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ABSTRACT OF THESIS

VISUAL LOCATION AWARENESS FOR MOBILE ROBOTS USING

FEATURE-BASED VISION

This thesis presents an evaluation of feature-based visualrecognition paradigm for

the task of mobile robot localization. Although many works describe feature-based vi-

sual robot localization, they often do so using complex methods for map-building and

position estimation which obscure the underlying vision systems’ performance. One of

the main contributions of this work is the development of an evaluation algorithm em-

ploying simple models for location awareness with focus on evaluating the underlying

vision system. While SeeAsYou is used as a prototypical vision system for evaluation,

the algorithm is designed to allow it to be used with other feature-based vision systems

as well. The main result is that feature-based recognition with SeeAsYou provides some

information but is not strong enough to reliably achieve location awareness without the

temporal context. Adding a simple temporal model, however,suggests a more reliable

localization performance.
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Chapter 1

Introduction

Location awareness is the result of successful self-localization. In its basic form, self-

localization can be formulated as answering the question “where am I?” Successful

robot localization accurately establishes the current position of a robot relative to a

framework such as a map (“I am in regionx of the map”) or previous experience (“the

last time I was here was associated witht”). Localization is an important ability for

mobile robots and supports navigation and other location-dependent activities: knowing

where a robot is can provide it with the direction to its destination or with a sense of

some other action appropriate at its current location.

The proliferation of mobile robots, seen by many as the next stage in robotics tech-

nology, makes solving localization problems in real-life settings very important. Due

to its importance, robotic localization is a long-studied problem, and many different

localization algorithms have been proposed. Nonetheless anumber of open questions

remains, including the best means of localization in dynamic environments and efficient

representation of location-specific information [Thr02].These are, in part, the problems

addressed by this work.

Fox et al. [FBT99] and Dellaert et al. [DFBT99] describe two related systems

evaluated as museum tour guide robots, one in the Deutsches Museum Bonn and the

other in the Smithsonian National Museum of American History. In the course of the
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evaluations, the systems operated during normal working hours and in the presence of

museum-goers. As such, they provide examples of real-life applications for mobile

robots, and the museum tour guide analogy will be used in the following discussion to

illustrate important points.

Traditionally, localization is cast as the problem of finding a robot’s position relative

to a static Cartesian map, but it is really the target application which determines the

optimal framework for expressing a robot’s position. In thecase of a robotic museum

tour, for example, it may be unnecessary to precisely localize the robot’s position on a

map, since a general position relative to a previous experience—for example confirming

that the robot is next to a particular painting—can suffice. Therefore, the exact metric

localization is not necessary in more general case.

The localization problem is often solved using multiple sensors, including sonar and

laser range finders, GPS systems, and cameras [Thr02]. In contrast to multiple-sensor

localization, visual localization relies on camera signals only. This approach is com-

pelling for at least two reasons. First, cameras provide a wealth of information about the

environment compared to other sensors. While sonar and laserrange finders reveal some

information about the environment and are useful for obstacle detection, they are lim-

ited in localization applications: since range finders onlyprovide line-of-sight distances,

they offer little information for recognizing the objects their signals are incident on. This

raises problems in dynamic environments where objects movearound and environment

changes cause the maps to become outdated. Second, cameras are self-contained and

don’t rely on external components for successful sensing, as opposed to GPS receivers

which rely on satellite signals. This makes cameras usable in environments where such

auxiliary components are not available or have limitations(such as indoors).

Although cameras provide a wealth of information without requiring external sig-

nals, the best way to use them for robot localization is not clear. One of the obstacles to

2



the ability of cameras to model their environments, reliable object recognition is known

to be a difficult problem. This thesis explores the utility for localization of a relatively

new approach to object recognition: attentional feature-based vision.

Many contemporary general-purpose computer vision systems employ unsupervised

learning of attention-based local image features. The key contribution of this work is

the evaluation of an attentional feature-based vision system SeeAsYou[Dra07] for the

purpose of visual robot localization. Since SeeAsYou is a representative example of

the class of unsupervised feature-based vision systems (discussed in the next chapter),

the results obtained here can be compared to other feature-based vision systems: both

utilizing attention-based local image features [SLL01b],[KBO+05], [OH05], [SI07] as

well as global image features [OT01], [SSHW07].

Another contribution of this work is the algorithm developed for evaluation

of SeeAsYou—location awareness through relevance and context(LA-RC). Since

SeeAsYou is a characteristic example from a wider class of feature-based vision sys-

tems, the algorithm can also be applied to other systems within this class. LA-RC builds

on ideas from information retrieval and statistical modeling: a document retrieval met-

ric term frequency inverse document frequency(TFIDF) is applied to establish the most

relevant landmarks for each location, and this informationis further used in conjunction

with a hidden Markov model(HMM) to determine the most likely location of a robot

given temporal context. Although both TFIDF and HMM are well-known and widely

used, to the best of author’s knowledge, their combined application to mobile robot lo-

calization has not been described before. In addition, LA-RCdoes not require explicit

map construction which makes it easy to use. As will be shown,it presents an intuitive

and effective solution to one of the classic robotics problems.

The rest of this thesis is structured as follows: Chapter 2 gives an overview of related

approaches to visual robot localization; Chapter 3 describes the evaluation of SeeAsYou
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for robot localization using TFIDF, a relevance metric; location approximation with

TFIDF and HMM is detailed in Chapter 4, combining the relevance metric with a tem-

poral model; Chapter 5 summarizes the results and outlines the directions for future

work.
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Chapter 2

Background

2.1 Literature Review: Visual Robot Localization
Robot localization is a long- and well-studied problem [Thr02]. One way to approach

the literature is to organize systems according to the framework within which the robot’s

position is established. Map-based techniques aim to determine location of a robot

within a metric or topological map. Experience-based localization methods do not use

maps, but solve the problem by matching current locations toprevious experience: such

as locations or actions.

2.1.1 Map-Based Localization

Map-based visual localization is by far the most prevalent approach and can be further

subdivided into metric, topological, and hybrid map-basedmethods. Metric techniques

represent the environment as a Cartesian map, with landmarksassigned precise coordi-

nates. Algorithms that learn the map while localizing the robot are calledsimultaneous

localization and mapping(SLAM) algorithms [RN03]. SLAM is a well-known problem

formulation which entails building a map of the unknown environment and simultane-

ously estimating the robot’s current position within that map. There are many SLAM

systems; this review will focus on the ones most relevant to this thesis.

Se, Lowe, and Little provide a visual SLAM solution for unmodified indoor envi-
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ronments [SLL01b], [SLL01a], [SLL02], [SLL05]. They use thescale invariant feature

transform(SIFT) [Low99] for visual attention-based landmark discovery and matching.

SIFT is a localized image feature (keypoint) detection technique which resembles vi-

sual attention in primates. To determine such attention-based keypoints in an image, the

SIFT operator appliesdifference of Gaussians(DoG) filters at different scales. The DoG

filter is defined by:

D(x, y, σ) = (G(x, y, kσ) − G(x, y, σ)) ⋆ I(x, y), (2.1)

wherex andy are image coordinates,σ is standard deviation of the Gaussian,G is the

Gaussian function,k is the scale parameter,I is the image, and⋆ is the convolution

operation. The scale parameterk has been shown to have little impact on the results,

but for implementation purposes is typically chosen to be
√

2 [Low99]. The pixels

in an image which produce the largest DoG responses in their neighborhoods at their

respective scales become SIFT keypoints.

