
DISSERTATION

A TWO-FIELD FINITE ELEMENT SOLVER FOR LINEAR POROELASTICITY

Submitted by

Zhuoran Wang

Department of Mathematics

In partial fulfillment of the requirements

For the Degree of Doctor of Philosophy

Colorado State University

Fort Collins, Colorado

Summer 2020

Doctoral Committee:

Advisor: Jiangguo Liu

Co-Advisor: Simon Tavener

Yongcheng Zhou

Kaka Ma

Copyright by Zhuoran Wang 2020

All Rights Reserved

ABSTRACT

A TWO-FIELD FINITE ELEMENT SOLVER FOR LINEAR POROELASTICITY

Poroelasticity models the interaction between an elastic porous medium and the fluid flowing

in it. It has wide applications in biomechanics, geophysics, and soil mechanics. Due to difficulties

of deriving analytical solutions for the poroelasticity equation system, finite element methods are

powerful tools for obtaining numerical solutions. In this dissertation, we develop a two-field finite

element solver for poroelasticity. The Darcy flow is discretized by a lowest order weak Galerkin

(WG) finite element method for fluid pressure. The linear elasticity is discretized by enriched

Lagrangian (EQ1) elements for solid displacement. First order backward Euler time discretization

is implemented to solve the coupled time-dependent system on quadrilateral meshes.

This poroelasticity solver has some attractive features. There is no stabilization added to the

system and it is free of Poisson locking and pressure oscillations. Poroelasticity locking is avoided

through an appropriate coupling of finite element spaces for the displacement and pressure. In

the equation governing the flow in pores, the dilation is calculated by taking the average over the

element so that the dilation and the pressure are both approximated by constants. A rigorous error

estimate is presented to show that our method has optimal convergence rates for the displacement

and the fluid flow. Numerical experiments are presented to illustrate theoretical results.

The implementation of this poroelasticity solver in deal.II couples the Darcy solver and the

linear elasticity solver. We present the implementation of the Darcy solver and review the linear

elasticity solver.

Possible directions for future work are discussed.

ii

TABLE OF CONTENTS

ABSTRACT . ii

Chapter 1 Introduction . 1

1.1 Poroelasticity Background . 1

1.2 Literature Review . 4

1.3 Outline of Dissertation . 7

1.4 Contributions of Dissertation . 8

Chapter 2 Weak Galerkin Finite Element Methods for Darcy Flow 9

2.1 Overview of Weak Galerkin Methodology for Darcy Flow 10

2.2 Lowest order Arbogast-Correa Spaces AC0 11

2.3 WG(P0, P0;AC0) Scheme for Darcy Flow 16

2.3.1 WG(P0, P0;AC0) Finite Elements on Quadrilaterals 16

2.3.2 WG(P0, P0;AC0) Finite Element Scheme for Darcy Flow 17

2.3.3 Two Physical Properties and Convergence Results 18

2.4 Detailed Error Analysis . 21

2.5 Extension to Higher Order WG Methods 32

Chapter 3 Enriched Lagrangian Elements for Linear Elasticity 35

3.1 Enriched Lagrangian Elements (EQ1) for Quadrilaterals and Hexahedra . . 36

3.2 A Numerical Scheme for Linear Elasticity 40

Chapter 4 A Two-field Finite Element Solver for Linear Poroelasticity 45

4.1 Reviving the Two-field Approach . 45

4.2 EQ1 +WG(P0, P0;AC0) Two-field Scheme for Linear Poroelasticity . . . 47

4.3 Theoretical and Numerical Results . 48

Chapter 5 Detailed Analysis of the Two-field Finite Element Solver 56

5.1 Preliminaries: Operators and Their Properties 57

5.2 Error Equations . 59

5.3 Error Estimation: Part I . 66

5.4 Error Estimation: Part II . 69

5.5 Error Estimation: Part III . 75

Chapter 6 deal.II Implementation . 79

6.1 WG Solvers for Darcy Flow . 79

6.2 Implementation of EQ1 Solver for Linear Elasticity 81

6.3 A Two-field Linear Poroelasticity Solver 82

Chapter 7 Concluding Remarks . 91

7.1 Summary . 91

7.2 Future Work . 92

iii

Bibliography . 94

iv

Chapter 1

Introduction

Poroelasticity is a mixture theory describing the superposition of a fluid and solid. The flow

of the fluid influences the deformation of the solid and vice versa. Poroelasticity is widely applied

in tissue mechanics, hydrology, biomechanics, and other fields of science. For example, in the

field of geology, as shown in Figure 1.1, the injection of wastewater for oil and gas production

increases fluid pressure and leads to earthquakes. In the field of biomechanics, for example, Figure

1.2, cartilage, the soft substance with low friction bearing at the end of the bone is modeled as

a poroelastic material. In the joint space, there is cartilage synovial fluid to protect the cartilage.

When load applies to the knee, the fluid is pressurized and squeezed from the tissue to lubricate

the cartilage and reduce friction. Research on this interplay between fluid and structure will help

to develop materials for prosthetic joint to replace diseased joint.

1.1 Poroelasticity Background

Linear poroelasticity was formulated in Biot’s consolidation model [1]. It requires the coupling

of Darcy’s law for fluid pressure and the law for displacement of porous media. Here, we follow

the presentation in [2, 3] to derive the poroelasticity equation.

Force balance and mass conservation equations are used to construct the model. For the force

balance, with total stress σ̃ = σ − αpI and body force f over a subset V of the whole domain Ω,

we have

−

∫

∂V

σ̃n dl =

∫

V

f dΩ,

where σ = 2µε(u) + λ(∇ · u)I is the stress tensor of linear elasticity, u is the solid displacement,

ε(u) =
1

2
(∇u+(∇u)T) is the strain tensor, p is the fluid pressure, n is the outward normal vector.

1

Figure 1.1: Injecting wastewater leads to earthquakes (from Steven Than, Stanford News, (2015)).

Figure 1.2: Cartilage model (from Persson, Kovalevb and Gorb, Soft Matter, (2017)).

By the divergence theorem, we derive

−∇ · σ̃ = −∇ · (σ − αpI) = f .

For the mass conservation equation, fluid content η = c0p + α∇ · u, Darcy velocity vf and fluid

source term s satisfy

∂

∂t

∫

V

η dΩ = −

∫

∂V

vf · n dl +

∫

V

s dΩ,

where c0 is the storage capacity measures the amount of additional fluid that can be stored in the

pores with increasing pore pressure, α is the Biot-Williams constant which measures the relative

compressibility of the solid skeleton and the composite poroelastic material, and u is the solid

2

displacement. Since the control volume V is arbitrary, this is equivalent to

∂t(c0p+ α∇ · u) = −vf + s.

Using the definition of the Darcy velocity vf = −K∇p and coupling those two equations, mathe-

matically, poroelasticity is constructed as follows





−∇ · (2µε(u) + λ(∇ · u)I) + α∇p = f ,

∂t (c0p+ α∇ · u) +∇ · (−K∇p) = s,

(1.1)

where u is the solid displacement, ε(u) = 1
2

(
∇u+ (∇u)T

)
is the strain tensor, λ, µ (both positive)

are Lamé constants, f is a body force, p is the fluid pressure, K is a permeability tensor (that has

absorbed fluid viscosity for notational convenience), s is a fluid source or sink (treated as negative

source), α is the Biot-Williams constant, c0 ≥ 0 is the constrained storage capacity [4]. The value

of α is close to 1 for most soft soils, but less than 1 for rocks. The harder the rock, the smaller the

α is [5]. Appropriate boundary and initial conditions are posed to the system as follows

• For the fluid:

– Dirichlet boundary condition: p|Γp = pD,

– Neumann boundary condition: ((−K∇p) · n)|Γf = uN ,

• For the solid:

– Dirichlet boundary condition: u|Γd = uD,

– Neumann boundary condition: σn|Γt = tN ,

• Initial conditions:

– p(0) = p0,

– u(0) = u0,

3

where ∂Ω = Γp ∪ Γf and ∂Ω = Γd ∪ Γt, n is the outward normal vector.

Based on the variables being solved, there are two-field approaches (displacement and pres-

sure), three-field approaches (displacement, fluid velocity, and fluid pressure), and four-field ap-

proaches (displacement, stress, fluid velocity, and fluid pressure). For the three-field approach, the

equation becomes 



−∇ · (2µε(u) + λ(∇ · u)I) + α∇p = f ,

K−1q+∇p = 0,

∂t (c0p+ α∇ · u) +∇ · q = s,

(1.2)

where q = −K∇p is the fluid velocity (Darcy velocity). The three-field approach is introduced to

use mixed finite element methods for the fluid flow.

1.2 Literature Review

Because of the complicated structure of the coupled equations, poroelasticity can only be

solved in most realistic situation through numerical simulations. There are several finite element

methods for solving the poroelasticity equation, including continuous Galerkin (CG), discontinu-

ous Galerkin (DG), mixed, and weak Galerkin (WG) finite element methods, possibly with stabi-

lization.

Phillips and Wheeler in [2] formulated a three-field finite element scheme in the continuous-in-

time setting for poroelasticity. Solid displacements were approximated with continuous Galerkin

(CG) finite elements, fluid pressure and flux were approximated by mixed finite element method

(MFEM). In the paper, they mentioned motivations for using CG/MFEM: by MFEM, fluid velocity

as a primary variable eliminates recovering the velocity field from pressure gradients via a post-

processing step and flux continuity and mass conservation are satisfied by design. They proved the

existence and uniqueness of solution and presented a priori error estimates to the finite element

scheme with the positive storage capacity c0. Later, in [6], Phillips and Wheeler discussed a fully

discrete finite element scheme and proved the existence and uniqueness of solutions. Error esti-

4

mates for the fully discrete scheme were presented. Backward Euler method and Crank-Nicolson

scheme were both tested to discuss error convergence. Finally, they compared solutions of the

discrete time model to those resulting from the previous continuous time model.

Phillips and Wheeler proposed a heuristic reason for locking in poroelasticity in [7]. They

hypothesized that that since total stress incorporates pressure, inaccurate approximation of dis-

placement leads to pressure oscillations, which is the phenomenon of the poroelasticity locking.

The governing equation for linear elasticity is a component of poroelasticity. In order to examine

the reason for the poroelasticity locking, the reason for locking in linear elasticity (Poisson lock-

ing) was firstly explained. In linear elasticity, when λ→ ∞, by the regularity estimate, ∇·u → 0,

which means the material becomes incompressible. It is well understood in the community that

for incompressible problems, continuous Galerkin finite element methods cannot be used to ap-

proximate the displacement. Discontinuous Galerkin methods which do not require the continuity

of basis functions were therefore introduced. However, Phillips and Wheeler mentioned that al-

though linear elasticity and poroelasticity have similarities in governing equations, λ → ∞ is not

the reason for poroelasticity locking. With the short time step, the storage capacity c0 = 0 and

small permeability will lead to a divergence free displacement field, i.e., ∇ · u → 0. It usually

happens at the beginning of the time interval. Inspired by using discontinuous Galerkin methods in

linear elasticity, they also used discontinuous Galerkin methods in poroelasticity for the displace-

ment to address poroelasticity locking and mixed finite element method for the fluid. Non-constant

and divergence-free vectors of discontinuos Galerkin method could solve locking in the first few

time steps. However, they also mentioned that finite element schemes with inappropriate penalty

parameters in discontinuous Galerkin also lead to pressure oscillations.

To overcome the poroelasticity locking, Berger et al. (2015) developed a three-field poroe-

lasticity solver by mixed finite element method with stabilization added to the mass conservation

equation [8] . They followed the idea in [9] to approximate displacement and flux on vector-valued

linear polynomial spaces P 2
1 and approximate pressure by constants P0. Existence and unique-

ness of solutions were proved with added pressure jump stabilization. Optimal order a priori error

5

estimates were presented. Numerical experiments with c0 = 0 and small permeability derived

convergence rates which were in agreement with theoretical results. Discussions on choosing ap-

propriate penalty parameters were also presented.

Apart from the reason for poroelasticity locking mentioned in [7], Yi (2017) discussed that

λ → ∞, the reason for Poisson locking, also leads to the locking in poroelasticity in [10]. Yi

proved it by discussions on regularity of poroelasticity solution. From the algebraic view, which

is a different aspect from [7], she proved that the null capacity (c0 = 0) leads to pressure oscilla-

tions. A remark on the incompatibility of finite element space for displacement and finite element

space for pressure leading to pressure oscillation was given. Then a three-field approach on trian-

gular meshes was developed. The displacement was approximated on Bernardi-Raugel elements

which were developed for the Stokes equation. The pressure was approximated by constants and

velocity was approximated by lowest order Raviert-Thomas elements. Taking c0 = 0, a priori

error estimate was presented. Higher order elements in 2D and lowest order elements in 3D were

constructed in a similar way.

Wang and Ye (2013) introduced Weak Galerkin (WG) finite elements in [11] for second-order

elliptic equations. Similar to discrete weak gradients, discrete weak divergence can also be de-

fined and calculated. Sun and Rui (2017) were inspired by the finite element scheme in [7]. They

approximated displacement by WG finite element method with stabilization term, approximated

pressure and flux by mixed finite element methods in [12]. By the definition of weak Galerkin

elements, numerical displacements have two components, one component is defined in interiors

of elements, the other one is on faces of elements. There is no requirement of continuity across

elements. The finite element space for interior displacements was vector-valued Pk type polyno-

mials and vector-valued Pk type polynomials on faces for face displacements. The discrete weak

divergence of displacement was defined on Pk−1 polynomials and the discrete weak gradient of

displacement was on matrix-valued Pk−1 polynomials. The discrete stress tensor and strain tensor

were calculated accordingly. The finite element space for the flux was (k-1)st Raviert-Thomas

space. In this three-field approach, c0 ≥ 0 was taken to show that the scheme is locking-free.

6

Error estimate for the fully discrete finite element scheme with the backward Euler method was

analyzed.

Hu et al. (2018) also used WG elements for solving the poroelasticity equation on general shape

regular polytopal meshes but in a two-field approach [13] . Both the displacement and pressure

were approximated by WG elements with introduced stabilization terms which penalize jumps

between interior and boundary degrees of freedom. The displacement had interior components

and face components. Interior components were defined on P 2
1 polynomials on elements and face

components were defined on P 2
1 polynomials on faces. The discrete weak gradient of displacement

was on matrix-valued P1 elements and the discrete weak divergence of displacement was on P1

elements. Similarly, interior pressure was on P1 and face pressure was on P1 elements. The discrete

weak gradient of pressure was on vector-valued P0 elements. Error estimates in the energy norm

with c0 = 0, α = 1 were presented. Numerical experiments showed no pressure oscillations and

convergence rates in agreement with theoretical results.

1.3 Outline of Dissertation

The major contribution of this dissertation is the development of a new numerical method to

solve the two-field formulation of linear poroelasticity through an appropriate combination of a

Darcy solver and a linear elasticity solver.

Chapter 2 discusses the construction of weak Galerkin (WG) finite elements (P0, P0;AC0) for

the Darcy equation on general convex quadrilateral meshes. Vector-valued local Arbogast-Correa

elements are used for constructing the WG finite element scheme for the Darcy equation. This

method is penalty-free and has optimal-order convergence. Properties and error estimates of this

WG finite element method are presented.

Chapter 3 briefly discusses the enriched Lagrangian elements (EQ1) for approximating the

displacement in the linear elasticity equation.

Chapter 4 combines WG finite elements and EQ1 elements with the first order backward Euler

temporal discretization to establish a two-field solver for poroelasticity. Numerical experiments

7

are presented to show the convergence rates agree with theoretical results and demonstrate the

effectiveness in avoiding locking.

Chapter 5 presents detailed analysis of the finite element solver for the linear poroelasticity

equation.

Chapter 6 presents implementation strategies of Darcy, linear elasticity, and poroelasticity

solvers in deal.II.

Chapter 7 summarizes the research work and discusses future work.

1.4 Contributions of Dissertation

In this dissertation, we propose a two-field finite element solver for poroelasticity on 2D quadri-

lateral meshes that can be extended to 3D hexahedral meshes. Compared to the three-field com-

bination (displacement, fluid velocity, and pressure), our two-field approach does not incorporate

stabilization to avoid poroelasticity locking and is designed on general quadrilateral meshes.

• We use the enriched Lagrangian finite element (EQ1), which is related to Bernardi-Raugel

elements developed for the Stokes equation in [10,14], for the solid displacement, and lowest

order weak Galerkin finite elements for the fluid flow. Discrete weak gradients are defined

on Arbogast-Correa spaces in 2D. The combination of WG and EQ1 elements provides

compatibility between the pressure and dilation avoiding the poroelasticity locking. Optimal

a priori error estimates are proved.

• A smooth numerical experiment on poroelasticity is conducted to illustrate our method is

locking-free and observed convergence rates agree with theoretical results. A sandwiched

low permeability problem shows no pressure oscillations. Since the poroelasticity equation

is a time dependent problem, we can also observe fluid pressure changes and solid shrinkage.

• Implementation of poroelasticity in deal.II to extend the solver for large-scale scientific

computing.

8

Chapter 2

Weak Galerkin Finite Element Methods for Darcy

Flow

Without the coupling term in the poroelasticity (4.1), the second equation becomes the Darcy

equation. The Darcy equation is formulated as





∇ · (−K∇p) ≡ ∇ · u = f, x ∈ Ω,

p = pD, x ∈ ΓD, u · n = uN , x ∈ ΓN ,

(2.1)

where Ω ⊂ R
n(n = 2, 3) is a bounded domain. In the context of the flow of a fluid through a

porous medium, p is the pressure, K is a permeability tensor, u = −K∇p is the Darcy velocity

which is the flow per unit cross sectional area of the porous medium, f is the source term, pD, uN

are respectively Dirichlet and Neumann boundary data.

The weak form of the Darcy equation derived via integration by parts is: seek p ∈ H1
D,pD

(Ω),

such that ∫

Ω

K∇p · ∇q =

∫

Ω

f q −

∫

ΓN

uNq, q ∈ H1
D,0(Ω), (2.2)

where H1
D,pD

(Ω) = {q ∈ H1(Ω) : q|ΓD = pD}, H1
D,0(Ω) = {q ∈ H1(Ω) : q|ΓD = 0}.

In this chapter, we introduce a family of relatively new finite element methods, called weak

Galerkin finite element methods (WGFEMs) [11, 15–17]:

• The fluid pressure p will be approximated by WG finite elements,

• ∇pwill be approximated by the recently developed vector-valued Arbogast-Correa elements

[18] on quadrilaterals.

There are many types of finite element methods for solving the Darcy equation, including

continuous Galerkin finite element methods (CGFEMs), discontinuous finite element methods

9

(DGFEMs), and mixed finite element methods (MFEMs). It is known that CGFEMs do not satisfy

local mass conservation and flux continuity. MFEMs have physical properties by design but lead

to indefinite linear systems. The hybridized discontinuous Galerkin Method (HDG) reformulates

second order problems in terms of a system of first order equations and introduces the face degrees

of freedom as fluxes. HDG results in a symmetric positive definite system. However, WGFEMs

mainly use integration by parts to the second order problem and consider the face degrees of free-

dom as the primary variable. WGFEMs satisfy these physical properties and have optimal order

convergence rates [19].

