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Abstract 

Blocking is investigated from both an observational and a theoretical viewpoint. Clima-

tological and synoptic descriptions of blocks are summarized. A review of blocking theories 

is presented consisting of a detailed critique of multiple-equilibria and modon research. De-

spite some attractive features, both of these theories have some deficiencies as explanations 

of observed blocks. 

The main body of the work is in two parts, the first of which is a case study of block-

ing using isentropic analysis, with particular emphasis on the distribution and evolution of 

potential vorticity on isentropic surfaces. Analysis of the Montgomery streamfunction on 

an isentropic surface is preferable to the more traditional analysis of geopotential height 

on a pressure surface for describing the evolution of the horizontal structure. Vertical 

cross sections during the mature phase show little tilt with height, a warm core and a 

high tropopause. Analysis of potential vorticity indicate that the block is a broad area of 

uniformly low potential vorticity. An EOF analysis added confirmation to this while illus-

trating well the development of the block. The two components of the potential vorticity 

- the absolute vorticity and the static stability - evolve in the same way as the poten-

tial vorticity itself, becoming smaller or larger as the potential vorticity becomes smaller 

or larger. Subjective interpretation of the potential vorticity maps indicate that the low 

potential vorticity air characterizing the block originates from well south of the block. Isen-

tropic trajectory analysis verifies this and notes the relationship between the trajectories 

and the advection ahead of an intense cyclone that formed upstream of the block as the 

block developed. Selected moist trajectories are also computed. 

The second part of the work is an examination of barotropic instability in the presence 

of downstream and asymmetric cross-stream variations in the basic state. Solutions are 

obtained with the non-divergent barotropic vorticity equation linearized about an arbitrary 

basic state. When downstream variation is present, the maximum amplitude of the unstable 
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streamfunction is always located downstream from the location of maximum latitudinal 

shear. This occurs because the unstable disturbance lags in adjusting to the local instability 

characteristics. The instability is sensitive to the degree of downstream variation with 

more concentration of streamfunction amplitude in specific regions of the channel, smaller 

disturbance scales and smaller growth rates when there is strong variation that when the 

flow is more parallel. The smaller growth rate for the downstream variation case results from 

the propagating disturbance being subjected to strong shear for only a finite time before 

moving into regions of lesser shear where it cannot grow as fast. Asymmetric cross-stream 

variation has little effect on the growth rate and frequency of the most unstable mode but 

significantly affects the structure of the instability. Larger amplitude and more pronounced 

tilt opposite to the shear occur on the side of the jet with the strongest shear. This can 

be expected from a theoretical consideration of the energetics. Instabilities in the presence 

of both downstream and asymmetric cross-stream variations combine the effects of each of 

those individual kinds of variations. An eigenvalue method and a time integration method 

were used to obtain these results. They compare favorably and complement one another. A 

single non-linear calculation shows that as the disturbances grow to finite amplitude, they 

split, with high centers moving to the north and low centers to the south. The disturbances 

also increase in scale and stabilize the mean flow without removing all the downstream 

variation. 

Additional baroclinic and non-linear calculations are proposed to investigate the hy-

pothesis that the development of blocking patterns may depend crucially on whether the 

large scale flow is conducive to an instability with blocking characteristics. 
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Chapter 1 

INTRODUCTION AND REVIEW OF OBSERVATIONAL AND 

THEORETICAL BLOCKING RESEARCH 

1.1 Introduction 

Blocking events have long been recognized as significant features of the large scale flow 

in the atmosphere. They are not only theoretically interesting but of practical importance 

as well because they can influence the weather in a rather large region for a week to two 

weeks and sometimes even longer. Much attention has been devoted to documenting their 

climatological and synoptic characteristics, diagnosing what physical effects are important 

to their dynamics, and developing theories to account for these observations. In the 

following sections we review and evaluate some of this research. Section 1.2 is devoted to 

observations of blocking events, concentrating on a climatological and synoptic description 

along with diagnostic work. Section 1.3 is devoted to theories with emphasis on multiple 

equilibria concepts and modons. Conclusions and an overview of subsequent chapters is 

given in Section 1.4. 

1.2 Observations of Blocking 

1.2.1 Climatology 

It would seem wise to begin a summary of blocking studies by giving a precise defini-

tion of the phenomena. However, in spite of the recent increase in research effort devoted to 

blocks, there is no single definition that all researchers find suitable. The classic definition 

is due to Rex (1950a) who requires a blocking case to exhibit the following characteristics 

at 500mb: 

( a) the basic westerly current must split into two branches, 
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(b) each branch must transport appreciable mass, 

(c) the double jet system must extend over at least 45° of longitude, 

( d) a sharp transition from zonal type flow upstream to meridional type downstream 

must be observed across the current split, and 

( e) the pattern must persist for at least 10 days. 

This rather subjective definition can be contrasted with Dole and Gordon's (1983) much 

more objective definition of persistent anomalies which requires (for a positive anomaly) 

the normalized geopotential height deviation from a long term time mean to be greater 

than some specified magnitude M for a time not less than T days. Most other definitions 

are some modification of one of these. Despite this variety, there seems to be an informal 

consensus that defines blocks at middle and upper levels as strong, large scale, persistent 

and nearly stationary perturbations of the predominantly westerly flow. While it is com-

mon and traditional to think of the perturbations as ridges or dipole-like structure~ with a. 

ridge to the north and a trough to the south, troughs which have the above characteristics 

have also been accepted as blocks. Researchers may argue over details, but they all seem 

to have in mind a fundamental picture of what constitutes a blocking pattern. 

Blocking in the northern hemisphere tends to occur mostly in two areas: the northern 

Atlantic southeast of Greenland and the northern Pacific. The Atlantic geographical 

maximum is consistently documented (e.g. Rex, 195Ob; Treidl, et al., 1981; Charney, 

Schukla and Mo, 1981; Knox and Hay, 1985; Quiroz, 1987) . In the Pacific region there 

seems to be some minor discrepancies with Rex (195Ob) and Knox and Hay (1985), for 

example, showing a maximum around 15OW while White and Clark (1975) and Lejenas 

and 0kland (1983) document a maximum closer to 18OW. Dole and Gordon's (1983) 

positive persistent anomalies have a maximum at about 16OW. Each of these studies 

uses a different criteria for block identification which undoubtedly explains some of the 

differences. Rex acknowledges that data limitations may effect his results in the Pacific; 

other studies use different data sets yielding another source of discrepancies. It is not the 
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purpose of this summary to investigate these differences in detail; suffice it to say that 

there is a definite Pacific maximum in blocking activity. Finally, there is also a region 

of blocking activity near the Ural mountains as noted by Dole and Gordon (1983) and 

Shukla and Mo (1983). 

Blocking patterns can occur at any time of year but are most prevalent during the 

spring and winter. Rex (1950b) notes a percentage of blocking days in a month that is 

roughly twice as large during the spring and winter than the summer and fall. Analyzing 

664 blocking highs over a 32 year period, Treidl, et al., (1981) noted that 205 blocks began 

in spring, 173 in winter, 147 in summer and 139 in fall. The geographical distribution of 

blocks does not change with season (Shukla and Mo, 1983). 

The question of how often blocks occur is one that is hard to answer directly because 

of the variety of blocking definitions and techniques used to identify them. Beginning 

again with Rex (1950b), his statistics show one blocking case every two months in the 

Atlantic region and one case every four months in the Pacific. Rex's criteria are rather 

stringent so that he finds fewer blocks than in some other investigations. Treidl, et.al. 

(1981) find slightly more than two blocking events per month. These figures are averages 

and need to be adjusted accordingly for seasonal and geographical variations. 

The duration of blocking events is subjected to the same problem as their frequency 

of occurrence. Rex (1950b) and Triedl, et al. (1981) find maxima at roughly two weeks 

and twelve days, respectively. Dole and Gordon (1983) find no preferred duration for 

their persistent anomalies, noting exponential frequency decay with increasing duration 

for sufficiently long durations. 

In conclusion, the results of a climatology of blocking are a strong function of the 

methods used to identify blocking events. Nevertheless, certain general characteristics 

predominate: geographical maxima in blocking frequency in the north Atlantic and north 

Pacific, seasonal variation with maxima in spring and winter, an average of one to two 

blocking events per month with durations in the range of one to two weeks. Specific 

problems and reason for discrepancies have only been touched upon; the interested reader 

is referred to the references quoted herein for a much greater wealth of detail. 
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1.2.2 Synoptic characteristics 

Having roughly defined blocks and documented the gross features of their climatology, 

a brief overview of their synoptic characteristics is now given. 

It is the horizontal structure of blocking events that is addressed when formulating a 

definition of blocks. Thus, this structure has been defined previously as one of large scale 

perturbations to the predominately westerly flow, generally taking the form of ridges or 

dipole-like structures. Blocks have a barotropic structure in the vertical, exhibiting little 

tilt with height in their mature phase (Dole, 1986a). Strong surface highs are usually 

associated with ridging in the middle and upper troposphere. 

Dole (1986b) describes in detail the life cycles of persistent anomalies in the Pacific 

region. He concludes that they often develop rapidly, in less than a week, with little 

evidence for a precursor until just prior to onset. The anomalies have substantial tilts 

with height during development, suggesting the importance of baroclinic effects during 

this stage. Breakdown is often rapid as well. 

The dynamical balances of blocks have been studied by Mullen (1986). He used an 

anomaly type criterion to identify blocking events in a General Circulation Model (GCM). 

An advantage of using GCM output, instead of actual data, is the availability of a long 

record of high quality data containing many blocking events. The time-averaged vorticity 

and thermodynamic equations are considered. He finds that in the free atmosphere, the 

mean divergence and horizontal advection terms are the primary balance in the vorticity 

equation. The net effect of the time mean terms is to shift the block downstream. The eddy 

fluxes induce upstream movement and so oppose this tendency. In the thermodynamic 

equation, the primary balance is between the mean horizontal temperature advection and 

mean adiabatic heating or cooling. The net effect of the time mean_ terms is to maintain 

the thermal anomaly of the block. The eddies act to dissipate the thermal anomalies. 

The diabatic heating terms are small except near the surface. Finally, he suggests that 

processes affecting the vorticity balance may be more important than those affecting the 

heat balance. 
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Traveling synoptic scale storms appear to have an influence on blocking development. 

This was first documented by Berggren, et al. (1949) who show some interesting schematic 

illustrations of the effect of cyclone scale waves on the larger scale flow. Recent studies 

of this influence can be put into two categories: those which look at individual synoptic 

examples and those of a more statistical nature. The work of Colucci (1985, 1987) is a 

good example from the first category. He examines specific cases of intense cyclogenesis 

and notes their relationship to subsequent changes in the large scale flow. Intense cyclones 

located immediately upstream from a planetary scale ridge can favor development of an 

anticyclonic blocking vortex while similar cyclones upstream from a planetary scale trough 

can favor development of a cyclonic blocking vortex. When the planetary waves are 

of small amplitude, no response may be produced by cyclones. These studies can be 

contrasted with Mullen (1986, 1987) which are typical examples from the second category. 

In this type of study, the net effect of eddies on the time mean flow is calculated. Without 

going into detail, Mullen shows that the time-averaged vorticity and heat transports due to 

the transient eddies arc an important part of the overall dynamical picture of the block. 

Illari (1984) notes that the time averaged eddy fluxes of quasi- geostrophic potential 

vorticity tend to balance the mean advection of potential vorticity. Hoskins, et al. (1983), 

using the powerful diagnostic technique of EP fluxes (Edmon et al., 1980), come to similar 

conclusions. These studies are different from Colucci 's in that only the net effect of many 

transients is known; information of the effect of any individual cyclone is not available. 

Both types of studies have value, the latter giving more quantitative proof that storms 

effect blocks while the former gives individual examples of that effect. Moreover, blocks 

are complex, and while an individual storm may be crucial to the evolution of one block, 

a sequence of storms may be the major influence in other cases (Shutts, 1986). 

The general subject of scale interactions and energetics as they relate to blocking 

has been studied by Hansen and Chen (1982). They conclude that changes in ultralong 

waves during a blocking period are caused at least in part by non-linear interactions with 

cyclone scale waves. Additional work suggesting the presence of upscale transfer of energy 

as one of the differences between blocking and non-blocking periods is provided in Hansen 
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et al. (1984). More observational evidence for transient influence is found in Brown et al. 

{1986), and a numerical experiment suggesting that small scale traveling storms need to 

be resolved in order to predict blocking is given by Bengtsson {1981). In conclusion, there 

is a considerable body of evidence in support of cyclone scale waves having a significant 

impact on large-scale blocking flows. 

1.3 Theories for blocking 

Between the time of Rex's {1950a) tentative explanation of blocks as an example of an 

hydraulic jump, and the beginning of the last decade, there was little theoretical research 

devoted to blocking. This has changed with the recent appearance of numerous papers, 

possibly motivated by the extremely cold weather conditions during the North American 

winter of 1976 {Benzi and Wiin-Nielsen, 1986). Theoretical explanations for blocks fall 

into several categories; a useful review is given by Baines {1983). Benzi, Saltzman and 

Wiin-Nielsen {1986) provide a more up-to-date compilation of research results. Rather 

than attempt to summarize all this research, a critical, detailed review of two specific 

areas related to the author's interest is given. Accordingly, the following two subsections 

are devoted to multiple equilibria concepts and modons. 

1.3.1 Multiple-equilibria 

An obvious synoptic feature of blocking events, for which any complete dynamical 

theory must account, is their persistence: the large scale flow changes little over a pe-

riod of a week or longer. A plausible explanation is provided by the multiple-equilibria 

theories. These theories suggest that the state of the atmosphere tends to be, excepting 

transition times, in one of several different regimes, each characterized by a different type 

of large scale flow pattern. Very often, one of these regimes resembles blocking flow. The 

term multiple-equilibria is generally used to refer to these ideas even though equilibria sug-

gests a state with no time change. In its fullest development the theory allows not only 

for time changes associated with transitions between regimes but also for time changes 

within regimes that do not change the essential large scale character of the regime. Both 

observational and theoretical evidence exists in support of multiple-equilibria or multiple 
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regimes, though it is somewhat disputed. A review of the evidence is presented in this 

section. 

The seminal work on multiple-equilibria is due to Charney and De Vore (1979). They 

demonstrated with a simple barotropic model including topographical and thermal driving 

that more that one stable, stationary solution can exist for given external forcings. One 

of these multiple-equilibria is a high index flow with a strong zonal velocity component, 

while another corresponds to low index flow with larger wave amplitudes. They suggest 

that blocking is an example of the low index equilibria. Kallen (1981) extends the result 

to the sphere. Charney and Strauss (1980) make the extension to a baroclinic version 

of multiple-equilibria. Other studies (Hart, 1979; Wiin-Nielsen, 1979; Roads, 1980a, b) 

come to similar conclusions. 

A problem with these early theories is that the equilibria are essentially global in 

nature. For example, the flow associated with the low index equilibrium looks essentially 

like a high amplitude planetary wave. In contrast, blocking events are most often local 

phenomena-strong, wavelike perturbations exist in the blocking region but the flow outside 

that region may be much more zonal. Malguzzi and Speranza (1981) have addressed this 

problem and demonstrated the existence of equilibrium solutions with blocking like flow in 

localized regions. In their analytical approach relying heavily on perturbation expansions, 

non-sinusoidal topography replaces the single topographic wave used by Charney and 

DeVore (1979). This change leads to the localized high amplitude flows. 

Another criticism of the first theories is that they are highly truncated, or, equiva-

lently, of low order. Can multiple-equilibria still be found as this assumption is relaxed? 

Kallen (1982) integrates a high resolution barotropic model on a sphere and finds multiple 

steady states. Legras and Ghil (1985) document in detail the phase space structure of 

a similar high order barotropic model, again noting multiple steady state solutions. So 

it would seem that multiple-equilibria is not an artifact of highly truncated systems. As 

an additional comment on the question of localness, the stationary flow patterns found 

by Legras and Ghil (1985) are surprisingly realistic with local blocking structures. Thus, 

high resolution can also account for localized patterns. 
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Models with multiple-equilibria, by a strict definition of that term, cannot account for 

transitions between different types of flows: the model atmosphere eventually finds itself at 

one of the equilibria points where it stays forever. This is a consequence of the simplicity 

of the models where processes that can make the equilibrium states unstable, such as 

baroclinic instability or addition non-linear interactions arising from increased spectral 

resolution, are neglected. In more general models, the concept of multiple-equilibria is 

more accurately replaced by that of multiple regimes (Legras and Ghil, 1985). Significant 

work along these lines was done by Reinhold and Pierrehumbert {1982). By adding a 

synoptic scale wave to Charney and Strauss' {1980) low order model, they demonstrated 

the existence of multiple weather regimes. Each regime is characterized by a similar 

pattern of synoptic scale weather while the transitions between the, regimes is due to the 

behavior of the synoptic scale transient wave. The larger scales are integrally associated 

with the organized behavior of the synoptic scale. This result also lends some theoretical 

support to the observations of scale interaction noted in Section 1.2. This type of temporal 

behavior can aiso be accompiisheci if the system is stochastically forced (Benzi et ai., 

1984). In that case a model trajectory in phase space spends some time near one stable 

equilibrium state before the forcing abruptly moves it to a region near a second stable 

equilibrium state. 

The studies quoted so far lend theoretical support to the concept of multiple-

equilibria. An opposing viewpoint can be found in the papers of Tung and Rosenthal 

(1985) and Cehelsky and Tung {1987). In the former paper, the authors pose the question 

of whether multiple-equilibria still exist in high order barotropic models when realistic 

topography, zonal wind forcing and damping are used. Regarding topography, they note 

that Charney et al. {1981) find multiple-equilibria with realistic topography; however, 

they show that only one equilibria exists when more wave modes are added to the model. 

Quoting Legras and Ghil {1985), they note that the parameter domain where multiple-

equilibria can exist is reduced as more modes are taken into account. This may restrict 

multiple-equilibria to a region of parameter space that is physically unrealistic. For ex-

ample, Legras and Ghil's counterpart to Charney and DeVore's result occurs when the 
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forcing parameter corresponds to a zonal jet with speed 150ms-1. There is some dis-

,cussion and questioning of the physical meaning of forcing terms in a barotropic model. 

They conclude that some non-linear models can have multiple-equilibria but that they 

exist only for unrealistic parameter values associated with forcings that are ambiguous in 

a barotropic context. 

Cehelsky and Tung {1987) extend this critical re-examination of multiple-equilibria to 

the baroclinic case where forcing terms have a stronger physical basis. They demonstrate 

that the result of Reinhold and Pierrehumbert {1982) is an artifact of their truncation. 

Specifically, as more wave modes are added in both spatial directions, the multiple weather 

regimes disappear. Only one regime is found when all the possible non- linearities are taken 

into account. 

Tung and his co-workers do not claim to have disproved once and for all the theo-

retical existence of multiple-equilibria. Rather they have thoroughly examined the most 

commonly used models for a given set of parameters and have found only one equilib-

ria or weather regime. In conclusion, there is only tentative evidence at present for the 

theoretical existence of realistic multiple equilibria. 

Is there any observational evidence for multiple-equilibria or multiple regimes? Cer-

tainly, most meteorologists are aware that weather often tends to be generally dry for a 

period of time and then wetter for a period, or warm for a period and then colder. But 

is there quantitative evidence in support of these subjective observations? Dole and Gor-

don examined their geopotential anomalies to see of they tended to particular (possibly 

multiple) "preferred" values. They found no convincing evidence of such behavior. A 

similar viewpoint is borne out in most of Hoskins and Pearce (1983). In contrast, Sutera 

(1986) found that a measure of planetary wave amplitude exhibited a bimodal distribution. 

Hansen {1986) documented that the mode with larger wave amplitude had blocking char-

acteristics similar to those found by Rex {1950b). Hansen and Sutera {1986) confirmed 

this result with a larger data set. 

Thus there is some observational evidence for multiple quasi-equilibria; however, it 

disagrees with the original theory proposed by Charney and Devore (1979). That theory 
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predicts bimodal distributions not only for the wave amplitude but for the mean zonal 

wind as well. The observational evidence does not support bimodality in the zonal wind 

(Hansen and Sutera, 1986). These results have been partially reconciled by the work of 

Benzi, et al. (1984, 1986) who added wave-wave interaction to the Charney and DeVore 

model in such a way as to produce multiple values of the wave amplitude for the same 

value of the mean zonal wind. (See also Speranza, 1986.) Tung and Rosenthal (1985) also 

register some disagreement with this school of thought. 