Se et al. [SLL01b], [SLL01a], [SLL02], [SLL05] estimate robot movement (ego-

motion) using least-squares fitting given landmark matching data and odometry. Kalman

filtering is used to track the landmarks across frames and assign Cartesian coordinates

as the robot moves around to build a 3D landmark map. In particular, Kalman filtering is

used to predict which landmarks should be visible given the current estimate of position;

the update step involves integrating new images and odometry measurements into the

belief state. The authors rely on their stereo camera’s intrinsic parameters to position

SIFT features in the 3D coordinate system. The map is stored in a database as a set of

landmark records. Each landmark record consists of the robot position at the time the

landmark was encountered (in robot coordinates), a SIFT feature vector which includes

landmark scale and orientation, and the number of consecutive frames the landmark was

missed—a parameter aimed to estimate landmark reliability.
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In their more recent work Se et al. compare methods for matching locations in a

kidnapping scenario[SLL05]. In a kidnapping scenario, the robot first learns a repre-

sentation of an environment. The robot is then “kidnapped” and deployed to an unknown

location within that environment. The robot has to figure outwhich previously visited

location matches its current position. The correct solution to the kidnapping problem is

the best possible match to a known location. In [SLL05], the authors compare Hough

transform on sets of SIFT landmarks and RANSAC (RANdom SAmple Consensus) for

determining the robot pose supported by the most landmarks.Overall, the results con-

verge in both methods and the system runs in real time (at 2 Hz). The authors also de-

scribe an optimization scheme which splits the map into sub-regions and uses Newton’s

method to pairwise align sub-regions when a location is re-visited. The test, however, is

conducted in a very small 10 by 10 meter lab. Also, as with manySLAM approaches, a

static environment is assumed.

The SLAM algorithm of Se et al. has been adopted with small modifications related

to thresholding and filtering methods in a commercial application—vSLAM by Evolu-

tion Robotics [KBO+05]. The key differences between vSLAM and the work of Se et

al. is the application of a pre-filter which sets thresholds for landmark matching (RMS

error, number of SIFT keypoints matched, robot slope) and using a particle filter for

robot pose update while Kalman filtering is used for landmarkpose updates (justified by

a simpler dynamics of landmark poses).

Another attention-based visual SLAM process is described by Andreasson et al.

[ATD07]. Authors use a modified SIFT algorithm that, in contrast to the original SIFT

version by Lowe [Low99], doesn’t maintain scale invariance, which is aimed to reduce

matches among distant locations. The authors use particle filtering to integrate odometry

measurements with matches from a pre-built database of robot positions. The database

is built on correlating images with laser scans within a Cartesian map framework: each
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location is associated with a modified SIFT-based feature vector. Laser scan SLAM map

is built on the basis of an earlier work by Frese et al. [FLD05]. The approach achieves

localization accuracy to within 2 meters in at least 67% of trials when matched to laser

scan data in a 60 by 55 meter indoor area.

An interesting application of attention-based vision to SLAM is shown by Frintrop

et al. [FJC08]. VOCUS SLAM combines local feature detection with top-down feed-

back for active camera tracking. Image features are computed with center-surround

filters—technique equivalent to DoG used in SIFT. The top-down behaviors are induced

by the weights of a trigonometric function controlling active camera tracking. This

system is programmed to exhibit three behavioral scenarios: redetection, tracking, and

exploration. Depending on the built-in decision tree, the appropriate behavior is se-

lected which determines the settings for active camera control function. Authors show

improved performance of active camera tracking versus passive.

In general, Cartesian localization often suffers from map degradation in changing

environments. Compared to SLAM, topological map-based methods overcome some of

its limitations by avoiding the assignment of precise coordinates to landmarks. Instead,

environments are represented as graphs of adjacent locations, where each location is

defined as a set of landmarks. Therefore, when landmarks change their positions the

topological map is often still valid and does not need to be recomputed as in SLAM.

An example of the topological map-based approach is the workof Ullrich and Nour-

bakhsh [UN00]. The authors manually construct a topological map (“an adjacency graph

of different locations”) in which each location is assigneda set of representative images

during training. Authors use an omnidirectional camera to capture 360◦ images and

then extract hue, luminance, saturation, and RGB histograms. Nearest-neighbor learn-

ing trains a classifier for each set of the histograms. A voting scheme is then employed

to match locations. The authors compute a confidence measureto help eliminate poor
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matches. Their experiments take place in 4 settings: a largeeight room apartment, two

indoor routes, and an outdoor campus route. The localization is approximately 90%

correct with no confident bad matches over paths between 131 and 231 images long and

tested individually to localize to among 8 to 10 segments. This system also achieves a

real-time performance rate of 2 Hz.

Ourehani et al. present another topological robot localization method [OH05],

[OHB05]. They use an augmented DoG process (similar to the SIFT features in

[SLL01b], [SLL01a], [SLL02], [SLL05], [KBO+05]) to extract attention-based local

image features which serve as landmarks in a topological mapof the environment. A

voting scheme [OH05] or Markov localization framework [FBT99], [OHB05] are then

applied to achieve localization. More specifically, a set offour visual cues is extracted

from a scene: intensity, red/green, blue/yellow, and corner/edge filter responses. Each

cue is then convolved with a DoG filter to produce the so-called conspicuity maps. The

third step computes saliency maps such that conspicuity maps with a small number of

peaks are promoted while the ones with many low responses aredemoted. The last

step in feature extraction is peak detection in saliency maps. The topological map is

then constructed by assigning top features detected over a significant number of con-

secutive frames to the corresponding equally spaced path segments. The map contains

statistical measurements of the features within each path segment. Robot localization

is accomplished using an original matching procedure developed by the authors which

produces match scores across possible locations. The matchscores are then combined

using a voting procedure [OH05] or Markov localization framework [FBT99], [OHB05]

to establish the most probable path segment to which the robot is localized. The authors

conclude both papers with the descriptions of successful experiments along relatively

short paths of approximately 10 meters to support their claims.

Torralba, Murphy, Freeman, and Rubin propose another methodof topological map-

9



based visual localization [TMFR03]. The goals of Torralba etal. are (1) to develop an

approach to recognize familiar, previously visited locations, (2) break these locations

down into broader categories, possibly using that knowledge to classify and learn previ-

ously unseen locations, and (3) recognize specific objects present in different locations.

To accomplish the first goal, which is the most relevant to this work, they approach the

problem by first constructing sets of local and global image features based on textural

properties obtained using wavelet decomposition: local features are combined into jets,

one for each of 24 sub-bands of an image, while global features are combined into im-

age pyramids with 6 orientations and 4 scales. Then, the features are projected onto 80

principal components to reduce dimensionality. Place recognition is accomplished us-

ing ahidden Markov model(HMM) to recursively compute the probability of being in a

specific location. The transition matrix is obtained by manually counting the transitions

between different locations along the path (a uniform Dirichlet prior is added to account

for transitions that were not seen in training data). The observation likelihood matrix

is a Gaussian mixture, which is experimentally establishedusing cross-validation. The

results for known place recognition among 63 possibilitiesare approximately 85% area

under precision-recall curve. To accomplish the other two goals, the authors train a

separate HMM on manually added category labels to classify location types and use a

Bayesian framework with priming from localization and location type classification to

recognize specific objects in scenes.

