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ABSTRACT 

 

 

LEVERAGING THE LANDSAT ARCHIVE TO CHARACTERIZE PLANT SPECIES  

 

DIVERSITY AND POST-FIRE RECOVERY IN GREAT BASIN SHRUBLANDS 

 

 

Great Basin shrublands in the United States are rapidly converting to annual grass-

dominated ecosystems, driven primarily by increased wildfire activity. Post-fire vegetation 

recovery trajectories vary spatially and temporally and are influenced by the effects of 

topography, climate, soils, and pre-fire vegetation. Our study leverages spatially continuous 

Landsat data alongside spatial models of environmental drivers to account for variability across 

space to evaluate important drivers of post-fire vegetation recovery. We first tested the spectral 

heterogeneity hypothesis, which suggests that variation in spectral values relates to plant species 

diversity, which, in turn, is theorized to be an important predictor of resilience to disturbance and 

resistance to invasive species. Weak relationships from the spectral heterogeneity tests led us to 

explicitly model plant species richness using both Landsat spectral data and environmental 

predictor variables. To evaluate drivers and patterns of post-fire vegetation recovery, we assessed 

how the number of times a site burned, post-fire seeding, and a suite of environmental predictor 

variables (including pre-fire species richness) affected pre- and post-fire plant functional groups 

using Landsat models. We also applied the suite of predictors to model vegetation recovery (15-

year post-fire functional group dominance) and used the model to predict recovery for a 

contemporary fire, the Saddle Draw Fire from 2014. Our model of species richness had robust 

validation and evaluation of variable importance elucidated key drivers. While species richness 

may be important for aspects of ecological functioning not addressed in this study, it was not 

found among the most important drivers of post-fire recovery within Great Basin shrublands.  
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However, the number of times burned affected post-fire recovery, which had a cumulative effect 

leading to increased annual herbaceous invasion and diminished perennial plant components. 

Meanwhile, on average post-fire seeding treatments had negligible influence upon post-fire 

perennial plant recovery. Post-fire recovery trajectories varied significantly across the fires 

evaluated in terms of both number of times burned and post-fire seeding. Models of post-fire 

recovery produced strong accuracy values when averaged across all fires and more tempered 

results when applied to new fires not included in model development. Spatially continuous 

analyses are important because they can account for variability in post-fire recovery of Great 

Basin shrublands. While such analyses have previously been hampered by data limitations, our 

results suggest that advances in data availabilities and cloud computing resources may be 

increasing opportunities for adopting spatial approaches for providing ecological insight and to 

inform post-fire management decision-making. 
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CHAPTER 1: USING MACHINE LEARNING, REMOTE SENSING, AND 

ENVIRONMENTAL SPATIAL DATASETS TO MODEL PLANT SPECIES DIVERSITY IN 

GREAT BASIN SHRUBLANDS 

Introduction 

 

Plant species diversity has been established as an indicator of an ecosystem’s capacity to 

sustain productivity, withstand stressors, and recover function following environmental shifts 

and disturbances (Folke et al., 2004; Isbell et al., 2015). Relationships among species diversity, 

ecological heterogeneity, and attributes of ecological stability and resilience are of fundamental 

interest in ecology (Folke et al., 2004; Grace et al., 2016; Isbell et al., 2015). Folke et al. (2004) 

presented evidence that losses of species and functional groups increases the risk of transitions to 

alternate stable states. Likewise, others have argued that species diversity (Schweiger et al. 2018) 

and species richness (Grace et al. 2016) are linked to net primary productivity. Diverse plant 

communities also support greater diversity of higher level taxa, such as herbivores and 

pollinators (Cardinale et al., 2006; Scherber et al., 2010). 

The Great Basin shrublands of the Intermountain West of the United States have 

experienced dramatic changes to plant species assemblages and functional group composition 

compared to pre-settlement conditions—often transitioning to alternate stable states, which can 

have significant impacts to general ecosystem function (Stringham, Krueger, & Shaver, 2006; 

Chambers et al., 2014). Because of the broad scale and rapid pace of ecological changes, the 

resilience and resistance paradigm has gained significant traction in management and policy as 

agencies attempt to address this issue (Chambers, Pyke, et al., 2014). Specifically, resilience 

refers to maintenance of ecological function following stress and disturbance and resistance 

refers to resisting invasions by opportunistic non-native species (Maestas, Campbell, Chambers, 
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Pellant, & Miller, 2016). 

Drivers of ecological change in the Great Basin include improper grazing, climate 

change, and the invasion of non-native, annual grasses (Bromus tectorum and others), which 

have subsequently contributed to increased fire frequencies and altered ecosystem structure and 

function (D’Antonio & Vitousek, 1992; Knapp, 1996). However, due to the diverse biophysical 

conditions in the region, the impacts of ecological drivers have not occurred uniformly across the 

landscape (Chambers, Bradley, et al., 2014). Rather, sites fall along a post-disturbance recovery 

continuum ranging between a) full recovery to ecological function in relatively short time 

intervals and b) transition to an alternate stable state with loss of function. Resilience and 

resistance concepts are useful for characterizing vegetation communities’ positions on this 

continuum.  

Plant species diversity has rarely been tested explicitly as a predictor of resilience and 

resistance in the Great Basin but species richness has been shown to have a negative relationship 

with cheatgrass (Bromus tectorum) cover (Shinneman & Baker, 2009). Given the theoretical 

relationships, spatially continuous estimates of plant species diversity may be important 

indicators of general plant community function. Additionally, these estimates of species diversity 

may help to predict post-fire recovery for shrubland plant systems of the Great Basin. 

Detecting plant species diversity using remote sensing indicators 

In the remote sensing literature, spectral heterogeneity has an established relationship 

with plant species diversity and ecological heterogeneity (Rocchini et al., 2010; Schweiger et al., 

2018). This relationship has been formalized as the spectral heterogeneity hypothesis. Spectral 

heterogeneity can describe both the variance of pixel values across space and within-pixel 

heterogeneity between values of individual bands. The hypothesis has been tested using data at 
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spatial resolutions ranging from sub-meter to 500 m and with a variety of spectral resolutions 

ranging from visible light to multi-spectral to hyper-spectral imagery (Heumann, Hackett, & 

Monfils, 2015; Rocchini, 2007; Warren et al., 2014). At smaller spatial extents, relationships 

have been strong and statistically robust enough to predict species diversity across space and to 

monitor communities through time. Spatially continuous and temporally robust products from 

Landsat offer the potential to monitor species diversity across space and through time, which is 

patently unachievable using field-collected data alone. However, these multispectral remote 

sensing datasets are most powerful when used alongside field-collected ecological variables.  

During the past two decades, the Bureau of Land Management (BLM) and Natural 

Resources Conservation Service (NRCS) have amassed large field-based datasets of 

methodologically-consistent plant community data that include species richness and evenness 

(Herrick et al., 2017). These datasets enable robust model training and validation using machine 

learning algorithms and can provide spatially continuous estimates of ecological characteristics, 

such as plant functional composition, plant heights, and bare ground (Jones et al., 2018; Rigge et 

al., 2019; Zhou, Okin, & Zhang, 2020). As of 2019, more than 11,000 field plots have been 

collected in the Great Basin and Snake River Plain since 2004. Here, we apply this dataset to 

assess relationships between Landsat-derived spectral heterogeneity indices and plant species 

diversity. 

The Great Basin is a biophysically complex region with extreme topographic and climatic 

variability at multiple scales that confound spectral relationships (Rigge et al., 2019). Where 

spectral heterogeneity is elegant in its simplicity, applying a single measure across the entire 

region may have limited predictive power. There is some evidence that across broad geographies 

the spectral heterogeneity hypothesis has limited power (Rocchini et. al, 2014; Schmidtlein & 
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Fassnacht, 2017). Further, Rocchini et al. (2014) argued that at broad scales environmental 

variables can overtake spectral heterogeneity in terms of importance, owing to the importance of 

environmental variables in driving species distributions and, consequently, distributions of 

species richness values.  

Modeling plant diversity using multispectral remote sensing indicators and environmental 

drivers 

Beyond testing the spectral heterogeneity hypothesis, we aim to establish a modeling 

approach for characterizing species richness patterns more generally. If spectral heterogeneity 

relationships are weak, existing theory suggests that leveraging multispectral remote sensing 

variables alongside spatial datasets of environmental attributes, such as climate, soils, 

topography, and wildfire, would better predict species richness (Rocchini et al., 2014). 

Precipitation and aridity influence disturbance responses, invasion, net primary productivity, 

perennial vegetation cover, and species diversity in the Great Basin (Anderson & Inouye, 2001; 

Maurer, Hallmark, Brown, Sala, & Collins, 2020). Additionally, soil moisture and temperature 

regimes have been linked to ecological resilience and resistance. To the extent that species 

richness may predict resilience and resistance, soils properties, such as organic matter 

percentage, soil textures, θr, (saturated soil water content), and θs (residual soil water content), 

may be important predictors of species diversity. Training machine learning algorithms for 

predicting species richness allows us to not only test the applicability of spectral heterogeneity 

and environmental predictors for characterizing species richness, but also to evaluate the 

importance of environmental variables as drivers of species diversity. 

We tested the spectral heterogeneity hypothesis by developing and evaluating measures 

of spectral heterogeneity against field-collected plant species diversity measures. We then 
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applied a machine learning modeling approach to evaluate whether combining multiple spectral 

heterogeneity indices into a model explains more of the variance of the species diversity dataset 

than the individual measures on their own. We then trained an environmental model of species 

diversity, incorporating spectral heterogeneity measures and spectral indices indicative of 

vegetation health alongside environmental variables. Finally, we applied the environmental 

model across space and time to evaluate spatial and temporal variations in species diversity and 

identify important environmental drivers. 

Methods 

Study Area 

The study area was comprised of shrublands in the Great Basin, here also including the 

Snake River Plain (Figure 1.1). The Great Basin is one of the most topographically variable 

regions in North America defined by north-south oriented mountain ranges and endorheic basins. 

Ecologically, shrublands primarily include salt desert shrub, tall sagebrush shrub, and low 

sagebrush systems historically co-dominated by perennial bunchgrasses (sagebrush steppe). 

Pinyon-juniper encroachment and annual grass invasion each exert competitive pressure on 

Great Basin shrubland communities, occasionally leading to ecological state changes as 

functional group dominance shifts. The project boundary is the union of the Central Great Basin, 

Northern Great Basin, and Snake River Plain level III ecoregions (Omernik, 1987). To exclude 

forested and woodland areas from our analyses, pixels were masked above a 20% tree cover 

threshold at an annual time-step using the Rangeland Analysis Platform dataset (Allred et al., 

2020; Falkowski et al., 2017).  
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Figure 1.1: The Great Basin and Snake River Plain based on Level III Ecoregions of the United 

States. 