An interesting paper that examines the connection between statistical techniques to 

find multiple regimes and dynamical modelling is Mo and Ghil (1987). They analyze 

both a southern hemisphere geopotential height data set and the results of the Legras 

and Ghil (1985) model using Empirical Orthogonal Functions (EOF's). Multiple regimes 

exist in both the observational data set and in the model results. They conclude that the 

interpretation of EOF's in the context of non-linear dynamical models is that they point 

from the time mean (possibly never realized in either the model or the atmosphere) to 

the most populated regions of phase space. This means that tn.e dominant :i!;C,F patterns 

are associated with the multiple regimes. This paper is very useful in describing how 

rather complicated non-linear theory permits interpretation of the statistics of observed 

low frequency variability while in turn showing how the statistical methods can shed light 

on the dynamics. 

In conclusion, there is observational evidence for the existence of multiple quasi-

equilibria in the atmosphere. Finding the evidence involves looking at the right quantities: 

bimodality is more likely to be observed in a global parameter such as wave amplitude 

than in a point measure of some variable such as geopotential height anomaly. The 

observational evidence is not always in agreement with theory, but research seems to be 

bringing the two together. 

The dynamical systems approach, to give a mathematical term to the concepts dis-

cussed in this section, holds a lot of promise for understanding the low frequency variability 

of the atmosphere and hence for increasing our skill in long range forecasting of phenom-

ena such as blocks. This view essentially explains low frequency variability as the result 
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of the inherent internal variability of the atmosphere. Changes in external parameters 

such as sea surface temperatures are not needed. In the last resort, what is an internal 

process and what is an external process is a function of the complexity of the model: a 

coupled ocean-atmosphere model, for example, may predict sea surface temperature from 

knowledge of other atmospheric and oceanic variables, thus making sea surface temper-

ature variations part of the internal dynamics. The dynamical systems approach is also 

non-linear by nature. Only non-linearity in some form can induce the internal variability 

and multiple regimes that have been discussed. Moreover, this approach aids in under-

standing GCM results in those cases where linearization is not appropriate. Finally, this 

way of thinking suggests that although individual synoptic storms within a regime may 

not be predictable beyond a week or ten days, the statistics of each individual regime 

may be predictable. In conclusion, the dynamical systems approach is not without its 

problems, but it holds a lot of promise for understanding phenomena such as blocks. It is 

appropriate to end with a quote from Charney and DeVore {1979): 

" ... a stochastic, dynamical system approach, in which the location of equi-

librium points, attractor sets, stable and unstable limit cycles, etc., and the 

study of the stochastic forcing of the system by various instabilities will be-

come a useful tool for the investigation of large scale atmospheric phenomena. 

We believe that this approach can lead to a better understanding of large scale 

variability, predictability and climate. To know that a system is in the attrac-

tor basin of a stable or metastable equilibrium is to know that it will remain for 

a time. To know that a system is in a state of transition is to know that it will 

change more rapidly and be less predictable. Climate itself becomes a ques-

tion of distributions among possible equilibrium states, and climate variations 

a matter of how boundary changes lead to altered distributions." 

1.3.2 Modons 

The multiple-equilibria theories attempt to account for one obvious synoptic feature 

of blocks; namely, their persistence. Another synoptic feature, common to many blocks, 
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is a localized, dipole structure in the horizontal with a high pressure region located north 

of a low pressure region. Solitary eddies, or, more colloquially, modons, offer a promising 

explanation for both these features. Modons are steadily propagating, localized, shape 

preserving solutions of fluid dynamics systems. The early work on modons is due to Stern 

(1975), Larichev and Reznik (1976) and Flierl, et al. (1980). Several steps are needed to 

establish an equivalence between modons and blocks. First, models which have modon 

solutions must be shown to be relevant to the real atmosphere. Second, there must be a 

way to make a steadily propagating modon stationary in a westerly flow such as exists in 

the real atmosphere. Furthermore, modons must be shown to remain reasonably coherent 

in the presence of sheared flow and smaller scale turbulence. Finally, modon generation 

must be addressed: how can a modon be formed from a flow that does not already contain 

one? 

We first address the question of model relevance. The equivalent barotropic vorticity 

equation (hereafter called the EBVE) is the model equation that has been applied most 

f 1 .. d 1· . , . , , . , . • . J , , • k ,,_,. ,v·•·. requent y to s11u y exp 1c1t1y Lut: i'1::i.at1oi1::11uv u1::11w1::1::u n1ouoi:i::1 ailu ul.ot; s l1v1c n J..luc1.n1~, 

1980; Baines, 1983; Haines and Marshall, 1987). This equation may be written 

(3 .1) 

where t/J is the streamfunction, f3 is the northward derivative of the coriolis parameter 

and k is a constant (which in an appropriate context is a Rossby radius of deformation) . 

The difference between the EBVE and the barotropic vorticity equation is that the k 2t/Jt 

term is absent in the latter. A valid interpretation of (3 .1) is that it represents the quasi-

geostrophic flow of a homogeneous shallow water fluid . Alternatively, it represents the 

flow of the internal vertical mode in a two layer quasi- geostrophic stratified atmosphere 

with rigid boundaries at top and bottom. Neither of these physical interpretations are ap-

propriate to the study of blocks. As originally used, the equation represented an empirical 

correction to the barotropic vorticity equation that allowed for better prediction of long 

wave movement (Cressman, 1958). The traditional derivation is to vertically average the 
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quasi-geostrophic vorticity equation under the assumption that the streamfunction is sep-

arable in its vertical and horizontal dependence (Thompson, 1961). McWilliams (1980), 

who treats the derivation of the EBVE in some detail, notes that the problem with this 

approach is that it gives a value for k which is different than that required for the best 

prediction of long waves. When the technique is modified to take into account the thermo-

dynamic equation, the value of k is consistent, but other inconsistencies are introduced. 

To avoid these problems, McWilliams (1980) offers an alternate derivation involving an 

expansion and projection of the quasi-geostrophic equations with empirically determined, 

orthogonal, vertical modes of the atmosphere. The most severe truncation of the resulting 

equations, where only one vertical mode is kept in the expansion, yields the EBVE. The 

value of k is consistent with the best prediction values and vertical averaging and the 

assumption of separability are avoided. The gravest empirical mode for geopotential has 

a variable amplitude with height, but does not change sign, so that the model represents 

an appropriate vertical structure for blocks. This approach seems to correct the defects 

, of the previous interpretation, yet we believe some problems still remain. Mc Williams 

claims that his procedure has the advantage of being based upon a complete set of basis 

functions; however, only one function is kept to arrive at the EBVE. The inclusion of addi-

tional basis functions would couple all the vertical modes together through the non-linear 

terms so that a flow initially containing only the gravest mode would eventually evolve 

into a much more complicated vertical structure. In conclusion, the variety of derivations 

and interpretations of the EBVE casts some doubt on its validity. We feel that there 

are still conceptual difficulties in deriving this model and interpreting it in terms of an 

atmosphere with vertical structure. 

Accepting for the moment the relevance of the EBVE, we now turn to the problem 

of making equivalent modons stationary in a westerly background flow. In the last resort, 

this is done by doppler shifting the modon to a zero phase speed, but there are several 

subtleties that need to be taken into account Steadily translating solutions of the EBVE 

satisfy 

(3.2) 
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where we have assumed 1/J(x, y, t) = 1/J(x - ct, y). Modon solutions are derived from this 

starting point. In this case, the solution corresponds to an isolated dipole propagating 

uniformly to the west (for c < 0) in zero background flow. The interested reader is referred 

to Flierl et al. (1980) for details. Now suppose we separate the streamfunction into a part 

corresponding to constant westerly flow and a perturbation part by writing 1/J = -uy+ 1/)1• 

Substituting into (3.1) and looking for stationary solutions yields 

(3.3) 

or, after some manipulation, 

(3.4) 

Neither of these is mathematically equivalent to (3.2) showing that it is not possible with 

the standard EBVE to doppler shift an westward moving modon to zero speed by adding 

a westerly background flow. As Mc Williams states it, the EBVE is not Galilean invariant 

with respect to a coordinate transformation from a stationary to a moving reference frame. 

There are solutions to this problem. Mc Williams (1980) shows how his vertical mode 

expansion method can be extended to include a zonal mean flow. Also, the traditional 

derivation can be modified by first writing the streamfunction as a sum of mean and 

perturbation parts and then making the standard separability assumption on only the 

perturbation part (Haines and Marshall, 1987). The result of both methods is a new form 

of the EBVE given by 

(3.5) 

Stationary solutions to this satisfy 

(3.6) 

which is mathematically equivalent to (3.2). Thus, the EBVE can be modified so that 

westward moving modons can be doppler shifted to zero by a uniform westerly wind. 



15 

The model defined by (3.5) has been used by McWilliams {1980) to study the con-

sistency between modon dynamics and an observed blocking event in the north Atlantic. 

Very rough correspondence is found. A particular difficulty is that the vertical structure 

of the mean wind must be more barotropic than that of the block in order for modon 

solutions to exist. This seems questionable in the real atmosphere because blocks often 

form near regions of high baroclinicity and hence large vertical wind shears. There is 

also the problem of defining from observations exactly what is meant by the mean wind. 

Theoretical considerations dictate that it be the flow far away from the modon, but this 

flow is unlikely to be purely zonal. Mc Williams also notes that there is a certain amount 

of transience associated with blocking structures: the structure may look like a modon 

in a time averaged sense, but instantaneous maps show a distorted pattern reflecting the 

influence of transients. 

The problem of the vertical wind structures is addressed briefly by Baines (1983). 

He first modifies Mc Williams' version of the EBVE to allow for topography and diabatic 

heating. When diabatic heating alone is considered he finds that the constraint requiring 

the mean flow to be more barotropic than the modon can be relaxed while still allowing 

for an appropriate modon solution. The dynamic balances imply a certain spatial pattern 

of diabatic heating. This pattern need not be overly complex; in fact, he argues that a 

rather simple and observable sea surface temperature pattern may be sufficient to account 

for it. Therefore, by adding some external forces, some of the inconsistencies between 

modons and observations of blocks can perhaps be rectified. Baines' work is by no means 

a complete theory in this respect, rather it suggests some possible directions. 

The problem with transients is addressed in some detail by Haines and Marshall 

(1987). They apply the modified EBVE as discussed above. In one of their experiments, 

the model is initialized with a stationary analytical modon solution. Waves are generated 

by a wavemaker upstream from the modon. The result is quite realistic: tongues of 

potential vorticity are advected around the modon which also entrains some of this air 

and continuously fluctuates in position and structure. Sufficiently intense eddies may break 

down the vortex structure. The behavior is very realistic and consistent with instantaneous 
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maps of potential vorticity documented by Shutts (1986). This research clearly addresses 

and solves the transient problem with which McWilliams was concerned. 

We have made some preliminary calculations with the EBVE addressing the observed 

dynamical balances of blocks. It was noted in Section 1.2 that the time mean terms in the 

vorticity equation want to move a block downstream while the effect of the eddies opposes 

this tendency. In an effort to simulate this process, we linearized the EBVE about a 

basic state containing a modon embedded in westerly flow and noted the pattern of eddy 

potential vorticity flux divergence produced by a series of waves impinging on the modon. 

Then we used the flux divergence pattern as forcing in the non-linear model to see if a 

modon with an eastward propagation speed could be held stationary. The results were 

encouraging: although the forcing distorted the modon structure somewhat, the tendency 

for eastward propagation could be reduced. 

We summarize this research on the EBVE and modons by noting first, that nearly all 

studies that attempt to relate modons to blocking do so in the context of the equivalent 

barotropic mociel. Second, the model must be modified to allow for stationary modons 

to exist in westerly background flows as observed in the atmosphere. Third, conceptual 

difficulties regarding vertical wind structure and transient influences can be overcome. 

However, all this work must be evaluated in light of the questionable relevance of the 

equivalent barotropic model to the real atmosphere. Some of the results obtained with 

this model are realistic, but we must see if these results hold for more justifiable models 

before we can believe in a strong correspondence between modons and blocks. 

Modon solutions have been found for several other models. Pure barotropic modons 

are solutions to (3.1) for k = 0. They were originally documented by Stern (1975) and 

Larichev and Reznik (1976) . Flierl, et al. (1980) discuss them in the context of a two 

layer model. In contrast to equivalent modons, which can propagate to the east or west, 

barotropic modons, as originally formulated, can only move to the east . Therefore, they 

can only be doppler shifted to zero speed by a mean easterly flow uncharacteristic of middle 

latitudes. Furthermore, barotropic modons have a low north of a high, in contrast to ob-

served dipole blocks. These characteristics preclude the association of these modons with 
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blocking events. Thus, it seems that in the context of barotropic theory, pure barotropic 

modons are untenable as a description of blocks, and equivalent modons describe some 

blocking features well, but come from an equation of questionable relevance. A solution 

to this dilemma has been provided recently by Verkley (1987) who derives a barotropic 

modon with appropriate north-south structure that can be stationary in westerly back-

ground flow. He accomplishes this by relaxing somewhat the degree of localness required 

in the solution so that the modon is less isolated and resembles more a Rossby-Haurwitz 

wave. This is not a drawback of the theory; instead, it is probably more realistic than 

the original result because blocks are more complicated than isolated dipoles embedded 

in an otherwise zonal flow. Unfortunately, Verkley concludes that some examples of his 

stationary modons are unstable to small perturbations, but suggests that other regions in 

"modon parameter space" may have better stability properties. 

Baroclinic modons have been thoroughly studied by Flierl, et al. (1980) in a two layer 

quasi-geostrophic model. Using a multi-level model is an obvious way to circumvent the 

problems associated with the various barotropic models. However, Flierl, ei; al. find no 

two layer solutions that are appropriate as models of blocks. Either the modons have a 

baroclinic vertical structure where the geopotential anomaly changes sign with height, or, 

in the case of pure barotropic modons in the two layer atmosphere, they move only to the 

east. Neither situation is consistent with observations as blocks have a nearly barotropic 

vertical structure and are relatively stationary in a westerly background flows. Perhaps 

some of this incompatibility can be overcome in light of Verkley's (1987) results quoted 

above. Any solution to the barotropic vorticity equation is also a solution to the two layer 

quasi-geostrophic equations if the streamfunction in each layer is given by the barotropic 

streamfunction. Thus the two layer model admits a solution where the flow in each layer 

is described by Verkley's modon. However, this is not a particularly interesting solution 

because it uses a baroclinic model when none of the flow is baroclinic. Yet this approach 

might be a starting point for including mean winds with vertical structure 

Modons are robust in the sense that they exist in a variety of geophysical systems. 

The original beta plane solutions of Flierl, et al. (1980) have been extended to the sphere 
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by Verkley (1984) and Tribbia (1984). Verkley (1987) derives his modified modons on 

the sphere as well. Swaters (1986) discusses the interaction of modons with topography 

starting with the purely barotropic eastward moving modons. He shows that as the 

modon moves into a region of shallower fluid, its speed decreases and its streamfunction 

and vorticity fields amplify. He suggests that topography can interact with a modon to 

capture and amplify it and hence lead to a blocking-like state. While topographic-modon 

interactions are inherently interesting, we would argue that blocks do not occur directly 

over mountain regions. Furthermore, his model admits only the unrealistic eastward 

moving modons with a low north of a high. Extensions of his theory to more realistic 

situations is necessary. 

It is also appropriate to mention what Flierl, et al. (1980) call "riders" . These are 

streamfunction fields that can be added to the basic modon without affecting the evolution. 

Their significance is that they are radially symmetric and so can dramatically alter the 

appearance of the radially asymmetric basic modon. Because of this, features which are 

actually modons may go unobserved. 

Robustness of modons must be teste~ in another sense, that of stability to small 

perturbations. McWilliams, et al. (1981) have studied this for barotropic modons. Small 

amplitude perturbations do not affect the modons, but sufficiently strong perturbations 

can destroy them. The critical _amplitude for destruction is a function of scale with larger 

scale perturbations being more efficient in destroying modons than smaller scale perturba-

tions. The analytical work of Pierini (1985), set in the framework of equivalent barotropic 

dynamics, lends theoretical support to these numerical calculations. Mc Williams, et al. 

also study the influence of dissipation with the result that dissipation causes a decrease in 

modon amplitude and propagation rate and an increase in meridional scale. These studies 

indicate that modons are relatively robust phenomena, but more work should be done, 

especially regarding robustness of baroclinic modons. 

Robustness in the presence of horizontally sheared flow has also been investigated. We 

have done some preliminary calculations which show that equivalent modons in weak jet-

like flow remain coherent on time scales of 10 days. Analytic equivalent modon solutions in 
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the presence of weak linear shear have been found by Swenson (1986). Sheared flow does 

not inhibit the existence of modons. As relevant baroclinic solutions become available, 

they should be tested for robustness to horizontal and vertical shear. 

Finally, we address the question of modon generation. How can a modon evolve from 

a flow which does not already contain one? It is unlikely that coherent structures with 

exact physical balances of analytic modons can evolve from any flow: the analytical so-

lution is too specific. The best we can hope for is the generation of vortex pairs similar 

to modons. McWilliams (1983) has suggested that modons can be generated from the 

interaction between two monopoles. Haines and Marshall (1987) suggest a less abstract 

mechanism. In the context of a transient/block interaction experiment they first compute 

the pattern of eddy potential vorticity flux divergence, V • v' q1, obtained by allowing lin-

earized eddies generated by a wavemaker to propagate through a mean flow containing a 

stationary equivalent modon. Here, v' is the eddy vector velocity and q' the eddy potential 

vorticity. The eddy flux divergence pattern is then used to force the non-linear EBVE 

with no modon in the initial condition. Some Ekman dissipation is also included. The 

result is the generation of a local dipole structure with closed streamfunction contours 

whose intensity is limited by the friction. The relationship between the potential vorticity 

and the streamfunction is very similar to that for analytic equivalent modons. The dipole 

is not exactly steady: there is some time evolution. They conclude that a striking aspect 

of their study is the ease and vigor with which non- linear dipole structures can be excited 

by appropriate non-linear forcing. However, we believe their argument is somewhat cir-

cular: certain forcing patterns can generate modon-like features, but the forcing patterns 

themselves come from the effect of eddies impinging on an already existing modon. Their 

study is very intriguing in its suggestion that modons can be easily forced by eddies, but 

some sort of localized dipole structure must exist in order that the eddies can do the right 

thing. Perhaps eddies impinging on a weakly diffluent flow can enhance a split jet and 

lead to a dipole structure. In any case, it seems as though modon-like features can be 

excited, but you "have to have one to get one". 

We are attracted by the idea that eddies can generate modons. This hypothesis is 

relevant to Colucci's (1987) work mentioned previously. It is conceivable that one or 
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more intense synoptic scale storms can transform a wavy large scale flow pattern into 

a localized dipole structure where modon dynamics can then account for its coherence 

and persistence. But much more work needs to be done along these lines; we believe the 

generation of modons is a pressing problem that is not well understood. 

Before concluding, the work of Pierrehumbert and Malguzzi (1984) deserves mention. 

Using the EBVE they show that if an inviscid and unforced system has a closed streamline 

solution (such as a modon), then a weakly forced and damped system can possess both 

a high amplitude localized state and a zonal state for the same forcing. This suggests a 

sort of localized multiple-equilibria where global resonances involving topographic waves 

are not required. The high amplitude state predicted by this theory essentially explains 

Haines and Marshall's result quoted above. 

In conclusion, modons are appealing as an explanation of the localized, persistent, 

dipole structure of some blocks. Most research relating modons to blocks has used the 

equivalent barotropic vorticity equation which we think is of questionable relevance to 

the real atmosphere. Never~nele:s:s, modon soiutions to this equation can Den.ave quite 

realistically. The modon concept has been extended to the sphere and to include the 

influence of topography. A particular problem with the non-existence of stationary, pure 

barotropic modons in a westerly background flow has been recently solved. Baroclinic 

modons in a two layer model have been derived but have a vertical structure inconsistent 

with blocks. Modons are relatively robust to perturbations. Finally, much more work 

needs to be done to understand how modons are generated. It seems to us that the 

modon concept is useful and, at the same time, limited. The usefulness is in showing 

that reasonably relevant equations can have localized, dipole solutions. This is helpful for 

broad, speculative thinking such as saying that the observed behavior of blocks can be 

explained, at least in part, by internal, non-linear dynamics. But where does one go from 

here? Formation of blocks is a pressing problem and no combination of processes is likely 

to generate an exact, analytical modon. Aside from suggesting the rather general idea 

that blocks are non-linear, coherent structures, do modons really have relevance beyond 

the simple fact that they can exist? 
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1.4 Summary and Overview of Subsequent Work 

We have reviewed research relating to observations of the blocking phenomenon. Re-

cently there has been a renewed interest in isentropic analysis as a useful observational 

tool, specifically in regard to the analysis of potential vorticity on isentropic surfaces. 

