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ABSTRACT 

PERIODICITY OF COMBINED HEAT TRANSFER 

Based on experimental and flow visualization studies, a model for 

directly opposed free and forced convection flow around a heated cylinder 

(O.pl mm diameter) was developed. Three modes of flow were identified. 

For velocities less than 15 cm/sec (cylinder Reynolds number, Redw=0.O8) 

a free convection or a buoyant force dominated flow was observed. The 

interacting free convection plume and the ambient flow form a stagnation 

region well upstream of the heated cylinder. Heat was convected from the 

cylinder through the plume to the stagnation region. In the stagnation 

region random vortex pockets of heated mass were formed. 

For velocities greater than 15 cm/sec but less than 21.4 cm/sec 

the magnitudes of the forced and free convection flows were nearly 

equal. A periodic oscillation of the stagnation region was observed. 

The flow regime where the periodic oscillations occur was found to 

be defined by a specific relation between the Grashof and Reynolds 

numbers. The periodic oscillations, which were in the range from 3 to 

15 cycles per minute, were correlated in terms of Strauhal number and 

Reynolds number. 

For velocities greater than 21.4 cm/sec the forced convection was 

found to dominate over the free convection. The stagnation region was 

fixed for each flow velocity at one position above the cylinder. A 

potential like flow (laminar sheet) was formed shrouding the thermal 

layer of the cylinder. 

The mean heat transfer from the cylinder decreases with increasing 

Reynolds number for both the case of dominant free convection and the 

case of equal free and forced convection. The mean heat transfer 
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abruptly and rapidly increases with increasing Reynolds number in the 

forced convection dominated region. For all these cases the thermal layer 

surrounding the hot cylinder was approximately 600 times larger than 

the diameter of the cylinder. 
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CHAPTER I 

INTRODUCTION 

A difficult problem in fluid mechanics and heat transfer is that 

of directly opposed combined free and forced convection. In general, 

this type of problem is avoided, but it can be encountered in special 

cases. One example is the use of a hot wire anemometer for the measure-

ments of flow velocities in gravitational fields. In a vortex type 

of flow, it is possible to have the velocity directed down on the hot 

wire, so that the flow velocity directly opposes the free convection 

from the hot wire . Some manufacturing processes may also encounter 

similar flow conditions. 

Experimental study of heat transfer from horizontal cylinders has 

been mainly limited to either forced or free convection alone. A 

limited number of studies have been reported for the case of combined 

free and forced convection heat transfer (6, 11, 12, 25, 26, 27,43). 

The case where forced convection directly opposes free convection 

was reported by Oostuizen and Madan (26, 27) : for cylinders, and by Pei 

(32) for spheres. For the above studies, only the long time average heat 

transfer was observed. When the free and forced convection flows oppose 

each other, it was found that the heat transfer .w~s less than that for 

free convection alone, for a limited range of convective velocities. No 

details on combined free and forced convection flow fields were reported. 

No exact analytical solution is available for the case where the 

forced convection directly opposes the free convection from horizontal 

cylinders. Acrivos (1) made an inspectional analysis of the problem 

and found that the parameter, Grashof number (Gr) divided by the square 

of the Reynolds number (Re) is of fundamental importance. The parameter 
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is the ratio of buoyant force to inertial force. Reynolds number is the 

ratio of inertial force to viscous force. The heat transfer measurements 

of Oostuizen and Madan (26, 27) and Pei (32) were found to be well 
2 correlated by the parameter Gr/Re Hieber and Gebhart (14,15), using 

the method of matched asymptotic expansions, have obtained solutions for 

the velocity, temperature, and pressure field around a heated sphere when 

the forced convection is in the same direction as the free convection. 

A study of combined free and forced convection heat transfer from vertical 

thin needles in a uniform stream was reported by Narain and Uberoi (25). 

Their analysis does not indicate periodicity in the rate of heat transfer. 

Wood (43) reported a study of free and forced convection from fine hot 

wires for the aiding flow case. 

A definite periodic behavior in the heat transfer process was noted 

by Townsend (40) while making measurements of temperature fluctuations 

over a heated horizontal surface. Howard (17) attributed the phenomenon 

to a Rayleigh type instability of the conduction layer, which he postu-

lated as periodic. Sparrow, Husar and Goldstein (38) confirmed the 

generation of thermals at regular intervals from a hot horizontal plate 

by using flow visualization technique. However, the conditions under 

which thermals were generated and the mechanism of their generation 

were not established. 

A detailed study of the basic aspects of directly opposed free and 

forced convection heat transfer from horizontal cylinders is reported 

in the present investigation. A physical model for the combined flow 

is proposed. The model explains the observed reduction of heat transfer 

by convective velocity within a limited range. It is observed that a 

periodic heat transfer exists over a limited range of flow conditions. 
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CHAPTER II 

MECHANISM OF DIRECTLY OPPOSED FREE AND FORCED CONVECTION 
HEAT TRANSFER FROM HORIZONTAL CYLINDERS 

The phenomenon of either free or forced convection heat transfer 

from horizontal cylinders is generally well understood. However, the 

case where the two convections are directly opposed to each other has 

received little attention. The two opposed flows will be shown to 

form a stagnation type flow at some distance upstream from the heated 

cylinder. The basic model for this type of flow was developed mainly 

from direct flow visualization studies. In addition, heat transfer and 

direct flow temperature measurement were employed to develop the model. 

2.1 General Free Convection Flow 

The development of a thermal plume for the case of free convection 

from a horizontal cylinder is well known (see for example the inter-

ference photograph, Figure 11.9 of Eckert and Drake, Ref. 8). The 

free convection plume is a laminar flow for many diameters above the 

cylinder. At some distance above the cylinder the plume may become 

unstable and develop into a turbulent flow. 

The thermal layer developed around the horizontal cylinder is 

mainly a function of the surrounding fluid. Figure la shows a 

typical set of temperature measurements made across the thermal layer 

of a 0.01 mm (0.0004 inch) diameter hot cylinder. Temperature surveys 

were made at a position 0.25 mm above the cylinder. From figure lb, 

it was found that the thermal layer thickness was approximately six 

hundred times larger than the cylinder diameter. The thickness of the 

thermal layer is independent of the cylinder temperature and must 

depend mainly on the fluid properties. In the development of the 
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model for the opposed free and forced convection flow it will be im-

portant to consider the thermal layer thickness as the major length 

parameter. 

The shape of the plume for small diameter cylinders may differ 

somewhat from the classical picture given by Eckert and Drake (Ref. 8, 

Fig. 11.9). The general picture is that the plume reduces down to .a 

width less than the cylinder diameter. However, for a very small 

cylinder the plume was observed to spread outward slightly. Figure 2a 

shows typical measurements of the temperature distribution at several 

locations in the space plume above the cylinder. The lateral spread 

of the plume was found to be approximately 2 mm in a height of 50 mm. 

The plume width for the small cylinder is approximately the same size 

as that for large cylinders. (i.e. the cylinders shown by Eckert and 

Drake.) The center line temperature and average plume temperature 

variations for the measurements of figure 2a _ are shown in figure 2b. 

Both the center line and the average plume temperatures decrease 

rapidly with height. The buoyant force within the plume also decreases 

with height. 

The present measurements and discussions have dealt mainly with 

the thermal aspects of free convection. Th~re is also a velocity 

field set up by the free convection. Brodowicz and Kierkus (3, 4) 

have investigated the velocity field for free convection above a 

horizontal wire. A technique of visualization of streamlines by means 

of small dust particles was used for the velocity measurements. 

