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ABSTRACT OF THESIS

VISUAL LOCATION AWARENESS FOR MOBILE ROBOTS USING
FEATURE-BASED VISION

This thesis presents an evaluation of feature-based visaagnition paradigm for
the task of mobile robot localization. Although many worlesdribe feature-based vi-
sual robot localization, they often do so using complex méshfor map-building and
position estimation which obscure the underlying visiosteyns’ performance. One of
the main contributions of this work is the development of aal@ation algorithm em-
ploying simple models for location awareness with focus waluating the underlying
vision system. While SeeAsYou is used as a prototypical nisistem for evaluation,
the algorithm is designed to allow it to be used with othetdssbased vision systems
as well. The main result is that feature-based recognititim 8eeAsYou provides some
information but is not strong enough to reliably achievealomn awareness without the
temporal context. Adding a simple temporal model, howeseggests a more reliable

localization performance.
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Chapter 1

| ntroduction

Location awareness is the result of successful self-lpa@édin. In its basic form, self-
localization can be formulated as answering the questiomete am 1?” Successful
robot localization accurately establishes the currenttiposof a robot relative to a
framework such as a map (“I am in regierof the map”) or previous experience (“the
last time | was here was associated with Localization is an important ability for
mobile robots and supports navigation and other locatepeddent activities: knowing
where a robot is can provide it with the direction to its dation or with a sense of
some other action appropriate at its current location.

The proliferation of mobile robots, seen by many as the niagesin robotics tech-
nology, makes solving localization problems in real-litftgngs very important. Due
to its importance, robotic localization is a long-studieodlgem, and many different
localization algorithms have been proposed. Nonethelessyder of open questions
remains, including the best means of localization in dymeenivironments and efficient
representation of location-specific information [ThrOBhese are, in part, the problems
addressed by this work.

Fox et al. [FBT99] and Dellaert et al. [DFBT99] describe twoatetl systems
evaluated as museum tour guide robots, one in the Deutschesuvh Bonn and the

other in the Smithsonian National Museum of American Higtdn the course of the



evaluations, the systems operated during normal workingshand in the presence of
museum-goers. As such, they provide examples of real-pfdi@tions for mobile
robots, and the museum tour guide analogy will be used indlh@ning discussion to
illustrate important points.

Traditionally, localization is cast as the problem of firgienrobot’s position relative
to a static Cartesian map, but it is really the target appboatvhich determines the
optimal framework for expressing a robot’s position. In tizse of a robotic museum
tour, for example, it may be unnecessary to precisely Ipeahe robot’s position on a
map, since a general position relative to a previous expegie-for example confirming
that the robot is next to a particular painting—can sufficeergfore, the exact metric
localization is not necessary in more general case.

The localization problem is often solved using multiplesans, including sonar and
laser range finders, GPS systems, and cameras [Thr02]. trasbto multiple-sensor
localization, visual localization relies on camera signahly. This approach is com-
pelling for at least two reasons. First, cameras provideativef information about the
environment compared to other sensors. While sonar andrbasge finders reveal some
information about the environment and are useful for olbstdetection, they are lim-
ited in localization applications: since range finders gulyvide line-of-sight distances,
they offer little information for recognizing the objecteir signals are incident on. This
raises problems in dynamic environments where objects ramuend and environment
changes cause the maps to become outdated. Second, camreesal-aontained and
don’t rely on external components for successful sensim@pposed to GPS receivers
which rely on satellite signals. This makes cameras usat#@vironments where such
auxiliary components are not available or have limitatigsh as indoors).

Although cameras provide a wealth of information withowjueing external sig-

nals, the best way to use them for robot localization is nesiclOne of the obstacles to



the ability of cameras to model their environments, rekaiibject recognition is known
to be a difficult problem. This thesis explores the utility focalization of a relatively
new approach to object recognition: attentional featuasel vision.

Many contemporary general-purpose computer vision systmploy unsupervised
learning of attention-based local image features. The keyribution of this work is
the evaluation of an attentional feature-based visionesySeeAsYo[Dra07] for the
purpose of visual robot localization. Since SeeAsYou ismagentative example of
the class of unsupervised feature-based vision systemsugtied in the next chapter),
the results obtained here can be compared to other feageslvision systems: both
utilizing attention-based local image features [SLLOJIKBO *05], [OHO05], [SI07] as
well as global image features [OTO1], [SSHWO7].

Another contribution of this work is the algorithm develdpéor evaluation
of SeeAsYou—ocation awareness through relevance and contg4-RC). Since
SeeAsYou is a characteristic example from a wider class atfife-based vision sys-
tems, the algorithm can also be applied to other system#ntils class. LA-RC builds
on ideas from information retrieval and statistical moaiglia document retrieval met-
ric term frequency inverse document frequefidylDF) is applied to establish the most
relevant landmarks for each location, and this informaisdarrther used in conjunction
with a hidden Markov modglHMM) to determine the most likely location of a robot
given temporal context. Although both TFIDF and HMM are welbwn and widely
used, to the best of author’'s knowledge, their combinediegpdn to mobile robot lo-
calization has not been described before. In addition, LAéREs not require explicit
map construction which makes it easy to use. As will be shawnesents an intuitive
and effective solution to one of the classic robotics protse

The rest of this thesis is structured as follows: Chapter @gan overview of related

approaches to visual robot localization; Chapter 3 desstieevaluation of SeeAsYou



for robot localization using TFIDF, a relevance metric; doon approximation with
TFIDF and HMM is detailed in Chapter 4, combining the relevaneetric with a tem-
poral model; Chapter 5 summarizes the results and outlireslitections for future

work.



Chapter 2
Background

2.1 Literature Review: Visual Robot L ocalization

Robot localization is a long- and well-studied problem [T2jtOOne way to approach
the literature is to organize systems according to the frearlewithin which the robot’s
position is established. Map-based techniques aim to meterlocation of a robot
within a metric or topological map. Experience-based lizadilbn methods do not use
maps, but solve the problem by matching current locatiopsdwious experience: such

as locations or actions.

2.1.1 Map-Based Localization

Map-based visual localization is by far the most preval@praach and can be further
subdivided into metric, topological, and hybrid map-basexthods. Metric techniques
represent the environment as a Cartesian map, with landraaskgned precise coordi-
nates. Algorithms that learn the map while localizing thieatoare calledimultaneous
localization and mappin¢SLAM) algorithms [RNO3]. SLAM is a well-known problem
formulation which entails building a map of the unknown @amiment and simultane-
ously estimating the robot’s current position within thaapn There are many SLAM
systems; this review will focus on the ones most relevaritwthesis.

Se, Lowe, and Little provide a visual SLAM solution for unnifggt indoor envi-



ronments [SLLO1b], [SLLO1a], [SLLOZ2], [SLLO5]. They useethcale invariant feature
transform(SIFT) [Low99] for visual attention-based landmark disegvand matching.
SIFT is a localized image feature (keypoint) detection mége which resembles vi-
sual attention in primates. To determine such attentiseté&eypoints in an image, the
SIFT operator appliedifference of Gaussian®oG) filters at different scales. The DoG
filter is defined by:

D(z,y,0) = (G(z,y, ko) — G(x,y,0)) * I(z,y), (2.1)

wherex andy are image coordinates,is standard deviation of the Gaussi&his the
Gaussian functionk is the scale parametef,is the image, and is the convolution
operation. The scale parametehas been shown to have little impact on the results,
but for implementation purposes is typically chosen to\ie [Low99]. The pixels

in an image which produce the largest DoG responses in te@hhorhoods at their
respective scales become SIFT keypoints.

