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ABSTRACT

MOLECULAR CONFIGURATIONS AND PERSISTENCE: BRANCHED ALKANES

AND ADDITIVE ENERGIES

Energy landscapes are high-dimensional functions that encapsulate how certain molecu-

lar properties affect the energy of a molecule. Chemists use disconnectivity graphs to find

transition paths, the lowest amount of energy needed to transfer from one energy minimum

to another. But disconnectivity graphs fail to show not only some lower-dimensional fea-

tures, such as transition paths with an energy value only slightly higher than the minimum

transition path, but also all higher-dimensional features. Sublevelset persistent homology is

a tool that can be used to capture other relevant features, including all transition paths. In

this paper, we will use sublevelset persistent homology to find the structure of the energy

landscapes of branched alkanes: tree-like molecules consisting of only carbons and hydro-

gens. We derive complete characterizations of the sublevelset persistent homology of the

OPLS-UA energy function on two different families of branched alkanes. More generally,

we explain how the sublevelset persistent homology of any additive energy landscape can be

computed from the individual terms comprising that landscape.
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Chapter 1

Introduction
Chemists want to understand the structure and shape of energy landscapes; real-valued

functions that are evaluated over high-dimensional domains of variables that affect the energy

of a molecule. As one example, consider carbon-based molecules. Carbon-based molecules

can get very large and as a result, their energy landscapes can be extremely high dimen-

sional. Every bond added to a molecule increases the dimension of the domain of the energy

landscape. If chemists want to fully understand the behavior of larger molecules, they need

information about the structure of the energy landscape. One characteristic chemists want

to understand is how molecules transition between energy minimums. Traditionally chemists

use merge trees, diagrams that capture the lowest transition path between two minimums, to

understand how molecules transition from one minimum energy state to another [3, 4]. But

due to randomness or external forces, molecules can sometimes transition through higher

minimums not captured by merge trees. Sublevelset persistent homology is a tool from

topological data analysis that captures all homological features of the function. Further,

since the energy functions are Morse, sublevelset persistent homology can capture all critical

points of all degrees, when it can be computed. This provides chemists with all possible

transition paths, as well as information about higher dimensional features.

Carbon-based molecules come in a variety of structures. Chains of carbons, n-alkanes,

have the most simple structure of the alkane molecules. But, carbon atoms can bond with

anywhere from one to four other carbons, and as such, we study more complex molecules.

We will call any tree-like carbon structure a branched alkane. Carbons can also bond to each

other with multiple bonds. Alkenes are molecules where two carbons are bonded together by

double bonds while alkynes have triple bonds [5]. Finally, carbons can also form loops, which

can contain three or more carbons; these molecules are called cyclo-alkanes. A natural ques-

tion asks how we can study the homological structure of different carbon-based molecules.
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Work has been done on understanding the energy landscapes of n-alkanes in [2]. Other work

has also been done on the energy landscape of cyclo-octane in [6], but as we increase the size

of the cyclo-alkanes, the domain space gets complicated very quickly. We will restrict our

focus to examining the persistent homology of the energy landscapes of branched alkanes.

Topology is often used to examine the geometry of high-dimensional spaces. Several

papers, such as those by Pietrucci and Andreoni [7] and Zhou et al. [8], look at topological

descriptions of intermolecular interactions. In the context of molecular chemistry, persistent

homology, a tool from topology, has been used to examine energy landscapes, namely func-

tions that map an input space of states in a chemical system to a corresponding energy value.

The paper by Mirth et al. [2] looks specifically at the energy landscapes of n-alkanes. For

one approximation, the domain of any n-alkane chain can be reduced to a product of circles,

where each circle S1 represents the rotation angle of a bond between two carbons. Utilizing

this deconstruction, the authors were able to use a formulation of the Künneth formula [9],

a result that generalizes the universal coefficient theorem for homology [10], to describe the

length and birth time of all bars in the persistent homology barcode. This work allowed the

authors to characterize the sublevelset persistent homology of the energy landscape for any

n-alkane.

1

1

32

2

1 θ

Figure 1.1: [Left] An example of a branched alkane with two dihedral types; 1-2-2-3 (red) and 2-2-
3-1 (orange). [Middle] The molecule’s corresponding energy landscape. The ϕ1 axis is the position
of the 2-2 internal bond and the ϕ2 axis is the position of the the 3-2 internal bond. Each pair
(ϕ1, ϕ2) gives a corresponding energy value. [Right] The sublevelset persistent homology barcode
of the energy landscape. The x-axis is the energy value that corresponds to the homological feature
and the y-axis is a count of the number of bars.
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We would like to do a similar characterization of the sublevelset persistence for branched

alkane energy landscapes. Branched alkanes consist of two types of bonds; internal and

external. Internal bonds, or bonds that connect carbons of degree 2 or higher, are the bonds

we will focus on that contribute to the energy landscape. We will denote internal bonds as

strings of two numbers, while we will call strings of four numbers the dihedral type, where

each number is the degree of the carbon surrounding the internal bond. In Figure 1.1,

the molecule consists of 6 carbons and 5 bonds, 2 internal bonds (red and orange) and 3

external bonds (black). The internal bonds are 2-2 and 3-2 with corresponding dihedral

types 1-2-2-3 and 2-2-3-1. If we rotate around the two internal bonds, the pair of angles

(φ1, φ2) corresponds to a single energy value in R. Note, the approximation of the energy

landscapes we consider only uses interactions between the bonded atoms. The interactions

between non-bonded atoms do have an effect on the energy, but we will ignore that effect in

this specific approximation. Hence, the energy contribution of angle φ1 is not dependent on

the position of angle φ2. Thus, these functions are additive functions over a product space

and as such, in this approximation we can combine the energy functions that correspond to

each internal bond to get the energy function of the entire molecule. Then, by applying the

persistence formulation of the Künneth formula, we can use the sublevelset persistence of

each internal bond to calculate the sublevelset persistent homology of larger molecules.

Throughout this paper, we will explore how the persistent Künneth formula can be

used to calculate the sublevelset persistence of branched alkane energy landscapes. First

we will give a brief overview of relevant background on chemistry, sublevelset persistence,

Morse theory, and the Künneth formula in Chapter 2. Next in Chapter 3, we will look at

the sublevelset persistence for six specific dihedral types, which we will use to build larger

branched alkanes. Chapter 4 provides results characterizing certain features for all branched

alkanes, such as the number of bars in each dimension. In Chapter 5, with an understanding

of these six building block dihedral types, we will completely characterize the sublevelset

persistence for a few select examples via the Künneth formula. Using that information, we
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will generalize our results for a larger class of molecules in Chapter 6, and then explain how

to extend these results to any branched alkane.

Over the course of these chapters, we establish several new results. We determine the

number of bars in the sublevelset persistence barcode for any branched alkane in Theo-

rem 4.1.2. Theorem 4.2.1 provides the number of k-dimensional bars in each barcode. Then,

Theorem 4.3.2 gives the number of bars of each length in the barcode. Finally, we will

completely characterize the energy landscapes for two different types of branched alkanes:

molecules with all 3-2 type internal bonds (Theorem 5.2.6) and molecules with both 2-2 and

3-2 types of internal bonds (Theorem 6.1.5). Using the results above, we will discuss how to

extend them to determine the sublevelset persistent homology of any additive function over

a product space by using the persistence barcodes of the product components.
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Chapter 2

Preliminaries
To fully explore the homology of branched alkane energy landscapes, we will intro-

duce some necessary notions from chemistry. In particular, we will introduce the family

of branched alkane molecules. After we look at the some of the underlying chemistry of

branched alkanes, we will provide some background on sublevelset persistent homology.

Next, we will look at Morse theory and how it can be combined with sublevelset persistence

to provide us with additional structure. Finally, we will look at the main underlying tool of

the paper; the persistence Künneth formula, and how we apply it to energy landscapes.

2.1 Branched alkanes
Throughout this paper, we consider branched-chain alkanes, or as we will refer to them,

branched alkanes. Alkanes are a type of molecule which consist of carbons and hydrogens

connected by single bonds. Branched alkanes are molecules that are made up of only carbons

and hydrogens whose bond structure is tree-like; there are no cycles. For more on alkanes and

branched alkanes, see Chapter 4 of [5]. One specific subset of branched alkanes, n-alkanes,

consist of chains of carbon atoms and hydrogen atoms connected by single bonds. These

have already been studied by Mirth et al. in [2], so we will look exclusively at molecules that

are not chains.

Note, for the entirety of this paper we will look exclusively at the OPLS-UA (Optimized

Potential Liquid Simulation - United Atom) approximation of the energy landscape, as es-

tablished in the paper by Jorgensen and Tirado-Rives [11]. The OPLS-UA energy landscape

is a function that inputs the rotational angle of each internal bond and outputs an energy

value. This model equalizes all bond lengths and fixes the angles between any three carbon

atoms. Additionally, the OPLS-UA model includes the energy from the hydrogen atoms in

the carbon atoms and ignores non-bonded intramolecular interactions. Thus, even though
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each carbon has degree four including hydrogens, when looking at pictures of molecules, we

will only look at the structure of the carbons.

1

1

3 2

1

Figure 2.1: [Left] One configuration of isopentane with only the carbons shown. The internal
bond is denoted by a thick orange line and the number inside each carbon atom is the degree of
that carbon with respect to other carbons. [Right] The corresponding OPLS-UA energy landscape.

For example, consider the branched alkane C5H12, known commonly as isopentane, shown

in Figure 2.1. Isopentane has one internal bond; a bond where the two bounding carbons

each have degree greater than or equal to two. As we are looking to characterize the energy

landscapes of branched alkanes, first consider the energy landscape of isopentane (Figure 2.1).

The OPLS-UA energy landscape of isopentane is given on the right of Figure 2.1. This

function is calculated with the coefficients given in [12–14]. When adjacent carbons are

close together (for isopentane, those labeled with 1’s), they produce a higher energy value.

Similarly, when they are far apart, they produce a lower energy value. Hence, as we rotate

around the internal bond, we get a changing energy value that is in direct relation to the

angle of the internal bond. For the entirety of this paper, we will denote internal bonds as

strings of two numbers, while we will call strings of four numbers the dihedral type, where

each number is the degree of the carbon surrounding the internal bond. These dihedral types

determine the OPLS-UA energy functions of each molecule. For isopentane, we have only

one internal bond; the bond connecting the carbon atoms of degrees 3 and 2. Further, this

molecule has two copies of one dihedral type, which we denote as 1-3-2-1.

Different internal bonds and dihedral types affect the energy of the molecule. As we will

see in Chapter 3, the energy landscapes of butane (the molecule with one copy of dihedral

6



type 1-2-2-1) and isopentane (the molecule with two copies of dihedral type 1-3-2-1) have

different shapes (Figure 3.1). Our overarching goal is to characterize the geometry of the

energy landscapes of different types of branched alkanes, including larger molecules with

many atoms. As mentioned above, the natural first step is to examine the sublevelset

persistence of n-alkanes, which is done in [2]. The next step, and the purpose of this paper,

is to consider all possible tree-shaped molecules consisting of carbons and hydrogens. We

will calculate and then utilize the sublevelset persistence of six different dihedral types to

approximate the energy landscapes of larger molecules. But first, we discuss exactly what

we mean by sublevelset persistent homology.

2.2 Sublevelset persistent homology
Next, we develop some background on sublevelset persistent homology. Sublevelset per-

sistence examines the sublevelsets of a space as the threshold defining the sublevelset varies.

The threshold variable could represent time, height, or as in this work, an energy value.

Sublevelset persistence is a relatively new mathematical topic that has several applications

to chemistry [15–17]. The following explanation will follow the book by Edelsbrunner and

Harer [18].

Recall that persistent homology looks at how long homological features, such as com-

ponents, holes, voids, etc. persist over a given scale. In the context of energy landscapes,

chemists are curious about the energy values of critical points of all indices. Roughly speak-

ing, the index of a critical point is the number of linearly independent directions that one

could move from a critical point while having the energy value decrease. For example, criti-

cal points of index one correspond to saddle points, points where you can flow down in only

one direction. Each saddle point corresponds to an energy barrier, or the minimal amount

needed to get from one local minimum to another. Identifying these saddle points and other

higher-dimensional critical points provides information regarding the homological features

of the energy landscape, even without visualization.
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For example, chemists are concerned with how molecules transition between energy min-

imums. Molecules are constantly fluctuating, but they are often found near low energy

configurations which correspond to energy minimums. For a molecule to transition between

energy minimums, they have to pass through a saddle point that connects the two mini-

mums. Merge trees are one tool chemists have used to find these energy barriers. These

graphs identify the lowest energy saddle point a molecule would have to pass through to

transition from one minimum to another. One restriction of merge trees is that they only

capture the lowest energy value; there could be another path that has a saddle point with

a slightly higher energy value that a molecule might take. Hence, having information about

all critical points provides further insight into molecular transformations and interactions.

Therefore, we are interested in the homology of an energy landscape, X, and how it changes

as the height of the energy threshold changes.

Let f : X → R be a real-valued function with domain X. We define a sublevelset for

some value t ∈ R as Xt = {x ∈ X | f(x) ∈ (−∞, t]}. Note for t ≤ t′, we have Xt ⊆ Xt′ . To

determine the sublevelset persistent homology, we will start by looking at singular homology.

The definitions and notation we use originate from the book “Algebraic Topology” by Allen

Hatcher [10]. Define (C•(X), ∂) to be the singular chain complex, where each Cn(X) is the

free abelian group where the basis is the set of singular n-simplices in X. A singular n-chain,

σ, is a finite sum given by σ =
∑

i niσi ∈ Cn(X), where ni ∈ Z and σi : δ
n → X. A boundary

map ∆n : Cn(X) → Cn−1(X) is defined to be

δn(σ) =
∑

i

(−1)iσ|[v0, . . . , v̂i, . . . , vn]

where v̂i is the removal of the ith vertex. This gives a singular (n− 1)-chain. Thus, consider

the standard homology on (C•(X), ∂) where Hn(X) = ker(∂n)/im(∂n+1). The sublevelset

persistent homology is given by first evaluating the singular homology on Xt, Hk(Xt), as op-

posed to all of X. Furthermore, in sublevelset persistence, one also considers the morphisms

Hk(Xt) → Hk(Xt′) induced by the inclusions Xt

X
−֒→t′ for t ≤ t′.
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A common first example of sublevelset persistence looks at a torus standing on its side

and examines the changing homology as the height increases; see Figure 2.2. Starting at the

base, there is a single connected component isomorphic to the closed disk. As we increase

the height of the function, we have that the homology transitions to that of a circle at the

second critical point, and then changes to two connected circles (a figure-eight), until at the

top, we recover the whole torus.

=
==

=

Figure 2.2: A depiction of sublevelset persistent homology for the torus. We start with a point,
evolve to a circle, add in a second circle, and finally a void. Figure from [1].

We can capture this information via a persistence barcode. A persistence barcode is a

collection of horizontal bars, where the birth of a k-homological feature is the value of the

left endpoint of the bar and the death (if it exists) of that feature is the right endpoint of

the bar. The color of a bar gives the dimension of the feature.

Figure 2.3: Sublevelset persistence barcode for the torus. The color of the bar gives the dimension
of the feature and all bars are semi-infinite.
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For the example above, the barcode in Figure 2.3 is the sublevelset persistence barcode

for the torus in Figure 2.2. In this example, all bars are semi-infinite, which means that they

have no right endpoint (death value). We will see in later examples that this is not always

the case; there will be homological features that only persist for a finite range. Further, the

functions we will be studying are Morse functions, a well-behaved class of functions outlined

in the section below.

2.3 Morse theory
In order to talk about Morse homology, we introduce some background on Morse theory.

An extensive look can be found in the book by Milnor [19], but we provide a summary

below. Morse theory is a classic topic in smooth topology that relates directly to the newer

invention of persistent homology. Consider a smooth function f : X → R where X is a

smooth manifold. Throughout this thesis, we use the word manifold to refer to a manifold

without boundary. We say x ∈ X is a critical point of f if and only if ∇f(x) = 0. Further,

we call x a non-degenerate critical point of X if the Hessian at x is non-singular. We say f is

a Morse function if it is smooth and if all critical points are non-degenerate [20]. Throughout

this paper, f will be a function that takes any number of bond angles in a molecule as input,

and outputs the energy value of the molecule at that configuration. Each bond angle has

a circle’s worth of positions, hence we denote the domain of each bond with S1. We could

expand this idea to include parameters such as bond length and bond type, which would also

give smooth manifolds, but we will restrict to bond angle in this paper. Since we are looking

specifically at how the bond angles affect the energy, the domain of the energy function is the

n-dimensional torus (S1)n, which is a smooth manifold. Further, each function we consider

in this paper will have non-degenerate critical points, which implies that all functions we

consider will be Morse.
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Since our functions are Morse, we utilize two results from Morse theory. The first shows

that if f is a smooth function on some finite dimensional smooth manifold, then given an

interval [a, b] that contains no critical points, Xa is homotopy equivalent to Xb.