2.1 Overview of Weak Galerkin Methodology for Darcy Flow

For Darcy flow, WGFEMs introduce discrete weak functions to approximate the pressure and

discrete weak gradients to approximate classical gradients.

Appropriate vector-valued finite element spaces are crucial for approximating classical gradi-

ents in the Darcy equation. Wang and Ye in in [11] propose to use vector-valued polynomials P 2
k .

Classical vector-valued Raviart-Thomas (RT) [20] finite element space is constructed on rectan-

gles. Lin et al. (2014) in [15] presents the WGFEMs with classical RT space for the Darcy flow on

rectangular meshes. Liu et al. (2018) in [21] use the lowest order Raviart-Thomas space without

Piola transformation on slightly distorted quadrilateral meshes. But the limitation of this method

with the unmapped RT space is that it requires asymptotically parallelogram quadrilateral meshes.

In order to apply WGFEMs on general quadrilateral meshes, we introduce the Arbogast-Correa

space for discrete weak gradients.

Suppose l,m are two non-negative integers. In WGFEMs, a discrete weak function space on

the element E is

W (E, l,m) = {v = {v◦, v∂}, v◦ ∈ P l(E◦), v∂ ∈ Pm(E∂)}, (2.3)

10

where v◦ is a polynomial with degree ≤ l defined in E◦, v∂ is a polynomial with degree ≤ m

defined on E∂ .

Let Eh be a collection of elements. Two spaces of discrete weak functions on the mesh Eh are

Sh(l,m) = {v = {v◦, v∂} : v|E ∈ W (E, l,m), ∀E ∈ Eh}, (2.4)

S0
h(l,m) = {v = {v◦, v∂} ∈ Sh(l,m) : v∂|E∂∩ΓD = 0, ∀E ∈ Eh}, (2.5)

where ΓD represents Dirichlet boundaries.

Let Qh = {Q◦
h, Q

∂
h} be the L2-projection such that Q◦

h maps L2(E◦) functions to polynomial

spaces defined in E◦, Q∂
h maps L2(E∂) functions to polynomial spaces defined on E∂ .

For a discrete weak function v, its discrete weak gradient ∇wv is a function in P n(E)2 via

integration by parts,

∫

E

(∇wv) ·w =

∫

E∂

v∂(w · n)−

∫

E◦

v◦(∇ ·w), ∀w ∈ P n(E)2, (2.6)

where n is a non-negative integer.

2.2 Lowest order Arbogast-Correa Spaces AC0

Arbogast and Correa introduced the Arbogast-Correa (AC) spaces on quadrilaterals for a sec-

ond order discretization of elliptic equations by a mixed finite element method in [18]. Compared

to Raviart-Thomas elements and Arnold-Boffi-Falk elements on quadrilaterals derived by Piola

transformation, AC elements have fewer degrees of freedom. Here, we only consider the lowest

order AC0 elements for ease of implementation and proof.

Definition and Properties. The AC0 space is constructed on general quadrilaterals using both

unmapped vector-valued polynomials and rational functions obtained via the Piola transformation.

11

Let E be a convex quadrilateral. The local Arbogast-Correa space on E is defined as

AC0(E) = P 2
0 (E) + xP̃0(E) + S0(E), (2.7)

where

P 2
0 (E) = span







1

0


 ,



0

1







,

xP̃0 = span







X

Y







,

X = x−xc, Y = y−yc are normalized coordinates, (xc, yc) is the center of the element, and S0(E)

is a supplementary space of vector-valued rational functions obtained via the Piola transformation

PE

S0(E) = span {PE(curl(x̂ŷ))} = span




PE



x̂

−ŷ







,

where curl(w) =




∂w
∂y

−∂w
∂x


.

Piola transformation. Define a mapping from the reference element Ê to an element E. This

relationship between Ê and E is Piola transformation and φ ∈ E is denoted as φ = PEφ̂.

The bilinear mapping between coordinates (x̂, ŷ) on the unit square and (x, y) on the quadri-

lateral is 



x = a1 + a2x̂+ a3ŷ + a4x̂ŷ,

y = b1 + b2x̂+ b3ŷ + b4x̂ŷ,

(2.8)

where





a1 = x1

b1 = y1

,





a2 = x2 − x1

b2 = y2 − y1

,





a3 = x4 − x1

b3 = y4 − y1

,





a4 = (x1 + x3)− (x2 + x4)

b4 = (y1 + y3)− (y2 + y4)
(2.9)

12

and (xi, yi)(i = 1, 2, 3, 4) are four vertices of the quadrilateral element and (x̂, ŷ) ∈ [0, 1]2. The

Jacobian matrix used for calculating the mapping is

J =




∂x
∂x̂

∂x
∂ŷ

∂y

∂x̂

∂y

∂ŷ


 =



a2 + a4ŷ a3 + a4x̂

b2 + b4ŷ b3 + b4x̂


 , (2.10)

the Jacobian determinant is

J = det(J) = (a2b3 − a3b2) + (a2b4 − a4b2)x̂+ (a4b3 − a3b4)ŷ

=

∣∣∣∣∣∣∣

a2 a3

b2 b3

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣

a2 a4

b2 b4

∣∣∣∣∣∣∣
x̂+

∣∣∣∣∣∣∣

a4 a3

b4 b3

∣∣∣∣∣∣∣
ŷ.

(2.11)

The Piola transformation is v(x) = PE(v̂)(x) =
J

J
v̂(x̂) with properties:

• (∇̂ · v̂, ŵ)Ê = (∇ · v, w)E,

• (v̂ · n̂, ŵ)ê = (v · n, w)e,

where w ∈ E, ŵ ∈ Ê are scalar functions, n, n̂ are outward normal vectors of each edge e ∈ ∂E

and ê ∈ ∂̂E separately.

The lowest order AC0 on E is spanned by four basis functions w1,w2,w3,w4, where

w1 =



1

0


 ,w2 =



0

1


 ,w3 =



X

Y


 ,w4 = PE



x̂

−ŷ


 . (2.12)

When the element is a rectangle, AC0(E) = RT[0](E).

Lowest-order Arbogast-Correa Elements Properties.

1. ∀ w ∈ AC0, w · n|e ∈ P0(e), where n = {n1, n2} is the unit normal vector on the edge.

13

Proof. The local Arbogast-Correa space on the element E is defined as

AC0(E) = P 2
0 (E) + xP̃0(E) + S0(E). (2.13)

If ∃ w ∈ AC0(E), then

• P 2
0 · n ∈ P0,

• xP̃0 · n = span{Xn1 + Y n2}, since x · n is a constant c on the edge e, xP̃0 · n ∈ P0,

• S0 · n = PE



x̂

−ŷ


 · n =



x̂

−ŷ


 · n̂, where all ∗̂ are defined on the reference element

[0, 1]2. Since x̂ · n̂ is a constant on the edge ê, S0 · n ∈ P0.

2. ∀ w ∈ AC0, ∇ ·w ∈ P0.

Proof. • ∇ · P 2
0 = 0,

• ∇ ·



X

Y


 ∈ P0,

• ∇ · S0 = ∇ · PE



x̂

−ŷ


 =

1

J
∇̂ ·



x̂

−ŷ


 = 0, i.e., it is a divergence-free vector.

When the Arbogast-Correa elements are used in the mixed finite element methods for solving

elliptic problems [18], global basis functions need to be carefully constructed to ensure the velocity

is approximated from the globalAC0 space. However, when the WG methods are applied to elliptic

problems, only the local basis functions of the AC0 spaces are needed. The velocity obtained from

the weak Galerkin methods (P0, P0;AC0) is automatically in the global AC0 space and hence in

H(div,Ω) will be shown later.

14

Next, we introduce the projection operator and interpolation operator which will be used in

WGFEMs for the Darcy equation.

Projection Operator.

Let E be a quadrilateral. Qh is the L2-projection, which maps L2(E)2 to AC0(E).

The L2-projection of u ∈ L2(E)2, i.e. Qh(u), is calculated as follows

∫

E

Qh(u) ·w =

∫

E

u ·w, ∀ w ∈ AC0(E). (2.14)

The following approximation property holds:

‖u−Qhu‖L2(E)2 . hjE‖u‖Hj(E)2 , j = 0, 1. (2.15)

Interpolation Operator.

The global interpolation operator defined below (assuming ǫ > 0):

Πh : H(div,Ω) ∩ L2+ǫ(Ω)2 −→ ACk(Eh), (2.16)

which is a gluing-together of the local interpolation operators (ΠE) defined in [18]. On each

E ∈ Eh, we have (Πhv)|E = ΠEv.

Πh is defined by normal fluxes on AC0 spaces,

∫

E∂

ΠE(u) · n =

∫

E∂

u · n, (2.17)

where n are outward unit normal vectors on edges of each element E.

15

It is known from [18] that the following approximation properties hold:

‖u− Πhu‖L2(E)2 . hjE‖u‖Hj(E)2 , j = 0, 1, (2.18)

‖∇ · (u− Πhu)‖L2(E) . hjE‖∇ · u‖Hj(E), j = 0, 1. (2.19)

Furthermore, Πh satisfies the following property

Q◦
h(∇ · u) = ∇ · (Πhu).

In other words, for any u ∈ H(div,Ω) ∩ L2+ǫ(Ω)2, there holds [18]

(∇ · u, φ◦)E◦ = (∇ · (Πhu), φ
◦)E◦ ∀φ◦ ∈ P0(E

◦) ∀E ∈ Eh. (2.20)

2.3 WG(P0, P0;AC0) Scheme for Darcy Flow

2.3.1 WG(P0, P0;AC0) Finite Elements on Quadrilaterals

Here, we use the lowest order WG finite element method WG(P0, P0;AC0) on quadrilaterals.

WG(P0, P0;AC0) means that all of discrete weak functions are degree 0 polynomials and discrete

weak gradients are in the AC0 space. Discrete weak functions are defined in interiors and on

the boundaries of an element E. On each quadrilateral element, there are five weak functions:

φ0, φ1, φ2, φ3, φ4, as shown in Figure 2.1:

• φ0 = 1 in the interior, φ0 = 0 on the four edges;

• φi = 1 (i = 1, 2, 3, 4) on the very edge, φi = 0 on the other edges and in the interior.

The discrete weak gradient ∇wφ is specified in the AC0 space and ∇wφ =
∑4

i=1 ciwi, where

wi is defined in (2.12). Through integration by parts [11], we have a small linear system,

∫

E

(∇wφ) ·w =

∫

E∂

φ∂(w · n)−

∫

E◦

φ◦(∇ ·w), ∀w ∈ AC0(E), (2.21)

16

Figure 2.1: Weak functions on a quadrilateral

which is a symmetric positive definite system.

2.3.2 WG(P0, P0;AC0) Finite Element Scheme for Darcy Flow

For the Darcy equation, our unknown is the pressure p. We define pressure p ∈ H1(Ω). After

we calculate the pressure, we calculate the Darcy velocity u and the normal flux.

WG(P0, P0;AC0) scheme for Darcy Flow

The WG finite element scheme of the Darcy equation is: seek ph = {p◦h, p
∂
h} ∈ Sh such that

p∂h|ΓD
h
= Q∂

h(pD) (L2−projection of Dirichlet boundary data into the space of piecewise constants

on ΓD
h) and

Ah(ph, q) = F(q), ∀q = {q◦, q∂} ∈ S0
h, (2.22)

where

Ah(ph, q) :=
∑

E∈Eh

∫

E

K∇wph · ∇wq, (2.23)

and

F(q) :=
∑

E∈Eh

∫

E

f q◦ −
∑

γ∈ΓN
h

∫

γ

uNq
∂ . (2.24)

17

Numerical pressure. The pressure is the only unknown in the system. So we construct matrices

to solve for pressure.

Components in local matrices are

∫

E

K∇wφi · ∇wφj, 0 ≤ i, j ≤ 4. (2.25)

Next, we distribute contributions from local matrices to the global system matrix, which is a

sparse SPD matrix. Finally, we can solve for numerical pressure p◦h and p∂h.

Darcy velocity. The discrete weak gradient ∇wph is calculated in each element and in the local

AC space. For the velocity uh we take the L2-projection Qh (2.14) to project it into the local AC

space, uh = Qh(−K∇wph).

When K is a diagonal matrix, Kwj is in the space AC. The projection can be omitted. When

K is a non-diagonal matrix, then Kwj is not in the space AC. Thus, we need to project it back to

the space.

Normal flux. After we’ve calculated the velocity, we use it to approximate the numerical normal

flux ∫

e

uh · n, (2.26)

where uh is the numerical velocity, n is the outward normal vector to the edge e.

2.3.3 Two Physical Properties and Convergence Results

Preserving local mass conservation and normal flux continuity are two main considerations for

solving the Darcy equation. WGFEMs satisfy these two important physical properties.

18

Theorem 2.3.1 (Local Mass Conservation). On each element of the mesh, with n being the outward

normal vector on the boundary, uh being the numerical velocity, there holds:

∫

E∂

uh · n =

∫

E

f. (2.27)

Proof. Take a test function q so that q|E◦ = 1 but q|E∂ = 0. Use the definition of discrete weak

gradient and Gauss Divergence Theorem, we have following equations

∫

E

f =

∫

E

(K∇wph) · ∇wq =

∫

E

Qh(K∇wph) · ∇wq

= −

∫

E

uh · ∇wq = −

∫

E∂

q∂(uh · n) +

∫

E◦

q◦(∇ · uh)

=
∫
E◦

∇ · uh =
∫
E∂ uh · n.

The first equal sign comes from
∫
E
fq◦ =

∫
E
f because q◦ = 1. Qh is the projection, and so

ensures that (K∇wph) in the finite element space. The third equal sign comes from the definition

of uh, the fourth and fifth are the use of integration by parts and values of q. In the end, we use the

Gauss Divergence theorem and finish the proof.

Theorem 2.3.2 (Normal Flux Continuity). Let γ be interior edge shared by two neighboring ele-

ments E1, E2, with n1,n2 as outward normal vectors. Then there holds:

∫

γ

uh|E1
· n1 +

∫

γ

uh|E2
· n2 = 0. (2.28)

Proof. We take a test function q = {q◦, q∂}, q∂ = 1 only on the shared edge γ, q∂ = 0 on other

edges and in interiors, q◦ = 0 in interiors. Applying the projection Qh, and the definition of the

19

discrete weak gradient, we have

0 =

∫

E1

(K∇wph) · ∇wq +

∫

E2

(K∇wph) · ∇wq

=

∫

E1

Qh(K∇wph) · ∇wq +

∫

E2

Qh(K∇wph) · ∇wq

=

∫

E1

(−u
(1)
h) · ∇wq +

∫

E2

(−u
(2)
h) · ∇wq

= −

∫

γ

u
(1)
h · n1q

∂ +

∫

E1

u
(1)
h q◦ −

∫

γ

u
(2)
h · n2q

∂ +

∫

E2

u
(2)
h q◦

= −

∫

γ

u
(1)
h · n1 −

∫

γ

u
(2)
h · n2.

The first equal sign comes from the WGFEMs scheme (2.22). The third one is the definition of uh.

The next two equal signs are the use of integration by parts and values of q.

We can extend the theorem and derive

∫

γ

u
(1)
h · n1q

∂ +

∫

γ

u
(2)
h · n2q

∂ = 0, ∀q∂ ∈ P0(e). (2.29)

We calculate the L2-errors of pressure, velocity, normal flux , and divergence of velocity by

following formulas,

‖p− p◦h‖
2 =

∑

E∈Eh

‖p− p◦h‖
2
L2(E◦), (2.30)

‖u− uh‖
2 =

∑

E∈Eh

‖u− uh‖
2
L2(E)2 , (2.31)

‖(u− uh) · n‖
2
Fh

=
∑

E∈Eh

∑

γ⊂E∂

|E|

|γ|
‖u · n− uh · n‖

2
L2(γ), (2.32)

‖∇ · u−∇ · uh‖
2 =

∑

E∈Eh

‖∇ · u−∇ · uh‖
2
L2(E), (2.33)

where |E| is the area of the element, γ is a face of the element, n is the outward normal vector of

each face.

20

We have first-order accuracy in numerical pressure, velocity, normal flux, and divergence of

velocity as follows

‖p− p◦h‖ = O(h), ‖u− uh‖ = O(h), (2.34)

‖(u− uh) · n‖Fh
= O(h), ‖∇ · u−∇ · uh‖ = O(h). (2.35)

Rigorous proof will be presented in the next section.

2.4 Detailed Error Analysis

In this section, we will present error estimates for the fluid pressure, Darcy velocity, bulk

normal flux, and divergence of velocity. For simplicity, we will assume there is no Neumann

boundary condition on the whole domain. We use notation a . b for a ≤ cb, where c is a positive

constant which is independent of mesh size h.

Lemma 2.4.1. For any E ∈ Eh and any p ∈ H1(E), there holds

∇w(Qhp) = Qh(∇p). (2.36)

Proof. For any v ∈ AC0(E), by the definitions of discrete weak gradient, Qh, Qh and integration

by parts, we have

(∇w(Qhp),v)E = −(Q◦
hp,∇ · v)E◦ + 〈Q∂

hp,v · n〉E∂

= −(p,∇ · v)E + 〈p,v · n〉E∂

= (∇p,v)E = (Qh(∇p),v)E,

which proves (2.36).

We continue to establish lemmas that are useful for error estimations.

21

Lemma 2.4.2. For any v ∈ H(div,Ω) ∩ L2+ǫ(Ω)2 and any φ = {φ◦, φ∂} ∈ S0
h, there holds

∑

E∈Eh

(∇ · v, φ◦)E◦ = −
∑

E∈Eh

(Πhv,∇wφ)E +
∑

e∈ΓN
h

〈Πhv · n, φ∂〉e. (2.37)

Proof. By (2.20), the definitions of discrete weak gradient and (2.29), we have

∑

E∈Eh

(∇ · v, φ◦)E◦ =
∑

E∈Eh

(∇ · (Πhv), φ
◦)E◦

= −
∑

E∈Eh

(Πhv,∇wφ)E +
∑

E∈Eh

〈Πhv · n, φ∂〉E∂

= −
∑

E∈Eh

(Πhv,∇wφ)E +
∑

e∈ΓN
h

〈Πhv · n, φ∂〉e,

which proves (2.37).

