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LAMINAR HEAT CONVECTION IN PIPES AND DUCTS 

ABSTRACT 

Laminar heat convection in pipes and ducts is treated rather ex-

haustively for different boundary conditions. Eigenvalues and eigen-

functions are computed for certain simple boundary conditions. Ex-

tensions to more complicated boundary conditions are explicitly given. 

l. Laminar Heat Convection in Pipes 

'a. The Graetz Solution 

With x taken along the pipe and r radially from the center of the pipe 

section, the temperature distribution in the pipe when the wall is kept at 

a temperature T0 for x f O and another temperRture T1 for x > 0 and 

when the flow is laminar has been solved by Graetz (1, 1885). Since in the 

following sections Graetzts general development will be followed, his solution 

will be briefly presented here. 

With T denoting the temperature at any point, the parameter 

Q = T - Tl 
To-Tl 

is required to satisfy the boundary-layer equation of heat diffuslons 

Umax (1 - !22) o Q = oJ... (a1"02+ 1 ~) 
a O X c) r r ur 

( 2) 

where llxnax is the maxil'nutj velocity in the pipe, a is the radius of the 

pipe, and al.. the thermal diffusivity of the fluid. Using the new variables 

one can transform Eq 2 to the form 

r ri = i 

where P is the Peclet number Umax ,a/ o( 

(3) 

Assuming 

(4) 



one has, upon substitution into Eq 3, 

PX' R" + i R' -X = _(_1 ___ 11...,2,,....)R-

which gives 

and 

X a e - /\2.~/p 

R" + 1 Rt + /\ 2 
( 1 - '12 )R : 0 

11 
Eq 6 is to be solved with the conditions that 

(i) R1(0): 0 

(ii) R(l): O 

2 .• 

(5) 

(6) 

the latter of which determines the eigenvalues "r-o , A. 1 , Az · - - , of which 

the first three have been found by Graetz, Drew, and Nusselt to be 

/\a : 2. 705, .A,: 6.66 " - 10.6 .l'z -
The corresponding eigenfunctions are given in Table 1 and represented in 

Fig. 1, which are taken from p. 455 of Jakob's extensive book on heat transfer 

( 2,1949). The solution is then 

where the coefficients A0 , Ai, A2, etc. are determined in such a way that 

Q(O,~ a 1 and the first three are found to be equal to 1,477, -0.810, and 

0.385 respectively. Concerning the calculation of these coefficients and 

of the eigenvalues and eigenfunctions, one is referred to the footnotes on 

pages 453 and 454 of (2). ThisLdetermination is possible since the eigen-

functions Rn(~) are orthogonal for n: o, 1, 2, •••• 

The Sturm-Liouville system consisting of Eq 6 and the conditions 

(i) R'(O) = 0 

(ii) bR(l) ~ cR1(1) a 0 

will now be studied. In Graetzls solution c = o. There are other 

( 8) 

(9) 



physically significant cases where c: O, orb= o, or band c both 

differ from zero. 

b. Generalization of Graetz•s Result 

--Variable Vv a11 Temperature 

If the temperature on the wall has the distribution 

( 3 ~ 0) l' 70) 

with T1(o) ~ T0 , the temperature distribution in the pipe can be obtained 

from Graetz•s solution by superposition. Since 

v.ihere Q( 5 ,~) is given by Eq 7, the solution for the present problem is 

or 
~ dTi('S J 

T,(~)- 1 = )
0 

&l~-'5, 1) d "S d-S 
. LUrVe 

3. 

(9) 

(10) 

Physically, this solution amounts to slicing the temperat ure~T. Tl(S) ( ~ > 0) 

(nto strips each of thickness dT1(~) starting from ~ :: 0 , and superposing 

the effects due to all the infinitesimal strips the effect of each of which 

bring given by Graetz•s solutione 

This case of course still corresponds to c: 0 in the Sturm-Liouville 

system mentioned in the last section. 



c, Insulated Pipe 

Since there is no definite T1 when the pipe is insulated for x > o, 
the meaning of Q should be redefined. The temperature nux into the in-

sulated section is 

4. 