Theorem 2.3.1 (Banyaga and Hurtubise [20]). Let f : X → R be a smooth function on a

finite dimensional smooth manifold. For all t ∈ R, let

Xt = f−1((−∞, t]) = {x ∈ X | f(x) ≤ t}.

Let a < b and assume that f−1([a, b]) is compact and contains no critical points of f . Then,

Xa is diffeomorphic to Xb and Xa is a deformation retract of Xb. Moreover, there is a

smooth diffeomorphism F : f−1(a)× [a, b] → f−1([a, b]) such that the diagram

f−1(a)× [a, b] f−1([a, b])

[a, b]

F

π2 f

commutes. In particular, all the level surfaces of f between a an b are diffeomorphic.

This means that the bars in the sublevelset persistent homology can only change when

we cross a critical point. The homology of the function stays the same between two height-

adjacent critical points. Next, we describe how crossing a critical point with index k in the

sublevelset adds a k-cell to the homotopy type.

Theorem 2.3.2 (Banyaga and Hurtubise [20]). Let f : X → R be a smooth function. Sup-

pose that for a < b, f−1([a, b]) is compact and inside f−1([a, b]) there is exactly one critical

point. Assume that this critical point is non-degenerate and of index k. Then Xb has the ho-

motopy type of Xa with one k-cell attached. In fact, there exists a set ek ⊆ Xb diffeomorphic

to a closed k-disk Dk = {x ∈ R
k | |x| < 1} such that Xa ∪ ek ⊆ Xb.

Combined with Theorem 2.3.1, this tells us that until the sublevelset crosses a critical

point, the homology remains the same. Once we cross a critical point, the homology changes
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in a predictable way. These two results will be helpful when discussing the sublevelset

persistence of Morse functions.

2.4 Sublevelset persistence and Morse theory
We want to completely characterize the sublevelset persistence of the energy landscapes

of branched alkanes. As such, we will look at a well-established lemma connecting Morse

theory to sublevelset persistence, namely Lemma 2.4.1.

First, define (C•(f), ∂) to be the chain complex for Morse homology, as used in [2, 20].

Each Ck(f) is the free abeliean group generated by the critical points of index k (Critk).

The boundary map is the function

∂k+1(q) =
∑

q∈Critk(f)

n(q, p)p

where n(q, p) is the number of signed gradient flow lines from q to p. Let Mf
p,q be the moduli

space of gradient flow paths from p to q (with Z/2Z coefficients). Recall, the gradient flow

paths refers to the path a point would follow to flow either up or down. Hence, the kth

homology of the chain complex (C•(f), ∂) is given by Hk(X) = ker(∂k)/im(∂k+1). For the

remainder of this thesis, we will use Morse homology. Thus, when we are talking about

sublevelset persistent homology, this is the chain complex and homology we are referring to.

With this notation in mind, we state the Morse Lemma.

Lemma 2.4.1 (Morse Lemma). If f : M → R is a Morse function, then the birth and non-

infinite death values in the sublevelset persistent homology correspond precisely to the critical

points of f . Each k-dimensional bar has birth time corresponding to a critical point of index

k, and death time either equal to infinity or otherwise corresponding to a critical point of

index k + 1. Furthermore, the number of semi-infinite bars in dimension k is given by the

k-dimensional homology of M .
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Lemma 2.4.1 gives that the sublevelset persistent homology of a Morse function is com-

pletely determined by the critical points of the energy landscape. A proof of this can be

found in Appendix A.1 of [2].

As an example, consider the branched alkane isopentane as seen in Figure 2.1 and as

discussed in Section 2.1, which we refer to as 1-3-2-1, pictured below. We label the critical

points as a1, a2, b, c, d1, and d2, and their corresponding energy values as α, α′, β, γ, δ, δ′ ∈ R

with α ≤ α′ < β < γ < δ ≤ δ′, where critical point a1 corresponds to energy value α, a2

corresponds to α′, b corresponds to β, c corresponds to γ, and d1 corresponds to δ, and d2

corresponds to δ′. Note, α = α′ and δ = δ′, but in order to classify critical points properly,

we will later define an ε-perturbation to break symmetry and as a result, α < α′ and δ < δ′.

Figure 2.4: An example of the correspondence between the critical points of a function and the
birth and death times of the persistence bars.

Each birth and death in the sublevelset persistent homology corresponds to a critical point

of the function. All of the dimension 0 critical points correspond to births of 0-dimensional

bars. Two of the 1-dimensional critical points correspond to deaths of 0-dimensional bars,

while one of them corresponds to the birth of a 1-dimensional bar. This completely describes

the sublevelset persistence of this function. Further, we will see in the next section that if

we have an additive function over a product space, we can use the sublevelset persistence of

each component to determine the sublevelset persistence of the entire function.
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2.5 Künneth formula
Suppose we know the sublevelset persistent homology of two energy landscapes over X1

and X2. We want to calculate the sublevelset persistent homology of the energy landscape

over X1 × X2. More precisely, if fi : Xi → R is a collection of functions for i = 1, . . . , n,

then one can define their sum f : X1 × . . . × Xn → R on the product space X1 × . . . × Xn

by f(x1, . . . , xn) = f1(x1) + . . . + f(xn). We will often refer to these functions as additive

functions over a product space.

Additive functions over a product space possess some nice properties, particularly if

each component function is a Morse function. One such property is that the sum of Morse

functions over a product space is also a Morse function. Another nice property of Morse

functions characterizes the critical points of the additive function via the critical points of

the component functions.

Lemma 2.5.1. Let X1, . . . Xn be manifolds, let fi : Xi → R be Morse functions, and let

f : X1×· · ·×Xn → R be the additive function over a product space defined by f(x1, . . . , xn) =
∑n

i=1 fi(xi). Then f is a Morse function. Further, the point (x1, x2, . . . , xn) is a critical

point of f if and only if each coordinate xi is a critical point of fi. Finally, the index of a

critical point (x1, x2, . . . , xn), denoted by µf (x1, x2, . . . , xn), is equal to the sum of all indices

of the component functions,

µf (x1, x2, . . . , xn) =
n
∑

i=1

µfi(xi).

Proof. We prove the case where each Xi is one-dimensional, which is the only case of this

lemma we will need. For the proof of the general case, see [2].

To show f is a Morse function, we must show that f is smooth and that all critical

points are non-degenerate. First note that each component function, fi(xi) is smooth; hence

all derivatives exist. Additionally for each i, ∂f

∂xi
(x1, . . . , xn) =

∂fi
∂xi

(xi). Hence when i 6= j,
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∂2f

∂xi∂xj
(x1, . . . , xn) = 0 and for i = j, ∂2f

∂xi∂xj
(x1, . . . , xn) =

∂2fi
∂x2

1

(xi), which exists since each fi

is smooth. This also holds for higher-order derivatives. Therefore f is smooth.

Next, consider the Hessian of f . Above we see that all mixed partial derivatives are 0. As

such, the Hessian of f is a diagonal matrix such that each entry on the ith row, ith column is
∂2fi
∂x2

i

. Note, each fi is a Morse function and as such, the Hessian of each component function

is non-singular and is simply the second derivative of each function fi with respect to xi.

Therefore, the Hessian of f is non-singular and f is a Morse function.

Now, let (x1, . . . , xn) ∈ X1 × · · ·Xn. As shown above, since each fi is a Morse function,

f is also Morse. Hence, (x1, . . . , xn) is a critical point of f if and only if ∇f(x1, . . . , xn) = 0.

But, the gradient of f is 0 if and only if the gradient of each fi is 0. Therefore, each coordinate

xi is a critical point of fi if and only if (x1, . . . , xn) is a critical point of f .

Finally let (x1, x2, . . . , xn) be a critical point of f and consider the index of that point,

denoted by µf (x1, x2, . . . , xn). The index of a critical point is the number of negative eigen-

values of the Hessian matrix evaluated at the critical point. Since the Hessian is diagonal,

the eigenvalues are simply the numbers in the diagonal. Additionally, the Hessian is non-

degenerate so each value on the diagonal is either positive or negative. Thus, the index of

this critical point is given by the number of entries with negative values. For each fi, if
∂2(fi)

x2

i

(xi) is negative, µfi(xi) = 1. Similarly, if ∂2(fi)

x2

i

(xi) is positive, µfi(xi) = 0. Therefore,

µf (x1, x2, . . . , xn) =
n
∑

i=1

µfi(xi).

Additive energy functions over a product space of circles are a natural way to view larger

energy landscapes of molecules that are determined by bond angles. If we fix one variable, the

function over the remaining variables looks like the energy landscape of a smaller molecule.

Now, if we have information about the homology of the smaller energy landscapes, we want

to use that information to uncover information about the homology of the larger molecule.
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The Künneth formula is the main result we need to calculate the sublevelset persistence of

the branched alkanes based on the sublevelset persistence of smaller molecules. The algebraic

version of this formula generalizes the universal coefficient theorem for homology (see [10]

for an in-depth look at its formulation). In this case, we are concerned with the topological

version.

Theorem 2.5.2 (Topological Künneth formula [10]). If X and Y are CW complexes and R

is a principal ideal domain, then there are natural short exact sequences

0 →
⊕

i

(Hi(X;R)⊗R Hn−i(Y ;R)) → Hn(X × Y ;R)

→
⊕

i

TorR(Hi(X;R), Hn−i−1(Y ;R)) → 0

and these sequences split.

Now, let X and Y be filtered spaces. Recall, a filtration of spaces is a nested sequence of

spaces X0 ⊂ . . . ⊂ Xn such that X0 is the empty space and Xn is the full space. The tensor

product of filtered spaces is defined in [9] to be

X ⊗f Y :=

{

⋃

i+j=k

Xi × Yj

}

k∈N

,

where the subscript f denotes “filtered”. In particular, the k-th level of the filtration is given

by (X ⊗f Y )k = ∪i+j=kXi × Yj.

Note, the additive function structure is modeled well by the tensor product of filtered

spaces. In other words, the sublevelset persistence of additive functions is just the tensor

product of the filtered spaces. Thus if f1 : X → R and f2 : Y → R are real-valued functions

and f : X × Y → R is the corresponding additive function over a product space defined

by f(x1, x2) = f1(x1) + f2(x2), then we have f(x1, x2) ≤ k precisely when f1(x1) ≤ i and

f2(x2) ≤ j for i+ j ≤ k.
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Gakhar and Perea’s variation of the Künneth formula allows us to say something about

the persistent homology of the product of filtered spaces X⊗f Y . The persistent homology of

X ⊗f Y is given by barcodes, denoted by bcdn(X ⊗f Y ). An interval [b, d) ∈ bcdn(X ⊗f Y )

gives the n-dimensional homological birth and death time of some feature. In the paper

by Gakhar and Perea [9], they formulate a version of the Künneth formula for persistent

homology. This is the formulation we will use throughout the paper.

Theorem 2.5.3 (Persistent Künneth Formula [9]). There is a natural short exact sequence

of graded modules

0 →
⊕

i+j=n

(PHi(X)⊗ PHj(Y )) → PHn(X ⊗f Y )

→
⊕

i+j=n

Tor(PHi(X), PHj−1(Y )) → 0.

If Hi(X) and Hj(Y ) are point-wise finite, then

bcdn(X ⊗f Y )

=
⊔

i+j=n

{(ℓJ + I) ∩ (ℓI + J) | I ∈ bcdi(X), J ∈ bcdj(Y )}

⊔
⊔

i+j=n

{(rJ + I) ∩ (rI + J) | I ∈ bcdi(X), J ∈ bcdj−1(Y )}

=
⊔

i+j=n

{[ℓI + ℓJ ,min(ℓJ + rI , ℓI + rJ)) | I ∈ bcdi(X), J ∈ bcdj(Y )}

⊔
⊔

i+j=n

{[max(ℓI + rJ , ℓJ + rI), rI + rJ) | I ∈ bcdi(X), J ∈ bcdj−1(Y )} .

Here ℓ and r are the left and right endpoints of the interval.

This formula allows us to calculate the persistent homology of X⊗Y using the persistent

homology of X and Y . Hence, we can extend this to understand the persistent homology of

additive functions over a product space based on the persistent homology of each component.

We can obtain n-dimensional barcodes two different ways. The first is through standard

combinations, bars with birth and death times given by [ℓI+ℓJ ,min(ℓJ+rI , ℓI+rJ)) obtained
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by combining i-dimensional bars from X with j-dimensional bars from Y . The second

type of n-dimensional bars are called torsion bars with birth and death times given by

[max(ℓI+rJ , ℓJ +rI), rI+rJ) obtained by combining i-dimensional bars from X with (j−1)-

dimensional bars from Y . The torsion portion originates from the idea that two lower

dimensional features can combine in such a way to create a higher dimension feature.

As an example, consider Figure 2.5. The nine 0-dimensional bars (shown in red) are

created by combining a 0-dimensional bar from 1-2-2-1 with another 0-dimensional bar from

1-2-2-1. These are examples of standard bars from the Künneth formula. For examples of the

torsion portion, consider the four 1-dimensional bars (shown in blue) born earliest. Those

1-dimensional bars at energy height (E) are created upon the death of the four components

shown at height (D). For a more precise look at this process, see Section 3.2. In Chapter

3 we use this formula to calculate the persistent homology of large branched alkanes using

the persistent homology of smaller molecules. This allows us to compute the sublevelset

persistent homology of any branched alkane.

Now that we have an understanding of some chemistry, Morse theory, sublevelset per-

sistence, and the Künneth formula, in the next chapter we discuss how to characterize the

energy landscape of branched alkanes. These tools will allow us to determine the sublevelset

persistence for any branched alkane.
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Figure 2.5: [Left] Sublevelsets of the pentane energy landscape, drawn in green, given by
f−1(−∞, r] := {x ∈ (S1)2 | f(x) ≤ r}. [Right Top] The energy landscape for pentane. [Right
Bottom] The persistence barcodes corresponding to the energy landscape above. Figure from
Mirth et al. [2]
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Chapter 3

Analytical description of branched alkanes
We would like to deconstruct the energy landscape of any branched alkane into a sum

of the energy landscapes of smaller components. As described in Section 2.1, this paper

will focus specifically on the Optimized Potentials for Liquid Simulations United Atom or

OPLS-UA model of energy landscapes. In this chapter, we will look at a way to approximate

the shape of energy landscape of larger branched alkanes.

3.1 Energy landscapes of building block bonds
The energy of any molecule depends on the dihedral angles of the internal bonds. Recall

from Section 2.1 that if a molecule is rotated around an internal bond, x-y, the positioning of

the adjacent carbons determine whether the energy is higher or lower. Thus, dihedral angles

are constructed by paths of four adjacent carbons; we denote each dihedral angle by w-x-y-z

where each variable w, x, y, z is the degree of the carbon, and x-y is the internal bond. For

examples of different dihedral angles, see Figure 3.1. We denote the carbons labeled with

degrees w and z as the adjacent carbons. The energy function associated to dihedral angle

w-x-y-z, is Vw-x-y-z : S
1 → R, which depends on the degrees of the four carbon atoms in the

path. Thus, each internal bond i has an energy function, gi : S1 → R, which is a sum of

all dihedral angles containing the internal bond x-y in the middle of the path, with angular

offsets. Then, the OPLS-UA energy landscape of the molecule is given by f : (S1)n → R,

where n is the number of internal bonds, and where f is given by f(x1, . . . , xn) =
n
∑

i=1

gi(xi).

We will see an example of f : (S1)2 → R below.

In order to fully characterize each internal bond, we would need the energy function of

each dihedral type w-x-y-z where w, z ∈ {1, 2, 3, 4} and x, y ∈ {2, 3, 4}. After accounting

for symmetry, this gives 78 different dihedral types. Finding each dihedral type is compu-

tationally intensive and as such, we will start by using a subset of the dihedral types to
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approximate the energy landscapes of larger molecules. To simplify matters, we will assume

that the dihedral type does not depend on the degrees of the outer carbons. We will used

the term “idealized” to reference this assumption. The approximation will replace dihedral

types w-x-y-z with the dihedral types 1-x-y-1. For example, the energy landscape for 1-2-2-1

is very similar to the energy landscape of 2-2-2-2.

