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Abstmct- Eigendecomposition-based techniques are
popular for a number of computer vision problems,
e.g., object and pose detection, because they are purely
appearance-based and they require few on-line computa­
tions. Unfortunately, they also typically require an unob­
structed view of the object whose pose is being detected.
The presence of occlusion precludes the use of the nor­
malizations that are typically applied and significantly al­
ters the appearance of the object under detection. This
work presents an algorithm that is based on applying eigen­
decomposition to a quadtree representation of the image
dataset used to describe the appearance of an object. This
allows decisions concerning the pose of an object to be
based on only those portions of the image in which the
algorithm has determined that the object is not occluded.
The accuracy and computational efficiency of the proposed
approach is evaluated on sixteen different objects with up
to 50% of the object being occluded.

1. INTRODUCTION

One of the fundamental problems in computer vision
is the recognition and localization of three-dimensional
objects. Subspace methods represent one computation­
ally efficient approach for dealing with this class of prob­
lems. Variously referred to as eigenspace methods, prin­
cipal component analysis methods, and Karhunen-Loeve
transformation methods [1], these have been used exten­
sively in a variety of applications such as face character­
ization [2] and recognition [3], lip-reading [4, 5], object
recognition, pose detection, visual tracking, and inspec­
tion [6, 7, 8, 9]. All of these applications are based on
taking advantage of the fact that a set of highly correlated
images can be approximately represented by a small set of
eigenimages [10]. Once the set of principal eigenimages is
determined, online computation using these eigenimages
can be performed very efficiently.

Unfortunately, one of the drawbacks associated with
using eigendecomposition-based approaches is that they
are very sensitive to occlusion. The purpose of this work
is to explore the feasibility of applying eigendecomposition
to a quadtree representation of correlated images in order
to efficiently accommodate the presence of occlusion. The
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pose detection problem is used here as a representative ap­
plication. In the next subsection, the fundamentals of ap­
plying eigendecomposition to related images are reviewed.
This is followed by an overview of the standard approach
to solving the pose detection problem using eigendecom­
position and a discussion of why occlusion presents such
difficulty.

A. Eigendecomposition of Related Images

An image is an h x v array of square pixels with inten­
sity values normalized between °and 1. Thus, an image
will be represented by a matrix X E [O,I]hxv. Since we will
be considering sets of related images, it will be convenient
to represent an image equivalently as a vector, obtained
simply by "row-scanning", i.e., concatenating the rows to
obtain the image vector x of length m = hv:

The image data matrix of a set of images Xl, ... ,x,.. is an
m x n matrix, denoted X, and defined as

X = [Xl .. , Xn],

with typically m ~ n. We consider only the case where n
is fixed, as opposed to cases where X is constantly updated
with new images.

The average image vector is denoted x and defined as

The corresponding average image data matrix, denoted X,
is

X= [x .. · x].

The matrix X - X, which we denote X, has the interpre­
tation of an "unbiased" image data matrix.

The singular value decomposition (SVD) of X is given

X= UEVT
,

where U E JRmxm and V E JRnxn are orthogonal, and E E
JRmxn, with E = [Ed ojT, where Ed = diag(Ul,'" ,un),
with &1 ~ 0-2 ~ .•. ~ &n ~ 0, and 0 is an n by m - n zero
matrix. The SVD of X plays a central role in several im­
portant imaging applications such as .image compression,
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Fig. 1. An example of the off-line training process for a simple
one-dimensional pose detection scenario: (a) images of the object at
different orientations (b) size normalized images (c) intensity normal­
ized images ('Ib improve the contrast in this subfigure, each image
was separately normalized.) (d) average of normalized image (e)
normalized images with average image subtracted (f) eigenimages
(g) manifold consisting of the normalized training images projected
onto the subspace spanned by the first three eigenimages. In cases
where both positive and negative values are possible, i.a., (e) and
(f), pure red is used to represent positive one, pure blue to represent
negative one, and pure green to represent zero.

include object size variation in the set of training images.
Alternatively, one can apply an "eigen windows"[ll] ap­
proach in which small windows around ''feature points"
are used for both training and detection. Unfortunately,
this approach relies on appropriate feature selection as well
as detection, and thus loses the advantages associated with
purely appearance-based techniques.