Lemma 2.4.3. Assume that p ∈ H2(Ω) and u ∈ H1(Ω)2. There holds

‖∇w(ph −Qhp)‖ . h. (2.38)

Proof. Let φ = {φ◦, φ∂} ∈ S0
h be arbitrary. By (2.1) with the no Neumann boundary condition

assumption and Lemma 2.4.2, we have

∑

E∈Eh

(f, φ◦)E◦ =
∑

E∈Eh

(∇ · (−K∇p), φ◦)E◦

=
∑

E∈Eh

(Πh(K∇p),∇wφ)E. (2.39)

Combining this with (2.22), we obtain

Ah(ph, φ) =
∑

E∈Eh

(Πh(K∇p),∇wφ)E. (2.40)

22

According to Lemma 2.4.1 and (2.22), we have

Ah(Qhp, φ) =
∑

E∈Eh

(K∇w(Qhp),∇wφ)E =
∑

E∈Eh

(KQh(∇p),∇wφ)E. (2.41)

Subtracting (2.41) from (2.40), we obtain the following error equation:

Ah(ph −Qhp, φ) =
∑

E∈Eh

(Πh(K∇p)−KQh(∇p),∇wφ)E, ∀φ ∈ S0
h. (2.42)

Denoting eh = ph −Qhp ∈ S0
h and taking φ = eh in (2.42), we obtain

Ah(eh, eh) =
∑

E∈Eh

(Πh(K∇p)−K∇p,∇weh)E

+
∑

E∈Eh

(K∇p−KQh(∇p),∇weh)E. (2.43)

The first term on the right-hand side of (2.43) can be estimated as follows (by applying (2.18))

∑

E∈Eh

(Πh(K∇p)−K∇p,∇weh)E ≤
∑

E∈Eh

‖Πh(K∇p)−K∇p‖L2(E)2‖∇weh‖L2(E)2

.
∑

E∈Eh

hE‖u‖H1(E)2‖∇weh‖L2(E)2

. h‖∇weh‖. (2.44)

Similarly, the second term on the right-hand side of (2.43) can be estimated as (by applying (2.15))

∑

E∈Eh

(K∇p−KQh(∇p),∇weh)E .
∑

E∈Eh

‖∇p−Qh(∇p)‖L2(E)2‖∇weh‖L2(E)2

.
∑

E∈Eh

hE‖p‖H2(E)‖∇weh‖L2(E)2

. h‖∇weh‖. (2.45)

23

Finally, by combining (2.43)–(2.45), we arrive at

‖∇weh‖
2 . Ah(eh, eh) . h‖∇weh‖,

which yields the estimate (2.38).

Corollary 2.4.3.1. Under the assumption of Lemma 2.4.3, there holds

‖∇p−∇wph‖ . h. (2.46)

Proof. From the triangle inequality, Lemma 2.4.1, Lemma 2.4.3, and (2.15), we have

‖∇p−∇wph‖ ≤ ‖∇p−Qh(∇p)‖+ ‖Qh(∇p)−∇wph‖

= ‖∇p−Qh(∇p)‖+ ‖∇w(Qhp)−∇wph‖

. h.

Theorem 2.4.4 (Convergence in velocity). Assume that u ∈ H1(Ω)2. There holds

‖u− uh‖ . h. (2.47)

24

Proof. Note that the assumption in Theorem 2.4.4 implies that ∇p ∈ H1(Ω)2. We have, by

Lemma 2.4.1, (2.15), and Lemma 2.4.3,

‖u− uh‖ = ‖K∇p−Qh(K∇wph)‖

≤ ‖K∇p−KQh(∇p)‖+ ‖KQh(∇p)−Qh(K∇wph)‖

= ‖K∇p−KQh(∇p)‖+ ‖KQh(∇p)−KQh(∇wph)‖

. ‖∇p−Qh(∇p)‖+ ‖∇p−∇wph‖

. ‖∇p−Qh(∇p)‖+ ‖∇w(Qhp− ph)‖

. h,

which yields the error estimate in the theorem.

Theorem 2.4.5 (Convergence in bulk normal flux). Assume u ∈ H1(Ω)2. There holds

‖(u− uh) · n‖Fh
. h, (2.48)

where ‖(u− uh) · n‖Fh
is defined in (2.32)

Proof. By the triangle inequality, we have

‖(u− uh) · n‖Fh
≤ ‖(u− Πhu) · n‖Fh

+ ‖(Πhu− uh) · n‖Fh
. (2.49)

Moreover, the mesh Eh being shape-regular or quasi-uniform implies that |E|/|e| . h for any

convex quadrilateral E ∈ Eh and any edge e of E.

First, we define a localL2−projection Qc
E , which mapsL2(E)2 to the space of constant vectors.

According to Lemma 2 in [22], it satisfies

‖v −Qc
Ev‖L2(E)2 . h‖v‖H1(E)2 . (2.50)

25

Let w = Qc
Ew. Since w is a constant vector, we have Πh(Q

c
Ew) = Qc

Ew. The trace inequality

for any scalar- or vector-valued H1 function used here is

hE‖φ‖
2
L2(e) . ‖φ‖2L2(E) + h2E|φ|

2
H1(E). (2.51)

The first term on the right-hand side of (2.49) can be estimated by the triangle inequality, the trace

theorem (2.51), and Lemma 5 in [22]:

‖(u− Πhu) · n‖
2
Fh

=
∑

E∈Eh

∑

e∈E∂

|E|

|e|
‖(u−w − Πh(u−w)) · n‖2L2(e)

.
∑

E∈Eh

∑

e∈E∂

|E|

|e|
‖(u−w) · n‖2L2(e)2 + ‖Πh(u−w) · n‖2L2(e)2

.
∑

E∈Eh

∑

e∈E∂

|E|

|e|

(
h−1‖u−w‖2L2(E)2 + h|u−w|2H1(E)2

+h−1‖Πh(u−w)‖2L2(E)2

)

.
∑

E∈Eh

∑

e∈E∂

|E|

|e|

(
h‖u‖2L2(E)2 + h|u|2H1(E)2 + h‖u‖2H1(E)2

)

. h2. (2.52)

The second term on the right-hand side of (2.49) can be bounded with the trace theorem (2.51)

and Theorem 2.4.4:

‖(Πhu− uh) · n‖
2
Fh

≈
∑

E∈Eh

∑

e∈E∂

|E|

|e|
h−1‖Πhu− uh‖

2
L2(E)2

.
∑

E∈Eh

∑

e∈E∂

|E|

|e|
h−1

(
‖Πhu− u‖2L2(E)2 + ‖u− uh‖

2
L2(E)2

)

.
∑

E∈Eh

∑

e∈E∂

|E|

|e|
h−1

(
h2‖u‖2H1(E)2 + h2

)

. h2. (2.53)

Finally, the estimate (2.48) follows from (2.49), (2.52), and (2.53).

26

Theorem 2.4.6 (Convergence in divergence of velocity). Assume f ∈ H1(Ω). There holds

‖∇ · u−∇ · uh‖ . h. (2.54)

Proof. Let φ = {φ◦, φ∂} ∈ S0
h. By (2.1) with the assumption of no Neumann boundary condition

and (2.20), we have

∑

E∈Eh

(f, φ◦)E◦ =
∑

E∈Eh

(∇ · (−K∇p), φ◦)E◦ =
∑

E∈Eh

(∇ · u, φ◦)E◦ =
∑

E∈Eh

(∇ · (Πhu), φ
◦)E◦ .

(2.55)

From (2.22), definition of L2-projection, (2.6), (2.29), we have

∑

E∈Eh

(f, φ◦)E◦ =
∑

E∈Eh

(K∇wph,∇wφ)E

=
∑

E∈Eh

(Qh(K∇wph),∇wφ)E

=
∑

E∈Eh

(−uh,∇wφ)E

=
∑

E∈Eh

(∇ · uh, φ
◦)E◦ −

∑

E∈Eh

〈uh · n, φ
∂〉E∂

=
∑

E∈Eh

(∇ · uh, φ
◦)E◦ . (2.56)

Therefore, we obtain from (2.55) and (2.56) that

(∇ · (Πhu− uh), φ
◦) = 0. (2.57)

It is clear from (2.57) that ∇·uh = ∇· (Πhu), since φ◦ ∈ P0(E
◦) is arbitrary. Then (2.54) follows

from (2.19).

27

In order to obtain an L2-error estimate for the pressure, we consider the dual problem: Seek

Φ ∈ H2(Ω) such that 



∇ · (−K∇Φ) = e◦h, x ∈ Ω,

Φ = 0, x ∈ ∂Ω,

(2.58)

where eh = ph −Qhp. We assume the dual problem has full H2-regularity and

‖Φ‖H2(Ω) . ‖e◦h‖. (2.59)

Theorem 2.4.7 (Convergence in pressure). Assume that p ∈ H2(Ω), f ∈ L2(Ω). Assume the dual

problem (2.58) has H2-regularity as stated in (2.59). There holds

‖p− p◦h‖ . h. (2.60)

Proof. Testing the first equation in (2.58) with e◦h, we have, by Lemma 2.4.2 and the homogeneous

Dirichlet boundary condition for Φ in (2.58),

‖e◦h‖
2 = (∇ · (−K∇Φ), e◦h)

=
∑

E∈Eh

(Πh(K∇Φ),∇weh)E −
∑

e∈ΓN
h

〈Πh(K∇Φ) · n, e∂h〉e

=
∑

E∈Eh

(Πh(K∇Φ),∇w(ph −Qhp))E

=
∑

E∈Eh

(Πh(K∇Φ)−K∇Φ,∇w(ph −Qhp))E

+
∑

E∈Eh

(K∇Φ,∇w(ph −Qhp))E. (2.61)

28

By (2.18) and Lemma 2.4.3, the first term on the right-hand side of (2.61) can be estimated as

∑

E∈Eh

(Πh(K∇Φ)−K∇Φ,∇w(ph −Qhp))E

. ‖∇Φ− Πh(∇Φ)‖ ‖∇w(ph −Qhp)‖

. h‖Φ‖H2(Ω)h . h2‖e◦h‖. (2.62)

Next we rewrite the second term on the right-hand side of (2.61) as follows

∑

E∈Eh

(K∇Φ,∇w(ph −Qhp))E

=
∑

E∈Eh

(K∇Φ−Qh(K∇Φ),∇wph −∇p)E +
∑

E∈Eh

(K∇Φ−Qh(K∇Φ),∇p)E

+
∑

E∈Eh

(Qh(K∇Φ),∇wph)E −
∑

E∈Eh

(K∇Φ,∇w(Qhp))E

=: T1 + T2 + T3 + T4. (2.63)

Term T1 can be estimated as (by applying (2.15), (2.59), and Lemma 2.4.3)

T1 =
∑

E∈Eh

(K∇Φ−Qh(K∇Φ),∇wph −∇p)E

≤ ‖K∇Φ−Qh(K∇Φ)‖‖∇wph −∇p‖

≤ h‖Φ‖H2(Ω)‖∇wph −Qh(∇p)‖

≤ h‖Φ‖H2(Ω)‖∇wph −∇wQhp‖

. h‖Φ‖H2(Ω)h

. h2‖Φ‖H2(Ω)

. h2‖e◦h‖. (2.64)

29

Term T2 can be estimated as (by applying (2.15) and (2.59))

T2 =
∑

E∈Eh

(K∇Φ−Qh(K∇Φ),∇p−Qh(∇p))E

≤ ‖K∇Φ−Qh(K∇Φ)‖‖∇p−Qh(∇p)‖

. h‖Φ‖H2(Ω)h‖∇p‖H1(Ω)

. h2‖Φ‖H2(Ω) . h2‖e◦h‖. (2.65)

For term T3, we apply Lemma 2.4.1, self-adjointness of K, and (2.22) without Neumann boundary

condition to obtain

T3 =
∑

E∈Eh

(KQh(∇Φ),∇wph)E

=
∑

E∈Eh

(K∇w(QhΦ),∇wph)E

=
∑

E∈Eh

(K∇wph,∇w(QhΦ))E

=
∑

E∈Eh

(f,Q◦
hΦ)E◦ . (2.66)

For term T4, we apply Lemma 2.4.1, orthogonality of Qh, i.e.,

(Qh(K∇Φ),Qh(∇p)−∇p) = 0,

30

(2.15), and (2.59) to obtain

T4 = −
∑

E∈Eh

(K∇Φ,Qh(∇p))E

=
∑

E∈Eh

(Qh(K∇Φ)−K∇Φ,Qh(∇p)−∇p)E −
∑

E∈Eh

(K∇Φ,∇p)E

≤ ‖Qh(K∇Φ)−K∇Φ‖‖Qh(∇p)−∇p‖ −
∑

E∈Eh

(K∇Φ,∇p)E

. h‖e◦h‖h‖p‖H2(Ω) −
∑

E∈Eh

(f,Φ)E

. h2‖e◦h‖ −
∑

E∈Eh

(f,Φ)E. (2.67)

By (2.66), (2.67), the approximation properties of Q◦
h, f ∈ L2(Ω), the fact that ‖Φ‖H1 ≤ ‖Φ‖H2 ,

and (2.59), we have

T3 + T4 . h2‖e◦h‖+
∑

E∈Eh

(f −Q◦
hf,Q

◦
hΦ− Φ)E

. h2‖e◦h‖+ ‖f −Q◦
hf‖‖Q

◦
hΦ− Φ‖

. h2‖e◦h‖+ ‖f −Q◦
hf‖h‖Φ‖H1

. h2‖e◦h‖+ h‖e◦h‖. (2.68)

Finally, combining (2.61), (2.62), (2.64), (2.65), and (2.68), we obtain

‖e◦h‖ . h. (2.69)

The estimate (2.60) in Theorem 2.4.7 follows from (2.69), the approximation property of Q◦
h, and

a triangle inequality.

From previous error estimates, we can see first order convergence rates which are as expected

because we use constants to do approximation.

31

2.5 Extension to Higher Order WG Methods

In this dissertation, in order to use WG finite elements for the poroelasticity equation, we only

consider WG(P0, P0;AC0). Higher order WGFEMs, WG(Pk, Pk;ACk), for the Darcy equation

are considered in [23].

WG(Pk, Pk;ACk) takes Pk polynomials as the space defined in E◦ and Pk polynomials as the

space defined on E∂ . Discrete weak gradients are established in higher order ACk elements [18].

Let E be a convex quadrilateral and k ≥ 0 be an integer. The local Arbogast-Correa space on E is

defined as

ACk(E) = P 2
k (E) + xP̃k(E) + Sk(E), (2.70)

where

Pk(E) = span
{
xiyj, i, j = 0, 1, . . . , k, i+ j ≤ k

}
,

P 2
k (E) is the space of bivariate vector-valued polynomials defined on E with total degree at most

k, P̃k(E) is the space of bivariate homogeneous scalar-valued polynomials with degree exactly k,

P̃k(E) = span
{
xjyk−i, i = 0, 1, . . . , k

}
,

xP̃k(E) = span







xi+1yk−i

xiyk−i+1


 , i = 0, 1, . . . , k




,

and Sk(E) is a supplementary space of vector-valued rational functions obtained via the Piola

transformation.

The space of supplemental vectors is

Sk(E) = span{σk
1 , σ

k
2},where σk

i = PEσ̂
k
i , i = 1, 2.

32

σ̂k
i are defined as [18]





σ̂k
1 = curl(x̂k−1(1− x̂2)ŷ) and σ̂k

2 = curl(x̂ŷk−1(1− ŷ2)), k ≥ 1,

σ̂k
0 = curl(x̂ŷ), k = 0,

where curl(w) =




∂w
∂y

−∂w
∂x


.

Obviously,

dim(P 2
k) = (k + 1)(k + 2), dim(P̃k) = k + 1,

and

dim(Sk) = 1 if k = 0, dim(Sk) = 2 if k > 0.

If we set sk = dim(Sk), then

dim(ACk(E)) = (k + 1)(k + 3) + sk. (2.71)

The dimension of the k-th order Raviart-Thomas (RT) space on a triangle [20] is (k + 1)(k + 3),

which is the same as dimension of P 2
k (E) + xP̃k(E). So Sk can be regarded as the additional

vectors needed for general quadrilaterals. These supplemental vectors are divergence free and

their normal components are polynomials of order k.

The higher order WG finite element scheme of the Darcy equation is: seek ph = {p◦h, p
∂
h} ∈ Sh

such that p∂h|ΓD
h
= Q∂

h(pD) (L2−projection of Dirichlet boundary data into the space of polynomi-

als Pk on ΓD
h) and

Ah(ph, q) = F(q), ∀q = {q◦, q∂} ∈ S0
h, (2.72)

where

Ah(ph, q) :=
∑

E∈Eh

∫

E

K∇wph · ∇wq, (2.73)

33

and

F(q) :=
∑

E∈Eh

∫

E

f q◦ −
∑

γ∈ΓN
h

∫

γ

uNq
∂ . (2.74)

Note that the numerical Darcy velocity calculated in the post-processing step should be projected

into the ACk space under the L2−projection Qh, which maps L2(E)2 to ACk(E).

Higher order WGFEMs satisfy two physical properties, (2.27) and (2.28). Proofs are in the

same spirit as the lowest order WG(P0, P0;AC0).

Higher order WGFEMs with ACk elements produce optimal-order approximation to the Darcy

equation on general quadrilaterals. Numerical experiments in [23] demonstrate this family of WG

methods has the optimal (k + 1)st order in approximation. Error estimates of pressure, velocity,

normal flux, and divergence of velocity are presented in [23] are shown as follows

‖p− ph‖ = O(hk+1), ‖u− uh‖ = O(hk+1), (2.75)

‖u · n− uh · n‖Fh
= O(hk+1), ‖∇ · u−∇ · uh‖ = O(hk+1), (2.76)

where k ≥ 0 and errors are defined as in (2.30), (2.31), (2.32), and (2.33).

34

Chapter 3

Enriched Lagrangian Elements for Linear Elasticity

One of essential components for solving the poroelasticity equation is to solve the linear elas-

ticity equation. For linear elasticity with λ → ∞ or ν →
1

2
, finite element methods need to avoid

Poisson locking, which appears as loss of convergence rates in displacement or stress oscillations.

There have been many finite element methods for the linear elasticity equation [24–30]. Consid-

ering the effectiveness of solving the linear elasticity, we adopt the method in [31], which is not

published yet. For completeness, we recapitulate main ideas and numerical results here.

Motivated by the similarity between the Stokes equation and the linear elasticity equation,

enrichments of classical Lagrangian elements EQ1 in [31] are constructed the same as Bernardi-

Raugel (BR1) elements developed in [14] for Stokes problems. It has been shown in [14] that the

velocity and pressure in the Stokes equation can be approximated by BR1 elements and piece-

wise constants, separately. Meanwhile, the coupling term in the poroelasticity equation, which is

the main part in this dissertation, requires an appropriate coupling of dilation (i.e., divergence of

displacement) and pressure. So we will use enriched Lagrangian elements for displacement and

piecewise constants for pressure in the poroelasticity equation.

The linear elasticity equation is formulated as





−∇ · σ = f(x), x ∈ Ω,

u|ΓD = uD, (σn)|ΓN = tN ,

(3.1)

where Ω is a 2D or 3D bounded domain occupied by a homogeneous and isotropic elastic body, f

is a body force, uD, tN are respectively Dirichlet and Neumann data, n is the outward unit normal

vector on the domain boundary ∂Ω = ΓD ∪ ΓN . u is the solid displacement,

ε(u) =
1

2

(
∇u+ (∇u)T

)

35

is the strain tensor, and

σ = 2µ ε(u) + λ(∇ · u)I,

is the Cauchy stress tensor, where I is the identity matrix of order two or three.

The Lamé constants λ, µ are

λ =
Eν

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
, (3.2)

where E is the elasticity modulus and ν is Poisson’s ratio.

The variational form in the strain-div formulation for (3.1) is to seek u ∈ H1(Ω) such that

u|ΓD = uD and

2µ(ε(u), ε(v)) + λ(∇ · u,∇ · v) = (f ,v) + 〈tN ,v〉ΓN , ∀v ∈ H1
D,0(Ω). (3.3)

3.1 Enriched Lagrangian Elements (EQ1) for Quadrilaterals

and Hexahedra

It is well-known that the Poisson locking is the main issue in solving the linear elasticity equa-

tion. The reasons for locking in the linear elasticity equation is discussed in [7]. From the view

of error estimates, it requires ∇ · u → 0 when λ → ∞, which is called divergence-freeness. If

continuous Lagrangian elements Qd
1 (d = 2, 3) are used for the approximation, the requirement

for divergence-freeness leads to global constant vectors, which do not approximate the solution.