However, this tool has not been widely applied to the study of blocks. This, briefly, is the 

motivation for Chapter 2 which reports on the results of a case study of blocking using 

isentropic analysis. 

We have also reviewed in some detail two particular theories for blocking: multiple-

equilibria and modons. Both were found to have some deficiencies which question their use 

as models for blocking. Therefore, we considered a third prominent theory for blocks which 

suggests that they are the result of instabilities of the large scale flow. The sensitivity of 

the instabilities to variations in the basic state might explain why blocking flows develop 

in some situations and not in others. Chapter 3 documents some of this sensitivity for 

the preliminary case of barotropic instability. Chapter 4 summarizes our train of research 

ideas and results, and suggests plausible directions for future study. 
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Chapter 2 

A CASE STUDY OF ATMOSPHERIC BLOCKING USING ISENTROPIC 

ANALYSIS 

2.1 Introduction 

Short term climatic events, such as blocking, have been of significant interest recently. 

By restricting the passage of cyclonic storms and their associated fronts through a given 

region, a block can influence the weather in that region for a week to ten days, sometimes 

even longer. Thus blocks are important because of the impact they have on medium range 

weather forecasts. 

Most synoptic blocking studies {e.g., Rex, 1950; White and Clark, 1975; Colucci, 

et.al., 1981; Hansen and Chen, 1982; Illari, 1984; Colucci, 1985; Dole 1986) focus on the 

horizontal structure of blocks as seen on constant pressure maps, typically, geopotential 

at 500mb or 300mb and temperature at 850mb. Much has been learned from these studies 

about the characteristics that make blocking unique. First, blocks are relatively stationary, 

fluctuating only a few degrees about a central longitude. Second, they frequently have a 

meridional dipole structure with a high north of a low. (This is most common in North 

Atlantic blocks.) Finally, they persist for a long time compared with synoptic scale weather 

events and, once formed, are not easily destroyed by transient, synoptic scale disturbances, 

although such disturbances may play an important role in their maintainance ( e.g., Illari, 

1984). 

A distinctly different synoptic approach is that of isentropic analysis. This technique 

was originally introduced by Rossby and collaborators in the late 1930's (e.g., Rossby, 

1937; Namias, 1938) and has undergone a recent resurgence of interest not only for synoptic 

applications (Uccellini, 1976) but also for dynamical/ theoretical applications (Hoskins, 

et. al., 1985). However, it has not been frequently applied to blocking flows. 
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Isentropic analysis has several advantages over conventional pressure analysis. First, 

individual air parcels remain on isentropic surfaces in the absence of diabatic effects. Thus, 

isentropic analysis is a convenient framework for trajectory calculations. Also, analysis of 

moisture advection on an isentropic surface is often more revealing than on an isobaric 

surface and can lead to better prediction of thunderstorms (Namias, 1938; Uccellini, 1976). 

But, perhaps most importantly, isentropic analysis is the best way to examine the potential 

vorticity, first derived by Ertel (1942), and given by 

Here, fa is the absolute, three dimensional vector vorticity, p the density and O the potential 

temperature. The potential vorticity is significant for several reasons. 

1. An air parcel conserves its potential vorticity as it moves about if frictional and 

diabatic effects are absent. These two constraints are difficult to satisfy yet are less 

restrictive than the conservation constraints on say, absolute vorticity or circulation. 

2. The potential vorticity combines both the wind and mass fields into one quantity. 

This is in contrast to other sometimes conserved quantities like vorticity and circula-

tion, which are kinematic-related only to the wind field, or potential temperature, 

which is related only to the mass field. 

3. The distribution of potential vorticity controls the time evolution of many large scale 

dynamical processes and makes the dynamics highly visible. For example, Rossby 

wave propagation is related to the latitudinal gradient of potential vorticity. Also, a 

necessary condition for baroclinic instability (in the absence of surface temperature 

gradients) is that the northward gradient of the zonally averaged potential vorticity 

be less than zero. In the words of Mein tyre and Palmer ( 1984), maps of the potential 

vorticity "are fundamentally the simplest and most useful way in which to visualize 

large scale dynamical processes." 

4. Points (2) and (3) say that the distribution of a quantity combining both the wind 

and mass fields is a control on the evolution of many large scale processes. The 
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connecting link between these two points is the invertibility principle, discussed 

in depth by Hoskins, et. al., (1985). This principle states that knowledge of the 

potential vorticity distribution plus specification of boundary conditions, a reference 

state and a balance condition (such as quasi-geostrophy), is sufficient to determine 

both the wind and mass fields. It is the baroclinic analogue to obtaining the winds 

from the vorticity field in a barotropic fluid. The invertibility principle is a powerful 

concept because it allows the dynamicist to look at all the controlling physics at 

once and yet be able to separate that physics into its wind related and mass related 

components. 

To see why the potential vorticity is best examined isentropically, note that with the 

hydrostatic approximation, the potential vorticity may be written in the two equivalent 

forms 

P- _9 {- av (ao) + au (ao) + [ (a") 
- 8p ax P 8p By P ax P (au) + i] ao} , ay p ap {1.2a) 

or, 

(~),- (~), +/ 
p = ------=--.......... ---¼; {1.2b) 

where u is the eastward velocity, vis the northward velocity,/ the Coriolis parameter, g the 

acceleration of gravity and p the pressure. Subscripts indicate which vertical coordinate 

is held constant during differentiation. In either case, for adiabatic and frictionless flow, 

the potential vorticity is conserved following the motion, i.e., 

(1.3) 

It is easily seen that the isentropic form for P (1.2b) is a mathematically simpler expression 

than the isobaric form (1.2a). But more importantly, predicting local changes of potential 

vorticity in isobaric coordinates requires knowledge of the vertical velocity w (= dp/dt). 

This is because individual air parcels do not generally remain on a pressure surface. In 

isentropic coordinates air parcels do remain on an isentropic surface ( again in the absence 
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of diabatic effects) so that knowledge of only the horizontal wind field is necessary to 

predict local changes. For these reasons potential vorticity is best examined on isentropic 

surfaces. 

This paper presents a case study, using isentropic analysis, of a blocking event that 

occurred over the North Atlantic in December of 1978. The results indicate that, for this 

block, isentropic analysis is preferable to the traditional pressure analysis for describing 

the evolution of the block. Both synoptic and dynamic understanding of the block is 

complemented and deepened by analysis of isentropic potential vorticity, and isentropic 

trajectories aid in visualizing the flow of air during the blocking period. Section 2.2 

describes the methods of data analysis. The synoptic evolution of the block is shown in 

Section 2.3; isentropic and isobaric representations are compared. Section 2.4 presents 

the analysis of the potential vorticity on isentropic surfaces. Section 2.5 shows the results 

of some trajectory calculations and Section 2.6 contains the summary, conclusions and 

speculations on the nature of blocking. 

2.2 Data Analysis 

Isentropic analysis requires the construction of an isentropic data set consisting of 

gridpoint values of pressure, winds and the Montgomery streamfunction M = cpT + gz on 

a set of specified levels of constant potential temperature O. Here, z is geopotelitial height, 

Tis temperature and Cp is the specific heat of dry air at constant pressure. National Me-

teorological Center gridpoint data, available from the National Center for Atmospheric 

Research, was used to build this isentropic data set. Temperatures, geopotential heights 

and horizontal velocities at 12 hour intervals on 2.5 degree latitude by 2.5 degree longi-

tude grids at lO0mb, 150mb, 200mb, 250mb, 300mb, 400mb, 500mb, 700mb, 850mb, and 

lO0Omb were collected for the period 16-30 December, 1978. Analysis was performed only 

for the Atlantic region 20N-87.5N, 100W-20E. The vertical profile of potential tempera-

ture was calculated at each gridpoint and checked for superadiabatic layers. When such 

layers occurred, the average value of (J in the layer was calculated and the (J at the top 

of the layer was replaced by the average value plus 0.2K and the (J at the bottom by the 
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average minus 0.2K. If the correction caused adjacent layers to become superadiabatic, the 

technique was applied to those layers. The process was repeated until no superadiabatic 

layers remained. Less than 0.5% of the fJ profiles needed this correction. 

Linear interpolation in lnp and the bisection iterative method (see e.g., Conte and 

deBoor, 1980) were used to find the pressure at fJ levels in SK increments between 400K 

and 250K. The u and v winds were then interpolated to these fJ levels. The Montgomery 

streamfunction was calculated at each isentropic level by first calculating its value at 

500mb and then integrating, both upward and downward, the hydrostatic equation 

(2.1) 

where 1t = R/ Cp ( R is the gas constant) and poo is a constant reference pressure ( taken to be 

l00Omb). This method ensures that the geostrophic wind, proportional to the horizontal 

gradient of M, is determined as accurately as possible. If, for example, M is calculated 

by evaluating T from p and fJ using Poisson's equation and interpolating z to a given fJ 

surface, the consistency between the two terms in M, imposed by the hydrostatic and 

Poisson equations, is ignored. Following Danielson (1959), large errors in the calculated 

geostrophic winds can then result. With M properly evaluated, the isentropic data set is 

complete: u, v, p and Mare known as functions of x, y, fJ and time t. 

2.3 Synoptic Analysis of the Block 

The 300mb geopotential height and the Montgomery streamfunction at 315K for sev-

eral times during the blocking episode are shown in Figures 2.1 and 2.2, respectively. For 

orientation, the pressure on the 315K surface typically ranges from approximately 

600mb at 20N to 250-300mb in the region 60-80N. On 16 December at 1200 UTC a ridge 

is present in both fields in the east-central Atlantic with relatively zonal flow upstream. 

By 1200 UTC on 18 December, this ridge has moved eastward and a strong trough has 

developed off the coast of North America with a second ridge just downstream. Both 

the trough and the second ridge intensify so that at 1200 UTC on 21 December a strong 

blocking high is present in the north-central Atlantic with a closed contour on the stream-

function map. The classical dipole structure described by Rex (1950) is evident at 1200 
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Figure 2.1: The 300mb geopotential height in meters for (a) 1200 UTC, 16 December, (b) 
1200 UTC, 18 December, (c) 1200 UTC, 19 December, (d) 1200 UTC, 21 December (e) 
1200 UTC, 25 December and (f) 1200 UTC, 29 December. Latitude/longitude lines are 
drawn at 20 degree increments. 
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Figure 2.2: The 315K Montgomery streamfunction in units of 103m2s-2 for ( a) 1200 UTC, 
16 December, (b) 1200 UTC, 18 December, (c) 1200 UTC, 19 December, (d) 1200 UTC, 
21 December (e) 1200 UTC, 25 December and (f) 1200 UTC, 29 December. 
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UTC on 25 December. The block occupies most of the area between the latitudes 60N 

and 80N and the longitudes OW to 80W. By 1200 UTC on 29 December this structure 

has weakened. At the end of the month the block no longer exists. The evolution of this 

block is also described by Hansen and Chen (1982) who studied its energetics, focusing on 

the interactions between different scales. The block has also been successfully simulated 

by the ECMWF model as reported in Ji and Tibaldi (1983). 

The evolution at other levels was also investigated. The streamfunction patterns at 

350K, 330K, and 300K were qualitatively similar to that described above for 315K. The 

sea level pressure patterns from the NMC data are shown in Fig. 2.3. On 16 December, 

a strong low pressure system is present off the southwest coast of Greenland. This system 

moves eastward and on 18 December is centered over western Iceland while another intense 

storm is present over southeastern Canada, associated with the strong upper level trough. 

By 21 December, Iceland is under the influence of a surface high and a third storm is 

building over the province of Quebec. Finally, by 25 December, the Rex dipole structure 

c:1.t upper levels is mirrored at the surface where an east-west band of low pressure at the 

latitude of England is located south of a region of higher pressure centered over eastern 

Greenland. This high pressure region is breaking up by 29 December with the blocking 

area experiencing the passage of a strong cold front (not shown). 

Blocks are so-called because synoptic storms are "blocked" from entering a certain 

area so that that area does not experience frontal passages. This was convincingly illus-

trated for a block in February 1948 by Petterssen (1956) who prepared charts showing 

the positions of fronts for a ten day period preceeding the block and a ten day period 

during the block. Applying this technique to the block under study here, frontal positions 

for a 7 day period during the block and a 7 day period preceeding it are shown in Fig. 

2.4. It is clearly seen that the blocking region is indeed devoid of fronts. Futhermore, 

this region corresponds well with the position of the cutoff high on the 300mb and 315K 

streamfunction charts. 

North-south and east-west cross sections through the mature stage of the block are 

shown in Fig. 2.5. Note that the block is warm core throughout most of the troposphere 
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Figure 2.3: The sea level pressure patterns in mb for (a) 1200 UTC, 16 December, (b) 
1200 UTC, 18 December, (c) 1200 UTC, 19 December, (d) 1200 UTC, 21 December (e) 
1200 UTC, 25 December and (f) 1200 UTC, 29 December. 
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Figure 2.4: Frontal positions at 0600 UTC for (a) 10-16 December, 1978 and (b) 22-28 
December, 1978. These are taken from M eteorologische Abhandlungen, Series B, Grund-
lagenmaterial, Freien Universitat Berlin, Institut fiir Meteorologie, 1978. 
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Figure 2.5: Cross,-sections obtained by averaging the 1200 UTC data for the period 21-28 
December, 1978; (a) east-west cross section at 70N, (b) north- south cross section at 37.5W. 
The solid lines are isentropes and the dashed lines the wind component perpendicular to 
the section. 
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and cold core near the tropopause which may be identified by the level where the isentropes 

become more closely packed. The tropopause over the block is quite high compared to the 

surrounding regions. Strong upper level easterlies corresponding to the flow south of the 

high pressure region are present. During its mature stage, the block tilts little with height. 

This is consistent with Dole (1986) who showed that northern Pacific (PAC) persistent 

anomalies had less vertical tilt during the mature stage than during development. 

Two particular observations can be drawn from the synoptic analysis of the block. 

First, the evolution of the block is just as easily seen with isentropic analysis as with 

isobaric analysis. In fact, the former analysis is preferable. Again, because air parcels in 

adiabatic motion stay on isentropic surfaces, isentropic analysis gives a three-dimensional 

picture of the motion not easily available from conventional pressure level analysis. [Two 

pieces of information not displayed here are necessary to see this three dimensional aspect 

of isentropic flow: (1) the instantaneous topography of isentropic surfaces and (2) the 

vertical movement of the isentropic surfaces.] Second, intense synoptic scale low pressure 

systems exist upstream from the block as -it develops. Many previous studies ( e.g., Sanders 

and Gyakum, 1980; Hansen and Chen, 1982; Colucci, 1985) have also noted this and 

suggested that such strong storms play an important role in the development of blocks. 

This second point will be taken up again in Section 2.5. 

2.4 Isentropic Potential Vorticity Analysis 

The potential vorticity on isentropic surface was calculated at several levels from 

(1.2b). The evolution of potential vorticity (hereafter PV) at 315K during the blocking 

period is shown in Fig. 2.6. The PV pattern evolves in a remarkably similar way 

to the streamfunction pattern. This is a consequence of the invertibility principle. By 

considering a simplified case of an isolated, circularly symmetric PV anomaly under gra-

dient and hydrostatic balance, Hoskins, et al. (1985) deduce several characteristics of the 

associated wind and mass fields. These characteristics turn out to be robust (i.e., they 

are not restricted to a very specific form of PV anomaly) and hence allow for a qualita-

tive inversion of a given PV field. One of these characteristics states that the circulation 
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Figure 2.6: The potential vorticity at 315K for (a) 1200 UTC, 16 December, (b) 1200 
UTC, 18 December, {c) 1200 UTC, 19 December, {d) 1200 UTC, 21 December (e) 1200 
UTC, 25 December and {f) 1200 UTC, 29 December. The potential vorticity has been 
non-dimensionalized by dividing it by 106m2Kkg- 1s- 1• 
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Figure 2.6: continued. 
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around an PV anomaly has the same sense as the anomaly. This means that the flew 

around a region of low potential vorticity is clockwise and the flow around a region of 

high potential vorticity is counterclockwise. Intuitively, this is expected, as low potential 

vorticity has low absolute vorticity {unless the term (-l/g)Bp/89 is extremely large) and 

hence is probably associated with high pressure, ridging and clockwise flow. Therefore, it 

is not surprising that the eastern Atlantic ridge of low potential vorticity air at 1200 UTC 

on 16 December is coincident with the ridge in the streamfunction pattern at the same 

time. Continuing the parallel evolution between PV and streamfunction, this ridge moves 

off to the east and by 18 December a trough of high potential vorticity air is present over 

the coast of North America with a ridge of low potential vorticity air just downstream. 

The trough intensifies and the ridge moves northward so that on 21 December a broad, 

uniform area of low potential vorticity in the North Atlantic corresponds to the blocking 

ridge. By 25 December, the PV pattern exhibits the dipole structure seen in the stream-

function and surface pressure fields. An area of low potential vorticity air has cutoff from 

the surrounding pattern. Finaliy, by 29 December, much higher PV air has moved into 

the blocking region. Maps of PV at 350K, 330K, and 300K show patterns which are 

qualitatively similar. 

Figure 2.6 shows that the blocking region is characterized by a broad area of uniformly 

low potential vorticity. An Empirical Orthogonal Function {EOF) analysis of the 315K 

PV for the period 16-28 December, shown in Fig. 2. 7, provides additional confirmation 

of this result. The first step in the EOF analysis is the calculation of the time mean 

field. This is plotted in Fig. 2.7a and shows the dominant influence that the block had 

during the period. The spatial variation away from the mean field is given by the EOF's. 

In this case, the first EOF explained 34.6% of the variance and the second 12. 7%. The 

first EOF pattern {Fig. 2.7b) shows that the dominant region of variability away from 

the mean occurs in the blocking region. The temporal variation of a given EOF spatial 

pattern is described by the principal component time series corresponding to that EOF. 

The first principal component is plotted in Fig. 2.7c. Now the contribution to the total 

field from a single EOF is given by the mean field plus the product of the EOF with its 
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Figure 2.7: (a) The time mean potential vorticity field at 315K for the period 16-28 
December, 1978, (b} the first EOF of potential vorticity, (c} the first principal component 
of potential vorticity, ( d} the mean field plus the contribution from the first EOF for 1200 
UTC, 18 December, and (e} the mean field plus the contribution from the first EOF for 
1200 UTC, 25 December. The mean potential vorticity is non-dimensionalized as in Fig. 
2.6. Values plotted for the first EOF have been multiplied by 103• Values on the abscissa 
of the principal component graph are the day of the month at 1200 UTC. 
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Figure 2.7: continued. 
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Figure 2.7: continued. 
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corresponding principal component. Before 21 December, the first principal component 

is negative; in the blocking region the total PY field is then higher than in the mean. 

After 21 December, the first principal component is positive implying that the total PY 

field in the blocking region is even less than in the mean. Figures 2. 7 d, e illustrate the 

two cases, clearly showing the first to be characteristic of the block formation stage and 

the second characteristic of the mature blocking stage. The broad, uniform area of low 

potential vorticity in Fig. 2.7e is particularly striking and illustrates especially well the 

utility of EOF analysis in capturing the dominant features of an evolving large scale field. 

Subjective interpretation of the PY maps indicates that the cutoff area of low potential 

vorticity air originated in the ridge of low potential vorticity air present over the western 

Atlantic on 18 December. As time progressed, the ridge extended farther to the north and 

eventually became cutoff. This suggests that the block is comprised of subtropical air. 

In fact, Hoskins, et. al. (1985) state this for a similar blocking case that they examined 

and note that just as high potential vorticity air is advected southward and cutoff in 

association with cutoff cyclones, low potential vorticity air is advected northward and 

cutoff in association with blocking highs. The subtropical origin of the blocking air will 

be discussed again in Section 2.5. 