Brodowicz and Kierkus' velocity measurements show the same growth of 

the plume -structure as that implied by the temperature measurements of 

figure 2a. 
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2.2 Opposed Free and Forced Convection Flow 

When a mean flow velocity field opposes the gravitational flow 

field, it is obvious that the free convection plume will be altered. 

In the present study, three distinct regimes of flow were identified: 

a) Dominant free convection; b) Equal free and forced convection; 

c) Dominant forced convection. For the 0.01 mm diameter cylinder, 

operating at 2020° F, employed in the studies, where the time varying 

heat transfer is shown in figure 3a to 3j, the dominant free convection 

regime was limited to flow velocities less than approximately 15 cm/sec 

(0.5 ft/sec). The regime of equal free and forced convection (figure 

3K to 3z) was found to be in . the range from 15 to 21.4 cm/sec (0.5 to 

0.7 ft/sec). The dominant forced convection (figure 3zz) was for flow 

velocities greater than 21.4 cm/sec. The actual range of the flow 

velocities was found to be a function of the temperature difference 

between the cylinder and the ambient fluid. 

The directly opposed· interaction of two flows will form a stag-

nation line or region at some location where their forces are in 

balance. The general model for heat transfer from the cylinder will 

depend on the development and -position of the stagnation region. For 

the dominant free convection regime, the stagnation region was far above 

the cylinder, and in genera1:' not well organized. For the equal free 

and forced convection regime, the stagnation position was found to be 

a periodic function of time . For the dominant forced convection regime, 

the stagnation line was well- established at a position near the cylinder. 

The three regimes of directly opposed free and forced convection 

flow could be identified from the nature of the heat transfer variations 

at the heated cylinder. For the case of dominant free convection, the 

rate of heat transfer at the cylinder fluctuates with time in a random 
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manner. The mean rate of heat transfer for the dominant free convection 

regime was found to be less than that for free convection alone. For 

the case of equal free and forced convection flow, the variation of 

the heat transfer was found to be periodic. For the case of dominant 

forced convection, the rate of heat transfer at the cylinder remained 

steady and became a function of the convective velocity. The regions 

of dominant free convection, equal free and forced convection, and the 

dominant forced convection are indicated as R1 , R2 and R3 
respectively in figure 4, which is a plot of the mean rate of heat 

transfer as a function of Reynolds number. Figures 4a through 4i 

show the heat transfer measurements for a series of different Grashof 

numbers (wi re temperatures). 

a). Dominant free convection 

Figures 3a through 3j show the rate of heat transfer from 

the cylinder as a function of time. It was observed that the mean rate 

of heat transfer was much reduced compared to that by free convection 

alone. Flow visualization indicated that the mean position of the 

stagnation zone moved closer to the cylinder as the convective velocity 
. . <. 

~ •, J. ·-~ f> 

was increased. In the stagnat ion zone, ' "vortex pockets" of heated mass 

were formed and subsequently carried away by the ambient flow. The 

formation of vortex pockets occurred in a disorganized manner. The 

fluctuating flow i n the stagnation zone resulted in the random fluctua-

tions of heat transfer at the cylinder. Movement of the mean posit ion 

of the stagnation zone towards the cylinder was found to reduce the 

mean rate of heat trans fer at the cyl inder. It was obvious that the 

local disturbances in the ambient fl ow could greatly influence the 

location of the stagnation zone and, hence, the rate of heat transfer 
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at the cylinder. The high sensitivity of the flow process of dominant 

free convection heat transfer to local conditions made accurate heat 

transfer measurements difficult. 

b). Equal free and forced convection 

Figures 3j through 3z represent the variation of heat 

transfer at the cylinder with time for the case of equal free and forced 

convection. The mean rate of heat transfer for this regime was also 

found to be less than that for free convection alone. The variation 

of the heat transfer developed a definite periodicity for a specific 

range of convective velocities for a given constant temperature of the 

cylinder. Figure S, which is a series of smoke visualization photo-

graphs, shows that the stagnation zone moves above the heated cylinder 

in a periodic manner. The heat transfer decreased when the stagnation 

zone moved near the cylinder and increased as the zone moved away from 

the cylinder. Figure S, taken from a motion picture study, indicated 

that the movement of the stagnation flow vertically upwards continued 

until the flow formed a vortex filament of heated mass. The vortex 

filament separated from the rising plume and stretched laterally. Con-

tinuous loss of heat to the ambient fluid reduced the buoyant force, 

whereas, the lateral spread increased the viscous drag. Ultimately the 

vortex ring of heated mass was carried downstream by the ambient flow. 

The annular space of the vortex ring permitted a direc~ action between 

the rising plume and the ambient flow. The ambient flow forced the 

rising plume down and moved the stagnation zone very close to the 

cylinder. The stagnation flow developed with time near the cylinder 

until it started to move upward again. This process continued in a 

periodic manner. A summary set of drawings of the process is detailed 
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at approximately 1:1 scale in the sketches shown in figures 6a 

through 6L. 

Figure 5 indicates that the movement of the heated mass was 

restricted into a narrow region shrouding the heated cylinder. 

Smoke visualization studies indicated also that the flow was laminar . 

Thus, the region could be viewed as a laminar sheet of moving heated 

mass, as represented in figure 6. Measurements of the temperature 

variations, as the stagnation zone moved upward, as shown in figure 7, 

indicated that the temperature was uniformly varying and further 

supported the concept of the laminar movement of heated mass in a sheet. 

The frequency and amplitude of variation of heat transfer at the 

cylinder are determined by the movement of the stagnation zone. Maximum 

height to which the stagnation zone can rise determined the amplitude 

of variation, whereas, the time taken for the movement determined the 

period of variation. Time-space history of the laminar sheet, as shown 

in figure 8, indicated that the velocity was constant for a major part 

of its movement. In general, for a given constant temperature of the 

cylinder, the time period and the amplitude of the variation 

with the increase of ambient velocity. 

increased 

The periodic variations in heat transfer at the heated cylinder 

were due to the fact that the two modes of heat transfer were 

approximately equal . Change from the dc:'1ninant free convection heat 

transfer to the periodic form was gradual. The minimum ambient velocity 

at which the periodicity occurred will be referred to as the lower 

critical velocity, (ULcrit). The maximum ambient velocity at which 

the periodicity occurred was quite distinct in each case . The maximum 

velocity is referred to as the upper critical velocity (UUcrit). 
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In general, it was found that the magnitudes of the upper critical 

velocity, the lower critical velocity, and the range of ambient veloc-

ities within the periodic variations occur (R2) increase with the 

increase of the cylinder temperature (Figure 4). 

c). Dominant Forced Convection 

In the dominant forced convection regime, the position of 

the stagnation zone was well established near the cylinder; hence, the 

rate of heat transfer remained steady with time. Figure 9 indicates 

that the laminar sheet shrouding the cylinder becomes unstable at a 

certain distance downstream and forms vortex rings of heated mass. 

The vortex rings develop fully as they move downstream, but they 

separate from the laminar sheet at definite intervals. The vortices 

are carried away by the ambient flow. The flow visualization studies 

clearly show that the increase of ambient velocity delays the forma-

tion of vortex rings and, hence, maintains a longer length of laminar 

sheet shrouding the cylinder. Figures 4a to 4i show the variation of 

heat transfer with ambient velocity for this region (R3). Within 

the dominant forced convection regime (R3) , the rate of increase 

of heat transfer with convective velocity was significantly greater 

for velocities close to the critical velocity than for much higher 

velocities. The increase of average rate of heat transfer at the 

critical velocity appeared to be abrupt and was quite significant. The 

magnitude of the step like decrease of heat transfer at the critical 

value was determined by the magnitude of the periodic variations for the 

ambient velocity just smaller than the critical velocity. 