Hybrid map-based techniques essentially combine metric and topological maps. For

example, Siagian and Itti take a biologically inspired approach which employs compli-

mentary saliency (SIFT and auxiliary saliency feature vector generated from the neigh-

borhood of SIFT keypoints) and gist (color, intensity, and orientation metrics generated

over whole image) features [SI07], [SI08]. During training, a graph-based topological

map augmented with Cartesian coordinates is supplied to the system. In this hybrid
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map locations are associated with corresponding visual information. Three distinct sites

are modeled in this way, with each site being further split into 9 segments. Up to five

salient regions are extracted from a frame of video, along with a 4 by 4 grid of the more

global gist features. Then, a neural network classifier is trained for segment recognition

based solely on gist features. During testing, the neural network is applied to determine

which path segment the testing images come from. Then, Monte-Carlo localization is

employed for robot position estimation within segments using both gist and, when avail-

able, saliency features (a saliency feature may not be available for every image because

none were detected or there was no match). The authors successfully localize the robot

to within 9.75 meters in large outdoor environments up to 137by 178 meters, however

the error increases with the size of the environment.

In their second paper [SI08], the authors develop an optimization scheme for the

landmark database to speed up localization. They propose anexperimentally derived

cascade of thresholds. First, the similar SIFT keypoints are combined along with their

associated saliency feature vectors (a 5 by 5 window centered on the keypoint which

includes color, intensity, and orientation histograms) based on a saliency feature score.

Another metric is employed to prune weak landmarks. The landmarks are then com-

bined across different training episodes using yet anothermetric, and a fourth metric is

used to prioritize landmarks to speed up search.

A major contribution of Siagian and Itti is the development of a robot platform which

extracts gist and saliency in parallel on a 16 core 2.6 GHz machine (each sub-channel

has its own thread), which the authors claim is similar to work done in dorsal and ventral

visual pathways in the human brain. Operating on images of size 160 by 120, the authors

report 50 milliseconds/frame saliency and gist computation time, 1 millisecond segment

estimation time, and 2 second landmark search time.
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2.1.2 Experience-Based Localization

The main drawback of topological map-based localization methods, however, is

that they require a significant degree of human participation in creating the maps.

Experience-based localization provides an interesting solution to the map generation

and maintenance problem characteristic of map-based methods: a robot recognizes pre-

viously seen locations without any metric or topological map-building. Giovannangeli,

Gaussier, and Desilles present such an approach in [GGD06].In order to detect the

feature points that define a landmark, the authors convolve the gradient image obtained

from the camera with a DoG filter, search for extrema, then log-transform the image

regions around extrema points to achieve invariance to small changes in rotation and

scale. An artificial neuron is then recruited to encode each new landmark using an origi-

nal activation function developed by the authors; it is trained during one-shot learning to

distinguish the landmark from all other landmarks by producing the maximal response

to it. The authors call all such neurons landmark neurons. Additionally two other groups

of neurons are trained (also using one-shot learning with corresponding activation func-

tions) to produce different levels of activity for different azimuths and elevations of the

feature points defining the landmarks. Then, the responses from the three groups of

neurons (landmark-azimuth-elevation) are combined (per landmark) into a third-order

tensor concisely defining a landmark, the response to which is learned (also using one-

shot) by neurons in the merging layer defining place codes. Finally the activity in place

cells (another group of artificial neurons) results from thecomputation of the distance

between the learned place codes and current place codes. This setup has some desir-

able properties: place cells respond continuously to the area around the learned location

creating so-called place fields, and learning of new locations can be triggered by low

place cell responses, causing the size of representation togrow according to visual, not

geometric, properties of the locations. Additionally, theauthors develop a method for
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navigation by associating each place cell with a movement. Byimplementing soft com-

petition and short term memory, the authors achieve robustness in both place recognition

and navigation.

Another research group which developed a map-less approachis Schubert, Spexard,

Hanheide, and Wachsmuth. In their 2007 paper [SSHW07], the authors applied an ap-

proach similar to one proposed by Oliva and Torralba to represent holistic perceptual

gists of scenes [OT01]. Schubert et al. compute 12 differentneighborhood filter re-

sponses (11 edge filters with different orientations, 1 corner filter) as well as image

intensity from 46 differently sized regions of the image. For each patch, they also com-

pute its second (energy) and fourth (kurtosis) statisticalmoments. The authors then use

AdaBoost [SSHW07] to combine weak binary classifiers for each feature. In addition, a

rejection scheme and a method to handle potential occlusions by panning the camera or

moving the robot are implemented. The results are presentedwithin the framework on

a home-tour scenario: the robot is manually shown by panningthe camera sets of 90◦–

120◦ views from various points in each of the 4 rooms (living room,hallway, dinner

room, kitchen). After the classifiers are trained on these views, testing is accomplished

by matching similar views collected from different points in corresponding rooms (sim-

ilarly to kidnapping scenario described above). Two test sets are performed: one with

the same furniture arrangement and one with the furniture moved, which also creates

occlusion of certain landmarks. Overall the results are good for views with no or little

occlusion, but the more difficult locations are correctly classified only at the 75% level.

The methods described above exhibit a wide array of approaches to vision-based

localization. Nevertheless, most are based on hand-coded or pre-defined environment

maps and system parameters susceptible to environment changes and obfuscating the

capabilities of the underlying vision systems with respectto robot self-localization.

The contribution of this work is the evaluation of SeeAsYou as a prototypical atten-
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tional feature-based vision system for the task of robot localization using intuitive and

well-studied models which allow for a closer look at the underlying system’s per-

formance. More specifically, the evaluation algorithm LA-RC,compared to [UN00],

[SI07], [SI08], [TMFR03], does not require explicit map construction and labeling,

nor knowledge of intrinsic camera parameters as in [SLL01b], [SLL01a], [SLL02],

[SLL05], nor input from odometry sensors as in [OHB05], [FBT99]. Compared to

[OH05], [OHB05], [SI07], [SI08], [ATD07], the presented approach uses a well-known

information retrieval metric for landmark importance estimation, which in turn can lead

to a more straightforward analysis and optimization of representation for large environ-

ments. In contrast to the work by Se et al. [SLL01b], [SLL01a], [SLL02], [SLL05], the

proposed evaluation algorithm is not limited to static indoor environments.

2.2 SeeAsYou

A distinct quality of SeeAsYouis that it implements ideas on regional-functional

anatomy of the human vision system: more precisely, it is a biologically-inspired model

of Reverse Hierarchy Theory(RHT) [HA02]. RHT suggests that human vision is a two-

pass process. The first pass extracts the broad categories ofimages—broad notions of

objects present in the view without the specifics of what exactly the objects are or where

they are located in an image. For example, after the first passa person would be able

to tell that an image contains an animal, but wouldn’t know the exact kind of animal

they saw or what its position in the image was [HA02]. This first pass is largely sub-

conscious, we have no control over it. The second pass, on theother hand, is cognition

driven and is aimed to corroborate or refute the hypotheses about the exact nature of

the objects and their precise locations. At this stage object features are merged into a

cohesive whole and final object recognition takes place.

SeeAsYou implements the first pass of RHT to obtain the broad categorization of an
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Figure 2.1: Sample image with attention-based keypoints. Keypoints are shown as red
circles at corresponding scales.

image. This categorization is represented by image features around particular parts of

the image. The parts that describe the image are chosen, similarly to some of the sys-

tems described above, using the SIFT operator [Low99]. SIFThas well known parallels

to responses in certain neurons in inferior temporal cortexin primates: both respond to

regions in an image that are largely invariant to changes in scale, location, and illumina-

tion. Additionally, SIFT is a well-known attention-based keypoint detection technique,

as detailed in the previous section.

For the purposes of this work, 20 keypoints with highest responses to DoG filters

were selected from each image (see Figure 2.1).