Note, this is not an ideal approximation; as the degrees of carbons w and z increase,

the energy function of 1-x-y-1 is a worse approximation of w-x-y-z. But, this will serve as

a starting point for approximating the energy landscapes of branched alkanes. One could

remove this assumption and proceed through the same process we outline below. Therefore,

we only consider molecules whose dihedral angles are all of type 1-x-y-1. There are 6 alkanes

that consist only of these dihedral types, see Figure 3.1. For each path of length four, we

give the energy landscape as a sum of functions V1-x-y-1 : S1 → R where V1-x-y-1 is the energy

function for the dihedral angle,

V1-x-y-1(φ) =
5
∑

i=0

ci
(

1 + (−1)i+1 cos(i(φ− θ))
)

,

and θ is the angle between the leaf carbons and the angle bisector (see Figure 3.4). Here,

each ci is a constant that depends on the internal bond x− y.

For example, the molecule isopentane (the upper, center molecule in Figure 3.1) has two

paths of length four, both of dihedral type 1-3-2-1. As such we can write its energy function

as

f1-3-2-1(φ) =V1-3-2-1(φ− 56◦) + V1-3-2-1(φ+ 56◦)

=[c0 + c11(1 + cos(φ− 56◦)) + c12(1− cos(2(φ− 56◦))) + c3(1 + cos(3(φ− 56◦)))]

+[c0 + c11(1 + cos(φ+ 56◦)) + c12(1− cos(2(φ+ 56◦))) + c3(1 + cos(3(φ+ 56◦)))]
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1-2-2-1: butane 1-3-2-1: isopentane 1-3-3-1: 2,3-dimethylbutane

1

2 2

1

1

1

3 2

1 1

1

3 3

1

1
1-4-2-1: 2,2-dimethylbutane 1-4-3-1: triptane 1-4-4-1: tetramethylbutane

1

24

1

1

1

1

1

34

1

1

1

1

1

144

1

1

1

Figure 3.1: Each of these six molecules has an OPLS-UA energy landscape that is a real-valued
function f1-x-y-1 : S1 → R, where the circle S1 encodes the dihedral angle of a particular type of
bond.

with c0 = −0.4992, c11 = 0.8525, c12 = −0.2224, and c3 = 0.8774, all in kcal/mol [14]. The

56◦ is the angle bisector between the two carbons, which roughly comes from the tetrahedral

structure of the carbon atom.

Just as butane’s energy landscape was used as the single building block for the energy

landscapes of the n-alkanes, these six molecules will serve as the building blocks of the

branched alkanes. As such, we will refer to these six molecules as the building block bonds.

For each of the six building block bonds, we plot the energy landscapes f1-x-y-1 on the circle

in Figure 3.2. Each energy function is generated by code written by Sadhu, which can be

found at [21].

The solid colored lines represent the total OPLS-UA energy landscape f1-x-y-1 for the

molecule. The thinner patterned lines represent the component functions V1-x-y-1 that make

up the energy landscape. All of the energy landscapes share some characteristics. Each has

exactly three minimums and three maximums for a total of six critical points. There are

also some additional similarities between a few of the different landscapes. Note, the plot

of the 1-2-2-1 molecule looks very similar to that of of the 1-3-3-1 molecule, as each has one

global minimum, 2 local minima, 2 local maxima, and 1 global maximum. By contrast, the
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1-2-2-1 1-3-2-1 1-3-3-1

1-4-2-1 1-4-3-1 1-4-4-1

Figure 3.2: Energy landscapes f1-x-y-1 for dihedral types 1-x-y-1 where the x-axis is the bond
angle and the y-axis is the energy value.

1-4-2-1, 1-4-3-1, and the 1-4-4-1 all have 3 global minima and 3 global maxima. This is due

in part to the tetrahedral structure of carbon bonds and the rotational symmetry of carbon.

Next, we compute the sublevelset persistence barcodes of the six building block bond

energy landscapes f1-x-y-1. We use the GUDHI software package [22]; our code, found here

[21], is based off of the code from [2] which can be found at [23].

We discretize each copy of the circle S1 to be a circular ring with 63 vertices and 63

edges, chosen since 63 is approximately 10 · 2π. Then, we compute the sublevelset persistent

homology of the OPLS-UA energy function f1-x-y-1 on those vertices and edges. This gives us

the barcodes for the sublevelset persistent homology. We can use this same process for the

higher dimensional molecules, which we study in later chapters. The similarities between the

shapes of the energy landscapes mentioned above can also be seen in the persistence barcodes.

The barcodes for 1-2-2-1 and 1-3-3-1 look similar combinatorially, and the barcodes for 1-4-

2-1, 1-4-3-1, and 1-4-4-1 do as well. Using the six building block bonds as the components of

larger molecules, we can combine their energy landscapes to construct the energy landscape

of any branched alkane.
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Figure 3.3: Persistent homology bars for dihedral types 1-x-y-1.

3.2 Two examples of branched alkanes
We study two different examples that outline the construction of higher degree energy

landscapes from the components of the smaller energy landscapes. First, we will look at 2-

methylpentane, the molecule acquired by combining a 3-2 internal bond with a 2-2 internal

bond. Second, we will look at 2,2-dimethylpentane, the molecule acquired by combining

internal bonds 4-2 and 2-2. Once we study both examples, we compare the sublevelset

persistence of the two molecules.

3.2.1 2-methylpentane

1

1

32

2

1 θ

Figure 3.4: A picture of 2-methylpentane, the molecule consisting of building block bonds 1-2-2-3
and 1-3-2-2, whose energy functions we will approximate with the energy functions for 1-2-2-1 and
1-3-2-1, respectively. The colored, thicker bonds correspond to the different dihedral angles. The
dotted lines are the angle bisectors between the two leaf carbons, and θ denotes the angle between
the bisector and the leaf carbons.
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As a first example, consider the molecule 2-methylpentane shown in Figure 3.4. Just

like the energy landscape for hexane is a combination of the energy landscapes of pentane

and butane, 2-methylpentane can be viewed as a combination of two internal bonds, where

one bond has one 1-2-2-3 dihedral type and the other internal bond consists of two 1-3-2-2

dihedral types. We can see this combination in the energy landscape of 2-methylpentane in

Figure 3.5. If we take a slice normal to the φ2 axis, we capture the curve given by butane

in Figures 3.1 and 3.2. Similarly, if we take a slice normal to the φ1 axis, we capture the

isopentane energy landscape given in Figures 3.1 and 3.2. Note, to fully characterize the 3-2

(orange) bond in Figure 3.4, we need two dihedral angles of type 1-3-2-2. It is important

to recall from the beginning of this chapter that the energy function for a dihedral angle

does not just depend on the degree of the carbons on each side; instead it also depends

on the carbons that are one edge away. But as mentioned earlier, we will use 1-x-y-1 to

approximate w-x-y-z. Hence, we will use the energy function for 1-3-2-1 to approximate the

energy function for dihedral type 1-3-2-2, and similarly we will use 1-2-2-1 for dihedral type

1-2-2-3.

Using our approximation, the idealized energy function for 2-methylpentane,

f : (S1)2 → R, is the sum of the energy functions of building block bonds 1-2-2-1 and 1-3-2-1.

f(φ1, φ2) =V1-2-2-1(φ1) + [V1-3-2-1(φ2 + θ) + V1-3-2-1(φ2 − θ)]

=c0 + c11(1 + cos(φ1)) + c12(1− cos(2(φ1))) + c3(1 + cos(3(φ1)))

+
[

c′0 + c′1(1 + cos(φ2 − 56◦)) + c′2(1− cos(2(φ2 − 56◦)))

+ c′3(1 + cos(3(φ2 − 56◦))) + c′0 + c′1(1 + cos(φ2 + 56◦))

+ c′2(1− cos(2(φ2 + 56◦))) + c′3(1 + cos(3(φ2 + 56◦)))
]

where Vx-y-z-w is the energy function for the dihedral angle,

Vx-y-z-w(φ) =
5
∑

i=0

ci(1 + (−1)i+1 cos(i(φ− θ)),
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and θ is the angle between the leaf carbons and the angle bisector. For 1-2-2-1 the coefficients

are c0 = 0, c11 = 0.7059, c12 = −0.1355, and c3 = 1.5735, and for 1-3-2-1 they are c′0 =

−0.4992, c′1 = 0.8525, c′2 = −0.2224, and c′3 = 0.8774. The energy landscape is given

in Figure 3.5 along with sublevelsets at nine different energy values, which correspond to

values right after the birth of certain homological features.

Figure 3.5: [Left] Sublevelsets of the 2-methylpentane energy landscape. [Right Top] The 2-
methylpentane energy landscape and [Right Bottom] its persistence barcodes.

Now we introduce some notation. Each building block bond f1-x-y-1 is a function on the

circle with six critical points. We will write any critical point as pij, where we replace p with

a if it is a global minimum, b if it is a local minimum, c if it is a local maximum, or d if it is a

global maximum. This accounts for all types of critical points for the building block bonds.

Let i denote the component function of the critical point and let j denote the label of critical

point in that component function. Thus, let i = 1 correspond to 2-2, i = 2 to 3-2, i = 3 to

3-3, i = 4 to 4-2, i = 5 to 4-3, and i = 6 to 4-4. Each j depends on the associated component

function and whether p = a, b, c, or d. For example, for internal bond of type 4-3, (namely

i = 6), we have critical points a6j with j = 1, 2, 3 since there are 3 global minima, d6j with
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j = 1, 2, 3 since there are 3 global maxima, no critical points of form b6j as there are no local

minima, and no critical points of form c6j, as there are no local maxima.

Now that we have an approximation of the energy landscape for 2-methylpentane and a

naming convention for critical points, we can examine the sublevelset persistent barcode for

this molecule. One bond has a single dihedral angle of type 1-2-2-3, which we simplify to

1-2-2-1. The other bond has two dihedral angles of type 1-3-2-2, both of which we simplify

to 1-2-2-1. Let a11, b11, b12, c11, c12, and d11 be the critical points of the energy landscape for

1-2-2-1 and let a21, a22, b21, c21, d21, and d22 be the critical points of the energy landscape

for 1-3-2-1.

Since each energy function is a Morse function, the critical points of that function corre-

spond to birth and death times of bars (Lemma 2.4.1), such as in Figure 2.4 in Section 2.4.

Thus, we can identify the length, birth, and death time of each bar. This characterization

gives the table of values in Table ?? and the right-bottom barcode in Figure 3.5.
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Table 3.1: 2-methylpentane Morse complex computation. By “death r” in the effect column, we
mean that the critical point p kills a persistent homology bar that was born at energy r. The
notation f(p) denotes the energy value at critical point p.

p = index ∂p f(p) effect
(a11, a21) 0 0 α1 + α2 birth
(a11, a22) 0 0 α1 + α2 birth
(b11, a21) 0 0 β1 + α2 birth
(b12, a21) 0 0 β1 + α2 birth
(b11, a22) 0 0 β1 + α2 birth
(b12, a22) 0 0 β1 + α2 birth
(a11, b21) 0 0 α1 + β2 birth
(b11, b21) 0 0 β1 + β2 birth
(b12, b21) 0 0 β1 + β2 birth
(a11, c21) 1 (a11, a21) + (a11, a22) α1 + γ2 death α1 + α2

(c11, a21) 1 (a11, a21) + (b11, a21) γ1 + α2 death β1 + α2

(c12, a21) 1 (a11, a21) + (b12, a21) γ1 + α2 death β1 + α2

(c11, a22) 1 (a11, a22) + (b11, a22) γ1 + α2 death β1 + β2

(c12, a22) 1 (a11, a22) + (b12, a22) γ1 + α2 death β1 + β2

(b11, c21) 1 (b11, a21) + (b11, a22) β1 + γ2 birth
(b12, c21) 1 (b12, a21) + (b12, a22) β1 + γ2 birth
(a11, d21) 1 (a11, a21) + (a11, b21) α1 + δ2 death α1 + β2

(a11, d22) 1 (a11, a22) + (a11, b21) α1 + δ2 birth
(c11, b21) 1 (b12, b11) + (a11, b11) γ1 + β2 death β1 + β2

(c12, b21) 1 (b12, b12) + (a11, b12) γ1 + β2 death β1 + β2

(d11, a21) 1 (b11, a21) + (b12, a21) β1 + δ2 birth
(d11, a22) 1 (b11, a22) + (b12, a22) β1 + δ2 birth
(d11, a21) 1 (b11, a21) + (b12, a21) β1 + δ2 birth
(d11, a22) 1 (b11, a22) + (b12, a22) β1 + δ2 birth
(b11, d21) 1 (b11, b21) + (b11, a21) β1 + δ2 birth
(b12, d21) 1 (b12, b21) + (b12, a21) β1 + δ2 birth
(d11, b21) 1 (b11, b21) + (b12, b21) δ1 + β2 birth
(c11, c21) 2 (a11, c21) + (b11, c21) + (c11, a21) + (c11, a22) γ1 + γ2 death β1 + γ2
(c12, c21) 2 (a11, c21) + (b12, c21) + (c12, a21) + (c12, a22) γ1 + γ2 death β1 + γ2
(d11, c21) 2 (b11, c21) + (b12, c21) + (d11, a21) + (d11, a22) δ1 + γ2 death δ1 + α2

(c11, d22) 2 (a11, d22) + (b11, d22) + (c11, a22) + (c11, b21) γ1 + δ2 death β1 + δ2
(c12, d22) 2 (a11, d22) + (b12, d22) + (c12, a22) + (c12, b21) γ1 + δ2 death β1 + δ2
(c11, d21) 2 (a11, d21) + (b11, d21) + (c11, a21) + (c11, b21) γ1 + δ2 death β1 + δ2
(c12, d21) 2 (a11, d21) + (b12, d21) + (c12, a21) + (c12, b21) γ1 + δ2 death β1 + δ2
(d11, d21) 2 (b11, d21) + (b12, d21) + (d11, a21) + (d11, b21) δ1 + δ2 death δ1 + β2

(d11, d22) 2 (b11, d22) + (b12, d22) + (d11, a22) + (d11, b21) δ1 + δ2 birth
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3.2.2 2,2-dimethylpentane

1

1

42

2

1 1θ

Figure 3.6: A picture of 2,2-dimethylpentane, the molecule consisting of building block bonds
1-2-2-4 and 1-4-2-2 which we will approximate with 1-2-2-1 and 1-4-2-1 respectively.

As a different example, consider 2,2-dimethylpentane, the molecule with internal bonds

4-2 and 2-2. The 4-2 internal bond has three dihedral angles of type 1-4-2-2, each of which

we simplify to 1-4-2-1. The 2-2 internal bond has a single dihedral angle of type 1-2-2-4,

which we simplify to 1-2-2-1.

2,2-dimethylpentane

Figure 3.7: The energy landscape for 2,2-dimethylpentane where the x and y axis denote the
bond angle for each internal bond and the z axis denotes the corresponding energy value.

The energy landscape of 2,2-dimethylpentane can be found in Figure 3.7. Instead of

calculating each birth and death time by hand, we use our code [21] to produce the bottom

plot in Figure 3.8. We can also summarize the persistent homology information by looking

at how the bars of the building block bonds combine to form the bars for the larger molecule:

see the bar labels in Figure 3.8. Each of the bars in the component barcodes are labeled

with a letter and number to denote which barcode they originate from and the bar from that
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barcode. In the sublevelset persistence barcode for 2,2-dimethylpentane, each bar is labeled

with the two component bars that created it in Theorem 2.5.3, the persistent Künneth

formula. The bars that come from torsion are labeled with “TOR”. For example, the semi-

infinite 0-dimensional bar in the 2,2-dimethylpentane barcode (I1+K1) is created by the

0-dimensional semi-infinite bars from 1-2-2-1 (I1) and 1-4-2-1 (K1).

2,2-dimethylpentane

Figure 3.8: Labeled persistence barcodes for 1-2-2-1, 1-4-2-1, and how they combine to form the
persistence barcode for 1-2-2-1/1-4-2-1.

Although the birth and death times of each bar vary in the barcodes for 2-methylpentane

and 2,2-dimethylpentane, we can see that both of these molecules with two building block

bonds have the same number of bars in every dimension. Further, they have the same
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number of semi-infinite bars. This is not unique to the two molecules we chose, instead, it is

a byproduct of the fact that there are 6 critical points for all six building block bond energy

functions on the circle: 3 minimums and 3 maximums for each building block bond. In the

next chapter, this type of analysis allows us to determine the exact number of bars, both

finite and semi-infinite, for any branched alkane energy landscape. We will also be able to

determine the number of bars of each dimension and of each length in a barcode.
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Chapter 4

Characterizing the sublevelset persistence of

branched alkanes
Now that we have looked at a few examples, we can start to characterize the sublevelset

persistence of the branched alkanes. The first results will count the total number of semi-

infinite bars and finite bars. Next, we will count the number of bars in each homological

dimension. Finally, we will count the number of bars of each length.

