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ABSTRACT 

 

 

TRENDS AND CONTROLS ON LAKE COLOR IN THE HIGH ELEVATION WESTERN 

UNITED STATES 

 

 

 Lakes are perceived to be having an increase in algal blooms across the Western United 

States due to climate change driven and other anthropogenic drivers. Despite this perception, 

long-term records do not exist for many lakes, so looking at macroscale patterns is challenging. 

We present and discuss here our results from using a remote sensing dataset, LimnoSat-US. 

LimnoSat-US contains Landsat imagery from 1984 to 2020. In the intermountain west, our focus 

study region of Colorado, Wyoming, Idaho, Montana, New Mexico, and Utah, LimnoSat 

includes 1,200 lakes and over 150,000 summer observations of water color and reflectance. We 

used LimnoSat-US to examine what controls lake color and what, if any, changes are occurring 

lake color, which is a strong indicator of whether a lake is prone to algae blooms. A lake’s mean 

depth and annual temperature were the strongest predictors of whether a lake was, on average, 

blue and clear or green and murky. Despite the perception of increased algae blooms, we found 

no consistent evidence of lakes “greening” or shifting from mostly oligotrophic, blue, and clear 

to eutrophic, green, and murky. Instead, the vast majority of our lakes (> 80%) had no trend in 

lake color. Further, we found that our approach did not capture the dominant controls on whether 

not a lake was shifting from blue to green or green to blue, highlighting the need for additional 

work. 
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1. Introduction 

 

 

 

Throughout the Western United States, high elevation lakes and reservoirs form the basis of a 

critical water supply network for arid and semi-arid climates downstream (Wheater et al, 2002). 

Historically, these ecosystems have provided a myriad of services including aesthetic beauty, 

clean drinking water throughout the year, thriving fisheries, and other services (Messerli et al., 

2004). However, climate change poses a direct threat to these lake ecosystems in several ways: 

altering temperature regimes (Woolway et al., 2020), altering lake ice phenology (Benson et al., 

2011), and ecosystem function and biological composition (Oleksy et al., 2021). These slow, or 

“press”, changes from climate change are coupled with increasing risks posed by short, intense 

“pulse” disturbances like fires and floods (Hurteau et al., 2014). Together these press and pulse 

disturbances can interact to alter the ecology of high elevation lakes, potentially causing shifts 

from oligotrophic (clear water), diatom dominated systems to mesotrophic or eutrophic systems 

more dominated by algae (Oleksy et al., 2021). This shift could pose a major threat to the ability 

for these systems to continue to provide their vital services to downstream communities. Further, 

climate change impacts are likely to impact high elevation systems faster than others, making 

high elevation lakes sentinels of these kinds of climate induced shifts (Moser et al., 2019, 

O’Reilly et al., 2009).  

Despite the potential threat to these systems changing, there are few studies that examine 

shifts in lake ecosystems at large spatial scales. There has been focused work on change in a few, 

pristine high elevation lakes (Moser et al., 2021; Preston et al., 2016). The broad spatial and 

temporal change that is occurring in these high elevation lakes is significant, as it is part of the 

‘Great Acceleration’ of the Anthropocene (Steffen et al., 2015), where they are warming at an 

alarming rate and are found to have increased algae biomass (Olesky et al., 2017). While there 

has been recent research looking at continental scale lake change, or regional lake change in the 

arctic (Kuhn et al., 2021), there has been no such work focused on high elevation lake shifts 

(Topp, Dugan, et al., 2021; Topp, Stanley, et al., 2021). This could be because there is very little 

in-situ data at regional scales to be able to interrogate any changes in lake ecosystem functioning 

(Stanley et al., 2019).  
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Remote sensing can help address the relative lack of data across the intermountain west by 

allowing us to look back at imagery collected consistently and systematically across the world. 