Unlike other systems, in SeeAsYou each SIFT keypoint is passed through three sep-

arate channels which generate color, edge, and texture histograms and in each of these

three channels an unsupervised clustering algorithm is applied to generate hierarchical

categories of features. Therefore color, edge, and texturehistograms around SIFT key-

points become the image descriptors used by the system to form the broad notion of an

image. The rationale for clustering in each channel separately is the belief that there

exists a similar separation of these processes in the brain [Dra07]. The clustering al-

gorithm applied is based on the neuro-anatomy of thalamocortical circuits proposed by
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Granger et al. [RWG04]. In the end, the resulting hierarchical cluster labels for im-

age descriptors form the notion of an image and can be compared for the purposes of

object recognition or image matching. In SeeAsYou,term frequency inverse document

frequency(TFIDF) (detailed in the next chapter) is applied to comparecluster labels of

consecutive images and recognize co-occurrences. The proposed evaluation algorithm

also uses TFIDF, albeit at varied levels of granularity. Although TFIDF weighting in-

tuitively corresponds to selecting relevant features for comparison, it has no immediate

biological correlates. It is important to note, that while SeeAsYou is a very sophisticated

vision system, it is not the only option for input to the evaluation algorithm—any vision

system which produces matching sets of image features wouldsuffice.

The next chapter describes the evaluation of information retrieval capabilities of

SeeAsYou for location matching and formulateslocation awareness through relevance

(LA-R) algorithm. Chapter 4 builds on LA-R and adds temporal context with ahid-

den Markov model(HMM) completing the description oflocation awareness through

relevance and context(LA-RC) and concluding the evaluation of SeeAsYou.
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Chapter 3

Location Awareness through Relevance
(LA-R)

Fundamentally, a robotic vision system is responsible for the retrieval of information.

For many tasks, a useful perspective to view the vision system from is information

retrieval. Many image matching implementations are based on this idea. It is also logical

to apply it to match locations for robot localization purposes. The purpose of this chapter

is to present the evaluation of SeeAsYou as a prototypical feature-based vision system

for the task of localization purely in terms of its information retrieval capabilities. This

concept is encapsulated inlocation awareness through relevance(LA-R) algorithm.

LA-R solves a well-known experimental scenario. In this scenario a robot is taken to

a number of training locations. At each location it capturesa set of images, for instance

each set forming a 360◦ panorama. The robot is then taken to a new location where it

also collects images. The robot then has to match this new testing location to the most

similar training location.

In robotics literature this experiment is known as thekidnappingscenario [FBT99]

because it represents a situation when a robot is picked up (or “kidnapped”) during its

operation and placed in a new position. The robot then has to figure out where it has

been placed. This experimental scenario is also applicableduring the initial startup of

the robot. At the same time, in terms of computer vision, the robot can be abstracted
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Figure 3.1: LA-R system diagram. System components are shown by square blocks and
components’ inputs and outputs are shown by arrows.

away and the experiment then becomes one offorced-choice matching: given a gallery

of image panoramas and a novel set of images, find the most similar gallery panorama.

For the purposes of this chapter, the localization task is defined solely in terms of sets

of images; other sensors are not allowed. In addition, no form of reasoning about tem-

poral continuity is allowed (no ordering of images). The latter is an artificial constraint

which will be removed in Chapter 4.

To sum up, the goal of this chapter is to use LA-R algorithm to measure how well

a specific, feature-based vision system SeeAsYou [Dra07] performs at robot localiza-

tion based only on its information retrieval abilities. SeeAsYou was designed for object

recognition and image matching, not robot localization, and is an example of current

trends in computer vision (as discussed in Chapter 2). Specifically, this system requires

no a priori knowledge about images or supervised training. Additionally, it does not

need to be modified for the localization task with LA-R (see Figure 3.1), the only nec-

essary constraint is that when supplied with input images itoutputs sets of matching

image feature labels.

3.1 Algorithm Description

LA-R solves the problem of robot localization in the contextof the kidnapping (or

forced-choice matching) scenario. To evaluate the information retrieval capabilities

of SeeAsYou as prototypical feature-based vision system for the task of robot self-

localization, a well-known information retrieval metric is applied—term frequency in-
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verse document frequency(TFIDF). It uses the hierarchical cluster labels of image de-

scriptors produced by SeeAsYou asfeaturesand compares them across images taken

from training and testing locations. Location in this case can be defined as a partic-

ular place in the environment from which one or more images were taken. Although

SeeAsYou represents images as labels of hierarchical clusters of image descriptors, to

LA-R they are abstract sets of image features. This enables the algorithm to be used

with an arbitrary feature-based vision system in which casethe features used by LA-R

are the ones produced by the underlying vision system.

To accomplish the localization task, the approach is to compare image features based

on their relevance to each location. This approach is motivated by the fact that the un-

derlying vision system has no notion about which image features may be most relevant

to distinguishing different locations. In other words, image features generated by the

vision system may correspond to both very common objects found in every location and

very peculiar objects found in only specific locations. The common objects are less rele-

vant to the localization problem than the peculiar objects.For example, if door knobs are

the same in every room then finding one in an image provides little information about

which particular room the image came from. On the other hand,recognizing a painting

that is found in only one specific room will provide a cue for accurate localization.

This approach has a parallel to how a human may attempt to solve this problem.

Instead of trying to figure out which location each object they see is likely to belong

to, one may look for unique objects that are characteristic to their respective locations.

Such characteristic objects are more relevant to the task ofself-localization.

The concept of relevance arises naturally in the area of document retrieval when doc-

uments are searched for specific terms. TFIDF is a well-knownmetric that is often used

to rank the relevance of documents in a collection to a specific query term [BYRN99].

By analogy with document retrieval, TFIDF can be applied in robot localization tasks to
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rank the relevance of locations to specific query images. In this case image data from all

known locations is analogous to a document collection, images from a specific location

are analogous to a document, and corresponding image features are analogous to terms

that appear in documents. In such way the TFIDF metric can be used to assign weights

to image features such that features which appear in too manylocations are discounted

compared to rarer features, which presumably have more precise, relevant meanings.

Formally, term frequency is computed as:

TFi,j =
freqi,j

maxl freql,j

, (3.1)

wherei andl are the feature indices andj is the location index;freqi,j is the number

of times featurei appears in locationj. The inverse document frequency is computed

according to:

IDFi = log
N

ni

, (3.2)

wherei is the feature index,N is the number of known locations, andni is the number

of locations where featurei appears. The resulting image feature TFIDF weight is then:

wi,j = TFi,j IDFi. (3.3)

When a test image relevance to the known locations is evaluated, the TFIDF-

weighted sum (TFIDF score) of features from the test image which match features from

the known locations is computed for each known location. Thetraining location that

corresponds to the highest TFIDF score is then selected as the localization match. More

formally, if Fq is an ordered vector containing counts of how many times eachknown

feature was seen in query locationq (essentially a feature histogram) andWj is the cor-

responding feature TFIDF weight vector for known locationj, the resulting LA-R match

is the argument of the maximum of a dot product of these two vectors:
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arg max
j

Lq Wj. (3.4)

As such, the LA-R match selects the training location mostrelevantto the testing

location based on image features present in both.

3.2 Experimental Methods

As mentioned in the beginning of this chapter, its goal is to use the LA-R algorithm

to evaluate how well the SeeAsYou vision system can perform robotic self-localization

solely in terms of its information retrieval capabilities.For this purpose the vision sys-

tem was not modified in any way—the features it extracted fromimages were input

directly into LA-R.

While the “kidnapping” experiment framework is well-known in both robotics and

computer vision literature, the setup used to evaluate SeeAsYou was as follows: (1)

the robot collects images from several different training locations, the images are then

input into the vision system which outputs the features detected in each location; (2) the

robot is then “kidnapped” and placed near one of the traininglocations where it collects

additional testing images which are input into the vision system and the corresponding

output features are stored; and (3) LA-R algorithm is used tomatch the testing location

to one of the previously visited training locations.