H ::: ,'.( 1T 0. ~ ) ~ Um G\ "' ( \ -1 L ) T [ 0 , I p ~ d ~ ( 11) 

The asymptotic temperature for very large S will be uniform and have the 

magnitude H/Q where Q is the discharge through the pipes 

Q • 2 7Ta2"max ): (1 - ~2) ~ d1J = (']BX) TT a2 (12) 

The asymptotic temperature Ta is therefore 
I 

Ta: 4 i (1 - ~2) T (0.~)?&1 
0 

Cne defines 

so that asymptotically Q ~ 0 and initially ( ~ =-0) 

(13) 

(14) 

Q is known. 

With the Q thus defined and remembering Eq 4, Eqs 6, 8, and 9 are to be 

solved with b a O, The eigenvalues can be detennined from R1(1) = O. The 

first three eigenvalues ha,ve been calculated to be \ = 5,07, A1 : 9.17, 

~ 2 : 13,271, and the pertaining eigenfunctions are given numerically in 

Table 2 and graphically in Fig, 2. The coefficients A0 , A1, A2 etc. in Eq 7 

(which constitutes the solution) are determined in virtue of the orthogonality 

of the eigenfunctions from the preassigned value Q( O, ~): From the calculated 

residues for the values of R'(l), it seems that the first two eigenvalues are 

slightly t~o large, and the third one slightly too small. The residues 

for the three eigenvalues are respectively .0.0002, +0.006, and ~0.0030, 

d. Pipe with Finite Yfall-Thickness 

Vfhen a pipe has a finite wall-thickness, it is impossible or at least 

impracticable to keep the inner surface of the pipe at a certain temperature T1, 



One considers the simplest case when the outside surface of the pipe is kept 

at a constant temperature T1 for x ,> o. When x ~ O the wall as well as the 

fluid is supposed to have the temperature T0 • The resulting temperature 

distribution in the fluid is sought. 

First, one defines Q by Eq 1. If the pipe is sufficiently long in com-

parison with its thickness, longitudinal conduction can be neglected. This is 

especially true if the pipe is longitudinally insulated at ~ = 0 where there 

is a sudden change of temperature. If, therefore, only the radial conduction 

is considered, the contribution to the inner-wall temperature being R for any 

eigenfunction, the heat transfer through the .wall contributed by this 

eigenfunction is proportional to • k:R(l)/L~ (1 + h) where k is the thermal 

conductivity of the pipe material and h; t/a, t being the thickness of the 

pipe wall. The proof is as follows: 

one writes the 11 bounda.:ry-1Jy-er1.1 equation of conduction 

dz.e d 
d~1 +* cq =O (15) 

where ordinary differentiation is used since longitudinal conduction is 

neglected. Solving Eq 15 with the boundary conditions ( f ?r any ~ ) 

Q ( 1) • Rt•) , Q ( 1 + h) : 0 

one obtains 

Q • R(l - l"r ) Lrr<i • E) 

from which 
R( l ) 

Ln \1-th) 

Hence one has the required rate of heat transfer. 

On the other hand, the rate of heat transfer from the fluid to the inner 

surface of the wall is proportional to -k•R•(l) (the factor of proportionality 

being the same as fork R(l)/ ln(l+h~, where k1 is the thermal conductivity 

of the f luid. By continuity, one has 



6. 

tn V1+h) R(l) + R1(1) : o (16) 

where I III k/k'·· This equat~on is a special form of Eq 9 (b :f O and c t 0) 

and determines the eigenvalues. 

After the eigenvalues are obtained, the solution is f ound as before by 

detennining the coefficients A0 , Ai,. A2, etc. in E.q 7. 