For the present discussion free convection effects are . still 

important. The larger thermal layer still exists so that the 
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characteristic length is still many times greater than the cylinder 

diameter. No doubt the reduced rate of change of heat transfer with 

Reynolds number at the higher Reynolds number is due to free convection 

becoming unimportant. 

2.3 Characteristics of Periodic Heat Transfer 

During the periodic heat transfer process, a quantity of heat is 

periodically stored and convected from the region near the cylinder. 

The periodic heat transfer process takes place when the rate at which 

heat is put into a system is greater than the rate at which it is con-

vected away. The excess heat put into the system is stored and builds 

up with time. When sufficient heat is stored, the mechanism of heat 

transport changes to one with a higher capacity. Such a situation 

occurs at regular intervals and constitutes a periodic heat transfer. 

In the case of the heated cylinder subjected to directly opposed 

convective velocity, less than the upper critical velocity, free 

convection heat transfer dominates during half of the time of each cycle 

of variations, and forced convection dominated during the second half 

of the cycle. When the forced convection dominates the stagnation 

zone is held close to the cylinder. The heated mass is forced by the 

ambient flow to convect along the laminar sheet. However, the rate at 

which the heated mass is convected away must be less than that supplied. 

With time this process builds up the buoyant force in the region. A 

time is reached when the buoyant force exceeds the inertial force and 

moves the entire laminar sheet vertically upwards, until a vortex 

filament of stored heated mass is formed. The vortex filament separates 

from the heat source and looses heat to the ambient flow. When the 
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buoyant force is sufficiently reduced, the ambient flow is able to 

carry the vortex filament downstream. 

a). Equilibrium of the Stagnation Flow 

Equilibrium of the stagnation flow is determined by the three 

primary forces acting on the laminar sheet: Inertial force due to the 

ambient flow; buoyant force due to the heated mass in the laminar 

sheet; and the viscous shear force acting on the laminar sheet due to 

the velocity gradient across the sheet. The inertial force acting on 

the laminar sheet is determined by the magnitude of the ambient fluid 

velocity and the shape of the laminar sheet. The buoyant force is 

determined by the average temperature and volume of fluid in the heated 

region. The volume in the region was found to increase with time. 

When sufficient volume of heated fluid was collected in the region, the 

static equilibrium changes and the sheet moves upwards. The viscous 

shear force is directly dependent on the velocity gradient in the 

shear layer and also on the viscosity. For a given ambient velocity, 

the viscous forces will remain approximately constant. 

Figure 10 is a nondimensional plot of Grashof number versus 

Reynolds number which defines the region where periodicity was observed. 

The relations for critical Reynolds numbers in terms of Grashof number 

were found to be 

ReLcrit = 30 log Gr - 44.12 for Gr> 4000 

Reu ·t = 36.18 log Gr - 91.68 for Gr> 4000 cr1 

Figure 11 is a plot of the Stouhal number versus the ratio of local 

Reynolds number to the upper critical Reynolds number. The relation 
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between Strouhal number and the ratio of Reynolds number is approximately 

Re S = 0.0428 (1.072 - ) 
n ReUcrit 

for Re> 38.7 

b). Effect of Temperature of the Cylinder 

Experiments were conducted for several different values of 

cylinder temperature. The heat flux and, hence, the buoyant force 

in the rising plume will increase with the increase of the cylinder 

temper ature. Increase of cylinder temperature is equivalent to an 

increase in the virtual pressure gradi ent (as will be considered in 

Chapter III) of the rising plume. The lower critical velocity occurs 

at a value where the ambient flow is able to push the stagnation zone 

close to the cylinder, which initiates the periodic variations. Thus, 

the increase of cylinder temperature increases the lower critical 

velocity . During the periodic variation of heat transfer, the rate at 

which the heated mass is supplied to the region becomes a function of 

the cyl i nder temperature. The upper critical velocity is reached when 

the inflow of heated mass equals that convected away. Thus, the 

magnitude of the upper critical velocity increases with the increase 

of cylinder temperature. As noted in the previous section, figure 

10 shows how the upper and lower critical Reynolds numbers vary for 

the present measurements. The Grashof number reflects mainly the 

temperature difference (for the present study) of the cylinder and 

the flow. Reynolds number variation i s due to the change in flow 

velocity. It was found that the range of ambient velocities for 

periodic variations of heat transfer increases with the increase of 

cylinder temperature. No periodic variations of heat transfer were 
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noticed for temperatures corresponding to Grashof number, referred 

to the diameter of the thermal layer, less than 4000. 

c). Effect of Length and Diameter of the Cylinder 

The flow visualization and figure 6 show a two-dimensional 

type of behavior of the phenomenon as a whole. Introduction of an 

extended thin solid vertical plane along the cylinder (downstream) 

as shown in figure 12, did not influence the phenomenon, confirming 

the overall two-dimensional behavior. Experiments were conducted for 

cylinder lengths from 2 mm to 75 mm and diameters 0.01 mm to 0.4 mm 

(0.4 mm cylinder - used for AC heating). It was found, as shown in 

figure 13, that the influence of length and diameter on the periodic 

behavior was negligible. The heat transfer process was primarily 

governed by the thermal layer thickness which in the present study 

varies from 150 to 600 times the diameter of the cylinder. Thus, the 

influence of the diameter of the cylinder was negligible. Dimensional 

analysis of the governing equations which is presented in Chapter III, 

equations (26) and (27), als·o indicates that the thermal layer 

thickness is the characteristic length. While the dominant flow appears 

to be two-dimensional in nature, the measured heat transfer may be in 

error due to the end effects. The value of the ratio of length to 

diameter of the cylinder was large, but the value of the ratio of 

length to thermal layer thickness was of the order of 2. 

d). Effect of the Type of Heat Source 

The influence of the type of source employed in heating the 

cylinder was examined by using three distinctly different types of 

heating: Constant temperature heating; constant current heating; and 
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A.C. heating . No major difference in heat transfer characteristics was 

observed in the three modes of heat ing . 

Constant temperature heating was achieved by using a battery 

operated constant temperature anemometer. Suitable materials for the 

cylinders were selected in order to accommodate the limitations of 

the power output of the anemometer. The periodic variations observed 

are shown in fi gures 3a through 3z . The heat supplied in these cases 

was proportional to the square of the output voltage of the anemometer . 

Constant current heating was achieved by employing a suitable constant 

current source. For constant current case the temperature of the 

cylinder does not remain constant. The periodic variations in hot 

wire output for constant current heat ing is shown in figures 14a 

through 14k. The mean hot wire output voltage as a function of 

Reynolds number for constant current operation is shown in figures 15a 

and 15b. The regions of different heat transfer are found to be the 

same as those for constant temperature operation. 