Relationships between spectral heterogeneity and plant species richness 

Spectral heterogeneity has been used as a proxy for species diversity in diverse regions 

(Figure 1.2) (Rocchini et al., 2010; Warren et al., 2014). To evaluate and establish relationships 

of spectral heterogeneity in the Great Basin, we used remotely sensed data from Landsat and 

field measurements of plant diversity from the BLM’s Assessment, Inventory and Monitoring 

(AIM) and NRCS’s Natural Resources Inventory (NRI) datasets, both of which apply 

comparable protocols (Herrick et al., 2017). Additionally, we supplemented the AIM and NRI 

datasets by collecting 43 post-fire field plots stratified by aerial and drill seeding (based on data 

from the Land Treatment Digital Library) and moderate and high fire severity (based on data 

from Monitoring Trends in Burn Severity) using methods from Herrick et al. (2017) to better 

account for wildfire as a driver of plant community composition. To avoid effects related to the 

species-area relationship, we excluded AIM plots that differed in area from the prevalent plot 
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size of 0.284 hectares. We evaluated both species cover (measured by line-point intercept) and 

species richness (measured in the species inventory) as species diversity response variables. 

While cover from line-point intercept enables calculation of species diversity indices like 

Shannon’s H, statistical relationships between line-point intercept-derived species diversity and 

spectral heterogeneity variables were weaker than relationships between species richness derived 

from the species inventory data and spectral heterogeneity. Thus, we selected the species 

inventory dataset as our response variable, hereafter referred to as species richness. 

 

Figure 1.2: Conceptual relationship between spectral diversity and plant diversity in shrubland 

systems. Panel A is an intact ecosystem with high spectral and species diversity. Panel B is a 

sagebrush-dominated system with low species and spectral diversity. Panel C is a cheatgrass-

dominated system with low species and spectral diversity. 

Landsat data were accessed using Google Earth Engine’s (GEE) Python API. We created 

annual composites of collection 1, tier 1 surface reflectance images using Landsat 5 Thematic 

Mapper (TM), Landsat 7 Enhanced Thematic Mapper (ETM), and Landsat 8 Operational Land 

Imagery (OLI) for each year of the Landsat archive from 1984–2019. We applied radiometric 
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harmonization coefficients to ensure comparability of OLI with TM and ETM (Roy et al., 2016). 

We then masked clouds (medium and high confidence), cloud shadows, water, and snow for TM 

and ETM using the quality assessment band provided with Landsat data. We applied similar 

masks to OLI but additionally applied the cirrus cloud and terrain occlusion masks unique to 

OLI. After applying harmonization and masking, the TM, ETM, and OLI images were 

considered comparable and subsequently merged into a single image collection for analysis. For 

each year, we produced a medoid composite from images captured between April 1–June 15, 

corresponding to the green-up period after winter and prior to summer senescence in the region. 

For each annual medoid composite, we calculated a suite of spectral indices that are 

commonly applied for analyzing ecological characteristics. We calculated vegetation indices, 

including the normalized difference vegetation index (NDVI), soil-adjusted vegetation index 

(SAVI), soil-adjusted total vegetation index (SATVI), and the modified soil-adjusted vegetation 

index (MSAVI). Soil-adjusted indices are particularly useful in aridland systems in which bare 

ground is common in plant interspaces. For SATVI, SAVI, and MSAVI, we set the soil 

brightness correction factor L to 0.5. We also calculated the normalized burn ratio (NBR), 

normalized difference moisture index (NDMI), and tasseled cap indices for brightness (TCB), 

greenness (TCG), wetness (TCW), and the angle between greenness and brightness (TCA).  

Equipped with a suite of ecologically-relevant multispectral remote sensing indices, we 

calculated spectral heterogeneity measures based on Warren et al. (2014). For each index, we 

calculated 100-meter radius focal grids of standard deviations and coefficients of variation. The 

100-meter focal distance was selected based on a sensitivity analysis comparing relationships 

between spectral heterogeneity indices and plant diversity using 50-, 100-, and 150-meter focal 

grids of Landsat data. Additionally, for each index we divided the distribution of values into 20 
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bins and 40 bins and calculated 100-meter focal grids of binned richness (counts) and Shannon’s 

H. Finally, we applied unsupervised classification to the Landsat multi-spectral data using the 

Weka K-means algorithm to produce 25-, 50-, 100-, 200-, and 500-class images (Sharma, Alam, 

& Rani, 2012). Unsupervised classification algorithms cluster similar pixels such that a higher 

number of unique classes within a geographic area indicate greater spectral heterogeneity. We 

applied a 100-meter focal grid to calculate Shannon’s H and richness values for each 

unsupervised classification image. Because of the computational cost of the geographic and 

temporal scope of the project, we limited our analyses to the above spectral heterogeneity 

measures, which could be calculated using functions in GEE. The resulting 78 spectral 

heterogeneity measures are summarized in Table 1.1. 

 Once spectral heterogeneity measures were calculated, we evaluated relationships 

between the spectral predictors and species richness. We first extracted values for all spectral 

Multispectral indices Spectral heterogeneity measures 

Normalized differenced vegetation index (NDVI) 

Normalized burn ratio (NBR) 

Normalized differenced moisture index (NDMI) 

Tasseled cap greenness (TCG) 

Tasseled cap wetness (TCW) 

Tasseled cap brightness (TCB) 

Soil-adjusted vegetation index (SAVI) 

Soil-adjusted total vegetation index (SATVI) 

Modified soil adjusted vegetation index (MSAVI2) 

Bands 1, 2, 3, 4, 5, and 7 (harmonized to Landsat 

TM and ETM+) 

Standard deviations 

Coefficient of variation 

20-bin richness 

20-bin Shannon’s H 

40-bin richness 

40-bin Shannon’s H 

Unsupervised classification Spectral heterogeneity measures 

25-class weka k-means 

50-class weka k-means 

100-class weka k-means 

200-class weka k-means 

500-class weka k-means 

Richness 

Shannon’s H 

Table 1.1: Summary of the 78 spectral heterogeneity variables evaluated as predictors of plant 

species richness. 
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heterogeneity measures at each of the 11,070 field plots by matching the year of the field plot to 

the corresponding year of spectral heterogeneity measures and exported them from GEE for 

further local processing and analyses within R statistical software. We removed plots with 

missing values, slightly reducing the number of plots in the analysis to 10,471. To evaluate 

relationships between spectral heterogeneity measures and species richness, we calculated 

Pearson correlation values and p-values. We also trained two Random Forest models of species 

richness - one using only spectral heterogeneity measures and the other including spectral means 

alongside the spectral heterogeneity measures. For the Random Forest models, we first removed 

multi-collinear variables and then further reduced model variables by evaluating ranked 

importance. We then trained the two models by tuning the mtry hyper parameter and setting 

ntree to 500. We evaluated model outputs in terms of variance-explained and the root mean 

square error (RMSE). 

Environmental model of species richness 

Modeling using machine learning algorithms provides a framework for ranking the 

importance of a large numbers of predictor variables and for generating predictive models. When 

applying machine learning toward highly dimensional ecological problems, such as biodiversity 

modeling, they can help scientists untangle complex relationships. Through the process of 

modeling species richness, we intended to 1) train and validate a model of species richness, 2) 

evaluate predictor variables that are most related to species richness, 3) apply models to predict 

species richness for each year between 1994–2017, and 4) use the annual species richness 

predictions to evaluate regional trends in plant species richness.  

For each of the 10,471 AIM and NRI plots, we extracted and exported values for 220 

predictor variables using GEE (Table 1.2).  In addition to the spectral heterogeneity variables, we 
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also calculated 100-meter focal means for each of the individual Landsat bands and indices. 

Environmental covariates included climatic, soils, topographic, and wildfire variables. Climate 

variables were derived from Daymet V3 and were calculated based on those used by Rehfeldt 

(2006) both at an annual time-step and as 30-year averages (Thornton et al., 2016). Soil 

properties variables were from the POLARIS dataset from Chaney et al. (2019) and were 

downloaded in 1-degree tiles and mosaicked. Topographic variables were derived from the U.S. 

Geological Survey’s National Elevation Dataset and the Ecologically Relevant Geomorphology 

dataset from Conservation Science Partners, which is also calculated from the National Elevation 

Dataset (Theobald et al., 2015). Wildfire data were acquired from the Monitoring Trends in Burn 

Severity Program (MTBS) as individual fire rasters and mosaicked into annual images of 

differenced normalized burn ratio (dNBR) and the relative differenced Normalized Burn Ratio 

(RdNBR) from which all other variables were derived (Eidenshink et al., 2007).  

We used Random Forest modeling packages in R to perform variable selection, model 

training, and model validation. We first subset the AIM and NRI data into model training and 

validation set, leaving aside 15% of datapoints to validate the model. Using the remaining 85% 

for model training, we removed multi-collinear variables and then further reduced the number of 

variables in the model by evaluating variable importance and variance-explained outputs. Once 

we had selected the model variables, we tuned Random Forest hyperparameters using a tuning 

grid and selected the model with the highest reported variance-explained as the final model. We 

then applied the model to predict species richness on the validation set and calculated model 

accuracy statistics R2, RMSE, and mean absolute error (MAE). 

We applied the final model to predict species richness across our study area for each year 

between 1994–2017. To produce annual maps, we downloaded raster layers corresponding to the 
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selected variables for the model. Many of the variables are constant through time, such as 

topography, 30-year climate averages, and soils. However, we downloaded data for each year for 

the multispectral remote sensing, annual climate, and fire variables. We then applied the model 

to produce spatiotemporal predictions of species richness and uploaded the final maps to GEE 

for time-series analysis. Our ability to produce maps before and after 1994–2017 was constrained 

by the availability of the MTBS data and the importance of the years since fire variable. To 

evaluate change through time, we produced a differenced image between the beginning and end 

of the time series. In an attempt to reduce some of the effects interannual variability, we 

subtracted a map of the mean values between 1994–1996 from a map of the mean values 

between 2015–2017, which produced a map of species richness gained and lost during that time 

period. 
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Table 1.2: Summary of the 220 environmental predictor variables applied in the environmental 

model of species richness. 

 

 

 

Class Dataset(s) 
Spatial 

resolution 
Variables 

Multispectral 

Remote 

sensing 

Landsat 30 meters 

Spectral heterogeneity (Table 1.1) 

NDVI 

NDMI 

TCG 

TCW 

TCB 

TCA 

SAVI 

SATVI 

MSAVI2 

Bands 1, 2, 3, 4, 5, and 7 (harmonized to 

Landsat TM and ETM+) 

Climate 

Daymet 

 

Note: Each 

variable was 

calculated as 

30-year 

averages and 

annually. 

1000 

meters 

Mean annual temperature 

Mean spring temperature 

Mean summer temperature 

Mean winter temperature 

Mean growing season temperature 

Mean summer maximum temperature 

Mean winter minimum temperature 

Summer-winter temperature difference 

Mean annual precipitation 

Mean spring precipitation 

Mean summer precipitation 

Mean winter precipitation 

Mean growing season precipitation 

Frost-free period 

Last freeze of spring 

First freeze of autumn 

Maximum snow-water equivalent 

5-degree warming days 

5-degree warming days during frost-free 

period 

0-degree cooling days 

0-degree cooling days from minimum 

temperature 

Annual dryness index 

Summer dryness index 
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Results 

Relationships between spectral heterogeneity and plant species richness 

Relationships between the 78 spectral heterogeneity predictors and plant species richness 

were generally highly significant but weak in terms of predictive potential (Figures 1.3 and 1.4). 