Motivated by BR1 finite elements, EQ1 elements introduce edge bubble functions to the exist-

ing Qd
1 finite elements to avoid the Poisson locking. The following sections explain the definition

of EQ1 finite elements.

Enriched Lagrangian Elements on Quadrilaterals. Let E be a convex quadrilateral with ver-

tices P1, P2, P3, P4, and outward unit normal vector n1,n2,n3,n4 on edges.

36

Basis functions on quadrilaterals.

On the reference element Ê, there are four nodal scalar basis functions

φ̂1(x̂, ŷ) = (1− x̂)(1− ŷ), φ̂2(x̂, ŷ) = x̂(1− ŷ),

φ̂3(x̂, ŷ) = x̂ŷ, φ̂4(x̂, ŷ) = (1− x̂)ŷ.
(3.4)

The image of (x̂, ŷ) ∈ Ê under the bilinear mapping (2.8) is (x, y) ∈ E. We define eight nodal

vector-valued Lagrangian Q1(E)
2 basis functions on E,

φ11(x, y) =



φ̂1(x̂, ŷ)

0


 ,φ12(x, y) =




0

φ̂1(x̂, ŷ)


 ,

φ21(x, y) =



φ̂2(x̂, ŷ)

0


 ,φ22(x, y) =




0

φ̂2(x̂, ŷ)


 ,

φ31(x, y) =



φ̂3(x̂, ŷ)

0


 ,φ32(x, y) =




0

φ̂3(x̂, ŷ)


 ,

φ41(x, y) =



φ̂4(x̂, ŷ)

0


 ,φ42(x, y) =




0

φ̂4(x̂, ŷ)


 .

(3.5)

Four edge-based scalar bubble functions on Ê are

ψ̂1(x̂, ŷ) = x̂(1− x̂)(1− ŷ), ψ̂2(x̂, ŷ) = x̂(1− ŷ)ŷ,

ψ̂3(x̂, ŷ) = x̂(1− x̂)ŷ, ψ̂4(x̂, ŷ) = (1− x̂)(1− ŷ)ŷ.
(3.6)

Vector-valued edge-based bubble functions on E are defined as

ψi(x, y) = niψi(x, y) = niψ̂i(x̂, ŷ), i = 1, 2, 3, 4. (3.7)

37

The enriched Lagrangian finite element space on E is defined as

EQ1(E) = Q1(E)
2 + Span(ψ1,ψ2,ψ3,ψ4). (3.8)

Enriched Lagrangian Elements on Hexahedra. Basis functions of enriched Lagrangian ele-

ments on hexahedra are defined similarly to basis functions on quadrilaterals. Let element E be

a cuboidal hexahedron which is the image of reference element Ê = [0, 1]3 under the trilinear

mapping. Figure 3.1 shows the trilinear mapping from the reference Ê to E.

Trilinear mapping

Figure 3.1: Trilinear mapping

The trilinear mapping is defined as

p = (x, y, z) = p000 + pax̂+ pbŷ + pcẑ + pdŷẑ + peẑx̂+ pf x̂ŷ + pgx̂ŷẑ, (3.9)

where

p000 = (x0, y0, z0), pa = (x1, y1, z1)− p000,

38

pb = (x3, y3, z3)− p000, pc = (x4, y4, z4)− p000,

pd = ((x7, y7, z7)− p000)− (pb + pc), pe = ((x5, y5, z5)− p000)− (pc + pa),

pf = ((x2, y2, z2)−p000)−(pa+pb), pg = ((x6, y6, z6)−p000)−((pa+pb+pc)+(pd+pe+pf)),

vertices (xi, yi, zi)(i = 0, 1, · · · , 7) are shown in Figure 3.1.

Basis functions on hexahedra.

On the reference element Ê, there are eight nodal scalar basis functions

φ̂1(x̂, ŷ) = (1− x̂)(1− ŷ)(1− ẑ), φ̂2(x̂, ŷ) = x̂(1− ŷ)(1− ẑ),

φ̂3(x̂, ŷ) = (1− x̂)ŷ(1− ẑ), φ̂4(x̂, ŷ) = (1− x̂)(1− ŷ)ẑ,

φ̂5(x̂, ŷ) = x̂)(1− ŷ)ẑ, φ̂6(x̂, ŷ) = x̂)(1− ŷ)ẑ,

φ̂7(x̂, ŷ) = x̂ŷẑ, φ̂8(x̂, ŷ) = (1− x̂)ŷẑ.

(3.10)

And there are twenty-four vector-valued Lagrangian Q1(E)
3 basis funcitons on E,

φ3i−2(x, y) =




φ̂i(x̂, ŷ)

0

0



,

φ3i−1(x, y) =




0

φ̂i(x̂, ŷ)

0



,

φ3i(x, y) =




0

0

φ̂i(x̂, ŷ)



,

(3.11)

with i = 1, 2, · · · , 8.

39

Similar to 2D, there are six face-based scalar-valued bubble functions on Ê,





ψ̂1 = ŷ(1− ŷ)ẑ(1− ẑ)(1− x̂), ψ̂2 = ŷ(1− ŷ)ẑ(1− ẑ)x̂,

ψ̂3 = x̂(1− x̂)ẑ(1− ẑ)(1− ŷ), ψ̂4 = x̂(1− x̂)ẑ(1− ẑ)ŷ,

ψ̂5 = x̂(1− x̂)ŷ(1− ŷ)(1− ẑ), ψ̂6 = x̂(1− x̂)ŷ(1− ŷ)ẑ.

(3.12)

ψ̂i = 1 on the i-th face, but 0 on the other faces.

Then on E, we define six vector-valued bubble functions

ψi(x, y) = niψi(x, y) = niψ̂i(x̂, ŷ), i = 1, 2, 3, 4, 5, 6, (3.13)

where ni(1 ≤ i ≤ 6) are outward normal vectors on faces.

The enriched Lagrangian finite element space on E is defined as

EQ1(E) = Q1(E)
3 + Span(ψ1,ψ2,ψ3,ψ4,ψ5,ψ6). (3.14)

3.2 A Numerical Scheme for Linear Elasticity

In this section, we solve the linear elasticity equation (3.1) by EQ1 finite elements with the

technique of reduced integration [32,33] for the dilation. Reduced integration uses fewer Gaussian

quadratures points than the fully integrated schemes.

Numerical Scheme for the Linear Elasticity Equation. Let Ω be the domain with quadrilateral

or hexahedral mesh Eh. Two spaces of shape functions over the mesh Eh are

Vh = {v : v|E ∈ EQ1, ∀E ∈ Eh}, V◦
h = {v ∈ Vh,v|ΓD

= 0}. (3.15)

For v ∈ Vh, ∇ · v is not a constant on each element.

40

For a numerical solution of the linear elasticity equation, find uh ∈ Vh such that uh|
D
Γh

=

ΠDuD, and

A(uh,v) = F(v), ∀v ∈ V0
h, (3.16)

where

A(uh,v) =
∑

E∈Eh

2µ(ε(uh), ε(v))E +
∑

E∈Eh

λ(∇ · uh,∇ · v)E, (3.17)

∇ · uh and ∇ · v are elementwise constants by taking the average of ∇ · uh and ∇ · v on E,

F(v) =
∑

E∈Eh

(f ,v)E +
∑

e∈ΓN
h

〈tN ,v〉e, (3.18)

and

(ΠDuD)|e = Π̃DuD +

(∫

e

(uD − Π̃DuD) · n

/∫

e

ψe · n

)
ψe, e ∈ ΓD

h , (3.19)

where Π̃DuD is the interpolation operator of uD in Q1(e)
d, i.e.,

Π̃DuD =
4∑

i=1

uD(Pi)φi,

and φi(Pj) = δij,

Π̃DuD(Pi) = uD(Pi).

On a 2D domain Ω, assuming the number of degrees of freedom on the mesh is n, the numerical

displacement uh is approximated by basis functions of EQ1,

uh =
n∑

i=1

aiwi, (3.20)

41

where wi are basis function defined in (3.8), ai are coefficients of basis functions ofEQ1 elements.

The gradient is

∇uh =
n∑

i=1

ai(∇wi). (3.21)

The strain tensor is

ε(uh) = 1
2
(∇uh +∇uT

h) =
1
2

(∑n

i=1 ai(∇wi) +
∑n

i=1 ai(∇wi)
T
)

=
∑n

i=1 ai
∇wi+∇wT

i

2
=
∑n

i=1 aiε(wi)

=
∑n

i=1 ai
∇wi+∇wT

i

2
.

(3.22)

The numerical stress tensor σh is calculated by numerical strain tensor ε(uh) and numerical dilation

∇ · uh.

On the local element E, the component in the local matrix is

2µ (ε(wi), ε(wj))E + λ(∇ ·wi,∇ ·wj)E

≈ 2µ(ε(wi), ε(wj))E + λ(∇ ·wi,∇ ·wj)E, 1 ≤ i, j ≤ 12.

(3.23)

Then we distribute local contributions to the global matrix and global right hand side, solve for the

displacement.

This method results in the second order convergence in the displacement, first order in the

divergence and stress, which have been proved in [31]. Errors are measured in following norms:

‖u− uh‖
2 =

∑

E∈Eh

‖u− uh‖
2
L2(E)d , (3.24)

‖∇ · u−∇ · uh‖ =
∑

E∈Eh

‖∇ · u−∇ · uh‖
2
L2(E), (3.25)

‖σ − σh‖
2 =

∑

E∈Eh

‖σ − σh‖
2
L2(E)d×d . (3.26)

42

Theorem 3.2.1 (Convergence rates [31]). Let u ∈ H2(Ω)d be the exact solution of (3.1) and

uh ∈ Vh be the numerical solution from the finite element scheme (3.16) with a homogeneous

Dirichlet boundary condition. There holds

‖u− uh‖ ≤ Ch2‖f‖, (3.27)

‖∇ · u−∇ · uh‖ ≤ Ch‖f‖, (3.28)

‖σ − σh‖ ≤ (1 + λ)Ch‖f‖, (3.29)

where C ≥ 0 is a constant that is independent of λ, h.

Example (Locking-free). This example is designed to show the EQ1 finite element method is

locking-free, i.e., there is no oscillation when λ → ∞. Let Ω be the unit square [0, 1]2. The Lamé

constants are λ = 108, µ = 1, the exact displacement is

u =



π

2
sin2(πx) sin(2πy)

−
π

2
sin(2πx) sin2(πy)


+

1

λ



sin(πx) sin(πy)

sin(πx) sin(πy)


 , (3.30)

the dilation is

∇ · u =
π

λ
(cos(πx) sin(πy) + sin(πx) cos(πy)). (3.31)

In this example, when λ→ ∞, dilation ∇ · u → 0. Dirichlet boundary conditions are assigned on

the whole boundary.

Numerical results are shown in Table 3.1. We can see the second order convergence in dis-

placement, first order in dilation, and the first order in stress, which are in agreement with error

estimates in Theorem 3.2.1.

43

Table 3.1: Numerical results of the EQ1 finite element method on rectangular meshes

1/h ‖u− uh‖ Rate ‖∇ · u−∇ · uh‖ Rate ‖σ − σh‖ Rate

4 1.22×10−1 — 1.32×100 — 1.87×108 —

8 3.11×10−2 1.977 7.66×10−1 0.785 1.08×108 0.792

16 7.80×10−3 1.994 3.97×10−1 0.948 5.61×107 0.944

32 1.95×10−3 1.998 2.00×10−1 0.989 2.83×107 0.987

44

Chapter 4

A Two-field Finite Element Solver for Linear

Poroelasticity

From previous chapters, we have seen the discretization of the Darcy flow by WG elements

and linear elasticity by EQ1 elements. In this chapter, we focus on describing the two-field lin-

ear poroelasticity solver combined by enriched Lagrangian elements and the lowest order weak

Galerkin finite elements.

4.1 Reviving the Two-field Approach

Mathematically, the poroelasticity equation is constructed as a combination of the Darcy equa-

tion and the linear elasticity equation





−∇ · (2µε(u) + λ(∇ · u)I) + α∇p = f ,

∂t (c0p+ α∇ · u) +∇ · (−K∇p) = s,

(4.1)

where u is the solid displacement, ε(u) = 1
2

(
∇u+ (∇u)T

)
is the strain tensor, λ, µ (both positive)

are Lamé constants, f is a body force, p is the fluid pressure, K is a permeability tensor, s is a

fluid source or sink, α is the Biot-Williams constant, c0 ≥ 0 is the constrained storage capacity.

Appropriate boundary and initial conditions are applied to the system.

Because of the importance of the linear poroelasticity equation, research on numerical solvers

for poroelasticity has been investigated since the 1980s. By now, there are two-field, three-field,

and four-field approaches for solving poroelasticity.

The two-field approach (solid displacement and fluid pressure) was developed by following

the poroelasticity equation’s two-field format. Continuous Galerkin (CG) finite element methods

(FEMs) were applied to the solid displacement and the fluid pressure. But CG FEMs can’t address

45

poroelasticity locking which appears as nonphysical pressure oscillations and Poisson locking in

linear elasticity.

Then three-field approaches (solid displacement, fluid pressure and velocity) were explored

to avoid the poroelasticity locking. Mixed FEMs were applied for the fluid pressure and fluid

velocity and another FEM which is free of the linear elasticity locking was used for linear elasticity.

Three-field approaches with penalty terms for the linear poroelasticity equation were developed

in [7,8,12] . However, Yi developed a three-field approach without penalties on simplexes in [10].

We were inspired by the FEM for linear elasticity component in [10], coupled it with weak

Galerkin FEMs, and developed the two-field approach discussed in this dissertation. Compared

to existing three-field approaches, our two-field approach can avoid poroelasticity locking without

incorporating stabilization on quadrilateral meshes. It is also easy to construct.

Variational Form

The variational form has two primary variables, displacement and fluid pressure. Before we

present the variational form, we introduce some spaces and their norms which will be used later,

• (H1(Ω))d =
{
v : v ∈ (L2(Ω))d,∇v ∈ (L2(Ω))d×d

}
,

• (H1
0,ΓD(Ω))

d =
{
v ∈ (H1(Ω))d : v|ΓD = 0

}
,

• ‖v‖2H1(Ω) = ‖v‖2L2(Ω) + ‖∇v‖2L2(Ω),

where d is the dimension of space.

To derive the variational form, Equation (4.1) is multiplied by v ∈ (H1
0,ΓD(Ω))

d, q ∈ H1
0,ΓD(Ω).

Taking integration by parts, we have the variational form is to find (u, p) ∈ (H1
uD,ΓD(Ω))

d ×

H1
pD,ΓD(Ω) such that





2µ
(
ε(u), ε(v)

)
+ λ(∇ · u,∇ · v)− α(p,∇ · v) = (f ,v) + 〈tN ,v〉ΓN ,

c0 (pt, q) + (K∇p,∇q) + α(∇ · ut, q) = (s, q)− 〈uN , q〉ΓN ,

(4.2)

46

where tN is the solid Neumann boundary condition and uN is the fluid Neumann boundary condi-

tion.

4.2 EQ1+WG(P0, P0;AC0) Two-field Scheme for Linear Poroe-

lasticity

Here, we couple finite element spaces for the Darcy equation and the linear elasticity equation.

The lowest order weak Galerkin finite element method, WG(P0, P0;AC0), is for the Darcy flow,

and enriched Lagrangian element,EQ1, is for the linear elasticity. First, let Uh be the finite element

space for displacement and defined as

Uh = {v : v ∈ EQ1(E), ∀E ∈ Eh} , (4.3)

let Wh be the finite element space for fluid pressure and defined as

Wh =
{
q = (q◦, q∂), q◦ ∈ P0(E

◦), q∂ ∈ P0(E
∂), ∀E ∈ Eh

}
, (4.4)

and

U0
h =

{
v ∈ Vh,v|ΓD

h
= 0

}
, (4.5)

W0
h =

{
q ∈ Wh, q

∂|ΓD
h
= 0
}
. (4.6)

With the backward Euler time discretization, the fully discrete finite element scheme for each time

step is to find (un
h, p

n
h) ∈ Uh ×Wh such that un

h|ΓD
h
= ΠDuD (interpolation of Dirichlet boundary

condition into theEQ1 space on ΓD
h) , ph|ΓD

h
= Q∂

h(pD) (projection of Dirichlet boundary condition

47

into the P0 space on ΓD
h), and





2µ
(
ε(u

(n)
h), ε(v)

)
+ λ(∇ · u

(n)
h ,∇ · v)− α(p

(n),◦
h ,∇ · v) = (f (n),v) + 〈t

(n)
N ,v〉ΓN

h
,

c0

(
p
(n),◦
h , q◦

)
+∆tn

(
K∇p

(n)
h ,∇q

)
+ α(∇ · u

(n)
h , q◦)

= c0

(
p
(n−1),◦
h , q◦

)
+∆tn

(
s(n), q◦

)
+ α(∇ · u

(n−1)
h , q◦)−∆tn〈u

(n)
N , q∂〉ΓN

h
,

(4.7)

where n = 1, 2, . . . , N , t
(n)
N and u

(n)
N are displacement Neumann boundary conditions and fluid

Neumann boundary conditions at the n-th time step, respectively, ∇ · u
(n)
h , ∇ · u

(n−1)
h , ∇ · v are

calculated by the reduced integration technique which actually only affects the vector-valued edge

bubble functions since the divergence of vector-valued nodal functions is already 0. This finite

element discretization results in a large monolithic system.

4.3 Theoretical and Numerical Results

Here, we will present error estimate results to the poroelasticity equation and briefly state the

idea of the proof. More detailed proofs can be found in Chapter 5.

Following norms are used to measure errors of displacement u, fluid pressure p, and the Darcy

velocity q with uniform time discretization,

‖u− uh‖l∞(H1) = max1≤n≤N‖u
n − un

h‖H1(Ω), (4.8)

‖p− p◦h‖l2(L2) =

√√√√∆t
N∑

n=1

‖pn − pn,◦h ‖2
L2(Ω), (4.9)

‖q− qh‖l2(L2) =

√√√√∆t
N∑

n=1

‖qn − qn
h‖

2
L2(Ω). (4.10)

Theorem 4.3.1 (Error Estimate). Let (u, p) be the solutions of (4.2), q = −K∇p be the Darcy

velocity, (uh, ph) ∈ Uh ×Wh be the solutions of (4.7), and qh = Qh(−K∇wph) be the numerical

48

Darcy velocity obtained via post-processing. Then, we have following error estimates:

‖u− uh‖l∞(H1) + ‖p− p◦h‖l2(L2) + ‖q− qh‖l2(L2) ≤ C1h+ C2∆t, (4.11)

where C1, C2 are constants independent of h, λ, and ∆t.

Outline of the proof.