Using Landsat data, we can explore water quality dating back to 1984 (Barnes et al., 2014), by 

essentially understanding the relationship between lake color and ecosystem function, a long-

studied approach to understanding lake ecology (Wang et al., 2015). Analyzing the petabytes of 

Landsat imagery, they can potentially allow us to address some of the biases that are involved in 

having little in-situ data at regional scales (Sharma et al., 2015), by means of color analysis. The 

Forel-Ule system is part of this long-studied approach, dating back to the 1890s, by analyzing 

color of bodies of water; there is a standard scale of 21 colors that classify gross biological 

activity and transparency of the water based on what the water looks like (Wernand et al., 2010). 

Further, the Forel-Ule index can be directly mapped to how humans perceive a lake’s color. This 

analysis is called “Dominant Wavelength Analysis,” which uses a combination of the blue, 

green, and red Landsat bands to estimate the color of a lake to the human eye. This wavelength 

will tell us a lot about if a lake is clear, oligotrophic, and bluer (wavelengths from 470 to 530 

nm) or green, murky, and eutrophic (wavelengths > 530 nm).  

While Landsat imagery holds promise for understanding how high elevation lakes are 

changing, it is not a perfect platform. Specifically for lakes, we want to know are they shifting 

from clear, oligotrophic systems to turbid, algae-dominated systems, with high chlorophyll a 

concentration, a correlate of algae biomass. However, while accurate predictions of overall lake 

clarity are possible at this scale (Topp et al., 2020), predicting chlorophyll a concentration with 

the full Landsat image stack dating back to 1984 is not always reliable and subject to systematic 

bias, though progress is being made on newer platforms like Landsat 8 and Sentinel 2 (Olmanson 

et al, 2008, Timing et al., 2016).  Rather than using the imagery to look specifically at 

chlorophyll a concentration, we can directly use the color of water as a useful indicator of water 

quality, as color is a strong indicator of total organic carbon (TOC), dissolved organic carbon 

(DOC) (Ouyang et al., 2006), chlorophyll-a (Cao et al., 2020), colored dissolved organic matter 

(CDOM) (Griffin et al., 2018), and suspended sediment (Dekker et al., 2001). Furthermore, 

estimating chlorophyll a concentration is critical when it comes to monitoring water quality, 

which can be seen via color in a lake; the greener the lake, the higher the chlorophyll a 

concentration is in the lake (Moses et al., 2009). 
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Here, we use Landsat imagery, specifically the LimnoSat-US dataset (Topp et al., 2021), to 

answer two core questions about lake color in the intermountain west – which includes Idaho, 

Colorado, Montana, Wyoming, Utah, and New Mexico: 

1) What drives patterns of average summer lake color in the intermountain west over 

the past three decades? 

2) How are lakes changing color and what drives these changes?  

These questions allow us to begin to understand how climate change and other disturbances are 

likely to impact lakes now and into the future, and which regions might be most vulnerable to 

change.  
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2. Methods 

 

 

 

In addition to working with Landsat data, we wanted to compare our results to in-situ 

datasets of water quality in lakes and reservoirs. However, we did not find enough data for our 

analysis, even after building the largest in-situ dataset of chlorophyll-a and other water quality 

parameters in Colorado as a test case. As such, we did not analyze this data here, but present 

some results of where data was available to contrast with the remote sensing data. The in-situ 

data was obtained from a few different sources. The first major source of data is from Northern 

Water’s water quality data. The data from Northern Water includes data dating back to 1970 for 

7 lakes. Most of this data is historic secchi data, primarily for Carter Lake and Horsetooth 

Reservoir. After contacting Denver Water, through their data request portal, 4,920 data points 

were obtained that included data dating back to 2000 for Chlorophyll-a, secchi depths, and 

turbidity, with most of the data being turbidity data. The third source of data is Pueblo Reservoir, 

which was obtained from the USGS. The data from Pueblo Reservoir includes chlorophyll and 

secchi data. The in-situ data contained both secchi depth and chlorophyll-a data for the locations 

in Colorado. 

The remote sensing data was collected from the LimnoSat-US database (Topp et al., 2020). 

