made this determination possible,
The Sturm-Liouville system consisting of Eq 19 and the conditions

(1) b1¥(d) + by¥*(d) = 0 (21)

(i1) €1¥(1) + ¢p¥?(1) = O (22)
will now be studieds In the Yih-Cermak solution b = ¢ =d =0. There are
other physically significant cases where d may be zero or minus 1 and
where the four coefficients by, bp, €3 and cp may not vanish or different

combinations of them vanish.

b. Ceneralization of the Yih-Cermak Solution
~-Variable 7all Temperature
The generalization follows that of 1 b. If on the inner surface of the
pipe
T=T, §< 0

Tle(g) 270



the resulting temperature distribution is given by

1 - ge(z < maﬂ?;)dg

where © (g ) is given by the Yih-Cermak solution.

ce Insulated Plates

The development follovs that of lec, In this case
; 2
H:=20Umug U-q)Tqu)dq

Q:iaumaxg (\'Y‘)d\f\ —QUmax

T&:H/Q:wig:U-W)T(mq)mq

One defines 8 by Eq 1L and solve Eqs 19, 21 and 22 with by = ¢} =10,
d = -1, remembering Eq 18, If the initial value of O(O,q) is even or odd,
Eq 21 can be respectively replaced by

Y1(0) = O

or
¥(0) = O

In the former case Y(q) is even; in the latter, odd. If the initial value

(23)

(2k)

(25)

(26)

(21)

(28)

of O(O,g) is neither even nor odd, both even and odd eigen-functions should

be used to approximate O(O,Q). The first two eigenvalues for the even
eigenfunctions are found to be approximately

Ao = 12872 A, = 8.30L2
and the corresponding eigenfunctions are given numerically in Table L
and graphically in Fig. L. The residues for the values of Y!(1) are

respectively + 0,00004 and -0,006 for the two eigenvalues given above,

de Duct with Finite Wall-Thickness
Suppose that the thickness of the plates is t and that the
outside surface of the plates is kept at Ty, the temperature of approach

being Ty« Let © be defined by Eq 1, The development is similar to
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that of 1 dy; with the difference that in the present case the distribution of

@ in the plate is linear with respect to y. Conseqently, Eq 16 is replaced

by
E¥(1) +77(1) = 0 (27)

where K again is the ratio of the thermal conductivity of the plate to that
of the fluid, and h = t/6. Eq 27 is a special case of Eq 21, Eq 20 can be

replaced by
Yt (0) = O

due to symmetry. One therefore obtains the eigenvalues from Eq 27, taking
only the even part of the solution of Eq 19 for the function Y(q). After the
eigenfunctions are obtained, the solution is found as usual by the proper

determination of the coefficients A in Eq 20,

e« Unsymmetric Boundary Conditions
Consider the case when the temperature of approach is T. The lower
plate is kept at T° throughout, and the upper plate is kept at To for

x< 0, and Ty for x > 0, With 6 defined as

Lo . 1 (29)

and remembering Eq 18, Eq 19 is to be solved with

¥(~-1) = 0 (30)
(1) =0
which are special cases of Eqs 21 and 22. Either the even or the odd part
of the solution of Eq 19 can be taken for (1), and if so Eq 30 is contained
in Eq 31, which gives the eigenvalues. The eigenfunctions are
Yo(']) ZO(T}): Yl('}): Z]_('])
where Y(q) is even and Z(YP is cdd. The solution is

b5 s

i /P
6(30)= Z_ € (A X () *84 2001 ) (32)

AN=0

where An and Bn are to be determined such that
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s «1-250 <240 o

Thevfirst three of the eigenvalues for the even Tunctions have been found to be

)98 1.6815 A= 5.6699 A= 9.6687
and those for the odd function have been f ound to be

AL = 3.6723° N = 7.6688 A, = 11,5957
The pertaining coefficients are

A, = 0.600L Ay = -0.1L96 Ay = 0.0798

By = 0.9102 By = -0.8057 B3y = 0.1601

The result just obtained can be generalized. Let the temperature distribu-
tion on the upper plate be
TaT, x &0
T = £(3) %220
and that on the lower plate be
T=sTo - B N

T

e(§) 27 %
vhere x, is a certain value of xs Then since Ty is not constant in this
case, one uses the parameter (T - To)/'l‘o and observes that