For most spectral heterogeneity predictors, the Pearson correlation (r) with species richness was 

Class Dataset(s) 
Spatial 

resolution 
Variables 

Topography 

National 

Elevation 

Dataset (NED) 

 

Ecologically 

Relevant 

Geomorphology 

(ERGo) 

1/3 arc-

second 

Elevation (NED) 

Aspect (NED) 

Northness (NED) 

Eastness (NED) 

Slope (degrees) (NED) 

Slope (percent) (NED) 

Slope northness (NED) 

Slope eastness (NED) 

Transformed aspect (NED) 

Topographic position index (ERGo) 

Continuous heat-load index (ERGo) 

Multiscale topographic position index 

(ERGo) 

Topographic diversity 

Landforms (ERGo) 

Physiographic diversity (ERGo) 

Fire 

Monitoring 

Trends in Burn 

severity 

30 meters 

Times burned 

Fire return interval 

Fire frequency 

Years since most recent fire 

dNBR of most recent fire 

RdNBR of most recent fire 

dNBR of most severe fire 

RdNBR of most severe fire 

Soil 

POLARIS 

 

Note: Each 

variable had 

four horizons 

(0–5 cm, 5–15 

cm, 15–30 cm, 

and 30–60 cm) 

30 meters 

Percent sand 

Percent silt 

Percent clay 

Percent organic matter 

Bulk density 

pH 

θr (residual soil water content) 

θs (saturated soil water content) 
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between 0.15 and 0.3 and given the sheer number of plots included, all variables above an r value 

of 0.06 were highly significant with p-values less than 0.000000001. The best performing 

spectral heterogeneity predictor was the Shannon’s H index of NDVI binned at increments of 

0.05 (40 bins) (Figure 1.4; Figure 1.5A). Of the Weka k-means unsupervised classification 

variables, class richness values generally had higher correlations with species richness than 

Shannon’s H, and the 500-class classification had the highest correlation (Figure 3A). Of the 

standard deviations and coefficients of variation of the remote sensing indices, the standard 

deviations were uniformly the strongest predictors with the standard deviation of NDVI having 

the highest correlation (Figure 1.3B). Correlation values of the standard deviations and 

coefficients of variation for the Landsat bands were lower across the board than almost any other 

spectral heterogeneity measures, with band 7 having the highest correlation (Figure 1.3C).  The 

binned remote sensing indices were the top performing spectral heterogeneity measures; NDVI 

with 40-bins was most correlated with species richness (Figure 1.4; Figure 1.5A). While the 

spectral heterogeneity predictors were highly significant, we decided to also compare them with 

the raw means of each of the indices and bands to test whether remote sensing indices on their 

own perform better or worse than the spectral heterogeneity measures (Figure 1.3D). Of the 

remote sensing index means, five of them had higher Pearson correlations than any of the 

spectral heterogeneity values with NDVI having the strongest relationship.  
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Figure 1.3: Pearson correlations with species richness for A) unsupervised classifications, B) 

standard deviations and coefficients of variation for remote sensing indices, c) standard 

deviations and coefficients of variation for Landsat bands binned indices, and D) Landsat 

means. Red dots indicate p-values < 0.000000001. 
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Figure 1.4:  Pearson correlations with species richness for binned indices. Red dots indicate p-

values < 0.000000001. 

 

Figure 1.5: A) The top spectral heterogeneity predictor, Shannon's H with 40-bins for NDVI, and 

B) the top spectral predictor overall, mean NDVI. 
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While individual spectral measures were highly significant, no single index accounted for 

enough of the variance to create spatial predictions of species richness patterns across the study 

area on their own. Thus, to account for variable interactions, we created two Random Forest 

models which incorporated multiple spectral heterogeneity measures and multispectral remote 

sensing indices. After variable reduction procedures, the first model for species richness using 

only the spectral heterogeneity predictor variables included a total of 24 predictor variables and 

reported a variance-explained (pseudo-R2) of 17.65% and an RMSE of 75.86. The top predictor 

variables in the model were TCA coefficient of variation, TCA standard deviation, and TCG 

coefficient of variation, which differed significantly from the rankings in the single-variable 

correlation analyses. The model for species richness using all spectral variables included a total 

of 28 variables for the final model and reported a percent variance-explained of 22.58% and an 

RMSE of 71.52 (Figure 1.6). The top predictor variables in this second model were Landsat band 

1, band 3, and band 2 means, which also differed significantly from the correlation analysis. 

Altogether, the spectral variables in the Random Forest models were still limited in regards to 

how much of the variance of species richness was explained. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.6: Plots of model predictions against observed species richness for A) the spectral 

heterogeneity model and B) the model using all spectral variables. A 1:1 line is displayed in 

black and a linear regression fit is displayed in red. 
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Environmental model of species richness 

The environmental model explained more variance of species richness than the 

multispectral remote sensing models but tended to over-predict species richness values at the 

lower extreme and under-predict values at the higher extremes (Figure 1.7). After applying the 

multicollinearity test and reducing variables by evaluating variable importance metrics, we 

produced a final model of species richness including 21 predictor variables. Based on predictions 

upon the validation dataset of 1,561 field plots, the R2 value for the model was 0.524 with an 

RMSE of 6.69 and mean absolute error (MAE) of 5.03. Model predictions cluster closely with 

observed data (Figure 1.7) and the coefficients for the linear regression fit were a slope of 0.466 

and an intercept of 9.76.  

Variable importance ranking revealed that many of the top predictors were related to 

precipitation and aridity, but that a variety of variables (climate, topography, multispectral 

remote sensing, and fire) were important drivers of species richness (Table 1.3). In general, 

variables that indicated higher precipitation or lower aridity had a positive relationship with 

species richness, with 11 of the 21 selected variables being either measures of seasonal or annual 

precipitation or aridity. Interestingly, spectral remote sensing variables were relatively 

unimportant once environmental variables were included. Mean TCA and mean NDVI both had 

positive relationships with species richness and ranked 12th and 14th, respectively in terms of 

variable importance. Among the original Landsat bands, band 1 (blue) and band 3 (red) were 

both selected for the model and had negative relationships with species richness. The negative 

relationship between species richness and band 3 was unsurprising as red reflectance indicates 

plant stress (Tucker, 1979). Many of the relationships between predictors and species richness 

were non-linear. Random Forest is robust to non-linear relationships which may help to explain 

why variables with complex relationships were selected. One example is 0-degree cooling 
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days—a measure of accumulation of cold outside of the frost-free period. Sites with relatively 

low and relatively high values for 0-degree cooling days each had low species richness, while 

sites with moderate values of 0-degree cooling days had higher species richness. None of the 78 

spectral heterogeneity predictors were selected for the final model because of low variable 

importance scores. This underscores that while those relationships were highly significant, they 

were not appropriate for predicting plant species richness in the Great Basin. 
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Table 1.3: Variables selected for the environmental model of species richness, their variable 

importance, and the direction of the relationship. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Rank Variable 
Importance 
(%IncMSE) 

Directio
n 

1 Mean annual dryness index 16.72 ⇩ 

2 Mean annual precipitation 15.42 ⇧ 

3 Annual winter precipitation 13.23 ⇧ 

4 Slope percent 12.20 ⇧ 

5 Mean snow water equivalent 11.40 ⇧ 

6 
Annual 5-degree warming 
days 

11.21 ⇩ 

7 Annual annual dryness index 11.17 ⇩ 

8 Landsat band 1 mean 9.63 ⇩ 

9 Mean summer precipitation 9.47 ⇧ 

10 Topographic diversity 9.18 ⇧ 

11 Mean spring precipitation 9.17 ⇧ 

12 Mean TCA 8.98 ⇧ 

13 Elevation 8.92 ⇧ 

14 Mean NDVI 8.86 ⇧ 

15 
Mean minimum temperature 
0-degree cooling days 

8.71 ⇧ 

16 Years since fire 8.60 ⇩ 

17 Annual precipitation 8.28 ⇧ 

18 
Annual snow water 
equivalent 8.01 ⇧ 

19 
Annual winter minimum 
temperature 

7.85 ⇧ 

20 Landsat band 3 mean 7.22 ⇩ 

21 Annual summer precipitation 6.59 ⇧ 
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Figure 1.7: Model predictions from the environmental model of species richness plotted against 

observed species richness counts from AIM and NRI plots. The 1:1 line is displayed in black and 

a linear regression fit is displayed in red. 

We applied the final model of species richness to produce annual maps across our study 

area for each year between 1994–2017. When examining 2017, there were distinct spatial 

patterns of species richness particularly along elevational and latitudinal gradients (Figure 1.8). 

Species richness was generally predicted to be higher in the north and in more mountainous sites, 

while playas had low predicted values of species richness. At a more local level, models captured 

general patterns of species richness but struggled to capture the variance in the reference field 

dataset. For example, although the lowest and highest values in the species richness field dataset 

appeared to match the lowest and highest values in the mapped predictions (Figure 1.8, right), 

the mapped predictions fail to capture the extremes in the field-collected dataset (Figure 1.8, 

left). Thus, while the model represents general landscape patterns in species richness, it is likely 

under-predicting both low and high values at local scales. 
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Figure 1.8: Predicted species richness values for the Great Basin for 2017 (left) and spatially 

continuous model predictions overlaid with field collected values of species richness from AIM 

and NRI (right). 

Differencing predictions across two temporal windows (1994–1996 and 2015–2017) 

revealed both losses and gains in species richness (Figure 1.9). We chose to create a mean image 

for each of those date ranges to reduce the influence of the interannual variability. In general, 

species richness decreased in the west central portion and is increasing in the southern portion of 

of the Great Basin. Locations that were modeled to have decreasing species richness also closely 

match sites modeled to have high annual herbaceous cover, which are often noxious species 

(Figure 1.10) (Allred et al., 2020). Species richness tended to be relatively stable within valley 

locations. 
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Figure 1.9: Mean images of species richness between 1994–1996 (A) and 2015–2017 (B). The 

map of species richness change through time (C) shows increases in the southern Great Basin 

species richness and declines across much of the northern Great Basin. 
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Figure 1.10: Comparison of spatial patterns of modeled species richness (left) and modeled 

annual forb and grass cover (right) (Allred, et al. 2020). Each map is comprised of mean pixel 

values averaged over images between 2015–2017. 

Discussion  

While spectral heterogeneity measures proved to be weak predictors of plant species 

richness in Great Basin shrublands, environmental variables explained much of the variability in 

species richness across the region. Here, we demonstrated an approach for quantifying spatial 

patterns and drivers of plant species diversity at a regional scale. If theoretical relationships 

between plant species richness and general attributes of ecological resilience and resistance hold 

for this region, then our findings would be of value for spatial analyses of post-disturbance 

recovery.  

Spectral heterogeneity is weakly related to species richness 

In practice, the spectral heterogeneity hypothesis has been a valuable tool for monitoring 

plant species diversity in many parts of the world. However, across shrubland communities 

within the Great Basin the relationships were highly significant but weak. Warren et al. (2014) 
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found that of the 168 spectral heterogeneity variables tested in Germany, several had correlation 

coefficient values greater than 0.6. Those data were collected over a 16 km2 area using 4-meter 

IKONOS data. Similarly, in a study at a 6 km2 nature preserve in Italy, Rocchini (2007) tested 

sensors of varying spatial resolution ranging from 2.8 meters (QuickBird) to 60 meters 

(resampled Landsat ETM+) and found that Quickbird, Landsat ETM+ (native resolution), and 

Landsat ETM+ (resampled to 60 meters) all had correlation coefficients greater than 0.65 in 

relation to plant species richness. That study demonstrated that relatively coarse spatial 

resolution does not necessarily reduce statistical relationships (Duccio Rocchini, 2007). Similar 

results are not uncommon in the literature (Féret & Asner, 2014; Gillespie, 2005; Hernández-

Stefanoni et al., 2012). However, in our analysis, the top performing spectral heterogeneity 

predictors did not approach the strength of any of aforementioned studies. 