More specifically, a total of 32 360◦ panoramas each containing 69 images were

collected from eight different rooms in the University Services Building at Colorado

State University. Data was collected at four different positions in each room. The images

were gathered using a 640 by 480 pixel camera mounted on an Evolution Robotics ER1

robot (see Figure 3.2 for sample images). The panoramas werethen randomly split

into two sets (see Figure 3.3 for their respective positions) such that each set contained

panoramas from two distinct and different positions from each room. Images from one
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set were used to represent the known locations while the images from the other set were

used to represent the arbitrary areas the robot was “kidnapped” into. The roles of the

sets were then reversed and the experiment repeated.

3.3 Experimental Results

Figure 3.4 shows the results of comparing a test panorama from the robot lab to the 16

training panoramas. The vertical axis shows the magnitudesof TFIDF scores. Each

bar along the horizontal axis represents one training panorama. The first two training

panoramas are from the robot lab, the other 14 are from other locations. Even though

the test panorama was taken from a slightly different position, the highest TFIDF score

corresponds to one of the training panoramas also taken in the robot lab.

Although Figure 3.4 demonstrates a correct match with LA-R, not every test

panorama matches a training panorama in the same location. The top half of Figure 3.5

shows the matching scores between all 16 test panoramas and all 16 training panoramas

(two from each location). Swapping the training and testingsets produces the data in the

lower half of Figure 3.5. According to a winner-take-all selection, in 19 of 32 trials the

closest match is to a training panorama from the same location (only 4 of 32 would have

matched randomly). Alternatively, in 13 of 32 trials the closest match is a mismatch.
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Figure 3.2: Sample images used in the experiments. From top to bottom row images
correspond to the following locations: robot lab, north lab, machine room, south lab
lobby, HP lab, south lab, systems office, and 2nd floor lobby.

23



Robot

Lab

Machine

Room

North Lab South

Lab

Lobby

South Lab

HP Lab

Systems

Office

2nd Floor

Lobby

Figure 3.3: Floor plan of locations used in the experiments.Each 360◦ panorama is
denoted by a circle. Training/testing sets of 360◦ panoramas are shown as circles of the
same color respectively.
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Figure 3.4: Evaluation of a single test 360◦ panorama against the 16 training panora-
mas. Vertical axis shows the magnitude of TFIDF scores. Horizontal axis shows TFIDF
scores for each known (training) panorama in the database. Left to right the panorama
scores correspond to the following locations (two panoramas for each location): robot
lab, north lab, machine room, south lab lobby, HP lab, south lab, systems office, and
2nd floor lobby. Scores for training panoramas that are the correct match are shown in
black.
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Figure 3.5: Evaluation of 32 test panoramas against 32 training panoramas. Top and bottom histogram sets show results for the
two partitions of data. Each sub-histogram is organized as in 3.4. The sub-histograms (two for each testing location) are ordered
left to right by their corresponding true matches in the sameorder as the bars representing TFIDF scores are organized within
each sub-histogram (two for each training location): robotlab, north lab, machine room, south lab lobby, HP lab, south lab,
systems office, and 2nd floor lobby.
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Interestingly, the images collected from the HP lab have lower TFIDF scores in both

partitions of data as indicated by the lower overall height of sub-histograms 9 and 10

in both the upper and lower parts of Figure 3.5. This may be attributed to the fact

that the HP lab is visually not very distinct from the robot lab or the north lab (see

Figure 3.2 rows 5 versus 1 and 2 for sample images from HP lab versus robot lab and

north lab respectively). At the same time, the latter two locations possibly contain some

distinctive features in addition to the ones common among the three. Therefore, the

features found in the HP lab are not sufficient to distinguishit from the robot lab or the

north lab but the converse is not the case. In a practical application the event in which

some necessary to discern location achieves lower overall TFIDF scores can be used to

indicate that additional images need to be collected from that location. This process may

need to continue until a sufficient number of relevant landmarks has been discovered as

indicated by the TFIDF score the location achieves with itself.

If LA-R results are evaluated not as a forced-choice scenario but rather as a sequence

of individual yes/no decisions (binary classification of correct/incorrect localizations),

then a look at performance at different acceptance thresholds with respect to TFIDF

scores is useful. This idea is encapsulated by a receiver operating characteristic (ROC)

curve, as shown in Figure 3.6. The ROC curve shows the true positive rate of the clas-

sifier (on a 0 to 1 scale) along the vertical axis and the false positive output along the

horizontal axis. Figure 3.6 shows the total scores for a total of 256 (16 by 16) pairs of

panoramas. In general, if the match scores are random, the ROC curve will look like a

diagonal line; if the match scores are perfect, the ROC curvewill touch the upper left

corner of the plot.

A useful statistic of ROC representation is the area under the curve (AUC) metric. It

shows the probability that a randomly drawn positive samplewill be rated higher than a

randomly chosen negative sample. For the first partition of data (graph on the left), the
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Figure 3.6: ROC curves for each of the two partitions of data.True positive output of
the classifier is shown along the vertical axis and the false positive output is shown along
the horizontal axis. Random classifier performance is shown by red diagonal lines.

AUC is 74.8%; for the second partition (graph on the right), the AUC is 77.8%.

A way to get a closer look at classification performance of LA-R is shown in Fig-

ure 3.7. The figure shows relative magnitudes of TFIDF scoresfor each training/testing

panorama pair in the experiment. The vertical axis shows TFIDF scores for training

panoramas as grayscale levels. The largest TFIDF score corresponds to the darkest

grayscale level. The horizontal axis shows data for different tests. Correct matches for

tests are highlighted in red.

Although in general darker grayscale levels fall within thecorrect regions, the results

clearly show room for improvement. This can be achieved by keeping track of temporal

context for localization. One of the constraints imposed inthe above kidnapping ex-

periment was that no form of reasoning about temporal continuity was allowed. The

next chapter removes this constraint and evaluates SeeAsYou using both image feature

relevance and temporal context.
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Figure 3.7: Relative magnitudes of TFIDF scores for each of the training/testing
panorama pairs. Darker grayscale levels in each column represent higher TFIDF scores
for a given training panorama during testing. Horizontal axis represent data for different
tests. The order of test sets left to right (testing data) andbottom to top (training data) is
the same as in previous figures: robot lab, north lab, machineroom, south lab lobby, HP
lab, south lab, systems office, and 2nd floor lobby. Each location is represented by two
training and two testing panoramas. Correct matches are highlighted in red.
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Chapter 4

Location Awareness through Relevance
and Context (LA-RC)

The omission of temporal context for robot localization is artificial. Indeed, in most real-

world applications of mobile robots this information is readily available: at the very

least images can be ordered by their acquisition times to provide temporal ordering.

Using such localization context in addition to relevance-based location awareness as

provided by LA-R forms the crux of LA-RC. In this chapter LA-RC isapplied to image

features produced by SeeAsYou to further investigate the vision system’s localization

capabilities, now using both feature relevance and temporal context.

LA-RC solves the problem of robot localization along a path. The algorithm is

best understood within the framework of the following experimental scenario: a robot

is driven along a path while collecting training images and their temporal ordering;

the robot is then re-deployed to a testing location somewhere along the path and starts

driving along collecting new images and recording their temporal ordering; as the new

images arrive the robot has to figure out where it is located along the path.