The goal of the work presented here is to solve the
pose detection problem in the presence of occlusion, while
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B. Eigendecomposition Applied to Pose Detection

The standard application of eigendecomposition to
solve the pose detection problem requires the computa­
tion of a reduced-order representation of the set of all pos­
sible orientations for the object being considered. Fig. 1
is used to illustrate this off-line process with a simple ex­
ample. In part (a) of the figure, several training images
of an object are shown at different orientations (for the
purpose of illustration, only one degree of freedom is used
in this example). Because the eigenspace representation of
an image is very sensitive to changes in size and intensity,
each training image is then normalized to account for dif­
ferences in scale (part (b))and brightness (part (c)). Note
that this requires that the image be segmented to deter­
mine the boundary of the object. The average normalized
training image is then subtracted from each of the normal­
ized training images (parts (d) and (e)) and the eigende­
composition is computed from the resulting images (part
(f)). A reduced-order representation of the object's orien­
tation change is then obtained by projecting the normal­
ized training images into the space spanned by the domi­
nant eigenimages, and interpolating to obtain a manifold
(part (g)).

To determine the pose of the object in a given test im­
age, that image must undergo the same transformations as
a training image, i.e., it must be normalized in both scale
and intensity and have the average training image sub­
tracted from it. It can then be projected onto the reduced­
order eigenspace and the object's orientation obtained by
computing the closest point on the manifold created using
the training images. This process is very computationally
efficient and reasonably accurate if the boundary of the
object in the test image can be calculated. Unfortunately,
the presence of occlusion complicates this procedure in
several ways:

1. The location of the object in the test image cannot
be easily determined.

2. Scale normalization cannot be performed on the test
image.

3. Brightness normalization is not effective.

4. The occluded region will alter the projection into the
eigenspace.

Some of these problems can be addressed by using a
hierarchical eigenspace approach [8], for example, one can

pattern recognition and pose detection. The columns of o,
denoted ~, i = 1, ... , m, are referred to as the eigenimages
of X; these can be interpreted as estimates of the eigen­
vectors of the covariance matrix ofthe image vector. The
eigenimages provide an orthonormal basis for the columns
of X, ordered in terms of importance; the corresponding
singular values measure how "aligned" the columns of X
are, with the associated eigenimage. The components of
the ith column of V measure how much each individual
image contributes to the ith eigenimage.
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locations, i.e., all values of (v, h). It was shown in [12J that
these projections can be efficiently computed by using a
2-D FFT. That is, if

(2)(
82YCT;») 2 (82YCT;»)2

ffl2 = 8v2 + 8h2 •

This measure is clearly effective in identifying the correct
object location for the example shown in Fig. 2.

Because the measure m2 can tend to be "noisy" due to
the use of derivatives, it is combined with the value-based
measure ml to form the measure:

M - {m2 if ml ~ P
- 0 ifml < P

where p is a preset threshold, which is used to identify
candidate locations of the desired object even under the
influence of occlusion.

An experiment was conducted to evaluate the accu­
racy of measure M for use in identifying the location of a
desired object in a test image as a function of the percent
of occlusion. (The percent of occlusion for a test image is
defined as the area of the object that is occluded divided
by the area of the entire object.) A total of 800 cases were
examined, with the percent of occlusion evenly distributed
between 0 to 80 percent. The target object used in this

T _
Ui Y -PC1I,h)

where X is the test image, U, is obtained from the eigen­
image matrix by padding it with zeros to the size of X, the
* represents the conjugate and PC1I,h) represents the (v, h)
entry of the matrix P. The 2-D FFT of all the eigenim­
ages can be pre-calculated and stored during the off-line
process. The major on-line computation involved in eval­
uating ml, for every possible location in the test image,
requires one 2-D FFT of the test image and k 2D inverse
FFTs where k is the eigenspace dimension. This is much
more efficient than performing a brute force match of the
test image with all the training images.

While this method works well for a controlled envi­
ronment, it is not as effective when occlusion is present.
This is illustrated in Fig. 2 where the above approach is ap­
plied to the same object, both with and without occlusion.
Large values of ml do occur when the training images are
correctly registed with the test image, however, they do
not necessarily correspond to the largest values. In fact,
in Fig. 2(e) there were 202 locations that had a higher or
equal value of ml than that of the correct location because
of the occluding object. It is still possible, however, to dif­
ferentiate between large values of ml that are due to the
desired object and those that are due to occlusion. This
is due to the likelihood that the value of yCT;) will be much
more sensitive to small registration errors for the desired
object than for the occluding object. This motivates the
use of a measure based on the second derivative of yCT;) ,
namely,

(1)

We consider the problem of object localization and
pose detection under the assumption that the target ob­
ject is partially occluded but is in an environment where
the background can be controlled. A two-step approach is
proposed to solve this problem. The first step is to deter­
mine the likely candidate locations of the object in the test
image. The second step is to evaluate the candidate loca­
tions by using eigendecomposition on a quadtree structure
of the training images to simultaneously determine if the
object is present at a given candidate location, and if so,
its pose.

is more useful for comparing different locations within the
test image. Because most of the energy of the training im­
ages is preserved by its eigenspace, this measure is likely to
be maximized when the image represented by y is similar
to one of the training images, thus identifying the location
of the object with the test image.