There are likely several reasons that the spectral heterogeneity relationships were 

relatively weak in our analysis. Schmidtlein & Fassnacht (2017) noted that little attention had 

been paid to whether relationships hold across space and time during the development of the 

spectral heterogeneity hypothesis. Using 500-meter resolution MODIS data, they found that in 

some regions spectral heterogeneity relationships were strong, while in other regions 

relationships were weak and varied by season. In our analysis, our Landsat data was from the 

period of April 1–June 15 to roughly coincide with the green-up period. However, the green-up 

period varies significantly across latitudinal and elevational and from year-to-year, which likely 

complicates statistical relationships. Further, Rocchini et al. (2014) asserted that at broad spatial 

scales, the geographic variability of spectral data may wash out relationships of heterogeneity in 

species diversity. They suggested that at regional and continental scales, environmental 

parameters like temperature, topography, and insolation primarily drive biodiversity (Rocchini et 



27 
 

al., 2014). Our results seem to support the conclusions of Rocchini et al. (2014) in that our 

environmental model, which incorporated climatic, topographic, and other variables, performed 

better than our spectral models. Another confounding factor of multispectral remote sensing in 

the Great Basin is soil reflectance. Where most spectral heterogeneity studies have been applied 

in systems in which vegetation cover is more-or-less continuous, in Great Basin shrublands bare 

ground cover is often 20% or more. Soil reflectance is variable based on moisture conditions, 

parent material, and organic matter content and may influence spectral heterogeneity without 

directly relating to plant community characteristics. Each of these factors likely contributes to 

weak spectral heterogeneity relationships. For those reasons, a more environmentally-driven 

approach was required within our study region. 

Environmental spatial variables and multispectral remote sensing predict species richness 

Our environmental model of species richness included 21 final variables—three 

topographic, six 30-year climate means, seven climate annuals, four multispectral remote 

sensing, and one fire regime characteristic. Many of these predictors match prevailing theory 

related to Great Basin ecosystems and distributions of species richness. For instance, 

precipitation and aridity were most important in prediction species richness and have similarly 

been found important in other studies, especially for perennial grasses (Anderson & Inouye, 

2001). Similarly, precipitation is closely linked to net primary production in North American 

dryland ecosystems, which in turn is related to species richness (Maurer et al., 2020). Interannual 

variability in precipitation relates to interannual variability in species richness, particularly in 

relation to annual forbs. 

The negative relationship of years since fire with species richness contradicts related 

studies. Repeated fires often push Great Basin shrubland systems beyond environmental 
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thresholds into annual dominated states that reduce species richness (Chambers, Pyke, et al., 

2014; Shinneman & Baker, 2009). However, in ponderosa pine forests, fire produced higher 

species richness of forbs in burned landscapes when compared with unburned landscapes 

(Burkle, Myers, & Belote, 2015). As in our study, that result contradicted the prevailing theory. 

It is possible that the post-fire reduction of the less diverse shrub component reduces competition 

on annual and perennial forbs and enables higher species richness counts overall. Thus, while our 

finding of a negative relationship between years since fire and species richness conflicts with 

regional theory, the relationship is likely complex and variable across space such that sites that 

are less susceptible to cheatgrass invasion may gain species richness while sites that are more 

susceptible to invasion lose species richness. 

 Aspect rather than topographic slope is commonly considered an important driver of 

shrubland health (Kulpa, Leger, Espeland, & Goergen, 2012). However, the theory of midpoint 

attraction may help explain the importance of slope (Colwell et al., 2016). Theoretically, 

temperature and precipitation drive net primary production, which is related to species richness. 

In the Great Basin, temperature and precipitation are most extreme at low and high elevations; 

however, species richness typically peaks at intermediate elevations (Rahbek, 1995, 2005). 

Intermediate elevations are inherently relative and vary in terms of meters above sea level across 

the region. However, intermediate elevations are likely to be on mountainsides and, hence, to 

have relatively steep slopes. Thus, more sloped sites may support more species richness than 

flatter sites. 

The spatial landscape patterns of species richness predicted by the model are supported 

by other studies that have found negative relationships between annual herbaceous cover and 

species richness. One of the few studies that evaluated species richness as a predictor for 
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ecological condition in the Great Basin found that species richness was negatively correlated 

with cheatgrass cover (Shinneman & Baker, 2009). Thus, we would expect to see lower values of 

modeled species richness in sites with higher annual herbaceous cover (Anderson & Inouye, 

2001). When comparing our models of species richness and the Allred et al., 2020 models of 

annual forb and grass cover, sites mapped as having high annual grass cover also had lower 

predicted species richness and vis-a-versa, particularly in the northern Great Basin. Similarly, 

many sites predicted to have lost species richness over time also gained annual forb and grass 

cover during the same period, suggesting that annual forbs and grasses are outcompeting native 

species and reducing species richness. 

Our final environmental model explained more than 50% of the variance of species 

richness, however we are aware of limitations of our analysis. One significant limitation is that, 

while our spectral data are from spring, phenology varies significantly across the region. It is 

likely that some sites in our study area reach peak greenness after the end of our window during 

cooler years. An additional limitation is that, while Burkle et al. (2015) lends some support to the 

fire relationships that we found, the model may not properly be modeling post-fire condition in 

other cases. For example, the model often predicts higher species richness within fire polygons in 

the year following fire than the year prior to the fire. While increased plant species richness 

immediately following fire is certainly possible, it would be unexpected. Finally, we know that 

the models have lower variance than the field data, likely an artifact of the Random Forest 

algorithm.  

Implications and applications 

Plant species diversity is important to land and resource managers from a conservation 

perspective. In the Great Basin, there are many rare and endemic species native to the region. 
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The spatial predictions of species richness from our study could be used to identify priority areas 

for conservation. Additionally, evaluating sites that are losing or gaining species richness 

through time can help managers better make decisions about sites that may be most at risk of 

degradation. For botanists and field monitoring efforts, the species richness maps could be used 

to identify sites for sampling, which could help prioritize field sampling resources for managers 

to improve understanding of spatial distributions of biotic resources. 

Trends in Great Basin plant species diversity almost certainly affect biodiversity of 

higher-level taxa, such as insects and birds. Auto-correlation models of bird assemblages in the 

Great Basin found that bird diversity was closely related to plant taxonomic composition, even 

more so than vegetation structure or primary productivity (Fleishman & Mac Nally, 2006). Few 

studies have evaluated the effects of plants diversity on higher trophic levels in the Great Basin; 

however, relationships are well established elsewhere (Cardinale et al., 2006; Scherber et al., 

2010). Future Great Basin biodiversity monitoring efforts could sample for higher-level taxa 

associated with plant communities. 

Building on the general utility of modeling species richness, the use of this approach 

would be amplified if plant diversity, indeed, predicts post-fire recovery. In practice, sites with a 

greater number of pre-fire species may have a more diverse ruderal seed source from which to 

recover post-fire perennial species than sites with fewer species. Given the pressure from annual 

herbaceous plants on shrubland communities, if species richness contributes to vegetation 

recovery following fire, then pre-fire species richness maps could be used as a decision-support 

layer for post-fire restoration—prioritizing sites that are less likely to recover. Further studies 

should examine the relationship of pre-fire plant species diversity to post-fire recovery 

trajectories of Great Basin perennial plant communities. 
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Conclusions 

Our results indicate that spectral heterogeneity measures are likely inappropriate for 

monitoring plant species diversity at the broad scale of the Great Basin. Confounding factors, 

such as soil reflectance and topographic and latitudinal gradients that influence plant phenology, 

as well as the general breakdown of spectral heterogeneity relationships across regional extents 

may contribute to this conclusion. Some of these factors may indicate that spectral heterogeneity 

will have limited utility as a proxy for species diversity across aridlands systems without 

carefully controlling for these confounding factors. However, while spectral diversity 

relationships may not be strong enough to predict species richness on their own, they are highly 

significant and may contribute valuable information to future multivariate analysis, especially at 

smaller spatial extents. 

Multivariate Random Forest models produced predictions of species richness that are 

statistically defensible and that match prevailing theory of plant systems in the Great Basin. 

More sophisticated machine learning algorithms incorporating additional spatial environmental 

variables, such as deep neural networks, may produce further gains in terms of performance. 

Additionally, NRI and AIM datasets enable robust training and validation of models of species 

richness across the broad extent of the western United States (Allred et al., 2020; Rigge et al., 

2019). These multivariate models are appropriate for accounting for complex and non-linear 

relationships between predictor variables. In particular, a strength of models incorporating 

environmental predictors alongside multispectral remote sensing variables is that accounting for 

climate variables may enable predictions of changes to species richness under various climate 

futures. 

Snyder et al. (2019) suggested that recent climate records have indicated increased 

temperatures, and thus aridity, for the Great Basin in recent years. The trend of increased aridity 
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is expected to continue in coming decades as a result of the influence of climate change. 

Droughts are likely to be more frequent and longer in duration, which will apply another pressure 

on perennial shrublands (Snyder et al., 2019). Based on our findings of strong negative 

relationships between aridity and species richness, it seems likely that plant species richness 

would also decrease under warmer climates in the future. These trends underscore the 

importance of data-driven approaches to natural resources management and conservation in the 

Great Basin, as they can help inform increasingly strategic management and conservation 

actions. Thus, these models represent a leap forward for informing plant species diversity 

conservation and, to our knowledge, a first step in spatially continuous and temporally-robust 

characterization of plant species diversity in the Great Basin. 
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CHAPTER 2: SPATIAL DRIVERS, MODELS, AND PREDICTIONS OF POST-FIRE 

VEGETATION RECOVERY AND RESILIENCE AND RESISTANCE IN GREAT BASIN 

SHRUBLANDS 

Introduction 

Concepts of Resilience and Resistance 

Disturbance is ubiquitous across ecological communities globally and includes events 

that occur at varying spatial and temporal extents and frequencies (Delcourt & Delcourt, 1988). 

Importantly, these disturbance events drive structure and heterogeneity in plant communities, but 

repeated or severe events can push communities beyond ecological thresholds, leading to often 

irreversible changes in ecological function (Briske, Fuhlendorf, & Smeins, 2005; Stringham et 

al., 2006). Ecological resilience describes the capacity to which ecological communities are able 

to absorb disturbance and maintain function following disturbance (Folke et al., 2010; Holling, 

1973). In the Great Basin region of the southwestern United States (Figure 2.1), resilience 

concepts are typically accompanied by the concept of ecological resistance, which refers to the 

capacity of ecological communities to withstand and limit invasion by noxious species (Elton, 

1958; Chambers, Pyke, et al., 2014). These concepts of resilience and resistance have become 

prevalent in the literature and in resource management decision-making due to plant invasions 

and altered fire regimes in recent decades.  