It is also interesting to note the relationship between smaller scale cutoff regions of 

high PY air and surface cyclones. Comparison of Figures 2.3 and 2.6 show that surface 

cyclones can be identified and tracked at 315K by following the small scale high PY 

regions. The two low pressure centers west and south of Greenland on 21 December 

roughly correspond to the two high PY areas at (70W, 55N) and {45W, 45N). The high PY 

area in the central Atlantic on 25 December is clearly mirrored at the surface. In light of 

the invertibility principle, these correspondences are not surprising, but they do illustrate 

some of the usefulness of PY maps as emphasized by Hoskins, et. al. (1985). It can be 

argued that cyclones can be identified and tracked by a careful analysis of heights and 

temperatures at standard pressure levels. This is true, especially if vorticity contours are 

superimposed. However, this task seems easier on an PY map where anomalous features 

stand out more clearly. In addition, the potential vorticity reflects not only vorticity, a 

kinematic quantity, but also the temperature structure Bp/ ao, a thermodynamic quantity. 
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As mentioned previously, the invertibility principal allows the wind and mass fields to 

be determined from the potential vorticity field under appropriate constraints. Qualitative 

statements can be made by extrapolating the results from inversion of simple PV anoma-

lies. One of these has already been encountered; namely, that the circulation around an 

PV anomaly has the same sense as the anomaly. This is a statement about the wind field. 

The analogous statement about the mass field says that the isentropic anomaly in static 

stability (relative to a basic state upon which the anomaly is superimposed) also has the 

same sense as the PV anomaly. Thus the blocking region, because it is an area of low 

potential vorticity, may be expected to be an area of low absolute vorticity and low static 

stability. It is interesting to determine the nature of this partitioning; i.e., is the block-

ing region of low potential vorticity mainly a consequence of low absolute vorticity, low 

stability, or a combination of both? Furthermore, how are changes in potential vorticity 

partitioned between absolute vorticity changes and stability changes? 

Rather than answering these questions by performing an actual inversion of the po-

tential vorticity field, the vorticity and stability are simply evaluated from the data. It 

proves convenient to think of the potential vorticity as the ratio of the vertical component 

of absolute vorticity (av/ax), - (au/ay), + I to a measure of the inverse of stability 

(-1/g)ap/aO. This latter quantity may be called the pseudo-density in isentropic coor-

dinates because the isentropic continuity equation may be written so that pseudo-density 

appears in the same place as density appears in the continuity equation in height coordi-

nates. {See Schubert and Alworth, 1987, for an example of the use of pseudo-density in a 

modelling study.) A time series of maps of absolute vorticity and pseudo-density were ex-

amined. Fig. 2.8 shows these two quantities at 1200 UTC on 25 December. In agreement 

with the invertibility theory, the block is seen as a region of small absolute vorticity and 
' large pseudo-density ( or low stability). The time series of maps indicated that a ridge of 

low absolute vorticity and low stability air moved northward and eventually cutoff-the 

same general evolution seen in the streamfunction and potential vorticity fields. 

To see this more clearly, the average potential vorticity, absolute vorticity and pseudo-

density were calculated for the nine points (separated by 2.5deg longitude, 2.5deg latitude) 
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Figure 2.8: ( a) The pseudo-density in units of kgm-2K-1, and (b) the absolute vorticity 
in units of 10-6s-1 at 1200 UTC on 25 December. 
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in the blocking region centered on the point (70N, 40W). To avoid problems with a later 

calculation, any points where the data analysis yielded zero or negative values of ~a or P 

were not included in the average. The time evolution of these quantities is shown in Fig. 

2.9. The potential vorticity in the blocking region rapidly becomes smaller as the block 

develops in accordance with a decrease in absolute vorticity and an increase in pseudo-

density. Therefore, the block can be readily identified from the evolution of absolute 

vorticity or pseudo-density. If the potential vorticity is small the absolute vorticity (in the 

numerator) tends to be small and the pseudo-density (in the denomimator) tends to be 

large. The reverse is true if the potential vorticity is large. 

Defining the pseudo-density by r = -(1/g)ap/aO and the absolute vorticity by ~a= 

(av/ ax )8 - ( au/ ay )8 + /, the potential vorticity p may be written 

(4.1) 

Further defining an overbar to refer to the spatial average over the nine point region 

mentioned above and angle brackets to refer to a time average over a given time interval, 

( 4.1) may be manipulated to read 

(4.2) 

where is the difference between two distinct time averages. If the data analysis yielded 

points where ~a, and consequently, P, were zero or negative these points were not included 

in the spatial average because In xis not de.fined for negative x. Two time averages were 

considered, the first from 0000 UTC, 16 December to 0000 UTC, 19 December, and the 

second from 1200 UTC, 19 December to 0000 UTC, 28 December. The first period is 

representative of the flow prior to the block and the second representative of the mature 

blocking stage. Thus, evaluation of ( 4.2) for these two periods yields a measure of the 

relative effects of absolute vorticity changes and pseudo-density changes on the change 

in the potential vorticity from the relatively high values of the pre-blocking flow to the 

relatively low values characteristic of the mature block. The terms in ( 4.2) and their 

magnitudes at 315K are listed below: 

~(lnP) = -2.68 
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Figure 2.9: Time series of (a) the potential vorticity, (b) the absolute vorticty and (c) 
the pseudo-density averaged over the nine points centered on the point (70N, 40W) . The 
potential vorticity has been non-dimensionalized as in Fig. 2.6. The absolute vorticity 
has been non-dimensionalized by 10-6s-1 . Values on the abscissa refer to the day of the 
month at 0000 UTC. 
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(In ~a) = -1.401 

-~(In r) = -1.278 

We have formulated the equations and the averaging such that the last two terms add to 

equal the first term. The numbers above may be thought of as the fractional changes in 

P, ~a and r between the two time periods. The result for this blocking case is that the 

change in potential vorticity from the pre-blocking flow to the mature blocking flow was 

partitioned almost equally between changes in absolute vorticity and changes in pseudo-

density. Consistent with Fig. 2.9, the absolute vorticity decreased and the pseudo- density 

increased resulting in a decrease in potential vorticity as the block evolved into its mature 

stage. 

2.5 Trajectory Analysis 

In Section 2.4, the low potential vorticity air characterizing the block was subjectively 

observed to have originated in the ridge of low potential vorticity air in the central Atlantic 

was that the blocking air was of subtropical origin. This section gives further evidence for 

that origin by examining isentropic trajectories. 

A modification of the trajectory analysis schemes of Petersen and Uccellini (1979) 

and Tremback (1980) is used. The momentum· equations in isentropic coordinates may be 

written 
du -aM I UV tan</> 
-d = a + v+ ' t a cos</> A a 

(5.la) 

dv = -8M _Ju_ u2 tan</,' 
dt aa<t, a (5.lb) 

where (..X, </>) are latitude and longitude and a is the radius of the earth. The velocities 

( u, 11) are related to changes in position by 

d..X u 
-= ' dt a cos</> 

(5.2a) 

d</> v = dt a 
{5.2b) 

The integration scheme essentially involves calculating accelerations from the right hand 

side of {5.1) and then computing new positions from (5.2). The actual steps are as follows: 
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(i) Specify an initial position and time for the parcel. {All trajectories calculated here 

begin at either 0000 UTC or 1200 UTC.) Calculate the gradient of M. Initialize u 

and v from NMC winds. 

(ii) Using a fourth order Runge-Kutta scheme, integrate (5.1) and (5.2) as a coupled set 

of four first order ordinary differential equations to obtain the position and velocity 

of the parcel at time t =to+ 8t where to is the present time and St is the time step. 

Integration can be forward or backward in time; i.e., 8t can be positive or negative. 

(iii) Interpolate linearly in time between the 12 hour intervals at which data is available 

to obtain Mat time to+ St. Calculate the gradient of M and use a bi-cubic spline 

to interpolate the gradient to the new position. 

(iv) Evaluate the right hand side of (5.1) and (5.2). 

( v) If the trajectory has been integrated for less than the time desired, go to step (ii); 

otherwise, end the trajectory calculation. 

Tremback (1980) modified Petersen and Uccellini's (1979) original scheme by incor-

porating a time integration method that was more accurate and did not involve special 

formulas for the first time step. The additional modification here is the consideration of 

(5.1) and (5.2) as a coupled set of ordinary differential equations which can be efficiently 

and accurately integrated by a Runge-Kutta technique. This type of trajectory analysis 

was shown by Petersen and Uccellini (1979) and Tremback (1980) to be better than earlier 

iterative methods such as Petterssen (1956) and Danielson (1961). It also has the advan-

tage of conceptual simplicity without loss of the essential physics-velocities and positions 

are simply calculated from knowledge of the forces acting on an air parcel. There are, 

however, limitations on the accuracy of the trajectory results. Linear interpolation of the 

streamfunction field in time [see step (iii) above] is unrealistic as the pattern may evolve 

slowly for part of a 12 hour period and rapidly for a different part. Merrill, et.al. (1986) 

show that this need not degrade the trajectories too much, provided the trajectories do 

not encounter explosively deepening systems. There are also errors associated with spa-

tial interpolation, time differencing, additional forces in the momentum equations that 
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have been neglected, and observational errors. Finally, there are errors that occur if the 

trajectories are assumed to be completely adiabatic; diabatic heating would move an air 

parcel to a different fJ surface where a different streamfunction pattern would result in a 

different trajectory path. 

These last errors can be partially overcome by application of Tremback's (1980) moist 

trajectory scheme. At the end of each time step, the parcel's saturation mixing ratio 

q8 (p, T) is calculated. ff the saturation mixing ratio is less than the mixing ratio q that 

the parcel had at the beginning of the time step, condensation occurred during that time 

step. An iterative process is then employed to find the change in fJ due to the latent 

heating. First, an initial change in fJ is calculated using 

(5.3) 

where L is the latent heat of condensation. A new value of q8 (p, T) is calculated at the 

new fJ level and (5.3) is applied again to find a second value of ~O. The process is repeated 

until the change in ilti is less tnan some specifieci vaiue. in agreement with Tremoacic, tne 

number of iterations was usually less than eight. The end result of the entire process is new 

parcel values of p, temperature T, fJ, q and q8 which have taken into account condensation. 

Several assumptions are implicit in this technique: (1) condensation causes only changes 

in the vertical position of the parcel at the end of the time step; i.e., the parcel's (..X, </>) 

are not changed regardless of whether condensation occurred, (2) Mand p vary linearly 

with 0, and {3) complicated microphysics are ignored [see Tremback (1980) for details]. 

A continuing problem with trajectory analysis is the lack of a direct way to determine 

the accuracy of the trajectories. Perhaps the best indirect way (Reiter, 1972) is to see 

how well the energy equation 

[
to+6t d ( u2 + v2 ) [to+6t a M 

-d --+M+Lq dt= -8 dt 
to t 2 to t 

(5.4) 

is satisfied. (For a derivation, see Dutton, 1976.) The energy error is the difference between 

the two terms. For the trajectories discussed below, the accumulated absolute energy error 

over the length of the trajectories was a factor of three or more smaller than either the 
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accumulated absolute energy change [the sum over all time steps of the left hand side of 

(5.4)] or the accumulated absolute average local change [the sum over all time steps of the 

right hand side of (5.4)]. Evell' when the error was less than an order of magnitude smaller 

than the two terms that created it, the trajectories still seemed reasonable when compared 

with the time evolution of the streamfunction fields. Furthermore, equivalent potential 

temperature Oe should be conserved for moist trajectories. Because of the numerical and 

physical approximations introduced, exact conservation is not achieved; however, the ratio 

of changes in () e to changes in () during condensation was always much less than one in 

magnitude. Despite its limitations, this trajectory scheme is among the best available and 

is accepted as a useful tool for understanding many phenomena. 

The origin of the low potential vorticity air comprising the block is now considered. 

Several 36 hour adiabatic trajectories on the 315K surface ending at 1200 UTC on 20 

December are shown in Fig. 2.10. The time period was chosen to correspond to the initial 

development of the high latitude blocking ridge. Starting positions were estimated from 

the endpoints of backward integrated trajectories. The time step used was 300s for the 

first hour and 900s thereafter. Table 2.1 lists the position, pressure and potential vorticity 

at the beginning and end points of these trajectories. Fig. 2.10 shows that the blocking 

air at 315K originated well to the south of the block in the central Atlantic. With one 

exception, the trajectories ascended more than lO0mb in the 36 hour period. Comparison 

with the streamfunction maps indicates that the trajectories are a reflection of the flow 

on the east side of a strong trough off the North American coast and hence are related 

to the strong storm associated with that trough. This is additional evidence that strong 

storms may play an important role in the development of blocks. 

The effect of latent heat release on these trajectories is illustrated in Fig. 2.11 and 

in Table 2.2 for one particular trajectory. The qualitative results from the adiabatic 

trajectories are unchanged; however, latent heat release can effect noticeable changes in 

the trajectory path as well as in the parcel's pressure and potential temperature. Over 

its lifetime the adiabatic trajectory moved upward approximately 175mb from the mid-

troposphere to the upper troposphere . . Because of condensation, the moist trajectory ex-

perienced a larger pressure change, nearly 200mb. The maximum change in() was slightly 
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Figure 2.10: A group of 36 hour adiabatic trajectories on the 315K surface ending at 1200 
UTC, 20 December. 
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Table 2.1: The latitude and longitude, pressure, and potential vorticity (scaled by 
10-6m 2 Kkg- 1s-1 ) at the beginning (top row) and end (bottom row) of the trajectories 
shown in Fig. 2.10. 

Latitude Longitude Pressure Potential Vorticity 

37.5 N 

71.8 N 

37.5 N 

67.6 N 

40.0 N 

75.2 N 

40.0 N 

63.3 N 

37.5 N 

66.5 N 

37.5 N 

62.0 N 

42.5 W 452 mb 

57.5 W 275 mb 

40.0 W 437 mb 

44.3 W 310 mb 

45.0 W 473 mb 

33.2 W 308 mb 

50.0 W 447 mb 

32. 7 W 331 mb 

47.5 W 471 mb 

34.2 W 329 mb 

52.5 W 364 mb 

32.6 W 333 mb 

0.56 

0.23 

0.74 

0.30 

0.40 

1.6 

0.25 

0.24 

0.12 

0.34 

0.87 

0.21 
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Figure 2.11: Adiabatic (solid line) and moist adiabatic (dashed line) 36 hour trajectories 
originating on the 315K surface and ending at 1200 UTC, 20 December. The moist 
trajectory was initialized with a relative humidity of 100%, corresponding to a worst case 
scenario. 
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Table 2.2: The latitude and longitude, pressure, and potential temperature at 12 hour 
intervals for the adiabatic and moist adiabatic trajectories shown in Fig. 2.11. The top 
row in each time block is for the adiabatic trajectory while the bottom row is for the 
moist adiabatic trajectory. The potential vorticity (scaled by 10-6 m 2 K kg- 1 s-1) at the 
beginning and end of the trajectories is also listed. 

Potential Potential 
Time Latitude Longitude Pressure Temperature Vorticity 

0000 UTC 40.0 N 

19 December 40.0 N 

1200 UTC 50.4 N 

19 December 50.5 N 

0000 UTC 62.8 N 

20 December 65.1 N 

1200 UTC 75.2 N 

20 December 65.8 N 

45.0 W 

45.0 W 

50.7 W 

51.0 W 

53.4 W 

52.6 W 

33.2 W 

34.2 W 

473 mb 

473 mb 

353 mb 

317 mb 

405 mb 

341 mb 

308 mb 

266mb 

315.0 K 

315.0 K 

315.0 K 

319.9 K 

315.0 K 

319.9 K 

315.0 K 

320.6 K 

0.40 

0.40 

1.6 

0.55 
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over SK. Larger changes in fJ would not be expected because the parcel is consistently 

located in the middle and upper troposphere where moisture content is low and where, 

on a thermodynamic diagram, the slope of dry adiabats approaches the slope of moist 

adiabats. Trajectories beginning on lower (} surfaces would presumably be more affected 

by condensation. 

Although the blocking high is well established by 21 December, the dipole pattern 

common to North Atlantic blocks does not appear until a few days later. Trajectory 

analysis was also used to determine the origin of the high potential vorticity air located 

in the southern half of the dipole. The endpoints of backward integrated trajectories were 

used to define the starting points at 0000 UTC, 23 December for the group of adiabatic 

trajectories shown in Fig. 2.12. The position, pressure, and potential vorticity at the 

starting and ending points of each of these trajectories is given in Table 2.3. 

The trajectories indicate the the air in the southern half of the dipole originated 

almost due west near the Great Lakes region at nearly the same pressure level. This is 

in agrt:emt:nt with the strearnfonctiou 1nap::i fo.t the period wi1ich show very consistent 

westerly flow. The inclusion of latent heat release in these trajectories ( not shown) has 

little noticeable effect-none of these parcels experience a great enough change in pressure 

to make condensation important. 

The trajectory scheme outlined above is not formulated to explicitly conserve po-

tential vorticity. Therefore, there is no guarantee that the potential vorticities at the 

beginning and end of each trajectory are equal. Tables 2.1-2.3 have listed the starting and 

ending potential vorticities for all the trajectories in Figures 2.10-2.12 and indicate that 

the potential vorticity is indeed not conserved. How serious is the non-conservation? One 

measure of the conservation error is the ratio of the change in potential vorticity for a given 

trajectory, denoted by 6.Pt, to the change in potential vorticity from a characteristic high 

value to a characteristic low value, denoted by 6.Pm.az• From Fig. 2.6 the non-dimensional 

potential vorticity in low potential vorticity areas is typically less than unity while in high 

potential vorticity areas the value ranges between 5 and 7. Thus 6.Pm.az 6. Examina-

tion of Tables 2.1-2.3 then indicate that 6.Pt/ 6.Pm.az is always less than one and in many 
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Figure 2.12: A group of 36 hour adiabatic trajectories on the 315K surface ending at 1200 
UTC, 24 December. 
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Table 2.3: The latitude and longitude, pressure, and potential vorticity (scaled by 
10-6m 2 Kkg- 1s-1 ) at the beginning (top row) and end (bottom row) of the trajectories 
shown in Fig. 2.12. 

Latitude Longitude Pressure Potential Vorticity 

42.5 N 

43.1 N 

42.5 N 

46.9 N 

45.0 N 

48.1 N 

45.0 N 

46.2 N 

40.0 N 

41.2 N 

45.0 N 

48.4 N 

95.0 W 

25.6 W 

90.0 W 

24.3 W 

80.0 W 

30.5 W 

95.0 W 

30.7 W 

95.0 W 

25.3 W 

90.0 W 

36.8 W 

281 mb 

298 mb 

293 mb 

310 mb 

300 mb 

296 mb 

269 mb 

297 mb 

311 mb 

313 mb 

282 mb 

293 mb 

1.1 

2.6 

1.6 

3.2 

3.1 

3.4 

3.2 

3.7 

0.89 

1.7 

5.1 

4.6 
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cases 6.Pt/ 6.Pma.z - 0(0.1). This result indicates that the degree of non-conservation is 

not serious. 

Nevertheless, the potential vorticity is not conserved. There are several reasons. As 

noted above, the trajectory scheme does not explicitly guarantee conservation. There are 

inherent errors in calculating the potential vorticty field itself using a finite difference 

approximation. Finally, potential vorticity is not conserved when frictional and diabatic 

effects are present as they undoubtedly are in some degree. Table 2.2 indicates, for one 

trajectory, that conservation was more nearly achieved when condensation was taken into 

account in the trajectory calculation. Interesting future work would include a more com-

plete analysis of the sources of non-conservation of potential vorticity. 

2.6 Summary, Conclusions and Speculations 

Blocking events are important because they restrict the passage of cyclonic storms 

and their associated fronts through a given region for a period of a week to ten days, or 

more, and hence have an impact on medium range weather forecasts . 

A single episode of blocking during December 1978 was investigated from NMC grid-

point data using the technique of isentropic analysis. A primary advantage of this view-

point is that air parcels stay on isentropic surfaces in the absence of diabatic effects. 

Furthermore, isentropic analysis is the best way to examine the potential vorticity-a 

conserved quantity under the two constraints above. The following results were obtained. 

An analysis of the Montgomery streamfunction on the 315K isentropic surface was found to 

be preferable to the more traditional analysis of geopotential height on the 300mb surface 

for describing the evolution of of the block. The evolution of the surface pressure pattern 

showed several intense cyclonic storms upstream of the block prior to its development. 

The vertical structure of the block showed little tilt with a warm core throughout most 

of the troposphere and a high tropopause. The block was also shown to have significantly 

affected the passage of fronts through the blocking region. 

Analysis of isentropic potential vorticity indicated that the block was a broad, uni-

form area of low potential vorticity. An EOF analysis added confirmation to this while 
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illustrating well the development of the block. The evolution of the two components of 

potential vorticity, namely, the absolute vorticity and the pseudo-density ( a measure of 

the inverse of stability), was also shown to evolve in the same way as the potential vorticity 

itself. If the potential vorticity became smaller, typically the absolute vorticity became 

smaller and the pseudo-density became larger. 