2. Laminar Heat Convection in Ducts 

a. The Yih-Cennak Solution 

Let the distance between the two parallel plates be 2a, the abscissa x 

be taken in the direction of now~ and the ordinate y be taken perpendicular 

to the plates, with the origin mid-way between the plates. If the approach-

ing f luid has a temperature T0 and at x > 0 the inner surfaces of the duct 

are kept at a constant temp~rature T1 ::\: T0 , the temperature in the fluid 

will gradually change from T0 to Tl and is a function of both x and y. The 

solution has been given by Yih and Cermak (3), a brief account of which is 

given below. 

}ii th Q defined by Eq 1 1 and 

The boundary-layer equation of heat diffusion can be written 

CJ( z.) d0 ~ze 
I 1-1 ~ =: ~l. 

where f::. umax· a/ d.. is again the Peclet number. Assuming 

g( t r1) == x n J y c 11 J 
one has, upon substitution into Eq 171 

which gives 

and 

p X' '('1 
x = (1-rii)y 
X = e -,>,Z .VP 

= -),.' 

(17) 

(18) 

( 19) 



Eq 19 is to be solved with the conditions that 

(i) Y1(0): 0 

(ii) Y(l) a 0 

1. 

the latter of which determines the eigenvalues )...0 , )\, , Ai 

the first three have been f ound to be 

, of which 

Ao : 1. 6815, >,. : 5.6699, 
I I\ : 9.6687 

L 

the corresponding eigenfunctions being given numerically in Table 3, and 

graphically in Fig. 3, The sol ution 'is then 

where the coefficients A are determined by the condition Q(O,y) = 1, and 

the f irst three are found to be 

A0 : 1. 2008 A1: -0.2993 

The orthogonality of the eigenfunctions has made this determination possible. 

The Sturm-Liouville system consisting of Eq 19 and the conditions 

(i) b1Y(d) + b2Y 1(d); O 

(ii) c1Y(l) + c2Y1(1): O 

will. now be studied. In the Yih-Cermak solution bt = c2 ;d =o. There are 

other physically sibn ificant cases where d may be zero or minus 1 and 

(21) 

( 22) 

where the f our coefficients b1, b2, c1 and c2 may not vanish or different 

combi nations of them vanish. 

pipe 

b. Generalization of the Yih-Cermak Solution 

--Variable nrall Temperature 

The generalization follows t hat of 1 b , If on the inner surface of the 



the resulting temperature distribution is given by 

T1 - T: (
30( ~-~J 11) dT;('S) 0 S 

}o d 'S 

where Q ( ~ , 1·1) is given by the Yih-Cermak solution. 

c. Insulated Plates 

The development follov s that of. le. In this case 

H ::::: 2. (J u 1'1'0 J( t l l - tf ) T ( 0 I 1 ) d t") 

Q :=::Zaum o.)I. ), (1-1')1.)d-~ = i ~u~Q ( 
0 

One defines Q by Eq 14 and solve Eqs 19, 21 and 22 with b1; c1 : 10, 

d ~ -1, remembering E,q 18. If the initial value of Q(O,ry) is even or odd, 

Eq 21 can be r espectively replaced by 

Y 1(0) :: 0 

or 

8. 

( 23) 

( 24) 

( 2S) 

( 26) 

(27) 

Y(O) : 0 (28) 

In the former case Y(ry) is even; in the latter, odd. If the initial value 

of Q(O,~) is neither even nor odd, both even and odd eigen-functions should 

be used to approximate Q(O,q)~ The first t wo eigenvalues for the even 

eigenfunctions are found to be approximately 

>,..
0

: 4. 2812 )\, : 8.3042 

and the corresponding eigenf unctions are given numerically in Table 4 
and graphically in Fig. 4. The residues for the values of Y1(1} are 

respectively+ 0,00004 and -0.006 for the t wo eigenvalues given above. 