Fire is a fundamental driver in Great Basin shrublands and continues to become more 

prevalent through time. During the past 20 years, the ten-year average for annual acres burned 

has increased from 478,000 acres to 963,000 acres according to data from the Monitoring Trends 

in Burn Severity (MTBS) program. Additionally, MTBS polygons suggest that many areas, 

particularly in the north central Great Basin, have burned more than five times between 1984 and 

2017 (Figure 2.2). More frequent fires have largely been driven by increases in fine fuels from 
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annual grasses, especially cheatgrass (Bromus tectorum), which competes with native grasses 

and shrubs (Pilliod, Welty, & Arkle, 2017). Fires were up to four times more likely to occur in 

cheatgrass dominated-systems than native plant-dominated systems in the Great Basin (Balch, 

Bradley, D’Antonio, & Gómez-Dans, 2013) 

 

Figure 2.1: The Great Basin and Snake River Plain based on Level III Ecoregions of the United 

States 
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Figure 2.2: Number of times burned between 1984–2017 based on Monitoring Trends in Burn 

Severity data. Pixels have burned between 0 and 7 times. 

Mitigating ecological state transitions 

These ecosystem traits of high fire frequency and annual grass dominance define an 

alternative stable state (McIver et al., 2010). Concurrently, sagebrush (Artemisia spp.) has been 

estimated to have lost 45% of its historic distribution, often through transitions to annual-

dominated states or conifer encroachment (Miller et.al. 2011). Additionally, climate analysis 

suggests that for each 1°C increase in temperature, 87,000 km2 of existing sagebrush habitat will 

be lost (Neilson et al., 2005, Miller et.al. 2011). Areas that have transitioned to alternative states 

are costly and resource-intensive to return to their pre-fire state. It is suggested that areas with 

high resilience and resistance need less post-fire management intervention, whereas areas with 

low resilience and resistance will require greater restoration efforts. Therefore, strategic 
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application of post-fire restoration resources and methods is imperative. 

In attempts to mitigate the impacts of fire and promote the recovery of native perennial 

communities to Great Basin shrublands, the Bureau of Land Management (BLM) commonly 

applies drill and aerial seeding following fire. In many cases, seeding efforts are spatially 

extensive (Arkle et al., 2014). However, despite ambitious efforts, the outcomes have had mixed 

results with successes and failures often occurring across environmental gradients, such as 

topography and climate (Arkle et al., 2014; Knutson et al., 2014). Meanwhile, the Land 

Treatment Digital Library has catalogued over 75 years of post-fire treatments in the western 

United States and can be used as a spatial dataset of seeding treatments for analysis (Pilliod, 

Welty, & Toevs, 2017).  

Spatially continuous approaches 

Developing understanding of drivers and spatial patterns of resilience and resistance is of 

fundamental and applied interest to researchers. Plot-based studies of resilience and resistance in 

Great Basin shrublands have found that climate, soils, and topographic variables are all 

important for influencing post-fire recovery. In particular, soil moisture and temperature regimes 

have been linked to resilience and resistance — with increased growing season moisture 

promoting growth of native perennials and generally cooler soil temperatures inhibiting 

cheatgrass (Chambers, et. al 2014). Additionally, climatic factors, such as wetter winters and 

early springs, promote growth of perennial forbs and grasses (Roundy et al., 2018). Elevation is 

also an important variable for habitat recovery but is closely related to climatic variable such as 

precipitation and temperature (Arkle et al., 2014). Additionally, plant species richness may relate 

to ecological resilience and resistance in the region though the relationship has never been tested 

directly (Arkle et al., 2014; Folke et al., 2004; Shinneman & Baker, 2009). While plot-based 
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approaches have been useful in elucidating ecological drivers, spatially continuous approaches 

that leverage these relationships have a greater potential to steer management. 

The Great Basin is heterogeneous at a variety of scales in terms of climate, topography, 

and ecology. As a result, inference drawn from plot-based time-series studies and monitoring 

programs, while insightful, can be limited. To abate the spatial limitations of plot-based designs, 

researchers frequently leverage time-series spectral remote sensing datasets, particularly those 

from the Landsat program (Bright, Hudak, Kennedy, Braaten, & Khalyani, 2019; Kennedy, 

Yang, & Cohen, 2010; Kennedy et al., 2018). While these approaches have been gainfully 

applied particularly in forested systems of the western United States, the relationships in 

shrubland systems are complex and confounded by weak vegetation signals, high bare ground, 

and high interannual phenological variability (Rigge et al., 2019). As a result, spatially 

continuous modeling of post-fire vegetation recovery has remained elusive in Great Basin 

shrublands. 

In recent years, however, a confluence of advancements in natural resources monitoring 

and computing have enabled time-series analysis using remote sensing based modeled spatial 

products (Gorelick et al., 2017). The development of methodologically-consistent monitoring 

protocols adopted by the NRCS on private lands and BLM on public rangelands has produced 

over 11,000 field plots in the Great Basin (Herrick et al., 2017). Those datasets have become 

powerful training points for using machine learning algorithms to produce spatial predictions of 

ecological characteristics, such as functional group fractional cover, bare ground cover, primary 

production, and species richness—each mapped at an annual timestep (Allred et al., 2020; Jones 

et al., 2018; Rigge et al., 2019; Jensen, Chapter 1). These models represent the fusion of remote 

sensing and field-based approaches, leveraging time-series data from Landsat and trained on in 
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situ ecological measurements. By applying spatial time-series analysis techniques, we can further 

refine understanding of resilience and resistance in the Great Basin. 

Modeling post-fire recovery trajectories addresses issues of fundamental and applied 

interest in ecology. Fundamentally, models of recovery can address community ecology 

questions of variables governing resilience and resistance; from an applied perspective, they an 

provide decision support tools to managers and decision-makers to help guide the allocation of 

limited post-fire restoration resources. To address knowledge gaps related to impacts of fire on 

post-fire plant community trajectories in Great Basin shrublands, we identified three objectives: 

1) analyze the impact of the number of times burned on post-fire vegetation recovery trajectories, 

2) assess the effectiveness of post-fire seeding on vegetation recovery trajectories, and 3) use 

machine learning algorithms to model post-fire recovery using environmental predictor 

variables.  

Methods 

Study Area  

Seven fires were selected for analysis (Table 2.1) based on criteria of: 1) having burned 

between 1995–2003, 2) a significant portion of the fire having not burned since 2003 to allow for 

a period of recovery assessment, 3) the burned areas primarily being shrubland systems such as 

sagebrush shrub and salt desert shrub, 4) fires were spatially distributed across the Great Basin 

and Snake River Plain, and 5) fires having had significant aerial and/or drill seeding applied 

following fire, as well as unseeded areas that serve as a control. Our spatial domain was the 

extent of fire polygons derived from the MTBS and our temporal domain was the period between 

1984–2017 (Table 2.1).  

We used ArcGIS Pro version 2.X to produce spatial polygons that burned-once, burned-

more-than-once, and were unburned (Figure 2.3), according to the MTBS record.  Polygons in 
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the burned-more-than-once layer burned between two and four times. To produce unburned 

polygons, we buffered each fire polygon by five kilometers and applied the Erase tool to remove 

any areas that intersected with MTBS fire perimeters. While the MTBS dataset provides reliable 

information about fires that have burned since 1984, we acknowledge that our analyses and 

summary of times burned do not take into account fire histories prior to that.  

Table 2.1: Summary of fires analyzed. Adjoining fires burned in the same year as the fire of 

interest and were within the 5-kilometer buffer. 

 

Spatial polygons of aerial and drill seeding were compiled from the Land Treatment 

Digital Library (https://ltdl.wr.usgs.gov). Seeding polygons were clipped to the burned-once 

boundaries to control for number of times burned within our seeding treatment specific analyses 

(Pilliod, Welty, & Toevs, 2017). Additionally, seeding polygons were only included in the 

analysis if they occurred during the year following the fire of interest to focus on the impact of 

immediate post-fire restoration activities. 

 

Fire name Year Acres burned Adjoining fires 

Tuana Complex 1995 80,638 Three Creek (1995) 

Shirttail 1999 11,976 New Pass Complex (1999) 

Sadler Complex 1999 183,908 
Mineral, Railroad Pass, Dido 

Complex (1999) 

Sombrero 1999 128,143 Dun Glenn Complex (1999) 

Bilk Creek 

Complex 
2000 69,694 N/A 

West Basin 2000 56,396 Choke Cherry (2000) 

Big Juniper 2001 95,148 N/A 
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Figure 2.3: Strata of numbers of times burned and post-fire seeding (drill or aerial)for each fire. 

A) Big Juniper (2001), B) Tuana Complex (1995), C) Bilk Creek (2000), D) Sombrero (1999), E) 

West Basin (2000), F) Shirttail (1999), G) Sadler Complex (2000). The areas that are not 

represented by a polygon either fell outside of the buffered area or have burned since the fire of 

interest. 
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The normalized differenced perennial dominance index 

Ecological modeling is most powerful when the response variable represents 

ecologically-important traits, is succinct, and where interpretations of results have the potential 

to provide management relevant information. Many vegetation modeling studies in the Great 

Basin use shrub or other plant functional group percent cover as a response variable (Barnard et 

al., 2019; Rigge et al., 2019). However, percent cover varies across systems and thus can be a 

biased indicator. Here, we introduce an alternative metric, the normalized differenced perennial 

dominance index (NDPDI). Inspired by the normalized differenced vegetation index (Tucker, 

1979), this index differences percent cover of perennial plants (shrubs, forbs, and grasses) 

against annual plants (grasses and forbs) (eq. 1). 

     NDPDI =  
𝑃𝑒𝑟𝑒𝑛𝑛𝑖𝑎𝑙 % − 𝐴𝑛𝑛𝑢𝑎𝑙 %𝑃𝑒𝑟𝑒𝑛𝑛𝑖𝑎𝑙 % + 𝐴𝑛𝑛𝑢𝑎𝑙 % + 1     [eq. 1] 

The NDPDI is bound from 0–2 and is easily interpretable, with values of less than 1 

being dominated by annual plants and values greater than 1 being dominated by perennial plants. 

One of the advantages of such an approach is that it is unbiased for low or high vegetation cover 

systems. For example, high elevation mountain sagebrush systems naturally have much higher 

cover than valley salt desert shrub. It is also sensitive to relatively minor shifts in dominance. 

One notable limitation of NDPDI is that it treats all perennial functional groups the same which 

can wash over important distinctions. Yet, in many portions of the region simply establishing 

perennial plants in the post-fire environment is viewed as a restoration success. Thus, we propose 

the index as a scalable modeling variable indicative of perennial plant dominance. 

Time-series analysis of multiple times burned on post-fire recovery 

To investigate the effect of the number of times burned on post-fire vegetation 

trajectories, we conducted a time-series analysis of pixels within polygons that were unburned, 
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burned once, burned twice, burned three times, and burned four times. We first removed pixels 

that had ever been classified as agriculture or developed using the National Land Cover Database 

(Jin et al., 2019). Then, we used Google Earth Engine (GEE) to extract values of fractional cover 

of annual forbs and grasses (AFGC), perennial forbs and grasses (PFGC), shrubs (SHR), and 

bare ground (BG) from the Rangeland Analysis Platform (RAP) (Allred et al., 2020). We also 

calculated an image for NDPDI by summing the PFGC and SHR to represent perennial cover 

percentage and using AFGC as the annual cover percentage. We exported mean values of each 

vegetation variable across the times-burned strata at an annual time-step for each fire.  

We imported and analyzed the time-series data in R—producing time-series plots and 

extracting post-fire linear regression coefficients (R Core Team, 2018; Wickham et al., 2019). 