The major computational expense in evaluating (1)
consists of the dot products of the eigenimages u, with the
image vector y associated with the window at all possible

T;
yCT;) = 2:(uTy)2.

i=l

A. Localization

Let y be an image vector of the same size as the train­
ing images that represents a window within the test image
offset by (v, h) pixels in the vertical and horizontal direc­
tions, respectively. Then, if there is no occlusion, one can
identify the location of the desired object within the test
image, given by (v,h), by comparing y to the training
images for every possible value of (v,h). However, b&­
cause an eigendecomposition of the training images exists,
it is much more computationally efficient to simply com­
pute the amount of y that can be represented in a smaller
eigenspace, i.e.,

II. ALGORITHM DESCRIPTION

where k represents the size of the reduced order repre­
sentation and Ui represents the ith eigenimage. Because
the brightness within the window y will vary for different
values of (v, h), the normalized measure

retaining the framework of an eigendecomposition ap­
proach and all its attendant advantages. The next sec­
tion presents an outline of our approach, which first iden­
tifies candidate locations for the object in a test image,
and then performs pose detection using eigendecomposi­
tion on a quadtree representation of the training images.
The efficacy of our approach, both in terms of accuracy
and computational efficiency, as a function of the degree
of occlusion, is then explored through a number of exper­
iments.
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Fig. 3. This figure shows how an image is decomposed into a
quadtree structure, and how the sub-images in each level are num­
bered.

(a)

(b)

Test Image

(a)

(d)

Fig. 2. Test images without and with occlusion are shown in (a)
and (d) respectively. Their values of measure ml are shown in (b)
and (e) with the peak location of the measure marked by a "+"
and the correct location of the object marked by an "x". Note that
the peak has shifted from the correct location due to the occlusion.
However, the peak for measure m2, shown in (c) and (f), correctly
registered the location of the object even when occlusion is present.

experiment is shown in Fig. 2(a) with the image of an oc­
cluding object randomly selected from a pool of 15 other
objects (see Fig. 5) to create the desired level of occlusion.
The test images were of size 256 x 256 and the training
images were of size 128 x 128. With a total of 90 training
images used to create a 12-dimensional eigenspace.

The measure M was evaluated at a resolution of one
pixel in both horizontal and vertical directions. The num­
ber of locations that have a measure higher than or equal
to that of the correct location, will be referred to as the
rank of the correct location. ill 60% of all the cases, the
rank of the correct location was one, i.e., it had the high­
est value of M. In addition, the rank of the correct lo­
cation was less than fifty for over 90% of all cases. In all
cases where the occlusion was less than 30%, the average
rank was less than 5, and the average rank was still less
than 50 even when up to 50% of the object was occluded.
The average rank was never more than 100, even for the
maximum occlusion of 80%. This suggests that an object
registration and pose detection scheme based on candidate
locations identified using the measure M may be very ef­
ficient. This is the topic of the next subsection.

Eigendecomposition is applied to X',j = X',j - X',j for
each sub-image in each level where X,,; is the average
image data matrix for the image vectors in X',j. H a k­
dimensional eigenspace is used, then there will be 4(1-1) x k
eigenimages for this level. The image data matrices X',j
that contain very little information about an object, Le.,
contain mostly background, are discarded (for example,
XS,l in Fig. 3). The projection of Xi,l,j - X',j onto the
corresponding eigenspace is calculated to form the pose
manifold that is used in the on-line process.