• To bound errors u− uh, p− ph at each time step, we first construct error equations contain-

ing discrete errors and interpolation/projection errors for displacement and pressure. The

discrete error is the difference between the numerical solution and interpolation/projection

solution. The interpolation/projection error is the difference between the exact solution and

interpolation/projection solution. Then discrete errors are bounded by interpolation/projec-

tion errors. Finally, displacement errors and pressure errors over the whole time interval are

bounded by discrete errors and interpolation/projection errors with the triangle inequality

theorem.

• We use the backward Euler method which is with the first order convergence. So we would

obtain the first order convergence in time.

We will present two numerical results here. The first one will demonstrate the numerical re-

sults match the theoretical results. The second one will show our method is free of poroelasticity

locking.

Example 1 (Locking-free).

In the first numerical example, we will test an analytical example with large λ to derive ex-

pected convergence rates mentioned in the previous section.

49

This is a 2D example on unit square domain Ω = [0, 1]2, with α = 1, c0 = 0, λ = 106, µ = 1,

permeability K = I, total time T = [0, 1]. Exact displacement

u = sin(
π

2
t)




π

2
sin2(πx) sin(2πy) +

1

λ
sin(πx) sin(πy)

−
π

2
sin(2πx) sin2(πy) +

1

λ
sin(πx) sin(πy)


 , (4.12)

body force

f =
π2

λ
sin(

π

2
t)




µ(πλ sin(2πx)− cos(π(x+ y))) + (α− λ) cos(π(x+ y))

+2µ sin(πy)(−2πλ cos2(πx) cos(πy) + 2πλ sin2(πx) cos(πy) + sin(πx))

−µ(cos(π(x+ y)) + πλ sin(2πx)) + α cos(π(x+ y))

+λ(−2πµ sin(2πx)(2 sin2(πy)− 1)− cos(π(x+ y))) + 2µ sin(πx) sin(πy)




(4.13)

fluid pressure

p =
π

λ
sin(

π

2
t) sin(π(x+ y)), (4.14)

dilation

∇ · u = p =
π

λ
sin(

π

2
t) sin(π(x+ y)), (4.15)

fluid source

s = (α + c0)
π

2
cos(

π

2
t)
π

λ
sin(π(x+ y) + sin(

πt

2
)
2π3

λ
sin(π(x+ y)), (4.16)

Convergence rates. By error equations mentioned previously, we calculate the l∞([0, T];H1(Ω))

error of the displacement, the l2([0, T];L2(Ω)) error of the pressure, and the l2([0, T];L2(Ω)) error

of the Darcy velocity. Table 4.1 shows errors of the interior pressure and displacement. We can see

the first order convergence for the interior pressure, the first order convergence for the displace-

ment, and the first order convergence for the Darcy velocity. Although this test problem has large

λ, displacement errors converge as expected.

50

Table 4.1: Example 1: Numerical results of EQ1+WG method on rectangular meshes, 1/h = ∆t

1/h ‖p− p◦h‖l2(L2) conv. rate ‖u− uh‖l∞(H1) conv. rate ‖q− qh‖l2(L2) conv. rate

4 5.50×10−7 – 1.78 – 1.78×10−6

8 2.65×10−7 1.05 0.81 1.12 8.42×10−7 1.08

16 1.29×10−7 1.03 0.39 1.03 4.08×10−7 1.04

32 6.39×10−8 1.02 0.19 1.00 2.01×10−7 1.02

Figure 4.1: Example 2: A sandwiched low permeability layer.

Example 2 (Sandwiched low permeability layer).

This problem is similar to the one tested in [13, 34] but with different oritentaion. The domain

is the unit square Ω = [0, 1]2, with a low permeability material (κ = 10−8) in the middle region

1
4
≤ x ≤ 3

4
, κ = 1 in other parts, as shown in Figure 4.1. Other parameters are λ = 1, µ = 1,

α = 1, c0 = 0. Listed below are boundary conditions for solid and fluid.

• For the solid:

For the left side: Neumann (traction) −σn = (1, 0);

For the bottom-, right-, and top-sides: homogeneous Dirichlet (rigid) u = 0;

• For the fluid:

For the left side: homogeneous Dirichlet (free to drain) p = 0;

For 3 other sides: homogeneous Neumann (impermeable) (−K∇p) · n = 0.

The initial displacement and pressure are assumed to be zero.

51

Num. dilation at t = 0.01 Num. dilation at t = 0.1

Figure 4.2: Sandwiched low permeability layer: dilation with h = 1/64 and ∆t = 0.01.

We use a uniform rectangular mesh with mesh size h = 1/64 for the spatial discretization and

∆t = 0.01 for the time discretization. As we mentioned in Chapter 2, on rectangular meshes, the

lowest order Arbogast-Correa space is identical to the lowest order Raviart-Thomas space. So we

used the Ravairt-Thomas space implemented in deal.II.

Figure 4.2,4.3, and 4.4 show dilation, numerical fluid pressure, and velocity at the first time

step t = 0.01 and the final time step t = 0.1.

Since the traction boundary condition for the displacement is placed on the left boundary of

the domain while others are fixed, which means that only the left boundary are being pushed to

right, we can see the solid dilation mainly happens on the left part of the domain in Figure 4.2.

Comparing results at t = 0.01 and t = 0.1, the solid is further shrunk with maximal shrinking

(negative dilation) magnitude increases from around 0.3392 to 0.3590.

The solid material being compressed leads to fluid flowing in the porous media. The pressure on

left boundary is set to be 0 while other boundaries are impermeable. So fluid can only flow through

the left boundary. While the solid being compressed, the fluid will flow from higher pressure to

lower pressure on the left boundary. In Figure 4.4, Darcy velocity indicates the direction of fluid

flow. In the middle region of the domain, the hydraulic conductivity is small, which means that

the fluid cannot flow through the middle region easily. As time increases, we will see more fluid

pressure are concentrated along the interface x = 0.25. Because fluid are flowing from right of

52

(a) Num. pres. at t = 0.01 along the centerline (b) Num. pres. at t = 0.1 along the centerline

(c) Num. pres. contours at t = 0.01 (d) Num. pres. contours at t = 0.1

Figure 4.3: Sandwiched low permeability layer: Numerical pressure change with h = 1/64 and ∆t = 0.01.

the domain to left, pressure around x = 0.75 is high, so there is no big pressure jump around

x = 0.75. Figure 4.3 (a) and (b) compares the numerical pressure along the centerline (x, 0.5),

where x ∈ [0, 1]. When t = 0.01, the fluid pressure is increasing gradually from left boundary

to the interface. However, when t = 0.1, the fluid in the left part has been drained out while

the fluid in the middle region cannot flow easily, we can see the a big pressure change along

x = 0.25. Figure 4.3 (c) and (d) compares numerical pressure of the whole domain. Initially,

pressure changes gradually. In the end, pressure is close to 0 on the left part and concentrated

along the interface. The maximal pressure is dropped from around 0.9667 to 0.9487 because some

fluid has been drained out from the material. Except the drop of fluid pressure, the bulk flux

(normal Darcy velocity along the boundary) also indicates the fluid is being drained out. At each

time step, the value of bulk flux over the left boundary of the domain is shown in Figure 4.5. With

53

Num. velocity at t = 0.01 Num. velocity at t = 0.1

Figure 4.4: Sandwiched low permeability layer: Darcy velocity with h = 1/64 and ∆t = 0.01.

Figure 4.5: Sandwiched low permeability layer: Bulk fluxes on the left boundary.

increasing time, we can see values of the bulk flux are decreasing because the whole system is

approaching to the steady state until there is no more fluid flow through the left boundary.

This tests the case with low hydraulic conductivity in the middle region. We can also test the

case that the middle region is incompressible, i.e., λ = 108, and K = I in the whole domain.

Although the solid is incompressible in the middle region, fluid flows from higher pressure to

lower pressure. So we can see fluid flows from right part to the left part of the domain in Figure

4.6. However, the middle region cannot be compressed easily compared to other parts of the

domain.

54

Num. dilation at t = 0.1 Num. Darcy vel. at t = 0.1

Figure 4.6: Sandwiched middle incompressible layer: dilation with h = 1/64 and ∆t = 0.01.

Num. dilation at t = 0.1 Num. Darcy vel. at t = 0.1

Figure 4.7: Sandwiched left incompressible layer: dilation with h = 1/64 and ∆t = 0.01.

Another condition is that the left part, 0 ≤ x ≤ 0.25, is incompressible. Then the change of

dilation on the left part is small. But the remaining part of the domain can be compressed easier,

as shown in Figure 4.7. Fluid will also flow out of the left boundary because of the difference of

fluid pressure.

55

Chapter 5

Detailed Analysis of the Two-field Finite Element

Solver

In this chapter, we will present the error analysis for the poroelasticity equation by EQ1 +

WG(P0, P0;AC0) with reduced integration and the backward Euler time discretization.

Recalling that the error estimate for poroelasticity mentioned in Chapter 4 is: Let (u, p) be the

solutions of (4.2), q = −K∇p be the Darcy velocity, (uh, ph) ∈ Uh×Wh be the solutions of (4.7),

and qh = Qh(−K∇wph) be the numerical Darcy velocity obtained via post-processing. Then, we

have following error estimates:

‖u− uh‖l∞(H1) + ‖p− p◦h‖l2(L2) + ‖q− qh‖l2(L2) ≤ C1h+ C2∆t, (5.1)

where C1, C2 are constants independent of h, λ, and ∆t.

To complete the poroelasticity system (4.1), we prescribe appropriate boundary and initial

conditions. On the boundary of the domain, ∂Ω, there are pressure Dirichlet boundaries Γp, dis-

placement Dirichlet boundaries Γd, pressure Neumann boundaries Γf , and traction boundaries Γt.

For simplicity, we assume

p = 0 on Γp, u = 0 on Γd. (5.2)

Initial conditions are

p(0) = p0 = 0, u(0) = u0 = 0. (5.3)

For ease of presentation, we make following assumptions.

• c0 = 0. This storage capacity coefficient in general is zero;

• A homogeneous permeability and write K = κI;

56

• Homogeneous Dirichlet boundary conditions for fluid pressure and solid displacement;

• A uniform temporal partition and write ∆t.

5.1 Preliminaries: Operators and Their Properties

Following operators and their properties will be used in the proof. Operators related to WGFEMs

and AC space have been discussed in Chapter 2.

• πh: Local (elementwise) projection from L2(E) to space of constants;

• Ph: Interpolation operator from H1(Ω) to the global EQ1 space;

• Πh: Interpolation operator from H(div,Ω) ∩ L2+ε(Ω)2 to the global AC0 space, satisfying

the commuting property [18, 23]:

Q◦
h(∇ · v) = ∇ · (Πhv), ∀v ∈ H(div,Ω) ∩ L2+ε(Ω)2; (5.4)

• Qh: Local L2-projection from L2(E) to AC0(E) on any element E;

• Qh = {Q◦
h, Q

∂
h}: WG-type local L2-projection, where Q◦

h is the local L2-projection to con-

stants for scalar functions inside the element, Q∂
h is the local L2-projection to constants for

scalar functions on an edge.

Following the usual procedure, we consider the spatial projections of the exact solutions into

the appropriate subspaces on such a quadrilateral mesh. Let p
(n)
h ,u

(n)
h be the finite element solu-

tions to fluid pressure and solid displacement, respectively.

Lemma 5.1.1. For ∀E ∈ Eh, v ∈ H1(E), there holds [14]

(∇ · (v −Phv), q) = 0, ∀q ∈ Wh. (5.5)

57

Lemma 5.1.2. For ∀v ∈ H1(E), there holds [10]

πh(∇ ·Phv) = πh(∇ · v). (5.6)

Lemma 5.1.3. For ∀v ∈ H2(E), there holds [14]

‖v −Phv‖m ≤ Chk−m‖v‖k, 0 ≤ m ≤ 1, 1 ≤ k ≤ 2. (5.7)

Lemma 5.1.4. Let un be the exact solution for the displacement at time tn and v ∈ Uh = {v ∈

H1

0,γD(Ω)|v|E ∈ EQ1, ∀E ∈ Eh}. There holds

(∇·un,∇·v)−(πh∇·un
h, πh∇·v) = (∇ · un−πh∇·un,∇ · v)+(πh(∇·Phu

n−∇·un
h), πh∇·v).

(5.8)

Proof. By the the orthogonality of the projection and Lemma 5.1.2, then we derive

(∇ · un,∇ · v)− (πh∇ · un, πh∇ · v)

= (∇ · un − πh∇ · un,∇ · v)

+(πh(∇ · un),∇ · v − πh∇ · v)

+(πh(∇ · un −∇ · un
h), πh∇ · v)

= (∇ · un − πh∇ · un,∇ · v)

+(πh(∇ · un −∇ · un
h), πh∇ · v)

= (∇ · un − πh∇ · un,∇ · v)

+(πh(∇ · un −∇ ·Phu
n +∇ ·Phu

n −∇ · un
h), πh∇ · v)

= (∇ · un − πh∇ · un,∇ · v)

+(πh(∇ ·Phu
n −∇ · un

h), πh∇ · v).

(5.9)

58

H1(E) L2(E)

WG(P0, P0) AC0(E)
❄ ❄

✲

✲
∇

∇w

Qh Qh

Figure 5.1: Commuting diagram for WG operators

Lemma 5.1.5. For ∀v ∈ H(div,Ω) ∩ L2+ε(Ω)2 and ∀φ = {φ◦, φ∂} ∈ W0
h, there holds [23]

∑

E∈Eh

(∇ · v, φ◦)E◦ = −
∑

E∈Eh

(Πhv,∇wφ)E +
∑

e∈ΓN
h

〈(Πhv) · n, φ
∂〉e. (5.10)

Lemma 5.1.6 (Taylor expansion). For a vectored-valued function u of time, there holds

un − un−1

∆t
= ∂tu

n +
1

∆t

∫ tn

tn−1

(τ − tn−1)∂ttu(τ)dτ =: ∂tu
n +R(u, tn), (5.11)

where the remainder is also shorten as R for notational convenience.

Lemma 5.1.7 (WG commuting identity). For p ∈ H1(E), there holds

Qh(∇p) = ∇w(Qhp). (5.12)

Figure 5.1 and Lemma 5.1.7 indicate that the discrete weak gradient of WGFEMs is a good

approximation for the classical gradient.

5.2 Error Equations

Note that the displacement error at each time step un
h − un can be split as the discrete error ξn

u

and the interpolation error ηn
u

as follows

ξn
u
= un

h −Phu
n, ηn

u
= Phu

n − un. (5.13)

59

Likewise, we have these quantities for pressure and pressure gradient:

ξnp = pnh −Qhp
n, ηnp = Qhp

n − pn, (5.14)

ξn∇p = ∇wp
n
h −Qh(∇p

n), ηn∇p = Qh(∇p
n)−∇pn, (5.15)

ξn,◦p = pn,◦h −Q◦
hp

n, ηn,◦p = Q◦
hp

n − pn. (5.16)

It is clear that

un
h − un = ξn

u
+ ηn

u
, (5.17)

pnh − pn = ξnp + ηnp , (5.18)

pn,◦h − pn = ξn,◦p + ηn,◦p , (5.19)

∇wp
n
h −∇pn = ξn∇p + ηn∇p. (5.20)

With the WG commuting identity in Lemma 5.1.7, we also have

ξn∇p = ∇wξ
n
p . (5.21)

The discrete initial conditions u0
h ∈ Uh and p0h ∈ Wh satisfy

u0
h = Phu

0, p0h = Qhp
0. (5.22)

We also need the following lemma in error estimates.

Lemma 5.2.1. For any 1 ≤ n ≤ N , there holds

‖ξn,◦p ‖ . ‖∇wξ
n
p ‖. (5.23)

60

Proof. Since ξn,◦p ∈ L2(Ω), by [35] Lemma 11.2.3 via solving a Poisson equation, there exists

w ∈ H1(Ω) such that

∇ ·w = ξn,◦p , ‖w‖H1(Ω) ≤ ‖ξn,◦p ‖.

We shall use the global interpolant Πhw from the global AC0 space on Eh, Gauss divergence

theorem, definition of the discrete weak gradient. All these together yield

‖ξn,◦p ‖2 = (ξn,◦p , ξn,◦p) = (ξn,◦p ,∇ ·w)

=
∑

E∈Eh

(ξn,◦p ,∇ · Πhw)E

=
∑

e∈∂Ω

〈ξn,∂p , (Πhw) · n〉e −
∑

E∈Eh

(∇wξ
n
p ,Πhw)E,

(5.24)

with the normal continuity and boundedness of Πhw, and ξn,∂p = 0 on ∂Ω,

= −
∑

E∈Eh

(∇wξ
n
p ,Πhw)

≤ ‖∇wξ
n
p ‖‖Πhw‖ ≤ ‖∇wξ

n
p ‖‖w‖ ≤ ‖∇wξ

n
p ‖‖w‖H1

≤ ‖∇wξ
n
p ‖‖ξ

n,◦
p ‖.

(5.25)

Finally, we derive

‖ξn,◦p ‖ ≤ ‖∇wξ
n
p ‖. (5.26)

These equations allow us to estimate the discrete errors and the interpolation/projection errors

separately and apply triangle inequalities to derive full error estimates. More importantly, we shall

establish two error equations that express the discrete errors in displacement and pressure in terms

of interpolation/projection errors. We use notation a . b for a ≤ cb, where c is a positive constant

which is independent of mesh size h, λ, and α.

To derive and bound error equations, we need following

61

• Korn’s inequality:

‖ε(u)‖L2(Ω) & ‖u‖H1(Ω), ∀u ∈ H1(Ω),

where ε(u) is the strain tensor.

• There also holds

‖ε(u)‖L2(Ω) . ‖u‖H1(Ω),

• Young’s inequality:

ab ≤
1

2
(δa2 +

b2

δ
),

with δ = 1, we have,

ab ≤
1

2
(a2 + b2).

• ‖∇ · u‖L2(Ω) . ‖u‖(H1(Ω))d .

• Cauchy-Schwarz inequality:

|(a, b)| . ‖a‖2 + ‖b‖2.

• Summation by parts:

N∑

n=1

fn(gn − gn−1) = fNgN − f 0g0 −
N∑

n=1

(fn − fn−1)gn−1. (5.27)

• Assume un, pn are with full regularity, we have following known approximation capacities:

– ‖Phu
n − un‖L2(Ω) . h2‖u‖H2(Ω),

– ‖Phu
n − un‖H1(Ω) . h‖u‖H2(Ω),

– ‖pnh −Qhp
n‖L2(Ω) . h‖p‖H1(Ω).

62

• By applying the elementary inequality 2ab ≤ a2 + b2, we obtain two useful inequalities

2(ε(ξn
u
), ε(ξn

u
− ξn−1

u
)) ≥ ‖ε(ξn

u
)‖2 − ‖ε(ξn−1

u
)‖2,

2(πh∇ · ξn
u
, πh∇ · (ξn

u
− ξn−1

u
)) ≥ ‖πh∇ · ξn

u
‖2 − ‖πh∇ · ξn−1

u
‖2.

(5.28)

• Since the scheme is fully discrete, discrete Gronwall’s Lemma will be used to bound the

error equation.

Lemma 5.2.2. [36]: Suppose that φ, ψ, χ are nonnegative functions defined for t = n∆t, n =

0, 1, · · · , N, and that χ is nondecreasing. If

φN + ψN ≤ χN + C∆t
N−1∑

n=0

φn, (5.29)

where C is a positive constant, then

φN + ψN ≤ χNe
CN∆t. (5.30)

Error Equation I.