Our time-series plots visualize important facets of the pre-fire and post-fire trajectories. For each 

times-burned stratum, we produced plots of AFGC, BG, and NDPDI. Each plot visualizes the 

mean of the data, as well as linear regressions fit through the pre-fire and post-fire period. We 

then used the linear regressions to plot residuals through time to evaluate interannual 

variability—an indicator of ecological instability. Our plots also visualized the pre-fire envelope 

for the mean values for each variable to identify departures from pre-fire condition. For each 

stratum and each fire, we extracted the post-fire linear regression slopes and 15-year intercepts 

(condition fifteen years following fire) of NDPDI to enable quantitative comparison of recovery 

trajectories. 

Influence of post-fire seeding on post-fire recovery 

To assess the efficacy of seeding on post-fire vegetation recovery, we evaluated locations 

that were drill seeded, aerial seeded, and unseeded following fire (Pilliod, Welty, & Toevs, 

2017). We focused on areas that burned only once to reduce variability introduced by multiple 
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times burned following the approach of Knutson et al. (2014). We extracted values for AFGC, 

PFGC, SHR, BG, and NDPDI from the RAP using GEE at an annual time-step for drill, aerial, 

and unseeded polygons and exported them as CSVs (Allred et al., 2020). Then, we imported the 

CSVs into R and used a similar approach as described above to produced time-series plots and 

extract post-fire linear regression slopes and 15-year intercepts of NDPDI (R Core Team, 2018; 

Wickham et al., 2019).  

Modeling post-fire recovery trajectories using environmental, fire, and management variables 

Modeling using machine learning algorithms provides a framework for ranking the 

importance of a large numbers of predictor variables and for producing predictive models. 

Applied toward highly dimensional ecological problems, machine learning analysis can help 

scientists to untangle complex relationships. We had three sub-objectives for modeling post-fire 

recovery: 1) train and validate a model of 15-year post-fire NDPDI, 2) evaluate predictor 

variables that are most related to 15-year post-fire NDPDI, and 3) apply models to predict 

recovery for the Saddle Draw Fire (2014). To train the model we generated 1,500 random points 

per fire for a total of 10,500 points.  

For each of the generated points, we extracted and exported values for 106 climatic, soils, 

topographic, fire, and pre-fire vegetation predictor variables and our response variable using 

GEE (Table 2.2). Climate variables were derived from Daymet V3 and were calculated based on 

those used by Rehfeldt (2006) for the post-fire period (3-year average following fire) and as 30-

year averages (Thornton et al., 2016). Soil variables were from the POLARIS Soil Properties 

dataset from Chaney et al. (2019) and were downloaded in 1-degree tiles and mosaicked. 

Topographic variables were derived from the U.S. Geological Survey’s National Elevation 

Dataset and the Ecologically Relevant Geomorphology dataset from Conservation Science 
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Partners, which is also calculated from the National Elevation Dataset (Theobald et al., 2015). 

Fire data were acquired from the Monitoring Trends in Burn Severity Program (MTBS) as 

individual fire rasters and mosaicked into annual images of differenced normalized burn ratio 

(dNBR) and the relative differenced Normalized Burn Ratio (RdNBR) from which all other 

variables were derived (Eidenshink et al., 2007). Pre-fire vegetation and the response variable 

were derived from the Rangeland Analysis Platform and from the models described in the first 

chapter (Allred et al., 2020; Jensen, chapter 1). 

Table 2.2: Summary of the 106 predictor variables applied in the model of post-fire recovery.  

Class Dataset(s) 
Spatial 

resolution 
Variables 

Climate 

Daymet 

 

Note: Each 

variable was 

calculated as 

30-year 

averages and as 

post-fire 

averages 

1000 

meters 

Mean annual temperature 

Mean spring temperature 

Mean summer temperature 

Mean winter temperature 

Mean growing season temperature 

Mean summer maximum temperature 

Mean winter minimum temperature 

Summer-winter temperature difference 

Mean annual precipitation 

Mean spring precipitation 

Mean summer precipitation 

Mean winter precipitation 

Mean growing season precipitation 

Frost-free period 

Last freeze of spring 

First freeze of autumn 

Maximum snow-water equivalent 

5-degree warming days 

5-degree warming days during frost-free period 

0-degree cooling days 

0-degree cooling days from minimum 

temperature 

Annual dryness index 

Summer dryness index 

 

Topography 

 

 

National 

Elevation 

Dataset (NED) 

 

1/3 arc-

second 

Elevation (NED) 

Aspect (NED) 

Northness (NED) 

Eastness (NED) 
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We conducted modeling within R using the randomForest package (Liaw & Wiener, 

2007; R Core Team, 2018). Prior to modeling, we removed multi-collinear variables and then 

further reduced the number of predictors using a variable selection function. We selected an 

optimal number of variables for the final model using variable importance plots and variance-

explained values. We withheld 20% of the 10,500 points (2,100 points) for model validation, 

calculating R2 and root mean square error (RMSE) values for predictions applied to the 

validation data set. To account for spatial autocorrelation, we also applied a leave-one-fire-out 

 

 

 

Topography, 

cont. 

 

 

 

Ecologically 

Relevant Geo-

morphology 

(ERGo) 

Slope (degrees) (NED) 

Slope (percent) (NED) 

Slope northness (NED) 

Slope eastness (NED) 

Transformed aspect (NED) 

Topographic position index (ERGo) 

Continuous heat-load index (ERGo) 

Multiscale topographic position index (ERGo) 

Topographic diversity 

Landforms (ERGo) 

Physiographic diversity (ERGo) 

Fire 

Monitoring 

Trends in Burn 

severity 

30 meters 

Times burned 

dNBR of most recent fire 

RdNBR of most recent fire 

Pre-fire 

vegetation 

Rangeland 

Analysis 

Platform (RAP) 

 

Jensen,  

Chapter 1 

30 meters 

NDPDI (RAP) 

Pre-fire percent cover AFGC (RAP) 

Pre-fire percent cover PFGC (RAP) 

Pre-fire percent cover SHR (RAP) 

Pre-fire percent cover BG (RAP) 

Pre-fire Species richness (Jensen) 

Soil 

POLARIS 

 

Note: Each 

variable had 

four horizons 

(0–5 cm, 5–15 

cm, 15–30 cm, 

and 30–60 cm) 

30 meters 

Percent sand 

Percent silt 

Percent clay 

Percent organic matter 

Bulk density 

pH 

θr (residual soil water content) 

θs (saturated soil water content) 

Management 
Land Treatment 

Digital Library 
Polygons 

Aerial seeding 

Drill seeding 
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model validation approach, where we trained 7 separate models leaving one fire out within each 

model iteration. We then applied each model to produce predictions for the fire that had been left 

out of training. The leave-one-out approach may better reflect the accuracy that we would expect 

when producing predictive recovery maps for contemporary fires. Using the final model, we then 

evaluated variable importance and direction of relationships, enabling us to evaluate drivers of 

post-fire recovery. 

We concluded by applying the final model of 15-year post-fire condition to produce a 

predictive map of post-fire recovery for the Saddle Draw Fire—which burned 284,065 acres in 

Oregon in 2014. To produce the map, we downloaded 30-meter images from GEE for each of the 

selected predictor variables for the Saddle Draw Fire geography and time-period. Images that 

were coarser than 30-meters were resampled using the nearest neighbor approach and images 

that were finer were resampled using bilinear interpolation. In R, we applied the Random Forest 

model to the Saddle Draw Fire images to predict condition for 15-years following the fire—in 

this case, relating to the year 2029—continuously across the fire geography. 

Results 

Time-series analysis of multiple times burned on post-fire recovery 

Number of times that burned negatively affected post-fire trajectories of NDPDI, AFGC, 

and BG (Figure 2.4). Notably, even the baseline trajectories of NDPDI for unburned pixels had 

negative slopes and increases in residuals—indicating an increased prevalence of annual 

herbaceous plants and decreased stability through time. While areas that burned once had similar 

pre-fire trajectories to those that were unburned, immediately following fire burned-once areas 

had a steep decline in NDPDI and increase in AFGC, as well as increased residuals; after the 

initial drop, though, post-fire regression slopes were similar for unburned and burned-once areas 

in terms of both AFGC cover and NDPDI. For areas that burned multiple times, those with 
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higher numbers of times burned had progressively higher AFGC cover and lower NDPDI with 

each successive fire; these patterns are especially evident in the 15-year post-fire intercepts 

(Table 2.3). Although there were steep declines in NDPDI for each multiple times burned strata 

throughout the fire period (Figure 2.4), post-fire slopes were largely flat. This suggests relative 

stability through time without a marked trend toward recovery or decline for areas that burned 

more than once. BG is visualized to evaluate to what extent AFGC may be infilling bare ground 

as it becomes more dominant, as opposed to displacing perennial plants. For each strata, BG 

declines throughout the time-series, suggesting that some of the increase in AFGC can be 

attributable to infilling. Notably, 1984–1986 AFGC values were highest for areas that burned 

most frequently over the period of analysis. Elevated AFGC cover values suggest that areas that 

burned multiple times between 1984–2019 may have also burned more frequently even prior to 

1984. 

 

 

 

 

Table 2.3: Post-fire slopes and intercepts of NDPDI for number of times burned averaged 

across all fires. 

 Unburned One time Two times Three times Four times 

Post-fire slope -0.009 -0.009 0.000 0.000 0.000 

0-intercept 1.67 1.38 1.30 1.11 0.46 

15-intercept 1.55 1.24 1.30 1.11 0.49 
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Figure 2.4: Time-series plots for pixels that were unburned, burned once, burned twice, burned 

three times, and burned four times. Red bars depict the year of the fire of interest and are dashed 

for unburned. For areas that burned multiple times the entire period of fire is depicted in red.  

Grey boxes represent the pre-fire envelope for each variable.  
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Post-fire recovery trends varied across the fires studied in relation to the number of times 

burned (Figure 2.5; Table 2.4). Among areas that burned once, those within the West Basin fire 

had a 15-year post-fire intercept NDPDI value of 1.82 (high perennial dominance), whereas 

those within the Shirttail, Sombrero, and Bilk Creek fires all had values <1 (annual herbaceous 

dominance). In general, the West Basin fire recovered anomalously well regardless of the 

number of times burned; even areas that burned three times had a 15-year post-fire intercept 

NDPDI value of 1.77. The Bilk Creek and Sombrero fires are in close spatial proximity to one 

another and had similar trajectories across every times-burned class. Both of those fires had 15-

year post-fire NDPDI intercepts <1 for all areas that had burned, indicating degradation. 

Additionally, residuals in AFGC and NDPDI both saw sharp increases following these two fires. 

The Big Juniper fire in the northwestern portion of the Great Basin had moderate annual grass 

invasion during the post-fire period evidenced by some increase in AFGC and decrease in 

NDPDI. However, Big Juniper areas that burned were still generally dominated by perennial 

plants based on 15-year intercepts, as indicated by NDPDI values of around 1.5. 

Table 2.4: Post-fire linear regression slopes and 15-year intercepts of NDPDI for each fire for 

the number of times burned. 