The on-line process consists of performing image com­
parisons in the eigenspace for each of the candidate loca­
tions until a "match" is found. For pose detection without
occlusion, the orientation of the object is obtained from
the point on the manifold that is closest to the projection
of the test image because both the test image and training
images can be normalized. When occlusion is present, the
images are not automatically registered so that the dis­
tance to the manifold of training images is used to simul­
taneously determine if the object is present at this location
in addition to determining its orientation. The following
normalized distance is used:

(3)

B. Quadtree Based Detection

Once a number of candidate locations have been de­
termined using the measure M, these locations are eval­
uated using eigendecomposition on a quadtree represen­
tation of the training images. Eigenimages are calculated
for each level of a quadtree decomposition of the training
images. At a levell, each training image is broken into
4(1-1) sub-images (see Fig. 3). Let Xi,l,; denote the image
vector associated with the jth sub-image in levell of the
ith training image. Then the image data matrix associated
with the jth sub-image in levell is formed as:

X,,; = [Xl,',j X2,l,j ... Xn,',j]'

where t9 represents a point on the manifold of training
images at orientation (J for a particular sub-image and Pq
represents the eigenspace projection of the corresponding
sub-image in the window associated with the qth candi­
date location. The projection Pq is considered to match
ti, the ith training image whose orientation is closest to
(J, when d is less than a preset threshold. When the train­
ing images cover all the possible variations in orientation,
illumination, scaling and other factors, this threshold can
be set very small; however this is usually not feasible and
interpolation is used between samples. (A threshold of
0.1 was used for the examples presented in the subsequent
sections, which worked well for a variety of objects.)

For each candidate location, the image comparison
in the eigenspace is evaluated based on equation (3). The
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was used for every sub-image at each level of the quadtree.
All test images (of size 256 x 256) were generated by su­
perimposing the image of a randomly selected occluding
object on top of a randomly selected target object. The
target objects were selected from 360 different possible im­
ages, i.e., a 1 degree rotation between successive images,
in order to include poses that were not part of the training
set. The percent of occlusion used in the test images was
equally distributed, with 100 cases selected within each 10
percent range. The rejection threshold was set at 0.9 and
the acceptance threshold was set at 0.1.

The first set of tests was designed to evaluate the
performance of the quadtree approach, independent of the
localization problem. For these tests, the size of the target
object was the same as for the training images and the ob­
jects location in the test image was specified. Fig. 6 shows

Fig. 4. This figure shows an example of the quadtree eigenspace
object/pose detection process. The sub-figures on the left show the
test image and the result of the process for all sub-images in each
level. A green box indicates that a sub-image is accepted and a red
box with a cross through it indicates the rejected sub-images. The
sub-figures on the right show the normalized distance as a function
of orientation, for each sub-image in each level. The acceptance and
rejection thresholds are set at 0.1 and 0.9 respectively.

To evaluate the accuracy and computational efficiency
of the proposed algorithm, a number of experiments were
performed. For these experiments, it was assumed that
the target object whose pose is desired is partially oc­
cluded but it is located in a controlled environment with
no background clutter. A variety of objects (see Fig. 5)
were used to test the robustness of the proposed algorithm.
For each target object, 90 training images were obtained
by rotating the object by 4 degrees between images. All
training images are of size 128 x 128 pixels with 8 bits
used to represent intensity. A 12-dimensional eigenspace

III. EXPERIMENTAL EVALUATION

comparison starts at the first level and proceeds to smaller
images at higher levels in the quadtree. At each level, all
the sub-images that do not consist of only the background
are examined. ITd is smaller than a preset threshold for
orientation fJ, the orientation associated with training im­
age i whose projection is closest to tg will receive a vote.
The value of this vote is equal to the percentage of the
corresponding training sub-image that is occupied by ~he

object. For example, the vote associated with sub-image 4
at level 3 in Fig. 3 is much smaller than that of sub-image
7 at level 3. This mechanism is used to de-emphasize the
vote from a sub-image corresponding to a background area
or containing very limited information about the object.
If the normalized distances for all orientations of a sub­
image are greater than a preset threshold (0.9 is used), all
child notes in the following level will be skipped to save
computation time. If the vote for a particular orientation
exceeds a preset threshold, the process is terminated and
the orientation of the object is determined by the orienta­
tion receiving the largest vote. The process moves to the
next level if the maximum vote does not exceed the preset
threshold. This threshold is set to 41l

m:.-I)'
where lmaz

is the maximum level allowed. (In this work lmaz = 4 is
used with a training image of size 128 x 128.) If the level
lmaz is completed and no voting exceeds this threshold,
the next candidate location is then assessed.