We shall first establish an error equation for displacement. Note that the finite element dis-

cretization for displacement is conforming, in other words, Vh ⊂ V. Thus, we have, for any

v ∈ Vh,

2µ (ε(un), ε(v)) + λ(∇ · un,∇ · v)− α(pn,∇ · v) = (fn,v). (5.31)

The finite element scheme yields, for any v ∈ Vh,

2µ(ε(un
h), ε(v)) + λ(πh∇ · un

h, πh∇ · v)− α(pn,◦h ,∇ · v) = (fn,v). (5.32)

In (5.32), there is no need to take (πh∇ · v) in the coupling term, because pn,◦h is a constant by the

lowest order WGFEM.

63

Subtracting (5.31) from (5.32), we obtain

2µ (ε(un
h − un), ε(v)) + λ(πh∇ · un

h, πh∇ · v)− λ(∇ · un,∇ · v)

− α
(
(pn,◦h ,∇ · v)− (pn,∇ · v)

)

= 0.

(5.33)

By the aforementioned error splitting and linearity of operators, we have

2µ (ε(ξn
u
), ε(v)) + λ(πh∇ · un

h, πh∇ · v)− λ(∇ · un,∇ · v)

− α
(
(pn,◦h ,∇ · v)− (pn,∇ · v)

)

= −2µ(ε(ηn
u
), ε(v)).

(5.34)

Applying Lemma 5.1.4 to (5.34), we have

2µ (ε(ξn
u
), ε(v)) + λ(πh(∇ · (un

h)−∇ ·Phu
n), πh∇ · v)

−α(pn,◦h −Q◦
hp

n +Q◦
hp

n − pn,∇ · v)

= −2µ (ε(ηn
u
), ε(v))− λ((πh(∇ · un)−∇ · un,∇ · v).

(5.35)

We use (5.19) and simplify (5.35). Finally, we derive the first error equation

2µ (ε(ξn
u
), ε(v)) + λ(πh∇ · ξn

u
, πh∇ · v)− α(ξn,◦p ,∇ · v) (5.36)

= −2µ (ε(ηn
u
), ε(v)) + λ(∇ · un − πh∇ · un,∇ · v) (5.37)

+ α(ηn,◦p ,∇ · v). (5.38)

Error Equation II.

Now we derive the second error equation (mainly for the fluid pressure). Note that at time tn,

the second PDE takes the form

∂t(α∇ · un) +∇ · (−K∇pn) = sn. (5.39)

64

The second equation (with c0 = 0) in the finite element scheme can be written as

α
∑

E∈Eh

(∇ · un
h −∇ · un−1

h

∆t
, q◦
)
E◦

+
∑

E∈Eh

(K∇wp
n
h,∇wq)E =

∑

E∈Eh

(sn, q◦)E◦ , (5.40)

where q ∈ WG(P0, P0).

For each element E, we plug the second PDE into the right hand side of (5.39), then we apply

Lemma 5.1.6 (Taylor expansion) and get

(sn, q◦)E◦ = (∂t(α∇ · un), q◦)E◦ + (∇ · (−K∇pn) , q◦)E◦

= α(∇ · ∂tu
n, q◦)E◦ + (∇ · (−K∇pn) , q◦)E◦

= α
(
∇ ·

un − un−1

∆t
, q◦
)
E◦

− α(∇ ·R, q◦)E◦ + (∇ · (−K∇pn) , q◦)E◦ .

(5.41)

Summing the above result over the whole mesh and applying Lemma 5.1.5 (under the assumption

that there is no fluid Neumann boundary condition), we obtain

∑

E∈Eh

(sn, q◦)E◦ =
α

∆t

∑

E∈Eh

(∇ · (un − un−1), q◦)E◦

−α
∑

E∈Eh

(∇ ·R, q◦)E◦ +
∑

E∈Eh

(Πh(K∇pn),∇wq)E.
(5.42)

Combining (5.40) and (5.42), by the assumption on K, we have

α

∆t

∑

E∈Eh

(∇ · (un
h − un), q◦)E◦ +

∑

E∈Eh

(κ(∇wp
n
h − Πh(∇p

n)),∇wq)E

=
α

∆t

∑

E∈Eh

(∇ · (un−1
h − un−1), q◦)E◦ − α

∑

E∈Eh

(∇ ·R, q◦)E◦ .

65

By splitting the errors as un
h − un = ξn

u
+ ηn

u
, ∇wp

n
h − ∇pn = ξn∇p + ηn∇p, and un−1

h − un−1 =

ξn−1
u

+ηn−1
u

, we drop the notation for summing over the mesh and obtain an iterative error equation

α(∇ · (ξn
u
− ξn−1

u
), q◦) + ∆t(κξn∇p,∇wq)

= −α(∇ · (ηn
u
− ηn−1

u
), q◦)− α∆t(∇ ·R, q◦)

−∆t(κηn∇p,∇wq)−∆t(κ(∇pn − Πh(∇p
n)),∇wq).

(5.43)

Equations (5.38) and (5.43) together are the error equations that will be used for error estima-

tion for our two-field approach finite element scheme.

5.3 Error Estimation: Part I

Based on two error equations stated in the previous section, we will examine a priori error esti-

mates for the discrete problem (4.7). We separate error estimates into three parts. This section will

generate six quantities which will bounded respectively in Part II. In Part III, combining bounds

for six quantities results in the final error estimate.

In the first error equation in Section 5.2, we take v = ξn
u
− ξn−1

u
to obtain

2µ
(
ε(ξn

u
), ε(ξn

u
− ξn−1

u
)
)
+ λ(πh(∇ · ξn

u
), πh∇ · (ξn

u
− ξn−1

u
))

− α(ξn,◦p ,∇ · (ξn
u
− ξn−1

u
))

= −2µ
(
ε(ηn

u
), ε(ξn

u
− ξn−1

u
)
)
− λ((πh(∇ · un)−∇ · un,∇ · (ξn

u
− ξn−1

u
))

+ α(ηn,◦p ,∇ · (ξn
u
− ξn−1

u
)),

(5.44)

by (5.28), we can bound the left hand side of (5.44),

2µ (ε(ξn
u
), ε(ξn

u
− ξn−1

u
)) + λ(πh∇ · ξn

u
, πh∇ · (ξn

u
− ξn−1

u
))

−α(ξn,◦p ,∇ · (ξn
u
− ξn−1

u
))

≥ µ(‖ε(ξn
u
)‖2 − ‖ε(ξn−1

u
)‖2) +

λ

2
(‖πh∇ · ξn

u
‖2 − ‖πh∇ · ξn−1

u
‖2)− α(ξn,◦p ,∇ · (ξn

u
− ξn−1

u
)).

(5.45)

66

Combining this with the right hand side of (5.44), we have

µ(‖ε(ξn
u
)‖2 − ‖ε(ξn−1

u
)‖2) +

λ

2
(‖πh∇ · ξn

u
‖2 − ‖πh∇ · ξn−1

u
‖2)− α(ξn,◦p ,∇ · (ξn

u
− ξn−1

u
))

≤ −2µ
(
ε(ηn

u
), ε(ξn

u
− ξn−1

u
)
)
− λ((πh(∇ · un)−∇ · un,∇ · (ξn

u
− ξn−1

u
))

+α(ηn,◦p ,∇ · (ξn
u
− ξn−1

u
)).

(5.46)

In the second error equation in Section 5.2, we take q = ξnp and q◦ = ξn,◦p ,

α
∑

E∈Eh

(∇ · (ξn
u
− ξn−1

u
), ξn,◦p)E◦ +∆t

∑

E∈Eh

(κξn∇p,∇wξ
n
p)E

= −α
∑

E∈Eh

(∇ · (ηn
u
− ηn−1

u
), ξn,◦p)E◦ − α∆t

∑

E∈Eh

(∇ ·R, ξn,◦p)E◦

−∆t
∑

E∈Eh

(κηn∇p,∇wξ
n
p)E −∆t

∑

E∈Eh

(κ(∇pn − Πh(∇p
n)),∇wξ

n
p)E.

(5.47)

We couple (5.46) and (5.47),

µ(‖ε(ξn
u
)‖2 − ‖ε(ξn−1

u
)‖2) +

λ

2
(‖πh∇ · ξn

u
‖2 − ‖πh∇ · ξn−1

u
‖2) + ∆t(κξn∇p,∇wξ

n
p)E

≤ −2µ
(
ε(ηn

u
), ε(ξn

u
− ξn−1

u
)
)
E
− λ((πh(∇ · un)−∇ · un,∇ · (ξn

u
− ξn−1

u
))E

+α(ηn,◦p ,∇ · (ξn
u
− ξn−1

u
))E◦ − α(∇ · (ηn

u
− ηn−1

u
), ξn,◦p)E◦

−α∆t(∇ ·R, ξn,◦p)E◦ −∆t(κηn∇p,∇wξ
n
p)E −∆t(κ(∇pn − Πh(∇p

n)),∇wξ
n
p)E.

(5.48)

By Lemma 5.1.1,

(∇ · (ηn
u
− ηn−1

u
), ξn,◦p)

= (∇ · ηn
u
, ξn,◦p)− (∇ · ηn−1

u
, ξn,◦p)

= (∇ · (Phu
n − un), ξn,◦p)− (∇ · (Phu

n−1 − un−1), ξn,◦p)

= 0,

67

this leads us to

µ(‖ε(ξn
u
)‖2 − ‖ε(ξn−1

u
)‖2) +

λ

2
(‖πh∇ · ξn

u
‖2 − ‖πh∇ · ξn−1

u
‖2) + ∆t(κξn∇p,∇wξ

n
p)

≤ −2µ
(
ε(ηn

u
), ε(ξn

u
− ξn−1

u
)
)
− λ((πh(∇ · un)−∇ · un,∇ · (ξn

u
− ξn−1

u
))

+α(ηn,◦p ,∇ · (ξn
u
− ξn−1

u
))− α∆t(∇ ·R, ξn,◦p)

−∆t(κηn∇p,∇wξ
n
p)−∆t(κ(∇pn − Πh(∇p

n)),∇wξ
n
p).

(5.49)

Sum from 1 to N and use the fact that ξ0
u
= 0,

N∑

n=1

µ(‖ε(ξn
u
)‖2 − ‖ε(ξn−1

u
)‖2) +

λ

2

N∑

n=1

(‖πh∇ · ξn
u
‖2 − ‖πh∇ · ξn−1

u
‖2) + ∆t

N∑

n=1

(κξn∇p,∇wξ
n
p)E

= µ‖ε(ξN
u
)‖2 +

λ

2
‖πh∇ · ξN

u
‖2 +∆t

N∑

n=1

(κξn∇p,∇wξ
n
p)E,

(5.50)

by Korn’s inequality

µ‖ε(ξN
u
)‖2 +

λ

2
‖πh∇ · ξN

u
‖2 +∆t

N∑

n=1

(κξn∇p,∇wξ
n
p)E

≥ C‖ξN
u
‖2
H1 +∆t

N∑

n=1

(κξn∇p,∇wξ
n
p)E.

(5.51)

Finally, we obtain

C‖ξN
u
‖2
H1 +∆t

N∑

n=1

κ‖ξn∇p‖
2

≤ −2µ
N∑

n=1

(
ε(ηn

u
), ε(ξn

u
− ξn−1

u
)
)
E
− λ

N∑

n=1

((πh(∇ · un)−∇ · un,∇ · (ξn
u
− ξn−1

u
))E

+α
N∑

n=1

(ηn,◦p ,∇ · (ξn
u
− ξn−1

u
))E◦ − α∆t

N∑

n=1

(∇ ·R, ξn,◦p)E◦

−∆t
N∑

n=1

(κηn∇p,∇wξ
n
p)E −∆t

N∑

n=1

(κ(∇pn − Πh(∇p
n)),∇wξ

n
p)E.

= −2µT1 + (−λT2) + αT3 + αT4 + T5 + T6.

(5.52)

68

We can see that in (5.52), T1 describes the solid strain, T2 involves the solid dilation, T3, T4 deal

with the fluid-solid interaction, and T5, T6 address fluid pressure gradients.

5.4 Error Estimation: Part II

We will bound quantities T1 − T6 separately by using appropriate techniques listed in Section

5.2.

We expect the absolute constants in the estimates

• to be independent of λ, h,∆t;

• to contain µ, α, κ, if necessary.

We consider Lamé constants are in the range [µ0, µ1] and [λ0,∞), where 0 < µ0 < µ1 <∞, λ0 >

0. For simplicity, we take α = 1 in the proof.

Estimation on T1. Note that µ can be absorbed into absolute constants, so we redefine T1 as

T1 =
N∑

n=1

(
ε(ηN

u
), ε(ξn

u
− ξn−1

u
)
)
E
. (5.53)

By summation by parts (5.27), ε(ξ0
u
) = 0, and Taylor expansion (Lemma 5.1.6), we have

T1 =
(
ε(ηN

u
), ε(ξN

u
)
)
− (ε(η0

u
), ε(ξ0

u
))−

∑N

n=1 (ε(η
n
u
)− ε(ηn−1

u
), ε(ξn−1

u
))

=
(
ε(ηN

u
), ε(ξN

u
)
)
−

N∑

n=1

(
ε(ηn

u
− ηn−1

u
), ε(ξn−1

u
)
)

=
(
ε(ηN

u
), ε(ξN

u
)
)
−

N∑

n=1

(
ε(∆tηn

ut
+

∫ tn

tn−1

(τ − tn−1)ηutt
dτ), ε(ξn−1

u
)

)

=
(
ε(ηN

u
), ε(ξN

u
)
)
−

N∑

n=1

∆t
(
ε(ηn

ut
), ε(ξn−1

u
)
)
−

N∑

n=1

(∫ tn

tn−1

(τ − tn−1)ε(ηutt
)dτ, ε(ξn−1

u
)

)

=: S1 + S2 + S3.

(5.54)

69

For S1, applying Young’s inequality,

S1 =
(
ε(ηN

u
), ε(ξN

u
)
)

. ‖ε(ηN
u
)‖2

1

δ1
+ ‖ε(ξN

u
)‖2δ1

. ‖ηN
u
‖2
H1

1

δ1
+ ‖ξN

u
‖2
H1δ1,

(5.55)

by Cauchy-Schwarz inequality,

S2 = −
N∑

n=1

∆t
(
ε(ηn

ut
), ε(ξn−1

u
)
)

.

N∑

n=1

∆t(‖ε(ηn
ut
)‖2 + ‖ε(ξn−1

u
)‖2)

. ∆t

(
N∑

n=0

(‖ηn
ut
‖2
H1 + ‖ξn

u
‖2
H1

)
,

(5.56)

and

S3 = −

N∑

n=1

(∫ tn

tn−1

(τ − tn−1)ε(ηutt
)dτ, ε(ξn−1

u
)

)

.

N∑

n=1

(
(∆t)2

∫ tn

tn−1

‖ε(ηutt
)‖2dτ +∆t‖ε(ξn−1

u
)‖2
)

. (∆t)2
∫ T

0

‖ηutt
‖2
H1dτ +

N∑

n=0

∆t‖ξn
u
‖2
H1 .

(5.57)

Combining estimations for S1, S2, S3, we have

T1 . ‖ξN
u
‖2
H1δ1 + ‖ηN

u
‖2
H1

1

δ1

+∆t

(
N∑

n=0

(‖ηn
ut
‖2
H1 + ‖ξn

u
‖2
H1)

)

+(∆t)2
∫ T

0

‖ηutt
‖2
H1dτ.

(5.58)

Estimation on T2. We keep λ in T2 but rewrite it as

T2 = λ

N∑

n=1

((πh(∇ · un)−∇ · un,∇ · (ξn
u
− ξn−1

u
))E. (5.59)

70

T2 is bounded in a similar fashion as T1. By summation by parts and ξu
0 = 0,

T2 = λ(πh(∇ · uN)−∇ · uN ,∇ · ξN
u
)

−λ
∑N

n=1 (πh∇ · (un − un−1)−∇ · (un − un−1),∇ · ξn−1
u

)

=: S1 − S2.

(5.60)

For S1, we use Young’s inequality and approximation capacity to derive

S1 = λ(πh(∇ · uN)−∇ · uN ,∇ · ξN
u
)

. λ2‖πh(∇ · uN)−∇ · uN‖2
1

δ2
+ ‖∇ · ξN

u
‖2δ2

. λ2h2‖∇ · uN‖2H1

1

δ2
+ ‖ξN

u
‖2
H1δ2.

(5.61)

71

For S2, we apply finite element space approximation capacity and Cauchy-Schwarz inequality to

get

S2 = λ

N∑

n=1

(
πh∇ · (un − un−1)−∇ · (un − un−1),∇ · ξn−1

u

)

= λ

N∑

n=1

(
(πh∇ · (∆tun

t +

∫ tn

tn−1

(τ − tn−1)utt −∇ · (∆tun
t +

∫ tn

tn−1

(τ − tn−1)utt),∇ · ξn−1
u

)

= λ

N∑

n=1

∆t(πh∇ · un
t −∇ · un

t ,∇ · ξn−1
u

)

+λ
N∑

n=1

(

∫ tn

tn−1

(τ − tn−1)(πh∇ · utt −∇ · utt),∇ · ξn−1
u

)

.

N∑

n=1

∆t
(
h2‖∇ · un

t ‖
2
H1λ2 + ‖ξn−1

u
‖2
H1

)

+
N∑

n=1

(∆t)
3

2 (

∫ tn

tn−1

‖πh∇ · utt −∇ · utt‖
2λ2dτ)

1

2‖∇ · ξn−1
u

‖

.

N∑

n=1

∆t
(
h2‖∇ · un

t ‖
2
H1λ2 + ‖ξn−1

u
‖2
H1

)

+
N∑

n=1

(
(∆t)2

∫ tn

tn−1

‖πh∇ · utt −∇ · utt‖
2λ2dτ +∆t‖∇ · ξn−1

u
‖2
)

.

N∑

n=0

∆t
(
λ2h2‖∇ · un

t ‖
2
H1 + ‖ξn

u
‖2
H1

)
+ (∆t)2

∫ T

0

‖πh∇ · utt −∇ · utt‖
2λ2dτ

.

N∑

n=0

∆t
(
λ2h2‖∇ · un

t ‖
2
H1 + ‖ξn

u
‖2
H1

)
+ (∆t)2

∫ T

0

h2‖∇ · utt‖
2
H1λ2dτ

(5.62)

Coupling S1, S2, we derive

T2 . ‖ξN
u
‖2
H1δ2 +

λ2h2

δ2
‖∇ · uN‖2H1 +

N∑

n=0

∆t
(
λ2h2‖∇ · un

t ‖
2
H1 + ‖ξn

u
‖2
H1

)

+(∆t)2
∫ T

0
h2‖∇ · utt‖

2
H1λ2dτ.

(5.63)

72

Estimation on T3. With the assumption that α = 1, similar to T1, T2, applying summation by

parts and Taylor expansion,

T3 =
N∑

n=1

(ηn,◦p ,∇ · (ξn
u
− ξn−1

u
))E◦

= (ηN,◦
p ,∇ · ξN

u
)−

N∑

n=1

(ηn,◦p − ηn−1,◦
p ,∇ · ξn−1

u
)

= (ηN,◦
p ,∇ · ξN

u
)−

N∑

n=1

∆t(ηn,◦pt
,∇ · ξn−1

u
)−

N∑

n=1

(

∫ tn

tn−1

(τ − tn−1)η◦pttdτ,∇ · ξn−1
u

)

=: S1 − S2 − S3,

(5.64)

where by Young’s inequality

S1 = (ηN,◦
p ,∇ · ξN

u
) . ‖ξN

u
‖2
H1δ3 + ‖ηN,◦

p ‖2
1

δ3
, (5.65)

and

S2 = −

N∑

n=1

∆t(ηn,◦pt
,∇ · ξn−1

u
)

.