 Unburned One time Two times Three times Four times 

Fire Slope 
15-

int 
Slope 

15-

int 
Slope 

15-

int 
Slope 

15-

int 
Slope 

15-

int 

Big 

Juniper 
-0.001 1.76 -0.002 1.52 0.015 1.51 N/A N/A N/A N/A 

Bilk 

Creek 
-0.008 1.50 -0.011 0.97 0.005 0.83 0.000 0.62 0.002 0.49 

Sadler -0.004 1.69 -0.003 1.42 0.013 1.46 N/A N/A N/A N/A 

Shirttail -0.011 1.32 -0.020 0.85 N/A N/A N/A N/A N/A N/A 

Sombrero -0.012 1.34 -0.005 0.92 0.011 0.89 N/A N/A N/A N/A 

Tuana -0.009 1.62 0.001 1.53 -0.002 1.34 0.001 1.33 N/A N/A 

West 

Basin 
-0.003 1.82 0.008 1.82 0.007 1.77 0.011 1.77 N/A N/A 
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Figure 2.5: Time-series plots for pixels in four of the seven fires of interest. Fires were selected 

for plotting based on their location to depict some of the variability in recovery trajectories. Red 

bars depict the year of the fire of interest. For areas that burned multiple times the entire period 

of fire is depicted in red.  Grey boxes represent the pre-fire envelope for each variable. 
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Figure 2.6: The relationship between number of times burned and 15-year post-fire NDPDI. The 

box-and whisker shows the mean value, upper and lower quantile and minimum and maximum 

values. 

Influence of post-fire seeding on post-fire recovery 

When looking across all fires, seeding had little impact on post-fire recovery for the fires 

evaluated (Figure 2.7; Table 2.5).  The differences in the post-fire trajectories were minor among 

drill seeded, aerial seeded, and unseeded locations with similar post-fire trends in terms of 

regression slopes, 15-year intercepts, and residuals. Post-fire recovery slopes of NDPDI were 

most steeply negative for unseeded pixels, but the intercepts (0-intercept: 1.41; 15-intercept: 

1.27) were also higher than seeded pixels, suggesting that the unseeded areas maintained their 

perennial component better than those that were seeded. Aerial seeding resulted in relatively 

moderate NDPDI intercepts (0-intercept: 1.33; 15-intercept: 1.20) and the slopes were only 

slightly less steep than unseeded. Drill seeding had the lowest post-fire NDPDI intercepts (0-

intercept: 1.21; 15-intercept: 1.20) but also had the flattest slopes suggesting more stability 
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through time. During the post-fire period, residuals of AFGC were somewhat higher for the drill 

seeded than either aerial seeded or unseeded locations, suggesting that drill seeded areas may be 

less stable than even those that were not seeded.  

While post-fire trajectories were similar for areas that received seeding treatments and 

those that were unseeded when averaged across all fires, there were important distinctions when 

fires were viewed individually. Most unseeded areas had higher 15-year regression intercepts for 

NDPDI than did either aerial or drill seeded when treatments were evaluated within each fire 

separately (Table 2.6). The only exception to that pattern was the Tuana Complex, which had 

>0.1 increase in 15-year intercept of NDPDI for both aerial and drill seeded when compared with 

unseeded. However, multiple fires had positive post-fire slopes for seeded areas despite negative 

slopes in unseeded areas. For example, drill seeded areas in the Sombrero, Sadler, and Tuana 

fires all had positive slopes of NDPDI. The only fire with a positive slope following aerial 

seeding was the West Basin fire with all other fires registering negative post-fire slopes.  
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Figure 2.7: Time-series graphs of post-fire recovery trajectories based on seeding strata for 

unseeded, aerial seeded, and drill seeded areas averaged across all fires. Red bars depict the 

year of the fire of interest. For areas that burned multiple times the entire period of fire is 

depicted in red.  Grey boxes represent the pre-fire envelope for each variable. 

Table 2.5: Summary of post-fire linear regression slopes and intercepts of NDPDI across 

seeding strata averaged across all areas that burned once. 

 Unseeded Drill seed Aerial seed 

Post-fire slope -0.010 -0.004 -.0009 

0-intercept 1.41 1.21 1.33 

15-intercept 1.27 1.16 1.20 
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Table 2.6: Post-fire linear regression slopes and 15-year intercepts of NDPDI for each fire for 

each seeding strata. 

 Unseeded Drill Aerial 

Fire Slope 15-int Slope 15-int Slope 15-int 

Big Juniper -0.002 1.52 N/A N/A -0.001 1.38 

Bilk Creek -0.010 1.02 -0.019 0.94 -0.010 0.94 

Sadler -0.004 1.46 0.007 1.34 -0.002 1.39 

Shirttail -0.017 1.03 N/A N/A -0.022 0.77 

Sombrero -0.005 0.92 0.005 0.89 -0.008 0.82 

Tuana 0.000 1.45 0.001 1.56 -0.010 1.59 

West Basin 0.008 1.81 N/A N/A 0.010 1.74 

 

 

Figure 2.8: Relationships between seeding types and 15-year post-fire NDPDI. The box-and-

whisker shows the mean value, upper and lower quantile and minimum and maximum values. 
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Modeling post-fire recovery trajectories using environmental, fire, and management variables 

Our Random Forest model of 15-year post-fire NDPDI reported strong accuracy 

statistics. The final model had 17 predictor variables and reported an R2 of 0.830, RMSE of 

0.208, and mean absolute error of 0.158. A scatterplot of model predictions vs. observed 

responses are displayed in Figure 2.9. The slope of the linear regression fit was 0.790, indicating 

that model predictions are approaching the desired 1:1 line of predicted vs. observed. Leave-one-

fire-out model validation reported an R2 of 0.338 with an RMSE of 0.370, suggesting that the 

model generalizes somewhat well when predicting for fires that it is not trained on, but that the 

overall R2 of the model is likely too optimistic (Table 2.7; Figure 2.10). This suggests that 

localized relationships drive post-fire recovery and that the spatial variability of the fires, and 

thus lack of local analogues, limits model predictions on new fires. The model generalized best 

to the Shirttail Fire, possibly because it shared similar post-fire trajectories with the Bilk Creek 

and Sombrero Fires. However, it performed most poorly for predicting the West Basin Fire, 

likely because of the West Basin fire’s anomalously strong post-fire recovery. 

 

Figure 2.9: Model predictions plotted against the validation set for 15-years after fire. The red 

line indicates the linear regression fit through the datapoints and the black line is the 1:1 line. 
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Figure 2.10: Predicted vs. observed plots from leave-one-out model validation from Random 

Forest regression models 

Table 2.7: Leave-one-out validation statistics for the model of post-fire recovery. The name of 

the fire in the table represents the fire that was left out of the model training and the subsequent 

validation of predictions upon the fire. Validation statistics are reported as the coefficient of 

determination (R2 and root mean square error (RMSE) 

 

 

 

 

 

Fire R2 RMSE 

Big Juniper 0.286 0.331 

Bilk Creek 

Complex 

0.401 0.490 

Sadler Complex 0.373 0.384 

Shirttail 0.458 0.305 

Sombrero 0.340 0.309 

Tuana Complex 0.278 0.381 

West Basin 0.234 0.386 

Total 0.338 0.370 
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Predictor variables included in the final model of post-fire recovery included climatic, 

topographic, pre-fire vegetation, and fire predictors (Table 2.8). Pre-fire vegetation variables of 

NDPDI (Figure 2.11A) and AFGC were both found to be important drivers of recovery. A 

variety of summer aridity/precipitation measures were also highly ranked, including post-fire 

summer precipitation (Figure 2.11B), post-fire summer dryness index, and average 5-degree 

warming degree days (a measure of heat accumulation throughout a season). Relatedly, heat-load 

index and slope northness (calculated as the slope percentage multiplied by the cosine of the 

aspect) are both related to potential evapotranspiration deficits, with northern slopes being 

correlated with higher post-fire NDPDI values. Interestingly, elevation was not retained within 

the final model, possibly because precipitation and temperature variables already captured 

ecologically important aspects of elevation. Both measures of fire severity were included, albeit 

with opposite directionality. Here, we calculated directionality using simple linear regression 

slopes; because Random Forest handles non-linear relationships, it is likely that the model was 

finding more nuanced relationships in the data.  Notably, species richness was not selected as an 

important variable in the final model, contrary to expectations based on existing literature 

(Figure 2.11C). 
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Table 2.8: Variable importance rankings and directionality for all variables in the model of 15-

year post-fire NDPDI 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Rank Variable 
Importance 
(%IncMSE) Direction 

1 Pre-fire NDPDI 320.24 ⇧ 

2 
Post-fire summer 
precipitation 

298.31 ⇧ 

3 
Post-fire summer 
dryness index 

247.05 ⇩ 

4 
Average summer 
precipitation 

168.22 ⇧ 

5 Pre-fire AFGC 160.44 ⇩ 

6 Slope northness 133.02 ⇧ 

7 
Average cooling 
0-degree-days 

93.46 ⇧ 

8 
Average winter 
temperature 

88.68 ⇩ 

9 
Average spring 
precipitation 

77.29 ⇧ 

10 Heat load index 75.94 ⇩ 

11 RdNBR 72.82 ⇩ 

12 dNBR 63.63 ⇧ 

13 
Average warming 
5-degree-days 

58.50 ⇩ 

14 
Post-fire snow 
water equivalent 56.39 ⇧ 

15 
Average winter 
precipitation 

48.90 ⇧ 

16 
Average annual 
dryness index 

48.60 ⇩ 

17 

Post-fire mean 
annual 
precipitation 

46.36 ⇧ 
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Figure 2.11: Univariate relationships between 15-year post-fire NDPDI and A) pre-fire NDPDI, 

B) post-fire summer precipitation, and C) pre-fire species richness 

Our strong validation statistics for the model of 15-year post-fire NDPDI led us to 

continue with assessing the utility for predicting post-fire recovery for a more recent fire event, 

the Saddle Draw Fire (2014). Based on our modeling approach, these mapped results can be 

considered predictions for the year 2029. Mapped predictions revealed that, while diminished 

NDPDI can be expected across the fire, it will not be uniform (Figure 2.12). In particular, the 

model suggests that southern aspects and locations that had relatively high pre-fire NDPDI may 

have the most significant decreases in NDPDI following fire. The model also suggests that some 

areas may see increased NDPDI following fire. While some post-fire increases in NDPDI are for 
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pixels that had very low pre-fire NDPDI, for which the model may not be fully capturing the 

variance in the response, at other locations predicted increases in NDPDI may indicate areas that 

would be more likely recover without restoration. 

 

Figure 2.12: Maps of NDPDI for the Saddle Draw Fire. A) Pre-fire NDPDI (median of NDPDI 

between 2011–2013), B) modeled predictions of 15-year post-fire NDPDI corresponding to the 

year 2029, and C) differenced image of B – A. 

Discussion 

The cheatgrass-fire cycle is a primary driver in Great Basin shrubland systems, often 

inhibiting post-fire recovery of native perennial plant communities. However, sites vary in their 

susceptibility to fire and invasive annual plants. Our analysis leverages Landsat-derived data that 

captures the variability in shrubland communities because of its comprehensive spatial coverage. 

Our findings revealed that the number of times burned affects post-fire trajectories, seeding did 
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not produce appreciably better results than not seeding, and spatial modeling elucidated drivers 

and produced spatially continuous predictions of post-fire condition. 