Se et al. [SLLO1b], [SLLO1a], [SLLOZ], [SLLO5] estimate rmbmovement (ego-
motion) using least-squares fitting given landmark matghata and odometry. Kalman
filtering is used to track the landmarks across frames arnidra€artesian coordinates
as the robot moves around to build a 3D landmark map. In pdaticKalman filtering is
used to predict which landmarks should be visible given thieant estimate of position;
the update step involves integrating new images and odgmetasurements into the
belief state. The authors rely on their stereo camera’ssitr parameters to position
SIFT features in the 3D coordinate system. The map is storaddatabase as a set of
landmark records. Each landmark record consists of thet qodsition at the time the
landmark was encountered (in robot coordinates), a SIKTifeaector which includes
landmark scale and orientation, and the number of conseduéimes the landmark was

missed—a parameter aimed to estimate landmark reliability



In their more recent work Se et al. compare methods for magclucations in a
kidnapping scenari¢SLLO5]. In a kidnapping scenario, the robot first learns pree
sentation of an environment. The robot is then “kidnapped’@eployed to an unknown
location within that environment. The robot has to figure which previously visited
location matches its current position. The correct sotutamthe kidnapping problem is
the best possible match to a known location. In [SLLO5], th#hars compare Hough
transform on sets of SIFT landmarks and RANSAC (RANdom SAmplesénsus) for
determining the robot pose supported by the most landm&uksrall, the results con-
verge in both methods and the system runs in real time (at 2 H® authors also de-
scribe an optimization scheme which splits the map intoregiens and uses Newton'’s
method to pairwise align sub-regions when a location isis¢ed. The test, however, is
conducted in a very small 10 by 10 meter lab. Also, as with n&lo&M approaches, a
static environment is assumed.

The SLAM algorithm of Se et al. has been adopted with smallifieadions related
to thresholding and filtering methods in a commercial appion—vSLAM by Evolu-
tion Robotics [KBO 05]. The key differences between vSLAM and the work of Se et
al. is the application of a pre-filter which sets thresholmslandmark matching (RMS
error, number of SIFT keypoints matched, robot slope) anngua particle filter for
robot pose update while Kalman filtering is used for landnperge updates (justified by
a simpler dynamics of landmark poses).

Another attention-based visual SLAM process is described\hdreasson et al.
[ATDO7]. Authors use a modified SIFT algorithm that, in c@sirto the original SIFT
version by Lowe [Low99], doesn’t maintain scale invarignegich is aimed to reduce
matches among distant locations. The authors use partiel@y to integrate odometry
measurements with matches from a pre-built database of pasitions. The database

is built on correlating images with laser scans within a Gaate map framework: each



location is associated with a modified SIFT-based featurtovelL aser scan SLAM map
is built on the basis of an earlier work by Frese et al. [FLDOH)e approach achieves
localization accuracy to within 2 meters in at least 67% ailsrwhen matched to laser
scan data in a 60 by 55 meter indoor area.

An interesting application of attention-based vision toABLis shown by Frintrop
et al. [FJC08]. VOCUS SLAM combines local feature detectiothwop-down feed-
back for active camera tracking. Image features are cordpatth center-surround
filters—technique equivalent to DoG used in SIFT. The topatlbehaviors are induced
by the weights of a trigopnometric function controlling aeticamera tracking. This
system is programmed to exhibit three behavioral scenamgmtetection, tracking, and
exploration. Depending on the built-in decision tree, thprapriate behavior is se-
lected which determines the settings for active camerarabofunction. Authors show
improved performance of active camera tracking versusyess

In general, Cartesian localization often suffers from magraéation in changing
environments. Compared to SLAM, topological map-based atstiovercome some of
its limitations by avoiding the assignment of precise cowates to landmarks. Instead,
environments are represented as graphs of adjacent losatihere each location is
defined as a set of landmarks. Therefore, when landmarkgyehteir positions the
topological map is often still valid and does not need to lmemgputed as in SLAM.

An example of the topological map-based approach is the widthlrich and Nour-
bakhsh [UNOO]. The authors manually construct a topoldgnzg (“an adjacency graph
of different locations”) in which each location is assigreeset of representative images
during training. Authors use an omnidirectional cameradptere 360 images and
then extract hue, luminance, saturation, and RGB histogr&tearest-neighbor learn-
ing trains a classifier for each set of the histograms. A gpsicheme is then employed

to match locations. The authors compute a confidence metstedp eliminate poor



matches. Their experiments take place in 4 settings: a Egig room apartment, two
indoor routes, and an outdoor campus route. The localizasi@pproximately 90%
correct with no confident bad matches over paths betweenri823i images long and
tested individually to localize to among 8 to 10 segmentss Skistem also achieves a
real-time performance rate of 2 Hz.

Ourehani et al. present another topological robot locatimamethod [OHO05],
[OHBO5]. They use an augmented DoG process (similar to thd $#atures in
[SLLO1b], [SLLO1a], [SLLO2], [SLLO5], [KBO'05]) to extract attention-based local
image features which serve as landmarks in a topological shdpe environment. A
voting scheme [OHO5] or Markov localization framework [FEI[O[OHBO05] are then
applied to achieve localization. More specifically, a setoofr visual cues is extracted
from a scene: intensity, red/green, blue/yellow, and adedge filter responses. Each
cue is then convolved with a DoG filter to produce the so-datlenspicuity maps. The
third step computes saliency maps such that conspicuitysmétp a small number of
peaks are promoted while the ones with many low responsedesmeted. The last
step in feature extraction is peak detection in saliencysandghe topological map is
then constructed by assigning top features detected ovgndicant number of con-
secutive frames to the corresponding equally spaced pgthesgs. The map contains
statistical measurements of the features within each mghment. Robot localization
is accomplished using an original matching procedure dgesl by the authors which
produces match scores across possible locations. The satobs are then combined
using a voting procedure [OHO5] or Markov localization framork [FBT99], [OHBO5]
to establish the most probable path segment to which the rebmcalized. The authors
conclude both papers with the descriptions of successpgraxents along relatively
short paths of approximately 10 meters to support theindai

Torralba, Murphy, Freeman, and Rubin propose another methtoghological map-



based visual localization [TMFRO03]. The goals of Torralbaletare (1) to develop an
approach to recognize familiar, previously visited loca$, (2) break these locations
down into broader categories, possibly using that knowdddglassify and learn previ-
ously unseen locations, and (3) recognize specific objeetept in different locations.
To accomplish the first goal, which is the most relevant te tork, they approach the
problem by first constructing sets of local and global imaggdres based on textural
properties obtained using wavelet decomposition: localies are combined into jets,
one for each of 24 sub-bands of an image, while global featare combined into im-
age pyramids with 6 orientations and 4 scales. Then, tharkesare projected onto 80
principal components to reduce dimensionality. Placegeition is accomplished us-
ing ahidden Markov modgHMM) to recursively compute the probability of being in a
specific location. The transition matrix is obtained by mallyucounting the transitions
between different locations along the path (a uniform iec¢ prior is added to account
for transitions that were not seen in training data). Theesolaion likelihood matrix
is a Gaussian mixture, which is experimentally establisledg cross-validation. The
results for known place recognition among 63 possibiliiesapproximately 85% area
under precision-recall curve. To accomplish the other twalg the authors train a
separate HMM on manually added category labels to classifgtion types and use a
Bayesian framework with priming from localization and laoattype classification to
recognize specific objects in scenes.