Subjective interpretation of the potential vorticity maps indicated that the low poten-

tial vorticity air characterizing the block originated from well south of the block. Isentropic 

trajectories verified this and noted the relationship between the trajectories and the ad-

vection ahead of an intense cyclonic storm. Advection of warmer air from well south of 

the block may explain in part the high tropopause over the blocking region. 

This study appears to be one of the first examples of isentropic analysis applied to 

blocking. Excepting the familiarity of the conventional isobaric analysis, nothing is lost 

by taking this viewpoint. Much of what is gained is gleaned from the analysis of potential 

vorticity, which, as noted, is most conveniently and informatively analyzed on isentropic 

" surfaces. The analysis of potential vorticity on isentropic surfaces showed the block to 

be a broad area of uniformly low potential vorticity, provided a theoretical framework for 

relating this to a high pressure area with clockwise circulation and low stability (relative 

to the air around it on the same isentropic surface), and subjectively indicated the origin 

of the low potential vorticity air (later confirmed by isentropic trajectories). These points 

could have been extracted from a more traditional analysis; however, isentropic analysis 

highlighted them more efficiently and clearly. One might argue, following Hoskins, et al. 

(1985) that the potential vorticity maps themselves are a complete picture of the block, 

both synoptically and dynamically. The value of the study, therefore, lies not so much in 

the discovery of new information, but rather in the application of a better framework in 

which to present known information. 

One specific way in which the isentropic framework illustrated its suitability was in 

the determination of the origin of the blocking air and the possible role of intense cyclones 

in blocking development. Consider the following observations. Mature blocks ( at least in 

the North Atlantic) almost always have a cutoff high at upper levels. (A cutoff high may 
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be defined as the region inside a closed contour on the streamfunction map.) Frequently, 

there is also a cutoff low to the south. These seem to form a stable dipole structure 

that may account for most of the persistence of these blocks. Accepting this possibility, 

the question of blocking development then reduces to the question of how this structure 

is formed. More specifically, how does low potential vorticity air find its way into the 

northern half of the dipole and high potential vorticity air into the southern half? The 

potential vorticity maps and trajectory analyses for this particular block indicate that the 

low potential vorticity air in the cutoff high was advected northward ahead of the trough 

associated with an intense cyclone while the high potential vorticity air came directly 

from the west. The sequence of events was the northward advection of low potential 

vorticity air, the formation of a cutoff area of low potential vorticity air, and then the 

advection of high potential vorticity air from the west into a region south of the blocking 

high and the formation of the dipole structure. Both halves of the dipole did not develop 

simultaneously; rather, the northern half developed first, then the southern half. The 

ii<1.tute of ~he suutlu:rn half of Lhe oipole is more spe::culative as lt is neve::r as well de::fined 

or as consistently present on the maps as the northern half. For example, the maps 

sometimes show a tight, very well defined region of high potential vorticity air south of 

the block as in Fig. 2.6e, at other times the high potential vorticity air is more diffuse. The 

same fluctuating nature may be seen in the streamfunction patterns. This aspect may be 

attributed to the continuous propagation of cyclones into and through that region. These 

ideas may have some bearing on Frederiksen's (1982) dipole mode instabilities. In any 

case, intense cyclones appear to play some role in this development and isentropic analysis 

has helped to elucidate that role. 
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Chapter 3 

BAROTROPIC INSTABILITY WITH DOWNSTREAM AND 

ASYMMETRIC CROSS-STREAM VARIATIONS: IDEALIZED 

CALCULATIONS 

3.1 Introduction 

Studies of dynamic instabilities-those instabilities that depend inherently on the mo-

tion of the flow relative to the earth-have played a central role in the history of theo-

retical meteorology. The pioneering work by Kuo (1949), Charney (1947) and others on 

barotropic and baroclinic instabilities have elucidated many fundamental aspects of geo-

physical fluid dynamics as well as offered possible explanations of observBd atmospheric 

phenomena such as mid-latitude synoptic storms. Similar advances for other dynamic 

instabilities have also taken place. These lines of research continue to be fruitful at the 

present time as the original approaches are enhanceq, modified and applied to a variety 

of new situations. 

The classical approach to the study of dynamic instabilities for geophysical fluid dy-

namics problems has been to consider the structure, growth and propagation of linearized 

perturbations superimposed on a specified flow, typically called the basic state flow. De-

pending on the problem under consideration, this basic flow is assumed to vary in the 

north-south direction (y), the vertical direction (z), or both, but not, at least in the classi-

cal treatment, in the east-west direction (x). This assumption allows for the representation 

of the x structure by a single wave. The propagation speed, and growth rate of this wave as 

well as its structure in y and z are then determined by analytical or numerical means, the 

latter being necessary for all but the simplest, most idealistic cases. The calculation can 

be repeated for different wavelengths until the most unstable wavelength is determined. 
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Each of the unstable ( or stable or neutral, as the case may be) waves is referred to as a 

normal mode of the system. It is argued that if the fluid system under consideration is 

perturbed from its basic state flow by infinitesimal perturbations of all wavelengths, the 

characteristics of the most unstable normal mode will eventually dominate. Such is the 

classical instability approach which has proved to be so useful. 

However, the classical approach is not without its limitations such as the requirement 

of a basic state with no variation in x. This is unrealistic. For example, if we identify our 

basic state with the time averaged January flow, this flow exhibits considerable longitu-

dinal variation with two major jet regions, and planetary wave components of significant 

amplitude. This limitation can be overcome. One of the first attempts in this direction 

was made by Lorenz {1972) who studied the barotropic stability of a basic state consist-

ing of zonal flow plus a Rossby wave. Such flow was found to be unstable if the Rossby 

wave was strong enough or of short enough wavelength. Hoskins and Hollingsworth (1973) 

re-examined the Lorenz system and found a simple necessary and sufficient condition for 

instability. The extension to include inertia gravity waves was done by Duffy (1975) while 

the extension to the stability of Rossby Haurwitz waves on the sphere is due to Hoskins 

(1973). Additional noteworthy literature in this area is the long series of papers by Fred-

erikson ( e.g. Frederikson, 1978a,b; 1979a,b; 1982; 1983a,b) who has primarily studied 

the baroclinic instability of three dimensional {meaning variation in all three spatial di-

rections) flows on the sphere. He has considered both idealized basic states consisting 

of planetary waves superimposed on zonal jets {Frederikson, 1979a,b) and basic states 

defined by time averaged flow in the real atmosphere {Frederikson, 1982). A main focus of 

his work has been the identification of those instabilities which may be related to observed 

large scale phenomena such as blocks or teleconnection patterns. Niehaus (1980) studies a 

similar problem. Grotjahn {1984) presents a very useful review of all the relevant articles 

up to that time. Also noteworthy are the two analytical papers by Peng and Williams 

(1986,1987) on barotropic and baroclinic instabilities of streamwise varying easterly flows 

in a beta- channel. These build upon the earlier numerical work of Topaz et al. {1978) 

and Williams et al. {1984) . The focus of these studies is the application of the concept of 

spatial growth rate in order to understand the behavior of the instabilities. 
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There appear to be several distinct approaches for these types of instability problems. 

The time integration method ( e.g. Brown, 1969) proceeds by initializing a linearized time 

dependent model with random perturbations and integrating forward in time, monitoring 

appropriate quantities until ,normal mode form is achieved. The growth rate, phase speed 

and structure of the disturbance can then be noted. The eigenvalue method ( e.g. Fred-

erikson, 1978a) proceeds by discretizing the linearized governing equations in space (most 

commonly by applying a Galerkin spectral method using orthogonal functions appropriate 

to the geometry) and then assuming that the time variation is proportional to a complex 

exponential. This reduces the calculation to a matrix eigenvalue problem where the eigen-

value is the complex frequency and the eigenvector determines the unknown perturbation 

variables. A set of stable and unstable modes is found, contrary to the time integration 

. method which gives only the most unstable mode (but see Simmons and Hoskins, 1976). 

In theory, the time integration method requires little computer storage, but a lot of execu-

tion time and so may be considered computationally intensive. In contrast, the eigenvalue 

approach requires much more storage, but less execution time and so is not computation-

ally intensive, although storage requirements may demand a large computer system. In 

fact, these storage requirements limit the resolution of the eigenvalue method (Grotjahn, 

1987). Given enough computer time, the time integration method can be employed with 

very high resolution. However, the eigenvalue method is superior in that it can distinguish 

between two modes with similar growth rate-a potential problem in a time integration. 

See Frederikson (1978b) for additional discussion. A thorough analysis of these instability 

problems should probably critically compare results from both approaches. 

The previously noted work by Peng and Williams (1986, 1987) suggests yet a different 

way of thinking about these instabilities, based on the concept of spatial growth rate rather 

than temporal growth rate. The latter is associated with one or more real wavenumbers 

and a complex frequency while the former has a real frequency and a complex wavenumber. 

In their analytical treatment, the frequency is specified and a complex wavenumber is 

calculated as the eigenvalue of a problem which is simplified by assuming that the basic 

state varies more slowly in x than in y . The equivalent numerical calculation is to force a 
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wave of fixed frequency and let it propagate downstream, noting the changes in amplitude 

as it passes through regions of unstable flow. This, in fact, is what Topaz, et al. {1978) 

have done. Thus the concept of a spatial growth rate can be discussed in an analytical or 

numerical framework. An advantage of this method is that any x variation in the scale of 

the instability is easily determined. 

Although barotropic instability inherently involves a basic state which varies in the 

north-south direction, previous theoretical studies have concentrated on symmetric varia-

tions, i.e., those zonal wind profiles that vary symmetrically about some central latitude. 

The Bickley jet {e.g. Haltiner and Williams, 1980) is the classical case. More compli-

cated structures, such as double jets, have also been studied (Haltiner and Song, 1963). 

Certainly the observed flows used by Frederikson {1982) are asymmetric in this sense. 

However, little has been done on a fundamental level to document the effects of such 

asymmetries on the instabilities. 

This paper reports the results of a study of barotropic instability for basic states which 

vary in the east-west direction and have zonal wind profiles that vary asymmetrically about 

a central latitude. We will use the terminology that such basic states have downstream and 

asymmetric cross-stream variation. Undoubtedly, there are a large number of plausible, 

meaningful experiments that can be made under this scenario. To focus our study, we 

will concentrate on a rather idealized basic state described by a single functional form. 

One parameter in this functional form controls the degree of downstream variation which 

ranges from no variation {i.e., parallel flow) to a configuration where, to the east and west 

of a strong jet centered at a particular longitude, there is diffluence leading to weak, almost 

constant and almost parallel flow. Such a flow facilitates a different analysis of the effect of 

downstream variation than flows consisting of a planetary wave superimposed on a zonal 

jet. Another parameter controls the degree of asymmetric cross-stream variation. We 

design this affect to simply skew the jet profile. Section 3.2 provides additional detail on the 

basic state. We then focus primarily on a comparison of the eigenvalue and time integration 

approaches described above, although we comment on the applicability of the spatial 

growth rate concept. Furthermore, we document the sensitivity of the results to changes in 
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the basic state, concentrating on cases of fundamental geophysical fluid dynamics interest. 

Our results show that one of the main results of Peng and Williams (1986); namely, that the 

maximum amplitude of the unstable perturbation occurs downstream from the region with 

maximum shear, can be reproduced without directly invoking the techniques common to 

the spatial growth rate approach. The eigenvalue and time integration approaches compare 

favorably. Both indicate that as downstream variation is increased, i.e., as the region 

containing a strong jet becomes smaller and more localized, the growth rate decreases, 

but the frequency remains approximately the same. At the same time the scale of the 

instability decreases. As increasing asymmetric cross-stream variation is introduced into 

parallel flow, the growth rate and frequency are relatively unaffected but the structure 

· changes significantly with larger amplitude and stronger tilt on the side of the jet with the 

strongest shear. Cases with both downstream and asymmetric cross- stream variation yield 

instabilities that can be understood as a combination of the results arising from considering 

each individual type of variation by itself. A preliminary non-linear calculation illustrates 

ca, splitting of the disturbances with the high centers moving to the north and the low 

centers to the south. The disturbances also increase in scale and stabilize the mean flow 

without removing the z-variation. We see these results as a stepping stone to help us 

understand more complicated cases in the real atmosphere. 

Following Frederikson, we believe that these instability calculations have some bearing 

on the problem of blocking. We hypothesize that blocking is a manifestation of instability 

of the large scale flow. Whether a block forms may depend crucially on whether the basic 

state flow is favorable for instabilities with blocking characteristics. This study reports 

on preliminary work documenting the sensitivity of barotropic instabilities to basic state 

structure. Suggestions for additional work relating instabilities to blocking is given in the 

final section. 

In Section 3.2 the model and basic state are described and a prototype calculation 

is made in the spirit of Topaz et.al. (1978) and Peng and Williams (1986). Sections 3.3 

and 3.4 employ the eigenvalue and time integration approaches respectively, to the case 

of downstream variation. The asymmetric cross-stream variation is introduced in Section 
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3.5. The preliminary non- linear calculation is described in Section 3.6. Finally, Section 

3.7 contains the summary and discussion. 

3.2 Model Development and a Prototype Calculation 

3.2.1 Description of model 

We approach the problem using the simplest possible system that can describe 

barotropic instability: the non-divergent barotropic vorticity equation. This may be writ-

ten on a beta-plane as 

(2.la) 

(2.lb) 

where 1/; is a streamfunction for the non-divergent flow (i.e., u = -1/;'i/, v = 1/Jz), f is the 

relative vorticity, /3 is the (constant) northward derivative of the coriolis parameter and F 

is a forcing term. We assume the flow takes place in the domain O x Lz, 0 y L'il 

and put walls y = 0, L'il so that we have a beta-channel. Periodicity is required in x. At 

the north and south walls, the normal velocity v = VJz vanishes, implying 

1/;(x,0,t) = 1/Js(t) , (2.2a) 

(2.2b) 

Now we separate the streamfunction, vorticity and forcing by writing 

1/;(x, y, t) = ~(x, y) + 1/;'(x, y, t), (2.3a) 

dx, y, t) = f(x, y) + t'(x, y, t), (2.3b) 

F(x, y, t) = F(x, y) + F'(x, y, t), (2.3c) 
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where ,j;(x, y) and f(x, y) are specified functions independent of time. Substituting into 

(2.la) yields 

(2.4) 

+J( 1/1', ~') + /31/J~ + f3,j;z = F + F' 

Following Pedlosky (1979) and Frederikson(1978a, 1979b) we assume that, in the absence 

of perturbations, the basic flow ,j; satisfies the governing equation. Thus F is just the 

forcing needed so that 

(2.5) 

In certain special cases, such as purely zonal flow ,j; = -uy, or if ,j; is the streamfunction 

corresponding to a stationary Rossby wave, F will be zero; in general, F is non-zero. This 

forcing can be thought of as the topographical and land-sea contrasts which help maintain 

the time-averaged flow. Of course, this is a simplification: in the real atmosphere the 

time-averaged flow is maintained not only by topography and land-sea contrasts but by 

the eddies as well-an effect neglected here. 

Applying (2.5) to (2.4) and linearizing the result gives 

(2.6a) 

(2.6b) 

We require 1/Js(t) and VJN(t) to be zero for the perturbation flow (but not for the basic 

state) so that the boundary conditions are 

VJ1 
( X, 0, t) = Q, (2.7a) 

1/J'(x, L11 , t) = 0. (2.7b) 

Eqs (2.6) and (2. 7) define the basic model from which all our calculations are made. 
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3.2.2 The basic state 

Our philosophy in specifying a basic state is to define one functional form for {; 

that can produce simple downstream and asymmetric cross-stream variations by allowing 

certain parameters to change their values. In this way the number of seemingly plausible 

experiments is reduced and all the experiments become connected by their relationship 

to a single expression for the basic state. This makes sensitivity studies more meaningful 

and helps in the interpretation of results. For example, in Section 3.5 an experiment 

containing both downstream and asymmetric cross-stream variation is discussed. The 

instability growing on that basic state has a particular structure. That both types of 

basic state variations arise from parameter changes in a single expression for {; enables us 

to say with more confidence that some characteristics of the structure may be explained 

by the downstream variation while others are explained by the asymmetric cross-stream 

variation. 

We define our basic state by the modified Bickley jet 

- {" (y' + a(y') - Ye) 1/J(x, y) = -y00 uoorA(x) lo sech2 Yo(x) dy' - uy (2.8) 

where 

r = rL, sech2 (y + a(y) - Ye) dyl rL, sech2 (y - Ye) d11 
lo Yoo lo Yoo 

(2.9) 

I / (L, (y + a(y) - y ) 
A(x) = 2tanh(y,/YOo)/ lo sech2 Yo(x) • dy , (2.10) 

Ye = L"/2, u, Yoo, uoo are constants, and Yo(x) and a(y) are specified functions. This is 

an adaptation of the expression used by Tupaz et al. (1978). Note first that the boundary 

conditions requiring {; to be independent of x at y = 0 and y = L" are satisfied. 

The "half-width" Yo varies with x according to 

( ) [1 + a cos 21rx/ Lz] yox =yoo 1 . -a 
(2.11) 
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Thus the downstream variation is effected by changes in the non-dimensional parame-

ter a. When a= 0, the half-width takes the constant value Yoo and there is no downstream 

variation: the flow is parallel. For non-zero a, the half-width still takes the value Yoo at the 

center of the channel (x = Lz/2), but decreases to the east and west, producing a simple 

form of downstream variation. A contour plot of ii; for a= 0.3 is shown in Fig. 3.1. Three 

profiles of u at different values of x corresponding to this value of a are shown in Fig. 3.2. 

This basic state is intended to be a crude representation of the observed wintertime flow 

which exhibits similar patterns of confluence and diffiuence to the west and east of jet 

regions occurring off the east coast of the continents (Fig. 3.3). Experiment has shown 

that a in the range O a~ 1/2 allows for reasonable sensitivity studies. 

The arbitrary function o(y), which we define as 

(2.12) 

allows for asymmetric cross-stream variation. The non-dimensional parameter b deter-

mines the degree of variation. When ,b is very small, o(y) approaches zero and the flow 

is symmetric about y = Ye• For larger b' s the flow becomes asymmetric. Several profiles 

of u for different values of b are shown in Fig. 3.4. Experiment has shown that b in the 

range O < b 1.25 allows for reasonable sensitivity studies. 

The parameters uoo and rare best understood by looking at the expression for u(x, y) 

given by 

-( ) - () 2 (y+o(y)-Yc) ... u x, y = -1/111 = YoouoorA x sech Yo(x) + u (2.13) 

From this it is evident that uoo is the maximum velocity (not including the constant flow u) 

in the channel. This maximum occurs at x = Lz/2, y = Ye• The parameter r is introduced 

so that regardless of whether asymmetric variation about Ye is present, uoo remains the 

maximum eastward velocity. 

In the experiments reported on in this paper, we adopt the following physically rea-

sonable values: Yoo= 800km,u00 = 60ms-1,u = lOms-1 . 
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Figure 3.1: Contours of the basic state streamfunction for a = 0.3. 
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Figure 3.2: Profiles of u as a function of (y - Yc)/Yc for the basic state of Fig. 3.1 at 
x = Lz/2 (solid line), x = 2Lz/3 (long-dashed line) and x = Lz (short-dashed line). 
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Figure 3.3: Time mean 500 mb contours in January. Heights are shown in tens of meters. 
(From Palmen and Newton, 1969). 
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3.2.3 A prototype calculation 

Here we describe a simple, time dependent calculation along the lines of Topaz, et al. 

(1978)-the numerical study that preceded Peng and Williams' (1986) analytical work. The 

purpose of this prototype calculation is to elucidate, with an easily understood simulation, 

some fundamental instability characteristics of flows with x variation. Later sections will 

determine and describe the instabilities more rigorously; the idea here is to obtain an 

intuitive feel for the results using a rather naive approach. 

The basic model is discretized in space with finite differences using Arakawa's (1966) 

scheme for the Jacobian terms at all points except those at the walls where simple one-

sided differences are used. A direct solver is applied to obtain the solution to the Poisson 

equation. The first time step is accomplished by a forward step; thereafter, the Adams-

Bashforth scheme is used. 