Repeated fire degrades Great Basin shrubland plant communities 

We found that for each successive time burned there was an increasingly negative 

response in the postfire vegetation trajectories—AFGC increased and NDPDI decreased and 

post-fire slopes often showed little recovery (Figure 2.6). Supporting our findings, Mahood & 

Balch (2019) found that in their study in north-central Nevada where they evaluated areas that 

had burned between 0–3 times, repeatedly burned locations had successively lower alpha-

diversity and native perennial cover percentage. They found that community composition 

fundamentally changed after one fire, converting shrub-dominated systems to ones dominated by 

annual grasses which then persist for decades (Mahood & Balch, 2019). Consequently, areas 

with >15% annual grass cover have been found to be twice as likely to burn and four times as 

likely to burn multiple times over a fifteen year period (Bradley et al., 2018). Lending support to 

those studies, we found that areas that burned multiple times also had elevated cover of AFGC 

prior to the fires we analyzed, indicating that AFGC is both a driver and response to fire. Similar 

patterns apply in salt desert shrub communities as well, which have been found to have 5 times 

higher non-native cover in locations that burned than those that were (Haubensak, D’Antonio, & 

Wixon, 2009). While it is well-established that fire degrades shrublands in the Great Basin, no 

studies have evaluated the impact of repeated burning in a spatially distributed manner in the 

Great Basin. 

The effects of repeated burning on post-fire trajectories in Great Basin shrublands varied 

widely across different parts of the region. The Bilk Creek and Sombrero fires both burned 

geographically near the study area evaluated by Mahood & Balch (2019) and our findings for 
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those fires closely matched theirs—the first fire dramatically increased AFGC and each 

subsequent fire incrementally led to slightly more dominance by AFGC. However, trajectories 

were much different for some other fires, especially in the northern and eastern portions of the 

Great Basin. In fact, the Big Juniper, Sadler, Tuana, and West Basin fires all maintained 

perennial dominance even burning as many as three times. There has not been a spatial analysis 

of post-fire recovery in the Great Basin, however maps of resilience and resistance based on soil 

temperature and moisture suggest that locations in the northern Great Basin would be expected to 

have stronger post-fire recovery than in the central Great Basin (Maestas, Campbell, Chambers, 

Pellant, & Miller, 2016). While the soil-based resilience and resistance maps are coarse, our 

results support the general patterns. 

Post-fire seeding does not appreciably improve post-fire recovery 

 Post-fire aerial and drill seeding did not improve recovery 15 years following fire, and in 

some cases had worse outcomes (Figure 2.8). In a similar study of post-fire aerial and drill 

seeding between 1990–2003, Knutson et al. (2014) also found that native perennial grass cover 

did not increase on seeded sites except in instances of drill seeding competitive non-native 

perennial grasses. Rather, precipitation and elevation were more important drivers of recovery 

than seeding. In any event, the documented effectiveness of drill seeding non-native perennial 

grass cultivars may help to explain why our results showed that drill seeding was more effective 

than aerial seeding. Similarly to Knutson et al. (2014), a study of 313 plots seeded after fire in 

greater sage-grouse (Centrocercus urophasianus) habitat found that none of the plots met all 

sagebrush guidelines for breeding habitat, although 50% met understory habitat requirements. 

However, some aerial and drill seeded plots in that study had relatively high probabilities of 

sage-grouse occupancy based on their models (Arkle et al., 2014). Environmental variables are 
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often important in supporting post-fire recovery of seeded sites, particularly climate and 

topography (Kulpa et al., 2012; Svejcar, Boyd, Davies, Hamerlynck, & Svejcar, 2017). Thus, 

while seeding has some demonstrated impact on post-fire recovery, just as often the projects 

have no better outcomes than those left unseeded. Generally, recovery trajectories are primarily 

driven by environmental variables. 

 It is likely that our finding that seeding had little positive influence on post-fire 

trajectories is partially related to the incentive that managers apply seeding to areas that most 

severely burned. There are known limitations of the MTBS dataset in the Great Basin, 

particularly the inclusion of unburned islands and fingers within the fire perimeters with 

commission errors as high as 15% (Sparks et al., 2015). Thus, while the MTBS fire perimeters 

likely include some component of unburned areas and additional low burn severity areas, post-

fire managers are unlikely to apply seeding to those areas. This is evident in our results, as there 

is no reason that applying aerial seeding would cause worse outcomes than applying no seeding 

at all. Nonetheless, our finding that many aerial seeded areas are dominated by AFGC 15 years 

following fire suggests that there is much room for improvement in post-fire seeding treatments. 

Machine learning models predict post-fire vegetation recovery outcomes 

Our models of post-fire vegetation recovery generated robust validation statistics and 

generalized to fires for which there was not post-fire data reasonably well. A similar machine 

learning approach was applied to predict post-fire restoration outcomes in terms of sagebrush 

cover for 2,171 plots three years following the Soda Fire (Barnard et al., 2019). That study 

included geospatial predictors as well as field-collected data as predictor variables and reported 

model R2 values of 0.58–0.79 across 33 models. There have been other efforts to map resilience 

and resistance explicitly, typically using single-variable relationships such as soil moisture and 
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temperature regime (Maestas, Campbell, Chambers, Pellant, & Miller, 2016). Other studies have 

outlined frameworks for developing spatially explicit maps of resilience and resistance, but have 

not directly incorporated them into mapping efforts (Chambers, Allen, & Cushman, 2019; Ricca 

& Coates, 2020). While we decided not to take the additional leap of modeling resilience and 

resistance explicitly, our validation statistics lend confidence that our approach may be able to be 

extended to produce spatially explicit resilience and resistance models. Lending further 

confidence to our approach is that many of the predictor variables selected for our model match 

with previous studies and ecological theory. 

Climatic, topographic, pre-fire vegetation, and fire predictors were all found to be 

important drivers of post-fire recovery. Arkle et al. (2014) similarly found that latitude, climatic 

and topographic variables affected the probability of post-fire vegetation communities meeting 

greater sage grouse brood-rearing habitat, especially sites that were further north and that 

accumulated less warmth throughout the summer.  However, our findings contradict their finding 

that summer precipitation was negatively correlated with post-fire recovery (Arkle et al., 2014). 

Multiple studies have also found that wetter winter and early springs are related to post-fire 

perennial vegetation cover, which our results support (Arkle et al., 2014; Barnard et al., 2019; 

Roundy et al., 2018). Previous studies have identified soil properties as important drivers of post-

fire recovery, especially the soil moisture and temperature regimes (Maestas et al., 2016; Roundy 

et al., 2018). Our models did not find any soils variables to be important, possibly because of the 

elevated error common in spatial soil modeling (Chaney et al., 2019). Pre-fire vegetation plays a 

driving role in Great Basin post-fire communities particularly pre-fire functional group 

composition. Sites with high cover of perennial native grasses and forbs tend to better recover 

their perennial grasses and forbs components following fire (Barker, Pilliod, Rigge, & Homer, 



65 
 

2019; R. F. Miller, Chambers, Pyke, Pierson, & Williams, 2013; Rhodes, Bates, Sharp, & 

Davies, 2010). For sites with few perennial native species prior to fire, the converse is true 

(Chambers, et al. 2007; Barnard et al., 2019). Likewise, pre-fire NDPDI and AFGC were two of 

the most important variables in our models. Our results agreed with Shinneman and Baker’s 

(2009) that species richness is negatively correlated with cheatgrass cover, but ultimately we did 

not find species richness to be an especially important variable in our models. 

Our post-fire vegetation recovery model predictions for the Saddle Draw Fire suggest that 

post-fire trajectories are spatially variable and governed by ecological drivers. Southern aspects 

in the Saddle Draw Fire were generally predicted to have elevated negative departures from pre-

fire NDPDI, likely driven by several of the most important variables in the model. Meanwhile, 

some of the sites that had the highest NDPDI values pre-fire were projected to maintain 

relatively high NDPDI fifteen years following fire. However, while using machine learning to 

evaluate drivers of post-fire recovery is valuable, mapping post-fire condition should be 

considered novel. Similar studies have, as yet, not gone as far as spatially explicit predictions of 

post-fire recovery (Barnard et al., 2019). However, we believe that improvements in vegetation 

time-series mapping from Landsat and improved modeling of ecologically important predictor 

variables make this type of modeling increasingly defensible and, indeed, an imperative of 21st 

century restoration planning (Allred et al., 2020; Jones et al., 2020). 

Conclusions 

 Recent advancements in spatially-continuous time-series modeling of vegetation 

condition can enable detection of ecological state transitions (Allred et al., 2020; Jones et al., 

2020; Rigge et al., 2019). Two of the most common state-transitions in Great Basin shrublands 

result from repeated fire and annual grass invasion, analyzed here, and incursion of conifers. The 

NDPDI leverages spatial vegetation models to monitor shifts in dominance between perennial 
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plants and annual plants; thus, it may aid in identifying transitions to annual-dominated 

ecological states, supported by relatively flat recovery slopes of NDPDI following fire. 

Additionally, the NDPDI could be extended into a tree-dominance index, with trees differenced 

against native shrubland composition to detect shifts in dominance between shrubland and 

woodland condition. Further analysis will need to be completed to establish thresholds of 

dominance that relate to ecological state tipping points, however this approach may help to 

develop and validate spatially-explicit state-and-transition models (Steele, Bestelmeyer, Burkett, 

Smith, & Yanoff, 2012). 

 Post-fire seeding is currently the most important management intervention for 

maintaining perennial shrublands and mitigating ecological state transitions in the Great Basin. 

While our results suggested limited effectiveness, there have been significant advancements in 

restoration techniques and strategies in the twenty years since the treatments analyzed here were 

applied (Davies, Boyd, Madsen, Kerby, & Hulet, 2017; Fisk, Apostol, Ross-Davis, Cahoy, & 

Davis, 2018; Shock, Feibert, Shaw, Shock, & Saunders, 2015). Our results suggest that, on top of 

current challenges, climate change will present further limitations to establishment of native 

perennial plants following fire in the Great Basin. Climatic aridity variables and topographic 

variables related to heat load were negatively associated with post-fire recovery in our analysis. 

Meanwhile, most climate models suggest warmer summer temperatures and are ambivalent 

regarding precipitation, which would result in more severe drought and summer aridity in the 

future (Snyder et al., 2019). Nonetheless, these patterns of post-fire stress and recovery will be 

spatially variable, underscoring the importance of recovery models that account for spatial 

heterogeneity. 

 Spatial approaches will play a fundamental role in characterizing resilience and resistance 
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in the Great Basin in the coming decades (Jeanne C. Chambers et al., 2019; Ricca & Coates, 

2020). While preliminary efforts to map resilience and resistance leverage established 

relationships between soil and post-fire recovery, future maps will be increasingly data-driven—

built upon multi-variate relationships between environmental predictors and models of post-fire 

recovery (Maestas et al., 2016). More comprehensive models of post-fire recovery than those 

established here might analyze all fires that burned in the Great Basin between 1994–2005, 

would include robust validation, and determine thresholds of post-fire recovery to produce maps 

of low, medium, and high resilience and resistance to align with the current paradigm (J.C. 

Chambers et al., 2017). Developing data-driven maps of resilience and resistance will present 

challenges, especially communicating the uncertainty implicit in model outputs. However, 

despite the hurdles, data driven approaches, as demonstrated here, are increasingly attainable by 

analysts and may present a new path forward for identifying at-risk sites and informing post-fire 

decision making. 
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