4.1 The number of finite and semi-infinite bars
We begin by counting the number of semi-infinite bars. Even though this is a straight-

forward result, we include it for completeness. See also Mirth et al. [2] for the case of

non-branched alkanes.

Lemma 4.1.1. The energy landscape for any branched alkane with n internal bonds,

f : (S1)n → R, has
(

n

k

)

semi-infinite bars in dimension k.

Proof. The domain of our function is (S1)n. This corresponds to the n-dimensional torus

which has k-dimensional homology of rank
(

n

k

)

. The semi-infinite bars in a filtration of a

space X simply recover the homology of X, and here we have X = (S1)n. Therefore, the

energy landscape also has
(

n

k

)

semi-infinite bars of dimension k.

Counting the total number of finite and semi-infinite bars depends on the shape of the

energy functions and the number of critical points obtained by each energy function. As

noted in Chapter 3, for our simplified case each base dihedral type has exactly 6 critical

points: 3 minimums and 3 maximums. As a generalization that can be used for more

complex cases, we generalize our results to work for any Morse function with pi critical

points.
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Theorem 4.1.2. The energy function of any branched alkane, f : (S1)n → R is given by

f(φ1, . . . , φn) = g1(φ1) + . . . + gn(φn) with each gi : S
1 → R having pi critical points. Thus,

we have that the total number of bars in the sublevelset persistent homology of f is

total # of bars = (2n) semi-infinite bars +









n
∏

i=1

pi − 2n

2









finite bars.

Proof. Since f is a function on (S1)n, for each 0 ≤ k ≤ n, we have
(

n

k

)

semi-infinite bars in

dimension k (Lemma 4.1.1). Thus, we have
n
∑

k=0

(

n

k

)

= 2n semi-infinite bars.

Each dihedral-type function, gi is a Morse function. By Lemma 2.5.1, the sum g1(x1) +

. . . + gn(xn) over a product space of Morse functions is also a Morse function. Hence f is

Morse and as such, the birth and death times of the bars correspond directly to the critical

points of f . Since 2n of those points correspond to the birth times of the semi-infinite bars,

we have
n
∑

i=1

pi−2n critical points remaining to be the birth and death times of the finite bars.

Next, since these bars are finite, we have that our remaining critical points must be split

equally between birth times and death times. It is important to note that the number of

critical points of a Morse function on the circle will always be even: for every minimum that

is introduced, a maximum is created. Formally, the circle is a 1-dimensional manifold and

as such, the only possible critical point indices are 0 and 1. Further, the Euler characteristic

for the circle is 0 and can be defined as

∑

k

(−1)kCk = χ(S1),

where Ck is the number of critical points of index k. Thus the number of 0-dimensional

critical points must be the same as the number of 1-dimensional critical points (see also the

Morse inequalities, which can be found on page 74 of [20]). Thus the value
n
∑

i=1

pi−2n is even,

which gives us 1
2

n
∑

i=1

pi − 2n finite bars. Therefore we have
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2n +

n
∏

i=1

pi − 2n

2

bars in the sublevelset persistence barcode for the energy function of any branched alkane.

This theorem holds when each gi corresponds to the energy function of some internal

bond of type w-x-y-z. We can also use the above theorem for the idealized case where

w = z = 1. Since every energy function V1-x-y-1 has 6 critical points, the total number of

bars for branched alkanes is exactly that of the n-alkane case, which has 6n+2n

2
bars.

4.2 The number of bars in dimension k

Now that we have looked at the total number of bars, we count the number of bars in

each dimension. We look at the idealized case with each w-x-y-z approximated by 1-x-y-1.

Theorem 4.2.1. The sublevelset persistent homology on any analytical branched alkane

with n internal bonds with potential energy landscape f : (S1)n 7→ R has
(

n

k

)

+ (3n − 1)
(

n−1
k

)

persistent homology bars in dimension k.

This theorem is nearly identical to Theorem 2 in [2]. But instead of induction on k, we

use induction on n to prove our result. We consider induction on n to reinforce the view that

energy landscapes are nested functions. We build up large molecules via induction by adding

one bond at a time, which is a perspective that chemists are interested in. For example, in

2-methylpentane, the molecule consisting of dihedral types 1-3-2-1 and 1-2-2-1, the energy

landscapes of both types can be found by slicing the energy landscape of 2-methylpentane

parallel to the axes of the domain.

Proof. We proceed by induction on n, the number of bonds.

Base case: n = 1
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For any building block bond we have that the number of 0-dimensional bars is 3 =
(

1
0

)

+ (31 − 1)
(

1−1
0

)

and the number of 1-dimensional bars is 1 =
(

1
1

)

+ (31 − 1)
(

1−1
1

)

.

Inductive step: Assume true for n bonds

Now, suppose that for n bonds, the number of k-dimensional bars is given by
(

n

k

)

+(3n−

1)
(

n−1
k

)

. Hence, we must show that for n+1 bonds, the number of bars is
(

n+1
k

)

+(3n+1−1)
(

n

k

)

.

Consider a molecule with n bonds to which we attach one new bond. Recall that the second

part of the persistent Künneth formula outlines the possible ways to obtain k-dimensional

bars from two component barcodes. In particular, we have

∑

i+j=k

|[ℓI + ℓJ ,min(ℓJ + rI , ℓI + rJ)) | I ∈ bcdi(X), J ∈ bcdj(Y )|

+
∑

i+j=k

|[max(ℓI + rJ , ℓJ + rI), rI + rJ) | I ∈ bcdi(X), J ∈ bcdj−1(Y )|

ways to obtain bars of dimension k. Note, the sublevelset persistent homology of a function

on the circle (the single bond) can only have bars in dimensions 0 and 1, which restricts

the number of ways to obtain k-dimensional bars. Hence, we can obtain k-dimensional bars

by combining 0-dimensional bars with k-dimensional bars, 1-dimensional bars with (k − 1)-

dimensional bars, or (k − 1)-dimensional bars with 0-dimensional bars via torsion.

There are
(

n

k

)

+ (3n − 1)
(

n−1
k

)

ways to get a dimension k bar by combining each k-

dimensional bar from f with a 0-dimensional bar. Since each building block bond has three

0-dimensional bars, we have 3 times that amount. Next, there are
(

n

k−1

)

+(3n−1)
(

n−1
k−1

)

ways to

obtain a k-dimensional bar by combining the 1-dimensional semi-infinite bar of any building

block bond with the (k−1)-dimensional bars given by the map (S1)n → R. Finally, to account

for the torsion bars, we want to combine the finite length (k− 1)-dimensional bars given by

the map (S1)n → R with the 0-dimensional finite length bars from any building block bond,

of which there are 2. Thus, there are 2
(

(

n

k−1

)

+ (3n − 1)
(

n−1
k

)

−
(

n

k−1

)

)

= 2
(

(3n − 1)
(

n−1
k

)

)

k-dimensional bars created by the torsion part of the Künneth product.

Hence, the number of k dimensional bars for the map (S1)n+1 → R is
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3

[

(

n

k

)

+(3n − 1)

(

n− 1

k

)

]

+

[

(

n

k − 1

)

+ (3n − 1)

(

n− 1

k − 1

)

]

+ 2

[

(3n − 1)

(

n− 1

k − 1

)

]

= 3

(

n

k

)

+ 3(3n − 1)

(

n− 1

k

)

+

(

n

k − 1

)

+ 3(3n − 1)

(

n− 1

k − 1

)

= 3

(

n

k

)

+ 3n+1

(

n− 1

k

)

− 3

(

n− 1

k

)

+

(

n

k − 1

)

+ 3n+1

(

n− 1

k − 1

)

− 3

(

n− 1

k − 1

)

= 3

(

n

k

)

+

(

n

k − 1

)

+ 3n+1

[

(

n− 1

k

)

+

(

n− 1

k − 1

)

]

− 3

[

(

n− 1

k

)

+

(

n− 1

k − 1

)

]

= 3

(

n

k

)

+

(

n

k − 1

)

+ 3n+1

(

n

k

)

− 3

(

n

k

)

= 3

(

n

k

)

+

(

n

k − 1

)

+ (3n+1 − 1)

(

n

k

)

− 2

(

n

k

)

=

(

n

k

)

+

(

n

k − 1

)

+ (3n+1 − 1)

(

n

k

)

=

(

n+ 1

k

)

+ (3n+1 − 1)

(

n

k

)

.

We are done by induction on n. Therefore, the branched alkane energy landscape f : (S1)n →

R has
(

n

k

)

+ (3n − 1)
(

n−1
k

)

persistent homology bars in dimensional k.

In the Theorem 4.1.2, we were able to generalize our results for any branched alkane

energy function. Here, the generalization of this theorem to the case where w and z are

not simplified to 1 depends specifically on the number of critical points for each internal

bond and the persistent Künneth formula, and as such, we omit it from this work. For the

remainder of this thesis, we will focus specifically on the idealized case with w = z = 1.

As an example, consider the four barcodes in Figure 4.1. Even though each landscape

consists of two different bonds, all four energy landscapes have ten 0-dimensional bars, nine

1-dimensional bars, and one 2-dimensional bar, as determined by Theorem 4.2.1.
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1-2-2-1/1-3-2-1 1-2-2-1/1-4-2-1

1-3-2-1/1-3-3-1 1-4-3-1/1-4-4-1

Figure 4.1: The energy landscapes for four different branched alkanes with two internal bonds.
As shown in Theorem 4.2.1, each barcode has nine 0-dimensional bars, ten 1-dimensional bars, and
one 2-dimensional bar.

4.3 The number of bars of each length
We can also count the number of bars for each possible bar length. The following theorems

are based on the persistent Künneth formula, given in Theorem 2.5.3. First, we introduce the

case where we have three possible bar lengths over two different component functions. Later,

we will generalize the results for n component functions and any number of bar lengths.

Let X1 and X2 be two energy landscapes such that their persistence barcodes, bcdn(X1)

and bcdn(X2), have two different finite bar lengths t, u ∈ R such that t > u along with semi-

infinite bars of length ∞. We count the number of bars of each length in bcdn(X1 ⊗f X2),

the persistence barcode for the product space X1 ×X2.
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Theorem 4.3.1. Suppose X1 and X2 are two energy landscapes such that their persistence

barcodes, bcd(X1) and bcd(X2), are as follows:

• bcd(X1) has i1 infinite bars, t1 finite bars of length t, u1 finite bars of length u.

• bcd(X2) has i2 infinite bars, t2 finite bars of length t, u2 finite bars of length u.

Then bcd(X1 ⊗f X2) has:

• i1i2 infinite bars,

• t1i2 + i1t2 + 2t1t2 finite bars of length t, and

• 2u1u2 + u1i2 + i1u2 + 2u1t2 + 2t1u2 finite bars of length u.

Proof. First, the only way to acquire semi-infinite bars in the persistent Künneth formula,

Theorem 2.5.3, is from the non-torsion portion by combining semi-infinite bars. Hence, we

have i1i2 possible combinations and hence, i1i2 semi-infinite bars.

Next, consider bars of length t. We have two ways to obtain bars of length t, either

through standard (non-torsion) combinations or through torsion. For the standard combi-

nations, note that Theorem 2.5.3 implies that since t > u, the only way to obtain a bar

of length t is by combining two bars of length t or by combining a bar of length t with a

semi-infinite bar. Thus, we get t1t2+ t1i2+ t2i1 possible bars of length t. To obtain a torsion

bar of length t, we must combine two bars of length t. Hence, there are t1t2 possibilities and

thus there are t1i2 + i1t2 + 2t1t2 bars of length t.

Finally, consider bars of length u. We can obtain non-torsion bars of length u by combin-

ing a bar of length u with a bar of any other length. Thus, we have u1u2+u1i2+ i1u2+u1t2+

t1u2 standard bars of length u. For the torsion bars, we can obtain a length u torsion bar

by combining a u length bar with either a t or u length bar. Thus, we get u1t2 + t2u1 + u1u2

torsion bars of length u. So in total, we have 2u1u2 + u1i2 + i1u2 + 2u1t2 + 2t1u2 bars of

length u.
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Now we want to generalize the results of Theorem 4.3.1. Before we attempt to count an

arbitrary number of bar lengths for an arbitrary number of terms in the product, we first

define a function, countn(r, s).

Let {bcd(Xq)}
n
q=1 be a set of barcodes with bar lengths {ℓr}

m
r=0, i.e. any bar in any

barcode bcd(Xq) has length ℓr for some 0 ≤ r ≤ m. By convention, we let ℓ0 = ∞, and

all other lengths are ordered greatest to least (i.e. ℓr > ℓr+1). Let xq,r be the number of

bars in bcd(Xq) with length ℓr. This forms a matrix Xlengths = {xr,q}
q∈{1,n}
r∈{0,m}. For integers

0 ≤ s, r ≤ m, define

countn(r, s) :=
r
∑

i1=s

. . .

r
∑

in=s

(xi1,1) · . . . · (xin,n)

to be the nonnegative integer that is the sum of n-fold products. Further, if s > r, define

countn(r, s) = 0.

Theorem 4.3.2. Let X1, . . . , Xn be a set of energy landscapes. Let {bcd(Xq)}
n
q=1 be the

corresponding set of barcodes with bar lengths {ℓr}
m
r=0, where ℓ0 = ∞ and all other lengths

are ordered greatest to least (i.e. ℓr > ℓr+1). Let xq,r be the number of bars in bcd(Xq) with

length ℓr. Then, the number of bars of length ℓr in bcd(X1)⊗f · · · ⊗f bcd(Xq) is

countn(r, 0)− countn(r − 1, 0) + countn(r, 1)− countn(r − 1, 1).

Proof. Recall that the persistent Künneth formula (Theorem 2.5.3) outlines the birth and

death times of the barcodes for the product space via the barcodes of the component spaces.

We look at two different cases; the semi-infinite case and the finite case.

For the semi-infinite case, the only way to obtain semi-infinite bars is from the non-torsion

contribution by combining bars that are all semi-infinite. Thus, to construct a semi-infinite

bar in bcd(X1)⊗f · · · ⊗f bcd(Xn) we take a semi-infinite bar from each bcd(Xq). This gives
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(

x0,1

1

)(

x0,2

1

)

· · ·

(

x0,n

1

)

= x0,1x0,2 · · · x0,n

=
0
∑

i1=0

· · ·
0
∑

in=0

(xi0,1) · · · (xin,n)

= countn(0, 0)

= countn(0, 0)− countn(−1, 0) + countn(0, 1)− countn(−1, 1)

semi-infinite bars.

Now, consider the finite bar case where 1 ≤ r ≤ m. For a bar to have length ℓr, two

conditions must be satisfied. First, at least one component bar must come from the rth row

i.e., xiq ,q = xr,q for some q, i.e., iq = r for some q. Second, all component bar lengths must

be greater than or equal to ℓr. In other words, for any q we require iq ≤ r. Via the persistent

Künneth formula, we have two types of finite bars; standard bars and torsion bars. To obtain

a standard bar of length ℓr, we simply combine any n bars that satisfy the conditions above.

Torsion bars can only be created by combining n finite bars with no infinite bars, and hence,

we account for these separately.

To count the standard bars, consider all combinations of the form (xi1,1)(xi2,2) · · · (xin,n)

where iq ≤ r for all q where we choose one bar from each bcd(Xq) and where at least one

bar has length ℓr. This is the number of ways to combine n bars of length at least ℓr minus

the number of ways to combine n bars of length strictly greater than ℓr. Hence,

countn(r, 0)− countn(r − 1, 0)

is the number of standard bars of length r.

To count the torsion bars, we perform the same counting process as above, except we

only allow bars with finite length. This is the number of ways to combine n bars of length at

least ℓr but less than ℓ0 = ∞ minus the number of ways to combine n bars of length strictly

greater than ℓr but less than ℓ0 = ∞. Hence we have
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countn(r, 1)− countn(r − 1, 1)

torsion bars of length ℓr.

Therefore, combining the standard and torsion bars, we have

countn(r, 0)− countn(r − 1, 0) + countn(r, 1)− countn(r − 1, 1)

total bars of length ℓr.