LimnoSat-US is a robust collection of data that contains data for 56,792 lakes from over 328,000 

scenes of remotely sensed imagery. The LimnoSat data extracts USGS Tier 1 surface reflectance 

values over Landsat 5, Landsat 7, and Landsat 8 sensors dating back to 1984. Ongoing research 

has shown that the surface reflectance values can be used to estimate inland water quality 

(Griffin et al., 2018; Kuhn et al., 2019). All the Landsat imagery has been atmospherically 

corrected, and then adjusted so each satellite had unbiased data (Topp et al., 2020). Reflectance 

values were extracted from water pixels within 120m of the Chebyshev Center - or the ‘deepest’ 

point of a lake, where one can draw the largest circle around water in the lake (Shen et al., 2015). 

As a second protection to prevent influence from bed and nearshore land pixels, all the lakes 

looked at are greater than 0.01 km²; using lakes any smaller than this would make it harder to 

obtain a pixel in the center of the lake that does not also contain shoreline. Observations were 

removed if cloud, cloud shadow, snow, or ice were detected using the pixelQA band (Topp et al., 

2020). This allowed for each lake to have median values of each band (i.e., blue, green, red, etc.) 
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from the Landsat imagery, as well as an equation to be used to find the dominant wavelength 

(Topp et al., 2020). The dominant wavelength was quantified by looking at the human visible 

spectrum surface reflectance values (red, green, blue), then converted into chromaticity 

coordinates (Wang et al., 2015). Using the color coordinates, hue angle gets calculated and 

converted into dominant wavelength by utilizing the International Commission on Illumination 

look-up tables (Topp et al., 2021). 

With LimnoSat-US lake color, we then joined this data to the National Hydrography Dataset 

and Global Lake Area, Climate, and Population dataset (Meyer et al., 2020). These datasets 

include additional information that might explain patterns of lake color including modelled lake 

depth, area, elevation, mean annual temperature, monthly precipitation averages, population data 

for the lake basin, and other key information (Meyer et al., 2020).  Lakes with complete 

information across all these datasets, and that were above 1000 meters were included in our 

candidate analysis dataset. This included over 2000 lakes in the intermountain west.  

This dataset was further pruned to include only lakes that had at least 3 summer cloud-free 

images for 30 out of the past 35 years (1985-2020).  One important part of looking at the patterns 

of variability was determining what would be classified as summer months. It has been shown in 

previous studies that using summertime from June 15 to September 15 (Ouyang et al., 2006; 

Stanley et al., 2019) works best, showing the best seasonal correlation of water quality 

parameters across seasons. This final dataset included 1200 lakes in our region (Figure 1).  

For the analysis of median summer lake color, we binned lake observations by near decadal 

periods from 1985-1996, 1997-2008, 2009-2020. For each of these periods, we took a median of 

the Dominant Wavelength over the full period. This data was then used in a regression tree 

analysis to determine dominant controls on whether a lake was classified as bluer (wavelengths 

less than 530 nm) or more green/yellow (wavelength > 530 nm) for each decadal period. 

Regression tree analysis was performed to identify the different factors that influenced whether 

the lake’s median color was blue or green. Potential predictors included the mean annual air 

temperature (°C), mean lake depth (m), mean monthly precipitation (mm), elevation (m), 

latitude, and the area of the lake (km²). The Classification and Regression Trees (CART) method 

was used to create the decision trees, and iterated 1000 times with cross-fold validation to 

determine the optimum tradeoff between model complexity and accuracy. We chose to setup 

parameters that ensured the model would preference simpler decision trees. The CART method 
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iteratively divides the data into homogeneous groups, based on a threshold in the explanatory 

variables, while trying to minimize the residual sum of squared error (RSS) amongst the two 

groups (De’ath et al., 2002; O’Reilly et al., 2015).  

 For the long-term color trend analyses, we used mean, median, max, and min summer 

averages of lake color to explore if there were trends in any of these metrics. We used Thiel-

Sen’s slope estimator to determine the change of color over decades with a P value of 0.05 used 

to determine if there was significant change. Each lake was analyzed for all four parameters for 

trend detection and grouped into 5 possible categories: 1) No trend, when the P value of the 

Sen’s slope was greater than 0.5, all other categories had P values of < 0.05. 2) Blue -> Green, 

for lakes that started in the first decade with a DWL value of < 530 nm and a positive slope 