Hybrid map-based techniques essentially combine metdd@ological maps. For
example, Siagian and ltti take a biologically inspired agwh which employs compli-
mentary saliency (SIFT and auxiliary saliency feature @egenerated from the neigh-
borhood of SIFT keypoints) and gist (color, intensity, amtation metrics generated
over whole image) features [SI07], [SI08]. During trainimggraph-based topological

map augmented with Cartesian coordinates is supplied toystera. In this hybrid
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map locations are associated with corresponding visuainmdtion. Three distinct sites
are modeled in this way, with each site being further sptib & segments. Up to five
salient regions are extracted from a frame of video, alortg @# by 4 grid of the more
global gist features. Then, a neural network classifieraisiéd for segment recognition
based solely on gist features. During testing, the neutalor& is applied to determine
which path segment the testing images come from. Then, MOat® localization is
employed for robot position estimation within segmentsgsioth gist and, when avail-
able, saliency features (a saliency feature may not beadolaifor every image because
none were detected or there was no match). The authors stulbebcalize the robot
to within 9.75 meters in large outdoor environments up to B37178 meters, however
the error increases with the size of the environment.

In their second paper [SI08], the authors develop an opé#titia scheme for the
landmark database to speed up localization. They proposx@erimentally derived
cascade of thresholds. First, the similar SIFT keypoingsscambined along with their
associated saliency feature vectors (a 5 by 5 window cahiamethe keypoint which
includes color, intensity, and orientation histogramsdahon a saliency feature score.
Another metric is employed to prune weak landmarks. Thertearéls are then com-
bined across different training episodes using yet anattetric, and a fourth metric is
used to prioritize landmarks to speed up search.

A major contribution of Siagian and ltti is the developmeia oobot platform which
extracts gist and saliency in parallel on a 16 core 2.6 GHzhinageach sub-channel
has its own thread), which the authors claim is similar toknone in dorsal and ventral
visual pathways in the human brain. Operating on imagegzefl60 by 120, the authors
report 50 milliseconds/frame saliency and gist computetiime, 1 millisecond segment

estimation time, and 2 second landmark search time.
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2.1.2 Experience-Based L ocalization

The main drawback of topological map-based localizatiorthiwds, however, is
that they require a significant degree of human participatio creating the maps.
Experience-based localization provides an interestingtisn to the map generation
and maintenance problem characteristic of map-based n&thaobot recognizes pre-
viously seen locations without any metric or topologicalpatuilding. Giovannangeli,
Gaussier, and Desilles present such an approach in [GGOA6jrder to detect the
feature points that define a landmark, the authors convbkgtadient image obtained
from the camera with a DoG filter, search for extrema, thenttagsform the image
regions around extrema points to achieve invariance tolsshahges in rotation and
scale. An artificial neuron is then recruited to encode eaghlandmark using an origi-
nal activation function developed by the authors; it isrteai during one-shot learning to
distinguish the landmark from all other landmarks by prodgt¢he maximal response
to it. The authors call all such neurons landmark neuronslithxhally two other groups
of neurons are trained (also using one-shot learning witfesponding activation func-
tions) to produce different levels of activity for differeazimuths and elevations of the
feature points defining the landmarks. Then, the responses the three groups of
neurons (landmark-azimuth-elevation) are combined (@edrhark) into a third-order
tensor concisely defining a landmark, the response to wkitdarned (also using one-
shot) by neurons in the merging layer defining place codeslliyithe activity in place
cells (another group of artificial neurons) results from ¢benputation of the distance
between the learned place codes and current place codes.sdthp has some desir-
able properties: place cells respond continuously to tea around the learned location
creating so-called place fields, and learning of new locatican be triggered by low
place cell responses, causing the size of representatgnowoaccording to visual, not

geometric, properties of the locations. Additionally, enghors develop a method for
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navigation by associating each place cell with a movemeninfpyementing soft com-
petition and short term memory, the authors achieve robgstim both place recognition
and navigation.

Another research group which developed a map-less appo&cdhubert, Spexard,
Hanheide, and Wachsmuth. In their 2007 paper [SSHWO07], tHeeiapplied an ap-
proach similar to one proposed by Oliva and Torralba to gt holistic perceptual
gists of scenes [OTO01]. Schubert et al. compute 12 diffeneghborhood filter re-
sponses (11 edge filters with different orientations, 1 eoffiiter) as well as image
intensity from 46 differently sized regions of the imager Each patch, they also com-
pute its second (energy) and fourth (kurtosis) statistitainents. The authors then use
AdaBoost [SSHWO07] to combine weak binary classifiers for eaaluire. In addition, a
rejection scheme and a method to handle potential occlsisippanning the camera or
moving the robot are implemented. The results are presavitaoh the framework on
a home-tour scenario: the robot is manually shown by panthiegamera sets of 90
120 views from various points in each of the 4 rooms (living rodmllway, dinner
room, kitchen). After the classifiers are trained on thesa/sj testing is accomplished
by matching similar views collected from different pointscorresponding rooms (sim-
ilarly to kidnapping scenario described above). Two tets aee performed: one with
the same furniture arrangement and one with the furnitureeshowhich also creates
occlusion of certain landmarks. Overall the results aredgoo views with no or little
occlusion, but the more difficult locations are correctlgsdified only at the 75% level.

The methods described above exhibit a wide array of appesathvision-based
localization. Nevertheless, most are based on hand-codprealefined environment
maps and system parameters susceptible to environmergethand obfuscating the
capabilities of the underlying vision systems with respectobot self-localization.

The contribution of this work is the evaluation of SeeAsYauaaprototypical atten-
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tional feature-based vision system for the task of robadlization using intuitive and
well-studied models which allow for a closer look at the uhgag system’s per-
formance. More specifically, the evaluation algorithm LA-R@mpared to [UNOO],
[S107], [S108], [TMFRO03], does not require explicit map ctmstion and labeling,
nor knowledge of intrinsic camera parameters as in [SLLOI®]LO1a], [SLLOZ2],
[SLLO5], nor input from odometry sensors as in [OHBO05], [FBT.9C ompared to
[OHO5], [OHBO05], [SI07], [SI08], [ATDO7], the presented apach uses a well-known
information retrieval metric for landmark importance sstion, which in turn can lead
to a more straightforward analysis and optimization of espntation for large environ-
ments. In contrast to the work by Se et al. [SLLO1b], [SLLQI&].L02], [SLLO5], the

proposed evaluation algorithm is not limited to static iadenvironments.

2.2 SeeAsYou

A distinct quality of SeeAsYous that it implements ideas on regional-functional
anatomy of the human vision system: more precisely, it iDbogically-inspired model
of Reverse Hierarchy Theof)RHT) [HAO2]. RHT suggests that human vision is a two-
pass process. The first pass extracts the broad categoimagés—broad notions of
objects present in the view without the specifics of what #xalee objects are or where
they are located in an image. For example, after the first @gmsson would be able
to tell that an image contains an animal, but wouldn’t knoe éxact kind of animal
they saw or what its position in the image was [HA02]. Thistfpass is largely sub-
conscious, we have no control over it. The second pass, autlilee hand, is cognition
driven and is aimed to corroborate or refute the hypothebestahe exact nature of
the objects and their precise locations. At this stage olgatures are merged into a
cohesive whole and final object recognition takes place.

SeeAsYou implements the first pass of RHT to obtain the brotegjoazation of an
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Figure 2.1: Sample image with attention-based keypoineypidints are shown as red
circles at corresponding scales.

image. This categorization is represented by image feaan@und particular parts of
the image. The parts that describe the image are chosertardynio some of the sys-
tems described above, using the SIFT operator [Low99]. $&STwell known parallels
to responses in certain neurons in inferior temporal cdrtgimates: both respond to
regions in an image that are largely invariant to changesateslocation, and illumina-
tion. Additionally, SIFT is a well-known attention-baseelypoint detection technique,
as detailed in the previous section.

For the purposes of this work, 20 keypoints with highest easps to DoG filters
were selected from each image (see Figure 2.1).