d. Duct with Finite Wall-Thickness 

Suppose that the t hickness of the plates is t and that the 

outside surface of the plates is kept at Ti, the temperature of approach 

being T0 , Let Q be defined by Eq 1. The development is similar to 



that of 1 d~ with the difference that in the present case the distribution of 

Qin the plate is linear with respect to Yo 

by 

Conseqi ently, Eq 16 is replaced 

K h Y(l) + Y'(l): 0 ( 27) 

where K again is the ratio of the thennal conductivity of the plate to that 

of the fluid, and h = t/~. Eq 27 is a special case of Eq 21$ Eq 20 can be 

replaced by 
yt ( 0) : O 

due to symmetry. one therefore obtains the eigenvalues from Eq 27, t aking 

only the even part of the solution of Eq 19 for the function Y( ~) o After the 

eigenfunctions are obtained, the solution is found as usual by the proper 

determination of the coefficients A in Eq 20~ 

ec Unsymmetric Boundary Conditions 

Consider the case when the temperature of approach is T0 • The lower 

plate is kept at T0 throughout, and the upper plate is kept at T0 for 

x ~ O, and T1 for x )' Oo With e defined as 

and remembering Eq 18, Eq 19 is to be solved with 

Y(-1): O 

Y(l) : 0 
which are special cases of Eqs 21 and 22 . Either the even or the odd part 

( 29) 

(30) 

of the solution of Eq 19 can be taken for Y(~), and if so Eq 30 is contained 

in Eq 31, which gives the eigenvalues. The ei genfunctions are 

where Y(~) is even and Z(1) is odd. The solution is 

~ ->--~ ~/p 
e(t~)==~t

0 
e (Av, \{., l1)+B~z~l1)) (32) 

where ~ and B0 are to be determined such that 



10. 

(33) 

The first three of the eigenvalues for the even ·functions have been found to be 

),.,
0 
= 1.6815 I\ : 5.6699 

I 
J\z.: 9.,6687 

and those for the odd function have been found to be 

'A~ • J. 6723 ·. }-.
1 = 7. 6688 
I 

The pertaining coefficients are 

A0 = 0.6004 

B0 : 0.9102 

A1: -0.1496 

B1: -0.8057 

I ,\ = 11.5957 2 

A2: 0.0798 

B3: 0.1601 

The result just obtained can be generalized. Let the temperature distribu-

tion on the upper plate be 

X ~ 0 

T : f(g) X ) 0 

and that on the lower plate be 

T = T0 x ~ x0 

vmere x0 is a certain value of Xo Then since T1 is not constant in this 

case, one uses the parameter (T - T0 )/r0 and observes that 

T -..!a =( T - T1 _1\ To - T1 : cl _ ,g ( ) _ L:.!l] ~ 
TO . T 0 - Tl ) TO ~ > ~ 2 T 0 

where 4 T = T1 - TO if a constant T1 exists but stands for df( ~ ) or 

dg( ~ ) vrhen Ti is variable, and where Q( ~, ~ ) is given by Eq 29. Thus 

considering the influence of the upper plate, and utilizing the principle of 

superposition, 

T - T0 1 ---=,r T0 o 
(34) 

where Q(S,1) is given by Eq 32. In considering the influence of the lower 

plate, one notices that if the direction of ~ were turned 1T radians 

an expression similar to the one given in Eq 34 would be the solution, which 



11. 

means, using the existing coordinates, the~ in.Eq 34 should be changed to 

- 1 . Turthennore, since the change of temperature for the lower plate occurs 

at t, ::. j o/O... , the lm er limit of the integral in Eq 34 should be changed to 

~
0

• Thus, considering the influence of the lower plate, 

T ; OTO = ¥;; ) ~ l l 2 0 - Q ( g - '<; , -~ ) Hg~) d ~ 
~o 

If ~o is negative· or zero, then for ~ 7 ~
0 

T- To 
Tci 

If '3o > 0 i then (T - T0 )h0 is given by Eq 34 for O < 3 <. ~
0 

, and by 

Eq 36 for ~ 7 10 • 

3. Conclusion 

(35) 

(36) 

Problems in laminar heat transfer in pipes and ducts can be solved by 

the generalized Fourier analy ·is if there is symmetry. Even some unsymmetrical 

cases can be solved by the same general method, as presented in 2e. 