(going from blue to green/yellow), 3) Green -> Yellow for lakes with positive slope but were 

already green (DWL > 530 nm), 4) Green -> Blue for lakes with a negative slope value that 

started out green, and 5) Blue -> Bluer for lakes that started out blue and got more blue.   Sen’s 

slope is a non-parametric test that robustly fits lines to points. It does this by taking the median 

of the slopes of the lines through the points (Rahman et al., 2016). Sen’s slope performs well and 

is often used in meteorological time series, as well as when there is a gap in data (Yunling et al., 

2005). 
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3. Results and Discussion 

 

 

 

3.1. Geography of decadal median lake color 

After trimming our data, the final LimnoSat-US data for the region has more than 150,000 

observations for the summer months. This can be seen across 1200 lakes and reservoirs in figure 

1, over the past 36 years. When comparing this remotely sensed data to in-situ observations 

(figure 2), we can see a clear difference in the amount of available data. There are over 15,000 

observations of chlorophyll-a for the summer months, despite trying to accumulate as much 

publicly available data as possible for the state of Colorado. The 15,000 observations of 

chlorophyll a came from 38 lakes. 
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Figure 1 – Map of available LimnoSat-US lakes, where each dot represents a lake, and the color represents the actual median 

color between 2009-2020 on the Forel-Ule lake color scale. 
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Figure 2 – Map of remote sensing available data vs in-situ sampled lakes. 

To look at longer-term averages of lake color, and examine the controls on average lake 

color, the dataset was divided into 3 decades to look at summertime dominant wavelength, seen 

in figure 3. This allows us to see the change over time in the dominant wavelength to see the 

shift in color over decades, whether there was a blue-shift (to lower wavelengths) or green-shift 

(to higher wavelengths). When looking at the histograms, we can see that they are bimodal; the 

two maxima wavelengths are in the blue (450-530 nm) and green (530-590 nm). The primary 

mode is in the blue, around 490 nm, whereas the secondary mode is in green, around 560 nm. 

There are little observations in between the two, where the black bar – which divides blue and 

clear lakes from green and murky lakes – is. Comparing across these histograms we can see that 

there is no dramatic shift in lake color distributions in the past thirty years, showing relative 

stability in the region.  

 



 

10 

 

 

Figure 3 – Median dominant wavelength counts for the arid-west area, across 3 decades. The black bar divides blue/clear lakes 

on the left from green/murky lakes on the right. 

  

To determine why some colors are green and others are blue, we performed CART 

(figure 4). By focusing our analysis to only include the most important variables, we find that a 

lake’s mean depth and mean annual air temperature are strong predictors of whether it is green. 

Not surprisingly, deeper, and cooler lakes that likely have permanent winter ice cover are much 

more likely to be blue, while warmer, shallower lakes are much more likely to be green. This is 

particularly important, as it means that the lakes that are freezing, or that the freezes that they do 

have do not last very long, are more likely to be blue/clear (Hampton et al., 2016).  This can also 

be seen from the length of ice duration (Magnuson et al., 2000) and the air temperatures which 

dictate the summer stratification timing. Earlier summer stratification causes the surface water to 

warm faster in larger lakes, whereas in smaller lakes surface temperatures are impacted greater 

by the air temperature (Toffolon et al., 2014). Critically our decision tree was 78% accurate 

when assigning blue or green lake color to a set of lakes that were not used in the training 

algorithm, indicating these controls are robust across the study domain.  
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Figure 4 – Decision tree showing that mean depth and mean annual air temperature to determine whether a lake was blue/clear 

or green/murky. 

3.2. Lake color change 

All lakes were tested for trends in lake color using Thiel Sen’s Slope analysis for the mean, 

median, max, and min of lake summer color. To demonstrate this analysis for lake median color, 

we randomly selected examples of each possible lake trend and displayed these individual 

summer lake color observations, their trend, overlaid by all trendlines for lakes in that category 

(Figure 5). The majority of lakes had no trend across all statistics (min, median, max, mean), 

with roughly balanced trends in increasing dominant wavelengths and decreasing dominant 

wavelengths, showing a truly equivocal result (figure 6). While most of the examples show a 

linear trend, we see in the Green -> Yellow an example of a lake that experienced a dramatic 

short-term shift in color over only two years. This was part of the Great Salt Lake, where a 

bridge installation caused a sudden, dramatic shift in a lake from blue to deep green. Our 

approach does not account for these sudden shifts very well, but they are a strong minority of 

cases.  
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Figure 5 – An example of what the different trends look like. 
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Figure 6 – Sen’s slope of the dominant wavelength, showing the max, mean, median, and min of the 5 trend types. 
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Figure 7 – A map of the lakes and their corresponding trends. 