The case of A.C . heating was studied by applying an A.C. voltage 

(60 c/s) to heat the cylinder. The power supply was set by monitoring 

the applied voltage, and measured by noting the voltage across and 

current flowing through the cylinder. Periodic variations of heat 

transfer were detected by sensing the vertically upward movement of 

the laminar sheet of heated mass~ using a resistance thermometer as 

shown in figure 16. The temperatur e variation shown in figure 16 

is quite s i milar to the constant temperature results shown in figure 7. 

e). Influence of Direction of the Ambient Velocity ---
The periodic variation of heat transfer was quite sensitive 

to the direction of ambient velocity. It is clear from the previous 
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discussion that the process of periodic heat transfer is quite sensitive 

to local disturbances. Any anularity of the ambient flow with the 

vertical introduces a lateral component of the velocity. The influence 

of the inclination of the ambient flow is primarily due to the lateral 

component. Experiments showed that periodic variations of heat trans-

fer were exhibited when the ambient velocity made a small angle with 

the vertical, as shown in figure 17. Figure 18 shows the variation of 

mean heat transfer as a function of Reynolds number, when the forced 

convection was· at an angle of 15° from the vertical. 

f). Effect of Inclination of the Cylinder 

Inclination of the cylinder was found to have a great 

influence on the variation of heat transfer. Due to the added com-

plexity of the mechanism of inclined case, a systematic investigation 

was not undertaken. When the cylinder was yawed at an angle of 15° 

from the vertical (cylinder axis made an angle of 15° with the mean 

downward flow), very large periodic fluctuations in heat transfer were 

observed. These large fluctuations exceeded the usable limits of the 

electronic operating circuits. Apparently heat along the cylinder 

acts to reinforce the periodic effect observed for the horizontal 

cylinder. The inclined cylinder case may be an interesting area for 

further research. 

2.4 Characteristics of Thermal Layer 

The measurements of temperature distribution within the thermal 

layer (Figure 1) indicated that the thickness of the layer was nearly 

insensitive to the temperature of the cylinder. Such a phenomenon 

can be attributed to the thermal diffusion process by molecular action 

(conduction). Increase of cylinder temperature can increase the 
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intensity of thermal diffusion and, hence, redistribute the temperatur e 

variations within the layer thickness. Under such circumstances the 

zone of molecular diffusion of heat becomes a function of the properties 

of the fluid. The temperature gradient in such a zone is found to be 

quite high. Beyond the diffusion zone the convective heat transfer 

process greatly reduces the temperature gradient. The measurements 

made in air for the present study, figur e 1, indicate that high 

temperature gradients are maintained in the region of a fixed diameter 

surrounding the cylinder for a wide range of temperatures. Flow 

visualization indicates that the si ze of the zone of high temperature 

gradient remains nearly undisturbed during the periodic variations of 

heat transfer at the cylinder. Thus, the region of high temperature 

gradient is termed as the hot core (figure 19). 

The temperature measurements made for points within the hot core 

(Figures 20, 21, 22, 23) during periodic variation of heat transfer 

at the cylinder indicate a good correlation between the temperature 

within the hot core and the rate of heat transfer. Reduction of heat 

transfer at the cylinder was accompanied by the increase of temperature 

within the hot core. The increases of heat transfer were found to 

generate severe fluctuat i ons of temperature in the hot core. Minimum 

temperature was found to prevail in the core at the time when the rate 

of heat transfer at the cylinder reached the maximum value. 

During the dominant free convection heat transfer (Figure 22a), 

the temperature within the hot core was found to fluctuate in a 

random manner at a frequency much higher than that of the heat transfer 

variations at the cylinder. The mean temperature, however, was found 

to be higher than that observed in the free convection case alone . 
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Figure 23e shows the variation of temperature during the time of 

dominant forced convection heat transfer. The variation of fluid 

properties within the hot core can be quite significant . The heat 

transfer from the cylinder wall starts with thermal diffusion by 

molecular action and is followed by the process of convective heat 

transfer. Thus, the size of the region of thermal diffusion is of 

fundamental importance in determining the heat transfer process. The 

diameter of the hot core is considered the characteristic length in 

the present study (see also the discussion at the end of Chapter III). 

2.5 Characteristics of the Flow -------- -- -- --
The flow region consists of the hot core, the rising plume of 

heated fluid, the stagnation region, a laminar sheet, the wake, and 

the ambient flow. The general characteristics of the hot core were 

discussed in section 2.4. General features of the rising plume of free 

convection are well known. However, it is very interesting to note 

that the rising plume becomes quite sensitive to local disturbances 

during the periodic behavior. The location of the stagnation region 

is primarily determined by the balance between the momentum carried 

by the rising plume and that by the convective flow. Any local dis-

turbance can heavily influence the momentum of the rising plume and, 

hence, the location and formation of the stagnation flow. Sensitivity 

to disturbance, thus, makes it impossible to measure the temperature 

using the resistance thermometer within the plume during the periodic 

behavior. The effect of sensitivity of the rising plume to local 

disturbances was recorded while making temperature measurements along 

the vertical .axis of the flow system, figures 20h , 21g, 21h; and also 

along ahorizontal section above the heated cylinder, figure 24. 
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Figure 12 shows that the shroud of heated f luid extends beyond the 

ends of the cylinder. The temperature measurements represented in 

figure 25 also indicate the spread of the laminar sheet beyond the 

ends of the cylinder. The transfer of heated mass is partly along 

the ends of the shroud and partly along the center portion. The 

net rate of heat transfer, thus, becomes a function of the ratio of 

length to the diameter of the hot core (see also Ref . 12). 

Figures 26a and 26b indicate the t emperature distribution in 

the wake of the cylinder under the influence of domi nant forced 

convecti on. It can be noted that approximately constant temperature 

is maintained in the center region f ar downstream of the wake. Strong 

temperature gradients are found to exist in the shear region that 

separates the ambient flow from the wake flow . However, the tempera-

ture distribution along the horizontal section close to the cylinder 

(X = -5 mm) ·shows that high temperature gradients exist at points 

close to the vert i cal axis. It is i mportant to note that the distri-

bution is quite di fferent during the periodic variations of heat 

transfer. Temperature measur ements made during the upward movement of 

the stagnation f l ow, figure 7, i ndicat e that the laminar sheet is 

narrow and possesses cont inuous temperature variat i ons across i ts 

thickness. 

2.6 Instability of the Laminar Sheet 

Stability of the l ami nar sheet is determined by the nature of the 

fluid flow within the sheet. Primary fo rces controlling the stability 

of the fluid element are due to buoyancy, vi scous shear, curvature of 

the sheet, and i nertia. 
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The laminar sheet is a free shear layer. On one side of the 

sheet the velocity is that of the ambient flow, while inside, the 

velocity is nearly zero. There is a large temperature variation 

across the sheet. One may view this flow as a classical instabi lity 

problem similar to the Kelvin-Helmholtz (9), or Taylor (39) t ype 

instabilities. 

The flow visualization indicates that the higher ambient 

velocities delay the instability and maintain a longer laminar 

sheet. Thus, the increase of amplitude and period of heat transfer 

variations within the region, R2 , may be related to the increase of 

the length of the laminar sheet. 
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CHAPTER III 

GOVERNING EQUATIONS 

An analytical analysis of the case of directly opposed free and 

forced convection heat transfer was not obtained. It is possible to 

make an inspectional analysis of the governing equations to determine 

the important parameters. The present section outlines the inspectional 

analysis for the basic flow fields considered. 

In general, the differential equations governing the laminar 

flow of a viscous, compressible, heat conducting fluid which is subject 

to body force are in rectangular Cartesian tensor notation (24), 

au. au. 
1 1 p + pU .-a -at J x . 

J 

lQ_ + a (pU.) = 0 at ax . J J 

a [ aui au.] 2 a + _J) = p f. + - µ(- - ---ax. ax. ax. 3 ax . 

[
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).I --ax. 

J 

1 
J J 
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Equations (1) , (2) and (3) express respectively, the con-

servation of mass, momentum, and energy; equation (4) represents 

aP 
ax. 