Topaz, et al. (1978) and Peng and Williams (1986) note that as a disturbance propa-

gates through a basic flow which varies in x and is barotropically unstable for some range 

of x, its maximum amplitude is achieved not at the point of maximum shear, but rather 

at some distance downstream. Although these studies were for easterly flow in the tropics, 

the results should be reproducible for westerly flow in mid-latitudes. This is the object of 

our prototype calculation. 

The perturbation streamfunction is initialized to zero, and "wavemaker" forcing of 

the kind used by Shutts {1983) is applied: 

F sin(,r(x - x1.)/(x,, - x,_)] sin[,r(y - y1,)/(Yt - y1,)] 

x cos(3,r(x - x,_ - ut)/(x,, - x,_)], 
F'(x, y, t) = 

Yb~ Y Yt 

o, otherwise 
(2.14) 

The values x,_, x,,, Yb and Yt define the spatial extent of the forcing region, while F de-

termines the forcing amplitude. We allow one wave to emerge from the wavemaker and 
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follow it as it propagates through a mean flow defined by (2.8). We use a grid spacing of 

290km and a time step of 1200s. 

The instantaneous structure of "1' at several different times during the integration 

is shown in Fig. 3.5. Contours of the basic state are also shown. The parameter a is 

chosen so that the necessary condition for barotropic instability, applied locally rather 

than to the zonally averaged flow, is satisfied in the center of the channel but not at 

the eastern and western ends. Profiles of {3 - u1111 at various values of x are depicted in 

Fig. 3.6. At x = L-r./2 (the center of the channel), {3 - u1111 changes sign and so satisfies 

the necessary condition for instability. East of the center, at x = 2Lz/3, the profile just 

satisfies the condition and there is no change of sign at the ends of the channel. We are 

not suggesting that there is any rigorous theoretical support for a local application of the 

classical condition. We have not developed such a theory nor are we aware of one; we 

use the theory simply as a guide for our explanation of the results. The wave emanating 

from the wavemaker propagates through the mean flow, increasing its amplitude as it 

encounters the barotropically unstable part of the flow. A trajectory of the maximum 

amplitude of "1' along the line y = Ye versus the value of x where that maximum occurs 

is shown in Fig. 3.7. It is clearly seen that the streamfunction reaches its maximum 

amplitude well downstream from the point of maximum shear - a result qualitatively 

reproduced for different wavelengths emanating from the wavemaker. This result has a 

plausible explanation. When the wave encounters the barotropically unstable part of the 

jet, it begins to grow, tilting opposite to the shear as shown in Fig. 3.5. (Before that 

time, the tilt of the wave is in the same sense as the shear.) As it moves past the point 

of maximum shear, it may still be encountering flow that is barotropically unstable and 

hence its amplitude may still be increasing. When it eventually moves out of the unstable 

region, it is no longer growing by extracting energy from the mean flow and may disperse, 

decay, or both, depending on the physics in the problem. At this point it begins once more 

to tilt in the same sense as the shear and its amplitude begins to decrease. The maximum 

amplitude occurs east of the point of maximum shear. This essentially happens because 

the wave propagates. 
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Figure 3.5: Contour plots of the instantaneous structure of t/J' (solid lines) from the pro-
totype calculation at (a) 66.7 hours, (b) 100 hours and (c) 133.3 hours. Dashed lines are 
contours of the basic state. 
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Figure 3.5: continued. 
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We have reproduced in a simple calculation one of the results of Topaz, et al. (1978) 

and Peng and Williams (1986); namely, that a disturbance propagating through a flow with 

downstream variation that is barotropically unstable for some longitudinal band, achieves 

its maximum amplitude downstream from the region of maximum shear. Admittedly, this 

calculation is not very rigorous. It is intended only to give a feel for the behaviour of 

unstable disturbances propagating through basic states which vary in x. In the following 

sections we will use more general instability techniques to verify this result as well as to 

study other instabilities of our rather idealized basic flow. 

3.3 The Eigenvalue Approach 

As noted in the Introduction, the eigenvalue approach requires discretizing the pertur-

bation variables, assuming exponential time dependence, and solving the resulting eigen-

value problem. For a beta-channel, an appropriate discretization is expansion in terms of 

sines and cosines in the x direction and finite differencing in y. 

We chose the following expansions for tf;' and ~: 

M 
t/J' (x, y, t) = L [t/J~(y, t) cos 21rmx/ Lz + "1:n(y, t) sin 21rmx/ Lz], (3.la) 

m=l 

N 
~(x,y) = ,iJ(y) + L [~~(y) cos21rnx/Lz + ~~(y)sin21rnx/Lz]. (3.lb) 

n=l 

Several remarks are in order. First, expressions for all the derivatives of and t/J' and 

are obtained by differentiating these expressions. Derivatives in y are represented with 

finite differences. Second, the boundary conditions are enforced by the way in which the 

matrices for the eigenvalue problem are formed. Third, the expansion for t/J' does not 

contain any terms that are independent of x i.e., m = 0 terms. It is not clear, a priori, 

that neglecting such terms is correct when the basic state varies in x. We choose to use 

(3.la) as it stands and justify it by noting that we are looking only for those solutions 

that have no part independent of x. There may indeed be other solutions, but we have 

not investigated them here. The solutions obtained in this way are physically reasonable 
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and interpretable and thus provide an a posteriori check on the appropriateness of the 

assumption. 

The eigenvalue problem is obtained by substituting (3.la,b) into (2.6) and applying 

the orthogonality conditions appropriate to Fourier series. The result may be formally 

written 

dw 
Adt=Bw, (3.2) 

where w is an unknown vector function of time consisting of tt,~(y, t) and tt,:n,(y, t) for 

all values of m and for discrete values of y, and A and B are matrices whose elements 

depend on the coefficients of the basic state. expansion ( 3 .1 b). More detail is provided in 

the Appendix . Systems like (3.2) have solutions of the form e-iat so we let w = we-iat 

yielding 

-iuAw=Bw, (3.3) 

a generalized matrix eigenvalue problem. The eigenvalues <T and the eigenvectors w are 

generally complex. The formulation described in the Appendix shows that the size of A 

and B is 2M( J - 2) where J is the number of discrete y points in the channel. It is obvious 

that M and J do not have to become too large before significant storage is required. For 

example, if M = J =16, 401408 words are needed to store the matrices. Most eigenvalue 

routines require at least one additional work space of the same size. This pushes the 

memory requirements close to the limit of the CRAY-1 machine at NCAR (The National 

Center for Atmospheric Research) . Fortunately, the CRAY X-MP has significantly larger 

memory capacity. But the point is made: resolution in the eigenvalue approach may be 

limited by computing technology. We solve (3.3) with a routine from the IMSL library. 

Once <T and ware obtained, the coefficients as functions of time are known and the Fourier 

series (3.la) can be summed to arrive at the perturbation streamfunction corresponding to 

a given eigenpair. The frequency and growth rate of the disturbance, given by the real and 

imaginary parts of the eigenvalue, respectively, can be tabulated, and the streamfunction 

plotted at any given time. 
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We have made several calculations using the eigenvalue approach with the basic state 

defined by (2.8}. In this section we concentrate on symmetric basic state flows with 

downstream variation. Asymmetric flows with and without downstream variation are 

treated in Section 3.5. The Fourier expansion (3.la} is truncated at M = 12 and 24 points 

are used in y. The expansion for the basic state is truncated at N = 20 with 24 points in y. 

Figure 3.8 shows the most unstable eigenfunction, superimposed on contours of the basic 

state, when a= 0.3. The highs and lows in the disturbance exchange with one another 

every half period, but the pattern of amplitude remains fixed in space so that one can 

think of waves propagating through a stationary envelope of amplitude. The eigenvalue 

associated with this eigenfunction is (ur, O'i) = (2.74 x 10-5, 1.67 x 10-6 ), corresponding 

to an e-folding time of 6.9d and a period of 2.6d. The point of most interest to this 

study is that the maximum amplitude of the perturbation again occurs downstream from 

the region of maximum shear. Thus, one of the main results of Topaz et al. (1978} and 

Peng and Williams (1986} has been reproduced from a different perspective. In fact, the 

eigenvalue approach is a clear example of the use of temporal growth rates, to use Peng 

and Williams' terminology, rather than spatial growth rate. Yet the result is the same and 

can be understood using their argument that the structure of the unstable disturbance 

lags in adjusting to the local instability characteristics. As for the prototype calculation, 

this essentially happens because the disturbance is propagating. 

It would seem of fundamental geophysical fluid dynamics interest to document the 

sensitivity of the eigensolution to changes in the basic state, specifically, changes in the 

degree of downstream variation. Fig. 3.9 shows the eigenfunctions for four other values 

of a. Several observations can be made. When a is large and there is strong downstream 

variation, significant streamfunction amplitude is concentrated in a relatively small area 

in the eastern half of the channel. For smaller a, corresponding to more nearly parallel 

flow, the area of significant streamfunction amplitude broadens and is distributed more 

equally throughout the length of the channel. In each case with a > 0, the maximum 

amplitude is again located downstream from the point of maximum shear. Only when 

a = 0 is the amplitude equally distributed. Subjectively, the scale of the instability is less 
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Figure 3.8: Streamfunction contours of the most unstable mode at t = 0 (solid lines) using 
the eigenvalue method when a= 0.3. Dashed lines are contours of the basic state. 
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Figure 3.9: Streamfunction contours of the most unstable mode at t = 0 (solid lines) using 
the eigenvalue method when (a) a= 0, (b) a= 0.2, (c) a= 0.4, (d) a= 0.5. Dashed lines 
are contours of the basic state. 
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Figure 3.9: continued. 
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for stronger variation than for more nearly parallel flow. Finally, all the streamfunctions 

exhibit the correct tilt with y for barotropic instability in the unstable regions, but show 

little or no tilt outside those regions. 

Along the line y = Ye passing through the center of the channel, the disturbance 

streamfunction can be Fourier analyzed. A plot of the amplitude of each wavenumber for 

the same four cases as above is shown in Fig. 3.10. The results are consistent with the 

variation in streamfunction-the amplitude spectrum is very broad in the strongly varying 

case but narrows to include only wavenumber 5 in the parallel flow case. A very narrow 

spectrum indicates fairly equal distribution of amplitude throughout the channel while 

a broad spectrum allows for concentrated regions of high amplitude. Also, inclusion of 

higher wavenumbers in the spectrum indicates the presence of smaller scales as subjectively 

noticed. 

Figure 3.11 depicts <Tr and <Ti as a function of a for the two most unstable modes. 

The growth rates corresponding to parallel flow are an order of magnitude faster than the 

gruwt!-;. ;&tea correspor...ding to the most strongly ·v·arying case. However, the frequency 

shows little change. Thus, for a given value of maximum shear, we might expect actual 

barotropic instabilities in the presence of downstream variation to have approximately the 

same period as their counterparts in parallel flow (when that flow has the same maximum 

shear), though they would grow more slowly. We hypothesize a simple explanation for 

this result. The growth rate is in some sense proportional to the amount of latitudinal 

shear in the basic state. When the flow is parallel, the unstable disturbance continuously 

draws energy from a very strong shear, but when downstream variation is present, the 

propagating instability is subjected to that strong value of shear for only a finite time 

before moving into regions of lesser shear and hence into regions where it cannot grow 

as fast. Therefore, its growth rate is smaller. From Fig. 3.11 it seems as though the 

frequencies of the first two unstable modes are switched for a = 0.5. The frequencies 

would more naturally be opposite from what is plotted so that the most unstable mode 

always has the smaller value of Ur. The growth rates for the first two modes are very 

similar, suggesting that some sort of numerical inaccuracy lead to the switching. To help 
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Figure 3.10: The amplitude of 1/J' as a function of wavenumber for the unstable modes of 
Fig. 3.9; (a) a= 0.2, (b) a= 0.4, (c) a= 0.5. The scale of the ordinate is arbitrary. 
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Figure 3.10: continued. 
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Figure 3.11: The growth rate O'i (solid line) and frequency Ur (dashed line) as a function 
of a for the eigenvalue method. Solid circles refer to the most unstable mode while open 
circles refer to the second most unstable mode. Note the different multiplicative factors 
for the growth rate and frequency scales. 
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understand this inconsistency, we show the second most unstable eigenfunction in Fig. 

3.12 and its amplitude spectrum in Fig. 3.13. The structure also would more naturally 

be switched to get smoother changes as a function of a. Similar inconsistencies occur in 

other applications of both the eigenvalue and time integration methods. These problems 

may result from the geometry of our fluid system-a periodic beta-plane channel imposes 

a certain discreteness on the possible solutions that would not necessarily occur on the 

sphere. Annoying inconsistencies like these do not change the results we feel are important. 

In most cases they have a plausible explanation. 

3.4 The Time Integration Approach 

In this section, a semi-spectral model-a model which is spectral in x but finite dif-

ferenced in y-is described and applied to our instability problem. Spectral methods are 

known to be more accurate than finite difference methods for the same number of degrees 

of freedom. Furthermore, a periodic channel naturally lends itself to a spectral represen-

tation in the x direction. Finally; because the eigenvalue modP l i8 . ~]~n J:!emi-spertral, a 

better comparison of the eigenvalue and time integration approaches can be made with 

two models whose discretization in space is the same. 

The governing equation (2.6) may be rewritten using the non-divergence of the ve-

locity field to give 

af' a ( ') a ( , ) a ( ') a ( , ) , - = -- Uf - - u f - - Vf - - v f - {3v. at ax ax ay ay (4.1) 

Now the basic state depends on x so that each Fourier mode can not be evaluated in-

dependently of the others as is the case for basic states that are functions of y only. 

Rather, the terms on the right hand side lead to coupling between Fourier modes. There 

are two ways to handle such interactions. The first is to follow the development of the 

eigenvalue approach: expand both the perturbation and the basic state variables in a 

Fourier series in x. The result is essentially an interaction coefficient model (Haltiner and 

Williams, 1980) and it has the major problem inherent in those models; namely, the need 

to evaluate interaction coefficients at each time step. This is known to be computationally 
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Figure 3.12: Streamfunction contours of the second most unstable mode at t = 0 (solid 
lines) for the eigenvalue method when a = 0.5. Dashed lines are contours of the basic 
state. 
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Figure 3.13: The amplitude of tf;' as a function of wavenumber for the unstable mode of 
Fig. 3.12. 
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prohibitive when the number of coefficients is large or the integration period is long. (Note 

that although the eigenvalue model is, and in fact needs to be, an interaction coefficient 

model, the usual problem does not appear because there is no integration in time.) The 

second way to handle terms that involve coupling is to apply the transform method ( e.g., 

Orszag 1970). Instead of evaluating interaction coefficients at each time step, the terms 

in parenthesis on the right hand side are calculated on a grid in physical space and then 

transformed to spectral space where the derivatives are taken. Increased computational 

efficiency is made possible by the use of fast Fourier transforms. To determine instabilities 

using the time integration method, long integration times are often needed; therefore, we 

will use the transform method. More detail on the specific application of the method is 

provided below. 

We define A = u~', B = v~', C = u' f, D = v' f and then write 

1/J' ( x, y, t) VJ':n(Y, t) 1/J:n(y, t) 
u'(x, y, t) [ u~(y, t) u:n(y, t) 

sin km~ 
M 

v'(x,y,t) = v':n (y, t) cos km.X + v!i(Y, t) (4.2) m.=l 
~'(x, y, t) ~~(y, t) ~~(y, t) 
A(x,y,t) A~(y, t) A:n(y, t) 

where km. = 2,rm/ Lz. Similar expansions are used for B, C and D. The coefficients 

in the u', v' and ~, expansions are obtained by differentiating the expansion for 1/J'; e.g. 

u~ = -a,µ~/ay and v~ = km.1/J:,.,. If the expansions are substituted into the governing 

equation ( 4.1) and the orthogonality of sines and cosines employed the result is 

(4.3a) 

= k (Ac cc)_ an:,,_ _ an:,,_ _ a , at m m + m ay ay JJVm.. (4.3b) 

The following computational procedure is then used to integrate the equations forward in 

time: 

(") · .1,c d .,., k · d · c , c , c , 1 assummg 'f"m. an 'f"m. are nown at some time, etermme um., um., vm., vm., ~m., ~m. 
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(ii) transform to physical space to obtain u', v' and ~, 

(iii) multiply to determine A, B, C and D in physical space 

(iv) transform to spectral space to obtain A~, A:n, B::n, B!.., c::n, c:,.,, D~, n:n 

(v) evaluate the right hand side of (4.3) 

(vi) predict new values of~~ and~~ using an Adam's Bashforth scheme (except for the 

first time step where a forward step is used) 

(vii) determine new values of 1/J::n and from (a2 /ay 2 - k~)1/J::n = and (a2 /ay 2 -

k:n)1/J!.. = subject to the boundary conditions 1/J::n = 1/J:n = 0 on the channel walls. 

The initialization depends on the basic state. When downstream variation is present, 

the model is initialized with random perturbations of all wavenumbers and random struc-

ture in y. When the basic state flow is parallel, the model in initialized with one wavenum-

ber having random structure in y. In the latter case, the most unstable mode is found 

by running the model several times, each time with a different initial wavenumber. The 

frequency and growth rate are extracted in the following way. At the beginning of the 

last 10 days of integration, the point where the perturbation streamfunction amplitude 

is maximum is calculated and the streamfunction at that point is saved at every time 

. step for the remainder of the integration. The period, and hence the frequency, is then 

found by numerically finding the time between zero values of this discrete function. The 

average enstrophy in the channel is calculated at each time step. This quantity should 

grow exponentially once normal mode form is reached; the growth rate is found from the 

slope of the curve of the natural logarithm of average enstrophy vs. time using the last 10 

days of data. The length of integration is determined on a trial and error basis: if normal 

mode form with exponential growth and constant frequency are not yet achieved for a 

given integration time, the calculation is repeated using a longer time. ff in doubt, longer 

simulations are made. The length of time depended on the basic state. Sometimes 75 

days was more than sufficient; in other cases more than 1000 days was needed. Additional 

comments on the method follow in the context of individual examples. 
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Figure 3.14: Streamfunction contours of the most unstable mode (solid lines) using the 
time integration method when (a) a = 0, (b) a= 0.2, (c) a= 0.4, (d) a = 0.5. Dashed 
lines are contours of the basic state. 
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Figure 3.14: continued. 
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Figure 3.14 shows the structure of the most unstable mode for several values of 

a. The plots compare favorably with those obtained with the eigenvalue method. The 

same characteristics are exhibited; namely, the concentration of streamfunction amplitude 

downstream from the point of maximum shear, the decrease in the scale of the disturbance 

as the downstream variation is increased, and the tilt appropriate to barotropic instability. 

The wavenumber spectra corresponding to these structures are shown in Fig. 3.15. These 

also compare favorably with their counterparts in Fig. 3.10: the spectrum broadens as 

the degree of downstream variation is increased. 

In the previous section, we mentioned that these instabilities may be thought of as 

waves propagating through a stationary envelope of amplitude. This is illustrated in 

Fig. 3.16, a Hovmoller diagram with time along the ordinate and x along the abscissa. 

Contours of 1/1' at y = Ye are plotted and the exponential growth rate has been taken out. 

The diagram clearly shows eastward propagating waves moving through an amplitude 

envelope that has a maximum downstream from the center of the channel. It provides a 

particularly clear picture of the propagating, oscillatory behavior of the instability. 

The frequency and growth rate as a function of a are shown in Fig. 3.17 for the time 

integration method. Again, the values compare favorably with those obtained with the 

eigenvalue method: the growth rate is an order of magnitude larger for parallel flow than 

for strongly varying flow while the frequency remains approximately unchanged. 

We need to comment one final time on the case a = 0.5. The time integration 

approach has picked out a frequency that closely matches that associated with the second 

most unstable mode of the eigenvalue method. The structure matches the second most 

unstable mode as well. Aside from the fact that the frequency curve as a function of a 

looks smoother in Fig. 3.17 than in Fig. 3.11, it is difficult to say which method is in 

error. It is worth noting that for this particular case we needed an integration time of 

2000 days to obtain the normal mode solution while 800 days or less was sufficient for 

other cases. A long integration time was necessary for two reasons. First, the growth rate 

itself is slow, and second, the eigenvalue method indicates that there are two modes that 

are growing at very nearly the same rate. Consider two normal modes 1/11 and 1/12 with 
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Figure 3.15: The amplitude of 1/J' as a function of wavenumber for the unstable modes of 
Fig. 3.14; (a) a= 0.2, (b) a= 0.4, (c) a= 0.5. 
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Figure 3.15: continued. 
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Figure 3.16: Contours in the (x, t) plane of streamfunction values along the line y = Ye 
for the most unstable mode with a = 0.4 using the time integration method. The or-
dinate covers a span of 10 days, increasing downward. The exponential growth of the 
streamfunction has been taken out in order to more clearly see the oscillatory nature. 
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Figure 3.17: The growth rate Ui (solid line) and the frequency <Tr (dashed line) of the 
most unstable mode as a function of a for the time integration method . Note the different 
multiplicative factors for the growth rate and frequency scales. 
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growth rates t11 and u2(t11 > u2), respectively. Then the time t* that it takes for ,µ1 to 

grow to a value 10 times larger than ,P2 is 

lnlO t· = ---
O't - t12 

(4.4) 

Using the values of u from the eigenvalue method yields t• = 980 days. This is certainly 

an example of one of the problems with the time integration method mentioned in the 

Introduction: the method may have difficulty converging when there are two or more 

modes with nearly the same growth rate, especially if that growth rate is small. 