N∑

n=1

∆t(‖ηn,◦pt
‖2 + ‖∇ · ξn−1

u
‖2)

.

N∑

n=0

∆t(‖ηn,◦pt
‖2 + ‖ξn

u
‖2
H1),

(5.66)

and

S3 .

N∑

n=1

(∆t)2(

∫ tn

tn−1

‖η◦ptt‖
2dτ) + ∆t‖ξn−1

u
‖2
H1

. (∆t)2
∫ T

0

‖η◦ptt‖
2dτ +∆t

N∑

n=0

‖ξn
u
‖2
H1 .

(5.67)

Finally,

T3 . ‖ξN
u
‖2
H1δ3 + ‖ηN,◦

p ‖2
1

δ3
+

N∑

n=0

∆t(‖ηn,◦pt
‖2 + ‖ξn

u
‖2
H1) + (∆t)2

∫ T

0

‖η◦ptt‖
2dτ. (5.68)

73

Estimation on T4. We take α = 1 and rewrite T4 as

T4 = ∆t
N∑

n=1

(∇ ·R, ξn,◦p)E◦ . (5.69)

By Cauchy-Schwarz inequality,

T4 ≤

N∑

n=1

‖

∫ tn

tn−1

(τ − tn−1)∇ · utt(τ)dτ‖‖ξ
n,◦
p ‖, (5.70)

where

‖

∫ tn

tn−1

(τ − tn−1)∇ · utt(τ)dτ‖ ≤ ‖

∫ tn

tn−1

(τ − tn−1)‖‖

∫ tn

tn−1

∇ · utt(τ)dτ‖

≤ (∆t)
3

2

(∫ tn

tn−1

‖∇ · utt(τ)‖
2dτ

) 1

2

.

(5.71)

So

T4 ≤

N∑

n=1

(∆t)
3

2

(∫ tn

tn−1

‖∇ · utt(τ)‖
2dτ

) 1

2

‖ξn,◦p ‖

.

N∑

n=1

(∆t)

(∫ tn

tn−1

‖∇ · utt(τ)‖
2dτ

) 1

2

(∆t)
1

2‖ξn,◦p ‖.

(5.72)

By Young’s inequality, ξ0,◦p = 0, and take δ4 =
1
4
, we have,

T4 .

N∑

n=1

(∆t)

(∫ tn

tn−1

‖∇ · utt(τ)‖
2dτ

) 1

2

(∆t)
1

2‖ξn,◦p ‖

.

N∑

n=1

1

δ4
(∆t)2

∫ tn

tn−1

‖∇ · utt(τ)‖
2dτ + δ4∆t‖ξ

n,◦
p ‖2

. (∆t)2
1

δ4

∫ T

0

‖∇ · utt(τ)‖
2dτ + δ4

N∑

n=1

∆t‖ξn,◦p ‖2.

(5.73)

Estimation on T5. We ignore the negative sign in T5 and rewrite it as

T5 = ∆t
N∑

n=1

κ(ηn∇p,∇wξ
n
p)E. (5.74)

74

We use Young’s inequality and take δ5 =
1
8
,

T5 . ∆t
N∑

n=1

κ(‖∇wξ
n
p ‖

2δ5 + ‖ηn∇p‖
2 1

δ5
)

.
∆t

8

N∑

n=1

κ‖∇wξ
n
p ‖

2 + 8∆t
N∑

n=0

κ‖ηn∇p‖
2.

(5.75)

Estimation on T6. Similar to T5, we take δ6 =
1
8

and use the approximation capacity and (5.21)

T6 = ∆t
N∑

n=1

κ((∇pn − Πh(∇p
n)),∇wξ

n
p)E

. ∆t
N∑

n=1

κ(‖∇wξ
n
p ‖

2δ6 + ‖∇pn − Πh(∇p
n)‖2

1

δ6
)

.
∆t

8

N∑

n=1

κ‖∇wξ
n
p ‖

2 + 8∆t
N∑

n=0

κ‖∇pn − Πh(∇p
n)‖2

.
∆t

8

N∑

n=1

κ‖ξn∇p‖
2 + 8∆t

N∑

n=0

κh2‖∇pn‖2
H1 .

(5.76)

5.5 Error Estimation: Part III

Combining the above bounds for T1 − T6 with (5.52), we derive the following error estimate

(C − δ1 − δ2 − δ3)‖ξ
N
u
‖2
H1 +

1

4
∆t

N∑

n=1

κ‖ξn∇p‖
2
E

.
1

δ1
‖ηN

u
‖2
H1 + λ2h2

1

δ2
‖∇ · uN‖2H1 +

1

δ3
‖ηN,◦

p ‖2

+∆t

(
N∑

n=0

(‖ηn
ut
‖2
H1 + ‖ξn

u
‖2
H1) + λ

N∑

n=0

(h2λ2‖∇ · un
t ‖

2
H1 + ‖ξn

u
‖2
H1)

+
N∑

n=0

(‖ηn,◦pt
‖2 + ‖ξn

u
‖2
H1) + δ4

N∑

n=1

‖ξn,◦p ‖2

+8κ
N∑

n=0

‖ηn∇p‖
2 + 8κ

N∑

n=0

h2‖∇pn‖2
H1

)

+(∆t)2
∫ T

0

(
‖ηutt

‖2
H1 + λ2h2‖∇ · utt‖

2
H1 + ‖η◦ptt‖

2 +
1

δ4
‖∇ · utt‖

2

)
dτ.

(5.77)

75

Next, we relate ‖ξn,◦p ‖2 on the right hand side to ‖∇wξ
n
p ‖ on the left hand side by Lemma 5.2.1

and simplify to derive

(C − δ1 − δ2 − δ3)‖ξ
N
u
‖2
H1 + (

1

4
− δ4κ

−1)∆t
N∑

n=1

κ‖ξn∇p‖
2

.
1

δ1
‖ηN

u
‖2
H1 + λ2h2

1

δ2
‖∇ · uN‖2H1 +

1

δ3
‖ηN,◦

p ‖2 +∆t
N∑

n=0

‖ξn
u
‖2
H1

+∆t

(
N∑

n=0

‖ηn
ut
‖2
H1 +

N∑

n=0

h2λ2‖∇ · un
t ‖

2
H1

+
N∑

n=0

‖ηn,◦pt
‖2 + 8κ

N∑

n=0

‖ηn∇p‖
2 + 8κ

N∑

n=0

h2‖∇pn‖2
H1

)

+(∆t)2
∫ T

0

(
‖ηutt

‖2
H1 + λ2h2‖∇ · utt‖

2
H1 + ‖η◦ptt‖

2 +
1

δ4
‖∇ · utt‖

2

)
dτ.

(5.78)

We choose δi(i = 1, 2, 3) small enough to make sure C − δ1 − δ2 − δ3 > 0. We choose δ4

appropriately to make sure (1/4− δ4/κ) > 0. Then we derive

‖ξN
u
‖2
H1 +∆t

N∑

n=1

κ‖ξn∇p‖
2

. ∆t
N∑

n=0

‖ξn
u
‖2
H1 + ‖ηN

u
‖2
H1 + λ2h2‖∇ · uN‖2H1 + ‖ηN,◦

p ‖2

+∆t

(
N∑

n=0

‖ηn
ut
‖2
H1 +

N∑

n=0

h2λ2‖∇ · un
t ‖

2
H1

+
N∑

n=0

‖ηn,◦pt
‖2 + 8κ

N∑

n=0

‖ηn∇p‖
2 + 8κ

N∑

n=0

h2‖∇pn‖2
H1

)

+(∆t)2
∫ T

0

(
‖ηutt

‖2
H1 + λ2h2‖∇ · utt‖

2
H1 + ‖η◦ptt‖

2 +
1

δ4
‖∇ · utt‖

2

)
dτ.

(5.79)

76

Applying the discrete Gronwall Lemma 5.2.2, we have

max
1≤n≤N

‖ξn
u
‖2
H1 +∆t

N∑

n=1

κ‖ξn∇p‖
2

. max
1≤n≤N

‖ηn
u
‖2
H1 + max

1≤n≤N
(h2λ2‖∇ · un‖2

H1) + max
1≤n≤N

‖ηn,◦p ‖2

+∆t

(
N∑

n=0

‖ηn
ut
‖2
H1 +

N∑

n=0

h2λ2‖∇ · un
t ‖

2
H1

+
N∑

n=0

‖ηn,◦pt
‖2 + 8κ

N∑

n=0

‖ηn∇p‖
2 + 8κ

N∑

n=0

h2‖∇pn‖2
H1

)

+(∆t)2
∫ T

0

(
‖ηutt

‖2
H1 + λ2h2‖∇ · utt‖

2
H1 + ‖η◦ptt‖

2 +
1

δ4
‖∇ · utt‖

2

)
dτ.

(5.80)

Applying the approximation capacity and regularity of the exact solutions yields finally

max
1≤n≤N

‖ξn
u
‖2
H1 +∆t

N∑

n=1

κ‖ξn∇p‖
2

. h2 + (∆t)2.

(5.81)

Corollary. Let ξn,◦p be the discrete error defined in (5.16). There holds

∆t
N∑

n=1

‖ξn,◦p ‖2 . h2 + (∆t)2. (5.82)

Proof. This can be derived from (5.21), Lemma 5.2.1, and (5.81).

Remark. Recalling that K = κI,

κ ξn∇p = κ∇wp
n
h −Qh(κ∇p

n).

We also note that −κ∇wp
n
h is the numerical Darcy velocity and −κ∇pn is the exact Darcy velocity.

If we denote the exact Darcy velocity by q and the numerical Darcy velocity by qh, then the above

formula can be rewritten as

κ ξn∇p = Qh(q
n)− qn

h. (5.83)

77

Therefore, the estimate (5.81) can also be written as

max
1≤n≤N

‖un
h −Phu

n‖2
H1(Ω) +∆t

N∑

n=1

‖Qh(q
n)− qn

h‖
2
L2(Ω) . h2 + (∆t)2. (5.84)

By applying triangle inequalities, combining the error splitting in (5.17) and (5.18), applying

approximation capacity of finite element spaces and results from (5.81), (5.82), and (5.84), we

finally have Theorem 4.3.1 in Chapter 4.

78

Chapter 6

deal.II Implementation

The finite element method developed in this dissertation to solve two-field poroelastic equa-

tions, was applied to problems in two dimensions in Chapter 4, but can readily be extended to

solve three dimensional problems. We have Matlab implementation for the 2D version and the

code modules are incorporated in our package DarcyLite. This Matlab package is a toolbox for

numerical simulations by finite element methods, including continuous Galerkin, discontinuous

Galerkin, mixed, and weak Galerkin finite element methods.

deal.II is a popular C++ finite element package for solving partial differential equations

[37]. deal.II uses quadrilateral and hexahedron meshes instead of simplicial (triangular or tetra-

hedral) meshes. To extend the range of problems that can we solved using our method, particularly

problems in complicated three-dimensional domains, we implement this solver in deal.II. In

this chapter, we will present Darcy flow, linear elasticity, and linear poroelasticity implementations

in deal.II.

6.1 WG Solvers for Darcy Flow

A weak Galerkin finite element method to solve Darcy flow is implemented in deal.II,

in order to make WGFEMs more useful for large-scale scientific computing. We use any order

Raviart-Thomas (RT) finite element spaces implemented in deal.II. On rectangular meshes,

the lowest order RT[0] is identical to the lowest order AC0. Here, we use Qk-type polynomials to

approximate pressure and Raviart-Thomas elements to approximate the classical gradient.

Weak Galerkin finite element spaces.

The weak Galerkin scheme for the Darcy equation is shown in equations (2.22), (2.73), and

(2.24). There are two discrete weak functions for pressure. The Raviart-Thomas space is used

79

for discrete weak gradients and the numerical velocity. In the implementation, spaces of weak

functions are combined as

FESystem<dim> fe;

The RT space is

FE_RaviartThomas<dim> fe_rt;

where dim could be 2 or 3.

Two separate polynomial spaces for pressure. As mentioned previously, we have two different

finite element spaces for pressure,

fe(FE_DGQ<dim>(degree), 1, FE_FaceQ<dim>(degree), 1),

where degree is k, that is, the degree of the polynomials, “1" means these two groups of pressure

unknowns are just scalars. Note that

• FE_DGQ is a finite element class in deal.II that has no continuity across faces, edges,

and vertices, i.e., every shape function lives exactly in one cell. So we use it to approximate

the pressure in element interiors.

• However, FE_FaceQ is a finite element class that is only defined on edges/faces.

These two different finite element spaces are combined into one finite element system,

FESystem<dim> fe;

shape functions can be extracted as

const FEValuesExtractors::Scalar interior(0);

const FEValuesExtractors::Scalar face(1);

Here “0" corresponds to the first finite element class FE_DGQ for the interior pressure; “1" cor-

responds to the second finite element class FE_FaceQ for the face pressure. Later, we will just use

fe_values[interior].value and fe_values[face].value for assembling local matrices.

80

Raviart-Thomas spaces for discrete weak gradients and velocity. In deal.II, RT spaces

for 2D and 3D domains are defined as

RT[k](E) = Qk+1,k ×Qk,k+1, (6.1)

RT[k](E) = Qk+1,k,k ×Qk,k+1,k ×Qk,k,k+1. (6.2)

In deal.II, we use degree for k in equation (6.1) or (6.2) and have

fe_rt(degree);

Assembling the linear system.

First, we solve for pressure. We use shape functions defined on FE_DGQ and FE_FaceQ to

construct local matrices. Discrete weak gradients of shape functions ∇w,dφ are defined as ∇w,dφ =
∑m

i=1 ciwi,where wi is the basis function ofRT[k],m is the degrees of freedom ofRT[k]. Following

steps in Chapter 2, we solve for coefficients ci and construct local matrices. Next, we use function

ConstraintMatrix::distribute_local_to_global to distribute components in local matrices to the

system matrix. Since the system matrix is symmetric positive definite, we can use the conjugate

gradient linear solver in deal.II to solve pressure.

Post-processing.

After we have calculated numerical pressure ph, we use discrete weak gradients of ph to calcu-

late the velocity on each element and flux on faces. See Chapter 2 for computation details.

Finally, we extract interior pressure solutions of each cell from the global solution and calculate

L2-errors by using the function VectorTools::integrate_difference in deal.II.

6.2 Implementation of EQ1 Solver for Linear Elasticity

In deal.II, the finite element class for the Bernardi-Raugel element was implemented with

the intention of solving the Stokes equation. It can be seen as the enriched version of the Qd
1 ele-

81

ments with bubble functions on edges/faces. In Chapter 3, we used enriched Lagrangian elements

to solve the linear elasticity equation and we will use Bernardi-Raugel elements implemented in

deal.II for the linear elasticity equation.

Finite element space.

For solving linear elasticity, it approximates the solid displacement on

FE_BernardiRaugel<dim>

Assembling the linear system.

First, we construct local matrices to solve solid displacement. The dilation is calculated by tak-

ing the average of divergence over the element. Dirichlet boundary conditions need to be set care-

fully. According to (3.19), nodal boundary conditions and edge boundary conditions are treated

separately. Nodal boundary values are values of exact solutions at boundary nodes. Edge bound-

ary values are calculated as in (3.19). After Dirichlet boundary conditions are set to constrained

degrees of freedom, the resulting global discrete system is symmetric positive definite, which is

solved by the conjugate gradient linear solver in deal.II.

Post-processing

Stress can be calculated accordingly as a post-processing step. Errors of displacement, stress

are calculated by functions in deal.II.

6.3 A Two-field Linear Poroelasticity Solver

In Chapter 5, we proved the combination of EQ1 elements and WG elements is a good solver

for the linear poroelasticity. In the previous two sections, we discussed implementations of the

Darcy solver and the linear elasticity solver. Here, the linear poroelasticity solver is based on

implementations of Darcy and linear elasticity solvers.

82

Finite element spaces.

Similar to the Darcy solver, different finite element spaces for solid displacement and fluid

pressure are coupled to a finite element system

FESystem<dim> fe;

Since the lowest order Raviart-Thomas element is the same as the AC0 element, we use the RT[0]

space on rectangles implemented in deal.II for the linear poroelasticity solver. The RT space

FE_RaviartThomas<dim> fe_rt;

is used for discrete weak gradients and the numerical Darcy velocity.

Three separate polynomial spaces for displacement and pressure. Here, we use the two-

field approach, i.e., variables are solid displacement and fluid pressure. According to Chapter 4,

displacement is approximated by enriched vector-valued Lagrangian elements, interior pressure is

approximated by Pk-type polynomials, and face pressure is approximated by Pk-type polynomials

on faces. In deal.II, these spaces are

fe(FE_BernardiRaugel<dim>(1), 1,

FE_DGP<dim>(0), 1,

FE_FaceP<dim>(0), 1),

where displacement is a vector, two groups of pressure unknowns are scalars.

• FE_BernardiRaugel is an enriched Qd
1 element class in deal.II. It is defined on nodes

and edges (in 2D) or faces (in 3D).

• FE_DGP and FE_FaceP are discontinuous finite elements which are complete polynomials

in interiors of elements and on faces separately. We take degrees of FE_DGP and FE_FaceP

are zeroes in this implementation.

We extract shape functions from the system

83

const FEValuesExtractors::Vector displacements(0);

const FEValuesExtractors::Scalar pressure_interior(dim);

const FEValuesExtractors::Scalar pressure_face(dim+1);

Here “0" corresponds to the first finite element class FE_BernardiRaugel for displacement;

“dim" corresponds to the second finite element class FE_DGP for interior pressure; “dim+1"

corresponds to the finite element class FE_FaceP for face pressure. In deal.II implementa-

tion, we will just use fe_values[displacements].value, fe_values[pressure_interior].value, and

fe_values[pressure_face].value for assembling element-level matrices.

Raviart-Thomas spaces for discrete weak gradients and the Darcy velocity. We use the low-

est order Raviart-Thomas space, which is the same as AC[0], to approximate discrete weak gradi-

ents in the linear poroelasticity solver

fe_rt(0);

Assembling the linear system. We solve for displacement and pressure simultaneously in a

monolithic system. We use shape functions defined on FE_BernardiRaugel, FE_DGP, and

FE_FaceP to construct local matrices. We reuse the construction of local matrices in the Darcy

solver to implement the Darcy part in the poroelasticity equation. Then we construct the linear

elasticity part by using shape functions of FE_BernardiRaugel and construct the coupling term

by shape functions in FE_DGP and FE_BernardiRaugel. Reduced integration technique is used

for dilation in linear elasticity and coupling terms.