An example of this process is illustrated in Fig. 4.
The algorithm starts from the first level, with the corre­
sponding area of the test image displayed on the left and
the normalized distance for different orientations on the
right. The acceptance threshold is set at 0.1 and the re­
jection threshold is set at 0.9. In this example, neither
the acceptance nor the rejection criterion is satisfied at
the first level; therefore, the search proceeds to the second
level. In the second level, the third sub-image exceeded
the rejection threshold, and thus none of its child nodes
are evaluated. In level 3, sub-images 6,8,14, and 16 were
not occluded and thus were successfully detected. All four
of these sub-images voted for an orientation of 355 degrees,
although the last sub-image also voted for other orienta­
tions. However, because the value of a vote is based on the
percent of the matched training sub-image that is occupied
by the object, the value of the vote for this sub-image is
equal to zero. The process stops at this level with the con­
clusion that the object is at an orientation of 355 degrees.
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Fig. 5. The 16 objects used for the experiments in this section.

the results of these tests where the percent of occlusion
was varied from 0 to 80 percent, i.e., 800 test cases. As
would be expected, the amount of work that the algorithm
must perform, Le., the depth to which the quadtree must
be evaluated, is monotonically related to the difficulty of
the problem, i.e., the percent occlusion. Both the average
depth and average computation time markedly increase for
objects that are occluded by more than 50 percent. The
difficulty of determining the pose of objects that are more
than 50 percent occluded is even more strikingly evident
in part (c) ofthe figure which plots the number of cases
in which the algorithm cannot determine the objects ori­
entation. However, it is important to note that even for
the 100 cases with occlusions between 70-80 percent, in 72
of them the pose of the object was able to be determined.
Even more importantly, the average accuracy to which the
algorithm determines an object's orientation is essentially
independent of the amount of occlusion. In other words,
if the algorithm can make a decision regarding an objects
pose, it is usually quite accurate.

The next set of experiments was designed to evaluate
the performance of the quadtree decomposition approach
when applied to candidate object locations identified by
using measure M on the test images. To account for the
fact that size normalization cannot be performed, an ad­
ditional 180 training images were used for each object,
where the size of the object was enlarged and reduced by
5 percent, resulting in an image data matrix of 270 images.
Two sets of test images were generated in the manner de­
scribed above. In one set, referred to as the perturbed
set, the object size, the brightness of the background and
the brightness of the object itself were all randomly per­
turbed by a value between 0 and 5 percent. In the other
set all of these factors were held constant (referred to as
the unperturbed set). Because the quadtree-based pose
detection approach started to degrade when the occlusion
was greater than 50 percent, 500 test cases were used for
both the perturbed and unperturbed sets with the percent
occlusion equally distributed between 0 and 50 percent.
The measure M was used to select the top 100 candidate

Fig. 6. This figure provides data on the accuracy and computa­
tional efficiency of the proposed algorithm as a function of the per­
cent occlusion when evaluated on 800 random test cases of correctly
registered images. (a) depth to which the quadtree is searched (aver­
age plotted with a solid line) (b) computation time required for each
case (average plotted in red) (c) number of cases where the pose can­
not be determined (d) orientation error when a pose is determined
(average plotted with a solid line)

locations with the constraint that two candidate locations
cannot be adjacent.

The performance of the measure M for localization is
shown in Fig. 7, where the percent of cases that have the
rank of the correct location smaller than the value of the
x-axis is displayed. The rank displayed here is before the
adjacent pixels were removed, so that the locations with
the top 200 values of M are candidate locations that will
be evaluated by the quadtree approach. Thus for all ob­
jects in the unperturbed set, 90 percent of the cases will
have the correct location of the object evaluated. This per­
centage is reduced significantly if perturbation in the test
images is allowed. In particular, in the worst case, l.e.,
object five, the correct location was a candidate in only
70 percent of the perturbed cases. This is due to object
five being rotationally symmetric and therefore having its
eigenimages contain sharp edges that are very sensitive to
size variations. This situation can be addressed by includ­
ing more size variation into the training set. (Note that
the correct location for object five had a rank of less than
10 for all cases in the unperturbed set.)