The time integration approach was also used to study the effect of latitudinal resolu-

tion on the instabilities. The case a = 0.3 was selected and integrated with 36, 48 and 60 

points in y. The (ur, O'i) pairs associated with these calculations are 

36 points (2.67 x 10-5 , 2.13 x 10-6 ) 

48 points (2. 70 x 10-5 , 2.06 x 10-6 ) 

60 pointe (~ .73 x 10-5 , 1.93 x 10-6 ) 

The structure at 60 points is shown in Fig. 3.18. Aside from a concentration of the 

streamfunction more towards the center of the channel, there is no significant difference 

from earlier calculations. Thus we conclude that our original experiments have enough 

resolution to capture the instabilities that we are studying. 

Finally, the finite difference model used in Section 2.3 was applied to the case a = 0.3 

using a grid spacing of 290km. Dissipation in the form of a term v V 2 f was needed to keep 

the 400 day integration stable. The coefficient v was chosen to damp 2~x waves in 12 

hours. The frequency and growth rate obtained were Ur = 2.56 x 10-5 , O'i = 2.60 x 10-6 . 

The frequency closely matches the previous results, but the growth rate is significantly 

larger-a perplexing result given that the model includes dissipation. The structure (Fig. 

3.19), as well as the wavenumber distribution, compares very favorably with the earlier 

results. 

...: 

:J 
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Figure 3.18: Streamfunction contours for the most unstable mode (solid lines) at t = 0 for 
the time integration method with a = 0.3 and b = 0.0 using 60 points in the y direction. 
Dashed lines are contours of the basic state. 
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Figure 3.19: As in Fig. 3.18 except for the finite difference model with a grid spacing of 
290 km. 
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3.5 Instabilities of Asymmetric Flows 

We have applied a variety of techniques to obtaining instabilities of flows which have 

downstream variation but are symmetric about a line of constant y passing through the 

center of the channel. We now relax the latter assumption, which in practice means alter-

ing the value of b in (2.12). For the first simulations, downstream variation is inhibited by 

setting a = 0 in (2.11); thus we are studying the classical instability problem with sym-

metric cross-stream variation replaced by asymmetric cross-stream variation. We apply 

both the eigenvalue method and the time integration method. 

As Fig. 3.4 indicates, increasing b increases the shear on the northern side of the jet 

and decreases it on the southern side. The location of the maximum jet speed remains in 

the center of the channel and the maximum speed itself remains the same. 

The growth rate and frequency of unstable modes growing on this jet structure are 

listed as a function of bin Table 3.1 for the eigenvalue method. The degree of asymmetric 

variation does not seem to have much effect on these quantities. The structure of the 

instabilities, however, does exhibit some noticeable and significant changes as illustrated 

in Fig. 3.20 by a contour plot of the streamfunction for b = 1.25. Qualitatively, one can 

see an asymmetric distribution of the amplitude and tilt of the unstable disturbance. This 

may be examined more carefully by looking at the variation in amplitude and phase (Fig. 

3.21). Of course, when b is very small, both the amplitude and phase are symmetrically 

distributed about y = Ye• As b increases, the amplitude maximum remains in the center 

of the channel but otherwise becomes asymmetrically distributed with larger amplitude 

on the northern, or more strongly sheared, side of the jet. For symmetric flow, the phase 

is symmetric and indicative of a tilt opposite to the shear. As the flow becomes more 

asymmetric, the phase follows suit, showing very strong eastward tilt to the north of 

the jet maximum and weak westward tilt to the south. In summary, when parallel flow 

becomes asymmetric in y, the barotropic instability which grows upon it is also asymmetric 

with larger amplitude and more pronounced tilt on the side of the jet with strongest shear. 

This result can be understood from a simple energetics argument. The conversion 

term between the mean and eddy kinetic energies is given by 
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Table 3.1: The growth rate, frequency and wavenumber of the three most unstable modes 
as a function of the asymmetry parameter busing the eigenvalue method 

b. Growth rate {x10-6s-1) Frequency (x10-5s-1) wavenumber 

1.25 

1.0 

0.75 

0.5 

0.0 

7.73 

7.41 

7.40 

7.49 

7.25 

7.07 

7.21 

6.95 

6.65 

7.19 

6.51 

6.33 

7.69 

6.56 

6.46 

3.34 

4.58 

2.24 

3.32 

4.56 

2.21 

3.25 

4.55 

2.16 

3.17 

2.06 

4.51 

3.16 

4.25 

2.02 

5 

6 

4 

5 

6 

4 

5 

6 

4 

5 

4 

6 

5 

6 

4 
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Figure 3.20: Streamfunction contours of the most unstable mode at t = 0 (solid lines) 
with a = 0 and b = 1.25 using the eigenvalue method. Dashed lines are contours of the 
basic state. 



123 

4 

3 

2 

0 

• 
.:,) 

-1 

-2 

-3 

-4 

-5 

" 
AMPLITUDE (m2 s- 1

) 

4 

l 

2 

0 

• "-..... 
-1 

-2 ( -3 

_, 

PHASE (degrees) 
Figure 3.21 : The amplitude and phase corresponding to the structure in Fig. 3.20. 



124 

1L,_du 
CK = u'v'-dy. 

o dy 
(5.1) 

where the overbar refers to an x average over the domain. The conversion term physically 
' 

means that a disturbance grows if it tilts opposite to the shear. The amplitude and phase 

plotted in the figures has been determined from 

(5.2) 

where Am is the amplitude and O the phase. From this we can show that 

,rm J.L,, 2 dfJ du 
Cx = - Am(y)--dy Lz o dy dy 

(5.3) 

Now for a given mean wind structure, the most unstable disturbance will have a structure 

that allows for the maximum energy conversion. This means maximizing the value of the 

integral Cx. The easiest way to do this is to make the amplitude and phase change large 

where the shear is large. As we change the mean wind profile, the amplitude of the shear 

becomes larger on the north side and smaller on the south side. In order to maximize 

the energy conversion, the tilt and amplitude of the disturbance should become larger on 

the north side and smaller on the south side. This is exactly what we see in Fig. 3.21 

indicating that the structure of the barotropic instability of an asymmetrically sheared 

flow can be understood from simple theory. 

To obtain results using the time integration method we initialize the spectral model 

with a single wavenumber in x and integrate forward in time. The growth rate and 

frequency are determined as in Section 3.4. For most cases, 75 days was a more than 

sufficient length of integration. Table 3.2 lists the growth rates and frequencies for several 

wavenumbers as a function of b . At first, the results seem disturbing as they are consis-

tently different from the eigenvalue method results. For the latter method, wavenumber 

five is consistently the most unstable wavenumber while the time integration method yields 

wavenumber four as the most unstable for every asymmetric case. The frequencies of the 

most unstable modes are correspondingly different and there are often differences in the 
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Table 3.2: The growth rate, frequency and wavenumber of the three most unstable modes 
as a function of the asymmetry parameter b using the time integration method 

!z. Growth rate (x10-6s-1) Frequency (x10-5s-1) wavenumber 

1.25 

1.0 

0.75 

0.5 

0.0 

7.24 

6.60 

6.41 

7.01 

6.43 

6.20 

6.79 

6.17 

6.12 

6.85 

6.75 

5.42 

7.80 

6.76 

6.49 

2.09 

4.51 

3.23 

2.05 

4.51 

3.19 

2.00 

3.12 

4.51 

1.92 

3.01 

4.43 

3.01 

1.92 

4.03 

4 

6 

5 

4 

6 

5 

4 

5 

6 

4 

5 

6 

5 

4 

6 
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second and third most unstable modes as well. Doubling the integration time to 150 days 

causes almost no change in the growth rate and so does not alleviate the problem. 

Fortunately, there is a plausible explanation. As mentioned on several previous oc-

casions, a problem with the time integration method is that it may have difficulty dis-

tinguishing between two or more modes with very similar growth rates. Examination of 

the growth rates for the asymmetric cases shows that for wavenumbers 4-6, the growth 

rates are all within 15% of each other. The percentage is smaller when only wavenumbers 

4-5 are taken into account. Thus it seems that we have a case where several modes have 

very close growth rates. The · time integration method is simply finding a different most 

unstable mode from the eigenvalue method. Note that the growth rates have the widest 

spread in the symmetric case, where both methods agree on the most unstable mode, 

lending support to our argument. 

The blame should not be put entirely on the time integration method. This method 

may indeed have trouble distinguishing between two or more modes with nearly the same 

growth rates; in fact, we have seen an example of this in Section 3.4. However, the 

eigenvalue method is not without possible problems. Specifically, we want to briefly note 

that the order of the eigenvalue problem in these calculations is 528. Given the number of 

operations associated with each element in the matrices {see the Appendix) it is conceivable 

that numerical problems could lead to differences in eigenvalues of the same order which 

we are seeing in the Tables. 

In any case, although there may be some differences, examination of the streamfunc-

tion reveals that the essential dynamical result is the same: asymmetrically sheared flow 

leads to an asymmetric instability with larger amplitude and more pronounced tilt on the 

more strongly sheared side of the jet (Fig. 3.22). 

Finally, we investigate the sensitivity of the instability to changes in the latitudinal 

resolution. For the parameter value b = 1.25, calculations were made for 36, 48, and 60 

points in the y direction, the latter representing 150% more resolution than the original 

24 points. At 60 points, the (ur,ui) pairs are 



127 

Figure 3.22: Streamfunction contours of the most unstable mode (solid lines) for the time 
integration method when a = 0, b = 1.0. Dashed lines are contours of the basic state. 



128 

wavenumber 6 (4.67 x 10-5 , 1.09 x 10-5) 

wavenumber 5 (3.49 x 10-5 , 1.02 x 10-5) 

wavenumber 4 (2.33 x 10-5 , 7.75 x 10-6 ) 

The maximum change in the amplitude juj = Ju; + u; between 24 and 60 points is 

only about 10%. Note that wavenumber 6 is now the most unstable wave. (The selection 

of this wavenumber over the others is, in part, a function of the numerical method as 

discussed above. No strong physical basis for this scale selection is suggested . .} The 

structure of the wavenumber 4 instability (chosen for comparison with the 24 point case) 

is shown in Fig. 3.23. 

The amplitude is slightly more concentrated in the center of the channel, otherwise, 

there is no significant difference from the earlier experiment. We conclude that the cal-

culations made with the eigenvalue and time integration methods using 24 points have 

captured, both qualitatively and quantitatively, the physical instability. 

We now add downstream variation to the asymmetric flow by letting the parameter 

a take on non-zero values. A large number of cases could be considered here; we focus 

on a few selected examples that are typical of the results when both types of basic state 

variation are present. First consider the case where a= 0.4 and b = 1.0 . The frequency 

and growth rate of the most unstable mode obtained with the eigenvalue method are O'r = 
2.58 x 10-5 and O'i = 2.06 x 10-6 • The structure is shown in Fig. 3.24. The characteristics 

of the instability appear to be a combination of the individual effects of the downstream 

variation and cross-stream asymmetry. The growth rate is significantly smaller than in 

the parallel flow case while the frequency is slightly smaller. This is in accord with the 

previous results where downstream variation was associated with smaller growth rates and 

relatively unchanged frequencies and cross-stream asymmetry had little effect on either 

the growth rate or frequency. In the same way, the structure is a combination of a shifting 

of the streamfunction maximum downstream from the point of maximum shear and a 

greater amplitude and stronger tilt on the more strongly sheared side of the jet. Note also 

that the location of the high and low centers do not lie along a straight line but instead lie 
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along a slightly wavy line. Other cases, such as a = 0.2, b = 1.0 (Fig. 3.25) have similar 

characteristics. 

The time integration method was also applied to this problem using both the semi-

spectral and finite differenced models. The results (not shown) compare favorably with 

those just discussed. 

The cases with both downstream and asymmetric cross-stream variation are the most 

realistic simulations that we have made. Their results are the most difficult to understand 

( although we have suggested that they can be understood as a combination of each of 

the other cases), but probably have the most relevance to the real atmosphere where 

downstream and asymmetric cross- stream variations are always present. 

3.6 A Non-Linear Calculation 

Linear instability theory is useful in postulating basic explanations of observed phe-

nomena, for example, the formation of synoptic scale storms. In this study, the theory 

has given us an idea of what to expect from an unstable basic state with downstream vari-

ation. However, linear instabilities, by definition, are not observable, because the linear 

assumption is valid only when the instability has small amplitude relative to the basic state 

upon which it is growing. When the amplitude is large enough to be observed, it is also 

large enough to permit non-linear interactions with the basic state. These interactions 

have been shown, in the case of growing baroclinic disturbances, to significantly effect the 

character of the disturbance (e.g., Gall et al., 1976; Simmons and Hoskins, 1978). In this 

section, a typical linear instability in the presence of downstream variation is allowed to 

evolve into the non-linear regime in order to gain a preliminary understanding of how 

non-linearity effects the previous calculations. 

In accordance with Williams et al (1984) and Frederiksen and Puri (1985), our 

methodology consists of the following steps. First, a basic state is prescribed and the 

most unstable linear instability growing upon it is calculated. For simplicity we chose a 

basic state given by (2.8) with a= 0.3 and b = 1.0, i.e., one with downstream variation but 

no cross-stream asymmetry. The most unstable mode corresponding to this basic state 
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has been documented in previous sections. Second, we explicitly determine the forcing F 

that satisfies 

(6.1) 

This is the same as (2.5) except for the inclusion of the dissipation term. Finally, the fully 

non-linear barotropic vorticity equation given by 

(6.2) 

is integrated forward in time from an initial condition consisting of the specified basic 

state plus a perturbation with the same structure as the most unstable normal mode. 

The perturbation is given a small enough amplitude so that both the linear and non-

linear stages of the instability can be studied. If the perturbation is zero, the total flow 

is given by the basic state part and the forcing prevents any time evolution ( apart from 

discretization errors). However, if the perturbation is non-zero~ instability will develop. 

The disturbance will extract energy from the mean flow eventually reaching a large enough 

amplitude so that it can interact non-linearly to change that mean flow. As mentioned in 

Section 3.2, F represents the external forces which maintain the time averaged flow. By 

including F in the non-linear calculation, we are assuming that such forces continue to 

act even though the basic state is being altered by interactions with the instability. This 

treatment of the forcing is employed by Williams, et al. (1984) and Frederikson and Puri 

(1985). 

In our results, we emphasize the time evolution of the disturbance streamfunction 

structure and the total velocity field. By disturbance streamfunction we mean the differ-

ence between the total streamfunction and the prescribed basic state streamfunction. The 

model defined by (6.2) is integrated for 30 days. The average kinetic energy of the distur-

bance as a function of time is shown in Fig. 3.26. There is an initial period of rapid growth 

lasting about one week followed by a small amplitude vacillation which persists for the 

rest of the integration. Figure 3.27 shows the structure of the disturbance at several times 

during the integration. The initial structure is the same as in Fig. 3.19. By day 2, the 

.,. 
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Figure 3.26: The average kinetic energy as a function of time for the non-linear disturbance 
growing upon the basic state defined by (2.8) with a = 0.3 and b = 0. 
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(a) 

(b) 

Figure 3.27: The structure of the unstable non-linear disturbance for the same basic state 
as Fig. 3.26 at (a) day 2 (b) day 4 (c) day 8 (d) day 24. 
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(c) 

(d) 

Figure 3.27: continued. 
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initial structure has become distorted, with the high centers located slightly north of the 

center of the channel and the low centers slightly south. This is enhanced as the integra-

tion proceeds, so that by day 8 there is significant north-south displacement. Frederikson 

and Puri (1985) obtain similar results for non- linear instabilities growing on a January 

averaged basic state. We may conclude that non-linearity is responsible for this result; 

it is not due to baroclinic or barotropic instability, nor a combined barotropic/baroclinic 

instability, nor any north-south asymmetry in the basic state. If such splitting is a pre-

cursor to the development of observed dipole structures such as blocks, as suggested by 

Frederikson and Puri (1985), the non-linearity must be included in any complete insta-

bility theory of blocking. Also, the scale of the disturbance increases with time. Thus, 

non-linearity may help to explain how synoptic scale instabilities can develop into nearly 

planetary scale features. 

Throughout the first week of the integration, the maximum disturbance amplitude 

occurs downstream from the point of maximum shear in the basic state, consistent with 

the linear results. However, during the vacillation phase, the maximum amplitude can 

occur elsewhere in the channel. For example, Fig. 3.27d shows a maximum just west of 

the center of the channel. The evolution of amplitude is more clearly seen by constructing 

a Hovmoller diagram showing the north-south averaged streamfunction as a function of x 

and t (Fig. 3.28). Here the maximum occurs in the eastern half of the channel for the first 

quarter of the integration after which it appears throughout the channel. At all times, 

east-west variation in the streamfunction is present. 

We offer the following explanation for the results. As the disturbance interacts with 

the basic state, it broadens the jct in the north-south direction, removing the source of 

instability, without, however, removing all the downstream variation. Once the basic state 

is stabilized, what is left is a sort of finite amplitude, neutral mode propagating through 

a downstream varying flow. With the source of instability removed, the mechanism for 

the downstream maximum as discussed in previous sections no longer exists with the 

consequence that the maximum amplitude can occur anywhere in the channel. 

Some confirmation of this explanation comes from examination of the total velocity 

fields. Figure 3.29 shows the zonal velocity profiles for three different values of x at the 
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Figure 3.28: The disturbance streamfunction for the instability of Fig. 3.27 averaged in 
the north-south direction as a function of x and t. Time increases downward and covers 

· all the 30 days of integration. 
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beginning of the integration and for the time average of the last 23 days. The latter corre-

sponds to an average over the vacillation phase. The maximum jet speeds are reduced and 

the jet itself is broadened without eliminating the downstream variation. As a consequence 

of the broadening, the instability characteristics are changed. Figure 3.30 shows profiles of 

/3 - u1111 at x = Lz/2 for the same times as Fig. 3.29. Initially, the necessary condition for 

barotropic instability is satisfied, but the time averaged flow during the vacillation phase 

seems to satisfy the condition only marginally. Given the rather limited number of points 

in y(24), little weight should be attached to the meager non-zero values of /3 - u 1111 in Fig. 

3.30b. Therefore, the total flow field confirms some necessary aspects of our explanation. 

3. 7 Summary and Discussion 

We have investigated the barotropic instability of basic states with downstream and 

asymmetric cross-stream variations. The simplest model that can describe the instability 

is applied: the non-divergent, barotropic vorticity equation formulated in a periodic beta-

channel. The basic state is defined by a single expression for the streamfunction. Two 

parameters control the degree of downstream and asymmetric cross-stream variation. The 

downstream variation is given by a configuration where, to the east and west of a jet 

centered at a particular longitude, there is diffiuence to weak, almost constant and almost 

parallel flow. Such a basic state allows for a different form of downstream variation than 

that obtained by superimposing a planetary wave on a zonal jet. Specifically, it highlights 

the effects of areas of diffiuence, rather than the steering effects of superimposed waves. 

Such diffiuent areas are common downstream from storm tracks. Both an eigenvalue 

method and a time integration method are employed to obtain the instabilities. 