1 
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(4) 

(5) 

(6) 
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a thermodynamic equation of state; equations (5) and (6) represent 

the viscosity-temperature and thermal conductivity-temperature varia-

tions. For small temperature differences (far away from the hot core), 

µ and K can be assumed to be constant. By introducing the coefficient 

of volumetric expansion , S, to express the body force, equations 

(2) and (3) become: 

au. au. 
1 1 

P at + pUj ax. = -pf. s0 
1 

+ µ - (-1 + _l-) -
[
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Referring each of the variables in the equations to their respective 

reference values, (, , L, U , 8), and expressing the equations (7) 
C 

and (8) in dimensionless variables, we get: 
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Taking the inertial terms in equation (2) and the convective terms 

in equation (3) as a reference, the equations can be expressed in 

terms of dimensionless variables (the square brackets) and parameters 

(round brackets): 
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9,L = Source Parameter 
pC U 8 
p C 

Pr 
VPC 

Prandtl Number = ~= 
K 

2 
u 

and E C Eckert Number, temperature parameter = cs = n 
p 

Specific cases can be studied depending upon the relative 

magnitudes .of the forces involved. Three distinctly different but 

important cases occur when: 

1. inertial and buoyant forces dominate over the remaining forces; 

2. inertial and viscous forces are approximately equal; 

3. buoyant and viscous forces control the flow field. 

Case 1 occurs in developing flow fields with strong influences 

of temperature fields. The case of directly opposed free and forced 

convection from heated cylinders in its periodic range ( R
2
) 

represents the case 1 of equal buoyant and inertial forces. In this 

case 
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'v 1 
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2 

, 

2 

 
u 
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1 

V and L can be referred to as the characteristic velocity and 
C 

length respectively for the case (29). Equations (2) and (3) can 

be expressed as follows: 
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Case 2 occurs only in the absence of dominant temperature fields. 

An oscillating flat plate in still ambient fluid represents an example 

of equal viscous and inertial forces. The characteristic length and 

velocity for case 2 can be derived from the condition Re~ 1 , i.e. 
V 

Uc= -L L 
V 

- Uc The use of a characteristic length and velocity 

defined in this way for the analysis of the flow field driven by the 

temperature field (43), may be unrealistic. Equations (2) and (3) 

for case 2 can be represented as follows: 
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Case 3 represents a fully developed flow driven by the temperature 

field. The case of fully developed flow in a heated vertical duct is 

represented by the balance between viscous and buoyant forces. The 

characteristic length and velocity for such a flow system 

derived from the condition ~r ~ 1 
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Incorporating the characteris tic length and velocity, equations (2J 

and (3) can be expressed as follows: 
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The mechanism of each flow process decides the characteristic 

length and velocity. In the heat transfer process, the thickness of 

the thermal layer appears to be a fundamental length paramenter. In 

(17) 

(18) 



26 

the present study, the radius of the ·zone of high temperature 

gradient was considered as the fundamental length. 

In the case of directly opposed free and forced convection heat 

transfer from small diameter cylinders, pressure gradient and external 
6£.L 

heat sources do not exist. The paramenter K = T remains 
p 

insignificantly small, suggesting that the pressure work and dissipation 

are small, compared to heat transfer by convection and molecular 

diffusion. Equations (2) and (3) then reduce to: 
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For the two dimensional case the equations can be simplified as follows: 
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Effect of fluid properties can be accounted for in the momentum equation 
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by suitably redefining the variables as follows: 

x'j = xj~Pr U' j  

The two equations then reduce to: 
2 

au1 au
1
J. a U'i Gr * 

Sn --+ U ---Pr ----+ --9 at jax'. - ax1.ax1• 2 
J J J Re 

am 
Sn -

1
- + 
at 

* 2 * 
U' ~ = _a_e __ 
jax•. ax.ax. 

J  J  J 

For the analysis of the flow field very close to the hot core, 

where high temperature differences prevail, the assumption of constant 

coefficients of viscosity and thermal conductivity of a fluid becomes 

unrealistic. However, as shown in figure 28 , the variation of C 
p 

is insignificant for a temperature range 0° to 2000° F. The variable 

properties of the fluid introduce serious complications in the govern-

ing equations of motion. Equations (2) and (3) can be expanded 

as follows: 

au. 
1 
p--+ 
at 

au. [ " au. au. 1 oµ 1 1. u - = pf + -(-+ ---L) -
j ax. i ax. ax. ax. ½ ~~ :~~]+ 

aT 
pC - + 
pat 

J J  J 1 1 J 

au. 
_J) -
ax. 
1 

~ _a_C auj)l -.£L 
3 ax. ax. ax. 

1 J 1 

2 

K a T 
ax. ax. 
J  J 

+ 

(24) 

(25) 

(26) 

(27) 
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The terms in the square bracket represents the influence of the vari-

able properties of the fluid. 
clµ cl T 

CaT . ax.) . The variation of 

The term ~ can be equivalent to ax. 
J 

coefficient of viscosity for air with-
J 

in the temperature range of o0 to 2000° Fis shown in figure 28. In 

special cases the coefficient of viscosity can be approximated by a 
clµ clK linear function so that -;:;-T = «1 = constant, similarly -- -
a ax. 

J 
and ~~ = « 2 = constant, figure 28. The equations for clK 

aT ax. 
clT 

J 
the two dimensional case reduce to the following: 

Gr 
--2 
Re 

0* + 

sn av + u av + v av = 
at ax ay 

(Sn) ~ + u~ +\l~:;: 
.at ax ay 

cl0* 
ay au] ay 

2 2 
+.!__cl...!!.+~) 

Re ax2 cly2 

(28) 

a0* a0* a0* ~28 [ a0* Sn-+ U-+ V-= (--) (-) at ax ay Re Pr ax 
ae* J 1 a20* + a20* + Cay ) + RePr (-- + --) c29 ) 

ax2 ay2 

(«18) and («2 0) are new dimensionless parameters describing the 

variable properties of the fluid. The terms in the square bracket 

(due to variable fluid properties) are quite comparable with the rest 

of the terms for the flow field close to the hot cylinder. Thus, any 

attempt to mathematically solve the problem by considering equations 

(21) , (22) , and (23) may be highly unrealistic. The complex 

nature of the equations (28) , (29) , and (23) indicates the 

mathematical solution of the problem is extremely difficult. 
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General guidelines for the study can be derived from dimensional 

considerations. According to the IT theorems (for constant Prandtl 

number say Pr= 0.72) 

"'16 
Sn f1 (Gr 

= ' Re ' Re 2 
1 
Re) (30) 

For the dominant forced convection, S does not bear any significance. n 
Thus, the upper critical Reynolds number can be expressed as 

Reucrit 

for the case of a constant temperature cylinder in air, the parameter 

(o: 16) remains fixed. Thus 

ReUcrit = f3 (Gr) 

Similarly 

Sn = f 4 (Re , Gr) or S = fs ( Re ) 
n ReUcrit 

The functional relation f 3 and f 5 were established by the experi-

mental investigation and are shown in figures 10 and 11. 

(31) 

(32) 

(33) 

To understand better, each part of the flow field, it is found 

quite helpful to examine the governing equations. The characteristics 

of the rising plume can be studied by integrating, with respect to y, 

the two dimensional equations of conservation of mass, momentum and 

energy as follows. 
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Conservation of mass 

;, f Udy + v(x, 00 ) = 0 

Equation (34) states that the increase of ascending mass in the 

rising plume is due to the entrainment of the ambient fluid. 

Conservation of momentum 

00 

a / u2 dy ax 
0 

00 

= f Qr. dy p 
0 

Equation (35) states that the increase of vertical momentum in the 

rising plume is due to the effect of buoyancy. 