Unlike other systems, in SeeAsYou each SIFT keypoint isgghggough three sep-
arate channels which generate color, edge, and textughashs and in each of these
three channels an unsupervised clustering algorithm iBegbi generate hierarchical
categories of features. Therefore color, edge, and tekistegrams around SIFT key-
points become the image descriptors used by the systemnotif@ broad notion of an
image. The rationale for clustering in each channel seplgré the belief that there
exists a similar separation of these processes in the bbmaO[]. The clustering al-

gorithm applied is based on the neuro-anatomy of thalanticabcircuits proposed by
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Granger et al. [RWGO04]. In the end, the resulting hierardhetaster labels for im-
age descriptors form the notion of an image and can be comparehe purposes of
object recognition or image matching. In SeeAsYmum frequency inverse document
frequency(TFIDF) (detailed in the next chapter) is applied to compauster labels of
consecutive images and recognize co-occurrences. Thesedevaluation algorithm
also uses TFIDF, albeit at varied levels of granularity.haligh TFIDF weighting in-
tuitively corresponds to selecting relevant features @nparison, it has no immediate
biological correlates. It is important to note, that whikee®sYou is a very sophisticated
vision system, it is not the only option for input to the eatlan algorithm—any vision
system which produces matching sets of image features veoifide.

The next chapter describes the evaluation of informatidnexal capabilities of
SeeAsYou for location matching and formulatesation awareness through relevance
(LA-R) algorithm. Chapter 4 builds on LA-R and adds temporaitest with ahid-
den Markov modefHMM) completing the description dbcation awareness through

relevance and conteXt A-RC) and concluding the evaluation of SeeAsYou.
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Chapter 3

L ocation Awareness through Relevance
(LA-R)

Fundamentally, a robotic vision system is responsible lierretrieval of information.
For many tasks, a useful perspective to view the vision system is information
retrieval. Many image matching implementations are basdtis idea. Itis also logical
to apply it to match locations for robot localization purpssThe purpose of this chapter
is to present the evaluation of SeeAsYou as a prototypiedtfe-based vision system
for the task of localization purely in terms of its infornatiretrieval capabilities. This
concept is encapsulatedlwcation awareness through relevan@ed-R) algorithm.

LA-R solves a well-known experimental scenario. In thiswsre a robot is taken to
a number of training locations. At each location it captae®t of images, for instance
each set forming a 36(panorama. The robot is then taken to a new location where it
also collects images. The robot then has to match this ndimgdscation to the most
similar training location.

In robotics literature this experiment is known as kidnappingscenario [FBT99]
because it represents a situation when a robot is pickedrufgi@mapped”) during its
operation and placed in a new position. The robot then hagtoeiout where it has
been placed. This experimental scenario is also applichbieg the initial startup of

the robot. At the same time, in terms of computer vision, i@t can be abstracted
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Figure 3.1: LA-R system diagram. System components arersbgwquare blocks and
components’ inputs and outputs are shown by arrows.

away and the experiment then becomes onmkd-choice matchinggiven a gallery
of image panoramas and a novel set of images, find the mosasiailery panorama.

For the purposes of this chapter, the localization taskfinelé solely in terms of sets
of images; other sensors are not allowed. In addition, nm foi reasoning about tem-
poral continuity is allowed (no ordering of images). Thedais an artificial constraint
which will be removed in Chapter 4.

To sum up, the goal of this chapter is to use LA-R algorithm tasure how well
a specific, feature-based vision system SeeAsYou [DraO7pqmes at robot localiza-
tion based only on its information retrieval abilities. 8e&ou was designed for object
recognition and image matching, not robot localizatiord @nan example of current
trends in computer vision (as discussed in Chapter 2). Spaltyfithis system requires
no a priori knowledge about images or supervised traininddi#onally, it does not
need to be modified for the localization task with LA-R (segufe 3.1), the only nec-
essary constraint is that when supplied with input imageaiiputs sets of matching

image feature labels.

3.1 Algorithm Description

LA-R solves the problem of robot localization in the contextthe kidnapping (or
forced-choice matching) scenario. To evaluate the inftionaretrieval capabilities
of SeeAsYou as prototypical feature-based vision systemthie task of robot self-

localization, a well-known information retrieval metrie applied—erm frequency in-
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verse document frequen€yFIDF). It uses the hierarchical cluster labels of image de
scriptors produced by SeeAsYou f@aturesand compares them across images taken
from training and testing locations. Location in this case e defined as a partic-
ular place in the environment from which one or more imagesevi@ken. Although
SeeAsYou represents images as labels of hierarchicakctust image descriptors, to
LA-R they are abstract sets of image features. This enab&salgorithm to be used
with an arbitrary feature-based vision system in which ¢hedeatures used by LA-R
are the ones produced by the underlying vision system.

To accomplish the localization task, the approach is to @mpnage features based
on their relevance to each location. This approach is mietivay the fact that the un-
derlying vision system has no notion about which image festmay be most relevant
to distinguishing different locations. In other words, meafeatures generated by the
vision system may correspond to both very common objectsdauevery location and
very peculiar objects found in only specific locations. Thenmon objects are less rele-
vant to the localization problem than the peculiar obje€ts.example, if door knobs are
the same in every room then finding one in an image provides iitformation about
which particular room the image came from. On the other hesahgnizing a painting
that is found in only one specific room will provide a cue foca@te localization.

This approach has a parallel to how a human may attempt te $bis problem.
Instead of trying to figure out which location each objectytsee is likely to belong
to, one may look for unique objects that are characteristibi¢ir respective locations.
Such characteristic objects are more relevant to the tasklfocalization.

The concept of relevance arises naturally in the area ofrdeatiretrieval when doc-
uments are searched for specific terms. TFIDF is a well-knmtric that is often used
to rank the relevance of documents in a collection to a spegifery term [BYRN99].

By analogy with document retrieval, TFIDF can be applied imatdocalization tasks to
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rank the relevance of locations to specific query imageshisndase image data from all
known locations is analogous to a document collection, esdgom a specific location

are analogous to a document, and corresponding imagedeaitg analogous to terms
that appear in documents. In such way the TFIDF metric carsbd to assign weights
to image features such that features which appear in too toaations are discounted
compared to rarer features, which presumably have moraspreelevant meanings.

Formally, term frequency is computed as:

TF, — _Ireay (3.1)
max; freq,;

wherei and! are the feature indices ands the location index;freg; ; is the number
of times feature appears in location. The inverse document frequency is computed

according to:

IDF, = log™>. (3.2)
o

(3

wherei is the feature index)V is the number of known locations, angdis the number

of locations where featureappears. The resulting image feature TFIDF weight is then:

Wi 5 = TFL"J’ ID.FZ (33)

When a test image relevance to the known locations is evaludte TFIDF-
weighted sumTFIDF scorg of features from the test image which match features from
the known locations is computed for each known location. ffaming location that
corresponds to the highest TFIDF score is then selecteckdsahlization match. More
formally, if £, is an ordered vector containing counts of how many times &aolwn
feature was seen in query locatigiiessentially a feature histogram) ang is the cor-
responding feature TFIDF weight vector for known locatjothe resulting LA-R match

is the argument of the maximum of a dot product of these twdéover
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argmax L, W;. (3.4)

J
As such, the LA-R match selects the training location miekvantto the testing

location based on image features present in both.

3.2 Experimental Methods

As mentioned in the beginning of this chapter, its goal is e the LA-R algorithm
to evaluate how well the SeeAsYou vision system can perfatotic self-localization
solely in terms of its information retrieval capabilitigsor this purpose the vision sys-
tem was not modified in any way—the features it extracted fiorages were input
directly into LA-R.