The results are summarized in two categories: comments on the physics and com-

ments on the methods. We began with a prototype calculation that allowed a single wave 

pulse to propagate through a basic state with downstream variation. The wave achieved 

its maximum amplitude downstream from the point where the latitudinal shear was max-

imum, in agreement with the results of Tupaz, et al. {1978) and Peng and Williams 

{1986). This behavior arises from the growth of the disturbance over the entire region of 
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unstable flow through which it is propagating. The more general and rigorous eigenvalue 

and time integration techniques yielded the following results. When only downstream 

variation was present, the instability structure resembled an envelope of amplitude, fixed 

in space, through which waves propagated. The maximum in envelope amplitude, and 

hence the maximum in streamfunction at any given time, was again located downstream 

from the point of maximum shear. This can be explained, as in Peng and Williams, by 

noting that the unstable disturbance lags in adjusting to the local instability characteris-

tics. Sensitivity studies showed that the streamfunction amplitude was concentrated in a 

smaller region of the channel when the downstream variation was strong than when the 

flow was more nearly parallel. In addition, the instability had smaller east-west scales for 

stronger variation. Furthermore, the frequency of the most unstable mode was relatively 

unaffected as the degree of downstream variation increased, while the growth rate changed 

significantly, becoming an order of magnitude smaller than the parallel flow case. This 

results from the propagating disturbance being subjected to strong values of shear for only 

a finite time before moving into regions of lesser shear where it cannot grow as fast. In 

all cases, the structure exhibited the correct tilt for barotropic instability in the unstable 

regions. 

When the cross-stream asymmetry was increased in parallel flow, the frequency and 

growth rate of the most unstable mode were relatively unchanged; however, the structure 

of the instability exhibited significant changes. There was larger amplitude and stronger 

tilt opposite to the shear on the side of the jet having larger shear in the basic state 

zonal velocity. 'This was shown to be theoretically consistent with the intuitive idea that 

barotropic instability will be most pronounced where the shear is strongest. 

When both downstream and asymmetric cross-stream variation are present, the re-

sults can be understood as a combination of the individual effects of each type of variation. 

There is also a hint of wavelike behavior in the locations of the high and low centers of 

the streamfunction. 

Where the instability was allowed to reach finite amplitude and interact non-linearly 

with the basic state, splitting of the disturbances occurred with the high centers moving 
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to the north and the low centers to the south. The scale of the disturbances increased and 

the basic state was stablized; however, the downstream variation remained. 

The time integration method generally compared very favorably with the eigenvalue 

method. When differences occurred, it was suggested that they could be attributed to the 

presence of two modes with very similar growth rates. In such cases, the time integration 

model needed to be integrated for a very long time in order to converge on a single mode. 

Sometimes this mode did not agree with the eigenvalue method. The order of the eigen-

value problem was large enough that numerical problems with it could not be dismissed. 

Furthermore, a periodic beta-channel imposes a certain discreteness on the possible solu-

tions that would not necessarily occur in spherical geometry. Thus the geometry may be 

at fault as well. Nevertheless , the discrepancies did not change the fundamental results 

above. 

The basic character of the solutions was unchanged when time integration experi-

ments were made with higher resolution in latitude. Similarly, instabilities obtained with 

the finite-difference model compared we!! with the previous rc:;ults using spectral repre-

sentation. 

In conclusion, both methods have advantages and disadvantages as discussed in the 

Introduction. To highlight a few, resolution is limited with the eigenvalue method. While 

this can be overcome with the time integration method, long integration times are some-

times necessary to select the most unstable mode. Both techniques have their place 

implying that a thorough study of these types of instabilities may require application of 

both methods. 

This study complements the previously quoted work of Peng and Williams by extend-

ing their results to the case of westerly flow in mid-latitudes, and by documenting similar 

results using the classical, temporal growth rate approach rather than spatial growth rate 

concepts. The study also complements Frederikson's research by emphasizing a type of 

downstream variation distinct from that caused by a planetary wave. In both cases, greater 

sensitivity to changes in the basic state is described. Moreover, the previous investigations 

have not directly addressed asymmetrically sheared jets, as we have done here. 
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The usefulness of our study lies partly in documenting some basic geophysical fluid 

dynamics results relating to instabilities of flows with downstream and asymmetric cross-

stream variation. Although our model is one of the simplest imaginable, we have tried 

to develop a hierarchy of complexity in the solutions, culminating in the case combining 

downstream and asymmetric cross- stream variation. By doing this we have extended 

the catalog of theoretical results that can be used to understand observed atmospheric 

phenomena. 

These results have some bearing on the problem of blocking. Specifically, we hypoth-

esize ( along with Frederikson, 1982) that blocks are the result of instability of the large 

scale flow. Typically, large scale flow patterns may support several instabilities with dis-

tinct differences in structure and behavior. Whether a block forms in any given synoptic 

situation may depend on whether the large scale flow favors a dominant instability with 

characteristics of blocking. Therefore, our understanding of blocking may depend on how 

well we understand the sensitivity of instabilities to various basic states. This study is a 

first step towards gaining that understanding. 

An extension of these calculations to a baroclinic model is an obvious direction for 

future research. Not only can barotropic instability in a baroclinic atmosphere be inves-

tigated, but baroclinic instability can be discussed as well. Although we have postulated 

that blocking is a manifestation of instability, we do not want to imply that barotropic 

instability is the only mechanism. Blocking is likely to involve the combined effects of 

barotropic and baroclinic instability. Therefore, the baroclinic calculation is a necessary 

next step to pursue this hypothesis. 

Future research should also perform similar calculations on a sphere. The variation of 

the beta parameter with latitude and the convergence of the meridians introduce additional 

asymmetry into the problem. Dispersion of energy is affected (Hoskins, et al., 1977) and 

some results of baroclinic instability theory are changed (Simmons and Hoskins, 1976). 

The implication of these changes for our sensitivity studies should be addressed. 

Finally, the non-linear aspects of the instabilities should be investigated more com-

pletely. Blocking undoubtedly involves a non-linear equilibration between a growing per-

turbation and the basic state. The non-linear calculation performed here hinted at some 
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blocking characteristics with the splitting of the disturbance and the increase in its scale. 

In contrast to Frederikson and Puri (1985), who document non-linear instabilities leading 

to relatively stationary patterns in a baroclinic model with an observed, time-averaged 

basic state we note that our unstable disturbances propagate. However, the net eastward 

motion of the disturbances are only 10-20% of the maximum jet speed, indicating that 

we are close to simulating the observed persistence of blocks. Future studies should at-

tempt to pinpoint the variations and mechanisms responsible for transforming a growing, 

propagating instability into a stationary equilibrated feature. 
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APPENDIX 

Details of the Eigenvalue Method 

Here we present some additional detail of the formulation of the eigenvalue problem 

which we generally described in Section 3. Specifically, we concentrate on the matrix 

equation (3.2) 

For notational convenience, we define the operators 

(la) 

(lb) 

(ld) 

Second order, centered differences are used to discretize the operators. When necessary 

near the walls, first order, one-sided differences are employed. Using these operators, the 

basic state terms appearing in (2.6) may be written 

N 
u(x, y) = u(y) + L (u~(y) cos knx + u~(y) sin knx), (2a) 

n=l 

N 
v(x, y) = I:(v~(y) cos knx + v!(y) sin knx), (2b) 

n=l 
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af( x, y) ( =-c ( ) k -a ( ) · k ) ax = ):z:n y COS nX + f :z:n y Slil nX , 
n=l 

(2c) 

af(x,y) .. ( ) ~(=-c: ( ) k -a ( ) • k ) a = f II Y + L.J )i,n Y COB nX + f i,n y Slil nX , 
y n=l 

(2d) 

where 

(3) 

r - " .7.c F' - " .7.• :>s,n - "'-3n'f'n , :>s,n - L-3n'f'n , 

and the perturbation terms may be written 

~!' = f km ( -,J,::,. sin kmz + ,J,:,. cos kmz) , 
m.=1 

(4a) 

(4b) 

(4c) 

V2 
~"'' = f ( .Csm ,J,::,. cos kmZ + .Csm ,J,:,. sin kmz) . ( 4d) 

y m.=1 

With this notation, substitution of (3.1 a, b) into (2.6) followed by application of the or-

thogonality of sines and cosines yields the following two equations for the time dependence 

of t/J;,., and t/J:n , 
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Here, 

(6a) 

and 

(6b) 
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Upon replacing the operators by their finite difference approximations, (5) defines the 

matrices A and B in the matrix equation 

dw A-=BW 
dt 

The unknown vector w consists of the two vectors 

and 

(7) 

placed end to end. The first subscript is the value of m and the second subscript an index 

of points in the y direction where j = 1 corresponds to the southern wall and j = J to 

the northern wall. Note that for each value of m only the coefficients corresponding to the 

interior points are included in the unknown vector. Bounr.13.ry co!lditi,:ms ~re incorporated 

by using 'P~,1 = 'P~,J = tt,:n_,1 = tt,;,,,,J = 0 for all m whenever they are needed in the finite 

difference expressions of the operators. 

Each row of the matrix equation corresponds to one of the 2M(J - 2) equations 

defined by (5). The equation for a given (m,j) pair involves the surrounding i's for the 

same m on the left hand side but the surrounding j's for all the m's on the right hand 

side. Thus A is a tri- diagonal matrix, but B is considerably more complicated. In fact, 

not only is B a full matrix, but each element involves a sum over all the coefficients of 

the basic state. In the special case where the basic state is independent of x, B is much 

simpler because of the disappearance of all the double summation terms. 



Chapter 4 

SU1\1MARY AND CONCLUSIONS 

The low frequency variability of the atmosphere is presently a subject of considerable 

interest. Phenomena such as blocks can influence the weather in a rather large region for a 

week to ten days and sometimes longer. Thus a better understanding of these phenomena 

can lead to improved medium range forecasting. In this study, we have investigated 

blocking from both an observational and a theoretical viewpoint. The climatological and 

synoptic descriptions of blocks were summarized. Then a review of blocking theories was 

presented consisting of a detailed critique of the multiple-equilibria and modon theories. 

The relevance of multiple equilibria theory is disputed, but we think it still holds significant 

promise for understanding large scale, low frequency behavior. 

Modons offer an explanation for the structure and persistence of blocking events. 

However, the present development of the theory has several flaws. Until recently, the 

modon solutions with a high north of a low were obtainable in a barotropic context only 

with the equivalent barotropic vorticity equation. We are not convinced of the relevance of 

this equation despite several attempts at deriving it from a more justifiable starting point. 

In a baroclinic model, modons have an even more serious flaw: no solutions have been 

found with a vertical structure like that of blocks. Finally, there is little understanding 

of how modons evolve from more general flows. Thus, despite their attraction as an 

explanation of observed, long- lived, coherent structures such as blocks, progress has been 

slow in extending the modon concept to realistic situations. 

The main body of the study is in two parts, the first of which is an examination 

of an individual blocking case using isentropic analysis. We particularly emphasize the 

distribution and evolution of potential vorticity on isentropic surfaces in light of the con-

siderable recent interest in that subject. The principal conclusions from this case study 
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are as follows. Analysis of the Montgomery streamfunction on an isentropic surface is 

preferable to the more traditional analysis of geopotential height on a pressure surface 

for describing the evolution of the horizontal structure. Vertical cross sections show lit-

tle tilt with height, a warm core and a high tropopause. Analysis of potential vorticity 

indicates that the block is a broad area of uniformly low potential vorticity. An EOF 

analysis added confirmation to this while illustrating well the development of the block. 

Both components of the potential vorticity; namely, the absolute vorticity and the static 

stability, evolved in the same way as the potential vorticity itself, becoming smaller or 

larger as the potential vorticity became smaller or larger. Subjective interpretation of the 

potential vorticity maps indicated that the low potential vorticity air characterizing the 

block originated from well south of the block. lsentropic trajectory analysis verified this 

and noted the relationship between the trajectories and the advection ahead of an intense 

cyclone that formed upstream of the block as the block developed. Selected moist tra-

jectories differed quantitatively from the adiabatic trajectories; however, the qualitative 

results were unchang~d. 

The second part of the study is an examination of barotropic instability in the pres-

ence of downstream and asymmetric cross-stream variations in the basic state. Solutions 

are obtained with the non-divergent barotropic vorticity equation linearized about an ar-

bitrary basic state. When downstream variation is present, the maximum amplitude of 

the unstable streamfunction is always located downstream from the location of maximum 

latitudinal shear. Following Peng and Williams (1986), this feature is explained by not-

ing that the unstable disturbance lags in adjusting its structure to the local instability 

characteristics. The instability is sensitive to the degree of downstream variation with 

more concentration of streamfunction amplitude in specific regions of the channel, smaller 

disturbance scales and smaller growth rates when there is strong variation than when the 

flow is more parallel. The smaller growth rate for the downstream variation case results 

from the propagating disturbance being subject to strong shear for only a finite time 

before moving into regions of lesser shear where it cannot grow as fast. Asymmetric cross-

stream variation has little effect on the growth rate and frequency of the most unstable 
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mode but significantly affects the structure of the instability. Larger amplitude and more 

pronounced tilt opposite to the shear occurrs on the side of the basic state jet with the 

strongest shear. This can be expected from a theoretical consideration of the energetics. 

It is reasonable to assume that sphericity would affect the unstable structures in a similar 

manner. Instabilities in the presence of both downstream and asymmetric cross-stream 

variations combine the effects of each of those individual kinds of variations. An eigenvalue 

method and a time integration method are used to obtain these results. They compare 

favorably and complement one another. A single non-linear calculation shows that as the 

disturbances grow to finite amplitude, they split, with high centers moving to the north 

and low centers to the south. The disturbances also increase in scale and stablize the 

mean flow without removing all the downstream variation. 

Blocking is a complicated phenomenon undoubtedly involving several mechanisms and 

processes and as such is difficult to understand. The wealth of theories for its explanation 

is evidence of this. Our aim at the beginning of the study was to make a clear, original 

statement about the mechanisms important for blocking. We had hoped to be able to 

say something that would enable a meteorologist to evaluate a given synoptic situation 

and decide whether a new block was likely to form or whether an existing block would 

continue or decay. Unfortunately, our study has only proceeded part of the way towards 

this goal. 

The multiple-equilibria theories were our first choice of approach. We planned to 

determine the "attractors" of the atmosphere, hoping to find several different regimes, 

each characterized by a distinct flow pattern. Presumably, one of those regimes would be 

similar to blocking flows. Once the attractors were identified, a diagnostic model would 

be used to determine the important dynamical and physical terms. ff, as we hypothesized, 

each attractor had different characteristics, then we would have made significant progress 

towards determining whether a block was likely to form, continue or decay in any given 

situation. About this time, the work of Hoskins, et al. (1985) on the use and significance 

of isentropic potential vorticity maps became known and the preliminary data work for 

our study lead to the case study using isentropic analysis reported on in Chapter 2. It 
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was also at this time that the multiple-equilibria theories began to be disp~ted in the 

literature. Therefore, after completing the case study, we temporarily abandoned this 

approach. 

Motivated by the case study results that lent credence to the role played by cyclones 

in blocking development, our efforts took a different direction. We were familiar with the 

modon theories which seemed to provide a particularly good explanation for the structure 

and persistence of blocks. We postulated that intense cyclones could transform a portion 

of a wavy large scale flow pattern into a dipole structure where modon dynamics could 

then account for its coherence and persistence. A sufficiently intense cyclone could also 

play a role in the destruction of the modon. Thus we were lead to investigate modons 

in more detail. Again, if our hypothesis was correct, we would have been able to make 

a significant statement about whether a block was likely to form, continue or decay in a 

given synoptic situation. However, we found modon theory lacking in several respects as 

discussed in Chapter 1. 

Finally, we turned to a third prominent theory for blocks which suggest that they 

result from instabilities of the large scale flow. Certainly not every large scale flow is 

conducive to a blocking-like structure as the dominant mode of instability. The character 

of the instability is a strong function of the basic state upon which it grows. Therefore, it 

is important to document and understand the sensitivity of the instabilities to changes in 

the large scale flow. Only with a detailed knowledge of this sensitivity can we determine 

whether a block will form in any given synoptic situation. Towards this end we performed 

the barotropic calculations reported in Chapter 3. That research can be characterized as 

basic geophysical fluid dynamics, yet by documenting the sensitivity of an increasingly 

complex hierarchy of barotropic instabilities to basic state variations, we have taken a 

positive and promising step towards achieving our goal. 

The effect of adiabatic heating is not explicitly included in the multiple- equlibria and 

modon theories nor have we considered it in this instability study. It is likely that diabatic 

effects play a non-negligible role in the evolution of blocking flows; however, we believe 

that they are not essential for qualitative understanding. We have noted observational ev-

idence ( Colucci, 1987) that rapidly intensifying cyclones ("bombs") can produce blocking 

r 
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flows downstream when the planetary wave structure is suitable. Diabatic heating is in-

volved in this process through the land-sea contrasts which help force the planetary scale 

stationary waves but also through the intense convection usually associated with bombs 

(Anthes, et al., 1983). However, the effect on blocking is indirect: diabatic heating acts 

by determining the large-scale structure and the intensity of the cyclone instead of acting 

as a direct forcing of the blocking scale in a localized region. Yet the low potential vor-

ticity and high tropopause characteristic blocks can perhaps be explained by the diabatic 

processes in bombs: The latent heat release and cumulus momentum mixing accompany-

ing intense convection r·aises the tropopause and creates low potential vorticity air. Both 

the tropopause ( as a boundary) and the low potential vorticity air can then be advected 

into the blocking region (Professor William Gray, personal communication). Whether the 

convection in bombs is necessary for a cyclone to significantly change the large scale flow 

has not yet been determined. 

Blocks are high latitude, warm anomalies characterized by relatively cloud free con-

ditions. Therefore, it is reasonable to suspect that significant radiational cooling is acting 

to dissipate the thermal anomaly. One or more processes must maintain the blocking 

anomaly by opposing this thermal sink as well as mechanical loss mechanisms. Several 

observational and theoretical studies ( e.g. Shutts, 1986, Haines and Marshall, 1987) show 

that transient storms feed a nearly continual supply of low potential vorticity air into the 

blocking region. However, Mullen (1986) finds that ~his eddy forcing balances not the 

radiational cooling, which is small, but rather the time averaged advections. Moreover, 

there has been no definitive study that addresses whether breakdown of blocks is the result 

of weakening of the anomaly through radiational cooling, or, taking a common synoptic 

viewpoint, the result of the interaction of the block with an especially intense and favor-

ably positioned synoptic scale storm. Therefore, though radiational cooling is important 

on the time scale of blocks, it is not clear how this process influences blocking evolution. 

Even if diabatic heating in its various forms is essential to blocking flows, it is inher-

ently difficult to include in numerical and theoretical models. On a large scale, diabatic 

effects must be parameterized. Though much effort has been devoted to this problem, 
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parameterization is still a somewhat ad hoc business. It is better to explain as much as 

possible from a purely dynamical basis where the physical laws on the large scale are 

well understood and appropriate techniques and simplifications are available. We believe 

diabatic processes are important, but not essential to a basic understanding of blocks. It 

is our considered opinion that in addition to sorting out the relative merits of the various 

dynamical theories, we also need a clear notion of how diabatic processes are acting dur-

ing blocking periods. This should then be followed by the development of a reasonable 

parameterization. 

In retrospect, multiple-equilibria and modon theories should not be dismissed as of-

fering no hope for understanding blocks. Despite some critical evaluation of these theories, 

they are still receiving attention in the literature and some of their problems which inhib-

ited our research have since been addressed and solved. (See Chapter 1.) For example, 

there is now considerable evidence that multiple regimes can be documented in observa-

tional data (Hansen and Sutera, 1986). Also, stationary modons with a high north of 

a low in a westerly background .flow have been found for the non-divergent barotropic 

vorticity equation (Verkley, 1987). 

However, we believe the instability approach holds the most promise for understand-

ing and predicting whether a block will form in a given synoptic situation. At the end 

of Chapter 3, several suggestions were made regarding the future direction of this re-

search. The first involved baroclinic calculations. We have developed a two layer, quasi-

geostrophic model linearized about an arbitrary basic state. This model can be used to 

extend the barotropic calculation to the baroclinic case. This diabatic heating can then 

be included if desired. If blocking is indeed an instability, it is most likely a combined 

barotropic/baroclinic instability. Extensions of these calculations to the sphere should 

also be considered. The final suggestion involved more complete non-linear calculations. 

We also have at our disposal fully non-linear barotropic and two level quasi-geostrophic 

models. These models can be used to further our understanding of the non-linear equi-

libration that is undoubtedly necessary to make a more complete identification between 

instabilities and blocks. Moreover, non-linear instability theory may allow a better un-

derstanding of the other non-linear blocking theories of multiple-equilibria and modons. 
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Especially in the latter case, the splitting of high and low centers noted in our non-linear 

simulation may shed some light on modon generation. Perhaps a block arises from an 

instability which, as it reaches finite amplitude, develops an appropriate dipole structure 

such that modon dynamics can then account for its persistence. 
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