As an example of the theorem above, we can describe the number of bars of each length

for all of the molecules above. Specifically, we can look at the sublevelset persistent homology

of the energy landscape of the molecule 1-2-2-1/1-3-2-1. There are four different bar lengths:

semi-infinite, δ2 − β2, γ2 − α2, and γ1 − β1, where δ2 − β2 > γ2 − α2 > γ1 − β1. We use the

theorem to determine that there are 4 semi-infinite bars, 2 bars of length δ2 − β2, 2 bars of

length γ2 − α2, and 12 bars of length γ1 − β1; see Figure 4.1.

These three theorems (Theorem 4.1.2, Theorem 4.2, and Theorem 4.3.2) provide infor-

mation about the sublevelset persistence without having to visualize the energy landscape.

They also provide results that apply to several different types of energy landscapes and

other types of additive functions over product spaces. Next, we will study the sublevelset

persistence of branched alkanes that consist only of 3-2 internal bonds.
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Chapter 5

An example of sublevelset persistence

characterization
Our overarching goal is to characterize any branched alkane by classifying the length and

birth time of each bar. As a starting point, we first look at combining n internal bonds of

type 3-2. Let f1-3-2-1 : S
1 → R be the energy function for isopentane, the function we will

use to approximate all 3-2 bonds. Denote f : (S1)n → R as the energy landscape for the

molecule with n copies of 3-2 bonds where f(φ1, . . . , φn) = f1-3-2-1(φ1)+ . . .+f1-3-2-1(φn). Let

k denote the index of a critical point in f . Recall, we label the global minima of isopentane

as a1 and a2, the local minimum with b, the local maximum with c and the global maxima

with d1 and d2. For reference, see Figure 5.1. Given a critical point (φ1, . . . , φn) of f , let

i1 denote the number of copies of d1, let i2 denote the number of copies of d2, and hence

k − i1 − i2 is the number of copies of c. Similarly, let j1 denote the number of copies of a1,

let j2 denote the number of copies of a2, and so n− k − j1 − j2 is the number of copies of b.

This implies that k ≤ n, i1 + i2 ≤ k, and j1 + j2 ≤ n− k.

Figure 5.1: The OPLS-UA energy landscape for isopentane and its corresponding sublevelset
persistence barcode. Note, this figure is the same as that in Figure 2.4, but we include it here for
ease of reference.
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To mirror the main theorem from Mirth et al. [2] which characterizes the persistence

for any n-alkane (a chain of carbons with type 2-2 internal bonds), we perform the same

classification process for the 3-2 internal bonds. Unlike 2-2 internal bonds, 3-2 internal bonds

have two different finite bar lengths, γ − α and δ− β, where γ − α < δ− β. Further, energy

level α corresponds to the birth of a semi-infinite bar and the birth of a finite bar, while

energy level δ corresponds to the birth of a 1-dimensional, semi-infinite bar and the death of

a 0-dimensional bar. For the 2-2 case, all persistent homology bars born at the same birth

value had the same homological dimension and length. Energy level α corresponded to the

birth of a semi-infinite bar, energy level β corresponded to the birth of two finite bars of

the same length. Similarly, energy level γ corresponded to the death of two finite bars of

the same length and energy level δ corresponded to the birth of a semi-infinite bar. These

factors make characterizing the sublevelset persistence of any number of 3-2 internal bonds

a good starting point, as the 3-2 internal bond is the most combinatorially complex energy

landscape of the internal bond types we consider.

An example of the sublevelset persistence barcode and the sublevelset persistence diagram

of the molecule with three internal 3-2 bonds can be found in Figure 5.2. The sublevelset

persistence diagram is just a different representation of the barcode. The birth time is given

by the x-axis and the death time is given by the y-axis. The diagram is a more concise way

of sharing the same data and is often used for functions with more homological features.

While we can use GUDHI to calculate the sublevelset persistence of branched alkanes for up

to nine internal bonds, any larger molecules take a long time (on the order of days). Hence,

we look for a different way to calculate the sublevelset persistence of branched alkanes.

To fully characterize the sublevelset persistence of n copies of 3-2 internal bonds, first

we will count the number of bars of each length. Then, we will classify all critical points of

the energy landscape of the molecule. Next, we partition the classes based on the type of

bar born from each class. Finally, for n copies of 3-2 internal bonds, we determine the total

number of bars born for any class of critical points i.e., for any given birth energy value and
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Figure 5.2: The sublevelset persistence barcode and sublevelset persistence diagram for the energy
landscape of a molecule with exactly three copies of 3-2 internal bonds.

the length of those bars. Note, the results from Chapter 4 provide information about the

number of bars in each dimension and of each length. But that is not enough information to

fully describe the sublevelset persistence. The birth time and length of each bar will provide

the missing information needed to construct the persistence barcode and allow us to fully

characterize the sublevelset persistence.

5.1 Number of bars per length for internal bond 3-2
Based on the results from Chapter 4, we know that each branched alkane has 6n+2n

2
bars

and
(

n

k

)

+ (3n − 1)
(

n−1
k

)

bars in dimension k. We can also count the number of bars in all

homological dimensions of length δ − β, bars of length γ − α, and semi-infinite bars, the

three different length bars for a molecule consisting exclusively of type 3-2 internal bonds.

Then, we show the complete characterization of the sublevelset persistence of n copies of

3-2 bonds. Later, we will use our characterization process to generalize the characterization

process for any branched alkane.

Theorem 5.1.1. For n internal bonds of type 1-3-2-1, we have 2n−1(2n − 1) bars of length

δ − β and 2n−1(3n − 2n) bars of length γ − α.

Proof. Consider n copies of X1, where X1 is the persistence diagram of the internal bond

3-2. We calculate the number of bars of length u := γ − α and t := δ − β. Recall from
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Theorem 4.3.1, let i1 be the number of semi-infinite bars in bcd(X1), let t1 be the number of

bars of length t in bcd(X1), and let u1 be the number of bars of length u in bcd(X1). Note

that for internal bond 3-2, we have i1 = 2, t1 = 1, and u1 = 1. Using the formulas outlined

in Theorem 4.3.1, we get

in = i1in−1 = 2in−1 = 2n

infinite bars. As for counting the finite bars, first count the number of bars of length t:

tn = t1in−1 + i1tn−1 + t1tn−1 + t1tn−1

= 1(2n−1) + 4(tn−1).

Since this is a recursion relation, consider the hypothesized closed form, tn = 2n−1(2n − 1).

We show that this is indeed the correct closed form and satisfies the recursion relation tn =

1(2n−1)+4(tn−1). We plug in the closed form to the recursion formula, using tn = 2n−1(2n−1)

and tn−1 = 2(n−1)−1(2n−1 − 1), to get Hence,

2n−1 + 4(tn−1) = 2n−1 + 4(2(n−1)−1(2n−1 − 1))

= 2n−1 + 22(2n−2(2n−1 − 1))

= 2n−1 + 2n(2n−1 − 1)

= 2n−1 + 22n−1 − 2n

= 2n−1(1 + 2n − 2)

= 2n−1(2n − 1)

= tn

as desired, which shows the closed form is indeed the correct solution.

To find un, the number of finite bars of length u, subtract the number of bars of length

t (tn) from the total number of finite bars. Hence,
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un =
6n − 2n

2
− 2n−1(2n − 1)

=
3n2n − 2n − 2n(2n − 1)

2

= 2n−13n − 1− 1(2n − 1)

= 2n−13n − 1− 2n + 1

= 2n−1(3n − 2n)

gives the number of bars of length u. Therefore, for n internal bonds of type 1-3-2-1 we have

2n−1(2n − 1) bars of length t = δ − β and 2n−1(3n − 2n) of length u = γ − α.

Knowing how many different features that persist for varying amounts of energy levels

gives more insight to the shape of the energy landscape. This alone is not enough to fully

understand the structure; we also must identify the birth time and the length of each bar to

fully characterize the sublevelset persistent homology. This will provide more information

about the shape of the energy landscape, and it will allow us to determine the sublevelset

persistence of larger molecules without taking large amounts of computation time.

5.2 Characterizing bar births and lengths for internal

bond type 3-2
To completely characterize the sublevelset persistence barcodes for molecules consisting

only of internal bonds of type 3-2, we first need to split the critical points of a given energy

landscape into classes that correspond to either the birth or death of a homological feature.

Classifying critical points for molecules with multiple copies of the 3-2 bond requires some

perturbation of the critical points of the 3-2 internal bond energy landscape. As we discussed

above, internal 3-2 bonds have different homological feature births and deaths that occur

simultaneously. At energy value α we have the birth of a semi-infinite bar and the birth

of a finite bar, and at energy value δ we have both a birth of a semi-infinite bar and the
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death of a bar born at β (see Figure 5.1). To simplify our critical point classification, we

introduce ε > 0 as an arbitrarily small perturbation of the energy values of critical points

a2 and d2 from the energy landscape of 1-3-2-1, to bump them slightly higher than a1 and

d1, respectively. This means that the birth of the semi-infinite 0-dimensional bar is slightly

before the birth of the finite 0-dimensional bar, now born at α′ := α + ε. Additionally, the

death of the bar born at energy value β happens slightly before the birth of the 1-dimensional

semi-infinite bar, now born at δ′ := δ + ε.

Note, when constructing our persistence barcode, we want our energy values to be in

terms of α and δ as opposed to α′ and δ′. To ensure each class corresponds to the proper

energy value, we take the limit as ε → 0 and combine the births and deaths accordingly

after we have characterized each class. This gives all energy values in terms of α and δ.

Recall, the internal 3-2 bond has six critical points; see Figure 5.1. Let ε > 0 be an

arbitrarily small perturbation to the energy values of a2 and d2 such that their corresponding

energy values are now α′ := α+ε and δ′ := δ+ε. Thus, critical point a1 corresponds to global

minima with energy value α, critical point a2 corresponds to a modified local minimum with

energy value α′, and critical point b corresponds to the local minimum with energy value

β. Similarly, critical point c corresponds to a local maximum with energy value γ, critical

point d corresponds to a modified local maximum with energy value δ, and critical point d2

is the global maximum with energy value δ′. We define the class of critical points of f with

these labelings in mind, where we will denote each critical point class using the notation

class(n, k, i1, i2, j1, j2).

Definition 5.2.1. Let f : (S1)n → R be the branched alkane energy function with n internal

3-2 bonds, and let k ≤ n be the index of a critical point of f . Let i1+ i2 ≤ k and let j1+j2 ≤

n− k. We say that an index k critical point, (φ1, . . . , φn), of f is of class(n, k, i1, i2, j1, j2) if

the list of points, (φ1, . . . , φn), consists of the breakdown of critical points of the 3-2 bond,

outlined below.
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Type 1-3-2-1

Critical Point Feature Type Number of copies

d1 Local Max⋄ i1

d2 Global Max i2

c Local Max k − i1 − i2

a1 Global Min j1

a2 Local Min⋄ j2

b Local Min n− k − j1 − j2

Note, the ⋄ denotes that the critical point from the 3-2 internal bond has been shifted by ε,

and hence, has switched from global to local.

The definition above is similar to the class definition found in Mirth et al. [2], as both split

up the critical points of f by their homological features. Similarly we will use this definition

to identify the energy value associated to each class and count the number of critical points

of f in each class. Now consider the following lemmas.

Lemma 5.2.2. For f : (S1)n → R where f(φ1, . . . , φn) =
n
∑

i=1

f1-3-2-1(φi), all critical points of

class(n, k, i1, i2, j1, j2) have energy value

E(n, k, i1, i2, j1, j2) = (j1)α + (j2)α
′ + (n− k − j1 − j2)β + (k − i1 − i2)γ + (i1)δ + (i2)δ

′.

Proof. The proof follows from the fact that f(φ1, . . . , φn) =
n
∑

k=1

f1-3-2-1(φk) and f1-3-2-1(a1) =

α, f1-3-2-1(a2) = α′, f1-3-2-1(b) = β, f1-3-2-1(c) = γ, f1-3-2-1(d1) = δ, and f1-3-2-1(d2) = δ′.

We can also determine the number of critical points of f in each class. Recall that the

multinomial coefficient is a tool used to count how x objects can be distributed into n boxes.

Definition 5.2.3. Let x ∈ N
+ and let y1, y2, . . . , yn ∈ N

+ such that
n
∑

ℓ=1

yℓ = x. Thus we

define the multinomial coefficient as
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(

x

y1, y2, . . . , yn

)

: =

(

x!

y1!y2! . . . yn!

)

.

Using this definition, we can count the number of critical points of f in each class.

Lemma 5.2.4. The number of critical points of f in each class(n, k, i1, i2, j1, j2) is

(

n

j1, j2, n− k − j1 − j2, i1, i2, k − i1 − i2

)

.

Proof. Among its n entries (φ1, . . . , φn), a critical point of class(n, k, i1, i2, j1, j2) has i1 copies

of d1, i2 copies of d2, k− i1− i2 copies of c, j1 copies of a1, j2 copies of a2, and n−k− j1− j2

copies of b. Hence the lemma follows from the definition of the multinomial coefficient, given

in Definition 5.2.3.

We are now ready to completely characterize the persistence barcode of a molecule con-

taining n copies of 3-2 bonds. First, we partition our classes by grouping them via homo-

logical feature. Then, we use that partition to fully characterize the sublevelset persistence.

Lemma 5.2.5. For any branched alkane consisting of n internal bonds of type 3-2, consider

the branched alkane energy landscape, f : (S1)n → R. Let k ≤ n, i1 + i2 ≤ k, and j1 + j2 ≤

n − k. The following restrictions on j2, j1, i1 and i2 partition the classes into four groups

by homological feature type;

1. j2 = 0, j1 = n − k, i1 = 0, i2 = k, corresponds to the classes that birth semi-infinite

bars,

2. j2 = 0, j1 > n−k, i1+ i2 = k corresponds to the classes that birth bars of length δ−β,

3. j2 6= 0 corresponds to the classes that birth bars of length γ − α, and

4. all other classes correspond to deaths.

Proof. We show that the restrictions on i1, i2, j1, and j2 pair each class with the appropriate

bar length.
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Since the energy landscape, f , is Morse, we know the critical points of f correspond

directly to the births and deaths of the persistence bars (Theorem 2.4.1). Hence, we can

characterize the bars such that for any n copies of a 3-2 bond, the division of critical point

classes of f defined above, (i.e., with the restrictions on j2, j1, i1, and i2) is indeed the proper

division of classes. The persistent Künneth formula (Theorem 2.5.3) dictates the birth and

death times of each new bar in the product space based off of the birth and death times of

the bars coming from each component.

First, consider semi-infinite length bars (Case 1). Note, semi-infinite bars are only born

through standard combinations as opposed to torsion combinations. Hence, we only examine

the non-torsion portion of the Künneth formula. If i1, j2 = 0, then this class contains no

critical points (φ1, . . . , φn) of f that have any coefficient φ1, . . . , φn equal to d1 or to a2.

Critical points d1 and a2 of internal bond 3-2 correspond to finite bars, and hence would

make the bar finite. Similarly, the additional conditions j1 = n − k and i2 = k imply that

n− k − j1 − j2 = 0 and k − i1 − i2 = 0 and hence there are also no critical points of type b

or type c. The number of 1-dimensional semi-infinite bars is given by the i2 critical points

of type d2 and the number of semi-infinite 0-dimensional bars is given by j1 critical points

of type a1. Since the only way to get semi-infinite bars is by combining semi-infinite bars,

these classes of critical points of f such that i1 = 0, i2 = k, j1 = n − k, j2 = 0, give the

semi-infinite bars of dimension k.

Next, consider bars of length δ − β (Case 2). Since δ − β > γ − α, the only way to

obtain bars of length δ−β via standard combination is by combining one bar of length δ−β

with either a semi-infinite bar or another bar of length δ − β, as outlined in Theorem 4.3.1.

Additionally, the only way to obtain bars via torsion of length δ − β is by combining a bar

of length δ − β with another bar of length δ − β. Hence, the classes that give bars of length

δ − β must not contain critical points of internal bond 3-2 that correspond to the birth or

death of bars of length γ − α. The conditions j2 = 0 and i1 + i2 = k imply that there are

no copies of a2 or c, the critical points of internal bond 3-2 corresponding to the birth and
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death of bars of length γ − α. Finally, we rule out classes that correspond to the birth of

semi-infinite bars. To ensure we are not including classes that give semi-infinite bars, we

rule out the cases where n − k = j1. Without that restriction, we can overlap with the

semi-infinite class with conditions i1 = 0, i2 = k, j1 = n− k, j2 = 0. Hence, the restrictions

i1 + i2 = k, j2 = 0, n− k < j1 give all critical points of f needed to construct bars of length

δ − β.