Similarly to the approach described in the previous chapter, no input from sensors

other than the camera is allowed. This time, however, the localization context is recorded

and provided to LA-RC in the form of images ordered by time. Theoverall system

layout is the same as before with the exception that the location awareness module is
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Figure 4.1: LA-RC system diagram. System components are shown by square blocks
and components’ inputs and outputs are shown by arrows.

now LA-RC instead of LA-R (see Figure 4.1).

As before with LA-R, LA-RC is not confined to SeeAsYou as the underlying vision

system—any feature-based vision system can be used. Nevertheless, the goal of this

chapter is to evaluate SeeAsYou with LA-RC for the task of localization along a path

using both feature relevance and temporal context.

4.1 Algorithm Description

LA-RC solves the problem of robot localization along a path bymatching features based

on their relevance to each path segment and integrating the temporal context of local-

ization. This approach is motivated by the fact that temporal information is readily

available in many situations and has the potential to improve on a purely information

retrieval based approach. This also has a parallel to how a human may go about solving

the problem of localization along a path: instead of trying to match path segments inde-

pendently, one may consider them in their temporal context (using short-term memory).

More specifically, knowing what landmarks a person has recently seen and what was the

order the landmarks were seen in can narrow down the possibilities of where the person

is currently.

In order to achieve a similar capability, it is necessary foran algorithm to be able to

combine previous and current position estimates using their temporal ordering.Hidden

Markov models(HMMs) provide a simple and natural way to recursively combine pre-

vious and current robot observations—in this case relevance-based position estimates:
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the TFIDF scores computed similarly to LA-R. The main difference is that in LA-RC

TFIDF scores are computed for each image in the training sequence as opposed to one

TFIDF score for each training 360◦ panorama in LA-R. Therefore, in LA-RC localiza-

tion resolution is to a training image compared to a 360◦ view in LA-R. This, however,

is a parameter that can be adjusted as necessary.

Using HMM formulation, as new position estimates become available the probabil-

ity distribution across the set of possible locations can berecursively updated as:

P (L|Ot) = α Ot OTP (L|Ot−1) (4.1)

whereL denotes the set of possible locations (here individual training images along a

path),Ot is the position estimate at timet which for the initial observationO0 is uniform,

α is the normalizing constant to keep probabilities sum up to 1, O is the observation

probability matrix, andT is the location transition probability matrix. This follows the

notation by Russell and Norvig [RN03].

O andT define the HMM because they determine how the model evolves over time.

Although it is possible to learn bothO andT using EM (Expectation Maximization)

algorithm [Bis06], the current implementation of LA-RC uses pre-set observation and

location transition probability matrices.O is a tridiagonal matrix such that the elements

on the main diagonal are set to 0.5 and all other non-zero elements are equal to 0.25

which implies that similar observations come from adjacentlocations. T is designed

so that transitions are possible between the state and itself (corresponding to the robot

remaining in the same position) with 25% probability, the state and the next state (cor-

responding to a robot moving ahead one position) with 50% probability, and between

the state and the state two positions ahead (corresponding to a robot missing an obser-

vation) with 25% probability. The reverse state transitions are not allowed. Although

having the location transition matrix configured in such wayimplies a simple forward
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location transition model, for the purposes of localization along a path this may be ac-

ceptable because during traversal all transitions are gradual and unidirectional (aimed

toward destination).

Historically, the idea of integrating the temporal localization context is not novel.

This is the approach taken in many SLAM solutions employing Kalman or particle fil-

tering methods [Thr02]. However, path integration in LA-RC relies on HMM for that

purpose, which is a simpler model than filtering and doesn’t require odometry mea-

surements. Torralba et al. describe a recursive HMM-based place recognition approach

which employs a Gaussian mixture model for the observation probability matrix and

involves manual construction of the state transition matrix [TMFR03]. As opposed to

their method, LA-RC doesn’t require manual labeling of transitions among locations.

4.2 Experimental Methods

To evaluate SeeAsYou with LA-RC, image sequences were collected in three different

settings using the Evolution Robotics ER1 robot equipped witha 640 by 480 pixel cam-

era (same as in the kidnapping experiment in the previous chapter). Out of the three

settings, two were inside the CSU University Services Building in computer labs and

faculty offices areas, and one was outside in the garden area.

Three image sequences were collected in each of the three settings by manually

driving the robot three times along approximately identical routes (see Figure 4.2 for

sample trajectories). The routes driven were between 30 and50 meters long. Due to

routes’ varying lengths and variations in robot speed, the number of images per sequence

ranged between 460 and 1,833: for computer lab setting the sequences were between

1733 and 1833 images long, for faculty offices—between 460 and 474, and for the

garden area—between 827 and 879. For each of the settings, one image sequence was

used to train hierarchical clusters of image descriptors inSeeAsYou, while the second
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Figure 4.2: Sample routes in one setting (computer labs). Each route is denoted by
different color. The image sequences follow similar but notexactly the same trajectories.

sequence was used to generate TFIDF scores for every image along the route. Parts of

the third image sequence were used for testing. Since TFIDF scores were generated for

every image from the second sequence, each such image represented a distinct location

in a setting.

After accuracy of the algorithm was validated and localization with LA-RC and

SeeAsYou evaluated within each setting individually, the training and testing sequences

were combined across the settings to evaluate localizationperformance of SeeAsYou for

all possible initial testing positions in the combined dataset.

4.3 Experimental Results

To verify the accuracy of the algorithm, three testing sub-sequences were selected cor-

responding to arbitrary notable points in each setting. These notable locations were: the

entrance to the computer lab in Figure 4.3, the cabinet with stickers in Figure 4.4, and

the garden benches in Figure 4.5. For each setting, the goal was to find the training

image that most closely matched the probe (testing) image.

The results of the accuracy verification experiment are illustrated in Figures 4.3–

4.5. On the left each figure shows a set of histograms corresponding to discrete proba-

bility distributions maintained by the algorithm during the first four time steps of exe-
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Figure 4.3: Sample convergence and the resulting match for an indoor run (computer
lab setting). Histograms on the left demonstrate convergence starting with the first time
step of the LA-RC execution at the top and three consecutive time steps below. On
each histogram, the probabilities of being in a location areshown along the vertical
axis while the horizontal axis shows the training locations(corresponding to individual
images from the second image sequence). The histograms represent the discrete prob-
ability distributions maintained by LA-RC. The discrete probability distributions result
from combining TFIDF scores for new image features (as observations) using HMM
according to observation and transition matrices—HMM’sP (L|Ot) for t = 1..4 where
Ot are image features detected in imaget. The time steps are advanced when features
found in a new image are made available by the underlying vision system. The images
corresponding to the peak in the bottom histogram are shown on the right: right top is
the image from the testing sequence, right bottom is its match in the training sequence
based on a winner-take-all selection.

cution (from top to bottom). The discrete probability distributions result from combin-

ing TFIDF scores for new and previously seen image features (as observations) using

HMM according to observation and transition matrices described above—in other words

HMM’s P (L|Ot) for t = 1..4 whereOt are image features detected in imaget. Thus,

the time steps in HMM are advanced when features found in a newimage are made

available by the underlying vision system. The top image on the right is the image

examined by the vision system at the fourth time step, the image on the bottom is the re-

sultant location match based on a winner-take-all selection from the discrete probability

distribution maintained by LA-RC after the fourth time step.

These initial results show fast convergence in each of the testing episodes; all con-
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Figure 4.4: Sample convergence and the resulting match for the second indoor run (fac-
ulty offices setting). The plot layout is the same as in Figure4.3.