In deal.II, we use function VectorTools::interpolate_boundary_values to assign the pres-

sure Dirichlet boundary conditions. For displacement Dirichlet boundary conditions, we fol-

low (3.19) in Chapter 4 to assign values of boundaries. We then use function ConstraintMa-

trix::distribute_local_to_global to assemble the global matrix and the right hand side.

Code excerpts with comments.

Construction of finite element spaces.

84

FE_RaviartThomas<dim> fe_rt;

DoFHandler<dim> dof_handler_rt;

fe_rt (0),

dof_handler_rt (triangulation),

As described above, we construct a system of three finite element spaces. We use the lowest

order WG to approximate pressure and the degrees of Pk-type polynomial spaces are “0”.

FESystem<dim> fe;

DoFHandler<dim> dof_handler;

fe (FE_BernardiRaugel<dim>(1),1,

FE_DGP<dim>(0), 1,

FE_FaceP<dim>(0), 1),

dof_handler (triangulation),

System Setup. The following code segment is to distribute degrees of freedom for finite element

spaces. Note that degrees of freedom of RT space are only used in the post-processing step.

dof_handler_rt.distribute_dofs (fe_rt);

dof_handler.distribute_dofs (fe);

In this two-field approach, displacement and pressure are solved simultaneously. We use block

structures to construct system matrix, system right hand side, and solution. So we renumber de-

grees of freedom to separate displacement and pressure.

Sizes of blocks are counted by member functions in deal.II,

• dofs_per_component[0]: the number of x-displacement shape functions,

• dofs_per_component[1]: the number of y-displacement shape functions,

85

• dofs_per_component[2]: the number of z-displacement shape functions for 3D prob-

lems,

• dofs_per_component[dim]: the number of interior pressure shape functions,

• dofs_per_component[dim+1]: the number of face pressure shape functions.

.

DoFRenumbering::component_wise (dof_handler);

std::vector<types::global_dof_index>

dofs_per_component (dim+2);

DoFTools::count_dofs_per_component

(dof_handler, dofs_per_component);

const unsigned int n_u = dofs_per_component[0],

n_p_interior = dofs_per_component[dim],

n_p_face = dofs_per_component[dim+1],

n_p = dofs_per_component[dim]

+ dofs_per_component[dim+1];

Next, we create a block sparse system matrix.

BlockDynamicSparsityPattern dsp(3, 3);

Solutions are also constructed in block structures. Old solutions and the system right hand side

are constructed similar to solutions.

solution.reinit (3);

solution.block(0).reinit (n_u);

solution.block(1).reinit (n_p_interior);

solution.block(2).reinit (n_p_face);

solution.collect_sizes ();

86

System assembly. Systems are re-assembled at each time step, so we need

system_matrix=0;

system_rhs=0;

This code segment is to extract components of finite element shape functions.

const FEValuesExtractors::Vector velocities (0);

const FEValuesExtractors::Vector displacements (0);

const FEValuesExtractors::Scalar pressure_interior (dim);

const FEValuesExtractors::Scalar pressure_face (dim+1);

(K∇p◦h,∇q)Ω is calculated in the Darcy solver by WG finite elements. The following code

segment from the Darcy solver can be reused to construct local matrices for poroelasticity..

for (unsigned int q = 0; q < n_q_points_rt; ++q) {

for (unsigned int i = 0; i<dofs_per_cell; ++i) {

for (unsigned int j = 0; j<dofs_per_cell; ++j) {

for (unsigned int k = 0; k<dofs_per_cell_rt; ++k) {

const Tensor<1,dim> phi_k_u =

fe_values_rt[velocities].value(k,q);

for (unsigned int l = 0; l < dofs_per_cell_rt; ++l) {

const Tensor<1,dim> phi_l_u =

fe_values_rt[velocities].value(l,q);

local_matrix(i,j) +=

time_step * coefficient_values[q] *

cell_matrix_C[i][k] * cell_matrix_C[j][l] *

phi_k_u * phi_l_u * fe_values.JxW(q);

} } } } }

87

The elasticity part is constructed as follows. We take the average divergence on each element.

for(unsigned int i = 0; i < dofs_per_cell; ++i){

for(unsigned int q_index = 0; q_index < n_q_points; ++q_index)

{

avg_div[i] +=

fe_values[displacements].divergence(i, q_index) *

fe_values.JxW(q_index) / cell_area;

} }

for(unsigned int q_index = 0; q_index < n_q_points; ++q_index)

{

for(unsigned int i = 0; i < dofs_per_cell; ++i){

const Tensor<2,dim> grad_phi_i_u =

fe_values[displacements].symmetric_gradient(i, q_index);

for(unsigned int j = 0; j < dofs_per_cell; ++j){

const Tensor<2,dim> grad_phi_j_v =

fe_values[displacements].symmetric_gradient(j, q_index);

local_matrix(i, j) += (2. * mu *

scalar_product(grad_phi_i_u, grad_phi_j_v)

+ lambda * avg_div[i] * avg_div[j])*

fe_values.JxW(q_index);

}}}

Coupling terms with α are calculated as follows.

for (unsigned int q_index = 0; q_index < n_q_points; ++q_index)

{

for (unsigned int i = 0; i < dofs_per_cell; ++i)

88

for (unsigned int j = 0; j < dofs_per_cell; ++j){

local_matrix(i, j) += (

- alpha * avg_div[i]

* fe_values[pressure_interior].value(j, q_index)

+ capacity

* (fe_values[pressure_interior].value(i,q_index)

* fe_values[pressure_interior].value(j,q_index))

+ alpha * fe_values[pressure_interior].value (i,q_index)

* avg_div [j])

* fe_values.JxW(q_index);

}}

The following code segment calculates the local right-hand side. Solutions from the previous

time step are used.

for(unsigned int q = 0; q<n_q_points_reduced_integration; ++q)

{

for(unsigned int i = 0; i < dofs_per_cell; ++i) {

local_rhs(i) += (scalar_product(body_rhs_value, phi_i_v) +

capacity * old_interior_pressure[q] * phi_i_q +

time_step * fluid_rhs_value * phi_i_q +

alpha *average_div_old_displacement[q] *

phi_i_q) *

fe_values.JxW(q);

} }

After constructing local matrices, local right hand side, and assigning Dirchlet boundary con-

ditions, we assemble the system matrix and system right hand side.

89

cell->get_dof_indices (local_dof_indices);

constraints.distribute_local_to_global(

local_matrix, local_rhs, local_dof_indices,

system_matrix, system_rhs, true);

90

Chapter 7

Concluding Remarks

7.1 Summary

In this dissertation, we have developed a finite element solver for poroelasticity problems based

on the two-field approach (solid displacement and fluid pressure). Since the poroelasticity equation

is a coupling of Darcy flow and linear elasticity, we need a good discretization method for the

Darcy equation and a good solver for linear elasticity which is free of Poisson locking. With the

appropriate coupling of these two finite elements, the solver for linear poroelasticity equations is

free of poroelasticity locking.

1. A WG solver for Darcy flow on general quadrilateral meshes.

For the Darcy equation, weak Galerkin (WG) finite elements which have been developed

recently approximate interior and face pressure by introducing discrete weak functions. The

Darcy velocity is approximated in the post-processing step by discrete weak gradients. Com-

pared to the existing work [21], where the unmapped Raviart-Thomas space is used for dis-

crete weak gradients on asymptotically parallelogram quadrilateral meshes, vector-valued

Arbogast-Correa (AC) elements which involve rational functions are defined on general

quadrilateral meshes. Moreover, compared to the mixed finite element method, only lo-

cal AC elements are considered in our Darcy solver. The scheme with lowest order WG

elements and lowest order AC elements was discussed. Physical properties investigation and

convergence analysis were presented.

2. A locking-free solver for linear elasticity.

For the linear elasticity equation, displacement was approximated by enriched Lagrangian

elements (EQ1), which were developed by adding bubble functions on edges to classical La-

91

grangian elements Qd
1(d = 2, 3). By introducing the bubble function and using the reduced

integration technique, this finite element method can avoid Poisson locking.

3. A stable coupling of these two solvers for linear poroelasticity.

We were inspired by Yi’s work on linear poroelasticity in [10]. Compared to her three-

field approach on triangular meshes, we constructed a two-field poroelasticity solver by WG

finite elements for pressure and EQ1 elements with reduced integration for displacement on

quadrilateral meshes. The resulting finite element scheme has fewer degrees of freedom than

the three-field approach on triangular meshes in [10]. Moreover, our solver does not involve

stabilization. It is stable and free of poroelasticity locking. Implementation of our two-field

approach is accessible in deal.II. Numerical results are presented to validate theoretical

results. A priori error estimates were presented.

7.2 Future Work

The combination of WGFEMs and EQ1 elements with the backward Euler method proposed

and studied in this dissertation has been proved to be stable for solving the linear poroelasticity

equation. Further research can be pursued in following directions.

1. Lowest order AC elements on rectangles are the same as lowest order Raviart-Thomas ele-

ments on rectangles which have been implemented in deal.II. Higher orders of WGFEMs

with higher order ACk elements are useful for more complicated problems. Any order

WG(Pk, Pk;ACk) for solving the Darcy equation is discussed in [38] with theoretical and

numerical results. The WG framework with Raviart-Thomas spaces has been implemented

in deal.II. How to implement additional rational functions of higher order AC spaces in

deal.II need to be investigated.

2. AC elements used in this dissertation are defined for 2D quadrilateral meshes. Our approach

for linear poroelasticity problems with AC elements have good properties. However, the

92

extension of our method to 3D will be useful in applications, like in the field of biomechan-

ics. For 3D linear poroelasticity problems, we use Arbogast-Tao (AT) elements defined on

hexahedra in [39]. Research on poroelasticity on a 3D domain using AT elements could

be investigated. We can construct a two-field approach similar to 2D problems for solving

a 3D linear poroelasticity problem by EQ1 elements on hexahedra and WG(P0, P0;AT0).

Implementation of this two-field approach in deal.II will be useful in high performance

computing.

3. The first order backward Euler method is used in this dissertation. To develop a solver with

smaller errors, we can try higher order time discretization methods, like Crank-Nicolson

and backward differentiation formula 2 (BDF2). By the Crank-Nicolson method, we use

solutions from the previous time step to approximate solutions of the next step. However,

in the BDF2 method, solutions from two more time steps are needed. Initial solutions are

known. Then we use the backward Euler method with many small time steps to approximate

the first time step’s solutions. Next we use initial and first time step’s solutions to solve by

using BDF2.

93

Bibliography

[1] Maurice Biot. General theory of three-dimensional consolidation. J. Appl. Phys., 12:155–

164, 1941.

[2] Phillip Phillips and Mary Wheeler. A coupling of mixed with continuous Galerkin finite

element methods for poroelasticity I: the continuous in time case. Comput. Geosci., 11:131–

144, 2007.

[3] Ralph Showalter. Diffusion in poro-elastic media. J. Math. Anal. Appl., 251:310–340., 2000.

[4] Herbert F Wang. Theory of Linear Poroelasticity with Applications to Geomechanics and

Hydrogeology. Princeton University Press, 2000.

[5] Andi Merxhani. An introduction to linear poroelasticity, 2016.

[6] Phillip Phillips and Mary Wheeler. A coupling of mixed with continuous Galerkin finite

element methods for poroelasticity II: the-discrete-in-time case. Comput. Geosci., 11:145–

158, 2007.

[7] Phillip J. Phillips and Mary F. Wheeler. Overcoming the problem of locking in linear elastic-

ity and poroelasticity: an heuristic approach. Comput. Geosci., 13:5–12, 2009.

[8] Lorenz Berger, Rafel Bordas, David Kay, and Simon Tavener. Stabilized lowest-order finite

element approximation for linear three-field poroelasticity. SIAM J. Sci. Comput., 37:A2222–

A2245, 2015.

[9] Erik Burman and Peter Hansbo. A unified stabilized method for Stokes’ and Darcy’s equa-

tions. J. Comput. Appl. Math., pages 35–51, 2007.

[10] Son-Young Yi. A study of two modes of locking in poroelasticity. SIAM J. Numer. Anal.,

55:1915–1936, 2017.

94

[11] Junping Wang and Xiu Ye. A weak Galerkin finite element method for second order elliptic

problems. J. Comput. Appl. Math., 241:103–115, 2013.

[12] Ming Sun and Hongxing Rui. A coupling of weak Galerkin and mixed finite element methods

for poroelasticity. Comput Math. Appl., 73:804–823, 2017.

[13] Xiaozhe Hu, Lin Mu, and Xiu Ye. Weak Galerkin method for the Biot’s consolidation model.

Comput. Math. Appl., 75:2017–2030, 2018.

[14] Christine Bernardi and Geneviève Raugel. Analysis of some finite elements for the Stokes

problem. Math. Comput., 44:71–79, 1985.

[15] G. Lin, J. Liu, L. Mu, and X. Ye. Weak Galerkin finite element methods for Darcy flow:

Anistropy and heterogeneity. J. Comput. Phys., 276:422–437, 2014.

[16] Lin Mu, Junping Wang, and Xiu Ye. A weak Galerkin finite element method with polynomial

reduction. J. Comput. Appl. Math., 285:45–58, 2015.

[17] Lin Mu, Junping Wang, and Xiu Ye. Weak Galerkin finite element methods on polytopal

meshes. Int. J. Numer. Anal. Model., 12:31–53, 2015.

[18] Todd Arbogast and Maicon Correa. Two families of mixed finite elements on quadrilaterals

of minimal dimension. SIAM J. Numer. Anal., 54:3332–3356, 2016.

[19] Jiangguo Liu, Simon Tavener, and Zhuoran Wang. The lowest order weak galerkin finite

element method for the darcy equation on quadrilateral and hybrid meshes. J. Comput. Phys.,

359:312–330, 2018.

[20] Franco Brezzi and Michel Fortin. Mixed and hybrid finite element methods. Springer-Verlag,

1991.

[21] Jiangguo Liu, Simon Tavener, and Zhuoran Wang. The lowest-order weak Galerkin finite

element method for the Darcy equation on quadrilateral and hybrid meshes. J. Comput.

Phys., 359:312–330, 2018.

95

[22] Jiangguo Liu, Simon Tavener, and Zhuoran Wang. Lowest-order weak Galerkin finite element

method for Darcy flow on convex polygonal meshes. SIAM J. Sci. Comput., 40:B1229–

B1252, 2018.

[23] Jiangguo Liu, Simon Tavener, and Zhuoran Wang. Penalty-free any-order weak Galerkin

FEMs for elliptic problems on quadrilateral meshes. J. Sci. Comput., 2020.

[24] Douglas Arnold, Gerard Awanou, and Weifeng Qiu. Mixed finite elements for elasticity on

quadrilateral meshes. Adv. Comput. Math., 41:553–572., 2015.

[25] Graham Harper, Jiangguo Liu, Simon Tavener, and Bin Zheng. Lowest-order weak Galerkin

finite element methods for linear elasticity on rectangular and brick meshes. J. Sci. Comput.,

78(3):1917–1941, 2019.

[26] Jun Hu, Hongying Man, Jianye Wang, and Shangyou Zhang. The simplest nonconform-

ing mixed finite element method for linear elasticity in the symmetric formulation on n-

rectangular grids. Comput Math. Appl., 71:1317–1336, 2016.

[27] Bishnu P. Lamichhane. A mixed finite element method for nearly incompressible elasticity

and Stokes equations using primal and dual meshes with quadrilateral and hexahedral grids.

J. Comput. Appl. Math., 260:356–363., 2014.

[28] Bishnu P. Lamichhane and Ernst P. Stephan. A symmetric mixed finite element method

for nearly incompressible elasticity based on biorthogonal systems. Numer. Meth. PDEs,

28:1336–1353, 2012.

[29] Son-Young Yi. A new nonconforming mixed finite element method for linear elasticity. Math.

Model. Meth. Appl. Sci., 16:979–999, 2006.

[30] Son-Young Yi. A lowest-order weak Galerkin method for linear elasticity. J. Comput. Appl.

Math., 350:286–298, 2019.

96

[31] Graham Harper, Ruishu Wang, Jiangguo Liu, Simon Tavener, and Ran Zhang. A locking-

free solver for linear elasticity on quadrilateral and hexahedral meshes based on enrichment

of Lagrangian elements. Preprint.

[32] Susanne Brenner and Li-Yeng Sung. Linear finite element methods for planar linear elasticity.

Math. Comput., 59(200):321–338, 1992.

[33] David S. Malkus and Thomas J.R. Hughes. Mixed finite element methods - reduced and se-

lective integration techniques: A unification of concepts. Comput. Meth. Appl. Mech. Engrg.,

15:63–81, 1978.

[34] Joachim Haga, Harald Osnes, and Hans Langtangen. On the causes of pressure oscillations

in low permeable and low compressible porous media. Int. J. Numer. Aanl. Meth. Geomech.,

36:1507–1522, 2012.

[35] S.C.Brenner and L.Ridgway Scott. The mathematical theory of finite element methods, vol-

ume 15 of Texts in Applied Mathematics. Springer-Verlag, New York, third edition, 2008.

[36] Dendy, J.E., and Jr. Alternating direction methods for nonlinear time-dependent problems.

SIAM J. Numer. Anal., 14(2), 1977.

[37] Wolfgang Bangerth, Ralf Hartmann, and Guido Kanschat. deal.II — a general purpose object

oriented finite element library. ACM Trans. Math. Softw., 33:24.1–24.27, 2007.

[38] Jiangguo Liu, Simon Tavener, and Zhuoran Wang. Penalty-free any-order weak Galerkin

FEMs for elliptic problems on quadrilateral meshes. J. Sci. Comput., 2020.

[39] Todd Arbogast and Zhen Tao. Construction of H(div)-conforming mixed finite elements on

cuboidal hexahedra. Numer. Math., 142:1–32, 2019.

97

	Abstract
	Introduction
	Poroelasticity Background
	Literature Review
	Outline of Dissertation
	Contributions of Dissertation

	Weak Galerkin Finite Element Methods for Darcy Flow
	Overview of Weak Galerkin Methodology for Darcy Flow
	Lowest order Arbogast-Correa Spaces AC0
	WG(P0,P0;AC0) Scheme for Darcy Flow
	WG(P0,P0; AC0) Finite Elements on Quadrilaterals
	WG(P0,P0; AC0) Finite Element Scheme for Darcy Flow
	Two Physical Properties and Convergence Results

	Detailed Error Analysis
	Extension to Higher Order WG Methods

	Enriched Lagrangian Elements for Linear Elasticity
	Enriched Lagrangian Elements (EQ1) for Quadrilaterals and Hexahedra
	A Numerical Scheme for Linear Elasticity

	A Two-field Finite Element Solver for Linear Poroelasticity
	Reviving the Two-field Approach
	EQ1 + WG(P0,P0;AC0) Two-field Scheme for Linear Poroelasticity
	Theoretical and Numerical Results

	Detailed Analysis of the Two-field Finite Element Solver
	Preliminaries: Operators and Their Properties
	Error Equations
	Error Estimation: Part I
	Error Estimation: Part II
	Error Estimation: Part III

	deal.II Implementation
	WG Solvers for Darcy Flow
	Implementation of EQ1 Solver for Linear Elasticity
	A Two-field Linear Poroelasticity Solver

	Concluding Remarks
	Summary
	Future Work

	Bibliography