Now consider bars of length γ−α (Case 3). To ensure the bar has the proper length, we

must guarantee that there is at least one copy of critical point a2 from the energy landscape of

internal bond type 3-2. Hence, we require j2 > 0. This restriction implies we are combining

the shortest bar with any number of other bars, and by the persistent Künneth formula

(Theorem 2.5.3) the resulting bar must take on the shortest length. Thus j2 > 0 is the only

requirement we need to get all classes of critical points of f that correspond to bars with

length γ − α.

Finally, note that all other classes correspond to deaths since we have already accounted

for all births (Case 4). Thus, we have accounted for all critical points.

Now that we have identified the energy value that corresponds to each class and parti-

tioned the critical point classes of f appropriately, we can fully characterize the sublevelset

persistence for molecules consisting exclusively of internal bonds of type 3-2.

Theorem 5.2.6. For any branched alkane consisting of n internal bonds of type 3-2, consider

the k-dimensional sublevelset persistent homology barcodes of the branched alkane energy

landscape, f : (S1)n → R. Let k ≤ n, i1 + i2 ≤ k, and j1 + j2 ≤ n− k. The birth time of all

k-dimensional bars created by critical points of f in class(n, k, i1, i2, j1, j2) is

E(n, k, i1, i2, j1, j2) = (j1)α + (j2)α
′ + (n− k − j1 − j2)β + (k − i1 − i2)γ + (i1)δ + (i2)δ

′,

where the number of bars in that class is given below by:

1. j2 = 0, j1 = n− k, i1 = 0, i2 = k, gives
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(

n

j1, j2, n− k − j1 − j2, i1, i2, k − i1 − i2

)

semi-infinite bars,

2. j2 = 0, j1 > n− k, i1 + i2 = k gives

i1
∑

ℓ=0

(−1)ℓ
(

n

j1, j2, n− k − j1 − j2 + ℓ, i1 − ℓ, i2, k − i1 − i2

)

bars of length δ − β,

3. j2 > 0 gives

k−i1−i2
∑

ℓ=0

(−1)ℓ
(

n

j1, j2 + ℓ, n− k − j1 − j2, i1, i2, k − i1 − i2 − ℓ

)

bars of length γ − α, and

4. 0 bars born for any other type of critical point of f .

Proof. We proceed by induction on k to determine the number of k-dimensional bars born

at the corresponding energy value. First, group all class(n, k, i1, i2, j1, j2) via the partition

given by Lemma 5.2.5. Now we count the number of bars born in each group.

Base Case: k = 0

Let k = 0; this implies i1, i2 = 0. Hence, we consider classes of type class(n, 0, 0, 0, j1, j2),

where j1 + j2 ≤ n. Note, since all critical points of f in each of these classes have index 0,

each 0-dimensional critical point gives birth to a 0-dimensional bar. Thus, the total number

of 0-dimensional bars born from each class is the number of critical points of f in each class,

equal to

|class(n, 0, 0, 0, j1, j2)| =
(

n

j1, j2, n− j1 − j2

)

.

There are three different options for j1 and j2. If j2 = 0 and j1 = n, then there is
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(

n

n, 0, 0

)

= 1

0-dimensional bar born in class(n, 0, 0, 0, n, 0). This verifies we get a single, semi-infinite bar

of dimension 0, as we should since the torus has one 0-dimensional semi-infinite bar.

Next, if j2 = 0 and j1 < n, then the persistence barcode has

(

n

j1, 0, n− j1

)

=

(

n

j1

)

bars of length δ − β for each class(n, k, i1, i2, j1, j2).

Finally, if j2 > 0, then the persistence barcode has

(

n

j1, j2, n− j1 − j2

)

bars of length γ − α for each class(n, k, i1, i2, j1, j2).

Summing these three types together gives

(

n

n, 0, 0

)

+
n−1
∑

j1=0

(

n

j1, 0, n− j1

)

+
n
∑

j1=0

n−j1
∑

j2=1

(

n

j1, j2, n− j1 − j2

)

=
n
∑

j1=0

n−j1
∑

j2=0

(

n

j1, j2, n− j1 − j2

)

,

0-dimensional bars which uses all 0-dimensional critical points of f .

Inductive step: Assume true for k − 1

For the inductive step, suppose our formulas hold for k − 1. We have

|class(n, k, i1, i2, j1, j2)| =
(

n

j1, j2, n− k − j1 − j2, i1, i2, k − i1 − i2

)

critical points of f in each class(n, k, i1, i2, j1, j2). Of these points, some of them must kill

bars of length δ− β or length γ−α. For the bars of length δ− β, this corresponds to killing

off
i1−1
∑

ℓ=0

(−1)ℓ
(

n

j1, j2, n− k − j1 − j2 + ℓ, i1 − 1− ℓ, i2, k − i1 − i2

)
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(k − 1)-dimensional bars. Note, this is due to the fact that if a critical point of f kills a

bar of length δ − β, that corresponds to killing off a bar from class(n, k− 1, i1 − 1, i2, j1, j2).

Similarly for bars of length γ − α, this corresponds to killing off

k−i1−i2−1
∑

ℓ=0

(−1)ℓ
(

n

j1, j2 + ℓ, n− k − j1 − j2, i1, i2, k − i1 − i2 − 1− ℓ

)

bars. This corresponds to critical points of some class(n, k, i1, i2, j1, j2) killing off critical

points of class(n, k−1, i1, i2, j1, j2+1). All remaining critical points of class(n, k, i1, i2, j1, j2)

must give birth to new persistent homology bars. Hence there are

|class(n, k, i1, i2, j1, j2)| −
i1−1
∑

ℓ=0

(−1)ℓ
(

n

j1, j2, n− k − j1 − j2 + ℓ, i1 − 1− ℓ, i2, k − i1 − i2

)

=

i1
∑

ℓ=0

(−1)ℓ
(

n

j1, j2, n− k − j1 − j2 + ℓ, i1 − ℓ, i2, k − i1 − i2

)

bars of length δ − β born from each class(n, k, i1, i2, j1, j2) such that j2 = 0, j1 > n − k,

i1 + i2 = k and

|class(n, k, i1, i2, j1, j2)| −
k−i1−i2−1
∑

ℓ=0

(−1)ℓ
(

n

j1, j2 + ℓ, n− k − j1 − j2, i1, i2, k − i1 − i2 − 1− ℓ

)

=

k−i1−i2
∑

ℓ=0

(−1)ℓ
(

n

j1, j2 + ℓ, n− k − j1 − j2, i1, i2, k − i1 − i2 − ℓ

)

bars of length γ − α born from each class(n, k, i1, i2, j1, j2) such that j2 > 0.

This characterization describes the sublevelset persistence for any molecule consisting of

n internal bonds of type 3-2. This is still a small subset of the branched alkanes; we want to

expand our characterization to include more molecules. Next, we will look at characterizing

all molecules consisting of 3-2 and 2-2 internal bonds and use that as a way to explore the

process for (more generally) analyzing the sublevelset persistent homology of any additive

function over a product space.
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Chapter 6

Generalizing the characterization of the

sublevelset persistence of branched alkanes
Now that we have characterized the sublevelset persistence for one type of branched

alkane, we outline the process for characterizing the sublevelset persistence for any branched

alkane. As an introductory example, we will work through the characterization of the

branched alkanes consisting exclusively of 2-2 and 3-2 internal bonds. This will allow us

to describe how to extend the sublevelset persistence characterization to any number of

bond types with an additive function structure.

6.1 Characterizing bar births and lengths for internal

bond types 3-2 and 2-2
We now turn our attention to adapting our results from Section 5.2 to molecules with

internal bonds exclusively of types 3-2 and 2-2. As before, first we partition our critical

points into classes. We have two building block internal bonds, 2-2 and 3-2, where each base

energy landscape has six critical points. This implies we have twelve numbers that determine

each class of critical points of f . Hence, we expand our definition of class given in Chapter 5.

For an example of a molecule with type 3-2 and 2-2 internal bonds, see Figure 6.1.

Definition 6.1.1. Let f : (S1)n → R be the branched alkane energy function such that

f(φ1, . . . , φn) =
∑n1

i=1 f2−2(φi) +
∑n

i=n1+1 f3−2(φi) with n = n1 + n2 internal bonds; n1

internal 2-2 bonds and n2 internal 3-2 bonds. Recall from Lemma 2.5.1, (φ1, . . . , φn) is a

critical point of f if and only if φi is a critical point of fi for every i. Thus, denote k1 as the

number of critical points among φ1, . . . , φn1
with index 1, implying that n1−k1 is the number

of critical points among φ1, . . . , φn1
that have index 0. Similarly, denote k2 as the number of
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Figure 6.1: (Left) Sublevelsets of the 2-methylpentane energy landscape, the molecule with in-
ternal bonds of types 3-2 and 2-2. (Right top) The 2-methylpentane energy landscape and (Right
bottom) its persistence barcodes. Note, this figure can also be found in Section 3.2.

critical points among φn1+1, . . . , φn with index 1, and hence n2 − k2 is the number of critical

points among φn1+1, . . . , φn with index 0. Thus k = k1 + k2 ≤ n = n1 + n2 is the index of a

critical point of f . Let i11 + i21 + i22 ≤ k1 + k2 and let j11 + j21 + j22 ≤ (n1 + n2)− (k1 + k2).

We say that an index k critical point (φ11, . . . , φ1n1
, φ21, . . . , φ2n2

) of f is of class

class













n1 k1 i11 0 j11 0

n2 k2 i21 i22 j21 j22













if the ordered list of points, (φ11, . . . , φ2n2
), consists of the following number of critical points.

56



Type 1-2-2-1 Type 1-3-2-1

Crit. Point Feature # of Copies Crit. Point Feature # of Copies

d11 Global Max i11 d21 Local Max⋄ i21

d22 Global Max i22

c11 & c12 Local Max k − i11 c21 Local Max k2 − i21 − i22

a11 Global Min j11 a21 Global Min j21

a2 Local Min⋄ j22

b11 & b12 Local Min n1 − k1 − j11 b Local Min n2 − k2 − j21 − j22

Note, the ⋄ on Local Max and Local Min denotes that the critical point has been shifted

by ε, and hence, has switched from global to local.

Figure 6.2: The labeled sublevelset persistence barcodes for 1-2-2-1 and 1-3-2-1. Note, b11 and
b12 correspond to the birth of persistence bars of the same length whereas a21 and a22 correspond
to the birth of different length bars. Similarly, the critical points c11 and c12 correspond to the
death of persistence bars of the same length whereas d21 and d22 correspond to a death and a birth
respectively.

For this molecule, we have no need for i11 versus i12 or for j11 versus j12, since there is no

need to separate b11 from b12 or c11 from c12. Points b11 and b12 correspond to the births of

γ1−β1 bars and c11 and c12 correspond to the deaths of γ1−β1, see Figure 6.2. Alternatively,

points a21 and a22 correspond to the birth of a semi-infinite bar and a finite bar, which are
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two different homological things. Thus, we simplify our classification process by combining

i11 and i12 as i11 and combining j11 and j12 as j11.

Just like in Chapter 5, we can determine the associated energy value of each class.

Lemma 6.1.2. For f : (S1)n → R where f(φ1, . . . , φn) =
n
∑

i=1

f1-2-2-1(φi) +
n1+n2
∑

i=n1+1

f1-3-2-1(φi),

all critical points of class













n1 k1 i11 0 j11 0

n2 k2 i21 i22 j21 j22












have energy value

E

(

class













n1 k1 i11 0 j11 0

n2 k2 i21 i22 j21 j22













)

=

(j11)α1 + (n11 − k11 − j11)β1 + (k1 − i11)γ1 + (i11)δ1

+ (j21)α2 + (j22)α
′
2 + (n2 − k2 − j21 − j22)β2 + (k2 − i21 − i22)γ2 + (i21)δ2 + (i22)δ

′
2.

Proof. The proof follows from the fact that f(φ1, . . . , φn) =
n
∑

i=1

f1-2-2-1(φi)+
n1+n2
∑

i=n1+1

f1-3-2-1(φi)

and f1-2-2-1(a11) = α1, f1-2-2-1(b12) = β1, f1-2-2-1(b12) = β1, f1-2-2-1(c11) = γ1, f1-2-2-1(c12) = γ1,

and f1-2-2-1(d11) = δ1 along with f1-3-2-1(a21) = α2, f1-3-2-1(a22) = α′
2, f1-3-2-1(b21) = β2,

f1-3-2-1(c21) = γ2, f1-3-2-1(d21) = δ2, and f1-3-2-1(d22) = δ′2.

Now that we can partition our critical points of f into classes, we can assess how many

points are in each class.

Theorem 6.1.3. The size of a critical point class for any branched alkane energy landscape

consisting of internal bonds of types 1-2-2-1 and 1-3-2-1 is

∣

∣

∣

∣

∣

∣

∣

class













n1 k1 i11 0 j11 0

n2 k2 i21 i22 j21 j22













∣

∣

∣

∣

∣

∣

∣

=

2n1−i11−j11

(

n1

i11, k1 − i11, j11, n1 − k1 − j11

)(

n2

i21, i22, k2 − i21 − i22, j21, j22, n2 − k2 − j21 − j22

)

critical points of f in each class.
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Proof. Among its n entries (φ11, . . . , φ1n1
, φ21, . . . , φ2n2

), a critical point of

class













n1 k1 i11 0 j11 0

n2 k2 i21 i22 j21 j22












has i21 copies of d21, i22 copies of d22, k2−i21−i22 copies

of c21, j21 copies of a21, j22 copies of a22, and n2 − k2 − j21 − j22 copies of b21. Additionally,

it has i11 copies of d11, k1 − i11 copies of c11 or c12, j11 copies of a11, and n1 − k1 − j11 copies

of b11 or b12. Hence the lemma follows from the definition of the multinomial coefficient, see

Definition 5.2.3. The extra factor 2n1−i11−j11 comes from the 2k1−i11 choices for the k − i11

copies of c11 or c12 or the 2n1−k1−j11 choices for the n1 − k1 − j11 copies of b11 or b12.

With this partition of critical points of f , we can determine the birth time, number, and

length of bars born in each class. This will completely characterize the sublevelset persistence

of the OPLS-UA energy landscape of any molecule consisting of 2-2 and 3-2 internal bonds.

As before, we prove a lemma that partitions our classes by homological feature type. Then,

we provide the full characterization.

Lemma 6.1.4. For any branched alkane consisting of n1 internal bonds of type 2-2 and n2

internal bonds of type 3-2, consider the branched alkane energy landscape, f : (S1)n → R.

Let k = k1 + k2, k1 + k2 ≤ n1 + n2, i11 + i21 + i22 ≤ k1 + k2, i11 ≤ k1, i21 + i22 ≤ k2,

j11 + j21 + j22 ≤ n1 + n2 − k1 − k2, j21 + j22 ≤ n2 − k2, and j11 ≤ n1 − k1. The following

restrictions on j11, i11 j22, j21, i21 and i22 partition the classes into five groups by homological

feature type;

1. i11 + i22 = k1 + k2, i21 = 0, j22 = 0, (n1 + n2) − (k1 + k2) = j11 + j21 corresponds to the

classes that give birth to semi-infinite bars,

2. i11 + i22 = k1 + k2, j22 = 0, n1 − k1 − j11 = 0, and (n1 + n2) − (k1 + k2) > j11 + j21

corresponds to the classes that give birth to bars of length δ2 − β2,

3. j22 > 0, i11 + j11 > 0, and n1 − k1 − j11 = 0 corresponds to classes that give birth to bars

of length γ2 − α2, and

4. n1 − k1 − j11 > 0 corresponds to the classes that give birth to bars of length γ1 − β1, and
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5. all other classes correspond to deaths.

Proof. We show that the restrictions on i11, j11, i21 i22, j21, and j22 pair each class with

the appropriate bar length. Since f is Morse function, we know the critical points of f

correspond directly to the births and deaths of the persistence bars (Theorem 2.4.1). Hence,

we can characterize the bars such that for any n1 copies of a 2-2 bond and n2 copies of a 3-2

bond, the division of critical point classes of f defined above, (i.e., with the restrictions on

i11, j11, i21 i22, j21, and j22) is indeed the proper division of classes. The persistent Künneth

formula (Theorem 2.5.3) dictates the birth and death times for each new bar in the product

space based off of the birth and death times of the bars coming from each component.