Figure 4.5: Sample convergence and the resulting match for the outdoor run (garden
setting). The plot layout is the same as in Figure 4.3.
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Figure 4.6: Convergence in LA-RC. The vertical axis in each plotshows positional
entropy, horizontal—time steps. The graph on the left corresponds to the computer lab
route, graph in the middle—to faculty offices, and graph on the right—to outdoor route.

vergences are to near the true location. The qualitative accuracy of localization is good

since both the probe (testing) image and the resulting matchfrom the training sequence

are visually similar and spatially close to each other, as can be seen on the right-hand

side of Figures 4.3– 4.5.

Information entropy [Sha48] can be used to quantify the convergence more precisely.

In general, information entropy shows the level of uncertainty in data—lower values

correspond to less uncertainty. Convergence in LA-RC also corresponds to reduction

of uncertainty—in this case positional uncertainty (entropy). Therefore, convergence in

localization with LA-RC can be measured by the loss of positional entropy. Mathemat-

ically entropy is defined as:

H = −
n∑

i=1

pi log pi (4.2)

wherepi is an element from the set of state probabilities. Their analogues are the posi-

tion estimates in LA-RC. Positional entropy for the time stepsshown on the left-hand

sides of Figures 4.3– 4.5 is plotted in Figure 4.6.

Figure 4.6 shows how entropy is decreasing during the first 10time steps of execu-

tion of LA-RC for each setting’s respective probe image. Notethat after just 4 steps, the
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Figure 4.7: Impact of state transition matrices on convergence in LA-RC. The vertical
axis in each plot shows positional entropy, horizontal—time steps. The graph on the left
corresponds to the computer lab route, graph in the middle—to faculty offices, and graph
on the right—to outdoor route. Plots marked by triangles show entropy at each time step
when the original 25/50/25 transition matrix is used (25% probability the robot stays in
the same location, 50% probability it moves forward one location, and 25% probability it
moves forward two locations). Plots marked by circles correspond to 50/25/25 transition
matrix, and plots marked by squares correspond to 33.3/33.3/33.3 transition matrix.

level of uncertainty is low enough to pick a close match usinga simple winner-take-all

strategy.

Entropy plots also allow comparison of alternative state transition matrices used in

HMM and their impact on convergence. Figure 4.7 shows how twoother state transition

matrices compare to the original 25/50/25 matrix (25% probability the robot stays in the

same location, 50% probability it moves forward one location, and 25% probability it

moves forward two locations). The alternative matrices are50/25/25 (50% probability

the robot stays in the same location, 25% probability it moves forward one location, and

25% probability it moves forward two locations) and 33.3/33.3/33.3 (equal probabilities

of robot remaining in the same location, moving forward one location and moving for-

ward two locations). Producing qualitatively comparable results, different matrices have

little impact on convergence speed, therefore further results reported below employ the

original 25/50/25 transition probability matrix.

Another aspect of convergence which can be observed from theentropy point of
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view is peak region entropy. Peak region entropy here means how much entropy is

concentrated within the vicinity of the most prominent peakin the discrete probability

distribution over the set of known locations maintained by LA-RC. For all three testing

runs using 25/50/25 state transition matrix, over 50% of positional entropy (3.829983,

3.152670, and 4.094095 for computer lab, faculty offices, and garden settings respec-

tively) is concentrated within a 20-frame window around thepeak. This shows that not

only localization entropy is decreased during execution ofLA-RC, but it is also nar-

rowed down to a small region.

A more comprehensive look at localization performance of SeeAsYou with LA-RC

algorithm is provided by Figure 4.8. It shows the maximum magnitudes of localization

predictions—maxima inP (L|Ot)—after time steps 1, 4, and 10 as black dots for all

possible starting locations in each setting. As before, thetraining and testing were done

for each setting individually. From left to right the imagesshow data for computer lab

setting, faculty offices setting, and outdoor garden setting. From top to bottom the top

images show data after step 1 (t = 1), the middle images show data after step 4 (t = 4),

and the bottom—after step 10 (t = 10). In each of the 9 images, the vertical axis shows

training locations and the horizontal axis represents the testing locations. The training

and testing locations are ordered consecutively from bottom to the top and from left to

right, starting from the beginning of the respective training and testing image sequences

(a similar ordering as in Figure 3.7). The regions for which the accuracy of localization

is improved in the following time steps are indicated by red arrows.

Since the maxima are concentrated along the diagonals, Figure 4.8 shows that

SeeAsYou performs localization correctly for the majorityof starting points along each

path. Also, the presence of the regions for which the accuracy of localization is improved

as well as the overall de-noising demonstrates effectiveness of LA-RC. The transition of

the maxima closer to the diagonals during the execution of LA-RC also corresponds to
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Computer lab Office area Garden area

Figure 4.8: Maxima inP (L|Ot) for all possible starting locations within each setting
(separate training and testing for each setting). The maxima are shown as black dots.
From left to right the images show data for computer lab setting, faculty offices setting,
and outdoor garden setting. From top to bottom the top imagesshow data fort = 1,
the middle images show data fort = 4, and the bottom—fort = 10. In each of the
sub-images, the vertical axis shows training locations andthe horizontal axis represents
the testing locations. The training and testing locations are ordered consecutively from
bottom to the top and from left to right, starting from the beginning of the respective
training and testing image sequences. The regions for whichthe accuracy of localization
is improved in the following time steps (shown below) are indicated by red arrows.
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Figure 4.9: Entropy decrease for all possible starting locations within each setting (sepa-
rate training and testing for each setting). For all possible starting positions, the entropy
is plotted along the vertical axis and the time steps are plotted along the horizontal axis.
The bottom and top of the box denote 25th and 75th percentilesrespectively, line in the
middle of the box denotes the median, whiskers denote± 1.5 times interquartile range
from the box, and the circles denote outliers.

the reduction in entropy: for the the computer lab run the mean entropy is 10.66 (stan-

dard deviation 0.05) after the first time step and 9.15 (standard deviation 0.59) after the

fourth, for the faculty offices run the corresponding valuesare 8.56 (± 0.14) and 6.78

(± 0.96), and for the garden they are 9.55 (± 0.14) and 8.33 (± 0.73). The summary

of entropy decrease in each of the three settings is shown in Figure 4.9. For all possible

starting positions in each of the three settings, the entropy is plotted along the vertical

axis and the time steps are plotted along the horizontal axis. For each of the time steps,

the positional entropy is shown as a box plot: bottom and top of the box denoting 25th

and 75th percentiles respectively, line in the middle of thebox denoting the median,

whiskers denoting± 1.5 times interquartile range from the box, and the circles denoting

outliers. In general, entropy decreases with each time step, at the same time becoming

more dispersed. One possible explanation for the entropy dispersion induced by the

execution of the algorithm is that for certain locations theuncertainty is not reduced or

reduced much better than the average.

Still, two important questions remain: what happens if the image sequences are
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combined across the three settings? will SeeAsYou be able tolocalize with LA-RC both

across the three settings as well as within each setting? These questions are answered

by combining the image data from each setting into three image combined runs from

3034 to 3172 images long. As before, one of the sequences was used to train the hierar-

chical clustering in SeeAsYou, one—to build the TFDIF database, and parts of the third

sequence were used for testing. The individual observationand transition matrices from

the previous path experiment were combined along the diagonals to form larger obser-

vation and transition matrices. While the observation probability matrix was virtually

unchanged (apart from the size), the new transition matrix did not allow transitions from

one of the three settings to either of the others.

Figure 4.10 shows the maxima in the resultingP (L|Ot) distributions for all possible

starting locations corresponding to each of the three settings. While overall the results

are comparable to Figure 4.8, the resulting maxima images are noticeably whiter and

noisier (especially for the garden area) which is an indication of decreased performance.