Bibl iography 

1. Graetz, L.: Annalend. physik (N.F.) VoL 25, p .. 337, 1885. 

2. Jakob, Max: Heat Transfer, John VVi.ley and Sons, 1949. 

3. Yih, C. S., and Cermak, J.E.: Heat Transfer in Plane Poiseuille Flow, 

to be published. 

(69 21-51) 

12. 



13. 
Table 1 

1· 
n Ro(~) ~1(11) 

I 

Rz. ( I 

I 0 1 1 1 i 
I 

I 0.1 0 .. 98l.8 I 0;.8923 Oo7S3 

I 
I 

0.,2 0.9290 I 0,,6067 0.206 

Oe3 o .. 8456 0.2367 -0.,290 

o.4 007382 -0.1062 -0 .. 407 

o.5 o.6147 -0.3399 -0.204 

o.6 0.,4833 -0.4317 ' 0 .. 104 

0.7 0.3506 -0.3985 0.,278 I 
o.8 0.2244 -0.3051 0 .. 278 I 

I 0.9 0.1069 -0.1637 00144 I 1.0 0 0 0 
_[ 

Table 2 

Y) (< ti ( ~ ) RI l\1) Rzl11) 1 --·- 1 
0 1 1 1 I 

0.1 Oe- 937 0.,801 0.607 

0.2 0.761 0.325 -0.117 

0.3 0,505 -0.154 -O.lr07 

Oo4 0.230 -0.402 -0.122 

o.s -0.032 -0.357 ' o.2so 

o.6 -0.213 -0.186 0.305 

0.7 - 0.382 0.135 0 .. 109 

o .. 8 -0 .. 459 0.312 -0.199 

0.9 -0.488 0.388 -0.328 

1.0 -0.492 o.406 -0.,336 



14. 
Table 3 

r) Yo.ill I '1t~. Y2 en 1 i 
i 

-1 
0 1 I 1 l I 

l 

I 
0 .. 1 0.98592 I 0 .. 9438 0,,5685 

0.2 0.94435 0.4262 -0.3513 

0 .. 3 0.87731 -0.1205 -0.9843 

0.4 0.78762 -0.6345 -0.,8413 I 
0.5 0.67934 -0.9832 -0(>0746 I o. .. 6 o.55665 -1.1013 0.7542 

I 0.7 0.42514 -0.9973 1.1669 

o.8 0.28489 -0.7311 1.0498 

0.9 0.14294 -0.3787 o.5550 
1.0 I 0 0 0 I 

Table 4 

~ '(( ~) YI(~) j 
0 1 1 

0 .. 1 0.9096 o.6751 

0.2 o.6564 -o.0857 

0.3 0.2889 -0.7970 

0.4 -0.1270 -1.0174 

o.s -0.5245 -0.7062 

o.6 -0.8518 -0.0178 

0.7 -1.0812 o.6847 

o.a -1.2004 1.1659 

0.9 -1.2623 1.3716 

1.0 -1.2697 1.4055 



15. 

Table 5 
I -, 

I I 
r) 2o( f1 ) z, (r)) z~~c ~} 

0 0 0 0 

0.1 0.0978 OQ0905 0.0791 

0.2 0.1827 0.1312 0.0644 

0.3 o.2u4). 0.1011 -0.0253 

o.4 0.2764 0.0192 -0.0879 

o.5 0.2776 ... 0.0725 -0.0617 

o.6 0.2509 -0.1342 0.0239 

0.7 0.2027 -0.1476 0.0919 

o.8 0.1405 -0.1178 · 0.0892 

I 0.9 
f 

0.0713 . -0.0628 0.0640 
I 0.0000 r 0.0000 0.0081 I i.o .I 

(6921-51) 
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