Conservation of energy 

00 

a J Ully dy = 0 ax 
0 

(34) 

(35) 

(36) 

Equation (36) indicates that the buoyancy flux of the ascending mass 

in the plume remains constant as it rises. The equivalent effect of the 

increase of momentum of the rising mass can be realized better by 

writing equation (35) as follows: 

00 

Lf u2 
ax 

0 

00 

dy = f 
0 

0_ dy = 
p 

(37) 

where P is a virtual pressure equivalent to the increase of momentum 
V 

such that 
00 

P v = f u2 dy 
0 

(38) 
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plume of heated mass can be viewed 
aP 

as equivalent to a 

pressure gradient V 
ax Directly opposed free and forced convection 

heat transfer can be considered equivalent to a uniform flow field 

directed downwards which encounters adverse pressure gradient. 

Development and location of the stagnation flow can be realized better 

by such a concept. 

Examination of the governing equations (11) and (12) , taking 

diameter of the heated cylinder as the characteristic length, leads to 
Gr unrealistic conclusions. The dimensionless parameter -- which 
Re 2 

represents the ratio of buoyant force to inertial force, becomes the 

order of 0.01, whereas, Re- 1 which is the ratio of viscous force to 

the inertial force becomes the order of 10. The apparent conclusion 

is that the buoyant forces are insignificantly small. The real fact 

is that the phenomenon is governed by the balance between inertial and 

buoyant forces. If we consider the radius of t he hot core as the 

characteristic length, the dimensionless parameters Gr 
Re 2 and -1 Re 

assume reasonable value i.e. (Gr ) and Re - l · 1 1 approximate y equa 
Re 2 

to 6 and 0.02 respectively. 
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CHAPTER IV 

EXPERIMENTAL MEASUREMENTS OF HEAT TRANSFER 

AND TEMPERATURE DISTRIBUTIONS 

The experimental measurements of heat transfer and temperature 

distributions have already been introduced to develop the physical 

model of the flow. This section is a short description of the tech-

niques employed to obtain the measurements. 

4.1 Flow Facility 

The flow facility consists of an open circuit type micro velocity 

tunnel (20) as shown in figure 29 . The tunnel permitted the angle 

between the velocity in the test section and the horizontal direction 

to be varied . A constant speed blower was employed to force the ambient 

air into a narrow controlled section of the tunnel. A throttle control 

at the inlet of the blower was used to vary the flow velocity. The 

flow from the control section was allowed to pass through an enlarged 

test section . Honeycombs and wire meshes of suitable sizes were em-

ployed to maintain a uniform distribution of velocity across the test 

section (figure 30a and b), A relation between the dynamic head in 

the control section and the velocity in the test section was estab-

lished. The flow facility was calibrated, as reported in reference 20, 

by employing hot spot anemometer, drag anemometer, hot wire anemometer, 

and soap bubble technique. The calibration is shown in figure 31. 

Figures 30a and b show the measured velocity distributions in the 

control section and the test section respectively . The maximum velocity 

obtained in the test section was 0.45 m/sec. 
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4.2 Test Cylinders 

Standard hot wire anemometer material was employed for the test 

cylinders. The major part of the study employed a 0.01 mm (0.0004 inch) 

diameter, 80% platinum and 20% irridium wire for the test cylinders. 

Nichrome 0.4 mm (0.0015 inch) diameter wire and 94% platinum - 6% 

tungsten, 0.02 mm, (0.0008 inch) diameter strain gauge wire were also 

employed mainly to study the effect of wire diameter. The wires were 

mounted on typical hot wire anemometer probes. Typical wire lengths 

were of the order of 8 mm, although longer wires were also used to 

demonstrate that the end effects were not of major importance. The 

wire supports were made of 79 gauge steel sewing needles. 

For constant temperature operation a commercial battery powered 

constant temperature hot wire anemometer circuit was employed. A 

special constant current power supply was employed for constant current 

operation. For A.C. heating 60 cycles line power was employed to-

gether with a variac. Mean voltages were determined with a digital 

voltmeter. The time varying signals were recorded by standard one 

and two channel X - Y plotters. 

4.3 Resistance Thermometer 

A resistance thermometer was used to survey the temperature field. 

The principle underlying the operation of the resistance thermometer 

is that the resistance of a metal varies with temperature. Wollaston 

wire (Rh 10%, Pt 90%) of 0.000025 inch diameter was selected for use 

as the temperature sensor. The sensor supports were made of sewing 

needles (79 gauge). Enamel coated copper conductors (68 gauge) were 

soldered to the sensor supports and passed through a narrow brass 

tube (3 mm outside diameter). The probe arrangement was held firmly 
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by epoxy joints. The sensor supports were tinned in order to permit 

easy soldering of the sensor wire. Mounting of the sensor wire on the 

supports was a delicate process. The silver coating of the sensor wire 

was etched away, before soldering, by employing nitric acid (50%). The 

process of etching was aided by passing direct current through the solu-

tion (10 micro amps.), where the Wollaston wire was the anode. The 

sensor supports were moved near the etci1ed. sensor wire. Soldering 

flux helped i n holding the sensor wire attached to the supports during 

the process of soldering. The sensor supports were heated until the 

solder melted and held the sensor wire. The process of heating the 

supports was achieved by bringing the tip of the heated soldering 

iron close to the supports. The soldering joints were tested by pass-

ing a current (10 milliamps.) through the sensor wire. The probe was 

cleaned by holding it in the vertical position in heated air (300° F). 

The probe was calibrated against a standard thermometer. Variation of 

the resistance of the wire with temperature is expressed by 

~ = R (1 + ~~T) -11 C • 

The coefficient of thermal resistance was found constant and was de-

termined in the calibration procedure. The resistance-temperature 

curve for the wires used in the present study is shown in figure 32. 

A detection current, I , was passed through the probe in order to 

determine the change in the resistance. The current was small enough 

to prevent the heating of the sensor wire. The variation of voltage 

across the sensor wire becomes a measure of the resistance variation 

(Ref . S). 



For a given probe, IR a: 
C 

1 35 

= IR 
C 

+ IR a:t.T 
C 

E - E = IR a:t.T h C C 

remains constant if the detection current 

is maintained constant. Increase of current through the sensor, in-

creases its sensitivity to temperature measurements. Higher currents 

through the probe will also heat the sensor wire and make it sensitive 

to convective velocity. It was experimentally found that for a detec-

tion current of 700 microamperes, the wire was not sensitive to veloc-

ities less than 15 m/sec. A sensor current of 500 microamperes was 

used in the present study. The details of characteristics of the 

resistance thermometer were studied by Chow and Sandborn (5). They 

determined that the frequency response of the wire was over 3000 cycles 

per second. 

4.4 Flow Visualization 

The hot wire was simulated by coupling a line source of heat and 

smoke. A nichrome wire (1 ohm/mm) was held between two conductor 

supports and heated by A.C. power. A thin narrow asbestos sheet soaked 

in paraffin was held close to the nichrome wire in such a way that 

its obstruction to the flow was minimum. The probe arrangement was 

mounted in the flow facility for observations. The heat from the 

nichrome wire melted the paraffin and formed dense smoke. The 

smoke was carried along with the heated fluid. Thus, it traced the 

path of the heated fluid flow. The asbestos sheet was charged with 
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paraffin wax at regular intervals. The intensity of the heat source 

could be increased by increasing the applied A.C. voltage across the 

nichrome wire. 