First, consider the semi-infinite length bars (Case 1). Recall from the persistent Künneth

formula Theorem 2.5.3, the only way to obtain a semi-infinite bar is via standard combi-

nations, hence there is no need to account for torsion. Consider the conditions i21, j22 = 0,

i11 + i22 = k1 + k2, and (n1 + n2) − (k1 + k2) = j11 + j21. If i21, j22 = 0, then this class

contains no critical points (φ1, . . . , φn) of f that have any coefficient φ1, . . . , φn equal to d21

or a22. These critical points are associated with the finite bars originating from the 3-2

internal bond, and if included, would make the bar finite. The births of the 1-dimensional

semi-infinite bars are given by the i11 and i22 critical points of type d11 and d22 and the births

of the semi-infinite 0-dimensional bars are given by j11 and j21 critical points of type a11 and

a21. Hence, if i11 + i22 = k1 + k2, and (n1 +n2)− (k1 + k2) = j11 + j21, then n1 − k1 − j11 = 0

and n2 − k2 − j21 − j22 = 0. Thus, there are no points of type b11, c11, b21, or c21, the other

critical points from the internal bonds that correspond to births and deaths of finite bars.

Hence, these restrictions give us the semi-infinite bars of dimension k.

Next, consider bars of length δ2 − β2 (Case 2). Since δ2 − β2 > γ2 − α2 > γ1 − β1, the

only way to get bars of length δ2 − β2 through standard combination is by combining bars

of length δ2 − β2 with either semi-infinite bars or other bars of length δ2 − β2, as outlined in

Theorem 4.3.1. Additionally, the only way to obtain bars of length δ2 − β2 via torsion is by

combining bars of length δ2 − β2 with other bars of length δ2 − β2. Hence, our classes that
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give bars of length δ2−β2 must not contain critical points of internal bonds that correspond

to the birth or death of bars of lengths γ2−α2 or γ1−β1. Hence, j22 = 0 and n1−k1−j11 = 0

implies that there are no copies of a22 or b11, the critical points corresponding to the birth of

bars of length γ2−α2 and bars of length γ1−β1. The condition i11+i22 = k1+k2 implies that

we have k1−i11 = 0 copies of c11 and k2−i22−i21 = 0 copies of c21 (since all values are greater

than or equal to 0), which means that there are no critical points that correspond to the

death of bars of length γ2 −α2 or bars of length γ1 − β1. Finally, we have to rule out classes

that correspond to the birth of semi-infinite bars. To ensure we are not including classes that

give semi-infinite bars, we rule out classes where (n1 + n2)− (k1 + k2) = j11 + j21. Without

that restriction, we can overlap with the semi-infinite class that has conditions i21, j22 = 0,

i11 + i22 = k1 + k2, i11 + i22 = k1 + k2, and (n1 + n2) − (k1 + k2) = j11 + j21. Hence, the

restrictions i11+ i22 = k1+k2, j22 = 0, n1−k1− j11 = 0, and (n1+n2)− (k1+k2) > j11+ j21

give all critical points of f needed to construct all bars of length δ − β.

Now consider bars of length γ2 − α2 (Case 3). To ensure the bar has the proper length,

we must guarantee that there is at least one copy of critical point a22 from internal bond 2-2.

Hence, we require j22 > 0. Additionally, we require that there are no critical points of type

b11, the critical point that corresponds to the birth of the γ1−β1 bar (since γ2−α2 > γ1−β1).

Hence, we require n1 − k1 − j11 = 0 which gives the classes that correspond to the birth of

bars of length γ2 − α2.

For Case 4, consider classes that correspond to the birth of bars with length γ1 − β1.

Consider the restriction n1−k1−j11 > 0. This ensures that there is one critical point of type

b11, the critical point that gives the birth of a γ1 − β1 length bar. This restriction implies

we are combining the shortest bar with any number of other bars, and by the persistent

Künneth formula (Theorem 2.5.3) the resulting bar must take on the shortest length, in this

case, γ1 − β1. Thus this is the only requirement we need to get all classes of critical points

of f that correspond to the birth of bars with length γ1 − β1.
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Finally, note that all other classes correspond to deaths since we have already accounted

for all births (Case 5).

Now, we can fully characterize the sublevelset persistence of any branched alkane con-

sisting exclusively of internal bonds of types 3-2 and 2-2.

Theorem 6.1.5. For any branched alkane consisting of n1 internal bonds of type 2-2 and n2

internal bonds of type 3-2, consider the k-dimensional sublevelset persistent homology barcodes

of the branched alkane energy landscape, f : (S1)n → R. Let k = k1 + k2, k1 + k2 ≤ n1 + n2,

i11 + i21 + i22 ≤ k1 + k2, i11 ≤ k1, i21 + i22 ≤ k2, j11 + j21 + j22 ≤ n1 + n2 − k1 − k2,

j21+ j22 ≤ n2−k2, and j11 ≤ n1−k1. Hence, for any class













n1 k1 i11 0 j11 0

n2 k2 i21 i22 j21 j22












,

the birth time of any k-dimensional bars in that class is

E(n1,n2, k1, k2, i11, j11, i21, i22, j21, j22) =

(j11)α1 + (n11 − k11 − j11)β1 + (k1 − i11)γ1 + (i11)δ1

+ (j21)α2 + (j22)α
′
2 + (n2 − k2 − j21 − j22)β2 + (k2 − i21 − i22)γ2 + (i21)δ2 + (i22)δ

′
2,

where the number and length of bars born in that class is given below by:

1. i11 + i22 = k1 + k2, i21 = 0, j22 = 0, (n1 + n2)− (k1 + k2) = j11 + j21 gives

∣

∣

∣

∣

∣

∣

∣

class













n1 k1 i11 0 j11 0

n2 k2 i21 i22 j21 j22













∣

∣

∣

∣

∣

∣

∣

semi-infinite bars,

2. i11 + i22 = k1 + k2, j22 = 0, n1 − k1 − j11 = 0, and (n1 + n2)− (k1 + k2) > j11 + j21 gives
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i21
∑

ℓ′=0

(−1)ℓ

[

(

n1

i11, k1 − i11, j11, n1 − k1 − j11

)

(

n2

i21 − ℓ, i22, k2 − i21 − i22, j21, j22, n2 − k2 − j21 − j22 + ℓ

)

]

bars of length δ2 − β2,

3. j22 > 0, i11 + j11 > 0, and n1 − k1 − j11 = 0 gives

k2−i21−i22
∑

ℓ=0

(−1)ℓ

[

(

n1

i11, k1 − i11, j11, n1 − k1 − j11

)

(

n2

i21, i22, k2 − i21 − i22 − ℓ, j21, j22 + ℓ, n2 − k2 − j21 − j22

)

]

bars of length γ2 − α2, and

4. n1 − k1 − j11 > 0 gives

2n1−i11−j11

k1−i11
∑

ℓ=0

(−1)ℓ

[

(

n1

i11, k1 − i11 − ℓ, j11, n1 − k1 − j11 + ℓ

)

(

n2

i21, i22, k2 − i21 − i22, j21, j22, n2 − k2 − j21 − j22

)

]

bars of length γ1 − β1, and

5. 0 bars born for any other classes of critical points of f .

Proof. In Lemma 6.1.4, we have showed that the restrictions on j11, i11, j21, j22, i21, i22 form

a proper partition of classes that are grouped by their associated bar lengths. With this

partition, we proceed by induction on k to determine the number of k-dimensional bars born

at each energy value.

Base Case: k = 0

For the base case k = 0, this implies that k1, k2, i11, i21, i22 = 0. Hence, the classes we

consider are of type
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class













n1 0 0 0 j11 0

n2 0 0 0 j21 j22












,

where j11 + j21 + j22 ≤ n1 + n2. Note, since all critical points of f in each of these classes

have index 0, each 0-dimensional critical point of f gives birth to a 0-dimensional bar. Thus,

the total number of 0-dimensional bars born from each class is the number of critical points

of f in each class, equal to

n1!n2!

(j11)!(n1 − j11)!(j21)!(j22)!(n2 − j21 − j22)!
=

(

n1

j11

)(

n2

j21, j22, n2 − j21 − j22

)

.

We have four different options for j11, j21 and j22. If n1 + n2 = j11 + j21 and j22 = 0, this

implies j11 = n1 and j21 = n2. Then,

(

n1

n1

)(

n2

n2, 0, 0

)

= 1.

This verifies we get a single, semi-infinite bar of dimension 0.

Next, if j11 = n1, j21 < n2 and j22 = 0, then we get

(

n1

n1

)(

n2

j21, 0, n− j21

)

=

(

n2

j21

)

bars of length δ2 − β2.

Then, if j11 = n1 and j22 > 0, we get

(

n1

n1

)(

n2

j21, j22, n− j21 − j22

)

=

(

n2

j21, j22, n− j21 − j22

)

bars of length γ2 − α2.

Finally, if j11 < n1, then we get

(

n1

j11

)(

n2

j21, j22, n2 − j21 − j22

)
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bars of length γ1 − β1.

Summing these four types together gives

(

n1

n1

)(

n2

n2, 0, 0

)

+

n2−1
∑

j21=0

(

n1

n1

)(

n2

j21, 0, n2 − j21

)

+

n2
∑

j21=0

n2−j21
∑

j22=1

(

n1

n1

)(

n2

j21, j22, n− j21 − j22

)

+

n1−1
∑

j11=0

n2
∑

j21=0

n2−j21
∑

j22=0

(

n1

j11

)(

n2

j21, j22, n2 − j21 − j22

)

=

n1
∑

j11=0

n2
∑

j21=0

n2−j21
∑

j22=0

(

n1

j11

)(

n2

j21, j22, n2 − j21 − j22

)

,

0-dimensional bars which accounts for all 0-dimensional critical points of f .

Inductive step: Assume true for k − 1

For the inductive step, suppose our formulas hold for k − 1. We have

2n1−i11−j11

(

n1

i11, k1 − i11, j11, n1 − k1 − j11

)(

n2

i21, i22, k2 − i21 − i22, j21, j22, n2 − k2 − j21 − j22

)

critical points of f in each class. Of these points, some of them must kill (k−1)-dimensional

bars of lengths δ2 − β2, γ2 − α2, or γ1 − β1. For the bars of length δ2 − β2, this corresponds

to killing off

2n1−i11−j11

i21−1
∑

ℓ=0

(−1)ℓ

[

(

n1

i11, k1 − i11, j11, n1 − k1 − j11

)

(

n2

j21, j22, n2 − k2 − j21 − j22 + ℓ, i21 − 1− ℓ, i22, k2 − i21 − i22

)

]

(k− 1)-dimensional bars. Note, this is due to the fact that if a critical point of f kills a bar

of length δ2 − β2, that corresponds to killing off a bar from

class






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



n1 k1 i11 i12 j11 j12

n2 k2 − 1 i21 − 1 i22 j21 j22








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
.
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Similarly for bars of length γ2 − α2, this corresponds to killing off

2n1−i11−j11

k2−i21−i22−1
∑

ℓ=0

(−1)ℓ

[

(

n1

i11, k1 − i11, j11, n1 − k1 − j11

)

(

n2

j21, j22 + ℓ, n2 − k2 − j21 − j22, i21, i22, k2 − i21 − i22 − 1− ℓ

)

]

(k − 1)-dimensional bars. This corresponds to critical points of f of a given class killing off

critical points of

class
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
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
.

Finally, for bars of length γ1 − β1, this corresponds to killing off

2n1−i11−j11

k1−i11−1
∑

ℓ=0

(−1)ℓ

[

(

n1

i11, k1 − i11 − 1, j11, n1 − k1 − j11 + ℓ

)

(

n2

j21, j22, n2 − k2 − j21 − j22, i21, i22, k2 − i21 − i22

)

]

bars. This corresponds to critical points of f of some class(n, k, i1, i2, j1, j2) killing off critical

points of

class
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







n1 k1 − 1 i11 i12 j11 j12

n2 k2 i21 i22 j21 j22












.

Denote
∣

∣

∣

∣

∣

∣

class









n1 k1 i11 0 j11 0

n2 k2 i21 i22 j21 j22









∣

∣

∣

∣

∣

∣

as |Class|. Hence we have

|Class| − 2n1−i11−j11

i21−1
∑

ℓ=0

(−1)ℓ

[

(

n1

i11, k1 − i11, j11, n1 − k1 − j11

)

(

n2

j21, j22, n2 − k2 − j21 − j22 + ℓ, i21 − 1− ℓ, i22, k2 − i21 − i22

)

]

=

i21
∑

ℓ′=0

(−1)ℓ

[

(

n1!

i11, k1 − i11, j11, n1 − k1 − j11

)

(

n2!

i21 − ℓ, i22, k2 − i21 − i22, j21, j22, n2 − k2 − j21 − j22 + ℓ

)

]
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bars of length δ2 − β2 born from class













n1 k1 i11 0 j11 0

n2 k2 i21 i22 j21 j22












such that i11 + i22 =

k1+k2, j22 = 0, n1−k1−j11 = 0, and (n1+n2)−(k1+k2) > j11+j21. Note, k1−i11 = 0 since

there can be no critical points of type c11 in these classes. Additionally, n1 − k1 − j11 = 0

since there can be no critical points of type b11 in these classes, which together gives that

2n1−i11−j11 = 1.

Next, we have

|Class| − 2n1−i11−j11

(k2−i21−i22−1)
∑

ℓ=0

(−1)ℓ

[

(

n1

i11, k1 − i11, j11, n1 − k1 − j11

)

(

n2

j21, j22 + ℓ, n2 − k2 − j21 − j22, i21, i22, k2 − i21 − i22 − 1− ℓ

)

]

=

k2−i21−i22
∑

ℓ=0

(−1)ℓ

[

(

n1!

i11, k1 − i11, j11, n1 − k1 − j11

)

(

n2

i21, i22, k2 − i21 − i22 − ℓ, j21, j22 + ℓ, n2 − k2 − j21 − j22

)

]

bars of length γ2 − α2 born from class













n1 k1 i11 0 j11 0

n2 k2 i21 i22 j21 j22












such that j22 > 0,

i11+ j11 > 0, and n1− k1− j11 = 0. Again, 2n1−i11−j11 = 1 since these classes have no critical

points of types b11 or c11.

Finally, we have

|Class| −2n1−i11−j11

k1−i11−1
∑

ℓ=0

(−1)ℓ

[

(

n1

i11, k1 − i11 − 1, j11, n1 − k1 − j11 + ℓ

)

(

n2

j21, j22, n2 − k2 − j21 − j22, i21, i22, k2 − i21 − i22

)

]

= 2n1−i11−j11

k1−i11
∑

ℓ=0

(−1)ℓ

[

(

n1

i11, k1 − i11 − ℓ, j11, n1 − k1 − j11 + ℓ

)

(

n2

i21, i22, k2 − i21 − i22, j21, j22, n2 − k2 − j21 − j22

)

]
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bars of length γ1 − β1 born from class













n1 k1 i11 0 j11 0

n2 k2 i21 i22 j21 j22












such that n1 − k1 −

j11 > 0.

Thus, we have completely characterized the sublevelset persistent homology for any

branched alkane with internal bonds of types 2-2 and 3-2.

Now that we have characterized a more complicated class of branched alkanes, we outline

the process for characterizing any branched alkane. This same procedure can be used to

characterize the sublevelset persistence of any additive function over a product space.

6.2 Generalizing for any additive function over a prod-

uct space
Now that we have looked at a few specific cases, we can outline the process of character-

izing the sublevelset persistence for any branched alkane, or more generally, for any additive

function over a product space.

First, identify the number of different length bars over all component persistence dia-

grams. In the example above, we had four different bar lengths: semi-infinite, δ2−β2, γ2−α2,

and γ1 − β1. Next, order all of the bars from longest to shortest. This gives the layout for

the length matrix, X = xq,r discussed in Section 4.3. This information alone will allow us to

determine the number of bars of each length, the number of bars in each dimension k, and

the total number of bars.

To complete a full characterization, we need to determine the different classes of critical

points of f . Thus, construct the class matrix; a matrix where each row ℓ contains the

number of copies of each bond (nℓ), the index of the critical point of fℓ (kℓ), and where

each letter (ii1, ji1, etc.) denotes a different type of critical point of component function fi

of a given bond type. Let r be the number of different types of components and let cri be

the number of critical points of fi in the ith component. It is important to split classes via
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ε-perturbations such that each class only corresponds to a birth or death. Later, this will

allow us to determine pairings between birth classes and death classes. An example of the

class matrix from the previous section is given below.

Xclass =







n1 k1 i11 i12 j11 j12

n2 k2 i21 i22 j21 j22







Note, it is possible that not every component function will possess the same number of

critical point classes. For example, most molecules will not need all indices. Bonds of type

1-2-2-1 will have classes of type (n1, k1, i11, i12 = 0, j11, j12 = 0). When we perform these

simplifications, we can reduce the number of classes by grouping certain classes together,

such as in the 1-2-2-1 with 1-3-2-1 case. Below, we simplify the class matrix accordingly.