While the “kidnapping” experiment framework is well-knowm lboth robotics and
computer vision literature, the setup used to evaluate Sém#fAwas as follows: (1)
the robot collects images from several different trainiocgkions, the images are then
input into the vision system which outputs the featuresatetkin each location; (2) the
robot is then “kidnapped” and placed near one of the traitongtions where it collects
additional testing images which are input into the visiosteyn and the corresponding
output features are stored; and (3) LA-R algorithm is usedatch the testing location
to one of the previously visited training locations.

More specifically, a total of 32 360panoramas each containing 69 images were
collected from eight different rooms in the University Sees Building at Colorado
State University. Data was collected at four different poss in each room. The images
were gathered using a 640 by 480 pixel camera mounted on datEEwoRobotics ER1
robot (see Figure 3.2 for sample images). The panoramas tiwenerandomly split
into two sets (see Figure 3.3 for their respective posi)isash that each set contained

panoramas from two distinct and different positions froraleebom. Images from one
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set were used to represent the known locations while theasigm the other set were
used to represent the arbitrary areas the robot was “kidrtigpto. The roles of the

sets were then reversed and the experiment repeated.

3.3 Experimental Results

Figure 3.4 shows the results of comparing a test panoramatfie robot lab to the 16
training panoramas. The vertical axis shows the magnitofl@$-IDF scores. Each
bar along the horizontal axis represents one training @anar The first two training
panoramas are from the robot lab, the other 14 are from oticatibns. Even though
the test panorama was taken from a slightly different pmsjtihe highest TFIDF score
corresponds to one of the training panoramas also take irotiot lab.

Although Figure 3.4 demonstrates a correct match with LA-Bf every test
panorama matches a training panorama in the same locatentop half of Figure 3.5
shows the matching scores between all 16 test panoramad d6draining panoramas
(two from each location). Swapping the training and tessiety produces the data in the
lower half of Figure 3.5. According to a winner-take-allesgtion, in 19 of 32 trials the
closest match is to a training panorama from the same lotédidy 4 of 32 would have

matched randomly). Alternatively, in 13 of 32 trials thesd#st match is a mismatch.
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Figure 3.2: Sample images used in the experiments. Fronmotbpttom row images
correspond to the following locations: robot lab, north, latachine room, south lab
lobby, HP lab, south lab, systems office, and 2nd floor lobby.
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Figure 3.3: Floor plan of locations used in the experimetiiach 360 panorama is
denoted by a circle. Training/testing sets of 3p@noramas are shown as circles of the
same color respectively.
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Figure 3.4: Evaluation of a single test 3g@anorama against the 16 training panora-
mas. Vertical axis shows the magnitude of TFIDF scores. 2dotal axis shows TFIDF
scores for each known (training) panorama in the databask td_right the panorama
scores correspond to the following locations (two panosafoaeach location): robot
lab, north lab, machine room, south lab lobby, HP lab, soalth $ystems office, and
2nd floor lobby. Scores for training panoramas that are theecomatch are shown in
black.
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Figure 3.5: Evaluation of 32 test panoramas against 32itigajpanoramas. Top and bottom histogram sets show resulis€fo
two partitions of data. Each sub-histogram is organized & 4. The sub-histograms (two for each testing locatioapadered
left to right by their corresponding true matches in the sanaker as the bars representing TFIDF scores are organizaohwi
each sub-histogram (two for each training location): rdabt north lab, machine room, south lab lobby, HP lab, soaith |
systems office, and 2nd floor lobby.



Interestingly, the images collected from the HP lab havesloWFIDF scores in both
partitions of data as indicated by the lower overall heighsub-histograms 9 and 10
in both the upper and lower parts of Figure 3.5. This may beébated to the fact
that the HP lab is visually not very distinct from the robob lar the north lab (see
Figure 3.2 rows 5 versus 1 and 2 for sample images from HP leuseobot lab and
north lab respectively). At the same time, the latter twatams possibly contain some
distinctive features in addition to the ones common amoregtlinee. Therefore, the
features found in the HP lab are not sufficient to distingutistom the robot lab or the
north lab but the converse is not the case. In a practicalagn the event in which
some necessary to discern location achieves lower ovefdDH scores can be used to
indicate that additional images need to be collected fratlttation. This process may
need to continue until a sufficient number of relevant landi&as been discovered as
indicated by the TFIDF score the location achieves witHfitse

If LA-R results are evaluated not as a forced-choice scetart rather as a sequence
of individual yes/no decisions (binary classification ofreat/incorrect localizations),
then a look at performance at different acceptance thrdshwith respect to TFIDF
scores is useful. This idea is encapsulated by a receiveatipg characteristic (ROC)
curve, as shown in Figure 3.6. The ROC curve shows the truéyeosate of the clas-
sifier (on a 0 to 1 scale) along the vertical axis and the fatsatipe output along the
horizontal axis. Figure 3.6 shows the total scores for d tta56 (16 by 16) pairs of
panoramas. In general, if the match scores are random, tlkedr@e will look like a
diagonal line; if the match scores are perfect, the ROC cwilldouch the upper left
corner of the plot.

A useful statistic of ROC representation is the area undective (AUC) metric. It
shows the probability that a randomly drawn positive samyllbe rated higher than a

randomly chosen negative sample. For the first partitioratdé dgraph on the left), the
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Figure 3.6: ROC curves for each of the two partitions of ddtae positive output of
the classifier is shown along the vertical axis and the fads#ipe output is shown along
the horizontal axis. Random classifier performance is showed diagonal lines.

AUC is 74.8%; for the second partition (graph on the rightg AUC is 77.8%.

A way to get a closer look at classification performance of RAs shown in Fig-
ure 3.7. The figure shows relative magnitudes of TFIDF scimesach training/testing
panorama pair in the experiment. The vertical axis show®FFcores for training
panoramas as grayscale levels. The largest TFIDF scorespamds to the darkest
grayscale level. The horizontal axis shows data for diffetests. Correct matches for
tests are highlighted in red.

Although in general darker grayscale levels fall within tloerect regions, the results
clearly show room for improvement. This can be achieved l@pkey track of temporal
context for localization. One of the constraints imposedhim above kidnapping ex-
periment was that no form of reasoning about temporal coityirwas allowed. The
next chapter removes this constraint and evaluates Se@Asing both image feature

relevance and temporal context.
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Figure 3.7: Relative magnitudes of TFIDF scores for each ef ttlaining/testing
panorama pairs. Darker grayscale levels in each columesept higher TFIDF scores
for a given training panorama during testing. Horizontasagpresent data for different
tests. The order of test sets left to right (testing data)atbm to top (training data) is
the same as in previous figures: robot lab, north lab, macbm®, south lab lobby, HP
lab, south lab, systems office, and 2nd floor lobby. Eachimecas represented by two
training and two testing panoramas. Correct matches ardigtiged in red.
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Chapter 4

L ocation Awareness through Relevance
and Context (LA-RC)

The omission of temporal context for robot localizationri#f@ial. Indeed, in most real-
world applications of mobile robots this information is dég available: at the very
least images can be ordered by their acquisition times teigeatemporal ordering.
Using such localization context in addition to relevanesdd location awareness as
provided by LA-R forms the crux of LA-RC. In this chapter LA-RCapplied to image
features produced by SeeAsYou to further investigate thi@wisystem’s localization
capabilities, now using both feature relevance and tenhpordext.

LA-RC solves the problem of robot localization along a pathhe Talgorithm is
best understood within the framework of the following expwmtal scenario: a robot
is driven along a path while collecting training images ahdirt temporal ordering;
the robot is then re-deployed to a testing location somesvhkmg the path and starts
driving along collecting new images and recording theirgenal ordering; as the new
images arrive the robot has to figure out where it is locatedgthe path.