Rt~ Aok o ER Gl e -

(o]

where A T = Ty - T, if a constant Ty exists but stands for df(§ ) or
de(3 ) when Ty is variable, and where 0(§,V)) is given by Eq 29, Thus
considering the influence of the upper plate, and utilizing the principle of
superposition,

3
T;oToz_%; g[.l_z_:l-g( E"SK] )]%-(-';S_) de (3L)

o

where O(g,r)) is given by Eq 32. In considering the influence of the lower
plate, one notices that if the direction of q were turned Tv radians

an expression similar to the one given in Eq 3L would be the solution, which
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means, using the existing coordinates, the f] in Eq 3L should be changed to
- () . Furthermore, since the change of temperature for the lower plate occurs
at % =J/g s the lover limit of the integral in Eq 34 should be changed to

go. Thus, considering the influence of the lower plate,
g
A ¢ 1-1 A, ™t de(z)
To°..,r-o SiLz -0{ g-v, "])]aiS—S dzs (35)

ir go is negative or zero, then for g > go

T ; 450
e il S0 nin Gt

(¢]

& (54 - sts-s-nhetd

(36)

If §.50, then (T = T,)/1  is given by Eq 3L for 0< § < g, 2 and by
Eg36tor S 773 .

3. Conclusion
Problems in laminar heat transfer in pipes and ducts can be solved by
the generalized Fourier analy is if there is symmetry. Even some unsymmetrical

cases can be solved by the same general method, as presented in Z2e.
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Table 1
N | Ryl R :RLU.H
0 1 1 1

0.1 0.9818 |  0.8923 0,753
0,2 0.9290 0.6067 0,206
0.3 0.8L56 0.2367 | =0.290
Ok 0.7382 | =0.1062 | =0.L407
0.5 0.61L47 | =0.3399 | =0.20kL
0.6 0,L833 | =-0.L317 0,10k
047 0.3506 | =0.3985 0.278
0.8 0.22LL | -0.3051 0.278
0.9 0.1069 | =0.1637 0.1Lk
1.0 0 o5 0

Table 2

N LRy TR R
0 1 |1 1

0.1 0.937 0,801 0,607
0.2 0.761 0.325 -0.117
0.3 0,505 -0,15L -C.L07
0.k 0.230 -0.L02 -0,122
0.5 | =0,032 -04357 C.250
0.6 | =0.213 -0.186 04305
0.7 | =0.382 04135 0,109
0.8 | =0.L59 04312 -0,199
0.9 | =-0.L88 0.388 ~0,328
1.0 | =0.L92 0106 -04336

13-



Table 3
ML Yl | YO | Yetn)
0 1 1 1
0el | 0.98592 0.9L38 0.5685
0.2 | 0.9LL35 0.Li262 | -0.3513
0.3 | 0.87731 | -0.1205 | -0.98L3
O.Lh | 0.78762 | -0.63L5 | =0.8L13
0.5 | 0.6793L | -0.9832 | -0.07L6
0.6 | 0.55665 | -1.1013 0.75L2
0.7 | 0.L251Lk | -0.9973 1.1669
C.8 | 0.28489 | -0.7311 1.0L98
0.9 | 0.1k29L | -0.3787 0.5550
1.0 {70 0 0 ,

Table L

n | %X | Y.
0 . | 1
0.1 0.9096 0.6751
0.2 0.656L | =0,0857
0.3 0.2889 -047970
Ouk | =0,1270 | -1.017L
0.5 | =0.52L5 | =0.7062
0.6 | -0.8518 | =-0.0178
0.7 | ~1.0812 0.68L7
0.8 | -1.200L 1.1659
0.9 | =1.2623 1.3716
1.0 | -1,2697 1.L055

1.



(6921-51)

Table 5

') Z,(1) Z () Zz(m
0 0 0 0

0.1 0,0978 0.0905 0.0791
0.2 0.1827 0.1312 0.06LL
0.3 0.24k3 0.1011 ~0,0253
0.l 0.276L 0.0192 -0.0879
0.5 0.2776 | =0.0725 -0.0617
0.6 0.2509 | =0.13L2 0.0239
0.7 0.2027 | =-0.1L76 0.0919
0.8 0.1405 | -0.1178 0.,0892
0.9 0,0713.] -0.0628 0.0640
1.0 0.0000 0.0000 0.0081
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