Xclass =







n1 k1 i11 0 j11 0

n2 k2 i21 i22 j21 j22







Next, determine the number of points in each class. We use the multinomial coeffi-

cient to determine which critical points of f are contained in the given class. Recall from

Lemma 2.5.1, if f is an additive function over a product space, for a point in f to be a

critical point, each coordinate must be a critical point in its component function. Hence, we

choose a critical point from each component function and group them accordingly. In the

previous example, we had

∣

∣

∣

∣

∣

∣

∣

class













n1 k1 i11 0 j11 0

n2 k2 i21 i22 j21 j22













∣

∣

∣

∣

∣

∣

∣

=

2n1−i11−j11

(

n1

i11, k1 − i11, j11, n1 − k1 − j11

)(

n2

i21, i22, k2 − i21 − i22, j21, j22, n2 − k2 − j21 − j22

)

points in each class.
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If we want to use the simplification of combining i11 with i12 and j11 with j12 into

the same class, we also have to account for our choice of two different points for each of

those groupings. Hence, when counting bars with length γ1 − β1, we introduce a factor of

(2n1−k1−j11)(2k1−i11) = 2n1−i11−j11 .

Finally, we identify the birth time and length of the bars in each class. First, we identify

the energy value associated with each class of critical points of f . The energy value of the

previous example is given by the following function:

E

(

class













n1 k1 i11 0 j11 0

n2 k2 i21 i22 j21 j22













)

=

(j11)α1 + (n11 − k11 − j11)β1 + (k1 − i11)γ1 + (i11)δ1

+ (j21)α2 + (j22)α
′
2 + (n2 − k2 − j21 − j22)β2 + (k2 − i21 − i22)γ2 + (i21)δ2 + (i22)δ

′
2.

where each energy value corresponds to the appropriate critical point of f .

All that remains to count the number of bars in each class. To do so, recall that each

component critical point corresponds to either a birth or death (hence the separation of α and

α′ and δ and δ′) in the previous example. Thus, each class that corresponds to deaths gets

paired with a class that corresponds to births. From there, one can identify the appropriate

alternating sum, as shown in Theorem 6.1.5 and which length bars they correspond to.

In practice, we turn to computations to guide our conjectures before proving them. For

the 3-2 with 2-2 case, we computed the first sublevelset persistence barcode with GUDHI [22],

and then by hand via the bar combination rules found in the persistent Künneth formula

(Theorem 2.5.3). From here, we were able to label the barcode and identify which bars in

the component barcodes were combined to create each bar in the energy landscape. Then

we grouped the classes by bar length, births, and deaths, and used that to identify which

classes paired together for each bar. After we had a guess as to what the counting functions
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should be, we used code found at [21] to verify our guesses for small examples. From there,

we prove why the counting formula is correct.

For example, take bars of length δ2−β2, as in the example in Section 6.1. We first identify

the classes that correspond to the births and deaths of bars of this length. In this case, we

looked at the sublevelset persistent barcode of 2-methylpentane and used that to identify

the appropriate bars and classes. The restrictions for the classes that produce δ2−β2 length

bars are

i11 + i22 = k1 + k2, j22 = 0, n1 − k1 − j11 = 0, and (n1 + n2)− (k1 + k2) > j11 + j21.

Next, for every birth class, we identified the corresponding class that killed each that par-

ticular class. Specifically for bars of length δ2 − β2,

class













n1 k1 i11 0 j11 0

n2 k2 i21 i22 j21 j22












kills class













n1 k1 i11 i12 j11 j12

n2 k2 − 1 i21 − 1 i22 j21 j22













Using this information, we can determine the alternating sum we need to pair births with

deaths. Hence, for the example above we get the following alternating sum.

2n1−i11−j11

i21
∑

ℓ′=0

(−1)ℓ

[

(

n1

i11, k1 − i11, j11, n1 − k1 − j11

)

(

n2

i21 − ℓ, i22, k2 − i21 − i22, j21, j22, n2 − k2 − j21 − j22 + ℓ

)

]

Note, at ℓ = 0, this formula gives the number of points in that particular class. Further, at

ℓ = 1, we get
∣

∣

∣

∣

∣

∣

∣

class













n1 k1 i11 i12 j11 j12

n2 k2 − 1 i21 − 1 i22 j21 j22













∣

∣

∣

∣

∣

∣

∣

which are the points in the class that corresponds to the death of bars of length δ2 − β2. This

verifies that we are subtracting off the points that correspond to deaths for this particular class.

From here, to finish finding the birth times and the length of bars born from each class, we

perform the same process for the rest of the bars as we did for the bars of length δ2−β2. In general,
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it is easiest to work from the longest bar to the shortest bar. This process gives the procedure to

find the full characterization of the sublevelset persistence for any additive function over a product

space.
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Chapter 7

Conclusion and future work
The goal of this work was to characterize the sublevelset persistent homology for additive

functions over a product space in the context of energy landscapes. In Chapter 2, we developed

background on branched alkanes, sublevelset persistent homology, Morse theory and its connections

to sublevelset persistence, and the Künneth formula. Next in Chapter 3, we looked at analytical

descriptions of branched alkanes and considered two examples. Then we established results in

Chapter 4 regarding the number of sublevelset persistent homology bars, the number of bars in

each homological dimension, and the number of bars per length. Chapter 5 characterized branched

alkanes consisting exclusively of dihedral types 1-3-2-1. Finally in Chapter 6, we looked at extending

the characterization process to branched alkanes with internal bonds of type 2-2 and 3-2, and used

that to show the method to characterize any additive function over a product space.

As a result of this work, we have established several results regarding the sublevelset persistence

of additive functions over a product space in the context of energy landscapes. In Theorem 4.1.2,

we established the total number of bars in terms of the number critical points in each component

function. Next, in Theorem 4.2, we established results regarding the number of bars in any di-

mension k for any idealized branched alkane. We also established results regarding the number of

bars of a given length in Theorem 4.3.2. We characterized two different kinds of branched alkanes,

molecules with type 3-2 internal bonds and types 2-2 and 3-2 internal bonds in Theorems 5.2.6

and 6.1.5. Finally, we generalized the characterization process in Chapter 6. All of the results

outlined above can be extended to look at different types of molecules. Further, they can be used

to characterize additive functions over a product space in different settings. Additionally, these

results will also be featured in a paper targeted toward chemists [24].

7.1 Future work
These results can be applied to any additive function over a product space. Hence, the more

assumptions we can remove and replace with real data and information, the more realistic our
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model becomes. One way to increase the accuracy is to remove the simplification of the dihedral

type. For example, 2-methylpentane consists of two dihedral angles of type 1-3-2-2 and one dihedral

angle of type 1-2-2-3. Throughout the course of this work, we have replaced these with simpler

approximating functions, namely the dihedral types 1-3-2-1 and 1-2-2-1. If we were also given

the formulas for the energy landscapes of the bonds 1-3-2-2 and 1-2-2-3, then the characterization

process outlined in Chapter 6 would be the same, the only changes would be the component

functions of the energy landscape. This process would also work for other appropriate functions.

Another potential path of future work includes looking at how changing the bond length affects

the energy landscape. This would give different type of component function with domain R, where

the input would be bond length in angstroms, or some other unit of length. Thus, our energy

function would be f : (S1)n ×R
m → R with n angular bonds and m bond lengths, which is still an

additive function over a product space. More precisely, since bond lengths are always nonnegative,

one might consider an energy function f : (S1)n × R
m
≥0 → R, where R≥0 denotes the nonnegative

reals. This would require us to consider manifolds with boundary, and to define critical points that

are allowed to live in the boundary of the manifold. However, there do exist versions of Morse

theory for manifolds with boundary. For example, Theorem 2.3.1 from [20] also holds for manifolds

with boundary.

Cyclo-alkanes, alkane molecules that contain carbon loops, are another potential path of ex-

ploration. For example, consider cyclo-octane, a loop with 8 carbon atoms. The domain of the

energy landscape of cyclo-octane is the union of a Klein bottle and a sphere along two circles of

singularities [6]. This domain is not a product space, and the energy function does not decompose

as an additive function over a product space. This prevents us from using most of the machinery

described above. To circumvent this problem, we could instead treat the cyclo-alkane confirmation

as a single input parameter. This is now a 2-dimensional input, whereas a single bond angle or bond

length was a 1-dimensional input parameter. This would allow us to use the results from above to

add cyclo-alkanes to chains of molecules. More rigorously, let D be the domain of the cyclo-alkane

energy landscape. Then, if we attach a single cyclo-alkane to a branched alkane, then we could

model its energy as a function (S1)n × D → R that is an additive combination of the energy on

each piece. Similarly if we attached m cyclo-alkanes, we could model its energy as a function with

74



domain (S1)n ×Dm → R, much as we described with changing the bond length. Finally, we can

extend this process to other molecules, such as inorganic molecules (non-carbon based), and see

how the energy landscapes changes.

Another open problem consists of understanding the energy landscapes when interactions be-

tween non-bonded atoms are included. In this situation, not all bond angle arrangements are a

possibility. For example, picture a long carbon chain such that the molecule can be arranged

where the two ends of the chains touch. This would never happen; the hydrogens that fill in other

bonds would repel the two ends away from each other. Thus, certain configurations will never be

obtained, and the energy it would take to approach those configurations increases to infinity the

closer they get. One way to address these configurations is by adding a function h(ϕ1, . . . , ϕn) to

the energy landscape, where h incorporates interactions between non-bonded atoms, and therefore

can be thought of as describing how much the energy landscape deviates from being an additive

function over a product space. If one restricts to situations or to energy regimes where the function

h is small in magnitude, then the stability of sublevelset persistent homology [18, 25] would allow

us to conclude that the added function does not have a large impact on the sublevelset persistence.

Adapting this work to a model that accounts for non-bonded interactions is an open problem.

Energy landscapes are an important part of molecular chemistry. It is difficult to completely

understand chemical reactions due to the inherent high dimensionality of the molecules. Topological

data analysis, specifically sublevelset persistent homology, provides chemists with a summary of

relevant information. But, as with most real-world situations, we either have to sacrifice some

accuracy by approximating or have our evaluations take lots of time. The more variables added,

the more realistic our model becomes but, even a slight change to improve computation time, such

as using 1-2-2-1 to approximate 4-2-2-1, affects the real-word applicability. Going forward, it is

important to balance both of these concerns as we look at different molecules, parameters, and

configurations.

75



Bibliography
[1] Atanas Atanasov, Gunnar Carlsson, and Henry Adams. Nudged elastic band in topological

data analysis. Topological Methods in Nonlinear Analysis, 45(1):247–272, Mar. 2015.

[2] Joshua Mirth, Yanqin Zhai, Johnathan Bush, Enrique G Alvarado, Howie Jordan, Mark Heim,

Bala Krishnamoorthy, Markus Pflaum, Aurora Clark, Y Z, and Henry Adams. Representations

of energy landscapes by sublevelset persistent homology: An example with n-alkanes, 2020.

[3] Oren M. Becker and Martin Karplus. The topology of multidimensional potential energy

surfaces: Theory and application to peptide structure and kinetics. The Journal of Chemical

Physics, 106(4):1495–1517, 1997.

[4] Ryan Gotchy Mullen, Joan-Emma Shea, and Baron Peters. Transmission coefficients, com-

mittors, and solvent coordinates in ion-pair dissociation. Journal of Chemical Theory and

Computation, 10(2):659–667, 2014. PMID: 26580043.

[5] John D. Roberts and Marjorie C. Caserio. Book: Basic Principles of Organic Chemistry

(Roberts and Caserio), Mar 5 2021. [Online; accessed 2022-02-07].

[6] Shawn Martin, Aidan Thompson, Evangelos A Coutsias, and Jean-Paul Watson. Topology of

cyclo-octane energy landscape. The journal of chemical physics, 132(23):234115, 2010.

[7] Fabio Pietrucci and Wanda Andreoni. Graph theory meets ab initio molecular dynamics:

atomic structures and transformations at the nanoscale. Physical review letters, 107(8):085504,

2011.

[8] Tiecheng Zhou, Ernesto Martinez-Baez, Gregory Schenter, and Aurora E Clark. Pagerank as

a collective variable to study complex chemical transformations and their energy landscapes.

The Journal of chemical physics, 150(13):134102, 2019.

[9] Hitesh Gakhar and Jose A Perea. Künneth formulae in persistent homology. arXiv preprint

arXiv:1910.05656, 2019.

[10] Allen Hatcher. Algebraic Topology. Cambridge University Press, Cambridge, 2002.

76



[11] William L. Jorgensen and Julian Tirado-Rives. The OPLS [optimized potentials for liquid sim-

ulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides

and crambin. Journal of the American Chemical Society, 110(6):1657–1666, 1988.

[12] William L Jorgensen, Jeffry D Madura, and Carol J Swenson. Optimized intermolecular

potential functions for liquid hydrocarbons. Journal of the American Chemical Society,

106(22):6638–6646, 1984.

[13] Marcus G. Martin and J. Ilja Siepmann. Novel configurational-bias monte carlo method for

branched molecules. transferable potentials for phase equilibria. 2. united-atom description of

branched alkanes. The Journal of Physical Chemistry B, 103(21):4508–4517, 1999.

[14] Jason R. Mick, Mohammad Soroush Barhaghi, Brock Jackman, Loren Schwiebert, and Jef-

frey J. Potoff. Optimized mie potentials for phase equilibria: Application to branched alkanes.

Journal of Chemical & Engineering Data, 62(6):1806–1818, 2017.

[15] Kelin Xia and Guo-Wei Wei. Persistent homology analysis of protein structure, flexibility, and

folding. International journal for numerical methods in biomedical engineering, 30(8):814–844,

2014.

[16] Kelin Xia, Xin Feng, Yiying Tong, and Guo-Wei Wei. Persistent homology for the quantitative

prediction of fullerene stability. Journal of computational chemistry, 36(6):408–422, 2015.

[17] Jacob Townsend, Cassie Putman Micucci, John H Hymel, Vasileios Maroulas, and Konstanti-

nos D Vogiatzis. Representation of molecular structures with persistent homology for machine

learning applications in chemistry. Nature Communications, 11(1):1–9, 2020.

[18] Herbert Edelsbrunner and John L Harer. Computational Topology: An Introduction. American

Mathematical Society, Providence, 2010.

[19] John Milnor. Morse theory, volume 51. Princeton university press, 2016.

[20] Augustin Banyaga and David Hurtubise. Basic Morse Theory, pages 45–91. Springer Nether-

lands, Dordrecht, 2004.

77



[21] Biswajit Sadhu and Brittany Story. Delta_branched_alkanes, 2022. https://github.com/

brimcarr/DELTA_branched_alkanes.

[22] Clément Maria, Jean-Daniel Boissonnat, Marc Glisse, and Mariette Yvinec. The Gudhi library:

Simplicial complexes and persistent homology. In International Congress on Mathematical

Software, pages 167–174. Springer, 2014.

[23] Joshua Mirth, Johnathan Bush, Mark Heim, and Henry Adams. deltapersistence, 2020. https:

//gitlab.com/delta-topology-public/deltapersistence.

[24] Henry Adams, Aurora Clark, Biswajit Sadhu, and Brittany Story. Molecular configurations

and persistence: Additive energies and branched alkanes (In Preparation). 2022.

[25] David Cohen-Steiner, Herbert Edelsbrunner, and John Harer. Stability of persistence dia-

grams. Discrete & Computational Geometry, 37(1):103–120, 2007.

78


	Abstract
	Acknowledgements
	List of Figures
	Introduction
	Preliminaries
	Branched alkanes
	Sublevelset persistent homology
	Morse theory
	Sublevelset persistence and Morse theory
	Künneth formula

	Analytical description of branched alkanes
	Energy landscapes of building block bonds
	Two examples of branched alkanes
	2-methylpentane
	2,2-dimethylpentane


	Characterizing the sublevelset persistence of branched alkanes
	The number of finite and semi-infinite bars
	The number of bars in dimension k
	The number of bars of each length

	An example of sublevelset persistence characterization
	Number of bars per length for internal bond 3-2
	Characterizing bar births and lengths for internal bond type 3-2

	Generalizing the characterization of the sublevelset persistence of branched alkanes
	Characterizing bar births and lengths for internal bond types 3-2 and 2-2
	Generalizing for any additive function over a product space

	Conclusion and future work
	Future work

	Bibliography