Similarly to the approach described in the previous chapietinput from sensors
other than the camerais allowed. This time, however, thailoation context is recorded
and provided to LA-RC in the form of images ordered by time. Dherall system

layout is the same as before with the exception that theitotatwareness module is
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Figure 4.1: LA-RC system diagram. System components arershgvequare blocks
and components’ inputs and outputs are shown by arrows.

now LA-RC instead of LA-R (see Figure 4.1).

As before with LA-R, LA-RC is not confined to SeeAsYou as the ulyiigg vision
system—any feature-based vision system can be used. Nel=s, the goal of this
chapter is to evaluate SeeAsYou with LA-RC for the task of liaesion along a path

using both feature relevance and temporal context.

4.1 Algorithm Description

LA-RC solves the problem of robot localization along a patmiatching features based
on their relevance to each path segment and integratingethpdral context of local-
ization. This approach is motivated by the fact that temipmfarmation is readily
available in many situations and has the potential to imgpmv a purely information
retrieval based approach. This also has a parallel to hovwreahumay go about solving
the problem of localization along a path: instead of tryingiatch path segments inde-
pendently, one may consider them in their temporal contesih short-term memory).
More specifically, knowing what landmarks a person has tceeen and what was the
order the landmarks were seen in can narrow down the passbbf where the person
is currently.

In order to achieve a similar capability, it is necessarydiorlgorithm to be able to
combine previous and current position estimates using tbeiporal orderingHidden
Markov model§HMMSs) provide a simple and natural way to recursively conegpre-

vious and current robot observations—in this case relednased position estimates:
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the TFIDF scores computed similarly to LA-R. The main diffeze is that in LA-RC
TFIDF scores are computed for each image in the trainingesezpias opposed to one
TFIDF score for each training 36@anorama in LA-R. Therefore, in LA-RC localiza-
tion resolution is to a training image compared to a*3@éw in LA-R. This, however,
is a parameter that can be adjusted as necessary.

Using HMM formulation, as new position estimates becomelavie the probabil-

ity distribution across the set of possible locations careloersively updated as:

P(L|O)) = a0, O T P(L|O;_1) (4.1)

where L denotes the set of possible locations (here individuahitngiimages along a
path),0; is the position estimate at timevhich for the initial observation, is uniform,
« is the normalizing constant to keep probabilities sum up,t® is the observation
probability matrix, andl is the location transition probability matrix. This follewthe
notation by Russell and Norvig [RNO3].

O andT define the HMM because they determine how the model evolvesstione.
Although it is possible to learn bot® and T using EM (Expectation Maximization)
algorithm [Bis06], the current implementation of LA-RC uses-pet observation and
location transition probability matrice€) is a tridiagonal matrix such that the elements
on the main diagonal are set to 0.5 and all other non-zeroegitsrare equal to 0.25
which implies that similar observations come from adjadenations. T is designed
so that transitions are possible between the state anfl(itsefesponding to the robot
remaining in the same position) with 25% probability, thatestand the next state (cor-
responding to a robot moving ahead one position) with 50%atdvdity, and between
the state and the state two positions ahead (correspormimgabot missing an obser-
vation) with 25% probability. The reverse state transgi@ne not allowed. Although

having the location transition matrix configured in such waplies a simple forward
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location transition model, for the purposes of localizatédong a path this may be ac-
ceptable because during traversal all transitions areugtaahd unidirectional (aimed
toward destination).

Historically, the idea of integrating the temporal localibn context is not novel.
This is the approach taken in many SLAM solutions employiraynkan or particle fil-
tering methods [Thr02]. However, path integration in LA-R&ligs on HMM for that
purpose, which is a simpler model than filtering and doesguire odometry mea-
surements. Torralba et al. describe a recursive HMM-baksex pecognition approach
which employs a Gaussian mixture model for the observatioability matrix and
involves manual construction of the state transition mgFfMFRO03]. As opposed to

their method, LA-RC doesn’t require manual labeling of traols among locations.

4.2 Experimental Methods

To evaluate SeeAsYou with LA-RC, image sequences were cetlentthree different
settings using the Evolution Robotics ER1 robot equipped avid40 by 480 pixel cam-
era (same as in the kidnapping experiment in the previoupteha Out of the three
settings, two were inside the CSU University Services Bugdimcomputer labs and
faculty offices areas, and one was outside in the garden area.

Three image sequences were collected in each of the thrisegseby manually
driving the robot three times along approximately identroaites (see Figure 4.2 for
sample trajectories). The routes driven were between 3(GaAndeters long. Due to
routes’ varying lengths and variations in robot speed, tialver of images per sequence
ranged between 460 and 1,833: for computer lab setting tingesees were between
1733 and 1833 images long, for faculty offices—between 460 44, and for the
garden area—between 827 and 879. For each of the settinggnage sequence was

used to train hierarchical clusters of image descriptoiSarAsYou, while the second
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Figure 4.2: Sample routes in one setting (computer labskh Eaute is denoted by
different color. The image sequences follow similar butexaictly the same trajectories.

sequence was used to generate TFIDF scores for every imang thle route. Parts of
the third image sequence were used for testing. Since THtDfes were generated for
every image from the second sequence, each such imageaefges distinct location
in a setting.

After accuracy of the algorithm was validated and local@atwith LA-RC and
SeeAsYou evaluated within each setting individually, tianing and testing sequences
were combined across the settings to evaluate localizagdiormance of SeeAsYou for

all possible initial testing positions in the combined dsea

4.3 Experimental Results

To verify the accuracy of the algorithm, three testing safjeences were selected cor-
responding to arbitrary notable points in each setting s€hmtable locations were: the
entrance to the computer lab in Figure 4.3, the cabinet withess in Figure 4.4, and
the garden benches in Figure 4.5. For each setting, the gamalavfind the training
image that most closely matched the probe (testing) image.

The results of the accuracy verification experiment arestitated in Figures 4.3—
4.5. On the left each figure shows a set of histograms comelpg to discrete proba-

bility distributions maintained by the algorithm duringethirst four time steps of exe-
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Figure 4.3: Sample convergence and the resulting matchnfandoor run (computer
lab setting). Histograms on the left demonstrate convergstarting with the first time
step of the LA-RC execution at the top and three consecutiwe Steps below. On
each histogram, the probabilities of being in a location sirewn along the vertical
axis while the horizontal axis shows the training locatic@responding to individual
images from the second image sequence). The histogranesegprthe discrete prob-
ability distributions maintained by LA-RC. The discrete pabbity distributions result
from combining TFIDF scores for new image features (as olag®ns) using HMM
according to observation and transition matrices—HMIE.|O,) for ¢t = 1..4 where
O, are image features detected in imagé& he time steps are advanced when features
found in a new image are made available by the underlyingnisystem. The images
corresponding to the peak in the bottom histogram are shawtheright: right top is
the image from the testing sequence, right bottom is its miat¢he training sequence
based on a winner-take-all selection.

cution (from top to bottom). The discrete probability distitions result from combin-
ing TFIDF scores for new and previously seen image featag®pservations) using
HMM according to observation and transition matrices descrabove—in other words
HMM's P(L|O;) for t = 1..4 whereO, are image features detected in imagé hus,
the time steps in HMM are advanced when features found in aimage are made
available by the underlying vision system. The top imagehmright is the image
examined by the vision system at the fourth time step, thg@m the bottom is the re-
sultant location match based on a winner-take-all seledtam the discrete probability
distribution maintained by LA-RC after the fourth time step.