Incense sticks were initially used to simulate the conditions. A 

single incense stick with its burning tip served as a good point source 

of heat and smoke. A series of incense sticks placed in a line, with 

the tips burning, could well simulate the line source of the heat and 

smoke. Flexibility of the heat source was achieved by introducing an 

electrically heated wire near the burning tips of the incense sticks. 

A simple schlerien system was also employed in the early studies to 

comfirm that the heated wire followed closely the effect seen from 

the smoke studies. 
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CHAPTER V 

DISCUSSION 

The present experimental study of directly opposed free and 

forced convection leads to a definite model for this type of flow. The 

observation of the fonnation of a stagnation region and of the potential 

like source flow around the heated cylinder gives a new insight into 

the problem. The existance of the large, stable hot core (thermal 

layer) with large temperature gradients, surrounding the cylinder, is 

an important aspect of the mechanism of mixed free and forced convection. 

The heat transfer model may be summarized as follows: 

I. Free Convection. 

a) A large thermal layer is fonned around small heated 

cylinders. 

b) A thennal convection plume of near constant width is 

fonned above the thermal layer. 

II. Opposed Free and Forced Convection. 

a) The interaction between the two flows form a stagnation 

region. 

b) Dominant free convection: The stagnation region is formed 

well upstream of the cylinder or thermal layer. The 

stagnation region is unstable and fluctuates in a random 

manner. Vortex pockets of hot fluid are formed and 

carried along with the ambient flow. The mean heat trans-

fer from the cylinder is reasonably steady and decreases 

with the increase of flow velocity. 

c) Equal free and forced convection: The stagnation 



8 

region oscillates in a periodic manner. The buoyant 

force builds up with time and forces the stagnation region 

upstream. A vortex filament is formed when the stagnation 

region is forced upstream. The vortex filament is car-

ried away by the mean flow, and a new stagnation region 

appears near the thermal boundary layer. The cylinder 

heat transfer varies in a periodic manner and decreases 

with flow velocity. 

d) Dominant forced convection: The stagnation region is 

stably held at a fixed distance ahead of the thermal layer. 

A laminar sheet of flowing fluid forms a shrouri around 

the cylinder. The heat transfer from the cylinder is 

steady and increases. with flow velocity. 

The experimental study of the time-space history of the laminar 

sheet, figure 8, indicates that the velocity remains constant during 

the major part of the upward movement. Any acceleration of the lami-

nar sheet will stop once the increase of viscous force neutralizes the 

imbalance. Measurements show that the acceleration of the laminar 

sheet lasts only for a short time. 

It is interesting to note the direct correlation between the 

rate of heat transfer at the cylinder and the relative position of the 

laminar sheet (with respect to the cylinder). Proximity of the laminar 

sheet was found to reduce the rate of heat transfer at the cylinder. 

Experimental measurements of heat transfer made by replacing the 

laminar sheet by a thin metal shield are shown on the insert of 

figure 27. These measurements made with a physical shroud agree well 

with those observed during the periodic behavior. 
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The mechanism of periodic heat transfer is detailed in figure 6. 

Formation of the vortex filament is seen from the flow visualization 

studies, figure 5. The temperature measurements also confirm the 

detailed mechanism. Temperature measurements close to the rising 

plume, figure 27, show a single pulse of temperature during each 

cycle indicating the anular region of the vortex filament. The 

temperature measurements made at locations away from the rising plume 

show two pulses. The pulse of continuous temperature variations 

represents the upward movement of the laminar sheet, whereas the pulse 

of fluctuating temperature indicates the disorganized motion of the 

heated mass in the vortex filament during its downward movement. The 

temperature measurements, figure 7, made at locations far away from 

the rising plume indicate the extent of the lateral spread of the 

vortex filament during its downward movement. 

The present study indicates that the diameter of the cylinder 

may not be the representative length characterizing the heat transfer 

process. The dimensional considerations, examined in equation (11), 

show that the ratio of buoyant force to inertial force becomes much 

smaller than the ratio of viscous to inertial forces when the diameter 

of the cylinder is taken as the characteristic length. This apparently 

indicates that the buoyant force is much smaller than the inertial and 

viscous forces. The real fact is that flow system is driven by inertial 

and buoyant forces. Such an unrealistic indication is due to the 

diameter of the cylinder being considered as the characteristic length. 

When the radius of hot core is considered to be the characteristic 

length, equation (26) is found to represent more realistic values 

for the dimensionless parameters like Gr and Re- 1 • 
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Existance of the large, near constant diameter, hot core around 

a heated cylinder (when held in air) has not previously been reported. 

The hot core around small heated wires may limit their use for making 

velocity measurements. If the hot wires are used to measure low fluid 

velocit i es very close to the boundary, the '.1ot core will come in contact 

with the boundary and lead to direct heat transfer by conduction. The 

heat conducted will be determined by the different factors like thermal 

conductivity of the wall material, temperature distribution and area 

of the hot core in contact with the boundary. Effect of the proximity 

of solid walls on the rate of heat transfer is reported by Wills (29). 

Measurements of small scale turbulence and high frequency varia-

tions at low velocities by using hot wires need special consideration 

in the light of the existing hot core around the cylinder. The measure-

ments of fluctuating quantities at high frequency are limited by the 

inertial effect of the sensor. In the case of the hot wire, the hot 

core may be acting as a sensor. As such, the. measurements of fluctuat-

ing velocities at high frequency will be limited by the heat capacity 

of the hot core, rather than that of the hot wire. Heat capacity of 

the hot core will be determined by the fluid medium. Thus, the limit 

on the hot wire for high frequency measurements will also depend on 

the fluid properties. If the size of the eddies that constitute a 

turbulent flow is smaller than the qiameter of the hot core, the 

anemometer output will not truly represent the eddy. Thus, the size 

of the eddy that can be recorded by the hot wire will be limited by 

the diameter of the hot core and not the cylinder. Use of hot wires 

for measurements of correlation needs also special consideration. 
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The wires must be mounted in such a way that the two hot cores do 

not interfere with each other. 

The present study brings out the details of the limitations on 

the use of hot wire anemometers in mixed flow. Careful examination 

of the limits of periodic variation of heat transfer, figure 10, 

shows that uncertainty of heat transfer measurements will increase 

with the increase of temperature of the cylinder. Experimental 

measurements, figures 3 and 10, show that the uncertainty of heat 

transfer measurements becomes insignificant when the temperature of 

the cylinder is maintained less than 300° F. Thus, it may be necessary 

to use wires at low temperatures for low velocity measurements. Effects 

of buoyancy on the heat transfer is most severe when the ambient flow 

directly opposes the free convection. Thus, the case studied represents 

the maximum effect of buoyancy. 

The effect of the ratio of length to diameter of the cylinder is 

reported by Gebhart and Pera (12) . The mechanism involved in the 

end effect on the heat transfer process is realized by the present 

visualization study. The temperature measurements in the wake of the 

cylinder beyond its length, figure 25, also demonstrate the end effect. 

The action of the hot cylinder in the development of a laminar 

sheet shrouding the thermal layer appears similar to the development 

of separation stream surfaces by potential line source in a uniform 

flow field. The temperature of the hot core corresponds to the strength 

of the source. Thus, an idealized mechanism to explain the formation 

of the laminar sheet might be obtained from potential flow analogy. 

The shape of the separation surface can be derived from the potential 
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flow analysis for a given strength of source, a, and uniform 

velocity, U. A derivation of the potential source flow is given 

in the appendix. 