The performance of the complete algorithm that in­
cludes the quadtree detection applied to the candidate lo­
cations identified using the measure M is summarized in
Table I and Table II for unperturbed and perturbed test
sets, respectively. Unregistered cases refer to those test
cases where the pose detection procedure did not iden­
tify the object at any of the candidate locations. This is
either due to the correct location not being one of the can­
didate locations (which was typically the case for objects
5, 7, and 11) or due to a significant difference in the ap­
pearance of the test image (either due to a pose that is not
represented in the training images, occlusion, or perturba­
tion) that prevents detection even at the correct location
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(which was typically the case for objects 6 and 16). Mis­
registered cases refer to those cases where the algorithm
identified the presence of the object but in an incorrect lo­
cation. This typically occurred for objects that either con­
tain large areas of uniform intensity (objects 3,7,8 and 15)
or have different portions of the object that appear similar
(objects 1 and 4). For those cases where the object was
identified in its correct location, the error in computing
the objects pose was calculated. Note that because the
training images are taken every 4 degrees, an error of up
to 4 degrees still implies that the algorithm identified the
correct interval in the manifold of object poses. (Thus a
more accurate orientation could be determined by doing a
local optimization.) Therefore, only orientation errors of
greater than 8 degrees are considered pose detection er­
rors. The total number of errors is the sum of the cases
where either the location or the pose was incorrectly de­
termined.

In general, the percentage of cases where the algo­
rithm correctly identified both the location and the pose
of the target object was quite high. In particular, most
objects were correctly identified (95 percent in the unper­
turbed case and 90 percent in the perturbed case), or if
they were not, then the algorithm effectivelydeclared that
the problem was too difficult, i.e. it could not register the
test image (e.g., for objects 5,6,7, 11, and 16). The only
objects that created a difficulty for the algorithm in terms
of true errors were object 8 and, to a lesser extent, ob­
jects 3 and 4 for the perturbed case. (The localization of
object 8 is inherently difficult due to the large areas of uni­
form appearance that are present at many different poses.)
The amount of work that the algorithm performs, i.e., the
computation time, is directly related to the difficulty of
the detection problem (see Fig. 8). In general, objects
that are more difficult to localize (objects 5, 7, and 11 in
the perturbed set) require the most computation time.

IV. CONCLUSION

This paper has presented an algorithm based on ap­
plying eigenspace methods to a quadtree representation of
a set of related images to solve the pose detection problem
in the presence of occlusion. Because the algorithm relies
purely on the appearance of the objects in the training set
of images, it is very general and easy to apply. The diffi­
culties that are created due to the presence of occlusion,
i.e., the inability to easily locate the desired object and
apply the appropriate normalizations, are efficiently over­
come by the recursive quadtree procedure. While on-line
detection times can be an order of magnitude larger than
for unoccluded images, the amount of work is proportional
to the difficulty of the problem, i.e., the extent of the oc­
clusion. In addition, the algorithm rarely makes an error
in detecting the location and pose of the desired object,
preferring to declare the detection problem too difficult
when too much information is occluded.
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TABLE I
Algorithm performance on 500 UNPERTURBED test images

TABLE II
Algorithm performance on 500 PERTURBED test images

No. ue- No. Mi ... OrientatioD. Error Total Percent

Objecl registered registered > 4° > SO Errors Correct

1 1 3 15 3 6 98.6
2 1 0 0 0 0 99.8
3 4 9 25 7 16 96.0
4 8 10 28 4 14 95.6
5 8 0 12 2 2 98.0
6 36 0 4 0 0 92.8
7 62 7 15 7 14 84.8
8 6 39 21 6 45 89.8
9 3 1 12 0 1 99.2

10 4 0 2 2 2 98.8
11 35 0 6 0 0 93.0
12 2 5 9 5 10 97.6
13 0 2 9 4 6 98.8
14 1 0 19 6 6 98.6
15 4 19 40 1 20 95.2
16 24 0 3 0 0 95.2

No. Un- No. Mis- OrientatioD Error Total Percent

Object registered registered > 4° > SO Errors Oorrect.

1 7 22 47 7 29 92.8
2 6 0 6 0 0 98.8
3 7 28 78 27 55 87.6
4 7 19 89 26 45 89.6
5 87 8 38 8 16 79.4
6 50 1 26 3 4 89.2
7 60 24 32 18 42 79.6
8 5 78 36 9 87 81.6
9 8 0 45 9 9 96.6

10 11 0 55 15 15 94.8
11 60 2 19 1 3 87.4
12 6 6 22 6 12 96.4
13 1 5 25 4 9 98.0
14 6 6 44 9 15 95.8
15 1 36 57 6 42 91.4
16 33 2 8 1 3 92.8
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Fig. 7. Performance of the proposed algorithm when using the
measure M to select candidate locations. The percent of cases that
have the rank of the correct location smaller than the value of the
x-axis is displayed.

Fig. 8. Average computation time as a function of percent of
occlusion. (All programs are written in MATLAB and executed on
an HP9000/CllO workstation.) This result is for the experiment in
section III.
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