These initial results show fast convergence in each of sngeepisodes; all con-
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Figure 4.4: Sample convergence and the resulting matchéosa¢cond indoor run (fac-
ulty offices setting). The plot layout is the same as in FiguBe

Figure 4.5: Sample convergence and the resulting matcthéopuitdoor run (garden
setting). The plot layout is the same as in Figure 4.3.
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Figure 4.6: Convergence in LA-RC. The vertical axis in each plutws positional
entropy, horizontal—time steps. The graph on the left gpoads to the computer lab
route, graph in the middle—to faculty offices, and graph a@rtpht—to outdoor route.

vergences are to near the true location. The qualitativeracg of localization is good
since both the probe (testing) image and the resulting nfedcmthe training sequence
are visually similar and spatially close to each other, aslmaseen on the right-hand
side of Figures 4.3—4.5.

Information entropy [Sha48] can be used to quantify the eagence more precisely.
In general, information entropy shows the level of uncetiain data—lower values
correspond to less uncertainty. Convergence in LA-RC alsgesponds to reduction
of uncertainty—in this case positional uncertainty (epgfo Therefore, convergence in
localization with LA-RC can be measured by the loss of posél@ntropy. Mathemat-

ically entropy is defined as:

H=—> pilogp: (4.2)
=1

wherep; is an element from the set of state probabilities. Their@mats are the posi-
tion estimates in LA-RC. Positional entropy for the time stepswn on the left-hand
sides of Figures 4.3— 4.5 is plotted in Figure 4.6.

Figure 4.6 shows how entropy is decreasing during the firinmi® steps of execu-

tion of LA-RC for each setting’s respective probe image. Nbs after just 4 steps, the
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Figure 4.7: Impact of state transition matrices on convargen LA-RC. The vertical
axis in each plot shows positional entropy, horizontal—etsteps. The graph on the left
corresponds to the computer lab route, graph in the middbgaeulty offices, and graph
on the right—to outdoor route. Plots marked by triangleswséotropy at each time step
when the original 25/50/25 transition matrix is used (25%ability the robot stays in
the same location, 50% probability it moves forward onetioca and 25% probability it
moves forward two locations). Plots marked by circles spomnd to 50/25/25 transition
matrix, and plots marked by squares correspond to 33.3883transition matrix.

level of uncertainty is low enough to pick a close match usirggmple winner-take-all
strategy.

Entropy plots also allow comparison of alternative staa@gition matrices used in
HMM and their impact on convergence. Figure 4.7 shows howdiher state transition
matrices compare to the original 25/50/25 matrix (25% pbdlig the robot stays in the
same location, 50% probability it moves forward one loaatiand 25% probability it
moves forward two locations). The alternative matricess5/25 (50% probability
the robot stays in the same location, 25% probability it nsdeeward one location, and
25% probability it moves forward two locations) and 33.3833.3 (equal probabilities
of robot remaining in the same location, moving forward amsation and moving for-
ward two locations). Producing qualitatively comparaleiguits, different matrices have
little impact on convergence speed, therefore furtherlteseported below employ the
original 25/50/25 transition probability matrix.

Another aspect of convergence which can be observed fromertrepy point of
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view is peak region entropy. Peak region entropy here meansrhuch entropy is
concentrated within the vicinity of the most prominent p@&akhe discrete probability
distribution over the set of known locations maintained ByRC. For all three testing
runs using 25/50/25 state transition matrix, over 50% oftprgl entropy (3.829983,
3.152670, and 4.094095 for computer lab, faculty officed, garden settings respec-
tively) is concentrated within a 20-frame window around pleak. This shows that not
only localization entropy is decreased during executiohARC, but it is also nar-
rowed down to a small region.

A more comprehensive look at localization performance @&~A3ou with LA-RC
algorithm is provided by Figure 4.8. It shows the maximum magles of localization
predictions—maxima inP(L|O;)—after time steps 1, 4, and 10 as black dots for all
possible starting locations in each setting. As beforefriaing and testing were done
for each setting individually. From left to right the imag&asow data for computer lab
setting, faculty offices setting, and outdoor garden sgttfrom top to bottom the top
images show data after steptl= 1), the middle images show data after step 4(4),
and the bottom—after step 10-€ 10). In each of the 9 images, the vertical axis shows
training locations and the horizontal axis representsekgrig locations. The training
and testing locations are ordered consecutively from bottwthe top and from left to
right, starting from the beginning of the respective tnaghand testing image sequences
(a similar ordering as in Figure 3.7). The regions for whioh &ccuracy of localization
is improved in the following time steps are indicated by red\was.

Since the maxima are concentrated along the diagonalsyeFgg@ shows that
SeeAsYou performs localization correctly for the majonfystarting points along each
path. Also, the presence of the regions for which the acguwBocalization is improved
as well as the overall de-noising demonstrates effectseeotLA-RC. The transition of

the maxima closer to the diagonals during the execution oR®also corresponds to
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Figure 4.8: Maxima inP(L|O,) for all possible starting locations within each setting
(separate training and testing for each setting). The madre shown as black dots.
From left to right the images show data for computer labrsgttiaculty offices setting,
and outdoor garden setting. From top to bottom the top imagew data for = 1,
the middle images show data for= 4, and the bottom—for = 10. In each of the
sub-images, the vertical axis shows training locationsthadorizontal axis represents
the testing locations. The training and testing locatioesordered consecutively from
bottom to the top and from left to right, starting from the imegng of the respective
training and testing image sequences. The regions for whe&hccuracy of localization
is improved in the following time steps (shown below) areicatked by red arrows.
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Figure 4.9: Entropy decrease for all possible startingtiona within each setting (sepa-
rate training and testing for each setting). For all poss#itérting positions, the entropy
is plotted along the vertical axis and the time steps areqaalong the horizontal axis.
The bottom and top of the box denote 25th and 75th percenégeectively, line in the
middle of the box denotes the median, whiskers derofe5 times interquartile range
from the box, and the circles denote outliers.

the reduction in entropy: for the the computer lab run themesaropy is 10.66 (stan-
dard deviation 0.05) after the first time step and 9.15 (stechdeviation 0.59) after the
fourth, for the faculty offices run the corresponding valaes 8.56 { 0.14) and 6.78
(£ 0.96), and for the garden they are 9.55@.14) and 8.33L 0.73). The summary
of entropy decrease in each of the three settings is showigiund-4.9. For all possible
starting positions in each of the three settings, the epti®plotted along the vertical
axis and the time steps are plotted along the horizontal &xiseach of the time steps,
the positional entropy is shown as a box plot: bottom and fapebox denoting 25th
and 75th percentiles respectively, line in the middle of bo& denoting the median,
whiskers denoting- 1.5 times interquartile range from the box, and the circksating
outliers. In general, entropy decreases with each time atdhe same time becoming
more dispersed. One possible explanation for the entrogyedsion induced by the
execution of the algorithm is that for certain locations timeertainty is not reduced or
reduced much better than the average.

Still, two important questions remain: what happens if thiage sequences are
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combined across the three settings? will SeeAsYou be albdeatize with LA-RC both
across the three settings as well as within each setting®2eTdpgestions are answered
by combining the image data from each setting into three ex@ambined runs from
3034 to 3172 images long. As before, one of the sequencessedgaitrain the hierar-
chical clustering in SeeAsYou, one—to build the TFDIF datsdy and parts of the third
sequence were used for testing. The individual observatiortransition matrices from
the previous path experiment were combined along the dalgdo form larger obser-
vation and transition matrices. While the observation pbdlig matrix was virtually
unchanged (apart from the size), the new transition maidixdt allow transitions from
one of the three settings to either of the others.