Figure 19 represents the limits of the variations of temperature 

as a function of distance from the cylinder during the periodic 

behavior. It is obvious that the maximum, mean and minimum temperature 

profiles possess high temperature gradients in the thermal layer region 

covered by a radius of 3 mm. It is important to remember that there 

cannot be a thermal boundary layer thickness in the present case. 

At any horizontal distance greater than 3 mm from the cylinder only one 

temperature pulse due to the vortex filament being carried downstream 

was recorded during each cycle of variations. The correlation between 

the temperature variations, inside and outside the hot core, with the 

heat transfer variations at the cylinder are distinctly different, 

and are similar to those recorded in figures 20 and 7 respectively. 

The figure 19 indicates that the size of the hot core remains practic-

ally constant during the periodic behavior. 
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CHAPTER VI 

CONCLUSIONS 

An experimental and flow visualization study of directly opposed 

free and forced convection reveals the following physical picture for 

the flow. 

The interaction of the two opposing flows produces a stagnation 

region or line at some distance above the heat source. The present 

study employed small diameter heated cylinders (0.01 mm diameter) as 

the free convection source. For velocities below 15 cm/sec (cylinder 

Reynolds number, Redw~ 0.08), the free convection dominates the heat 

trans fer from t he cylinder . A s tagnation region is formed well up-

stream of the cylinder and its large thermal layer. Heat is mainly 

convected through the free convection plume. In the stagnation 

region random vortex pockets of heated mass were formed. 

When the magnitude of the inertial forces, due to the forced 

convection, was of the same order as the buoyant forces, due to free 

convection, a periodic oscillation of the stagnation zone was observed. 

This periodic oscillation occurred for flow velocities, U, in the 

range of approximately 15 < U < 21.4 cm/sec (0.08 < Redw< 0.115). 

The actual range depends on the Grashof number. For Grashof number 

less than 4000 (based on thermal layer thickness of 3 mm) the buoyant 

force was not sufficient to produce oscillations. The frequency, f, 

of the oscillations varied from 3 < f < 15 cycles per minute. 

A lower "critical" Reynolds number, ReLcrit , where oscillations 

were first encountered was found to be related to the Grashof number 

by the relation: 
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Re1 . = 30 log Gr - 44.12 for (Gr> 4000). cr1t 

The upper "critical" Reynolds number, Re . Ucr1t , where oscillations 

abruptly cease to occur is given by the relation: 

ReO . = 36.18 log Fr - 91.68 for (Gr> 4000) cr1t 

The Strouhal number, Sn , of the periodic oscillations was found to 

be related to the Reynolds number by the relation: 

Sn = 0.0428(1.072 - Re ) for (Re> 38.7) 
ReUcrit 

The heat transfer from the cylinder can be directly correlated with 

the distance of the stagnation region above the cylinder. The magnitude 

of the heat transfer oscillations can be as great as 10% of the mean. 

For both the free convection dominated flow and the region of equal 

free and forced convection flow, the mean heat loss from the cylinder 

decreased with increasing Reynolds number. 

For the case where the forced convection is greater than the free 

convection (inertial force greater than buoyant force, velocity greater 

than 21.4 cm/sec), the stagnation region was fixed for each flow velocity 

at one location. A potential like flow (laminar sheet) is formed 

shrouding the thermal boundary layer region of the cylinder. The 

heat transfer from the cylinder in this flow regime increases rapidly 

with increasing Reynolds number. 

The thermal layer was of the order of 600 times the cylinder 

diameter. Thus, the thermal layer thickness was taken as the charac-

teristic length of the flow field. The present observations should 

apply to all cylinders that are small compared with the thermal layer 

thickness. The major factor in determining the thickness of the thermal 
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layer will be the conduction properties of the fluid. Detailed 

measurement of the temperature distributions in the thermal layer and 

the surrounding shroud are given. 

It was discovered that the periodic oscillations of the heat 

transfer for the case of equal inertial and buoyant forces can be pre-

vented by inserting a probe in the thermal plume above the cylinder. 
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APPENDIX 

Analysis of the Source Flow 

For the coordinate system shown in figure 6, let ¢1 , and 

¢2 be the flow potentials representing a uniform flow of velocity -U 

and source flow of strength S per unit length respectively. 

Then 

¢1 -Ux; U1 cl¢ 1 -U cl¢1 0 = = ax - V1 = ay = 

s (x2 + y2)' U2 Sx 
¢2 = - log = 27T(X2 47T 

Net flow potential is¢ = ¢1 + ¢2 

¢ = -Ux +~log (x2 + y2), 47T 

s -1 l. 4' = -Uy + - tan X = -Uy 27T 

where s e tan -1 l. m = ' = X 27T 

Sy 
y2) ' V2 = 27T(X2 + 

and stream function 

+ me 

+ y2) 

Let 0 be measured in the counter clockwise direction from negative 

X-axis. Then the dividing stream line will be given by 

-mIT = Uy + me 

When e tends to zero, y tends to 

(for y > 0) 

h = mIT u 

The separation stream line thus is held between y = ± h. 

The equation of the separation stream line can be written as 

.!_ = .!_ tan (TTY) 
X y X 

Correspondingly the stand of distance is given by 

* h h m = = 7T u 



so 

Figure 6 compares the shape of laminar sheet and the separation surface 

obtained by the above analysis. 

Though the formation of the laminar sheet appears similar to that 

of the development of potential separation surface around a source under 

similar conditions, the mechanism may differ. The source possesses a 

center of symmetry in its action, whereas, the heat source at the 

cylinder is directed by the buoyancy effect, and acts in a direction 

opposing the gravity. Variation of the strength of the source alone 

can vary the position of the separation surface with respect to the 

source when the uniform velocity is maintained constant. But the 

equilibrium of the stagnation flow is primarily governed by the balance 

between the buoyant and inertial forces for a given uniform velocity. 





TABLE I 

Variation of the Range of Periodic Heat Transfer from Horizontal Cylinders 
Too= 70°F p = 24.3"Hg ex:= 0.000445/0F d= 0.01 mm .Q. = 8 mm Re = 32.52 ohms 

Gr Gr 
y lffoF Grdc ReL ·t ReLcrit2 Nu ReUcrit Reu . t2 Nu cr1 cr1 

1.1 225 2704 
1. 2 450 5406 42 3.067 0.423 44.5 2. 736 0.4103 
1. 3 675 8110 48.4 3.465 0.417 49.9 3.335 0.4100 
1.4 900 10813 48.7 4.560 0.412 53.0 3.846 0.405 

u, 
N 

1.5 1125 13516 50.8 5.230 0.390 55.8 4.329 0.383 
1.6 1350 16220 50.8 6.278 0.381 59.6 4.560 0.357 
1.7 1575 18923 50.6 6.500 0.368 63.1 4.753 0.344 
1.8 1800 21626 57 .o 6.640 0.347 65.9 4.975 0.341 
1.9 2025 24330 ! 56.5 7.62 0.373 69.1 5.098 0.350 
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Fig. 5. Series of flow visualization pictures showing periodic movement of laminar sheet shrouding the 

hot cylinder under the influence of directly opposed free and forced convection heat transfer; 
interval approximately 1/16 second. 
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opposed equal free and forced convection approximately to 
full scale. 
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Fig. 9. A series of flow visualization pictures depicting the formation of vortex rings of heated mass at 
regular intervals for dominant forced convection condition. Interval= 1/16 second. 
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Fig. 12. A series of flow visualization pictures showing overall 
two dimensionality- of the process. Nichrome wired= 0.4 mm 
1 = 75 mm with. vertical wide sheet of thin paper along the 
wire; A.C. heating, 8.0 Vat 2.5 amps. 
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