When examining shifts in color at the regional scale (figure 7), we can see that there are 

some clusters of change, while other areas have lakes very close together experiencing opposite 

trends. For example, in the Colorado Front Range from Denver to Fort Collins, there is a cluster 

of lakes going from green to blue or blue to bluer, whereas in the southern section of the Wind 

River range in central west Wyoming, we see a tight cluster of lakes going from blue to green. 

Still, the overall trend is that lakes are not changing color and have had consistent ecology for the 

past 36 years.  

3.3.What drives the color change? 

A decision tree (figure 8) was also made through the CART method that was aimed at 

determining what color trend the lakes were experiencing. This tree shows again that depth, and 

temperature are important drivers of lake trends, but that precipitation and elevation also play an 

important role. We tested the validity of this this tree by making predictions of trend category for 

lakes that had not been used in the training of the CART algorithm. In this validation, we found 
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that our relatively simple CART tree had almost no ability to determine which lakes were likely 

to be experiencing any color shift, it could only somewhat accurately predict which lakes would 

have no trend (figure 9). As such, while the tree is useful to look at what characteristics might 

make a lake more prone to change, it cannot help us predict what lakes are changing. The tree is 

sensitive, especially to spatial autocorrelation (Sinha et al., 2019), which we did not account for 

in our analysis, but we know is present in the data.  

 

Figure 8 – Decision tree to determine the color shift of the different lakes. 
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Figure 9 – Confusion matrix that shows the predictive outcome of the tree vs the true value of the lake. 
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4. Conclusions 

 

 

 

Most current research on summer lake color is typically on lakes that have a rich history of being 

sampled – likely because they are a significant water supply reservoir or lake (Stanley et al., 

2019). Cross-landscape studies are uncommon, which leaves us with small groupings of studies 

allowing us to understand mostly fine-scale controls on lake ecology, like at the Great Lakes 

(Soranno et al., 2014). This study allows for a larger-scale analysis looking at color across a 

landscape that otherwise would not have the in-situ data required for understanding drivers of 

change. From the analysis, we found that a large number of lakes have not experienced a shift in 

color over the past 36 years, as well as a good number of increasing lakes in greenness and 

roughly equal numbers experiencing a decrease in greenness, contrary to the perception that 

lakes are experiencing more algal blooms (and thus more chlorophyll a and greenness). This is 

happening despite well documented studies that high elevation lakes can shift their ecological 

community to more pelagic, algae dominated (Oleksy et al., 2020) and that most of these lakes 

are experiencing warming over the same time period of our study.  

Our dataset is an imperfect tool for detecting ecological changes in lakes, where any changes 

that are not represented in a lake’s color will go undetected. This could create issues where algae 

blooms really are present, but they are short and intense and are not visible to Landsat’s roughly 

8- or 16-day return sampling interval. Additionally, we constrained our analysis to the summer 

months, and it is possible that there are non-summer dynamics that have helped create the 

perception of lake algae blooms. Still, remote sensing allowed us to determine that most lakes 

are not changing color, blue lakes are cooler and deeper, and shallower, smaller, warmer lakes 

are more prone to being green and to shifting from blue to green. Additional work in this area 

should include a focus on other potential drivers of lake change like land cover shifts, population 

density, fire extent, and other pulse and press disturbances that could be altering lake color.  

These critically important high-elevation lakes may not be experiencing obvious trends in 

lake color yet, but they are likely going to be impacted by increasing climate change effects of 

changing precipitation and temperature (Oleksy et al., 2020), as found in our simple decision tree 

that indicated temperature as a dominant control of overall lake color.  
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