Figure 4.10 shows the maxima in the resultid@g.|O,) distributions for all possible
starting locations corresponding to each of the threenggttiWhile overall the results
are comparable to Figure 4.8, the resulting maxima imagesaticeably whiter and
noisier (especially for the garden area) which is an inébcedf decreased performance.
Also, as compared to the experiment when each setting wasdewad separately, the
localization across the combined data set gives rise toehigbsitional entropies as
shown in Figure 4.11.

The decrease in performance in this experiment can be esesly if the fraction
of misses—position estimates outside the correspondaigirig image sequences—is
plotted versus time steps in LA-RC execution (see Figure)4\Wahile for the computer
labs setting the performance is generally positive, forfawilty offices area apply-
ing LA-RC actually deteriorates the position estimatesrafie first step. Also, in the
outdoor garden area setting LA-RC fails to appreciably inaprime accuracy of local-
ization.

Such variation in performance in the final experiment canttyéated to two fac-

tors. First, compared to the computer lab sequence, batittyauffices and garden area
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Figure 4.10: Maxima inP(L|0O,) for all possible starting locations within each setting
(combined training and testing for all settings). The maxiane shown as black dots.
From left to right the images show data for computer labrsgttiaculty offices setting,

and outdoor garden setting. From top to bottom the top imagew data for = 1,

the middle images show data for= 4, and the bottom—for = 10. In each of the
sub-images, the vertical axis shows training locationsthadorizontal axis represents
the testing locations. The training and testing locatioesordered consecutively from
bottom to the top and from left to right, starting from the imegng of the respective
training and testing image sequences. The regions for whe&hccuracy of localization

is improved in the following time steps (shown below) areicatked by red arrows.

42
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Figure 4.11: Entropy decrease for all possible startingtioas within each setting
(combined training and testing for all settings). For alsgible starting positions, the
entropy is plotted along the vertical axis and the time stepplotted along the horizon-
tal axis. The bottom and top of the box denote 25th and 75tbepites respectively,
line in the middle of the box denotes the median, whiskerstieh 1.5 times interquar-
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Figure 4.12: Fraction of misses as a function of time stepmduexecution of LA-RC.

In each of the three plots the vertical axis shows the fraafonisses and the horizontal
axis shows the timesteps. The plot on the left shows datd&computer labs setting,
the plot in the middle—for faculty offices, and the plot on tlght—for the garden area.
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sequences were underrepresented: the three runs for thity faffices contained from
460 to 474 images and the garden sequences contained froo &P images; on
the other hand, the computer lab sequences contained beiw88 and 1833 images.
Within the scope of the performed experiment, there existereelation between the
number of images in the sequence and the quality of locaizavith LA-RC. This
may also be a related issue to one described in the previamearhwhen one of the
locations (namely the HP lab) seemed to lack enough distenétatures compared
to other settings which inhibited localization. The secdactor contributing to the
negative performance can be the simplicity of the obseruadind transition matrices
used in HMM. While sufficient for a more homogenous experiraksgetup when each
setting was tested independently of others, the transitimhobservation matrices em-
ployed may have been inadequate for the more heterogeneadgions in the final
experiment. The investigation of these factors as well Asrassues encountered in
heterogeneous settings with complex transitions is a plessubject for future work.
Although the experiments with SeeAsYou using LA-RC suggessonable conver-
gence and accuracy of localization, a number of open questiemain such as what
exactly is the accuracy of the algorithm and the underlyisgom system, what is their
resilience to errors, as well as what are the underlyingffg factors. These are some

of the issues discussed in the next chapter.
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Chapter 5
Conclusions & Future Work

Overall the experimental results show that SeeAsYou inwm@tjon with the LA-R/LA-
RC algorithms can be used to localize a robot based exclysivetamera signal. Since
SeeAsYou is a prototypical implementation of a featuresdagsion system, the results
are applicable to other vision systems adhering to thaigmra

More specifically, using SeeAsYou with LA-R achieves 74—78%C in a kidnap-
ping (forced-choice) experiment with eight different ldoas. This shows that the un-
derlying feature-based vision system is capable but néitgritly robust to accurately
localize a mobile robot without the temporal context. Adgihe temporal context with
LA-RC, on the other hand, allows the vision system to achiewedatropy location
awareness after just four time steps in homogeneous sgttivigich, in terms of the
performed experiments, is equivalent to localizationrafi@veling 20 centimeters on a
30 meter route. At the same time, given a heterogeneousimgrdal setup with non-
trivial transitions, SeeAsYou with LA-RC fail to achieve defive location awareness.
Concerning LA-RC, two possible issues may contribute to advpesformance: un-
derrepresented locations and oversimplified HMM obsernadind transition matrices.
The underrepresentation problem can be addressed by migitbe number of rele-
vant features detected in each location based on the TFIDfe ¢ that location with
itself. When this score reaches an acceptable thresholairadation of training images

for that location may stop. In addition, the simple obseaoratind transition matrices
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employed in the experiments carried out in this work can lggreanted using EM (Ex-
pectation Maximization) [BisO6] to achieve better perfonoa. Addressing these issues
is a possible future research direction.

Another important issue with the presented results is tiegt &re largely qualitative:
at this point it is unclear what exactly is the accuracy ofalgwrithm and the underlying
vision system, and what is their resilience to errors. Tovdeguantitative conclusions
and explore the effecting factors, a more controlled sexpéaments may be conducted
in a simulated environment. USARSIm [WL195] provides a high-fidelity 3D platform
for such simulations and exploring the localization cali#ds of SeeAsYou using LA-
RC within that framework is another potential future resbaticection.

Employing controlled simulated environments can alsoakiraportant character-
istics of LA-RC algorithm. As shown in the previous chaptae algorithm is capable
of localizing a robot along a path using SeeAsYou as the Uyidgrvision system.
However, due to time constraints and the limitations of thieot platform, exploring
performance in large dynamic environments was not carrigd ttuitively, LA-RC
complexity grows with the number of relevant landmarks aeguby the underlying
feature-based vision system. The number of landmarksakit achieve accurate loca-
tion awareness is limited by the number of locations and theual, but not geometric,
complexity. Therefore it may be possible to concisely reprn even very large en-
vironments. Since LA-RC does not require explicit maps amesents locations by
simply associating relevant landmarks with them, minomngjes in environment should
not affect the performance. At this point, applying LA-RCa@ithm in large dynamic
environments is another future work possibility.

Finally, although the presented results suggest vialofitye localization approach
derived in this thesis for more than just vision system estadun, the definitive answer to

the question of the practicality of the algorithm can onlynteede by employing LA-RC

46



with a vision system on an actual robotic platform couplethwai navigation system to
do useful tasks. At the very basic level, navigation can m@plished by associat-
ing the desired movement with each location. The robot can tise simpler sensors
(for example laser or sonar range finders) for collision dance while following the
main movement vector based on the visual location awargmesgled by LA-RC. The
implementation of such end-to-end system, however, resr@subject of future work.
To sum up, this thesis presented an evaluation of SeeAsYapmatotypical feature-
based vision system for the task of robot localization. Iswhown that SeeAsYou
was capable but not sufficiently robust to localize a robéhaut the temporal context,
while adding such context suggested improved performangeRC (Location Aware-
ness through Relevance and Context), a simple general-gurpokile robot localiza-
tion algorithm using feature-based vision, was developetitasted with SeeAsYou. It
was shown that with SeeAsYou, LA-RC works both indoors andearts, does not re-
guire manual map construction or transition labeling, irfppm odometry sensors, nor
knowledge of intrinsic camera parameters. This favorabty & apart from some of the
other visual localization algorithms. Moreover, it is wassned to not not be limited
to a specific vision system. As such it can be added as a comptmexisting mobile

robot systems to do useful tasks. This, however, remainsubject of future work.
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