Also, as compared to the experiment when each setting was considered separately, the

localization across the combined data set gives rise to higher positional entropies as

shown in Figure 4.11.

The decrease in performance in this experiment can be easilyseen if the fraction

of misses—position estimates outside the corresponding training image sequences—is

plotted versus time steps in LA-RC execution (see Figure 4.12). While for the computer

labs setting the performance is generally positive, for thefaculty offices area apply-

ing LA-RC actually deteriorates the position estimates after the first step. Also, in the

outdoor garden area setting LA-RC fails to appreciably improve the accuracy of local-

ization.

Such variation in performance in the final experiment can be attributed to two fac-

tors. First, compared to the computer lab sequence, both faculty offices and garden area
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Computer lab Office area Garden area

Figure 4.10: Maxima inP (L|Ot) for all possible starting locations within each setting
(combined training and testing for all settings). The maxima are shown as black dots.
From left to right the images show data for computer lab setting, faculty offices setting,
and outdoor garden setting. From top to bottom the top imagesshow data fort = 1,
the middle images show data fort = 4, and the bottom—fort = 10. In each of the
sub-images, the vertical axis shows training locations andthe horizontal axis represents
the testing locations. The training and testing locations are ordered consecutively from
bottom to the top and from left to right, starting from the beginning of the respective
training and testing image sequences. The regions for whichthe accuracy of localization
is improved in the following time steps (shown below) are indicated by red arrows.
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Figure 4.11: Entropy decrease for all possible starting locations within each setting
(combined training and testing for all settings). For all possible starting positions, the
entropy is plotted along the vertical axis and the time stepsare plotted along the horizon-
tal axis. The bottom and top of the box denote 25th and 75th percentiles respectively,
line in the middle of the box denotes the median, whiskers denote± 1.5 times interquar-
tile range from the box, and the circles denote outliers.
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Figure 4.12: Fraction of misses as a function of time steps during execution of LA-RC.
In each of the three plots the vertical axis shows the fraction of misses and the horizontal
axis shows the timesteps. The plot on the left shows data for the computer labs setting,
the plot in the middle—for faculty offices, and the plot on theright—for the garden area.
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sequences were underrepresented: the three runs for the faculty offices contained from

460 to 474 images and the garden sequences contained from 827to 879 images; on

the other hand, the computer lab sequences contained between 1733 and 1833 images.

Within the scope of the performed experiment, there exists acorrelation between the

number of images in the sequence and the quality of localization with LA-RC. This

may also be a related issue to one described in the previous chapter when one of the

locations (namely the HP lab) seemed to lack enough distinctive features compared

to other settings which inhibited localization. The secondfactor contributing to the

negative performance can be the simplicity of the observation and transition matrices

used in HMM. While sufficient for a more homogenous experimental setup when each

setting was tested independently of others, the transitionand observation matrices em-

ployed may have been inadequate for the more heterogeneous conditions in the final

experiment. The investigation of these factors as well as other issues encountered in

heterogeneous settings with complex transitions is a possible subject for future work.

Although the experiments with SeeAsYou using LA-RC suggest reasonable conver-

gence and accuracy of localization, a number of open questions remain such as what

exactly is the accuracy of the algorithm and the underlying vision system, what is their

resilience to errors, as well as what are the underlying effecting factors. These are some

of the issues discussed in the next chapter.
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Chapter 5

Conclusions & Future Work

Overall the experimental results show that SeeAsYou in conjunction with the LA-R/LA-

RC algorithms can be used to localize a robot based exclusively on camera signal. Since

SeeAsYou is a prototypical implementation of a feature-based vision system, the results

are applicable to other vision systems adhering to that paradigm.

More specifically, using SeeAsYou with LA-R achieves 74–78%AUC in a kidnap-

ping (forced-choice) experiment with eight different locations. This shows that the un-

derlying feature-based vision system is capable but not sufficiently robust to accurately

localize a mobile robot without the temporal context. Adding the temporal context with

LA-RC, on the other hand, allows the vision system to achieve low-entropy location

awareness after just four time steps in homogeneous settings, which, in terms of the

performed experiments, is equivalent to localization after traveling 20 centimeters on a

30 meter route. At the same time, given a heterogeneous experimental setup with non-

trivial transitions, SeeAsYou with LA-RC fail to achieve definitive location awareness.

Concerning LA-RC, two possible issues may contribute to adverse performance: un-

derrepresented locations and oversimplified HMM observation and transition matrices.

The underrepresentation problem can be addressed by monitoring the number of rele-

vant features detected in each location based on the TFIDF score of that location with

itself. When this score reaches an acceptable threshold, accumulation of training images

for that location may stop. In addition, the simple observation and transition matrices
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employed in the experiments carried out in this work can be augmented using EM (Ex-

pectation Maximization) [Bis06] to achieve better performance. Addressing these issues

is a possible future research direction.

Another important issue with the presented results is that they are largely qualitative:

at this point it is unclear what exactly is the accuracy of thealgorithm and the underlying

vision system, and what is their resilience to errors. To derive quantitative conclusions

and explore the effecting factors, a more controlled set of experiments may be conducted

in a simulated environment. USARSim [WLH+05] provides a high-fidelity 3D platform

for such simulations and exploring the localization capabilities of SeeAsYou using LA-

RC within that framework is another potential future research direction.

Employing controlled simulated environments can also reveal important character-

istics of LA-RC algorithm. As shown in the previous chapter, the algorithm is capable

of localizing a robot along a path using SeeAsYou as the underlying vision system.

However, due to time constraints and the limitations of the robot platform, exploring

performance in large dynamic environments was not carried out. Intuitively, LA-RC

complexity grows with the number of relevant landmarks acquired by the underlying

feature-based vision system. The number of landmarks critical to achieve accurate loca-

tion awareness is limited by the number of locations and their visual, but not geometric,

complexity. Therefore it may be possible to concisely represent even very large en-

vironments. Since LA-RC does not require explicit maps and represents locations by

simply associating relevant landmarks with them, minor changes in environment should

not affect the performance. At this point, applying LA-RC algorithm in large dynamic

environments is another future work possibility.

Finally, although the presented results suggest viabilityof the localization approach

derived in this thesis for more than just vision system evaluation, the definitive answer to

the question of the practicality of the algorithm can only bemade by employing LA-RC
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with a vision system on an actual robotic platform coupled with a navigation system to

do useful tasks. At the very basic level, navigation can be accomplished by associat-

ing the desired movement with each location. The robot can then use simpler sensors

(for example laser or sonar range finders) for collision avoidance while following the

main movement vector based on the visual location awarenessprovided by LA-RC. The

implementation of such end-to-end system, however, remains a subject of future work.

To sum up, this thesis presented an evaluation of SeeAsYou asa prototypical feature-

based vision system for the task of robot localization. It was shown that SeeAsYou

was capable but not sufficiently robust to localize a robot without the temporal context,

while adding such context suggested improved performance.LA-RC (Location Aware-

ness through Relevance and Context), a simple general-purpose mobile robot localiza-

tion algorithm using feature-based vision, was developed and tested with SeeAsYou. It

was shown that with SeeAsYou, LA-RC works both indoors and outdoors, does not re-

quire manual map construction or transition labeling, input from odometry sensors, nor

knowledge of intrinsic camera parameters. This favorably sets it apart from some of the

other visual localization algorithms. Moreover, it is was designed to not not be limited

to a specific vision system. As such it can be added as a component to existing mobile

robot systems to do useful tasks. This, however, remains thesubject of future work.
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